Bug Summary

File:llvm/include/llvm/CodeGen/SelectionDAGNodes.h
Warning:line 1110, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SIISelLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/Target/AMDGPU -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/Target/AMDGPU -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0=. -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-08-28-193554-24367-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp

1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Custom DAG lowering for SI
11//
12//===----------------------------------------------------------------------===//
13
14#include "SIISelLowering.h"
15#include "AMDGPU.h"
16#include "AMDGPUInstrInfo.h"
17#include "AMDGPUTargetMachine.h"
18#include "SIMachineFunctionInfo.h"
19#include "SIRegisterInfo.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
22#include "llvm/Analysis/OptimizationRemarkEmitter.h"
23#include "llvm/BinaryFormat/ELF.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/IR/DiagnosticInfo.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/IntrinsicsAMDGPU.h"
32#include "llvm/IR/IntrinsicsR600.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/KnownBits.h"
35
36using namespace llvm;
37
38#define DEBUG_TYPE"si-lower" "si-lower"
39
40STATISTIC(NumTailCalls, "Number of tail calls")static llvm::Statistic NumTailCalls = {"si-lower", "NumTailCalls"
, "Number of tail calls"}
;
41
42static cl::opt<bool> DisableLoopAlignment(
43 "amdgpu-disable-loop-alignment",
44 cl::desc("Do not align and prefetch loops"),
45 cl::init(false));
46
47static cl::opt<bool> VGPRReserveforSGPRSpill(
48 "amdgpu-reserve-vgpr-for-sgpr-spill",
49 cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true));
50
51static cl::opt<bool> UseDivergentRegisterIndexing(
52 "amdgpu-use-divergent-register-indexing",
53 cl::Hidden,
54 cl::desc("Use indirect register addressing for divergent indexes"),
55 cl::init(false));
56
57static bool hasFP32Denormals(const MachineFunction &MF) {
58 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
59 return Info->getMode().allFP32Denormals();
60}
61
62static bool hasFP64FP16Denormals(const MachineFunction &MF) {
63 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
64 return Info->getMode().allFP64FP16Denormals();
65}
66
67static unsigned findFirstFreeSGPR(CCState &CCInfo) {
68 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
69 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
70 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
71 return AMDGPU::SGPR0 + Reg;
72 }
73 }
74 llvm_unreachable("Cannot allocate sgpr")::llvm::llvm_unreachable_internal("Cannot allocate sgpr", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 74)
;
75}
76
77SITargetLowering::SITargetLowering(const TargetMachine &TM,
78 const GCNSubtarget &STI)
79 : AMDGPUTargetLowering(TM, STI),
80 Subtarget(&STI) {
81 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
82 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
83
84 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
85 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
86
87 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
88
89 const SIRegisterInfo *TRI = STI.getRegisterInfo();
90 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
91
92 addRegisterClass(MVT::f64, V64RegClass);
93 addRegisterClass(MVT::v2f32, V64RegClass);
94
95 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
96 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
97
98 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
99 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
100
101 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
102 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
103
104 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
105 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
106
107 addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
108 addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
109
110 addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
111 addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
112
113 addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
114 addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
115
116 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
117 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
118
119 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
120 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
121
122 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
123 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
124
125 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
126 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
127
128 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
129 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
130
131 if (Subtarget->has16BitInsts()) {
132 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
133 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
134
135 // Unless there are also VOP3P operations, not operations are really legal.
136 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
137 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
138 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
139 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
140 }
141
142 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
143 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
144
145 computeRegisterProperties(Subtarget->getRegisterInfo());
146
147 // The boolean content concept here is too inflexible. Compares only ever
148 // really produce a 1-bit result. Any copy/extend from these will turn into a
149 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
150 // it's what most targets use.
151 setBooleanContents(ZeroOrOneBooleanContent);
152 setBooleanVectorContents(ZeroOrOneBooleanContent);
153
154 // We need to custom lower vector stores from local memory
155 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
156 setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
157 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
158 setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
159 setOperationAction(ISD::LOAD, MVT::v6i32, Custom);
160 setOperationAction(ISD::LOAD, MVT::v7i32, Custom);
161 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
162 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
163 setOperationAction(ISD::LOAD, MVT::i1, Custom);
164 setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
165
166 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
167 setOperationAction(ISD::STORE, MVT::v3i32, Custom);
168 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
169 setOperationAction(ISD::STORE, MVT::v5i32, Custom);
170 setOperationAction(ISD::STORE, MVT::v6i32, Custom);
171 setOperationAction(ISD::STORE, MVT::v7i32, Custom);
172 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
173 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
174 setOperationAction(ISD::STORE, MVT::i1, Custom);
175 setOperationAction(ISD::STORE, MVT::v32i32, Custom);
176
177 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
178 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
179 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
180 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
181 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
182 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
183 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
184 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
185 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
186 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
187 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
188 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
189 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
190 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
191 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
192 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
193
194 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
195 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
196 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
197 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
198 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
199 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
200 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
201
202 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
203 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
204
205 setOperationAction(ISD::SELECT, MVT::i1, Promote);
206 setOperationAction(ISD::SELECT, MVT::i64, Custom);
207 setOperationAction(ISD::SELECT, MVT::f64, Promote);
208 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
209
210 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
211 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
212 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
213 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
214 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
215
216 setOperationAction(ISD::SETCC, MVT::i1, Promote);
217 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
218 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
219 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
220
221 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
222 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
223 setOperationAction(ISD::TRUNCATE, MVT::v3i32, Expand);
224 setOperationAction(ISD::FP_ROUND, MVT::v3f32, Expand);
225 setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
226 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
227 setOperationAction(ISD::TRUNCATE, MVT::v5i32, Expand);
228 setOperationAction(ISD::FP_ROUND, MVT::v5f32, Expand);
229 setOperationAction(ISD::TRUNCATE, MVT::v6i32, Expand);
230 setOperationAction(ISD::FP_ROUND, MVT::v6f32, Expand);
231 setOperationAction(ISD::TRUNCATE, MVT::v7i32, Expand);
232 setOperationAction(ISD::FP_ROUND, MVT::v7f32, Expand);
233 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
234 setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
235 setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
236 setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
237
238 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
239 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
240 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
241 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
242 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
243 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
244 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
245 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
246
247 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
248 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
249 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
250 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
251 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
252 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
253
254 setOperationAction(ISD::UADDO, MVT::i32, Legal);
255 setOperationAction(ISD::USUBO, MVT::i32, Legal);
256
257 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
258 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
259
260 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
261 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
262 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
263
264#if 0
265 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
266 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
267#endif
268
269 // We only support LOAD/STORE and vector manipulation ops for vectors
270 // with > 4 elements.
271 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
272 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
273 MVT::v3i64, MVT::v3f64, MVT::v6i32, MVT::v6f32,
274 MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
275 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
276 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
277 switch (Op) {
278 case ISD::LOAD:
279 case ISD::STORE:
280 case ISD::BUILD_VECTOR:
281 case ISD::BITCAST:
282 case ISD::EXTRACT_VECTOR_ELT:
283 case ISD::INSERT_VECTOR_ELT:
284 case ISD::EXTRACT_SUBVECTOR:
285 case ISD::SCALAR_TO_VECTOR:
286 break;
287 case ISD::INSERT_SUBVECTOR:
288 case ISD::CONCAT_VECTORS:
289 setOperationAction(Op, VT, Custom);
290 break;
291 default:
292 setOperationAction(Op, VT, Expand);
293 break;
294 }
295 }
296 }
297
298 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
299
300 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
301 // is expanded to avoid having two separate loops in case the index is a VGPR.
302
303 // Most operations are naturally 32-bit vector operations. We only support
304 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
305 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
306 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
307 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
308
309 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
310 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
311
312 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
313 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
314
315 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
316 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
317 }
318
319 for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) {
320 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
321 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
322
323 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
324 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
325
326 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
327 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
328
329 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
330 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
331 }
332
333 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
334 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
335 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
336
337 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
338 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
339
340 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
341 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
342
343 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
344 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
345 }
346
347 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
348 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
349 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
350
351 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
352 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
353
354 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
355 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
356
357 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
358 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
359 }
360
361 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
362 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
363 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
364
365 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
366 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
367
368 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
369 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
370
371 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
372 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
373 }
374
375 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
376 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
377 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
378 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
379
380 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
381 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
382
383 // Avoid stack access for these.
384 // TODO: Generalize to more vector types.
385 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
386 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
387 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
388 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
389
390 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
391 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
392 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
393 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
394 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
395 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
396
397 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
398 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
399 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
400 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
401
402 // Deal with vec3 vector operations when widened to vec4.
403 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
404 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
405 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
406 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
407
408 // Deal with vec5/6/7 vector operations when widened to vec8.
409 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
410 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
411 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6i32, Custom);
412 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v6f32, Custom);
413 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7i32, Custom);
414 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v7f32, Custom);
415 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
416 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
417
418 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
419 // and output demarshalling
420 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
421 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
422
423 // We can't return success/failure, only the old value,
424 // let LLVM add the comparison
425 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
426 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
427
428 if (Subtarget->hasFlatAddressSpace()) {
429 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
430 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
431 }
432
433 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
434 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
435
436 // FIXME: This should be narrowed to i32, but that only happens if i64 is
437 // illegal.
438 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
439 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
440 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
441
442 // On SI this is s_memtime and s_memrealtime on VI.
443 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
444 setOperationAction(ISD::TRAP, MVT::Other, Custom);
445 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
446
447 if (Subtarget->has16BitInsts()) {
448 setOperationAction(ISD::FPOW, MVT::f16, Promote);
449 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
450 setOperationAction(ISD::FLOG, MVT::f16, Custom);
451 setOperationAction(ISD::FEXP, MVT::f16, Custom);
452 setOperationAction(ISD::FLOG10, MVT::f16, Custom);
453 }
454
455 if (Subtarget->hasMadMacF32Insts())
456 setOperationAction(ISD::FMAD, MVT::f32, Legal);
457
458 if (!Subtarget->hasBFI()) {
459 // fcopysign can be done in a single instruction with BFI.
460 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
461 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
462 }
463
464 if (!Subtarget->hasBCNT(32))
465 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
466
467 if (!Subtarget->hasBCNT(64))
468 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
469
470 if (Subtarget->hasFFBH()) {
471 setOperationAction(ISD::CTLZ, MVT::i32, Custom);
472 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
473 }
474
475 if (Subtarget->hasFFBL()) {
476 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
477 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
478 }
479
480 // We only really have 32-bit BFE instructions (and 16-bit on VI).
481 //
482 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
483 // effort to match them now. We want this to be false for i64 cases when the
484 // extraction isn't restricted to the upper or lower half. Ideally we would
485 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
486 // span the midpoint are probably relatively rare, so don't worry about them
487 // for now.
488 if (Subtarget->hasBFE())
489 setHasExtractBitsInsn(true);
490
491 // Clamp modifier on add/sub
492 if (Subtarget->hasIntClamp()) {
493 setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
494 setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
495 }
496
497 if (Subtarget->hasAddNoCarry()) {
498 setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
499 setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
500 setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
501 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
502 }
503
504 setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
505 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
506 setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
507 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
508
509
510 // These are really only legal for ieee_mode functions. We should be avoiding
511 // them for functions that don't have ieee_mode enabled, so just say they are
512 // legal.
513 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
514 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
515 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
516 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
517
518
519 if (Subtarget->haveRoundOpsF64()) {
520 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
521 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
522 setOperationAction(ISD::FRINT, MVT::f64, Legal);
523 } else {
524 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
525 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
526 setOperationAction(ISD::FRINT, MVT::f64, Custom);
527 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
528 }
529
530 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
531
532 setOperationAction(ISD::FSIN, MVT::f32, Custom);
533 setOperationAction(ISD::FCOS, MVT::f32, Custom);
534 setOperationAction(ISD::FDIV, MVT::f32, Custom);
535 setOperationAction(ISD::FDIV, MVT::f64, Custom);
536
537 if (Subtarget->has16BitInsts()) {
538 setOperationAction(ISD::Constant, MVT::i16, Legal);
539
540 setOperationAction(ISD::SMIN, MVT::i16, Legal);
541 setOperationAction(ISD::SMAX, MVT::i16, Legal);
542
543 setOperationAction(ISD::UMIN, MVT::i16, Legal);
544 setOperationAction(ISD::UMAX, MVT::i16, Legal);
545
546 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
547 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
548
549 setOperationAction(ISD::ROTR, MVT::i16, Expand);
550 setOperationAction(ISD::ROTL, MVT::i16, Expand);
551
552 setOperationAction(ISD::SDIV, MVT::i16, Promote);
553 setOperationAction(ISD::UDIV, MVT::i16, Promote);
554 setOperationAction(ISD::SREM, MVT::i16, Promote);
555 setOperationAction(ISD::UREM, MVT::i16, Promote);
556 setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
557 setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
558
559 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
560
561 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
562 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
563 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
564 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
565 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
566
567 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
568
569 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
570
571 setOperationAction(ISD::LOAD, MVT::i16, Custom);
572
573 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
574
575 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
576 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
577 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
578 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
579
580 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom);
581 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Custom);
582
583 // F16 - Constant Actions.
584 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
585
586 // F16 - Load/Store Actions.
587 setOperationAction(ISD::LOAD, MVT::f16, Promote);
588 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
589 setOperationAction(ISD::STORE, MVT::f16, Promote);
590 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
591
592 // F16 - VOP1 Actions.
593 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
594 setOperationAction(ISD::FCOS, MVT::f16, Custom);
595 setOperationAction(ISD::FSIN, MVT::f16, Custom);
596
597 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
598 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
599
600 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
601 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
602 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
603 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
604 setOperationAction(ISD::FROUND, MVT::f16, Custom);
605
606 // F16 - VOP2 Actions.
607 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
608 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
609
610 setOperationAction(ISD::FDIV, MVT::f16, Custom);
611
612 // F16 - VOP3 Actions.
613 setOperationAction(ISD::FMA, MVT::f16, Legal);
614 if (STI.hasMadF16())
615 setOperationAction(ISD::FMAD, MVT::f16, Legal);
616
617 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
618 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
619 switch (Op) {
620 case ISD::LOAD:
621 case ISD::STORE:
622 case ISD::BUILD_VECTOR:
623 case ISD::BITCAST:
624 case ISD::EXTRACT_VECTOR_ELT:
625 case ISD::INSERT_VECTOR_ELT:
626 case ISD::INSERT_SUBVECTOR:
627 case ISD::EXTRACT_SUBVECTOR:
628 case ISD::SCALAR_TO_VECTOR:
629 break;
630 case ISD::CONCAT_VECTORS:
631 setOperationAction(Op, VT, Custom);
632 break;
633 default:
634 setOperationAction(Op, VT, Expand);
635 break;
636 }
637 }
638 }
639
640 // v_perm_b32 can handle either of these.
641 setOperationAction(ISD::BSWAP, MVT::i16, Legal);
642 setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
643 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
644
645 // XXX - Do these do anything? Vector constants turn into build_vector.
646 setOperationAction(ISD::Constant, MVT::v2i16, Legal);
647 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
648
649 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
650 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
651
652 setOperationAction(ISD::STORE, MVT::v2i16, Promote);
653 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
654 setOperationAction(ISD::STORE, MVT::v2f16, Promote);
655 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
656
657 setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
658 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
659 setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
660 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
661
662 setOperationAction(ISD::AND, MVT::v2i16, Promote);
663 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
664 setOperationAction(ISD::OR, MVT::v2i16, Promote);
665 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
666 setOperationAction(ISD::XOR, MVT::v2i16, Promote);
667 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
668
669 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
670 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
671 setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
672 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
673
674 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
675 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
676 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
677 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
678
679 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
680 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
681 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
682 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
683
684 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
685 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
686 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
687
688 if (!Subtarget->hasVOP3PInsts()) {
689 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
690 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
691 }
692
693 setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
694 // This isn't really legal, but this avoids the legalizer unrolling it (and
695 // allows matching fneg (fabs x) patterns)
696 setOperationAction(ISD::FABS, MVT::v2f16, Legal);
697
698 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
699 setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
700 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
701 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
702
703 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
704 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
705
706 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
707 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
708 }
709
710 if (Subtarget->hasVOP3PInsts()) {
711 setOperationAction(ISD::ADD, MVT::v2i16, Legal);
712 setOperationAction(ISD::SUB, MVT::v2i16, Legal);
713 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
714 setOperationAction(ISD::SHL, MVT::v2i16, Legal);
715 setOperationAction(ISD::SRL, MVT::v2i16, Legal);
716 setOperationAction(ISD::SRA, MVT::v2i16, Legal);
717 setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
718 setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
719 setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
720 setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
721
722 setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
723 setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
724 setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
725 setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
726
727 setOperationAction(ISD::FADD, MVT::v2f16, Legal);
728 setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
729 setOperationAction(ISD::FMA, MVT::v2f16, Legal);
730
731 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
732 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
733
734 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
735
736 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
737 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
738
739 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
740 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
741
742 setOperationAction(ISD::SHL, MVT::v4i16, Custom);
743 setOperationAction(ISD::SRA, MVT::v4i16, Custom);
744 setOperationAction(ISD::SRL, MVT::v4i16, Custom);
745 setOperationAction(ISD::ADD, MVT::v4i16, Custom);
746 setOperationAction(ISD::SUB, MVT::v4i16, Custom);
747 setOperationAction(ISD::MUL, MVT::v4i16, Custom);
748
749 setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
750 setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
751 setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
752 setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
753
754 setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom);
755 setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom);
756 setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom);
757 setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom);
758
759 setOperationAction(ISD::FADD, MVT::v4f16, Custom);
760 setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
761 setOperationAction(ISD::FMA, MVT::v4f16, Custom);
762
763 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
764 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
765
766 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
767 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
768 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
769
770 setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
771 setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
772 setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
773
774 if (Subtarget->hasPackedFP32Ops()) {
775 setOperationAction(ISD::FADD, MVT::v2f32, Legal);
776 setOperationAction(ISD::FMUL, MVT::v2f32, Legal);
777 setOperationAction(ISD::FMA, MVT::v2f32, Legal);
778 setOperationAction(ISD::FNEG, MVT::v2f32, Legal);
779
780 for (MVT VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32 }) {
781 setOperationAction(ISD::FADD, VT, Custom);
782 setOperationAction(ISD::FMUL, VT, Custom);
783 setOperationAction(ISD::FMA, VT, Custom);
784 }
785 }
786 }
787
788 setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
789 setOperationAction(ISD::FABS, MVT::v4f16, Custom);
790
791 if (Subtarget->has16BitInsts()) {
792 setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
793 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
794 setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
795 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
796 } else {
797 // Legalization hack.
798 setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
799 setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
800
801 setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
802 setOperationAction(ISD::FABS, MVT::v2f16, Custom);
803 }
804
805 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
806 setOperationAction(ISD::SELECT, VT, Custom);
807 }
808
809 setOperationAction(ISD::SMULO, MVT::i64, Custom);
810 setOperationAction(ISD::UMULO, MVT::i64, Custom);
811
812 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
813 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
814 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
815 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
816 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
817 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
818 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
819
820 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
821 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
822 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
823 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
824 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
825 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
826 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
827 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
828 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
829 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
830 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
831
832 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
833 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
834 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
835 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
836 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
837 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
838 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
839 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
840 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
841 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
842
843 setTargetDAGCombine(ISD::ADD);
844 setTargetDAGCombine(ISD::ADDCARRY);
845 setTargetDAGCombine(ISD::SUB);
846 setTargetDAGCombine(ISD::SUBCARRY);
847 setTargetDAGCombine(ISD::FADD);
848 setTargetDAGCombine(ISD::FSUB);
849 setTargetDAGCombine(ISD::FMINNUM);
850 setTargetDAGCombine(ISD::FMAXNUM);
851 setTargetDAGCombine(ISD::FMINNUM_IEEE);
852 setTargetDAGCombine(ISD::FMAXNUM_IEEE);
853 setTargetDAGCombine(ISD::FMA);
854 setTargetDAGCombine(ISD::SMIN);
855 setTargetDAGCombine(ISD::SMAX);
856 setTargetDAGCombine(ISD::UMIN);
857 setTargetDAGCombine(ISD::UMAX);
858 setTargetDAGCombine(ISD::SETCC);
859 setTargetDAGCombine(ISD::AND);
860 setTargetDAGCombine(ISD::OR);
861 setTargetDAGCombine(ISD::XOR);
862 setTargetDAGCombine(ISD::SINT_TO_FP);
863 setTargetDAGCombine(ISD::UINT_TO_FP);
864 setTargetDAGCombine(ISD::FCANONICALIZE);
865 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
866 setTargetDAGCombine(ISD::ZERO_EXTEND);
867 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
868 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
869 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
870
871 // All memory operations. Some folding on the pointer operand is done to help
872 // matching the constant offsets in the addressing modes.
873 setTargetDAGCombine(ISD::LOAD);
874 setTargetDAGCombine(ISD::STORE);
875 setTargetDAGCombine(ISD::ATOMIC_LOAD);
876 setTargetDAGCombine(ISD::ATOMIC_STORE);
877 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
878 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
879 setTargetDAGCombine(ISD::ATOMIC_SWAP);
880 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
881 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
882 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
883 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
884 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
885 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
886 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
887 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
888 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
889 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
890 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
891 setTargetDAGCombine(ISD::INTRINSIC_VOID);
892 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
893
894 // FIXME: In other contexts we pretend this is a per-function property.
895 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
896
897 setSchedulingPreference(Sched::RegPressure);
898}
899
900const GCNSubtarget *SITargetLowering::getSubtarget() const {
901 return Subtarget;
902}
903
904//===----------------------------------------------------------------------===//
905// TargetLowering queries
906//===----------------------------------------------------------------------===//
907
908// v_mad_mix* support a conversion from f16 to f32.
909//
910// There is only one special case when denormals are enabled we don't currently,
911// where this is OK to use.
912bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
913 EVT DestVT, EVT SrcVT) const {
914 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
915 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
916 DestVT.getScalarType() == MVT::f32 &&
917 SrcVT.getScalarType() == MVT::f16 &&
918 // TODO: This probably only requires no input flushing?
919 !hasFP32Denormals(DAG.getMachineFunction());
920}
921
922bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
923 // SI has some legal vector types, but no legal vector operations. Say no
924 // shuffles are legal in order to prefer scalarizing some vector operations.
925 return false;
926}
927
928MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
929 CallingConv::ID CC,
930 EVT VT) const {
931 if (CC == CallingConv::AMDGPU_KERNEL)
932 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
933
934 if (VT.isVector()) {
935 EVT ScalarVT = VT.getScalarType();
936 unsigned Size = ScalarVT.getSizeInBits();
937 if (Size == 16) {
938 if (Subtarget->has16BitInsts())
939 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
940 return VT.isInteger() ? MVT::i32 : MVT::f32;
941 }
942
943 if (Size < 16)
944 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
945 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
946 }
947
948 if (VT.getSizeInBits() > 32)
949 return MVT::i32;
950
951 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
952}
953
954unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
955 CallingConv::ID CC,
956 EVT VT) const {
957 if (CC == CallingConv::AMDGPU_KERNEL)
958 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
959
960 if (VT.isVector()) {
961 unsigned NumElts = VT.getVectorNumElements();
962 EVT ScalarVT = VT.getScalarType();
963 unsigned Size = ScalarVT.getSizeInBits();
964
965 // FIXME: Should probably promote 8-bit vectors to i16.
966 if (Size == 16 && Subtarget->has16BitInsts())
967 return (NumElts + 1) / 2;
968
969 if (Size <= 32)
970 return NumElts;
971
972 if (Size > 32)
973 return NumElts * ((Size + 31) / 32);
974 } else if (VT.getSizeInBits() > 32)
975 return (VT.getSizeInBits() + 31) / 32;
976
977 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
978}
979
980unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
981 LLVMContext &Context, CallingConv::ID CC,
982 EVT VT, EVT &IntermediateVT,
983 unsigned &NumIntermediates, MVT &RegisterVT) const {
984 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
985 unsigned NumElts = VT.getVectorNumElements();
986 EVT ScalarVT = VT.getScalarType();
987 unsigned Size = ScalarVT.getSizeInBits();
988 // FIXME: We should fix the ABI to be the same on targets without 16-bit
989 // support, but unless we can properly handle 3-vectors, it will be still be
990 // inconsistent.
991 if (Size == 16 && Subtarget->has16BitInsts()) {
992 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
993 IntermediateVT = RegisterVT;
994 NumIntermediates = (NumElts + 1) / 2;
995 return NumIntermediates;
996 }
997
998 if (Size == 32) {
999 RegisterVT = ScalarVT.getSimpleVT();
1000 IntermediateVT = RegisterVT;
1001 NumIntermediates = NumElts;
1002 return NumIntermediates;
1003 }
1004
1005 if (Size < 16 && Subtarget->has16BitInsts()) {
1006 // FIXME: Should probably form v2i16 pieces
1007 RegisterVT = MVT::i16;
1008 IntermediateVT = ScalarVT;
1009 NumIntermediates = NumElts;
1010 return NumIntermediates;
1011 }
1012
1013
1014 if (Size != 16 && Size <= 32) {
1015 RegisterVT = MVT::i32;
1016 IntermediateVT = ScalarVT;
1017 NumIntermediates = NumElts;
1018 return NumIntermediates;
1019 }
1020
1021 if (Size > 32) {
1022 RegisterVT = MVT::i32;
1023 IntermediateVT = RegisterVT;
1024 NumIntermediates = NumElts * ((Size + 31) / 32);
1025 return NumIntermediates;
1026 }
1027 }
1028
1029 return TargetLowering::getVectorTypeBreakdownForCallingConv(
1030 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1031}
1032
1033static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
1034 assert(DMaskLanes != 0)(static_cast <bool> (DMaskLanes != 0) ? void (0) : __assert_fail
("DMaskLanes != 0", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1034, __extension__ __PRETTY_FUNCTION__))
;
1035
1036 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1037 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
1038 return EVT::getVectorVT(Ty->getContext(),
1039 EVT::getEVT(VT->getElementType()),
1040 NumElts);
1041 }
1042
1043 return EVT::getEVT(Ty);
1044}
1045
1046// Peek through TFE struct returns to only use the data size.
1047static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1048 auto *ST = dyn_cast<StructType>(Ty);
1049 if (!ST)
1050 return memVTFromImageData(Ty, DMaskLanes);
1051
1052 // Some intrinsics return an aggregate type - special case to work out the
1053 // correct memVT.
1054 //
1055 // Only limited forms of aggregate type currently expected.
1056 if (ST->getNumContainedTypes() != 2 ||
1057 !ST->getContainedType(1)->isIntegerTy(32))
1058 return EVT();
1059 return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1060}
1061
1062bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1063 const CallInst &CI,
1064 MachineFunction &MF,
1065 unsigned IntrID) const {
1066 if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1067 AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1068 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1069 (Intrinsic::ID)IntrID);
1070 if (Attr.hasFnAttr(Attribute::ReadNone))
1071 return false;
1072
1073 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1074
1075 if (RsrcIntr->IsImage) {
1076 Info.ptrVal =
1077 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1078 Info.align.reset();
1079 } else {
1080 Info.ptrVal =
1081 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1082 }
1083
1084 Info.flags = MachineMemOperand::MODereferenceable;
1085 if (Attr.hasFnAttr(Attribute::ReadOnly)) {
1086 unsigned DMaskLanes = 4;
1087
1088 if (RsrcIntr->IsImage) {
1089 const AMDGPU::ImageDimIntrinsicInfo *Intr
1090 = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1091 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1092 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1093
1094 if (!BaseOpcode->Gather4) {
1095 // If this isn't a gather, we may have excess loaded elements in the
1096 // IR type. Check the dmask for the real number of elements loaded.
1097 unsigned DMask
1098 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1099 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1100 }
1101
1102 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1103 } else
1104 Info.memVT = EVT::getEVT(CI.getType());
1105
1106 // FIXME: What does alignment mean for an image?
1107 Info.opc = ISD::INTRINSIC_W_CHAIN;
1108 Info.flags |= MachineMemOperand::MOLoad;
1109 } else if (Attr.hasFnAttr(Attribute::WriteOnly)) {
1110 Info.opc = ISD::INTRINSIC_VOID;
1111
1112 Type *DataTy = CI.getArgOperand(0)->getType();
1113 if (RsrcIntr->IsImage) {
1114 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1115 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1116 Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1117 } else
1118 Info.memVT = EVT::getEVT(DataTy);
1119
1120 Info.flags |= MachineMemOperand::MOStore;
1121 } else {
1122 // Atomic
1123 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1124 ISD::INTRINSIC_W_CHAIN;
1125 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1126 Info.flags = MachineMemOperand::MOLoad |
1127 MachineMemOperand::MOStore |
1128 MachineMemOperand::MODereferenceable;
1129
1130 // XXX - Should this be volatile without known ordering?
1131 Info.flags |= MachineMemOperand::MOVolatile;
1132 }
1133 return true;
1134 }
1135
1136 switch (IntrID) {
1137 case Intrinsic::amdgcn_atomic_inc:
1138 case Intrinsic::amdgcn_atomic_dec:
1139 case Intrinsic::amdgcn_ds_ordered_add:
1140 case Intrinsic::amdgcn_ds_ordered_swap:
1141 case Intrinsic::amdgcn_ds_fadd:
1142 case Intrinsic::amdgcn_ds_fmin:
1143 case Intrinsic::amdgcn_ds_fmax: {
1144 Info.opc = ISD::INTRINSIC_W_CHAIN;
1145 Info.memVT = MVT::getVT(CI.getType());
1146 Info.ptrVal = CI.getOperand(0);
1147 Info.align.reset();
1148 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1149
1150 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1151 if (!Vol->isZero())
1152 Info.flags |= MachineMemOperand::MOVolatile;
1153
1154 return true;
1155 }
1156 case Intrinsic::amdgcn_buffer_atomic_fadd: {
1157 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1158
1159 Info.opc = ISD::INTRINSIC_W_CHAIN;
1160 Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1161 Info.ptrVal =
1162 MFI->getBufferPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1163 Info.align.reset();
1164 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1165
1166 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1167 if (!Vol || !Vol->isZero())
1168 Info.flags |= MachineMemOperand::MOVolatile;
1169
1170 return true;
1171 }
1172 case Intrinsic::amdgcn_ds_append:
1173 case Intrinsic::amdgcn_ds_consume: {
1174 Info.opc = ISD::INTRINSIC_W_CHAIN;
1175 Info.memVT = MVT::getVT(CI.getType());
1176 Info.ptrVal = CI.getOperand(0);
1177 Info.align.reset();
1178 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1179
1180 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1181 if (!Vol->isZero())
1182 Info.flags |= MachineMemOperand::MOVolatile;
1183
1184 return true;
1185 }
1186 case Intrinsic::amdgcn_global_atomic_csub: {
1187 Info.opc = ISD::INTRINSIC_W_CHAIN;
1188 Info.memVT = MVT::getVT(CI.getType());
1189 Info.ptrVal = CI.getOperand(0);
1190 Info.align.reset();
1191 Info.flags = MachineMemOperand::MOLoad |
1192 MachineMemOperand::MOStore |
1193 MachineMemOperand::MOVolatile;
1194 return true;
1195 }
1196 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1197 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1198 Info.opc = ISD::INTRINSIC_W_CHAIN;
1199 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1200 Info.ptrVal =
1201 MFI->getImagePSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1202 Info.align.reset();
1203 Info.flags = MachineMemOperand::MOLoad |
1204 MachineMemOperand::MODereferenceable;
1205 return true;
1206 }
1207 case Intrinsic::amdgcn_global_atomic_fadd:
1208 case Intrinsic::amdgcn_global_atomic_fmin:
1209 case Intrinsic::amdgcn_global_atomic_fmax:
1210 case Intrinsic::amdgcn_flat_atomic_fadd:
1211 case Intrinsic::amdgcn_flat_atomic_fmin:
1212 case Intrinsic::amdgcn_flat_atomic_fmax: {
1213 Info.opc = ISD::INTRINSIC_W_CHAIN;
1214 Info.memVT = MVT::getVT(CI.getType());
1215 Info.ptrVal = CI.getOperand(0);
1216 Info.align.reset();
1217 Info.flags = MachineMemOperand::MOLoad |
1218 MachineMemOperand::MOStore |
1219 MachineMemOperand::MODereferenceable |
1220 MachineMemOperand::MOVolatile;
1221 return true;
1222 }
1223 case Intrinsic::amdgcn_ds_gws_init:
1224 case Intrinsic::amdgcn_ds_gws_barrier:
1225 case Intrinsic::amdgcn_ds_gws_sema_v:
1226 case Intrinsic::amdgcn_ds_gws_sema_br:
1227 case Intrinsic::amdgcn_ds_gws_sema_p:
1228 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1229 Info.opc = ISD::INTRINSIC_VOID;
1230
1231 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1232 Info.ptrVal =
1233 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1234
1235 // This is an abstract access, but we need to specify a type and size.
1236 Info.memVT = MVT::i32;
1237 Info.size = 4;
1238 Info.align = Align(4);
1239
1240 Info.flags = MachineMemOperand::MOStore;
1241 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1242 Info.flags = MachineMemOperand::MOLoad;
1243 return true;
1244 }
1245 default:
1246 return false;
1247 }
1248}
1249
1250bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1251 SmallVectorImpl<Value*> &Ops,
1252 Type *&AccessTy) const {
1253 switch (II->getIntrinsicID()) {
1254 case Intrinsic::amdgcn_atomic_inc:
1255 case Intrinsic::amdgcn_atomic_dec:
1256 case Intrinsic::amdgcn_ds_ordered_add:
1257 case Intrinsic::amdgcn_ds_ordered_swap:
1258 case Intrinsic::amdgcn_ds_append:
1259 case Intrinsic::amdgcn_ds_consume:
1260 case Intrinsic::amdgcn_ds_fadd:
1261 case Intrinsic::amdgcn_ds_fmin:
1262 case Intrinsic::amdgcn_ds_fmax:
1263 case Intrinsic::amdgcn_global_atomic_fadd:
1264 case Intrinsic::amdgcn_flat_atomic_fadd:
1265 case Intrinsic::amdgcn_flat_atomic_fmin:
1266 case Intrinsic::amdgcn_flat_atomic_fmax:
1267 case Intrinsic::amdgcn_global_atomic_csub: {
1268 Value *Ptr = II->getArgOperand(0);
1269 AccessTy = II->getType();
1270 Ops.push_back(Ptr);
1271 return true;
1272 }
1273 default:
1274 return false;
1275 }
1276}
1277
1278bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1279 if (!Subtarget->hasFlatInstOffsets()) {
1280 // Flat instructions do not have offsets, and only have the register
1281 // address.
1282 return AM.BaseOffs == 0 && AM.Scale == 0;
1283 }
1284
1285 return AM.Scale == 0 &&
1286 (AM.BaseOffs == 0 ||
1287 Subtarget->getInstrInfo()->isLegalFLATOffset(
1288 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS, SIInstrFlags::FLAT));
1289}
1290
1291bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1292 if (Subtarget->hasFlatGlobalInsts())
1293 return AM.Scale == 0 &&
1294 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1295 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1296 SIInstrFlags::FlatGlobal));
1297
1298 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1299 // Assume the we will use FLAT for all global memory accesses
1300 // on VI.
1301 // FIXME: This assumption is currently wrong. On VI we still use
1302 // MUBUF instructions for the r + i addressing mode. As currently
1303 // implemented, the MUBUF instructions only work on buffer < 4GB.
1304 // It may be possible to support > 4GB buffers with MUBUF instructions,
1305 // by setting the stride value in the resource descriptor which would
1306 // increase the size limit to (stride * 4GB). However, this is risky,
1307 // because it has never been validated.
1308 return isLegalFlatAddressingMode(AM);
1309 }
1310
1311 return isLegalMUBUFAddressingMode(AM);
1312}
1313
1314bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1315 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1316 // additionally can do r + r + i with addr64. 32-bit has more addressing
1317 // mode options. Depending on the resource constant, it can also do
1318 // (i64 r0) + (i32 r1) * (i14 i).
1319 //
1320 // Private arrays end up using a scratch buffer most of the time, so also
1321 // assume those use MUBUF instructions. Scratch loads / stores are currently
1322 // implemented as mubuf instructions with offen bit set, so slightly
1323 // different than the normal addr64.
1324 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1325 return false;
1326
1327 // FIXME: Since we can split immediate into soffset and immediate offset,
1328 // would it make sense to allow any immediate?
1329
1330 switch (AM.Scale) {
1331 case 0: // r + i or just i, depending on HasBaseReg.
1332 return true;
1333 case 1:
1334 return true; // We have r + r or r + i.
1335 case 2:
1336 if (AM.HasBaseReg) {
1337 // Reject 2 * r + r.
1338 return false;
1339 }
1340
1341 // Allow 2 * r as r + r
1342 // Or 2 * r + i is allowed as r + r + i.
1343 return true;
1344 default: // Don't allow n * r
1345 return false;
1346 }
1347}
1348
1349bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1350 const AddrMode &AM, Type *Ty,
1351 unsigned AS, Instruction *I) const {
1352 // No global is ever allowed as a base.
1353 if (AM.BaseGV)
1354 return false;
1355
1356 if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1357 return isLegalGlobalAddressingMode(AM);
1358
1359 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1360 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1361 AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1362 // If the offset isn't a multiple of 4, it probably isn't going to be
1363 // correctly aligned.
1364 // FIXME: Can we get the real alignment here?
1365 if (AM.BaseOffs % 4 != 0)
1366 return isLegalMUBUFAddressingMode(AM);
1367
1368 // There are no SMRD extloads, so if we have to do a small type access we
1369 // will use a MUBUF load.
1370 // FIXME?: We also need to do this if unaligned, but we don't know the
1371 // alignment here.
1372 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1373 return isLegalGlobalAddressingMode(AM);
1374
1375 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1376 // SMRD instructions have an 8-bit, dword offset on SI.
1377 if (!isUInt<8>(AM.BaseOffs / 4))
1378 return false;
1379 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1380 // On CI+, this can also be a 32-bit literal constant offset. If it fits
1381 // in 8-bits, it can use a smaller encoding.
1382 if (!isUInt<32>(AM.BaseOffs / 4))
1383 return false;
1384 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1385 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1386 if (!isUInt<20>(AM.BaseOffs))
1387 return false;
1388 } else
1389 llvm_unreachable("unhandled generation")::llvm::llvm_unreachable_internal("unhandled generation", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1389)
;
1390
1391 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1392 return true;
1393
1394 if (AM.Scale == 1 && AM.HasBaseReg)
1395 return true;
1396
1397 return false;
1398
1399 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1400 return isLegalMUBUFAddressingMode(AM);
1401 } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1402 AS == AMDGPUAS::REGION_ADDRESS) {
1403 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1404 // field.
1405 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1406 // an 8-bit dword offset but we don't know the alignment here.
1407 if (!isUInt<16>(AM.BaseOffs))
1408 return false;
1409
1410 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1411 return true;
1412
1413 if (AM.Scale == 1 && AM.HasBaseReg)
1414 return true;
1415
1416 return false;
1417 } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1418 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1419 // For an unknown address space, this usually means that this is for some
1420 // reason being used for pure arithmetic, and not based on some addressing
1421 // computation. We don't have instructions that compute pointers with any
1422 // addressing modes, so treat them as having no offset like flat
1423 // instructions.
1424 return isLegalFlatAddressingMode(AM);
1425 }
1426
1427 // Assume a user alias of global for unknown address spaces.
1428 return isLegalGlobalAddressingMode(AM);
1429}
1430
1431bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1432 const MachineFunction &MF) const {
1433 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1434 return (MemVT.getSizeInBits() <= 4 * 32);
1435 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1436 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1437 return (MemVT.getSizeInBits() <= MaxPrivateBits);
1438 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1439 return (MemVT.getSizeInBits() <= 2 * 32);
1440 }
1441 return true;
1442}
1443
1444bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1445 unsigned Size, unsigned AddrSpace, Align Alignment,
1446 MachineMemOperand::Flags Flags, bool *IsFast) const {
1447 if (IsFast)
1448 *IsFast = false;
1449
1450 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1451 AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1452 // Check if alignment requirements for ds_read/write instructions are
1453 // disabled.
1454 if (Subtarget->hasUnalignedDSAccessEnabled() &&
1455 !Subtarget->hasLDSMisalignedBug()) {
1456 if (IsFast)
1457 *IsFast = Alignment != Align(2);
1458 return true;
1459 }
1460
1461 // Either, the alignment requirements are "enabled", or there is an
1462 // unaligned LDS access related hardware bug though alignment requirements
1463 // are "disabled". In either case, we need to check for proper alignment
1464 // requirements.
1465 //
1466 if (Size == 64) {
1467 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1468 // can do a 4 byte aligned, 8 byte access in a single operation using
1469 // ds_read2/write2_b32 with adjacent offsets.
1470 bool AlignedBy4 = Alignment >= Align(4);
1471 if (IsFast)
1472 *IsFast = AlignedBy4;
1473
1474 return AlignedBy4;
1475 }
1476 if (Size == 96) {
1477 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1478 // gfx8 and older.
1479 bool AlignedBy16 = Alignment >= Align(16);
1480 if (IsFast)
1481 *IsFast = AlignedBy16;
1482
1483 return AlignedBy16;
1484 }
1485 if (Size == 128) {
1486 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1487 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a
1488 // single operation using ds_read2/write2_b64.
1489 bool AlignedBy8 = Alignment >= Align(8);
1490 if (IsFast)
1491 *IsFast = AlignedBy8;
1492
1493 return AlignedBy8;
1494 }
1495 }
1496
1497 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
1498 bool AlignedBy4 = Alignment >= Align(4);
1499 if (IsFast)
1500 *IsFast = AlignedBy4;
1501
1502 return AlignedBy4 ||
1503 Subtarget->enableFlatScratch() ||
1504 Subtarget->hasUnalignedScratchAccess();
1505 }
1506
1507 // FIXME: We have to be conservative here and assume that flat operations
1508 // will access scratch. If we had access to the IR function, then we
1509 // could determine if any private memory was used in the function.
1510 if (AddrSpace == AMDGPUAS::FLAT_ADDRESS &&
1511 !Subtarget->hasUnalignedScratchAccess()) {
1512 bool AlignedBy4 = Alignment >= Align(4);
1513 if (IsFast)
1514 *IsFast = AlignedBy4;
1515
1516 return AlignedBy4;
1517 }
1518
1519 if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1520 !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1521 AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1522 // If we have an uniform constant load, it still requires using a slow
1523 // buffer instruction if unaligned.
1524 if (IsFast) {
1525 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1526 // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1527 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1528 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1529 Alignment >= Align(4) : Alignment != Align(2);
1530 }
1531
1532 return true;
1533 }
1534
1535 // Smaller than dword value must be aligned.
1536 if (Size < 32)
1537 return false;
1538
1539 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1540 // byte-address are ignored, thus forcing Dword alignment.
1541 // This applies to private, global, and constant memory.
1542 if (IsFast)
1543 *IsFast = true;
1544
1545 return Size >= 32 && Alignment >= Align(4);
1546}
1547
1548bool SITargetLowering::allowsMisalignedMemoryAccesses(
1549 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1550 bool *IsFast) const {
1551 if (IsFast)
1552 *IsFast = false;
1553
1554 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1555 // which isn't a simple VT.
1556 // Until MVT is extended to handle this, simply check for the size and
1557 // rely on the condition below: allow accesses if the size is a multiple of 4.
1558 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1559 VT.getStoreSize() > 16)) {
1560 return false;
1561 }
1562
1563 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1564 Alignment, Flags, IsFast);
1565}
1566
1567EVT SITargetLowering::getOptimalMemOpType(
1568 const MemOp &Op, const AttributeList &FuncAttributes) const {
1569 // FIXME: Should account for address space here.
1570
1571 // The default fallback uses the private pointer size as a guess for a type to
1572 // use. Make sure we switch these to 64-bit accesses.
1573
1574 if (Op.size() >= 16 &&
1575 Op.isDstAligned(Align(4))) // XXX: Should only do for global
1576 return MVT::v4i32;
1577
1578 if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1579 return MVT::v2i32;
1580
1581 // Use the default.
1582 return MVT::Other;
1583}
1584
1585bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1586 const MemSDNode *MemNode = cast<MemSDNode>(N);
1587 const Value *Ptr = MemNode->getMemOperand()->getValue();
1588 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1589 return I && I->getMetadata("amdgpu.noclobber");
1590}
1591
1592bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1593 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1594 AS == AMDGPUAS::PRIVATE_ADDRESS;
1595}
1596
1597bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1598 unsigned DestAS) const {
1599 // Flat -> private/local is a simple truncate.
1600 // Flat -> global is no-op
1601 if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1602 return true;
1603
1604 const GCNTargetMachine &TM =
1605 static_cast<const GCNTargetMachine &>(getTargetMachine());
1606 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1607}
1608
1609bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1610 const MemSDNode *MemNode = cast<MemSDNode>(N);
1611
1612 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1613}
1614
1615TargetLoweringBase::LegalizeTypeAction
1616SITargetLowering::getPreferredVectorAction(MVT VT) const {
1617 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1618 VT.getScalarType().bitsLE(MVT::i16))
1619 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1620 return TargetLoweringBase::getPreferredVectorAction(VT);
1621}
1622
1623bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1624 Type *Ty) const {
1625 // FIXME: Could be smarter if called for vector constants.
1626 return true;
1627}
1628
1629bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1630 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1631 switch (Op) {
1632 case ISD::LOAD:
1633 case ISD::STORE:
1634
1635 // These operations are done with 32-bit instructions anyway.
1636 case ISD::AND:
1637 case ISD::OR:
1638 case ISD::XOR:
1639 case ISD::SELECT:
1640 // TODO: Extensions?
1641 return true;
1642 default:
1643 return false;
1644 }
1645 }
1646
1647 // SimplifySetCC uses this function to determine whether or not it should
1648 // create setcc with i1 operands. We don't have instructions for i1 setcc.
1649 if (VT == MVT::i1 && Op == ISD::SETCC)
1650 return false;
1651
1652 return TargetLowering::isTypeDesirableForOp(Op, VT);
1653}
1654
1655SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1656 const SDLoc &SL,
1657 SDValue Chain,
1658 uint64_t Offset) const {
1659 const DataLayout &DL = DAG.getDataLayout();
1660 MachineFunction &MF = DAG.getMachineFunction();
1661 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1662
1663 const ArgDescriptor *InputPtrReg;
1664 const TargetRegisterClass *RC;
1665 LLT ArgTy;
1666 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1667
1668 std::tie(InputPtrReg, RC, ArgTy) =
1669 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1670
1671 // We may not have the kernarg segment argument if we have no kernel
1672 // arguments.
1673 if (!InputPtrReg)
1674 return DAG.getConstant(0, SL, PtrVT);
1675
1676 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1677 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1678 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1679
1680 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1681}
1682
1683SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1684 const SDLoc &SL) const {
1685 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1686 FIRST_IMPLICIT);
1687 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1688}
1689
1690SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1691 const SDLoc &SL, SDValue Val,
1692 bool Signed,
1693 const ISD::InputArg *Arg) const {
1694 // First, if it is a widened vector, narrow it.
1695 if (VT.isVector() &&
1696 VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1697 EVT NarrowedVT =
1698 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1699 VT.getVectorNumElements());
1700 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1701 DAG.getConstant(0, SL, MVT::i32));
1702 }
1703
1704 // Then convert the vector elements or scalar value.
1705 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1706 VT.bitsLT(MemVT)) {
1707 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1708 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1709 }
1710
1711 if (MemVT.isFloatingPoint())
1712 Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1713 else if (Signed)
1714 Val = DAG.getSExtOrTrunc(Val, SL, VT);
1715 else
1716 Val = DAG.getZExtOrTrunc(Val, SL, VT);
1717
1718 return Val;
1719}
1720
1721SDValue SITargetLowering::lowerKernargMemParameter(
1722 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1723 uint64_t Offset, Align Alignment, bool Signed,
1724 const ISD::InputArg *Arg) const {
1725 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1726
1727 // Try to avoid using an extload by loading earlier than the argument address,
1728 // and extracting the relevant bits. The load should hopefully be merged with
1729 // the previous argument.
1730 if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1731 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1732 int64_t AlignDownOffset = alignDown(Offset, 4);
1733 int64_t OffsetDiff = Offset - AlignDownOffset;
1734
1735 EVT IntVT = MemVT.changeTypeToInteger();
1736
1737 // TODO: If we passed in the base kernel offset we could have a better
1738 // alignment than 4, but we don't really need it.
1739 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1740 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1741 MachineMemOperand::MODereferenceable |
1742 MachineMemOperand::MOInvariant);
1743
1744 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1745 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1746
1747 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1748 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1749 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1750
1751
1752 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1753 }
1754
1755 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1756 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1757 MachineMemOperand::MODereferenceable |
1758 MachineMemOperand::MOInvariant);
1759
1760 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1761 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1762}
1763
1764SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1765 const SDLoc &SL, SDValue Chain,
1766 const ISD::InputArg &Arg) const {
1767 MachineFunction &MF = DAG.getMachineFunction();
1768 MachineFrameInfo &MFI = MF.getFrameInfo();
1769
1770 if (Arg.Flags.isByVal()) {
1771 unsigned Size = Arg.Flags.getByValSize();
1772 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1773 return DAG.getFrameIndex(FrameIdx, MVT::i32);
1774 }
1775
1776 unsigned ArgOffset = VA.getLocMemOffset();
1777 unsigned ArgSize = VA.getValVT().getStoreSize();
1778
1779 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1780
1781 // Create load nodes to retrieve arguments from the stack.
1782 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1783 SDValue ArgValue;
1784
1785 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1786 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1787 MVT MemVT = VA.getValVT();
1788
1789 switch (VA.getLocInfo()) {
1790 default:
1791 break;
1792 case CCValAssign::BCvt:
1793 MemVT = VA.getLocVT();
1794 break;
1795 case CCValAssign::SExt:
1796 ExtType = ISD::SEXTLOAD;
1797 break;
1798 case CCValAssign::ZExt:
1799 ExtType = ISD::ZEXTLOAD;
1800 break;
1801 case CCValAssign::AExt:
1802 ExtType = ISD::EXTLOAD;
1803 break;
1804 }
1805
1806 ArgValue = DAG.getExtLoad(
1807 ExtType, SL, VA.getLocVT(), Chain, FIN,
1808 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1809 MemVT);
1810 return ArgValue;
1811}
1812
1813SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1814 const SIMachineFunctionInfo &MFI,
1815 EVT VT,
1816 AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1817 const ArgDescriptor *Reg;
1818 const TargetRegisterClass *RC;
1819 LLT Ty;
1820
1821 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1822 if (!Reg) {
1823 // It's possible for a kernarg intrinsic call to appear in a kernel with no
1824 // allocated segment, in which case we do not add the user sgpr argument, so
1825 // just return null.
1826 assert(PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR)(static_cast <bool> (PVID == AMDGPUFunctionArgInfo::PreloadedValue
::KERNARG_SEGMENT_PTR) ? void (0) : __assert_fail ("PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1826, __extension__ __PRETTY_FUNCTION__))
;
1827 return DAG.getConstant(0, SDLoc(), VT);
1828 }
1829
1830 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1831}
1832
1833static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1834 CallingConv::ID CallConv,
1835 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1836 FunctionType *FType,
1837 SIMachineFunctionInfo *Info) {
1838 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1839 const ISD::InputArg *Arg = &Ins[I];
1840
1841 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&(static_cast <bool> ((!Arg->VT.isVector() || Arg->
VT.getScalarSizeInBits() == 16) && "vector type argument should have been split"
) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"vector type argument should have been split\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1842, __extension__ __PRETTY_FUNCTION__))
1842 "vector type argument should have been split")(static_cast <bool> ((!Arg->VT.isVector() || Arg->
VT.getScalarSizeInBits() == 16) && "vector type argument should have been split"
) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"vector type argument should have been split\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1842, __extension__ __PRETTY_FUNCTION__))
;
1843
1844 // First check if it's a PS input addr.
1845 if (CallConv == CallingConv::AMDGPU_PS &&
1846 !Arg->Flags.isInReg() && PSInputNum <= 15) {
1847 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1848
1849 // Inconveniently only the first part of the split is marked as isSplit,
1850 // so skip to the end. We only want to increment PSInputNum once for the
1851 // entire split argument.
1852 if (Arg->Flags.isSplit()) {
1853 while (!Arg->Flags.isSplitEnd()) {
1854 assert((!Arg->VT.isVector() ||(static_cast <bool> ((!Arg->VT.isVector() || Arg->
VT.getScalarSizeInBits() == 16) && "unexpected vector split in ps argument type"
) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1856, __extension__ __PRETTY_FUNCTION__))
1855 Arg->VT.getScalarSizeInBits() == 16) &&(static_cast <bool> ((!Arg->VT.isVector() || Arg->
VT.getScalarSizeInBits() == 16) && "unexpected vector split in ps argument type"
) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1856, __extension__ __PRETTY_FUNCTION__))
1856 "unexpected vector split in ps argument type")(static_cast <bool> ((!Arg->VT.isVector() || Arg->
VT.getScalarSizeInBits() == 16) && "unexpected vector split in ps argument type"
) ? void (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1856, __extension__ __PRETTY_FUNCTION__))
;
1857 if (!SkipArg)
1858 Splits.push_back(*Arg);
1859 Arg = &Ins[++I];
1860 }
1861 }
1862
1863 if (SkipArg) {
1864 // We can safely skip PS inputs.
1865 Skipped.set(Arg->getOrigArgIndex());
1866 ++PSInputNum;
1867 continue;
1868 }
1869
1870 Info->markPSInputAllocated(PSInputNum);
1871 if (Arg->Used)
1872 Info->markPSInputEnabled(PSInputNum);
1873
1874 ++PSInputNum;
1875 }
1876
1877 Splits.push_back(*Arg);
1878 }
1879}
1880
1881// Allocate special inputs passed in VGPRs.
1882void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1883 MachineFunction &MF,
1884 const SIRegisterInfo &TRI,
1885 SIMachineFunctionInfo &Info) const {
1886 const LLT S32 = LLT::scalar(32);
1887 MachineRegisterInfo &MRI = MF.getRegInfo();
1888
1889 if (Info.hasWorkItemIDX()) {
1890 Register Reg = AMDGPU::VGPR0;
1891 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1892
1893 CCInfo.AllocateReg(Reg);
1894 unsigned Mask = (Subtarget->hasPackedTID() &&
1895 Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
1896 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1897 }
1898
1899 if (Info.hasWorkItemIDY()) {
1900 assert(Info.hasWorkItemIDX())(static_cast <bool> (Info.hasWorkItemIDX()) ? void (0) :
__assert_fail ("Info.hasWorkItemIDX()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1900, __extension__ __PRETTY_FUNCTION__))
;
1901 if (Subtarget->hasPackedTID()) {
1902 Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1903 0x3ff << 10));
1904 } else {
1905 unsigned Reg = AMDGPU::VGPR1;
1906 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1907
1908 CCInfo.AllocateReg(Reg);
1909 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1910 }
1911 }
1912
1913 if (Info.hasWorkItemIDZ()) {
1914 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY())(static_cast <bool> (Info.hasWorkItemIDX() && Info
.hasWorkItemIDY()) ? void (0) : __assert_fail ("Info.hasWorkItemIDX() && Info.hasWorkItemIDY()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1914, __extension__ __PRETTY_FUNCTION__))
;
1915 if (Subtarget->hasPackedTID()) {
1916 Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0,
1917 0x3ff << 20));
1918 } else {
1919 unsigned Reg = AMDGPU::VGPR2;
1920 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1921
1922 CCInfo.AllocateReg(Reg);
1923 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1924 }
1925 }
1926}
1927
1928// Try to allocate a VGPR at the end of the argument list, or if no argument
1929// VGPRs are left allocating a stack slot.
1930// If \p Mask is is given it indicates bitfield position in the register.
1931// If \p Arg is given use it with new ]p Mask instead of allocating new.
1932static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1933 ArgDescriptor Arg = ArgDescriptor()) {
1934 if (Arg.isSet())
1935 return ArgDescriptor::createArg(Arg, Mask);
1936
1937 ArrayRef<MCPhysReg> ArgVGPRs
1938 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1939 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1940 if (RegIdx == ArgVGPRs.size()) {
1941 // Spill to stack required.
1942 int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1943
1944 return ArgDescriptor::createStack(Offset, Mask);
1945 }
1946
1947 unsigned Reg = ArgVGPRs[RegIdx];
1948 Reg = CCInfo.AllocateReg(Reg);
1949 assert(Reg != AMDGPU::NoRegister)(static_cast <bool> (Reg != AMDGPU::NoRegister) ? void (
0) : __assert_fail ("Reg != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1949, __extension__ __PRETTY_FUNCTION__))
;
1950
1951 MachineFunction &MF = CCInfo.getMachineFunction();
1952 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1953 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1954 return ArgDescriptor::createRegister(Reg, Mask);
1955}
1956
1957static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1958 const TargetRegisterClass *RC,
1959 unsigned NumArgRegs) {
1960 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1961 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1962 if (RegIdx == ArgSGPRs.size())
1963 report_fatal_error("ran out of SGPRs for arguments");
1964
1965 unsigned Reg = ArgSGPRs[RegIdx];
1966 Reg = CCInfo.AllocateReg(Reg);
1967 assert(Reg != AMDGPU::NoRegister)(static_cast <bool> (Reg != AMDGPU::NoRegister) ? void (
0) : __assert_fail ("Reg != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1967, __extension__ __PRETTY_FUNCTION__))
;
1968
1969 MachineFunction &MF = CCInfo.getMachineFunction();
1970 MF.addLiveIn(Reg, RC);
1971 return ArgDescriptor::createRegister(Reg);
1972}
1973
1974// If this has a fixed position, we still should allocate the register in the
1975// CCInfo state. Technically we could get away with this for values passed
1976// outside of the normal argument range.
1977static void allocateFixedSGPRInputImpl(CCState &CCInfo,
1978 const TargetRegisterClass *RC,
1979 MCRegister Reg) {
1980 Reg = CCInfo.AllocateReg(Reg);
1981 assert(Reg != AMDGPU::NoRegister)(static_cast <bool> (Reg != AMDGPU::NoRegister) ? void (
0) : __assert_fail ("Reg != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1981, __extension__ __PRETTY_FUNCTION__))
;
1982 MachineFunction &MF = CCInfo.getMachineFunction();
1983 MF.addLiveIn(Reg, RC);
1984}
1985
1986static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
1987 if (Arg) {
1988 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
1989 Arg.getRegister());
1990 } else
1991 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1992}
1993
1994static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
1995 if (Arg) {
1996 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
1997 Arg.getRegister());
1998 } else
1999 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
2000}
2001
2002/// Allocate implicit function VGPR arguments at the end of allocated user
2003/// arguments.
2004void SITargetLowering::allocateSpecialInputVGPRs(
2005 CCState &CCInfo, MachineFunction &MF,
2006 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2007 const unsigned Mask = 0x3ff;
2008 ArgDescriptor Arg;
2009
2010 if (Info.hasWorkItemIDX()) {
2011 Arg = allocateVGPR32Input(CCInfo, Mask);
2012 Info.setWorkItemIDX(Arg);
2013 }
2014
2015 if (Info.hasWorkItemIDY()) {
2016 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
2017 Info.setWorkItemIDY(Arg);
2018 }
2019
2020 if (Info.hasWorkItemIDZ())
2021 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2022}
2023
2024/// Allocate implicit function VGPR arguments in fixed registers.
2025void SITargetLowering::allocateSpecialInputVGPRsFixed(
2026 CCState &CCInfo, MachineFunction &MF,
2027 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2028 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2029 if (!Reg)
2030 report_fatal_error("failed to allocated VGPR for implicit arguments");
2031
2032 const unsigned Mask = 0x3ff;
2033 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2034 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2035 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2036}
2037
2038void SITargetLowering::allocateSpecialInputSGPRs(
2039 CCState &CCInfo,
2040 MachineFunction &MF,
2041 const SIRegisterInfo &TRI,
2042 SIMachineFunctionInfo &Info) const {
2043 auto &ArgInfo = Info.getArgInfo();
2044
2045 // TODO: Unify handling with private memory pointers.
2046
2047 if (Info.hasDispatchPtr())
2048 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2049
2050 if (Info.hasQueuePtr())
2051 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2052
2053 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2054 // constant offset from the kernarg segment.
2055 if (Info.hasImplicitArgPtr())
2056 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2057
2058 if (Info.hasDispatchID())
2059 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2060
2061 // flat_scratch_init is not applicable for non-kernel functions.
2062
2063 if (Info.hasWorkGroupIDX())
2064 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2065
2066 if (Info.hasWorkGroupIDY())
2067 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2068
2069 if (Info.hasWorkGroupIDZ())
2070 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2071}
2072
2073// Allocate special inputs passed in user SGPRs.
2074void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2075 MachineFunction &MF,
2076 const SIRegisterInfo &TRI,
2077 SIMachineFunctionInfo &Info) const {
2078 if (Info.hasImplicitBufferPtr()) {
2079 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2080 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2081 CCInfo.AllocateReg(ImplicitBufferPtrReg);
2082 }
2083
2084 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2085 if (Info.hasPrivateSegmentBuffer()) {
2086 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2087 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2088 CCInfo.AllocateReg(PrivateSegmentBufferReg);
2089 }
2090
2091 if (Info.hasDispatchPtr()) {
2092 Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2093 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2094 CCInfo.AllocateReg(DispatchPtrReg);
2095 }
2096
2097 if (Info.hasQueuePtr()) {
2098 Register QueuePtrReg = Info.addQueuePtr(TRI);
2099 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2100 CCInfo.AllocateReg(QueuePtrReg);
2101 }
2102
2103 if (Info.hasKernargSegmentPtr()) {
2104 MachineRegisterInfo &MRI = MF.getRegInfo();
2105 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2106 CCInfo.AllocateReg(InputPtrReg);
2107
2108 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2109 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2110 }
2111
2112 if (Info.hasDispatchID()) {
2113 Register DispatchIDReg = Info.addDispatchID(TRI);
2114 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2115 CCInfo.AllocateReg(DispatchIDReg);
2116 }
2117
2118 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2119 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2120 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2121 CCInfo.AllocateReg(FlatScratchInitReg);
2122 }
2123
2124 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2125 // these from the dispatch pointer.
2126}
2127
2128// Allocate special input registers that are initialized per-wave.
2129void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2130 MachineFunction &MF,
2131 SIMachineFunctionInfo &Info,
2132 CallingConv::ID CallConv,
2133 bool IsShader) const {
2134 if (Info.hasWorkGroupIDX()) {
2135 Register Reg = Info.addWorkGroupIDX();
2136 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2137 CCInfo.AllocateReg(Reg);
2138 }
2139
2140 if (Info.hasWorkGroupIDY()) {
2141 Register Reg = Info.addWorkGroupIDY();
2142 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2143 CCInfo.AllocateReg(Reg);
2144 }
2145
2146 if (Info.hasWorkGroupIDZ()) {
2147 Register Reg = Info.addWorkGroupIDZ();
2148 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2149 CCInfo.AllocateReg(Reg);
2150 }
2151
2152 if (Info.hasWorkGroupInfo()) {
2153 Register Reg = Info.addWorkGroupInfo();
2154 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2155 CCInfo.AllocateReg(Reg);
2156 }
2157
2158 if (Info.hasPrivateSegmentWaveByteOffset()) {
2159 // Scratch wave offset passed in system SGPR.
2160 unsigned PrivateSegmentWaveByteOffsetReg;
2161
2162 if (IsShader) {
2163 PrivateSegmentWaveByteOffsetReg =
2164 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2165
2166 // This is true if the scratch wave byte offset doesn't have a fixed
2167 // location.
2168 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2169 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2170 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2171 }
2172 } else
2173 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2174
2175 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2176 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2177 }
2178}
2179
2180static void reservePrivateMemoryRegs(const TargetMachine &TM,
2181 MachineFunction &MF,
2182 const SIRegisterInfo &TRI,
2183 SIMachineFunctionInfo &Info) {
2184 // Now that we've figured out where the scratch register inputs are, see if
2185 // should reserve the arguments and use them directly.
2186 MachineFrameInfo &MFI = MF.getFrameInfo();
2187 bool HasStackObjects = MFI.hasStackObjects();
2188 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2189
2190 // Record that we know we have non-spill stack objects so we don't need to
2191 // check all stack objects later.
2192 if (HasStackObjects)
2193 Info.setHasNonSpillStackObjects(true);
2194
2195 // Everything live out of a block is spilled with fast regalloc, so it's
2196 // almost certain that spilling will be required.
2197 if (TM.getOptLevel() == CodeGenOpt::None)
2198 HasStackObjects = true;
2199
2200 // For now assume stack access is needed in any callee functions, so we need
2201 // the scratch registers to pass in.
2202 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2203
2204 if (!ST.enableFlatScratch()) {
2205 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2206 // If we have stack objects, we unquestionably need the private buffer
2207 // resource. For the Code Object V2 ABI, this will be the first 4 user
2208 // SGPR inputs. We can reserve those and use them directly.
2209
2210 Register PrivateSegmentBufferReg =
2211 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2212 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2213 } else {
2214 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2215 // We tentatively reserve the last registers (skipping the last registers
2216 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2217 // we'll replace these with the ones immediately after those which were
2218 // really allocated. In the prologue copies will be inserted from the
2219 // argument to these reserved registers.
2220
2221 // Without HSA, relocations are used for the scratch pointer and the
2222 // buffer resource setup is always inserted in the prologue. Scratch wave
2223 // offset is still in an input SGPR.
2224 Info.setScratchRSrcReg(ReservedBufferReg);
2225 }
2226 }
2227
2228 MachineRegisterInfo &MRI = MF.getRegInfo();
2229
2230 // For entry functions we have to set up the stack pointer if we use it,
2231 // whereas non-entry functions get this "for free". This means there is no
2232 // intrinsic advantage to using S32 over S34 in cases where we do not have
2233 // calls but do need a frame pointer (i.e. if we are requested to have one
2234 // because frame pointer elimination is disabled). To keep things simple we
2235 // only ever use S32 as the call ABI stack pointer, and so using it does not
2236 // imply we need a separate frame pointer.
2237 //
2238 // Try to use s32 as the SP, but move it if it would interfere with input
2239 // arguments. This won't work with calls though.
2240 //
2241 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2242 // registers.
2243 if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2244 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2245 } else {
2246 assert(AMDGPU::isShader(MF.getFunction().getCallingConv()))(static_cast <bool> (AMDGPU::isShader(MF.getFunction().
getCallingConv())) ? void (0) : __assert_fail ("AMDGPU::isShader(MF.getFunction().getCallingConv())"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2246, __extension__ __PRETTY_FUNCTION__))
;
2247
2248 if (MFI.hasCalls())
2249 report_fatal_error("call in graphics shader with too many input SGPRs");
2250
2251 for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2252 if (!MRI.isLiveIn(Reg)) {
2253 Info.setStackPtrOffsetReg(Reg);
2254 break;
2255 }
2256 }
2257
2258 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2259 report_fatal_error("failed to find register for SP");
2260 }
2261
2262 // hasFP should be accurate for entry functions even before the frame is
2263 // finalized, because it does not rely on the known stack size, only
2264 // properties like whether variable sized objects are present.
2265 if (ST.getFrameLowering()->hasFP(MF)) {
2266 Info.setFrameOffsetReg(AMDGPU::SGPR33);
2267 }
2268}
2269
2270bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2271 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2272 return !Info->isEntryFunction();
2273}
2274
2275void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2276
2277}
2278
2279void SITargetLowering::insertCopiesSplitCSR(
2280 MachineBasicBlock *Entry,
2281 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2282 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2283
2284 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2285 if (!IStart)
2286 return;
2287
2288 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2289 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2290 MachineBasicBlock::iterator MBBI = Entry->begin();
2291 for (const MCPhysReg *I = IStart; *I; ++I) {
2292 const TargetRegisterClass *RC = nullptr;
2293 if (AMDGPU::SReg_64RegClass.contains(*I))
2294 RC = &AMDGPU::SGPR_64RegClass;
2295 else if (AMDGPU::SReg_32RegClass.contains(*I))
2296 RC = &AMDGPU::SGPR_32RegClass;
2297 else
2298 llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2298)
;
2299
2300 Register NewVR = MRI->createVirtualRegister(RC);
2301 // Create copy from CSR to a virtual register.
2302 Entry->addLiveIn(*I);
2303 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2304 .addReg(*I);
2305
2306 // Insert the copy-back instructions right before the terminator.
2307 for (auto *Exit : Exits)
2308 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2309 TII->get(TargetOpcode::COPY), *I)
2310 .addReg(NewVR);
2311 }
2312}
2313
2314SDValue SITargetLowering::LowerFormalArguments(
2315 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2316 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2317 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2318 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2319
2320 MachineFunction &MF = DAG.getMachineFunction();
2321 const Function &Fn = MF.getFunction();
2322 FunctionType *FType = MF.getFunction().getFunctionType();
2323 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2324
2325 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2326 DiagnosticInfoUnsupported NoGraphicsHSA(
2327 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2328 DAG.getContext()->diagnose(NoGraphicsHSA);
2329 return DAG.getEntryNode();
2330 }
2331
2332 Info->allocateModuleLDSGlobal(Fn.getParent());
2333
2334 SmallVector<ISD::InputArg, 16> Splits;
2335 SmallVector<CCValAssign, 16> ArgLocs;
2336 BitVector Skipped(Ins.size());
2337 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2338 *DAG.getContext());
2339
2340 bool IsGraphics = AMDGPU::isGraphics(CallConv);
2341 bool IsKernel = AMDGPU::isKernel(CallConv);
2342 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2343
2344 if (IsGraphics) {
2345 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit
() || Subtarget->enableFlatScratch()) && !Info->
hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
!Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo
() && !Info->hasWorkItemIDX() && !Info->
hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void
(0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2350, __extension__ __PRETTY_FUNCTION__))
2346 (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit
() || Subtarget->enableFlatScratch()) && !Info->
hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
!Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo
() && !Info->hasWorkItemIDX() && !Info->
hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void
(0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2350, __extension__ __PRETTY_FUNCTION__))
2347 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit
() || Subtarget->enableFlatScratch()) && !Info->
hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
!Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo
() && !Info->hasWorkItemIDX() && !Info->
hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void
(0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2350, __extension__ __PRETTY_FUNCTION__))
2348 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit
() || Subtarget->enableFlatScratch()) && !Info->
hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
!Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo
() && !Info->hasWorkItemIDX() && !Info->
hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void
(0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2350, __extension__ __PRETTY_FUNCTION__))
2349 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit
() || Subtarget->enableFlatScratch()) && !Info->
hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
!Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo
() && !Info->hasWorkItemIDX() && !Info->
hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void
(0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2350, __extension__ __PRETTY_FUNCTION__))
2350 !Info->hasWorkItemIDZ())(static_cast <bool> (!Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit
() || Subtarget->enableFlatScratch()) && !Info->
hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
!Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo
() && !Info->hasWorkItemIDX() && !Info->
hasWorkItemIDY() && !Info->hasWorkItemIDZ()) ? void
(0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2350, __extension__ __PRETTY_FUNCTION__))
;
2351 }
2352
2353 if (CallConv == CallingConv::AMDGPU_PS) {
2354 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2355
2356 // At least one interpolation mode must be enabled or else the GPU will
2357 // hang.
2358 //
2359 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2360 // set PSInputAddr, the user wants to enable some bits after the compilation
2361 // based on run-time states. Since we can't know what the final PSInputEna
2362 // will look like, so we shouldn't do anything here and the user should take
2363 // responsibility for the correct programming.
2364 //
2365 // Otherwise, the following restrictions apply:
2366 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2367 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2368 // enabled too.
2369 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2370 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2371 CCInfo.AllocateReg(AMDGPU::VGPR0);
2372 CCInfo.AllocateReg(AMDGPU::VGPR1);
2373 Info->markPSInputAllocated(0);
2374 Info->markPSInputEnabled(0);
2375 }
2376 if (Subtarget->isAmdPalOS()) {
2377 // For isAmdPalOS, the user does not enable some bits after compilation
2378 // based on run-time states; the register values being generated here are
2379 // the final ones set in hardware. Therefore we need to apply the
2380 // workaround to PSInputAddr and PSInputEnable together. (The case where
2381 // a bit is set in PSInputAddr but not PSInputEnable is where the
2382 // frontend set up an input arg for a particular interpolation mode, but
2383 // nothing uses that input arg. Really we should have an earlier pass
2384 // that removes such an arg.)
2385 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2386 if ((PsInputBits & 0x7F) == 0 ||
2387 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2388 Info->markPSInputEnabled(
2389 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2390 }
2391 } else if (IsKernel) {
2392 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX())(static_cast <bool> (Info->hasWorkGroupIDX() &&
Info->hasWorkItemIDX()) ? void (0) : __assert_fail ("Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2392, __extension__ __PRETTY_FUNCTION__))
;
2393 } else {
2394 Splits.append(Ins.begin(), Ins.end());
2395 }
2396
2397 if (IsEntryFunc) {
2398 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2399 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2400 } else {
2401 // For the fixed ABI, pass workitem IDs in the last argument register.
2402 if (AMDGPUTargetMachine::EnableFixedFunctionABI)
2403 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2404 }
2405
2406 if (IsKernel) {
2407 analyzeFormalArgumentsCompute(CCInfo, Ins);
2408 } else {
2409 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2410 CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2411 }
2412
2413 SmallVector<SDValue, 16> Chains;
2414
2415 // FIXME: This is the minimum kernel argument alignment. We should improve
2416 // this to the maximum alignment of the arguments.
2417 //
2418 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2419 // kern arg offset.
2420 const Align KernelArgBaseAlign = Align(16);
2421
2422 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2423 const ISD::InputArg &Arg = Ins[i];
2424 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2425 InVals.push_back(DAG.getUNDEF(Arg.VT));
2426 continue;
2427 }
2428
2429 CCValAssign &VA = ArgLocs[ArgIdx++];
2430 MVT VT = VA.getLocVT();
2431
2432 if (IsEntryFunc && VA.isMemLoc()) {
2433 VT = Ins[i].VT;
2434 EVT MemVT = VA.getLocVT();
2435
2436 const uint64_t Offset = VA.getLocMemOffset();
2437 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2438
2439 if (Arg.Flags.isByRef()) {
2440 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2441
2442 const GCNTargetMachine &TM =
2443 static_cast<const GCNTargetMachine &>(getTargetMachine());
2444 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2445 Arg.Flags.getPointerAddrSpace())) {
2446 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2447 Arg.Flags.getPointerAddrSpace());
2448 }
2449
2450 InVals.push_back(Ptr);
2451 continue;
2452 }
2453
2454 SDValue Arg = lowerKernargMemParameter(
2455 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2456 Chains.push_back(Arg.getValue(1));
2457
2458 auto *ParamTy =
2459 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2460 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2461 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2462 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2463 // On SI local pointers are just offsets into LDS, so they are always
2464 // less than 16-bits. On CI and newer they could potentially be
2465 // real pointers, so we can't guarantee their size.
2466 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2467 DAG.getValueType(MVT::i16));
2468 }
2469
2470 InVals.push_back(Arg);
2471 continue;
2472 } else if (!IsEntryFunc && VA.isMemLoc()) {
2473 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2474 InVals.push_back(Val);
2475 if (!Arg.Flags.isByVal())
2476 Chains.push_back(Val.getValue(1));
2477 continue;
2478 }
2479
2480 assert(VA.isRegLoc() && "Parameter must be in a register!")(static_cast <bool> (VA.isRegLoc() && "Parameter must be in a register!"
) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Parameter must be in a register!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2480, __extension__ __PRETTY_FUNCTION__))
;
2481
2482 Register Reg = VA.getLocReg();
2483 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2484 EVT ValVT = VA.getValVT();
2485
2486 Reg = MF.addLiveIn(Reg, RC);
2487 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2488
2489 if (Arg.Flags.isSRet()) {
2490 // The return object should be reasonably addressable.
2491
2492 // FIXME: This helps when the return is a real sret. If it is a
2493 // automatically inserted sret (i.e. CanLowerReturn returns false), an
2494 // extra copy is inserted in SelectionDAGBuilder which obscures this.
2495 unsigned NumBits
2496 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2497 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2498 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2499 }
2500
2501 // If this is an 8 or 16-bit value, it is really passed promoted
2502 // to 32 bits. Insert an assert[sz]ext to capture this, then
2503 // truncate to the right size.
2504 switch (VA.getLocInfo()) {
2505 case CCValAssign::Full:
2506 break;
2507 case CCValAssign::BCvt:
2508 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2509 break;
2510 case CCValAssign::SExt:
2511 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2512 DAG.getValueType(ValVT));
2513 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2514 break;
2515 case CCValAssign::ZExt:
2516 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2517 DAG.getValueType(ValVT));
2518 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2519 break;
2520 case CCValAssign::AExt:
2521 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2522 break;
2523 default:
2524 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2524)
;
2525 }
2526
2527 InVals.push_back(Val);
2528 }
2529
2530 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
2531 // Special inputs come after user arguments.
2532 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2533 }
2534
2535 // Start adding system SGPRs.
2536 if (IsEntryFunc) {
2537 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2538 } else {
2539 CCInfo.AllocateReg(Info->getScratchRSrcReg());
2540 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2541 }
2542
2543 auto &ArgUsageInfo =
2544 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2545 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2546
2547 unsigned StackArgSize = CCInfo.getNextStackOffset();
2548 Info->setBytesInStackArgArea(StackArgSize);
2549
2550 return Chains.empty() ? Chain :
2551 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2552}
2553
2554// TODO: If return values can't fit in registers, we should return as many as
2555// possible in registers before passing on stack.
2556bool SITargetLowering::CanLowerReturn(
2557 CallingConv::ID CallConv,
2558 MachineFunction &MF, bool IsVarArg,
2559 const SmallVectorImpl<ISD::OutputArg> &Outs,
2560 LLVMContext &Context) const {
2561 // Replacing returns with sret/stack usage doesn't make sense for shaders.
2562 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2563 // for shaders. Vector types should be explicitly handled by CC.
2564 if (AMDGPU::isEntryFunctionCC(CallConv))
2565 return true;
2566
2567 SmallVector<CCValAssign, 16> RVLocs;
2568 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2569 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2570}
2571
2572SDValue
2573SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2574 bool isVarArg,
2575 const SmallVectorImpl<ISD::OutputArg> &Outs,
2576 const SmallVectorImpl<SDValue> &OutVals,
2577 const SDLoc &DL, SelectionDAG &DAG) const {
2578 MachineFunction &MF = DAG.getMachineFunction();
2579 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2580
2581 if (AMDGPU::isKernel(CallConv)) {
2582 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2583 OutVals, DL, DAG);
2584 }
2585
2586 bool IsShader = AMDGPU::isShader(CallConv);
2587
2588 Info->setIfReturnsVoid(Outs.empty());
2589 bool IsWaveEnd = Info->returnsVoid() && IsShader;
2590
2591 // CCValAssign - represent the assignment of the return value to a location.
2592 SmallVector<CCValAssign, 48> RVLocs;
2593 SmallVector<ISD::OutputArg, 48> Splits;
2594
2595 // CCState - Info about the registers and stack slots.
2596 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2597 *DAG.getContext());
2598
2599 // Analyze outgoing return values.
2600 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2601
2602 SDValue Flag;
2603 SmallVector<SDValue, 48> RetOps;
2604 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2605
2606 // Add return address for callable functions.
2607 if (!Info->isEntryFunction()) {
2608 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2609 SDValue ReturnAddrReg = CreateLiveInRegister(
2610 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2611
2612 SDValue ReturnAddrVirtualReg = DAG.getRegister(
2613 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2614 MVT::i64);
2615 Chain =
2616 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2617 Flag = Chain.getValue(1);
2618 RetOps.push_back(ReturnAddrVirtualReg);
2619 }
2620
2621 // Copy the result values into the output registers.
2622 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2623 ++I, ++RealRVLocIdx) {
2624 CCValAssign &VA = RVLocs[I];
2625 assert(VA.isRegLoc() && "Can only return in registers!")(static_cast <bool> (VA.isRegLoc() && "Can only return in registers!"
) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2625, __extension__ __PRETTY_FUNCTION__))
;
2626 // TODO: Partially return in registers if return values don't fit.
2627 SDValue Arg = OutVals[RealRVLocIdx];
2628
2629 // Copied from other backends.
2630 switch (VA.getLocInfo()) {
2631 case CCValAssign::Full:
2632 break;
2633 case CCValAssign::BCvt:
2634 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2635 break;
2636 case CCValAssign::SExt:
2637 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2638 break;
2639 case CCValAssign::ZExt:
2640 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2641 break;
2642 case CCValAssign::AExt:
2643 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2644 break;
2645 default:
2646 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2646)
;
2647 }
2648
2649 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2650 Flag = Chain.getValue(1);
2651 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2652 }
2653
2654 // FIXME: Does sret work properly?
2655 if (!Info->isEntryFunction()) {
2656 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2657 const MCPhysReg *I =
2658 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2659 if (I) {
2660 for (; *I; ++I) {
2661 if (AMDGPU::SReg_64RegClass.contains(*I))
2662 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2663 else if (AMDGPU::SReg_32RegClass.contains(*I))
2664 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2665 else
2666 llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2666)
;
2667 }
2668 }
2669 }
2670
2671 // Update chain and glue.
2672 RetOps[0] = Chain;
2673 if (Flag.getNode())
2674 RetOps.push_back(Flag);
2675
2676 unsigned Opc = AMDGPUISD::ENDPGM;
2677 if (!IsWaveEnd)
2678 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2679 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2680}
2681
2682SDValue SITargetLowering::LowerCallResult(
2683 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2684 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2685 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2686 SDValue ThisVal) const {
2687 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2688
2689 // Assign locations to each value returned by this call.
2690 SmallVector<CCValAssign, 16> RVLocs;
2691 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2692 *DAG.getContext());
2693 CCInfo.AnalyzeCallResult(Ins, RetCC);
2694
2695 // Copy all of the result registers out of their specified physreg.
2696 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2697 CCValAssign VA = RVLocs[i];
2698 SDValue Val;
2699
2700 if (VA.isRegLoc()) {
2701 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2702 Chain = Val.getValue(1);
2703 InFlag = Val.getValue(2);
2704 } else if (VA.isMemLoc()) {
2705 report_fatal_error("TODO: return values in memory");
2706 } else
2707 llvm_unreachable("unknown argument location type")::llvm::llvm_unreachable_internal("unknown argument location type"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2707)
;
2708
2709 switch (VA.getLocInfo()) {
2710 case CCValAssign::Full:
2711 break;
2712 case CCValAssign::BCvt:
2713 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2714 break;
2715 case CCValAssign::ZExt:
2716 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2717 DAG.getValueType(VA.getValVT()));
2718 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2719 break;
2720 case CCValAssign::SExt:
2721 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2722 DAG.getValueType(VA.getValVT()));
2723 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2724 break;
2725 case CCValAssign::AExt:
2726 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2727 break;
2728 default:
2729 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2729)
;
2730 }
2731
2732 InVals.push_back(Val);
2733 }
2734
2735 return Chain;
2736}
2737
2738// Add code to pass special inputs required depending on used features separate
2739// from the explicit user arguments present in the IR.
2740void SITargetLowering::passSpecialInputs(
2741 CallLoweringInfo &CLI,
2742 CCState &CCInfo,
2743 const SIMachineFunctionInfo &Info,
2744 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2745 SmallVectorImpl<SDValue> &MemOpChains,
2746 SDValue Chain) const {
2747 // If we don't have a call site, this was a call inserted by
2748 // legalization. These can never use special inputs.
2749 if (!CLI.CB)
2750 return;
2751
2752 SelectionDAG &DAG = CLI.DAG;
2753 const SDLoc &DL = CLI.DL;
2754
2755 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2756 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2757
2758 const AMDGPUFunctionArgInfo *CalleeArgInfo
2759 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2760 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2761 auto &ArgUsageInfo =
2762 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2763 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2764 }
2765
2766 // TODO: Unify with private memory register handling. This is complicated by
2767 // the fact that at least in kernels, the input argument is not necessarily
2768 // in the same location as the input.
2769 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2770 AMDGPUFunctionArgInfo::DISPATCH_PTR,
2771 AMDGPUFunctionArgInfo::QUEUE_PTR,
2772 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
2773 AMDGPUFunctionArgInfo::DISPATCH_ID,
2774 AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2775 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2776 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
2777 };
2778
2779 for (auto InputID : InputRegs) {
2780 const ArgDescriptor *OutgoingArg;
2781 const TargetRegisterClass *ArgRC;
2782 LLT ArgTy;
2783
2784 std::tie(OutgoingArg, ArgRC, ArgTy) =
2785 CalleeArgInfo->getPreloadedValue(InputID);
2786 if (!OutgoingArg)
2787 continue;
2788
2789 const ArgDescriptor *IncomingArg;
2790 const TargetRegisterClass *IncomingArgRC;
2791 LLT Ty;
2792 std::tie(IncomingArg, IncomingArgRC, Ty) =
2793 CallerArgInfo.getPreloadedValue(InputID);
2794 assert(IncomingArgRC == ArgRC)(static_cast <bool> (IncomingArgRC == ArgRC) ? void (0)
: __assert_fail ("IncomingArgRC == ArgRC", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2794, __extension__ __PRETTY_FUNCTION__))
;
2795
2796 // All special arguments are ints for now.
2797 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2798 SDValue InputReg;
2799
2800 if (IncomingArg) {
2801 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2802 } else {
2803 // The implicit arg ptr is special because it doesn't have a corresponding
2804 // input for kernels, and is computed from the kernarg segment pointer.
2805 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR)(static_cast <bool> (InputID == AMDGPUFunctionArgInfo::
IMPLICIT_ARG_PTR) ? void (0) : __assert_fail ("InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2805, __extension__ __PRETTY_FUNCTION__))
;
2806 InputReg = getImplicitArgPtr(DAG, DL);
2807 }
2808
2809 if (OutgoingArg->isRegister()) {
2810 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2811 if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2812 report_fatal_error("failed to allocate implicit input argument");
2813 } else {
2814 unsigned SpecialArgOffset =
2815 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2816 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2817 SpecialArgOffset);
2818 MemOpChains.push_back(ArgStore);
2819 }
2820 }
2821
2822 // Pack workitem IDs into a single register or pass it as is if already
2823 // packed.
2824 const ArgDescriptor *OutgoingArg;
2825 const TargetRegisterClass *ArgRC;
2826 LLT Ty;
2827
2828 std::tie(OutgoingArg, ArgRC, Ty) =
2829 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2830 if (!OutgoingArg)
2831 std::tie(OutgoingArg, ArgRC, Ty) =
2832 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2833 if (!OutgoingArg)
2834 std::tie(OutgoingArg, ArgRC, Ty) =
2835 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2836 if (!OutgoingArg)
2837 return;
2838
2839 const ArgDescriptor *IncomingArgX = std::get<0>(
2840 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2841 const ArgDescriptor *IncomingArgY = std::get<0>(
2842 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2843 const ArgDescriptor *IncomingArgZ = std::get<0>(
2844 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2845
2846 SDValue InputReg;
2847 SDLoc SL;
2848
2849 // If incoming ids are not packed we need to pack them.
2850 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX)
2851 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2852
2853 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
2854 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2855 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2856 DAG.getShiftAmountConstant(10, MVT::i32, SL));
2857 InputReg = InputReg.getNode() ?
2858 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2859 }
2860
2861 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
2862 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2863 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2864 DAG.getShiftAmountConstant(20, MVT::i32, SL));
2865 InputReg = InputReg.getNode() ?
2866 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2867 }
2868
2869 if (!InputReg.getNode()) {
2870 // Workitem ids are already packed, any of present incoming arguments
2871 // will carry all required fields.
2872 ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2873 IncomingArgX ? *IncomingArgX :
2874 IncomingArgY ? *IncomingArgY :
2875 *IncomingArgZ, ~0u);
2876 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2877 }
2878
2879 if (OutgoingArg->isRegister()) {
2880 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2881 CCInfo.AllocateReg(OutgoingArg->getRegister());
2882 } else {
2883 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2884 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2885 SpecialArgOffset);
2886 MemOpChains.push_back(ArgStore);
2887 }
2888}
2889
2890static bool canGuaranteeTCO(CallingConv::ID CC) {
2891 return CC == CallingConv::Fast;
2892}
2893
2894/// Return true if we might ever do TCO for calls with this calling convention.
2895static bool mayTailCallThisCC(CallingConv::ID CC) {
2896 switch (CC) {
2897 case CallingConv::C:
2898 case CallingConv::AMDGPU_Gfx:
2899 return true;
2900 default:
2901 return canGuaranteeTCO(CC);
2902 }
2903}
2904
2905bool SITargetLowering::isEligibleForTailCallOptimization(
2906 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2907 const SmallVectorImpl<ISD::OutputArg> &Outs,
2908 const SmallVectorImpl<SDValue> &OutVals,
2909 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2910 if (!mayTailCallThisCC(CalleeCC))
2911 return false;
2912
2913 // For a divergent call target, we need to do a waterfall loop over the
2914 // possible callees which precludes us from using a simple jump.
2915 if (Callee->isDivergent())
2916 return false;
2917
2918 MachineFunction &MF = DAG.getMachineFunction();
2919 const Function &CallerF = MF.getFunction();
2920 CallingConv::ID CallerCC = CallerF.getCallingConv();
2921 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2922 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2923
2924 // Kernels aren't callable, and don't have a live in return address so it
2925 // doesn't make sense to do a tail call with entry functions.
2926 if (!CallerPreserved)
2927 return false;
2928
2929 bool CCMatch = CallerCC == CalleeCC;
2930
2931 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2932 if (canGuaranteeTCO(CalleeCC) && CCMatch)
2933 return true;
2934 return false;
2935 }
2936
2937 // TODO: Can we handle var args?
2938 if (IsVarArg)
2939 return false;
2940
2941 for (const Argument &Arg : CallerF.args()) {
2942 if (Arg.hasByValAttr())
2943 return false;
2944 }
2945
2946 LLVMContext &Ctx = *DAG.getContext();
2947
2948 // Check that the call results are passed in the same way.
2949 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2950 CCAssignFnForCall(CalleeCC, IsVarArg),
2951 CCAssignFnForCall(CallerCC, IsVarArg)))
2952 return false;
2953
2954 // The callee has to preserve all registers the caller needs to preserve.
2955 if (!CCMatch) {
2956 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2957 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2958 return false;
2959 }
2960
2961 // Nothing more to check if the callee is taking no arguments.
2962 if (Outs.empty())
2963 return true;
2964
2965 SmallVector<CCValAssign, 16> ArgLocs;
2966 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2967
2968 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2969
2970 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2971 // If the stack arguments for this call do not fit into our own save area then
2972 // the call cannot be made tail.
2973 // TODO: Is this really necessary?
2974 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2975 return false;
2976
2977 const MachineRegisterInfo &MRI = MF.getRegInfo();
2978 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2979}
2980
2981bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2982 if (!CI->isTailCall())
2983 return false;
2984
2985 const Function *ParentFn = CI->getParent()->getParent();
2986 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2987 return false;
2988 return true;
2989}
2990
2991// The wave scratch offset register is used as the global base pointer.
2992SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2993 SmallVectorImpl<SDValue> &InVals) const {
2994 SelectionDAG &DAG = CLI.DAG;
2995 const SDLoc &DL = CLI.DL;
2996 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2997 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2998 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2999 SDValue Chain = CLI.Chain;
3000 SDValue Callee = CLI.Callee;
3001 bool &IsTailCall = CLI.IsTailCall;
3002 CallingConv::ID CallConv = CLI.CallConv;
3003 bool IsVarArg = CLI.IsVarArg;
3004 bool IsSibCall = false;
3005 bool IsThisReturn = false;
3006 MachineFunction &MF = DAG.getMachineFunction();
3007
3008 if (Callee.isUndef() || isNullConstant(Callee)) {
3009 if (!CLI.IsTailCall) {
3010 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
3011 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
3012 }
3013
3014 return Chain;
3015 }
3016
3017 if (IsVarArg) {
3018 return lowerUnhandledCall(CLI, InVals,
3019 "unsupported call to variadic function ");
3020 }
3021
3022 if (!CLI.CB)
3023 report_fatal_error("unsupported libcall legalization");
3024
3025 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3026 return lowerUnhandledCall(CLI, InVals,
3027 "unsupported required tail call to function ");
3028 }
3029
3030 if (AMDGPU::isShader(CallConv)) {
3031 // Note the issue is with the CC of the called function, not of the call
3032 // itself.
3033 return lowerUnhandledCall(CLI, InVals,
3034 "unsupported call to a shader function ");
3035 }
3036
3037 if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
3038 CallConv != CallingConv::AMDGPU_Gfx) {
3039 // Only allow calls with specific calling conventions.
3040 return lowerUnhandledCall(CLI, InVals,
3041 "unsupported calling convention for call from "
3042 "graphics shader of function ");
3043 }
3044
3045 if (IsTailCall) {
3046 IsTailCall = isEligibleForTailCallOptimization(
3047 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3048 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
3049 report_fatal_error("failed to perform tail call elimination on a call "
3050 "site marked musttail");
3051 }
3052
3053 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3054
3055 // A sibling call is one where we're under the usual C ABI and not planning
3056 // to change that but can still do a tail call:
3057 if (!TailCallOpt && IsTailCall)
3058 IsSibCall = true;
3059
3060 if (IsTailCall)
3061 ++NumTailCalls;
3062 }
3063
3064 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3065 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3066 SmallVector<SDValue, 8> MemOpChains;
3067
3068 // Analyze operands of the call, assigning locations to each operand.
3069 SmallVector<CCValAssign, 16> ArgLocs;
3070 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3071 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3072
3073 if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
3074 CallConv != CallingConv::AMDGPU_Gfx) {
3075 // With a fixed ABI, allocate fixed registers before user arguments.
3076 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3077 }
3078
3079 CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3080
3081 // Get a count of how many bytes are to be pushed on the stack.
3082 unsigned NumBytes = CCInfo.getNextStackOffset();
3083
3084 if (IsSibCall) {
3085 // Since we're not changing the ABI to make this a tail call, the memory
3086 // operands are already available in the caller's incoming argument space.
3087 NumBytes = 0;
3088 }
3089
3090 // FPDiff is the byte offset of the call's argument area from the callee's.
3091 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3092 // by this amount for a tail call. In a sibling call it must be 0 because the
3093 // caller will deallocate the entire stack and the callee still expects its
3094 // arguments to begin at SP+0. Completely unused for non-tail calls.
3095 int32_t FPDiff = 0;
3096 MachineFrameInfo &MFI = MF.getFrameInfo();
3097
3098 // Adjust the stack pointer for the new arguments...
3099 // These operations are automatically eliminated by the prolog/epilog pass
3100 if (!IsSibCall) {
3101 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3102
3103 if (!Subtarget->enableFlatScratch()) {
3104 SmallVector<SDValue, 4> CopyFromChains;
3105
3106 // In the HSA case, this should be an identity copy.
3107 SDValue ScratchRSrcReg
3108 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3109 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3110 CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3111 Chain = DAG.getTokenFactor(DL, CopyFromChains);
3112 }
3113 }
3114
3115 MVT PtrVT = MVT::i32;
3116
3117 // Walk the register/memloc assignments, inserting copies/loads.
3118 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3119 CCValAssign &VA = ArgLocs[i];
3120 SDValue Arg = OutVals[i];
3121
3122 // Promote the value if needed.
3123 switch (VA.getLocInfo()) {
3124 case CCValAssign::Full:
3125 break;
3126 case CCValAssign::BCvt:
3127 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3128 break;
3129 case CCValAssign::ZExt:
3130 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3131 break;
3132 case CCValAssign::SExt:
3133 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3134 break;
3135 case CCValAssign::AExt:
3136 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3137 break;
3138 case CCValAssign::FPExt:
3139 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3140 break;
3141 default:
3142 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3142)
;
3143 }
3144
3145 if (VA.isRegLoc()) {
3146 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3147 } else {
3148 assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail
("VA.isMemLoc()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3148, __extension__ __PRETTY_FUNCTION__))
;
3149
3150 SDValue DstAddr;
3151 MachinePointerInfo DstInfo;
3152
3153 unsigned LocMemOffset = VA.getLocMemOffset();
3154 int32_t Offset = LocMemOffset;
3155
3156 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3157 MaybeAlign Alignment;
3158
3159 if (IsTailCall) {
3160 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3161 unsigned OpSize = Flags.isByVal() ?
3162 Flags.getByValSize() : VA.getValVT().getStoreSize();
3163
3164 // FIXME: We can have better than the minimum byval required alignment.
3165 Alignment =
3166 Flags.isByVal()
3167 ? Flags.getNonZeroByValAlign()
3168 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3169
3170 Offset = Offset + FPDiff;
3171 int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3172
3173 DstAddr = DAG.getFrameIndex(FI, PtrVT);
3174 DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3175
3176 // Make sure any stack arguments overlapping with where we're storing
3177 // are loaded before this eventual operation. Otherwise they'll be
3178 // clobbered.
3179
3180 // FIXME: Why is this really necessary? This seems to just result in a
3181 // lot of code to copy the stack and write them back to the same
3182 // locations, which are supposed to be immutable?
3183 Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3184 } else {
3185 // Stores to the argument stack area are relative to the stack pointer.
3186 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3187 MVT::i32);
3188 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3189 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3190 Alignment =
3191 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3192 }
3193
3194 if (Outs[i].Flags.isByVal()) {
3195 SDValue SizeNode =
3196 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3197 SDValue Cpy =
3198 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3199 Outs[i].Flags.getNonZeroByValAlign(),
3200 /*isVol = */ false, /*AlwaysInline = */ true,
3201 /*isTailCall = */ false, DstInfo,
3202 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3203
3204 MemOpChains.push_back(Cpy);
3205 } else {
3206 SDValue Store =
3207 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3208 MemOpChains.push_back(Store);
3209 }
3210 }
3211 }
3212
3213 if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
3214 CallConv != CallingConv::AMDGPU_Gfx) {
3215 // Copy special input registers after user input arguments.
3216 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3217 }
3218
3219 if (!MemOpChains.empty())
3220 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3221
3222 // Build a sequence of copy-to-reg nodes chained together with token chain
3223 // and flag operands which copy the outgoing args into the appropriate regs.
3224 SDValue InFlag;
3225 for (auto &RegToPass : RegsToPass) {
3226 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3227 RegToPass.second, InFlag);
3228 InFlag = Chain.getValue(1);
3229 }
3230
3231
3232 SDValue PhysReturnAddrReg;
3233 if (IsTailCall) {
3234 // Since the return is being combined with the call, we need to pass on the
3235 // return address.
3236
3237 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3238 SDValue ReturnAddrReg = CreateLiveInRegister(
3239 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3240
3241 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3242 MVT::i64);
3243 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3244 InFlag = Chain.getValue(1);
3245 }
3246
3247 // We don't usually want to end the call-sequence here because we would tidy
3248 // the frame up *after* the call, however in the ABI-changing tail-call case
3249 // we've carefully laid out the parameters so that when sp is reset they'll be
3250 // in the correct location.
3251 if (IsTailCall && !IsSibCall) {
3252 Chain = DAG.getCALLSEQ_END(Chain,
3253 DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3254 DAG.getTargetConstant(0, DL, MVT::i32),
3255 InFlag, DL);
3256 InFlag = Chain.getValue(1);
3257 }
3258
3259 std::vector<SDValue> Ops;
3260 Ops.push_back(Chain);
3261 Ops.push_back(Callee);
3262 // Add a redundant copy of the callee global which will not be legalized, as
3263 // we need direct access to the callee later.
3264 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3265 const GlobalValue *GV = GSD->getGlobal();
3266 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3267 } else {
3268 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3269 }
3270
3271 if (IsTailCall) {
3272 // Each tail call may have to adjust the stack by a different amount, so
3273 // this information must travel along with the operation for eventual
3274 // consumption by emitEpilogue.
3275 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3276
3277 Ops.push_back(PhysReturnAddrReg);
3278 }
3279
3280 // Add argument registers to the end of the list so that they are known live
3281 // into the call.
3282 for (auto &RegToPass : RegsToPass) {
3283 Ops.push_back(DAG.getRegister(RegToPass.first,
3284 RegToPass.second.getValueType()));
3285 }
3286
3287 // Add a register mask operand representing the call-preserved registers.
3288
3289 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3290 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3291 assert(Mask && "Missing call preserved mask for calling convention")(static_cast <bool> (Mask && "Missing call preserved mask for calling convention"
) ? void (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3291, __extension__ __PRETTY_FUNCTION__))
;
3292 Ops.push_back(DAG.getRegisterMask(Mask));
3293
3294 if (InFlag.getNode())
3295 Ops.push_back(InFlag);
3296
3297 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3298
3299 // If we're doing a tall call, use a TC_RETURN here rather than an
3300 // actual call instruction.
3301 if (IsTailCall) {
3302 MFI.setHasTailCall();
3303 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3304 }
3305
3306 // Returns a chain and a flag for retval copy to use.
3307 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3308 Chain = Call.getValue(0);
3309 InFlag = Call.getValue(1);
3310
3311 uint64_t CalleePopBytes = NumBytes;
3312 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3313 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3314 InFlag, DL);
3315 if (!Ins.empty())
3316 InFlag = Chain.getValue(1);
3317
3318 // Handle result values, copying them out of physregs into vregs that we
3319 // return.
3320 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3321 InVals, IsThisReturn,
3322 IsThisReturn ? OutVals[0] : SDValue());
3323}
3324
3325// This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3326// except for applying the wave size scale to the increment amount.
3327SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3328 SDValue Op, SelectionDAG &DAG) const {
3329 const MachineFunction &MF = DAG.getMachineFunction();
3330 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3331
3332 SDLoc dl(Op);
3333 EVT VT = Op.getValueType();
3334 SDValue Tmp1 = Op;
3335 SDValue Tmp2 = Op.getValue(1);
3336 SDValue Tmp3 = Op.getOperand(2);
3337 SDValue Chain = Tmp1.getOperand(0);
3338
3339 Register SPReg = Info->getStackPtrOffsetReg();
3340
3341 // Chain the dynamic stack allocation so that it doesn't modify the stack
3342 // pointer when other instructions are using the stack.
3343 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3344
3345 SDValue Size = Tmp2.getOperand(1);
3346 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3347 Chain = SP.getValue(1);
3348 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3349 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3350 const TargetFrameLowering *TFL = ST.getFrameLowering();
3351 unsigned Opc =
3352 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3353 ISD::ADD : ISD::SUB;
3354
3355 SDValue ScaledSize = DAG.getNode(
3356 ISD::SHL, dl, VT, Size,
3357 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3358
3359 Align StackAlign = TFL->getStackAlign();
3360 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3361 if (Alignment && *Alignment > StackAlign) {
3362 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3363 DAG.getConstant(-(uint64_t)Alignment->value()
3364 << ST.getWavefrontSizeLog2(),
3365 dl, VT));
3366 }
3367
3368 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
3369 Tmp2 = DAG.getCALLSEQ_END(
3370 Chain, DAG.getIntPtrConstant(0, dl, true),
3371 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3372
3373 return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3374}
3375
3376SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3377 SelectionDAG &DAG) const {
3378 // We only handle constant sizes here to allow non-entry block, static sized
3379 // allocas. A truly dynamic value is more difficult to support because we
3380 // don't know if the size value is uniform or not. If the size isn't uniform,
3381 // we would need to do a wave reduction to get the maximum size to know how
3382 // much to increment the uniform stack pointer.
3383 SDValue Size = Op.getOperand(1);
3384 if (isa<ConstantSDNode>(Size))
3385 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3386
3387 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3388}
3389
3390Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3391 const MachineFunction &MF) const {
3392 Register Reg = StringSwitch<Register>(RegName)
3393 .Case("m0", AMDGPU::M0)
3394 .Case("exec", AMDGPU::EXEC)
3395 .Case("exec_lo", AMDGPU::EXEC_LO)
3396 .Case("exec_hi", AMDGPU::EXEC_HI)
3397 .Case("flat_scratch", AMDGPU::FLAT_SCR)
3398 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3399 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3400 .Default(Register());
3401
3402 if (Reg == AMDGPU::NoRegister) {
3403 report_fatal_error(Twine("invalid register name \""
3404 + StringRef(RegName) + "\"."));
3405
3406 }
3407
3408 if (!Subtarget->hasFlatScrRegister() &&
3409 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3410 report_fatal_error(Twine("invalid register \""
3411 + StringRef(RegName) + "\" for subtarget."));
3412 }
3413
3414 switch (Reg) {
3415 case AMDGPU::M0:
3416 case AMDGPU::EXEC_LO:
3417 case AMDGPU::EXEC_HI:
3418 case AMDGPU::FLAT_SCR_LO:
3419 case AMDGPU::FLAT_SCR_HI:
3420 if (VT.getSizeInBits() == 32)
3421 return Reg;
3422 break;
3423 case AMDGPU::EXEC:
3424 case AMDGPU::FLAT_SCR:
3425 if (VT.getSizeInBits() == 64)
3426 return Reg;
3427 break;
3428 default:
3429 llvm_unreachable("missing register type checking")::llvm::llvm_unreachable_internal("missing register type checking"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3429)
;
3430 }
3431
3432 report_fatal_error(Twine("invalid type for register \""
3433 + StringRef(RegName) + "\"."));
3434}
3435
3436// If kill is not the last instruction, split the block so kill is always a
3437// proper terminator.
3438MachineBasicBlock *
3439SITargetLowering::splitKillBlock(MachineInstr &MI,
3440 MachineBasicBlock *BB) const {
3441 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3442 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3443 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3444 return SplitBB;
3445}
3446
3447// Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3448// \p MI will be the only instruction in the loop body block. Otherwise, it will
3449// be the first instruction in the remainder block.
3450//
3451/// \returns { LoopBody, Remainder }
3452static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3453splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3454 MachineFunction *MF = MBB.getParent();
3455 MachineBasicBlock::iterator I(&MI);
3456
3457 // To insert the loop we need to split the block. Move everything after this
3458 // point to a new block, and insert a new empty block between the two.
3459 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3460 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3461 MachineFunction::iterator MBBI(MBB);
3462 ++MBBI;
3463
3464 MF->insert(MBBI, LoopBB);
3465 MF->insert(MBBI, RemainderBB);
3466
3467 LoopBB->addSuccessor(LoopBB);
3468 LoopBB->addSuccessor(RemainderBB);
3469
3470 // Move the rest of the block into a new block.
3471 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3472
3473 if (InstInLoop) {
3474 auto Next = std::next(I);
3475
3476 // Move instruction to loop body.
3477 LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3478
3479 // Move the rest of the block.
3480 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3481 } else {
3482 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3483 }
3484
3485 MBB.addSuccessor(LoopBB);
3486
3487 return std::make_pair(LoopBB, RemainderBB);
3488}
3489
3490/// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3491void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3492 MachineBasicBlock *MBB = MI.getParent();
3493 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3494 auto I = MI.getIterator();
3495 auto E = std::next(I);
3496
3497 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3498 .addImm(0);
3499
3500 MIBundleBuilder Bundler(*MBB, I, E);
3501 finalizeBundle(*MBB, Bundler.begin());
3502}
3503
3504MachineBasicBlock *
3505SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3506 MachineBasicBlock *BB) const {
3507 const DebugLoc &DL = MI.getDebugLoc();
3508
3509 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3510
3511 MachineBasicBlock *LoopBB;
3512 MachineBasicBlock *RemainderBB;
3513 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3514
3515 // Apparently kill flags are only valid if the def is in the same block?
3516 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3517 Src->setIsKill(false);
3518
3519 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3520
3521 MachineBasicBlock::iterator I = LoopBB->end();
3522
3523 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3524 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3525
3526 // Clear TRAP_STS.MEM_VIOL
3527 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3528 .addImm(0)
3529 .addImm(EncodedReg);
3530
3531 bundleInstWithWaitcnt(MI);
3532
3533 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3534
3535 // Load and check TRAP_STS.MEM_VIOL
3536 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3537 .addImm(EncodedReg);
3538
3539 // FIXME: Do we need to use an isel pseudo that may clobber scc?
3540 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3541 .addReg(Reg, RegState::Kill)
3542 .addImm(0);
3543 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3544 .addMBB(LoopBB);
3545
3546 return RemainderBB;
3547}
3548
3549// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3550// wavefront. If the value is uniform and just happens to be in a VGPR, this
3551// will only do one iteration. In the worst case, this will loop 64 times.
3552//
3553// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3554static MachineBasicBlock::iterator
3555emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3556 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3557 const DebugLoc &DL, const MachineOperand &Idx,
3558 unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3559 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3560 Register &SGPRIdxReg) {
3561
3562 MachineFunction *MF = OrigBB.getParent();
3563 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3564 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3565 MachineBasicBlock::iterator I = LoopBB.begin();
3566
3567 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3568 Register PhiExec = MRI.createVirtualRegister(BoolRC);
3569 Register NewExec = MRI.createVirtualRegister(BoolRC);
3570 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3571 Register CondReg = MRI.createVirtualRegister(BoolRC);
3572
3573 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3574 .addReg(InitReg)
3575 .addMBB(&OrigBB)
3576 .addReg(ResultReg)
3577 .addMBB(&LoopBB);
3578
3579 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3580 .addReg(InitSaveExecReg)
3581 .addMBB(&OrigBB)
3582 .addReg(NewExec)
3583 .addMBB(&LoopBB);
3584
3585 // Read the next variant <- also loop target.
3586 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3587 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3588
3589 // Compare the just read M0 value to all possible Idx values.
3590 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3591 .addReg(CurrentIdxReg)
3592 .addReg(Idx.getReg(), 0, Idx.getSubReg());
3593
3594 // Update EXEC, save the original EXEC value to VCC.
3595 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3596 : AMDGPU::S_AND_SAVEEXEC_B64),
3597 NewExec)
3598 .addReg(CondReg, RegState::Kill);
3599
3600 MRI.setSimpleHint(NewExec, CondReg);
3601
3602 if (UseGPRIdxMode) {
3603 if (Offset == 0) {
3604 SGPRIdxReg = CurrentIdxReg;
3605 } else {
3606 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3607 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3608 .addReg(CurrentIdxReg, RegState::Kill)
3609 .addImm(Offset);
3610 }
3611 } else {
3612 // Move index from VCC into M0
3613 if (Offset == 0) {
3614 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3615 .addReg(CurrentIdxReg, RegState::Kill);
3616 } else {
3617 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3618 .addReg(CurrentIdxReg, RegState::Kill)
3619 .addImm(Offset);
3620 }
3621 }
3622
3623 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3624 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3625 MachineInstr *InsertPt =
3626 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3627 : AMDGPU::S_XOR_B64_term), Exec)
3628 .addReg(Exec)
3629 .addReg(NewExec);
3630
3631 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3632 // s_cbranch_scc0?
3633
3634 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3635 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3636 .addMBB(&LoopBB);
3637
3638 return InsertPt->getIterator();
3639}
3640
3641// This has slightly sub-optimal regalloc when the source vector is killed by
3642// the read. The register allocator does not understand that the kill is
3643// per-workitem, so is kept alive for the whole loop so we end up not re-using a
3644// subregister from it, using 1 more VGPR than necessary. This was saved when
3645// this was expanded after register allocation.
3646static MachineBasicBlock::iterator
3647loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3648 unsigned InitResultReg, unsigned PhiReg, int Offset,
3649 bool UseGPRIdxMode, Register &SGPRIdxReg) {
3650 MachineFunction *MF = MBB.getParent();
3651 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3652 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3653 MachineRegisterInfo &MRI = MF->getRegInfo();
3654 const DebugLoc &DL = MI.getDebugLoc();
3655 MachineBasicBlock::iterator I(&MI);
3656
3657 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3658 Register DstReg = MI.getOperand(0).getReg();
3659 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3660 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3661 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3662 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3663
3664 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3665
3666 // Save the EXEC mask
3667 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3668 .addReg(Exec);
3669
3670 MachineBasicBlock *LoopBB;
3671 MachineBasicBlock *RemainderBB;
3672 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3673
3674 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3675
3676 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3677 InitResultReg, DstReg, PhiReg, TmpExec,
3678 Offset, UseGPRIdxMode, SGPRIdxReg);
3679
3680 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3681 MachineFunction::iterator MBBI(LoopBB);
3682 ++MBBI;
3683 MF->insert(MBBI, LandingPad);
3684 LoopBB->removeSuccessor(RemainderBB);
3685 LandingPad->addSuccessor(RemainderBB);
3686 LoopBB->addSuccessor(LandingPad);
3687 MachineBasicBlock::iterator First = LandingPad->begin();
3688 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3689 .addReg(SaveExec);
3690
3691 return InsPt;
3692}
3693
3694// Returns subreg index, offset
3695static std::pair<unsigned, int>
3696computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3697 const TargetRegisterClass *SuperRC,
3698 unsigned VecReg,
3699 int Offset) {
3700 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3701
3702 // Skip out of bounds offsets, or else we would end up using an undefined
3703 // register.
3704 if (Offset >= NumElts || Offset < 0)
3705 return std::make_pair(AMDGPU::sub0, Offset);
3706
3707 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3708}
3709
3710static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3711 MachineRegisterInfo &MRI, MachineInstr &MI,
3712 int Offset) {
3713 MachineBasicBlock *MBB = MI.getParent();
3714 const DebugLoc &DL = MI.getDebugLoc();
3715 MachineBasicBlock::iterator I(&MI);
3716
3717 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3718
3719 assert(Idx->getReg() != AMDGPU::NoRegister)(static_cast <bool> (Idx->getReg() != AMDGPU::NoRegister
) ? void (0) : __assert_fail ("Idx->getReg() != AMDGPU::NoRegister"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3719, __extension__ __PRETTY_FUNCTION__))
;
3720
3721 if (Offset == 0) {
3722 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3723 } else {
3724 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3725 .add(*Idx)
3726 .addImm(Offset);
3727 }
3728}
3729
3730static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3731 MachineRegisterInfo &MRI, MachineInstr &MI,
3732 int Offset) {
3733 MachineBasicBlock *MBB = MI.getParent();
3734 const DebugLoc &DL = MI.getDebugLoc();
3735 MachineBasicBlock::iterator I(&MI);
3736
3737 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3738
3739 if (Offset == 0)
3740 return Idx->getReg();
3741
3742 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3743 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3744 .add(*Idx)
3745 .addImm(Offset);
3746 return Tmp;
3747}
3748
3749static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3750 MachineBasicBlock &MBB,
3751 const GCNSubtarget &ST) {
3752 const SIInstrInfo *TII = ST.getInstrInfo();
3753 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3754 MachineFunction *MF = MBB.getParent();
3755 MachineRegisterInfo &MRI = MF->getRegInfo();
3756
3757 Register Dst = MI.getOperand(0).getReg();
3758 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3759 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3760 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3761
3762 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3763 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3764
3765 unsigned SubReg;
3766 std::tie(SubReg, Offset)
3767 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3768
3769 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3770
3771 // Check for a SGPR index.
3772 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3773 MachineBasicBlock::iterator I(&MI);
3774 const DebugLoc &DL = MI.getDebugLoc();
3775
3776 if (UseGPRIdxMode) {
3777 // TODO: Look at the uses to avoid the copy. This may require rescheduling
3778 // to avoid interfering with other uses, so probably requires a new
3779 // optimization pass.
3780 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3781
3782 const MCInstrDesc &GPRIDXDesc =
3783 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3784 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3785 .addReg(SrcReg)
3786 .addReg(Idx)
3787 .addImm(SubReg);
3788 } else {
3789 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3790
3791 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3792 .addReg(SrcReg, 0, SubReg)
3793 .addReg(SrcReg, RegState::Implicit);
3794 }
3795
3796 MI.eraseFromParent();
3797
3798 return &MBB;
3799 }
3800
3801 // Control flow needs to be inserted if indexing with a VGPR.
3802 const DebugLoc &DL = MI.getDebugLoc();
3803 MachineBasicBlock::iterator I(&MI);
3804
3805 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3806 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3807
3808 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3809
3810 Register SGPRIdxReg;
3811 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3812 UseGPRIdxMode, SGPRIdxReg);
3813
3814 MachineBasicBlock *LoopBB = InsPt->getParent();
3815
3816 if (UseGPRIdxMode) {
3817 const MCInstrDesc &GPRIDXDesc =
3818 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3819
3820 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3821 .addReg(SrcReg)
3822 .addReg(SGPRIdxReg)
3823 .addImm(SubReg);
3824 } else {
3825 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3826 .addReg(SrcReg, 0, SubReg)
3827 .addReg(SrcReg, RegState::Implicit);
3828 }
3829
3830 MI.eraseFromParent();
3831
3832 return LoopBB;
3833}
3834
3835static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3836 MachineBasicBlock &MBB,
3837 const GCNSubtarget &ST) {
3838 const SIInstrInfo *TII = ST.getInstrInfo();
3839 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3840 MachineFunction *MF = MBB.getParent();
3841 MachineRegisterInfo &MRI = MF->getRegInfo();
3842
3843 Register Dst = MI.getOperand(0).getReg();
3844 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3845 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3846 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3847 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3848 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3849 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3850
3851 // This can be an immediate, but will be folded later.
3852 assert(Val->getReg())(static_cast <bool> (Val->getReg()) ? void (0) : __assert_fail
("Val->getReg()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3852, __extension__ __PRETTY_FUNCTION__))
;
3853
3854 unsigned SubReg;
3855 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3856 SrcVec->getReg(),
3857 Offset);
3858 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3859
3860 if (Idx->getReg() == AMDGPU::NoRegister) {
3861 MachineBasicBlock::iterator I(&MI);
3862 const DebugLoc &DL = MI.getDebugLoc();
3863
3864 assert(Offset == 0)(static_cast <bool> (Offset == 0) ? void (0) : __assert_fail
("Offset == 0", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3864, __extension__ __PRETTY_FUNCTION__))
;
3865
3866 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3867 .add(*SrcVec)
3868 .add(*Val)
3869 .addImm(SubReg);
3870
3871 MI.eraseFromParent();
3872 return &MBB;
3873 }
3874
3875 // Check for a SGPR index.
3876 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3877 MachineBasicBlock::iterator I(&MI);
3878 const DebugLoc &DL = MI.getDebugLoc();
3879
3880 if (UseGPRIdxMode) {
3881 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3882
3883 const MCInstrDesc &GPRIDXDesc =
3884 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3885 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3886 .addReg(SrcVec->getReg())
3887 .add(*Val)
3888 .addReg(Idx)
3889 .addImm(SubReg);
3890 } else {
3891 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3892
3893 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3894 TRI.getRegSizeInBits(*VecRC), 32, false);
3895 BuildMI(MBB, I, DL, MovRelDesc, Dst)
3896 .addReg(SrcVec->getReg())
3897 .add(*Val)
3898 .addImm(SubReg);
3899 }
3900 MI.eraseFromParent();
3901 return &MBB;
3902 }
3903
3904 // Control flow needs to be inserted if indexing with a VGPR.
3905 if (Val->isReg())
3906 MRI.clearKillFlags(Val->getReg());
3907
3908 const DebugLoc &DL = MI.getDebugLoc();
3909
3910 Register PhiReg = MRI.createVirtualRegister(VecRC);
3911
3912 Register SGPRIdxReg;
3913 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3914 UseGPRIdxMode, SGPRIdxReg);
3915 MachineBasicBlock *LoopBB = InsPt->getParent();
3916
3917 if (UseGPRIdxMode) {
3918 const MCInstrDesc &GPRIDXDesc =
3919 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3920
3921 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3922 .addReg(PhiReg)
3923 .add(*Val)
3924 .addReg(SGPRIdxReg)
3925 .addImm(AMDGPU::sub0);
3926 } else {
3927 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3928 TRI.getRegSizeInBits(*VecRC), 32, false);
3929 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3930 .addReg(PhiReg)
3931 .add(*Val)
3932 .addImm(AMDGPU::sub0);
3933 }
3934
3935 MI.eraseFromParent();
3936 return LoopBB;
3937}
3938
3939MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3940 MachineInstr &MI, MachineBasicBlock *BB) const {
3941
3942 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3943 MachineFunction *MF = BB->getParent();
3944 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3945
3946 switch (MI.getOpcode()) {
3947 case AMDGPU::S_UADDO_PSEUDO:
3948 case AMDGPU::S_USUBO_PSEUDO: {
3949 const DebugLoc &DL = MI.getDebugLoc();
3950 MachineOperand &Dest0 = MI.getOperand(0);
3951 MachineOperand &Dest1 = MI.getOperand(1);
3952 MachineOperand &Src0 = MI.getOperand(2);
3953 MachineOperand &Src1 = MI.getOperand(3);
3954
3955 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3956 ? AMDGPU::S_ADD_I32
3957 : AMDGPU::S_SUB_I32;
3958 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3959
3960 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3961 .addImm(1)
3962 .addImm(0);
3963
3964 MI.eraseFromParent();
3965 return BB;
3966 }
3967 case AMDGPU::S_ADD_U64_PSEUDO:
3968 case AMDGPU::S_SUB_U64_PSEUDO: {
3969 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3970 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3971 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3972 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3973 const DebugLoc &DL = MI.getDebugLoc();
3974
3975 MachineOperand &Dest = MI.getOperand(0);
3976 MachineOperand &Src0 = MI.getOperand(1);
3977 MachineOperand &Src1 = MI.getOperand(2);
3978
3979 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3980 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3981
3982 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3983 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3984 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3985 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3986
3987 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3988 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3989 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3990 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3991
3992 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3993
3994 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3995 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3996 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3997 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3998 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3999 .addReg(DestSub0)
4000 .addImm(AMDGPU::sub0)
4001 .addReg(DestSub1)
4002 .addImm(AMDGPU::sub1);
4003 MI.eraseFromParent();
4004 return BB;
4005 }
4006 case AMDGPU::V_ADD_U64_PSEUDO:
4007 case AMDGPU::V_SUB_U64_PSEUDO: {
4008 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4009 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4010 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4011 const DebugLoc &DL = MI.getDebugLoc();
4012
4013 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
4014
4015 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4016
4017 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4018 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4019
4020 Register CarryReg = MRI.createVirtualRegister(CarryRC);
4021 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
4022
4023 MachineOperand &Dest = MI.getOperand(0);
4024 MachineOperand &Src0 = MI.getOperand(1);
4025 MachineOperand &Src1 = MI.getOperand(2);
4026
4027 const TargetRegisterClass *Src0RC = Src0.isReg()
4028 ? MRI.getRegClass(Src0.getReg())
4029 : &AMDGPU::VReg_64RegClass;
4030 const TargetRegisterClass *Src1RC = Src1.isReg()
4031 ? MRI.getRegClass(Src1.getReg())
4032 : &AMDGPU::VReg_64RegClass;
4033
4034 const TargetRegisterClass *Src0SubRC =
4035 TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
4036 const TargetRegisterClass *Src1SubRC =
4037 TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
4038
4039 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
4040 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
4041 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
4042 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
4043
4044 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
4045 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
4046 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
4047 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
4048
4049 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
4050 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
4051 .addReg(CarryReg, RegState::Define)
4052 .add(SrcReg0Sub0)
4053 .add(SrcReg1Sub0)
4054 .addImm(0); // clamp bit
4055
4056 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
4057 MachineInstr *HiHalf =
4058 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
4059 .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
4060 .add(SrcReg0Sub1)
4061 .add(SrcReg1Sub1)
4062 .addReg(CarryReg, RegState::Kill)
4063 .addImm(0); // clamp bit
4064
4065 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
4066 .addReg(DestSub0)
4067 .addImm(AMDGPU::sub0)
4068 .addReg(DestSub1)
4069 .addImm(AMDGPU::sub1);
4070 TII->legalizeOperands(*LoHalf);
4071 TII->legalizeOperands(*HiHalf);
4072 MI.eraseFromParent();
4073 return BB;
4074 }
4075 case AMDGPU::S_ADD_CO_PSEUDO:
4076 case AMDGPU::S_SUB_CO_PSEUDO: {
4077 // This pseudo has a chance to be selected
4078 // only from uniform add/subcarry node. All the VGPR operands
4079 // therefore assumed to be splat vectors.
4080 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4081 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4082 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4083 MachineBasicBlock::iterator MII = MI;
4084 const DebugLoc &DL = MI.getDebugLoc();
4085 MachineOperand &Dest = MI.getOperand(0);
4086 MachineOperand &CarryDest = MI.getOperand(1);
4087 MachineOperand &Src0 = MI.getOperand(2);
4088 MachineOperand &Src1 = MI.getOperand(3);
4089 MachineOperand &Src2 = MI.getOperand(4);
4090 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4091 ? AMDGPU::S_ADDC_U32
4092 : AMDGPU::S_SUBB_U32;
4093 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4094 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4095 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4096 .addReg(Src0.getReg());
4097 Src0.setReg(RegOp0);
4098 }
4099 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4100 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4101 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4102 .addReg(Src1.getReg());
4103 Src1.setReg(RegOp1);
4104 }
4105 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4106 if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4107 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4108 .addReg(Src2.getReg());
4109 Src2.setReg(RegOp2);
4110 }
4111
4112 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4113 if (TRI->getRegSizeInBits(*Src2RC) == 64) {
4114 if (ST.hasScalarCompareEq64()) {
4115 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4116 .addReg(Src2.getReg())
4117 .addImm(0);
4118 } else {
4119 const TargetRegisterClass *SubRC =
4120 TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4121 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4122 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4123 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4124 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4125 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4126
4127 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4128 .add(Src2Sub0)
4129 .add(Src2Sub1);
4130
4131 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4132 .addReg(Src2_32, RegState::Kill)
4133 .addImm(0);
4134 }
4135 } else {
4136 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4137 .addReg(Src2.getReg())
4138 .addImm(0);
4139 }
4140
4141 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4142
4143 BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg())
4144 .addReg(AMDGPU::SCC);
4145 MI.eraseFromParent();
4146 return BB;
4147 }
4148 case AMDGPU::SI_INIT_M0: {
4149 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4150 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4151 .add(MI.getOperand(0));
4152 MI.eraseFromParent();
4153 return BB;
4154 }
4155 case AMDGPU::GET_GROUPSTATICSIZE: {
4156 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||(static_cast <bool> (getTargetMachine().getTargetTriple
().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple
().getOS() == Triple::AMDPAL) ? void (0) : __assert_fail ("getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4157, __extension__ __PRETTY_FUNCTION__))
4157 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)(static_cast <bool> (getTargetMachine().getTargetTriple
().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple
().getOS() == Triple::AMDPAL) ? void (0) : __assert_fail ("getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4157, __extension__ __PRETTY_FUNCTION__))
;
4158 DebugLoc DL = MI.getDebugLoc();
4159 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4160 .add(MI.getOperand(0))
4161 .addImm(MFI->getLDSSize());
4162 MI.eraseFromParent();
4163 return BB;
4164 }
4165 case AMDGPU::SI_INDIRECT_SRC_V1:
4166 case AMDGPU::SI_INDIRECT_SRC_V2:
4167 case AMDGPU::SI_INDIRECT_SRC_V4:
4168 case AMDGPU::SI_INDIRECT_SRC_V8:
4169 case AMDGPU::SI_INDIRECT_SRC_V16:
4170 case AMDGPU::SI_INDIRECT_SRC_V32:
4171 return emitIndirectSrc(MI, *BB, *getSubtarget());
4172 case AMDGPU::SI_INDIRECT_DST_V1:
4173 case AMDGPU::SI_INDIRECT_DST_V2:
4174 case AMDGPU::SI_INDIRECT_DST_V4:
4175 case AMDGPU::SI_INDIRECT_DST_V8:
4176 case AMDGPU::SI_INDIRECT_DST_V16:
4177 case AMDGPU::SI_INDIRECT_DST_V32:
4178 return emitIndirectDst(MI, *BB, *getSubtarget());
4179 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4180 case AMDGPU::SI_KILL_I1_PSEUDO:
4181 return splitKillBlock(MI, BB);
4182 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4183 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4184 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4185 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4186
4187 Register Dst = MI.getOperand(0).getReg();
4188 Register Src0 = MI.getOperand(1).getReg();
4189 Register Src1 = MI.getOperand(2).getReg();
4190 const DebugLoc &DL = MI.getDebugLoc();
4191 Register SrcCond = MI.getOperand(3).getReg();
4192
4193 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4194 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4195 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4196 Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4197
4198 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4199 .addReg(SrcCond);
4200 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4201 .addImm(0)
4202 .addReg(Src0, 0, AMDGPU::sub0)
4203 .addImm(0)
4204 .addReg(Src1, 0, AMDGPU::sub0)
4205 .addReg(SrcCondCopy);
4206 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4207 .addImm(0)
4208 .addReg(Src0, 0, AMDGPU::sub1)
4209 .addImm(0)
4210 .addReg(Src1, 0, AMDGPU::sub1)
4211 .addReg(SrcCondCopy);
4212
4213 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4214 .addReg(DstLo)
4215 .addImm(AMDGPU::sub0)
4216 .addReg(DstHi)
4217 .addImm(AMDGPU::sub1);
4218 MI.eraseFromParent();
4219 return BB;
4220 }
4221 case AMDGPU::SI_BR_UNDEF: {
4222 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4223 const DebugLoc &DL = MI.getDebugLoc();
4224 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4225 .add(MI.getOperand(0));
4226 Br->getOperand(1).setIsUndef(true); // read undef SCC
4227 MI.eraseFromParent();
4228 return BB;
4229 }
4230 case AMDGPU::ADJCALLSTACKUP:
4231 case AMDGPU::ADJCALLSTACKDOWN: {
4232 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4233 MachineInstrBuilder MIB(*MF, &MI);
4234 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4235 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4236 return BB;
4237 }
4238 case AMDGPU::SI_CALL_ISEL: {
4239 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4240 const DebugLoc &DL = MI.getDebugLoc();
4241
4242 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4243
4244 MachineInstrBuilder MIB;
4245 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4246
4247 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
4248 MIB.add(MI.getOperand(I));
4249
4250 MIB.cloneMemRefs(MI);
4251 MI.eraseFromParent();
4252 return BB;
4253 }
4254 case AMDGPU::V_ADD_CO_U32_e32:
4255 case AMDGPU::V_SUB_CO_U32_e32:
4256 case AMDGPU::V_SUBREV_CO_U32_e32: {
4257 // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4258 const DebugLoc &DL = MI.getDebugLoc();
4259 unsigned Opc = MI.getOpcode();
4260
4261 bool NeedClampOperand = false;
4262 if (TII->pseudoToMCOpcode(Opc) == -1) {
4263 Opc = AMDGPU::getVOPe64(Opc);
4264 NeedClampOperand = true;
4265 }
4266
4267 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4268 if (TII->isVOP3(*I)) {
4269 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4270 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4271 I.addReg(TRI->getVCC(), RegState::Define);
4272 }
4273 I.add(MI.getOperand(1))
4274 .add(MI.getOperand(2));
4275 if (NeedClampOperand)
4276 I.addImm(0); // clamp bit for e64 encoding
4277
4278 TII->legalizeOperands(*I);
4279
4280 MI.eraseFromParent();
4281 return BB;
4282 }
4283 case AMDGPU::V_ADDC_U32_e32:
4284 case AMDGPU::V_SUBB_U32_e32:
4285 case AMDGPU::V_SUBBREV_U32_e32:
4286 // These instructions have an implicit use of vcc which counts towards the
4287 // constant bus limit.
4288 TII->legalizeOperands(MI);
4289 return BB;
4290 case AMDGPU::DS_GWS_INIT:
4291 case AMDGPU::DS_GWS_SEMA_BR:
4292 case AMDGPU::DS_GWS_BARRIER:
4293 if (Subtarget->needsAlignedVGPRs()) {
4294 // Add implicit aligned super-reg to force alignment on the data operand.
4295 const DebugLoc &DL = MI.getDebugLoc();
4296 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4297 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
4298 MachineOperand *Op = TII->getNamedOperand(MI, AMDGPU::OpName::data0);
4299 Register DataReg = Op->getReg();
4300 bool IsAGPR = TRI->isAGPR(MRI, DataReg);
4301 Register Undef = MRI.createVirtualRegister(
4302 IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass);
4303 BuildMI(*BB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), Undef);
4304 Register NewVR =
4305 MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass
4306 : &AMDGPU::VReg_64_Align2RegClass);
4307 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), NewVR)
4308 .addReg(DataReg, 0, Op->getSubReg())
4309 .addImm(AMDGPU::sub0)
4310 .addReg(Undef)
4311 .addImm(AMDGPU::sub1);
4312 Op->setReg(NewVR);
4313 Op->setSubReg(AMDGPU::sub0);
4314 MI.addOperand(MachineOperand::CreateReg(NewVR, false, true));
4315 }
4316 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4317 case AMDGPU::DS_GWS_SEMA_V:
4318 case AMDGPU::DS_GWS_SEMA_P:
4319 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4320 // A s_waitcnt 0 is required to be the instruction immediately following.
4321 if (getSubtarget()->hasGWSAutoReplay()) {
4322 bundleInstWithWaitcnt(MI);
4323 return BB;
4324 }
4325
4326 return emitGWSMemViolTestLoop(MI, BB);
4327 case AMDGPU::S_SETREG_B32: {
4328 // Try to optimize cases that only set the denormal mode or rounding mode.
4329 //
4330 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4331 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4332 // instead.
4333 //
4334 // FIXME: This could be predicates on the immediate, but tablegen doesn't
4335 // allow you to have a no side effect instruction in the output of a
4336 // sideeffecting pattern.
4337 unsigned ID, Offset, Width;
4338 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4339 if (ID != AMDGPU::Hwreg::ID_MODE)
4340 return BB;
4341
4342 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4343 const unsigned SetMask = WidthMask << Offset;
4344
4345 if (getSubtarget()->hasDenormModeInst()) {
4346 unsigned SetDenormOp = 0;
4347 unsigned SetRoundOp = 0;
4348
4349 // The dedicated instructions can only set the whole denorm or round mode
4350 // at once, not a subset of bits in either.
4351 if (SetMask ==
4352 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4353 // If this fully sets both the round and denorm mode, emit the two
4354 // dedicated instructions for these.
4355 SetRoundOp = AMDGPU::S_ROUND_MODE;
4356 SetDenormOp = AMDGPU::S_DENORM_MODE;
4357 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4358 SetRoundOp = AMDGPU::S_ROUND_MODE;
4359 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4360 SetDenormOp = AMDGPU::S_DENORM_MODE;
4361 }
4362
4363 if (SetRoundOp || SetDenormOp) {
4364 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4365 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4366 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4367 unsigned ImmVal = Def->getOperand(1).getImm();
4368 if (SetRoundOp) {
4369 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4370 .addImm(ImmVal & 0xf);
4371
4372 // If we also have the denorm mode, get just the denorm mode bits.
4373 ImmVal >>= 4;
4374 }
4375
4376 if (SetDenormOp) {
4377 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4378 .addImm(ImmVal & 0xf);
4379 }
4380
4381 MI.eraseFromParent();
4382 return BB;
4383 }
4384 }
4385 }
4386
4387 // If only FP bits are touched, used the no side effects pseudo.
4388 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4389 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4390 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4391
4392 return BB;
4393 }
4394 default:
4395 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4396 }
4397}
4398
4399bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4400 return isTypeLegal(VT.getScalarType());
4401}
4402
4403bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4404 // This currently forces unfolding various combinations of fsub into fma with
4405 // free fneg'd operands. As long as we have fast FMA (controlled by
4406 // isFMAFasterThanFMulAndFAdd), we should perform these.
4407
4408 // When fma is quarter rate, for f64 where add / sub are at best half rate,
4409 // most of these combines appear to be cycle neutral but save on instruction
4410 // count / code size.
4411 return true;
4412}
4413
4414EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4415 EVT VT) const {
4416 if (!VT.isVector()) {
4417 return MVT::i1;
4418 }
4419 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4420}
4421
4422MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4423 // TODO: Should i16 be used always if legal? For now it would force VALU
4424 // shifts.
4425 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4426}
4427
4428LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4429 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4430 ? Ty.changeElementSize(16)
4431 : Ty.changeElementSize(32);
4432}
4433
4434// Answering this is somewhat tricky and depends on the specific device which
4435// have different rates for fma or all f64 operations.
4436//
4437// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4438// regardless of which device (although the number of cycles differs between
4439// devices), so it is always profitable for f64.
4440//
4441// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4442// only on full rate devices. Normally, we should prefer selecting v_mad_f32
4443// which we can always do even without fused FP ops since it returns the same
4444// result as the separate operations and since it is always full
4445// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4446// however does not support denormals, so we do report fma as faster if we have
4447// a fast fma device and require denormals.
4448//
4449bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4450 EVT VT) const {
4451 VT = VT.getScalarType();
4452
4453 switch (VT.getSimpleVT().SimpleTy) {
4454 case MVT::f32: {
4455 // If mad is not available this depends only on if f32 fma is full rate.
4456 if (!Subtarget->hasMadMacF32Insts())
4457 return Subtarget->hasFastFMAF32();
4458
4459 // Otherwise f32 mad is always full rate and returns the same result as
4460 // the separate operations so should be preferred over fma.
4461 // However does not support denomals.
4462 if (hasFP32Denormals(MF))
4463 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4464
4465 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4466 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4467 }
4468 case MVT::f64:
4469 return true;
4470 case MVT::f16:
4471 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4472 default:
4473 break;
4474 }
4475
4476 return false;
4477}
4478
4479bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4480 const SDNode *N) const {
4481 // TODO: Check future ftz flag
4482 // v_mad_f32/v_mac_f32 do not support denormals.
4483 EVT VT = N->getValueType(0);
4484 if (VT == MVT::f32)
4485 return Subtarget->hasMadMacF32Insts() &&
4486 !hasFP32Denormals(DAG.getMachineFunction());
4487 if (VT == MVT::f16) {
4488 return Subtarget->hasMadF16() &&
4489 !hasFP64FP16Denormals(DAG.getMachineFunction());
4490 }
4491
4492 return false;
4493}
4494
4495//===----------------------------------------------------------------------===//
4496// Custom DAG Lowering Operations
4497//===----------------------------------------------------------------------===//
4498
4499// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4500// wider vector type is legal.
4501SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4502 SelectionDAG &DAG) const {
4503 unsigned Opc = Op.getOpcode();
4504 EVT VT = Op.getValueType();
4505 assert(VT == MVT::v4f16 || VT == MVT::v4i16)(static_cast <bool> (VT == MVT::v4f16 || VT == MVT::v4i16
) ? void (0) : __assert_fail ("VT == MVT::v4f16 || VT == MVT::v4i16"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4505, __extension__ __PRETTY_FUNCTION__))
;
4506
4507 SDValue Lo, Hi;
4508 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4509
4510 SDLoc SL(Op);
4511 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4512 Op->getFlags());
4513 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4514 Op->getFlags());
4515
4516 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4517}
4518
4519// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4520// wider vector type is legal.
4521SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4522 SelectionDAG &DAG) const {
4523 unsigned Opc = Op.getOpcode();
4524 EVT VT = Op.getValueType();
4525 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16
|| VT == MVT::v4f32 || VT == MVT::v8f32 || VT == MVT::v16f32
|| VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4526, __extension__ __PRETTY_FUNCTION__))
4526 VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32)(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16
|| VT == MVT::v4f32 || VT == MVT::v8f32 || VT == MVT::v16f32
|| VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4526, __extension__ __PRETTY_FUNCTION__))
;
4527
4528 SDValue Lo0, Hi0;
4529 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4530 SDValue Lo1, Hi1;
4531 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4532
4533 SDLoc SL(Op);
4534
4535 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4536 Op->getFlags());
4537 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4538 Op->getFlags());
4539
4540 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4541}
4542
4543SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4544 SelectionDAG &DAG) const {
4545 unsigned Opc = Op.getOpcode();
4546 EVT VT = Op.getValueType();
4547 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16
|| VT == MVT::v4f32 || VT == MVT::v8f32 || VT == MVT::v16f32
|| VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4548, __extension__ __PRETTY_FUNCTION__))
4548 VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32)(static_cast <bool> (VT == MVT::v4i16 || VT == MVT::v4f16
|| VT == MVT::v4f32 || VT == MVT::v8f32 || VT == MVT::v16f32
|| VT == MVT::v32f32) ? void (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || VT == MVT::v8f32 || VT == MVT::v16f32 || VT == MVT::v32f32"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4548, __extension__ __PRETTY_FUNCTION__))
;
4549
4550 SDValue Lo0, Hi0;
4551 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4552 SDValue Lo1, Hi1;
4553 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4554 SDValue Lo2, Hi2;
4555 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4556
4557 SDLoc SL(Op);
4558
4559 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4560 Op->getFlags());
4561 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4562 Op->getFlags());
4563
4564 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4565}
4566
4567
4568SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4569 switch (Op.getOpcode()) {
4570 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4571 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4572 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4573 case ISD::LOAD: {
4574 SDValue Result = LowerLOAD(Op, DAG);
4575 assert((!Result.getNode() ||(static_cast <bool> ((!Result.getNode() || Result.getNode
()->getNumValues() == 2) && "Load should return a value and a chain"
) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4577, __extension__ __PRETTY_FUNCTION__))
4576 Result.getNode()->getNumValues() == 2) &&(static_cast <bool> ((!Result.getNode() || Result.getNode
()->getNumValues() == 2) && "Load should return a value and a chain"
) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4577, __extension__ __PRETTY_FUNCTION__))
4577 "Load should return a value and a chain")(static_cast <bool> ((!Result.getNode() || Result.getNode
()->getNumValues() == 2) && "Load should return a value and a chain"
) ? void (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4577, __extension__ __PRETTY_FUNCTION__))
;
4578 return Result;
4579 }
4580
4581 case ISD::FSIN:
4582 case ISD::FCOS:
4583 return LowerTrig(Op, DAG);
4584 case ISD::SELECT: return LowerSELECT(Op, DAG);
4585 case ISD::FDIV: return LowerFDIV(Op, DAG);
4586 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4587 case ISD::STORE: return LowerSTORE(Op, DAG);
4588 case ISD::GlobalAddress: {
4589 MachineFunction &MF = DAG.getMachineFunction();
4590 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4591 return LowerGlobalAddress(MFI, Op, DAG);
4592 }
4593 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4594 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4595 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4596 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4597 case ISD::INSERT_SUBVECTOR:
4598 return lowerINSERT_SUBVECTOR(Op, DAG);
4599 case ISD::INSERT_VECTOR_ELT:
4600 return lowerINSERT_VECTOR_ELT(Op, DAG);
4601 case ISD::EXTRACT_VECTOR_ELT:
4602 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4603 case ISD::VECTOR_SHUFFLE:
4604 return lowerVECTOR_SHUFFLE(Op, DAG);
4605 case ISD::BUILD_VECTOR:
4606 return lowerBUILD_VECTOR(Op, DAG);
4607 case ISD::FP_ROUND:
4608 return lowerFP_ROUND(Op, DAG);
4609 case ISD::TRAP:
4610 return lowerTRAP(Op, DAG);
4611 case ISD::DEBUGTRAP:
4612 return lowerDEBUGTRAP(Op, DAG);
4613 case ISD::FABS:
4614 case ISD::FNEG:
4615 case ISD::FCANONICALIZE:
4616 case ISD::BSWAP:
4617 return splitUnaryVectorOp(Op, DAG);
4618 case ISD::FMINNUM:
4619 case ISD::FMAXNUM:
4620 return lowerFMINNUM_FMAXNUM(Op, DAG);
4621 case ISD::FMA:
4622 return splitTernaryVectorOp(Op, DAG);
4623 case ISD::FP_TO_SINT:
4624 case ISD::FP_TO_UINT:
4625 return LowerFP_TO_INT(Op, DAG);
4626 case ISD::SHL:
4627 case ISD::SRA:
4628 case ISD::SRL:
4629 case ISD::ADD:
4630 case ISD::SUB:
4631 case ISD::MUL:
4632 case ISD::SMIN:
4633 case ISD::SMAX:
4634 case ISD::UMIN:
4635 case ISD::UMAX:
4636 case ISD::FADD:
4637 case ISD::FMUL:
4638 case ISD::FMINNUM_IEEE:
4639 case ISD::FMAXNUM_IEEE:
4640 case ISD::UADDSAT:
4641 case ISD::USUBSAT:
4642 case ISD::SADDSAT:
4643 case ISD::SSUBSAT:
4644 return splitBinaryVectorOp(Op, DAG);
4645 case ISD::SMULO:
4646 case ISD::UMULO:
4647 return lowerXMULO(Op, DAG);
4648 case ISD::DYNAMIC_STACKALLOC:
4649 return LowerDYNAMIC_STACKALLOC(Op, DAG);
4650 }
4651 return SDValue();
4652}
4653
4654// Used for D16: Casts the result of an instruction into the right vector,
4655// packs values if loads return unpacked values.
4656static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4657 const SDLoc &DL,
4658 SelectionDAG &DAG, bool Unpacked) {
4659 if (!LoadVT.isVector())
4660 return Result;
4661
4662 // Cast back to the original packed type or to a larger type that is a
4663 // multiple of 32 bit for D16. Widening the return type is a required for
4664 // legalization.
4665 EVT FittingLoadVT = LoadVT;
4666 if ((LoadVT.getVectorNumElements() % 2) == 1) {
4667 FittingLoadVT =
4668 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4669 LoadVT.getVectorNumElements() + 1);
4670 }
4671
4672 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4673 // Truncate to v2i16/v4i16.
4674 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4675
4676 // Workaround legalizer not scalarizing truncate after vector op
4677 // legalization but not creating intermediate vector trunc.
4678 SmallVector<SDValue, 4> Elts;
4679 DAG.ExtractVectorElements(Result, Elts);
4680 for (SDValue &Elt : Elts)
4681 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4682
4683 // Pad illegal v1i16/v3fi6 to v4i16
4684 if ((LoadVT.getVectorNumElements() % 2) == 1)
4685 Elts.push_back(DAG.getUNDEF(MVT::i16));
4686
4687 Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4688
4689 // Bitcast to original type (v2f16/v4f16).
4690 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4691 }
4692
4693 // Cast back to the original packed type.
4694 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4695}
4696
4697SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4698 MemSDNode *M,
4699 SelectionDAG &DAG,
4700 ArrayRef<SDValue> Ops,
4701 bool IsIntrinsic) const {
4702 SDLoc DL(M);
4703
4704 bool Unpacked = Subtarget->hasUnpackedD16VMem();
4705 EVT LoadVT = M->getValueType(0);
4706
4707 EVT EquivLoadVT = LoadVT;
4708 if (LoadVT.isVector()) {
4709 if (Unpacked) {
4710 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4711 LoadVT.getVectorNumElements());
4712 } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4713 // Widen v3f16 to legal type
4714 EquivLoadVT =
4715 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4716 LoadVT.getVectorNumElements() + 1);
4717 }
4718 }
4719
4720 // Change from v4f16/v2f16 to EquivLoadVT.
4721 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4722
4723 SDValue Load
4724 = DAG.getMemIntrinsicNode(
4725 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4726 VTList, Ops, M->getMemoryVT(),
4727 M->getMemOperand());
4728
4729 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4730
4731 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4732}
4733
4734SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4735 SelectionDAG &DAG,
4736 ArrayRef<SDValue> Ops) const {
4737 SDLoc DL(M);
4738 EVT LoadVT = M->getValueType(0);
4739 EVT EltType = LoadVT.getScalarType();
4740 EVT IntVT = LoadVT.changeTypeToInteger();
4741
4742 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4743
4744 unsigned Opc =
4745 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4746
4747 if (IsD16) {
4748 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4749 }
4750
4751 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4752 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4753 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4754
4755 if (isTypeLegal(LoadVT)) {
4756 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4757 M->getMemOperand(), DAG);
4758 }
4759
4760 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4761 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4762 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4763 M->getMemOperand(), DAG);
4764 return DAG.getMergeValues(
4765 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4766 DL);
4767}
4768
4769static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4770 SDNode *N, SelectionDAG &DAG) {
4771 EVT VT = N->getValueType(0);
4772 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4773 unsigned CondCode = CD->getZExtValue();
4774 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4775 return DAG.getUNDEF(VT);
4776
4777 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4778
4779 SDValue LHS = N->getOperand(1);
4780 SDValue RHS = N->getOperand(2);
4781
4782 SDLoc DL(N);
4783
4784 EVT CmpVT = LHS.getValueType();
4785 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4786 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4787 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4788 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4789 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4790 }
4791
4792 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4793
4794 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4795 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4796
4797 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4798 DAG.getCondCode(CCOpcode));
4799 if (VT.bitsEq(CCVT))
4800 return SetCC;
4801 return DAG.getZExtOrTrunc(SetCC, DL, VT);
4802}
4803
4804static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4805 SDNode *N, SelectionDAG &DAG) {
4806 EVT VT = N->getValueType(0);
4807 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4808
4809 unsigned CondCode = CD->getZExtValue();
4810 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4811 return DAG.getUNDEF(VT);
4812
4813 SDValue Src0 = N->getOperand(1);
4814 SDValue Src1 = N->getOperand(2);
4815 EVT CmpVT = Src0.getValueType();
4816 SDLoc SL(N);
4817
4818 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4819 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4820 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4821 }
4822
4823 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4824 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4825 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4826 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4827 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4828 Src1, DAG.getCondCode(CCOpcode));
4829 if (VT.bitsEq(CCVT))
4830 return SetCC;
4831 return DAG.getZExtOrTrunc(SetCC, SL, VT);
4832}
4833
4834static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4835 SelectionDAG &DAG) {
4836 EVT VT = N->getValueType(0);
4837 SDValue Src = N->getOperand(1);
4838 SDLoc SL(N);
4839
4840 if (Src.getOpcode() == ISD::SETCC) {
4841 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4842 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4843 Src.getOperand(1), Src.getOperand(2));
4844 }
4845 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4846 // (ballot 0) -> 0
4847 if (Arg->isNullValue())
4848 return DAG.getConstant(0, SL, VT);
4849
4850 // (ballot 1) -> EXEC/EXEC_LO
4851 if (Arg->isOne()) {
4852 Register Exec;
4853 if (VT.getScalarSizeInBits() == 32)
4854 Exec = AMDGPU::EXEC_LO;
4855 else if (VT.getScalarSizeInBits() == 64)
4856 Exec = AMDGPU::EXEC;
4857 else
4858 return SDValue();
4859
4860 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4861 }
4862 }
4863
4864 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4865 // ISD::SETNE)
4866 return DAG.getNode(
4867 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4868 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4869}
4870
4871void SITargetLowering::ReplaceNodeResults(SDNode *N,
4872 SmallVectorImpl<SDValue> &Results,
4873 SelectionDAG &DAG) const {
4874 switch (N->getOpcode()) {
4875 case ISD::INSERT_VECTOR_ELT: {
4876 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4877 Results.push_back(Res);
4878 return;
4879 }
4880 case ISD::EXTRACT_VECTOR_ELT: {
4881 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4882 Results.push_back(Res);
4883 return;
4884 }
4885 case ISD::INTRINSIC_WO_CHAIN: {
4886 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4887 switch (IID) {
4888 case Intrinsic::amdgcn_cvt_pkrtz: {
4889 SDValue Src0 = N->getOperand(1);
4890 SDValue Src1 = N->getOperand(2);
4891 SDLoc SL(N);
4892 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4893 Src0, Src1);
4894 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4895 return;
4896 }
4897 case Intrinsic::amdgcn_cvt_pknorm_i16:
4898 case Intrinsic::amdgcn_cvt_pknorm_u16:
4899 case Intrinsic::amdgcn_cvt_pk_i16:
4900 case Intrinsic::amdgcn_cvt_pk_u16: {
4901 SDValue Src0 = N->getOperand(1);
4902 SDValue Src1 = N->getOperand(2);
4903 SDLoc SL(N);
4904 unsigned Opcode;
4905
4906 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4907 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4908 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4909 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4910 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4911 Opcode = AMDGPUISD::CVT_PK_I16_I32;
4912 else
4913 Opcode = AMDGPUISD::CVT_PK_U16_U32;
4914
4915 EVT VT = N->getValueType(0);
4916 if (isTypeLegal(VT))
4917 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4918 else {
4919 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4920 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4921 }
4922 return;
4923 }
4924 }
4925 break;
4926 }
4927 case ISD::INTRINSIC_W_CHAIN: {
4928 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4929 if (Res.getOpcode() == ISD::MERGE_VALUES) {
4930 // FIXME: Hacky
4931 for (unsigned I = 0; I < Res.getNumOperands(); I++) {
4932 Results.push_back(Res.getOperand(I));
4933 }
4934 } else {
4935 Results.push_back(Res);
4936 Results.push_back(Res.getValue(1));
4937 }
4938 return;
4939 }
4940
4941 break;
4942 }
4943 case ISD::SELECT: {
4944 SDLoc SL(N);
4945 EVT VT = N->getValueType(0);
4946 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4947 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4948 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4949
4950 EVT SelectVT = NewVT;
4951 if (NewVT.bitsLT(MVT::i32)) {
4952 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4953 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4954 SelectVT = MVT::i32;
4955 }
4956
4957 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4958 N->getOperand(0), LHS, RHS);
4959
4960 if (NewVT != SelectVT)
4961 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4962 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4963 return;
4964 }
4965 case ISD::FNEG: {
4966 if (N->getValueType(0) != MVT::v2f16)
4967 break;
4968
4969 SDLoc SL(N);
4970 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4971
4972 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4973 BC,
4974 DAG.getConstant(0x80008000, SL, MVT::i32));
4975 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4976 return;
4977 }
4978 case ISD::FABS: {
4979 if (N->getValueType(0) != MVT::v2f16)
4980 break;
4981
4982 SDLoc SL(N);
4983 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4984
4985 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4986 BC,
4987 DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4988 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4989 return;
4990 }
4991 default:
4992 break;
4993 }
4994}
4995
4996/// Helper function for LowerBRCOND
4997static SDNode *findUser(SDValue Value, unsigned Opcode) {
4998
4999 SDNode *Parent = Value.getNode();
5000 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
5001 I != E; ++I) {
5002
5003 if (I.getUse().get() != Value)
5004 continue;
5005
5006 if (I->getOpcode() == Opcode)
5007 return *I;
5008 }
5009 return nullptr;
5010}
5011
5012unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
5013 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
5014 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
5015 case Intrinsic::amdgcn_if:
5016 return AMDGPUISD::IF;
5017 case Intrinsic::amdgcn_else:
5018 return AMDGPUISD::ELSE;
5019 case Intrinsic::amdgcn_loop:
5020 return AMDGPUISD::LOOP;
5021 case Intrinsic::amdgcn_end_cf:
5022 llvm_unreachable("should not occur")::llvm::llvm_unreachable_internal("should not occur", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5022)
;
5023 default:
5024 return 0;
5025 }
5026 }
5027
5028 // break, if_break, else_break are all only used as inputs to loop, not
5029 // directly as branch conditions.
5030 return 0;
5031}
5032
5033bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
5034 const Triple &TT = getTargetMachine().getTargetTriple();
5035 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5036 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5037 AMDGPU::shouldEmitConstantsToTextSection(TT);
5038}
5039
5040bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
5041 // FIXME: Either avoid relying on address space here or change the default
5042 // address space for functions to avoid the explicit check.
5043 return (GV->getValueType()->isFunctionTy() ||
5044 !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
5045 !shouldEmitFixup(GV) &&
5046 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
5047}
5048
5049bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
5050 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
5051}
5052
5053bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
5054 if (!GV->hasExternalLinkage())
5055 return true;
5056
5057 const auto OS = getTargetMachine().getTargetTriple().getOS();
5058 return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5059}
5060
5061/// This transforms the control flow intrinsics to get the branch destination as
5062/// last parameter, also switches branch target with BR if the need arise
5063SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5064 SelectionDAG &DAG) const {
5065 SDLoc DL(BRCOND);
5066
5067 SDNode *Intr = BRCOND.getOperand(1).getNode();
5068 SDValue Target = BRCOND.getOperand(2);
5069 SDNode *BR = nullptr;
5070 SDNode *SetCC = nullptr;
5071
5072 if (Intr->getOpcode() == ISD::SETCC) {
5073 // As long as we negate the condition everything is fine
5074 SetCC = Intr;
5075 Intr = SetCC->getOperand(0).getNode();
5076
5077 } else {
5078 // Get the target from BR if we don't negate the condition
5079 BR = findUser(BRCOND, ISD::BR);
5080 assert(BR && "brcond missing unconditional branch user")(static_cast <bool> (BR && "brcond missing unconditional branch user"
) ? void (0) : __assert_fail ("BR && \"brcond missing unconditional branch user\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5080, __extension__ __PRETTY_FUNCTION__))
;
5081 Target = BR->getOperand(1);
5082 }
5083
5084 unsigned CFNode = isCFIntrinsic(Intr);
5085 if (CFNode == 0) {
5086 // This is a uniform branch so we don't need to legalize.
5087 return BRCOND;
5088 }
5089
5090 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5091 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5092
5093 assert(!SetCC ||(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal
(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand
(2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5096, __extension__ __PRETTY_FUNCTION__))
5094 (SetCC->getConstantOperandVal(1) == 1 &&(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal
(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand
(2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5096, __extension__ __PRETTY_FUNCTION__))
5095 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal
(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand
(2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5096, __extension__ __PRETTY_FUNCTION__))
5096 ISD::SETNE))(static_cast <bool> (!SetCC || (SetCC->getConstantOperandVal
(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand
(2).getNode())->get() == ISD::SETNE)) ? void (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5096, __extension__ __PRETTY_FUNCTION__))
;
5097
5098 // operands of the new intrinsic call
5099 SmallVector<SDValue, 4> Ops;
5100 if (HaveChain)
5101 Ops.push_back(BRCOND.getOperand(0));
5102
5103 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
5104 Ops.push_back(Target);
5105
5106 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5107
5108 // build the new intrinsic call
5109 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5110
5111 if (!HaveChain) {
5112 SDValue Ops[] = {
5113 SDValue(Result, 0),
5114 BRCOND.getOperand(0)
5115 };
5116
5117 Result = DAG.getMergeValues(Ops, DL).getNode();
5118 }
5119
5120 if (BR) {
5121 // Give the branch instruction our target
5122 SDValue Ops[] = {
5123 BR->getOperand(0),
5124 BRCOND.getOperand(2)
5125 };
5126 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5127 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5128 }
5129
5130 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5131
5132 // Copy the intrinsic results to registers
5133 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5134 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5135 if (!CopyToReg)
5136 continue;
5137
5138 Chain = DAG.getCopyToReg(
5139 Chain, DL,
5140 CopyToReg->getOperand(1),
5141 SDValue(Result, i - 1),
5142 SDValue());
5143
5144 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5145 }
5146
5147 // Remove the old intrinsic from the chain
5148 DAG.ReplaceAllUsesOfValueWith(
5149 SDValue(Intr, Intr->getNumValues() - 1),
5150 Intr->getOperand(0));
5151
5152 return Chain;
5153}
5154
5155SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5156 SelectionDAG &DAG) const {
5157 MVT VT = Op.getSimpleValueType();
5158 SDLoc DL(Op);
5159 // Checking the depth
5160 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5161 return DAG.getConstant(0, DL, VT);
5162
5163 MachineFunction &MF = DAG.getMachineFunction();
5164 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5165 // Check for kernel and shader functions
5166 if (Info->isEntryFunction())
5167 return DAG.getConstant(0, DL, VT);
5168
5169 MachineFrameInfo &MFI = MF.getFrameInfo();
5170 // There is a call to @llvm.returnaddress in this function
5171 MFI.setReturnAddressIsTaken(true);
5172
5173 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5174 // Get the return address reg and mark it as an implicit live-in
5175 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5176
5177 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5178}
5179
5180SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5181 SDValue Op,
5182 const SDLoc &DL,
5183 EVT VT) const {
5184 return Op.getValueType().bitsLE(VT) ?
5185 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5186 DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5187 DAG.getTargetConstant(0, DL, MVT::i32));
5188}
5189
5190SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5191 assert(Op.getValueType() == MVT::f16 &&(static_cast <bool> (Op.getValueType() == MVT::f16 &&
"Do not know how to custom lower FP_ROUND for non-f16 type")
? void (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5192, __extension__ __PRETTY_FUNCTION__))
5192 "Do not know how to custom lower FP_ROUND for non-f16 type")(static_cast <bool> (Op.getValueType() == MVT::f16 &&
"Do not know how to custom lower FP_ROUND for non-f16 type")
? void (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5192, __extension__ __PRETTY_FUNCTION__))
;
5193
5194 SDValue Src = Op.getOperand(0);
5195 EVT SrcVT = Src.getValueType();
5196 if (SrcVT != MVT::f64)
5197 return Op;
5198
5199 SDLoc DL(Op);
5200
5201 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5202 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5203 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5204}
5205
5206SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5207 SelectionDAG &DAG) const {
5208 EVT VT = Op.getValueType();
5209 const MachineFunction &MF = DAG.getMachineFunction();
5210 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5211 bool IsIEEEMode = Info->getMode().IEEE;
5212
5213 // FIXME: Assert during selection that this is only selected for
5214 // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5215 // mode functions, but this happens to be OK since it's only done in cases
5216 // where there is known no sNaN.
5217 if (IsIEEEMode)
5218 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5219
5220 if (VT == MVT::v4f16)
5221 return splitBinaryVectorOp(Op, DAG);
5222 return Op;
5223}
5224
5225SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5226 EVT VT = Op.getValueType();
5227 SDLoc SL(Op);
5228 SDValue LHS = Op.getOperand(0);
5229 SDValue RHS = Op.getOperand(1);
5230 bool isSigned = Op.getOpcode() == ISD::SMULO;
5231
5232 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5233 const APInt &C = RHSC->getAPIntValue();
5234 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5235 if (C.isPowerOf2()) {
5236 // smulo(x, signed_min) is same as umulo(x, signed_min).
5237 bool UseArithShift = isSigned && !C.isMinSignedValue();
5238 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5239 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5240 SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5241 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5242 SL, VT, Result, ShiftAmt),
5243 LHS, ISD::SETNE);
5244 return DAG.getMergeValues({ Result, Overflow }, SL);
5245 }
5246 }
5247
5248 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5249 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5250 SL, VT, LHS, RHS);
5251
5252 SDValue Sign = isSigned
5253 ? DAG.getNode(ISD::SRA, SL, VT, Result,
5254 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5255 : DAG.getConstant(0, SL, VT);
5256 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5257
5258 return DAG.getMergeValues({ Result, Overflow }, SL);
5259}
5260
5261SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5262 if (!Subtarget->isTrapHandlerEnabled() ||
5263 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
5264 return lowerTrapEndpgm(Op, DAG);
5265
5266 if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(Subtarget)) {
5267 switch (*HsaAbiVer) {
5268 case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
5269 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
5270 return lowerTrapHsaQueuePtr(Op, DAG);
5271 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
5272 return Subtarget->supportsGetDoorbellID() ?
5273 lowerTrapHsa(Op, DAG) : lowerTrapHsaQueuePtr(Op, DAG);
5274 }
5275 }
5276
5277 llvm_unreachable("Unknown trap handler")::llvm::llvm_unreachable_internal("Unknown trap handler", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5277)
;
5278}
5279
5280SDValue SITargetLowering::lowerTrapEndpgm(
5281 SDValue Op, SelectionDAG &DAG) const {
5282 SDLoc SL(Op);
5283 SDValue Chain = Op.getOperand(0);
5284 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5285}
5286
5287SDValue SITargetLowering::lowerTrapHsaQueuePtr(
5288 SDValue Op, SelectionDAG &DAG) const {
5289 SDLoc SL(Op);
5290 SDValue Chain = Op.getOperand(0);
5291
5292 MachineFunction &MF = DAG.getMachineFunction();
5293 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5294 Register UserSGPR = Info->getQueuePtrUserSGPR();
5295 assert(UserSGPR != AMDGPU::NoRegister)(static_cast <bool> (UserSGPR != AMDGPU::NoRegister) ? void
(0) : __assert_fail ("UserSGPR != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5295, __extension__ __PRETTY_FUNCTION__))
;
5296 SDValue QueuePtr = CreateLiveInRegister(
5297 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5298 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5299 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5300 QueuePtr, SDValue());
5301
5302 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5303 SDValue Ops[] = {
5304 ToReg,
5305 DAG.getTargetConstant(TrapID, SL, MVT::i16),
5306 SGPR01,
5307 ToReg.getValue(1)
5308 };
5309 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5310}
5311
5312SDValue SITargetLowering::lowerTrapHsa(
5313 SDValue Op, SelectionDAG &DAG) const {
5314 SDLoc SL(Op);
5315 SDValue Chain = Op.getOperand(0);
5316
5317 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
5318 SDValue Ops[] = {
5319 Chain,
5320 DAG.getTargetConstant(TrapID, SL, MVT::i16)
5321 };
5322 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5323}
5324
5325SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5326 SDLoc SL(Op);
5327 SDValue Chain = Op.getOperand(0);
5328 MachineFunction &MF = DAG.getMachineFunction();
5329
5330 if (!Subtarget->isTrapHandlerEnabled() ||
5331 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
5332 DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5333 "debugtrap handler not supported",
5334 Op.getDebugLoc(),
5335 DS_Warning);
5336 LLVMContext &Ctx = MF.getFunction().getContext();
5337 Ctx.diagnose(NoTrap);
5338 return Chain;
5339 }
5340
5341 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
5342 SDValue Ops[] = {
5343 Chain,
5344 DAG.getTargetConstant(TrapID, SL, MVT::i16)
5345 };
5346 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5347}
5348
5349SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5350 SelectionDAG &DAG) const {
5351 // FIXME: Use inline constants (src_{shared, private}_base) instead.
5352 if (Subtarget->hasApertureRegs()) {
5353 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5354 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5355 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5356 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5357 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5358 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5359 unsigned Encoding =
5360 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5361 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5362 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5363
5364 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5365 SDValue ApertureReg = SDValue(
5366 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5367 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5368 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5369 }
5370
5371 MachineFunction &MF = DAG.getMachineFunction();
5372 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5373 Register UserSGPR = Info->getQueuePtrUserSGPR();
5374 assert(UserSGPR != AMDGPU::NoRegister)(static_cast <bool> (UserSGPR != AMDGPU::NoRegister) ? void
(0) : __assert_fail ("UserSGPR != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5374, __extension__ __PRETTY_FUNCTION__))
;
5375
5376 SDValue QueuePtr = CreateLiveInRegister(
5377 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5378
5379 // Offset into amd_queue_t for group_segment_aperture_base_hi /
5380 // private_segment_aperture_base_hi.
5381 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5382
5383 SDValue Ptr =
5384 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5385
5386 // TODO: Use custom target PseudoSourceValue.
5387 // TODO: We should use the value from the IR intrinsic call, but it might not
5388 // be available and how do we get it?
5389 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5390 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5391 commonAlignment(Align(64), StructOffset),
5392 MachineMemOperand::MODereferenceable |
5393 MachineMemOperand::MOInvariant);
5394}
5395
5396SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5397 SelectionDAG &DAG) const {
5398 SDLoc SL(Op);
5399 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5400
5401 SDValue Src = ASC->getOperand(0);
5402 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5403
5404 const AMDGPUTargetMachine &TM =
5405 static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5406
5407 // flat -> local/private
5408 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5409 unsigned DestAS = ASC->getDestAddressSpace();
5410
5411 if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5412 DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5413 unsigned NullVal = TM.getNullPointerValue(DestAS);
5414 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5415 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5416 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5417
5418 return DAG.getNode(ISD::SELECT, SL, MVT::i32,
5419 NonNull, Ptr, SegmentNullPtr);
5420 }
5421 }
5422
5423 // local/private -> flat
5424 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5425 unsigned SrcAS = ASC->getSrcAddressSpace();
5426
5427 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5428 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5429 unsigned NullVal = TM.getNullPointerValue(SrcAS);
5430 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5431
5432 SDValue NonNull
5433 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5434
5435 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5436 SDValue CvtPtr
5437 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5438
5439 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
5440 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
5441 FlatNullPtr);
5442 }
5443 }
5444
5445 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5446 Src.getValueType() == MVT::i64)
5447 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5448
5449 // global <-> flat are no-ops and never emitted.
5450
5451 const MachineFunction &MF = DAG.getMachineFunction();
5452 DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5453 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5454 DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5455
5456 return DAG.getUNDEF(ASC->getValueType(0));
5457}
5458
5459// This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5460// the small vector and inserting them into the big vector. That is better than
5461// the default expansion of doing it via a stack slot. Even though the use of
5462// the stack slot would be optimized away afterwards, the stack slot itself
5463// remains.
5464SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5465 SelectionDAG &DAG) const {
5466 SDValue Vec = Op.getOperand(0);
5467 SDValue Ins = Op.getOperand(1);
5468 SDValue Idx = Op.getOperand(2);
5469 EVT VecVT = Vec.getValueType();
5470 EVT InsVT = Ins.getValueType();
5471 EVT EltVT = VecVT.getVectorElementType();
5472 unsigned InsNumElts = InsVT.getVectorNumElements();
5473 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5474 SDLoc SL(Op);
5475
5476 for (unsigned I = 0; I != InsNumElts; ++I) {
5477 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5478 DAG.getConstant(I, SL, MVT::i32));
5479 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5480 DAG.getConstant(IdxVal + I, SL, MVT::i32));
5481 }
5482 return Vec;
5483}
5484
5485SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5486 SelectionDAG &DAG) const {
5487 SDValue Vec = Op.getOperand(0);
5488 SDValue InsVal = Op.getOperand(1);
5489 SDValue Idx = Op.getOperand(2);
5490 EVT VecVT = Vec.getValueType();
5491 EVT EltVT = VecVT.getVectorElementType();
5492 unsigned VecSize = VecVT.getSizeInBits();
5493 unsigned EltSize = EltVT.getSizeInBits();
5494
5495
5496 assert(VecSize <= 64)(static_cast <bool> (VecSize <= 64) ? void (0) : __assert_fail
("VecSize <= 64", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5496, __extension__ __PRETTY_FUNCTION__))
;
5497
5498 unsigned NumElts = VecVT.getVectorNumElements();
5499 SDLoc SL(Op);
5500 auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5501
5502 if (NumElts == 4 && EltSize == 16 && KIdx) {
5503 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5504
5505 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5506 DAG.getConstant(0, SL, MVT::i32));
5507 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5508 DAG.getConstant(1, SL, MVT::i32));
5509
5510 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5511 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5512
5513 unsigned Idx = KIdx->getZExtValue();
5514 bool InsertLo = Idx < 2;
5515 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5516 InsertLo ? LoVec : HiVec,
5517 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5518 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5519
5520 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5521
5522 SDValue Concat = InsertLo ?
5523 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5524 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5525
5526 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5527 }
5528
5529 if (isa<ConstantSDNode>(Idx))
5530 return SDValue();
5531
5532 MVT IntVT = MVT::getIntegerVT(VecSize);
5533
5534 // Avoid stack access for dynamic indexing.
5535 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5536
5537 // Create a congruent vector with the target value in each element so that
5538 // the required element can be masked and ORed into the target vector.
5539 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5540 DAG.getSplatBuildVector(VecVT, SL, InsVal));
5541
5542 assert(isPowerOf2_32(EltSize))(static_cast <bool> (isPowerOf2_32(EltSize)) ? void (0)
: __assert_fail ("isPowerOf2_32(EltSize)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5542, __extension__ __PRETTY_FUNCTION__))
;
5543 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5544
5545 // Convert vector index to bit-index.
5546 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5547
5548 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5549 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5550 DAG.getConstant(0xffff, SL, IntVT),
5551 ScaledIdx);
5552
5553 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5554 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5555 DAG.getNOT(SL, BFM, IntVT), BCVec);
5556
5557 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5558 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5559}
5560
5561SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5562 SelectionDAG &DAG) const {
5563 SDLoc SL(Op);
5564
5565 EVT ResultVT = Op.getValueType();
5566 SDValue Vec = Op.getOperand(0);
5567 SDValue Idx = Op.getOperand(1);
5568 EVT VecVT = Vec.getValueType();
5569 unsigned VecSize = VecVT.getSizeInBits();
5570 EVT EltVT = VecVT.getVectorElementType();
5571 assert(VecSize <= 64)(static_cast <bool> (VecSize <= 64) ? void (0) : __assert_fail
("VecSize <= 64", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5571, __extension__ __PRETTY_FUNCTION__))
;
5572
5573 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5574
5575 // Make sure we do any optimizations that will make it easier to fold
5576 // source modifiers before obscuring it with bit operations.
5577
5578 // XXX - Why doesn't this get called when vector_shuffle is expanded?
5579 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5580 return Combined;
5581
5582 unsigned EltSize = EltVT.getSizeInBits();
5583 assert(isPowerOf2_32(EltSize))(static_cast <bool> (isPowerOf2_32(EltSize)) ? void (0)
: __assert_fail ("isPowerOf2_32(EltSize)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5583, __extension__ __PRETTY_FUNCTION__))
;
5584
5585 MVT IntVT = MVT::getIntegerVT(VecSize);
5586 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5587
5588 // Convert vector index to bit-index (* EltSize)
5589 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5590
5591 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5592 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5593
5594 if (ResultVT == MVT::f16) {
5595 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5596 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5597 }
5598
5599 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5600}
5601
5602static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5603 assert(Elt % 2 == 0)(static_cast <bool> (Elt % 2 == 0) ? void (0) : __assert_fail
("Elt % 2 == 0", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5603, __extension__ __PRETTY_FUNCTION__))
;
5604 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5605}
5606
5607SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5608 SelectionDAG &DAG) const {
5609 SDLoc SL(Op);
5610 EVT ResultVT = Op.getValueType();
5611 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5612
5613 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5614 EVT EltVT = PackVT.getVectorElementType();
5615 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5616
5617 // vector_shuffle <0,1,6,7> lhs, rhs
5618 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5619 //
5620 // vector_shuffle <6,7,2,3> lhs, rhs
5621 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5622 //
5623 // vector_shuffle <6,7,0,1> lhs, rhs
5624 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5625
5626 // Avoid scalarizing when both halves are reading from consecutive elements.
5627 SmallVector<SDValue, 4> Pieces;
5628 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5629 if (elementPairIsContiguous(SVN->getMask(), I)) {
5630 const int Idx = SVN->getMaskElt(I);
5631 int VecIdx = Idx < SrcNumElts ? 0 : 1;
5632 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5633 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5634 PackVT, SVN->getOperand(VecIdx),
5635 DAG.getConstant(EltIdx, SL, MVT::i32));
5636 Pieces.push_back(SubVec);
5637 } else {
5638 const int Idx0 = SVN->getMaskElt(I);
5639 const int Idx1 = SVN->getMaskElt(I + 1);
5640 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5641 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5642 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5643 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5644
5645 SDValue Vec0 = SVN->getOperand(VecIdx0);
5646 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5647 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5648
5649 SDValue Vec1 = SVN->getOperand(VecIdx1);
5650 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5651 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5652 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5653 }
5654 }
5655
5656 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5657}
5658
5659SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5660 SelectionDAG &DAG) const {
5661 SDLoc SL(Op);
5662 EVT VT = Op.getValueType();
5663
5664 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5665 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5666
5667 // Turn into pair of packed build_vectors.
5668 // TODO: Special case for constants that can be materialized with s_mov_b64.
5669 SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5670 { Op.getOperand(0), Op.getOperand(1) });
5671 SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5672 { Op.getOperand(2), Op.getOperand(3) });
5673
5674 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5675 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5676
5677 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5678 return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5679 }
5680
5681 assert(VT == MVT::v2f16 || VT == MVT::v2i16)(static_cast <bool> (VT == MVT::v2f16 || VT == MVT::v2i16
) ? void (0) : __assert_fail ("VT == MVT::v2f16 || VT == MVT::v2i16"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5681, __extension__ __PRETTY_FUNCTION__))
;
5682 assert(!Subtarget->hasVOP3PInsts() && "this should be legal")(static_cast <bool> (!Subtarget->hasVOP3PInsts() &&
"this should be legal") ? void (0) : __assert_fail ("!Subtarget->hasVOP3PInsts() && \"this should be legal\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5682, __extension__ __PRETTY_FUNCTION__))
;
5683
5684 SDValue Lo = Op.getOperand(0);
5685 SDValue Hi = Op.getOperand(1);
5686
5687 // Avoid adding defined bits with the zero_extend.
5688 if (Hi.isUndef()) {
5689 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5690 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5691 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5692 }
5693
5694 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5695 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5696
5697 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5698 DAG.getConstant(16, SL, MVT::i32));
5699 if (Lo.isUndef())
5700 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5701
5702 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5703 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5704
5705 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5706 return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5707}
5708
5709bool
5710SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5711 // We can fold offsets for anything that doesn't require a GOT relocation.
5712 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5713 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5714 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5715 !shouldEmitGOTReloc(GA->getGlobal());
5716}
5717
5718static SDValue
5719buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5720 const SDLoc &DL, int64_t Offset, EVT PtrVT,
5721 unsigned GAFlags = SIInstrInfo::MO_NONE) {
5722 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!")(static_cast <bool> (isInt<32>(Offset + 4) &&
"32-bit offset is expected!") ? void (0) : __assert_fail ("isInt<32>(Offset + 4) && \"32-bit offset is expected!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5722, __extension__ __PRETTY_FUNCTION__))
;
5723 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5724 // lowered to the following code sequence:
5725 //
5726 // For constant address space:
5727 // s_getpc_b64 s[0:1]
5728 // s_add_u32 s0, s0, $symbol
5729 // s_addc_u32 s1, s1, 0
5730 //
5731 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5732 // a fixup or relocation is emitted to replace $symbol with a literal
5733 // constant, which is a pc-relative offset from the encoding of the $symbol
5734 // operand to the global variable.
5735 //
5736 // For global address space:
5737 // s_getpc_b64 s[0:1]
5738 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5739 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5740 //
5741 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5742 // fixups or relocations are emitted to replace $symbol@*@lo and
5743 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5744 // which is a 64-bit pc-relative offset from the encoding of the $symbol
5745 // operand to the global variable.
5746 //
5747 // What we want here is an offset from the value returned by s_getpc
5748 // (which is the address of the s_add_u32 instruction) to the global
5749 // variable, but since the encoding of $symbol starts 4 bytes after the start
5750 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5751 // small. This requires us to add 4 to the global variable offset in order to
5752 // compute the correct address. Similarly for the s_addc_u32 instruction, the
5753 // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5754 // instruction.
5755 SDValue PtrLo =
5756 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5757 SDValue PtrHi;
5758 if (GAFlags == SIInstrInfo::MO_NONE) {
5759 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5760 } else {
5761 PtrHi =
5762 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5763 }
5764 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5765}
5766
5767SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5768 SDValue Op,
5769 SelectionDAG &DAG) const {
5770 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5771 SDLoc DL(GSD);
5772 EVT PtrVT = Op.getValueType();
5773
5774 const GlobalValue *GV = GSD->getGlobal();
5775 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5776 shouldUseLDSConstAddress(GV)) ||
5777 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5778 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5779 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5780 GV->hasExternalLinkage()) {
5781 Type *Ty = GV->getValueType();
5782 // HIP uses an unsized array `extern __shared__ T s[]` or similar
5783 // zero-sized type in other languages to declare the dynamic shared
5784 // memory which size is not known at the compile time. They will be
5785 // allocated by the runtime and placed directly after the static
5786 // allocated ones. They all share the same offset.
5787 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5788 assert(PtrVT == MVT::i32 && "32-bit pointer is expected.")(static_cast <bool> (PtrVT == MVT::i32 && "32-bit pointer is expected."
) ? void (0) : __assert_fail ("PtrVT == MVT::i32 && \"32-bit pointer is expected.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5788, __extension__ __PRETTY_FUNCTION__))
;
5789 // Adjust alignment for that dynamic shared memory array.
5790 MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5791 return SDValue(
5792 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5793 }
5794 }
5795 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5796 }
5797
5798 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5799 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5800 SIInstrInfo::MO_ABS32_LO);
5801 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5802 }
5803
5804 if (shouldEmitFixup(GV))
5805 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5806 else if (shouldEmitPCReloc(GV))
5807 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5808 SIInstrInfo::MO_REL32);
5809
5810 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5811 SIInstrInfo::MO_GOTPCREL32);
5812
5813 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5814 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5815 const DataLayout &DataLayout = DAG.getDataLayout();
5816 Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5817 MachinePointerInfo PtrInfo
5818 = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5819
5820 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5821 MachineMemOperand::MODereferenceable |
5822 MachineMemOperand::MOInvariant);
5823}
5824
5825SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5826 const SDLoc &DL, SDValue V) const {
5827 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5828 // the destination register.
5829 //
5830 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5831 // so we will end up with redundant moves to m0.
5832 //
5833 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5834
5835 // A Null SDValue creates a glue result.
5836 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5837 V, Chain);
5838 return SDValue(M0, 0);
5839}
5840
5841SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5842 SDValue Op,
5843 MVT VT,
5844 unsigned Offset) const {
5845 SDLoc SL(Op);
5846 SDValue Param = lowerKernargMemParameter(
5847 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5848 // The local size values will have the hi 16-bits as zero.
5849 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5850 DAG.getValueType(VT));
5851}
5852
5853static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5854 EVT VT) {
5855 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5856 "non-hsa intrinsic with hsa target",
5857 DL.getDebugLoc());
5858 DAG.getContext()->diagnose(BadIntrin);
5859 return DAG.getUNDEF(VT);
5860}
5861
5862static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5863 EVT VT) {
5864 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5865 "intrinsic not supported on subtarget",
5866 DL.getDebugLoc());
5867 DAG.getContext()->diagnose(BadIntrin);
5868 return DAG.getUNDEF(VT);
5869}
5870
5871static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5872 ArrayRef<SDValue> Elts) {
5873 assert(!Elts.empty())(static_cast <bool> (!Elts.empty()) ? void (0) : __assert_fail
("!Elts.empty()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5873, __extension__ __PRETTY_FUNCTION__))
;
5874 MVT Type;
5875 unsigned NumElts = Elts.size();
5876
5877 if (NumElts <= 8) {
5878 Type = MVT::getVectorVT(MVT::f32, NumElts);
5879 } else {
5880 assert(Elts.size() <= 16)(static_cast <bool> (Elts.size() <= 16) ? void (0) :
__assert_fail ("Elts.size() <= 16", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5880, __extension__ __PRETTY_FUNCTION__))
;
5881 Type = MVT::v16f32;
5882 NumElts = 16;
5883 }
5884
5885 SmallVector<SDValue, 16> VecElts(NumElts);
5886 for (unsigned i = 0; i < Elts.size(); ++i) {
5887 SDValue Elt = Elts[i];
5888 if (Elt.getValueType() != MVT::f32)
5889 Elt = DAG.getBitcast(MVT::f32, Elt);
5890 VecElts[i] = Elt;
5891 }
5892 for (unsigned i = Elts.size(); i < NumElts; ++i)
5893 VecElts[i] = DAG.getUNDEF(MVT::f32);
5894
5895 if (NumElts == 1)
5896 return VecElts[0];
5897 return DAG.getBuildVector(Type, DL, VecElts);
5898}
5899
5900static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
5901 SDValue Src, int ExtraElts) {
5902 EVT SrcVT = Src.getValueType();
5903
5904 SmallVector<SDValue, 8> Elts;
5905
5906 if (SrcVT.isVector())
5907 DAG.ExtractVectorElements(Src, Elts);
5908 else
5909 Elts.push_back(Src);
5910
5911 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
5912 while (ExtraElts--)
5913 Elts.push_back(Undef);
5914
5915 return DAG.getBuildVector(CastVT, DL, Elts);
5916}
5917
5918// Re-construct the required return value for a image load intrinsic.
5919// This is more complicated due to the optional use TexFailCtrl which means the required
5920// return type is an aggregate
5921static SDValue constructRetValue(SelectionDAG &DAG,
5922 MachineSDNode *Result,
5923 ArrayRef<EVT> ResultTypes,
5924 bool IsTexFail, bool Unpacked, bool IsD16,
5925 int DMaskPop, int NumVDataDwords,
5926 const SDLoc &DL) {
5927 // Determine the required return type. This is the same regardless of IsTexFail flag
5928 EVT ReqRetVT = ResultTypes[0];
5929 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5930 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5931 ReqRetNumElts : (ReqRetNumElts + 1) / 2;
5932
5933 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5934 DMaskPop : (DMaskPop + 1) / 2;
5935
5936 MVT DataDwordVT = NumDataDwords == 1 ?
5937 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
5938
5939 MVT MaskPopVT = MaskPopDwords == 1 ?
5940 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
5941
5942 SDValue Data(Result, 0);
5943 SDValue TexFail;
5944
5945 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
5946 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
5947 if (MaskPopVT.isVector()) {
5948 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
5949 SDValue(Result, 0), ZeroIdx);
5950 } else {
5951 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
5952 SDValue(Result, 0), ZeroIdx);
5953 }
5954 }
5955
5956 if (DataDwordVT.isVector())
5957 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
5958 NumDataDwords - MaskPopDwords);
5959
5960 if (IsD16)
5961 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
5962
5963 EVT LegalReqRetVT = ReqRetVT;
5964 if (!ReqRetVT.isVector()) {
5965 if (!Data.getValueType().isInteger())
5966 Data = DAG.getNode(ISD::BITCAST, DL,
5967 Data.getValueType().changeTypeToInteger(), Data);
5968 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
5969 } else {
5970 // We need to widen the return vector to a legal type
5971 if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
5972 ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
5973 LegalReqRetVT =
5974 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
5975 ReqRetVT.getVectorNumElements() + 1);
5976 }
5977 }
5978 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
5979
5980 if (IsTexFail) {
5981 TexFail =
5982 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
5983 DAG.getConstant(MaskPopDwords, DL, MVT::i32));
5984
5985 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
5986 }
5987
5988 if (Result->getNumValues() == 1)
5989 return Data;
5990
5991 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
5992}
5993
5994static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5995 SDValue *LWE, bool &IsTexFail) {
5996 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5997
5998 uint64_t Value = TexFailCtrlConst->getZExtValue();
5999 if (Value) {
6000 IsTexFail = true;
6001 }
6002
6003 SDLoc DL(TexFailCtrlConst);
6004 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
6005 Value &= ~(uint64_t)0x1;
6006 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
6007 Value &= ~(uint64_t)0x2;
6008
6009 return Value == 0;
6010}
6011
6012static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
6013 MVT PackVectorVT,
6014 SmallVectorImpl<SDValue> &PackedAddrs,
6015 unsigned DimIdx, unsigned EndIdx,
6016 unsigned NumGradients) {
6017 SDLoc DL(Op);
6018 for (unsigned I = DimIdx; I < EndIdx; I++) {
6019 SDValue Addr = Op.getOperand(I);
6020
6021 // Gradients are packed with undef for each coordinate.
6022 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
6023 // 1D: undef,dx/dh; undef,dx/dv
6024 // 2D: dy/dh,dx/dh; dy/dv,dx/dv
6025 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
6026 if (((I + 1) >= EndIdx) ||
6027 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
6028 I == DimIdx + NumGradients - 1))) {
6029 if (Addr.getValueType() != MVT::i16)
6030 Addr = DAG.getBitcast(MVT::i16, Addr);
6031 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
6032 } else {
6033 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
6034 I++;
6035 }
6036 Addr = DAG.getBitcast(MVT::f32, Addr);
6037 PackedAddrs.push_back(Addr);
6038 }
6039}
6040
6041SDValue SITargetLowering::lowerImage(SDValue Op,
6042 const AMDGPU::ImageDimIntrinsicInfo *Intr,
6043 SelectionDAG &DAG, bool WithChain) const {
6044 SDLoc DL(Op);
6045 MachineFunction &MF = DAG.getMachineFunction();
6046 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
6047 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
6048 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
6049 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
6050 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
6051 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
6052 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
6053 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
6054 unsigned IntrOpcode = Intr->BaseOpcode;
6055 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6056
6057 SmallVector<EVT, 3> ResultTypes(Op->values());
6058 SmallVector<EVT, 3> OrigResultTypes(Op->values());
6059 bool IsD16 = false;
6060 bool IsG16 = false;
6061 bool IsA16 = false;
6062 SDValue VData;
6063 int NumVDataDwords;
6064 bool AdjustRetType = false;
6065
6066 // Offset of intrinsic arguments
6067 const unsigned ArgOffset = WithChain ? 2 : 1;
6068
6069 unsigned DMask;
6070 unsigned DMaskLanes = 0;
6071
6072 if (BaseOpcode->Atomic) {
6073 VData = Op.getOperand(2);
6074
6075 bool Is64Bit = VData.getValueType() == MVT::i64;
6076 if (BaseOpcode->AtomicX2) {
6077 SDValue VData2 = Op.getOperand(3);
6078 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6079 {VData, VData2});
6080 if (Is64Bit)
6081 VData = DAG.getBitcast(MVT::v4i32, VData);
6082
6083 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6084 DMask = Is64Bit ? 0xf : 0x3;
6085 NumVDataDwords = Is64Bit ? 4 : 2;
6086 } else {
6087 DMask = Is64Bit ? 0x3 : 0x1;
6088 NumVDataDwords = Is64Bit ? 2 : 1;
6089 }
6090 } else {
6091 auto *DMaskConst =
6092 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6093 DMask = DMaskConst->getZExtValue();
6094 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6095
6096 if (BaseOpcode->Store) {
6097 VData = Op.getOperand(2);
6098
6099 MVT StoreVT = VData.getSimpleValueType();
6100 if (StoreVT.getScalarType() == MVT::f16) {
6101 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6102 return Op; // D16 is unsupported for this instruction
6103
6104 IsD16 = true;
6105 VData = handleD16VData(VData, DAG, true);
6106 }
6107
6108 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6109 } else {
6110 // Work out the num dwords based on the dmask popcount and underlying type
6111 // and whether packing is supported.
6112 MVT LoadVT = ResultTypes[0].getSimpleVT();
6113 if (LoadVT.getScalarType() == MVT::f16) {
6114 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6115 return Op; // D16 is unsupported for this instruction
6116
6117 IsD16 = true;
6118 }
6119
6120 // Confirm that the return type is large enough for the dmask specified
6121 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6122 (!LoadVT.isVector() && DMaskLanes > 1))
6123 return Op;
6124
6125 // The sq block of gfx8 and gfx9 do not estimate register use correctly
6126 // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6127 // instructions.
6128 if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6129 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6130 NumVDataDwords = (DMaskLanes + 1) / 2;
6131 else
6132 NumVDataDwords = DMaskLanes;
6133
6134 AdjustRetType = true;
6135 }
6136 }
6137
6138 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6139 SmallVector<SDValue, 4> VAddrs;
6140
6141 // Optimize _L to _LZ when _L is zero
6142 if (LZMappingInfo) {
6143 if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>(
6144 Op.getOperand(ArgOffset + Intr->LodIndex))) {
6145 if (ConstantLod->isZero() || ConstantLod->isNegative()) {
6146 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l
6147 VAddrEnd--; // remove 'lod'
6148 }
6149 }
6150 }
6151
6152 // Optimize _mip away, when 'lod' is zero
6153 if (MIPMappingInfo) {
6154 if (auto *ConstantLod = dyn_cast<ConstantSDNode>(
6155 Op.getOperand(ArgOffset + Intr->MipIndex))) {
6156 if (ConstantLod->isNullValue()) {
6157 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip
6158 VAddrEnd--; // remove 'mip'
6159 }
6160 }
6161 }
6162
6163 // Push back extra arguments.
6164 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++)
6165 VAddrs.push_back(Op.getOperand(ArgOffset + I));
6166
6167 // Check for 16 bit addresses or derivatives and pack if true.
6168 MVT VAddrVT =
6169 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6170 MVT VAddrScalarVT = VAddrVT.getScalarType();
6171 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6172 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6173
6174 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6175 VAddrScalarVT = VAddrVT.getScalarType();
6176 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6177 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6178
6179 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
6180 // 16 bit gradients are supported, but are tied to the A16 control
6181 // so both gradients and addresses must be 16 bit
6182 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
"require 16 bit args for both gradients and addresses"; } } while
(false)
6183 dbgs() << "Failed to lower image intrinsic: 16 bit addresses "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
"require 16 bit args for both gradients and addresses"; } } while
(false)
6184 "require 16 bit args for both gradients and addresses")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
"require 16 bit args for both gradients and addresses"; } } while
(false)
;
6185 return Op;
6186 }
6187
6188 if (IsA16) {
6189 if (!ST->hasA16()) {
6190 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: Target does not "
"support 16 bit addresses\n"; } } while (false)
6191 "support 16 bit addresses\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("si-lower")) { dbgs() << "Failed to lower image intrinsic: Target does not "
"support 16 bit addresses\n"; } } while (false)
;
6192 return Op;
6193 }
6194 }
6195
6196 // We've dealt with incorrect input so we know that if IsA16, IsG16
6197 // are set then we have to compress/pack operands (either address,
6198 // gradient or both)
6199 // In the case where a16 and gradients are tied (no G16 support) then we
6200 // have already verified that both IsA16 and IsG16 are true
6201 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
6202 // Activate g16
6203 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6204 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6205 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6206 }
6207
6208 // Add gradients (packed or unpacked)
6209 if (IsG16) {
6210 // Pack the gradients
6211 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6212 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
6213 ArgOffset + Intr->GradientStart,
6214 ArgOffset + Intr->CoordStart, Intr->NumGradients);
6215 } else {
6216 for (unsigned I = ArgOffset + Intr->GradientStart;
6217 I < ArgOffset + Intr->CoordStart; I++)
6218 VAddrs.push_back(Op.getOperand(I));
6219 }
6220
6221 // Add addresses (packed or unpacked)
6222 if (IsA16) {
6223 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
6224 ArgOffset + Intr->CoordStart, VAddrEnd,
6225 0 /* No gradients */);
6226 } else {
6227 // Add uncompressed address
6228 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6229 VAddrs.push_back(Op.getOperand(I));
6230 }
6231
6232 // If the register allocator cannot place the address registers contiguously
6233 // without introducing moves, then using the non-sequential address encoding
6234 // is always preferable, since it saves VALU instructions and is usually a
6235 // wash in terms of code size or even better.
6236 //
6237 // However, we currently have no way of hinting to the register allocator that
6238 // MIMG addresses should be placed contiguously when it is possible to do so,
6239 // so force non-NSA for the common 2-address case as a heuristic.
6240 //
6241 // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6242 // allocation when possible.
6243 bool UseNSA = ST->hasFeature(AMDGPU::FeatureNSAEncoding) &&
6244 VAddrs.size() >= 3 &&
6245 VAddrs.size() <= (unsigned)ST->getNSAMaxSize();
6246 SDValue VAddr;
6247 if (!UseNSA)
6248 VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6249
6250 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6251 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6252 SDValue Unorm;
6253 if (!BaseOpcode->Sampler) {
6254 Unorm = True;
6255 } else {
6256 auto UnormConst =
6257 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6258
6259 Unorm = UnormConst->getZExtValue() ? True : False;
6260 }
6261
6262 SDValue TFE;
6263 SDValue LWE;
6264 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6265 bool IsTexFail = false;
6266 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6267 return Op;
6268
6269 if (IsTexFail) {
6270 if (!DMaskLanes) {
6271 // Expecting to get an error flag since TFC is on - and dmask is 0
6272 // Force dmask to be at least 1 otherwise the instruction will fail
6273 DMask = 0x1;
6274 DMaskLanes = 1;
6275 NumVDataDwords = 1;
6276 }
6277 NumVDataDwords += 1;
6278 AdjustRetType = true;
6279 }
6280
6281 // Has something earlier tagged that the return type needs adjusting
6282 // This happens if the instruction is a load or has set TexFailCtrl flags
6283 if (AdjustRetType) {
6284 // NumVDataDwords reflects the true number of dwords required in the return type
6285 if (DMaskLanes == 0 && !BaseOpcode->Store) {
6286 // This is a no-op load. This can be eliminated
6287 SDValue Undef = DAG.getUNDEF(Op.getValueType());
6288 if (isa<MemSDNode>(Op))
6289 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6290 return Undef;
6291 }
6292
6293 EVT NewVT = NumVDataDwords > 1 ?
6294 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6295 : MVT::i32;
6296
6297 ResultTypes[0] = NewVT;
6298 if (ResultTypes.size() == 3) {
6299 // Original result was aggregate type used for TexFailCtrl results
6300 // The actual instruction returns as a vector type which has now been
6301 // created. Remove the aggregate result.
6302 ResultTypes.erase(&ResultTypes[1]);
6303 }
6304 }
6305
6306 unsigned CPol = cast<ConstantSDNode>(
6307 Op.getOperand(ArgOffset + Intr->CachePolicyIndex))->getZExtValue();
6308 if (BaseOpcode->Atomic)
6309 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
6310 if (CPol & ~AMDGPU::CPol::ALL)
6311 return Op;
6312
6313 SmallVector<SDValue, 26> Ops;
6314 if (BaseOpcode->Store || BaseOpcode->Atomic)
6315 Ops.push_back(VData); // vdata
6316 if (UseNSA)
6317 append_range(Ops, VAddrs);
6318 else
6319 Ops.push_back(VAddr);
6320 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6321 if (BaseOpcode->Sampler)
6322 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6323 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6324 if (IsGFX10Plus)
6325 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6326 Ops.push_back(Unorm);
6327 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
6328 Ops.push_back(IsA16 && // r128, a16 for gfx9
6329 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6330 if (IsGFX10Plus)
6331 Ops.push_back(IsA16 ? True : False);
6332 if (!Subtarget->hasGFX90AInsts()) {
6333 Ops.push_back(TFE); //tfe
6334 } else if (cast<ConstantSDNode>(TFE)->getZExtValue()) {
6335 report_fatal_error("TFE is not supported on this GPU");
6336 }
6337 Ops.push_back(LWE); // lwe
6338 if (!IsGFX10Plus)
6339 Ops.push_back(DimInfo->DA ? True : False);
6340 if (BaseOpcode->HasD16)
6341 Ops.push_back(IsD16 ? True : False);
6342 if (isa<MemSDNode>(Op))
6343 Ops.push_back(Op.getOperand(0)); // chain
6344
6345 int NumVAddrDwords =
6346 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6347 int Opcode = -1;
6348
6349 if (IsGFX10Plus) {
6350 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6351 UseNSA ? AMDGPU::MIMGEncGfx10NSA
6352 : AMDGPU::MIMGEncGfx10Default,
6353 NumVDataDwords, NumVAddrDwords);
6354 } else {
6355 if (Subtarget->hasGFX90AInsts()) {
6356 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
6357 NumVDataDwords, NumVAddrDwords);
6358 if (Opcode == -1)
6359 report_fatal_error(
6360 "requested image instruction is not supported on this GPU");
6361 }
6362 if (Opcode == -1 &&
6363 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6364 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6365 NumVDataDwords, NumVAddrDwords);
6366 if (Opcode == -1)
6367 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6368 NumVDataDwords, NumVAddrDwords);
6369 }
6370 assert(Opcode != -1)(static_cast <bool> (Opcode != -1) ? void (0) : __assert_fail
("Opcode != -1", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 6370, __extension__ __PRETTY_FUNCTION__))
;
6371
6372 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6373 if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6374 MachineMemOperand *MemRef = MemOp->getMemOperand();
6375 DAG.setNodeMemRefs(NewNode, {MemRef});
6376 }
6377
6378 if (BaseOpcode->AtomicX2) {
6379 SmallVector<SDValue, 1> Elt;
6380 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6381 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6382 }
6383 if (BaseOpcode->Store)
6384 return SDValue(NewNode, 0);
6385 return constructRetValue(DAG, NewNode,
6386 OrigResultTypes, IsTexFail,
6387 Subtarget->hasUnpackedD16VMem(), IsD16,
6388 DMaskLanes, NumVDataDwords, DL);
6389}
6390
6391SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6392 SDValue Offset, SDValue CachePolicy,
6393 SelectionDAG &DAG) const {
6394 MachineFunction &MF = DAG.getMachineFunction();
6395
6396 const DataLayout &DataLayout = DAG.getDataLayout();
6397 Align Alignment =
6398 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6399
6400 MachineMemOperand *MMO = MF.getMachineMemOperand(
6401 MachinePointerInfo(),
6402 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6403 MachineMemOperand::MOInvariant,
6404 VT.getStoreSize(), Alignment);
6405
6406 if (!Offset->isDivergent()) {
6407 SDValue Ops[] = {
6408 Rsrc,
6409 Offset, // Offset
6410 CachePolicy
6411 };
6412
6413 // Widen vec3 load to vec4.
6414 if (VT.isVector() && VT.getVectorNumElements() == 3) {
6415 EVT WidenedVT =
6416 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6417 auto WidenedOp = DAG.getMemIntrinsicNode(
6418 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6419 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6420 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6421 DAG.getVectorIdxConstant(0, DL));
6422 return Subvector;
6423 }
6424
6425 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6426 DAG.getVTList(VT), Ops, VT, MMO);
6427 }
6428
6429 // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6430 // assume that the buffer is unswizzled.
6431 SmallVector<SDValue, 4> Loads;
6432 unsigned NumLoads = 1;
6433 MVT LoadVT = VT.getSimpleVT();
6434 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6435 assert((LoadVT.getScalarType() == MVT::i32 ||(static_cast <bool> ((LoadVT.getScalarType() == MVT::i32
|| LoadVT.getScalarType() == MVT::f32)) ? void (0) : __assert_fail
("(LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 6436, __extension__ __PRETTY_FUNCTION__))
6436 LoadVT.getScalarType() == MVT::f32))(static_cast <bool> ((LoadVT.getScalarType() == MVT::i32
|| LoadVT.getScalarType() == MVT::f32)) ? void (0) : __assert_fail
("(LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 6436, __extension__ __PRETTY_FUNCTION__))
;
6437
6438 if (NumElts == 8 || NumElts == 16) {
6439 NumLoads = NumElts / 4;
6440 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6441 }
6442
6443 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6444 SDValue Ops[] = {
6445 DAG.getEntryNode(), // Chain
6446 Rsrc, // rsrc
6447 DAG.getConstant(0, DL, MVT::i32), // vindex
6448 {}, // voffset
6449 {}, // soffset
6450 {}, // offset
6451 CachePolicy, // cachepolicy
6452 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6453 };
6454
6455 // Use the alignment to ensure that the required offsets will fit into the
6456 // immediate offsets.
6457 setBufferOffsets(Offset, DAG, &Ops[3],
6458 NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6459
6460 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6461 for (unsigned i = 0; i < NumLoads; ++i) {
6462 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6463 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6464 LoadVT, MMO, DAG));
6465 }
6466
6467 if (NumElts == 8 || NumElts == 16)
6468 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6469
6470 return Loads[0];
6471}
6472
6473SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6474 SelectionDAG &DAG) const {
6475 MachineFunction &MF = DAG.getMachineFunction();
6476 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6477
6478 EVT VT = Op.getValueType();
6479 SDLoc DL(Op);
6480 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6481
6482 // TODO: Should this propagate fast-math-flags?
6483
6484 switch (IntrinsicID) {
6485 case Intrinsic::amdgcn_implicit_buffer_ptr: {
6486 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6487 return emitNonHSAIntrinsicError(DAG, DL, VT);
6488 return getPreloadedValue(DAG, *MFI, VT,
6489 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6490 }
6491 case Intrinsic::amdgcn_dispatch_ptr:
6492 case Intrinsic::amdgcn_queue_ptr: {
6493 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6494 DiagnosticInfoUnsupported BadIntrin(
6495 MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6496 DL.getDebugLoc());
6497 DAG.getContext()->diagnose(BadIntrin);
6498 return DAG.getUNDEF(VT);
6499 }
6500
6501 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6502 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6503 return getPreloadedValue(DAG, *MFI, VT, RegID);
6504 }
6505 case Intrinsic::amdgcn_implicitarg_ptr: {
6506 if (MFI->isEntryFunction())
6507 return getImplicitArgPtr(DAG, DL);
6508 return getPreloadedValue(DAG, *MFI, VT,
6509 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6510 }
6511 case Intrinsic::amdgcn_kernarg_segment_ptr: {
6512 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6513 // This only makes sense to call in a kernel, so just lower to null.
6514 return DAG.getConstant(0, DL, VT);
6515 }
6516
6517 return getPreloadedValue(DAG, *MFI, VT,
6518 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6519 }
6520 case Intrinsic::amdgcn_dispatch_id: {
6521 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6522 }
6523 case Intrinsic::amdgcn_rcp:
6524 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6525 case Intrinsic::amdgcn_rsq:
6526 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6527 case Intrinsic::amdgcn_rsq_legacy:
6528 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6529 return emitRemovedIntrinsicError(DAG, DL, VT);
6530 return SDValue();
6531 case Intrinsic::amdgcn_rcp_legacy:
6532 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6533 return emitRemovedIntrinsicError(DAG, DL, VT);
6534 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6535 case Intrinsic::amdgcn_rsq_clamp: {
6536 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6537 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6538
6539 Type *Type = VT.getTypeForEVT(*DAG.getContext());
6540 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6541 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6542
6543 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6544 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6545 DAG.getConstantFP(Max, DL, VT));
6546 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6547 DAG.getConstantFP(Min, DL, VT));
6548 }
6549 case Intrinsic::r600_read_ngroups_x:
6550 if (Subtarget->isAmdHsaOS())
6551 return emitNonHSAIntrinsicError(DAG, DL, VT);
6552
6553 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6554 SI::KernelInputOffsets::NGROUPS_X, Align(4),
6555 false);
6556 case Intrinsic::r600_read_ngroups_y:
6557 if (Subtarget->isAmdHsaOS())
6558 return emitNonHSAIntrinsicError(DAG, DL, VT);
6559
6560 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6561 SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6562 false);
6563 case Intrinsic::r600_read_ngroups_z:
6564 if (Subtarget->isAmdHsaOS())
6565 return emitNonHSAIntrinsicError(DAG, DL, VT);
6566
6567 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6568 SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6569 false);
6570 case Intrinsic::r600_read_global_size_x:
6571 if (Subtarget->isAmdHsaOS())
6572 return emitNonHSAIntrinsicError(DAG, DL, VT);
6573
6574 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6575 SI::KernelInputOffsets::GLOBAL_SIZE_X,
6576 Align(4), false);
6577 case Intrinsic::r600_read_global_size_y:
6578 if (Subtarget->isAmdHsaOS())
6579 return emitNonHSAIntrinsicError(DAG, DL, VT);
6580
6581 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6582 SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6583 Align(4), false);
6584 case Intrinsic::r600_read_global_size_z:
6585 if (Subtarget->isAmdHsaOS())
6586 return emitNonHSAIntrinsicError(DAG, DL, VT);
6587
6588 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6589 SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6590 Align(4), false);
6591 case Intrinsic::r600_read_local_size_x:
6592 if (Subtarget->isAmdHsaOS())
6593 return emitNonHSAIntrinsicError(DAG, DL, VT);
6594
6595 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6596 SI::KernelInputOffsets::LOCAL_SIZE_X);
6597 case Intrinsic::r600_read_local_size_y:
6598 if (Subtarget->isAmdHsaOS())
6599 return emitNonHSAIntrinsicError(DAG, DL, VT);
6600
6601 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6602 SI::KernelInputOffsets::LOCAL_SIZE_Y);
6603 case Intrinsic::r600_read_local_size_z:
6604 if (Subtarget->isAmdHsaOS())
6605 return emitNonHSAIntrinsicError(DAG, DL, VT);
6606
6607 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6608 SI::KernelInputOffsets::LOCAL_SIZE_Z);
6609 case Intrinsic::amdgcn_workgroup_id_x:
6610 return getPreloadedValue(DAG, *MFI, VT,
6611 AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6612 case Intrinsic::amdgcn_workgroup_id_y:
6613 return getPreloadedValue(DAG, *MFI, VT,
6614 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6615 case Intrinsic::amdgcn_workgroup_id_z:
6616 return getPreloadedValue(DAG, *MFI, VT,
6617 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6618 case Intrinsic::amdgcn_workitem_id_x:
6619 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6620 SDLoc(DAG.getEntryNode()),
6621 MFI->getArgInfo().WorkItemIDX);
6622 case Intrinsic::amdgcn_workitem_id_y:
6623 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6624 SDLoc(DAG.getEntryNode()),
6625 MFI->getArgInfo().WorkItemIDY);
6626 case Intrinsic::amdgcn_workitem_id_z:
6627 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6628 SDLoc(DAG.getEntryNode()),
6629 MFI->getArgInfo().WorkItemIDZ);
6630 case Intrinsic::amdgcn_wavefrontsize:
6631 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6632 SDLoc(Op), MVT::i32);
6633 case Intrinsic::amdgcn_s_buffer_load: {
6634 unsigned CPol = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6635 if (CPol & ~AMDGPU::CPol::ALL)
6636 return Op;
6637 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6638 DAG);
6639 }
6640 case Intrinsic::amdgcn_fdiv_fast:
6641 return lowerFDIV_FAST(Op, DAG);
6642 case Intrinsic::amdgcn_sin:
6643 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6644
6645 case Intrinsic::amdgcn_cos:
6646 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6647
6648 case Intrinsic::amdgcn_mul_u24:
6649 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6650 case Intrinsic::amdgcn_mul_i24:
6651 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6652
6653 case Intrinsic::amdgcn_log_clamp: {
6654 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6655 return SDValue();
6656
6657 return emitRemovedIntrinsicError(DAG, DL, VT);
6658 }
6659 case Intrinsic::amdgcn_ldexp:
6660 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6661 Op.getOperand(1), Op.getOperand(2));
6662
6663 case Intrinsic::amdgcn_fract:
6664 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6665
6666 case Intrinsic::amdgcn_class:
6667 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6668 Op.getOperand(1), Op.getOperand(2));
6669 case Intrinsic::amdgcn_div_fmas:
6670 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6671 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6672 Op.getOperand(4));
6673
6674 case Intrinsic::amdgcn_div_fixup:
6675 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6676 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6677
6678 case Intrinsic::amdgcn_div_scale: {
6679 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6680
6681 // Translate to the operands expected by the machine instruction. The
6682 // first parameter must be the same as the first instruction.
6683 SDValue Numerator = Op.getOperand(1);
6684 SDValue Denominator = Op.getOperand(2);
6685
6686 // Note this order is opposite of the machine instruction's operations,
6687 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6688 // intrinsic has the numerator as the first operand to match a normal
6689 // division operation.
6690
6691 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6692
6693 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6694 Denominator, Numerator);
6695 }
6696 case Intrinsic::amdgcn_icmp: {
6697 // There is a Pat that handles this variant, so return it as-is.
6698 if (Op.getOperand(1).getValueType() == MVT::i1 &&
6699 Op.getConstantOperandVal(2) == 0 &&
6700 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6701 return Op;
6702 return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6703 }
6704 case Intrinsic::amdgcn_fcmp: {
6705 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6706 }
6707 case Intrinsic::amdgcn_ballot:
6708 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6709 case Intrinsic::amdgcn_fmed3:
6710 return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6711 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6712 case Intrinsic::amdgcn_fdot2:
6713 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6714 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6715 Op.getOperand(4));
6716 case Intrinsic::amdgcn_fmul_legacy:
6717 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6718 Op.getOperand(1), Op.getOperand(2));
6719 case Intrinsic::amdgcn_sffbh:
6720 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6721 case Intrinsic::amdgcn_sbfe:
6722 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6723 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6724 case Intrinsic::amdgcn_ubfe:
6725 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6726 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6727 case Intrinsic::amdgcn_cvt_pkrtz:
6728 case Intrinsic::amdgcn_cvt_pknorm_i16:
6729 case Intrinsic::amdgcn_cvt_pknorm_u16:
6730 case Intrinsic::amdgcn_cvt_pk_i16:
6731 case Intrinsic::amdgcn_cvt_pk_u16: {
6732 // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6733 EVT VT = Op.getValueType();
6734 unsigned Opcode;
6735
6736 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6737 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6738 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6739 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6740 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6741 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6742 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6743 Opcode = AMDGPUISD::CVT_PK_I16_I32;
6744 else
6745 Opcode = AMDGPUISD::CVT_PK_U16_U32;
6746
6747 if (isTypeLegal(VT))
6748 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6749
6750 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6751 Op.getOperand(1), Op.getOperand(2));
6752 return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6753 }
6754 case Intrinsic::amdgcn_fmad_ftz:
6755 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6756 Op.getOperand(2), Op.getOperand(3));
6757
6758 case Intrinsic::amdgcn_if_break:
6759 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6760 Op->getOperand(1), Op->getOperand(2)), 0);
6761
6762 case Intrinsic::amdgcn_groupstaticsize: {
6763 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6764 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6765 return Op;
6766
6767 const Module *M = MF.getFunction().getParent();
6768 const GlobalValue *GV =
6769 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6770 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6771 SIInstrInfo::MO_ABS32_LO);
6772 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6773 }
6774 case Intrinsic::amdgcn_is_shared:
6775 case Intrinsic::amdgcn_is_private: {
6776 SDLoc SL(Op);
6777 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6778 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6779 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6780 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6781 Op.getOperand(1));
6782
6783 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6784 DAG.getConstant(1, SL, MVT::i32));
6785 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6786 }
6787 case Intrinsic::amdgcn_alignbit:
6788 return DAG.getNode(ISD::FSHR, DL, VT,
6789 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6790 case Intrinsic::amdgcn_perm:
6791 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
6792 Op.getOperand(2), Op.getOperand(3));
6793 case Intrinsic::amdgcn_reloc_constant: {
6794 Module *M = const_cast<Module *>(MF.getFunction().getParent());
6795 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6796 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6797 auto RelocSymbol = cast<GlobalVariable>(
6798 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6799 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6800 SIInstrInfo::MO_ABS32_LO);
6801 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6802 }
6803 default:
6804 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6805 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6806 return lowerImage(Op, ImageDimIntr, DAG, false);
6807
6808 return Op;
6809 }
6810}
6811
6812/// Update \p MMO based on the offset inputs to an intrinsic.
6813static void updateBufferMMO(MachineMemOperand *MMO, SDValue VOffset,
6814 SDValue SOffset, SDValue Offset,
6815 SDValue VIndex = SDValue()) {
6816 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6817 !isa<ConstantSDNode>(Offset)) {
6818 // The combined offset is not known to be constant, so we cannot represent
6819 // it in the MMO. Give up.
6820 MMO->setValue((Value *)nullptr);
6821 return;
6822 }
6823
6824 if (VIndex && (!isa<ConstantSDNode>(VIndex) ||
6825 !cast<ConstantSDNode>(VIndex)->isNullValue())) {
6826 // The strided index component of the address is not known to be zero, so we
6827 // cannot represent it in the MMO. Give up.
6828 MMO->setValue((Value *)nullptr);
6829 return;
6830 }
6831
6832 MMO->setOffset(cast<ConstantSDNode>(VOffset)->getSExtValue() +
6833 cast<ConstantSDNode>(SOffset)->getSExtValue() +
6834 cast<ConstantSDNode>(Offset)->getSExtValue());
6835}
6836
6837SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
6838 SelectionDAG &DAG,
6839 unsigned NewOpcode) const {
6840 SDLoc DL(Op);
6841
6842 SDValue VData = Op.getOperand(2);
6843 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6844 SDValue Ops[] = {
6845 Op.getOperand(0), // Chain
6846 VData, // vdata
6847 Op.getOperand(3), // rsrc
6848 DAG.getConstant(0, DL, MVT::i32), // vindex
6849 Offsets.first, // voffset
6850 Op.getOperand(5), // soffset
6851 Offsets.second, // offset
6852 Op.getOperand(6), // cachepolicy
6853 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6854 };
6855
6856 auto *M = cast<MemSDNode>(Op);
6857 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
6858
6859 EVT MemVT = VData.getValueType();
6860 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6861 M->getMemOperand());
6862}
6863
6864// Return a value to use for the idxen operand by examining the vindex operand.
6865static unsigned getIdxEn(SDValue VIndex) {
6866 if (auto VIndexC = dyn_cast<ConstantSDNode>(VIndex))
6867 // No need to set idxen if vindex is known to be zero.
6868 return VIndexC->getZExtValue() != 0;
6869 return 1;
6870}
6871
6872SDValue
6873SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
6874 unsigned NewOpcode) const {
6875 SDLoc DL(Op);
6876
6877 SDValue VData = Op.getOperand(2);
6878 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6879 SDValue Ops[] = {
6880 Op.getOperand(0), // Chain
6881 VData, // vdata
6882 Op.getOperand(3), // rsrc
6883 Op.getOperand(4), // vindex
6884 Offsets.first, // voffset
6885 Op.getOperand(6), // soffset
6886 Offsets.second, // offset
6887 Op.getOperand(7), // cachepolicy
6888 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6889 };
6890
6891 auto *M = cast<MemSDNode>(Op);
6892 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
6893
6894 EVT MemVT = VData.getValueType();
6895 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6896 M->getMemOperand());
6897}
6898
6899SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6900 SelectionDAG &DAG) const {
6901 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6902 SDLoc DL(Op);
6903
6904 switch (IntrID) {
6905 case Intrinsic::amdgcn_ds_ordered_add:
6906 case Intrinsic::amdgcn_ds_ordered_swap: {
6907 MemSDNode *M = cast<MemSDNode>(Op);
6908 SDValue Chain = M->getOperand(0);
6909 SDValue M0 = M->getOperand(2);
6910 SDValue Value = M->getOperand(3);
6911 unsigned IndexOperand = M->getConstantOperandVal(7);
6912 unsigned WaveRelease = M->getConstantOperandVal(8);
6913 unsigned WaveDone = M->getConstantOperandVal(9);
6914
6915 unsigned OrderedCountIndex = IndexOperand & 0x3f;
6916 IndexOperand &= ~0x3f;
6917 unsigned CountDw = 0;
6918
6919 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6920 CountDw = (IndexOperand >> 24) & 0xf;
6921 IndexOperand &= ~(0xf << 24);
6922
6923 if (CountDw < 1 || CountDw > 4) {
6924 report_fatal_error(
6925 "ds_ordered_count: dword count must be between 1 and 4");
6926 }
6927 }
6928
6929 if (IndexOperand)
6930 report_fatal_error("ds_ordered_count: bad index operand");
6931
6932 if (WaveDone && !WaveRelease)
6933 report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6934
6935 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
6936 unsigned ShaderType =
6937 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
6938 unsigned Offset0 = OrderedCountIndex << 2;
6939 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6940 (Instruction << 4);
6941
6942 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6943 Offset1 |= (CountDw - 1) << 6;
6944
6945 unsigned Offset = Offset0 | (Offset1 << 8);
6946
6947 SDValue Ops[] = {
6948 Chain,
6949 Value,
6950 DAG.getTargetConstant(Offset, DL, MVT::i16),
6951 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6952 };
6953 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6954 M->getVTList(), Ops, M->getMemoryVT(),
6955 M->getMemOperand());
6956 }
6957 case Intrinsic::amdgcn_ds_fadd: {
6958 MemSDNode *M = cast<MemSDNode>(Op);
6959 unsigned Opc;
6960 switch (IntrID) {
6961 case Intrinsic::amdgcn_ds_fadd:
6962 Opc = ISD::ATOMIC_LOAD_FADD;
6963 break;
6964 }
6965
6966 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6967 M->getOperand(0), M->getOperand(2), M->getOperand(3),
6968 M->getMemOperand());
6969 }
6970 case Intrinsic::amdgcn_atomic_inc:
6971 case Intrinsic::amdgcn_atomic_dec:
6972 case Intrinsic::amdgcn_ds_fmin:
6973 case Intrinsic::amdgcn_ds_fmax: {
6974 MemSDNode *M = cast<MemSDNode>(Op);
6975 unsigned Opc;
6976 switch (IntrID) {
6977 case Intrinsic::amdgcn_atomic_inc:
6978 Opc = AMDGPUISD::ATOMIC_INC;
6979 break;
6980 case Intrinsic::amdgcn_atomic_dec:
6981 Opc = AMDGPUISD::ATOMIC_DEC;
6982 break;
6983 case Intrinsic::amdgcn_ds_fmin:
6984 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6985 break;
6986 case Intrinsic::amdgcn_ds_fmax:
6987 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6988 break;
6989 default:
6990 llvm_unreachable("Unknown intrinsic!")::llvm::llvm_unreachable_internal("Unknown intrinsic!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 6990)
;
6991 }
6992 SDValue Ops[] = {
6993 M->getOperand(0), // Chain
6994 M->getOperand(2), // Ptr
6995 M->getOperand(3) // Value
6996 };
6997
6998 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6999 M->getMemoryVT(), M->getMemOperand());
7000 }
7001 case Intrinsic::amdgcn_buffer_load:
7002 case Intrinsic::amdgcn_buffer_load_format: {
7003 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7004 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7005 unsigned IdxEn = getIdxEn(Op.getOperand(3));
7006 SDValue Ops[] = {
7007 Op.getOperand(0), // Chain
7008 Op.getOperand(2), // rsrc
7009 Op.getOperand(3), // vindex
7010 SDValue(), // voffset -- will be set by setBufferOffsets
7011 SDValue(), // soffset -- will be set by setBufferOffsets
7012 SDValue(), // offset -- will be set by setBufferOffsets
7013 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7014 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7015 };
7016 setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
7017
7018 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
7019 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
7020
7021 EVT VT = Op.getValueType();
7022 EVT IntVT = VT.changeTypeToInteger();
7023 auto *M = cast<MemSDNode>(Op);
7024 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7025 EVT LoadVT = Op.getValueType();
7026
7027 if (LoadVT.getScalarType() == MVT::f16)
7028 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
7029 M, DAG, Ops);
7030
7031 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
7032 if (LoadVT.getScalarType() == MVT::i8 ||
7033 LoadVT.getScalarType() == MVT::i16)
7034 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
7035
7036 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
7037 M->getMemOperand(), DAG);
7038 }
7039 case Intrinsic::amdgcn_raw_buffer_load:
7040 case Intrinsic::amdgcn_raw_buffer_load_format: {
7041 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
7042
7043 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7044 SDValue Ops[] = {
7045 Op.getOperand(0), // Chain
7046 Op.getOperand(2), // rsrc
7047 DAG.getConstant(0, DL, MVT::i32), // vindex
7048 Offsets.first, // voffset
7049 Op.getOperand(4), // soffset
7050 Offsets.second, // offset
7051 Op.getOperand(5), // cachepolicy, swizzled buffer
7052 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7053 };
7054
7055 auto *M = cast<MemSDNode>(Op);
7056 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5]);
7057 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
7058 }
7059 case Intrinsic::amdgcn_struct_buffer_load:
7060 case Intrinsic::amdgcn_struct_buffer_load_format: {
7061 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
7062
7063 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7064 SDValue Ops[] = {
7065 Op.getOperand(0), // Chain
7066 Op.getOperand(2), // rsrc
7067 Op.getOperand(3), // vindex
7068 Offsets.first, // voffset
7069 Op.getOperand(5), // soffset
7070 Offsets.second, // offset
7071 Op.getOperand(6), // cachepolicy, swizzled buffer
7072 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7073 };
7074
7075 auto *M = cast<MemSDNode>(Op);
7076 updateBufferMMO(M->getMemOperand(), Ops[3], Ops[4], Ops[5], Ops[2]);
7077 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7078 }
7079 case Intrinsic::amdgcn_tbuffer_load: {
7080 MemSDNode *M = cast<MemSDNode>(Op);
7081 EVT LoadVT = Op.getValueType();
7082
7083 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7084 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7085 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7086 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7087 unsigned IdxEn = getIdxEn(Op.getOperand(3));
7088 SDValue Ops[] = {
7089 Op.getOperand(0), // Chain
7090 Op.getOperand(2), // rsrc
7091 Op.getOperand(3), // vindex
7092 Op.getOperand(4), // voffset
7093 Op.getOperand(5), // soffset
7094 Op.getOperand(6), // offset
7095 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7096 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7097 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7098 };
7099
7100 if (LoadVT.getScalarType() == MVT::f16)
7101 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7102 M, DAG, Ops);
7103 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7104 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7105 DAG);
7106 }
7107 case Intrinsic::amdgcn_raw_tbuffer_load: {
7108 MemSDNode *M = cast<MemSDNode>(Op);
7109 EVT LoadVT = Op.getValueType();
7110 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7111
7112 SDValue Ops[] = {
7113 Op.getOperand(0), // Chain
7114 Op.getOperand(2), // rsrc
7115 DAG.getConstant(0, DL, MVT::i32), // vindex
7116 Offsets.first, // voffset
7117 Op.getOperand(4), // soffset
7118 Offsets.second, // offset
7119 Op.getOperand(5), // format
7120 Op.getOperand(6), // cachepolicy, swizzled buffer
7121 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7122 };
7123
7124 if (LoadVT.getScalarType() == MVT::f16)
7125 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7126 M, DAG, Ops);
7127 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7128 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7129 DAG);
7130 }
7131 case Intrinsic::amdgcn_struct_tbuffer_load: {
7132 MemSDNode *M = cast<MemSDNode>(Op);
7133 EVT LoadVT = Op.getValueType();
7134 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7135
7136 SDValue Ops[] = {
7137 Op.getOperand(0), // Chain
7138 Op.getOperand(2), // rsrc
7139 Op.getOperand(3), // vindex
7140 Offsets.first, // voffset
7141 Op.getOperand(5), // soffset
7142 Offsets.second, // offset
7143 Op.getOperand(6), // format
7144 Op.getOperand(7), // cachepolicy, swizzled buffer
7145 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7146 };
7147
7148 if (LoadVT.getScalarType() == MVT::f16)
7149 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7150 M, DAG, Ops);
7151 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7152 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7153 DAG);
7154 }
7155 case Intrinsic::amdgcn_buffer_atomic_swap:
7156 case Intrinsic::amdgcn_buffer_atomic_add:
7157 case Intrinsic::amdgcn_buffer_atomic_sub:
7158 case Intrinsic::amdgcn_buffer_atomic_csub:
7159 case Intrinsic::amdgcn_buffer_atomic_smin:
7160 case Intrinsic::amdgcn_buffer_atomic_umin:
7161 case Intrinsic::amdgcn_buffer_atomic_smax:
7162 case Intrinsic::amdgcn_buffer_atomic_umax:
7163 case Intrinsic::amdgcn_buffer_atomic_and:
7164 case Intrinsic::amdgcn_buffer_atomic_or:
7165 case Intrinsic::amdgcn_buffer_atomic_xor:
7166 case Intrinsic::amdgcn_buffer_atomic_fadd: {
7167 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7168 unsigned IdxEn = getIdxEn(Op.getOperand(4));
7169 SDValue Ops[] = {
7170 Op.getOperand(0), // Chain
7171 Op.getOperand(2), // vdata
7172 Op.getOperand(3), // rsrc
7173 Op.getOperand(4), // vindex
7174 SDValue(), // voffset -- will be set by setBufferOffsets
7175 SDValue(), // soffset -- will be set by setBufferOffsets
7176 SDValue(), // offset -- will be set by setBufferOffsets
7177 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7178 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7179 };
7180 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7181
7182 EVT VT = Op.getValueType();
7183
7184 auto *M = cast<MemSDNode>(Op);
7185 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7186 unsigned Opcode = 0;
7187
7188 switch (IntrID) {
7189 case Intrinsic::amdgcn_buffer_atomic_swap:
7190 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7191 break;
7192 case Intrinsic::amdgcn_buffer_atomic_add:
7193 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7194 break;
7195 case Intrinsic::amdgcn_buffer_atomic_sub:
7196 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7197 break;
7198 case Intrinsic::amdgcn_buffer_atomic_csub:
7199 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7200 break;
7201 case Intrinsic::amdgcn_buffer_atomic_smin:
7202 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7203 break;
7204 case Intrinsic::amdgcn_buffer_atomic_umin:
7205 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7206 break;
7207 case Intrinsic::amdgcn_buffer_atomic_smax:
7208 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7209 break;
7210 case Intrinsic::amdgcn_buffer_atomic_umax:
7211 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7212 break;
7213 case Intrinsic::amdgcn_buffer_atomic_and:
7214 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7215 break;
7216 case Intrinsic::amdgcn_buffer_atomic_or:
7217 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7218 break;
7219 case Intrinsic::amdgcn_buffer_atomic_xor:
7220 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7221 break;
7222 case Intrinsic::amdgcn_buffer_atomic_fadd:
7223 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7224 DiagnosticInfoUnsupported
7225 NoFpRet(DAG.getMachineFunction().getFunction(),
7226 "return versions of fp atomics not supported",
7227 DL.getDebugLoc(), DS_Error);
7228 DAG.getContext()->diagnose(NoFpRet);
7229 return SDValue();
7230 }
7231 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7232 break;
7233 default:
7234 llvm_unreachable("unhandled atomic opcode")::llvm::llvm_unreachable_internal("unhandled atomic opcode", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7234)
;
7235 }
7236
7237 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7238 M->getMemOperand());
7239 }
7240 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7241 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7242 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7243 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7244 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7245 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7246 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7247 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
7248 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7249 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7250 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7251 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
7252 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7253 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7254 case Intrinsic::amdgcn_raw_buffer_atomic_add:
7255 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7256 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7257 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7258 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7259 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7260 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7261 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7262 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7263 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7264 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7265 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7266 case Intrinsic::amdgcn_raw_buffer_atomic_and:
7267 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7268 case Intrinsic::amdgcn_raw_buffer_atomic_or:
7269 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7270 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7271 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7272 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7273 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7274 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7275 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7276 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7277 return lowerStructBufferAtomicIntrin(Op, DAG,
7278 AMDGPUISD::BUFFER_ATOMIC_SWAP);
7279 case Intrinsic::amdgcn_struct_buffer_atomic_add:
7280 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7281 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7282 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7283 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7284 return lowerStructBufferAtomicIntrin(Op, DAG,
7285 AMDGPUISD::BUFFER_ATOMIC_SMIN);
7286 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7287 return lowerStructBufferAtomicIntrin(Op, DAG,
7288 AMDGPUISD::BUFFER_ATOMIC_UMIN);
7289 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7290 return lowerStructBufferAtomicIntrin(Op, DAG,
7291 AMDGPUISD::BUFFER_ATOMIC_SMAX);
7292 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7293 return lowerStructBufferAtomicIntrin(Op, DAG,
7294 AMDGPUISD::BUFFER_ATOMIC_UMAX);
7295 case Intrinsic::amdgcn_struct_buffer_atomic_and:
7296 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7297 case Intrinsic::amdgcn_struct_buffer_atomic_or:
7298 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7299 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7300 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7301 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7302 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7303 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7304 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7305
7306 case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7307 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7308 unsigned IdxEn = getIdxEn(Op.getOperand(5));
7309 SDValue Ops[] = {
7310 Op.getOperand(0), // Chain
7311 Op.getOperand(2), // src
7312 Op.getOperand(3), // cmp
7313 Op.getOperand(4), // rsrc
7314 Op.getOperand(5), // vindex
7315 SDValue(), // voffset -- will be set by setBufferOffsets
7316 SDValue(), // soffset -- will be set by setBufferOffsets
7317 SDValue(), // offset -- will be set by setBufferOffsets
7318 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7319 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7320 };
7321 setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7322
7323 EVT VT = Op.getValueType();
7324 auto *M = cast<MemSDNode>(Op);
7325 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7326
7327 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7328 Op->getVTList(), Ops, VT, M->getMemOperand());
7329 }
7330 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7331 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7332 SDValue Ops[] = {
7333 Op.getOperand(0), // Chain
7334 Op.getOperand(2), // src
7335 Op.getOperand(3), // cmp
7336 Op.getOperand(4), // rsrc
7337 DAG.getConstant(0, DL, MVT::i32), // vindex
7338 Offsets.first, // voffset
7339 Op.getOperand(6), // soffset
7340 Offsets.second, // offset
7341 Op.getOperand(7), // cachepolicy
7342 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7343 };
7344 EVT VT = Op.getValueType();
7345 auto *M = cast<MemSDNode>(Op);
7346 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7]);
7347
7348 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7349 Op->getVTList(), Ops, VT, M->getMemOperand());
7350 }
7351 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7352 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7353 SDValue Ops[] = {
7354 Op.getOperand(0), // Chain
7355 Op.getOperand(2), // src
7356 Op.getOperand(3), // cmp
7357 Op.getOperand(4), // rsrc
7358 Op.getOperand(5), // vindex
7359 Offsets.first, // voffset
7360 Op.getOperand(7), // soffset
7361 Offsets.second, // offset
7362 Op.getOperand(8), // cachepolicy
7363 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7364 };
7365 EVT VT = Op.getValueType();
7366 auto *M = cast<MemSDNode>(Op);
7367 updateBufferMMO(M->getMemOperand(), Ops[5], Ops[6], Ops[7], Ops[4]);
7368
7369 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7370 Op->getVTList(), Ops, VT, M->getMemOperand());
7371 }
7372 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7373 MemSDNode *M = cast<MemSDNode>(Op);
7374 SDValue NodePtr = M->getOperand(2);
7375 SDValue RayExtent = M->getOperand(3);
7376 SDValue RayOrigin = M->getOperand(4);
7377 SDValue RayDir = M->getOperand(5);
7378 SDValue RayInvDir = M->getOperand(6);
7379 SDValue TDescr = M->getOperand(7);
7380
7381 assert(NodePtr.getValueType() == MVT::i32 ||(static_cast <bool> (NodePtr.getValueType() == MVT::i32
|| NodePtr.getValueType() == MVT::i64) ? void (0) : __assert_fail
("NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType() == MVT::i64"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7382, __extension__ __PRETTY_FUNCTION__))
7382 NodePtr.getValueType() == MVT::i64)(static_cast <bool> (NodePtr.getValueType() == MVT::i32
|| NodePtr.getValueType() == MVT::i64) ? void (0) : __assert_fail
("NodePtr.getValueType() == MVT::i32 || NodePtr.getValueType() == MVT::i64"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7382, __extension__ __PRETTY_FUNCTION__))
;
7383 assert(RayDir.getValueType() == MVT::v4f16 ||(static_cast <bool> (RayDir.getValueType() == MVT::v4f16
|| RayDir.getValueType() == MVT::v4f32) ? void (0) : __assert_fail
("RayDir.getValueType() == MVT::v4f16 || RayDir.getValueType() == MVT::v4f32"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7384, __extension__ __PRETTY_FUNCTION__))
7384 RayDir.getValueType() == MVT::v4f32)(static_cast <bool> (RayDir.getValueType() == MVT::v4f16
|| RayDir.getValueType() == MVT::v4f32) ? void (0) : __assert_fail
("RayDir.getValueType() == MVT::v4f16 || RayDir.getValueType() == MVT::v4f32"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7384, __extension__ __PRETTY_FUNCTION__))
;
7385
7386 if (!Subtarget->hasGFX10_AEncoding()) {
7387 emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
7388 return SDValue();
7389 }
7390
7391 const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7392 const bool Is64 = NodePtr.getValueType() == MVT::i64;
7393 const unsigned NumVDataDwords = 4;
7394 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7395 const bool UseNSA = Subtarget->hasNSAEncoding() &&
7396 NumVAddrDwords <= Subtarget->getNSAMaxSize();
7397 const unsigned BaseOpcodes[2][2] = {
7398 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7399 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7400 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7401 int Opcode;
7402 if (UseNSA) {
7403 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
7404 AMDGPU::MIMGEncGfx10NSA, NumVDataDwords,
7405 NumVAddrDwords);
7406 } else {
7407 Opcode = AMDGPU::getMIMGOpcode(
7408 BaseOpcodes[Is64][IsA16], AMDGPU::MIMGEncGfx10Default, NumVDataDwords,
7409 PowerOf2Ceil(NumVAddrDwords));
7410 }
7411 assert(Opcode != -1)(static_cast <bool> (Opcode != -1) ? void (0) : __assert_fail
("Opcode != -1", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7411, __extension__ __PRETTY_FUNCTION__))
;
7412
7413 SmallVector<SDValue, 16> Ops;
7414
7415 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7416 SmallVector<SDValue, 3> Lanes;
7417 DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7418 if (Lanes[0].getValueSizeInBits() == 32) {
7419 for (unsigned I = 0; I < 3; ++I)
7420 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7421 } else {
7422 if (IsAligned) {
7423 Ops.push_back(
7424 DAG.getBitcast(MVT::i32,
7425 DAG.getBuildVector(MVT::v2f16, DL,
7426 { Lanes[0], Lanes[1] })));
7427 Ops.push_back(Lanes[2]);
7428 } else {
7429 SDValue Elt0 = Ops.pop_back_val();
7430 Ops.push_back(
7431 DAG.getBitcast(MVT::i32,
7432 DAG.getBuildVector(MVT::v2f16, DL,
7433 { Elt0, Lanes[0] })));
7434 Ops.push_back(
7435 DAG.getBitcast(MVT::i32,
7436 DAG.getBuildVector(MVT::v2f16, DL,
7437 { Lanes[1], Lanes[2] })));
7438 }
7439 }
7440 };
7441
7442 if (Is64)
7443 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7444 else
7445 Ops.push_back(NodePtr);
7446
7447 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7448 packLanes(RayOrigin, true);
7449 packLanes(RayDir, true);
7450 packLanes(RayInvDir, false);
7451
7452 if (!UseNSA) {
7453 // Build a single vector containing all the operands so far prepared.
7454 if (NumVAddrDwords > 8) {
7455 SDValue Undef = DAG.getUNDEF(MVT::i32);
7456 Ops.append(16 - Ops.size(), Undef);
7457 }
7458 assert(Ops.size() == 8 || Ops.size() == 16)(static_cast <bool> (Ops.size() == 8 || Ops.size() == 16
) ? void (0) : __assert_fail ("Ops.size() == 8 || Ops.size() == 16"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7458, __extension__ __PRETTY_FUNCTION__))
;
7459 SDValue MergedOps = DAG.getBuildVector(
7460 Ops.size() == 16 ? MVT::v16i32 : MVT::v8i32, DL, Ops);
7461 Ops.clear();
7462 Ops.push_back(MergedOps);
7463 }
7464
7465 Ops.push_back(TDescr);
7466 if (IsA16)
7467 Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7468 Ops.push_back(M->getChain());
7469
7470 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7471 MachineMemOperand *MemRef = M->getMemOperand();
7472 DAG.setNodeMemRefs(NewNode, {MemRef});
7473 return SDValue(NewNode, 0);
7474 }
7475 case Intrinsic::amdgcn_global_atomic_fadd:
7476 if (!Op.getValue(0).use_empty() && !Subtarget->hasGFX90AInsts()) {
7477 DiagnosticInfoUnsupported
7478 NoFpRet(DAG.getMachineFunction().getFunction(),
7479 "return versions of fp atomics not supported",
7480 DL.getDebugLoc(), DS_Error);
7481 DAG.getContext()->diagnose(NoFpRet);
7482 return SDValue();
7483 }
7484 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7485 case Intrinsic::amdgcn_global_atomic_fmin:
7486 case Intrinsic::amdgcn_global_atomic_fmax:
7487 case Intrinsic::amdgcn_flat_atomic_fadd:
7488 case Intrinsic::amdgcn_flat_atomic_fmin:
7489 case Intrinsic::amdgcn_flat_atomic_fmax: {
7490 MemSDNode *M = cast<MemSDNode>(Op);
7491 SDValue Ops[] = {
7492 M->getOperand(0), // Chain
7493 M->getOperand(2), // Ptr
7494 M->getOperand(3) // Value
7495 };
7496 unsigned Opcode = 0;
7497 switch (IntrID) {
7498 case Intrinsic::amdgcn_global_atomic_fadd:
7499 case Intrinsic::amdgcn_flat_atomic_fadd: {
7500 EVT VT = Op.getOperand(3).getValueType();
7501 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7502 DAG.getVTList(VT, MVT::Other), Ops,
7503 M->getMemOperand());
7504 }
7505 case Intrinsic::amdgcn_global_atomic_fmin:
7506 case Intrinsic::amdgcn_flat_atomic_fmin: {
7507 Opcode = AMDGPUISD::ATOMIC_LOAD_FMIN;
7508 break;
7509 }
7510 case Intrinsic::amdgcn_global_atomic_fmax:
7511 case Intrinsic::amdgcn_flat_atomic_fmax: {
7512 Opcode = AMDGPUISD::ATOMIC_LOAD_FMAX;
7513 break;
7514 }
7515 default:
7516 llvm_unreachable("unhandled atomic opcode")::llvm::llvm_unreachable_internal("unhandled atomic opcode", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7516)
;
7517 }
7518 return DAG.getMemIntrinsicNode(Opcode, SDLoc(Op),
7519 M->getVTList(), Ops, M->getMemoryVT(),
7520 M->getMemOperand());
7521 }
7522 default:
7523
7524 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7525 AMDGPU::getImageDimIntrinsicInfo(IntrID))
7526 return lowerImage(Op, ImageDimIntr, DAG, true);
7527
7528 return SDValue();
7529 }
7530}
7531
7532// Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7533// dwordx4 if on SI.
7534SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7535 SDVTList VTList,
7536 ArrayRef<SDValue> Ops, EVT MemVT,
7537 MachineMemOperand *MMO,
7538 SelectionDAG &DAG) const {
7539 EVT VT = VTList.VTs[0];
7540 EVT WidenedVT = VT;
7541 EVT WidenedMemVT = MemVT;
7542 if (!Subtarget->hasDwordx3LoadStores() &&
7543 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7544 WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7545 WidenedVT.getVectorElementType(), 4);
7546 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7547 WidenedMemVT.getVectorElementType(), 4);
7548 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7549 }
7550
7551 assert(VTList.NumVTs == 2)(static_cast <bool> (VTList.NumVTs == 2) ? void (0) : __assert_fail
("VTList.NumVTs == 2", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7551, __extension__ __PRETTY_FUNCTION__))
;
7552 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7553
7554 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7555 WidenedMemVT, MMO);
7556 if (WidenedVT != VT) {
7557 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7558 DAG.getVectorIdxConstant(0, DL));
7559 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7560 }
7561 return NewOp;
7562}
7563
7564SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7565 bool ImageStore) const {
7566 EVT StoreVT = VData.getValueType();
7567
7568 // No change for f16 and legal vector D16 types.
7569 if (!StoreVT.isVector())
7570 return VData;
7571
7572 SDLoc DL(VData);
7573 unsigned NumElements = StoreVT.getVectorNumElements();
7574
7575 if (Subtarget->hasUnpackedD16VMem()) {
7576 // We need to unpack the packed data to store.
7577 EVT IntStoreVT = StoreVT.changeTypeToInteger();
7578 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7579
7580 EVT EquivStoreVT =
7581 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7582 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7583 return DAG.UnrollVectorOp(ZExt.getNode());
7584 }
7585
7586 // The sq block of gfx8.1 does not estimate register use correctly for d16
7587 // image store instructions. The data operand is computed as if it were not a
7588 // d16 image instruction.
7589 if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7590 // Bitcast to i16
7591 EVT IntStoreVT = StoreVT.changeTypeToInteger();
7592 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7593
7594 // Decompose into scalars
7595 SmallVector<SDValue, 4> Elts;
7596 DAG.ExtractVectorElements(IntVData, Elts);
7597
7598 // Group pairs of i16 into v2i16 and bitcast to i32
7599 SmallVector<SDValue, 4> PackedElts;
7600 for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7601 SDValue Pair =
7602 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7603 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7604 PackedElts.push_back(IntPair);
7605 }
7606 if ((NumElements % 2) == 1) {
7607 // Handle v3i16
7608 unsigned I = Elts.size() / 2;
7609 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7610 {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7611 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7612 PackedElts.push_back(IntPair);
7613 }
7614
7615 // Pad using UNDEF
7616 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7617
7618 // Build final vector
7619 EVT VecVT =
7620 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7621 return DAG.getBuildVector(VecVT, DL, PackedElts);
7622 }
7623
7624 if (NumElements == 3) {
7625 EVT IntStoreVT =
7626 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7627 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7628
7629 EVT WidenedStoreVT = EVT::getVectorVT(
7630 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7631 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7632 WidenedStoreVT.getStoreSizeInBits());
7633 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7634 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7635 }
7636
7637 assert(isTypeLegal(StoreVT))(static_cast <bool> (isTypeLegal(StoreVT)) ? void (0) :
__assert_fail ("isTypeLegal(StoreVT)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 7637, __extension__ __PRETTY_FUNCTION__))
;
7638 return VData;
7639}
7640
7641SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7642 SelectionDAG &DAG) const {
7643 SDLoc DL(Op);
7644 SDValue Chain = Op.getOperand(0);
7645 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7646 MachineFunction &MF = DAG.getMachineFunction();
7647
7648 switch (IntrinsicID) {
7649 case Intrinsic::amdgcn_exp_compr: {
7650 SDValue Src0 = Op.getOperand(4);
7651 SDValue Src1 = Op.getOperand(5);
7652 // Hack around illegal type on SI by directly selecting it.
7653 if (isTypeLegal(Src0.getValueType()))
7654 return SDValue();
7655
7656 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7657 SDValue Undef = DAG.getUNDEF(MVT::f32);
7658 const SDValue Ops[] = {
7659 Op.getOperand(2), // tgt
7660 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7661 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7662 Undef, // src2
7663 Undef, // src3
7664 Op.getOperand(7), // vm
7665 DAG.getTargetConstant(1, DL, MVT::i1), // compr
7666 Op.getOperand(3), // en
7667 Op.getOperand(0) // Chain
7668 };
7669
7670 unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7671 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7672 }
7673 case Intrinsic::amdgcn_s_barrier: {
7674 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7675 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7676 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7677 if (WGSize <= ST.getWavefrontSize())
7678 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7679 Op.getOperand(0)), 0);
7680 }
7681 return SDValue();
7682 };
7683 case Intrinsic::amdgcn_tbuffer_store: {
7684 SDValue VData = Op.getOperand(2);
7685 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7686 if (IsD16)
7687 VData = handleD16VData(VData, DAG);
7688 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7689 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7690 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7691 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7692 unsigned IdxEn = getIdxEn(Op.getOperand(4));
7693 SDValue Ops[] = {
7694 Chain,
7695 VData, // vdata
7696 Op.getOperand(3), // rsrc
7697 Op.getOperand(4), // vindex
7698 Op.getOperand(5), // voffset
7699 Op.getOperand(6), // soffset
7700 Op.getOperand(7), // offset
7701 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7702 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7703 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7704 };
7705 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7706 AMDGPUISD::TBUFFER_STORE_FORMAT;
7707 MemSDNode *M = cast<MemSDNode>(Op);
7708 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7709 M->getMemoryVT(), M->getMemOperand());
7710 }
7711
7712 case Intrinsic::amdgcn_struct_tbuffer_store: {
7713 SDValue VData = Op.getOperand(2);
7714 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7715 if (IsD16)
7716 VData = handleD16VData(VData, DAG);
7717 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7718 SDValue Ops[] = {
7719 Chain,
7720 VData, // vdata
7721 Op.getOperand(3), // rsrc
7722 Op.getOperand(4), // vindex
7723 Offsets.first, // voffset
7724 Op.getOperand(6), // soffset
7725 Offsets.second, // offset
7726 Op.getOperand(7), // format
7727 Op.getOperand(8), // cachepolicy, swizzled buffer
7728 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7729 };
7730 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7731 AMDGPUISD::TBUFFER_STORE_FORMAT;
7732 MemSDNode *M = cast<MemSDNode>(Op);
7733 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7734 M->getMemoryVT(), M->getMemOperand());
7735 }
7736
7737 case Intrinsic::amdgcn_raw_tbuffer_store: {
7738 SDValue VData = Op.getOperand(2);
7739 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7740 if (IsD16)
7741 VData = handleD16VData(VData, DAG);
7742 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7743 SDValue Ops[] = {
7744 Chain,
7745 VData, // vdata
7746 Op.getOperand(3), // rsrc
7747 DAG.getConstant(0, DL, MVT::i32), // vindex
7748 Offsets.first, // voffset
7749 Op.getOperand(5), // soffset
7750 Offsets.second, // offset
7751 Op.getOperand(6), // format
7752 Op.getOperand(7), // cachepolicy, swizzled buffer
7753 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7754 };
7755 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7756 AMDGPUISD::TBUFFER_STORE_FORMAT;
7757 MemSDNode *M = cast<MemSDNode>(Op);
7758 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7759 M->getMemoryVT(), M->getMemOperand());
7760 }
7761
7762 case Intrinsic::amdgcn_buffer_store:
7763 case Intrinsic::amdgcn_buffer_store_format: {
7764 SDValue VData = Op.getOperand(2);
7765 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7766 if (IsD16)
7767 VData = handleD16VData(VData, DAG);
7768 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7769 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7770 unsigned IdxEn = getIdxEn(Op.getOperand(4));
7771 SDValue Ops[] = {
7772 Chain,
7773 VData,
7774 Op.getOperand(3), // rsrc
7775 Op.getOperand(4), // vindex
7776 SDValue(), // voffset -- will be set by setBufferOffsets
7777 SDValue(), // soffset -- will be set by setBufferOffsets
7778 SDValue(), // offset -- will be set by setBufferOffsets
7779 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7780 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7781 };
7782 setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7783
7784 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7785 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7786 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7787 MemSDNode *M = cast<MemSDNode>(Op);
7788 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7789
7790 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7791 EVT VDataType = VData.getValueType().getScalarType();
7792 if (VDataType == MVT::i8 || VDataType == MVT::i16)
7793 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7794
7795 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7796 M->getMemoryVT(), M->getMemOperand());
7797 }
7798
7799 case Intrinsic::amdgcn_raw_buffer_store:
7800 case Intrinsic::amdgcn_raw_buffer_store_format: {
7801 const bool IsFormat =
7802 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7803
7804 SDValue VData = Op.getOperand(2);
7805 EVT VDataVT = VData.getValueType();
7806 EVT EltType = VDataVT.getScalarType();
7807 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7808 if (IsD16) {
7809 VData = handleD16VData(VData, DAG);
7810 VDataVT = VData.getValueType();
7811 }
7812
7813 if (!isTypeLegal(VDataVT)) {
7814 VData =
7815 DAG.getNode(ISD::BITCAST, DL,
7816 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7817 }
7818
7819 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7820 SDValue Ops[] = {
7821 Chain,
7822 VData,
7823 Op.getOperand(3), // rsrc
7824 DAG.getConstant(0, DL, MVT::i32), // vindex
7825 Offsets.first, // voffset
7826 Op.getOperand(5), // soffset
7827 Offsets.second, // offset
7828 Op.getOperand(6), // cachepolicy, swizzled buffer
7829 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7830 };
7831 unsigned Opc =
7832 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7833 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7834 MemSDNode *M = cast<MemSDNode>(Op);
7835 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6]);
7836
7837 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7838 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7839 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7840
7841 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7842 M->getMemoryVT(), M->getMemOperand());
7843 }
7844
7845 case Intrinsic::amdgcn_struct_buffer_store:
7846 case Intrinsic::amdgcn_struct_buffer_store_format: {
7847 const bool IsFormat =
7848 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7849
7850 SDValue VData = Op.getOperand(2);
7851 EVT VDataVT = VData.getValueType();
7852 EVT EltType = VDataVT.getScalarType();
7853 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7854
7855 if (IsD16) {
7856 VData = handleD16VData(VData, DAG);
7857 VDataVT = VData.getValueType();
7858 }
7859
7860 if (!isTypeLegal(VDataVT)) {
7861 VData =
7862 DAG.getNode(ISD::BITCAST, DL,
7863 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7864 }
7865
7866 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7867 SDValue Ops[] = {
7868 Chain,
7869 VData,
7870 Op.getOperand(3), // rsrc
7871 Op.getOperand(4), // vindex
7872 Offsets.first, // voffset
7873 Op.getOperand(6), // soffset
7874 Offsets.second, // offset
7875 Op.getOperand(7), // cachepolicy, swizzled buffer
7876 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7877 };
7878 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7879 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7880 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7881 MemSDNode *M = cast<MemSDNode>(Op);
7882 updateBufferMMO(M->getMemOperand(), Ops[4], Ops[5], Ops[6], Ops[3]);
7883
7884 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7885 EVT VDataType = VData.getValueType().getScalarType();
7886 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7887 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7888
7889 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7890 M->getMemoryVT(), M->getMemOperand());
7891 }
7892 case Intrinsic::amdgcn_end_cf:
7893 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7894 Op->getOperand(2), Chain), 0);
7895
7896 default: {
7897 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7898 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7899 return lowerImage(Op, ImageDimIntr, DAG, true);
7900
7901 return Op;
7902 }
7903 }
7904}
7905
7906// The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7907// offset (the offset that is included in bounds checking and swizzling, to be
7908// split between the instruction's voffset and immoffset fields) and soffset
7909// (the offset that is excluded from bounds checking and swizzling, to go in
7910// the instruction's soffset field). This function takes the first kind of
7911// offset and figures out how to split it between voffset and immoffset.
7912std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7913 SDValue Offset, SelectionDAG &DAG) const {
7914 SDLoc DL(Offset);
7915 const unsigned MaxImm = 4095;
7916 SDValue N0 = Offset;
7917 ConstantSDNode *C1 = nullptr;
7918
7919 if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7920 N0 = SDValue();
7921 else if (DAG.isBaseWithConstantOffset(N0)) {
7922 C1 = cast<ConstantSDNode>(N0.getOperand(1));
7923 N0 = N0.getOperand(0);
7924 }
7925
7926 if (C1) {
7927 unsigned ImmOffset = C1->getZExtValue();
7928 // If the immediate value is too big for the immoffset field, put the value
7929 // and -4096 into the immoffset field so that the value that is copied/added
7930 // for the voffset field is a multiple of 4096, and it stands more chance
7931 // of being CSEd with the copy/add for another similar load/store.
7932 // However, do not do that rounding down to a multiple of 4096 if that is a
7933 // negative number, as it appears to be illegal to have a negative offset
7934 // in the vgpr, even if adding the immediate offset makes it positive.
7935 unsigned Overflow = ImmOffset & ~MaxImm;
7936 ImmOffset -= Overflow;
7937 if ((int32_t)Overflow < 0) {
7938 Overflow += ImmOffset;
7939 ImmOffset = 0;
7940 }
7941 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7942 if (Overflow) {
7943 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7944 if (!N0)
7945 N0 = OverflowVal;
7946 else {
7947 SDValue Ops[] = { N0, OverflowVal };
7948 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7949 }
7950 }
7951 }
7952 if (!N0)
7953 N0 = DAG.getConstant(0, DL, MVT::i32);
7954 if (!C1)
7955 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7956 return {N0, SDValue(C1, 0)};
7957}
7958
7959// Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7960// three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7961// pointed to by Offsets.
7962void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7963 SelectionDAG &DAG, SDValue *Offsets,
7964 Align Alignment) const {
7965 SDLoc DL(CombinedOffset);
7966 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7967 uint32_t Imm = C->getZExtValue();
7968 uint32_t SOffset, ImmOffset;
7969 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
7970 Alignment)) {
7971 Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7972 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7973 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7974 return;
7975 }
7976 }
7977 if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7978 SDValue N0 = CombinedOffset.getOperand(0);
7979 SDValue N1 = CombinedOffset.getOperand(1);
7980 uint32_t SOffset, ImmOffset;
7981 int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7982 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7983 Subtarget, Alignment)) {
7984 Offsets[0] = N0;
7985 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7986 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7987 return;
7988 }
7989 }
7990 Offsets[0] = CombinedOffset;
7991 Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7992 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7993}
7994
7995// Handle 8 bit and 16 bit buffer loads
7996SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7997 EVT LoadVT, SDLoc DL,
7998 ArrayRef<SDValue> Ops,
7999 MemSDNode *M) const {
8000 EVT IntVT = LoadVT.changeTypeToInteger();
8001 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
8002 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
8003
8004 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
8005 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
8006 Ops, IntVT,
8007 M->getMemOperand());
8008 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
8009 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
8010
8011 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
8012}
8013
8014// Handle 8 bit and 16 bit buffer stores
8015SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
8016 EVT VDataType, SDLoc DL,
8017 SDValue Ops[],
8018 MemSDNode *M) const {
8019 if (VDataType == MVT::f16)
8020 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
8021
8022 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
8023 Ops[1] = BufferStoreExt;
8024 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
8025 AMDGPUISD::BUFFER_STORE_SHORT;
8026 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
8027 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
8028 M->getMemOperand());
8029}
8030
8031static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
8032 ISD::LoadExtType ExtType, SDValue Op,
8033 const SDLoc &SL, EVT VT) {
8034 if (VT.bitsLT(Op.getValueType()))
8035 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
8036
8037 switch (ExtType) {
8038 case ISD::SEXTLOAD:
8039 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
8040 case ISD::ZEXTLOAD:
8041 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
8042 case ISD::EXTLOAD:
8043 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
8044 case ISD::NON_EXTLOAD:
8045 return Op;
8046 }
8047
8048 llvm_unreachable("invalid ext type")::llvm::llvm_unreachable_internal("invalid ext type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8048)
;
8049}
8050
8051SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
8052 SelectionDAG &DAG = DCI.DAG;
8053 if (Ld->getAlignment() < 4 || Ld->isDivergent())
8054 return SDValue();
8055
8056 // FIXME: Constant loads should all be marked invariant.
8057 unsigned AS = Ld->getAddressSpace();
8058 if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
8059 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
8060 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
8061 return SDValue();
8062
8063 // Don't do this early, since it may interfere with adjacent load merging for
8064 // illegal types. We can avoid losing alignment information for exotic types
8065 // pre-legalize.
8066 EVT MemVT = Ld->getMemoryVT();
8067 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
8068 MemVT.getSizeInBits() >= 32)
8069 return SDValue();
8070
8071 SDLoc SL(Ld);
8072
8073 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&(static_cast <bool> ((!MemVT.isVector() || Ld->getExtensionType
() == ISD::NON_EXTLOAD) && "unexpected vector extload"
) ? void (0) : __assert_fail ("(!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && \"unexpected vector extload\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8074, __extension__ __PRETTY_FUNCTION__))
8074 "unexpected vector extload")(static_cast <bool> ((!MemVT.isVector() || Ld->getExtensionType
() == ISD::NON_EXTLOAD) && "unexpected vector extload"
) ? void (0) : __assert_fail ("(!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && \"unexpected vector extload\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8074, __extension__ __PRETTY_FUNCTION__))
;
8075
8076 // TODO: Drop only high part of range.
8077 SDValue Ptr = Ld->getBasePtr();
8078 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
8079 MVT::i32, SL, Ld->getChain(), Ptr,
8080 Ld->getOffset(),
8081 Ld->getPointerInfo(), MVT::i32,
8082 Ld->getAlignment(),
8083 Ld->getMemOperand()->getFlags(),
8084 Ld->getAAInfo(),
8085 nullptr); // Drop ranges
8086
8087 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
8088 if (MemVT.isFloatingPoint()) {
8089 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&(static_cast <bool> (Ld->getExtensionType() == ISD::
NON_EXTLOAD && "unexpected fp extload") ? void (0) : __assert_fail
("Ld->getExtensionType() == ISD::NON_EXTLOAD && \"unexpected fp extload\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8090, __extension__ __PRETTY_FUNCTION__))
8090 "unexpected fp extload")(static_cast <bool> (Ld->getExtensionType() == ISD::
NON_EXTLOAD && "unexpected fp extload") ? void (0) : __assert_fail
("Ld->getExtensionType() == ISD::NON_EXTLOAD && \"unexpected fp extload\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8090, __extension__ __PRETTY_FUNCTION__))
;
8091 TruncVT = MemVT.changeTypeToInteger();
8092 }
8093
8094 SDValue Cvt = NewLoad;
8095 if (Ld->getExtensionType() == ISD::SEXTLOAD) {
8096 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
8097 DAG.getValueType(TruncVT));
8098 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
8099 Ld->getExtensionType() == ISD::NON_EXTLOAD) {
8100 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
8101 } else {
8102 assert(Ld->getExtensionType() == ISD::EXTLOAD)(static_cast <bool> (Ld->getExtensionType() == ISD::
EXTLOAD) ? void (0) : __assert_fail ("Ld->getExtensionType() == ISD::EXTLOAD"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8102, __extension__ __PRETTY_FUNCTION__))
;
8103 }
8104
8105 EVT VT = Ld->getValueType(0);
8106 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8107
8108 DCI.AddToWorklist(Cvt.getNode());
8109
8110 // We may need to handle exotic cases, such as i16->i64 extloads, so insert
8111 // the appropriate extension from the 32-bit load.
8112 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
8113 DCI.AddToWorklist(Cvt.getNode());
8114
8115 // Handle conversion back to floating point if necessary.
8116 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8117
8118 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8119}
8120
8121SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8122 SDLoc DL(Op);
8123 LoadSDNode *Load = cast<LoadSDNode>(Op);
8124 ISD::LoadExtType ExtType = Load->getExtensionType();
8125 EVT MemVT = Load->getMemoryVT();
8126
8127 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8128 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8129 return SDValue();
8130
8131 // FIXME: Copied from PPC
8132 // First, load into 32 bits, then truncate to 1 bit.
8133
8134 SDValue Chain = Load->getChain();
8135 SDValue BasePtr = Load->getBasePtr();
8136 MachineMemOperand *MMO = Load->getMemOperand();
8137
8138 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8139
8140 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8141 BasePtr, RealMemVT, MMO);
8142
8143 if (!MemVT.isVector()) {
8144 SDValue Ops[] = {
8145 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8146 NewLD.getValue(1)
8147 };
8148
8149 return DAG.getMergeValues(Ops, DL);
8150 }
8151
8152 SmallVector<SDValue, 3> Elts;
8153 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8154 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8155 DAG.getConstant(I, DL, MVT::i32));
8156
8157 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8158 }
8159
8160 SDValue Ops[] = {
8161 DAG.getBuildVector(MemVT, DL, Elts),
8162 NewLD.getValue(1)
8163 };
8164
8165 return DAG.getMergeValues(Ops, DL);
8166 }
8167
8168 if (!MemVT.isVector())
8169 return SDValue();
8170
8171 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&(static_cast <bool> (Op.getValueType().getVectorElementType
() == MVT::i32 && "Custom lowering for non-i32 vectors hasn't been implemented."
) ? void (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8172, __extension__ __PRETTY_FUNCTION__))
8172 "Custom lowering for non-i32 vectors hasn't been implemented.")(static_cast <bool> (Op.getValueType().getVectorElementType
() == MVT::i32 && "Custom lowering for non-i32 vectors hasn't been implemented."
) ? void (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8172, __extension__ __PRETTY_FUNCTION__))
;
8173
8174 unsigned Alignment = Load->getAlignment();
8175 unsigned AS = Load->getAddressSpace();
8176 if (Subtarget->hasLDSMisalignedBug() &&
8177 AS == AMDGPUAS::FLAT_ADDRESS &&
8178 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8179 return SplitVectorLoad(Op, DAG);
8180 }
8181
8182 MachineFunction &MF = DAG.getMachineFunction();
8183 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8184 // If there is a possibilty that flat instruction access scratch memory
8185 // then we need to use the same legalization rules we use for private.
8186 if (AS == AMDGPUAS::FLAT_ADDRESS &&
8187 !Subtarget->hasMultiDwordFlatScratchAddressing())
8188 AS = MFI->hasFlatScratchInit() ?
8189 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8190
8191 unsigned NumElements = MemVT.getVectorNumElements();
8192
8193 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8194 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8195 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8196 if (MemVT.isPow2VectorType())
8197 return SDValue();
8198 return WidenOrSplitVectorLoad(Op, DAG);
8199 }
8200 // Non-uniform loads will be selected to MUBUF instructions, so they
8201 // have the same legalization requirements as global and private
8202 // loads.
8203 //
8204 }
8205
8206 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8207 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8208 AS == AMDGPUAS::GLOBAL_ADDRESS) {
8209 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8210 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8211 Alignment >= 4 && NumElements < 32) {
8212 if (MemVT.isPow2VectorType())
8213 return SDValue();
8214 return WidenOrSplitVectorLoad(Op, DAG);
8215 }
8216 // Non-uniform loads will be selected to MUBUF instructions, so they
8217 // have the same legalization requirements as global and private
8218 // loads.
8219 //
8220 }
8221 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8222 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8223 AS == AMDGPUAS::GLOBAL_ADDRESS ||
8224 AS == AMDGPUAS::FLAT_ADDRESS) {
8225 if (NumElements > 4)
8226 return SplitVectorLoad(Op, DAG);
8227 // v3 loads not supported on SI.
8228 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8229 return WidenOrSplitVectorLoad(Op, DAG);
8230
8231 // v3 and v4 loads are supported for private and global memory.
8232 return SDValue();
8233 }
8234 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8235 // Depending on the setting of the private_element_size field in the
8236 // resource descriptor, we can only make private accesses up to a certain
8237 // size.
8238 switch (Subtarget->getMaxPrivateElementSize()) {
8239 case 4: {
8240 SDValue Ops[2];
8241 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8242 return DAG.getMergeValues(Ops, DL);
8243 }
8244 case 8:
8245 if (NumElements > 2)
8246 return SplitVectorLoad(Op, DAG);
8247 return SDValue();
8248 case 16:
8249 // Same as global/flat
8250 if (NumElements > 4)
8251 return SplitVectorLoad(Op, DAG);
8252 // v3 loads not supported on SI.
8253 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8254 return WidenOrSplitVectorLoad(Op, DAG);
8255
8256 return SDValue();
8257 default:
8258 llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8258)
;
8259 }
8260 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8261 // Use ds_read_b128 or ds_read_b96 when possible.
8262 if (Subtarget->hasDS96AndDS128() &&
8263 ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8264 MemVT.getStoreSize() == 12) &&
8265 allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8266 Load->getAlign()))
8267 return SDValue();
8268
8269 if (NumElements > 2)
8270 return SplitVectorLoad(Op, DAG);
8271
8272 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8273 // address is negative, then the instruction is incorrectly treated as
8274 // out-of-bounds even if base + offsets is in bounds. Split vectorized
8275 // loads here to avoid emitting ds_read2_b32. We may re-combine the
8276 // load later in the SILoadStoreOptimizer.
8277 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8278 NumElements == 2 && MemVT.getStoreSize() == 8 &&
8279 Load->getAlignment() < 8) {
8280 return SplitVectorLoad(Op, DAG);
8281 }
8282 }
8283
8284 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8285 MemVT, *Load->getMemOperand())) {
8286 SDValue Ops[2];
8287 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8288 return DAG.getMergeValues(Ops, DL);
8289 }
8290
8291 return SDValue();
8292}
8293
8294SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8295 EVT VT = Op.getValueType();
8296 assert(VT.getSizeInBits() == 64)(static_cast <bool> (VT.getSizeInBits() == 64) ? void (
0) : __assert_fail ("VT.getSizeInBits() == 64", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8296, __extension__ __PRETTY_FUNCTION__))
;
8297
8298 SDLoc DL(Op);
8299 SDValue Cond = Op.getOperand(0);
8300
8301 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8302 SDValue One = DAG.getConstant(1, DL, MVT::i32);
8303
8304 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8305 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8306
8307 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8308 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8309
8310 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8311
8312 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8313 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8314
8315 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8316
8317 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8318 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8319}
8320
8321// Catch division cases where we can use shortcuts with rcp and rsq
8322// instructions.
8323SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8324 SelectionDAG &DAG) const {
8325 SDLoc SL(Op);
8326 SDValue LHS = Op.getOperand(0);
8327 SDValue RHS = Op.getOperand(1);
8328 EVT VT = Op.getValueType();
8329 const SDNodeFlags Flags = Op->getFlags();
8330
8331 bool AllowInaccurateRcp = Flags.hasApproximateFuncs();
8332
8333 // Without !fpmath accuracy information, we can't do more because we don't
8334 // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8335 if (!AllowInaccurateRcp)
8336 return SDValue();
8337
8338 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8339 if (CLHS->isExactlyValue(1.0)) {
8340 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8341 // the CI documentation has a worst case error of 1 ulp.
8342 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8343 // use it as long as we aren't trying to use denormals.
8344 //
8345 // v_rcp_f16 and v_rsq_f16 DO support denormals.
8346
8347 // 1.0 / sqrt(x) -> rsq(x)
8348
8349 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8350 // error seems really high at 2^29 ULP.
8351 if (RHS.getOpcode() == ISD::FSQRT)
8352 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8353
8354 // 1.0 / x -> rcp(x)
8355 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8356 }
8357
8358 // Same as for 1.0, but expand the sign out of the constant.
8359 if (CLHS->isExactlyValue(-1.0)) {
8360 // -1.0 / x -> rcp (fneg x)
8361 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8362 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8363 }
8364 }
8365
8366 // Turn into multiply by the reciprocal.
8367 // x / y -> x * (1.0 / y)
8368 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8369 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8370}
8371
8372SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
8373 SelectionDAG &DAG) const {
8374 SDLoc SL(Op);
8375 SDValue X = Op.getOperand(0);
8376 SDValue Y = Op.getOperand(1);
8377 EVT VT = Op.getValueType();
8378 const SDNodeFlags Flags = Op->getFlags();
8379
8380 bool AllowInaccurateDiv = Flags.hasApproximateFuncs() ||
8381 DAG.getTarget().Options.UnsafeFPMath;
8382 if (!AllowInaccurateDiv)
8383 return SDValue();
8384
8385 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
8386 SDValue One = DAG.getConstantFP(1.0, SL, VT);
8387
8388 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
8389 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8390
8391 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
8392 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
8393 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
8394 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
8395 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
8396 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
8397}
8398
8399static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8400 EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8401 SDNodeFlags Flags) {
8402 if (GlueChain->getNumValues() <= 1) {
8403 return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8404 }
8405
8406 assert(GlueChain->getNumValues() == 3)(static_cast <bool> (GlueChain->getNumValues() == 3)
? void (0) : __assert_fail ("GlueChain->getNumValues() == 3"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8406, __extension__ __PRETTY_FUNCTION__))
;
8407
8408 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8409 switch (Opcode) {
8410 default: llvm_unreachable("no chain equivalent for opcode")::llvm::llvm_unreachable_internal("no chain equivalent for opcode"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8410)
;
8411 case ISD::FMUL:
8412 Opcode = AMDGPUISD::FMUL_W_CHAIN;
8413 break;
8414 }
8415
8416 return DAG.getNode(Opcode, SL, VTList,
8417 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8418 Flags);
8419}
8420
8421static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8422 EVT VT, SDValue A, SDValue B, SDValue C,
8423 SDValue GlueChain, SDNodeFlags Flags) {
8424 if (GlueChain->getNumValues() <= 1) {
8425 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8426 }
8427
8428 assert(GlueChain->getNumValues() == 3)(static_cast <bool> (GlueChain->getNumValues() == 3)
? void (0) : __assert_fail ("GlueChain->getNumValues() == 3"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8428, __extension__ __PRETTY_FUNCTION__))
;
8429
8430 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8431 switch (Opcode) {
8432 default: llvm_unreachable("no chain equivalent for opcode")::llvm::llvm_unreachable_internal("no chain equivalent for opcode"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8432)
;
8433 case ISD::FMA:
8434 Opcode = AMDGPUISD::FMA_W_CHAIN;
8435 break;
8436 }
8437
8438 return DAG.getNode(Opcode, SL, VTList,
8439 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8440 Flags);
8441}
8442
8443SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8444 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8445 return FastLowered;
8446
8447 SDLoc SL(Op);
8448 SDValue Src0 = Op.getOperand(0);
8449 SDValue Src1 = Op.getOperand(1);
8450
8451 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8452 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8453
8454 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8455 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8456
8457 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8458 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8459
8460 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8461}
8462
8463// Faster 2.5 ULP division that does not support denormals.
8464SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8465 SDLoc SL(Op);
8466 SDValue LHS = Op.getOperand(1);
8467 SDValue RHS = Op.getOperand(2);
8468
8469 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8470
8471 const APFloat K0Val(BitsToFloat(0x6f800000));
8472 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8473
8474 const APFloat K1Val(BitsToFloat(0x2f800000));
8475 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8476
8477 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8478
8479 EVT SetCCVT =
8480 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8481
8482 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8483
8484 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8485
8486 // TODO: Should this propagate fast-math-flags?
8487 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8488
8489 // rcp does not support denormals.
8490 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8491
8492 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8493
8494 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8495}
8496
8497// Returns immediate value for setting the F32 denorm mode when using the
8498// S_DENORM_MODE instruction.
8499static SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8500 const SDLoc &SL, const GCNSubtarget *ST) {
8501 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE")(static_cast <bool> (ST->hasDenormModeInst() &&
"Requires S_DENORM_MODE") ? void (0) : __assert_fail ("ST->hasDenormModeInst() && \"Requires S_DENORM_MODE\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8501, __extension__ __PRETTY_FUNCTION__))
;
8502 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8503 ? FP_DENORM_FLUSH_NONE3
8504 : FP_DENORM_FLUSH_IN_FLUSH_OUT0;
8505
8506 int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8507 return DAG.getTargetConstant(Mode, SL, MVT::i32);
8508}
8509
8510SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8511 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8512 return FastLowered;
8513
8514 // The selection matcher assumes anything with a chain selecting to a
8515 // mayRaiseFPException machine instruction. Since we're introducing a chain
8516 // here, we need to explicitly report nofpexcept for the regular fdiv
8517 // lowering.
8518 SDNodeFlags Flags = Op->getFlags();
8519 Flags.setNoFPExcept(true);
8520
8521 SDLoc SL(Op);
8522 SDValue LHS = Op.getOperand(0);
8523 SDValue RHS = Op.getOperand(1);
8524
8525 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8526
8527 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8528
8529 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8530 {RHS, RHS, LHS}, Flags);
8531 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8532 {LHS, RHS, LHS}, Flags);
8533
8534 // Denominator is scaled to not be denormal, so using rcp is ok.
8535 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8536 DenominatorScaled, Flags);
8537 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8538 DenominatorScaled, Flags);
8539
8540 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8541 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8542 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8543 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8544
8545 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8546
8547 if (!HasFP32Denormals) {
8548 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8549 // lowering. The chain dependence is insufficient, and we need glue. We do
8550 // not need the glue variants in a strictfp function.
8551
8552 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8553
8554 SDNode *EnableDenorm;
8555 if (Subtarget->hasDenormModeInst()) {
8556 const SDValue EnableDenormValue =
8557 getSPDenormModeValue(FP_DENORM_FLUSH_NONE3, DAG, SL, Subtarget);
8558
8559 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8560 DAG.getEntryNode(), EnableDenormValue).getNode();
8561 } else {
8562 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE3,
8563 SL, MVT::i32);
8564 EnableDenorm =
8565 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8566 {EnableDenormValue, BitField, DAG.getEntryNode()});
8567 }
8568
8569 SDValue Ops[3] = {
8570 NegDivScale0,
8571 SDValue(EnableDenorm, 0),
8572 SDValue(EnableDenorm, 1)
8573 };
8574
8575 NegDivScale0 = DAG.getMergeValues(Ops, SL);
8576 }
8577
8578 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8579 ApproxRcp, One, NegDivScale0, Flags);
8580
8581 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8582 ApproxRcp, Fma0, Flags);
8583
8584 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8585 Fma1, Fma1, Flags);
8586
8587 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8588 NumeratorScaled, Mul, Flags);
8589
8590 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8591 Fma2, Fma1, Mul, Fma2, Flags);
8592
8593 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8594 NumeratorScaled, Fma3, Flags);
8595
8596 if (!HasFP32Denormals) {
8597 SDNode *DisableDenorm;
8598 if (Subtarget->hasDenormModeInst()) {
8599 const SDValue DisableDenormValue =
8600 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT0, DAG, SL, Subtarget);
8601
8602 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8603 Fma4.getValue(1), DisableDenormValue,
8604 Fma4.getValue(2)).getNode();
8605 } else {
8606 const SDValue DisableDenormValue =
8607 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT0, SL, MVT::i32);
8608
8609 DisableDenorm = DAG.getMachineNode(
8610 AMDGPU::S_SETREG_B32, SL, MVT::Other,
8611 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8612 }
8613
8614 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8615 SDValue(DisableDenorm, 0), DAG.getRoot());
8616 DAG.setRoot(OutputChain);
8617 }
8618
8619 SDValue Scale = NumeratorScaled.getValue(1);
8620 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8621 {Fma4, Fma1, Fma3, Scale}, Flags);
8622
8623 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8624}
8625
8626SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8627 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
8628 return FastLowered;
8629
8630 SDLoc SL(Op);
8631 SDValue X = Op.getOperand(0);
8632 SDValue Y = Op.getOperand(1);
8633
8634 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8635
8636 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8637
8638 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8639
8640 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8641
8642 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8643
8644 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8645
8646 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8647
8648 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8649
8650 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8651
8652 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8653 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8654
8655 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8656 NegDivScale0, Mul, DivScale1);
8657
8658 SDValue Scale;
8659
8660 if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8661 // Workaround a hardware bug on SI where the condition output from div_scale
8662 // is not usable.
8663
8664 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8665
8666 // Figure out if the scale to use for div_fmas.
8667 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8668 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8669 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8670 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8671
8672 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8673 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8674
8675 SDValue Scale0Hi
8676 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8677 SDValue Scale1Hi
8678 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8679
8680 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8681 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8682 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8683 } else {
8684 Scale = DivScale1.getValue(1);
8685 }
8686
8687 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8688 Fma4, Fma3, Mul, Scale);
8689
8690 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8691}
8692
8693SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8694 EVT VT = Op.getValueType();
8695
8696 if (VT == MVT::f32)
8697 return LowerFDIV32(Op, DAG);
8698
8699 if (VT == MVT::f64)
8700 return LowerFDIV64(Op, DAG);
8701
8702 if (VT == MVT::f16)
8703 return LowerFDIV16(Op, DAG);
8704
8705 llvm_unreachable("Unexpected type for fdiv")::llvm::llvm_unreachable_internal("Unexpected type for fdiv",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8705)
;
8706}
8707
8708SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8709 SDLoc DL(Op);
8710 StoreSDNode *Store = cast<StoreSDNode>(Op);
8711 EVT VT = Store->getMemoryVT();
8712
8713 if (VT == MVT::i1) {
8714 return DAG.getTruncStore(Store->getChain(), DL,
8715 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8716 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8717 }
8718
8719 assert(VT.isVector() &&(static_cast <bool> (VT.isVector() && Store->
getValue().getValueType().getScalarType() == MVT::i32) ? void
(0) : __assert_fail ("VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8720, __extension__ __PRETTY_FUNCTION__))
8720 Store->getValue().getValueType().getScalarType() == MVT::i32)(static_cast <bool> (VT.isVector() && Store->
getValue().getValueType().getScalarType() == MVT::i32) ? void
(0) : __assert_fail ("VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8720, __extension__ __PRETTY_FUNCTION__))
;
8721
8722 unsigned AS = Store->getAddressSpace();
8723 if (Subtarget->hasLDSMisalignedBug() &&
8724 AS == AMDGPUAS::FLAT_ADDRESS &&
8725 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8726 return SplitVectorStore(Op, DAG);
8727 }
8728
8729 MachineFunction &MF = DAG.getMachineFunction();
8730 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8731 // If there is a possibilty that flat instruction access scratch memory
8732 // then we need to use the same legalization rules we use for private.
8733 if (AS == AMDGPUAS::FLAT_ADDRESS &&
8734 !Subtarget->hasMultiDwordFlatScratchAddressing())
8735 AS = MFI->hasFlatScratchInit() ?
8736 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8737
8738 unsigned NumElements = VT.getVectorNumElements();
8739 if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8740 AS == AMDGPUAS::FLAT_ADDRESS) {
8741 if (NumElements > 4)
8742 return SplitVectorStore(Op, DAG);
8743 // v3 stores not supported on SI.
8744 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8745 return SplitVectorStore(Op, DAG);
8746
8747 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8748 VT, *Store->getMemOperand()))
8749 return expandUnalignedStore(Store, DAG);
8750
8751 return SDValue();
8752 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8753 switch (Subtarget->getMaxPrivateElementSize()) {
8754 case 4:
8755 return scalarizeVectorStore(Store, DAG);
8756 case 8:
8757 if (NumElements > 2)
8758 return SplitVectorStore(Op, DAG);
8759 return SDValue();
8760 case 16:
8761 if (NumElements > 4 ||
8762 (NumElements == 3 && !Subtarget->enableFlatScratch()))
8763 return SplitVectorStore(Op, DAG);
8764 return SDValue();
8765 default:
8766 llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8766)
;
8767 }
8768 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8769 // Use ds_write_b128 or ds_write_b96 when possible.
8770 if (Subtarget->hasDS96AndDS128() &&
8771 ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8772 (VT.getStoreSize() == 12)) &&
8773 allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8774 Store->getAlign()))
8775 return SDValue();
8776
8777 if (NumElements > 2)
8778 return SplitVectorStore(Op, DAG);
8779
8780 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8781 // address is negative, then the instruction is incorrectly treated as
8782 // out-of-bounds even if base + offsets is in bounds. Split vectorized
8783 // stores here to avoid emitting ds_write2_b32. We may re-combine the
8784 // store later in the SILoadStoreOptimizer.
8785 if (!Subtarget->hasUsableDSOffset() &&
8786 NumElements == 2 && VT.getStoreSize() == 8 &&
8787 Store->getAlignment() < 8) {
8788 return SplitVectorStore(Op, DAG);
8789 }
8790
8791 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8792 VT, *Store->getMemOperand())) {
8793 if (VT.isVector())
8794 return SplitVectorStore(Op, DAG);
8795 return expandUnalignedStore(Store, DAG);
8796 }
8797
8798 return SDValue();
8799 } else {
8800 llvm_unreachable("unhandled address space")::llvm::llvm_unreachable_internal("unhandled address space", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8800)
;
8801 }
8802}
8803
8804SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8805 SDLoc DL(Op);
8806 EVT VT = Op.getValueType();
8807 SDValue Arg = Op.getOperand(0);
8808 SDValue TrigVal;
8809
8810 // Propagate fast-math flags so that the multiply we introduce can be folded
8811 // if Arg is already the result of a multiply by constant.
8812 auto Flags = Op->getFlags();
8813
8814 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8815
8816 if (Subtarget->hasTrigReducedRange()) {
8817 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8818 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8819 } else {
8820 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8821 }
8822
8823 switch (Op.getOpcode()) {
8824 case ISD::FCOS:
8825 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8826 case ISD::FSIN:
8827 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8828 default:
8829 llvm_unreachable("Wrong trig opcode")::llvm::llvm_unreachable_internal("Wrong trig opcode", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8829)
;
8830 }
8831}
8832
8833SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8834 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8835 assert(AtomicNode->isCompareAndSwap())(static_cast <bool> (AtomicNode->isCompareAndSwap())
? void (0) : __assert_fail ("AtomicNode->isCompareAndSwap()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 8835, __extension__ __PRETTY_FUNCTION__))
;
8836 unsigned AS = AtomicNode->getAddressSpace();
8837
8838 // No custom lowering required for local address space
8839 if (!AMDGPU::isFlatGlobalAddrSpace(AS))
8840 return Op;
8841
8842 // Non-local address space requires custom lowering for atomic compare
8843 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8844 SDLoc DL(Op);
8845 SDValue ChainIn = Op.getOperand(0);
8846 SDValue Addr = Op.getOperand(1);
8847 SDValue Old = Op.getOperand(2);
8848 SDValue New = Op.getOperand(3);
8849 EVT VT = Op.getValueType();
8850 MVT SimpleVT = VT.getSimpleVT();
8851 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8852
8853 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8854 SDValue Ops[] = { ChainIn, Addr, NewOld };
8855
8856 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8857 Ops, VT, AtomicNode->getMemOperand());
8858}
8859
8860//===----------------------------------------------------------------------===//
8861// Custom DAG optimizations
8862//===----------------------------------------------------------------------===//
8863
8864SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8865 DAGCombinerInfo &DCI) const {
8866 EVT VT = N->getValueType(0);
8867 EVT ScalarVT = VT.getScalarType();
8868 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
8869 return SDValue();
8870
8871 SelectionDAG &DAG = DCI.DAG;
8872 SDLoc DL(N);
8873
8874 SDValue Src = N->getOperand(0);
8875 EVT SrcVT = Src.getValueType();
8876
8877 // TODO: We could try to match extracting the higher bytes, which would be
8878 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8879 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8880 // about in practice.
8881 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8882 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8883 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
8884 DCI.AddToWorklist(Cvt.getNode());
8885
8886 // For the f16 case, fold to a cast to f32 and then cast back to f16.
8887 if (ScalarVT != MVT::f32) {
8888 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
8889 DAG.getTargetConstant(0, DL, MVT::i32));
8890 }
8891 return Cvt;
8892 }
8893 }
8894
8895 return SDValue();
8896}
8897
8898// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8899
8900// This is a variant of
8901// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8902//
8903// The normal DAG combiner will do this, but only if the add has one use since
8904// that would increase the number of instructions.
8905//
8906// This prevents us from seeing a constant offset that can be folded into a
8907// memory instruction's addressing mode. If we know the resulting add offset of
8908// a pointer can be folded into an addressing offset, we can replace the pointer
8909// operand with the add of new constant offset. This eliminates one of the uses,
8910// and may allow the remaining use to also be simplified.
8911//
8912SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8913 unsigned AddrSpace,
8914 EVT MemVT,
8915 DAGCombinerInfo &DCI) const {
8916 SDValue N0 = N->getOperand(0);
8917 SDValue N1 = N->getOperand(1);
8918
8919 // We only do this to handle cases where it's profitable when there are
8920 // multiple uses of the add, so defer to the standard combine.
8921 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8922 N0->hasOneUse())
8923 return SDValue();
8924
8925 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8926 if (!CN1)
8927 return SDValue();
8928
8929 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8930 if (!CAdd)
8931 return SDValue();
8932
8933 // If the resulting offset is too large, we can't fold it into the addressing
8934 // mode offset.
8935 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8936 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8937
8938 AddrMode AM;
8939 AM.HasBaseReg = true;
8940 AM.BaseOffs = Offset.getSExtValue();
8941 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8942 return SDValue();
8943
8944 SelectionDAG &DAG = DCI.DAG;
8945 SDLoc SL(N);
8946 EVT VT = N->getValueType(0);
8947
8948 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8949 SDValue COffset = DAG.getConstant(Offset, SL, VT);
8950
8951 SDNodeFlags Flags;
8952 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8953 (N0.getOpcode() == ISD::OR ||
8954 N0->getFlags().hasNoUnsignedWrap()));
8955
8956 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8957}
8958
8959/// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
8960/// by the chain and intrinsic ID. Theoretically we would also need to check the
8961/// specific intrinsic, but they all place the pointer operand first.
8962static unsigned getBasePtrIndex(const MemSDNode *N) {
8963 switch (N->getOpcode()) {
8964 case ISD::STORE:
8965 case ISD::INTRINSIC_W_CHAIN:
8966 case ISD::INTRINSIC_VOID:
8967 return 2;
8968 default:
8969 return 1;
8970 }
8971}
8972
8973SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8974 DAGCombinerInfo &DCI) const {
8975 SelectionDAG &DAG = DCI.DAG;
8976 SDLoc SL(N);
8977
8978 unsigned PtrIdx = getBasePtrIndex(N);
8979 SDValue Ptr = N->getOperand(PtrIdx);
8980
8981 // TODO: We could also do this for multiplies.
8982 if (Ptr.getOpcode() == ISD::SHL) {
8983 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
8984 N->getMemoryVT(), DCI);
8985 if (NewPtr) {
8986 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8987
8988 NewOps[PtrIdx] = NewPtr;
8989 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8990 }
8991 }
8992
8993 return SDValue();
8994}
8995
8996static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8997 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8998 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8999 (Opc == ISD::XOR && Val == 0);
9000}
9001
9002// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
9003// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
9004// integer combine opportunities since most 64-bit operations are decomposed
9005// this way. TODO: We won't want this for SALU especially if it is an inline
9006// immediate.
9007SDValue SITargetLowering::splitBinaryBitConstantOp(
9008 DAGCombinerInfo &DCI,
9009 const SDLoc &SL,
9010 unsigned Opc, SDValue LHS,
9011 const ConstantSDNode *CRHS) const {
9012 uint64_t Val = CRHS->getZExtValue();
9013 uint32_t ValLo = Lo_32(Val);
9014 uint32_t ValHi = Hi_32(Val);
9015 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9016
9017 if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
9018 bitOpWithConstantIsReducible(Opc, ValHi)) ||
9019 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
9020 // If we need to materialize a 64-bit immediate, it will be split up later
9021 // anyway. Avoid creating the harder to understand 64-bit immediate
9022 // materialization.
9023 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
9024 }
9025
9026 return SDValue();
9027}
9028
9029// Returns true if argument is a boolean value which is not serialized into
9030// memory or argument and does not require v_cndmask_b32 to be deserialized.
9031static bool isBoolSGPR(SDValue V) {
9032 if (V.getValueType() != MVT::i1)
9033 return false;
9034 switch (V.getOpcode()) {
9035 default:
9036 break;
9037 case ISD::SETCC:
9038 case AMDGPUISD::FP_CLASS:
9039 return true;
9040 case ISD::AND:
9041 case ISD::OR:
9042 case ISD::XOR:
9043 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
9044 }
9045 return false;
9046}
9047
9048// If a constant has all zeroes or all ones within each byte return it.
9049// Otherwise return 0.
9050static uint32_t getConstantPermuteMask(uint32_t C) {
9051 // 0xff for any zero byte in the mask
9052 uint32_t ZeroByteMask = 0;
9053 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
9054 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
9055 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
9056 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
9057 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
9058 if ((NonZeroByteMask & C) != NonZeroByteMask)
9059 return 0; // Partial bytes selected.
9060 return C;
9061}
9062
9063// Check if a node selects whole bytes from its operand 0 starting at a byte
9064// boundary while masking the rest. Returns select mask as in the v_perm_b32
9065// or -1 if not succeeded.
9066// Note byte select encoding:
9067// value 0-3 selects corresponding source byte;
9068// value 0xc selects zero;
9069// value 0xff selects 0xff.
9070static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
9071 assert(V.getValueSizeInBits() == 32)(static_cast <bool> (V.getValueSizeInBits() == 32) ? void
(0) : __assert_fail ("V.getValueSizeInBits() == 32", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 9071, __extension__ __PRETTY_FUNCTION__))
;
9072
9073 if (V.getNumOperands() != 2)
9074 return ~0;
9075
9076 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
9077 if (!N1)
9078 return ~0;
9079
9080 uint32_t C = N1->getZExtValue();
9081
9082 switch (V.getOpcode()) {
9083 default:
9084 break;
9085 case ISD::AND:
9086 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9087 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
9088 }
9089 break;
9090
9091 case ISD::OR:
9092 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
9093 return (0x03020100 & ~ConstMask) | ConstMask;
9094 }
9095 break;
9096
9097 case ISD::SHL:
9098 if (C % 8)
9099 return ~0;
9100
9101 return uint32_t((0x030201000c0c0c0cull << C) >> 32);
9102
9103 case ISD::SRL:
9104 if (C % 8)
9105 return ~0;
9106
9107 return uint32_t(0x0c0c0c0c03020100ull >> C);
9108 }
9109
9110 return ~0;
9111}
9112
9113SDValue SITargetLowering::performAndCombine(SDNode *N,
9114 DAGCombinerInfo &DCI) const {
9115 if (DCI.isBeforeLegalize())
5
Taking false branch
9116 return SDValue();
9117
9118 SelectionDAG &DAG = DCI.DAG;
9119 EVT VT = N->getValueType(0);
9120 SDValue LHS = N->getOperand(0);
9121 SDValue RHS = N->getOperand(1);
6
Value assigned to 'RHS.Node'
9122
9123
9124 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
7
Calling 'dyn_cast<llvm::ConstantSDNode, llvm::SDValue>'
22
Returning from 'dyn_cast<llvm::ConstantSDNode, llvm::SDValue>'
9125 if (VT == MVT::i64 && CRHS) {
9126 if (SDValue Split
9127 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
9128 return Split;
9129 }
9130
9131 if (CRHS && VT == MVT::i32) {
23
Assuming 'CRHS' is null
9132 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
9133 // nb = number of trailing zeroes in mask
9134 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
9135 // given that we are selecting 8 or 16 bit fields starting at byte boundary.
9136 uint64_t Mask = CRHS->getZExtValue();
9137 unsigned Bits = countPopulation(Mask);
9138 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
9139 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
9140 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
9141 unsigned Shift = CShift->getZExtValue();
9142 unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9143 unsigned Offset = NB + Shift;
9144 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9145 SDLoc SL(N);
9146 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9147 LHS->getOperand(0),
9148 DAG.getConstant(Offset, SL, MVT::i32),
9149 DAG.getConstant(Bits, SL, MVT::i32));
9150 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9151 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9152 DAG.getValueType(NarrowVT));
9153 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9154 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9155 return Shl;
9156 }
9157 }
9158 }
9159
9160 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9161 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9162 isa<ConstantSDNode>(LHS.getOperand(2))) {
9163 uint32_t Sel = getConstantPermuteMask(Mask);
9164 if (!Sel)
9165 return SDValue();
9166
9167 // Select 0xc for all zero bytes
9168 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9169 SDLoc DL(N);
9170 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9171 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9172 }
9173 }
9174
9175 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9176 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9177 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
24
Assuming the condition is true
25
Calling 'SDValue::getOpcode'
9178 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9179 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9180
9181 SDValue X = LHS.getOperand(0);
9182 SDValue Y = RHS.getOperand(0);
9183 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9184 return SDValue();
9185
9186 if (LCC == ISD::SETO) {
9187 if (X != LHS.getOperand(1))
9188 return SDValue();
9189
9190 if (RCC == ISD::SETUNE) {
9191 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9192 if (!C1 || !C1->isInfinity() || C1->isNegative())
9193 return SDValue();
9194
9195 const uint32_t Mask = SIInstrFlags::N_NORMAL |
9196 SIInstrFlags::N_SUBNORMAL |
9197 SIInstrFlags::N_ZERO |
9198 SIInstrFlags::P_ZERO |
9199 SIInstrFlags::P_SUBNORMAL |
9200 SIInstrFlags::P_NORMAL;
9201
9202 static_assert(((~(SIInstrFlags::S_NAN |
9203 SIInstrFlags::Q_NAN |
9204 SIInstrFlags::N_INFINITY |
9205 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9206 "mask not equal");
9207
9208 SDLoc DL(N);
9209 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9210 X, DAG.getConstant(Mask, DL, MVT::i32));
9211 }
9212 }
9213 }
9214
9215 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9216 std::swap(LHS, RHS);
9217
9218 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9219 RHS.hasOneUse()) {
9220 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9221 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9222 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9223 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9224 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9225 (RHS.getOperand(0) == LHS.getOperand(0) &&
9226 LHS.getOperand(0) == LHS.getOperand(1))) {
9227 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9228 unsigned NewMask = LCC == ISD::SETO ?
9229 Mask->getZExtValue() & ~OrdMask :
9230 Mask->getZExtValue() & OrdMask;
9231
9232 SDLoc DL(N);
9233 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9234 DAG.getConstant(NewMask, DL, MVT::i32));
9235 }
9236 }
9237
9238 if (VT == MVT::i32 &&
9239 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9240 // and x, (sext cc from i1) => select cc, x, 0
9241 if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9242 std::swap(LHS, RHS);
9243 if (isBoolSGPR(RHS.getOperand(0)))
9244 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9245 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9246 }
9247
9248 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9249 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9250 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9251 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9252 uint32_t LHSMask = getPermuteMask(DAG, LHS);
9253 uint32_t RHSMask = getPermuteMask(DAG, RHS);
9254 if (LHSMask != ~0u && RHSMask != ~0u) {
9255 // Canonicalize the expression in an attempt to have fewer unique masks
9256 // and therefore fewer registers used to hold the masks.
9257 if (LHSMask > RHSMask) {
9258 std::swap(LHSMask, RHSMask);
9259 std::swap(LHS, RHS);
9260 }
9261
9262 // Select 0xc for each lane used from source operand. Zero has 0xc mask
9263 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9264 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9265 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9266
9267 // Check of we need to combine values from two sources within a byte.
9268 if (!(LHSUsedLanes & RHSUsedLanes) &&
9269 // If we select high and lower word keep it for SDWA.
9270 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9271 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9272 // Each byte in each mask is either selector mask 0-3, or has higher
9273 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9274 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9275 // mask which is not 0xff wins. By anding both masks we have a correct
9276 // result except that 0x0c shall be corrected to give 0x0c only.
9277 uint32_t Mask = LHSMask & RHSMask;
9278 for (unsigned I = 0; I < 32; I += 8) {
9279 uint32_t ByteSel = 0xff << I;
9280 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9281 Mask &= (0x0c << I) & 0xffffffff;
9282 }
9283
9284 // Add 4 to each active LHS lane. It will not affect any existing 0xff
9285 // or 0x0c.
9286 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9287 SDLoc DL(N);
9288
9289 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9290 LHS.getOperand(0), RHS.getOperand(0),
9291 DAG.getConstant(Sel, DL, MVT::i32));
9292 }
9293 }
9294 }
9295
9296 return SDValue();
9297}
9298
9299SDValue SITargetLowering::performOrCombine(SDNode *N,
9300 DAGCombinerInfo &DCI) const {
9301 SelectionDAG &DAG = DCI.DAG;
9302 SDValue LHS = N->getOperand(0);
9303 SDValue RHS = N->getOperand(1);
9304
9305 EVT VT = N->getValueType(0);
9306 if (VT == MVT::i1) {
9307 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9308 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9309 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9310 SDValue Src = LHS.getOperand(0);
9311 if (Src != RHS.getOperand(0))
9312 return SDValue();
9313
9314 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9315 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9316 if (!CLHS || !CRHS)
9317 return SDValue();
9318
9319 // Only 10 bits are used.
9320 static const uint32_t MaxMask = 0x3ff;
9321
9322 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9323 SDLoc DL(N);
9324 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9325 Src, DAG.getConstant(NewMask, DL, MVT::i32));
9326 }
9327
9328 return SDValue();
9329 }
9330
9331 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9332 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9333 LHS.getOpcode() == AMDGPUISD::PERM &&
9334 isa<ConstantSDNode>(LHS.getOperand(2))) {
9335 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9336 if (!Sel)
9337 return SDValue();
9338
9339 Sel |= LHS.getConstantOperandVal(2);
9340 SDLoc DL(N);
9341 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9342 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9343 }
9344
9345 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9346 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9347 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9348 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
9349 uint32_t LHSMask = getPermuteMask(DAG, LHS);
9350 uint32_t RHSMask = getPermuteMask(DAG, RHS);
9351 if (LHSMask != ~0u && RHSMask != ~0u) {
9352 // Canonicalize the expression in an attempt to have fewer unique masks
9353 // and therefore fewer registers used to hold the masks.
9354 if (LHSMask > RHSMask) {
9355 std::swap(LHSMask, RHSMask);
9356 std::swap(LHS, RHS);
9357 }
9358
9359 // Select 0xc for each lane used from source operand. Zero has 0xc mask
9360 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9361 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9362 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9363
9364 // Check of we need to combine values from two sources within a byte.
9365 if (!(LHSUsedLanes & RHSUsedLanes) &&
9366 // If we select high and lower word keep it for SDWA.
9367 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9368 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9369 // Kill zero bytes selected by other mask. Zero value is 0xc.
9370 LHSMask &= ~RHSUsedLanes;
9371 RHSMask &= ~LHSUsedLanes;
9372 // Add 4 to each active LHS lane
9373 LHSMask |= LHSUsedLanes & 0x04040404;
9374 // Combine masks
9375 uint32_t Sel = LHSMask | RHSMask;
9376 SDLoc DL(N);
9377
9378 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9379 LHS.getOperand(0), RHS.getOperand(0),
9380 DAG.getConstant(Sel, DL, MVT::i32));
9381 }
9382 }
9383 }
9384
9385 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9386 return SDValue();
9387
9388 // TODO: This could be a generic combine with a predicate for extracting the
9389 // high half of an integer being free.
9390
9391 // (or i64:x, (zero_extend i32:y)) ->
9392 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9393 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9394 RHS.getOpcode() != ISD::ZERO_EXTEND)
9395 std::swap(LHS, RHS);
9396
9397 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9398 SDValue ExtSrc = RHS.getOperand(0);
9399 EVT SrcVT = ExtSrc.getValueType();
9400 if (SrcVT == MVT::i32) {
9401 SDLoc SL(N);
9402 SDValue LowLHS, HiBits;
9403 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9404 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9405
9406 DCI.AddToWorklist(LowOr.getNode());
9407 DCI.AddToWorklist(HiBits.getNode());
9408
9409 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9410 LowOr, HiBits);
9411 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9412 }
9413 }
9414
9415 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9416 if (CRHS) {
9417 if (SDValue Split
9418 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
9419 return Split;
9420 }
9421
9422 return SDValue();
9423}
9424
9425SDValue SITargetLowering::performXorCombine(SDNode *N,
9426 DAGCombinerInfo &DCI) const {
9427 EVT VT = N->getValueType(0);
9428 if (VT != MVT::i64)
9429 return SDValue();
9430
9431 SDValue LHS = N->getOperand(0);
9432 SDValue RHS = N->getOperand(1);
9433
9434 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9435 if (CRHS) {
9436 if (SDValue Split
9437 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9438 return Split;
9439 }
9440
9441 return SDValue();
9442}
9443
9444SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9445 DAGCombinerInfo &DCI) const {
9446 if (!Subtarget->has16BitInsts() ||
9447 DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9448 return SDValue();
9449
9450 EVT VT = N->getValueType(0);
9451 if (VT != MVT::i32)
9452 return SDValue();
9453
9454 SDValue Src = N->getOperand(0);
9455 if (Src.getValueType() != MVT::i16)
9456 return SDValue();
9457
9458 return SDValue();
9459}
9460
9461SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9462 DAGCombinerInfo &DCI)
9463 const {
9464 SDValue Src = N->getOperand(0);
9465 auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9466
9467 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9468 VTSign->getVT() == MVT::i8) ||
9469 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9470 VTSign->getVT() == MVT::i16)) &&
9471 Src.hasOneUse()) {
9472 auto *M = cast<MemSDNode>(Src);
9473 SDValue Ops[] = {
9474 Src.getOperand(0), // Chain
9475 Src.getOperand(1), // rsrc
9476 Src.getOperand(2), // vindex
9477 Src.getOperand(3), // voffset
9478 Src.getOperand(4), // soffset
9479 Src.getOperand(5), // offset
9480 Src.getOperand(6),
9481 Src.getOperand(7)
9482 };
9483 // replace with BUFFER_LOAD_BYTE/SHORT
9484 SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9485 Src.getOperand(0).getValueType());
9486 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9487 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9488 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9489 ResList,
9490 Ops, M->getMemoryVT(),
9491 M->getMemOperand());
9492 return DCI.DAG.getMergeValues({BufferLoadSignExt,
9493 BufferLoadSignExt.getValue(1)}, SDLoc(N));
9494 }
9495 return SDValue();
9496}
9497
9498SDValue SITargetLowering::performClassCombine(SDNode *N,
9499 DAGCombinerInfo &DCI) const {
9500 SelectionDAG &DAG = DCI.DAG;
9501 SDValue Mask = N->getOperand(1);
9502
9503 // fp_class x, 0 -> false
9504 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9505 if (CMask->isNullValue())
9506 return DAG.getConstant(0, SDLoc(N), MVT::i1);
9507 }
9508
9509 if (N->getOperand(0).isUndef())
9510 return DAG.getUNDEF(MVT::i1);
9511
9512 return SDValue();
9513}
9514
9515SDValue SITargetLowering::performRcpCombine(SDNode *N,
9516 DAGCombinerInfo &DCI) const {
9517 EVT VT = N->getValueType(0);
9518 SDValue N0 = N->getOperand(0);
9519
9520 if (N0.isUndef())
9521 return N0;
9522
9523 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9524 N0.getOpcode() == ISD::SINT_TO_FP)) {
9525 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9526 N->getFlags());
9527 }
9528
9529 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9530 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9531 N0.getOperand(0), N->getFlags());
9532 }
9533
9534 return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9535}
9536
9537bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9538 unsigned MaxDepth) const {
9539 unsigned Opcode = Op.getOpcode();
9540 if (Opcode == ISD::FCANONICALIZE)
9541 return true;
9542
9543 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9544 auto F = CFP->getValueAPF();
9545 if (F.isNaN() && F.isSignaling())
9546 return false;
9547 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9548 }
9549
9550 // If source is a result of another standard FP operation it is already in
9551 // canonical form.
9552 if (MaxDepth == 0)
9553 return false;
9554
9555 switch (Opcode) {
9556 // These will flush denorms if required.
9557 case ISD::FADD:
9558 case ISD::FSUB:
9559 case ISD::FMUL:
9560 case ISD::FCEIL:
9561 case ISD::FFLOOR:
9562 case ISD::FMA:
9563 case ISD::FMAD:
9564 case ISD::FSQRT:
9565 case ISD::FDIV:
9566 case ISD::FREM:
9567 case ISD::FP_ROUND:
9568 case ISD::FP_EXTEND:
9569 case AMDGPUISD::FMUL_LEGACY:
9570 case AMDGPUISD::FMAD_FTZ:
9571 case AMDGPUISD::RCP:
9572 case AMDGPUISD::RSQ:
9573 case AMDGPUISD::RSQ_CLAMP:
9574 case AMDGPUISD::RCP_LEGACY:
9575 case AMDGPUISD::RCP_IFLAG:
9576 case AMDGPUISD::DIV_SCALE:
9577 case AMDGPUISD::DIV_FMAS:
9578 case AMDGPUISD::DIV_FIXUP:
9579 case AMDGPUISD::FRACT:
9580 case AMDGPUISD::LDEXP:
9581 case AMDGPUISD::CVT_PKRTZ_F16_F32:
9582 case AMDGPUISD::CVT_F32_UBYTE0:
9583 case AMDGPUISD::CVT_F32_UBYTE1:
9584 case AMDGPUISD::CVT_F32_UBYTE2:
9585 case AMDGPUISD::CVT_F32_UBYTE3:
9586 return true;
9587
9588 // It can/will be lowered or combined as a bit operation.
9589 // Need to check their input recursively to handle.
9590 case ISD::FNEG:
9591 case ISD::FABS:
9592 case ISD::FCOPYSIGN:
9593 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9594
9595 case ISD::FSIN:
9596 case ISD::FCOS:
9597 case ISD::FSINCOS:
9598 return Op.getValueType().getScalarType() != MVT::f16;
9599
9600 case ISD::FMINNUM:
9601 case ISD::FMAXNUM:
9602 case ISD::FMINNUM_IEEE:
9603 case ISD::FMAXNUM_IEEE:
9604 case AMDGPUISD::CLAMP:
9605 case AMDGPUISD::FMED3:
9606 case AMDGPUISD::FMAX3:
9607 case AMDGPUISD::FMIN3: {
9608 // FIXME: Shouldn't treat the generic operations different based these.
9609 // However, we aren't really required to flush the result from
9610 // minnum/maxnum..
9611
9612 // snans will be quieted, so we only need to worry about denormals.
9613 if (Subtarget->supportsMinMaxDenormModes() ||
9614 denormalsEnabledForType(DAG, Op.getValueType()))
9615 return true;
9616
9617 // Flushing may be required.
9618 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9619 // targets need to check their input recursively.
9620
9621 // FIXME: Does this apply with clamp? It's implemented with max.
9622 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9623 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9624 return false;
9625 }
9626
9627 return true;
9628 }
9629 case ISD::SELECT: {
9630 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9631 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9632 }
9633 case ISD::BUILD_VECTOR: {
9634 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9635 SDValue SrcOp = Op.getOperand(i);
9636 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9637 return false;
9638 }
9639
9640 return true;
9641 }
9642 case ISD::EXTRACT_VECTOR_ELT:
9643 case ISD::EXTRACT_SUBVECTOR: {
9644 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9645 }
9646 case ISD::INSERT_VECTOR_ELT: {
9647 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9648 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9649 }
9650 case ISD::UNDEF:
9651 // Could be anything.
9652 return false;
9653
9654 case ISD::BITCAST:
9655 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9656 case ISD::TRUNCATE: {
9657 // Hack round the mess we make when legalizing extract_vector_elt
9658 if (Op.getValueType() == MVT::i16) {
9659 SDValue TruncSrc = Op.getOperand(0);
9660 if (TruncSrc.getValueType() == MVT::i32 &&
9661 TruncSrc.getOpcode() == ISD::BITCAST &&
9662 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9663 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9664 }
9665 }
9666 return false;
9667 }
9668 case ISD::INTRINSIC_WO_CHAIN: {
9669 unsigned IntrinsicID
9670 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9671 // TODO: Handle more intrinsics
9672 switch (IntrinsicID) {
9673 case Intrinsic::amdgcn_cvt_pkrtz:
9674 case Intrinsic::amdgcn_cubeid:
9675 case Intrinsic::amdgcn_frexp_mant:
9676 case Intrinsic::amdgcn_fdot2:
9677 case Intrinsic::amdgcn_rcp:
9678 case Intrinsic::amdgcn_rsq:
9679 case Intrinsic::amdgcn_rsq_clamp:
9680 case Intrinsic::amdgcn_rcp_legacy:
9681 case Intrinsic::amdgcn_rsq_legacy:
9682 case Intrinsic::amdgcn_trig_preop:
9683 return true;
9684 default:
9685 break;
9686 }
9687
9688 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9689 }
9690 default:
9691 return denormalsEnabledForType(DAG, Op.getValueType()) &&
9692 DAG.isKnownNeverSNaN(Op);
9693 }
9694
9695 llvm_unreachable("invalid operation")::llvm::llvm_unreachable_internal("invalid operation", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 9695)
;
9696}
9697
9698bool SITargetLowering::isCanonicalized(Register Reg, MachineFunction &MF,
9699 unsigned MaxDepth) const {
9700 MachineRegisterInfo &MRI = MF.getRegInfo();
9701 MachineInstr *MI = MRI.getVRegDef(Reg);
9702 unsigned Opcode = MI->getOpcode();
9703
9704 if (Opcode == AMDGPU::G_FCANONICALIZE)
9705 return true;
9706
9707 if (Opcode == AMDGPU::G_FCONSTANT) {
9708 auto F = MI->getOperand(1).getFPImm()->getValueAPF();
9709 if (F.isNaN() && F.isSignaling())
9710 return false;
9711 return !F.isDenormal() || denormalsEnabledForType(MRI.getType(Reg), MF);
9712 }
9713
9714 if (MaxDepth == 0)
9715 return false;
9716
9717 switch (Opcode) {
9718 case AMDGPU::G_FMINNUM_IEEE:
9719 case AMDGPU::G_FMAXNUM_IEEE: {
9720 if (Subtarget->supportsMinMaxDenormModes() ||
9721 denormalsEnabledForType(MRI.getType(Reg), MF))
9722 return true;
9723 for (unsigned I = 1, E = MI->getNumOperands(); I != E; ++I) {
9724 if (!isCanonicalized(MI->getOperand(I).getReg(), MF, MaxDepth - 1))
9725 return false;
9726 }
9727 return true;
9728 }
9729 default:
9730 return denormalsEnabledForType(MRI.getType(Reg), MF) &&
9731 isKnownNeverSNaN(Reg, MRI);
9732 }
9733
9734 llvm_unreachable("invalid operation")::llvm::llvm_unreachable_internal("invalid operation", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 9734)
;
9735}
9736
9737// Constant fold canonicalize.
9738SDValue SITargetLowering::getCanonicalConstantFP(
9739 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9740 // Flush denormals to 0 if not enabled.
9741 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9742 return DAG.getConstantFP(0.0, SL, VT);
9743
9744 if (C.isNaN()) {
9745 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9746 if (C.isSignaling()) {
9747 // Quiet a signaling NaN.
9748 // FIXME: Is this supposed to preserve payload bits?
9749 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9750 }
9751
9752 // Make sure it is the canonical NaN bitpattern.
9753 //
9754 // TODO: Can we use -1 as the canonical NaN value since it's an inline
9755 // immediate?
9756 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9757 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9758 }
9759
9760 // Already canonical.
9761 return DAG.getConstantFP(C, SL, VT);
9762}
9763
9764static bool vectorEltWillFoldAway(SDValue Op) {
9765 return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9766}
9767
9768SDValue SITargetLowering::performFCanonicalizeCombine(
9769 SDNode *N,
9770 DAGCombinerInfo &DCI) const {
9771 SelectionDAG &DAG = DCI.DAG;
9772 SDValue N0 = N->getOperand(0);
9773 EVT VT = N->getValueType(0);
9774
9775 // fcanonicalize undef -> qnan
9776 if (N0.isUndef()) {
9777 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9778 return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9779 }
9780
9781 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9782 EVT VT = N->getValueType(0);
9783 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9784 }
9785
9786 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9787 // (fcanonicalize k)
9788 //
9789 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9790
9791 // TODO: This could be better with wider vectors that will be split to v2f16,
9792 // and to consider uses since there aren't that many packed operations.
9793 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9794 isTypeLegal(MVT::v2f16)) {
9795 SDLoc SL(N);
9796 SDValue NewElts[2];
9797 SDValue Lo = N0.getOperand(0);
9798 SDValue Hi = N0.getOperand(1);
9799 EVT EltVT = Lo.getValueType();
9800
9801 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9802 for (unsigned I = 0; I != 2; ++I) {
9803 SDValue Op = N0.getOperand(I);
9804 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9805 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9806 CFP->getValueAPF());
9807 } else if (Op.isUndef()) {
9808 // Handled below based on what the other operand is.
9809 NewElts[I] = Op;
9810 } else {
9811 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9812 }
9813 }
9814
9815 // If one half is undef, and one is constant, perfer a splat vector rather
9816 // than the normal qNaN. If it's a register, prefer 0.0 since that's
9817 // cheaper to use and may be free with a packed operation.
9818 if (NewElts[0].isUndef()) {
9819 if (isa<ConstantFPSDNode>(NewElts[1]))
9820 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9821 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9822 }
9823
9824 if (NewElts[1].isUndef()) {
9825 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9826 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9827 }
9828
9829 return DAG.getBuildVector(VT, SL, NewElts);
9830 }
9831 }
9832
9833 unsigned SrcOpc = N0.getOpcode();
9834
9835 // If it's free to do so, push canonicalizes further up the source, which may
9836 // find a canonical source.
9837 //
9838 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9839 // sNaNs.
9840 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9841 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9842 if (CRHS && N0.hasOneUse()) {
9843 SDLoc SL(N);
9844 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9845 N0.getOperand(0));
9846 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9847 DCI.AddToWorklist(Canon0.getNode());
9848
9849 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9850 }
9851 }
9852
9853 return isCanonicalized(DAG, N0) ? N0 : SDValue();
9854}
9855
9856static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9857 switch (Opc) {
9858 case ISD::FMAXNUM:
9859 case ISD::FMAXNUM_IEEE:
9860 return AMDGPUISD::FMAX3;
9861 case ISD::SMAX:
9862 return AMDGPUISD::SMAX3;
9863 case ISD::UMAX:
9864 return AMDGPUISD::UMAX3;
9865 case ISD::FMINNUM:
9866 case ISD::FMINNUM_IEEE:
9867 return AMDGPUISD::FMIN3;
9868 case ISD::SMIN:
9869 return AMDGPUISD::SMIN3;
9870 case ISD::UMIN:
9871 return AMDGPUISD::UMIN3;
9872 default:
9873 llvm_unreachable("Not a min/max opcode")::llvm::llvm_unreachable_internal("Not a min/max opcode", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 9873)
;
9874 }
9875}
9876
9877SDValue SITargetLowering::performIntMed3ImmCombine(
9878 SelectionDAG &DAG, const SDLoc &SL,
9879 SDValue Op0, SDValue Op1, bool Signed) const {
9880 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9881 if (!K1)
9882 return SDValue();
9883
9884 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9885 if (!K0)
9886 return SDValue();
9887
9888 if (Signed) {
9889 if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9890 return SDValue();
9891 } else {
9892 if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9893 return SDValue();
9894 }
9895
9896 EVT VT = K0->getValueType(0);
9897 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9898 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9899 return DAG.getNode(Med3Opc, SL, VT,
9900 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9901 }
9902
9903 // If there isn't a 16-bit med3 operation, convert to 32-bit.
9904 if (VT == MVT::i16) {
9905 MVT NVT = MVT::i32;
9906 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9907
9908 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9909 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9910 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9911
9912 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9913 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9914 }
9915
9916 return SDValue();
9917}
9918
9919static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9920 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9921 return C;
9922
9923 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9924 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9925 return C;
9926 }
9927
9928 return nullptr;
9929}
9930
9931SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9932 const SDLoc &SL,
9933 SDValue Op0,
9934 SDValue Op1) const {
9935 ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9936 if (!K1)
9937 return SDValue();
9938
9939 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9940 if (!K0)
9941 return SDValue();
9942
9943 // Ordered >= (although NaN inputs should have folded away by now).
9944 if (K0->getValueAPF() > K1->getValueAPF())
9945 return SDValue();
9946
9947 const MachineFunction &MF = DAG.getMachineFunction();
9948 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9949
9950 // TODO: Check IEEE bit enabled?
9951 EVT VT = Op0.getValueType();
9952 if (Info->getMode().DX10Clamp) {
9953 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9954 // hardware fmed3 behavior converting to a min.
9955 // FIXME: Should this be allowing -0.0?
9956 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9957 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9958 }
9959
9960 // med3 for f16 is only available on gfx9+, and not available for v2f16.
9961 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9962 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9963 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9964 // then give the other result, which is different from med3 with a NaN
9965 // input.
9966 SDValue Var = Op0.getOperand(0);
9967 if (!DAG.isKnownNeverSNaN(Var))
9968 return SDValue();
9969
9970 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9971
9972 if ((!K0->hasOneUse() ||
9973 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9974 (!K1->hasOneUse() ||
9975 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9976 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9977 Var, SDValue(K0, 0), SDValue(K1, 0));
9978 }
9979 }
9980
9981 return SDValue();
9982}
9983
9984SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9985 DAGCombinerInfo &DCI) const {
9986 SelectionDAG &DAG = DCI.DAG;
9987
9988 EVT VT = N->getValueType(0);
9989 unsigned Opc = N->getOpcode();
9990 SDValue Op0 = N->getOperand(0);
9991 SDValue Op1 = N->getOperand(1);
9992
9993 // Only do this if the inner op has one use since this will just increases
9994 // register pressure for no benefit.
9995
9996 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9997 !VT.isVector() &&
9998 (VT == MVT::i32 || VT == MVT::f32 ||
9999 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
10000 // max(max(a, b), c) -> max3(a, b, c)
10001 // min(min(a, b), c) -> min3(a, b, c)
10002 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
10003 SDLoc DL(N);
10004 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10005 DL,
10006 N->getValueType(0),
10007 Op0.getOperand(0),
10008 Op0.getOperand(1),
10009 Op1);
10010 }
10011
10012 // Try commuted.
10013 // max(a, max(b, c)) -> max3(a, b, c)
10014 // min(a, min(b, c)) -> min3(a, b, c)
10015 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
10016 SDLoc DL(N);
10017 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
10018 DL,
10019 N->getValueType(0),
10020 Op0,
10021 Op1.getOperand(0),
10022 Op1.getOperand(1));
10023 }
10024 }
10025
10026 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
10027 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
10028 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
10029 return Med3;
10030 }
10031
10032 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
10033 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
10034 return Med3;
10035 }
10036
10037 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
10038 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
10039 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
10040 (Opc == AMDGPUISD::FMIN_LEGACY &&
10041 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
10042 (VT == MVT::f32 || VT == MVT::f64 ||
10043 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
10044 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
10045 Op0.hasOneUse()) {
10046 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
10047 return Res;
10048 }
10049
10050 return SDValue();
10051}
10052
10053static bool isClampZeroToOne(SDValue A, SDValue B) {
10054 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
10055 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
10056 // FIXME: Should this be allowing -0.0?
10057 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
10058 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
10059 }
10060 }
10061
10062 return false;
10063}
10064
10065// FIXME: Should only worry about snans for version with chain.
10066SDValue SITargetLowering::performFMed3Combine(SDNode *N,
10067 DAGCombinerInfo &DCI) const {
10068 EVT VT = N->getValueType(0);
10069 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
10070 // NaNs. With a NaN input, the order of the operands may change the result.
10071
10072 SelectionDAG &DAG = DCI.DAG;
10073 SDLoc SL(N);
10074
10075 SDValue Src0 = N->getOperand(0);
10076 SDValue Src1 = N->getOperand(1);
10077 SDValue Src2 = N->getOperand(2);
10078
10079 if (isClampZeroToOne(Src0, Src1)) {
10080 // const_a, const_b, x -> clamp is safe in all cases including signaling
10081 // nans.
10082 // FIXME: Should this be allowing -0.0?
10083 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
10084 }
10085
10086 const MachineFunction &MF = DAG.getMachineFunction();
10087 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10088
10089 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
10090 // handling no dx10-clamp?
10091 if (Info->getMode().DX10Clamp) {
10092 // If NaNs is clamped to 0, we are free to reorder the inputs.
10093
10094 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10095 std::swap(Src0, Src1);
10096
10097 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
10098 std::swap(Src1, Src2);
10099
10100 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
10101 std::swap(Src0, Src1);
10102
10103 if (isClampZeroToOne(Src1, Src2))
10104 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
10105 }
10106
10107 return SDValue();
10108}
10109
10110SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
10111 DAGCombinerInfo &DCI) const {
10112 SDValue Src0 = N->getOperand(0);
10113 SDValue Src1 = N->getOperand(1);
10114 if (Src0.isUndef() && Src1.isUndef())
10115 return DCI.DAG.getUNDEF(N->getValueType(0));
10116 return SDValue();
10117}
10118
10119// Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10120// expanded into a set of cmp/select instructions.
10121bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10122 unsigned NumElem,
10123 bool IsDivergentIdx) {
10124 if (UseDivergentRegisterIndexing)
10125 return false;
10126
10127 unsigned VecSize = EltSize * NumElem;
10128
10129 // Sub-dword vectors of size 2 dword or less have better implementation.
10130 if (VecSize <= 64 && EltSize < 32)
10131 return false;
10132
10133 // Always expand the rest of sub-dword instructions, otherwise it will be
10134 // lowered via memory.
10135 if (EltSize < 32)
10136 return true;
10137
10138 // Always do this if var-idx is divergent, otherwise it will become a loop.
10139 if (IsDivergentIdx)
10140 return true;
10141
10142 // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10143 unsigned NumInsts = NumElem /* Number of compares */ +
10144 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10145 return NumInsts <= 16;
10146}
10147
10148static bool shouldExpandVectorDynExt(SDNode *N) {
10149 SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10150 if (isa<ConstantSDNode>(Idx))
10151 return false;
10152
10153 SDValue Vec = N->getOperand(0);
10154 EVT VecVT = Vec.getValueType();
10155 EVT EltVT = VecVT.getVectorElementType();
10156 unsigned EltSize = EltVT.getSizeInBits();
10157 unsigned NumElem = VecVT.getVectorNumElements();
10158
10159 return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10160 Idx->isDivergent());
10161}
10162
10163SDValue SITargetLowering::performExtractVectorEltCombine(
10164 SDNode *N, DAGCombinerInfo &DCI) const {
10165 SDValue Vec = N->getOperand(0);
10166 SelectionDAG &DAG = DCI.DAG;
10167
10168 EVT VecVT = Vec.getValueType();
10169 EVT EltVT = VecVT.getVectorElementType();
10170
10171 if ((Vec.getOpcode() == ISD::FNEG ||
10172 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10173 SDLoc SL(N);
10174 EVT EltVT = N->getValueType(0);
10175 SDValue Idx = N->getOperand(1);
10176 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10177 Vec.getOperand(0), Idx);
10178 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10179 }
10180
10181 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10182 // =>
10183 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10184 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10185 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10186 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10187 SDLoc SL(N);
10188 EVT EltVT = N->getValueType(0);
10189 SDValue Idx = N->getOperand(1);
10190 unsigned Opc = Vec.getOpcode();
10191
10192 switch(Opc) {
10193 default:
10194 break;
10195 // TODO: Support other binary operations.
10196 case ISD::FADD:
10197 case ISD::FSUB:
10198 case ISD::FMUL:
10199 case ISD::ADD:
10200 case ISD::UMIN:
10201 case ISD::UMAX:
10202 case ISD::SMIN:
10203 case ISD::SMAX:
10204 case ISD::FMAXNUM:
10205 case ISD::FMINNUM:
10206 case ISD::FMAXNUM_IEEE:
10207 case ISD::FMINNUM_IEEE: {
10208 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10209 Vec.getOperand(0), Idx);
10210 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10211 Vec.getOperand(1), Idx);
10212
10213 DCI.AddToWorklist(Elt0.getNode());
10214 DCI.AddToWorklist(Elt1.getNode());
10215 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10216 }
10217 }
10218 }
10219
10220 unsigned VecSize = VecVT.getSizeInBits();
10221 unsigned EltSize = EltVT.getSizeInBits();
10222
10223 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10224 if (::shouldExpandVectorDynExt(N)) {
10225 SDLoc SL(N);
10226 SDValue Idx = N->getOperand(1);
10227 SDValue V;
10228 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10229 SDValue IC = DAG.getVectorIdxConstant(I, SL);
10230 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10231 if (I == 0)
10232 V = Elt;
10233 else
10234 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10235 }
10236 return V;
10237 }
10238
10239 if (!DCI.isBeforeLegalize())
10240 return SDValue();
10241
10242 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10243 // elements. This exposes more load reduction opportunities by replacing
10244 // multiple small extract_vector_elements with a single 32-bit extract.
10245 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10246 if (isa<MemSDNode>(Vec) &&
10247 EltSize <= 16 &&
10248 EltVT.isByteSized() &&
10249 VecSize > 32 &&
10250 VecSize % 32 == 0 &&
10251 Idx) {
10252 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10253
10254 unsigned BitIndex = Idx->getZExtValue() * EltSize;
10255 unsigned EltIdx = BitIndex / 32;
10256 unsigned LeftoverBitIdx = BitIndex % 32;
10257 SDLoc SL(N);
10258
10259 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10260 DCI.AddToWorklist(Cast.getNode());
10261
10262 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10263 DAG.getConstant(EltIdx, SL, MVT::i32));
10264 DCI.AddToWorklist(Elt.getNode());
10265 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10266 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10267 DCI.AddToWorklist(Srl.getNode());
10268
10269 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10270 DCI.AddToWorklist(Trunc.getNode());
10271 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10272 }
10273
10274 return SDValue();
10275}
10276
10277SDValue
10278SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10279 DAGCombinerInfo &DCI) const {
10280 SDValue Vec = N->getOperand(0);
10281 SDValue Idx = N->getOperand(2);
10282 EVT VecVT = Vec.getValueType();
10283 EVT EltVT = VecVT.getVectorElementType();
10284
10285 // INSERT_VECTOR_ELT (<n x e>, var-idx)
10286 // => BUILD_VECTOR n x select (e, const-idx)
10287 if (!::shouldExpandVectorDynExt(N))
10288 return SDValue();
10289
10290 SelectionDAG &DAG = DCI.DAG;
10291 SDLoc SL(N);
10292 SDValue Ins = N->getOperand(1);
10293 EVT IdxVT = Idx.getValueType();
10294
10295 SmallVector<SDValue, 16> Ops;
10296 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10297 SDValue IC = DAG.getConstant(I, SL, IdxVT);
10298 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10299 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10300 Ops.push_back(V);
10301 }
10302
10303 return DAG.getBuildVector(VecVT, SL, Ops);
10304}
10305
10306unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10307 const SDNode *N0,
10308 const SDNode *N1) const {
10309 EVT VT = N0->getValueType(0);
10310
10311 // Only do this if we are not trying to support denormals. v_mad_f32 does not
10312 // support denormals ever.
10313 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10314 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10315 getSubtarget()->hasMadF16())) &&
10316 isOperationLegal(ISD::FMAD, VT))
10317 return ISD::FMAD;
10318
10319 const TargetOptions &Options = DAG.getTarget().Options;
10320 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10321 (N0->getFlags().hasAllowContract() &&
10322 N1->getFlags().hasAllowContract())) &&
10323 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10324 return ISD::FMA;
10325 }
10326
10327 return 0;
10328}
10329
10330// For a reassociatable opcode perform:
10331// op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10332SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10333 SelectionDAG &DAG) const {
10334 EVT VT = N->getValueType(0);
10335 if (VT != MVT::i32 && VT != MVT::i64)
10336 return SDValue();
10337
10338 unsigned Opc = N->getOpcode();
10339 SDValue Op0 = N->getOperand(0);
10340 SDValue Op1 = N->getOperand(1);
10341
10342 if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10343 return SDValue();
10344
10345 if (Op0->isDivergent())
10346 std::swap(Op0, Op1);
10347
10348 if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10349 return SDValue();
10350
10351 SDValue Op2 = Op1.getOperand(1);
10352 Op1 = Op1.getOperand(0);
10353 if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10354 return SDValue();
10355
10356 if (Op1->isDivergent())
10357 std::swap(Op1, Op2);
10358
10359 // If either operand is constant this will conflict with
10360 // DAGCombiner::ReassociateOps().
10361 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10362 DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10363 return SDValue();
10364
10365 SDLoc SL(N);
10366 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10367 return DAG.getNode(Opc, SL, VT, Add1, Op2);
10368}
10369
10370static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10371 EVT VT,
10372 SDValue N0, SDValue N1, SDValue N2,
10373 bool Signed) {
10374 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10375 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10376 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10377 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10378}
10379
10380SDValue SITargetLowering::performAddCombine(SDNode *N,
10381 DAGCombinerInfo &DCI) const {
10382 SelectionDAG &DAG = DCI.DAG;
10383 EVT VT = N->getValueType(0);
10384 SDLoc SL(N);
10385 SDValue LHS = N->getOperand(0);
10386 SDValue RHS = N->getOperand(1);
10387
10388 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10389 && Subtarget->hasMad64_32() &&
10390 !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10391 VT.getScalarSizeInBits() <= 64) {
10392 if (LHS.getOpcode() != ISD::MUL)
10393 std::swap(LHS, RHS);
10394
10395 SDValue MulLHS = LHS.getOperand(0);
10396 SDValue MulRHS = LHS.getOperand(1);
10397 SDValue AddRHS = RHS;
10398
10399 // TODO: Maybe restrict if SGPR inputs.
10400 if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10401 numBitsUnsigned(MulRHS, DAG) <= 32) {
10402 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10403 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10404 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10405 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10406 }
10407
10408 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
10409 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10410 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10411 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10412 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10413 }
10414
10415 return SDValue();
10416 }
10417
10418 if (SDValue V = reassociateScalarOps(N, DAG)) {
10419 return V;
10420 }
10421
10422 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10423 return SDValue();
10424
10425 // add x, zext (setcc) => addcarry x, 0, setcc
10426 // add x, sext (setcc) => subcarry x, 0, setcc
10427 unsigned Opc = LHS.getOpcode();
10428 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10429 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10430 std::swap(RHS, LHS);
10431
10432 Opc = RHS.getOpcode();
10433 switch (Opc) {
10434 default: break;
10435 case ISD::ZERO_EXTEND:
10436 case ISD::SIGN_EXTEND:
10437 case ISD::ANY_EXTEND: {
10438 auto Cond = RHS.getOperand(0);
10439 // If this won't be a real VOPC output, we would still need to insert an
10440 // extra instruction anyway.
10441 if (!isBoolSGPR(Cond))
10442 break;
10443 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10444 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10445 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10446 return DAG.getNode(Opc, SL, VTList, Args);
10447 }
10448 case ISD::ADDCARRY: {
10449 // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10450 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10451 if (!C || C->getZExtValue() != 0) break;
10452 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10453 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10454 }
10455 }
10456 return SDValue();
10457}
10458
10459SDValue SITargetLowering::performSubCombine(SDNode *N,
10460 DAGCombinerInfo &DCI) const {
10461 SelectionDAG &DAG = DCI.DAG;
10462 EVT VT = N->getValueType(0);
10463
10464 if (VT != MVT::i32)
10465 return SDValue();
10466
10467 SDLoc SL(N);
10468 SDValue LHS = N->getOperand(0);
10469 SDValue RHS = N->getOperand(1);
10470
10471 // sub x, zext (setcc) => subcarry x, 0, setcc
10472 // sub x, sext (setcc) => addcarry x, 0, setcc
10473 unsigned Opc = RHS.getOpcode();
10474 switch (Opc) {
10475 default: break;
10476 case ISD::ZERO_EXTEND:
10477 case ISD::SIGN_EXTEND:
10478 case ISD::ANY_EXTEND: {
10479 auto Cond = RHS.getOperand(0);
10480 // If this won't be a real VOPC output, we would still need to insert an
10481 // extra instruction anyway.
10482 if (!isBoolSGPR(Cond))
10483 break;
10484 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10485 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10486 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10487 return DAG.getNode(Opc, SL, VTList, Args);
10488 }
10489 }
10490
10491 if (LHS.getOpcode() == ISD::SUBCARRY) {
10492 // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10493 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10494 if (!C || !C->isNullValue())
10495 return SDValue();
10496 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10497 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10498 }
10499 return SDValue();
10500}
10501
10502SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10503 DAGCombinerInfo &DCI) const {
10504
10505 if (N->getValueType(0) != MVT::i32)
10506 return SDValue();
10507
10508 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10509 if (!C || C->getZExtValue() != 0)
10510 return SDValue();
10511
10512 SelectionDAG &DAG = DCI.DAG;
10513 SDValue LHS = N->getOperand(0);
10514
10515 // addcarry (add x, y), 0, cc => addcarry x, y, cc
10516 // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10517 unsigned LHSOpc = LHS.getOpcode();
10518 unsigned Opc = N->getOpcode();
10519 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10520 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10521 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10522 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10523 }
10524 return SDValue();
10525}
10526
10527SDValue SITargetLowering::performFAddCombine(SDNode *N,
10528 DAGCombinerInfo &DCI) const {
10529 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10530 return SDValue();
10531
10532 SelectionDAG &DAG = DCI.DAG;
10533 EVT VT = N->getValueType(0);
10534
10535 SDLoc SL(N);
10536 SDValue LHS = N->getOperand(0);
10537 SDValue RHS = N->getOperand(1);
10538
10539 // These should really be instruction patterns, but writing patterns with
10540 // source modiifiers is a pain.
10541
10542 // fadd (fadd (a, a), b) -> mad 2.0, a, b
10543 if (LHS.getOpcode() == ISD::FADD) {
10544 SDValue A = LHS.getOperand(0);
10545 if (A == LHS.getOperand(1)) {
10546 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10547 if (FusedOp != 0) {
10548 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10549 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10550 }
10551 }
10552 }
10553
10554 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10555 if (RHS.getOpcode() == ISD::FADD) {
10556 SDValue A = RHS.getOperand(0);
10557 if (A == RHS.getOperand(1)) {
10558 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10559 if (FusedOp != 0) {
10560 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10561 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10562 }
10563 }
10564 }
10565
10566 return SDValue();
10567}
10568
10569SDValue SITargetLowering::performFSubCombine(SDNode *N,
10570 DAGCombinerInfo &DCI) const {
10571 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10572 return SDValue();
10573
10574 SelectionDAG &DAG = DCI.DAG;
10575 SDLoc SL(N);
10576 EVT VT = N->getValueType(0);
10577 assert(!VT.isVector())(static_cast <bool> (!VT.isVector()) ? void (0) : __assert_fail
("!VT.isVector()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 10577, __extension__ __PRETTY_FUNCTION__))
;
10578
10579 // Try to get the fneg to fold into the source modifier. This undoes generic
10580 // DAG combines and folds them into the mad.
10581 //
10582 // Only do this if we are not trying to support denormals. v_mad_f32 does
10583 // not support denormals ever.
10584 SDValue LHS = N->getOperand(0);
10585 SDValue RHS = N->getOperand(1);
10586 if (LHS.getOpcode() == ISD::FADD) {
10587 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10588 SDValue A = LHS.getOperand(0);
10589 if (A == LHS.getOperand(1)) {
10590 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10591 if (FusedOp != 0){
10592 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10593 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10594
10595 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10596 }
10597 }
10598 }
10599
10600 if (RHS.getOpcode() == ISD::FADD) {
10601 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10602
10603 SDValue A = RHS.getOperand(0);
10604 if (A == RHS.getOperand(1)) {
10605 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10606 if (FusedOp != 0){
10607 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10608 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10609 }
10610 }
10611 }
10612
10613 return SDValue();
10614}
10615
10616SDValue SITargetLowering::performFMACombine(SDNode *N,
10617 DAGCombinerInfo &DCI) const {
10618 SelectionDAG &DAG = DCI.DAG;
10619 EVT VT = N->getValueType(0);
10620 SDLoc SL(N);
10621
10622 if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
10623 return SDValue();
10624
10625 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10626 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10627 SDValue Op1 = N->getOperand(0);
10628 SDValue Op2 = N->getOperand(1);
10629 SDValue FMA = N->getOperand(2);
10630
10631 if (FMA.getOpcode() != ISD::FMA ||
10632 Op1.getOpcode() != ISD::FP_EXTEND ||
10633 Op2.getOpcode() != ISD::FP_EXTEND)
10634 return SDValue();
10635
10636 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10637 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10638 // is sufficient to allow generaing fdot2.
10639 const TargetOptions &Options = DAG.getTarget().Options;
10640 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10641 (N->getFlags().hasAllowContract() &&
10642 FMA->getFlags().hasAllowContract())) {
10643 Op1 = Op1.getOperand(0);
10644 Op2 = Op2.getOperand(0);
10645 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10646 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10647 return SDValue();
10648
10649 SDValue Vec1 = Op1.getOperand(0);
10650 SDValue Idx1 = Op1.getOperand(1);
10651 SDValue Vec2 = Op2.getOperand(0);
10652
10653 SDValue FMAOp1 = FMA.getOperand(0);
10654 SDValue FMAOp2 = FMA.getOperand(1);
10655 SDValue FMAAcc = FMA.getOperand(2);
10656
10657 if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10658 FMAOp2.getOpcode() != ISD::FP_EXTEND)
10659 return SDValue();
10660
10661 FMAOp1 = FMAOp1.getOperand(0);
10662 FMAOp2 = FMAOp2.getOperand(0);
10663 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10664 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10665 return SDValue();
10666
10667 SDValue Vec3 = FMAOp1.getOperand(0);
10668 SDValue Vec4 = FMAOp2.getOperand(0);
10669 SDValue Idx2 = FMAOp1.getOperand(1);
10670
10671 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10672 // Idx1 and Idx2 cannot be the same.
10673 Idx1 == Idx2)
10674 return SDValue();
10675
10676 if (Vec1 == Vec2 || Vec3 == Vec4)
10677 return SDValue();
10678
10679 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10680 return SDValue();
10681
10682 if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10683 (Vec1 == Vec4 && Vec2 == Vec3)) {
10684 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10685 DAG.getTargetConstant(0, SL, MVT::i1));
10686 }
10687 }
10688 return SDValue();
10689}
10690
10691SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10692 DAGCombinerInfo &DCI) const {
10693 SelectionDAG &DAG = DCI.DAG;
10694 SDLoc SL(N);
10695
10696 SDValue LHS = N->getOperand(0);
10697 SDValue RHS = N->getOperand(1);
10698 EVT VT = LHS.getValueType();
10699 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10700
10701 auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10702 if (!CRHS) {
10703 CRHS = dyn_cast<ConstantSDNode>(LHS);
10704 if (CRHS) {
10705 std::swap(LHS, RHS);
10706 CC = getSetCCSwappedOperands(CC);
10707 }
10708 }
10709
10710 if (CRHS) {
10711 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10712 isBoolSGPR(LHS.getOperand(0))) {
10713 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10714 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10715 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
10716 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
10717 if ((CRHS->isAllOnesValue() &&
10718 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10719 (CRHS->isNullValue() &&
10720 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10721 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10722 DAG.getConstant(-1, SL, MVT::i1));
10723 if ((CRHS->isAllOnesValue() &&
10724 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10725 (CRHS->isNullValue() &&
10726 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10727 return LHS.getOperand(0);
10728 }
10729
10730 uint64_t CRHSVal = CRHS->getZExtValue();
10731 if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10732 LHS.getOpcode() == ISD::SELECT &&
10733 isa<ConstantSDNode>(LHS.getOperand(1)) &&
10734 isa<ConstantSDNode>(LHS.getOperand(2)) &&
10735 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10736 isBoolSGPR(LHS.getOperand(0))) {
10737 // Given CT != FT:
10738 // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10739 // setcc (select cc, CT, CF), CF, ne => cc
10740 // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10741 // setcc (select cc, CT, CF), CT, eq => cc
10742 uint64_t CT = LHS.getConstantOperandVal(1);
10743 uint64_t CF = LHS.getConstantOperandVal(2);
10744
10745 if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10746 (CT == CRHSVal && CC == ISD::SETNE))
10747 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10748 DAG.getConstant(-1, SL, MVT::i1));
10749 if ((CF == CRHSVal && CC == ISD::SETNE) ||
10750 (CT == CRHSVal && CC == ISD::SETEQ))
10751 return LHS.getOperand(0);
10752 }
10753 }
10754
10755 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10756 VT != MVT::f16))
10757 return SDValue();
10758
10759 // Match isinf/isfinite pattern
10760 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10761 // (fcmp one (fabs x), inf) -> (fp_class x,
10762 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10763 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10764 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10765 if (!CRHS)
10766 return SDValue();
10767
10768 const APFloat &APF = CRHS->getValueAPF();
10769 if (APF.isInfinity() && !APF.isNegative()) {
10770 const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10771 SIInstrFlags::N_INFINITY;
10772 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10773 SIInstrFlags::P_ZERO |
10774 SIInstrFlags::N_NORMAL |
10775 SIInstrFlags::P_NORMAL |
10776 SIInstrFlags::N_SUBNORMAL |
10777 SIInstrFlags::P_SUBNORMAL;
10778 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10779 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10780 DAG.getConstant(Mask, SL, MVT::i32));
10781 }
10782 }
10783
10784 return SDValue();
10785}
10786
10787SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10788 DAGCombinerInfo &DCI) const {
10789 SelectionDAG &DAG = DCI.DAG;
10790 SDLoc SL(N);
10791 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10792
10793 SDValue Src = N->getOperand(0);
10794 SDValue Shift = N->getOperand(0);
10795
10796 // TODO: Extend type shouldn't matter (assuming legal types).
10797 if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10798 Shift = Shift.getOperand(0);
10799
10800 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10801 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x
10802 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10803 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10804 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10805 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
10806 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10807 Shift = DAG.getZExtOrTrunc(Shift.getOperand(0),
10808 SDLoc(Shift.getOperand(0)), MVT::i32);
10809
10810 unsigned ShiftOffset = 8 * Offset;
10811 if (Shift.getOpcode() == ISD::SHL)
10812 ShiftOffset -= C->getZExtValue();
10813 else
10814 ShiftOffset += C->getZExtValue();
10815
10816 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10817 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10818 MVT::f32, Shift);
10819 }
10820 }
10821 }
10822
10823 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10824 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10825 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10826 // We simplified Src. If this node is not dead, visit it again so it is
10827 // folded properly.
10828 if (N->getOpcode() != ISD::DELETED_NODE)
10829 DCI.AddToWorklist(N);
10830 return SDValue(N, 0);
10831 }
10832
10833 // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10834 if (SDValue DemandedSrc =
10835 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10836 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10837
10838 return SDValue();
10839}
10840
10841SDValue SITargetLowering::performClampCombine(SDNode *N,
10842 DAGCombinerInfo &DCI) const {
10843 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
10844 if (!CSrc)
10845 return SDValue();
10846
10847 const MachineFunction &MF = DCI.DAG.getMachineFunction();
10848 const APFloat &F = CSrc->getValueAPF();
10849 APFloat Zero = APFloat::getZero(F.getSemantics());
10850 if (F < Zero ||
10851 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
10852 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
10853 }
10854
10855 APFloat One(F.getSemantics(), "1.0");
10856 if (F > One)
10857 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
10858
10859 return SDValue(CSrc, 0);
10860}
10861
10862
10863SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
10864 DAGCombinerInfo &DCI) const {
10865 if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
1
Assuming the condition is false
2
Taking false branch
10866 return SDValue();
10867 switch (N->getOpcode()) {
3
Control jumps to 'case AND:' at line 10894
10868 case ISD::ADD:
10869 return performAddCombine(N, DCI);
10870 case ISD::SUB:
10871 return performSubCombine(N, DCI);
10872 case ISD::ADDCARRY:
10873 case ISD::SUBCARRY:
10874 return performAddCarrySubCarryCombine(N, DCI);
10875 case ISD::FADD:
10876 return performFAddCombine(N, DCI);
10877 case ISD::FSUB:
10878 return performFSubCombine(N, DCI);
10879 case ISD::SETCC:
10880 return performSetCCCombine(N, DCI);
10881 case ISD::FMAXNUM:
10882 case ISD::FMINNUM:
10883 case ISD::FMAXNUM_IEEE:
10884 case ISD::FMINNUM_IEEE:
10885 case ISD::SMAX:
10886 case ISD::SMIN:
10887 case ISD::UMAX:
10888 case ISD::UMIN:
10889 case AMDGPUISD::FMIN_LEGACY:
10890 case AMDGPUISD::FMAX_LEGACY:
10891 return performMinMaxCombine(N, DCI);
10892 case ISD::FMA:
10893 return performFMACombine(N, DCI);
10894 case ISD::AND:
10895 return performAndCombine(N, DCI);
4
Calling 'SITargetLowering::performAndCombine'
10896 case ISD::OR:
10897 return performOrCombine(N, DCI);
10898 case ISD::XOR:
10899 return performXorCombine(N, DCI);
10900 case ISD::ZERO_EXTEND:
10901 return performZeroExtendCombine(N, DCI);
10902 case ISD::SIGN_EXTEND_INREG:
10903 return performSignExtendInRegCombine(N , DCI);
10904 case AMDGPUISD::FP_CLASS:
10905 return performClassCombine(N, DCI);
10906 case ISD::FCANONICALIZE:
10907 return performFCanonicalizeCombine(N, DCI);
10908 case AMDGPUISD::RCP:
10909 return performRcpCombine(N, DCI);
10910 case AMDGPUISD::FRACT:
10911 case AMDGPUISD::RSQ:
10912 case AMDGPUISD::RCP_LEGACY:
10913 case AMDGPUISD::RCP_IFLAG:
10914 case AMDGPUISD::RSQ_CLAMP:
10915 case AMDGPUISD::LDEXP: {
10916 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
10917 SDValue Src = N->getOperand(0);
10918 if (Src.isUndef())
10919 return Src;
10920 break;
10921 }
10922 case ISD::SINT_TO_FP:
10923 case ISD::UINT_TO_FP:
10924 return performUCharToFloatCombine(N, DCI);
10925 case AMDGPUISD::CVT_F32_UBYTE0:
10926 case AMDGPUISD::CVT_F32_UBYTE1:
10927 case AMDGPUISD::CVT_F32_UBYTE2:
10928 case AMDGPUISD::CVT_F32_UBYTE3:
10929 return performCvtF32UByteNCombine(N, DCI);
10930 case AMDGPUISD::FMED3:
10931 return performFMed3Combine(N, DCI);
10932 case AMDGPUISD::CVT_PKRTZ_F16_F32:
10933 return performCvtPkRTZCombine(N, DCI);
10934 case AMDGPUISD::CLAMP:
10935 return performClampCombine(N, DCI);
10936 case ISD::SCALAR_TO_VECTOR: {
10937 SelectionDAG &DAG = DCI.DAG;
10938 EVT VT = N->getValueType(0);
10939
10940 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10941 if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10942 SDLoc SL(N);
10943 SDValue Src = N->getOperand(0);
10944 EVT EltVT = Src.getValueType();
10945 if (EltVT == MVT::f16)
10946 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10947
10948 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10949 return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10950 }
10951
10952 break;
10953 }
10954 case ISD::EXTRACT_VECTOR_ELT:
10955 return performExtractVectorEltCombine(N, DCI);
10956 case ISD::INSERT_VECTOR_ELT:
10957 return performInsertVectorEltCombine(N, DCI);
10958 case ISD::LOAD: {
10959 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10960 return Widended;
10961 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10962 }
10963 default: {
10964 if (!DCI.isBeforeLegalize()) {
10965 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
10966 return performMemSDNodeCombine(MemNode, DCI);
10967 }
10968
10969 break;
10970 }
10971 }
10972
10973 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10974}
10975
10976/// Helper function for adjustWritemask
10977static unsigned SubIdx2Lane(unsigned Idx) {
10978 switch (Idx) {
10979 default: return ~0u;
10980 case AMDGPU::sub0: return 0;
10981 case AMDGPU::sub1: return 1;
10982 case AMDGPU::sub2: return 2;
10983 case AMDGPU::sub3: return 3;
10984 case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10985 }
10986}
10987
10988/// Adjust the writemask of MIMG instructions
10989SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10990 SelectionDAG &DAG) const {
10991 unsigned Opcode = Node->getMachineOpcode();
10992
10993 // Subtract 1 because the vdata output is not a MachineSDNode operand.
10994 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10995 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10996 return Node; // not implemented for D16
10997
10998 SDNode *Users[5] = { nullptr };
10999 unsigned Lane = 0;
11000 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
11001 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
11002 unsigned NewDmask = 0;
11003 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
11004 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
11005 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
11006 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
11007 unsigned TFCLane = 0;
11008 bool HasChain = Node->getNumValues() > 1;
11009
11010 if (OldDmask == 0) {
11011 // These are folded out, but on the chance it happens don't assert.
11012 return Node;
11013 }
11014
11015 unsigned OldBitsSet = countPopulation(OldDmask);
11016 // Work out which is the TFE/LWE lane if that is enabled.
11017 if (UsesTFC) {
11018 TFCLane = OldBitsSet;
11019 }
11020
11021 // Try to figure out the used register components
11022 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
11023 I != E; ++I) {
11024
11025 // Don't look at users of the chain.
11026 if (I.getUse().getResNo() != 0)
11027 continue;
11028
11029 // Abort if we can't understand the usage
11030 if (!I->isMachineOpcode() ||
11031 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
11032 return Node;
11033
11034 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
11035 // Note that subregs are packed, i.e. Lane==0 is the first bit set
11036 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
11037 // set, etc.
11038 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
11039 if (Lane == ~0u)
11040 return Node;
11041
11042 // Check if the use is for the TFE/LWE generated result at VGPRn+1.
11043 if (UsesTFC && Lane == TFCLane) {
11044 Users[Lane] = *I;
11045 } else {
11046 // Set which texture component corresponds to the lane.
11047 unsigned Comp;
11048 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
11049 Comp = countTrailingZeros(Dmask);
11050 Dmask &= ~(1 << Comp);
11051 }
11052
11053 // Abort if we have more than one user per component.
11054 if (Users[Lane])
11055 return Node;
11056
11057 Users[Lane] = *I;
11058 NewDmask |= 1 << Comp;
11059 }
11060 }
11061
11062 // Don't allow 0 dmask, as hardware assumes one channel enabled.
11063 bool NoChannels = !NewDmask;
11064 if (NoChannels) {
11065 if (!UsesTFC) {
11066 // No uses of the result and not using TFC. Then do nothing.
11067 return Node;
11068 }
11069 // If the original dmask has one channel - then nothing to do
11070 if (OldBitsSet == 1)
11071 return Node;
11072 // Use an arbitrary dmask - required for the instruction to work
11073 NewDmask = 1;
11074 }
11075 // Abort if there's no change
11076 if (NewDmask == OldDmask)
11077 return Node;
11078
11079 unsigned BitsSet = countPopulation(NewDmask);
11080
11081 // Check for TFE or LWE - increase the number of channels by one to account
11082 // for the extra return value
11083 // This will need adjustment for D16 if this is also included in
11084 // adjustWriteMask (this function) but at present D16 are excluded.
11085 unsigned NewChannels = BitsSet + UsesTFC;
11086
11087 int NewOpcode =
11088 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
11089 assert(NewOpcode != -1 &&(static_cast <bool> (NewOpcode != -1 && NewOpcode
!= static_cast<int>(Node->getMachineOpcode()) &&
"failed to find equivalent MIMG op") ? void (0) : __assert_fail
("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11091, __extension__ __PRETTY_FUNCTION__))
11090 NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&(static_cast <bool> (NewOpcode != -1 && NewOpcode
!= static_cast<int>(Node->getMachineOpcode()) &&
"failed to find equivalent MIMG op") ? void (0) : __assert_fail
("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11091, __extension__ __PRETTY_FUNCTION__))
11091 "failed to find equivalent MIMG op")(static_cast <bool> (NewOpcode != -1 && NewOpcode
!= static_cast<int>(Node->getMachineOpcode()) &&
"failed to find equivalent MIMG op") ? void (0) : __assert_fail
("NewOpcode != -1 && NewOpcode != static_cast<int>(Node->getMachineOpcode()) && \"failed to find equivalent MIMG op\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11091, __extension__ __PRETTY_FUNCTION__))
;
11092
11093 // Adjust the writemask in the node
11094 SmallVector<SDValue, 12> Ops;
11095 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
11096 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
11097 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
11098
11099 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
11100
11101 MVT ResultVT = NewChannels == 1 ?
11102 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
11103 NewChannels == 5 ? 8 : NewChannels);
11104 SDVTList NewVTList = HasChain ?
11105 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
11106
11107
11108 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
11109 NewVTList, Ops);
11110
11111 if (HasChain) {
11112 // Update chain.
11113 DAG.setNodeMemRefs(NewNode, Node->memoperands());
11114 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
11115 }
11116
11117 if (NewChannels == 1) {
11118 assert(Node->hasNUsesOfValue(1, 0))(static_cast <bool> (Node->hasNUsesOfValue(1, 0)) ? void
(0) : __assert_fail ("Node->hasNUsesOfValue(1, 0)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11118, __extension__ __PRETTY_FUNCTION__))
;
11119 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
11120 SDLoc(Node), Users[Lane]->getValueType(0),
11121 SDValue(NewNode, 0));
11122 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11123 return nullptr;
11124 }
11125
11126 // Update the users of the node with the new indices
11127 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11128 SDNode *User = Users[i];
11129 if (!User) {
11130 // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11131 // Users[0] is still nullptr because channel 0 doesn't really have a use.
11132 if (i || !NoChannels)
11133 continue;
11134 } else {
11135 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11136 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11137 }
11138
11139 switch (Idx) {
11140 default: break;
11141 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11142 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11143 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11144 case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11145 }
11146 }
11147
11148 DAG.RemoveDeadNode(Node);
11149 return nullptr;
11150}
11151
11152static bool isFrameIndexOp(SDValue Op) {
11153 if (Op.getOpcode() == ISD::AssertZext)
11154 Op = Op.getOperand(0);
11155
11156 return isa<FrameIndexSDNode>(Op);
11157}
11158
11159/// Legalize target independent instructions (e.g. INSERT_SUBREG)
11160/// with frame index operands.
11161/// LLVM assumes that inputs are to these instructions are registers.
11162SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11163 SelectionDAG &DAG) const {
11164 if (Node->getOpcode() == ISD::CopyToReg) {
11165 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11166 SDValue SrcVal = Node->getOperand(2);
11167
11168 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11169 // to try understanding copies to physical registers.
11170 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11171 SDLoc SL(Node);
11172 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11173 SDValue VReg = DAG.getRegister(
11174 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11175
11176 SDNode *Glued = Node->getGluedNode();
11177 SDValue ToVReg
11178 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11179 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11180 SDValue ToResultReg
11181 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11182 VReg, ToVReg.getValue(1));
11183 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11184 DAG.RemoveDeadNode(Node);
11185 return ToResultReg.getNode();
11186 }
11187 }
11188
11189 SmallVector<SDValue, 8> Ops;
11190 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11191 if (!isFrameIndexOp(Node->getOperand(i))) {
11192 Ops.push_back(Node->getOperand(i));
11193 continue;
11194 }
11195
11196 SDLoc DL(Node);
11197 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11198 Node->getOperand(i).getValueType(),
11199 Node->getOperand(i)), 0));
11200 }
11201
11202 return DAG.UpdateNodeOperands(Node, Ops);
11203}
11204
11205/// Fold the instructions after selecting them.
11206/// Returns null if users were already updated.
11207SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11208 SelectionDAG &DAG) const {
11209 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11210 unsigned Opcode = Node->getMachineOpcode();
11211
11212 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11213 !TII->isGather4(Opcode) &&
11214 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11215 return adjustWritemask(Node, DAG);
11216 }
11217
11218 if (Opcode == AMDGPU::INSERT_SUBREG ||
11219 Opcode == AMDGPU::REG_SEQUENCE) {
11220 legalizeTargetIndependentNode(Node, DAG);
11221 return Node;
11222 }
11223
11224 switch (Opcode) {
11225 case AMDGPU::V_DIV_SCALE_F32_e64:
11226 case AMDGPU::V_DIV_SCALE_F64_e64: {
11227 // Satisfy the operand register constraint when one of the inputs is
11228 // undefined. Ordinarily each undef value will have its own implicit_def of
11229 // a vreg, so force these to use a single register.
11230 SDValue Src0 = Node->getOperand(1);
11231 SDValue Src1 = Node->getOperand(3);
11232 SDValue Src2 = Node->getOperand(5);
11233
11234 if ((Src0.isMachineOpcode() &&
11235 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11236 (Src0 == Src1 || Src0 == Src2))
11237 break;
11238
11239 MVT VT = Src0.getValueType().getSimpleVT();
11240 const TargetRegisterClass *RC =
11241 getRegClassFor(VT, Src0.getNode()->isDivergent());
11242
11243 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11244 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11245
11246 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11247 UndefReg, Src0, SDValue());
11248
11249 // src0 must be the same register as src1 or src2, even if the value is
11250 // undefined, so make sure we don't violate this constraint.
11251 if (Src0.isMachineOpcode() &&
11252 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11253 if (Src1.isMachineOpcode() &&
11254 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11255 Src0 = Src1;
11256 else if (Src2.isMachineOpcode() &&
11257 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11258 Src0 = Src2;
11259 else {
11260 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF)(static_cast <bool> (Src1.getMachineOpcode() == AMDGPU::
IMPLICIT_DEF) ? void (0) : __assert_fail ("Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11260, __extension__ __PRETTY_FUNCTION__))
;
11261 Src0 = UndefReg;
11262 Src1 = UndefReg;
11263 }
11264 } else
11265 break;
11266
11267 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11268 Ops[1] = Src0;
11269 Ops[3] = Src1;
11270 Ops[5] = Src2;
11271 Ops.push_back(ImpDef.getValue(1));
11272 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11273 }
11274 default:
11275 break;
11276 }
11277
11278 return Node;
11279}
11280
11281// Any MIMG instructions that use tfe or lwe require an initialization of the
11282// result register that will be written in the case of a memory access failure.
11283// The required code is also added to tie this init code to the result of the
11284// img instruction.
11285void SITargetLowering::AddIMGInit(MachineInstr &MI) const {
11286 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11287 const SIRegisterInfo &TRI = TII->getRegisterInfo();
11288 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
11289 MachineBasicBlock &MBB = *MI.getParent();
11290
11291 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
11292 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
11293 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
11294
11295 if (!TFE && !LWE) // intersect_ray
11296 return;
11297
11298 unsigned TFEVal = TFE ? TFE->getImm() : 0;
11299 unsigned LWEVal = LWE->getImm();
11300 unsigned D16Val = D16 ? D16->getImm() : 0;
11301
11302 if (!TFEVal && !LWEVal)
11303 return;
11304
11305 // At least one of TFE or LWE are non-zero
11306 // We have to insert a suitable initialization of the result value and
11307 // tie this to the dest of the image instruction.
11308
11309 const DebugLoc &DL = MI.getDebugLoc();
11310
11311 int DstIdx =
11312 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
11313
11314 // Calculate which dword we have to initialize to 0.
11315 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
11316
11317 // check that dmask operand is found.
11318 assert(MO_Dmask && "Expected dmask operand in instruction")(static_cast <bool> (MO_Dmask && "Expected dmask operand in instruction"
) ? void (0) : __assert_fail ("MO_Dmask && \"Expected dmask operand in instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11318, __extension__ __PRETTY_FUNCTION__))
;
11319
11320 unsigned dmask = MO_Dmask->getImm();
11321 // Determine the number of active lanes taking into account the
11322 // Gather4 special case
11323 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : countPopulation(dmask);
11324
11325 bool Packed = !Subtarget->hasUnpackedD16VMem();
11326
11327 unsigned InitIdx =
11328 D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
11329
11330 // Abandon attempt if the dst size isn't large enough
11331 // - this is in fact an error but this is picked up elsewhere and
11332 // reported correctly.
11333 uint32_t DstSize = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
11334 if (DstSize < InitIdx)
11335 return;
11336
11337 // Create a register for the intialization value.
11338 Register PrevDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11339 unsigned NewDst = 0; // Final initialized value will be in here
11340
11341 // If PRTStrictNull feature is enabled (the default) then initialize
11342 // all the result registers to 0, otherwise just the error indication
11343 // register (VGPRn+1)
11344 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
11345 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
11346
11347 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
11348 for (; SizeLeft; SizeLeft--, CurrIdx++) {
11349 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
11350 // Initialize dword
11351 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
11352 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
11353 .addImm(0);
11354 // Insert into the super-reg
11355 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
11356 .addReg(PrevDst)
11357 .addReg(SubReg)
11358 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
11359
11360 PrevDst = NewDst;
11361 }
11362
11363 // Add as an implicit operand
11364 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
11365
11366 // Tie the just added implicit operand to the dst
11367 MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
11368}
11369
11370/// Assign the register class depending on the number of
11371/// bits set in the writemask
11372void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11373 SDNode *Node) const {
11374 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11375
11376 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11377
11378 if (TII->isVOP3(MI.getOpcode())) {
11379 // Make sure constant bus requirements are respected.
11380 TII->legalizeOperandsVOP3(MRI, MI);
11381
11382 // Prefer VGPRs over AGPRs in mAI instructions where possible.
11383 // This saves a chain-copy of registers and better ballance register
11384 // use between vgpr and agpr as agpr tuples tend to be big.
11385 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
11386 unsigned Opc = MI.getOpcode();
11387 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11388 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11389 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11390 if (I == -1)
11391 break;
11392 MachineOperand &Op = MI.getOperand(I);
11393 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
11394 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
11395 !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg()))
11396 continue;
11397 auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11398 if (!Src || !Src->isCopy() ||
11399 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11400 continue;
11401 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11402 auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11403 // All uses of agpr64 and agpr32 can also accept vgpr except for
11404 // v_accvgpr_read, but we do not produce agpr reads during selection,
11405 // so no use checks are needed.
11406 MRI.setRegClass(Op.getReg(), NewRC);
11407 }
11408 }
11409
11410 return;
11411 }
11412
11413 // Replace unused atomics with the no return version.
11414 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11415 if (NoRetAtomicOp != -1) {
11416 if (!Node->hasAnyUseOfValue(0)) {
11417 int CPolIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11418 AMDGPU::OpName::cpol);
11419 if (CPolIdx != -1) {
11420 MachineOperand &CPol = MI.getOperand(CPolIdx);
11421 CPol.setImm(CPol.getImm() & ~AMDGPU::CPol::GLC);
11422 }
11423 MI.RemoveOperand(0);
11424 MI.setDesc(TII->get(NoRetAtomicOp));
11425 return;
11426 }
11427
11428 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11429 // instruction, because the return type of these instructions is a vec2 of
11430 // the memory type, so it can be tied to the input operand.
11431 // This means these instructions always have a use, so we need to add a
11432 // special case to check if the atomic has only one extract_subreg use,
11433 // which itself has no uses.
11434 if ((Node->hasNUsesOfValue(1, 0) &&
11435 Node->use_begin()->isMachineOpcode() &&
11436 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11437 !Node->use_begin()->hasAnyUseOfValue(0))) {
11438 Register Def = MI.getOperand(0).getReg();
11439
11440 // Change this into a noret atomic.
11441 MI.setDesc(TII->get(NoRetAtomicOp));
11442 MI.RemoveOperand(0);
11443
11444 // If we only remove the def operand from the atomic instruction, the
11445 // extract_subreg will be left with a use of a vreg without a def.
11446 // So we need to insert an implicit_def to avoid machine verifier
11447 // errors.
11448 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11449 TII->get(AMDGPU::IMPLICIT_DEF), Def);
11450 }
11451 return;
11452 }
11453
11454 if (TII->isMIMG(MI) && !MI.mayStore())
11455 AddIMGInit(MI);
11456}
11457
11458static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11459 uint64_t Val) {
11460 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11461 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11462}
11463
11464MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11465 const SDLoc &DL,
11466 SDValue Ptr) const {
11467 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11468
11469 // Build the half of the subregister with the constants before building the
11470 // full 128-bit register. If we are building multiple resource descriptors,
11471 // this will allow CSEing of the 2-component register.
11472 const SDValue Ops0[] = {
11473 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11474 buildSMovImm32(DAG, DL, 0),
11475 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11476 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11477 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11478 };
11479
11480 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11481 MVT::v2i32, Ops0), 0);
11482
11483 // Combine the constants and the pointer.
11484 const SDValue Ops1[] = {
11485 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11486 Ptr,
11487 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11488 SubRegHi,
11489 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11490 };
11491
11492 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11493}
11494
11495/// Return a resource descriptor with the 'Add TID' bit enabled
11496/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11497/// of the resource descriptor) to create an offset, which is added to
11498/// the resource pointer.
11499MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11500 SDValue Ptr, uint32_t RsrcDword1,
11501 uint64_t RsrcDword2And3) const {
11502 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11503 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11504 if (RsrcDword1) {
11505 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11506 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11507 0);
11508 }
11509
11510 SDValue DataLo = buildSMovImm32(DAG, DL,
11511 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)0xFFFFFFFFUL);
11512 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11513
11514 const SDValue Ops[] = {
11515 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11516 PtrLo,
11517 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11518 PtrHi,
11519 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11520 DataLo,
11521 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11522 DataHi,
11523 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11524 };
11525
11526 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11527}
11528
11529//===----------------------------------------------------------------------===//
11530// SI Inline Assembly Support
11531//===----------------------------------------------------------------------===//
11532
11533std::pair<unsigned, const TargetRegisterClass *>
11534SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
11535 StringRef Constraint,
11536 MVT VT) const {
11537 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
11538
11539 const TargetRegisterClass *RC = nullptr;
11540 if (Constraint.size() == 1) {
11541 const unsigned BitWidth = VT.getSizeInBits();
11542 switch (Constraint[0]) {
11543 default:
11544 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11545 case 's':
11546 case 'r':
11547 switch (BitWidth) {
11548 case 16:
11549 RC = &AMDGPU::SReg_32RegClass;
11550 break;
11551 case 64:
11552 RC = &AMDGPU::SGPR_64RegClass;
11553 break;
11554 default:
11555 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11556 if (!RC)
11557 return std::make_pair(0U, nullptr);
11558 break;
11559 }
11560 break;
11561 case 'v':
11562 switch (BitWidth) {
11563 case 16:
11564 RC = &AMDGPU::VGPR_32RegClass;
11565 break;
11566 default:
11567 RC = TRI->getVGPRClassForBitWidth(BitWidth);
11568 if (!RC)
11569 return std::make_pair(0U, nullptr);
11570 break;
11571 }
11572 break;
11573 case 'a':
11574 if (!Subtarget->hasMAIInsts())
11575 break;
11576 switch (BitWidth) {
11577 case 16:
11578 RC = &AMDGPU::AGPR_32RegClass;
11579 break;
11580 default:
11581 RC = TRI->getAGPRClassForBitWidth(BitWidth);
11582 if (!RC)
11583 return std::make_pair(0U, nullptr);
11584 break;
11585 }
11586 break;
11587 }
11588 // We actually support i128, i16 and f16 as inline parameters
11589 // even if they are not reported as legal
11590 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11591 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11592 return std::make_pair(0U, RC);
11593 }
11594
11595 if (Constraint.size() > 1) {
11596 if (Constraint[1] == 'v') {
11597 RC = &AMDGPU::VGPR_32RegClass;
11598 } else if (Constraint[1] == 's') {
11599 RC = &AMDGPU::SGPR_32RegClass;
11600 } else if (Constraint[1] == 'a') {
11601 RC = &AMDGPU::AGPR_32RegClass;
11602 }
11603
11604 if (RC) {
11605 uint32_t Idx;
11606 bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
11607 if (!Failed && Idx < RC->getNumRegs())
11608 return std::make_pair(RC->getRegister(Idx), RC);
11609 }
11610 }
11611
11612 // FIXME: Returns VS_32 for physical SGPR constraints
11613 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11614}
11615
11616static bool isImmConstraint(StringRef Constraint) {
11617 if (Constraint.size() == 1) {
11618 switch (Constraint[0]) {
11619 default: break;
11620 case 'I':
11621 case 'J':
11622 case 'A':
11623 case 'B':
11624 case 'C':
11625 return true;
11626 }
11627 } else if (Constraint == "DA" ||
11628 Constraint == "DB") {
11629 return true;
11630 }
11631 return false;
11632}
11633
11634SITargetLowering::ConstraintType
11635SITargetLowering::getConstraintType(StringRef Constraint) const {
11636 if (Constraint.size() == 1) {
11637 switch (Constraint[0]) {
11638 default: break;
11639 case 's':
11640 case 'v':
11641 case 'a':
11642 return C_RegisterClass;
11643 }
11644 }
11645 if (isImmConstraint(Constraint)) {
11646 return C_Other;
11647 }
11648 return TargetLowering::getConstraintType(Constraint);
11649}
11650
11651static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11652 if (!AMDGPU::isInlinableIntLiteral(Val)) {
11653 Val = Val & maskTrailingOnes<uint64_t>(Size);
11654 }
11655 return Val;
11656}
11657
11658void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11659 std::string &Constraint,
11660 std::vector<SDValue> &Ops,
11661 SelectionDAG &DAG) const {
11662 if (isImmConstraint(Constraint)) {
11663 uint64_t Val;
11664 if (getAsmOperandConstVal(Op, Val) &&
11665 checkAsmConstraintVal(Op, Constraint, Val)) {
11666 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11667 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11668 }
11669 } else {
11670 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11671 }
11672}
11673
11674bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11675 unsigned Size = Op.getScalarValueSizeInBits();
11676 if (Size > 64)
11677 return false;
11678
11679 if (Size == 16 && !Subtarget->has16BitInsts())
11680 return false;
11681
11682 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11683 Val = C->getSExtValue();
11684 return true;
11685 }
11686 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11687 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11688 return true;
11689 }
11690 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11691 if (Size != 16 || Op.getNumOperands() != 2)
11692 return false;
11693 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11694 return false;
11695 if (ConstantSDNode *C = V->getConstantSplatNode()) {
11696 Val = C->getSExtValue();
11697 return true;
11698 }
11699 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11700 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11701 return true;
11702 }
11703 }
11704
11705 return false;
11706}
11707
11708bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11709 const std::string &Constraint,
11710 uint64_t Val) const {
11711 if (Constraint.size() == 1) {
11712 switch (Constraint[0]) {
11713 case 'I':
11714 return AMDGPU::isInlinableIntLiteral(Val);
11715 case 'J':
11716 return isInt<16>(Val);
11717 case 'A':
11718 return checkAsmConstraintValA(Op, Val);
11719 case 'B':
11720 return isInt<32>(Val);
11721 case 'C':
11722 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11723 AMDGPU::isInlinableIntLiteral(Val);
11724 default:
11725 break;
11726 }
11727 } else if (Constraint.size() == 2) {
11728 if (Constraint == "DA") {
11729 int64_t HiBits = static_cast<int32_t>(Val >> 32);
11730 int64_t LoBits = static_cast<int32_t>(Val);
11731 return checkAsmConstraintValA(Op, HiBits, 32) &&
11732 checkAsmConstraintValA(Op, LoBits, 32);
11733 }
11734 if (Constraint == "DB") {
11735 return true;
11736 }
11737 }
11738 llvm_unreachable("Invalid asm constraint")::llvm::llvm_unreachable_internal("Invalid asm constraint", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11738)
;
11739}
11740
11741bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11742 uint64_t Val,
11743 unsigned MaxSize) const {
11744 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11745 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11746 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11747 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11748 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11749 return true;
11750 }
11751 return false;
11752}
11753
11754static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
11755 switch (UnalignedClassID) {
11756 case AMDGPU::VReg_64RegClassID:
11757 return AMDGPU::VReg_64_Align2RegClassID;
11758 case AMDGPU::VReg_96RegClassID:
11759 return AMDGPU::VReg_96_Align2RegClassID;
11760 case AMDGPU::VReg_128RegClassID:
11761 return AMDGPU::VReg_128_Align2RegClassID;
11762 case AMDGPU::VReg_160RegClassID:
11763 return AMDGPU::VReg_160_Align2RegClassID;
11764 case AMDGPU::VReg_192RegClassID:
11765 return AMDGPU::VReg_192_Align2RegClassID;
11766 case AMDGPU::VReg_224RegClassID:
11767 return AMDGPU::VReg_224_Align2RegClassID;
11768 case AMDGPU::VReg_256RegClassID:
11769 return AMDGPU::VReg_256_Align2RegClassID;
11770 case AMDGPU::VReg_512RegClassID:
11771 return AMDGPU::VReg_512_Align2RegClassID;
11772 case AMDGPU::VReg_1024RegClassID:
11773 return AMDGPU::VReg_1024_Align2RegClassID;
11774 case AMDGPU::AReg_64RegClassID:
11775 return AMDGPU::AReg_64_Align2RegClassID;
11776 case AMDGPU::AReg_96RegClassID:
11777 return AMDGPU::AReg_96_Align2RegClassID;
11778 case AMDGPU::AReg_128RegClassID:
11779 return AMDGPU::AReg_128_Align2RegClassID;
11780 case AMDGPU::AReg_160RegClassID:
11781 return AMDGPU::AReg_160_Align2RegClassID;
11782 case AMDGPU::AReg_192RegClassID:
11783 return AMDGPU::AReg_192_Align2RegClassID;
11784 case AMDGPU::AReg_256RegClassID:
11785 return AMDGPU::AReg_256_Align2RegClassID;
11786 case AMDGPU::AReg_512RegClassID:
11787 return AMDGPU::AReg_512_Align2RegClassID;
11788 case AMDGPU::AReg_1024RegClassID:
11789 return AMDGPU::AReg_1024_Align2RegClassID;
11790 default:
11791 return -1;
11792 }
11793}
11794
11795// Figure out which registers should be reserved for stack access. Only after
11796// the function is legalized do we know all of the non-spill stack objects or if
11797// calls are present.
11798void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11799 MachineRegisterInfo &MRI = MF.getRegInfo();
11800 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11801 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11802 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11803 const SIInstrInfo *TII = ST.getInstrInfo();
11804
11805 if (Info->isEntryFunction()) {
11806 // Callable functions have fixed registers used for stack access.
11807 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11808 }
11809
11810 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),(static_cast <bool> (!TRI->isSubRegister(Info->getScratchRSrcReg
(), Info->getStackPtrOffsetReg())) ? void (0) : __assert_fail
("!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->getStackPtrOffsetReg())"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11811, __extension__ __PRETTY_FUNCTION__))
11811 Info->getStackPtrOffsetReg()))(static_cast <bool> (!TRI->isSubRegister(Info->getScratchRSrcReg
(), Info->getStackPtrOffsetReg())) ? void (0) : __assert_fail
("!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->getStackPtrOffsetReg())"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 11811, __extension__ __PRETTY_FUNCTION__))
;
11812 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11813 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11814
11815 // We need to worry about replacing the default register with itself in case
11816 // of MIR testcases missing the MFI.
11817 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
11818 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
11819
11820 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
11821 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
11822
11823 Info->limitOccupancy(MF);
11824
11825 if (ST.isWave32() && !MF.empty()) {
11826 for (auto &MBB : MF) {
11827 for (auto &MI : MBB) {
11828 TII->fixImplicitOperands(MI);
11829 }
11830 }
11831 }
11832
11833 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
11834 // classes if required. Ideally the register class constraints would differ
11835 // per-subtarget, but there's no easy way to achieve that right now. This is
11836 // not a problem for VGPRs because the correctly aligned VGPR class is implied
11837 // from using them as the register class for legal types.
11838 if (ST.needsAlignedVGPRs()) {
11839 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
11840 const Register Reg = Register::index2VirtReg(I);
11841 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
11842 if (!RC)
11843 continue;
11844 int NewClassID = getAlignedAGPRClassID(RC->getID());
11845 if (NewClassID != -1)
11846 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
11847 }
11848 }
11849
11850 TargetLoweringBase::finalizeLowering(MF);
11851
11852 // Allocate a VGPR for future SGPR Spill if
11853 // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used
11854 // FIXME: We won't need this hack if we split SGPR allocation from VGPR
11855 if (VGPRReserveforSGPRSpill && TRI->spillSGPRToVGPR() &&
11856 !Info->VGPRReservedForSGPRSpill && !Info->isEntryFunction())
11857 Info->reserveVGPRforSGPRSpills(MF);
11858}
11859
11860void SITargetLowering::computeKnownBitsForFrameIndex(
11861 const int FI, KnownBits &Known, const MachineFunction &MF) const {
11862 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
11863
11864 // Set the high bits to zero based on the maximum allowed scratch size per
11865 // wave. We can't use vaddr in MUBUF instructions if we don't know the address
11866 // calculation won't overflow, so assume the sign bit is never set.
11867 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
11868}
11869
11870static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
11871 KnownBits &Known, unsigned Dim) {
11872 unsigned MaxValue =
11873 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
11874 Known.Zero.setHighBits(countLeadingZeros(MaxValue));
11875}
11876
11877void SITargetLowering::computeKnownBitsForTargetInstr(
11878 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
11879 const MachineRegisterInfo &MRI, unsigned Depth) const {
11880 const MachineInstr *MI = MRI.getVRegDef(R);
11881 switch (MI->getOpcode()) {
11882 case AMDGPU::G_INTRINSIC: {
11883 switch (MI->getIntrinsicID()) {
11884 case Intrinsic::amdgcn_workitem_id_x:
11885 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
11886 break;
11887 case Intrinsic::amdgcn_workitem_id_y:
11888 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
11889 break;
11890 case Intrinsic::amdgcn_workitem_id_z:
11891 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
11892 break;
11893 case Intrinsic::amdgcn_mbcnt_lo:
11894 case Intrinsic::amdgcn_mbcnt_hi: {
11895 // These return at most the wavefront size - 1.
11896 unsigned Size = MRI.getType(R).getSizeInBits();
11897 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
11898 break;
11899 }
11900 case Intrinsic::amdgcn_groupstaticsize: {
11901 // We can report everything over the maximum size as 0. We can't report
11902 // based on the actual size because we don't know if it's accurate or not
11903 // at any given point.
11904 Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
11905 break;
11906 }
11907 }
11908 break;
11909 }
11910 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
11911 Known.Zero.setHighBits(24);
11912 break;
11913 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
11914 Known.Zero.setHighBits(16);
11915 break;
11916 }
11917}
11918
11919Align SITargetLowering::computeKnownAlignForTargetInstr(
11920 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
11921 unsigned Depth) const {
11922 const MachineInstr *MI = MRI.getVRegDef(R);
11923 switch (MI->getOpcode()) {
11924 case AMDGPU::G_INTRINSIC:
11925 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
11926 // FIXME: Can this move to generic code? What about the case where the call
11927 // site specifies a lower alignment?
11928 Intrinsic::ID IID = MI->getIntrinsicID();
11929 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
11930 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
11931 if (MaybeAlign RetAlign = Attrs.getRetAlignment())
11932 return *RetAlign;
11933 return Align(1);
11934 }
11935 default:
11936 return Align(1);
11937 }
11938}
11939
11940Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11941 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
11942 const Align CacheLineAlign = Align(64);
11943
11944 // Pre-GFX10 target did not benefit from loop alignment
11945 if (!ML || DisableLoopAlignment ||
11946 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
11947 getSubtarget()->hasInstFwdPrefetchBug())
11948 return PrefAlign;
11949
11950 // On GFX10 I$ is 4 x 64 bytes cache lines.
11951 // By default prefetcher keeps one cache line behind and reads two ahead.
11952 // We can modify it with S_INST_PREFETCH for larger loops to have two lines
11953 // behind and one ahead.
11954 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
11955 // If loop fits 64 bytes it always spans no more than two cache lines and
11956 // does not need an alignment.
11957 // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
11958 // Else if loop is less or equal 192 bytes we need two lines behind.
11959
11960 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11961 const MachineBasicBlock *Header = ML->getHeader();
11962 if (Header->getAlignment() != PrefAlign)
11963 return Header->getAlignment(); // Already processed.
11964
11965 unsigned LoopSize = 0;
11966 for (const MachineBasicBlock *MBB : ML->blocks()) {
11967 // If inner loop block is aligned assume in average half of the alignment
11968 // size to be added as nops.
11969 if (MBB != Header)
11970 LoopSize += MBB->getAlignment().value() / 2;
11971
11972 for (const MachineInstr &MI : *MBB) {
11973 LoopSize += TII->getInstSizeInBytes(MI);
11974 if (LoopSize > 192)
11975 return PrefAlign;
11976 }
11977 }
11978
11979 if (LoopSize <= 64)
11980 return PrefAlign;
11981
11982 if (LoopSize <= 128)
11983 return CacheLineAlign;
11984
11985 // If any of parent loops is surrounded by prefetch instructions do not
11986 // insert new for inner loop, which would reset parent's settings.
11987 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
11988 if (MachineBasicBlock *Exit = P->getExitBlock()) {
11989 auto I = Exit->getFirstNonDebugInstr();
11990 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
11991 return CacheLineAlign;
11992 }
11993 }
11994
11995 MachineBasicBlock *Pre = ML->getLoopPreheader();
11996 MachineBasicBlock *Exit = ML->getExitBlock();
11997
11998 if (Pre && Exit) {
11999 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
12000 TII->get(AMDGPU::S_INST_PREFETCH))
12001 .addImm(1); // prefetch 2 lines behind PC
12002
12003 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
12004 TII->get(AMDGPU::S_INST_PREFETCH))
12005 .addImm(2); // prefetch 1 line behind PC
12006 }
12007
12008 return CacheLineAlign;
12009}
12010
12011LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__))
12012static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
12013 assert(N->getOpcode() == ISD::CopyFromReg)(static_cast <bool> (N->getOpcode() == ISD::CopyFromReg
) ? void (0) : __assert_fail ("N->getOpcode() == ISD::CopyFromReg"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 12013, __extension__ __PRETTY_FUNCTION__))
;
12014 do {
12015 // Follow the chain until we find an INLINEASM node.
12016 N = N->getOperand(0).getNode();
12017 if (N->getOpcode() == ISD::INLINEASM ||
12018 N->getOpcode() == ISD::INLINEASM_BR)
12019 return true;
12020 } while (N->getOpcode() == ISD::CopyFromReg);
12021 return false;
12022}
12023
12024bool SITargetLowering::isSDNodeSourceOfDivergence(
12025 const SDNode *N, FunctionLoweringInfo *FLI,
12026 LegacyDivergenceAnalysis *KDA) const {
12027 switch (N->getOpcode()) {
12028 case ISD::CopyFromReg: {
12029 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
12030 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
12031 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12032 Register Reg = R->getReg();
12033
12034 // FIXME: Why does this need to consider isLiveIn?
12035 if (Reg.isPhysical() || MRI.isLiveIn(Reg))
12036 return !TRI->isSGPRReg(MRI, Reg);
12037
12038 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
12039 return KDA->isDivergent(V);
12040
12041 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N))(static_cast <bool> (Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm
(N)) ? void (0) : __assert_fail ("Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Target/AMDGPU/SIISelLowering.cpp"
, 12041, __extension__ __PRETTY_FUNCTION__))
;
12042 return !TRI->isSGPRReg(MRI, Reg);
12043 }
12044 case ISD::LOAD: {
12045 const LoadSDNode *L = cast<LoadSDNode>(N);
12046 unsigned AS = L->getAddressSpace();
12047 // A flat load may access private memory.
12048 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
12049 }
12050 case ISD::CALLSEQ_END:
12051 return true;
12052 case ISD::INTRINSIC_WO_CHAIN:
12053 return AMDGPU::isIntrinsicSourceOfDivergence(
12054 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
12055 case ISD::INTRINSIC_W_CHAIN:
12056 return AMDGPU::isIntrinsicSourceOfDivergence(
12057 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
12058 case AMDGPUISD::ATOMIC_CMP_SWAP:
12059 case AMDGPUISD::ATOMIC_INC:
12060 case AMDGPUISD::ATOMIC_DEC:
12061 case AMDGPUISD::ATOMIC_LOAD_FMIN:
12062 case AMDGPUISD::ATOMIC_LOAD_FMAX:
12063 case AMDGPUISD::BUFFER_ATOMIC_SWAP:
12064 case AMDGPUISD::BUFFER_ATOMIC_ADD:
12065 case AMDGPUISD::BUFFER_ATOMIC_SUB:
12066 case AMDGPUISD::BUFFER_ATOMIC_SMIN:
12067 case AMDGPUISD::BUFFER_ATOMIC_UMIN:
12068 case AMDGPUISD::BUFFER_ATOMIC_SMAX:
12069 case AMDGPUISD::BUFFER_ATOMIC_UMAX:
12070 case AMDGPUISD::BUFFER_ATOMIC_AND:
12071 case AMDGPUISD::BUFFER_ATOMIC_OR:
12072 case AMDGPUISD::BUFFER_ATOMIC_XOR:
12073 case AMDGPUISD::BUFFER_ATOMIC_INC:
12074 case AMDGPUISD::BUFFER_ATOMIC_DEC:
12075 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
12076 case AMDGPUISD::BUFFER_ATOMIC_CSUB:
12077 case AMDGPUISD::BUFFER_ATOMIC_FADD:
12078 case AMDGPUISD::BUFFER_ATOMIC_FMIN:
12079 case AMDGPUISD::BUFFER_ATOMIC_FMAX:
12080 // Target-specific read-modify-write atomics are sources of divergence.
12081 return true;
12082 default:
12083 if (auto *A = dyn_cast<AtomicSDNode>(N)) {
12084 // Generic read-modify-write atomics are sources of divergence.
12085 return A->readMem() && A->writeMem();
12086 }
12087 return false;
12088 }
12089}
12090
12091bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
12092 EVT VT) const {
12093 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
12094 case MVT::f32:
12095 return hasFP32Denormals(DAG.getMachineFunction());
12096 case MVT::f64:
12097 case MVT::f16:
12098 return hasFP64FP16Denormals(DAG.getMachineFunction());
12099 default:
12100 return false;
12101 }
12102}
12103
12104bool SITargetLowering::denormalsEnabledForType(LLT Ty,
12105 MachineFunction &MF) const {
12106 switch (Ty.getScalarSizeInBits()) {
12107 case 32:
12108 return hasFP32Denormals(MF);
12109 case 64:
12110 case 16:
12111 return hasFP64FP16Denormals(MF);
12112 default:
12113 return false;
12114 }
12115}
12116
12117bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
12118 const SelectionDAG &DAG,
12119 bool SNaN,
12120 unsigned Depth) const {
12121 if (Op.getOpcode() == AMDGPUISD::CLAMP) {
12122 const MachineFunction &MF = DAG.getMachineFunction();
12123 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
12124
12125 if (Info->getMode().DX10Clamp)
12126 return true; // Clamped to 0.
12127 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
12128 }
12129
12130 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
12131 SNaN, Depth);
12132}
12133
12134// Global FP atomic instructions have a hardcoded FP mode and do not support
12135// FP32 denormals, and only support v2f16 denormals.
12136static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
12137 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
12138 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
12139 if (&Flt == &APFloat::IEEEsingle())
12140 return DenormMode == DenormalMode::getPreserveSign();
12141 return DenormMode == DenormalMode::getIEEE();
12142}
12143
12144TargetLowering::AtomicExpansionKind
12145SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
12146
12147 auto ReportUnsafeHWInst = [&](TargetLowering::AtomicExpansionKind Kind) {
12148 OptimizationRemarkEmitter ORE(RMW->getFunction());
12149 LLVMContext &Ctx = RMW->getFunction()->getContext();
12150 SmallVector<StringRef> SSNs;
12151 Ctx.getSyncScopeNames(SSNs);
12152 auto MemScope = SSNs[RMW->getSyncScopeID()].empty()
12153 ? "system"
12154 : SSNs[RMW->getSyncScopeID()];
12155 ORE.emit([&]() {
12156 return OptimizationRemark(DEBUG_TYPE"si-lower", "Passed", RMW)
12157 << "Hardware instruction generated for atomic "
12158 << RMW->getOperationName(RMW->getOperation())
12159 << " operation at memory scope " << MemScope
12160 << " due to an unsafe request.";
12161 });
12162 return Kind;
12163 };
12164
12165 switch (RMW->getOperation()) {
12166 case AtomicRMWInst::FAdd: {
12167 Type *Ty = RMW->getType();
12168
12169 // We don't have a way to support 16-bit atomics now, so just leave them
12170 // as-is.
12171 if (Ty->isHalfTy())
12172 return AtomicExpansionKind::None;
12173
12174 if (!Ty->isFloatTy() && (!Subtarget->hasGFX90AInsts() || !Ty->isDoubleTy()))
12175 return AtomicExpansionKind::CmpXChg;
12176
12177 unsigned AS = RMW->getPointerAddressSpace();
12178
12179 if ((AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) &&
12180 Subtarget->hasAtomicFaddInsts()) {
12181 // The amdgpu-unsafe-fp-atomics attribute enables generation of unsafe
12182 // floating point atomic instructions. May generate more efficient code,
12183 // but may not respect rounding and denormal modes, and may give incorrect
12184 // results for certain memory destinations.
12185 if (RMW->getFunction()
12186 ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12187 .getValueAsString() != "true")
12188 return AtomicExpansionKind::CmpXChg;
12189
12190 if (Subtarget->hasGFX90AInsts()) {
12191 if (Ty->isFloatTy() && AS == AMDGPUAS::FLAT_ADDRESS)
12192 return AtomicExpansionKind::CmpXChg;
12193
12194 auto SSID = RMW->getSyncScopeID();
12195 if (SSID == SyncScope::System ||
12196 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"))
12197 return AtomicExpansionKind::CmpXChg;
12198
12199 return ReportUnsafeHWInst(AtomicExpansionKind::None);
12200 }
12201
12202 if (AS == AMDGPUAS::FLAT_ADDRESS)
12203 return AtomicExpansionKind::CmpXChg;
12204
12205 return RMW->use_empty() ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12206 : AtomicExpansionKind::CmpXChg;
12207 }
12208
12209 // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
12210 // to round-to-nearest-even.
12211 // The only exception is DS_ADD_F64 which never flushes regardless of mode.
12212 if (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) {
12213 if (!Ty->isDoubleTy())
12214 return AtomicExpansionKind::None;
12215
12216 if (fpModeMatchesGlobalFPAtomicMode(RMW))
12217 return AtomicExpansionKind::None;
12218
12219 return RMW->getFunction()
12220 ->getFnAttribute("amdgpu-unsafe-fp-atomics")
12221 .getValueAsString() == "true"
12222 ? ReportUnsafeHWInst(AtomicExpansionKind::None)
12223 : AtomicExpansionKind::CmpXChg;
12224 }
12225
12226 return AtomicExpansionKind::CmpXChg;
12227 }
12228 default:
12229 break;
12230 }
12231
12232 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
12233}
12234
12235const TargetRegisterClass *
12236SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
12237 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
12238 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
12239 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
12240 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
12241 : &AMDGPU::SReg_32RegClass;
12242 if (!TRI->isSGPRClass(RC) && !isDivergent)
12243 return TRI->getEquivalentSGPRClass(RC);
12244 else if (TRI->isSGPRClass(RC) && isDivergent)
12245 return TRI->getEquivalentVGPRClass(RC);
12246
12247 return RC;
12248}
12249
12250// FIXME: This is a workaround for DivergenceAnalysis not understanding always
12251// uniform values (as produced by the mask results of control flow intrinsics)
12252// used outside of divergent blocks. The phi users need to also be treated as
12253// always uniform.
12254static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
12255 unsigned WaveSize) {
12256 // FIXME: We asssume we never cast the mask results of a control flow
12257 // intrinsic.
12258 // Early exit if the type won't be consistent as a compile time hack.
12259 IntegerType *IT = dyn_cast<IntegerType>(V->getType());
12260 if (!IT || IT->getBitWidth() != WaveSize)
12261 return false;
12262
12263 if (!isa<Instruction>(V))
12264 return false;
12265 if (!Visited.insert(V).second)
12266 return false;
12267 bool Result = false;
12268 for (auto U : V->users()) {
12269 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
12270 if (V == U->getOperand(1)) {
12271 switch (Intrinsic->getIntrinsicID()) {
12272 default:
12273 Result = false;
12274 break;
12275 case Intrinsic::amdgcn_if_break:
12276 case Intrinsic::amdgcn_if:
12277 case Intrinsic::amdgcn_else:
12278 Result = true;
12279 break;
12280 }
12281 }
12282 if (V == U->getOperand(0)) {
12283 switch (Intrinsic->getIntrinsicID()) {
12284 default:
12285 Result = false;
12286 break;
12287 case Intrinsic::amdgcn_end_cf:
12288 case Intrinsic::amdgcn_loop:
12289 Result = true;
12290 break;
12291 }
12292 }
12293 } else {
12294 Result = hasCFUser(U, Visited, WaveSize);
12295 }
12296 if (Result)
12297 break;
12298 }
12299 return Result;
12300}
12301
12302bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
12303 const Value *V) const {
12304 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
12305 if (CI->isInlineAsm()) {
12306 // FIXME: This cannot give a correct answer. This should only trigger in
12307 // the case where inline asm returns mixed SGPR and VGPR results, used
12308 // outside the defining block. We don't have a specific result to
12309 // consider, so this assumes if any value is SGPR, the overall register
12310 // also needs to be SGPR.
12311 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
12312 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
12313 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
12314 for (auto &TC : TargetConstraints) {
12315 if (TC.Type == InlineAsm::isOutput) {
12316 ComputeConstraintToUse(TC, SDValue());
12317 unsigned AssignedReg;
12318 const TargetRegisterClass *RC;
12319 std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
12320 SIRI, TC.ConstraintCode, TC.ConstraintVT);
12321 if (RC) {
12322 MachineRegisterInfo &MRI = MF.getRegInfo();
12323 if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
12324 return true;
12325 else if (SIRI->isSGPRClass(RC))
12326 return true;
12327 }
12328 }
12329 }
12330 }
12331 }
12332 SmallPtrSet<const Value *, 16> Visited;
12333 return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
12334}
12335
12336std::pair<InstructionCost, MVT>
12337SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
12338 Type *Ty) const {
12339 std::pair<InstructionCost, MVT> Cost =
12340 TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
12341 auto Size = DL.getTypeSizeInBits(Ty);
12342 // Maximum load or store can handle 8 dwords for scalar and 4 for
12343 // vector ALU. Let's assume anything above 8 dwords is expensive
12344 // even if legal.
12345 if (Size <= 256)
12346 return Cost;
12347
12348 Cost.first = (Size + 255) / 256;
12349 return Cost;
12350}

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
10// and dyn_cast_or_null<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <memory>
21#include <type_traits>
22
23namespace llvm {
24
25//===----------------------------------------------------------------------===//
26// isa<x> Support Templates
27//===----------------------------------------------------------------------===//
28
29// Define a template that can be specialized by smart pointers to reflect the
30// fact that they are automatically dereferenced, and are not involved with the
31// template selection process... the default implementation is a noop.
32//
33template<typename From> struct simplify_type {
34 using SimpleType = From; // The real type this represents...
35
36 // An accessor to get the real value...
37 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
38};
39
40template<typename From> struct simplify_type<const From> {
41 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
42 using SimpleType =
43 typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From& Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
49 }
50};
51
52// The core of the implementation of isa<X> is here; To and From should be
53// the names of classes. This template can be specialized to customize the
54// implementation of isa<> without rewriting it from scratch.
55template <typename To, typename From, typename Enabler = void>
56struct isa_impl {
57 static inline bool doit(const From &Val) {
58 return To::classof(&Val);
59 }
60};
61
62/// Always allow upcasts, and perform no dynamic check for them.
63template <typename To, typename From>
64struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
65 static inline bool doit(const From &) { return true; }
66};
67
68template <typename To, typename From> struct isa_impl_cl {
69 static inline bool doit(const From &Val) {
70 return isa_impl<To, From>::doit(Val);
71 }
72};
73
74template <typename To, typename From> struct isa_impl_cl<To, const From> {
75 static inline bool doit(const From &Val) {
76 return isa_impl<To, From>::doit(Val);
77 }
78};
79
80template <typename To, typename From>
81struct isa_impl_cl<To, const std::unique_ptr<From>> {
82 static inline bool doit(const std::unique_ptr<From> &Val) {
83 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 83, __extension__ __PRETTY_FUNCTION__))
;
84 return isa_impl_cl<To, From>::doit(*Val);
85 }
86};
87
88template <typename To, typename From> struct isa_impl_cl<To, From*> {
89 static inline bool doit(const From *Val) {
90 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 90, __extension__ __PRETTY_FUNCTION__))
;
91 return isa_impl<To, From>::doit(*Val);
92 }
93};
94
95template <typename To, typename From> struct isa_impl_cl<To, From*const> {
96 static inline bool doit(const From *Val) {
97 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 97, __extension__ __PRETTY_FUNCTION__))
;
98 return isa_impl<To, From>::doit(*Val);
99 }
100};
101
102template <typename To, typename From> struct isa_impl_cl<To, const From*> {
103 static inline bool doit(const From *Val) {
104 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 104, __extension__ __PRETTY_FUNCTION__))
;
105 return isa_impl<To, From>::doit(*Val);
106 }
107};
108
109template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
110 static inline bool doit(const From *Val) {
111 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 111, __extension__ __PRETTY_FUNCTION__))
;
112 return isa_impl<To, From>::doit(*Val);
113 }
114};
115
116template<typename To, typename From, typename SimpleFrom>
117struct isa_impl_wrap {
118 // When From != SimplifiedType, we can simplify the type some more by using
119 // the simplify_type template.
120 static bool doit(const From &Val) {
121 return isa_impl_wrap<To, SimpleFrom,
122 typename simplify_type<SimpleFrom>::SimpleType>::doit(
123 simplify_type<const From>::getSimplifiedValue(Val));
124 }
125};
126
127template<typename To, typename FromTy>
128struct isa_impl_wrap<To, FromTy, FromTy> {
129 // When From == SimpleType, we are as simple as we are going to get.
130 static bool doit(const FromTy &Val) {
131 return isa_impl_cl<To,FromTy>::doit(Val);
132 }
133};
134
135// isa<X> - Return true if the parameter to the template is an instance of one
136// of the template type arguments. Used like this:
137//
138// if (isa<Type>(myVal)) { ... }
139// if (isa<Type0, Type1, Type2>(myVal)) { ... }
140//
141template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
142 return isa_impl_wrap<X, const Y,
143 typename simplify_type<const Y>::SimpleType>::doit(Val);
144}
145
146template <typename First, typename Second, typename... Rest, typename Y>
147LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
148 return isa<First>(Val) || isa<Second, Rest...>(Val);
149}
150
151// isa_and_nonnull<X> - Functionally identical to isa, except that a null value
152// is accepted.
153//
154template <typename... X, class Y>
155LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa_and_nonnull(const Y &Val) {
156 if (!Val)
157 return false;
158 return isa<X...>(Val);
159}
160
161//===----------------------------------------------------------------------===//
162// cast<x> Support Templates
163//===----------------------------------------------------------------------===//
164
165template<class To, class From> struct cast_retty;
166
167// Calculate what type the 'cast' function should return, based on a requested
168// type of To and a source type of From.
169template<class To, class From> struct cast_retty_impl {
170 using ret_type = To &; // Normal case, return Ty&
171};
172template<class To, class From> struct cast_retty_impl<To, const From> {
173 using ret_type = const To &; // Normal case, return Ty&
174};
175
176template<class To, class From> struct cast_retty_impl<To, From*> {
177 using ret_type = To *; // Pointer arg case, return Ty*
178};
179
180template<class To, class From> struct cast_retty_impl<To, const From*> {
181 using ret_type = const To *; // Constant pointer arg case, return const Ty*
182};
183
184template<class To, class From> struct cast_retty_impl<To, const From*const> {
185 using ret_type = const To *; // Constant pointer arg case, return const Ty*
186};
187
188template <class To, class From>
189struct cast_retty_impl<To, std::unique_ptr<From>> {
190private:
191 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
192 using ResultType = std::remove_pointer_t<PointerType>;
193
194public:
195 using ret_type = std::unique_ptr<ResultType>;
196};
197
198template<class To, class From, class SimpleFrom>
199struct cast_retty_wrap {
200 // When the simplified type and the from type are not the same, use the type
201 // simplifier to reduce the type, then reuse cast_retty_impl to get the
202 // resultant type.
203 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
204};
205
206template<class To, class FromTy>
207struct cast_retty_wrap<To, FromTy, FromTy> {
208 // When the simplified type is equal to the from type, use it directly.
209 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
210};
211
212template<class To, class From>
213struct cast_retty {
214 using ret_type = typename cast_retty_wrap<
215 To, From, typename simplify_type<From>::SimpleType>::ret_type;
216};
217
218// Ensure the non-simple values are converted using the simplify_type template
219// that may be specialized by smart pointers...
220//
221template<class To, class From, class SimpleFrom> struct cast_convert_val {
222 // This is not a simple type, use the template to simplify it...
223 static typename cast_retty<To, From>::ret_type doit(From &Val) {
224 return cast_convert_val<To, SimpleFrom,
17
Returning without writing to 'Val.Node'
225 typename simplify_type<SimpleFrom>::SimpleType>::doit(
226 simplify_type<From>::getSimplifiedValue(Val));
14
Calling 'simplify_type::getSimplifiedValue'
16
Returning from 'simplify_type::getSimplifiedValue'
227 }
228};
229
230template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
231 // This _is_ a simple type, just cast it.
232 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
233 typename cast_retty<To, FromTy>::ret_type Res2
234 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
235 return Res2;
236 }
237};
238
239template <class X> struct is_simple_type {
240 static const bool value =
241 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
242};
243
244// cast<X> - Return the argument parameter cast to the specified type. This
245// casting operator asserts that the type is correct, so it does not return null
246// on failure. It does not allow a null argument (use cast_or_null for that).
247// It is typically used like this:
248//
249// cast<Instruction>(myVal)->getParent()
250//
251template <class X, class Y>
252inline std::enable_if_t<!is_simple_type<Y>::value,
253 typename cast_retty<X, const Y>::ret_type>
254cast(const Y &Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 255, __extension__ __PRETTY_FUNCTION__))
;
256 return cast_convert_val<
257 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
262 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 262, __extension__ __PRETTY_FUNCTION__))
;
11
Assuming 'Val' is a 'ConstantSDNode'
12
'?' condition is true
263 return cast_convert_val<X, Y,
13
Calling 'cast_convert_val::doit'
18
Returning from 'cast_convert_val::doit'
19
Returning without writing to 'Val.Node'
264 typename simplify_type<Y>::SimpleType>::doit(Val);
265}
266
267template <class X, class Y>
268inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
269 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 269, __extension__ __PRETTY_FUNCTION__))
;
270 return cast_convert_val<X, Y*,
271 typename simplify_type<Y*>::SimpleType>::doit(Val);
272}
273
274template <class X, class Y>
275inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
276cast(std::unique_ptr<Y> &&Val) {
277 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val.get()) &&
"cast<Ty>() argument of incompatible type!") ? void (0
) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 277, __extension__ __PRETTY_FUNCTION__))
;
278 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
279 return ret_type(
280 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
281 Val.release()));
282}
283
284// cast_or_null<X> - Functionally identical to cast, except that a null value is
285// accepted.
286//
287template <class X, class Y>
288LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
289 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
290cast_or_null(const Y &Val) {
291 if (!Val)
292 return nullptr;
293 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 293, __extension__ __PRETTY_FUNCTION__))
;
294 return cast<X>(Val);
295}
296
297template <class X, class Y>
298LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
299 typename cast_retty<X, Y>::ret_type>
300cast_or_null(Y &Val) {
301 if (!Val)
302 return nullptr;
303 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 303, __extension__ __PRETTY_FUNCTION__))
;
304 return cast<X>(Val);
305}
306
307template <class X, class Y>
308LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
309cast_or_null(Y *Val) {
310 if (!Val) return nullptr;
311 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/Casting.h"
, 311, __extension__ __PRETTY_FUNCTION__))
;
312 return cast<X>(Val);
313}
314
315template <class X, class Y>
316inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
317cast_or_null(std::unique_ptr<Y> &&Val) {
318 if (!Val)
319 return nullptr;
320 return cast<X>(std::move(Val));
321}
322
323// dyn_cast<X> - Return the argument parameter cast to the specified type. This
324// casting operator returns null if the argument is of the wrong type, so it can
325// be used to test for a type as well as cast if successful. This should be
326// used in the context of an if statement like this:
327//
328// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
329//
330
331template <class X, class Y>
332LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
333 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
334dyn_cast(const Y &Val) {
335 return isa<X>(Val) ? cast<X>(Val) : nullptr;
336}
337
338template <class X, class Y>
339LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
340 return isa<X>(Val) ? cast<X>(Val) : nullptr;
8
Assuming 'Val' is a 'ConstantSDNode'
9
'?' condition is true
10
Calling 'cast<llvm::ConstantSDNode, llvm::SDValue>'
20
Returning from 'cast<llvm::ConstantSDNode, llvm::SDValue>'
21
Returning without writing to 'Val.Node'
341}
342
343template <class X, class Y>
344LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
345 return isa<X>(Val) ? cast<X>(Val) : nullptr;
346}
347
348// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
349// value is accepted.
350//
351template <class X, class Y>
352LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
353 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
354dyn_cast_or_null(const Y &Val) {
355 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
356}
357
358template <class X, class Y>
359LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
360 typename cast_retty<X, Y>::ret_type>
361dyn_cast_or_null(Y &Val) {
362 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
363}
364
365template <class X, class Y>
366LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
367dyn_cast_or_null(Y *Val) {
368 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
369}
370
371// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
372// taking ownership of the input pointer iff isa<X>(Val) is true. If the
373// cast is successful, From refers to nullptr on exit and the casted value
374// is returned. If the cast is unsuccessful, the function returns nullptr
375// and From is unchanged.
376template <class X, class Y>
377LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
378 -> decltype(cast<X>(Val)) {
379 if (!isa<X>(Val))
380 return nullptr;
381 return cast<X>(std::move(Val));
382}
383
384template <class X, class Y>
385LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
386 return unique_dyn_cast<X, Y>(Val);
387}
388
389// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
390// a null value is accepted.
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
393 -> decltype(cast<X>(Val)) {
394 if (!Val)
395 return nullptr;
396 return unique_dyn_cast<X, Y>(Val);
397}
398
399template <class X, class Y>
400LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
401 return unique_dyn_cast_or_null<X, Y>(Val);
402}
403
404} // end namespace llvm
405
406#endif // LLVM_SUPPORT_CASTING_H

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h

1//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the SDNode class and derived classes, which are used to
10// represent the nodes and operations present in a SelectionDAG. These nodes
11// and operations are machine code level operations, with some similarities to
12// the GCC RTL representation.
13//
14// Clients should include the SelectionDAG.h file instead of this file directly.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19#define LLVM_CODEGEN_SELECTIONDAGNODES_H
20
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/GraphTraits.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/ilist_node.h"
29#include "llvm/ADT/iterator.h"
30#include "llvm/ADT/iterator_range.h"
31#include "llvm/CodeGen/ISDOpcodes.h"
32#include "llvm/CodeGen/MachineMemOperand.h"
33#include "llvm/CodeGen/Register.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DebugLoc.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/Metadata.h"
40#include "llvm/IR/Operator.h"
41#include "llvm/Support/AlignOf.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/MachineValueType.h"
46#include "llvm/Support/TypeSize.h"
47#include <algorithm>
48#include <cassert>
49#include <climits>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <iterator>
54#include <string>
55#include <tuple>
56
57namespace llvm {
58
59class APInt;
60class Constant;
61template <typename T> struct DenseMapInfo;
62class GlobalValue;
63class MachineBasicBlock;
64class MachineConstantPoolValue;
65class MCSymbol;
66class raw_ostream;
67class SDNode;
68class SelectionDAG;
69class Type;
70class Value;
71
72void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73 bool force = false);
74
75/// This represents a list of ValueType's that has been intern'd by
76/// a SelectionDAG. Instances of this simple value class are returned by
77/// SelectionDAG::getVTList(...).
78///
79struct SDVTList {
80 const EVT *VTs;
81 unsigned int NumVTs;
82};
83
84namespace ISD {
85
86 /// Node predicates
87
88/// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89/// same constant or undefined, return true and return the constant value in
90/// \p SplatValue.
91bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92
93/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94/// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95/// true, it only checks BUILD_VECTOR.
96bool isConstantSplatVectorAllOnes(const SDNode *N,
97 bool BuildVectorOnly = false);
98
99/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100/// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101/// only checks BUILD_VECTOR.
102bool isConstantSplatVectorAllZeros(const SDNode *N,
103 bool BuildVectorOnly = false);
104
105/// Return true if the specified node is a BUILD_VECTOR where all of the
106/// elements are ~0 or undef.
107bool isBuildVectorAllOnes(const SDNode *N);
108
109/// Return true if the specified node is a BUILD_VECTOR where all of the
110/// elements are 0 or undef.
111bool isBuildVectorAllZeros(const SDNode *N);
112
113/// Return true if the specified node is a BUILD_VECTOR node of all
114/// ConstantSDNode or undef.
115bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116
117/// Return true if the specified node is a BUILD_VECTOR node of all
118/// ConstantFPSDNode or undef.
119bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120
121/// Return true if the node has at least one operand and all operands of the
122/// specified node are ISD::UNDEF.
123bool allOperandsUndef(const SDNode *N);
124
125} // end namespace ISD
126
127//===----------------------------------------------------------------------===//
128/// Unlike LLVM values, Selection DAG nodes may return multiple
129/// values as the result of a computation. Many nodes return multiple values,
130/// from loads (which define a token and a return value) to ADDC (which returns
131/// a result and a carry value), to calls (which may return an arbitrary number
132/// of values).
133///
134/// As such, each use of a SelectionDAG computation must indicate the node that
135/// computes it as well as which return value to use from that node. This pair
136/// of information is represented with the SDValue value type.
137///
138class SDValue {
139 friend struct DenseMapInfo<SDValue>;
140
141 SDNode *Node = nullptr; // The node defining the value we are using.
142 unsigned ResNo = 0; // Which return value of the node we are using.
143
144public:
145 SDValue() = default;
146 SDValue(SDNode *node, unsigned resno);
147
148 /// get the index which selects a specific result in the SDNode
149 unsigned getResNo() const { return ResNo; }
150
151 /// get the SDNode which holds the desired result
152 SDNode *getNode() const { return Node; }
153
154 /// set the SDNode
155 void setNode(SDNode *N) { Node = N; }
156
157 inline SDNode *operator->() const { return Node; }
158
159 bool operator==(const SDValue &O) const {
160 return Node == O.Node && ResNo == O.ResNo;
161 }
162 bool operator!=(const SDValue &O) const {
163 return !operator==(O);
164 }
165 bool operator<(const SDValue &O) const {
166 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
167 }
168 explicit operator bool() const {
169 return Node != nullptr;
170 }
171
172 SDValue getValue(unsigned R) const {
173 return SDValue(Node, R);
174 }
175
176 /// Return true if this node is an operand of N.
177 bool isOperandOf(const SDNode *N) const;
178
179 /// Return the ValueType of the referenced return value.
180 inline EVT getValueType() const;
181
182 /// Return the simple ValueType of the referenced return value.
183 MVT getSimpleValueType() const {
184 return getValueType().getSimpleVT();
185 }
186
187 /// Returns the size of the value in bits.
188 ///
189 /// If the value type is a scalable vector type, the scalable property will
190 /// be set and the runtime size will be a positive integer multiple of the
191 /// base size.
192 TypeSize getValueSizeInBits() const {
193 return getValueType().getSizeInBits();
194 }
195
196 uint64_t getScalarValueSizeInBits() const {
197 return getValueType().getScalarType().getFixedSizeInBits();
198 }
199
200 // Forwarding methods - These forward to the corresponding methods in SDNode.
201 inline unsigned getOpcode() const;
202 inline unsigned getNumOperands() const;
203 inline const SDValue &getOperand(unsigned i) const;
204 inline uint64_t getConstantOperandVal(unsigned i) const;
205 inline const APInt &getConstantOperandAPInt(unsigned i) const;
206 inline bool isTargetMemoryOpcode() const;
207 inline bool isTargetOpcode() const;
208 inline bool isMachineOpcode() const;
209 inline bool isUndef() const;
210 inline unsigned getMachineOpcode() const;
211 inline const DebugLoc &getDebugLoc() const;
212 inline void dump() const;
213 inline void dump(const SelectionDAG *G) const;
214 inline void dumpr() const;
215 inline void dumpr(const SelectionDAG *G) const;
216
217 /// Return true if this operand (which must be a chain) reaches the
218 /// specified operand without crossing any side-effecting instructions.
219 /// In practice, this looks through token factors and non-volatile loads.
220 /// In order to remain efficient, this only
221 /// looks a couple of nodes in, it does not do an exhaustive search.
222 bool reachesChainWithoutSideEffects(SDValue Dest,
223 unsigned Depth = 2) const;
224
225 /// Return true if there are no nodes using value ResNo of Node.
226 inline bool use_empty() const;
227
228 /// Return true if there is exactly one node using value ResNo of Node.
229 inline bool hasOneUse() const;
230};
231
232template<> struct DenseMapInfo<SDValue> {
233 static inline SDValue getEmptyKey() {
234 SDValue V;
235 V.ResNo = -1U;
236 return V;
237 }
238
239 static inline SDValue getTombstoneKey() {
240 SDValue V;
241 V.ResNo = -2U;
242 return V;
243 }
244
245 static unsigned getHashValue(const SDValue &Val) {
246 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
247 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
248 }
249
250 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
251 return LHS == RHS;
252 }
253};
254
255/// Allow casting operators to work directly on
256/// SDValues as if they were SDNode*'s.
257template<> struct simplify_type<SDValue> {
258 using SimpleType = SDNode *;
259
260 static SimpleType getSimplifiedValue(SDValue &Val) {
261 return Val.getNode();
15
Returning without writing to 'Val.Node'
262 }
263};
264template<> struct simplify_type<const SDValue> {
265 using SimpleType = /*const*/ SDNode *;
266
267 static SimpleType getSimplifiedValue(const SDValue &Val) {
268 return Val.getNode();
269 }
270};
271
272/// Represents a use of a SDNode. This class holds an SDValue,
273/// which records the SDNode being used and the result number, a
274/// pointer to the SDNode using the value, and Next and Prev pointers,
275/// which link together all the uses of an SDNode.
276///
277class SDUse {
278 /// Val - The value being used.
279 SDValue Val;
280 /// User - The user of this value.
281 SDNode *User = nullptr;
282 /// Prev, Next - Pointers to the uses list of the SDNode referred by
283 /// this operand.
284 SDUse **Prev = nullptr;
285 SDUse *Next = nullptr;
286
287public:
288 SDUse() = default;
289 SDUse(const SDUse &U) = delete;
290 SDUse &operator=(const SDUse &) = delete;
291
292 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
293 operator const SDValue&() const { return Val; }
294
295 /// If implicit conversion to SDValue doesn't work, the get() method returns
296 /// the SDValue.
297 const SDValue &get() const { return Val; }
298
299 /// This returns the SDNode that contains this Use.
300 SDNode *getUser() { return User; }
301
302 /// Get the next SDUse in the use list.
303 SDUse *getNext() const { return Next; }
304
305 /// Convenience function for get().getNode().
306 SDNode *getNode() const { return Val.getNode(); }
307 /// Convenience function for get().getResNo().
308 unsigned getResNo() const { return Val.getResNo(); }
309 /// Convenience function for get().getValueType().
310 EVT getValueType() const { return Val.getValueType(); }
311
312 /// Convenience function for get().operator==
313 bool operator==(const SDValue &V) const {
314 return Val == V;
315 }
316
317 /// Convenience function for get().operator!=
318 bool operator!=(const SDValue &V) const {
319 return Val != V;
320 }
321
322 /// Convenience function for get().operator<
323 bool operator<(const SDValue &V) const {
324 return Val < V;
325 }
326
327private:
328 friend class SelectionDAG;
329 friend class SDNode;
330 // TODO: unfriend HandleSDNode once we fix its operand handling.
331 friend class HandleSDNode;
332
333 void setUser(SDNode *p) { User = p; }
334
335 /// Remove this use from its existing use list, assign it the
336 /// given value, and add it to the new value's node's use list.
337 inline void set(const SDValue &V);
338 /// Like set, but only supports initializing a newly-allocated
339 /// SDUse with a non-null value.
340 inline void setInitial(const SDValue &V);
341 /// Like set, but only sets the Node portion of the value,
342 /// leaving the ResNo portion unmodified.
343 inline void setNode(SDNode *N);
344
345 void addToList(SDUse **List) {
346 Next = *List;
347 if (Next) Next->Prev = &Next;
348 Prev = List;
349 *List = this;
350 }
351
352 void removeFromList() {
353 *Prev = Next;
354 if (Next) Next->Prev = Prev;
355 }
356};
357
358/// simplify_type specializations - Allow casting operators to work directly on
359/// SDValues as if they were SDNode*'s.
360template<> struct simplify_type<SDUse> {
361 using SimpleType = SDNode *;
362
363 static SimpleType getSimplifiedValue(SDUse &Val) {
364 return Val.getNode();
365 }
366};
367
368/// These are IR-level optimization flags that may be propagated to SDNodes.
369/// TODO: This data structure should be shared by the IR optimizer and the
370/// the backend.
371struct SDNodeFlags {
372private:
373 bool NoUnsignedWrap : 1;
374 bool NoSignedWrap : 1;
375 bool Exact : 1;
376 bool NoNaNs : 1;
377 bool NoInfs : 1;
378 bool NoSignedZeros : 1;
379 bool AllowReciprocal : 1;
380 bool AllowContract : 1;
381 bool ApproximateFuncs : 1;
382 bool AllowReassociation : 1;
383
384 // We assume instructions do not raise floating-point exceptions by default,
385 // and only those marked explicitly may do so. We could choose to represent
386 // this via a positive "FPExcept" flags like on the MI level, but having a
387 // negative "NoFPExcept" flag here (that defaults to true) makes the flag
388 // intersection logic more straightforward.
389 bool NoFPExcept : 1;
390
391public:
392 /// Default constructor turns off all optimization flags.
393 SDNodeFlags()
394 : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
395 NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
396 AllowContract(false), ApproximateFuncs(false),
397 AllowReassociation(false), NoFPExcept(false) {}
398
399 /// Propagate the fast-math-flags from an IR FPMathOperator.
400 void copyFMF(const FPMathOperator &FPMO) {
401 setNoNaNs(FPMO.hasNoNaNs());
402 setNoInfs(FPMO.hasNoInfs());
403 setNoSignedZeros(FPMO.hasNoSignedZeros());
404 setAllowReciprocal(FPMO.hasAllowReciprocal());
405 setAllowContract(FPMO.hasAllowContract());
406 setApproximateFuncs(FPMO.hasApproxFunc());
407 setAllowReassociation(FPMO.hasAllowReassoc());
408 }
409
410 // These are mutators for each flag.
411 void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
412 void setNoSignedWrap(bool b) { NoSignedWrap = b; }
413 void setExact(bool b) { Exact = b; }
414 void setNoNaNs(bool b) { NoNaNs = b; }
415 void setNoInfs(bool b) { NoInfs = b; }
416 void setNoSignedZeros(bool b) { NoSignedZeros = b; }
417 void setAllowReciprocal(bool b) { AllowReciprocal = b; }
418 void setAllowContract(bool b) { AllowContract = b; }
419 void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
420 void setAllowReassociation(bool b) { AllowReassociation = b; }
421 void setNoFPExcept(bool b) { NoFPExcept = b; }
422
423 // These are accessors for each flag.
424 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
425 bool hasNoSignedWrap() const { return NoSignedWrap; }
426 bool hasExact() const { return Exact; }
427 bool hasNoNaNs() const { return NoNaNs; }
428 bool hasNoInfs() const { return NoInfs; }
429 bool hasNoSignedZeros() const { return NoSignedZeros; }
430 bool hasAllowReciprocal() const { return AllowReciprocal; }
431 bool hasAllowContract() const { return AllowContract; }
432 bool hasApproximateFuncs() const { return ApproximateFuncs; }
433 bool hasAllowReassociation() const { return AllowReassociation; }
434 bool hasNoFPExcept() const { return NoFPExcept; }
435
436 /// Clear any flags in this flag set that aren't also set in Flags. All
437 /// flags will be cleared if Flags are undefined.
438 void intersectWith(const SDNodeFlags Flags) {
439 NoUnsignedWrap &= Flags.NoUnsignedWrap;
440 NoSignedWrap &= Flags.NoSignedWrap;
441 Exact &= Flags.Exact;
442 NoNaNs &= Flags.NoNaNs;
443 NoInfs &= Flags.NoInfs;
444 NoSignedZeros &= Flags.NoSignedZeros;
445 AllowReciprocal &= Flags.AllowReciprocal;
446 AllowContract &= Flags.AllowContract;
447 ApproximateFuncs &= Flags.ApproximateFuncs;
448 AllowReassociation &= Flags.AllowReassociation;
449 NoFPExcept &= Flags.NoFPExcept;
450 }
451};
452
453/// Represents one node in the SelectionDAG.
454///
455class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
456private:
457 /// The operation that this node performs.
458 int16_t NodeType;
459
460protected:
461 // We define a set of mini-helper classes to help us interpret the bits in our
462 // SubclassData. These are designed to fit within a uint16_t so they pack
463 // with NodeType.
464
465#if defined(_AIX) && (!defined(__GNUC__4) || defined(__clang__1))
466// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
467// and give the `pack` pragma push semantics.
468#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")pack(2)
469#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")pack(pop)
470#else
471#define BEGIN_TWO_BYTE_PACK()
472#define END_TWO_BYTE_PACK()
473#endif
474
475BEGIN_TWO_BYTE_PACK()
476 class SDNodeBitfields {
477 friend class SDNode;
478 friend class MemIntrinsicSDNode;
479 friend class MemSDNode;
480 friend class SelectionDAG;
481
482 uint16_t HasDebugValue : 1;
483 uint16_t IsMemIntrinsic : 1;
484 uint16_t IsDivergent : 1;
485 };
486 enum { NumSDNodeBits = 3 };
487
488 class ConstantSDNodeBitfields {
489 friend class ConstantSDNode;
490
491 uint16_t : NumSDNodeBits;
492
493 uint16_t IsOpaque : 1;
494 };
495
496 class MemSDNodeBitfields {
497 friend class MemSDNode;
498 friend class MemIntrinsicSDNode;
499 friend class AtomicSDNode;
500
501 uint16_t : NumSDNodeBits;
502
503 uint16_t IsVolatile : 1;
504 uint16_t IsNonTemporal : 1;
505 uint16_t IsDereferenceable : 1;
506 uint16_t IsInvariant : 1;
507 };
508 enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
509
510 class LSBaseSDNodeBitfields {
511 friend class LSBaseSDNode;
512 friend class MaskedLoadStoreSDNode;
513 friend class MaskedGatherScatterSDNode;
514
515 uint16_t : NumMemSDNodeBits;
516
517 // This storage is shared between disparate class hierarchies to hold an
518 // enumeration specific to the class hierarchy in use.
519 // LSBaseSDNode => enum ISD::MemIndexedMode
520 // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
521 // MaskedGatherScatterSDNode => enum ISD::MemIndexType
522 uint16_t AddressingMode : 3;
523 };
524 enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
525
526 class LoadSDNodeBitfields {
527 friend class LoadSDNode;
528 friend class MaskedLoadSDNode;
529 friend class MaskedGatherSDNode;
530
531 uint16_t : NumLSBaseSDNodeBits;
532
533 uint16_t ExtTy : 2; // enum ISD::LoadExtType
534 uint16_t IsExpanding : 1;
535 };
536
537 class StoreSDNodeBitfields {
538 friend class StoreSDNode;
539 friend class MaskedStoreSDNode;
540 friend class MaskedScatterSDNode;
541
542 uint16_t : NumLSBaseSDNodeBits;
543
544 uint16_t IsTruncating : 1;
545 uint16_t IsCompressing : 1;
546 };
547
548 union {
549 char RawSDNodeBits[sizeof(uint16_t)];
550 SDNodeBitfields SDNodeBits;
551 ConstantSDNodeBitfields ConstantSDNodeBits;
552 MemSDNodeBitfields MemSDNodeBits;
553 LSBaseSDNodeBitfields LSBaseSDNodeBits;
554 LoadSDNodeBitfields LoadSDNodeBits;
555 StoreSDNodeBitfields StoreSDNodeBits;
556 };
557END_TWO_BYTE_PACK()
558#undef BEGIN_TWO_BYTE_PACK
559#undef END_TWO_BYTE_PACK
560
561 // RawSDNodeBits must cover the entirety of the union. This means that all of
562 // the union's members must have size <= RawSDNodeBits. We write the RHS as
563 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
564 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
565 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
566 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
567 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
568 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
569 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
570
571private:
572 friend class SelectionDAG;
573 // TODO: unfriend HandleSDNode once we fix its operand handling.
574 friend class HandleSDNode;
575
576 /// Unique id per SDNode in the DAG.
577 int NodeId = -1;
578
579 /// The values that are used by this operation.
580 SDUse *OperandList = nullptr;
581
582 /// The types of the values this node defines. SDNode's may
583 /// define multiple values simultaneously.
584 const EVT *ValueList;
585
586 /// List of uses for this SDNode.
587 SDUse *UseList = nullptr;
588
589 /// The number of entries in the Operand/Value list.
590 unsigned short NumOperands = 0;
591 unsigned short NumValues;
592
593 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
594 // original LLVM instructions.
595 // This is used for turning off scheduling, because we'll forgo
596 // the normal scheduling algorithms and output the instructions according to
597 // this ordering.
598 unsigned IROrder;
599
600 /// Source line information.
601 DebugLoc debugLoc;
602
603 /// Return a pointer to the specified value type.
604 static const EVT *getValueTypeList(EVT VT);
605
606 SDNodeFlags Flags;
607
608public:
609 /// Unique and persistent id per SDNode in the DAG.
610 /// Used for debug printing.
611 uint16_t PersistentId;
612
613 //===--------------------------------------------------------------------===//
614 // Accessors
615 //
616
617 /// Return the SelectionDAG opcode value for this node. For
618 /// pre-isel nodes (those for which isMachineOpcode returns false), these
619 /// are the opcode values in the ISD and <target>ISD namespaces. For
620 /// post-isel opcodes, see getMachineOpcode.
621 unsigned getOpcode() const { return (unsigned short)NodeType; }
622
623 /// Test if this node has a target-specific opcode (in the
624 /// \<target\>ISD namespace).
625 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
626
627 /// Test if this node has a target-specific opcode that may raise
628 /// FP exceptions (in the \<target\>ISD namespace and greater than
629 /// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory
630 /// opcode are currently automatically considered to possibly raise
631 /// FP exceptions as well.
632 bool isTargetStrictFPOpcode() const {
633 return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
634 }
635
636 /// Test if this node has a target-specific
637 /// memory-referencing opcode (in the \<target\>ISD namespace and
638 /// greater than FIRST_TARGET_MEMORY_OPCODE).
639 bool isTargetMemoryOpcode() const {
640 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
641 }
642
643 /// Return true if the type of the node type undefined.
644 bool isUndef() const { return NodeType == ISD::UNDEF; }
645
646 /// Test if this node is a memory intrinsic (with valid pointer information).
647 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
648 /// non-memory intrinsics (with chains) that are not really instances of
649 /// MemSDNode. For such nodes, we need some extra state to determine the
650 /// proper classof relationship.
651 bool isMemIntrinsic() const {
652 return (NodeType == ISD::INTRINSIC_W_CHAIN ||
653 NodeType == ISD::INTRINSIC_VOID) &&
654 SDNodeBits.IsMemIntrinsic;
655 }
656
657 /// Test if this node is a strict floating point pseudo-op.
658 bool isStrictFPOpcode() {
659 switch (NodeType) {
660 default:
661 return false;
662 case ISD::STRICT_FP16_TO_FP:
663 case ISD::STRICT_FP_TO_FP16:
664#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
665 case ISD::STRICT_##DAGN:
666#include "llvm/IR/ConstrainedOps.def"
667 return true;
668 }
669 }
670
671 /// Test if this node has a post-isel opcode, directly
672 /// corresponding to a MachineInstr opcode.
673 bool isMachineOpcode() const { return NodeType < 0; }
674
675 /// This may only be called if isMachineOpcode returns
676 /// true. It returns the MachineInstr opcode value that the node's opcode
677 /// corresponds to.
678 unsigned getMachineOpcode() const {
679 assert(isMachineOpcode() && "Not a MachineInstr opcode!")(static_cast <bool> (isMachineOpcode() && "Not a MachineInstr opcode!"
) ? void (0) : __assert_fail ("isMachineOpcode() && \"Not a MachineInstr opcode!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 679, __extension__ __PRETTY_FUNCTION__))
;
680 return ~NodeType;
681 }
682
683 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
684 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
685
686 bool isDivergent() const { return SDNodeBits.IsDivergent; }
687
688 /// Return true if there are no uses of this node.
689 bool use_empty() const { return UseList == nullptr; }
690
691 /// Return true if there is exactly one use of this node.
692 bool hasOneUse() const { return hasSingleElement(uses()); }
693
694 /// Return the number of uses of this node. This method takes
695 /// time proportional to the number of uses.
696 size_t use_size() const { return std::distance(use_begin(), use_end()); }
697
698 /// Return the unique node id.
699 int getNodeId() const { return NodeId; }
700
701 /// Set unique node id.
702 void setNodeId(int Id) { NodeId = Id; }
703
704 /// Return the node ordering.
705 unsigned getIROrder() const { return IROrder; }
706
707 /// Set the node ordering.
708 void setIROrder(unsigned Order) { IROrder = Order; }
709
710 /// Return the source location info.
711 const DebugLoc &getDebugLoc() const { return debugLoc; }
712
713 /// Set source location info. Try to avoid this, putting
714 /// it in the constructor is preferable.
715 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
716
717 /// This class provides iterator support for SDUse
718 /// operands that use a specific SDNode.
719 class use_iterator {
720 friend class SDNode;
721
722 SDUse *Op = nullptr;
723
724 explicit use_iterator(SDUse *op) : Op(op) {}
725
726 public:
727 using iterator_category = std::forward_iterator_tag;
728 using value_type = SDUse;
729 using difference_type = std::ptrdiff_t;
730 using pointer = value_type *;
731 using reference = value_type &;
732
733 use_iterator() = default;
734 use_iterator(const use_iterator &I) : Op(I.Op) {}
735
736 bool operator==(const use_iterator &x) const {
737 return Op == x.Op;
738 }
739 bool operator!=(const use_iterator &x) const {
740 return !operator==(x);
741 }
742
743 /// Return true if this iterator is at the end of uses list.
744 bool atEnd() const { return Op == nullptr; }
745
746 // Iterator traversal: forward iteration only.
747 use_iterator &operator++() { // Preincrement
748 assert(Op && "Cannot increment end iterator!")(static_cast <bool> (Op && "Cannot increment end iterator!"
) ? void (0) : __assert_fail ("Op && \"Cannot increment end iterator!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 748, __extension__ __PRETTY_FUNCTION__))
;
749 Op = Op->getNext();
750 return *this;
751 }
752
753 use_iterator operator++(int) { // Postincrement
754 use_iterator tmp = *this; ++*this; return tmp;
755 }
756
757 /// Retrieve a pointer to the current user node.
758 SDNode *operator*() const {
759 assert(Op && "Cannot dereference end iterator!")(static_cast <bool> (Op && "Cannot dereference end iterator!"
) ? void (0) : __assert_fail ("Op && \"Cannot dereference end iterator!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 759, __extension__ __PRETTY_FUNCTION__))
;
760 return Op->getUser();
761 }
762
763 SDNode *operator->() const { return operator*(); }
764
765 SDUse &getUse() const { return *Op; }
766
767 /// Retrieve the operand # of this use in its user.
768 unsigned getOperandNo() const {
769 assert(Op && "Cannot dereference end iterator!")(static_cast <bool> (Op && "Cannot dereference end iterator!"
) ? void (0) : __assert_fail ("Op && \"Cannot dereference end iterator!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 769, __extension__ __PRETTY_FUNCTION__))
;
770 return (unsigned)(Op - Op->getUser()->OperandList);
771 }
772 };
773
774 /// Provide iteration support to walk over all uses of an SDNode.
775 use_iterator use_begin() const {
776 return use_iterator(UseList);
777 }
778
779 static use_iterator use_end() { return use_iterator(nullptr); }
780
781 inline iterator_range<use_iterator> uses() {
782 return make_range(use_begin(), use_end());
783 }
784 inline iterator_range<use_iterator> uses() const {
785 return make_range(use_begin(), use_end());
786 }
787
788 /// Return true if there are exactly NUSES uses of the indicated value.
789 /// This method ignores uses of other values defined by this operation.
790 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
791
792 /// Return true if there are any use of the indicated value.
793 /// This method ignores uses of other values defined by this operation.
794 bool hasAnyUseOfValue(unsigned Value) const;
795
796 /// Return true if this node is the only use of N.
797 bool isOnlyUserOf(const SDNode *N) const;
798
799 /// Return true if this node is an operand of N.
800 bool isOperandOf(const SDNode *N) const;
801
802 /// Return true if this node is a predecessor of N.
803 /// NOTE: Implemented on top of hasPredecessor and every bit as
804 /// expensive. Use carefully.
805 bool isPredecessorOf(const SDNode *N) const {
806 return N->hasPredecessor(this);
807 }
808
809 /// Return true if N is a predecessor of this node.
810 /// N is either an operand of this node, or can be reached by recursively
811 /// traversing up the operands.
812 /// NOTE: This is an expensive method. Use it carefully.
813 bool hasPredecessor(const SDNode *N) const;
814
815 /// Returns true if N is a predecessor of any node in Worklist. This
816 /// helper keeps Visited and Worklist sets externally to allow unions
817 /// searches to be performed in parallel, caching of results across
818 /// queries and incremental addition to Worklist. Stops early if N is
819 /// found but will resume. Remember to clear Visited and Worklists
820 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
821 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
822 /// topologically ordered (Operands have strictly smaller node id) and search
823 /// can be pruned leveraging this.
824 static bool hasPredecessorHelper(const SDNode *N,
825 SmallPtrSetImpl<const SDNode *> &Visited,
826 SmallVectorImpl<const SDNode *> &Worklist,
827 unsigned int MaxSteps = 0,
828 bool TopologicalPrune = false) {
829 SmallVector<const SDNode *, 8> DeferredNodes;
830 if (Visited.count(N))
831 return true;
832
833 // Node Id's are assigned in three places: As a topological
834 // ordering (> 0), during legalization (results in values set to
835 // 0), new nodes (set to -1). If N has a topolgical id then we
836 // know that all nodes with ids smaller than it cannot be
837 // successors and we need not check them. Filter out all node
838 // that can't be matches. We add them to the worklist before exit
839 // in case of multiple calls. Note that during selection the topological id
840 // may be violated if a node's predecessor is selected before it. We mark
841 // this at selection negating the id of unselected successors and
842 // restricting topological pruning to positive ids.
843
844 int NId = N->getNodeId();
845 // If we Invalidated the Id, reconstruct original NId.
846 if (NId < -1)
847 NId = -(NId + 1);
848
849 bool Found = false;
850 while (!Worklist.empty()) {
851 const SDNode *M = Worklist.pop_back_val();
852 int MId = M->getNodeId();
853 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
854 (MId > 0) && (MId < NId)) {
855 DeferredNodes.push_back(M);
856 continue;
857 }
858 for (const SDValue &OpV : M->op_values()) {
859 SDNode *Op = OpV.getNode();
860 if (Visited.insert(Op).second)
861 Worklist.push_back(Op);
862 if (Op == N)
863 Found = true;
864 }
865 if (Found)
866 break;
867 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
868 break;
869 }
870 // Push deferred nodes back on worklist.
871 Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
872 // If we bailed early, conservatively return found.
873 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
874 return true;
875 return Found;
876 }
877
878 /// Return true if all the users of N are contained in Nodes.
879 /// NOTE: Requires at least one match, but doesn't require them all.
880 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
881
882 /// Return the number of values used by this operation.
883 unsigned getNumOperands() const { return NumOperands; }
884
885 /// Return the maximum number of operands that a SDNode can hold.
886 static constexpr size_t getMaxNumOperands() {
887 return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
888 }
889
890 /// Helper method returns the integer value of a ConstantSDNode operand.
891 inline uint64_t getConstantOperandVal(unsigned Num) const;
892
893 /// Helper method returns the APInt of a ConstantSDNode operand.
894 inline const APInt &getConstantOperandAPInt(unsigned Num) const;
895
896 const SDValue &getOperand(unsigned Num) const {
897 assert(Num < NumOperands && "Invalid child # of SDNode!")(static_cast <bool> (Num < NumOperands && "Invalid child # of SDNode!"
) ? void (0) : __assert_fail ("Num < NumOperands && \"Invalid child # of SDNode!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 897, __extension__ __PRETTY_FUNCTION__))
;
898 return OperandList[Num];
899 }
900
901 using op_iterator = SDUse *;
902
903 op_iterator op_begin() const { return OperandList; }
904 op_iterator op_end() const { return OperandList+NumOperands; }
905 ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
906
907 /// Iterator for directly iterating over the operand SDValue's.
908 struct value_op_iterator
909 : iterator_adaptor_base<value_op_iterator, op_iterator,
910 std::random_access_iterator_tag, SDValue,
911 ptrdiff_t, value_op_iterator *,
912 value_op_iterator *> {
913 explicit value_op_iterator(SDUse *U = nullptr)
914 : iterator_adaptor_base(U) {}
915
916 const SDValue &operator*() const { return I->get(); }
917 };
918
919 iterator_range<value_op_iterator> op_values() const {
920 return make_range(value_op_iterator(op_begin()),
921 value_op_iterator(op_end()));
922 }
923
924 SDVTList getVTList() const {
925 SDVTList X = { ValueList, NumValues };
926 return X;
927 }
928
929 /// If this node has a glue operand, return the node
930 /// to which the glue operand points. Otherwise return NULL.
931 SDNode *getGluedNode() const {
932 if (getNumOperands() != 0 &&
933 getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
934 return getOperand(getNumOperands()-1).getNode();
935 return nullptr;
936 }
937
938 /// If this node has a glue value with a user, return
939 /// the user (there is at most one). Otherwise return NULL.
940 SDNode *getGluedUser() const {
941 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
942 if (UI.getUse().get().getValueType() == MVT::Glue)
943 return *UI;
944 return nullptr;
945 }
946
947 SDNodeFlags getFlags() const { return Flags; }
948 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
949
950 /// Clear any flags in this node that aren't also set in Flags.
951 /// If Flags is not in a defined state then this has no effect.
952 void intersectFlagsWith(const SDNodeFlags Flags);
953
954 /// Return the number of values defined/returned by this operator.
955 unsigned getNumValues() const { return NumValues; }
956
957 /// Return the type of a specified result.
958 EVT getValueType(unsigned ResNo) const {
959 assert(ResNo < NumValues && "Illegal result number!")(static_cast <bool> (ResNo < NumValues && "Illegal result number!"
) ? void (0) : __assert_fail ("ResNo < NumValues && \"Illegal result number!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 959, __extension__ __PRETTY_FUNCTION__))
;
960 return ValueList[ResNo];
961 }
962
963 /// Return the type of a specified result as a simple type.
964 MVT getSimpleValueType(unsigned ResNo) const {
965 return getValueType(ResNo).getSimpleVT();
966 }
967
968 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
969 ///
970 /// If the value type is a scalable vector type, the scalable property will
971 /// be set and the runtime size will be a positive integer multiple of the
972 /// base size.
973 TypeSize getValueSizeInBits(unsigned ResNo) const {
974 return getValueType(ResNo).getSizeInBits();
975 }
976
977 using value_iterator = const EVT *;
978
979 value_iterator value_begin() const { return ValueList; }
980 value_iterator value_end() const { return ValueList+NumValues; }
981 iterator_range<value_iterator> values() const {
982 return llvm::make_range(value_begin(), value_end());
983 }
984
985 /// Return the opcode of this operation for printing.
986 std::string getOperationName(const SelectionDAG *G = nullptr) const;
987 static const char* getIndexedModeName(ISD::MemIndexedMode AM);
988 void print_types(raw_ostream &OS, const SelectionDAG *G) const;
989 void print_details(raw_ostream &OS, const SelectionDAG *G) const;
990 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
991 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
992
993 /// Print a SelectionDAG node and all children down to
994 /// the leaves. The given SelectionDAG allows target-specific nodes
995 /// to be printed in human-readable form. Unlike printr, this will
996 /// print the whole DAG, including children that appear multiple
997 /// times.
998 ///
999 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1000
1001 /// Print a SelectionDAG node and children up to
1002 /// depth "depth." The given SelectionDAG allows target-specific
1003 /// nodes to be printed in human-readable form. Unlike printr, this
1004 /// will print children that appear multiple times wherever they are
1005 /// used.
1006 ///
1007 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1008 unsigned depth = 100) const;
1009
1010 /// Dump this node, for debugging.
1011 void dump() const;
1012
1013 /// Dump (recursively) this node and its use-def subgraph.
1014 void dumpr() const;
1015
1016 /// Dump this node, for debugging.
1017 /// The given SelectionDAG allows target-specific nodes to be printed
1018 /// in human-readable form.
1019 void dump(const SelectionDAG *G) const;
1020
1021 /// Dump (recursively) this node and its use-def subgraph.
1022 /// The given SelectionDAG allows target-specific nodes to be printed
1023 /// in human-readable form.
1024 void dumpr(const SelectionDAG *G) const;
1025
1026 /// printrFull to dbgs(). The given SelectionDAG allows
1027 /// target-specific nodes to be printed in human-readable form.
1028 /// Unlike dumpr, this will print the whole DAG, including children
1029 /// that appear multiple times.
1030 void dumprFull(const SelectionDAG *G = nullptr) const;
1031
1032 /// printrWithDepth to dbgs(). The given
1033 /// SelectionDAG allows target-specific nodes to be printed in
1034 /// human-readable form. Unlike dumpr, this will print children
1035 /// that appear multiple times wherever they are used.
1036 ///
1037 void dumprWithDepth(const SelectionDAG *G = nullptr,
1038 unsigned depth = 100) const;
1039
1040 /// Gather unique data for the node.
1041 void Profile(FoldingSetNodeID &ID) const;
1042
1043 /// This method should only be used by the SDUse class.
1044 void addUse(SDUse &U) { U.addToList(&UseList); }
1045
1046protected:
1047 static SDVTList getSDVTList(EVT VT) {
1048 SDVTList Ret = { getValueTypeList(VT), 1 };
1049 return Ret;
1050 }
1051
1052 /// Create an SDNode.
1053 ///
1054 /// SDNodes are created without any operands, and never own the operand
1055 /// storage. To add operands, see SelectionDAG::createOperands.
1056 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1057 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1058 IROrder(Order), debugLoc(std::move(dl)) {
1059 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1060 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor")(static_cast <bool> (debugLoc.hasTrivialDestructor() &&
"Expected trivial destructor") ? void (0) : __assert_fail ("debugLoc.hasTrivialDestructor() && \"Expected trivial destructor\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1060, __extension__ __PRETTY_FUNCTION__))
;
1061 assert(NumValues == VTs.NumVTs &&(static_cast <bool> (NumValues == VTs.NumVTs &&
"NumValues wasn't wide enough for its operands!") ? void (0)
: __assert_fail ("NumValues == VTs.NumVTs && \"NumValues wasn't wide enough for its operands!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1062, __extension__ __PRETTY_FUNCTION__))
1062 "NumValues wasn't wide enough for its operands!")(static_cast <bool> (NumValues == VTs.NumVTs &&
"NumValues wasn't wide enough for its operands!") ? void (0)
: __assert_fail ("NumValues == VTs.NumVTs && \"NumValues wasn't wide enough for its operands!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1062, __extension__ __PRETTY_FUNCTION__))
;
1063 }
1064
1065 /// Release the operands and set this node to have zero operands.
1066 void DropOperands();
1067};
1068
1069/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1070/// into SDNode creation functions.
1071/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1072/// from the original Instruction, and IROrder is the ordinal position of
1073/// the instruction.
1074/// When an SDNode is created after the DAG is being built, both DebugLoc and
1075/// the IROrder are propagated from the original SDNode.
1076/// So SDLoc class provides two constructors besides the default one, one to
1077/// be used by the DAGBuilder, the other to be used by others.
1078class SDLoc {
1079private:
1080 DebugLoc DL;
1081 int IROrder = 0;
1082
1083public:
1084 SDLoc() = default;
1085 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1086 SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1087 SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1088 assert(Order >= 0 && "bad IROrder")(static_cast <bool> (Order >= 0 && "bad IROrder"
) ? void (0) : __assert_fail ("Order >= 0 && \"bad IROrder\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1088, __extension__ __PRETTY_FUNCTION__))
;
1089 if (I)
1090 DL = I->getDebugLoc();
1091 }
1092
1093 unsigned getIROrder() const { return IROrder; }
1094 const DebugLoc &getDebugLoc() const { return DL; }
1095};
1096
1097// Define inline functions from the SDValue class.
1098
1099inline SDValue::SDValue(SDNode *node, unsigned resno)
1100 : Node(node), ResNo(resno) {
1101 // Explicitly check for !ResNo to avoid use-after-free, because there are
1102 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1103 // combines.
1104 assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&(static_cast <bool> ((!Node || !ResNo || ResNo < Node
->getNumValues()) && "Invalid result number for the given node!"
) ? void (0) : __assert_fail ("(!Node || !ResNo || ResNo < Node->getNumValues()) && \"Invalid result number for the given node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1105, __extension__ __PRETTY_FUNCTION__))
1105 "Invalid result number for the given node!")(static_cast <bool> ((!Node || !ResNo || ResNo < Node
->getNumValues()) && "Invalid result number for the given node!"
) ? void (0) : __assert_fail ("(!Node || !ResNo || ResNo < Node->getNumValues()) && \"Invalid result number for the given node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1105, __extension__ __PRETTY_FUNCTION__))
;
1106 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.")(static_cast <bool> (ResNo < -2U && "Cannot use result numbers reserved for DenseMaps."
) ? void (0) : __assert_fail ("ResNo < -2U && \"Cannot use result numbers reserved for DenseMaps.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1106, __extension__ __PRETTY_FUNCTION__))
;
1107}
1108
1109inline unsigned SDValue::getOpcode() const {
1110 return Node->getOpcode();
26
Called C++ object pointer is null
1111}
1112
1113inline EVT SDValue::getValueType() const {
1114 return Node->getValueType(ResNo);
1115}
1116
1117inline unsigned SDValue::getNumOperands() const {
1118 return Node->getNumOperands();
1119}
1120
1121inline const SDValue &SDValue::getOperand(unsigned i) const {
1122 return Node->getOperand(i);
1123}
1124
1125inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1126 return Node->getConstantOperandVal(i);
1127}
1128
1129inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1130 return Node->getConstantOperandAPInt(i);
1131}
1132
1133inline bool SDValue::isTargetOpcode() const {
1134 return Node->isTargetOpcode();
1135}
1136
1137inline bool SDValue::isTargetMemoryOpcode() const {
1138 return Node->isTargetMemoryOpcode();
1139}
1140
1141inline bool SDValue::isMachineOpcode() const {
1142 return Node->isMachineOpcode();
1143}
1144
1145inline unsigned SDValue::getMachineOpcode() const {
1146 return Node->getMachineOpcode();
1147}
1148
1149inline bool SDValue::isUndef() const {
1150 return Node->isUndef();
1151}
1152
1153inline bool SDValue::use_empty() const {
1154 return !Node->hasAnyUseOfValue(ResNo);
1155}
1156
1157inline bool SDValue::hasOneUse() const {
1158 return Node->hasNUsesOfValue(1, ResNo);
1159}
1160
1161inline const DebugLoc &SDValue::getDebugLoc() const {
1162 return Node->getDebugLoc();
1163}
1164
1165inline void SDValue::dump() const {
1166 return Node->dump();
1167}
1168
1169inline void SDValue::dump(const SelectionDAG *G) const {
1170 return Node->dump(G);
1171}
1172
1173inline void SDValue::dumpr() const {
1174 return Node->dumpr();
1175}
1176
1177inline void SDValue::dumpr(const SelectionDAG *G) const {
1178 return Node->dumpr(G);
1179}
1180
1181// Define inline functions from the SDUse class.
1182
1183inline void SDUse::set(const SDValue &V) {
1184 if (Val.getNode()) removeFromList();
1185 Val = V;
1186 if (V.getNode()) V.getNode()->addUse(*this);
1187}
1188
1189inline void SDUse::setInitial(const SDValue &V) {
1190 Val = V;
1191 V.getNode()->addUse(*this);
1192}
1193
1194inline void SDUse::setNode(SDNode *N) {
1195 if (Val.getNode()) removeFromList();
1196 Val.setNode(N);
1197 if (N) N->addUse(*this);
1198}
1199
1200/// This class is used to form a handle around another node that
1201/// is persistent and is updated across invocations of replaceAllUsesWith on its
1202/// operand. This node should be directly created by end-users and not added to
1203/// the AllNodes list.
1204class HandleSDNode : public SDNode {
1205 SDUse Op;
1206
1207public:
1208 explicit HandleSDNode(SDValue X)
1209 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1210 // HandleSDNodes are never inserted into the DAG, so they won't be
1211 // auto-numbered. Use ID 65535 as a sentinel.
1212 PersistentId = 0xffff;
1213
1214 // Manually set up the operand list. This node type is special in that it's
1215 // always stack allocated and SelectionDAG does not manage its operands.
1216 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1217 // be so special.
1218 Op.setUser(this);
1219 Op.setInitial(X);
1220 NumOperands = 1;
1221 OperandList = &Op;
1222 }
1223 ~HandleSDNode();
1224
1225 const SDValue &getValue() const { return Op; }
1226};
1227
1228class AddrSpaceCastSDNode : public SDNode {
1229private:
1230 unsigned SrcAddrSpace;
1231 unsigned DestAddrSpace;
1232
1233public:
1234 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1235 unsigned SrcAS, unsigned DestAS);
1236
1237 unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1238 unsigned getDestAddressSpace() const { return DestAddrSpace; }
1239
1240 static bool classof(const SDNode *N) {
1241 return N->getOpcode() == ISD::ADDRSPACECAST;
1242 }
1243};
1244
1245/// This is an abstract virtual class for memory operations.
1246class MemSDNode : public SDNode {
1247private:
1248 // VT of in-memory value.
1249 EVT MemoryVT;
1250
1251protected:
1252 /// Memory reference information.
1253 MachineMemOperand *MMO;
1254
1255public:
1256 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1257 EVT memvt, MachineMemOperand *MMO);
1258
1259 bool readMem() const { return MMO->isLoad(); }
1260 bool writeMem() const { return MMO->isStore(); }
1261
1262 /// Returns alignment and volatility of the memory access
1263 Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1264 Align getAlign() const { return MMO->getAlign(); }
1265 // FIXME: Remove once transition to getAlign is over.
1266 unsigned getAlignment() const { return MMO->getAlign().value(); }
1267
1268 /// Return the SubclassData value, without HasDebugValue. This contains an
1269 /// encoding of the volatile flag, as well as bits used by subclasses. This
1270 /// function should only be used to compute a FoldingSetNodeID value.
1271 /// The HasDebugValue bit is masked out because CSE map needs to match
1272 /// nodes with debug info with nodes without debug info. Same is about
1273 /// isDivergent bit.
1274 unsigned getRawSubclassData() const {
1275 uint16_t Data;
1276 union {
1277 char RawSDNodeBits[sizeof(uint16_t)];
1278 SDNodeBitfields SDNodeBits;
1279 };
1280 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1281 SDNodeBits.HasDebugValue = 0;
1282 SDNodeBits.IsDivergent = false;
1283 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1284 return Data;
1285 }
1286
1287 bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1288 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1289 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1290 bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1291
1292 // Returns the offset from the location of the access.
1293 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1294
1295 /// Returns the AA info that describes the dereference.
1296 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1297
1298 /// Returns the Ranges that describes the dereference.
1299 const MDNode *getRanges() const { return MMO->getRanges(); }
1300
1301 /// Returns the synchronization scope ID for this memory operation.
1302 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1303
1304 /// Return the atomic ordering requirements for this memory operation. For
1305 /// cmpxchg atomic operations, return the atomic ordering requirements when
1306 /// store occurs.
1307 AtomicOrdering getSuccessOrdering() const {
1308 return MMO->getSuccessOrdering();
1309 }
1310
1311 /// Return a single atomic ordering that is at least as strong as both the
1312 /// success and failure orderings for an atomic operation. (For operations
1313 /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
1314 AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
1315
1316 /// Return true if the memory operation ordering is Unordered or higher.
1317 bool isAtomic() const { return MMO->isAtomic(); }
1318
1319 /// Returns true if the memory operation doesn't imply any ordering
1320 /// constraints on surrounding memory operations beyond the normal memory
1321 /// aliasing rules.
1322 bool isUnordered() const { return MMO->isUnordered(); }
1323
1324 /// Returns true if the memory operation is neither atomic or volatile.
1325 bool isSimple() const { return !isAtomic() && !isVolatile(); }
1326
1327 /// Return the type of the in-memory value.
1328 EVT getMemoryVT() const { return MemoryVT; }
1329
1330 /// Return a MachineMemOperand object describing the memory
1331 /// reference performed by operation.
1332 MachineMemOperand *getMemOperand() const { return MMO; }
1333
1334 const MachinePointerInfo &getPointerInfo() const {
1335 return MMO->getPointerInfo();
1336 }
1337
1338 /// Return the address space for the associated pointer
1339 unsigned getAddressSpace() const {
1340 return getPointerInfo().getAddrSpace();
1341 }
1342
1343 /// Update this MemSDNode's MachineMemOperand information
1344 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1345 /// This must only be used when the new alignment applies to all users of
1346 /// this MachineMemOperand.
1347 void refineAlignment(const MachineMemOperand *NewMMO) {
1348 MMO->refineAlignment(NewMMO);
1349 }
1350
1351 const SDValue &getChain() const { return getOperand(0); }
1352
1353 const SDValue &getBasePtr() const {
1354 switch (getOpcode()) {
1355 case ISD::STORE:
1356 case ISD::MSTORE:
1357 return getOperand(2);
1358 case ISD::MGATHER:
1359 case ISD::MSCATTER:
1360 return getOperand(3);
1361 default:
1362 return getOperand(1);
1363 }
1364 }
1365
1366 // Methods to support isa and dyn_cast
1367 static bool classof(const SDNode *N) {
1368 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1369 // with either an intrinsic or a target opcode.
1370 switch (N->getOpcode()) {
1371 case ISD::LOAD:
1372 case ISD::STORE:
1373 case ISD::PREFETCH:
1374 case ISD::ATOMIC_CMP_SWAP:
1375 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1376 case ISD::ATOMIC_SWAP:
1377 case ISD::ATOMIC_LOAD_ADD:
1378 case ISD::ATOMIC_LOAD_SUB:
1379 case ISD::ATOMIC_LOAD_AND:
1380 case ISD::ATOMIC_LOAD_CLR:
1381 case ISD::ATOMIC_LOAD_OR:
1382 case ISD::ATOMIC_LOAD_XOR:
1383 case ISD::ATOMIC_LOAD_NAND:
1384 case ISD::ATOMIC_LOAD_MIN:
1385 case ISD::ATOMIC_LOAD_MAX:
1386 case ISD::ATOMIC_LOAD_UMIN:
1387 case ISD::ATOMIC_LOAD_UMAX:
1388 case ISD::ATOMIC_LOAD_FADD:
1389 case ISD::ATOMIC_LOAD_FSUB:
1390 case ISD::ATOMIC_LOAD:
1391 case ISD::ATOMIC_STORE:
1392 case ISD::MLOAD:
1393 case ISD::MSTORE:
1394 case ISD::MGATHER:
1395 case ISD::MSCATTER:
1396 return true;
1397 default:
1398 return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
1399 }
1400 }
1401};
1402
1403/// This is an SDNode representing atomic operations.
1404class AtomicSDNode : public MemSDNode {
1405public:
1406 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1407 EVT MemVT, MachineMemOperand *MMO)
1408 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1409 assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||(static_cast <bool> (((Opc != ISD::ATOMIC_LOAD &&
Opc != ISD::ATOMIC_STORE) || MMO->isAtomic()) && "then why are we using an AtomicSDNode?"
) ? void (0) : __assert_fail ("((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) || MMO->isAtomic()) && \"then why are we using an AtomicSDNode?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1410, __extension__ __PRETTY_FUNCTION__))
1410 MMO->isAtomic()) && "then why are we using an AtomicSDNode?")(static_cast <bool> (((Opc != ISD::ATOMIC_LOAD &&
Opc != ISD::ATOMIC_STORE) || MMO->isAtomic()) && "then why are we using an AtomicSDNode?"
) ? void (0) : __assert_fail ("((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) || MMO->isAtomic()) && \"then why are we using an AtomicSDNode?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1410, __extension__ __PRETTY_FUNCTION__))
;
1411 }
1412
1413 const SDValue &getBasePtr() const { return getOperand(1); }
1414 const SDValue &getVal() const { return getOperand(2); }
1415
1416 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1417 /// otherwise.
1418 bool isCompareAndSwap() const {
1419 unsigned Op = getOpcode();
1420 return Op == ISD::ATOMIC_CMP_SWAP ||
1421 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1422 }
1423
1424 /// For cmpxchg atomic operations, return the atomic ordering requirements
1425 /// when store does not occur.
1426 AtomicOrdering getFailureOrdering() const {
1427 assert(isCompareAndSwap() && "Must be cmpxchg operation")(static_cast <bool> (isCompareAndSwap() && "Must be cmpxchg operation"
) ? void (0) : __assert_fail ("isCompareAndSwap() && \"Must be cmpxchg operation\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1427, __extension__ __PRETTY_FUNCTION__))
;
1428 return MMO->getFailureOrdering();
1429 }
1430
1431 // Methods to support isa and dyn_cast
1432 static bool classof(const SDNode *N) {
1433 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1434 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1435 N->getOpcode() == ISD::ATOMIC_SWAP ||
1436 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1437 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1438 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1439 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1440 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1441 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1442 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1443 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1444 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1445 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1446 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1447 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1448 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1449 N->getOpcode() == ISD::ATOMIC_LOAD ||
1450 N->getOpcode() == ISD::ATOMIC_STORE;
1451 }
1452};
1453
1454/// This SDNode is used for target intrinsics that touch
1455/// memory and need an associated MachineMemOperand. Its opcode may be
1456/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1457/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1458class MemIntrinsicSDNode : public MemSDNode {
1459public:
1460 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1461 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1462 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1463 SDNodeBits.IsMemIntrinsic = true;
1464 }
1465
1466 // Methods to support isa and dyn_cast
1467 static bool classof(const SDNode *N) {
1468 // We lower some target intrinsics to their target opcode
1469 // early a node with a target opcode can be of this class
1470 return N->isMemIntrinsic() ||
1471 N->getOpcode() == ISD::PREFETCH ||
1472 N->isTargetMemoryOpcode();
1473 }
1474};
1475
1476/// This SDNode is used to implement the code generator
1477/// support for the llvm IR shufflevector instruction. It combines elements
1478/// from two input vectors into a new input vector, with the selection and
1479/// ordering of elements determined by an array of integers, referred to as
1480/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1481/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1482/// An index of -1 is treated as undef, such that the code generator may put
1483/// any value in the corresponding element of the result.
1484class ShuffleVectorSDNode : public SDNode {
1485 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1486 // is freed when the SelectionDAG object is destroyed.
1487 const int *Mask;
1488
1489protected:
1490 friend class SelectionDAG;
1491
1492 ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1493 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1494
1495public:
1496 ArrayRef<int> getMask() const {
1497 EVT VT = getValueType(0);
1498 return makeArrayRef(Mask, VT.getVectorNumElements());
1499 }
1500
1501 int getMaskElt(unsigned Idx) const {
1502 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!")(static_cast <bool> (Idx < getValueType(0).getVectorNumElements
() && "Idx out of range!") ? void (0) : __assert_fail
("Idx < getValueType(0).getVectorNumElements() && \"Idx out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1502, __extension__ __PRETTY_FUNCTION__))
;
1503 return Mask[Idx];
1504 }
1505
1506 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1507
1508 int getSplatIndex() const {
1509 assert(isSplat() && "Cannot get splat index for non-splat!")(static_cast <bool> (isSplat() && "Cannot get splat index for non-splat!"
) ? void (0) : __assert_fail ("isSplat() && \"Cannot get splat index for non-splat!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1509, __extension__ __PRETTY_FUNCTION__))
;
1510 EVT VT = getValueType(0);
1511 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1512 if (Mask[i] >= 0)
1513 return Mask[i];
1514
1515 // We can choose any index value here and be correct because all elements
1516 // are undefined. Return 0 for better potential for callers to simplify.
1517 return 0;
1518 }
1519
1520 static bool isSplatMask(const int *Mask, EVT VT);
1521
1522 /// Change values in a shuffle permute mask assuming
1523 /// the two vector operands have swapped position.
1524 static void commuteMask(MutableArrayRef<int> Mask) {
1525 unsigned NumElems = Mask.size();
1526 for (unsigned i = 0; i != NumElems; ++i) {
1527 int idx = Mask[i];
1528 if (idx < 0)
1529 continue;
1530 else if (idx < (int)NumElems)
1531 Mask[i] = idx + NumElems;
1532 else
1533 Mask[i] = idx - NumElems;
1534 }
1535 }
1536
1537 static bool classof(const SDNode *N) {
1538 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1539 }
1540};
1541
1542class ConstantSDNode : public SDNode {
1543 friend class SelectionDAG;
1544
1545 const ConstantInt *Value;
1546
1547 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1548 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1549 getSDVTList(VT)),
1550 Value(val) {
1551 ConstantSDNodeBits.IsOpaque = isOpaque;
1552 }
1553
1554public:
1555 const ConstantInt *getConstantIntValue() const { return Value; }
1556 const APInt &getAPIntValue() const { return Value->getValue(); }
1557 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1558 int64_t getSExtValue() const { return Value->getSExtValue(); }
1559 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) {
1560 return Value->getLimitedValue(Limit);
1561 }
1562 MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1563 Align getAlignValue() const { return Value->getAlignValue(); }
1564
1565 bool isOne() const { return Value->isOne(); }
1566 bool isNullValue() const { return Value->isZero(); }
1567 bool isAllOnesValue() const { return Value->isMinusOne(); }
1568 bool isMaxSignedValue() const { return Value->isMaxValue(true); }
1569 bool isMinSignedValue() const { return Value->isMinValue(true); }
1570
1571 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1572
1573 static bool classof(const SDNode *N) {
1574 return N->getOpcode() == ISD::Constant ||
1575 N->getOpcode() == ISD::TargetConstant;
1576 }
1577};
1578
1579uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1580 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1581}
1582
1583const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1584 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1585}
1586
1587class ConstantFPSDNode : public SDNode {
1588 friend class SelectionDAG;
1589
1590 const ConstantFP *Value;
1591
1592 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1593 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1594 DebugLoc(), getSDVTList(VT)),
1595 Value(val) {}
1596
1597public:
1598 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1599 const ConstantFP *getConstantFPValue() const { return Value; }
1600
1601 /// Return true if the value is positive or negative zero.
1602 bool isZero() const { return Value->isZero(); }
1603
1604 /// Return true if the value is a NaN.
1605 bool isNaN() const { return Value->isNaN(); }
1606
1607 /// Return true if the value is an infinity
1608 bool isInfinity() const { return Value->isInfinity(); }
1609
1610 /// Return true if the value is negative.
1611 bool isNegative() const { return Value->isNegative(); }
1612
1613 /// We don't rely on operator== working on double values, as
1614 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1615 /// As such, this method can be used to do an exact bit-for-bit comparison of
1616 /// two floating point values.
1617
1618 /// We leave the version with the double argument here because it's just so
1619 /// convenient to write "2.0" and the like. Without this function we'd
1620 /// have to duplicate its logic everywhere it's called.
1621 bool isExactlyValue(double V) const {
1622 return Value->getValueAPF().isExactlyValue(V);
1623 }
1624 bool isExactlyValue(const APFloat& V) const;
1625
1626 static bool isValueValidForType(EVT VT, const APFloat& Val);
1627
1628 static bool classof(const SDNode *N) {
1629 return N->getOpcode() == ISD::ConstantFP ||
1630 N->getOpcode() == ISD::TargetConstantFP;
1631 }
1632};
1633
1634/// Returns true if \p V is a constant integer zero.
1635bool isNullConstant(SDValue V);
1636
1637/// Returns true if \p V is an FP constant with a value of positive zero.
1638bool isNullFPConstant(SDValue V);
1639
1640/// Returns true if \p V is an integer constant with all bits set.
1641bool isAllOnesConstant(SDValue V);
1642
1643/// Returns true if \p V is a constant integer one.
1644bool isOneConstant(SDValue V);
1645
1646/// Return the non-bitcasted source operand of \p V if it exists.
1647/// If \p V is not a bitcasted value, it is returned as-is.
1648SDValue peekThroughBitcasts(SDValue V);
1649
1650/// Return the non-bitcasted and one-use source operand of \p V if it exists.
1651/// If \p V is not a bitcasted one-use value, it is returned as-is.
1652SDValue peekThroughOneUseBitcasts(SDValue V);
1653
1654/// Return the non-extracted vector source operand of \p V if it exists.
1655/// If \p V is not an extracted subvector, it is returned as-is.
1656SDValue peekThroughExtractSubvectors(SDValue V);
1657
1658/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1659/// constant is canonicalized to be operand 1.
1660bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1661
1662/// Returns the SDNode if it is a constant splat BuildVector or constant int.
1663ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1664 bool AllowTruncation = false);
1665
1666/// Returns the SDNode if it is a demanded constant splat BuildVector or
1667/// constant int.
1668ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1669 bool AllowUndefs = false,
1670 bool AllowTruncation = false);
1671
1672/// Returns the SDNode if it is a constant splat BuildVector or constant float.
1673ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1674
1675/// Returns the SDNode if it is a demanded constant splat BuildVector or
1676/// constant float.
1677ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1678 bool AllowUndefs = false);
1679
1680/// Return true if the value is a constant 0 integer or a splatted vector of
1681/// a constant 0 integer (with no undefs by default).
1682/// Build vector implicit truncation is not an issue for null values.
1683bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1684
1685/// Return true if the value is a constant 1 integer or a splatted vector of a
1686/// constant 1 integer (with no undefs).
1687/// Does not permit build vector implicit truncation.
1688bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1689
1690/// Return true if the value is a constant -1 integer or a splatted vector of a
1691/// constant -1 integer (with no undefs).
1692/// Does not permit build vector implicit truncation.
1693bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1694
1695/// Return true if \p V is either a integer or FP constant.
1696inline bool isIntOrFPConstant(SDValue V) {
1697 return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1698}
1699
1700class GlobalAddressSDNode : public SDNode {
1701 friend class SelectionDAG;
1702
1703 const GlobalValue *TheGlobal;
1704 int64_t Offset;
1705 unsigned TargetFlags;
1706
1707 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1708 const GlobalValue *GA, EVT VT, int64_t o,
1709 unsigned TF);
1710
1711public:
1712 const GlobalValue *getGlobal() const { return TheGlobal; }
1713 int64_t getOffset() const { return Offset; }
1714 unsigned getTargetFlags() const { return TargetFlags; }
1715 // Return the address space this GlobalAddress belongs to.
1716 unsigned getAddressSpace() const;
1717
1718 static bool classof(const SDNode *N) {
1719 return N->getOpcode() == ISD::GlobalAddress ||
1720 N->getOpcode() == ISD::TargetGlobalAddress ||
1721 N->getOpcode() == ISD::GlobalTLSAddress ||
1722 N->getOpcode() == ISD::TargetGlobalTLSAddress;
1723 }
1724};
1725
1726class FrameIndexSDNode : public SDNode {
1727 friend class SelectionDAG;
1728
1729 int FI;
1730
1731 FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1732 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1733 0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1734 }
1735
1736public:
1737 int getIndex() const { return FI; }
1738
1739 static bool classof(const SDNode *N) {
1740 return N->getOpcode() == ISD::FrameIndex ||
1741 N->getOpcode() == ISD::TargetFrameIndex;
1742 }
1743};
1744
1745/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1746/// the offet and size that are started/ended in the underlying FrameIndex.
1747class LifetimeSDNode : public SDNode {
1748 friend class SelectionDAG;
1749 int64_t Size;
1750 int64_t Offset; // -1 if offset is unknown.
1751
1752 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1753 SDVTList VTs, int64_t Size, int64_t Offset)
1754 : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1755public:
1756 int64_t getFrameIndex() const {
1757 return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1758 }
1759
1760 bool hasOffset() const { return Offset >= 0; }
1761 int64_t getOffset() const {
1762 assert(hasOffset() && "offset is unknown")(static_cast <bool> (hasOffset() && "offset is unknown"
) ? void (0) : __assert_fail ("hasOffset() && \"offset is unknown\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1762, __extension__ __PRETTY_FUNCTION__))
;
1763 return Offset;
1764 }
1765 int64_t getSize() const {
1766 assert(hasOffset() && "offset is unknown")(static_cast <bool> (hasOffset() && "offset is unknown"
) ? void (0) : __assert_fail ("hasOffset() && \"offset is unknown\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1766, __extension__ __PRETTY_FUNCTION__))
;
1767 return Size;
1768 }
1769
1770 // Methods to support isa and dyn_cast
1771 static bool classof(const SDNode *N) {
1772 return N->getOpcode() == ISD::LIFETIME_START ||
1773 N->getOpcode() == ISD::LIFETIME_END;
1774 }
1775};
1776
1777/// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1778/// the index of the basic block being probed. A pseudo probe serves as a place
1779/// holder and will be removed at the end of compilation. It does not have any
1780/// operand because we do not want the instruction selection to deal with any.
1781class PseudoProbeSDNode : public SDNode {
1782 friend class SelectionDAG;
1783 uint64_t Guid;
1784 uint64_t Index;
1785 uint32_t Attributes;
1786
1787 PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1788 SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1789 : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1790 Attributes(Attr) {}
1791
1792public:
1793 uint64_t getGuid() const { return Guid; }
1794 uint64_t getIndex() const { return Index; }
1795 uint32_t getAttributes() const { return Attributes; }
1796
1797 // Methods to support isa and dyn_cast
1798 static bool classof(const SDNode *N) {
1799 return N->getOpcode() == ISD::PSEUDO_PROBE;
1800 }
1801};
1802
1803class JumpTableSDNode : public SDNode {
1804 friend class SelectionDAG;
1805
1806 int JTI;
1807 unsigned TargetFlags;
1808
1809 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1810 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1811 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1812 }
1813
1814public:
1815 int getIndex() const { return JTI; }
1816 unsigned getTargetFlags() const { return TargetFlags; }
1817
1818 static bool classof(const SDNode *N) {
1819 return N->getOpcode() == ISD::JumpTable ||
1820 N->getOpcode() == ISD::TargetJumpTable;
1821 }
1822};
1823
1824class ConstantPoolSDNode : public SDNode {
1825 friend class SelectionDAG;
1826
1827 union {
1828 const Constant *ConstVal;
1829 MachineConstantPoolValue *MachineCPVal;
1830 } Val;
1831 int Offset; // It's a MachineConstantPoolValue if top bit is set.
1832 Align Alignment; // Minimum alignment requirement of CP.
1833 unsigned TargetFlags;
1834
1835 ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1836 Align Alignment, unsigned TF)
1837 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1838 DebugLoc(), getSDVTList(VT)),
1839 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1840 assert(Offset >= 0 && "Offset is too large")(static_cast <bool> (Offset >= 0 && "Offset is too large"
) ? void (0) : __assert_fail ("Offset >= 0 && \"Offset is too large\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1840, __extension__ __PRETTY_FUNCTION__))
;
1841 Val.ConstVal = c;
1842 }
1843
1844 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
1845 Align Alignment, unsigned TF)
1846 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1847 DebugLoc(), getSDVTList(VT)),
1848 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1849 assert(Offset >= 0 && "Offset is too large")(static_cast <bool> (Offset >= 0 && "Offset is too large"
) ? void (0) : __assert_fail ("Offset >= 0 && \"Offset is too large\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1849, __extension__ __PRETTY_FUNCTION__))
;
1850 Val.MachineCPVal = v;
1851 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT8-1);
1852 }
1853
1854public:
1855 bool isMachineConstantPoolEntry() const {
1856 return Offset < 0;
1857 }
1858
1859 const Constant *getConstVal() const {
1860 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type")(static_cast <bool> (!isMachineConstantPoolEntry() &&
"Wrong constantpool type") ? void (0) : __assert_fail ("!isMachineConstantPoolEntry() && \"Wrong constantpool type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1860, __extension__ __PRETTY_FUNCTION__))
;
1861 return Val.ConstVal;
1862 }
1863
1864 MachineConstantPoolValue *getMachineCPVal() const {
1865 assert(isMachineConstantPoolEntry() && "Wrong constantpool type")(static_cast <bool> (isMachineConstantPoolEntry() &&
"Wrong constantpool type") ? void (0) : __assert_fail ("isMachineConstantPoolEntry() && \"Wrong constantpool type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 1865, __extension__ __PRETTY_FUNCTION__))
;
1866 return Val.MachineCPVal;
1867 }
1868
1869 int getOffset() const {
1870 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT8-1));
1871 }
1872
1873 // Return the alignment of this constant pool object, which is either 0 (for
1874 // default alignment) or the desired value.
1875 Align getAlign() const { return Alignment; }
1876 unsigned getTargetFlags() const { return TargetFlags; }
1877
1878 Type *getType() const;
1879
1880 static bool classof(const SDNode *N) {
1881 return N->getOpcode() == ISD::ConstantPool ||
1882 N->getOpcode() == ISD::TargetConstantPool;
1883 }
1884};
1885
1886/// Completely target-dependent object reference.
1887class TargetIndexSDNode : public SDNode {
1888 friend class SelectionDAG;
1889
1890 unsigned TargetFlags;
1891 int Index;
1892 int64_t Offset;
1893
1894public:
1895 TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1896 : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1897 TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1898
1899 unsigned getTargetFlags() const { return TargetFlags; }
1900 int getIndex() const { return Index; }
1901 int64_t getOffset() const { return Offset; }
1902
1903 static bool classof(const SDNode *N) {
1904 return N->getOpcode() == ISD::TargetIndex;
1905 }
1906};
1907
1908class BasicBlockSDNode : public SDNode {
1909 friend class SelectionDAG;
1910
1911 MachineBasicBlock *MBB;
1912
1913 /// Debug info is meaningful and potentially useful here, but we create
1914 /// blocks out of order when they're jumped to, which makes it a bit
1915 /// harder. Let's see if we need it first.
1916 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1917 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1918 {}
1919
1920public:
1921 MachineBasicBlock *getBasicBlock() const { return MBB; }
1922
1923 static bool classof(const SDNode *N) {
1924 return N->getOpcode() == ISD::BasicBlock;
1925 }
1926};
1927
1928/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1929class BuildVectorSDNode : public SDNode {
1930public:
1931 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1932 explicit BuildVectorSDNode() = delete;
1933
1934 /// Check if this is a constant splat, and if so, find the
1935 /// smallest element size that splats the vector. If MinSplatBits is
1936 /// nonzero, the element size must be at least that large. Note that the
1937 /// splat element may be the entire vector (i.e., a one element vector).
1938 /// Returns the splat element value in SplatValue. Any undefined bits in
1939 /// that value are zero, and the corresponding bits in the SplatUndef mask
1940 /// are set. The SplatBitSize value is set to the splat element size in
1941 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1942 /// undefined. isBigEndian describes the endianness of the target.
1943 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1944 unsigned &SplatBitSize, bool &HasAnyUndefs,
1945 unsigned MinSplatBits = 0,
1946 bool isBigEndian = false) const;
1947
1948 /// Returns the demanded splatted value or a null value if this is not a
1949 /// splat.
1950 ///
1951 /// The DemandedElts mask indicates the elements that must be in the splat.
1952 /// If passed a non-null UndefElements bitvector, it will resize it to match
1953 /// the vector width and set the bits where elements are undef.
1954 SDValue getSplatValue(const APInt &DemandedElts,
1955 BitVector *UndefElements = nullptr) const;
1956
1957 /// Returns the splatted value or a null value if this is not a splat.
1958 ///
1959 /// If passed a non-null UndefElements bitvector, it will resize it to match
1960 /// the vector width and set the bits where elements are undef.
1961 SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1962
1963 /// Find the shortest repeating sequence of values in the build vector.
1964 ///
1965 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1966 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1967 ///
1968 /// Currently this must be a power-of-2 build vector.
1969 /// The DemandedElts mask indicates the elements that must be present,
1970 /// undemanded elements in Sequence may be null (SDValue()). If passed a
1971 /// non-null UndefElements bitvector, it will resize it to match the original
1972 /// vector width and set the bits where elements are undef. If result is
1973 /// false, Sequence will be empty.
1974 bool getRepeatedSequence(const APInt &DemandedElts,
1975 SmallVectorImpl<SDValue> &Sequence,
1976 BitVector *UndefElements = nullptr) const;
1977
1978 /// Find the shortest repeating sequence of values in the build vector.
1979 ///
1980 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1981 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1982 ///
1983 /// Currently this must be a power-of-2 build vector.
1984 /// If passed a non-null UndefElements bitvector, it will resize it to match
1985 /// the original vector width and set the bits where elements are undef.
1986 /// If result is false, Sequence will be empty.
1987 bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
1988 BitVector *UndefElements = nullptr) const;
1989
1990 /// Returns the demanded splatted constant or null if this is not a constant
1991 /// splat.
1992 ///
1993 /// The DemandedElts mask indicates the elements that must be in the splat.
1994 /// If passed a non-null UndefElements bitvector, it will resize it to match
1995 /// the vector width and set the bits where elements are undef.
1996 ConstantSDNode *
1997 getConstantSplatNode(const APInt &DemandedElts,
1998 BitVector *UndefElements = nullptr) const;
1999
2000 /// Returns the splatted constant or null if this is not a constant
2001 /// splat.
2002 ///
2003 /// If passed a non-null UndefElements bitvector, it will resize it to match
2004 /// the vector width and set the bits where elements are undef.
2005 ConstantSDNode *
2006 getConstantSplatNode(BitVector *UndefElements = nullptr) const;
2007
2008 /// Returns the demanded splatted constant FP or null if this is not a
2009 /// constant FP splat.
2010 ///
2011 /// The DemandedElts mask indicates the elements that must be in the splat.
2012 /// If passed a non-null UndefElements bitvector, it will resize it to match
2013 /// the vector width and set the bits where elements are undef.
2014 ConstantFPSDNode *
2015 getConstantFPSplatNode(const APInt &DemandedElts,
2016 BitVector *UndefElements = nullptr) const;
2017
2018 /// Returns the splatted constant FP or null if this is not a constant
2019 /// FP splat.
2020 ///
2021 /// If passed a non-null UndefElements bitvector, it will resize it to match
2022 /// the vector width and set the bits where elements are undef.
2023 ConstantFPSDNode *
2024 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2025
2026 /// If this is a constant FP splat and the splatted constant FP is an
2027 /// exact power or 2, return the log base 2 integer value. Otherwise,
2028 /// return -1.
2029 ///
2030 /// The BitWidth specifies the necessary bit precision.
2031 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2032 uint32_t BitWidth) const;
2033
2034 bool isConstant() const;
2035
2036 static bool classof(const SDNode *N) {
2037 return N->getOpcode() == ISD::BUILD_VECTOR;
2038 }
2039};
2040
2041/// An SDNode that holds an arbitrary LLVM IR Value. This is
2042/// used when the SelectionDAG needs to make a simple reference to something
2043/// in the LLVM IR representation.
2044///
2045class SrcValueSDNode : public SDNode {
2046 friend class SelectionDAG;
2047
2048 const Value *V;
2049
2050 /// Create a SrcValue for a general value.
2051 explicit SrcValueSDNode(const Value *v)
2052 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2053
2054public:
2055 /// Return the contained Value.
2056 const Value *getValue() const { return V; }
2057
2058 static bool classof(const SDNode *N) {
2059 return N->getOpcode() == ISD::SRCVALUE;
2060 }
2061};
2062
2063class MDNodeSDNode : public SDNode {
2064 friend class SelectionDAG;
2065
2066 const MDNode *MD;
2067
2068 explicit MDNodeSDNode(const MDNode *md)
2069 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2070 {}
2071
2072public:
2073 const MDNode *getMD() const { return MD; }
2074
2075 static bool classof(const SDNode *N) {
2076 return N->getOpcode() == ISD::MDNODE_SDNODE;
2077 }
2078};
2079
2080class RegisterSDNode : public SDNode {
2081 friend class SelectionDAG;
2082
2083 Register Reg;
2084
2085 RegisterSDNode(Register reg, EVT VT)
2086 : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2087
2088public:
2089 Register getReg() const { return Reg; }
2090
2091 static bool classof(const SDNode *N) {
2092 return N->getOpcode() == ISD::Register;
2093 }
2094};
2095
2096class RegisterMaskSDNode : public SDNode {
2097 friend class SelectionDAG;
2098
2099 // The memory for RegMask is not owned by the node.
2100 const uint32_t *RegMask;
2101
2102 RegisterMaskSDNode(const uint32_t *mask)
2103 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2104 RegMask(mask) {}
2105
2106public:
2107 const uint32_t *getRegMask() const { return RegMask; }
2108
2109 static bool classof(const SDNode *N) {
2110 return N->getOpcode() == ISD::RegisterMask;
2111 }
2112};
2113
2114class BlockAddressSDNode : public SDNode {
2115 friend class SelectionDAG;
2116
2117 const BlockAddress *BA;
2118 int64_t Offset;
2119 unsigned TargetFlags;
2120
2121 BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2122 int64_t o, unsigned Flags)
2123 : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2124 BA(ba), Offset(o), TargetFlags(Flags) {}
2125
2126public:
2127 const BlockAddress *getBlockAddress() const { return BA; }
2128 int64_t getOffset() const { return Offset; }
2129 unsigned getTargetFlags() const { return TargetFlags; }
2130
2131 static bool classof(const SDNode *N) {
2132 return N->getOpcode() == ISD::BlockAddress ||
2133 N->getOpcode() == ISD::TargetBlockAddress;
2134 }
2135};
2136
2137class LabelSDNode : public SDNode {
2138 friend class SelectionDAG;
2139
2140 MCSymbol *Label;
2141
2142 LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2143 : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2144 assert(LabelSDNode::classof(this) && "not a label opcode")(static_cast <bool> (LabelSDNode::classof(this) &&
"not a label opcode") ? void (0) : __assert_fail ("LabelSDNode::classof(this) && \"not a label opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2144, __extension__ __PRETTY_FUNCTION__))
;
2145 }
2146
2147public:
2148 MCSymbol *getLabel() const { return Label; }
2149
2150 static bool classof(const SDNode *N) {
2151 return N->getOpcode() == ISD::EH_LABEL ||
2152 N->getOpcode() == ISD::ANNOTATION_LABEL;
2153 }
2154};
2155
2156class ExternalSymbolSDNode : public SDNode {
2157 friend class SelectionDAG;
2158
2159 const char *Symbol;
2160 unsigned TargetFlags;
2161
2162 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2163 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2164 DebugLoc(), getSDVTList(VT)),
2165 Symbol(Sym), TargetFlags(TF) {}
2166
2167public:
2168 const char *getSymbol() const { return Symbol; }
2169 unsigned getTargetFlags() const { return TargetFlags; }
2170
2171 static bool classof(const SDNode *N) {
2172 return N->getOpcode() == ISD::ExternalSymbol ||
2173 N->getOpcode() == ISD::TargetExternalSymbol;
2174 }
2175};
2176
2177class MCSymbolSDNode : public SDNode {
2178 friend class SelectionDAG;
2179
2180 MCSymbol *Symbol;
2181
2182 MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2183 : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2184
2185public:
2186 MCSymbol *getMCSymbol() const { return Symbol; }
2187
2188 static bool classof(const SDNode *N) {
2189 return N->getOpcode() == ISD::MCSymbol;
2190 }
2191};
2192
2193class CondCodeSDNode : public SDNode {
2194 friend class SelectionDAG;
2195
2196 ISD::CondCode Condition;
2197
2198 explicit CondCodeSDNode(ISD::CondCode Cond)
2199 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2200 Condition(Cond) {}
2201
2202public:
2203 ISD::CondCode get() const { return Condition; }
2204
2205 static bool classof(const SDNode *N) {
2206 return N->getOpcode() == ISD::CONDCODE;
2207 }
2208};
2209
2210/// This class is used to represent EVT's, which are used
2211/// to parameterize some operations.
2212class VTSDNode : public SDNode {
2213 friend class SelectionDAG;
2214
2215 EVT ValueType;
2216
2217 explicit VTSDNode(EVT VT)
2218 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2219 ValueType(VT) {}
2220
2221public:
2222 EVT getVT() const { return ValueType; }
2223
2224 static bool classof(const SDNode *N) {
2225 return N->getOpcode() == ISD::VALUETYPE;
2226 }
2227};
2228
2229/// Base class for LoadSDNode and StoreSDNode
2230class LSBaseSDNode : public MemSDNode {
2231public:
2232 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2233 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2234 MachineMemOperand *MMO)
2235 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2236 LSBaseSDNodeBits.AddressingMode = AM;
2237 assert(getAddressingMode() == AM && "Value truncated")(static_cast <bool> (getAddressingMode() == AM &&
"Value truncated") ? void (0) : __assert_fail ("getAddressingMode() == AM && \"Value truncated\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2237, __extension__ __PRETTY_FUNCTION__))
;
2238 }
2239
2240 const SDValue &getOffset() const {
2241 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2242 }
2243
2244 /// Return the addressing mode for this load or store:
2245 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2246 ISD::MemIndexedMode getAddressingMode() const {
2247 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2248 }
2249
2250 /// Return true if this is a pre/post inc/dec load/store.
2251 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2252
2253 /// Return true if this is NOT a pre/post inc/dec load/store.
2254 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2255
2256 static bool classof(const SDNode *N) {
2257 return N->getOpcode() == ISD::LOAD ||
2258 N->getOpcode() == ISD::STORE;
2259 }
2260};
2261
2262/// This class is used to represent ISD::LOAD nodes.
2263class LoadSDNode : public LSBaseSDNode {
2264 friend class SelectionDAG;
2265
2266 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2267 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2268 MachineMemOperand *MMO)
2269 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2270 LoadSDNodeBits.ExtTy = ETy;
2271 assert(readMem() && "Load MachineMemOperand is not a load!")(static_cast <bool> (readMem() && "Load MachineMemOperand is not a load!"
) ? void (0) : __assert_fail ("readMem() && \"Load MachineMemOperand is not a load!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2271, __extension__ __PRETTY_FUNCTION__))
;
2272 assert(!writeMem() && "Load MachineMemOperand is a store!")(static_cast <bool> (!writeMem() && "Load MachineMemOperand is a store!"
) ? void (0) : __assert_fail ("!writeMem() && \"Load MachineMemOperand is a store!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2272, __extension__ __PRETTY_FUNCTION__))
;
2273 }
2274
2275public:
2276 /// Return whether this is a plain node,
2277 /// or one of the varieties of value-extending loads.
2278 ISD::LoadExtType getExtensionType() const {
2279 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2280 }
2281
2282 const SDValue &getBasePtr() const { return getOperand(1); }
2283 const SDValue &getOffset() const { return getOperand(2); }
2284
2285 static bool classof(const SDNode *N) {
2286 return N->getOpcode() == ISD::LOAD;
2287 }
2288};
2289
2290/// This class is used to represent ISD::STORE nodes.
2291class StoreSDNode : public LSBaseSDNode {
2292 friend class SelectionDAG;
2293
2294 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2295 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2296 MachineMemOperand *MMO)
2297 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2298 StoreSDNodeBits.IsTruncating = isTrunc;
2299 assert(!readMem() && "Store MachineMemOperand is a load!")(static_cast <bool> (!readMem() && "Store MachineMemOperand is a load!"
) ? void (0) : __assert_fail ("!readMem() && \"Store MachineMemOperand is a load!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2299, __extension__ __PRETTY_FUNCTION__))
;
2300 assert(writeMem() && "Store MachineMemOperand is not a store!")(static_cast <bool> (writeMem() && "Store MachineMemOperand is not a store!"
) ? void (0) : __assert_fail ("writeMem() && \"Store MachineMemOperand is not a store!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2300, __extension__ __PRETTY_FUNCTION__))
;
2301 }
2302
2303public:
2304 /// Return true if the op does a truncation before store.
2305 /// For integers this is the same as doing a TRUNCATE and storing the result.
2306 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2307 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2308 void setTruncatingStore(bool Truncating) {
2309 StoreSDNodeBits.IsTruncating = Truncating;
2310 }
2311
2312 const SDValue &getValue() const { return getOperand(1); }
2313 const SDValue &getBasePtr() const { return getOperand(2); }
2314 const SDValue &getOffset() const { return getOperand(3); }
2315
2316 static bool classof(const SDNode *N) {
2317 return N->getOpcode() == ISD::STORE;
2318 }
2319};
2320
2321/// This base class is used to represent MLOAD and MSTORE nodes
2322class MaskedLoadStoreSDNode : public MemSDNode {
2323public:
2324 friend class SelectionDAG;
2325
2326 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2327 const DebugLoc &dl, SDVTList VTs,
2328 ISD::MemIndexedMode AM, EVT MemVT,
2329 MachineMemOperand *MMO)
2330 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2331 LSBaseSDNodeBits.AddressingMode = AM;
2332 assert(getAddressingMode() == AM && "Value truncated")(static_cast <bool> (getAddressingMode() == AM &&
"Value truncated") ? void (0) : __assert_fail ("getAddressingMode() == AM && \"Value truncated\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2332, __extension__ __PRETTY_FUNCTION__))
;
2333 }
2334
2335 // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2336 // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2337 // Mask is a vector of i1 elements
2338 const SDValue &getOffset() const {
2339 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2340 }
2341 const SDValue &getMask() const {
2342 return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2343 }
2344
2345 /// Return the addressing mode for this load or store:
2346 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2347 ISD::MemIndexedMode getAddressingMode() const {
2348 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2349 }
2350
2351 /// Return true if this is a pre/post inc/dec load/store.
2352 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2353
2354 /// Return true if this is NOT a pre/post inc/dec load/store.
2355 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2356
2357 static bool classof(const SDNode *N) {
2358 return N->getOpcode() == ISD::MLOAD ||
2359 N->getOpcode() == ISD::MSTORE;
2360 }
2361};
2362
2363/// This class is used to represent an MLOAD node
2364class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2365public:
2366 friend class SelectionDAG;
2367
2368 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2369 ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2370 bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2371 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2372 LoadSDNodeBits.ExtTy = ETy;
2373 LoadSDNodeBits.IsExpanding = IsExpanding;
2374 }
2375
2376 ISD::LoadExtType getExtensionType() const {
2377 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2378 }
2379
2380 const SDValue &getBasePtr() const { return getOperand(1); }
2381 const SDValue &getOffset() const { return getOperand(2); }
2382 const SDValue &getMask() const { return getOperand(3); }
2383 const SDValue &getPassThru() const { return getOperand(4); }
2384
2385 static bool classof(const SDNode *N) {
2386 return N->getOpcode() == ISD::MLOAD;
2387 }
2388
2389 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2390};
2391
2392/// This class is used to represent an MSTORE node
2393class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2394public:
2395 friend class SelectionDAG;
2396
2397 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2398 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2399 EVT MemVT, MachineMemOperand *MMO)
2400 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2401 StoreSDNodeBits.IsTruncating = isTrunc;
2402 StoreSDNodeBits.IsCompressing = isCompressing;
2403 }
2404
2405 /// Return true if the op does a truncation before store.
2406 /// For integers this is the same as doing a TRUNCATE and storing the result.
2407 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2408 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2409
2410 /// Returns true if the op does a compression to the vector before storing.
2411 /// The node contiguously stores the active elements (integers or floats)
2412 /// in src (those with their respective bit set in writemask k) to unaligned
2413 /// memory at base_addr.
2414 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2415
2416 const SDValue &getValue() const { return getOperand(1); }
2417 const SDValue &getBasePtr() const { return getOperand(2); }
2418 const SDValue &getOffset() const { return getOperand(3); }
2419 const SDValue &getMask() const { return getOperand(4); }
2420
2421 static bool classof(const SDNode *N) {
2422 return N->getOpcode() == ISD::MSTORE;
2423 }
2424};
2425
2426/// This is a base class used to represent
2427/// MGATHER and MSCATTER nodes
2428///
2429class MaskedGatherScatterSDNode : public MemSDNode {
2430public:
2431 friend class SelectionDAG;
2432
2433 MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2434 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2435 MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2436 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2437 LSBaseSDNodeBits.AddressingMode = IndexType;
2438 assert(getIndexType() == IndexType && "Value truncated")(static_cast <bool> (getIndexType() == IndexType &&
"Value truncated") ? void (0) : __assert_fail ("getIndexType() == IndexType && \"Value truncated\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2438, __extension__ __PRETTY_FUNCTION__))
;
2439 }
2440
2441 /// How is Index applied to BasePtr when computing addresses.
2442 ISD::MemIndexType getIndexType() const {
2443 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2444 }
2445 void setIndexType(ISD::MemIndexType IndexType) {
2446 LSBaseSDNodeBits.AddressingMode = IndexType;
2447 }
2448 bool isIndexScaled() const {
2449 return (getIndexType() == ISD::SIGNED_SCALED) ||
2450 (getIndexType() == ISD::UNSIGNED_SCALED);
2451 }
2452 bool isIndexSigned() const {
2453 return (getIndexType() == ISD::SIGNED_SCALED) ||
2454 (getIndexType() == ISD::SIGNED_UNSCALED);
2455 }
2456
2457 // In the both nodes address is Op1, mask is Op2:
2458 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2459 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2460 // Mask is a vector of i1 elements
2461 const SDValue &getBasePtr() const { return getOperand(3); }
2462 const SDValue &getIndex() const { return getOperand(4); }
2463 const SDValue &getMask() const { return getOperand(2); }
2464 const SDValue &getScale() const { return getOperand(5); }
2465
2466 static bool classof(const SDNode *N) {
2467 return N->getOpcode() == ISD::MGATHER ||
2468 N->getOpcode() == ISD::MSCATTER;
2469 }
2470};
2471
2472/// This class is used to represent an MGATHER node
2473///
2474class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2475public:
2476 friend class SelectionDAG;
2477
2478 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2479 EVT MemVT, MachineMemOperand *MMO,
2480 ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2481 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2482 IndexType) {
2483 LoadSDNodeBits.ExtTy = ETy;
2484 }
2485
2486 const SDValue &getPassThru() const { return getOperand(1); }
2487
2488 ISD::LoadExtType getExtensionType() const {
2489 return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2490 }
2491
2492 static bool classof(const SDNode *N) {
2493 return N->getOpcode() == ISD::MGATHER;
2494 }
2495};
2496
2497/// This class is used to represent an MSCATTER node
2498///
2499class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2500public:
2501 friend class SelectionDAG;
2502
2503 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2504 EVT MemVT, MachineMemOperand *MMO,
2505 ISD::MemIndexType IndexType, bool IsTrunc)
2506 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2507 IndexType) {
2508 StoreSDNodeBits.IsTruncating = IsTrunc;
2509 }
2510
2511 /// Return true if the op does a truncation before store.
2512 /// For integers this is the same as doing a TRUNCATE and storing the result.
2513 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2514 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2515
2516 const SDValue &getValue() const { return getOperand(1); }
2517
2518 static bool classof(const SDNode *N) {
2519 return N->getOpcode() == ISD::MSCATTER;
2520 }
2521};
2522
2523/// An SDNode that represents everything that will be needed
2524/// to construct a MachineInstr. These nodes are created during the
2525/// instruction selection proper phase.
2526///
2527/// Note that the only supported way to set the `memoperands` is by calling the
2528/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2529/// inside the DAG rather than in the node.
2530class MachineSDNode : public SDNode {
2531private:
2532 friend class SelectionDAG;
2533
2534 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2535 : SDNode(Opc, Order, DL, VTs) {}
2536
2537 // We use a pointer union between a single `MachineMemOperand` pointer and
2538 // a pointer to an array of `MachineMemOperand` pointers. This is null when
2539 // the number of these is zero, the single pointer variant used when the
2540 // number is one, and the array is used for larger numbers.
2541 //
2542 // The array is allocated via the `SelectionDAG`'s allocator and so will
2543 // always live until the DAG is cleaned up and doesn't require ownership here.
2544 //
2545 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2546 // subclasses aren't managed in a conforming C++ manner. See the comments on
2547 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2548 // constraint here is that these don't manage memory with their constructor or
2549 // destructor and can be initialized to a good state even if they start off
2550 // uninitialized.
2551 PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2552
2553 // Note that this could be folded into the above `MemRefs` member if doing so
2554 // is advantageous at some point. We don't need to store this in most cases.
2555 // However, at the moment this doesn't appear to make the allocation any
2556 // smaller and makes the code somewhat simpler to read.
2557 int NumMemRefs = 0;
2558
2559public:
2560 using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2561
2562 ArrayRef<MachineMemOperand *> memoperands() const {
2563 // Special case the common cases.
2564 if (NumMemRefs == 0)
2565 return {};
2566 if (NumMemRefs == 1)
2567 return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2568
2569 // Otherwise we have an actual array.
2570 return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2571 }
2572 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2573 mmo_iterator memoperands_end() const { return memoperands().end(); }
2574 bool memoperands_empty() const { return memoperands().empty(); }
2575
2576 /// Clear out the memory reference descriptor list.
2577 void clearMemRefs() {
2578 MemRefs = nullptr;
2579 NumMemRefs = 0;
2580 }
2581
2582 static bool classof(const SDNode *N) {
2583 return N->isMachineOpcode();
2584 }
2585};
2586
2587/// An SDNode that records if a register contains a value that is guaranteed to
2588/// be aligned accordingly.
2589class AssertAlignSDNode : public SDNode {
2590 Align Alignment;
2591
2592public:
2593 AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
2594 : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
2595
2596 Align getAlign() const { return Alignment; }
2597
2598 static bool classof(const SDNode *N) {
2599 return N->getOpcode() == ISD::AssertAlign;
2600 }
2601};
2602
2603class SDNodeIterator {
2604 const SDNode *Node;
2605 unsigned Operand;
2606
2607 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2608
2609public:
2610 using iterator_category = std::forward_iterator_tag;
2611 using value_type = SDNode;
2612 using difference_type = std::ptrdiff_t;
2613 using pointer = value_type *;
2614 using reference = value_type &;
2615
2616 bool operator==(const SDNodeIterator& x) const {
2617 return Operand == x.Operand;
2618 }
2619 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2620
2621 pointer operator*() const {
2622 return Node->getOperand(Operand).getNode();
2623 }
2624 pointer operator->() const { return operator*(); }
2625
2626 SDNodeIterator& operator++() { // Preincrement
2627 ++Operand;
2628 return *this;
2629 }
2630 SDNodeIterator operator++(int) { // Postincrement
2631 SDNodeIterator tmp = *this; ++*this; return tmp;
2632 }
2633 size_t operator-(SDNodeIterator Other) const {
2634 assert(Node == Other.Node &&(static_cast <bool> (Node == Other.Node && "Cannot compare iterators of two different nodes!"
) ? void (0) : __assert_fail ("Node == Other.Node && \"Cannot compare iterators of two different nodes!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2635, __extension__ __PRETTY_FUNCTION__))
2635 "Cannot compare iterators of two different nodes!")(static_cast <bool> (Node == Other.Node && "Cannot compare iterators of two different nodes!"
) ? void (0) : __assert_fail ("Node == Other.Node && \"Cannot compare iterators of two different nodes!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/SelectionDAGNodes.h"
, 2635, __extension__ __PRETTY_FUNCTION__))
;
2636 return Operand - Other.Operand;
2637 }
2638
2639 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2640 static SDNodeIterator end (const SDNode *N) {
2641 return SDNodeIterator(N, N->getNumOperands());
2642 }
2643
2644 unsigned getOperand() const { return Operand; }
2645 const SDNode *getNode() const { return Node; }
2646};
2647
2648template <> struct GraphTraits<SDNode*> {
2649 using NodeRef = SDNode *;
2650 using ChildIteratorType = SDNodeIterator;
2651
2652 static NodeRef getEntryNode(SDNode *N) { return N; }
2653
2654 static ChildIteratorType child_begin(NodeRef N) {
2655 return SDNodeIterator::begin(N);
2656 }
2657
2658 static ChildIteratorType child_end(NodeRef N) {
2659 return SDNodeIterator::end(N);
2660 }
2661};
2662
2663/// A representation of the largest SDNode, for use in sizeof().
2664///
2665/// This needs to be a union because the largest node differs on 32 bit systems
2666/// with 4 and 8 byte pointer alignment, respectively.
2667using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2668 BlockAddressSDNode,
2669 GlobalAddressSDNode,
2670 PseudoProbeSDNode>;
2671
2672/// The SDNode class with the greatest alignment requirement.
2673using MostAlignedSDNode = GlobalAddressSDNode;
2674
2675namespace ISD {
2676
2677 /// Returns true if the specified node is a non-extending and unindexed load.
2678 inline bool isNormalLoad(const SDNode *N) {
2679 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2680 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2681 Ld->getAddressingMode() == ISD::UNINDEXED;
2682 }
2683
2684 /// Returns true if the specified node is a non-extending load.
2685 inline bool isNON_EXTLoad(const SDNode *N) {
2686 return isa<LoadSDNode>(N) &&
2687 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2688 }
2689
2690 /// Returns true if the specified node is a EXTLOAD.
2691 inline bool isEXTLoad(const SDNode *N) {
2692 return isa<LoadSDNode>(N) &&
2693 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2694 }
2695
2696 /// Returns true if the specified node is a SEXTLOAD.
2697 inline bool isSEXTLoad(const SDNode *N) {
2698 return isa<LoadSDNode>(N) &&
2699 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2700 }
2701
2702 /// Returns true if the specified node is a ZEXTLOAD.
2703 inline bool isZEXTLoad(const SDNode *N) {
2704 return isa<LoadSDNode>(N) &&
2705 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2706 }
2707
2708 /// Returns true if the specified node is an unindexed load.
2709 inline bool isUNINDEXEDLoad(const SDNode *N) {
2710 return isa<LoadSDNode>(N) &&
2711 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2712 }
2713
2714 /// Returns true if the specified node is a non-truncating
2715 /// and unindexed store.
2716 inline bool isNormalStore(const SDNode *N) {
2717 const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2718 return St && !St->isTruncatingStore() &&
2719 St->getAddressingMode() == ISD::UNINDEXED;
2720 }
2721
2722 /// Returns true if the specified node is an unindexed store.
2723 inline bool isUNINDEXEDStore(const SDNode *N) {
2724 return isa<StoreSDNode>(N) &&
2725 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2726 }
2727
2728 /// Attempt to match a unary predicate against a scalar/splat constant or
2729 /// every element of a constant BUILD_VECTOR.
2730 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2731 bool matchUnaryPredicate(SDValue Op,
2732 std::function<bool(ConstantSDNode *)> Match,
2733 bool AllowUndefs = false);
2734
2735 /// Attempt to match a binary predicate against a pair of scalar/splat
2736 /// constants or every element of a pair of constant BUILD_VECTORs.
2737 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2738 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
2739 bool matchBinaryPredicate(
2740 SDValue LHS, SDValue RHS,
2741 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
2742 bool AllowUndefs = false, bool AllowTypeMismatch = false);
2743
2744 /// Returns true if the specified value is the overflow result from one
2745 /// of the overflow intrinsic nodes.
2746 inline bool isOverflowIntrOpRes(SDValue Op) {
2747 unsigned Opc = Op.getOpcode();
2748 return (Op.getResNo() == 1 &&
2749 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2750 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2751 }
2752
2753} // end namespace ISD
2754
2755} // end namespace llvm
2756
2757#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H