File: | build/source/llvm/lib/Target/AMDGPU/SIModeRegister.cpp |
Warning: | line 227, column 55 The result of the left shift is undefined due to shifting by '32', which is greater or equal to the width of type 'int' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===-- SIModeRegister.cpp - Mode Register --------------------------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | /// \file | |||
9 | /// This pass inserts changes to the Mode register settings as required. | |||
10 | /// Note that currently it only deals with the Double Precision Floating Point | |||
11 | /// rounding mode setting, but is intended to be generic enough to be easily | |||
12 | /// expanded. | |||
13 | /// | |||
14 | //===----------------------------------------------------------------------===// | |||
15 | // | |||
16 | #include "AMDGPU.h" | |||
17 | #include "GCNSubtarget.h" | |||
18 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" | |||
19 | #include "llvm/ADT/Statistic.h" | |||
20 | #include "llvm/CodeGen/MachineFunctionPass.h" | |||
21 | #include <queue> | |||
22 | ||||
23 | #define DEBUG_TYPE"si-mode-register" "si-mode-register" | |||
24 | ||||
25 | STATISTIC(NumSetregInserted, "Number of setreg of mode register inserted.")static llvm::Statistic NumSetregInserted = {"si-mode-register" , "NumSetregInserted", "Number of setreg of mode register inserted." }; | |||
26 | ||||
27 | using namespace llvm; | |||
28 | ||||
29 | struct Status { | |||
30 | // Mask is a bitmask where a '1' indicates the corresponding Mode bit has a | |||
31 | // known value | |||
32 | unsigned Mask; | |||
33 | unsigned Mode; | |||
34 | ||||
35 | Status() : Mask(0), Mode(0){}; | |||
36 | ||||
37 | Status(unsigned NewMask, unsigned NewMode) : Mask(NewMask), Mode(NewMode) { | |||
38 | Mode &= Mask; | |||
39 | }; | |||
40 | ||||
41 | // merge two status values such that only values that don't conflict are | |||
42 | // preserved | |||
43 | Status merge(const Status &S) const { | |||
44 | return Status((Mask | S.Mask), ((Mode & ~S.Mask) | (S.Mode & S.Mask))); | |||
45 | } | |||
46 | ||||
47 | // merge an unknown value by using the unknown value's mask to remove bits | |||
48 | // from the result | |||
49 | Status mergeUnknown(unsigned newMask) { | |||
50 | return Status(Mask & ~newMask, Mode & ~newMask); | |||
51 | } | |||
52 | ||||
53 | // intersect two Status values to produce a mode and mask that is a subset | |||
54 | // of both values | |||
55 | Status intersect(const Status &S) const { | |||
56 | unsigned NewMask = (Mask & S.Mask) & (Mode ^ ~S.Mode); | |||
57 | unsigned NewMode = (Mode & NewMask); | |||
58 | return Status(NewMask, NewMode); | |||
59 | } | |||
60 | ||||
61 | // produce the delta required to change the Mode to the required Mode | |||
62 | Status delta(const Status &S) const { | |||
63 | return Status((S.Mask & (Mode ^ S.Mode)) | (~Mask & S.Mask), S.Mode); | |||
64 | } | |||
65 | ||||
66 | bool operator==(const Status &S) const { | |||
67 | return (Mask == S.Mask) && (Mode == S.Mode); | |||
68 | } | |||
69 | ||||
70 | bool operator!=(const Status &S) const { return !(*this == S); } | |||
71 | ||||
72 | bool isCompatible(Status &S) { | |||
73 | return ((Mask & S.Mask) == S.Mask) && ((Mode & S.Mask) == S.Mode); | |||
74 | } | |||
75 | ||||
76 | bool isCombinable(Status &S) { return !(Mask & S.Mask) || isCompatible(S); } | |||
77 | }; | |||
78 | ||||
79 | class BlockData { | |||
80 | public: | |||
81 | // The Status that represents the mode register settings required by the | |||
82 | // FirstInsertionPoint (if any) in this block. Calculated in Phase 1. | |||
83 | Status Require; | |||
84 | ||||
85 | // The Status that represents the net changes to the Mode register made by | |||
86 | // this block, Calculated in Phase 1. | |||
87 | Status Change; | |||
88 | ||||
89 | // The Status that represents the mode register settings on exit from this | |||
90 | // block. Calculated in Phase 2. | |||
91 | Status Exit; | |||
92 | ||||
93 | // The Status that represents the intersection of exit Mode register settings | |||
94 | // from all predecessor blocks. Calculated in Phase 2, and used by Phase 3. | |||
95 | Status Pred; | |||
96 | ||||
97 | // In Phase 1 we record the first instruction that has a mode requirement, | |||
98 | // which is used in Phase 3 if we need to insert a mode change. | |||
99 | MachineInstr *FirstInsertionPoint; | |||
100 | ||||
101 | // A flag to indicate whether an Exit value has been set (we can't tell by | |||
102 | // examining the Exit value itself as all values may be valid results). | |||
103 | bool ExitSet; | |||
104 | ||||
105 | BlockData() : FirstInsertionPoint(nullptr), ExitSet(false){}; | |||
106 | }; | |||
107 | ||||
108 | namespace { | |||
109 | ||||
110 | class SIModeRegister : public MachineFunctionPass { | |||
111 | public: | |||
112 | static char ID; | |||
113 | ||||
114 | std::vector<std::unique_ptr<BlockData>> BlockInfo; | |||
115 | std::queue<MachineBasicBlock *> Phase2List; | |||
116 | ||||
117 | // The default mode register setting currently only caters for the floating | |||
118 | // point double precision rounding mode. | |||
119 | // We currently assume the default rounding mode is Round to Nearest | |||
120 | // NOTE: this should come from a per function rounding mode setting once such | |||
121 | // a setting exists. | |||
122 | unsigned DefaultMode = FP_ROUND_ROUND_TO_NEAREST0; | |||
123 | Status DefaultStatus = | |||
124 | Status(FP_ROUND_MODE_DP(0x3)(((0x3) & 0x3) << 2), FP_ROUND_MODE_DP(DefaultMode)(((DefaultMode) & 0x3) << 2)); | |||
125 | ||||
126 | bool Changed = false; | |||
127 | ||||
128 | public: | |||
129 | SIModeRegister() : MachineFunctionPass(ID) {} | |||
130 | ||||
131 | bool runOnMachineFunction(MachineFunction &MF) override; | |||
132 | ||||
133 | void getAnalysisUsage(AnalysisUsage &AU) const override { | |||
134 | AU.setPreservesCFG(); | |||
135 | MachineFunctionPass::getAnalysisUsage(AU); | |||
136 | } | |||
137 | ||||
138 | void processBlockPhase1(MachineBasicBlock &MBB, const SIInstrInfo *TII); | |||
139 | ||||
140 | void processBlockPhase2(MachineBasicBlock &MBB, const SIInstrInfo *TII); | |||
141 | ||||
142 | void processBlockPhase3(MachineBasicBlock &MBB, const SIInstrInfo *TII); | |||
143 | ||||
144 | Status getInstructionMode(MachineInstr &MI, const SIInstrInfo *TII); | |||
145 | ||||
146 | void insertSetreg(MachineBasicBlock &MBB, MachineInstr *I, | |||
147 | const SIInstrInfo *TII, Status InstrMode); | |||
148 | }; | |||
149 | } // End anonymous namespace. | |||
150 | ||||
151 | INITIALIZE_PASS(SIModeRegister, DEBUG_TYPE,static void *initializeSIModeRegisterPassOnce(PassRegistry & Registry) { PassInfo *PI = new PassInfo( "Insert required mode register values" , "si-mode-register", &SIModeRegister::ID, PassInfo::NormalCtor_t (callDefaultCtor<SIModeRegister>), false, false); Registry .registerPass(*PI, true); return PI; } static llvm::once_flag InitializeSIModeRegisterPassFlag; void llvm::initializeSIModeRegisterPass (PassRegistry &Registry) { llvm::call_once(InitializeSIModeRegisterPassFlag , initializeSIModeRegisterPassOnce, std::ref(Registry)); } | |||
152 | "Insert required mode register values", false, false)static void *initializeSIModeRegisterPassOnce(PassRegistry & Registry) { PassInfo *PI = new PassInfo( "Insert required mode register values" , "si-mode-register", &SIModeRegister::ID, PassInfo::NormalCtor_t (callDefaultCtor<SIModeRegister>), false, false); Registry .registerPass(*PI, true); return PI; } static llvm::once_flag InitializeSIModeRegisterPassFlag; void llvm::initializeSIModeRegisterPass (PassRegistry &Registry) { llvm::call_once(InitializeSIModeRegisterPassFlag , initializeSIModeRegisterPassOnce, std::ref(Registry)); } | |||
153 | ||||
154 | char SIModeRegister::ID = 0; | |||
155 | ||||
156 | char &llvm::SIModeRegisterID = SIModeRegister::ID; | |||
157 | ||||
158 | FunctionPass *llvm::createSIModeRegisterPass() { return new SIModeRegister(); } | |||
159 | ||||
160 | // Determine the Mode register setting required for this instruction. | |||
161 | // Instructions which don't use the Mode register return a null Status. | |||
162 | // Note this currently only deals with instructions that use the floating point | |||
163 | // double precision setting. | |||
164 | Status SIModeRegister::getInstructionMode(MachineInstr &MI, | |||
165 | const SIInstrInfo *TII) { | |||
166 | if (TII->usesFPDPRounding(MI) || | |||
167 | MI.getOpcode() == AMDGPU::FPTRUNC_UPWARD_PSEUDO || | |||
168 | MI.getOpcode() == AMDGPU::FPTRUNC_DOWNWARD_PSEUDO) { | |||
169 | switch (MI.getOpcode()) { | |||
170 | case AMDGPU::V_INTERP_P1LL_F16: | |||
171 | case AMDGPU::V_INTERP_P1LV_F16: | |||
172 | case AMDGPU::V_INTERP_P2_F16: | |||
173 | // f16 interpolation instructions need double precision round to zero | |||
174 | return Status(FP_ROUND_MODE_DP(3)(((3) & 0x3) << 2), | |||
175 | FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_ZERO)(((3) & 0x3) << 2)); | |||
176 | case AMDGPU::FPTRUNC_UPWARD_PSEUDO: { | |||
177 | // Replacing the pseudo by a real instruction in place | |||
178 | if (TII->getSubtarget().hasTrue16BitInsts()) { | |||
179 | MachineBasicBlock &MBB = *MI.getParent(); | |||
180 | MachineInstrBuilder B(*MBB.getParent(), MI); | |||
181 | MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_t16_e64)); | |||
182 | MachineOperand Src0 = MI.getOperand(1); | |||
183 | MI.removeOperand(1); | |||
184 | B.addImm(0); // src0_modifiers | |||
185 | B.add(Src0); // re-add src0 operand | |||
186 | B.addImm(0); // clamp | |||
187 | B.addImm(0); // omod | |||
188 | } else | |||
189 | MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_e32)); | |||
190 | return Status(FP_ROUND_MODE_DP(3)(((3) & 0x3) << 2), | |||
191 | FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_INF)(((1) & 0x3) << 2)); | |||
192 | } | |||
193 | case AMDGPU::FPTRUNC_DOWNWARD_PSEUDO: { | |||
194 | // Replacing the pseudo by a real instruction in place | |||
195 | if (TII->getSubtarget().hasTrue16BitInsts()) { | |||
196 | MachineBasicBlock &MBB = *MI.getParent(); | |||
197 | MachineInstrBuilder B(*MBB.getParent(), MI); | |||
198 | MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_t16_e64)); | |||
199 | MachineOperand Src0 = MI.getOperand(1); | |||
200 | MI.removeOperand(1); | |||
201 | B.addImm(0); // src0_modifiers | |||
202 | B.add(Src0); // re-add src0 operand | |||
203 | B.addImm(0); // clamp | |||
204 | B.addImm(0); // omod | |||
205 | } else | |||
206 | MI.setDesc(TII->get(AMDGPU::V_CVT_F16_F32_e32)); | |||
207 | return Status(FP_ROUND_MODE_DP(3)(((3) & 0x3) << 2), | |||
208 | FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEGINF)(((2) & 0x3) << 2)); | |||
209 | } | |||
210 | default: | |||
211 | return DefaultStatus; | |||
212 | } | |||
213 | } | |||
214 | return Status(); | |||
215 | } | |||
216 | ||||
217 | // Insert a setreg instruction to update the Mode register. | |||
218 | // It is possible (though unlikely) for an instruction to require a change to | |||
219 | // the value of disjoint parts of the Mode register when we don't know the | |||
220 | // value of the intervening bits. In that case we need to use more than one | |||
221 | // setreg instruction. | |||
222 | void SIModeRegister::insertSetreg(MachineBasicBlock &MBB, MachineInstr *MI, | |||
223 | const SIInstrInfo *TII, Status InstrMode) { | |||
224 | while (InstrMode.Mask) { | |||
225 | unsigned Offset = llvm::countr_zero<unsigned>(InstrMode.Mask); | |||
226 | unsigned Width = llvm::countr_one<unsigned>(InstrMode.Mask >> Offset); | |||
227 | unsigned Value = (InstrMode.Mode >> Offset) & ((1 << Width) - 1); | |||
| ||||
228 | BuildMI(MBB, MI, nullptr, TII->get(AMDGPU::S_SETREG_IMM32_B32)) | |||
229 | .addImm(Value) | |||
230 | .addImm(((Width - 1) << AMDGPU::Hwreg::WIDTH_M1_SHIFT_) | | |||
231 | (Offset << AMDGPU::Hwreg::OFFSET_SHIFT_) | | |||
232 | (AMDGPU::Hwreg::ID_MODE << AMDGPU::Hwreg::ID_SHIFT_)); | |||
233 | ++NumSetregInserted; | |||
234 | Changed = true; | |||
235 | InstrMode.Mask &= ~(((1 << Width) - 1) << Offset); | |||
236 | } | |||
237 | } | |||
238 | ||||
239 | // In Phase 1 we iterate through the instructions of the block and for each | |||
240 | // instruction we get its mode usage. If the instruction uses the Mode register | |||
241 | // we: | |||
242 | // - update the Change status, which tracks the changes to the Mode register | |||
243 | // made by this block | |||
244 | // - if this instruction's requirements are compatible with the current setting | |||
245 | // of the Mode register we merge the modes | |||
246 | // - if it isn't compatible and an InsertionPoint isn't set, then we set the | |||
247 | // InsertionPoint to the current instruction, and we remember the current | |||
248 | // mode | |||
249 | // - if it isn't compatible and InsertionPoint is set we insert a seteg before | |||
250 | // that instruction (unless this instruction forms part of the block's | |||
251 | // entry requirements in which case the insertion is deferred until Phase 3 | |||
252 | // when predecessor exit values are known), and move the insertion point to | |||
253 | // this instruction | |||
254 | // - if this is a setreg instruction we treat it as an incompatible instruction. | |||
255 | // This is sub-optimal but avoids some nasty corner cases, and is expected to | |||
256 | // occur very rarely. | |||
257 | // - on exit we have set the Require, Change, and initial Exit modes. | |||
258 | void SIModeRegister::processBlockPhase1(MachineBasicBlock &MBB, | |||
259 | const SIInstrInfo *TII) { | |||
260 | auto NewInfo = std::make_unique<BlockData>(); | |||
261 | MachineInstr *InsertionPoint = nullptr; | |||
262 | // RequirePending is used to indicate whether we are collecting the initial | |||
263 | // requirements for the block, and need to defer the first InsertionPoint to | |||
264 | // Phase 3. It is set to false once we have set FirstInsertionPoint, or when | |||
265 | // we discover an explicit setreg that means this block doesn't have any | |||
266 | // initial requirements. | |||
267 | bool RequirePending = true; | |||
268 | Status IPChange; | |||
269 | for (MachineInstr &MI : MBB) { | |||
270 | Status InstrMode = getInstructionMode(MI, TII); | |||
271 | if (MI.getOpcode() == AMDGPU::S_SETREG_B32 || | |||
272 | MI.getOpcode() == AMDGPU::S_SETREG_B32_mode || | |||
273 | MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 || | |||
274 | MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) { | |||
275 | // We preserve any explicit mode register setreg instruction we encounter, | |||
276 | // as we assume it has been inserted by a higher authority (this is | |||
277 | // likely to be a very rare occurrence). | |||
278 | unsigned Dst = TII->getNamedOperand(MI, AMDGPU::OpName::simm16)->getImm(); | |||
279 | if (((Dst & AMDGPU::Hwreg::ID_MASK_) >> AMDGPU::Hwreg::ID_SHIFT_) != | |||
280 | AMDGPU::Hwreg::ID_MODE) | |||
281 | continue; | |||
282 | ||||
283 | unsigned Width = ((Dst & AMDGPU::Hwreg::WIDTH_M1_MASK_) >> | |||
284 | AMDGPU::Hwreg::WIDTH_M1_SHIFT_) + | |||
285 | 1; | |||
286 | unsigned Offset = | |||
287 | (Dst & AMDGPU::Hwreg::OFFSET_MASK_) >> AMDGPU::Hwreg::OFFSET_SHIFT_; | |||
288 | unsigned Mask = ((1 << Width) - 1) << Offset; | |||
289 | ||||
290 | // If an InsertionPoint is set we will insert a setreg there. | |||
291 | if (InsertionPoint) { | |||
292 | insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change)); | |||
293 | InsertionPoint = nullptr; | |||
294 | } | |||
295 | // If this is an immediate then we know the value being set, but if it is | |||
296 | // not an immediate then we treat the modified bits of the mode register | |||
297 | // as unknown. | |||
298 | if (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 || | |||
299 | MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) { | |||
300 | unsigned Val = TII->getNamedOperand(MI, AMDGPU::OpName::imm)->getImm(); | |||
301 | unsigned Mode = (Val << Offset) & Mask; | |||
302 | Status Setreg = Status(Mask, Mode); | |||
303 | // If we haven't already set the initial requirements for the block we | |||
304 | // don't need to as the requirements start from this explicit setreg. | |||
305 | RequirePending = false; | |||
306 | NewInfo->Change = NewInfo->Change.merge(Setreg); | |||
307 | } else { | |||
308 | NewInfo->Change = NewInfo->Change.mergeUnknown(Mask); | |||
309 | } | |||
310 | } else if (!NewInfo->Change.isCompatible(InstrMode)) { | |||
311 | // This instruction uses the Mode register and its requirements aren't | |||
312 | // compatible with the current mode. | |||
313 | if (InsertionPoint) { | |||
314 | // If the required mode change cannot be included in the current | |||
315 | // InsertionPoint changes, we need a setreg and start a new | |||
316 | // InsertionPoint. | |||
317 | if (!IPChange.delta(NewInfo->Change).isCombinable(InstrMode)) { | |||
318 | if (RequirePending) { | |||
319 | // This is the first insertionPoint in the block so we will defer | |||
320 | // the insertion of the setreg to Phase 3 where we know whether or | |||
321 | // not it is actually needed. | |||
322 | NewInfo->FirstInsertionPoint = InsertionPoint; | |||
323 | NewInfo->Require = NewInfo->Change; | |||
324 | RequirePending = false; | |||
325 | } else { | |||
326 | insertSetreg(MBB, InsertionPoint, TII, | |||
327 | IPChange.delta(NewInfo->Change)); | |||
328 | IPChange = NewInfo->Change; | |||
329 | } | |||
330 | // Set the new InsertionPoint | |||
331 | InsertionPoint = &MI; | |||
332 | } | |||
333 | NewInfo->Change = NewInfo->Change.merge(InstrMode); | |||
334 | } else { | |||
335 | // No InsertionPoint is currently set - this is either the first in | |||
336 | // the block or we have previously seen an explicit setreg. | |||
337 | InsertionPoint = &MI; | |||
338 | IPChange = NewInfo->Change; | |||
339 | NewInfo->Change = NewInfo->Change.merge(InstrMode); | |||
340 | } | |||
341 | } | |||
342 | } | |||
343 | if (RequirePending) { | |||
344 | // If we haven't yet set the initial requirements for the block we set them | |||
345 | // now. | |||
346 | NewInfo->FirstInsertionPoint = InsertionPoint; | |||
347 | NewInfo->Require = NewInfo->Change; | |||
348 | } else if (InsertionPoint) { | |||
349 | // We need to insert a setreg at the InsertionPoint | |||
350 | insertSetreg(MBB, InsertionPoint, TII, IPChange.delta(NewInfo->Change)); | |||
351 | } | |||
352 | NewInfo->Exit = NewInfo->Change; | |||
353 | BlockInfo[MBB.getNumber()] = std::move(NewInfo); | |||
354 | } | |||
355 | ||||
356 | // In Phase 2 we revisit each block and calculate the common Mode register | |||
357 | // value provided by all predecessor blocks. If the Exit value for the block | |||
358 | // is changed, then we add the successor blocks to the worklist so that the | |||
359 | // exit value is propagated. | |||
360 | void SIModeRegister::processBlockPhase2(MachineBasicBlock &MBB, | |||
361 | const SIInstrInfo *TII) { | |||
362 | bool RevisitRequired = false; | |||
363 | bool ExitSet = false; | |||
364 | unsigned ThisBlock = MBB.getNumber(); | |||
365 | if (MBB.pred_empty()) { | |||
366 | // There are no predecessors, so use the default starting status. | |||
367 | BlockInfo[ThisBlock]->Pred = DefaultStatus; | |||
368 | ExitSet = true; | |||
369 | } else { | |||
370 | // Build a status that is common to all the predecessors by intersecting | |||
371 | // all the predecessor exit status values. | |||
372 | // Mask bits (which represent the Mode bits with a known value) can only be | |||
373 | // added by explicit SETREG instructions or the initial default value - | |||
374 | // the intersection process may remove Mask bits. | |||
375 | // If we find a predecessor that has not yet had an exit value determined | |||
376 | // (this can happen for example if a block is its own predecessor) we defer | |||
377 | // use of that value as the Mask will be all zero, and we will revisit this | |||
378 | // block again later (unless the only predecessor without an exit value is | |||
379 | // this block). | |||
380 | MachineBasicBlock::pred_iterator P = MBB.pred_begin(), E = MBB.pred_end(); | |||
381 | MachineBasicBlock &PB = *(*P); | |||
382 | unsigned PredBlock = PB.getNumber(); | |||
383 | if ((ThisBlock == PredBlock) && (std::next(P) == E)) { | |||
384 | BlockInfo[ThisBlock]->Pred = DefaultStatus; | |||
385 | ExitSet = true; | |||
386 | } else if (BlockInfo[PredBlock]->ExitSet) { | |||
387 | BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit; | |||
388 | ExitSet = true; | |||
389 | } else if (PredBlock != ThisBlock) | |||
390 | RevisitRequired = true; | |||
391 | ||||
392 | for (P = std::next(P); P != E; P = std::next(P)) { | |||
393 | MachineBasicBlock *Pred = *P; | |||
394 | unsigned PredBlock = Pred->getNumber(); | |||
395 | if (BlockInfo[PredBlock]->ExitSet) { | |||
396 | if (BlockInfo[ThisBlock]->ExitSet) { | |||
397 | BlockInfo[ThisBlock]->Pred = | |||
398 | BlockInfo[ThisBlock]->Pred.intersect(BlockInfo[PredBlock]->Exit); | |||
399 | } else { | |||
400 | BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit; | |||
401 | } | |||
402 | ExitSet = true; | |||
403 | } else if (PredBlock != ThisBlock) | |||
404 | RevisitRequired = true; | |||
405 | } | |||
406 | } | |||
407 | Status TmpStatus = | |||
408 | BlockInfo[ThisBlock]->Pred.merge(BlockInfo[ThisBlock]->Change); | |||
409 | if (BlockInfo[ThisBlock]->Exit != TmpStatus) { | |||
410 | BlockInfo[ThisBlock]->Exit = TmpStatus; | |||
411 | // Add the successors to the work list so we can propagate the changed exit | |||
412 | // status. | |||
413 | for (MachineBasicBlock *Succ : MBB.successors()) | |||
414 | Phase2List.push(Succ); | |||
415 | } | |||
416 | BlockInfo[ThisBlock]->ExitSet = ExitSet; | |||
417 | if (RevisitRequired) | |||
418 | Phase2List.push(&MBB); | |||
419 | } | |||
420 | ||||
421 | // In Phase 3 we revisit each block and if it has an insertion point defined we | |||
422 | // check whether the predecessor mode meets the block's entry requirements. If | |||
423 | // not we insert an appropriate setreg instruction to modify the Mode register. | |||
424 | void SIModeRegister::processBlockPhase3(MachineBasicBlock &MBB, | |||
425 | const SIInstrInfo *TII) { | |||
426 | unsigned ThisBlock = MBB.getNumber(); | |||
427 | if (!BlockInfo[ThisBlock]->Pred.isCompatible(BlockInfo[ThisBlock]->Require)) { | |||
428 | Status Delta = | |||
429 | BlockInfo[ThisBlock]->Pred.delta(BlockInfo[ThisBlock]->Require); | |||
430 | if (BlockInfo[ThisBlock]->FirstInsertionPoint) | |||
431 | insertSetreg(MBB, BlockInfo[ThisBlock]->FirstInsertionPoint, TII, Delta); | |||
432 | else | |||
433 | insertSetreg(MBB, &MBB.instr_front(), TII, Delta); | |||
434 | } | |||
435 | } | |||
436 | ||||
437 | bool SIModeRegister::runOnMachineFunction(MachineFunction &MF) { | |||
438 | BlockInfo.resize(MF.getNumBlockIDs()); | |||
439 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); | |||
440 | const SIInstrInfo *TII = ST.getInstrInfo(); | |||
441 | ||||
442 | // Processing is performed in a number of phases | |||
443 | ||||
444 | // Phase 1 - determine the initial mode required by each block, and add setreg | |||
445 | // instructions for intra block requirements. | |||
446 | for (MachineBasicBlock &BB : MF) | |||
447 | processBlockPhase1(BB, TII); | |||
448 | ||||
449 | // Phase 2 - determine the exit mode from each block. We add all blocks to the | |||
450 | // list here, but will also add any that need to be revisited during Phase 2 | |||
451 | // processing. | |||
452 | for (MachineBasicBlock &BB : MF) | |||
453 | Phase2List.push(&BB); | |||
454 | while (!Phase2List.empty()) { | |||
| ||||
455 | processBlockPhase2(*Phase2List.front(), TII); | |||
456 | Phase2List.pop(); | |||
457 | } | |||
458 | ||||
459 | // Phase 3 - add an initial setreg to each block where the required entry mode | |||
460 | // is not satisfied by the exit mode of all its predecessors. | |||
461 | for (MachineBasicBlock &BB : MF) | |||
462 | processBlockPhase3(BB, TII); | |||
463 | ||||
464 | BlockInfo.clear(); | |||
465 | ||||
466 | return Changed; | |||
467 | } |
1 | //===-- llvm/ADT/bit.h - C++20 <bit> ----------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file implements the C++20 <bit> header. |
11 | /// |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_ADT_BIT_H |
15 | #define LLVM_ADT_BIT_H |
16 | |
17 | #include "llvm/Support/Compiler.h" |
18 | #include <cstdint> |
19 | #include <limits> |
20 | #include <type_traits> |
21 | |
22 | #if !__has_builtin(__builtin_bit_cast)1 |
23 | #include <cstring> |
24 | #endif |
25 | |
26 | #if defined(_MSC_VER) && !defined(_DEBUG1) |
27 | #include <cstdlib> // for _byteswap_{ushort,ulong,uint64} |
28 | #endif |
29 | |
30 | #ifdef _MSC_VER |
31 | // Declare these intrinsics manually rather including intrin.h. It's very |
32 | // expensive, and bit.h is popular via MathExtras.h. |
33 | // #include <intrin.h> |
34 | extern "C" { |
35 | unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); |
36 | unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); |
37 | unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); |
38 | unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); |
39 | } |
40 | #endif |
41 | |
42 | namespace llvm { |
43 | |
44 | // This implementation of bit_cast is different from the C++20 one in two ways: |
45 | // - It isn't constexpr because that requires compiler support. |
46 | // - It requires trivially-constructible To, to avoid UB in the implementation. |
47 | template < |
48 | typename To, typename From, |
49 | typename = std::enable_if_t<sizeof(To) == sizeof(From)>, |
50 | typename = std::enable_if_t<std::is_trivially_constructible<To>::value>, |
51 | typename = std::enable_if_t<std::is_trivially_copyable<To>::value>, |
52 | typename = std::enable_if_t<std::is_trivially_copyable<From>::value>> |
53 | [[nodiscard]] inline To bit_cast(const From &from) noexcept { |
54 | #if __has_builtin(__builtin_bit_cast)1 |
55 | return __builtin_bit_cast(To, from); |
56 | #else |
57 | To to; |
58 | std::memcpy(&to, &from, sizeof(To)); |
59 | return to; |
60 | #endif |
61 | } |
62 | |
63 | /// Reverses the bytes in the given integer value V. |
64 | template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>> |
65 | [[nodiscard]] constexpr T byteswap(T V) noexcept { |
66 | if constexpr (sizeof(T) == 1) { |
67 | return V; |
68 | } else if constexpr (sizeof(T) == 2) { |
69 | uint16_t UV = V; |
70 | #if defined(_MSC_VER) && !defined(_DEBUG1) |
71 | // The DLL version of the runtime lacks these functions (bug!?), but in a |
72 | // release build they're replaced with BSWAP instructions anyway. |
73 | return _byteswap_ushort(UV); |
74 | #else |
75 | uint16_t Hi = UV << 8; |
76 | uint16_t Lo = UV >> 8; |
77 | return Hi | Lo; |
78 | #endif |
79 | } else if constexpr (sizeof(T) == 4) { |
80 | uint32_t UV = V; |
81 | #if __has_builtin(__builtin_bswap32)1 |
82 | return __builtin_bswap32(UV); |
83 | #elif defined(_MSC_VER) && !defined(_DEBUG1) |
84 | return _byteswap_ulong(UV); |
85 | #else |
86 | uint32_t Byte0 = UV & 0x000000FF; |
87 | uint32_t Byte1 = UV & 0x0000FF00; |
88 | uint32_t Byte2 = UV & 0x00FF0000; |
89 | uint32_t Byte3 = UV & 0xFF000000; |
90 | return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24); |
91 | #endif |
92 | } else if constexpr (sizeof(T) == 8) { |
93 | uint64_t UV = V; |
94 | #if __has_builtin(__builtin_bswap64)1 |
95 | return __builtin_bswap64(UV); |
96 | #elif defined(_MSC_VER) && !defined(_DEBUG1) |
97 | return _byteswap_uint64(UV); |
98 | #else |
99 | uint64_t Hi = llvm::byteswap<uint32_t>(UV); |
100 | uint32_t Lo = llvm::byteswap<uint32_t>(UV >> 32); |
101 | return (Hi << 32) | Lo; |
102 | #endif |
103 | } else { |
104 | static_assert(!sizeof(T *), "Don't know how to handle the given type."); |
105 | return 0; |
106 | } |
107 | } |
108 | |
109 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
110 | [[nodiscard]] constexpr inline bool has_single_bit(T Value) noexcept { |
111 | return (Value != 0) && ((Value & (Value - 1)) == 0); |
112 | } |
113 | |
114 | namespace detail { |
115 | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { |
116 | static unsigned count(T Val) { |
117 | if (!Val) |
118 | return std::numeric_limits<T>::digits; |
119 | if (Val & 0x1) |
120 | return 0; |
121 | |
122 | // Bisection method. |
123 | unsigned ZeroBits = 0; |
124 | T Shift = std::numeric_limits<T>::digits >> 1; |
125 | T Mask = std::numeric_limits<T>::max() >> Shift; |
126 | while (Shift) { |
127 | if ((Val & Mask) == 0) { |
128 | Val >>= Shift; |
129 | ZeroBits |= Shift; |
130 | } |
131 | Shift >>= 1; |
132 | Mask >>= Shift; |
133 | } |
134 | return ZeroBits; |
135 | } |
136 | }; |
137 | |
138 | #if defined(__GNUC__4) || defined(_MSC_VER) |
139 | template <typename T> struct TrailingZerosCounter<T, 4> { |
140 | static unsigned count(T Val) { |
141 | if (Val == 0) |
142 | return 32; |
143 | |
144 | #if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4) |
145 | return __builtin_ctz(Val); |
146 | #elif defined(_MSC_VER) |
147 | unsigned long Index; |
148 | _BitScanForward(&Index, Val); |
149 | return Index; |
150 | #endif |
151 | } |
152 | }; |
153 | |
154 | #if !defined(_MSC_VER) || defined(_M_X64) |
155 | template <typename T> struct TrailingZerosCounter<T, 8> { |
156 | static unsigned count(T Val) { |
157 | if (Val == 0) |
158 | return 64; |
159 | |
160 | #if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4) |
161 | return __builtin_ctzll(Val); |
162 | #elif defined(_MSC_VER) |
163 | unsigned long Index; |
164 | _BitScanForward64(&Index, Val); |
165 | return Index; |
166 | #endif |
167 | } |
168 | }; |
169 | #endif |
170 | #endif |
171 | } // namespace detail |
172 | |
173 | /// Count number of 0's from the least significant bit to the most |
174 | /// stopping at the first 1. |
175 | /// |
176 | /// Only unsigned integral types are allowed. |
177 | /// |
178 | /// Returns std::numeric_limits<T>::digits on an input of 0. |
179 | template <typename T> [[nodiscard]] int countr_zero(T Val) { |
180 | static_assert(std::is_unsigned_v<T>, |
181 | "Only unsigned integral types are allowed."); |
182 | return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val); |
183 | } |
184 | |
185 | namespace detail { |
186 | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { |
187 | static unsigned count(T Val) { |
188 | if (!Val) |
189 | return std::numeric_limits<T>::digits; |
190 | |
191 | // Bisection method. |
192 | unsigned ZeroBits = 0; |
193 | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { |
194 | T Tmp = Val >> Shift; |
195 | if (Tmp) |
196 | Val = Tmp; |
197 | else |
198 | ZeroBits |= Shift; |
199 | } |
200 | return ZeroBits; |
201 | } |
202 | }; |
203 | |
204 | #if defined(__GNUC__4) || defined(_MSC_VER) |
205 | template <typename T> struct LeadingZerosCounter<T, 4> { |
206 | static unsigned count(T Val) { |
207 | if (Val == 0) |
208 | return 32; |
209 | |
210 | #if __has_builtin(__builtin_clz)1 || defined(__GNUC__4) |
211 | return __builtin_clz(Val); |
212 | #elif defined(_MSC_VER) |
213 | unsigned long Index; |
214 | _BitScanReverse(&Index, Val); |
215 | return Index ^ 31; |
216 | #endif |
217 | } |
218 | }; |
219 | |
220 | #if !defined(_MSC_VER) || defined(_M_X64) |
221 | template <typename T> struct LeadingZerosCounter<T, 8> { |
222 | static unsigned count(T Val) { |
223 | if (Val == 0) |
224 | return 64; |
225 | |
226 | #if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4) |
227 | return __builtin_clzll(Val); |
228 | #elif defined(_MSC_VER) |
229 | unsigned long Index; |
230 | _BitScanReverse64(&Index, Val); |
231 | return Index ^ 63; |
232 | #endif |
233 | } |
234 | }; |
235 | #endif |
236 | #endif |
237 | } // namespace detail |
238 | |
239 | /// Count number of 0's from the most significant bit to the least |
240 | /// stopping at the first 1. |
241 | /// |
242 | /// Only unsigned integral types are allowed. |
243 | /// |
244 | /// Returns std::numeric_limits<T>::digits on an input of 0. |
245 | template <typename T> [[nodiscard]] int countl_zero(T Val) { |
246 | static_assert(std::is_unsigned_v<T>, |
247 | "Only unsigned integral types are allowed."); |
248 | return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val); |
249 | } |
250 | |
251 | /// Count the number of ones from the most significant bit to the first |
252 | /// zero bit. |
253 | /// |
254 | /// Ex. countl_one(0xFF0FFF00) == 8. |
255 | /// Only unsigned integral types are allowed. |
256 | /// |
257 | /// Returns std::numeric_limits<T>::digits on an input of all ones. |
258 | template <typename T> [[nodiscard]] int countl_one(T Value) { |
259 | static_assert(std::is_unsigned_v<T>, |
260 | "Only unsigned integral types are allowed."); |
261 | return llvm::countl_zero<T>(~Value); |
262 | } |
263 | |
264 | /// Count the number of ones from the least significant bit to the first |
265 | /// zero bit. |
266 | /// |
267 | /// Ex. countr_one(0x00FF00FF) == 8. |
268 | /// Only unsigned integral types are allowed. |
269 | /// |
270 | /// Returns std::numeric_limits<T>::digits on an input of all ones. |
271 | template <typename T> [[nodiscard]] int countr_one(T Value) { |
272 | static_assert(std::is_unsigned_v<T>, |
273 | "Only unsigned integral types are allowed."); |
274 | return llvm::countr_zero<T>(~Value); |
275 | } |
276 | |
277 | /// Returns the number of bits needed to represent Value if Value is nonzero. |
278 | /// Returns 0 otherwise. |
279 | /// |
280 | /// Ex. bit_width(5) == 3. |
281 | template <typename T> [[nodiscard]] int bit_width(T Value) { |
282 | static_assert(std::is_unsigned_v<T>, |
283 | "Only unsigned integral types are allowed."); |
284 | return std::numeric_limits<T>::digits - llvm::countl_zero(Value); |
285 | } |
286 | |
287 | /// Returns the largest integral power of two no greater than Value if Value is |
288 | /// nonzero. Returns 0 otherwise. |
289 | /// |
290 | /// Ex. bit_floor(5) == 4. |
291 | template <typename T> [[nodiscard]] T bit_floor(T Value) { |
292 | static_assert(std::is_unsigned_v<T>, |
293 | "Only unsigned integral types are allowed."); |
294 | if (!Value) |
295 | return 0; |
296 | return T(1) << (llvm::bit_width(Value) - 1); |
297 | } |
298 | |
299 | /// Returns the smallest integral power of two no smaller than Value if Value is |
300 | /// nonzero. Returns 1 otherwise. |
301 | /// |
302 | /// Ex. bit_ceil(5) == 8. |
303 | /// |
304 | /// The return value is undefined if the input is larger than the largest power |
305 | /// of two representable in T. |
306 | template <typename T> [[nodiscard]] T bit_ceil(T Value) { |
307 | static_assert(std::is_unsigned_v<T>, |
308 | "Only unsigned integral types are allowed."); |
309 | if (Value < 2) |
310 | return 1; |
311 | return T(1) << llvm::bit_width<T>(Value - 1u); |
312 | } |
313 | |
314 | namespace detail { |
315 | template <typename T, std::size_t SizeOfT> struct PopulationCounter { |
316 | static int count(T Value) { |
317 | // Generic version, forward to 32 bits. |
318 | static_assert(SizeOfT <= 4, "Not implemented!"); |
319 | #if defined(__GNUC__4) |
320 | return (int)__builtin_popcount(Value); |
321 | #else |
322 | uint32_t v = Value; |
323 | v = v - ((v >> 1) & 0x55555555); |
324 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
325 | return int(((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24); |
326 | #endif |
327 | } |
328 | }; |
329 | |
330 | template <typename T> struct PopulationCounter<T, 8> { |
331 | static int count(T Value) { |
332 | #if defined(__GNUC__4) |
333 | return (int)__builtin_popcountll(Value); |
334 | #else |
335 | uint64_t v = Value; |
336 | v = v - ((v >> 1) & 0x5555555555555555ULL); |
337 | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); |
338 | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; |
339 | return int((uint64_t)(v * 0x0101010101010101ULL) >> 56); |
340 | #endif |
341 | } |
342 | }; |
343 | } // namespace detail |
344 | |
345 | /// Count the number of set bits in a value. |
346 | /// Ex. popcount(0xF000F000) = 8 |
347 | /// Returns 0 if the word is zero. |
348 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
349 | [[nodiscard]] inline int popcount(T Value) noexcept { |
350 | return detail::PopulationCounter<T, sizeof(T)>::count(Value); |
351 | } |
352 | |
353 | // Forward-declare rotr so that rotl can use it. |
354 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
355 | [[nodiscard]] constexpr T rotr(T V, int R); |
356 | |
357 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
358 | [[nodiscard]] constexpr T rotl(T V, int R) { |
359 | unsigned N = std::numeric_limits<T>::digits; |
360 | |
361 | R = R % N; |
362 | if (!R) |
363 | return V; |
364 | |
365 | if (R < 0) |
366 | return llvm::rotr(V, -R); |
367 | |
368 | return (V << R) | (V >> (N - R)); |
369 | } |
370 | |
371 | template <typename T, typename> [[nodiscard]] constexpr T rotr(T V, int R) { |
372 | unsigned N = std::numeric_limits<T>::digits; |
373 | |
374 | R = R % N; |
375 | if (!R) |
376 | return V; |
377 | |
378 | if (R < 0) |
379 | return llvm::rotl(V, -R); |
380 | |
381 | return (V >> R) | (V << (N - R)); |
382 | } |
383 | |
384 | } // namespace llvm |
385 | |
386 | #endif |