Bug Summary

File:lib/Target/AMDGPU/SIISelLowering.cpp
Warning:line 7229, column 52
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SIISelLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/Target/AMDGPU -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp
1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief Custom DAG lowering for SI
12//
13//===----------------------------------------------------------------------===//
14
15#ifdef _MSC_VER
16// Provide M_PI.
17#define _USE_MATH_DEFINES
18#endif
19
20#include "SIISelLowering.h"
21#include "AMDGPU.h"
22#include "AMDGPUIntrinsicInfo.h"
23#include "AMDGPUSubtarget.h"
24#include "AMDGPUTargetMachine.h"
25#include "SIDefines.h"
26#include "SIInstrInfo.h"
27#include "SIMachineFunctionInfo.h"
28#include "SIRegisterInfo.h"
29#include "Utils/AMDGPUBaseInfo.h"
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/APInt.h"
32#include "llvm/ADT/ArrayRef.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/StringRef.h"
37#include "llvm/ADT/StringSwitch.h"
38#include "llvm/ADT/Twine.h"
39#include "llvm/CodeGen/Analysis.h"
40#include "llvm/CodeGen/CallingConvLower.h"
41#include "llvm/CodeGen/DAGCombine.h"
42#include "llvm/CodeGen/ISDOpcodes.h"
43#include "llvm/CodeGen/MachineBasicBlock.h"
44#include "llvm/CodeGen/MachineFrameInfo.h"
45#include "llvm/CodeGen/MachineFunction.h"
46#include "llvm/CodeGen/MachineInstr.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineMemOperand.h"
49#include "llvm/CodeGen/MachineModuleInfo.h"
50#include "llvm/CodeGen/MachineOperand.h"
51#include "llvm/CodeGen/MachineRegisterInfo.h"
52#include "llvm/CodeGen/SelectionDAG.h"
53#include "llvm/CodeGen/SelectionDAGNodes.h"
54#include "llvm/CodeGen/TargetCallingConv.h"
55#include "llvm/CodeGen/TargetRegisterInfo.h"
56#include "llvm/CodeGen/ValueTypes.h"
57#include "llvm/IR/Constants.h"
58#include "llvm/IR/DataLayout.h"
59#include "llvm/IR/DebugLoc.h"
60#include "llvm/IR/DerivedTypes.h"
61#include "llvm/IR/DiagnosticInfo.h"
62#include "llvm/IR/Function.h"
63#include "llvm/IR/GlobalValue.h"
64#include "llvm/IR/InstrTypes.h"
65#include "llvm/IR/Instruction.h"
66#include "llvm/IR/Instructions.h"
67#include "llvm/IR/IntrinsicInst.h"
68#include "llvm/IR/Type.h"
69#include "llvm/Support/Casting.h"
70#include "llvm/Support/CodeGen.h"
71#include "llvm/Support/CommandLine.h"
72#include "llvm/Support/Compiler.h"
73#include "llvm/Support/ErrorHandling.h"
74#include "llvm/Support/KnownBits.h"
75#include "llvm/Support/MachineValueType.h"
76#include "llvm/Support/MathExtras.h"
77#include "llvm/Target/TargetOptions.h"
78#include <cassert>
79#include <cmath>
80#include <cstdint>
81#include <iterator>
82#include <tuple>
83#include <utility>
84#include <vector>
85
86using namespace llvm;
87
88#define DEBUG_TYPE"si-lower" "si-lower"
89
90STATISTIC(NumTailCalls, "Number of tail calls")static llvm::Statistic NumTailCalls = {"si-lower", "NumTailCalls"
, "Number of tail calls", {0}, {false}}
;
91
92static cl::opt<bool> EnableVGPRIndexMode(
93 "amdgpu-vgpr-index-mode",
94 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
95 cl::init(false));
96
97static cl::opt<bool> EnableDS128(
98 "amdgpu-ds128",
99 cl::desc("Use DS_read/write_b128"),
100 cl::init(false));
101
102static cl::opt<unsigned> AssumeFrameIndexHighZeroBits(
103 "amdgpu-frame-index-zero-bits",
104 cl::desc("High bits of frame index assumed to be zero"),
105 cl::init(5),
106 cl::ReallyHidden);
107
108static unsigned findFirstFreeSGPR(CCState &CCInfo) {
109 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
110 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
111 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
112 return AMDGPU::SGPR0 + Reg;
113 }
114 }
115 llvm_unreachable("Cannot allocate sgpr")::llvm::llvm_unreachable_internal("Cannot allocate sgpr", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 115)
;
116}
117
118SITargetLowering::SITargetLowering(const TargetMachine &TM,
119 const SISubtarget &STI)
120 : AMDGPUTargetLowering(TM, STI) {
121 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
122 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
123
124 addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
125 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
126
127 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
128 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
129 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
130
131 addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
132 addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
133
134 addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
135 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
136
137 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
138 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
139
140 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
141 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
142
143 if (Subtarget->has16BitInsts()) {
144 addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
145 addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
146 }
147
148 if (Subtarget->hasVOP3PInsts()) {
149 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
150 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
151 }
152
153 computeRegisterProperties(STI.getRegisterInfo());
154
155 // We need to custom lower vector stores from local memory
156 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
157 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
158 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
159 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
160 setOperationAction(ISD::LOAD, MVT::i1, Custom);
161
162 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
163 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
164 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
165 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
166 setOperationAction(ISD::STORE, MVT::i1, Custom);
167
168 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
169 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
170 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
171 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
172 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
173 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
174 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
175 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
176 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
177 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
178
179 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
181 setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
182
183 setOperationAction(ISD::SELECT, MVT::i1, Promote);
184 setOperationAction(ISD::SELECT, MVT::i64, Custom);
185 setOperationAction(ISD::SELECT, MVT::f64, Promote);
186 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
187
188 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
189 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
190 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
191 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
192 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
193
194 setOperationAction(ISD::SETCC, MVT::i1, Promote);
195 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
196 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
197 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
198
199 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
200 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
201
202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
204 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
205 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
206 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
207 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
208 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
209
210 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
211 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
212 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
213 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
214 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
215
216 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
217 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
218 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
219
220 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
221 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
222 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
223 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
224
225 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
226 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
227 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
228 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
229 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
230 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
231
232 setOperationAction(ISD::UADDO, MVT::i32, Legal);
233 setOperationAction(ISD::USUBO, MVT::i32, Legal);
234
235 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
236 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
237
238#if 0
239 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
240 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
241#endif
242
243 //setOperationAction(ISD::ADDC, MVT::i64, Expand);
244 //setOperationAction(ISD::SUBC, MVT::i64, Expand);
245
246 // We only support LOAD/STORE and vector manipulation ops for vectors
247 // with > 4 elements.
248 for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
249 MVT::v2i64, MVT::v2f64}) {
250 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
251 switch (Op) {
252 case ISD::LOAD:
253 case ISD::STORE:
254 case ISD::BUILD_VECTOR:
255 case ISD::BITCAST:
256 case ISD::EXTRACT_VECTOR_ELT:
257 case ISD::INSERT_VECTOR_ELT:
258 case ISD::INSERT_SUBVECTOR:
259 case ISD::EXTRACT_SUBVECTOR:
260 case ISD::SCALAR_TO_VECTOR:
261 break;
262 case ISD::CONCAT_VECTORS:
263 setOperationAction(Op, VT, Custom);
264 break;
265 default:
266 setOperationAction(Op, VT, Expand);
267 break;
268 }
269 }
270 }
271
272 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
273 // is expanded to avoid having two separate loops in case the index is a VGPR.
274
275 // Most operations are naturally 32-bit vector operations. We only support
276 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
277 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
278 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
279 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
280
281 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
282 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
283
284 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
285 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
286
287 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
288 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
289 }
290
291 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
292 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
293 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
294 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
295
296 // Avoid stack access for these.
297 // TODO: Generalize to more vector types.
298 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
299 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
300 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
301 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
302
303 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
304 // and output demarshalling
305 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
306 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
307
308 // We can't return success/failure, only the old value,
309 // let LLVM add the comparison
310 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
311 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
312
313 if (getSubtarget()->hasFlatAddressSpace()) {
314 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
315 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
316 }
317
318 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
319 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
320
321 // On SI this is s_memtime and s_memrealtime on VI.
322 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
323 setOperationAction(ISD::TRAP, MVT::Other, Custom);
324 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
325
326 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
327 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
328
329 if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) {
330 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
331 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
332 setOperationAction(ISD::FRINT, MVT::f64, Legal);
333 }
334
335 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
336
337 setOperationAction(ISD::FSIN, MVT::f32, Custom);
338 setOperationAction(ISD::FCOS, MVT::f32, Custom);
339 setOperationAction(ISD::FDIV, MVT::f32, Custom);
340 setOperationAction(ISD::FDIV, MVT::f64, Custom);
341
342 if (Subtarget->has16BitInsts()) {
343 setOperationAction(ISD::Constant, MVT::i16, Legal);
344
345 setOperationAction(ISD::SMIN, MVT::i16, Legal);
346 setOperationAction(ISD::SMAX, MVT::i16, Legal);
347
348 setOperationAction(ISD::UMIN, MVT::i16, Legal);
349 setOperationAction(ISD::UMAX, MVT::i16, Legal);
350
351 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
352 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
353
354 setOperationAction(ISD::ROTR, MVT::i16, Promote);
355 setOperationAction(ISD::ROTL, MVT::i16, Promote);
356
357 setOperationAction(ISD::SDIV, MVT::i16, Promote);
358 setOperationAction(ISD::UDIV, MVT::i16, Promote);
359 setOperationAction(ISD::SREM, MVT::i16, Promote);
360 setOperationAction(ISD::UREM, MVT::i16, Promote);
361
362 setOperationAction(ISD::BSWAP, MVT::i16, Promote);
363 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
364
365 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
366 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
367 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
368 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
369 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
370
371 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
372
373 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
374
375 setOperationAction(ISD::LOAD, MVT::i16, Custom);
376
377 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
378
379 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
380 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
381 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
382 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
383
384 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
385 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
386 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
387 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
388
389 // F16 - Constant Actions.
390 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
391
392 // F16 - Load/Store Actions.
393 setOperationAction(ISD::LOAD, MVT::f16, Promote);
394 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
395 setOperationAction(ISD::STORE, MVT::f16, Promote);
396 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
397
398 // F16 - VOP1 Actions.
399 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
400 setOperationAction(ISD::FCOS, MVT::f16, Promote);
401 setOperationAction(ISD::FSIN, MVT::f16, Promote);
402 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
403 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
404 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
405 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
406 setOperationAction(ISD::FROUND, MVT::f16, Custom);
407
408 // F16 - VOP2 Actions.
409 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
410 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
411 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
412 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
413 setOperationAction(ISD::FDIV, MVT::f16, Custom);
414
415 // F16 - VOP3 Actions.
416 setOperationAction(ISD::FMA, MVT::f16, Legal);
417 if (!Subtarget->hasFP16Denormals())
418 setOperationAction(ISD::FMAD, MVT::f16, Legal);
419 }
420
421 if (Subtarget->hasVOP3PInsts()) {
422 for (MVT VT : {MVT::v2i16, MVT::v2f16}) {
423 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
424 switch (Op) {
425 case ISD::LOAD:
426 case ISD::STORE:
427 case ISD::BUILD_VECTOR:
428 case ISD::BITCAST:
429 case ISD::EXTRACT_VECTOR_ELT:
430 case ISD::INSERT_VECTOR_ELT:
431 case ISD::INSERT_SUBVECTOR:
432 case ISD::EXTRACT_SUBVECTOR:
433 case ISD::SCALAR_TO_VECTOR:
434 break;
435 case ISD::CONCAT_VECTORS:
436 setOperationAction(Op, VT, Custom);
437 break;
438 default:
439 setOperationAction(Op, VT, Expand);
440 break;
441 }
442 }
443 }
444
445 // XXX - Do these do anything? Vector constants turn into build_vector.
446 setOperationAction(ISD::Constant, MVT::v2i16, Legal);
447 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
448
449 setOperationAction(ISD::STORE, MVT::v2i16, Promote);
450 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
451 setOperationAction(ISD::STORE, MVT::v2f16, Promote);
452 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
453
454 setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
455 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
456 setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
457 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
458
459 setOperationAction(ISD::AND, MVT::v2i16, Promote);
460 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
461 setOperationAction(ISD::OR, MVT::v2i16, Promote);
462 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
463 setOperationAction(ISD::XOR, MVT::v2i16, Promote);
464 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
465 setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
466 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
467 setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
468 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
469
470 setOperationAction(ISD::ADD, MVT::v2i16, Legal);
471 setOperationAction(ISD::SUB, MVT::v2i16, Legal);
472 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
473 setOperationAction(ISD::SHL, MVT::v2i16, Legal);
474 setOperationAction(ISD::SRL, MVT::v2i16, Legal);
475 setOperationAction(ISD::SRA, MVT::v2i16, Legal);
476 setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
477 setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
478 setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
479 setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
480
481 setOperationAction(ISD::FADD, MVT::v2f16, Legal);
482 setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
483 setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
484 setOperationAction(ISD::FMA, MVT::v2f16, Legal);
485 setOperationAction(ISD::FMINNUM, MVT::v2f16, Legal);
486 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Legal);
487
488 // This isn't really legal, but this avoids the legalizer unrolling it (and
489 // allows matching fneg (fabs x) patterns)
490 setOperationAction(ISD::FABS, MVT::v2f16, Legal);
491
492 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
493 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
494
495 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
496 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
497 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
498 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
499 } else {
500 setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
501 setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
502 }
503
504 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
505 setOperationAction(ISD::SELECT, VT, Custom);
506 }
507
508 setTargetDAGCombine(ISD::ADD);
509 setTargetDAGCombine(ISD::ADDCARRY);
510 setTargetDAGCombine(ISD::SUB);
511 setTargetDAGCombine(ISD::SUBCARRY);
512 setTargetDAGCombine(ISD::FADD);
513 setTargetDAGCombine(ISD::FSUB);
514 setTargetDAGCombine(ISD::FMINNUM);
515 setTargetDAGCombine(ISD::FMAXNUM);
516 setTargetDAGCombine(ISD::SMIN);
517 setTargetDAGCombine(ISD::SMAX);
518 setTargetDAGCombine(ISD::UMIN);
519 setTargetDAGCombine(ISD::UMAX);
520 setTargetDAGCombine(ISD::SETCC);
521 setTargetDAGCombine(ISD::AND);
522 setTargetDAGCombine(ISD::OR);
523 setTargetDAGCombine(ISD::XOR);
524 setTargetDAGCombine(ISD::SINT_TO_FP);
525 setTargetDAGCombine(ISD::UINT_TO_FP);
526 setTargetDAGCombine(ISD::FCANONICALIZE);
527 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
528 setTargetDAGCombine(ISD::ZERO_EXTEND);
529 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
530 setTargetDAGCombine(ISD::BUILD_VECTOR);
531
532 // All memory operations. Some folding on the pointer operand is done to help
533 // matching the constant offsets in the addressing modes.
534 setTargetDAGCombine(ISD::LOAD);
535 setTargetDAGCombine(ISD::STORE);
536 setTargetDAGCombine(ISD::ATOMIC_LOAD);
537 setTargetDAGCombine(ISD::ATOMIC_STORE);
538 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
539 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
540 setTargetDAGCombine(ISD::ATOMIC_SWAP);
541 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
542 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
543 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
544 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
545 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
546 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
547 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
548 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
549 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
550 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
551
552 setSchedulingPreference(Sched::RegPressure);
553}
554
555const SISubtarget *SITargetLowering::getSubtarget() const {
556 return static_cast<const SISubtarget *>(Subtarget);
557}
558
559//===----------------------------------------------------------------------===//
560// TargetLowering queries
561//===----------------------------------------------------------------------===//
562
563bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
564 // SI has some legal vector types, but no legal vector operations. Say no
565 // shuffles are legal in order to prefer scalarizing some vector operations.
566 return false;
567}
568
569bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
570 const CallInst &CI,
571 MachineFunction &MF,
572 unsigned IntrID) const {
573 if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
574 AMDGPU::lookupRsrcIntrinsicByIntr(IntrID)) {
575 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
576 (Intrinsic::ID)IntrID);
577 if (Attr.hasFnAttribute(Attribute::ReadNone))
578 return false;
579
580 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
581
582 if (RsrcIntr->IsImage) {
583 Info.ptrVal = MFI->getImagePSV(
584 *MF.getSubtarget<SISubtarget>().getInstrInfo(),
585 CI.getArgOperand(RsrcIntr->RsrcArg));
586 Info.align = 0;
587 } else {
588 Info.ptrVal = MFI->getBufferPSV(
589 *MF.getSubtarget<SISubtarget>().getInstrInfo(),
590 CI.getArgOperand(RsrcIntr->RsrcArg));
591 }
592
593 Info.flags = MachineMemOperand::MODereferenceable;
594 if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
595 Info.opc = ISD::INTRINSIC_W_CHAIN;
596 Info.memVT = MVT::getVT(CI.getType());
597 Info.flags |= MachineMemOperand::MOLoad;
598 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
599 Info.opc = ISD::INTRINSIC_VOID;
600 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
601 Info.flags |= MachineMemOperand::MOStore;
602 } else {
603 // Atomic
604 Info.opc = ISD::INTRINSIC_W_CHAIN;
605 Info.memVT = MVT::getVT(CI.getType());
606 Info.flags = MachineMemOperand::MOLoad |
607 MachineMemOperand::MOStore |
608 MachineMemOperand::MODereferenceable;
609
610 // XXX - Should this be volatile without known ordering?
611 Info.flags |= MachineMemOperand::MOVolatile;
612 }
613 return true;
614 }
615
616 switch (IntrID) {
617 case Intrinsic::amdgcn_atomic_inc:
618 case Intrinsic::amdgcn_atomic_dec:
619 case Intrinsic::amdgcn_ds_fadd:
620 case Intrinsic::amdgcn_ds_fmin:
621 case Intrinsic::amdgcn_ds_fmax: {
622 Info.opc = ISD::INTRINSIC_W_CHAIN;
623 Info.memVT = MVT::getVT(CI.getType());
624 Info.ptrVal = CI.getOperand(0);
625 Info.align = 0;
626 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
627
628 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
629 if (!Vol || !Vol->isZero())
630 Info.flags |= MachineMemOperand::MOVolatile;
631
632 return true;
633 }
634
635 default:
636 return false;
637 }
638}
639
640bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
641 SmallVectorImpl<Value*> &Ops,
642 Type *&AccessTy) const {
643 switch (II->getIntrinsicID()) {
644 case Intrinsic::amdgcn_atomic_inc:
645 case Intrinsic::amdgcn_atomic_dec:
646 case Intrinsic::amdgcn_ds_fadd:
647 case Intrinsic::amdgcn_ds_fmin:
648 case Intrinsic::amdgcn_ds_fmax: {
649 Value *Ptr = II->getArgOperand(0);
650 AccessTy = II->getType();
651 Ops.push_back(Ptr);
652 return true;
653 }
654 default:
655 return false;
656 }
657}
658
659bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
660 if (!Subtarget->hasFlatInstOffsets()) {
661 // Flat instructions do not have offsets, and only have the register
662 // address.
663 return AM.BaseOffs == 0 && AM.Scale == 0;
664 }
665
666 // GFX9 added a 13-bit signed offset. When using regular flat instructions,
667 // the sign bit is ignored and is treated as a 12-bit unsigned offset.
668
669 // Just r + i
670 return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
671}
672
673bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
674 if (Subtarget->hasFlatGlobalInsts())
675 return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
676
677 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
678 // Assume the we will use FLAT for all global memory accesses
679 // on VI.
680 // FIXME: This assumption is currently wrong. On VI we still use
681 // MUBUF instructions for the r + i addressing mode. As currently
682 // implemented, the MUBUF instructions only work on buffer < 4GB.
683 // It may be possible to support > 4GB buffers with MUBUF instructions,
684 // by setting the stride value in the resource descriptor which would
685 // increase the size limit to (stride * 4GB). However, this is risky,
686 // because it has never been validated.
687 return isLegalFlatAddressingMode(AM);
688 }
689
690 return isLegalMUBUFAddressingMode(AM);
691}
692
693bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
694 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
695 // additionally can do r + r + i with addr64. 32-bit has more addressing
696 // mode options. Depending on the resource constant, it can also do
697 // (i64 r0) + (i32 r1) * (i14 i).
698 //
699 // Private arrays end up using a scratch buffer most of the time, so also
700 // assume those use MUBUF instructions. Scratch loads / stores are currently
701 // implemented as mubuf instructions with offen bit set, so slightly
702 // different than the normal addr64.
703 if (!isUInt<12>(AM.BaseOffs))
704 return false;
705
706 // FIXME: Since we can split immediate into soffset and immediate offset,
707 // would it make sense to allow any immediate?
708
709 switch (AM.Scale) {
710 case 0: // r + i or just i, depending on HasBaseReg.
711 return true;
712 case 1:
713 return true; // We have r + r or r + i.
714 case 2:
715 if (AM.HasBaseReg) {
716 // Reject 2 * r + r.
717 return false;
718 }
719
720 // Allow 2 * r as r + r
721 // Or 2 * r + i is allowed as r + r + i.
722 return true;
723 default: // Don't allow n * r
724 return false;
725 }
726}
727
728bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
729 const AddrMode &AM, Type *Ty,
730 unsigned AS, Instruction *I) const {
731 // No global is ever allowed as a base.
732 if (AM.BaseGV)
733 return false;
734
735 if (AS == AMDGPUASI.GLOBAL_ADDRESS)
736 return isLegalGlobalAddressingMode(AM);
737
738 if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
739 AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT) {
740 // If the offset isn't a multiple of 4, it probably isn't going to be
741 // correctly aligned.
742 // FIXME: Can we get the real alignment here?
743 if (AM.BaseOffs % 4 != 0)
744 return isLegalMUBUFAddressingMode(AM);
745
746 // There are no SMRD extloads, so if we have to do a small type access we
747 // will use a MUBUF load.
748 // FIXME?: We also need to do this if unaligned, but we don't know the
749 // alignment here.
750 if (DL.getTypeStoreSize(Ty) < 4)
751 return isLegalGlobalAddressingMode(AM);
752
753 if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
754 // SMRD instructions have an 8-bit, dword offset on SI.
755 if (!isUInt<8>(AM.BaseOffs / 4))
756 return false;
757 } else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) {
758 // On CI+, this can also be a 32-bit literal constant offset. If it fits
759 // in 8-bits, it can use a smaller encoding.
760 if (!isUInt<32>(AM.BaseOffs / 4))
761 return false;
762 } else if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
763 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
764 if (!isUInt<20>(AM.BaseOffs))
765 return false;
766 } else
767 llvm_unreachable("unhandled generation")::llvm::llvm_unreachable_internal("unhandled generation", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 767)
;
768
769 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
770 return true;
771
772 if (AM.Scale == 1 && AM.HasBaseReg)
773 return true;
774
775 return false;
776
777 } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
778 return isLegalMUBUFAddressingMode(AM);
779 } else if (AS == AMDGPUASI.LOCAL_ADDRESS ||
780 AS == AMDGPUASI.REGION_ADDRESS) {
781 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
782 // field.
783 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
784 // an 8-bit dword offset but we don't know the alignment here.
785 if (!isUInt<16>(AM.BaseOffs))
786 return false;
787
788 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
789 return true;
790
791 if (AM.Scale == 1 && AM.HasBaseReg)
792 return true;
793
794 return false;
795 } else if (AS == AMDGPUASI.FLAT_ADDRESS ||
796 AS == AMDGPUASI.UNKNOWN_ADDRESS_SPACE) {
797 // For an unknown address space, this usually means that this is for some
798 // reason being used for pure arithmetic, and not based on some addressing
799 // computation. We don't have instructions that compute pointers with any
800 // addressing modes, so treat them as having no offset like flat
801 // instructions.
802 return isLegalFlatAddressingMode(AM);
803 } else {
804 llvm_unreachable("unhandled address space")::llvm::llvm_unreachable_internal("unhandled address space", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 804)
;
805 }
806}
807
808bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
809 const SelectionDAG &DAG) const {
810 if (AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) {
811 return (MemVT.getSizeInBits() <= 4 * 32);
812 } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
813 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
814 return (MemVT.getSizeInBits() <= MaxPrivateBits);
815 } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
816 return (MemVT.getSizeInBits() <= 2 * 32);
817 }
818 return true;
819}
820
821bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
822 unsigned AddrSpace,
823 unsigned Align,
824 bool *IsFast) const {
825 if (IsFast)
826 *IsFast = false;
827
828 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
829 // which isn't a simple VT.
830 // Until MVT is extended to handle this, simply check for the size and
831 // rely on the condition below: allow accesses if the size is a multiple of 4.
832 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
833 VT.getStoreSize() > 16)) {
834 return false;
835 }
836
837 if (AddrSpace == AMDGPUASI.LOCAL_ADDRESS ||
838 AddrSpace == AMDGPUASI.REGION_ADDRESS) {
839 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
840 // aligned, 8 byte access in a single operation using ds_read2/write2_b32
841 // with adjacent offsets.
842 bool AlignedBy4 = (Align % 4 == 0);
843 if (IsFast)
844 *IsFast = AlignedBy4;
845
846 return AlignedBy4;
847 }
848
849 // FIXME: We have to be conservative here and assume that flat operations
850 // will access scratch. If we had access to the IR function, then we
851 // could determine if any private memory was used in the function.
852 if (!Subtarget->hasUnalignedScratchAccess() &&
853 (AddrSpace == AMDGPUASI.PRIVATE_ADDRESS ||
854 AddrSpace == AMDGPUASI.FLAT_ADDRESS)) {
855 return false;
856 }
857
858 if (Subtarget->hasUnalignedBufferAccess()) {
859 // If we have an uniform constant load, it still requires using a slow
860 // buffer instruction if unaligned.
861 if (IsFast) {
862 *IsFast = (AddrSpace == AMDGPUASI.CONSTANT_ADDRESS ||
863 AddrSpace == AMDGPUASI.CONSTANT_ADDRESS_32BIT) ?
864 (Align % 4 == 0) : true;
865 }
866
867 return true;
868 }
869
870 // Smaller than dword value must be aligned.
871 if (VT.bitsLT(MVT::i32))
872 return false;
873
874 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
875 // byte-address are ignored, thus forcing Dword alignment.
876 // This applies to private, global, and constant memory.
877 if (IsFast)
878 *IsFast = true;
879
880 return VT.bitsGT(MVT::i32) && Align % 4 == 0;
881}
882
883EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
884 unsigned SrcAlign, bool IsMemset,
885 bool ZeroMemset,
886 bool MemcpyStrSrc,
887 MachineFunction &MF) const {
888 // FIXME: Should account for address space here.
889
890 // The default fallback uses the private pointer size as a guess for a type to
891 // use. Make sure we switch these to 64-bit accesses.
892
893 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
894 return MVT::v4i32;
895
896 if (Size >= 8 && DstAlign >= 4)
897 return MVT::v2i32;
898
899 // Use the default.
900 return MVT::Other;
901}
902
903static bool isFlatGlobalAddrSpace(unsigned AS, AMDGPUAS AMDGPUASI) {
904 return AS == AMDGPUASI.GLOBAL_ADDRESS ||
905 AS == AMDGPUASI.FLAT_ADDRESS ||
906 AS == AMDGPUASI.CONSTANT_ADDRESS ||
907 AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT;
908}
909
910bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
911 unsigned DestAS) const {
912 return isFlatGlobalAddrSpace(SrcAS, AMDGPUASI) &&
913 isFlatGlobalAddrSpace(DestAS, AMDGPUASI);
914}
915
916bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
917 const MemSDNode *MemNode = cast<MemSDNode>(N);
918 const Value *Ptr = MemNode->getMemOperand()->getValue();
919 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
920 return I && I->getMetadata("amdgpu.noclobber");
921}
922
923bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS,
924 unsigned DestAS) const {
925 // Flat -> private/local is a simple truncate.
926 // Flat -> global is no-op
927 if (SrcAS == AMDGPUASI.FLAT_ADDRESS)
928 return true;
929
930 return isNoopAddrSpaceCast(SrcAS, DestAS);
931}
932
933bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
934 const MemSDNode *MemNode = cast<MemSDNode>(N);
935
936 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
937}
938
939TargetLoweringBase::LegalizeTypeAction
940SITargetLowering::getPreferredVectorAction(EVT VT) const {
941 if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
942 return TypeSplitVector;
943
944 return TargetLoweringBase::getPreferredVectorAction(VT);
945}
946
947bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
948 Type *Ty) const {
949 // FIXME: Could be smarter if called for vector constants.
950 return true;
951}
952
953bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
954 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
955 switch (Op) {
956 case ISD::LOAD:
957 case ISD::STORE:
958
959 // These operations are done with 32-bit instructions anyway.
960 case ISD::AND:
961 case ISD::OR:
962 case ISD::XOR:
963 case ISD::SELECT:
964 // TODO: Extensions?
965 return true;
966 default:
967 return false;
968 }
969 }
970
971 // SimplifySetCC uses this function to determine whether or not it should
972 // create setcc with i1 operands. We don't have instructions for i1 setcc.
973 if (VT == MVT::i1 && Op == ISD::SETCC)
974 return false;
975
976 return TargetLowering::isTypeDesirableForOp(Op, VT);
977}
978
979SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
980 const SDLoc &SL,
981 SDValue Chain,
982 uint64_t Offset) const {
983 const DataLayout &DL = DAG.getDataLayout();
984 MachineFunction &MF = DAG.getMachineFunction();
985 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
986
987 const ArgDescriptor *InputPtrReg;
988 const TargetRegisterClass *RC;
989
990 std::tie(InputPtrReg, RC)
991 = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
992
993 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
994 MVT PtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS);
995 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
996 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
997
998 return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
999 DAG.getConstant(Offset, SL, PtrVT));
1000}
1001
1002SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1003 const SDLoc &SL) const {
1004 auto MFI = DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
1005 uint64_t Offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
1006 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1007}
1008
1009SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1010 const SDLoc &SL, SDValue Val,
1011 bool Signed,
1012 const ISD::InputArg *Arg) const {
1013 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1014 VT.bitsLT(MemVT)) {
1015 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1016 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1017 }
1018
1019 if (MemVT.isFloatingPoint())
1020 Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
1021 else if (Signed)
1022 Val = DAG.getSExtOrTrunc(Val, SL, VT);
1023 else
1024 Val = DAG.getZExtOrTrunc(Val, SL, VT);
1025
1026 return Val;
1027}
1028
1029SDValue SITargetLowering::lowerKernargMemParameter(
1030 SelectionDAG &DAG, EVT VT, EVT MemVT,
1031 const SDLoc &SL, SDValue Chain,
1032 uint64_t Offset, bool Signed,
1033 const ISD::InputArg *Arg) const {
1034 const DataLayout &DL = DAG.getDataLayout();
1035 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
1036 PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
1037 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
1038
1039 unsigned Align = DL.getABITypeAlignment(Ty);
1040
1041 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1042 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
1043 MachineMemOperand::MODereferenceable |
1044 MachineMemOperand::MOInvariant);
1045
1046 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1047 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1048}
1049
1050SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1051 const SDLoc &SL, SDValue Chain,
1052 const ISD::InputArg &Arg) const {
1053 MachineFunction &MF = DAG.getMachineFunction();
1054 MachineFrameInfo &MFI = MF.getFrameInfo();
1055
1056 if (Arg.Flags.isByVal()) {
1057 unsigned Size = Arg.Flags.getByValSize();
1058 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1059 return DAG.getFrameIndex(FrameIdx, MVT::i32);
1060 }
1061
1062 unsigned ArgOffset = VA.getLocMemOffset();
1063 unsigned ArgSize = VA.getValVT().getStoreSize();
1064
1065 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1066
1067 // Create load nodes to retrieve arguments from the stack.
1068 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1069 SDValue ArgValue;
1070
1071 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1072 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1073 MVT MemVT = VA.getValVT();
1074
1075 switch (VA.getLocInfo()) {
1076 default:
1077 break;
1078 case CCValAssign::BCvt:
1079 MemVT = VA.getLocVT();
1080 break;
1081 case CCValAssign::SExt:
1082 ExtType = ISD::SEXTLOAD;
1083 break;
1084 case CCValAssign::ZExt:
1085 ExtType = ISD::ZEXTLOAD;
1086 break;
1087 case CCValAssign::AExt:
1088 ExtType = ISD::EXTLOAD;
1089 break;
1090 }
1091
1092 ArgValue = DAG.getExtLoad(
1093 ExtType, SL, VA.getLocVT(), Chain, FIN,
1094 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1095 MemVT);
1096 return ArgValue;
1097}
1098
1099SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1100 const SIMachineFunctionInfo &MFI,
1101 EVT VT,
1102 AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1103 const ArgDescriptor *Reg;
1104 const TargetRegisterClass *RC;
1105
1106 std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
1107 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1108}
1109
1110static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1111 CallingConv::ID CallConv,
1112 ArrayRef<ISD::InputArg> Ins,
1113 BitVector &Skipped,
1114 FunctionType *FType,
1115 SIMachineFunctionInfo *Info) {
1116 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1117 const ISD::InputArg &Arg = Ins[I];
1118
1119 // First check if it's a PS input addr.
1120 if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
1121 !Arg.Flags.isByVal() && PSInputNum <= 15) {
1122
1123 if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
1124 // We can safely skip PS inputs.
1125 Skipped.set(I);
1126 ++PSInputNum;
1127 continue;
1128 }
1129
1130 Info->markPSInputAllocated(PSInputNum);
1131 if (Arg.Used)
1132 Info->markPSInputEnabled(PSInputNum);
1133
1134 ++PSInputNum;
1135 }
1136
1137 // Second split vertices into their elements.
1138 if (Arg.VT.isVector()) {
1139 ISD::InputArg NewArg = Arg;
1140 NewArg.Flags.setSplit();
1141 NewArg.VT = Arg.VT.getVectorElementType();
1142
1143 // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
1144 // three or five element vertex only needs three or five registers,
1145 // NOT four or eight.
1146 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
1147 unsigned NumElements = ParamType->getVectorNumElements();
1148
1149 for (unsigned J = 0; J != NumElements; ++J) {
1150 Splits.push_back(NewArg);
1151 NewArg.PartOffset += NewArg.VT.getStoreSize();
1152 }
1153 } else {
1154 Splits.push_back(Arg);
1155 }
1156 }
1157}
1158
1159// Allocate special inputs passed in VGPRs.
1160static void allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1161 MachineFunction &MF,
1162 const SIRegisterInfo &TRI,
1163 SIMachineFunctionInfo &Info) {
1164 if (Info.hasWorkItemIDX()) {
1165 unsigned Reg = AMDGPU::VGPR0;
1166 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1167
1168 CCInfo.AllocateReg(Reg);
1169 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1170 }
1171
1172 if (Info.hasWorkItemIDY()) {
1173 unsigned Reg = AMDGPU::VGPR1;
1174 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1175
1176 CCInfo.AllocateReg(Reg);
1177 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1178 }
1179
1180 if (Info.hasWorkItemIDZ()) {
1181 unsigned Reg = AMDGPU::VGPR2;
1182 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1183
1184 CCInfo.AllocateReg(Reg);
1185 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1186 }
1187}
1188
1189// Try to allocate a VGPR at the end of the argument list, or if no argument
1190// VGPRs are left allocating a stack slot.
1191static ArgDescriptor allocateVGPR32Input(CCState &CCInfo) {
1192 ArrayRef<MCPhysReg> ArgVGPRs
1193 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1194 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1195 if (RegIdx == ArgVGPRs.size()) {
1196 // Spill to stack required.
1197 int64_t Offset = CCInfo.AllocateStack(4, 4);
1198
1199 return ArgDescriptor::createStack(Offset);
1200 }
1201
1202 unsigned Reg = ArgVGPRs[RegIdx];
1203 Reg = CCInfo.AllocateReg(Reg);
1204 assert(Reg != AMDGPU::NoRegister)(static_cast <bool> (Reg != AMDGPU::NoRegister) ? void (
0) : __assert_fail ("Reg != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1204, __extension__ __PRETTY_FUNCTION__))
;
1205
1206 MachineFunction &MF = CCInfo.getMachineFunction();
1207 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1208 return ArgDescriptor::createRegister(Reg);
1209}
1210
1211static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1212 const TargetRegisterClass *RC,
1213 unsigned NumArgRegs) {
1214 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1215 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1216 if (RegIdx == ArgSGPRs.size())
1217 report_fatal_error("ran out of SGPRs for arguments");
1218
1219 unsigned Reg = ArgSGPRs[RegIdx];
1220 Reg = CCInfo.AllocateReg(Reg);
1221 assert(Reg != AMDGPU::NoRegister)(static_cast <bool> (Reg != AMDGPU::NoRegister) ? void (
0) : __assert_fail ("Reg != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1221, __extension__ __PRETTY_FUNCTION__))
;
1222
1223 MachineFunction &MF = CCInfo.getMachineFunction();
1224 MF.addLiveIn(Reg, RC);
1225 return ArgDescriptor::createRegister(Reg);
1226}
1227
1228static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1229 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1230}
1231
1232static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1233 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1234}
1235
1236static void allocateSpecialInputVGPRs(CCState &CCInfo,
1237 MachineFunction &MF,
1238 const SIRegisterInfo &TRI,
1239 SIMachineFunctionInfo &Info) {
1240 if (Info.hasWorkItemIDX())
1241 Info.setWorkItemIDX(allocateVGPR32Input(CCInfo));
1242
1243 if (Info.hasWorkItemIDY())
1244 Info.setWorkItemIDY(allocateVGPR32Input(CCInfo));
1245
1246 if (Info.hasWorkItemIDZ())
1247 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo));
1248}
1249
1250static void allocateSpecialInputSGPRs(CCState &CCInfo,
1251 MachineFunction &MF,
1252 const SIRegisterInfo &TRI,
1253 SIMachineFunctionInfo &Info) {
1254 auto &ArgInfo = Info.getArgInfo();
1255
1256 // TODO: Unify handling with private memory pointers.
1257
1258 if (Info.hasDispatchPtr())
1259 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1260
1261 if (Info.hasQueuePtr())
1262 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1263
1264 if (Info.hasKernargSegmentPtr())
1265 ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
1266
1267 if (Info.hasDispatchID())
1268 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1269
1270 // flat_scratch_init is not applicable for non-kernel functions.
1271
1272 if (Info.hasWorkGroupIDX())
1273 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1274
1275 if (Info.hasWorkGroupIDY())
1276 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1277
1278 if (Info.hasWorkGroupIDZ())
1279 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1280
1281 if (Info.hasImplicitArgPtr())
1282 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1283}
1284
1285// Allocate special inputs passed in user SGPRs.
1286static void allocateHSAUserSGPRs(CCState &CCInfo,
1287 MachineFunction &MF,
1288 const SIRegisterInfo &TRI,
1289 SIMachineFunctionInfo &Info) {
1290 if (Info.hasImplicitBufferPtr()) {
1291 unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1292 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1293 CCInfo.AllocateReg(ImplicitBufferPtrReg);
1294 }
1295
1296 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1297 if (Info.hasPrivateSegmentBuffer()) {
1298 unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1299 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1300 CCInfo.AllocateReg(PrivateSegmentBufferReg);
1301 }
1302
1303 if (Info.hasDispatchPtr()) {
1304 unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1305 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1306 CCInfo.AllocateReg(DispatchPtrReg);
1307 }
1308
1309 if (Info.hasQueuePtr()) {
1310 unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1311 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1312 CCInfo.AllocateReg(QueuePtrReg);
1313 }
1314
1315 if (Info.hasKernargSegmentPtr()) {
1316 unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI);
1317 MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1318 CCInfo.AllocateReg(InputPtrReg);
1319 }
1320
1321 if (Info.hasDispatchID()) {
1322 unsigned DispatchIDReg = Info.addDispatchID(TRI);
1323 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1324 CCInfo.AllocateReg(DispatchIDReg);
1325 }
1326
1327 if (Info.hasFlatScratchInit()) {
1328 unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1329 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1330 CCInfo.AllocateReg(FlatScratchInitReg);
1331 }
1332
1333 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1334 // these from the dispatch pointer.
1335}
1336
1337// Allocate special input registers that are initialized per-wave.
1338static void allocateSystemSGPRs(CCState &CCInfo,
1339 MachineFunction &MF,
1340 SIMachineFunctionInfo &Info,
1341 CallingConv::ID CallConv,
1342 bool IsShader) {
1343 if (Info.hasWorkGroupIDX()) {
1344 unsigned Reg = Info.addWorkGroupIDX();
1345 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1346 CCInfo.AllocateReg(Reg);
1347 }
1348
1349 if (Info.hasWorkGroupIDY()) {
1350 unsigned Reg = Info.addWorkGroupIDY();
1351 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1352 CCInfo.AllocateReg(Reg);
1353 }
1354
1355 if (Info.hasWorkGroupIDZ()) {
1356 unsigned Reg = Info.addWorkGroupIDZ();
1357 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1358 CCInfo.AllocateReg(Reg);
1359 }
1360
1361 if (Info.hasWorkGroupInfo()) {
1362 unsigned Reg = Info.addWorkGroupInfo();
1363 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1364 CCInfo.AllocateReg(Reg);
1365 }
1366
1367 if (Info.hasPrivateSegmentWaveByteOffset()) {
1368 // Scratch wave offset passed in system SGPR.
1369 unsigned PrivateSegmentWaveByteOffsetReg;
1370
1371 if (IsShader) {
1372 PrivateSegmentWaveByteOffsetReg =
1373 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1374
1375 // This is true if the scratch wave byte offset doesn't have a fixed
1376 // location.
1377 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1378 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1379 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1380 }
1381 } else
1382 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1383
1384 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1385 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1386 }
1387}
1388
1389static void reservePrivateMemoryRegs(const TargetMachine &TM,
1390 MachineFunction &MF,
1391 const SIRegisterInfo &TRI,
1392 SIMachineFunctionInfo &Info) {
1393 // Now that we've figured out where the scratch register inputs are, see if
1394 // should reserve the arguments and use them directly.
1395 MachineFrameInfo &MFI = MF.getFrameInfo();
1396 bool HasStackObjects = MFI.hasStackObjects();
1397
1398 // Record that we know we have non-spill stack objects so we don't need to
1399 // check all stack objects later.
1400 if (HasStackObjects)
1401 Info.setHasNonSpillStackObjects(true);
1402
1403 // Everything live out of a block is spilled with fast regalloc, so it's
1404 // almost certain that spilling will be required.
1405 if (TM.getOptLevel() == CodeGenOpt::None)
1406 HasStackObjects = true;
1407
1408 // For now assume stack access is needed in any callee functions, so we need
1409 // the scratch registers to pass in.
1410 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
1411
1412 const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
1413 if (ST.isAmdCodeObjectV2(MF)) {
1414 if (RequiresStackAccess) {
1415 // If we have stack objects, we unquestionably need the private buffer
1416 // resource. For the Code Object V2 ABI, this will be the first 4 user
1417 // SGPR inputs. We can reserve those and use them directly.
1418
1419 unsigned PrivateSegmentBufferReg = Info.getPreloadedReg(
1420 AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
1421 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
1422
1423 if (MFI.hasCalls()) {
1424 // If we have calls, we need to keep the frame register in a register
1425 // that won't be clobbered by a call, so ensure it is copied somewhere.
1426
1427 // This is not a problem for the scratch wave offset, because the same
1428 // registers are reserved in all functions.
1429
1430 // FIXME: Nothing is really ensuring this is a call preserved register,
1431 // it's just selected from the end so it happens to be.
1432 unsigned ReservedOffsetReg
1433 = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1434 Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1435 } else {
1436 unsigned PrivateSegmentWaveByteOffsetReg = Info.getPreloadedReg(
1437 AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1438 Info.setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
1439 }
1440 } else {
1441 unsigned ReservedBufferReg
1442 = TRI.reservedPrivateSegmentBufferReg(MF);
1443 unsigned ReservedOffsetReg
1444 = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1445
1446 // We tentatively reserve the last registers (skipping the last two
1447 // which may contain VCC). After register allocation, we'll replace
1448 // these with the ones immediately after those which were really
1449 // allocated. In the prologue copies will be inserted from the argument
1450 // to these reserved registers.
1451 Info.setScratchRSrcReg(ReservedBufferReg);
1452 Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1453 }
1454 } else {
1455 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
1456
1457 // Without HSA, relocations are used for the scratch pointer and the
1458 // buffer resource setup is always inserted in the prologue. Scratch wave
1459 // offset is still in an input SGPR.
1460 Info.setScratchRSrcReg(ReservedBufferReg);
1461
1462 if (HasStackObjects && !MFI.hasCalls()) {
1463 unsigned ScratchWaveOffsetReg = Info.getPreloadedReg(
1464 AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1465 Info.setScratchWaveOffsetReg(ScratchWaveOffsetReg);
1466 } else {
1467 unsigned ReservedOffsetReg
1468 = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1469 Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1470 }
1471 }
1472}
1473
1474bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
1475 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1476 return !Info->isEntryFunction();
1477}
1478
1479void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
1480
1481}
1482
1483void SITargetLowering::insertCopiesSplitCSR(
1484 MachineBasicBlock *Entry,
1485 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
1486 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1487
1488 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
1489 if (!IStart)
1490 return;
1491
1492 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1493 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
1494 MachineBasicBlock::iterator MBBI = Entry->begin();
1495 for (const MCPhysReg *I = IStart; *I; ++I) {
1496 const TargetRegisterClass *RC = nullptr;
1497 if (AMDGPU::SReg_64RegClass.contains(*I))
1498 RC = &AMDGPU::SGPR_64RegClass;
1499 else if (AMDGPU::SReg_32RegClass.contains(*I))
1500 RC = &AMDGPU::SGPR_32RegClass;
1501 else
1502 llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1502)
;
1503
1504 unsigned NewVR = MRI->createVirtualRegister(RC);
1505 // Create copy from CSR to a virtual register.
1506 Entry->addLiveIn(*I);
1507 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
1508 .addReg(*I);
1509
1510 // Insert the copy-back instructions right before the terminator.
1511 for (auto *Exit : Exits)
1512 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
1513 TII->get(TargetOpcode::COPY), *I)
1514 .addReg(NewVR);
1515 }
1516}
1517
1518SDValue SITargetLowering::LowerFormalArguments(
1519 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1520 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1521 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1522 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1523
1524 MachineFunction &MF = DAG.getMachineFunction();
1525 FunctionType *FType = MF.getFunction().getFunctionType();
1526 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1527 const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
1528
1529 if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
1530 const Function &Fn = MF.getFunction();
1531 DiagnosticInfoUnsupported NoGraphicsHSA(
1532 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
1533 DAG.getContext()->diagnose(NoGraphicsHSA);
1534 return DAG.getEntryNode();
1535 }
1536
1537 // Create stack objects that are used for emitting debugger prologue if
1538 // "amdgpu-debugger-emit-prologue" attribute was specified.
1539 if (ST.debuggerEmitPrologue())
1540 createDebuggerPrologueStackObjects(MF);
1541
1542 SmallVector<ISD::InputArg, 16> Splits;
1543 SmallVector<CCValAssign, 16> ArgLocs;
1544 BitVector Skipped(Ins.size());
1545 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1546 *DAG.getContext());
1547
1548 bool IsShader = AMDGPU::isShader(CallConv);
1549 bool IsKernel = AMDGPU::isKernel(CallConv);
1550 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
1551
1552 if (!IsEntryFunc) {
1553 // 4 bytes are reserved at offset 0 for the emergency stack slot. Skip over
1554 // this when allocating argument fixed offsets.
1555 CCInfo.AllocateStack(4, 4);
1556 }
1557
1558 if (IsShader) {
1559 processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
1560
1561 // At least one interpolation mode must be enabled or else the GPU will
1562 // hang.
1563 //
1564 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
1565 // set PSInputAddr, the user wants to enable some bits after the compilation
1566 // based on run-time states. Since we can't know what the final PSInputEna
1567 // will look like, so we shouldn't do anything here and the user should take
1568 // responsibility for the correct programming.
1569 //
1570 // Otherwise, the following restrictions apply:
1571 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
1572 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
1573 // enabled too.
1574 if (CallConv == CallingConv::AMDGPU_PS) {
1575 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
1576 ((Info->getPSInputAddr() & 0xF) == 0 &&
1577 Info->isPSInputAllocated(11))) {
1578 CCInfo.AllocateReg(AMDGPU::VGPR0);
1579 CCInfo.AllocateReg(AMDGPU::VGPR1);
1580 Info->markPSInputAllocated(0);
1581 Info->markPSInputEnabled(0);
1582 }
1583 if (Subtarget->isAmdPalOS()) {
1584 // For isAmdPalOS, the user does not enable some bits after compilation
1585 // based on run-time states; the register values being generated here are
1586 // the final ones set in hardware. Therefore we need to apply the
1587 // workaround to PSInputAddr and PSInputEnable together. (The case where
1588 // a bit is set in PSInputAddr but not PSInputEnable is where the
1589 // frontend set up an input arg for a particular interpolation mode, but
1590 // nothing uses that input arg. Really we should have an earlier pass
1591 // that removes such an arg.)
1592 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
1593 if ((PsInputBits & 0x7F) == 0 ||
1594 ((PsInputBits & 0xF) == 0 &&
1595 (PsInputBits >> 11 & 1)))
1596 Info->markPSInputEnabled(
1597 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
1598 }
1599 }
1600
1601 assert(!Info->hasDispatchPtr() &&(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit
() && !Info->hasWorkGroupIDX() && !Info->
hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() &&
!Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX
() && !Info->hasWorkItemIDY() && !Info->
hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1606, __extension__ __PRETTY_FUNCTION__))
1602 !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit
() && !Info->hasWorkGroupIDX() && !Info->
hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() &&
!Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX
() && !Info->hasWorkItemIDY() && !Info->
hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1606, __extension__ __PRETTY_FUNCTION__))
1603 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit
() && !Info->hasWorkGroupIDX() && !Info->
hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() &&
!Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX
() && !Info->hasWorkItemIDY() && !Info->
hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1606, __extension__ __PRETTY_FUNCTION__))
1604 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit
() && !Info->hasWorkGroupIDX() && !Info->
hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() &&
!Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX
() && !Info->hasWorkItemIDY() && !Info->
hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1606, __extension__ __PRETTY_FUNCTION__))
1605 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit
() && !Info->hasWorkGroupIDX() && !Info->
hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() &&
!Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX
() && !Info->hasWorkItemIDY() && !Info->
hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1606, __extension__ __PRETTY_FUNCTION__))
1606 !Info->hasWorkItemIDZ())(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit
() && !Info->hasWorkGroupIDX() && !Info->
hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() &&
!Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX
() && !Info->hasWorkItemIDY() && !Info->
hasWorkItemIDZ()) ? void (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1606, __extension__ __PRETTY_FUNCTION__))
;
1607 } else if (IsKernel) {
1608 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX())(static_cast <bool> (Info->hasWorkGroupIDX() &&
Info->hasWorkItemIDX()) ? void (0) : __assert_fail ("Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1608, __extension__ __PRETTY_FUNCTION__))
;
1609 } else {
1610 Splits.append(Ins.begin(), Ins.end());
1611 }
1612
1613 if (IsEntryFunc) {
1614 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
1615 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
1616 }
1617
1618 if (IsKernel) {
1619 analyzeFormalArgumentsCompute(CCInfo, Ins);
1620 } else {
1621 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
1622 CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
1623 }
1624
1625 SmallVector<SDValue, 16> Chains;
1626
1627 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
1628 const ISD::InputArg &Arg = Ins[i];
1629 if (Skipped[i]) {
1630 InVals.push_back(DAG.getUNDEF(Arg.VT));
1631 continue;
1632 }
1633
1634 CCValAssign &VA = ArgLocs[ArgIdx++];
1635 MVT VT = VA.getLocVT();
1636
1637 if (IsEntryFunc && VA.isMemLoc()) {
1638 VT = Ins[i].VT;
1639 EVT MemVT = VA.getLocVT();
1640
1641 const uint64_t Offset = Subtarget->getExplicitKernelArgOffset(MF) +
1642 VA.getLocMemOffset();
1643 Info->setABIArgOffset(Offset + MemVT.getStoreSize());
1644
1645 // The first 36 bytes of the input buffer contains information about
1646 // thread group and global sizes.
1647 SDValue Arg = lowerKernargMemParameter(
1648 DAG, VT, MemVT, DL, Chain, Offset, Ins[i].Flags.isSExt(), &Ins[i]);
1649 Chains.push_back(Arg.getValue(1));
1650
1651 auto *ParamTy =
1652 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
1653 if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
1654 ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
1655 // On SI local pointers are just offsets into LDS, so they are always
1656 // less than 16-bits. On CI and newer they could potentially be
1657 // real pointers, so we can't guarantee their size.
1658 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
1659 DAG.getValueType(MVT::i16));
1660 }
1661
1662 InVals.push_back(Arg);
1663 continue;
1664 } else if (!IsEntryFunc && VA.isMemLoc()) {
1665 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
1666 InVals.push_back(Val);
1667 if (!Arg.Flags.isByVal())
1668 Chains.push_back(Val.getValue(1));
1669 continue;
1670 }
1671
1672 assert(VA.isRegLoc() && "Parameter must be in a register!")(static_cast <bool> (VA.isRegLoc() && "Parameter must be in a register!"
) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Parameter must be in a register!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1672, __extension__ __PRETTY_FUNCTION__))
;
1673
1674 unsigned Reg = VA.getLocReg();
1675 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
1676 EVT ValVT = VA.getValVT();
1677
1678 Reg = MF.addLiveIn(Reg, RC);
1679 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1680
1681 if (Arg.Flags.isSRet() && !getSubtarget()->enableHugePrivateBuffer()) {
1682 // The return object should be reasonably addressable.
1683
1684 // FIXME: This helps when the return is a real sret. If it is a
1685 // automatically inserted sret (i.e. CanLowerReturn returns false), an
1686 // extra copy is inserted in SelectionDAGBuilder which obscures this.
1687 unsigned NumBits = 32 - AssumeFrameIndexHighZeroBits;
1688 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
1689 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
1690 }
1691
1692 // If this is an 8 or 16-bit value, it is really passed promoted
1693 // to 32 bits. Insert an assert[sz]ext to capture this, then
1694 // truncate to the right size.
1695 switch (VA.getLocInfo()) {
1696 case CCValAssign::Full:
1697 break;
1698 case CCValAssign::BCvt:
1699 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
1700 break;
1701 case CCValAssign::SExt:
1702 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
1703 DAG.getValueType(ValVT));
1704 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1705 break;
1706 case CCValAssign::ZExt:
1707 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
1708 DAG.getValueType(ValVT));
1709 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1710 break;
1711 case CCValAssign::AExt:
1712 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
1713 break;
1714 default:
1715 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1715)
;
1716 }
1717
1718 if (IsShader && Arg.VT.isVector()) {
1719 // Build a vector from the registers
1720 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
1721 unsigned NumElements = ParamType->getVectorNumElements();
1722
1723 SmallVector<SDValue, 4> Regs;
1724 Regs.push_back(Val);
1725 for (unsigned j = 1; j != NumElements; ++j) {
1726 Reg = ArgLocs[ArgIdx++].getLocReg();
1727 Reg = MF.addLiveIn(Reg, RC);
1728
1729 SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1730 Regs.push_back(Copy);
1731 }
1732
1733 // Fill up the missing vector elements
1734 NumElements = Arg.VT.getVectorNumElements() - NumElements;
1735 Regs.append(NumElements, DAG.getUNDEF(VT));
1736
1737 InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
1738 continue;
1739 }
1740
1741 InVals.push_back(Val);
1742 }
1743
1744 if (!IsEntryFunc) {
1745 // Special inputs come after user arguments.
1746 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
1747 }
1748
1749 // Start adding system SGPRs.
1750 if (IsEntryFunc) {
1751 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
1752 } else {
1753 CCInfo.AllocateReg(Info->getScratchRSrcReg());
1754 CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
1755 CCInfo.AllocateReg(Info->getFrameOffsetReg());
1756 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
1757 }
1758
1759 auto &ArgUsageInfo =
1760 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
1761 ArgUsageInfo.setFuncArgInfo(MF.getFunction(), Info->getArgInfo());
1762
1763 unsigned StackArgSize = CCInfo.getNextStackOffset();
1764 Info->setBytesInStackArgArea(StackArgSize);
1765
1766 return Chains.empty() ? Chain :
1767 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1768}
1769
1770// TODO: If return values can't fit in registers, we should return as many as
1771// possible in registers before passing on stack.
1772bool SITargetLowering::CanLowerReturn(
1773 CallingConv::ID CallConv,
1774 MachineFunction &MF, bool IsVarArg,
1775 const SmallVectorImpl<ISD::OutputArg> &Outs,
1776 LLVMContext &Context) const {
1777 // Replacing returns with sret/stack usage doesn't make sense for shaders.
1778 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
1779 // for shaders. Vector types should be explicitly handled by CC.
1780 if (AMDGPU::isEntryFunctionCC(CallConv))
1781 return true;
1782
1783 SmallVector<CCValAssign, 16> RVLocs;
1784 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
1785 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
1786}
1787
1788SDValue
1789SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1790 bool isVarArg,
1791 const SmallVectorImpl<ISD::OutputArg> &Outs,
1792 const SmallVectorImpl<SDValue> &OutVals,
1793 const SDLoc &DL, SelectionDAG &DAG) const {
1794 MachineFunction &MF = DAG.getMachineFunction();
1795 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1796
1797 if (AMDGPU::isKernel(CallConv)) {
1798 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
1799 OutVals, DL, DAG);
1800 }
1801
1802 bool IsShader = AMDGPU::isShader(CallConv);
1803
1804 Info->setIfReturnsVoid(Outs.size() == 0);
1805 bool IsWaveEnd = Info->returnsVoid() && IsShader;
1806
1807 SmallVector<ISD::OutputArg, 48> Splits;
1808 SmallVector<SDValue, 48> SplitVals;
1809
1810 // Split vectors into their elements.
1811 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
1812 const ISD::OutputArg &Out = Outs[i];
1813
1814 if (IsShader && Out.VT.isVector()) {
1815 MVT VT = Out.VT.getVectorElementType();
1816 ISD::OutputArg NewOut = Out;
1817 NewOut.Flags.setSplit();
1818 NewOut.VT = VT;
1819
1820 // We want the original number of vector elements here, e.g.
1821 // three or five, not four or eight.
1822 unsigned NumElements = Out.ArgVT.getVectorNumElements();
1823
1824 for (unsigned j = 0; j != NumElements; ++j) {
1825 SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
1826 DAG.getConstant(j, DL, MVT::i32));
1827 SplitVals.push_back(Elem);
1828 Splits.push_back(NewOut);
1829 NewOut.PartOffset += NewOut.VT.getStoreSize();
1830 }
1831 } else {
1832 SplitVals.push_back(OutVals[i]);
1833 Splits.push_back(Out);
1834 }
1835 }
1836
1837 // CCValAssign - represent the assignment of the return value to a location.
1838 SmallVector<CCValAssign, 48> RVLocs;
1839
1840 // CCState - Info about the registers and stack slots.
1841 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1842 *DAG.getContext());
1843
1844 // Analyze outgoing return values.
1845 CCInfo.AnalyzeReturn(Splits, CCAssignFnForReturn(CallConv, isVarArg));
1846
1847 SDValue Flag;
1848 SmallVector<SDValue, 48> RetOps;
1849 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1850
1851 // Add return address for callable functions.
1852 if (!Info->isEntryFunction()) {
1853 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1854 SDValue ReturnAddrReg = CreateLiveInRegister(
1855 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
1856
1857 // FIXME: Should be able to use a vreg here, but need a way to prevent it
1858 // from being allcoated to a CSR.
1859
1860 SDValue PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
1861 MVT::i64);
1862
1863 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, Flag);
1864 Flag = Chain.getValue(1);
1865
1866 RetOps.push_back(PhysReturnAddrReg);
1867 }
1868
1869 // Copy the result values into the output registers.
1870 for (unsigned i = 0, realRVLocIdx = 0;
1871 i != RVLocs.size();
1872 ++i, ++realRVLocIdx) {
1873 CCValAssign &VA = RVLocs[i];
1874 assert(VA.isRegLoc() && "Can only return in registers!")(static_cast <bool> (VA.isRegLoc() && "Can only return in registers!"
) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1874, __extension__ __PRETTY_FUNCTION__))
;
1875 // TODO: Partially return in registers if return values don't fit.
1876
1877 SDValue Arg = SplitVals[realRVLocIdx];
1878
1879 // Copied from other backends.
1880 switch (VA.getLocInfo()) {
1881 case CCValAssign::Full:
1882 break;
1883 case CCValAssign::BCvt:
1884 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1885 break;
1886 case CCValAssign::SExt:
1887 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
1888 break;
1889 case CCValAssign::ZExt:
1890 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
1891 break;
1892 case CCValAssign::AExt:
1893 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
1894 break;
1895 default:
1896 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1896)
;
1897 }
1898
1899 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
1900 Flag = Chain.getValue(1);
1901 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1902 }
1903
1904 // FIXME: Does sret work properly?
1905 if (!Info->isEntryFunction()) {
1906 const SIRegisterInfo *TRI
1907 = static_cast<const SISubtarget *>(Subtarget)->getRegisterInfo();
1908 const MCPhysReg *I =
1909 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
1910 if (I) {
1911 for (; *I; ++I) {
1912 if (AMDGPU::SReg_64RegClass.contains(*I))
1913 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
1914 else if (AMDGPU::SReg_32RegClass.contains(*I))
1915 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
1916 else
1917 llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1917)
;
1918 }
1919 }
1920 }
1921
1922 // Update chain and glue.
1923 RetOps[0] = Chain;
1924 if (Flag.getNode())
1925 RetOps.push_back(Flag);
1926
1927 unsigned Opc = AMDGPUISD::ENDPGM;
1928 if (!IsWaveEnd)
1929 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
1930 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
1931}
1932
1933SDValue SITargetLowering::LowerCallResult(
1934 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
1935 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1936 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
1937 SDValue ThisVal) const {
1938 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
1939
1940 // Assign locations to each value returned by this call.
1941 SmallVector<CCValAssign, 16> RVLocs;
1942 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
1943 *DAG.getContext());
1944 CCInfo.AnalyzeCallResult(Ins, RetCC);
1945
1946 // Copy all of the result registers out of their specified physreg.
1947 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1948 CCValAssign VA = RVLocs[i];
1949 SDValue Val;
1950
1951 if (VA.isRegLoc()) {
1952 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
1953 Chain = Val.getValue(1);
1954 InFlag = Val.getValue(2);
1955 } else if (VA.isMemLoc()) {
1956 report_fatal_error("TODO: return values in memory");
1957 } else
1958 llvm_unreachable("unknown argument location type")::llvm::llvm_unreachable_internal("unknown argument location type"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1958)
;
1959
1960 switch (VA.getLocInfo()) {
1961 case CCValAssign::Full:
1962 break;
1963 case CCValAssign::BCvt:
1964 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1965 break;
1966 case CCValAssign::ZExt:
1967 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
1968 DAG.getValueType(VA.getValVT()));
1969 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
1970 break;
1971 case CCValAssign::SExt:
1972 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
1973 DAG.getValueType(VA.getValVT()));
1974 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
1975 break;
1976 case CCValAssign::AExt:
1977 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
1978 break;
1979 default:
1980 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1980)
;
1981 }
1982
1983 InVals.push_back(Val);
1984 }
1985
1986 return Chain;
1987}
1988
1989// Add code to pass special inputs required depending on used features separate
1990// from the explicit user arguments present in the IR.
1991void SITargetLowering::passSpecialInputs(
1992 CallLoweringInfo &CLI,
1993 const SIMachineFunctionInfo &Info,
1994 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
1995 SmallVectorImpl<SDValue> &MemOpChains,
1996 SDValue Chain,
1997 SDValue StackPtr) const {
1998 // If we don't have a call site, this was a call inserted by
1999 // legalization. These can never use special inputs.
2000 if (!CLI.CS)
2001 return;
2002
2003 const Function *CalleeFunc = CLI.CS.getCalledFunction();
2004 assert(CalleeFunc)(static_cast <bool> (CalleeFunc) ? void (0) : __assert_fail
("CalleeFunc", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2004, __extension__ __PRETTY_FUNCTION__))
;
2005
2006 SelectionDAG &DAG = CLI.DAG;
2007 const SDLoc &DL = CLI.DL;
2008
2009 const SISubtarget *ST = getSubtarget();
2010 const SIRegisterInfo *TRI = ST->getRegisterInfo();
2011
2012 auto &ArgUsageInfo =
2013 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2014 const AMDGPUFunctionArgInfo &CalleeArgInfo
2015 = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2016
2017 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2018
2019 // TODO: Unify with private memory register handling. This is complicated by
2020 // the fact that at least in kernels, the input argument is not necessarily
2021 // in the same location as the input.
2022 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2023 AMDGPUFunctionArgInfo::DISPATCH_PTR,
2024 AMDGPUFunctionArgInfo::QUEUE_PTR,
2025 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
2026 AMDGPUFunctionArgInfo::DISPATCH_ID,
2027 AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2028 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2029 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
2030 AMDGPUFunctionArgInfo::WORKITEM_ID_X,
2031 AMDGPUFunctionArgInfo::WORKITEM_ID_Y,
2032 AMDGPUFunctionArgInfo::WORKITEM_ID_Z,
2033 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
2034 };
2035
2036 for (auto InputID : InputRegs) {
2037 const ArgDescriptor *OutgoingArg;
2038 const TargetRegisterClass *ArgRC;
2039
2040 std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
2041 if (!OutgoingArg)
2042 continue;
2043
2044 const ArgDescriptor *IncomingArg;
2045 const TargetRegisterClass *IncomingArgRC;
2046 std::tie(IncomingArg, IncomingArgRC)
2047 = CallerArgInfo.getPreloadedValue(InputID);
2048 assert(IncomingArgRC == ArgRC)(static_cast <bool> (IncomingArgRC == ArgRC) ? void (0)
: __assert_fail ("IncomingArgRC == ArgRC", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2048, __extension__ __PRETTY_FUNCTION__))
;
2049
2050 // All special arguments are ints for now.
2051 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2052 SDValue InputReg;
2053
2054 if (IncomingArg) {
2055 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2056 } else {
2057 // The implicit arg ptr is special because it doesn't have a corresponding
2058 // input for kernels, and is computed from the kernarg segment pointer.
2059 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR)(static_cast <bool> (InputID == AMDGPUFunctionArgInfo::
IMPLICIT_ARG_PTR) ? void (0) : __assert_fail ("InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2059, __extension__ __PRETTY_FUNCTION__))
;
2060 InputReg = getImplicitArgPtr(DAG, DL);
2061 }
2062
2063 if (OutgoingArg->isRegister()) {
2064 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2065 } else {
2066 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, StackPtr,
2067 InputReg,
2068 OutgoingArg->getStackOffset());
2069 MemOpChains.push_back(ArgStore);
2070 }
2071 }
2072}
2073
2074static bool canGuaranteeTCO(CallingConv::ID CC) {
2075 return CC == CallingConv::Fast;
2076}
2077
2078/// Return true if we might ever do TCO for calls with this calling convention.
2079static bool mayTailCallThisCC(CallingConv::ID CC) {
2080 switch (CC) {
2081 case CallingConv::C:
2082 return true;
2083 default:
2084 return canGuaranteeTCO(CC);
2085 }
2086}
2087
2088bool SITargetLowering::isEligibleForTailCallOptimization(
2089 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2090 const SmallVectorImpl<ISD::OutputArg> &Outs,
2091 const SmallVectorImpl<SDValue> &OutVals,
2092 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2093 if (!mayTailCallThisCC(CalleeCC))
2094 return false;
2095
2096 MachineFunction &MF = DAG.getMachineFunction();
2097 const Function &CallerF = MF.getFunction();
2098 CallingConv::ID CallerCC = CallerF.getCallingConv();
2099 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2100 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2101
2102 // Kernels aren't callable, and don't have a live in return address so it
2103 // doesn't make sense to do a tail call with entry functions.
2104 if (!CallerPreserved)
2105 return false;
2106
2107 bool CCMatch = CallerCC == CalleeCC;
2108
2109 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2110 if (canGuaranteeTCO(CalleeCC) && CCMatch)
2111 return true;
2112 return false;
2113 }
2114
2115 // TODO: Can we handle var args?
2116 if (IsVarArg)
2117 return false;
2118
2119 for (const Argument &Arg : CallerF.args()) {
2120 if (Arg.hasByValAttr())
2121 return false;
2122 }
2123
2124 LLVMContext &Ctx = *DAG.getContext();
2125
2126 // Check that the call results are passed in the same way.
2127 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2128 CCAssignFnForCall(CalleeCC, IsVarArg),
2129 CCAssignFnForCall(CallerCC, IsVarArg)))
2130 return false;
2131
2132 // The callee has to preserve all registers the caller needs to preserve.
2133 if (!CCMatch) {
2134 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2135 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2136 return false;
2137 }
2138
2139 // Nothing more to check if the callee is taking no arguments.
2140 if (Outs.empty())
2141 return true;
2142
2143 SmallVector<CCValAssign, 16> ArgLocs;
2144 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2145
2146 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2147
2148 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2149 // If the stack arguments for this call do not fit into our own save area then
2150 // the call cannot be made tail.
2151 // TODO: Is this really necessary?
2152 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2153 return false;
2154
2155 const MachineRegisterInfo &MRI = MF.getRegInfo();
2156 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2157}
2158
2159bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2160 if (!CI->isTailCall())
2161 return false;
2162
2163 const Function *ParentFn = CI->getParent()->getParent();
2164 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2165 return false;
2166
2167 auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
2168 return (Attr.getValueAsString() != "true");
2169}
2170
2171// The wave scratch offset register is used as the global base pointer.
2172SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2173 SmallVectorImpl<SDValue> &InVals) const {
2174 SelectionDAG &DAG = CLI.DAG;
2175 const SDLoc &DL = CLI.DL;
2176 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2177 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2178 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2179 SDValue Chain = CLI.Chain;
2180 SDValue Callee = CLI.Callee;
2181 bool &IsTailCall = CLI.IsTailCall;
2182 CallingConv::ID CallConv = CLI.CallConv;
2183 bool IsVarArg = CLI.IsVarArg;
2184 bool IsSibCall = false;
2185 bool IsThisReturn = false;
2186 MachineFunction &MF = DAG.getMachineFunction();
2187
2188 if (IsVarArg) {
2189 return lowerUnhandledCall(CLI, InVals,
2190 "unsupported call to variadic function ");
2191 }
2192
2193 if (!CLI.CS.getCalledFunction()) {
2194 return lowerUnhandledCall(CLI, InVals,
2195 "unsupported indirect call to function ");
2196 }
2197
2198 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2199 return lowerUnhandledCall(CLI, InVals,
2200 "unsupported required tail call to function ");
2201 }
2202
2203 // The first 4 bytes are reserved for the callee's emergency stack slot.
2204 const unsigned CalleeUsableStackOffset = 4;
2205
2206 if (IsTailCall) {
2207 IsTailCall = isEligibleForTailCallOptimization(
2208 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2209 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
2210 report_fatal_error("failed to perform tail call elimination on a call "
2211 "site marked musttail");
2212 }
2213
2214 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2215
2216 // A sibling call is one where we're under the usual C ABI and not planning
2217 // to change that but can still do a tail call:
2218 if (!TailCallOpt && IsTailCall)
2219 IsSibCall = true;
2220
2221 if (IsTailCall)
2222 ++NumTailCalls;
2223 }
2224
2225 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee)) {
2226 // FIXME: Remove this hack for function pointer types after removing
2227 // support of old address space mapping. In the new address space
2228 // mapping the pointer in default address space is 64 bit, therefore
2229 // does not need this hack.
2230 if (Callee.getValueType() == MVT::i32) {
2231 const GlobalValue *GV = GA->getGlobal();
2232 Callee = DAG.getGlobalAddress(GV, DL, MVT::i64, GA->getOffset(), false,
2233 GA->getTargetFlags());
2234 }
2235 }
2236 assert(Callee.getValueType() == MVT::i64)(static_cast <bool> (Callee.getValueType() == MVT::i64)
? void (0) : __assert_fail ("Callee.getValueType() == MVT::i64"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2236, __extension__ __PRETTY_FUNCTION__))
;
2237
2238 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2239
2240 // Analyze operands of the call, assigning locations to each operand.
2241 SmallVector<CCValAssign, 16> ArgLocs;
2242 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2243 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2244 CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2245
2246 // Get a count of how many bytes are to be pushed on the stack.
2247 unsigned NumBytes = CCInfo.getNextStackOffset();
2248
2249 if (IsSibCall) {
2250 // Since we're not changing the ABI to make this a tail call, the memory
2251 // operands are already available in the caller's incoming argument space.
2252 NumBytes = 0;
2253 }
2254
2255 // FPDiff is the byte offset of the call's argument area from the callee's.
2256 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2257 // by this amount for a tail call. In a sibling call it must be 0 because the
2258 // caller will deallocate the entire stack and the callee still expects its
2259 // arguments to begin at SP+0. Completely unused for non-tail calls.
2260 int32_t FPDiff = 0;
2261 MachineFrameInfo &MFI = MF.getFrameInfo();
2262 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2263
2264 SDValue CallerSavedFP;
2265
2266 // Adjust the stack pointer for the new arguments...
2267 // These operations are automatically eliminated by the prolog/epilog pass
2268 if (!IsSibCall) {
2269 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2270
2271 unsigned OffsetReg = Info->getScratchWaveOffsetReg();
2272
2273 // In the HSA case, this should be an identity copy.
2274 SDValue ScratchRSrcReg
2275 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2276 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2277
2278 // TODO: Don't hardcode these registers and get from the callee function.
2279 SDValue ScratchWaveOffsetReg
2280 = DAG.getCopyFromReg(Chain, DL, OffsetReg, MVT::i32);
2281 RegsToPass.emplace_back(AMDGPU::SGPR4, ScratchWaveOffsetReg);
2282
2283 if (!Info->isEntryFunction()) {
2284 // Avoid clobbering this function's FP value. In the current convention
2285 // callee will overwrite this, so do save/restore around the call site.
2286 CallerSavedFP = DAG.getCopyFromReg(Chain, DL,
2287 Info->getFrameOffsetReg(), MVT::i32);
2288 }
2289 }
2290
2291 // Stack pointer relative accesses are done by changing the offset SGPR. This
2292 // is just the VGPR offset component.
2293 SDValue StackPtr = DAG.getConstant(CalleeUsableStackOffset, DL, MVT::i32);
2294
2295 SmallVector<SDValue, 8> MemOpChains;
2296 MVT PtrVT = MVT::i32;
2297
2298 // Walk the register/memloc assignments, inserting copies/loads.
2299 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2300 ++i, ++realArgIdx) {
2301 CCValAssign &VA = ArgLocs[i];
2302 SDValue Arg = OutVals[realArgIdx];
2303
2304 // Promote the value if needed.
2305 switch (VA.getLocInfo()) {
2306 case CCValAssign::Full:
2307 break;
2308 case CCValAssign::BCvt:
2309 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2310 break;
2311 case CCValAssign::ZExt:
2312 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2313 break;
2314 case CCValAssign::SExt:
2315 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2316 break;
2317 case CCValAssign::AExt:
2318 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2319 break;
2320 case CCValAssign::FPExt:
2321 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2322 break;
2323 default:
2324 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2324)
;
2325 }
2326
2327 if (VA.isRegLoc()) {
2328 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2329 } else {
2330 assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail
("VA.isMemLoc()", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2330, __extension__ __PRETTY_FUNCTION__))
;
2331
2332 SDValue DstAddr;
2333 MachinePointerInfo DstInfo;
2334
2335 unsigned LocMemOffset = VA.getLocMemOffset();
2336 int32_t Offset = LocMemOffset;
2337
2338 SDValue PtrOff = DAG.getObjectPtrOffset(DL, StackPtr, Offset);
2339
2340 if (IsTailCall) {
2341 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2342 unsigned OpSize = Flags.isByVal() ?
2343 Flags.getByValSize() : VA.getValVT().getStoreSize();
2344
2345 Offset = Offset + FPDiff;
2346 int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2347
2348 DstAddr = DAG.getObjectPtrOffset(DL, DAG.getFrameIndex(FI, PtrVT),
2349 StackPtr);
2350 DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2351
2352 // Make sure any stack arguments overlapping with where we're storing
2353 // are loaded before this eventual operation. Otherwise they'll be
2354 // clobbered.
2355
2356 // FIXME: Why is this really necessary? This seems to just result in a
2357 // lot of code to copy the stack and write them back to the same
2358 // locations, which are supposed to be immutable?
2359 Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2360 } else {
2361 DstAddr = PtrOff;
2362 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2363 }
2364
2365 if (Outs[i].Flags.isByVal()) {
2366 SDValue SizeNode =
2367 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2368 SDValue Cpy = DAG.getMemcpy(
2369 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2370 /*isVol = */ false, /*AlwaysInline = */ true,
2371 /*isTailCall = */ false, DstInfo,
2372 MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
2373 *DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS))));
2374
2375 MemOpChains.push_back(Cpy);
2376 } else {
2377 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
2378 MemOpChains.push_back(Store);
2379 }
2380 }
2381 }
2382
2383 // Copy special input registers after user input arguments.
2384 passSpecialInputs(CLI, *Info, RegsToPass, MemOpChains, Chain, StackPtr);
2385
2386 if (!MemOpChains.empty())
2387 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2388
2389 // Build a sequence of copy-to-reg nodes chained together with token chain
2390 // and flag operands which copy the outgoing args into the appropriate regs.
2391 SDValue InFlag;
2392 for (auto &RegToPass : RegsToPass) {
2393 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
2394 RegToPass.second, InFlag);
2395 InFlag = Chain.getValue(1);
2396 }
2397
2398
2399 SDValue PhysReturnAddrReg;
2400 if (IsTailCall) {
2401 // Since the return is being combined with the call, we need to pass on the
2402 // return address.
2403
2404 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2405 SDValue ReturnAddrReg = CreateLiveInRegister(
2406 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2407
2408 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2409 MVT::i64);
2410 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
2411 InFlag = Chain.getValue(1);
2412 }
2413
2414 // We don't usually want to end the call-sequence here because we would tidy
2415 // the frame up *after* the call, however in the ABI-changing tail-call case
2416 // we've carefully laid out the parameters so that when sp is reset they'll be
2417 // in the correct location.
2418 if (IsTailCall && !IsSibCall) {
2419 Chain = DAG.getCALLSEQ_END(Chain,
2420 DAG.getTargetConstant(NumBytes, DL, MVT::i32),
2421 DAG.getTargetConstant(0, DL, MVT::i32),
2422 InFlag, DL);
2423 InFlag = Chain.getValue(1);
2424 }
2425
2426 std::vector<SDValue> Ops;
2427 Ops.push_back(Chain);
2428 Ops.push_back(Callee);
2429
2430 if (IsTailCall) {
2431 // Each tail call may have to adjust the stack by a different amount, so
2432 // this information must travel along with the operation for eventual
2433 // consumption by emitEpilogue.
2434 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
2435
2436 Ops.push_back(PhysReturnAddrReg);
2437 }
2438
2439 // Add argument registers to the end of the list so that they are known live
2440 // into the call.
2441 for (auto &RegToPass : RegsToPass) {
2442 Ops.push_back(DAG.getRegister(RegToPass.first,
2443 RegToPass.second.getValueType()));
2444 }
2445
2446 // Add a register mask operand representing the call-preserved registers.
2447
2448 const AMDGPURegisterInfo *TRI = Subtarget->getRegisterInfo();
2449 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2450 assert(Mask && "Missing call preserved mask for calling convention")(static_cast <bool> (Mask && "Missing call preserved mask for calling convention"
) ? void (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2450, __extension__ __PRETTY_FUNCTION__))
;
2451 Ops.push_back(DAG.getRegisterMask(Mask));
2452
2453 if (InFlag.getNode())
2454 Ops.push_back(InFlag);
2455
2456 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2457
2458 // If we're doing a tall call, use a TC_RETURN here rather than an
2459 // actual call instruction.
2460 if (IsTailCall) {
2461 MFI.setHasTailCall();
2462 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
2463 }
2464
2465 // Returns a chain and a flag for retval copy to use.
2466 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
2467 Chain = Call.getValue(0);
2468 InFlag = Call.getValue(1);
2469
2470 if (CallerSavedFP) {
2471 SDValue FPReg = DAG.getRegister(Info->getFrameOffsetReg(), MVT::i32);
2472 Chain = DAG.getCopyToReg(Chain, DL, FPReg, CallerSavedFP, InFlag);
2473 InFlag = Chain.getValue(1);
2474 }
2475
2476 uint64_t CalleePopBytes = NumBytes;
2477 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
2478 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
2479 InFlag, DL);
2480 if (!Ins.empty())
2481 InFlag = Chain.getValue(1);
2482
2483 // Handle result values, copying them out of physregs into vregs that we
2484 // return.
2485 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2486 InVals, IsThisReturn,
2487 IsThisReturn ? OutVals[0] : SDValue());
2488}
2489
2490unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
2491 SelectionDAG &DAG) const {
2492 unsigned Reg = StringSwitch<unsigned>(RegName)
2493 .Case("m0", AMDGPU::M0)
2494 .Case("exec", AMDGPU::EXEC)
2495 .Case("exec_lo", AMDGPU::EXEC_LO)
2496 .Case("exec_hi", AMDGPU::EXEC_HI)
2497 .Case("flat_scratch", AMDGPU::FLAT_SCR)
2498 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2499 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2500 .Default(AMDGPU::NoRegister);
2501
2502 if (Reg == AMDGPU::NoRegister) {
2503 report_fatal_error(Twine("invalid register name \""
2504 + StringRef(RegName) + "\"."));
2505
2506 }
2507
2508 if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
2509 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
2510 report_fatal_error(Twine("invalid register \""
2511 + StringRef(RegName) + "\" for subtarget."));
2512 }
2513
2514 switch (Reg) {
2515 case AMDGPU::M0:
2516 case AMDGPU::EXEC_LO:
2517 case AMDGPU::EXEC_HI:
2518 case AMDGPU::FLAT_SCR_LO:
2519 case AMDGPU::FLAT_SCR_HI:
2520 if (VT.getSizeInBits() == 32)
2521 return Reg;
2522 break;
2523 case AMDGPU::EXEC:
2524 case AMDGPU::FLAT_SCR:
2525 if (VT.getSizeInBits() == 64)
2526 return Reg;
2527 break;
2528 default:
2529 llvm_unreachable("missing register type checking")::llvm::llvm_unreachable_internal("missing register type checking"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2529)
;
2530 }
2531
2532 report_fatal_error(Twine("invalid type for register \""
2533 + StringRef(RegName) + "\"."));
2534}
2535
2536// If kill is not the last instruction, split the block so kill is always a
2537// proper terminator.
2538MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
2539 MachineBasicBlock *BB) const {
2540 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
2541
2542 MachineBasicBlock::iterator SplitPoint(&MI);
2543 ++SplitPoint;
2544
2545 if (SplitPoint == BB->end()) {
2546 // Don't bother with a new block.
2547 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
2548 return BB;
2549 }
2550
2551 MachineFunction *MF = BB->getParent();
2552 MachineBasicBlock *SplitBB
2553 = MF->CreateMachineBasicBlock(BB->getBasicBlock());
2554
2555 MF->insert(++MachineFunction::iterator(BB), SplitBB);
2556 SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
2557
2558 SplitBB->transferSuccessorsAndUpdatePHIs(BB);
2559 BB->addSuccessor(SplitBB);
2560
2561 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
2562 return SplitBB;
2563}
2564
2565// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
2566// wavefront. If the value is uniform and just happens to be in a VGPR, this
2567// will only do one iteration. In the worst case, this will loop 64 times.
2568//
2569// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
2570static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
2571 const SIInstrInfo *TII,
2572 MachineRegisterInfo &MRI,
2573 MachineBasicBlock &OrigBB,
2574 MachineBasicBlock &LoopBB,
2575 const DebugLoc &DL,
2576 const MachineOperand &IdxReg,
2577 unsigned InitReg,
2578 unsigned ResultReg,
2579 unsigned PhiReg,
2580 unsigned InitSaveExecReg,
2581 int Offset,
2582 bool UseGPRIdxMode,
2583 bool IsIndirectSrc) {
2584 MachineBasicBlock::iterator I = LoopBB.begin();
2585
2586 unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2587 unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2588 unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2589 unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2590
2591 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
2592 .addReg(InitReg)
2593 .addMBB(&OrigBB)
2594 .addReg(ResultReg)
2595 .addMBB(&LoopBB);
2596
2597 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
2598 .addReg(InitSaveExecReg)
2599 .addMBB(&OrigBB)
2600 .addReg(NewExec)
2601 .addMBB(&LoopBB);
2602
2603 // Read the next variant <- also loop target.
2604 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
2605 .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
2606
2607 // Compare the just read M0 value to all possible Idx values.
2608 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
2609 .addReg(CurrentIdxReg)
2610 .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
2611
2612 // Update EXEC, save the original EXEC value to VCC.
2613 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec)
2614 .addReg(CondReg, RegState::Kill);
2615
2616 MRI.setSimpleHint(NewExec, CondReg);
2617
2618 if (UseGPRIdxMode) {
2619 unsigned IdxReg;
2620 if (Offset == 0) {
2621 IdxReg = CurrentIdxReg;
2622 } else {
2623 IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2624 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
2625 .addReg(CurrentIdxReg, RegState::Kill)
2626 .addImm(Offset);
2627 }
2628 unsigned IdxMode = IsIndirectSrc ?
2629 VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
2630 MachineInstr *SetOn =
2631 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2632 .addReg(IdxReg, RegState::Kill)
2633 .addImm(IdxMode);
2634 SetOn->getOperand(3).setIsUndef();
2635 } else {
2636 // Move index from VCC into M0
2637 if (Offset == 0) {
2638 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
2639 .addReg(CurrentIdxReg, RegState::Kill);
2640 } else {
2641 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
2642 .addReg(CurrentIdxReg, RegState::Kill)
2643 .addImm(Offset);
2644 }
2645 }
2646
2647 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
2648 MachineInstr *InsertPt =
2649 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
2650 .addReg(AMDGPU::EXEC)
2651 .addReg(NewExec);
2652
2653 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
2654 // s_cbranch_scc0?
2655
2656 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
2657 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
2658 .addMBB(&LoopBB);
2659
2660 return InsertPt->getIterator();
2661}
2662
2663// This has slightly sub-optimal regalloc when the source vector is killed by
2664// the read. The register allocator does not understand that the kill is
2665// per-workitem, so is kept alive for the whole loop so we end up not re-using a
2666// subregister from it, using 1 more VGPR than necessary. This was saved when
2667// this was expanded after register allocation.
2668static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
2669 MachineBasicBlock &MBB,
2670 MachineInstr &MI,
2671 unsigned InitResultReg,
2672 unsigned PhiReg,
2673 int Offset,
2674 bool UseGPRIdxMode,
2675 bool IsIndirectSrc) {
2676 MachineFunction *MF = MBB.getParent();
2677 MachineRegisterInfo &MRI = MF->getRegInfo();
2678 const DebugLoc &DL = MI.getDebugLoc();
2679 MachineBasicBlock::iterator I(&MI);
2680
2681 unsigned DstReg = MI.getOperand(0).getReg();
2682 unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
2683 unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
2684
2685 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
2686
2687 // Save the EXEC mask
2688 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec)
2689 .addReg(AMDGPU::EXEC);
2690
2691 // To insert the loop we need to split the block. Move everything after this
2692 // point to a new block, and insert a new empty block between the two.
2693 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
2694 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
2695 MachineFunction::iterator MBBI(MBB);
2696 ++MBBI;
2697
2698 MF->insert(MBBI, LoopBB);
2699 MF->insert(MBBI, RemainderBB);
2700
2701 LoopBB->addSuccessor(LoopBB);
2702 LoopBB->addSuccessor(RemainderBB);
2703
2704 // Move the rest of the block into a new block.
2705 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
2706 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
2707
2708 MBB.addSuccessor(LoopBB);
2709
2710 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
2711
2712 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
2713 InitResultReg, DstReg, PhiReg, TmpExec,
2714 Offset, UseGPRIdxMode, IsIndirectSrc);
2715
2716 MachineBasicBlock::iterator First = RemainderBB->begin();
2717 BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
2718 .addReg(SaveExec);
2719
2720 return InsPt;
2721}
2722
2723// Returns subreg index, offset
2724static std::pair<unsigned, int>
2725computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
2726 const TargetRegisterClass *SuperRC,
2727 unsigned VecReg,
2728 int Offset) {
2729 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
2730
2731 // Skip out of bounds offsets, or else we would end up using an undefined
2732 // register.
2733 if (Offset >= NumElts || Offset < 0)
2734 return std::make_pair(AMDGPU::sub0, Offset);
2735
2736 return std::make_pair(AMDGPU::sub0 + Offset, 0);
2737}
2738
2739// Return true if the index is an SGPR and was set.
2740static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
2741 MachineRegisterInfo &MRI,
2742 MachineInstr &MI,
2743 int Offset,
2744 bool UseGPRIdxMode,
2745 bool IsIndirectSrc) {
2746 MachineBasicBlock *MBB = MI.getParent();
2747 const DebugLoc &DL = MI.getDebugLoc();
2748 MachineBasicBlock::iterator I(&MI);
2749
2750 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
2751 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
2752
2753 assert(Idx->getReg() != AMDGPU::NoRegister)(static_cast <bool> (Idx->getReg() != AMDGPU::NoRegister
) ? void (0) : __assert_fail ("Idx->getReg() != AMDGPU::NoRegister"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2753, __extension__ __PRETTY_FUNCTION__))
;
2754
2755 if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
2756 return false;
2757
2758 if (UseGPRIdxMode) {
2759 unsigned IdxMode = IsIndirectSrc ?
2760 VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
2761 if (Offset == 0) {
2762 MachineInstr *SetOn =
2763 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2764 .add(*Idx)
2765 .addImm(IdxMode);
2766
2767 SetOn->getOperand(3).setIsUndef();
2768 } else {
2769 unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
2770 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
2771 .add(*Idx)
2772 .addImm(Offset);
2773 MachineInstr *SetOn =
2774 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
2775 .addReg(Tmp, RegState::Kill)
2776 .addImm(IdxMode);
2777
2778 SetOn->getOperand(3).setIsUndef();
2779 }
2780
2781 return true;
2782 }
2783
2784 if (Offset == 0) {
2785 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
2786 .add(*Idx);
2787 } else {
2788 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
2789 .add(*Idx)
2790 .addImm(Offset);
2791 }
2792
2793 return true;
2794}
2795
2796// Control flow needs to be inserted if indexing with a VGPR.
2797static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
2798 MachineBasicBlock &MBB,
2799 const SISubtarget &ST) {
2800 const SIInstrInfo *TII = ST.getInstrInfo();
2801 const SIRegisterInfo &TRI = TII->getRegisterInfo();
2802 MachineFunction *MF = MBB.getParent();
2803 MachineRegisterInfo &MRI = MF->getRegInfo();
2804
2805 unsigned Dst = MI.getOperand(0).getReg();
2806 unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
2807 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
2808
2809 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
2810
2811 unsigned SubReg;
2812 std::tie(SubReg, Offset)
2813 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
2814
2815 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
2816
2817 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
2818 MachineBasicBlock::iterator I(&MI);
2819 const DebugLoc &DL = MI.getDebugLoc();
2820
2821 if (UseGPRIdxMode) {
2822 // TODO: Look at the uses to avoid the copy. This may require rescheduling
2823 // to avoid interfering with other uses, so probably requires a new
2824 // optimization pass.
2825 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
2826 .addReg(SrcReg, RegState::Undef, SubReg)
2827 .addReg(SrcReg, RegState::Implicit)
2828 .addReg(AMDGPU::M0, RegState::Implicit);
2829 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2830 } else {
2831 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
2832 .addReg(SrcReg, RegState::Undef, SubReg)
2833 .addReg(SrcReg, RegState::Implicit);
2834 }
2835
2836 MI.eraseFromParent();
2837
2838 return &MBB;
2839 }
2840
2841 const DebugLoc &DL = MI.getDebugLoc();
2842 MachineBasicBlock::iterator I(&MI);
2843
2844 unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2845 unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2846
2847 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
2848
2849 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
2850 Offset, UseGPRIdxMode, true);
2851 MachineBasicBlock *LoopBB = InsPt->getParent();
2852
2853 if (UseGPRIdxMode) {
2854 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
2855 .addReg(SrcReg, RegState::Undef, SubReg)
2856 .addReg(SrcReg, RegState::Implicit)
2857 .addReg(AMDGPU::M0, RegState::Implicit);
2858 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2859 } else {
2860 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
2861 .addReg(SrcReg, RegState::Undef, SubReg)
2862 .addReg(SrcReg, RegState::Implicit);
2863 }
2864
2865 MI.eraseFromParent();
2866
2867 return LoopBB;
2868}
2869
2870static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
2871 const TargetRegisterClass *VecRC) {
2872 switch (TRI.getRegSizeInBits(*VecRC)) {
2873 case 32: // 4 bytes
2874 return AMDGPU::V_MOVRELD_B32_V1;
2875 case 64: // 8 bytes
2876 return AMDGPU::V_MOVRELD_B32_V2;
2877 case 128: // 16 bytes
2878 return AMDGPU::V_MOVRELD_B32_V4;
2879 case 256: // 32 bytes
2880 return AMDGPU::V_MOVRELD_B32_V8;
2881 case 512: // 64 bytes
2882 return AMDGPU::V_MOVRELD_B32_V16;
2883 default:
2884 llvm_unreachable("unsupported size for MOVRELD pseudos")::llvm::llvm_unreachable_internal("unsupported size for MOVRELD pseudos"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2884)
;
2885 }
2886}
2887
2888static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
2889 MachineBasicBlock &MBB,
2890 const SISubtarget &ST) {
2891 const SIInstrInfo *TII = ST.getInstrInfo();
2892 const SIRegisterInfo &TRI = TII->getRegisterInfo();
2893 MachineFunction *MF = MBB.getParent();
2894 MachineRegisterInfo &MRI = MF->getRegInfo();
2895
2896 unsigned Dst = MI.getOperand(0).getReg();
2897 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
2898 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
2899 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
2900 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
2901 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
2902
2903 // This can be an immediate, but will be folded later.
2904 assert(Val->getReg())(static_cast <bool> (Val->getReg()) ? void (0) : __assert_fail
("Val->getReg()", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2904, __extension__ __PRETTY_FUNCTION__))
;
2905
2906 unsigned SubReg;
2907 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
2908 SrcVec->getReg(),
2909 Offset);
2910 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
2911
2912 if (Idx->getReg() == AMDGPU::NoRegister) {
2913 MachineBasicBlock::iterator I(&MI);
2914 const DebugLoc &DL = MI.getDebugLoc();
2915
2916 assert(Offset == 0)(static_cast <bool> (Offset == 0) ? void (0) : __assert_fail
("Offset == 0", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2916, __extension__ __PRETTY_FUNCTION__))
;
2917
2918 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
2919 .add(*SrcVec)
2920 .add(*Val)
2921 .addImm(SubReg);
2922
2923 MI.eraseFromParent();
2924 return &MBB;
2925 }
2926
2927 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
2928 MachineBasicBlock::iterator I(&MI);
2929 const DebugLoc &DL = MI.getDebugLoc();
2930
2931 if (UseGPRIdxMode) {
2932 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
2933 .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
2934 .add(*Val)
2935 .addReg(Dst, RegState::ImplicitDefine)
2936 .addReg(SrcVec->getReg(), RegState::Implicit)
2937 .addReg(AMDGPU::M0, RegState::Implicit);
2938
2939 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2940 } else {
2941 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
2942
2943 BuildMI(MBB, I, DL, MovRelDesc)
2944 .addReg(Dst, RegState::Define)
2945 .addReg(SrcVec->getReg())
2946 .add(*Val)
2947 .addImm(SubReg - AMDGPU::sub0);
2948 }
2949
2950 MI.eraseFromParent();
2951 return &MBB;
2952 }
2953
2954 if (Val->isReg())
2955 MRI.clearKillFlags(Val->getReg());
2956
2957 const DebugLoc &DL = MI.getDebugLoc();
2958
2959 unsigned PhiReg = MRI.createVirtualRegister(VecRC);
2960
2961 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
2962 Offset, UseGPRIdxMode, false);
2963 MachineBasicBlock *LoopBB = InsPt->getParent();
2964
2965 if (UseGPRIdxMode) {
2966 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
2967 .addReg(PhiReg, RegState::Undef, SubReg) // vdst
2968 .add(*Val) // src0
2969 .addReg(Dst, RegState::ImplicitDefine)
2970 .addReg(PhiReg, RegState::Implicit)
2971 .addReg(AMDGPU::M0, RegState::Implicit);
2972 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
2973 } else {
2974 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
2975
2976 BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
2977 .addReg(Dst, RegState::Define)
2978 .addReg(PhiReg)
2979 .add(*Val)
2980 .addImm(SubReg - AMDGPU::sub0);
2981 }
2982
2983 MI.eraseFromParent();
2984
2985 return LoopBB;
2986}
2987
2988MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
2989 MachineInstr &MI, MachineBasicBlock *BB) const {
2990
2991 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
2992 MachineFunction *MF = BB->getParent();
2993 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
2994
2995 if (TII->isMIMG(MI)) {
2996 if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
2997 report_fatal_error("missing mem operand from MIMG instruction");
2998 }
2999 // Add a memoperand for mimg instructions so that they aren't assumed to
3000 // be ordered memory instuctions.
3001
3002 return BB;
3003 }
3004
3005 switch (MI.getOpcode()) {
3006 case AMDGPU::S_ADD_U64_PSEUDO:
3007 case AMDGPU::S_SUB_U64_PSEUDO: {
3008 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3009 const DebugLoc &DL = MI.getDebugLoc();
3010
3011 MachineOperand &Dest = MI.getOperand(0);
3012 MachineOperand &Src0 = MI.getOperand(1);
3013 MachineOperand &Src1 = MI.getOperand(2);
3014
3015 unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3016 unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3017
3018 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3019 Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
3020 &AMDGPU::SReg_32_XM0RegClass);
3021 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3022 Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
3023 &AMDGPU::SReg_32_XM0RegClass);
3024
3025 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3026 Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub0,
3027 &AMDGPU::SReg_32_XM0RegClass);
3028 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3029 Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub1,
3030 &AMDGPU::SReg_32_XM0RegClass);
3031
3032 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3033
3034 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3035 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3036 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3037 .add(Src0Sub0)
3038 .add(Src1Sub0);
3039 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3040 .add(Src0Sub1)
3041 .add(Src1Sub1);
3042 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3043 .addReg(DestSub0)
3044 .addImm(AMDGPU::sub0)
3045 .addReg(DestSub1)
3046 .addImm(AMDGPU::sub1);
3047 MI.eraseFromParent();
3048 return BB;
3049 }
3050 case AMDGPU::SI_INIT_M0: {
3051 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3052 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3053 .add(MI.getOperand(0));
3054 MI.eraseFromParent();
3055 return BB;
3056 }
3057 case AMDGPU::SI_INIT_EXEC:
3058 // This should be before all vector instructions.
3059 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3060 AMDGPU::EXEC)
3061 .addImm(MI.getOperand(0).getImm());
3062 MI.eraseFromParent();
3063 return BB;
3064
3065 case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3066 // Extract the thread count from an SGPR input and set EXEC accordingly.
3067 // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3068 //
3069 // S_BFE_U32 count, input, {shift, 7}
3070 // S_BFM_B64 exec, count, 0
3071 // S_CMP_EQ_U32 count, 64
3072 // S_CMOV_B64 exec, -1
3073 MachineInstr *FirstMI = &*BB->begin();
3074 MachineRegisterInfo &MRI = MF->getRegInfo();
3075 unsigned InputReg = MI.getOperand(0).getReg();
3076 unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3077 bool Found = false;
3078
3079 // Move the COPY of the input reg to the beginning, so that we can use it.
3080 for (auto I = BB->begin(); I != &MI; I++) {
3081 if (I->getOpcode() != TargetOpcode::COPY ||
3082 I->getOperand(0).getReg() != InputReg)
3083 continue;
3084
3085 if (I == FirstMI) {
3086 FirstMI = &*++BB->begin();
3087 } else {
3088 I->removeFromParent();
3089 BB->insert(FirstMI, &*I);
3090 }
3091 Found = true;
3092 break;
3093 }
3094 assert(Found)(static_cast <bool> (Found) ? void (0) : __assert_fail (
"Found", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3094, __extension__ __PRETTY_FUNCTION__))
;
3095 (void)Found;
3096
3097 // This should be before all vector instructions.
3098 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3099 .addReg(InputReg)
3100 .addImm((MI.getOperand(1).getImm() & 0x7f) | 0x70000);
3101 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFM_B64),
3102 AMDGPU::EXEC)
3103 .addReg(CountReg)
3104 .addImm(0);
3105 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
3106 .addReg(CountReg, RegState::Kill)
3107 .addImm(64);
3108 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMOV_B64),
3109 AMDGPU::EXEC)
3110 .addImm(-1);
3111 MI.eraseFromParent();
3112 return BB;
3113 }
3114
3115 case AMDGPU::GET_GROUPSTATICSIZE: {
3116 DebugLoc DL = MI.getDebugLoc();
3117 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
3118 .add(MI.getOperand(0))
3119 .addImm(MFI->getLDSSize());
3120 MI.eraseFromParent();
3121 return BB;
3122 }
3123 case AMDGPU::SI_INDIRECT_SRC_V1:
3124 case AMDGPU::SI_INDIRECT_SRC_V2:
3125 case AMDGPU::SI_INDIRECT_SRC_V4:
3126 case AMDGPU::SI_INDIRECT_SRC_V8:
3127 case AMDGPU::SI_INDIRECT_SRC_V16:
3128 return emitIndirectSrc(MI, *BB, *getSubtarget());
3129 case AMDGPU::SI_INDIRECT_DST_V1:
3130 case AMDGPU::SI_INDIRECT_DST_V2:
3131 case AMDGPU::SI_INDIRECT_DST_V4:
3132 case AMDGPU::SI_INDIRECT_DST_V8:
3133 case AMDGPU::SI_INDIRECT_DST_V16:
3134 return emitIndirectDst(MI, *BB, *getSubtarget());
3135 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
3136 case AMDGPU::SI_KILL_I1_PSEUDO:
3137 return splitKillBlock(MI, BB);
3138 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
3139 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3140
3141 unsigned Dst = MI.getOperand(0).getReg();
3142 unsigned Src0 = MI.getOperand(1).getReg();
3143 unsigned Src1 = MI.getOperand(2).getReg();
3144 const DebugLoc &DL = MI.getDebugLoc();
3145 unsigned SrcCond = MI.getOperand(3).getReg();
3146
3147 unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3148 unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3149 unsigned SrcCondCopy = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass);
3150
3151 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
3152 .addReg(SrcCond);
3153 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
3154 .addReg(Src0, 0, AMDGPU::sub0)
3155 .addReg(Src1, 0, AMDGPU::sub0)
3156 .addReg(SrcCondCopy);
3157 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
3158 .addReg(Src0, 0, AMDGPU::sub1)
3159 .addReg(Src1, 0, AMDGPU::sub1)
3160 .addReg(SrcCondCopy);
3161
3162 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
3163 .addReg(DstLo)
3164 .addImm(AMDGPU::sub0)
3165 .addReg(DstHi)
3166 .addImm(AMDGPU::sub1);
3167 MI.eraseFromParent();
3168 return BB;
3169 }
3170 case AMDGPU::SI_BR_UNDEF: {
3171 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3172 const DebugLoc &DL = MI.getDebugLoc();
3173 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3174 .add(MI.getOperand(0));
3175 Br->getOperand(1).setIsUndef(true); // read undef SCC
3176 MI.eraseFromParent();
3177 return BB;
3178 }
3179 case AMDGPU::ADJCALLSTACKUP:
3180 case AMDGPU::ADJCALLSTACKDOWN: {
3181 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
3182 MachineInstrBuilder MIB(*MF, &MI);
3183
3184 // Add an implicit use of the frame offset reg to prevent the restore copy
3185 // inserted after the call from being reorderd after stack operations in the
3186 // the caller's frame.
3187 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
3188 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
3189 .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
3190 return BB;
3191 }
3192 case AMDGPU::SI_CALL_ISEL:
3193 case AMDGPU::SI_TCRETURN_ISEL: {
3194 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3195 const DebugLoc &DL = MI.getDebugLoc();
3196 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
3197
3198 MachineRegisterInfo &MRI = MF->getRegInfo();
3199 unsigned GlobalAddrReg = MI.getOperand(0).getReg();
3200 MachineInstr *PCRel = MRI.getVRegDef(GlobalAddrReg);
3201 assert(PCRel->getOpcode() == AMDGPU::SI_PC_ADD_REL_OFFSET)(static_cast <bool> (PCRel->getOpcode() == AMDGPU::SI_PC_ADD_REL_OFFSET
) ? void (0) : __assert_fail ("PCRel->getOpcode() == AMDGPU::SI_PC_ADD_REL_OFFSET"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3201, __extension__ __PRETTY_FUNCTION__))
;
3202
3203 const GlobalValue *G = PCRel->getOperand(1).getGlobal();
3204
3205 MachineInstrBuilder MIB;
3206 if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) {
3207 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg)
3208 .add(MI.getOperand(0))
3209 .addGlobalAddress(G);
3210 } else {
3211 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_TCRETURN))
3212 .add(MI.getOperand(0))
3213 .addGlobalAddress(G);
3214
3215 // There is an additional imm operand for tcreturn, but it should be in the
3216 // right place already.
3217 }
3218
3219 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3220 MIB.add(MI.getOperand(I));
3221
3222 MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
3223 MI.eraseFromParent();
3224 return BB;
3225 }
3226 default:
3227 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
3228 }
3229}
3230
3231bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
3232 return isTypeLegal(VT.getScalarType());
3233}
3234
3235bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
3236 // This currently forces unfolding various combinations of fsub into fma with
3237 // free fneg'd operands. As long as we have fast FMA (controlled by
3238 // isFMAFasterThanFMulAndFAdd), we should perform these.
3239
3240 // When fma is quarter rate, for f64 where add / sub are at best half rate,
3241 // most of these combines appear to be cycle neutral but save on instruction
3242 // count / code size.
3243 return true;
3244}
3245
3246EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
3247 EVT VT) const {
3248 if (!VT.isVector()) {
3249 return MVT::i1;
3250 }
3251 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
3252}
3253
3254MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
3255 // TODO: Should i16 be used always if legal? For now it would force VALU
3256 // shifts.
3257 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
3258}
3259
3260// Answering this is somewhat tricky and depends on the specific device which
3261// have different rates for fma or all f64 operations.
3262//
3263// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
3264// regardless of which device (although the number of cycles differs between
3265// devices), so it is always profitable for f64.
3266//
3267// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
3268// only on full rate devices. Normally, we should prefer selecting v_mad_f32
3269// which we can always do even without fused FP ops since it returns the same
3270// result as the separate operations and since it is always full
3271// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
3272// however does not support denormals, so we do report fma as faster if we have
3273// a fast fma device and require denormals.
3274//
3275bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3276 VT = VT.getScalarType();
3277
3278 switch (VT.getSimpleVT().SimpleTy) {
3279 case MVT::f32:
3280 // This is as fast on some subtargets. However, we always have full rate f32
3281 // mad available which returns the same result as the separate operations
3282 // which we should prefer over fma. We can't use this if we want to support
3283 // denormals, so only report this in these cases.
3284 return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
3285 case MVT::f64:
3286 return true;
3287 case MVT::f16:
3288 return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
3289 default:
3290 break;
3291 }
3292
3293 return false;
3294}
3295
3296//===----------------------------------------------------------------------===//
3297// Custom DAG Lowering Operations
3298//===----------------------------------------------------------------------===//
3299
3300SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3301 switch (Op.getOpcode()) {
3302 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
3303 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
3304 case ISD::LOAD: {
3305 SDValue Result = LowerLOAD(Op, DAG);
3306 assert((!Result.getNode() ||(static_cast <bool> ((!Result.getNode() || Result.getNode
()->getNumValues() == 2) && "Load should return a value and a chain"
) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3308, __extension__ __PRETTY_FUNCTION__))
3307 Result.getNode()->getNumValues() == 2) &&(static_cast <bool> ((!Result.getNode() || Result.getNode
()->getNumValues() == 2) && "Load should return a value and a chain"
) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3308, __extension__ __PRETTY_FUNCTION__))
3308 "Load should return a value and a chain")(static_cast <bool> ((!Result.getNode() || Result.getNode
()->getNumValues() == 2) && "Load should return a value and a chain"
) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3308, __extension__ __PRETTY_FUNCTION__))
;
3309 return Result;
3310 }
3311
3312 case ISD::FSIN:
3313 case ISD::FCOS:
3314 return LowerTrig(Op, DAG);
3315 case ISD::SELECT: return LowerSELECT(Op, DAG);
3316 case ISD::FDIV: return LowerFDIV(Op, DAG);
3317 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
3318 case ISD::STORE: return LowerSTORE(Op, DAG);
3319 case ISD::GlobalAddress: {
3320 MachineFunction &MF = DAG.getMachineFunction();
3321 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
3322 return LowerGlobalAddress(MFI, Op, DAG);
3323 }
3324 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3325 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
3326 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
3327 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
3328 case ISD::INSERT_VECTOR_ELT:
3329 return lowerINSERT_VECTOR_ELT(Op, DAG);
3330 case ISD::EXTRACT_VECTOR_ELT:
3331 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3332 case ISD::FP_ROUND:
3333 return lowerFP_ROUND(Op, DAG);
3334 case ISD::TRAP:
3335 case ISD::DEBUGTRAP:
3336 return lowerTRAP(Op, DAG);
3337 }
3338 return SDValue();
3339}
3340
3341static unsigned getImageOpcode(unsigned IID) {
3342 switch (IID) {
3343 case Intrinsic::amdgcn_image_load:
3344 return AMDGPUISD::IMAGE_LOAD;
3345 case Intrinsic::amdgcn_image_load_mip:
3346 return AMDGPUISD::IMAGE_LOAD_MIP;
3347
3348 // Basic sample.
3349 case Intrinsic::amdgcn_image_sample:
3350 return AMDGPUISD::IMAGE_SAMPLE;
3351 case Intrinsic::amdgcn_image_sample_cl:
3352 return AMDGPUISD::IMAGE_SAMPLE_CL;
3353 case Intrinsic::amdgcn_image_sample_d:
3354 return AMDGPUISD::IMAGE_SAMPLE_D;
3355 case Intrinsic::amdgcn_image_sample_d_cl:
3356 return AMDGPUISD::IMAGE_SAMPLE_D_CL;
3357 case Intrinsic::amdgcn_image_sample_l:
3358 return AMDGPUISD::IMAGE_SAMPLE_L;
3359 case Intrinsic::amdgcn_image_sample_b:
3360 return AMDGPUISD::IMAGE_SAMPLE_B;
3361 case Intrinsic::amdgcn_image_sample_b_cl:
3362 return AMDGPUISD::IMAGE_SAMPLE_B_CL;
3363 case Intrinsic::amdgcn_image_sample_lz:
3364 return AMDGPUISD::IMAGE_SAMPLE_LZ;
3365 case Intrinsic::amdgcn_image_sample_cd:
3366 return AMDGPUISD::IMAGE_SAMPLE_CD;
3367 case Intrinsic::amdgcn_image_sample_cd_cl:
3368 return AMDGPUISD::IMAGE_SAMPLE_CD_CL;
3369
3370 // Sample with comparison.
3371 case Intrinsic::amdgcn_image_sample_c:
3372 return AMDGPUISD::IMAGE_SAMPLE_C;
3373 case Intrinsic::amdgcn_image_sample_c_cl:
3374 return AMDGPUISD::IMAGE_SAMPLE_C_CL;
3375 case Intrinsic::amdgcn_image_sample_c_d:
3376 return AMDGPUISD::IMAGE_SAMPLE_C_D;
3377 case Intrinsic::amdgcn_image_sample_c_d_cl:
3378 return AMDGPUISD::IMAGE_SAMPLE_C_D_CL;
3379 case Intrinsic::amdgcn_image_sample_c_l:
3380 return AMDGPUISD::IMAGE_SAMPLE_C_L;
3381 case Intrinsic::amdgcn_image_sample_c_b:
3382 return AMDGPUISD::IMAGE_SAMPLE_C_B;
3383 case Intrinsic::amdgcn_image_sample_c_b_cl:
3384 return AMDGPUISD::IMAGE_SAMPLE_C_B_CL;
3385 case Intrinsic::amdgcn_image_sample_c_lz:
3386 return AMDGPUISD::IMAGE_SAMPLE_C_LZ;
3387 case Intrinsic::amdgcn_image_sample_c_cd:
3388 return AMDGPUISD::IMAGE_SAMPLE_C_CD;
3389 case Intrinsic::amdgcn_image_sample_c_cd_cl:
3390 return AMDGPUISD::IMAGE_SAMPLE_C_CD_CL;
3391
3392 // Sample with offsets.
3393 case Intrinsic::amdgcn_image_sample_o:
3394 return AMDGPUISD::IMAGE_SAMPLE_O;
3395 case Intrinsic::amdgcn_image_sample_cl_o:
3396 return AMDGPUISD::IMAGE_SAMPLE_CL_O;
3397 case Intrinsic::amdgcn_image_sample_d_o:
3398 return AMDGPUISD::IMAGE_SAMPLE_D_O;
3399 case Intrinsic::amdgcn_image_sample_d_cl_o:
3400 return AMDGPUISD::IMAGE_SAMPLE_D_CL_O;
3401 case Intrinsic::amdgcn_image_sample_l_o:
3402 return AMDGPUISD::IMAGE_SAMPLE_L_O;
3403 case Intrinsic::amdgcn_image_sample_b_o:
3404 return AMDGPUISD::IMAGE_SAMPLE_B_O;
3405 case Intrinsic::amdgcn_image_sample_b_cl_o:
3406 return AMDGPUISD::IMAGE_SAMPLE_B_CL_O;
3407 case Intrinsic::amdgcn_image_sample_lz_o:
3408 return AMDGPUISD::IMAGE_SAMPLE_LZ_O;
3409 case Intrinsic::amdgcn_image_sample_cd_o:
3410 return AMDGPUISD::IMAGE_SAMPLE_CD_O;
3411 case Intrinsic::amdgcn_image_sample_cd_cl_o:
3412 return AMDGPUISD::IMAGE_SAMPLE_CD_CL_O;
3413
3414 // Sample with comparison and offsets.
3415 case Intrinsic::amdgcn_image_sample_c_o:
3416 return AMDGPUISD::IMAGE_SAMPLE_C_O;
3417 case Intrinsic::amdgcn_image_sample_c_cl_o:
3418 return AMDGPUISD::IMAGE_SAMPLE_C_CL_O;
3419 case Intrinsic::amdgcn_image_sample_c_d_o:
3420 return AMDGPUISD::IMAGE_SAMPLE_C_D_O;
3421 case Intrinsic::amdgcn_image_sample_c_d_cl_o:
3422 return AMDGPUISD::IMAGE_SAMPLE_C_D_CL_O;
3423 case Intrinsic::amdgcn_image_sample_c_l_o:
3424 return AMDGPUISD::IMAGE_SAMPLE_C_L_O;
3425 case Intrinsic::amdgcn_image_sample_c_b_o:
3426 return AMDGPUISD::IMAGE_SAMPLE_C_B_O;
3427 case Intrinsic::amdgcn_image_sample_c_b_cl_o:
3428 return AMDGPUISD::IMAGE_SAMPLE_C_B_CL_O;
3429 case Intrinsic::amdgcn_image_sample_c_lz_o:
3430 return AMDGPUISD::IMAGE_SAMPLE_C_LZ_O;
3431 case Intrinsic::amdgcn_image_sample_c_cd_o:
3432 return AMDGPUISD::IMAGE_SAMPLE_C_CD_O;
3433 case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
3434 return AMDGPUISD::IMAGE_SAMPLE_C_CD_CL_O;
3435
3436 // Basic gather4.
3437 case Intrinsic::amdgcn_image_gather4:
3438 return AMDGPUISD::IMAGE_GATHER4;
3439 case Intrinsic::amdgcn_image_gather4_cl:
3440 return AMDGPUISD::IMAGE_GATHER4_CL;
3441 case Intrinsic::amdgcn_image_gather4_l:
3442 return AMDGPUISD::IMAGE_GATHER4_L;
3443 case Intrinsic::amdgcn_image_gather4_b:
3444 return AMDGPUISD::IMAGE_GATHER4_B;
3445 case Intrinsic::amdgcn_image_gather4_b_cl:
3446 return AMDGPUISD::IMAGE_GATHER4_B_CL;
3447 case Intrinsic::amdgcn_image_gather4_lz:
3448 return AMDGPUISD::IMAGE_GATHER4_LZ;
3449
3450 // Gather4 with comparison.
3451 case Intrinsic::amdgcn_image_gather4_c:
3452 return AMDGPUISD::IMAGE_GATHER4_C;
3453 case Intrinsic::amdgcn_image_gather4_c_cl:
3454 return AMDGPUISD::IMAGE_GATHER4_C_CL;
3455 case Intrinsic::amdgcn_image_gather4_c_l:
3456 return AMDGPUISD::IMAGE_GATHER4_C_L;
3457 case Intrinsic::amdgcn_image_gather4_c_b:
3458 return AMDGPUISD::IMAGE_GATHER4_C_B;
3459 case Intrinsic::amdgcn_image_gather4_c_b_cl:
3460 return AMDGPUISD::IMAGE_GATHER4_C_B_CL;
3461 case Intrinsic::amdgcn_image_gather4_c_lz:
3462 return AMDGPUISD::IMAGE_GATHER4_C_LZ;
3463
3464 // Gather4 with offsets.
3465 case Intrinsic::amdgcn_image_gather4_o:
3466 return AMDGPUISD::IMAGE_GATHER4_O;
3467 case Intrinsic::amdgcn_image_gather4_cl_o:
3468 return AMDGPUISD::IMAGE_GATHER4_CL_O;
3469 case Intrinsic::amdgcn_image_gather4_l_o:
3470 return AMDGPUISD::IMAGE_GATHER4_L_O;
3471 case Intrinsic::amdgcn_image_gather4_b_o:
3472 return AMDGPUISD::IMAGE_GATHER4_B_O;
3473 case Intrinsic::amdgcn_image_gather4_b_cl_o:
3474 return AMDGPUISD::IMAGE_GATHER4_B_CL_O;
3475 case Intrinsic::amdgcn_image_gather4_lz_o:
3476 return AMDGPUISD::IMAGE_GATHER4_LZ_O;
3477
3478 // Gather4 with comparison and offsets.
3479 case Intrinsic::amdgcn_image_gather4_c_o:
3480 return AMDGPUISD::IMAGE_GATHER4_C_O;
3481 case Intrinsic::amdgcn_image_gather4_c_cl_o:
3482 return AMDGPUISD::IMAGE_GATHER4_C_CL_O;
3483 case Intrinsic::amdgcn_image_gather4_c_l_o:
3484 return AMDGPUISD::IMAGE_GATHER4_C_L_O;
3485 case Intrinsic::amdgcn_image_gather4_c_b_o:
3486 return AMDGPUISD::IMAGE_GATHER4_C_B_O;
3487 case Intrinsic::amdgcn_image_gather4_c_b_cl_o:
3488 return AMDGPUISD::IMAGE_GATHER4_C_B_CL_O;
3489 case Intrinsic::amdgcn_image_gather4_c_lz_o:
3490 return AMDGPUISD::IMAGE_GATHER4_C_LZ_O;
3491
3492 default:
3493 break;
3494 }
3495 return 0;
3496}
3497
3498static SDValue adjustLoadValueType(SDValue Result, EVT LoadVT, SDLoc DL,
3499 SelectionDAG &DAG, bool Unpacked) {
3500 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
3501 // Truncate to v2i16/v4i16.
3502 EVT IntLoadVT = LoadVT.changeTypeToInteger();
3503 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, IntLoadVT, Result);
3504 // Bitcast to original type (v2f16/v4f16).
3505 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Trunc);
3506 }
3507 // Cast back to the original packed type.
3508 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
3509}
3510
3511// This is to lower INTRINSIC_W_CHAIN with illegal result types.
3512SDValue SITargetLowering::lowerIntrinsicWChain_IllegalReturnType(SDValue Op,
3513 SDValue &Chain, SelectionDAG &DAG) const {
3514 EVT LoadVT = Op.getValueType();
3515 // TODO: handle v3f16.
3516 if (LoadVT != MVT::v2f16 && LoadVT != MVT::v4f16)
3517 return SDValue();
3518
3519 bool Unpacked = Subtarget->hasUnpackedD16VMem();
3520 EVT UnpackedLoadVT = (LoadVT == MVT::v2f16) ? MVT::v2i32 : MVT::v4i32;
3521 EVT EquivLoadVT = Unpacked ? UnpackedLoadVT :
3522 getEquivalentMemType(*DAG.getContext(), LoadVT);
3523 // Change from v4f16/v2f16 to EquivLoadVT.
3524 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
3525
3526 SDValue Res;
3527 SDLoc DL(Op);
3528 MemSDNode *M = cast<MemSDNode>(Op);
3529 unsigned IID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
3530 switch (IID) {
3531 case Intrinsic::amdgcn_tbuffer_load: {
3532 SDValue Ops[] = {
3533 Op.getOperand(0), // Chain
3534 Op.getOperand(2), // rsrc
3535 Op.getOperand(3), // vindex
3536 Op.getOperand(4), // voffset
3537 Op.getOperand(5), // soffset
3538 Op.getOperand(6), // offset
3539 Op.getOperand(7), // dfmt
3540 Op.getOperand(8), // nfmt
3541 Op.getOperand(9), // glc
3542 Op.getOperand(10) // slc
3543 };
3544 Res = DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, DL,
3545 VTList, Ops, M->getMemoryVT(),
3546 M->getMemOperand());
3547 Chain = Res.getValue(1);
3548 return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3549 }
3550 case Intrinsic::amdgcn_buffer_load_format: {
3551 SDValue Ops[] = {
3552 Op.getOperand(0), // Chain
3553 Op.getOperand(2), // rsrc
3554 Op.getOperand(3), // vindex
3555 Op.getOperand(4), // offset
3556 Op.getOperand(5), // glc
3557 Op.getOperand(6) // slc
3558 };
3559 Res = DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
3560 DL, VTList, Ops, M->getMemoryVT(),
3561 M->getMemOperand());
3562 Chain = Res.getValue(1);
3563 return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3564 }
3565 case Intrinsic::amdgcn_image_load:
3566 case Intrinsic::amdgcn_image_load_mip: {
3567 SDValue Ops[] = {
3568 Op.getOperand(0), // Chain
3569 Op.getOperand(2), // vaddr
3570 Op.getOperand(3), // rsrc
3571 Op.getOperand(4), // dmask
3572 Op.getOperand(5), // glc
3573 Op.getOperand(6), // slc
3574 Op.getOperand(7), // lwe
3575 Op.getOperand(8) // da
3576 };
3577 unsigned Opc = getImageOpcode(IID);
3578 Res = DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, M->getMemoryVT(),
3579 M->getMemOperand());
3580 Chain = Res.getValue(1);
3581 return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3582 }
3583 // Basic sample.
3584 case Intrinsic::amdgcn_image_sample:
3585 case Intrinsic::amdgcn_image_sample_cl:
3586 case Intrinsic::amdgcn_image_sample_d:
3587 case Intrinsic::amdgcn_image_sample_d_cl:
3588 case Intrinsic::amdgcn_image_sample_l:
3589 case Intrinsic::amdgcn_image_sample_b:
3590 case Intrinsic::amdgcn_image_sample_b_cl:
3591 case Intrinsic::amdgcn_image_sample_lz:
3592 case Intrinsic::amdgcn_image_sample_cd:
3593 case Intrinsic::amdgcn_image_sample_cd_cl:
3594
3595 // Sample with comparison.
3596 case Intrinsic::amdgcn_image_sample_c:
3597 case Intrinsic::amdgcn_image_sample_c_cl:
3598 case Intrinsic::amdgcn_image_sample_c_d:
3599 case Intrinsic::amdgcn_image_sample_c_d_cl:
3600 case Intrinsic::amdgcn_image_sample_c_l:
3601 case Intrinsic::amdgcn_image_sample_c_b:
3602 case Intrinsic::amdgcn_image_sample_c_b_cl:
3603 case Intrinsic::amdgcn_image_sample_c_lz:
3604 case Intrinsic::amdgcn_image_sample_c_cd:
3605 case Intrinsic::amdgcn_image_sample_c_cd_cl:
3606
3607 // Sample with offsets.
3608 case Intrinsic::amdgcn_image_sample_o:
3609 case Intrinsic::amdgcn_image_sample_cl_o:
3610 case Intrinsic::amdgcn_image_sample_d_o:
3611 case Intrinsic::amdgcn_image_sample_d_cl_o:
3612 case Intrinsic::amdgcn_image_sample_l_o:
3613 case Intrinsic::amdgcn_image_sample_b_o:
3614 case Intrinsic::amdgcn_image_sample_b_cl_o:
3615 case Intrinsic::amdgcn_image_sample_lz_o:
3616 case Intrinsic::amdgcn_image_sample_cd_o:
3617 case Intrinsic::amdgcn_image_sample_cd_cl_o:
3618
3619 // Sample with comparison and offsets.
3620 case Intrinsic::amdgcn_image_sample_c_o:
3621 case Intrinsic::amdgcn_image_sample_c_cl_o:
3622 case Intrinsic::amdgcn_image_sample_c_d_o:
3623 case Intrinsic::amdgcn_image_sample_c_d_cl_o:
3624 case Intrinsic::amdgcn_image_sample_c_l_o:
3625 case Intrinsic::amdgcn_image_sample_c_b_o:
3626 case Intrinsic::amdgcn_image_sample_c_b_cl_o:
3627 case Intrinsic::amdgcn_image_sample_c_lz_o:
3628 case Intrinsic::amdgcn_image_sample_c_cd_o:
3629 case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
3630
3631 // Basic gather4
3632 case Intrinsic::amdgcn_image_gather4:
3633 case Intrinsic::amdgcn_image_gather4_cl:
3634 case Intrinsic::amdgcn_image_gather4_l:
3635 case Intrinsic::amdgcn_image_gather4_b:
3636 case Intrinsic::amdgcn_image_gather4_b_cl:
3637 case Intrinsic::amdgcn_image_gather4_lz:
3638
3639 // Gather4 with comparison
3640 case Intrinsic::amdgcn_image_gather4_c:
3641 case Intrinsic::amdgcn_image_gather4_c_cl:
3642 case Intrinsic::amdgcn_image_gather4_c_l:
3643 case Intrinsic::amdgcn_image_gather4_c_b:
3644 case Intrinsic::amdgcn_image_gather4_c_b_cl:
3645 case Intrinsic::amdgcn_image_gather4_c_lz:
3646
3647 // Gather4 with offsets
3648 case Intrinsic::amdgcn_image_gather4_o:
3649 case Intrinsic::amdgcn_image_gather4_cl_o:
3650 case Intrinsic::amdgcn_image_gather4_l_o:
3651 case Intrinsic::amdgcn_image_gather4_b_o:
3652 case Intrinsic::amdgcn_image_gather4_b_cl_o:
3653 case Intrinsic::amdgcn_image_gather4_lz_o:
3654
3655 // Gather4 with comparison and offsets
3656 case Intrinsic::amdgcn_image_gather4_c_o:
3657 case Intrinsic::amdgcn_image_gather4_c_cl_o:
3658 case Intrinsic::amdgcn_image_gather4_c_l_o:
3659 case Intrinsic::amdgcn_image_gather4_c_b_o:
3660 case Intrinsic::amdgcn_image_gather4_c_b_cl_o:
3661 case Intrinsic::amdgcn_image_gather4_c_lz_o: {
3662 SDValue Ops[] = {
3663 Op.getOperand(0), // Chain
3664 Op.getOperand(2), // vaddr
3665 Op.getOperand(3), // rsrc
3666 Op.getOperand(4), // sampler
3667 Op.getOperand(5), // dmask
3668 Op.getOperand(6), // unorm
3669 Op.getOperand(7), // glc
3670 Op.getOperand(8), // slc
3671 Op.getOperand(9), // lwe
3672 Op.getOperand(10) // da
3673 };
3674 unsigned Opc = getImageOpcode(IID);
3675 Res = DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, M->getMemoryVT(),
3676 M->getMemOperand());
3677 Chain = Res.getValue(1);
3678 return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3679 }
3680 default: {
3681 const AMDGPU::D16ImageDimIntrinsic *D16ImageDimIntr =
3682 AMDGPU::lookupD16ImageDimIntrinsicByIntr(IID);
3683 if (D16ImageDimIntr) {
3684 SmallVector<SDValue, 20> Ops;
3685 for (auto Value : Op.getNode()->op_values())
3686 Ops.push_back(Value);
3687 Ops[1] = DAG.getConstant(D16ImageDimIntr->D16HelperIntr, DL, MVT::i32);
3688 Res = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTList, Ops,
3689 M->getMemoryVT(), M->getMemOperand());
3690 Chain = Res.getValue(1);
3691 return adjustLoadValueType(Res, LoadVT, DL, DAG, Unpacked);
3692 }
3693
3694 return SDValue();
3695 }
3696 }
3697}
3698
3699void SITargetLowering::ReplaceNodeResults(SDNode *N,
3700 SmallVectorImpl<SDValue> &Results,
3701 SelectionDAG &DAG) const {
3702 switch (N->getOpcode()) {
3703 case ISD::INSERT_VECTOR_ELT: {
3704 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
3705 Results.push_back(Res);
3706 return;
3707 }
3708 case ISD::EXTRACT_VECTOR_ELT: {
3709 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
3710 Results.push_back(Res);
3711 return;
3712 }
3713 case ISD::INTRINSIC_WO_CHAIN: {
3714 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3715 switch (IID) {
3716 case Intrinsic::amdgcn_cvt_pkrtz: {
3717 SDValue Src0 = N->getOperand(1);
3718 SDValue Src1 = N->getOperand(2);
3719 SDLoc SL(N);
3720 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
3721 Src0, Src1);
3722 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
3723 return;
3724 }
3725 case Intrinsic::amdgcn_cvt_pknorm_i16:
3726 case Intrinsic::amdgcn_cvt_pknorm_u16:
3727 case Intrinsic::amdgcn_cvt_pk_i16:
3728 case Intrinsic::amdgcn_cvt_pk_u16: {
3729 SDValue Src0 = N->getOperand(1);
3730 SDValue Src1 = N->getOperand(2);
3731 SDLoc SL(N);
3732 unsigned Opcode;
3733
3734 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
3735 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
3736 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
3737 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
3738 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
3739 Opcode = AMDGPUISD::CVT_PK_I16_I32;
3740 else
3741 Opcode = AMDGPUISD::CVT_PK_U16_U32;
3742
3743 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
3744 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
3745 return;
3746 }
3747 }
3748 break;
3749 }
3750 case ISD::INTRINSIC_W_CHAIN: {
3751 SDValue Chain;
3752 if (SDValue Res = lowerIntrinsicWChain_IllegalReturnType(SDValue(N, 0),
3753 Chain, DAG)) {
3754 Results.push_back(Res);
3755 Results.push_back(Chain);
3756 return;
3757 }
3758 break;
3759 }
3760 case ISD::SELECT: {
3761 SDLoc SL(N);
3762 EVT VT = N->getValueType(0);
3763 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3764 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
3765 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
3766
3767 EVT SelectVT = NewVT;
3768 if (NewVT.bitsLT(MVT::i32)) {
3769 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
3770 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
3771 SelectVT = MVT::i32;
3772 }
3773
3774 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
3775 N->getOperand(0), LHS, RHS);
3776
3777 if (NewVT != SelectVT)
3778 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
3779 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
3780 return;
3781 }
3782 default:
3783 break;
3784 }
3785}
3786
3787/// \brief Helper function for LowerBRCOND
3788static SDNode *findUser(SDValue Value, unsigned Opcode) {
3789
3790 SDNode *Parent = Value.getNode();
3791 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
3792 I != E; ++I) {
3793
3794 if (I.getUse().get() != Value)
3795 continue;
3796
3797 if (I->getOpcode() == Opcode)
3798 return *I;
3799 }
3800 return nullptr;
3801}
3802
3803unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
3804 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
3805 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
3806 case Intrinsic::amdgcn_if:
3807 return AMDGPUISD::IF;
3808 case Intrinsic::amdgcn_else:
3809 return AMDGPUISD::ELSE;
3810 case Intrinsic::amdgcn_loop:
3811 return AMDGPUISD::LOOP;
3812 case Intrinsic::amdgcn_end_cf:
3813 llvm_unreachable("should not occur")::llvm::llvm_unreachable_internal("should not occur", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3813)
;
3814 default:
3815 return 0;
3816 }
3817 }
3818
3819 // break, if_break, else_break are all only used as inputs to loop, not
3820 // directly as branch conditions.
3821 return 0;
3822}
3823
3824void SITargetLowering::createDebuggerPrologueStackObjects(
3825 MachineFunction &MF) const {
3826 // Create stack objects that are used for emitting debugger prologue.
3827 //
3828 // Debugger prologue writes work group IDs and work item IDs to scratch memory
3829 // at fixed location in the following format:
3830 // offset 0: work group ID x
3831 // offset 4: work group ID y
3832 // offset 8: work group ID z
3833 // offset 16: work item ID x
3834 // offset 20: work item ID y
3835 // offset 24: work item ID z
3836 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3837 int ObjectIdx = 0;
3838
3839 // For each dimension:
3840 for (unsigned i = 0; i < 3; ++i) {
3841 // Create fixed stack object for work group ID.
3842 ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true);
3843 Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
3844 // Create fixed stack object for work item ID.
3845 ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true);
3846 Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
3847 }
3848}
3849
3850bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
3851 const Triple &TT = getTargetMachine().getTargetTriple();
3852 return (GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
3853 GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
3854 AMDGPU::shouldEmitConstantsToTextSection(TT);
3855}
3856
3857bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
3858 return (GV->getType()->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
3859 GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
3860 GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
3861 !shouldEmitFixup(GV) &&
3862 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
3863}
3864
3865bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
3866 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
3867}
3868
3869/// This transforms the control flow intrinsics to get the branch destination as
3870/// last parameter, also switches branch target with BR if the need arise
3871SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
3872 SelectionDAG &DAG) const {
3873 SDLoc DL(BRCOND);
3874
3875 SDNode *Intr = BRCOND.getOperand(1).getNode();
3876 SDValue Target = BRCOND.getOperand(2);
3877 SDNode *BR = nullptr;
3878 SDNode *SetCC = nullptr;
3879
3880 if (Intr->getOpcode() == ISD::SETCC) {
3881 // As long as we negate the condition everything is fine
3882 SetCC = Intr;
3883 Intr = SetCC->getOperand(0).getNode();
3884
3885 } else {
3886 // Get the target from BR if we don't negate the condition
3887 BR = findUser(BRCOND, ISD::BR);
3888 Target = BR->getOperand(1);
3889 }
3890
3891 // FIXME: This changes the types of the intrinsics instead of introducing new
3892 // nodes with the correct types.
3893 // e.g. llvm.amdgcn.loop
3894
3895 // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
3896 // => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
3897
3898 unsigned CFNode = isCFIntrinsic(Intr);
3899 if (CFNode == 0) {
3900 // This is a uniform branch so we don't need to legalize.
3901 return BRCOND;
3902 }
3903
3904 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
3905 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
3906
3907 assert(!SetCC ||(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal
(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand
(2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3910, __extension__ __PRETTY_FUNCTION__))
3908 (SetCC->getConstantOperandVal(1) == 1 &&(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal
(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand
(2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3910, __extension__ __PRETTY_FUNCTION__))
3909 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal
(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand
(2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3910, __extension__ __PRETTY_FUNCTION__))
3910 ISD::SETNE))(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal
(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand
(2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3910, __extension__ __PRETTY_FUNCTION__))
;
3911
3912 // operands of the new intrinsic call
3913 SmallVector<SDValue, 4> Ops;
3914 if (HaveChain)
3915 Ops.push_back(BRCOND.getOperand(0));
3916
3917 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
3918 Ops.push_back(Target);
3919
3920 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
3921
3922 // build the new intrinsic call
3923 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
3924
3925 if (!HaveChain) {
3926 SDValue Ops[] = {
3927 SDValue(Result, 0),
3928 BRCOND.getOperand(0)
3929 };
3930
3931 Result = DAG.getMergeValues(Ops, DL).getNode();
3932 }
3933
3934 if (BR) {
3935 // Give the branch instruction our target
3936 SDValue Ops[] = {
3937 BR->getOperand(0),
3938 BRCOND.getOperand(2)
3939 };
3940 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
3941 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
3942 BR = NewBR.getNode();
3943 }
3944
3945 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
3946
3947 // Copy the intrinsic results to registers
3948 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
3949 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
3950 if (!CopyToReg)
3951 continue;
3952
3953 Chain = DAG.getCopyToReg(
3954 Chain, DL,
3955 CopyToReg->getOperand(1),
3956 SDValue(Result, i - 1),
3957 SDValue());
3958
3959 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
3960 }
3961
3962 // Remove the old intrinsic from the chain
3963 DAG.ReplaceAllUsesOfValueWith(
3964 SDValue(Intr, Intr->getNumValues() - 1),
3965 Intr->getOperand(0));
3966
3967 return Chain;
3968}
3969
3970SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
3971 SDValue Op,
3972 const SDLoc &DL,
3973 EVT VT) const {
3974 return Op.getValueType().bitsLE(VT) ?
3975 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
3976 DAG.getNode(ISD::FTRUNC, DL, VT, Op);
3977}
3978
3979SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
3980 assert(Op.getValueType() == MVT::f16 &&(static_cast <bool> (Op.getValueType() == MVT::f16 &&
"Do not know how to custom lower FP_ROUND for non-f16 type")
? void (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3981, __extension__ __PRETTY_FUNCTION__))
3981 "Do not know how to custom lower FP_ROUND for non-f16 type")(static_cast <bool> (Op.getValueType() == MVT::f16 &&
"Do not know how to custom lower FP_ROUND for non-f16 type")
? void (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3981, __extension__ __PRETTY_FUNCTION__))
;
3982
3983 SDValue Src = Op.getOperand(0);
3984 EVT SrcVT = Src.getValueType();
3985 if (SrcVT != MVT::f64)
3986 return Op;
3987
3988 SDLoc DL(Op);
3989
3990 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
3991 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
3992 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
3993}
3994
3995SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
3996 SDLoc SL(Op);
3997 MachineFunction &MF = DAG.getMachineFunction();
3998 SDValue Chain = Op.getOperand(0);
3999
4000 unsigned TrapID = Op.getOpcode() == ISD::DEBUGTRAP ?
4001 SISubtarget::TrapIDLLVMDebugTrap : SISubtarget::TrapIDLLVMTrap;
4002
4003 if (Subtarget->getTrapHandlerAbi() == SISubtarget::TrapHandlerAbiHsa &&
4004 Subtarget->isTrapHandlerEnabled()) {
4005 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4006 unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4007 assert(UserSGPR != AMDGPU::NoRegister)(static_cast <bool> (UserSGPR != AMDGPU::NoRegister) ? void
(0) : __assert_fail ("UserSGPR != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4007, __extension__ __PRETTY_FUNCTION__))
;
4008
4009 SDValue QueuePtr = CreateLiveInRegister(
4010 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4011
4012 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
4013
4014 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
4015 QueuePtr, SDValue());
4016
4017 SDValue Ops[] = {
4018 ToReg,
4019 DAG.getTargetConstant(TrapID, SL, MVT::i16),
4020 SGPR01,
4021 ToReg.getValue(1)
4022 };
4023
4024 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4025 }
4026
4027 switch (TrapID) {
4028 case SISubtarget::TrapIDLLVMTrap:
4029 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
4030 case SISubtarget::TrapIDLLVMDebugTrap: {
4031 DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
4032 "debugtrap handler not supported",
4033 Op.getDebugLoc(),
4034 DS_Warning);
4035 LLVMContext &Ctx = MF.getFunction().getContext();
4036 Ctx.diagnose(NoTrap);
4037 return Chain;
4038 }
4039 default:
4040 llvm_unreachable("unsupported trap handler type!")::llvm::llvm_unreachable_internal("unsupported trap handler type!"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4040)
;
4041 }
4042
4043 return Chain;
4044}
4045
4046SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
4047 SelectionDAG &DAG) const {
4048 // FIXME: Use inline constants (src_{shared, private}_base) instead.
4049 if (Subtarget->hasApertureRegs()) {
4050 unsigned Offset = AS == AMDGPUASI.LOCAL_ADDRESS ?
4051 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
4052 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
4053 unsigned WidthM1 = AS == AMDGPUASI.LOCAL_ADDRESS ?
4054 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
4055 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
4056 unsigned Encoding =
4057 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
4058 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
4059 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
4060
4061 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
4062 SDValue ApertureReg = SDValue(
4063 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
4064 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
4065 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
4066 }
4067
4068 MachineFunction &MF = DAG.getMachineFunction();
4069 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4070 unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4071 assert(UserSGPR != AMDGPU::NoRegister)(static_cast <bool> (UserSGPR != AMDGPU::NoRegister) ? void
(0) : __assert_fail ("UserSGPR != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4071, __extension__ __PRETTY_FUNCTION__))
;
4072
4073 SDValue QueuePtr = CreateLiveInRegister(
4074 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4075
4076 // Offset into amd_queue_t for group_segment_aperture_base_hi /
4077 // private_segment_aperture_base_hi.
4078 uint32_t StructOffset = (AS == AMDGPUASI.LOCAL_ADDRESS) ? 0x40 : 0x44;
4079
4080 SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
4081
4082 // TODO: Use custom target PseudoSourceValue.
4083 // TODO: We should use the value from the IR intrinsic call, but it might not
4084 // be available and how do we get it?
4085 Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
4086 AMDGPUASI.CONSTANT_ADDRESS));
4087
4088 MachinePointerInfo PtrInfo(V, StructOffset);
4089 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
4090 MinAlign(64, StructOffset),
4091 MachineMemOperand::MODereferenceable |
4092 MachineMemOperand::MOInvariant);
4093}
4094
4095SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
4096 SelectionDAG &DAG) const {
4097 SDLoc SL(Op);
4098 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
4099
4100 SDValue Src = ASC->getOperand(0);
4101 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
4102
4103 const AMDGPUTargetMachine &TM =
4104 static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
4105
4106 // flat -> local/private
4107 if (ASC->getSrcAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
4108 unsigned DestAS = ASC->getDestAddressSpace();
4109
4110 if (DestAS == AMDGPUASI.LOCAL_ADDRESS ||
4111 DestAS == AMDGPUASI.PRIVATE_ADDRESS) {
4112 unsigned NullVal = TM.getNullPointerValue(DestAS);
4113 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4114 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
4115 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
4116
4117 return DAG.getNode(ISD::SELECT, SL, MVT::i32,
4118 NonNull, Ptr, SegmentNullPtr);
4119 }
4120 }
4121
4122 // local/private -> flat
4123 if (ASC->getDestAddressSpace() == AMDGPUASI.FLAT_ADDRESS) {
4124 unsigned SrcAS = ASC->getSrcAddressSpace();
4125
4126 if (SrcAS == AMDGPUASI.LOCAL_ADDRESS ||
4127 SrcAS == AMDGPUASI.PRIVATE_ADDRESS) {
4128 unsigned NullVal = TM.getNullPointerValue(SrcAS);
4129 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4130
4131 SDValue NonNull
4132 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
4133
4134 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
4135 SDValue CvtPtr
4136 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
4137
4138 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
4139 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
4140 FlatNullPtr);
4141 }
4142 }
4143
4144 // global <-> flat are no-ops and never emitted.
4145
4146 const MachineFunction &MF = DAG.getMachineFunction();
4147 DiagnosticInfoUnsupported InvalidAddrSpaceCast(
4148 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
4149 DAG.getContext()->diagnose(InvalidAddrSpaceCast);
4150
4151 return DAG.getUNDEF(ASC->getValueType(0));
4152}
4153
4154SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4155 SelectionDAG &DAG) const {
4156 SDValue Idx = Op.getOperand(2);
4157 if (isa<ConstantSDNode>(Idx))
4158 return SDValue();
4159
4160 // Avoid stack access for dynamic indexing.
4161 SDLoc SL(Op);
4162 SDValue Vec = Op.getOperand(0);
4163 SDValue Val = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Op.getOperand(1));
4164
4165 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
4166 SDValue ExtVal = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Val);
4167
4168 // Convert vector index to bit-index.
4169 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx,
4170 DAG.getConstant(16, SL, MVT::i32));
4171
4172 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
4173
4174 SDValue BFM = DAG.getNode(ISD::SHL, SL, MVT::i32,
4175 DAG.getConstant(0xffff, SL, MVT::i32),
4176 ScaledIdx);
4177
4178 SDValue LHS = DAG.getNode(ISD::AND, SL, MVT::i32, BFM, ExtVal);
4179 SDValue RHS = DAG.getNode(ISD::AND, SL, MVT::i32,
4180 DAG.getNOT(SL, BFM, MVT::i32), BCVec);
4181
4182 SDValue BFI = DAG.getNode(ISD::OR, SL, MVT::i32, LHS, RHS);
4183 return DAG.getNode(ISD::BITCAST, SL, Op.getValueType(), BFI);
4184}
4185
4186SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4187 SelectionDAG &DAG) const {
4188 SDLoc SL(Op);
4189
4190 EVT ResultVT = Op.getValueType();
4191 SDValue Vec = Op.getOperand(0);
4192 SDValue Idx = Op.getOperand(1);
4193
4194 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
4195
4196 // Make sure we we do any optimizations that will make it easier to fold
4197 // source modifiers before obscuring it with bit operations.
4198
4199 // XXX - Why doesn't this get called when vector_shuffle is expanded?
4200 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
4201 return Combined;
4202
4203 if (const ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
4204 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
4205
4206 if (CIdx->getZExtValue() == 1) {
4207 Result = DAG.getNode(ISD::SRL, SL, MVT::i32, Result,
4208 DAG.getConstant(16, SL, MVT::i32));
4209 } else {
4210 assert(CIdx->getZExtValue() == 0)(static_cast <bool> (CIdx->getZExtValue() == 0) ? void
(0) : __assert_fail ("CIdx->getZExtValue() == 0", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4210, __extension__ __PRETTY_FUNCTION__))
;
4211 }
4212
4213 if (ResultVT.bitsLT(MVT::i32))
4214 Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result);
4215 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4216 }
4217
4218 SDValue Sixteen = DAG.getConstant(16, SL, MVT::i32);
4219
4220 // Convert vector index to bit-index.
4221 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, Sixteen);
4222
4223 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
4224 SDValue Elt = DAG.getNode(ISD::SRL, SL, MVT::i32, BC, ScaledIdx);
4225
4226 SDValue Result = Elt;
4227 if (ResultVT.bitsLT(MVT::i32))
4228 Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result);
4229
4230 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4231}
4232
4233bool
4234SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4235 // We can fold offsets for anything that doesn't require a GOT relocation.
4236 return (GA->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS ||
4237 GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
4238 GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
4239 !shouldEmitGOTReloc(GA->getGlobal());
4240}
4241
4242static SDValue
4243buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
4244 const SDLoc &DL, unsigned Offset, EVT PtrVT,
4245 unsigned GAFlags = SIInstrInfo::MO_NONE) {
4246 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
4247 // lowered to the following code sequence:
4248 //
4249 // For constant address space:
4250 // s_getpc_b64 s[0:1]
4251 // s_add_u32 s0, s0, $symbol
4252 // s_addc_u32 s1, s1, 0
4253 //
4254 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
4255 // a fixup or relocation is emitted to replace $symbol with a literal
4256 // constant, which is a pc-relative offset from the encoding of the $symbol
4257 // operand to the global variable.
4258 //
4259 // For global address space:
4260 // s_getpc_b64 s[0:1]
4261 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
4262 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
4263 //
4264 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
4265 // fixups or relocations are emitted to replace $symbol@*@lo and
4266 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
4267 // which is a 64-bit pc-relative offset from the encoding of the $symbol
4268 // operand to the global variable.
4269 //
4270 // What we want here is an offset from the value returned by s_getpc
4271 // (which is the address of the s_add_u32 instruction) to the global
4272 // variable, but since the encoding of $symbol starts 4 bytes after the start
4273 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
4274 // small. This requires us to add 4 to the global variable offset in order to
4275 // compute the correct address.
4276 SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
4277 GAFlags);
4278 SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
4279 GAFlags == SIInstrInfo::MO_NONE ?
4280 GAFlags : GAFlags + 1);
4281 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
4282}
4283
4284SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
4285 SDValue Op,
4286 SelectionDAG &DAG) const {
4287 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
4288 const GlobalValue *GV = GSD->getGlobal();
4289
4290 if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS &&
4291 GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS_32BIT &&
4292 GSD->getAddressSpace() != AMDGPUASI.GLOBAL_ADDRESS &&
4293 // FIXME: It isn't correct to rely on the type of the pointer. This should
4294 // be removed when address space 0 is 64-bit.
4295 !GV->getType()->getElementType()->isFunctionTy())
4296 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
4297
4298 SDLoc DL(GSD);
4299 EVT PtrVT = Op.getValueType();
4300
4301 if (shouldEmitFixup(GV))
4302 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
4303 else if (shouldEmitPCReloc(GV))
4304 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
4305 SIInstrInfo::MO_REL32);
4306
4307 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
4308 SIInstrInfo::MO_GOTPCREL32);
4309
4310 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
4311 PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS);
4312 const DataLayout &DataLayout = DAG.getDataLayout();
4313 unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
4314 // FIXME: Use a PseudoSourceValue once those can be assigned an address space.
4315 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
4316
4317 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
4318 MachineMemOperand::MODereferenceable |
4319 MachineMemOperand::MOInvariant);
4320}
4321
4322SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
4323 const SDLoc &DL, SDValue V) const {
4324 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
4325 // the destination register.
4326 //
4327 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
4328 // so we will end up with redundant moves to m0.
4329 //
4330 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
4331
4332 // A Null SDValue creates a glue result.
4333 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
4334 V, Chain);
4335 return SDValue(M0, 0);
4336}
4337
4338SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
4339 SDValue Op,
4340 MVT VT,
4341 unsigned Offset) const {
4342 SDLoc SL(Op);
4343 SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
4344 DAG.getEntryNode(), Offset, false);
4345 // The local size values will have the hi 16-bits as zero.
4346 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
4347 DAG.getValueType(VT));
4348}
4349
4350static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
4351 EVT VT) {
4352 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
4353 "non-hsa intrinsic with hsa target",
4354 DL.getDebugLoc());
4355 DAG.getContext()->diagnose(BadIntrin);
4356 return DAG.getUNDEF(VT);
4357}
4358
4359static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
4360 EVT VT) {
4361 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
4362 "intrinsic not supported on subtarget",
4363 DL.getDebugLoc());
4364 DAG.getContext()->diagnose(BadIntrin);
4365 return DAG.getUNDEF(VT);
4366}
4367
4368SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4369 SelectionDAG &DAG) const {
4370 MachineFunction &MF = DAG.getMachineFunction();
4371 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
4372
4373 EVT VT = Op.getValueType();
4374 SDLoc DL(Op);
4375 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4376
4377 // TODO: Should this propagate fast-math-flags?
4378
4379 switch (IntrinsicID) {
4380 case Intrinsic::amdgcn_implicit_buffer_ptr: {
4381 if (getSubtarget()->isAmdCodeObjectV2(MF))
4382 return emitNonHSAIntrinsicError(DAG, DL, VT);
4383 return getPreloadedValue(DAG, *MFI, VT,
4384 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
4385 }
4386 case Intrinsic::amdgcn_dispatch_ptr:
4387 case Intrinsic::amdgcn_queue_ptr: {
4388 if (!Subtarget->isAmdCodeObjectV2(MF)) {
4389 DiagnosticInfoUnsupported BadIntrin(
4390 MF.getFunction(), "unsupported hsa intrinsic without hsa target",
4391 DL.getDebugLoc());
4392 DAG.getContext()->diagnose(BadIntrin);
4393 return DAG.getUNDEF(VT);
4394 }
4395
4396 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
4397 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
4398 return getPreloadedValue(DAG, *MFI, VT, RegID);
4399 }
4400 case Intrinsic::amdgcn_implicitarg_ptr: {
4401 if (MFI->isEntryFunction())
4402 return getImplicitArgPtr(DAG, DL);
4403 return getPreloadedValue(DAG, *MFI, VT,
4404 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
4405 }
4406 case Intrinsic::amdgcn_kernarg_segment_ptr: {
4407 return getPreloadedValue(DAG, *MFI, VT,
4408 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
4409 }
4410 case Intrinsic::amdgcn_dispatch_id: {
4411 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
4412 }
4413 case Intrinsic::amdgcn_rcp:
4414 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
4415 case Intrinsic::amdgcn_rsq:
4416 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
4417 case Intrinsic::amdgcn_rsq_legacy:
4418 if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
4419 return emitRemovedIntrinsicError(DAG, DL, VT);
4420
4421 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
4422 case Intrinsic::amdgcn_rcp_legacy:
4423 if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
4424 return emitRemovedIntrinsicError(DAG, DL, VT);
4425 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
4426 case Intrinsic::amdgcn_rsq_clamp: {
4427 if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
4428 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
4429
4430 Type *Type = VT.getTypeForEVT(*DAG.getContext());
4431 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
4432 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
4433
4434 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
4435 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
4436 DAG.getConstantFP(Max, DL, VT));
4437 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
4438 DAG.getConstantFP(Min, DL, VT));
4439 }
4440 case Intrinsic::r600_read_ngroups_x:
4441 if (Subtarget->isAmdHsaOS())
4442 return emitNonHSAIntrinsicError(DAG, DL, VT);
4443
4444 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4445 SI::KernelInputOffsets::NGROUPS_X, false);
4446 case Intrinsic::r600_read_ngroups_y:
4447 if (Subtarget->isAmdHsaOS())
4448 return emitNonHSAIntrinsicError(DAG, DL, VT);
4449
4450 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4451 SI::KernelInputOffsets::NGROUPS_Y, false);
4452 case Intrinsic::r600_read_ngroups_z:
4453 if (Subtarget->isAmdHsaOS())
4454 return emitNonHSAIntrinsicError(DAG, DL, VT);
4455
4456 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4457 SI::KernelInputOffsets::NGROUPS_Z, false);
4458 case Intrinsic::r600_read_global_size_x:
4459 if (Subtarget->isAmdHsaOS())
4460 return emitNonHSAIntrinsicError(DAG, DL, VT);
4461
4462 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4463 SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
4464 case Intrinsic::r600_read_global_size_y:
4465 if (Subtarget->isAmdHsaOS())
4466 return emitNonHSAIntrinsicError(DAG, DL, VT);
4467
4468 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4469 SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
4470 case Intrinsic::r600_read_global_size_z:
4471 if (Subtarget->isAmdHsaOS())
4472 return emitNonHSAIntrinsicError(DAG, DL, VT);
4473
4474 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
4475 SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
4476 case Intrinsic::r600_read_local_size_x:
4477 if (Subtarget->isAmdHsaOS())
4478 return emitNonHSAIntrinsicError(DAG, DL, VT);
4479
4480 return lowerImplicitZextParam(DAG, Op, MVT::i16,
4481 SI::KernelInputOffsets::LOCAL_SIZE_X);
4482 case Intrinsic::r600_read_local_size_y:
4483 if (Subtarget->isAmdHsaOS())
4484 return emitNonHSAIntrinsicError(DAG, DL, VT);
4485
4486 return lowerImplicitZextParam(DAG, Op, MVT::i16,
4487 SI::KernelInputOffsets::LOCAL_SIZE_Y);
4488 case Intrinsic::r600_read_local_size_z:
4489 if (Subtarget->isAmdHsaOS())
4490 return emitNonHSAIntrinsicError(DAG, DL, VT);
4491
4492 return lowerImplicitZextParam(DAG, Op, MVT::i16,
4493 SI::KernelInputOffsets::LOCAL_SIZE_Z);
4494 case Intrinsic::amdgcn_workgroup_id_x:
4495 case Intrinsic::r600_read_tgid_x:
4496 return getPreloadedValue(DAG, *MFI, VT,
4497 AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
4498 case Intrinsic::amdgcn_workgroup_id_y:
4499 case Intrinsic::r600_read_tgid_y:
4500 return getPreloadedValue(DAG, *MFI, VT,
4501 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
4502 case Intrinsic::amdgcn_workgroup_id_z:
4503 case Intrinsic::r600_read_tgid_z:
4504 return getPreloadedValue(DAG, *MFI, VT,
4505 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
4506 case Intrinsic::amdgcn_workitem_id_x: {
4507 case Intrinsic::r600_read_tidig_x:
4508 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
4509 SDLoc(DAG.getEntryNode()),
4510 MFI->getArgInfo().WorkItemIDX);
4511 }
4512 case Intrinsic::amdgcn_workitem_id_y:
4513 case Intrinsic::r600_read_tidig_y:
4514 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
4515 SDLoc(DAG.getEntryNode()),
4516 MFI->getArgInfo().WorkItemIDY);
4517 case Intrinsic::amdgcn_workitem_id_z:
4518 case Intrinsic::r600_read_tidig_z:
4519 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
4520 SDLoc(DAG.getEntryNode()),
4521 MFI->getArgInfo().WorkItemIDZ);
4522 case AMDGPUIntrinsic::SI_load_const: {
4523 SDValue Ops[] = {
4524 Op.getOperand(1),
4525 Op.getOperand(2)
4526 };
4527
4528 MachineMemOperand *MMO = MF.getMachineMemOperand(
4529 MachinePointerInfo(),
4530 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4531 MachineMemOperand::MOInvariant,
4532 VT.getStoreSize(), 4);
4533 return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
4534 Op->getVTList(), Ops, VT, MMO);
4535 }
4536 case Intrinsic::amdgcn_fdiv_fast:
4537 return lowerFDIV_FAST(Op, DAG);
4538 case Intrinsic::amdgcn_interp_mov: {
4539 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
4540 SDValue Glue = M0.getValue(1);
4541 return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
4542 Op.getOperand(2), Op.getOperand(3), Glue);
4543 }
4544 case Intrinsic::amdgcn_interp_p1: {
4545 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
4546 SDValue Glue = M0.getValue(1);
4547 return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
4548 Op.getOperand(2), Op.getOperand(3), Glue);
4549 }
4550 case Intrinsic::amdgcn_interp_p2: {
4551 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
4552 SDValue Glue = SDValue(M0.getNode(), 1);
4553 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
4554 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
4555 Glue);
4556 }
4557 case Intrinsic::amdgcn_sin:
4558 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
4559
4560 case Intrinsic::amdgcn_cos:
4561 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
4562
4563 case Intrinsic::amdgcn_log_clamp: {
4564 if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
4565 return SDValue();
4566
4567 DiagnosticInfoUnsupported BadIntrin(
4568 MF.getFunction(), "intrinsic not supported on subtarget",
4569 DL.getDebugLoc());
4570 DAG.getContext()->diagnose(BadIntrin);
4571 return DAG.getUNDEF(VT);
4572 }
4573 case Intrinsic::amdgcn_ldexp:
4574 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
4575 Op.getOperand(1), Op.getOperand(2));
4576
4577 case Intrinsic::amdgcn_fract:
4578 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
4579
4580 case Intrinsic::amdgcn_class:
4581 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
4582 Op.getOperand(1), Op.getOperand(2));
4583 case Intrinsic::amdgcn_div_fmas:
4584 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
4585 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
4586 Op.getOperand(4));
4587
4588 case Intrinsic::amdgcn_div_fixup:
4589 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
4590 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4591
4592 case Intrinsic::amdgcn_trig_preop:
4593 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
4594 Op.getOperand(1), Op.getOperand(2));
4595 case Intrinsic::amdgcn_div_scale: {
4596 // 3rd parameter required to be a constant.
4597 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4598 if (!Param)
4599 return DAG.getMergeValues({ DAG.getUNDEF(VT), DAG.getUNDEF(MVT::i1) }, DL);
4600
4601 // Translate to the operands expected by the machine instruction. The
4602 // first parameter must be the same as the first instruction.
4603 SDValue Numerator = Op.getOperand(1);
4604 SDValue Denominator = Op.getOperand(2);
4605
4606 // Note this order is opposite of the machine instruction's operations,
4607 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
4608 // intrinsic has the numerator as the first operand to match a normal
4609 // division operation.
4610
4611 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
4612
4613 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
4614 Denominator, Numerator);
4615 }
4616 case Intrinsic::amdgcn_icmp: {
4617 const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4618 if (!CD)
4619 return DAG.getUNDEF(VT);
4620
4621 int CondCode = CD->getSExtValue();
4622 if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
4623 CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
4624 return DAG.getUNDEF(VT);
4625
4626 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4627 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4628 return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
4629 Op.getOperand(2), DAG.getCondCode(CCOpcode));
4630 }
4631 case Intrinsic::amdgcn_fcmp: {
4632 const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4633 if (!CD)
4634 return DAG.getUNDEF(VT);
4635
4636 int CondCode = CD->getSExtValue();
4637 if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
4638 CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE)
4639 return DAG.getUNDEF(VT);
4640
4641 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4642 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4643 return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
4644 Op.getOperand(2), DAG.getCondCode(CCOpcode));
4645 }
4646 case Intrinsic::amdgcn_fmed3:
4647 return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
4648 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4649 case Intrinsic::amdgcn_fmul_legacy:
4650 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
4651 Op.getOperand(1), Op.getOperand(2));
4652 case Intrinsic::amdgcn_sffbh:
4653 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
4654 case Intrinsic::amdgcn_sbfe:
4655 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
4656 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4657 case Intrinsic::amdgcn_ubfe:
4658 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
4659 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4660 case Intrinsic::amdgcn_cvt_pkrtz:
4661 case Intrinsic::amdgcn_cvt_pknorm_i16:
4662 case Intrinsic::amdgcn_cvt_pknorm_u16:
4663 case Intrinsic::amdgcn_cvt_pk_i16:
4664 case Intrinsic::amdgcn_cvt_pk_u16: {
4665 // FIXME: Stop adding cast if v2f16/v2i16 are legal.
4666 EVT VT = Op.getValueType();
4667 unsigned Opcode;
4668
4669 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
4670 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
4671 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
4672 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4673 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
4674 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4675 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
4676 Opcode = AMDGPUISD::CVT_PK_I16_I32;
4677 else
4678 Opcode = AMDGPUISD::CVT_PK_U16_U32;
4679
4680 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
4681 Op.getOperand(1), Op.getOperand(2));
4682 return DAG.getNode(ISD::BITCAST, DL, VT, Node);
4683 }
4684 case Intrinsic::amdgcn_wqm: {
4685 SDValue Src = Op.getOperand(1);
4686 return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src),
4687 0);
4688 }
4689 case Intrinsic::amdgcn_wwm: {
4690 SDValue Src = Op.getOperand(1);
4691 return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src),
4692 0);
4693 }
4694 case Intrinsic::amdgcn_image_getlod:
4695 case Intrinsic::amdgcn_image_getresinfo: {
4696 unsigned Idx = (IntrinsicID == Intrinsic::amdgcn_image_getresinfo) ? 3 : 4;
4697
4698 // Replace dmask with everything disabled with undef.
4699 const ConstantSDNode *DMask = dyn_cast<ConstantSDNode>(Op.getOperand(Idx));
4700 if (!DMask || DMask->isNullValue())
4701 return DAG.getUNDEF(Op.getValueType());
4702 return SDValue();
4703 }
4704 default:
4705 return Op;
4706 }
4707}
4708
4709SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4710 SelectionDAG &DAG) const {
4711 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4712 SDLoc DL(Op);
4713
4714 switch (IntrID) {
4715 case Intrinsic::amdgcn_atomic_inc:
4716 case Intrinsic::amdgcn_atomic_dec:
4717 case Intrinsic::amdgcn_ds_fadd:
4718 case Intrinsic::amdgcn_ds_fmin:
4719 case Intrinsic::amdgcn_ds_fmax: {
4720 MemSDNode *M = cast<MemSDNode>(Op);
4721 unsigned Opc;
4722 switch (IntrID) {
4723 case Intrinsic::amdgcn_atomic_inc:
4724 Opc = AMDGPUISD::ATOMIC_INC;
4725 break;
4726 case Intrinsic::amdgcn_atomic_dec:
4727 Opc = AMDGPUISD::ATOMIC_DEC;
4728 break;
4729 case Intrinsic::amdgcn_ds_fadd:
4730 Opc = AMDGPUISD::ATOMIC_LOAD_FADD;
4731 break;
4732 case Intrinsic::amdgcn_ds_fmin:
4733 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
4734 break;
4735 case Intrinsic::amdgcn_ds_fmax:
4736 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
4737 break;
4738 default:
4739 llvm_unreachable("Unknown intrinsic!")::llvm::llvm_unreachable_internal("Unknown intrinsic!", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4739)
;
4740 }
4741 SDValue Ops[] = {
4742 M->getOperand(0), // Chain
4743 M->getOperand(2), // Ptr
4744 M->getOperand(3) // Value
4745 };
4746
4747 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
4748 M->getMemoryVT(), M->getMemOperand());
4749 }
4750 case Intrinsic::amdgcn_buffer_load:
4751 case Intrinsic::amdgcn_buffer_load_format: {
4752 SDValue Ops[] = {
4753 Op.getOperand(0), // Chain
4754 Op.getOperand(2), // rsrc
4755 Op.getOperand(3), // vindex
4756 Op.getOperand(4), // offset
4757 Op.getOperand(5), // glc
4758 Op.getOperand(6) // slc
4759 };
4760
4761 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
4762 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
4763 EVT VT = Op.getValueType();
4764 EVT IntVT = VT.changeTypeToInteger();
4765
4766 auto *M = cast<MemSDNode>(Op);
4767 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
4768 M->getMemOperand());
4769 }
4770 case Intrinsic::amdgcn_tbuffer_load: {
4771 MemSDNode *M = cast<MemSDNode>(Op);
4772 SDValue Ops[] = {
4773 Op.getOperand(0), // Chain
4774 Op.getOperand(2), // rsrc
4775 Op.getOperand(3), // vindex
4776 Op.getOperand(4), // voffset
4777 Op.getOperand(5), // soffset
4778 Op.getOperand(6), // offset
4779 Op.getOperand(7), // dfmt
4780 Op.getOperand(8), // nfmt
4781 Op.getOperand(9), // glc
4782 Op.getOperand(10) // slc
4783 };
4784
4785 EVT VT = Op.getValueType();
4786
4787 return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
4788 Op->getVTList(), Ops, VT, M->getMemOperand());
4789 }
4790 case Intrinsic::amdgcn_buffer_atomic_swap:
4791 case Intrinsic::amdgcn_buffer_atomic_add:
4792 case Intrinsic::amdgcn_buffer_atomic_sub:
4793 case Intrinsic::amdgcn_buffer_atomic_smin:
4794 case Intrinsic::amdgcn_buffer_atomic_umin:
4795 case Intrinsic::amdgcn_buffer_atomic_smax:
4796 case Intrinsic::amdgcn_buffer_atomic_umax:
4797 case Intrinsic::amdgcn_buffer_atomic_and:
4798 case Intrinsic::amdgcn_buffer_atomic_or:
4799 case Intrinsic::amdgcn_buffer_atomic_xor: {
4800 SDValue Ops[] = {
4801 Op.getOperand(0), // Chain
4802 Op.getOperand(2), // vdata
4803 Op.getOperand(3), // rsrc
4804 Op.getOperand(4), // vindex
4805 Op.getOperand(5), // offset
4806 Op.getOperand(6) // slc
4807 };
4808 EVT VT = Op.getValueType();
4809
4810 auto *M = cast<MemSDNode>(Op);
4811 unsigned Opcode = 0;
4812
4813 switch (IntrID) {
4814 case Intrinsic::amdgcn_buffer_atomic_swap:
4815 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
4816 break;
4817 case Intrinsic::amdgcn_buffer_atomic_add:
4818 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
4819 break;
4820 case Intrinsic::amdgcn_buffer_atomic_sub:
4821 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
4822 break;
4823 case Intrinsic::amdgcn_buffer_atomic_smin:
4824 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
4825 break;
4826 case Intrinsic::amdgcn_buffer_atomic_umin:
4827 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
4828 break;
4829 case Intrinsic::amdgcn_buffer_atomic_smax:
4830 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
4831 break;
4832 case Intrinsic::amdgcn_buffer_atomic_umax:
4833 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
4834 break;
4835 case Intrinsic::amdgcn_buffer_atomic_and:
4836 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
4837 break;
4838 case Intrinsic::amdgcn_buffer_atomic_or:
4839 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
4840 break;
4841 case Intrinsic::amdgcn_buffer_atomic_xor:
4842 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
4843 break;
4844 default:
4845 llvm_unreachable("unhandled atomic opcode")::llvm::llvm_unreachable_internal("unhandled atomic opcode", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4845)
;
4846 }
4847
4848 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
4849 M->getMemOperand());
4850 }
4851
4852 case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
4853 SDValue Ops[] = {
4854 Op.getOperand(0), // Chain
4855 Op.getOperand(2), // src
4856 Op.getOperand(3), // cmp
4857 Op.getOperand(4), // rsrc
4858 Op.getOperand(5), // vindex
4859 Op.getOperand(6), // offset
4860 Op.getOperand(7) // slc
4861 };
4862 EVT VT = Op.getValueType();
4863 auto *M = cast<MemSDNode>(Op);
4864
4865 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
4866 Op->getVTList(), Ops, VT, M->getMemOperand());
4867 }
4868
4869 // Basic sample.
4870 case Intrinsic::amdgcn_image_sample:
4871 case Intrinsic::amdgcn_image_sample_cl:
4872 case Intrinsic::amdgcn_image_sample_d:
4873 case Intrinsic::amdgcn_image_sample_d_cl:
4874 case Intrinsic::amdgcn_image_sample_l:
4875 case Intrinsic::amdgcn_image_sample_b:
4876 case Intrinsic::amdgcn_image_sample_b_cl:
4877 case Intrinsic::amdgcn_image_sample_lz:
4878 case Intrinsic::amdgcn_image_sample_cd:
4879 case Intrinsic::amdgcn_image_sample_cd_cl:
4880
4881 // Sample with comparison.
4882 case Intrinsic::amdgcn_image_sample_c:
4883 case Intrinsic::amdgcn_image_sample_c_cl:
4884 case Intrinsic::amdgcn_image_sample_c_d:
4885 case Intrinsic::amdgcn_image_sample_c_d_cl:
4886 case Intrinsic::amdgcn_image_sample_c_l:
4887 case Intrinsic::amdgcn_image_sample_c_b:
4888 case Intrinsic::amdgcn_image_sample_c_b_cl:
4889 case Intrinsic::amdgcn_image_sample_c_lz:
4890 case Intrinsic::amdgcn_image_sample_c_cd:
4891 case Intrinsic::amdgcn_image_sample_c_cd_cl:
4892
4893 // Sample with offsets.
4894 case Intrinsic::amdgcn_image_sample_o:
4895 case Intrinsic::amdgcn_image_sample_cl_o:
4896 case Intrinsic::amdgcn_image_sample_d_o:
4897 case Intrinsic::amdgcn_image_sample_d_cl_o:
4898 case Intrinsic::amdgcn_image_sample_l_o:
4899 case Intrinsic::amdgcn_image_sample_b_o:
4900 case Intrinsic::amdgcn_image_sample_b_cl_o:
4901 case Intrinsic::amdgcn_image_sample_lz_o:
4902 case Intrinsic::amdgcn_image_sample_cd_o:
4903 case Intrinsic::amdgcn_image_sample_cd_cl_o:
4904
4905 // Sample with comparison and offsets.
4906 case Intrinsic::amdgcn_image_sample_c_o:
4907 case Intrinsic::amdgcn_image_sample_c_cl_o:
4908 case Intrinsic::amdgcn_image_sample_c_d_o:
4909 case Intrinsic::amdgcn_image_sample_c_d_cl_o:
4910 case Intrinsic::amdgcn_image_sample_c_l_o:
4911 case Intrinsic::amdgcn_image_sample_c_b_o:
4912 case Intrinsic::amdgcn_image_sample_c_b_cl_o:
4913 case Intrinsic::amdgcn_image_sample_c_lz_o:
4914 case Intrinsic::amdgcn_image_sample_c_cd_o:
4915 case Intrinsic::amdgcn_image_sample_c_cd_cl_o: {
4916 // Replace dmask with everything disabled with undef.
4917 const ConstantSDNode *DMask = dyn_cast<ConstantSDNode>(Op.getOperand(5));
4918 if (!DMask || DMask->isNullValue()) {
4919 SDValue Undef = DAG.getUNDEF(Op.getValueType());
4920 return DAG.getMergeValues({ Undef, Op.getOperand(0) }, SDLoc(Op));
4921 }
4922
4923 return SDValue();
4924 }
4925 default:
4926 return SDValue();
4927 }
4928}
4929
4930SDValue SITargetLowering::handleD16VData(SDValue VData,
4931 SelectionDAG &DAG) const {
4932 EVT StoreVT = VData.getValueType();
4933 SDLoc DL(VData);
4934
4935 if (StoreVT.isVector()) {
4936 assert ((StoreVT.getVectorNumElements() != 3) && "Handle v3f16")(static_cast <bool> ((StoreVT.getVectorNumElements() !=
3) && "Handle v3f16") ? void (0) : __assert_fail ("(StoreVT.getVectorNumElements() != 3) && \"Handle v3f16\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4936, __extension__ __PRETTY_FUNCTION__))
;
4937 if (!Subtarget->hasUnpackedD16VMem()) {
4938 if (!isTypeLegal(StoreVT)) {
4939 // If Target supports packed vmem, we just need to workaround
4940 // the illegal type by casting to an equivalent one.
4941 EVT EquivStoreVT = getEquivalentMemType(*DAG.getContext(), StoreVT);
4942 return DAG.getNode(ISD::BITCAST, DL, EquivStoreVT, VData);
4943 }
4944 } else { // We need to unpack the packed data to store.
4945 EVT IntStoreVT = StoreVT.changeTypeToInteger();
4946 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
4947 EVT EquivStoreVT = (StoreVT == MVT::v2f16) ? MVT::v2i32 : MVT::v4i32;
4948 return DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
4949 }
4950 }
4951 // No change for f16 and legal vector D16 types.
4952 return VData;
4953}
4954
4955SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
4956 SelectionDAG &DAG) const {
4957 SDLoc DL(Op);
4958 SDValue Chain = Op.getOperand(0);
4959 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4960 MachineFunction &MF = DAG.getMachineFunction();
4961
4962 switch (IntrinsicID) {
4963 case Intrinsic::amdgcn_exp: {
4964 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
4965 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
4966 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(8));
4967 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(9));
4968
4969 const SDValue Ops[] = {
4970 Chain,
4971 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
4972 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
4973 Op.getOperand(4), // src0
4974 Op.getOperand(5), // src1
4975 Op.getOperand(6), // src2
4976 Op.getOperand(7), // src3
4977 DAG.getTargetConstant(0, DL, MVT::i1), // compr
4978 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
4979 };
4980
4981 unsigned Opc = Done->isNullValue() ?
4982 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
4983 return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
4984 }
4985 case Intrinsic::amdgcn_exp_compr: {
4986 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(2));
4987 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(3));
4988 SDValue Src0 = Op.getOperand(4);
4989 SDValue Src1 = Op.getOperand(5);
4990 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
4991 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(7));
4992
4993 SDValue Undef = DAG.getUNDEF(MVT::f32);
4994 const SDValue Ops[] = {
4995 Chain,
4996 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt
4997 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en
4998 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0),
4999 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1),
5000 Undef, // src2
5001 Undef, // src3
5002 DAG.getTargetConstant(1, DL, MVT::i1), // compr
5003 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1)
5004 };
5005
5006 unsigned Opc = Done->isNullValue() ?
5007 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
5008 return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
5009 }
5010 case Intrinsic::amdgcn_s_sendmsg:
5011 case Intrinsic::amdgcn_s_sendmsghalt: {
5012 unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ?
5013 AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT;
5014 Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
5015 SDValue Glue = Chain.getValue(1);
5016 return DAG.getNode(NodeOp, DL, MVT::Other, Chain,
5017 Op.getOperand(2), Glue);
5018 }
5019 case Intrinsic::amdgcn_init_exec: {
5020 return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain,
5021 Op.getOperand(2));
5022 }
5023 case Intrinsic::amdgcn_init_exec_from_input: {
5024 return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain,
5025 Op.getOperand(2), Op.getOperand(3));
5026 }
5027 case AMDGPUIntrinsic::AMDGPU_kill: {
5028 SDValue Src = Op.getOperand(2);
5029 if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Src)) {
5030 if (!K->isNegative())
5031 return Chain;
5032
5033 SDValue NegOne = DAG.getTargetConstant(FloatToBits(-1.0f), DL, MVT::i32);
5034 return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, NegOne);
5035 }
5036
5037 SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Src);
5038 return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, Cast);
5039 }
5040 case Intrinsic::amdgcn_s_barrier: {
5041 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
5042 const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
5043 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
5044 if (WGSize <= ST.getWavefrontSize())
5045 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
5046 Op.getOperand(0)), 0);
5047 }
5048 return SDValue();
5049 };
5050 case AMDGPUIntrinsic::SI_tbuffer_store: {
5051
5052 // Extract vindex and voffset from vaddr as appropriate
5053 const ConstantSDNode *OffEn = cast<ConstantSDNode>(Op.getOperand(10));
5054 const ConstantSDNode *IdxEn = cast<ConstantSDNode>(Op.getOperand(11));
5055 SDValue VAddr = Op.getOperand(5);
5056
5057 SDValue Zero = DAG.getTargetConstant(0, DL, MVT::i32);
5058
5059 assert(!(OffEn->isOne() && IdxEn->isOne()) &&(static_cast <bool> (!(OffEn->isOne() && IdxEn
->isOne()) && "Legacy intrinsic doesn't support both offset and index - use new version"
) ? void (0) : __assert_fail ("!(OffEn->isOne() && IdxEn->isOne()) && \"Legacy intrinsic doesn't support both offset and index - use new version\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5060, __extension__ __PRETTY_FUNCTION__))
5060 "Legacy intrinsic doesn't support both offset and index - use new version")(static_cast <bool> (!(OffEn->isOne() && IdxEn
->isOne()) && "Legacy intrinsic doesn't support both offset and index - use new version"
) ? void (0) : __assert_fail ("!(OffEn->isOne() && IdxEn->isOne()) && \"Legacy intrinsic doesn't support both offset and index - use new version\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5060, __extension__ __PRETTY_FUNCTION__))
;
5061
5062 SDValue VIndex = IdxEn->isOne() ? VAddr : Zero;
5063 SDValue VOffset = OffEn->isOne() ? VAddr : Zero;
5064
5065 // Deal with the vec-3 case
5066 const ConstantSDNode *NumChannels = cast<ConstantSDNode>(Op.getOperand(4));
5067 auto Opcode = NumChannels->getZExtValue() == 3 ?
5068 AMDGPUISD::TBUFFER_STORE_FORMAT_X3 : AMDGPUISD::TBUFFER_STORE_FORMAT;
5069
5070 SDValue Ops[] = {
5071 Chain,
5072 Op.getOperand(3), // vdata
5073 Op.getOperand(2), // rsrc
5074 VIndex,
5075 VOffset,
5076 Op.getOperand(6), // soffset
5077 Op.getOperand(7), // inst_offset
5078 Op.getOperand(8), // dfmt
5079 Op.getOperand(9), // nfmt
5080 Op.getOperand(12), // glc
5081 Op.getOperand(13), // slc
5082 };
5083
5084 assert((cast<ConstantSDNode>(Op.getOperand(14)))->getZExtValue() == 0 &&(static_cast <bool> ((cast<ConstantSDNode>(Op.getOperand
(14)))->getZExtValue() == 0 && "Value of tfe other than zero is unsupported"
) ? void (0) : __assert_fail ("(cast<ConstantSDNode>(Op.getOperand(14)))->getZExtValue() == 0 && \"Value of tfe other than zero is unsupported\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5085, __extension__ __PRETTY_FUNCTION__))
5085 "Value of tfe other than zero is unsupported")(static_cast <bool> ((cast<ConstantSDNode>(Op.getOperand
(14)))->getZExtValue() == 0 && "Value of tfe other than zero is unsupported"
) ? void (0) : __assert_fail ("(cast<ConstantSDNode>(Op.getOperand(14)))->getZExtValue() == 0 && \"Value of tfe other than zero is unsupported\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5085, __extension__ __PRETTY_FUNCTION__))
;
5086
5087 EVT VT = Op.getOperand(3).getValueType();
5088 MachineMemOperand *MMO = MF.getMachineMemOperand(
5089 MachinePointerInfo(),
5090 MachineMemOperand::MOStore,
5091 VT.getStoreSize(), 4);
5092 return DAG.getMemIntrinsicNode(Opcode, DL,
5093 Op->getVTList(), Ops, VT, MMO);
5094 }
5095
5096 case Intrinsic::amdgcn_tbuffer_store: {
5097 SDValue VData = Op.getOperand(2);
5098 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5099 if (IsD16)
5100 VData = handleD16VData(VData, DAG);
5101 SDValue Ops[] = {
5102 Chain,
5103 VData, // vdata
5104 Op.getOperand(3), // rsrc
5105 Op.getOperand(4), // vindex
5106 Op.getOperand(5), // voffset
5107 Op.getOperand(6), // soffset
5108 Op.getOperand(7), // offset
5109 Op.getOperand(8), // dfmt
5110 Op.getOperand(9), // nfmt
5111 Op.getOperand(10), // glc
5112 Op.getOperand(11) // slc
5113 };
5114 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
5115 AMDGPUISD::TBUFFER_STORE_FORMAT;
5116 MemSDNode *M = cast<MemSDNode>(Op);
5117 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5118 M->getMemoryVT(), M->getMemOperand());
5119 }
5120
5121 case Intrinsic::amdgcn_buffer_store:
5122 case Intrinsic::amdgcn_buffer_store_format: {
5123 SDValue VData = Op.getOperand(2);
5124 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5125 if (IsD16)
5126 VData = handleD16VData(VData, DAG);
5127 SDValue Ops[] = {
5128 Chain,
5129 VData, // vdata
5130 Op.getOperand(3), // rsrc
5131 Op.getOperand(4), // vindex
5132 Op.getOperand(5), // offset
5133 Op.getOperand(6), // glc
5134 Op.getOperand(7) // slc
5135 };
5136 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
5137 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
5138 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
5139 MemSDNode *M = cast<MemSDNode>(Op);
5140 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5141 M->getMemoryVT(), M->getMemOperand());
5142 }
5143
5144 case Intrinsic::amdgcn_image_store:
5145 case Intrinsic::amdgcn_image_store_mip: {
5146 SDValue VData = Op.getOperand(2);
5147 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
5148 if (IsD16)
5149 VData = handleD16VData(VData, DAG);
5150 SDValue Ops[] = {
5151 Chain, // Chain
5152 VData, // vdata
5153 Op.getOperand(3), // vaddr
5154 Op.getOperand(4), // rsrc
5155 Op.getOperand(5), // dmask
5156 Op.getOperand(6), // glc
5157 Op.getOperand(7), // slc
5158 Op.getOperand(8), // lwe
5159 Op.getOperand(9) // da
5160 };
5161 unsigned Opc = (IntrinsicID==Intrinsic::amdgcn_image_store) ?
5162 AMDGPUISD::IMAGE_STORE : AMDGPUISD::IMAGE_STORE_MIP;
5163 MemSDNode *M = cast<MemSDNode>(Op);
5164 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
5165 M->getMemoryVT(), M->getMemOperand());
5166 }
5167
5168 default: {
5169 const AMDGPU::D16ImageDimIntrinsic *D16ImageDimIntr =
5170 AMDGPU::lookupD16ImageDimIntrinsicByIntr(IntrinsicID);
5171 if (D16ImageDimIntr) {
5172 SDValue VData = Op.getOperand(2);
5173 EVT StoreVT = VData.getValueType();
5174 if ((StoreVT == MVT::v2f16 && !isTypeLegal(StoreVT)) ||
5175 StoreVT == MVT::v4f16) {
5176 VData = handleD16VData(VData, DAG);
5177
5178 SmallVector<SDValue, 12> Ops;
5179 for (auto Value : Op.getNode()->op_values())
5180 Ops.push_back(Value);
5181 Ops[1] = DAG.getConstant(D16ImageDimIntr->D16HelperIntr, DL, MVT::i32);
5182 Ops[2] = VData;
5183
5184 MemSDNode *M = cast<MemSDNode>(Op);
5185 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Op->getVTList(),
5186 Ops, M->getMemoryVT(),
5187 M->getMemOperand());
5188 }
5189 }
5190
5191 return Op;
5192 }
5193 }
5194}
5195
5196SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
5197 SDLoc DL(Op);
5198 LoadSDNode *Load = cast<LoadSDNode>(Op);
5199 ISD::LoadExtType ExtType = Load->getExtensionType();
5200 EVT MemVT = Load->getMemoryVT();
5201
5202 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
5203 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
5204 return SDValue();
5205
5206 // FIXME: Copied from PPC
5207 // First, load into 32 bits, then truncate to 1 bit.
5208
5209 SDValue Chain = Load->getChain();
5210 SDValue BasePtr = Load->getBasePtr();
5211 MachineMemOperand *MMO = Load->getMemOperand();
5212
5213 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
5214
5215 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
5216 BasePtr, RealMemVT, MMO);
5217
5218 SDValue Ops[] = {
5219 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
5220 NewLD.getValue(1)
5221 };
5222
5223 return DAG.getMergeValues(Ops, DL);
5224 }
5225
5226 if (!MemVT.isVector())
5227 return SDValue();
5228
5229 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&(static_cast <bool> (Op.getValueType().getVectorElementType
() == MVT::i32 && "Custom lowering for non-i32 vectors hasn't been implemented."
) ? void (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5230, __extension__ __PRETTY_FUNCTION__))
5230 "Custom lowering for non-i32 vectors hasn't been implemented.")(static_cast <bool> (Op.getValueType().getVectorElementType
() == MVT::i32 && "Custom lowering for non-i32 vectors hasn't been implemented."
) ? void (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5230, __extension__ __PRETTY_FUNCTION__))
;
5231
5232 unsigned Alignment = Load->getAlignment();
5233 unsigned AS = Load->getAddressSpace();
5234 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
5235 AS, Alignment)) {
5236 SDValue Ops[2];
5237 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
5238 return DAG.getMergeValues(Ops, DL);
5239 }
5240
5241 MachineFunction &MF = DAG.getMachineFunction();
5242 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
5243 // If there is a possibilty that flat instruction access scratch memory
5244 // then we need to use the same legalization rules we use for private.
5245 if (AS == AMDGPUASI.FLAT_ADDRESS)
5246 AS = MFI->hasFlatScratchInit() ?
5247 AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;
5248
5249 unsigned NumElements = MemVT.getVectorNumElements();
5250
5251 if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
5252 AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT) {
5253 if (!Op->isDivergent() && Alignment >= 4)
5254 return SDValue();
5255 // Non-uniform loads will be selected to MUBUF instructions, so they
5256 // have the same legalization requirements as global and private
5257 // loads.
5258 //
5259 }
5260
5261 if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
5262 AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT ||
5263 AS == AMDGPUASI.GLOBAL_ADDRESS) {
5264 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
5265 !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load) &&
5266 Alignment >= 4)
5267 return SDValue();
5268 // Non-uniform loads will be selected to MUBUF instructions, so they
5269 // have the same legalization requirements as global and private
5270 // loads.
5271 //
5272 }
5273 if (AS == AMDGPUASI.CONSTANT_ADDRESS ||
5274 AS == AMDGPUASI.CONSTANT_ADDRESS_32BIT ||
5275 AS == AMDGPUASI.GLOBAL_ADDRESS ||
5276 AS == AMDGPUASI.FLAT_ADDRESS) {
5277 if (NumElements > 4)
5278 return SplitVectorLoad(Op, DAG);
5279 // v4 loads are supported for private and global memory.
5280 return SDValue();
5281 }
5282 if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
5283 // Depending on the setting of the private_element_size field in the
5284 // resource descriptor, we can only make private accesses up to a certain
5285 // size.
5286 switch (Subtarget->getMaxPrivateElementSize()) {
5287 case 4:
5288 return scalarizeVectorLoad(Load, DAG);
5289 case 8:
5290 if (NumElements > 2)
5291 return SplitVectorLoad(Op, DAG);
5292 return SDValue();
5293 case 16:
5294 // Same as global/flat
5295 if (NumElements > 4)
5296 return SplitVectorLoad(Op, DAG);
5297 return SDValue();
5298 default:
5299 llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5299)
;
5300 }
5301 } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
5302 // Use ds_read_b128 if possible.
5303 if (Subtarget->useDS128(EnableDS128) && Load->getAlignment() >= 16 &&
5304 MemVT.getStoreSize() == 16)
5305 return SDValue();
5306
5307 if (NumElements > 2)
5308 return SplitVectorLoad(Op, DAG);
5309 }
5310 return SDValue();
5311}
5312
5313SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
5314 if (Op.getValueType() != MVT::i64)
5315 return SDValue();
5316
5317 SDLoc DL(Op);
5318 SDValue Cond = Op.getOperand(0);
5319
5320 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
5321 SDValue One = DAG.getConstant(1, DL, MVT::i32);
5322
5323 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
5324 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
5325
5326 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
5327 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
5328
5329 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
5330
5331 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
5332 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
5333
5334 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
5335
5336 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
5337 return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
5338}
5339
5340// Catch division cases where we can use shortcuts with rcp and rsq
5341// instructions.
5342SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
5343 SelectionDAG &DAG) const {
5344 SDLoc SL(Op);
5345 SDValue LHS = Op.getOperand(0);
5346 SDValue RHS = Op.getOperand(1);
5347 EVT VT = Op.getValueType();
5348 const SDNodeFlags Flags = Op->getFlags();
5349 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath ||
5350 Flags.hasUnsafeAlgebra() || Flags.hasAllowReciprocal();
5351
5352 if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals())
5353 return SDValue();
5354
5355 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
5356 if (Unsafe || VT == MVT::f32 || VT == MVT::f16) {
5357 if (CLHS->isExactlyValue(1.0)) {
5358 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
5359 // the CI documentation has a worst case error of 1 ulp.
5360 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
5361 // use it as long as we aren't trying to use denormals.
5362 //
5363 // v_rcp_f16 and v_rsq_f16 DO support denormals.
5364
5365 // 1.0 / sqrt(x) -> rsq(x)
5366
5367 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
5368 // error seems really high at 2^29 ULP.
5369 if (RHS.getOpcode() == ISD::FSQRT)
5370 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
5371
5372 // 1.0 / x -> rcp(x)
5373 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
5374 }
5375
5376 // Same as for 1.0, but expand the sign out of the constant.
5377 if (CLHS->isExactlyValue(-1.0)) {
5378 // -1.0 / x -> rcp (fneg x)
5379 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
5380 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
5381 }
5382 }
5383 }
5384
5385 if (Unsafe) {
5386 // Turn into multiply by the reciprocal.
5387 // x / y -> x * (1.0 / y)
5388 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
5389 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
5390 }
5391
5392 return SDValue();
5393}
5394
5395static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
5396 EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
5397 if (GlueChain->getNumValues() <= 1) {
5398 return DAG.getNode(Opcode, SL, VT, A, B);
5399 }
5400
5401 assert(GlueChain->getNumValues() == 3)(static_cast <bool> (GlueChain->getNumValues() == 3)
? void (0) : __assert_fail ("GlueChain->getNumValues() == 3"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5401, __extension__ __PRETTY_FUNCTION__))
;
5402
5403 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
5404 switch (Opcode) {
5405 default: llvm_unreachable("no chain equivalent for opcode")::llvm::llvm_unreachable_internal("no chain equivalent for opcode"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5405)
;
5406 case ISD::FMUL:
5407 Opcode = AMDGPUISD::FMUL_W_CHAIN;
5408 break;
5409 }
5410
5411 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
5412 GlueChain.getValue(2));
5413}
5414
5415static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
5416 EVT VT, SDValue A, SDValue B, SDValue C,
5417 SDValue GlueChain) {
5418 if (GlueChain->getNumValues() <= 1) {
5419 return DAG.getNode(Opcode, SL, VT, A, B, C);
5420 }
5421
5422 assert(GlueChain->getNumValues() == 3)(static_cast <bool> (GlueChain->getNumValues() == 3)
? void (0) : __assert_fail ("GlueChain->getNumValues() == 3"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5422, __extension__ __PRETTY_FUNCTION__))
;
5423
5424 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
5425 switch (Opcode) {
5426 default: llvm_unreachable("no chain equivalent for opcode")::llvm::llvm_unreachable_internal("no chain equivalent for opcode"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5426)
;
5427 case ISD::FMA:
5428 Opcode = AMDGPUISD::FMA_W_CHAIN;
5429 break;
5430 }
5431
5432 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
5433 GlueChain.getValue(2));
5434}
5435
5436SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
5437 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
5438 return FastLowered;
5439
5440 SDLoc SL(Op);
5441 SDValue Src0 = Op.getOperand(0);
5442 SDValue Src1 = Op.getOperand(1);
5443
5444 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
5445 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
5446
5447 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
5448 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
5449
5450 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
5451 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
5452
5453 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
5454}
5455
5456// Faster 2.5 ULP division that does not support denormals.
5457SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
5458 SDLoc SL(Op);
5459 SDValue LHS = Op.getOperand(1);
5460 SDValue RHS = Op.getOperand(2);
5461
5462 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
5463
5464 const APFloat K0Val(BitsToFloat(0x6f800000));
5465 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
5466
5467 const APFloat K1Val(BitsToFloat(0x2f800000));
5468 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
5469
5470 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
5471
5472 EVT SetCCVT =
5473 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
5474
5475 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
5476
5477 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
5478
5479 // TODO: Should this propagate fast-math-flags?
5480 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
5481
5482 // rcp does not support denormals.
5483 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
5484
5485 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
5486
5487 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
5488}
5489
5490SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
5491 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
5492 return FastLowered;
5493
5494 SDLoc SL(Op);
5495 SDValue LHS = Op.getOperand(0);
5496 SDValue RHS = Op.getOperand(1);
5497
5498 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
5499
5500 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
5501
5502 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
5503 RHS, RHS, LHS);
5504 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
5505 LHS, RHS, LHS);
5506
5507 // Denominator is scaled to not be denormal, so using rcp is ok.
5508 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
5509 DenominatorScaled);
5510 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
5511 DenominatorScaled);
5512
5513 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
5514 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
5515 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
5516
5517 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
5518
5519 if (!Subtarget->hasFP32Denormals()) {
5520 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
5521 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE3,
5522 SL, MVT::i32);
5523 SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
5524 DAG.getEntryNode(),
5525 EnableDenormValue, BitField);
5526 SDValue Ops[3] = {
5527 NegDivScale0,
5528 EnableDenorm.getValue(0),
5529 EnableDenorm.getValue(1)
5530 };
5531
5532 NegDivScale0 = DAG.getMergeValues(Ops, SL);
5533 }
5534
5535 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
5536 ApproxRcp, One, NegDivScale0);
5537
5538 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
5539 ApproxRcp, Fma0);
5540
5541 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
5542 Fma1, Fma1);
5543
5544 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
5545 NumeratorScaled, Mul);
5546
5547 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
5548
5549 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
5550 NumeratorScaled, Fma3);
5551
5552 if (!Subtarget->hasFP32Denormals()) {
5553 const SDValue DisableDenormValue =
5554 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT0, SL, MVT::i32);
5555 SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
5556 Fma4.getValue(1),
5557 DisableDenormValue,
5558 BitField,
5559 Fma4.getValue(2));
5560
5561 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
5562 DisableDenorm, DAG.getRoot());
5563 DAG.setRoot(OutputChain);
5564 }
5565
5566 SDValue Scale = NumeratorScaled.getValue(1);
5567 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
5568 Fma4, Fma1, Fma3, Scale);
5569
5570 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
5571}
5572
5573SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
5574 if (DAG.getTarget().Options.UnsafeFPMath)
5575 return lowerFastUnsafeFDIV(Op, DAG);
5576
5577 SDLoc SL(Op);
5578 SDValue X = Op.getOperand(0);
5579 SDValue Y = Op.getOperand(1);
5580
5581 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
5582
5583 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
5584
5585 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
5586
5587 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
5588
5589 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
5590
5591 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
5592
5593 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
5594
5595 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
5596
5597 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
5598
5599 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
5600 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
5601
5602 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
5603 NegDivScale0, Mul, DivScale1);
5604
5605 SDValue Scale;
5606
5607 if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
5608 // Workaround a hardware bug on SI where the condition output from div_scale
5609 // is not usable.
5610
5611 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
5612
5613 // Figure out if the scale to use for div_fmas.
5614 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
5615 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
5616 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
5617 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
5618
5619 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
5620 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
5621
5622 SDValue Scale0Hi
5623 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
5624 SDValue Scale1Hi
5625 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
5626
5627 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
5628 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
5629 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
5630 } else {
5631 Scale = DivScale1.getValue(1);
5632 }
5633
5634 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
5635 Fma4, Fma3, Mul, Scale);
5636
5637 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
5638}
5639
5640SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
5641 EVT VT = Op.getValueType();
5642
5643 if (VT == MVT::f32)
5644 return LowerFDIV32(Op, DAG);
5645
5646 if (VT == MVT::f64)
5647 return LowerFDIV64(Op, DAG);
5648
5649 if (VT == MVT::f16)
5650 return LowerFDIV16(Op, DAG);
5651
5652 llvm_unreachable("Unexpected type for fdiv")::llvm::llvm_unreachable_internal("Unexpected type for fdiv",
"/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5652)
;
5653}
5654
5655SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
5656 SDLoc DL(Op);
5657 StoreSDNode *Store = cast<StoreSDNode>(Op);
5658 EVT VT = Store->getMemoryVT();
5659
5660 if (VT == MVT::i1) {
5661 return DAG.getTruncStore(Store->getChain(), DL,
5662 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
5663 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
5664 }
5665
5666 assert(VT.isVector() &&(static_cast <bool> (VT.isVector() && Store->
getValue().getValueType().getScalarType() == MVT::i32) ? void
(0) : __assert_fail ("VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5667, __extension__ __PRETTY_FUNCTION__))
5667 Store->getValue().getValueType().getScalarType() == MVT::i32)(static_cast <bool> (VT.isVector() && Store->
getValue().getValueType().getScalarType() == MVT::i32) ? void
(0) : __assert_fail ("VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5667, __extension__ __PRETTY_FUNCTION__))
;
5668
5669 unsigned AS = Store->getAddressSpace();
5670 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
5671 AS, Store->getAlignment())) {
5672 return expandUnalignedStore(Store, DAG);
5673 }
5674
5675 MachineFunction &MF = DAG.getMachineFunction();
5676 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
5677 // If there is a possibilty that flat instruction access scratch memory
5678 // then we need to use the same legalization rules we use for private.
5679 if (AS == AMDGPUASI.FLAT_ADDRESS)
5680 AS = MFI->hasFlatScratchInit() ?
5681 AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS;
5682
5683 unsigned NumElements = VT.getVectorNumElements();
5684 if (AS == AMDGPUASI.GLOBAL_ADDRESS ||
5685 AS == AMDGPUASI.FLAT_ADDRESS) {
5686 if (NumElements > 4)
5687 return SplitVectorStore(Op, DAG);
5688 return SDValue();
5689 } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) {
5690 switch (Subtarget->getMaxPrivateElementSize()) {
5691 case 4:
5692 return scalarizeVectorStore(Store, DAG);
5693 case 8:
5694 if (NumElements > 2)
5695 return SplitVectorStore(Op, DAG);
5696 return SDValue();
5697 case 16:
5698 if (NumElements > 4)
5699 return SplitVectorStore(Op, DAG);
5700 return SDValue();
5701 default:
5702 llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5702)
;
5703 }
5704 } else if (AS == AMDGPUASI.LOCAL_ADDRESS) {
5705 // Use ds_write_b128 if possible.
5706 if (Subtarget->useDS128(EnableDS128) && Store->getAlignment() >= 16 &&
5707 VT.getStoreSize() == 16)
5708 return SDValue();
5709
5710 if (NumElements > 2)
5711 return SplitVectorStore(Op, DAG);
5712 return SDValue();
5713 } else {
5714 llvm_unreachable("unhandled address space")::llvm::llvm_unreachable_internal("unhandled address space", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5714)
;
5715 }
5716}
5717
5718SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
5719 SDLoc DL(Op);
5720 EVT VT = Op.getValueType();
5721 SDValue Arg = Op.getOperand(0);
5722 // TODO: Should this propagate fast-math-flags?
5723 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
5724 DAG.getNode(ISD::FMUL, DL, VT, Arg,
5725 DAG.getConstantFP(0.5/M_PI3.14159265358979323846, DL,
5726 VT)));
5727
5728 switch (Op.getOpcode()) {
5729 case ISD::FCOS:
5730 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
5731 case ISD::FSIN:
5732 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
5733 default:
5734 llvm_unreachable("Wrong trig opcode")::llvm::llvm_unreachable_internal("Wrong trig opcode", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5734)
;
5735 }
5736}
5737
5738SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
5739 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
5740 assert(AtomicNode->isCompareAndSwap())(static_cast <bool> (AtomicNode->isCompareAndSwap())
? void (0) : __assert_fail ("AtomicNode->isCompareAndSwap()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5740, __extension__ __PRETTY_FUNCTION__))
;
5741 unsigned AS = AtomicNode->getAddressSpace();
5742
5743 // No custom lowering required for local address space
5744 if (!isFlatGlobalAddrSpace(AS, AMDGPUASI))
5745 return Op;
5746
5747 // Non-local address space requires custom lowering for atomic compare
5748 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
5749 SDLoc DL(Op);
5750 SDValue ChainIn = Op.getOperand(0);
5751 SDValue Addr = Op.getOperand(1);
5752 SDValue Old = Op.getOperand(2);
5753 SDValue New = Op.getOperand(3);
5754 EVT VT = Op.getValueType();
5755 MVT SimpleVT = VT.getSimpleVT();
5756 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
5757
5758 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
5759 SDValue Ops[] = { ChainIn, Addr, NewOld };
5760
5761 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
5762 Ops, VT, AtomicNode->getMemOperand());
5763}
5764
5765//===----------------------------------------------------------------------===//
5766// Custom DAG optimizations
5767//===----------------------------------------------------------------------===//
5768
5769SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
5770 DAGCombinerInfo &DCI) const {
5771 EVT VT = N->getValueType(0);
5772 EVT ScalarVT = VT.getScalarType();
5773 if (ScalarVT != MVT::f32)
5774 return SDValue();
5775
5776 SelectionDAG &DAG = DCI.DAG;
5777 SDLoc DL(N);
5778
5779 SDValue Src = N->getOperand(0);
5780 EVT SrcVT = Src.getValueType();
5781
5782 // TODO: We could try to match extracting the higher bytes, which would be
5783 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
5784 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
5785 // about in practice.
5786 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
5787 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
5788 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
5789 DCI.AddToWorklist(Cvt.getNode());
5790 return Cvt;
5791 }
5792 }
5793
5794 return SDValue();
5795}
5796
5797// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
5798
5799// This is a variant of
5800// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
5801//
5802// The normal DAG combiner will do this, but only if the add has one use since
5803// that would increase the number of instructions.
5804//
5805// This prevents us from seeing a constant offset that can be folded into a
5806// memory instruction's addressing mode. If we know the resulting add offset of
5807// a pointer can be folded into an addressing offset, we can replace the pointer
5808// operand with the add of new constant offset. This eliminates one of the uses,
5809// and may allow the remaining use to also be simplified.
5810//
5811SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
5812 unsigned AddrSpace,
5813 EVT MemVT,
5814 DAGCombinerInfo &DCI) const {
5815 SDValue N0 = N->getOperand(0);
5816 SDValue N1 = N->getOperand(1);
5817
5818 // We only do this to handle cases where it's profitable when there are
5819 // multiple uses of the add, so defer to the standard combine.
5820 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
5821 N0->hasOneUse())
5822 return SDValue();
5823
5824 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
5825 if (!CN1)
5826 return SDValue();
5827
5828 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5829 if (!CAdd)
5830 return SDValue();
5831
5832 // If the resulting offset is too large, we can't fold it into the addressing
5833 // mode offset.
5834 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
5835 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
5836
5837 AddrMode AM;
5838 AM.HasBaseReg = true;
5839 AM.BaseOffs = Offset.getSExtValue();
5840 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
5841 return SDValue();
5842
5843 SelectionDAG &DAG = DCI.DAG;
5844 SDLoc SL(N);
5845 EVT VT = N->getValueType(0);
5846
5847 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
5848 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
5849
5850 SDNodeFlags Flags;
5851 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
5852 (N0.getOpcode() == ISD::OR ||
5853 N0->getFlags().hasNoUnsignedWrap()));
5854
5855 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
5856}
5857
5858SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
5859 DAGCombinerInfo &DCI) const {
5860 SDValue Ptr = N->getBasePtr();
5861 SelectionDAG &DAG = DCI.DAG;
5862 SDLoc SL(N);
5863
5864 // TODO: We could also do this for multiplies.
5865 if (Ptr.getOpcode() == ISD::SHL) {
5866 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
5867 N->getMemoryVT(), DCI);
5868 if (NewPtr) {
5869 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
5870
5871 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
5872 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
5873 }
5874 }
5875
5876 return SDValue();
5877}
5878
5879static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
5880 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
5881 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
5882 (Opc == ISD::XOR && Val == 0);
5883}
5884
5885// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
5886// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
5887// integer combine opportunities since most 64-bit operations are decomposed
5888// this way. TODO: We won't want this for SALU especially if it is an inline
5889// immediate.
5890SDValue SITargetLowering::splitBinaryBitConstantOp(
5891 DAGCombinerInfo &DCI,
5892 const SDLoc &SL,
5893 unsigned Opc, SDValue LHS,
5894 const ConstantSDNode *CRHS) const {
5895 uint64_t Val = CRHS->getZExtValue();
5896 uint32_t ValLo = Lo_32(Val);
5897 uint32_t ValHi = Hi_32(Val);
5898 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
5899
5900 if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
5901 bitOpWithConstantIsReducible(Opc, ValHi)) ||
5902 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
5903 // If we need to materialize a 64-bit immediate, it will be split up later
5904 // anyway. Avoid creating the harder to understand 64-bit immediate
5905 // materialization.
5906 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
5907 }
5908
5909 return SDValue();
5910}
5911
5912// Returns true if argument is a boolean value which is not serialized into
5913// memory or argument and does not require v_cmdmask_b32 to be deserialized.
5914static bool isBoolSGPR(SDValue V) {
5915 if (V.getValueType() != MVT::i1)
5916 return false;
5917 switch (V.getOpcode()) {
5918 default: break;
5919 case ISD::SETCC:
5920 case ISD::AND:
5921 case ISD::OR:
5922 case ISD::XOR:
5923 case AMDGPUISD::FP_CLASS:
5924 return true;
5925 }
5926 return false;
5927}
5928
5929SDValue SITargetLowering::performAndCombine(SDNode *N,
5930 DAGCombinerInfo &DCI) const {
5931 if (DCI.isBeforeLegalize())
5932 return SDValue();
5933
5934 SelectionDAG &DAG = DCI.DAG;
5935 EVT VT = N->getValueType(0);
5936 SDValue LHS = N->getOperand(0);
5937 SDValue RHS = N->getOperand(1);
5938
5939
5940 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
5941 if (VT == MVT::i64 && CRHS) {
5942 if (SDValue Split
5943 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
5944 return Split;
5945 }
5946
5947 if (CRHS && VT == MVT::i32) {
5948 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
5949 // nb = number of trailing zeroes in mask
5950 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
5951 // given that we are selecting 8 or 16 bit fields starting at byte boundary.
5952 uint64_t Mask = CRHS->getZExtValue();
5953 unsigned Bits = countPopulation(Mask);
5954 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
5955 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
5956 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
5957 unsigned Shift = CShift->getZExtValue();
5958 unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
5959 unsigned Offset = NB + Shift;
5960 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
5961 SDLoc SL(N);
5962 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
5963 LHS->getOperand(0),
5964 DAG.getConstant(Offset, SL, MVT::i32),
5965 DAG.getConstant(Bits, SL, MVT::i32));
5966 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
5967 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
5968 DAG.getValueType(NarrowVT));
5969 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
5970 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
5971 return Shl;
5972 }
5973 }
5974 }
5975 }
5976
5977 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
5978 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
5979 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
5980 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5981 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
5982
5983 SDValue X = LHS.getOperand(0);
5984 SDValue Y = RHS.getOperand(0);
5985 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
5986 return SDValue();
5987
5988 if (LCC == ISD::SETO) {
5989 if (X != LHS.getOperand(1))
5990 return SDValue();
5991
5992 if (RCC == ISD::SETUNE) {
5993 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
5994 if (!C1 || !C1->isInfinity() || C1->isNegative())
5995 return SDValue();
5996
5997 const uint32_t Mask = SIInstrFlags::N_NORMAL |
5998 SIInstrFlags::N_SUBNORMAL |
5999 SIInstrFlags::N_ZERO |
6000 SIInstrFlags::P_ZERO |
6001 SIInstrFlags::P_SUBNORMAL |
6002 SIInstrFlags::P_NORMAL;
6003
6004 static_assert(((~(SIInstrFlags::S_NAN |
6005 SIInstrFlags::Q_NAN |
6006 SIInstrFlags::N_INFINITY |
6007 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
6008 "mask not equal");
6009
6010 SDLoc DL(N);
6011 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
6012 X, DAG.getConstant(Mask, DL, MVT::i32));
6013 }
6014 }
6015 }
6016
6017 if (VT == MVT::i32 &&
6018 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
6019 // and x, (sext cc from i1) => select cc, x, 0
6020 if (RHS.getOpcode() != ISD::SIGN_EXTEND)
6021 std::swap(LHS, RHS);
6022 if (isBoolSGPR(RHS.getOperand(0)))
6023 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
6024 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
6025 }
6026
6027 return SDValue();
6028}
6029
6030SDValue SITargetLowering::performOrCombine(SDNode *N,
6031 DAGCombinerInfo &DCI) const {
6032 SelectionDAG &DAG = DCI.DAG;
6033 SDValue LHS = N->getOperand(0);
6034 SDValue RHS = N->getOperand(1);
6035
6036 EVT VT = N->getValueType(0);
6037 if (VT == MVT::i1) {
6038 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
6039 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
6040 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
6041 SDValue Src = LHS.getOperand(0);
6042 if (Src != RHS.getOperand(0))
6043 return SDValue();
6044
6045 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
6046 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
6047 if (!CLHS || !CRHS)
6048 return SDValue();
6049
6050 // Only 10 bits are used.
6051 static const uint32_t MaxMask = 0x3ff;
6052
6053 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
6054 SDLoc DL(N);
6055 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
6056 Src, DAG.getConstant(NewMask, DL, MVT::i32));
6057 }
6058
6059 return SDValue();
6060 }
6061
6062 if (VT != MVT::i64)
6063 return SDValue();
6064
6065 // TODO: This could be a generic combine with a predicate for extracting the
6066 // high half of an integer being free.
6067
6068 // (or i64:x, (zero_extend i32:y)) ->
6069 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
6070 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
6071 RHS.getOpcode() != ISD::ZERO_EXTEND)
6072 std::swap(LHS, RHS);
6073
6074 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
6075 SDValue ExtSrc = RHS.getOperand(0);
6076 EVT SrcVT = ExtSrc.getValueType();
6077 if (SrcVT == MVT::i32) {
6078 SDLoc SL(N);
6079 SDValue LowLHS, HiBits;
6080 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
6081 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
6082
6083 DCI.AddToWorklist(LowOr.getNode());
6084 DCI.AddToWorklist(HiBits.getNode());
6085
6086 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
6087 LowOr, HiBits);
6088 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
6089 }
6090 }
6091
6092 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
6093 if (CRHS) {
6094 if (SDValue Split
6095 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
6096 return Split;
6097 }
6098
6099 return SDValue();
6100}
6101
6102SDValue SITargetLowering::performXorCombine(SDNode *N,
6103 DAGCombinerInfo &DCI) const {
6104 EVT VT = N->getValueType(0);
6105 if (VT != MVT::i64)
6106 return SDValue();
6107
6108 SDValue LHS = N->getOperand(0);
6109 SDValue RHS = N->getOperand(1);
6110
6111 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
6112 if (CRHS) {
6113 if (SDValue Split
6114 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
6115 return Split;
6116 }
6117
6118 return SDValue();
6119}
6120
6121// Instructions that will be lowered with a final instruction that zeros the
6122// high result bits.
6123// XXX - probably only need to list legal operations.
6124static bool fp16SrcZerosHighBits(unsigned Opc) {
6125 switch (Opc) {
6126 case ISD::FADD:
6127 case ISD::FSUB:
6128 case ISD::FMUL:
6129 case ISD::FDIV:
6130 case ISD::FREM:
6131 case ISD::FMA:
6132 case ISD::FMAD:
6133 case ISD::FCANONICALIZE:
6134 case ISD::FP_ROUND:
6135 case ISD::UINT_TO_FP:
6136 case ISD::SINT_TO_FP:
6137 case ISD::FABS:
6138 // Fabs is lowered to a bit operation, but it's an and which will clear the
6139 // high bits anyway.
6140 case ISD::FSQRT:
6141 case ISD::FSIN:
6142 case ISD::FCOS:
6143 case ISD::FPOWI:
6144 case ISD::FPOW:
6145 case ISD::FLOG:
6146 case ISD::FLOG2:
6147 case ISD::FLOG10:
6148 case ISD::FEXP:
6149 case ISD::FEXP2:
6150 case ISD::FCEIL:
6151 case ISD::FTRUNC:
6152 case ISD::FRINT:
6153 case ISD::FNEARBYINT:
6154 case ISD::FROUND:
6155 case ISD::FFLOOR:
6156 case ISD::FMINNUM:
6157 case ISD::FMAXNUM:
6158 case AMDGPUISD::FRACT:
6159 case AMDGPUISD::CLAMP:
6160 case AMDGPUISD::COS_HW:
6161 case AMDGPUISD::SIN_HW:
6162 case AMDGPUISD::FMIN3:
6163 case AMDGPUISD::FMAX3:
6164 case AMDGPUISD::FMED3:
6165 case AMDGPUISD::FMAD_FTZ:
6166 case AMDGPUISD::RCP:
6167 case AMDGPUISD::RSQ:
6168 case AMDGPUISD::LDEXP:
6169 return true;
6170 default:
6171 // fcopysign, select and others may be lowered to 32-bit bit operations
6172 // which don't zero the high bits.
6173 return false;
6174 }
6175}
6176
6177SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
6178 DAGCombinerInfo &DCI) const {
6179 if (!Subtarget->has16BitInsts() ||
6180 DCI.getDAGCombineLevel() < AfterLegalizeDAG)
6181 return SDValue();
6182
6183 EVT VT = N->getValueType(0);
6184 if (VT != MVT::i32)
6185 return SDValue();
6186
6187 SDValue Src = N->getOperand(0);
6188 if (Src.getValueType() != MVT::i16)
6189 return SDValue();
6190
6191 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
6192 // FIXME: It is not universally true that the high bits are zeroed on gfx9.
6193 if (Src.getOpcode() == ISD::BITCAST) {
6194 SDValue BCSrc = Src.getOperand(0);
6195 if (BCSrc.getValueType() == MVT::f16 &&
6196 fp16SrcZerosHighBits(BCSrc.getOpcode()))
6197 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
6198 }
6199
6200 return SDValue();
6201}
6202
6203SDValue SITargetLowering::performClassCombine(SDNode *N,
6204 DAGCombinerInfo &DCI) const {
6205 SelectionDAG &DAG = DCI.DAG;
6206 SDValue Mask = N->getOperand(1);
6207
6208 // fp_class x, 0 -> false
6209 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
6210 if (CMask->isNullValue())
6211 return DAG.getConstant(0, SDLoc(N), MVT::i1);
6212 }
6213
6214 if (N->getOperand(0).isUndef())
6215 return DAG.getUNDEF(MVT::i1);
6216
6217 return SDValue();
6218}
6219
6220static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
6221 if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
6222 return true;
6223
6224 return DAG.isKnownNeverNaN(Op);
6225}
6226
6227static bool isCanonicalized(SelectionDAG &DAG, SDValue Op,
6228 const SISubtarget *ST, unsigned MaxDepth=5) {
6229 // If source is a result of another standard FP operation it is already in
6230 // canonical form.
6231
6232 switch (Op.getOpcode()) {
6233 default:
6234 break;
6235
6236 // These will flush denorms if required.
6237 case ISD::FADD:
6238 case ISD::FSUB:
6239 case ISD::FMUL:
6240 case ISD::FSQRT:
6241 case ISD::FCEIL:
6242 case ISD::FFLOOR:
6243 case ISD::FMA:
6244 case ISD::FMAD:
6245
6246 case ISD::FCANONICALIZE:
6247 return true;
6248
6249 case ISD::FP_ROUND:
6250 return Op.getValueType().getScalarType() != MVT::f16 ||
6251 ST->hasFP16Denormals();
6252
6253 case ISD::FP_EXTEND:
6254 return Op.getOperand(0).getValueType().getScalarType() != MVT::f16 ||
6255 ST->hasFP16Denormals();
6256
6257 case ISD::FP16_TO_FP:
6258 case ISD::FP_TO_FP16:
6259 return ST->hasFP16Denormals();
6260
6261 // It can/will be lowered or combined as a bit operation.
6262 // Need to check their input recursively to handle.
6263 case ISD::FNEG:
6264 case ISD::FABS:
6265 return (MaxDepth > 0) &&
6266 isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1);
6267
6268 case ISD::FSIN:
6269 case ISD::FCOS:
6270 case ISD::FSINCOS:
6271 return Op.getValueType().getScalarType() != MVT::f16;
6272
6273 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms.
6274 // For such targets need to check their input recursively.
6275 case ISD::FMINNUM:
6276 case ISD::FMAXNUM:
6277 case ISD::FMINNAN:
6278 case ISD::FMAXNAN:
6279
6280 if (ST->supportsMinMaxDenormModes() &&
6281 DAG.isKnownNeverNaN(Op.getOperand(0)) &&
6282 DAG.isKnownNeverNaN(Op.getOperand(1)))
6283 return true;
6284
6285 return (MaxDepth > 0) &&
6286 isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1) &&
6287 isCanonicalized(DAG, Op.getOperand(1), ST, MaxDepth - 1);
6288
6289 case ISD::ConstantFP: {
6290 auto F = cast<ConstantFPSDNode>(Op)->getValueAPF();
6291 return !F.isDenormal() && !(F.isNaN() && F.isSignaling());
6292 }
6293 }
6294 return false;
6295}
6296
6297// Constant fold canonicalize.
6298SDValue SITargetLowering::performFCanonicalizeCombine(
6299 SDNode *N,
6300 DAGCombinerInfo &DCI) const {
6301 SelectionDAG &DAG = DCI.DAG;
6302 ConstantFPSDNode *CFP = isConstOrConstSplatFP(N->getOperand(0));
6303
6304 if (!CFP) {
6305 SDValue N0 = N->getOperand(0);
6306 EVT VT = N0.getValueType().getScalarType();
6307 auto ST = getSubtarget();
6308
6309 if (((VT == MVT::f32 && ST->hasFP32Denormals()) ||
6310 (VT == MVT::f64 && ST->hasFP64Denormals()) ||
6311 (VT == MVT::f16 && ST->hasFP16Denormals())) &&
6312 DAG.isKnownNeverNaN(N0))
6313 return N0;
6314
6315 bool IsIEEEMode = Subtarget->enableIEEEBit(DAG.getMachineFunction());
6316
6317 if ((IsIEEEMode || isKnownNeverSNan(DAG, N0)) &&
6318 isCanonicalized(DAG, N0, ST))
6319 return N0;
6320
6321 return SDValue();
6322 }
6323
6324 const APFloat &C = CFP->getValueAPF();
6325
6326 // Flush denormals to 0 if not enabled.
6327 if (C.isDenormal()) {
6328 EVT VT = N->getValueType(0);
6329 EVT SVT = VT.getScalarType();
6330 if (SVT == MVT::f32 && !Subtarget->hasFP32Denormals())
6331 return DAG.getConstantFP(0.0, SDLoc(N), VT);
6332
6333 if (SVT == MVT::f64 && !Subtarget->hasFP64Denormals())
6334 return DAG.getConstantFP(0.0, SDLoc(N), VT);
6335
6336 if (SVT == MVT::f16 && !Subtarget->hasFP16Denormals())
6337 return DAG.getConstantFP(0.0, SDLoc(N), VT);
6338 }
6339
6340 if (C.isNaN()) {
6341 EVT VT = N->getValueType(0);
6342 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
6343 if (C.isSignaling()) {
6344 // Quiet a signaling NaN.
6345 return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
6346 }
6347
6348 // Make sure it is the canonical NaN bitpattern.
6349 //
6350 // TODO: Can we use -1 as the canonical NaN value since it's an inline
6351 // immediate?
6352 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
6353 return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
6354 }
6355
6356 return N->getOperand(0);
6357}
6358
6359static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
6360 switch (Opc) {
6361 case ISD::FMAXNUM:
6362 return AMDGPUISD::FMAX3;
6363 case ISD::SMAX:
6364 return AMDGPUISD::SMAX3;
6365 case ISD::UMAX:
6366 return AMDGPUISD::UMAX3;
6367 case ISD::FMINNUM:
6368 return AMDGPUISD::FMIN3;
6369 case ISD::SMIN:
6370 return AMDGPUISD::SMIN3;
6371 case ISD::UMIN:
6372 return AMDGPUISD::UMIN3;
6373 default:
6374 llvm_unreachable("Not a min/max opcode")::llvm::llvm_unreachable_internal("Not a min/max opcode", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 6374)
;
6375 }
6376}
6377
6378SDValue SITargetLowering::performIntMed3ImmCombine(
6379 SelectionDAG &DAG, const SDLoc &SL,
6380 SDValue Op0, SDValue Op1, bool Signed) const {
6381 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
6382 if (!K1)
6383 return SDValue();
6384
6385 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
6386 if (!K0)
6387 return SDValue();
6388
6389 if (Signed) {
6390 if (K0->getAPIntValue().sge(K1->getAPIntValue()))
6391 return SDValue();
6392 } else {
6393 if (K0->getAPIntValue().uge(K1->getAPIntValue()))
6394 return SDValue();
6395 }
6396
6397 EVT VT = K0->getValueType(0);
6398 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
6399 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
6400 return DAG.getNode(Med3Opc, SL, VT,
6401 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
6402 }
6403
6404 // If there isn't a 16-bit med3 operation, convert to 32-bit.
6405 MVT NVT = MVT::i32;
6406 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6407
6408 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
6409 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
6410 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
6411
6412 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
6413 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
6414}
6415
6416static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
6417 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
6418 return C;
6419
6420 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
6421 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
6422 return C;
6423 }
6424
6425 return nullptr;
6426}
6427
6428SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
6429 const SDLoc &SL,
6430 SDValue Op0,
6431 SDValue Op1) const {
6432 ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
6433 if (!K1)
6434 return SDValue();
6435
6436 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
6437 if (!K0)
6438 return SDValue();
6439
6440 // Ordered >= (although NaN inputs should have folded away by now).
6441 APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
6442 if (Cmp == APFloat::cmpGreaterThan)
6443 return SDValue();
6444
6445 // TODO: Check IEEE bit enabled?
6446 EVT VT = Op0.getValueType();
6447 if (Subtarget->enableDX10Clamp()) {
6448 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
6449 // hardware fmed3 behavior converting to a min.
6450 // FIXME: Should this be allowing -0.0?
6451 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
6452 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
6453 }
6454
6455 // med3 for f16 is only available on gfx9+, and not available for v2f16.
6456 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
6457 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
6458 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
6459 // then give the other result, which is different from med3 with a NaN
6460 // input.
6461 SDValue Var = Op0.getOperand(0);
6462 if (!isKnownNeverSNan(DAG, Var))
6463 return SDValue();
6464
6465 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
6466 Var, SDValue(K0, 0), SDValue(K1, 0));
6467 }
6468
6469 return SDValue();
6470}
6471
6472SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
6473 DAGCombinerInfo &DCI) const {
6474 SelectionDAG &DAG = DCI.DAG;
6475
6476 EVT VT = N->getValueType(0);
6477 unsigned Opc = N->getOpcode();
6478 SDValue Op0 = N->getOperand(0);
6479 SDValue Op1 = N->getOperand(1);
6480
6481 // Only do this if the inner op has one use since this will just increases
6482 // register pressure for no benefit.
6483
6484
6485 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
6486 !VT.isVector() && VT != MVT::f64 &&
6487 ((VT != MVT::f16 && VT != MVT::i16) || Subtarget->hasMin3Max3_16())) {
6488 // max(max(a, b), c) -> max3(a, b, c)
6489 // min(min(a, b), c) -> min3(a, b, c)
6490 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
6491 SDLoc DL(N);
6492 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
6493 DL,
6494 N->getValueType(0),
6495 Op0.getOperand(0),
6496 Op0.getOperand(1),
6497 Op1);
6498 }
6499
6500 // Try commuted.
6501 // max(a, max(b, c)) -> max3(a, b, c)
6502 // min(a, min(b, c)) -> min3(a, b, c)
6503 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
6504 SDLoc DL(N);
6505 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
6506 DL,
6507 N->getValueType(0),
6508 Op0,
6509 Op1.getOperand(0),
6510 Op1.getOperand(1));
6511 }
6512 }
6513
6514 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
6515 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
6516 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
6517 return Med3;
6518 }
6519
6520 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
6521 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
6522 return Med3;
6523 }
6524
6525 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
6526 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
6527 (Opc == AMDGPUISD::FMIN_LEGACY &&
6528 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
6529 (VT == MVT::f32 || VT == MVT::f64 ||
6530 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
6531 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
6532 Op0.hasOneUse()) {
6533 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
6534 return Res;
6535 }
6536
6537 return SDValue();
6538}
6539
6540static bool isClampZeroToOne(SDValue A, SDValue B) {
6541 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
6542 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
6543 // FIXME: Should this be allowing -0.0?
6544 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
6545 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
6546 }
6547 }
6548
6549 return false;
6550}
6551
6552// FIXME: Should only worry about snans for version with chain.
6553SDValue SITargetLowering::performFMed3Combine(SDNode *N,
6554 DAGCombinerInfo &DCI) const {
6555 EVT VT = N->getValueType(0);
6556 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
6557 // NaNs. With a NaN input, the order of the operands may change the result.
6558
6559 SelectionDAG &DAG = DCI.DAG;
6560 SDLoc SL(N);
6561
6562 SDValue Src0 = N->getOperand(0);
6563 SDValue Src1 = N->getOperand(1);
6564 SDValue Src2 = N->getOperand(2);
6565
6566 if (isClampZeroToOne(Src0, Src1)) {
6567 // const_a, const_b, x -> clamp is safe in all cases including signaling
6568 // nans.
6569 // FIXME: Should this be allowing -0.0?
6570 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
6571 }
6572
6573 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
6574 // handling no dx10-clamp?
6575 if (Subtarget->enableDX10Clamp()) {
6576 // If NaNs is clamped to 0, we are free to reorder the inputs.
6577
6578 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
6579 std::swap(Src0, Src1);
6580
6581 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
6582 std::swap(Src1, Src2);
6583
6584 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
6585 std::swap(Src0, Src1);
6586
6587 if (isClampZeroToOne(Src1, Src2))
6588 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
6589 }
6590
6591 return SDValue();
6592}
6593
6594SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
6595 DAGCombinerInfo &DCI) const {
6596 SDValue Src0 = N->getOperand(0);
6597 SDValue Src1 = N->getOperand(1);
6598 if (Src0.isUndef() && Src1.isUndef())
6599 return DCI.DAG.getUNDEF(N->getValueType(0));
6600 return SDValue();
6601}
6602
6603SDValue SITargetLowering::performExtractVectorEltCombine(
6604 SDNode *N, DAGCombinerInfo &DCI) const {
6605 SDValue Vec = N->getOperand(0);
6606
6607 SelectionDAG &DAG = DCI.DAG;
6608 if (Vec.getOpcode() == ISD::FNEG && allUsesHaveSourceMods(N)) {
6609 SDLoc SL(N);
6610 EVT EltVT = N->getValueType(0);
6611 SDValue Idx = N->getOperand(1);
6612 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
6613 Vec.getOperand(0), Idx);
6614 return DAG.getNode(ISD::FNEG, SL, EltVT, Elt);
6615 }
6616
6617 return SDValue();
6618}
6619
6620static bool convertBuildVectorCastElt(SelectionDAG &DAG,
6621 SDValue &Lo, SDValue &Hi) {
6622 if (Hi.getOpcode() == ISD::BITCAST &&
6623 Hi.getOperand(0).getValueType() == MVT::f16 &&
6624 (isa<ConstantSDNode>(Lo) || Lo.isUndef())) {
6625 Lo = DAG.getNode(ISD::BITCAST, SDLoc(Lo), MVT::f16, Lo);
6626 Hi = Hi.getOperand(0);
6627 return true;
6628 }
6629
6630 return false;
6631}
6632
6633SDValue SITargetLowering::performBuildVectorCombine(
6634 SDNode *N, DAGCombinerInfo &DCI) const {
6635 SDLoc SL(N);
6636
6637 if (!isTypeLegal(MVT::v2i16))
6638 return SDValue();
6639 SelectionDAG &DAG = DCI.DAG;
6640 EVT VT = N->getValueType(0);
6641
6642 if (VT == MVT::v2i16) {
6643 SDValue Lo = N->getOperand(0);
6644 SDValue Hi = N->getOperand(1);
6645
6646 // v2i16 build_vector (const|undef), (bitcast f16:$x)
6647 // -> bitcast (v2f16 build_vector const|undef, $x
6648 if (convertBuildVectorCastElt(DAG, Lo, Hi)) {
6649 SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Lo, Hi });
6650 return DAG.getNode(ISD::BITCAST, SL, VT, NewVec);
6651 }
6652
6653 if (convertBuildVectorCastElt(DAG, Hi, Lo)) {
6654 SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Hi, Lo });
6655 return DAG.getNode(ISD::BITCAST, SL, VT, NewVec);
6656 }
6657 }
6658
6659 return SDValue();
6660}
6661
6662unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
6663 const SDNode *N0,
6664 const SDNode *N1) const {
6665 EVT VT = N0->getValueType(0);
6666
6667 // Only do this if we are not trying to support denormals. v_mad_f32 does not
6668 // support denormals ever.
6669 if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
6670 (VT == MVT::f16 && !Subtarget->hasFP16Denormals()))
6671 return ISD::FMAD;
6672
6673 const TargetOptions &Options = DAG.getTarget().Options;
6674 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
6675 (N0->getFlags().hasUnsafeAlgebra() &&
6676 N1->getFlags().hasUnsafeAlgebra())) &&
6677 isFMAFasterThanFMulAndFAdd(VT)) {
6678 return ISD::FMA;
6679 }
6680
6681 return 0;
6682}
6683
6684static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
6685 EVT VT,
6686 SDValue N0, SDValue N1, SDValue N2,
6687 bool Signed) {
6688 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
6689 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
6690 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
6691 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
6692}
6693
6694SDValue SITargetLowering::performAddCombine(SDNode *N,
6695 DAGCombinerInfo &DCI) const {
6696 SelectionDAG &DAG = DCI.DAG;
6697 EVT VT = N->getValueType(0);
6698 SDLoc SL(N);
6699 SDValue LHS = N->getOperand(0);
6700 SDValue RHS = N->getOperand(1);
6701
6702 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
6703 && Subtarget->hasMad64_32() &&
6704 !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
6705 VT.getScalarSizeInBits() <= 64) {
6706 if (LHS.getOpcode() != ISD::MUL)
6707 std::swap(LHS, RHS);
6708
6709 SDValue MulLHS = LHS.getOperand(0);
6710 SDValue MulRHS = LHS.getOperand(1);
6711 SDValue AddRHS = RHS;
6712
6713 // TODO: Maybe restrict if SGPR inputs.
6714 if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
6715 numBitsUnsigned(MulRHS, DAG) <= 32) {
6716 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
6717 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
6718 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
6719 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
6720 }
6721
6722 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
6723 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
6724 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
6725 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
6726 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
6727 }
6728
6729 return SDValue();
6730 }
6731
6732 if (VT != MVT::i32)
6733 return SDValue();
6734
6735 // add x, zext (setcc) => addcarry x, 0, setcc
6736 // add x, sext (setcc) => subcarry x, 0, setcc
6737 unsigned Opc = LHS.getOpcode();
6738 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
6739 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
6740 std::swap(RHS, LHS);
6741
6742 Opc = RHS.getOpcode();
6743 switch (Opc) {
6744 default: break;
6745 case ISD::ZERO_EXTEND:
6746 case ISD::SIGN_EXTEND:
6747 case ISD::ANY_EXTEND: {
6748 auto Cond = RHS.getOperand(0);
6749 if (!isBoolSGPR(Cond))
6750 break;
6751 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
6752 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
6753 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
6754 return DAG.getNode(Opc, SL, VTList, Args);
6755 }
6756 case ISD::ADDCARRY: {
6757 // add x, (addcarry y, 0, cc) => addcarry x, y, cc
6758 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
6759 if (!C || C->getZExtValue() != 0) break;
6760 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
6761 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
6762 }
6763 }
6764 return SDValue();
6765}
6766
6767SDValue SITargetLowering::performSubCombine(SDNode *N,
6768 DAGCombinerInfo &DCI) const {
6769 SelectionDAG &DAG = DCI.DAG;
6770 EVT VT = N->getValueType(0);
6771
6772 if (VT != MVT::i32)
6773 return SDValue();
6774
6775 SDLoc SL(N);
6776 SDValue LHS = N->getOperand(0);
6777 SDValue RHS = N->getOperand(1);
6778
6779 unsigned Opc = LHS.getOpcode();
6780 if (Opc != ISD::SUBCARRY)
6781 std::swap(RHS, LHS);
6782
6783 if (LHS.getOpcode() == ISD::SUBCARRY) {
6784 // sub (subcarry x, 0, cc), y => subcarry x, y, cc
6785 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
6786 if (!C || C->getZExtValue() != 0)
6787 return SDValue();
6788 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
6789 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
6790 }
6791 return SDValue();
6792}
6793
6794SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
6795 DAGCombinerInfo &DCI) const {
6796
6797 if (N->getValueType(0) != MVT::i32)
6798 return SDValue();
6799
6800 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6801 if (!C || C->getZExtValue() != 0)
6802 return SDValue();
6803
6804 SelectionDAG &DAG = DCI.DAG;
6805 SDValue LHS = N->getOperand(0);
6806
6807 // addcarry (add x, y), 0, cc => addcarry x, y, cc
6808 // subcarry (sub x, y), 0, cc => subcarry x, y, cc
6809 unsigned LHSOpc = LHS.getOpcode();
6810 unsigned Opc = N->getOpcode();
6811 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
6812 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
6813 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
6814 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
6815 }
6816 return SDValue();
6817}
6818
6819SDValue SITargetLowering::performFAddCombine(SDNode *N,
6820 DAGCombinerInfo &DCI) const {
6821 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
6822 return SDValue();
6823
6824 SelectionDAG &DAG = DCI.DAG;
6825 EVT VT = N->getValueType(0);
6826
6827 SDLoc SL(N);
6828 SDValue LHS = N->getOperand(0);
6829 SDValue RHS = N->getOperand(1);
6830
6831 // These should really be instruction patterns, but writing patterns with
6832 // source modiifiers is a pain.
6833
6834 // fadd (fadd (a, a), b) -> mad 2.0, a, b
6835 if (LHS.getOpcode() == ISD::FADD) {
6836 SDValue A = LHS.getOperand(0);
6837 if (A == LHS.getOperand(1)) {
6838 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
6839 if (FusedOp != 0) {
6840 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
6841 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
6842 }
6843 }
6844 }
6845
6846 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
6847 if (RHS.getOpcode() == ISD::FADD) {
6848 SDValue A = RHS.getOperand(0);
6849 if (A == RHS.getOperand(1)) {
6850 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
6851 if (FusedOp != 0) {
6852 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
6853 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
6854 }
6855 }
6856 }
6857
6858 return SDValue();
6859}
6860
6861SDValue SITargetLowering::performFSubCombine(SDNode *N,
6862 DAGCombinerInfo &DCI) const {
6863 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
6864 return SDValue();
6865
6866 SelectionDAG &DAG = DCI.DAG;
6867 SDLoc SL(N);
6868 EVT VT = N->getValueType(0);
6869 assert(!VT.isVector())(static_cast <bool> (!VT.isVector()) ? void (0) : __assert_fail
("!VT.isVector()", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 6869, __extension__ __PRETTY_FUNCTION__))
;
6870
6871 // Try to get the fneg to fold into the source modifier. This undoes generic
6872 // DAG combines and folds them into the mad.
6873 //
6874 // Only do this if we are not trying to support denormals. v_mad_f32 does
6875 // not support denormals ever.
6876 SDValue LHS = N->getOperand(0);
6877 SDValue RHS = N->getOperand(1);
6878 if (LHS.getOpcode() == ISD::FADD) {
6879 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
6880 SDValue A = LHS.getOperand(0);
6881 if (A == LHS.getOperand(1)) {
6882 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
6883 if (FusedOp != 0){
6884 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
6885 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
6886
6887 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
6888 }
6889 }
6890 }
6891
6892 if (RHS.getOpcode() == ISD::FADD) {
6893 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
6894
6895 SDValue A = RHS.getOperand(0);
6896 if (A == RHS.getOperand(1)) {
6897 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
6898 if (FusedOp != 0){
6899 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
6900 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
6901 }
6902 }
6903 }
6904
6905 return SDValue();
6906}
6907
6908SDValue SITargetLowering::performSetCCCombine(SDNode *N,
6909 DAGCombinerInfo &DCI) const {
6910 SelectionDAG &DAG = DCI.DAG;
6911 SDLoc SL(N);
6912
6913 SDValue LHS = N->getOperand(0);
6914 SDValue RHS = N->getOperand(1);
6915 EVT VT = LHS.getValueType();
6916 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
6917
6918 auto CRHS = dyn_cast<ConstantSDNode>(RHS);
6919 if (!CRHS) {
6920 CRHS = dyn_cast<ConstantSDNode>(LHS);
6921 if (CRHS) {
6922 std::swap(LHS, RHS);
6923 CC = getSetCCSwappedOperands(CC);
6924 }
6925 }
6926
6927 if (CRHS && VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
6928 isBoolSGPR(LHS.getOperand(0))) {
6929 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
6930 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
6931 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
6932 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
6933 if ((CRHS->isAllOnesValue() &&
6934 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
6935 (CRHS->isNullValue() &&
6936 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
6937 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
6938 DAG.getConstant(-1, SL, MVT::i1));
6939 if ((CRHS->isAllOnesValue() &&
6940 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
6941 (CRHS->isNullValue() &&
6942 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
6943 return LHS.getOperand(0);
6944 }
6945
6946 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
6947 VT != MVT::f16))
6948 return SDValue();
6949
6950 // Match isinf pattern
6951 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
6952 if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
6953 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
6954 if (!CRHS)
6955 return SDValue();
6956
6957 const APFloat &APF = CRHS->getValueAPF();
6958 if (APF.isInfinity() && !APF.isNegative()) {
6959 unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
6960 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
6961 DAG.getConstant(Mask, SL, MVT::i32));
6962 }
6963 }
6964
6965 return SDValue();
6966}
6967
6968SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
6969 DAGCombinerInfo &DCI) const {
6970 SelectionDAG &DAG = DCI.DAG;
6971 SDLoc SL(N);
6972 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
6973
6974 SDValue Src = N->getOperand(0);
6975 SDValue Srl = N->getOperand(0);
6976 if (Srl.getOpcode() == ISD::ZERO_EXTEND)
6977 Srl = Srl.getOperand(0);
6978
6979 // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
6980 if (Srl.getOpcode() == ISD::SRL) {
6981 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
6982 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
6983 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
6984
6985 if (const ConstantSDNode *C =
6986 dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
6987 Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
6988 EVT(MVT::i32));
6989
6990 unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
6991 if (SrcOffset < 32 && SrcOffset % 8 == 0) {
6992 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
6993 MVT::f32, Srl);
6994 }
6995 }
6996 }
6997
6998 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
6999
7000 KnownBits Known;
7001 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
7002 !DCI.isBeforeLegalizeOps());
7003 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7004 if (TLI.ShrinkDemandedConstant(Src, Demanded, TLO) ||
7005 TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) {
7006 DCI.CommitTargetLoweringOpt(TLO);
7007 }
7008
7009 return SDValue();
7010}
7011
7012SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
7013 DAGCombinerInfo &DCI) const {
7014 switch (N->getOpcode()) {
7015 default:
7016 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
7017 case ISD::ADD:
7018 return performAddCombine(N, DCI);
7019 case ISD::SUB:
7020 return performSubCombine(N, DCI);
7021 case ISD::ADDCARRY:
7022 case ISD::SUBCARRY:
7023 return performAddCarrySubCarryCombine(N, DCI);
7024 case ISD::FADD:
7025 return performFAddCombine(N, DCI);
7026 case ISD::FSUB:
7027 return performFSubCombine(N, DCI);
7028 case ISD::SETCC:
7029 return performSetCCCombine(N, DCI);
7030 case ISD::FMAXNUM:
7031 case ISD::FMINNUM:
7032 case ISD::SMAX:
7033 case ISD::SMIN:
7034 case ISD::UMAX:
7035 case ISD::UMIN:
7036 case AMDGPUISD::FMIN_LEGACY:
7037 case AMDGPUISD::FMAX_LEGACY: {
7038 if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
7039 getTargetMachine().getOptLevel() > CodeGenOpt::None)
7040 return performMinMaxCombine(N, DCI);
7041 break;
7042 }
7043 case ISD::LOAD:
7044 case ISD::STORE:
7045 case ISD::ATOMIC_LOAD:
7046 case ISD::ATOMIC_STORE:
7047 case ISD::ATOMIC_CMP_SWAP:
7048 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
7049 case ISD::ATOMIC_SWAP:
7050 case ISD::ATOMIC_LOAD_ADD:
7051 case ISD::ATOMIC_LOAD_SUB:
7052 case ISD::ATOMIC_LOAD_AND:
7053 case ISD::ATOMIC_LOAD_OR:
7054 case ISD::ATOMIC_LOAD_XOR:
7055 case ISD::ATOMIC_LOAD_NAND:
7056 case ISD::ATOMIC_LOAD_MIN:
7057 case ISD::ATOMIC_LOAD_MAX:
7058 case ISD::ATOMIC_LOAD_UMIN:
7059 case ISD::ATOMIC_LOAD_UMAX:
7060 case AMDGPUISD::ATOMIC_INC:
7061 case AMDGPUISD::ATOMIC_DEC:
7062 case AMDGPUISD::ATOMIC_LOAD_FADD:
7063 case AMDGPUISD::ATOMIC_LOAD_FMIN:
7064 case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics.
7065 if (DCI.isBeforeLegalize())
7066 break;
7067 return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
7068 case ISD::AND:
7069 return performAndCombine(N, DCI);
7070 case ISD::OR:
7071 return performOrCombine(N, DCI);
7072 case ISD::XOR:
7073 return performXorCombine(N, DCI);
7074 case ISD::ZERO_EXTEND:
7075 return performZeroExtendCombine(N, DCI);
7076 case AMDGPUISD::FP_CLASS:
7077 return performClassCombine(N, DCI);
7078 case ISD::FCANONICALIZE:
7079 return performFCanonicalizeCombine(N, DCI);
7080 case AMDGPUISD::FRACT:
7081 case AMDGPUISD::RCP:
7082 case AMDGPUISD::RSQ:
7083 case AMDGPUISD::RCP_LEGACY:
7084 case AMDGPUISD::RSQ_LEGACY:
7085 case AMDGPUISD::RSQ_CLAMP:
7086 case AMDGPUISD::LDEXP: {
7087 SDValue Src = N->getOperand(0);
7088 if (Src.isUndef())
7089 return Src;
7090 break;
7091 }
7092 case ISD::SINT_TO_FP:
7093 case ISD::UINT_TO_FP:
7094 return performUCharToFloatCombine(N, DCI);
7095 case AMDGPUISD::CVT_F32_UBYTE0:
7096 case AMDGPUISD::CVT_F32_UBYTE1:
7097 case AMDGPUISD::CVT_F32_UBYTE2:
7098 case AMDGPUISD::CVT_F32_UBYTE3:
7099 return performCvtF32UByteNCombine(N, DCI);
7100 case AMDGPUISD::FMED3:
7101 return performFMed3Combine(N, DCI);
7102 case AMDGPUISD::CVT_PKRTZ_F16_F32:
7103 return performCvtPkRTZCombine(N, DCI);
7104 case ISD::SCALAR_TO_VECTOR: {
7105 SelectionDAG &DAG = DCI.DAG;
7106 EVT VT = N->getValueType(0);
7107
7108 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
7109 if (VT == MVT::v2i16 || VT == MVT::v2f16) {
7110 SDLoc SL(N);
7111 SDValue Src = N->getOperand(0);
7112 EVT EltVT = Src.getValueType();
7113 if (EltVT == MVT::f16)
7114 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
7115
7116 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
7117 return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
7118 }
7119
7120 break;
7121 }
7122 case ISD::EXTRACT_VECTOR_ELT:
7123 return performExtractVectorEltCombine(N, DCI);
7124 case ISD::BUILD_VECTOR:
7125 return performBuildVectorCombine(N, DCI);
7126 }
7127 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
7128}
7129
7130/// \brief Helper function for adjustWritemask
7131static unsigned SubIdx2Lane(unsigned Idx) {
7132 switch (Idx) {
7133 default: return 0;
7134 case AMDGPU::sub0: return 0;
7135 case AMDGPU::sub1: return 1;
7136 case AMDGPU::sub2: return 2;
7137 case AMDGPU::sub3: return 3;
7138 }
7139}
7140
7141/// \brief Adjust the writemask of MIMG instructions
7142SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
7143 SelectionDAG &DAG) const {
7144 SDNode *Users[4] = { nullptr };
7
Initializing to a null pointer value
7145 unsigned Lane = 0;
7146 unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
8
'?' condition is false
7147 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
7148 unsigned NewDmask = 0;
7149 bool HasChain = Node->getNumValues() > 1;
9
Assuming the condition is false
7150
7151 if (OldDmask == 0) {
10
Assuming 'OldDmask' is not equal to 0
11
Taking false branch
7152 // These are folded out, but on the chance it happens don't assert.
7153 return Node;
7154 }
7155
7156 // Try to figure out the used register components
7157 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
12
Loop condition is false. Execution continues on line 7191
7158 I != E; ++I) {
7159
7160 // Don't look at users of the chain.
7161 if (I.getUse().getResNo() != 0)
7162 continue;
7163
7164 // Abort if we can't understand the usage
7165 if (!I->isMachineOpcode() ||
7166 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
7167 return Node;
7168
7169 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
7170 // Note that subregs are packed, i.e. Lane==0 is the first bit set
7171 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
7172 // set, etc.
7173 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
7174
7175 // Set which texture component corresponds to the lane.
7176 unsigned Comp;
7177 for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
7178 Comp = countTrailingZeros(Dmask);
7179 Dmask &= ~(1 << Comp);
7180 }
7181
7182 // Abort if we have more than one user per component
7183 if (Users[Lane])
7184 return Node;
7185
7186 Users[Lane] = *I;
7187 NewDmask |= 1 << Comp;
7188 }
7189
7190 // Abort if there's no change
7191 if (NewDmask == OldDmask)
13
Taking false branch
7192 return Node;
7193
7194 unsigned BitsSet = countPopulation(NewDmask);
7195
7196 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7197 int NewOpcode = AMDGPU::getMaskedMIMGOp(*TII,
7198 Node->getMachineOpcode(), BitsSet);
7199 assert(NewOpcode != -1 &&(static_cast <bool> (NewOpcode != -1 && NewOpcode
!= static_cast<int>(Node->getMachineOpcode()) &&
"failed to find equivalent MIMG op") ? void (0) : __assert_fail
("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7201, __extension__ __PRETTY_FUNCTION__))
7200 NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&(static_cast <bool> (NewOpcode != -1 && NewOpcode
!= static_cast<int>(Node->getMachineOpcode()) &&
"failed to find equivalent MIMG op") ? void (0) : __assert_fail
("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7201, __extension__ __PRETTY_FUNCTION__))
7201 "failed to find equivalent MIMG op")(static_cast <bool> (NewOpcode != -1 && NewOpcode
!= static_cast<int>(Node->getMachineOpcode()) &&
"failed to find equivalent MIMG op") ? void (0) : __assert_fail
("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7201, __extension__ __PRETTY_FUNCTION__))
;
7202
7203 // Adjust the writemask in the node
7204 SmallVector<SDValue, 12> Ops;
7205 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
7206 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
7207 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
7208
7209 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
7210
7211 MVT ResultVT = BitsSet == 1 ?
14
Assuming 'BitsSet' is equal to 1
15
'?' condition is true
7212 SVT : MVT::getVectorVT(SVT, BitsSet == 3 ? 4 : BitsSet);
7213 SDVTList NewVTList = HasChain ?
16
'?' condition is false
7214 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
7215
7216
7217 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
7218 NewVTList, Ops);
7219
7220 if (HasChain) {
17
Taking false branch
7221 // Update chain.
7222 NewNode->setMemRefs(Node->memoperands_begin(), Node->memoperands_end());
7223 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
7224 }
7225
7226 if (BitsSet == 1) {
18
Taking true branch
7227 assert(Node->hasNUsesOfValue(1, 0))(static_cast <bool> (Node->hasNUsesOfValue(1, 0)) ? void
(0) : __assert_fail ("Node->hasNUsesOfValue(1, 0)", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7227, __extension__ __PRETTY_FUNCTION__))
;
7228 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
7229 SDLoc(Node), Users[Lane]->getValueType(0),
19
Called C++ object pointer is null
7230 SDValue(NewNode, 0));
7231 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
7232 return nullptr;
7233 }
7234
7235 // Update the users of the node with the new indices
7236 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
7237 SDNode *User = Users[i];
7238 if (!User)
7239 continue;
7240
7241 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
7242 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
7243
7244 switch (Idx) {
7245 default: break;
7246 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
7247 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
7248 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
7249 }
7250 }
7251
7252 DAG.RemoveDeadNode(Node);
7253 return nullptr;
7254}
7255
7256static bool isFrameIndexOp(SDValue Op) {
7257 if (Op.getOpcode() == ISD::AssertZext)
7258 Op = Op.getOperand(0);
7259
7260 return isa<FrameIndexSDNode>(Op);
7261}
7262
7263/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
7264/// with frame index operands.
7265/// LLVM assumes that inputs are to these instructions are registers.
7266SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
7267 SelectionDAG &DAG) const {
7268 if (Node->getOpcode() == ISD::CopyToReg) {
7269 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
7270 SDValue SrcVal = Node->getOperand(2);
7271
7272 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
7273 // to try understanding copies to physical registers.
7274 if (SrcVal.getValueType() == MVT::i1 &&
7275 TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) {
7276 SDLoc SL(Node);
7277 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
7278 SDValue VReg = DAG.getRegister(
7279 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
7280
7281 SDNode *Glued = Node->getGluedNode();
7282 SDValue ToVReg
7283 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
7284 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
7285 SDValue ToResultReg
7286 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
7287 VReg, ToVReg.getValue(1));
7288 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
7289 DAG.RemoveDeadNode(Node);
7290 return ToResultReg.getNode();
7291 }
7292 }
7293
7294 SmallVector<SDValue, 8> Ops;
7295 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
7296 if (!isFrameIndexOp(Node->getOperand(i))) {
7297 Ops.push_back(Node->getOperand(i));
7298 continue;
7299 }
7300
7301 SDLoc DL(Node);
7302 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
7303 Node->getOperand(i).getValueType(),
7304 Node->getOperand(i)), 0));
7305 }
7306
7307 return DAG.UpdateNodeOperands(Node, Ops);
7308}
7309
7310/// \brief Fold the instructions after selecting them.
7311/// Returns null if users were already updated.
7312SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
7313 SelectionDAG &DAG) const {
7314 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7315 unsigned Opcode = Node->getMachineOpcode();
7316
7317 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
1
Assuming the condition is true
2
Assuming the condition is true
5
Taking true branch
7318 !TII->isGather4(Opcode) && !TII->isD16(Opcode)) {
3
Assuming the condition is true
4
Assuming the condition is true
7319 return adjustWritemask(Node, DAG);
6
Calling 'SITargetLowering::adjustWritemask'
7320 }
7321
7322 if (Opcode == AMDGPU::INSERT_SUBREG ||
7323 Opcode == AMDGPU::REG_SEQUENCE) {
7324 legalizeTargetIndependentNode(Node, DAG);
7325 return Node;
7326 }
7327
7328 switch (Opcode) {
7329 case AMDGPU::V_DIV_SCALE_F32:
7330 case AMDGPU::V_DIV_SCALE_F64: {
7331 // Satisfy the operand register constraint when one of the inputs is
7332 // undefined. Ordinarily each undef value will have its own implicit_def of
7333 // a vreg, so force these to use a single register.
7334 SDValue Src0 = Node->getOperand(0);
7335 SDValue Src1 = Node->getOperand(1);
7336 SDValue Src2 = Node->getOperand(2);
7337
7338 if ((Src0.isMachineOpcode() &&
7339 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
7340 (Src0 == Src1 || Src0 == Src2))
7341 break;
7342
7343 MVT VT = Src0.getValueType().getSimpleVT();
7344 const TargetRegisterClass *RC = getRegClassFor(VT);
7345
7346 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
7347 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
7348
7349 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
7350 UndefReg, Src0, SDValue());
7351
7352 // src0 must be the same register as src1 or src2, even if the value is
7353 // undefined, so make sure we don't violate this constraint.
7354 if (Src0.isMachineOpcode() &&
7355 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
7356 if (Src1.isMachineOpcode() &&
7357 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
7358 Src0 = Src1;
7359 else if (Src2.isMachineOpcode() &&
7360 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
7361 Src0 = Src2;
7362 else {
7363 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)(static_cast <bool> (Src1.getMachineOpcode() == AMDGPU::
IMPLICIT_DEF) ? void (0) : __assert_fail ("Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7363, __extension__ __PRETTY_FUNCTION__))
;
7364 Src0 = UndefReg;
7365 Src1 = UndefReg;
7366 }
7367 } else
7368 break;
7369
7370 SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
7371 for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
7372 Ops.push_back(Node->getOperand(I));
7373
7374 Ops.push_back(ImpDef.getValue(1));
7375 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
7376 }
7377 default:
7378 break;
7379 }
7380
7381 return Node;
7382}
7383
7384/// \brief Assign the register class depending on the number of
7385/// bits set in the writemask
7386void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
7387 SDNode *Node) const {
7388 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7389
7390 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
7391
7392 if (TII->isVOP3(MI.getOpcode())) {
7393 // Make sure constant bus requirements are respected.
7394 TII->legalizeOperandsVOP3(MRI, MI);
7395 return;
7396 }
7397
7398 // Replace unused atomics with the no return version.
7399 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
7400 if (NoRetAtomicOp != -1) {
7401 if (!Node->hasAnyUseOfValue(0)) {
7402 MI.setDesc(TII->get(NoRetAtomicOp));
7403 MI.RemoveOperand(0);
7404 return;
7405 }
7406
7407 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
7408 // instruction, because the return type of these instructions is a vec2 of
7409 // the memory type, so it can be tied to the input operand.
7410 // This means these instructions always have a use, so we need to add a
7411 // special case to check if the atomic has only one extract_subreg use,
7412 // which itself has no uses.
7413 if ((Node->hasNUsesOfValue(1, 0) &&
7414 Node->use_begin()->isMachineOpcode() &&
7415 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
7416 !Node->use_begin()->hasAnyUseOfValue(0))) {
7417 unsigned Def = MI.getOperand(0).getReg();
7418
7419 // Change this into a noret atomic.
7420 MI.setDesc(TII->get(NoRetAtomicOp));
7421 MI.RemoveOperand(0);
7422
7423 // If we only remove the def operand from the atomic instruction, the
7424 // extract_subreg will be left with a use of a vreg without a def.
7425 // So we need to insert an implicit_def to avoid machine verifier
7426 // errors.
7427 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
7428 TII->get(AMDGPU::IMPLICIT_DEF), Def);
7429 }
7430 return;
7431 }
7432}
7433
7434static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
7435 uint64_t Val) {
7436 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
7437 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
7438}
7439
7440MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
7441 const SDLoc &DL,
7442 SDValue Ptr) const {
7443 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
7444
7445 // Build the half of the subregister with the constants before building the
7446 // full 128-bit register. If we are building multiple resource descriptors,
7447 // this will allow CSEing of the 2-component register.
7448 const SDValue Ops0[] = {
7449 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
7450 buildSMovImm32(DAG, DL, 0),
7451 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
7452 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
7453 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
7454 };
7455
7456 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
7457 MVT::v2i32, Ops0), 0);
7458
7459 // Combine the constants and the pointer.
7460 const SDValue Ops1[] = {
7461 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
7462 Ptr,
7463 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
7464 SubRegHi,
7465 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
7466 };
7467
7468 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
7469}
7470
7471/// \brief Return a resource descriptor with the 'Add TID' bit enabled
7472/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
7473/// of the resource descriptor) to create an offset, which is added to
7474/// the resource pointer.
7475MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
7476 SDValue Ptr, uint32_t RsrcDword1,
7477 uint64_t RsrcDword2And3) const {
7478 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
7479 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
7480 if (RsrcDword1) {
7481 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
7482 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
7483 0);
7484 }
7485
7486 SDValue DataLo = buildSMovImm32(DAG, DL,
7487 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)0xFFFFFFFFUL);
7488 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
7489
7490 const SDValue Ops[] = {
7491 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
7492 PtrLo,
7493 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
7494 PtrHi,
7495 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
7496 DataLo,
7497 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
7498 DataHi,
7499 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
7500 };
7501
7502 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
7503}
7504
7505//===----------------------------------------------------------------------===//
7506// SI Inline Assembly Support
7507//===----------------------------------------------------------------------===//
7508
7509std::pair<unsigned, const TargetRegisterClass *>
7510SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
7511 StringRef Constraint,
7512 MVT VT) const {
7513 if (!isTypeLegal(VT))
7514 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
7515
7516 if (Constraint.size() == 1) {
7517 switch (Constraint[0]) {
7518 case 's':
7519 case 'r':
7520 switch (VT.getSizeInBits()) {
7521 default:
7522 return std::make_pair(0U, nullptr);
7523 case 32:
7524 case 16:
7525 return std::make_pair(0U, &AMDGPU::SReg_32_XM0RegClass);
7526 case 64:
7527 return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
7528 case 128:
7529 return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
7530 case 256:
7531 return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
7532 case 512:
7533 return std::make_pair(0U, &AMDGPU::SReg_512RegClass);
7534 }
7535
7536 case 'v':
7537 switch (VT.getSizeInBits()) {
7538 default:
7539 return std::make_pair(0U, nullptr);
7540 case 32:
7541 case 16:
7542 return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
7543 case 64:
7544 return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
7545 case 96:
7546 return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
7547 case 128:
7548 return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
7549 case 256:
7550 return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
7551 case 512:
7552 return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
7553 }
7554 }
7555 }
7556
7557 if (Constraint.size() > 1) {
7558 const TargetRegisterClass *RC = nullptr;
7559 if (Constraint[1] == 'v') {
7560 RC = &AMDGPU::VGPR_32RegClass;
7561 } else if (Constraint[1] == 's') {
7562 RC = &AMDGPU::SGPR_32RegClass;
7563 }
7564
7565 if (RC) {
7566 uint32_t Idx;
7567 bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
7568 if (!Failed && Idx < RC->getNumRegs())
7569 return std::make_pair(RC->getRegister(Idx), RC);
7570 }
7571 }
7572 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
7573}
7574
7575SITargetLowering::ConstraintType
7576SITargetLowering::getConstraintType(StringRef Constraint) const {
7577 if (Constraint.size() == 1) {
7578 switch (Constraint[0]) {
7579 default: break;
7580 case 's':
7581 case 'v':
7582 return C_RegisterClass;
7583 }
7584 }
7585 return TargetLowering::getConstraintType(Constraint);
7586}
7587
7588// Figure out which registers should be reserved for stack access. Only after
7589// the function is legalized do we know all of the non-spill stack objects or if
7590// calls are present.
7591void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
7592 MachineRegisterInfo &MRI = MF.getRegInfo();
7593 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
7594 const MachineFrameInfo &MFI = MF.getFrameInfo();
7595 const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
7596 const SIRegisterInfo *TRI = ST.getRegisterInfo();
7597
7598 if (Info->isEntryFunction()) {
7599 // Callable functions have fixed registers used for stack access.
7600 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
7601 }
7602
7603 // We have to assume the SP is needed in case there are calls in the function
7604 // during lowering. Calls are only detected after the function is
7605 // lowered. We're about to reserve registers, so don't bother using it if we
7606 // aren't really going to use it.
7607 bool NeedSP = !Info->isEntryFunction() ||
7608 MFI.hasVarSizedObjects() ||
7609 MFI.hasCalls();
7610
7611 if (NeedSP) {
7612 unsigned ReservedStackPtrOffsetReg = TRI->reservedStackPtrOffsetReg(MF);
7613 Info->setStackPtrOffsetReg(ReservedStackPtrOffsetReg);
7614
7615 assert(Info->getStackPtrOffsetReg() != Info->getFrameOffsetReg())(static_cast <bool> (Info->getStackPtrOffsetReg() !=
Info->getFrameOffsetReg()) ? void (0) : __assert_fail ("Info->getStackPtrOffsetReg() != Info->getFrameOffsetReg()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7615, __extension__ __PRETTY_FUNCTION__))
;
7616 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),(static_cast <bool> (!TRI->isSubRegister(Info->getScratchRSrcReg
(), Info->getStackPtrOffsetReg())) ? void (0) : __assert_fail
("!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->getStackPtrOffsetReg())"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7617, __extension__ __PRETTY_FUNCTION__))
7617 Info->getStackPtrOffsetReg()))(static_cast <bool> (!TRI->isSubRegister(Info->getScratchRSrcReg
(), Info->getStackPtrOffsetReg())) ? void (0) : __assert_fail
("!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->getStackPtrOffsetReg())"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7617, __extension__ __PRETTY_FUNCTION__))
;
7618 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
7619 }
7620
7621 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
7622 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
7623 MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG,
7624 Info->getScratchWaveOffsetReg());
7625
7626 TargetLoweringBase::finalizeLowering(MF);
7627}
7628
7629void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
7630 KnownBits &Known,
7631 const APInt &DemandedElts,
7632 const SelectionDAG &DAG,
7633 unsigned Depth) const {
7634 TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts,
7635 DAG, Depth);
7636
7637 if (getSubtarget()->enableHugePrivateBuffer())
7638 return;
7639
7640 // Technically it may be possible to have a dispatch with a single workitem
7641 // that uses the full private memory size, but that's not really useful. We
7642 // can't use vaddr in MUBUF instructions if we don't know the address
7643 // calculation won't overflow, so assume the sign bit is never set.
7644 Known.Zero.setHighBits(AssumeFrameIndexHighZeroBits);
7645}