Bug Summary

File:llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
Warning:line 5758, column 30
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SLPVectorizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/lib/Transforms/Vectorize -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/lib/Transforms/Vectorize -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-05-07-005843-9350-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp

/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp

1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallBitVector.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/iterator.h"
32#include "llvm/ADT/iterator_range.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/Analysis/AssumptionCache.h"
35#include "llvm/Analysis/CodeMetrics.h"
36#include "llvm/Analysis/DemandedBits.h"
37#include "llvm/Analysis/GlobalsModRef.h"
38#include "llvm/Analysis/IVDescriptors.h"
39#include "llvm/Analysis/LoopAccessAnalysis.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/MemoryLocation.h"
42#include "llvm/Analysis/OptimizationRemarkEmitter.h"
43#include "llvm/Analysis/ScalarEvolution.h"
44#include "llvm/Analysis/ScalarEvolutionExpressions.h"
45#include "llvm/Analysis/TargetLibraryInfo.h"
46#include "llvm/Analysis/TargetTransformInfo.h"
47#include "llvm/Analysis/ValueTracking.h"
48#include "llvm/Analysis/VectorUtils.h"
49#include "llvm/IR/Attributes.h"
50#include "llvm/IR/BasicBlock.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
54#include "llvm/IR/DebugLoc.h"
55#include "llvm/IR/DerivedTypes.h"
56#include "llvm/IR/Dominators.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/IRBuilder.h"
59#include "llvm/IR/InstrTypes.h"
60#include "llvm/IR/Instruction.h"
61#include "llvm/IR/Instructions.h"
62#include "llvm/IR/IntrinsicInst.h"
63#include "llvm/IR/Intrinsics.h"
64#include "llvm/IR/Module.h"
65#include "llvm/IR/NoFolder.h"
66#include "llvm/IR/Operator.h"
67#include "llvm/IR/PatternMatch.h"
68#include "llvm/IR/Type.h"
69#include "llvm/IR/Use.h"
70#include "llvm/IR/User.h"
71#include "llvm/IR/Value.h"
72#include "llvm/IR/ValueHandle.h"
73#include "llvm/IR/Verifier.h"
74#include "llvm/InitializePasses.h"
75#include "llvm/Pass.h"
76#include "llvm/Support/Casting.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/Compiler.h"
79#include "llvm/Support/DOTGraphTraits.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/ErrorHandling.h"
82#include "llvm/Support/GraphWriter.h"
83#include "llvm/Support/InstructionCost.h"
84#include "llvm/Support/KnownBits.h"
85#include "llvm/Support/MathExtras.h"
86#include "llvm/Support/raw_ostream.h"
87#include "llvm/Transforms/Utils/InjectTLIMappings.h"
88#include "llvm/Transforms/Utils/LoopUtils.h"
89#include "llvm/Transforms/Vectorize.h"
90#include <algorithm>
91#include <cassert>
92#include <cstdint>
93#include <iterator>
94#include <memory>
95#include <set>
96#include <string>
97#include <tuple>
98#include <utility>
99#include <vector>
100
101using namespace llvm;
102using namespace llvm::PatternMatch;
103using namespace slpvectorizer;
104
105#define SV_NAME"slp-vectorizer" "slp-vectorizer"
106#define DEBUG_TYPE"SLP" "SLP"
107
108STATISTIC(NumVectorInstructions, "Number of vector instructions generated")static llvm::Statistic NumVectorInstructions = {"SLP", "NumVectorInstructions"
, "Number of vector instructions generated"}
;
109
110cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
111 cl::desc("Run the SLP vectorization passes"));
112
113static cl::opt<int>
114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
115 cl::desc("Only vectorize if you gain more than this "
116 "number "));
117
118static cl::opt<bool>
119ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
120 cl::desc("Attempt to vectorize horizontal reductions"));
121
122static cl::opt<bool> ShouldStartVectorizeHorAtStore(
123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
124 cl::desc(
125 "Attempt to vectorize horizontal reductions feeding into a store"));
126
127static cl::opt<int>
128MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
129 cl::desc("Attempt to vectorize for this register size in bits"));
130
131static cl::opt<unsigned>
132MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
133 cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
134
135static cl::opt<int>
136MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
137 cl::desc("Maximum depth of the lookup for consecutive stores."));
138
139/// Limits the size of scheduling regions in a block.
140/// It avoid long compile times for _very_ large blocks where vector
141/// instructions are spread over a wide range.
142/// This limit is way higher than needed by real-world functions.
143static cl::opt<int>
144ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
145 cl::desc("Limit the size of the SLP scheduling region per block"));
146
147static cl::opt<int> MinVectorRegSizeOption(
148 "slp-min-reg-size", cl::init(128), cl::Hidden,
149 cl::desc("Attempt to vectorize for this register size in bits"));
150
151static cl::opt<unsigned> RecursionMaxDepth(
152 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
153 cl::desc("Limit the recursion depth when building a vectorizable tree"));
154
155static cl::opt<unsigned> MinTreeSize(
156 "slp-min-tree-size", cl::init(3), cl::Hidden,
157 cl::desc("Only vectorize small trees if they are fully vectorizable"));
158
159// The maximum depth that the look-ahead score heuristic will explore.
160// The higher this value, the higher the compilation time overhead.
161static cl::opt<int> LookAheadMaxDepth(
162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
163 cl::desc("The maximum look-ahead depth for operand reordering scores"));
164
165// The Look-ahead heuristic goes through the users of the bundle to calculate
166// the users cost in getExternalUsesCost(). To avoid compilation time increase
167// we limit the number of users visited to this value.
168static cl::opt<unsigned> LookAheadUsersBudget(
169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
170 cl::desc("The maximum number of users to visit while visiting the "
171 "predecessors. This prevents compilation time increase."));
172
173static cl::opt<bool>
174 ViewSLPTree("view-slp-tree", cl::Hidden,
175 cl::desc("Display the SLP trees with Graphviz"));
176
177// Limit the number of alias checks. The limit is chosen so that
178// it has no negative effect on the llvm benchmarks.
179static const unsigned AliasedCheckLimit = 10;
180
181// Another limit for the alias checks: The maximum distance between load/store
182// instructions where alias checks are done.
183// This limit is useful for very large basic blocks.
184static const unsigned MaxMemDepDistance = 160;
185
186/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
187/// regions to be handled.
188static const int MinScheduleRegionSize = 16;
189
190/// Predicate for the element types that the SLP vectorizer supports.
191///
192/// The most important thing to filter here are types which are invalid in LLVM
193/// vectors. We also filter target specific types which have absolutely no
194/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
195/// avoids spending time checking the cost model and realizing that they will
196/// be inevitably scalarized.
197static bool isValidElementType(Type *Ty) {
198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
199 !Ty->isPPC_FP128Ty();
200}
201
202/// \returns true if all of the instructions in \p VL are in the same block or
203/// false otherwise.
204static bool allSameBlock(ArrayRef<Value *> VL) {
205 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
206 if (!I0)
207 return false;
208 BasicBlock *BB = I0->getParent();
209 for (int I = 1, E = VL.size(); I < E; I++) {
210 auto *II = dyn_cast<Instruction>(VL[I]);
211 if (!II)
212 return false;
213
214 if (BB != II->getParent())
215 return false;
216 }
217 return true;
218}
219
220/// \returns True if all of the values in \p VL are constants (but not
221/// globals/constant expressions).
222static bool allConstant(ArrayRef<Value *> VL) {
223 // Constant expressions and globals can't be vectorized like normal integer/FP
224 // constants.
225 for (Value *i : VL)
226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
227 return false;
228 return true;
229}
230
231/// \returns True if all of the values in \p VL are identical.
232static bool isSplat(ArrayRef<Value *> VL) {
233 for (unsigned i = 1, e = VL.size(); i < e; ++i)
234 if (VL[i] != VL[0])
235 return false;
236 return true;
237}
238
239/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
240static bool isCommutative(Instruction *I) {
241 if (auto *Cmp = dyn_cast<CmpInst>(I))
242 return Cmp->isCommutative();
243 if (auto *BO = dyn_cast<BinaryOperator>(I))
244 return BO->isCommutative();
245 // TODO: This should check for generic Instruction::isCommutative(), but
246 // we need to confirm that the caller code correctly handles Intrinsics
247 // for example (does not have 2 operands).
248 return false;
249}
250
251/// Checks if the vector of instructions can be represented as a shuffle, like:
252/// %x0 = extractelement <4 x i8> %x, i32 0
253/// %x3 = extractelement <4 x i8> %x, i32 3
254/// %y1 = extractelement <4 x i8> %y, i32 1
255/// %y2 = extractelement <4 x i8> %y, i32 2
256/// %x0x0 = mul i8 %x0, %x0
257/// %x3x3 = mul i8 %x3, %x3
258/// %y1y1 = mul i8 %y1, %y1
259/// %y2y2 = mul i8 %y2, %y2
260/// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
261/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
262/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
263/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
264/// ret <4 x i8> %ins4
265/// can be transformed into:
266/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
267/// i32 6>
268/// %2 = mul <4 x i8> %1, %1
269/// ret <4 x i8> %2
270/// We convert this initially to something like:
271/// %x0 = extractelement <4 x i8> %x, i32 0
272/// %x3 = extractelement <4 x i8> %x, i32 3
273/// %y1 = extractelement <4 x i8> %y, i32 1
274/// %y2 = extractelement <4 x i8> %y, i32 2
275/// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
276/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
277/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
278/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
279/// %5 = mul <4 x i8> %4, %4
280/// %6 = extractelement <4 x i8> %5, i32 0
281/// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
282/// %7 = extractelement <4 x i8> %5, i32 1
283/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
284/// %8 = extractelement <4 x i8> %5, i32 2
285/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
286/// %9 = extractelement <4 x i8> %5, i32 3
287/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
288/// ret <4 x i8> %ins4
289/// InstCombiner transforms this into a shuffle and vector mul
290/// Mask will return the Shuffle Mask equivalent to the extracted elements.
291/// TODO: Can we split off and reuse the shuffle mask detection from
292/// TargetTransformInfo::getInstructionThroughput?
293static Optional<TargetTransformInfo::ShuffleKind>
294isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
295 auto *EI0 = cast<ExtractElementInst>(VL[0]);
296 unsigned Size =
297 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
298 Value *Vec1 = nullptr;
299 Value *Vec2 = nullptr;
300 enum ShuffleMode { Unknown, Select, Permute };
301 ShuffleMode CommonShuffleMode = Unknown;
302 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
303 auto *EI = cast<ExtractElementInst>(VL[I]);
304 auto *Vec = EI->getVectorOperand();
305 // All vector operands must have the same number of vector elements.
306 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
307 return None;
308 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
309 if (!Idx)
310 return None;
311 // Undefined behavior if Idx is negative or >= Size.
312 if (Idx->getValue().uge(Size)) {
313 Mask.push_back(UndefMaskElem);
314 continue;
315 }
316 unsigned IntIdx = Idx->getValue().getZExtValue();
317 Mask.push_back(IntIdx);
318 // We can extractelement from undef or poison vector.
319 if (isa<UndefValue>(Vec))
320 continue;
321 // For correct shuffling we have to have at most 2 different vector operands
322 // in all extractelement instructions.
323 if (!Vec1 || Vec1 == Vec)
324 Vec1 = Vec;
325 else if (!Vec2 || Vec2 == Vec)
326 Vec2 = Vec;
327 else
328 return None;
329 if (CommonShuffleMode == Permute)
330 continue;
331 // If the extract index is not the same as the operation number, it is a
332 // permutation.
333 if (IntIdx != I) {
334 CommonShuffleMode = Permute;
335 continue;
336 }
337 CommonShuffleMode = Select;
338 }
339 // If we're not crossing lanes in different vectors, consider it as blending.
340 if (CommonShuffleMode == Select && Vec2)
341 return TargetTransformInfo::SK_Select;
342 // If Vec2 was never used, we have a permutation of a single vector, otherwise
343 // we have permutation of 2 vectors.
344 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
345 : TargetTransformInfo::SK_PermuteSingleSrc;
346}
347
348namespace {
349
350/// Main data required for vectorization of instructions.
351struct InstructionsState {
352 /// The very first instruction in the list with the main opcode.
353 Value *OpValue = nullptr;
354
355 /// The main/alternate instruction.
356 Instruction *MainOp = nullptr;
357 Instruction *AltOp = nullptr;
358
359 /// The main/alternate opcodes for the list of instructions.
360 unsigned getOpcode() const {
361 return MainOp ? MainOp->getOpcode() : 0;
362 }
363
364 unsigned getAltOpcode() const {
365 return AltOp ? AltOp->getOpcode() : 0;
366 }
367
368 /// Some of the instructions in the list have alternate opcodes.
369 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
370
371 bool isOpcodeOrAlt(Instruction *I) const {
372 unsigned CheckedOpcode = I->getOpcode();
373 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
374 }
375
376 InstructionsState() = delete;
377 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
378 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
379};
380
381} // end anonymous namespace
382
383/// Chooses the correct key for scheduling data. If \p Op has the same (or
384/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
385/// OpValue.
386static Value *isOneOf(const InstructionsState &S, Value *Op) {
387 auto *I = dyn_cast<Instruction>(Op);
388 if (I && S.isOpcodeOrAlt(I))
389 return Op;
390 return S.OpValue;
391}
392
393/// \returns true if \p Opcode is allowed as part of of the main/alternate
394/// instruction for SLP vectorization.
395///
396/// Example of unsupported opcode is SDIV that can potentially cause UB if the
397/// "shuffled out" lane would result in division by zero.
398static bool isValidForAlternation(unsigned Opcode) {
399 if (Instruction::isIntDivRem(Opcode))
400 return false;
401
402 return true;
403}
404
405/// \returns analysis of the Instructions in \p VL described in
406/// InstructionsState, the Opcode that we suppose the whole list
407/// could be vectorized even if its structure is diverse.
408static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
409 unsigned BaseIndex = 0) {
410 // Make sure these are all Instructions.
411 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
412 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
413
414 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
415 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
416 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
417 unsigned AltOpcode = Opcode;
418 unsigned AltIndex = BaseIndex;
419
420 // Check for one alternate opcode from another BinaryOperator.
421 // TODO - generalize to support all operators (types, calls etc.).
422 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
423 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
424 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
425 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
426 continue;
427 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
428 isValidForAlternation(Opcode)) {
429 AltOpcode = InstOpcode;
430 AltIndex = Cnt;
431 continue;
432 }
433 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
434 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
435 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
436 if (Ty0 == Ty1) {
437 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
438 continue;
439 if (Opcode == AltOpcode) {
440 assert(isValidForAlternation(Opcode) &&(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 442, __extension__ __PRETTY_FUNCTION__))
441 isValidForAlternation(InstOpcode) &&(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 442, __extension__ __PRETTY_FUNCTION__))
442 "Cast isn't safe for alternation, logic needs to be updated!")(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 442, __extension__ __PRETTY_FUNCTION__))
;
443 AltOpcode = InstOpcode;
444 AltIndex = Cnt;
445 continue;
446 }
447 }
448 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
449 continue;
450 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
451 }
452
453 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
454 cast<Instruction>(VL[AltIndex]));
455}
456
457/// \returns true if all of the values in \p VL have the same type or false
458/// otherwise.
459static bool allSameType(ArrayRef<Value *> VL) {
460 Type *Ty = VL[0]->getType();
461 for (int i = 1, e = VL.size(); i < e; i++)
462 if (VL[i]->getType() != Ty)
463 return false;
464
465 return true;
466}
467
468/// \returns True if Extract{Value,Element} instruction extracts element Idx.
469static Optional<unsigned> getExtractIndex(Instruction *E) {
470 unsigned Opcode = E->getOpcode();
471 assert((Opcode == Instruction::ExtractElement ||(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 473, __extension__ __PRETTY_FUNCTION__))
472 Opcode == Instruction::ExtractValue) &&(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 473, __extension__ __PRETTY_FUNCTION__))
473 "Expected extractelement or extractvalue instruction.")(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 473, __extension__ __PRETTY_FUNCTION__))
;
474 if (Opcode == Instruction::ExtractElement) {
475 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
476 if (!CI)
477 return None;
478 return CI->getZExtValue();
479 }
480 ExtractValueInst *EI = cast<ExtractValueInst>(E);
481 if (EI->getNumIndices() != 1)
482 return None;
483 return *EI->idx_begin();
484}
485
486/// \returns True if in-tree use also needs extract. This refers to
487/// possible scalar operand in vectorized instruction.
488static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
489 TargetLibraryInfo *TLI) {
490 unsigned Opcode = UserInst->getOpcode();
491 switch (Opcode) {
492 case Instruction::Load: {
493 LoadInst *LI = cast<LoadInst>(UserInst);
494 return (LI->getPointerOperand() == Scalar);
495 }
496 case Instruction::Store: {
497 StoreInst *SI = cast<StoreInst>(UserInst);
498 return (SI->getPointerOperand() == Scalar);
499 }
500 case Instruction::Call: {
501 CallInst *CI = cast<CallInst>(UserInst);
502 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
503 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
504 if (hasVectorInstrinsicScalarOpd(ID, i))
505 return (CI->getArgOperand(i) == Scalar);
506 }
507 LLVM_FALLTHROUGH[[gnu::fallthrough]];
508 }
509 default:
510 return false;
511 }
512}
513
514/// \returns the AA location that is being access by the instruction.
515static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
516 if (StoreInst *SI = dyn_cast<StoreInst>(I))
517 return MemoryLocation::get(SI);
518 if (LoadInst *LI = dyn_cast<LoadInst>(I))
519 return MemoryLocation::get(LI);
520 return MemoryLocation();
521}
522
523/// \returns True if the instruction is not a volatile or atomic load/store.
524static bool isSimple(Instruction *I) {
525 if (LoadInst *LI = dyn_cast<LoadInst>(I))
526 return LI->isSimple();
527 if (StoreInst *SI = dyn_cast<StoreInst>(I))
528 return SI->isSimple();
529 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
530 return !MI->isVolatile();
531 return true;
532}
533
534namespace llvm {
535
536static void inversePermutation(ArrayRef<unsigned> Indices,
537 SmallVectorImpl<int> &Mask) {
538 Mask.clear();
539 const unsigned E = Indices.size();
540 Mask.resize(E, E + 1);
541 for (unsigned I = 0; I < E; ++I)
542 Mask[Indices[I]] = I;
543}
544
545namespace slpvectorizer {
546
547/// Bottom Up SLP Vectorizer.
548class BoUpSLP {
549 struct TreeEntry;
550 struct ScheduleData;
551
552public:
553 using ValueList = SmallVector<Value *, 8>;
554 using InstrList = SmallVector<Instruction *, 16>;
555 using ValueSet = SmallPtrSet<Value *, 16>;
556 using StoreList = SmallVector<StoreInst *, 8>;
557 using ExtraValueToDebugLocsMap =
558 MapVector<Value *, SmallVector<Instruction *, 2>>;
559 using OrdersType = SmallVector<unsigned, 4>;
560
561 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
562 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
563 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
564 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
565 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
566 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
567 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
568 // Use the vector register size specified by the target unless overridden
569 // by a command-line option.
570 // TODO: It would be better to limit the vectorization factor based on
571 // data type rather than just register size. For example, x86 AVX has
572 // 256-bit registers, but it does not support integer operations
573 // at that width (that requires AVX2).
574 if (MaxVectorRegSizeOption.getNumOccurrences())
575 MaxVecRegSize = MaxVectorRegSizeOption;
576 else
577 MaxVecRegSize =
578 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
579 .getFixedSize();
580
581 if (MinVectorRegSizeOption.getNumOccurrences())
582 MinVecRegSize = MinVectorRegSizeOption;
583 else
584 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
585 }
586
587 /// Vectorize the tree that starts with the elements in \p VL.
588 /// Returns the vectorized root.
589 Value *vectorizeTree();
590
591 /// Vectorize the tree but with the list of externally used values \p
592 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
593 /// generated extractvalue instructions.
594 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
595
596 /// \returns the cost incurred by unwanted spills and fills, caused by
597 /// holding live values over call sites.
598 InstructionCost getSpillCost() const;
599
600 /// \returns the vectorization cost of the subtree that starts at \p VL.
601 /// A negative number means that this is profitable.
602 InstructionCost getTreeCost();
603
604 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
605 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
606 void buildTree(ArrayRef<Value *> Roots,
607 ArrayRef<Value *> UserIgnoreLst = None);
608
609 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
610 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
611 /// into account (and updating it, if required) list of externally used
612 /// values stored in \p ExternallyUsedValues.
613 void buildTree(ArrayRef<Value *> Roots,
614 ExtraValueToDebugLocsMap &ExternallyUsedValues,
615 ArrayRef<Value *> UserIgnoreLst = None);
616
617 /// Clear the internal data structures that are created by 'buildTree'.
618 void deleteTree() {
619 VectorizableTree.clear();
620 ScalarToTreeEntry.clear();
621 MustGather.clear();
622 ExternalUses.clear();
623 NumOpsWantToKeepOrder.clear();
624 NumOpsWantToKeepOriginalOrder = 0;
625 for (auto &Iter : BlocksSchedules) {
626 BlockScheduling *BS = Iter.second.get();
627 BS->clear();
628 }
629 MinBWs.clear();
630 InstrElementSize.clear();
631 }
632
633 unsigned getTreeSize() const { return VectorizableTree.size(); }
634
635 /// Perform LICM and CSE on the newly generated gather sequences.
636 void optimizeGatherSequence();
637
638 /// \returns The best order of instructions for vectorization.
639 Optional<ArrayRef<unsigned>> bestOrder() const {
640 assert(llvm::all_of((static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __extension__ __PRETTY_FUNCTION__))
641 NumOpsWantToKeepOrder,(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __extension__ __PRETTY_FUNCTION__))
642 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __extension__ __PRETTY_FUNCTION__))
643 return D.getFirst().size() ==(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __extension__ __PRETTY_FUNCTION__))
644 VectorizableTree[0]->Scalars.size();(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __extension__ __PRETTY_FUNCTION__))
645 }) &&(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __extension__ __PRETTY_FUNCTION__))
646 "All orders must have the same size as number of instructions in "(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __extension__ __PRETTY_FUNCTION__))
647 "tree node.")(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __extension__ __PRETTY_FUNCTION__))
;
648 auto I = std::max_element(
649 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
650 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
651 const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
652 return D1.second < D2.second;
653 });
654 if (I == NumOpsWantToKeepOrder.end() ||
655 I->getSecond() <= NumOpsWantToKeepOriginalOrder)
656 return None;
657
658 return makeArrayRef(I->getFirst());
659 }
660
661 /// Builds the correct order for root instructions.
662 /// If some leaves have the same instructions to be vectorized, we may
663 /// incorrectly evaluate the best order for the root node (it is built for the
664 /// vector of instructions without repeated instructions and, thus, has less
665 /// elements than the root node). This function builds the correct order for
666 /// the root node.
667 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
668 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
669 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
670 /// be reordered, the best order will be \<1, 0\>. We need to extend this
671 /// order for the root node. For the root node this order should look like
672 /// \<3, 0, 1, 2\>. This function extends the order for the reused
673 /// instructions.
674 void findRootOrder(OrdersType &Order) {
675 // If the leaf has the same number of instructions to vectorize as the root
676 // - order must be set already.
677 unsigned RootSize = VectorizableTree[0]->Scalars.size();
678 if (Order.size() == RootSize)
679 return;
680 SmallVector<unsigned, 4> RealOrder(Order.size());
681 std::swap(Order, RealOrder);
682 SmallVector<int, 4> Mask;
683 inversePermutation(RealOrder, Mask);
684 Order.assign(Mask.begin(), Mask.end());
685 // The leaf has less number of instructions - need to find the true order of
686 // the root.
687 // Scan the nodes starting from the leaf back to the root.
688 const TreeEntry *PNode = VectorizableTree.back().get();
689 SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
690 SmallPtrSet<const TreeEntry *, 4> Visited;
691 while (!Nodes.empty() && Order.size() != RootSize) {
692 const TreeEntry *PNode = Nodes.pop_back_val();
693 if (!Visited.insert(PNode).second)
694 continue;
695 const TreeEntry &Node = *PNode;
696 for (const EdgeInfo &EI : Node.UserTreeIndices)
697 if (EI.UserTE)
698 Nodes.push_back(EI.UserTE);
699 if (Node.ReuseShuffleIndices.empty())
700 continue;
701 // Build the order for the parent node.
702 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
703 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
704 // The algorithm of the order extension is:
705 // 1. Calculate the number of the same instructions for the order.
706 // 2. Calculate the index of the new order: total number of instructions
707 // with order less than the order of the current instruction + reuse
708 // number of the current instruction.
709 // 3. The new order is just the index of the instruction in the original
710 // vector of the instructions.
711 for (unsigned I : Node.ReuseShuffleIndices)
712 ++OrderCounter[Order[I]];
713 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
714 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
715 unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
716 unsigned OrderIdx = Order[ReusedIdx];
717 unsigned NewIdx = 0;
718 for (unsigned J = 0; J < OrderIdx; ++J)
719 NewIdx += OrderCounter[J];
720 NewIdx += CurrentCounter[OrderIdx];
721 ++CurrentCounter[OrderIdx];
722 assert(NewOrder[NewIdx] == RootSize &&(static_cast <bool> (NewOrder[NewIdx] == RootSize &&
"The order index should not be written already.") ? void (0)
: __assert_fail ("NewOrder[NewIdx] == RootSize && \"The order index should not be written already.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 723, __extension__ __PRETTY_FUNCTION__))
723 "The order index should not be written already.")(static_cast <bool> (NewOrder[NewIdx] == RootSize &&
"The order index should not be written already.") ? void (0)
: __assert_fail ("NewOrder[NewIdx] == RootSize && \"The order index should not be written already.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 723, __extension__ __PRETTY_FUNCTION__))
;
724 NewOrder[NewIdx] = I;
725 }
726 std::swap(Order, NewOrder);
727 }
728 assert(Order.size() == RootSize &&(static_cast <bool> (Order.size() == RootSize &&
"Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? void (0) : __assert_fail
("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 730, __extension__ __PRETTY_FUNCTION__))
729 "Root node is expected or the size of the order must be the same as "(static_cast <bool> (Order.size() == RootSize &&
"Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? void (0) : __assert_fail
("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 730, __extension__ __PRETTY_FUNCTION__))
730 "the number of elements in the root node.")(static_cast <bool> (Order.size() == RootSize &&
"Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? void (0) : __assert_fail
("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 730, __extension__ __PRETTY_FUNCTION__))
;
731 assert(llvm::all_of(Order,(static_cast <bool> (llvm::all_of(Order, [RootSize](unsigned
Val) { return Val != RootSize; }) && "All indices must be initialized"
) ? void (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 733, __extension__ __PRETTY_FUNCTION__))
732 [RootSize](unsigned Val) { return Val != RootSize; }) &&(static_cast <bool> (llvm::all_of(Order, [RootSize](unsigned
Val) { return Val != RootSize; }) && "All indices must be initialized"
) ? void (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 733, __extension__ __PRETTY_FUNCTION__))
733 "All indices must be initialized")(static_cast <bool> (llvm::all_of(Order, [RootSize](unsigned
Val) { return Val != RootSize; }) && "All indices must be initialized"
) ? void (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 733, __extension__ __PRETTY_FUNCTION__))
;
734 }
735
736 /// \return The vector element size in bits to use when vectorizing the
737 /// expression tree ending at \p V. If V is a store, the size is the width of
738 /// the stored value. Otherwise, the size is the width of the largest loaded
739 /// value reaching V. This method is used by the vectorizer to calculate
740 /// vectorization factors.
741 unsigned getVectorElementSize(Value *V);
742
743 /// Compute the minimum type sizes required to represent the entries in a
744 /// vectorizable tree.
745 void computeMinimumValueSizes();
746
747 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
748 unsigned getMaxVecRegSize() const {
749 return MaxVecRegSize;
750 }
751
752 // \returns minimum vector register size as set by cl::opt.
753 unsigned getMinVecRegSize() const {
754 return MinVecRegSize;
755 }
756
757 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
758 unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
759 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
760 return MaxVF ? MaxVF : UINT_MAX(2147483647 *2U +1U);
761 }
762
763 /// Check if homogeneous aggregate is isomorphic to some VectorType.
764 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
765 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
766 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
767 ///
768 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
769 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
770
771 /// \returns True if the VectorizableTree is both tiny and not fully
772 /// vectorizable. We do not vectorize such trees.
773 bool isTreeTinyAndNotFullyVectorizable() const;
774
775 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
776 /// can be load combined in the backend. Load combining may not be allowed in
777 /// the IR optimizer, so we do not want to alter the pattern. For example,
778 /// partially transforming a scalar bswap() pattern into vector code is
779 /// effectively impossible for the backend to undo.
780 /// TODO: If load combining is allowed in the IR optimizer, this analysis
781 /// may not be necessary.
782 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
783
784 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
785 /// can be load combined in the backend. Load combining may not be allowed in
786 /// the IR optimizer, so we do not want to alter the pattern. For example,
787 /// partially transforming a scalar bswap() pattern into vector code is
788 /// effectively impossible for the backend to undo.
789 /// TODO: If load combining is allowed in the IR optimizer, this analysis
790 /// may not be necessary.
791 bool isLoadCombineCandidate() const;
792
793 OptimizationRemarkEmitter *getORE() { return ORE; }
794
795 /// This structure holds any data we need about the edges being traversed
796 /// during buildTree_rec(). We keep track of:
797 /// (i) the user TreeEntry index, and
798 /// (ii) the index of the edge.
799 struct EdgeInfo {
800 EdgeInfo() = default;
801 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
802 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
803 /// The user TreeEntry.
804 TreeEntry *UserTE = nullptr;
805 /// The operand index of the use.
806 unsigned EdgeIdx = UINT_MAX(2147483647 *2U +1U);
807#ifndef NDEBUG
808 friend inline raw_ostream &operator<<(raw_ostream &OS,
809 const BoUpSLP::EdgeInfo &EI) {
810 EI.dump(OS);
811 return OS;
812 }
813 /// Debug print.
814 void dump(raw_ostream &OS) const {
815 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
816 << " EdgeIdx:" << EdgeIdx << "}";
817 }
818 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { dump(dbgs()); }
819#endif
820 };
821
822 /// A helper data structure to hold the operands of a vector of instructions.
823 /// This supports a fixed vector length for all operand vectors.
824 class VLOperands {
825 /// For each operand we need (i) the value, and (ii) the opcode that it
826 /// would be attached to if the expression was in a left-linearized form.
827 /// This is required to avoid illegal operand reordering.
828 /// For example:
829 /// \verbatim
830 /// 0 Op1
831 /// |/
832 /// Op1 Op2 Linearized + Op2
833 /// \ / ----------> |/
834 /// - -
835 ///
836 /// Op1 - Op2 (0 + Op1) - Op2
837 /// \endverbatim
838 ///
839 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
840 ///
841 /// Another way to think of this is to track all the operations across the
842 /// path from the operand all the way to the root of the tree and to
843 /// calculate the operation that corresponds to this path. For example, the
844 /// path from Op2 to the root crosses the RHS of the '-', therefore the
845 /// corresponding operation is a '-' (which matches the one in the
846 /// linearized tree, as shown above).
847 ///
848 /// For lack of a better term, we refer to this operation as Accumulated
849 /// Path Operation (APO).
850 struct OperandData {
851 OperandData() = default;
852 OperandData(Value *V, bool APO, bool IsUsed)
853 : V(V), APO(APO), IsUsed(IsUsed) {}
854 /// The operand value.
855 Value *V = nullptr;
856 /// TreeEntries only allow a single opcode, or an alternate sequence of
857 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
858 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
859 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
860 /// (e.g., Add/Mul)
861 bool APO = false;
862 /// Helper data for the reordering function.
863 bool IsUsed = false;
864 };
865
866 /// During operand reordering, we are trying to select the operand at lane
867 /// that matches best with the operand at the neighboring lane. Our
868 /// selection is based on the type of value we are looking for. For example,
869 /// if the neighboring lane has a load, we need to look for a load that is
870 /// accessing a consecutive address. These strategies are summarized in the
871 /// 'ReorderingMode' enumerator.
872 enum class ReorderingMode {
873 Load, ///< Matching loads to consecutive memory addresses
874 Opcode, ///< Matching instructions based on opcode (same or alternate)
875 Constant, ///< Matching constants
876 Splat, ///< Matching the same instruction multiple times (broadcast)
877 Failed, ///< We failed to create a vectorizable group
878 };
879
880 using OperandDataVec = SmallVector<OperandData, 2>;
881
882 /// A vector of operand vectors.
883 SmallVector<OperandDataVec, 4> OpsVec;
884
885 const DataLayout &DL;
886 ScalarEvolution &SE;
887 const BoUpSLP &R;
888
889 /// \returns the operand data at \p OpIdx and \p Lane.
890 OperandData &getData(unsigned OpIdx, unsigned Lane) {
891 return OpsVec[OpIdx][Lane];
892 }
893
894 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
895 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
896 return OpsVec[OpIdx][Lane];
897 }
898
899 /// Clears the used flag for all entries.
900 void clearUsed() {
901 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
902 OpIdx != NumOperands; ++OpIdx)
903 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
904 ++Lane)
905 OpsVec[OpIdx][Lane].IsUsed = false;
906 }
907
908 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
909 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
910 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
911 }
912
913 // The hard-coded scores listed here are not very important. When computing
914 // the scores of matching one sub-tree with another, we are basically
915 // counting the number of values that are matching. So even if all scores
916 // are set to 1, we would still get a decent matching result.
917 // However, sometimes we have to break ties. For example we may have to
918 // choose between matching loads vs matching opcodes. This is what these
919 // scores are helping us with: they provide the order of preference.
920
921 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
922 static const int ScoreConsecutiveLoads = 3;
923 /// ExtractElementInst from same vector and consecutive indexes.
924 static const int ScoreConsecutiveExtracts = 3;
925 /// Constants.
926 static const int ScoreConstants = 2;
927 /// Instructions with the same opcode.
928 static const int ScoreSameOpcode = 2;
929 /// Instructions with alt opcodes (e.g, add + sub).
930 static const int ScoreAltOpcodes = 1;
931 /// Identical instructions (a.k.a. splat or broadcast).
932 static const int ScoreSplat = 1;
933 /// Matching with an undef is preferable to failing.
934 static const int ScoreUndef = 1;
935 /// Score for failing to find a decent match.
936 static const int ScoreFail = 0;
937 /// User exteranl to the vectorized code.
938 static const int ExternalUseCost = 1;
939 /// The user is internal but in a different lane.
940 static const int UserInDiffLaneCost = ExternalUseCost;
941
942 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
943 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
944 ScalarEvolution &SE) {
945 auto *LI1 = dyn_cast<LoadInst>(V1);
946 auto *LI2 = dyn_cast<LoadInst>(V2);
947 if (LI1 && LI2) {
948 if (LI1->getParent() != LI2->getParent())
949 return VLOperands::ScoreFail;
950
951 Optional<int> Dist =
952 getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(),
953 DL, SE, /*StrictCheck=*/true);
954 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
955 : VLOperands::ScoreFail;
956 }
957
958 auto *C1 = dyn_cast<Constant>(V1);
959 auto *C2 = dyn_cast<Constant>(V2);
960 if (C1 && C2)
961 return VLOperands::ScoreConstants;
962
963 // Extracts from consecutive indexes of the same vector better score as
964 // the extracts could be optimized away.
965 Value *EV;
966 ConstantInt *Ex1Idx, *Ex2Idx;
967 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
968 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
969 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
970 return VLOperands::ScoreConsecutiveExtracts;
971
972 auto *I1 = dyn_cast<Instruction>(V1);
973 auto *I2 = dyn_cast<Instruction>(V2);
974 if (I1 && I2) {
975 if (I1 == I2)
976 return VLOperands::ScoreSplat;
977 InstructionsState S = getSameOpcode({I1, I2});
978 // Note: Only consider instructions with <= 2 operands to avoid
979 // complexity explosion.
980 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
981 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
982 : VLOperands::ScoreSameOpcode;
983 }
984
985 if (isa<UndefValue>(V2))
986 return VLOperands::ScoreUndef;
987
988 return VLOperands::ScoreFail;
989 }
990
991 /// Holds the values and their lane that are taking part in the look-ahead
992 /// score calculation. This is used in the external uses cost calculation.
993 SmallDenseMap<Value *, int> InLookAheadValues;
994
995 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
996 /// either external to the vectorized code, or require shuffling.
997 int getExternalUsesCost(const std::pair<Value *, int> &LHS,
998 const std::pair<Value *, int> &RHS) {
999 int Cost = 0;
1000 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
1001 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
1002 Value *V = Values[Idx].first;
1003 if (isa<Constant>(V)) {
1004 // Since this is a function pass, it doesn't make semantic sense to
1005 // walk the users of a subclass of Constant. The users could be in
1006 // another function, or even another module that happens to be in
1007 // the same LLVMContext.
1008 continue;
1009 }
1010
1011 // Calculate the absolute lane, using the minimum relative lane of LHS
1012 // and RHS as base and Idx as the offset.
1013 int Ln = std::min(LHS.second, RHS.second) + Idx;
1014 assert(Ln >= 0 && "Bad lane calculation")(static_cast <bool> (Ln >= 0 && "Bad lane calculation"
) ? void (0) : __assert_fail ("Ln >= 0 && \"Bad lane calculation\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1014, __extension__ __PRETTY_FUNCTION__))
;
1015 unsigned UsersBudget = LookAheadUsersBudget;
1016 for (User *U : V->users()) {
1017 if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
1018 // The user is in the VectorizableTree. Check if we need to insert.
1019 auto It = llvm::find(UserTE->Scalars, U);
1020 assert(It != UserTE->Scalars.end() && "U is in UserTE")(static_cast <bool> (It != UserTE->Scalars.end() &&
"U is in UserTE") ? void (0) : __assert_fail ("It != UserTE->Scalars.end() && \"U is in UserTE\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1020, __extension__ __PRETTY_FUNCTION__))
;
1021 int UserLn = std::distance(UserTE->Scalars.begin(), It);
1022 assert(UserLn >= 0 && "Bad lane")(static_cast <bool> (UserLn >= 0 && "Bad lane"
) ? void (0) : __assert_fail ("UserLn >= 0 && \"Bad lane\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1022, __extension__ __PRETTY_FUNCTION__))
;
1023 if (UserLn != Ln)
1024 Cost += UserInDiffLaneCost;
1025 } else {
1026 // Check if the user is in the look-ahead code.
1027 auto It2 = InLookAheadValues.find(U);
1028 if (It2 != InLookAheadValues.end()) {
1029 // The user is in the look-ahead code. Check the lane.
1030 if (It2->second != Ln)
1031 Cost += UserInDiffLaneCost;
1032 } else {
1033 // The user is neither in SLP tree nor in the look-ahead code.
1034 Cost += ExternalUseCost;
1035 }
1036 }
1037 // Limit the number of visited uses to cap compilation time.
1038 if (--UsersBudget == 0)
1039 break;
1040 }
1041 }
1042 return Cost;
1043 }
1044
1045 /// Go through the operands of \p LHS and \p RHS recursively until \p
1046 /// MaxLevel, and return the cummulative score. For example:
1047 /// \verbatim
1048 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
1049 /// \ / \ / \ / \ /
1050 /// + + + +
1051 /// G1 G2 G3 G4
1052 /// \endverbatim
1053 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1054 /// each level recursively, accumulating the score. It starts from matching
1055 /// the additions at level 0, then moves on to the loads (level 1). The
1056 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1057 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1058 /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1059 /// Please note that the order of the operands does not matter, as we
1060 /// evaluate the score of all profitable combinations of operands. In
1061 /// other words the score of G1 and G4 is the same as G1 and G2. This
1062 /// heuristic is based on ideas described in:
1063 /// Look-ahead SLP: Auto-vectorization in the presence of commutative
1064 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1065 /// Luís F. W. Góes
1066 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1067 const std::pair<Value *, int> &RHS, int CurrLevel,
1068 int MaxLevel) {
1069
1070 Value *V1 = LHS.first;
1071 Value *V2 = RHS.first;
1072 // Get the shallow score of V1 and V2.
1073 int ShallowScoreAtThisLevel =
1074 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1075 getExternalUsesCost(LHS, RHS));
1076 int Lane1 = LHS.second;
1077 int Lane2 = RHS.second;
1078
1079 // If reached MaxLevel,
1080 // or if V1 and V2 are not instructions,
1081 // or if they are SPLAT,
1082 // or if they are not consecutive, early return the current cost.
1083 auto *I1 = dyn_cast<Instruction>(V1);
1084 auto *I2 = dyn_cast<Instruction>(V2);
1085 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1086 ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1087 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1088 return ShallowScoreAtThisLevel;
1089 assert(I1 && I2 && "Should have early exited.")(static_cast <bool> (I1 && I2 && "Should have early exited."
) ? void (0) : __assert_fail ("I1 && I2 && \"Should have early exited.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1089, __extension__ __PRETTY_FUNCTION__))
;
1090
1091 // Keep track of in-tree values for determining the external-use cost.
1092 InLookAheadValues[V1] = Lane1;
1093 InLookAheadValues[V2] = Lane2;
1094
1095 // Contains the I2 operand indexes that got matched with I1 operands.
1096 SmallSet<unsigned, 4> Op2Used;
1097
1098 // Recursion towards the operands of I1 and I2. We are trying all possbile
1099 // operand pairs, and keeping track of the best score.
1100 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1101 OpIdx1 != NumOperands1; ++OpIdx1) {
1102 // Try to pair op1I with the best operand of I2.
1103 int MaxTmpScore = 0;
1104 unsigned MaxOpIdx2 = 0;
1105 bool FoundBest = false;
1106 // If I2 is commutative try all combinations.
1107 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1108 unsigned ToIdx = isCommutative(I2)
1109 ? I2->getNumOperands()
1110 : std::min(I2->getNumOperands(), OpIdx1 + 1);
1111 assert(FromIdx <= ToIdx && "Bad index")(static_cast <bool> (FromIdx <= ToIdx && "Bad index"
) ? void (0) : __assert_fail ("FromIdx <= ToIdx && \"Bad index\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1111, __extension__ __PRETTY_FUNCTION__))
;
1112 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1113 // Skip operands already paired with OpIdx1.
1114 if (Op2Used.count(OpIdx2))
1115 continue;
1116 // Recursively calculate the cost at each level
1117 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1118 {I2->getOperand(OpIdx2), Lane2},
1119 CurrLevel + 1, MaxLevel);
1120 // Look for the best score.
1121 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1122 MaxTmpScore = TmpScore;
1123 MaxOpIdx2 = OpIdx2;
1124 FoundBest = true;
1125 }
1126 }
1127 if (FoundBest) {
1128 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1129 Op2Used.insert(MaxOpIdx2);
1130 ShallowScoreAtThisLevel += MaxTmpScore;
1131 }
1132 }
1133 return ShallowScoreAtThisLevel;
1134 }
1135
1136 /// \Returns the look-ahead score, which tells us how much the sub-trees
1137 /// rooted at \p LHS and \p RHS match, the more they match the higher the
1138 /// score. This helps break ties in an informed way when we cannot decide on
1139 /// the order of the operands by just considering the immediate
1140 /// predecessors.
1141 int getLookAheadScore(const std::pair<Value *, int> &LHS,
1142 const std::pair<Value *, int> &RHS) {
1143 InLookAheadValues.clear();
1144 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1145 }
1146
1147 // Search all operands in Ops[*][Lane] for the one that matches best
1148 // Ops[OpIdx][LastLane] and return its opreand index.
1149 // If no good match can be found, return None.
1150 Optional<unsigned>
1151 getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1152 ArrayRef<ReorderingMode> ReorderingModes) {
1153 unsigned NumOperands = getNumOperands();
1154
1155 // The operand of the previous lane at OpIdx.
1156 Value *OpLastLane = getData(OpIdx, LastLane).V;
1157
1158 // Our strategy mode for OpIdx.
1159 ReorderingMode RMode = ReorderingModes[OpIdx];
1160
1161 // The linearized opcode of the operand at OpIdx, Lane.
1162 bool OpIdxAPO = getData(OpIdx, Lane).APO;
1163
1164 // The best operand index and its score.
1165 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1166 // are using the score to differentiate between the two.
1167 struct BestOpData {
1168 Optional<unsigned> Idx = None;
1169 unsigned Score = 0;
1170 } BestOp;
1171
1172 // Iterate through all unused operands and look for the best.
1173 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1174 // Get the operand at Idx and Lane.
1175 OperandData &OpData = getData(Idx, Lane);
1176 Value *Op = OpData.V;
1177 bool OpAPO = OpData.APO;
1178
1179 // Skip already selected operands.
1180 if (OpData.IsUsed)
1181 continue;
1182
1183 // Skip if we are trying to move the operand to a position with a
1184 // different opcode in the linearized tree form. This would break the
1185 // semantics.
1186 if (OpAPO != OpIdxAPO)
1187 continue;
1188
1189 // Look for an operand that matches the current mode.
1190 switch (RMode) {
1191 case ReorderingMode::Load:
1192 case ReorderingMode::Constant:
1193 case ReorderingMode::Opcode: {
1194 bool LeftToRight = Lane > LastLane;
1195 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1196 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1197 unsigned Score =
1198 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1199 if (Score > BestOp.Score) {
1200 BestOp.Idx = Idx;
1201 BestOp.Score = Score;
1202 }
1203 break;
1204 }
1205 case ReorderingMode::Splat:
1206 if (Op == OpLastLane)
1207 BestOp.Idx = Idx;
1208 break;
1209 case ReorderingMode::Failed:
1210 return None;
1211 }
1212 }
1213
1214 if (BestOp.Idx) {
1215 getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1216 return BestOp.Idx;
1217 }
1218 // If we could not find a good match return None.
1219 return None;
1220 }
1221
1222 /// Helper for reorderOperandVecs. \Returns the lane that we should start
1223 /// reordering from. This is the one which has the least number of operands
1224 /// that can freely move about.
1225 unsigned getBestLaneToStartReordering() const {
1226 unsigned BestLane = 0;
1227 unsigned Min = UINT_MAX(2147483647 *2U +1U);
1228 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1229 ++Lane) {
1230 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1231 if (NumFreeOps < Min) {
1232 Min = NumFreeOps;
1233 BestLane = Lane;
1234 }
1235 }
1236 return BestLane;
1237 }
1238
1239 /// \Returns the maximum number of operands that are allowed to be reordered
1240 /// for \p Lane. This is used as a heuristic for selecting the first lane to
1241 /// start operand reordering.
1242 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1243 unsigned CntTrue = 0;
1244 unsigned NumOperands = getNumOperands();
1245 // Operands with the same APO can be reordered. We therefore need to count
1246 // how many of them we have for each APO, like this: Cnt[APO] = x.
1247 // Since we only have two APOs, namely true and false, we can avoid using
1248 // a map. Instead we can simply count the number of operands that
1249 // correspond to one of them (in this case the 'true' APO), and calculate
1250 // the other by subtracting it from the total number of operands.
1251 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1252 if (getData(OpIdx, Lane).APO)
1253 ++CntTrue;
1254 unsigned CntFalse = NumOperands - CntTrue;
1255 return std::max(CntTrue, CntFalse);
1256 }
1257
1258 /// Go through the instructions in VL and append their operands.
1259 void appendOperandsOfVL(ArrayRef<Value *> VL) {
1260 assert(!VL.empty() && "Bad VL")(static_cast <bool> (!VL.empty() && "Bad VL") ?
void (0) : __assert_fail ("!VL.empty() && \"Bad VL\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1260, __extension__ __PRETTY_FUNCTION__))
;
1261 assert((empty() || VL.size() == getNumLanes()) &&(static_cast <bool> ((empty() || VL.size() == getNumLanes
()) && "Expected same number of lanes") ? void (0) : __assert_fail
("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1262, __extension__ __PRETTY_FUNCTION__))
1262 "Expected same number of lanes")(static_cast <bool> ((empty() || VL.size() == getNumLanes
()) && "Expected same number of lanes") ? void (0) : __assert_fail
("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1262, __extension__ __PRETTY_FUNCTION__))
;
1263 assert(isa<Instruction>(VL[0]) && "Expected instruction")(static_cast <bool> (isa<Instruction>(VL[0]) &&
"Expected instruction") ? void (0) : __assert_fail ("isa<Instruction>(VL[0]) && \"Expected instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1263, __extension__ __PRETTY_FUNCTION__))
;
1264 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1265 OpsVec.resize(NumOperands);
1266 unsigned NumLanes = VL.size();
1267 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1268 OpsVec[OpIdx].resize(NumLanes);
1269 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1270 assert(isa<Instruction>(VL[Lane]) && "Expected instruction")(static_cast <bool> (isa<Instruction>(VL[Lane]) &&
"Expected instruction") ? void (0) : __assert_fail ("isa<Instruction>(VL[Lane]) && \"Expected instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1270, __extension__ __PRETTY_FUNCTION__))
;
1271 // Our tree has just 3 nodes: the root and two operands.
1272 // It is therefore trivial to get the APO. We only need to check the
1273 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1274 // RHS operand. The LHS operand of both add and sub is never attached
1275 // to an inversese operation in the linearized form, therefore its APO
1276 // is false. The RHS is true only if VL[Lane] is an inverse operation.
1277
1278 // Since operand reordering is performed on groups of commutative
1279 // operations or alternating sequences (e.g., +, -), we can safely
1280 // tell the inverse operations by checking commutativity.
1281 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1282 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1283 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1284 APO, false};
1285 }
1286 }
1287 }
1288
1289 /// \returns the number of operands.
1290 unsigned getNumOperands() const { return OpsVec.size(); }
1291
1292 /// \returns the number of lanes.
1293 unsigned getNumLanes() const { return OpsVec[0].size(); }
1294
1295 /// \returns the operand value at \p OpIdx and \p Lane.
1296 Value *getValue(unsigned OpIdx, unsigned Lane) const {
1297 return getData(OpIdx, Lane).V;
1298 }
1299
1300 /// \returns true if the data structure is empty.
1301 bool empty() const { return OpsVec.empty(); }
1302
1303 /// Clears the data.
1304 void clear() { OpsVec.clear(); }
1305
1306 /// \Returns true if there are enough operands identical to \p Op to fill
1307 /// the whole vector.
1308 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1309 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1310 bool OpAPO = getData(OpIdx, Lane).APO;
1311 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1312 if (Ln == Lane)
1313 continue;
1314 // This is set to true if we found a candidate for broadcast at Lane.
1315 bool FoundCandidate = false;
1316 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1317 OperandData &Data = getData(OpI, Ln);
1318 if (Data.APO != OpAPO || Data.IsUsed)
1319 continue;
1320 if (Data.V == Op) {
1321 FoundCandidate = true;
1322 Data.IsUsed = true;
1323 break;
1324 }
1325 }
1326 if (!FoundCandidate)
1327 return false;
1328 }
1329 return true;
1330 }
1331
1332 public:
1333 /// Initialize with all the operands of the instruction vector \p RootVL.
1334 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1335 ScalarEvolution &SE, const BoUpSLP &R)
1336 : DL(DL), SE(SE), R(R) {
1337 // Append all the operands of RootVL.
1338 appendOperandsOfVL(RootVL);
1339 }
1340
1341 /// \Returns a value vector with the operands across all lanes for the
1342 /// opearnd at \p OpIdx.
1343 ValueList getVL(unsigned OpIdx) const {
1344 ValueList OpVL(OpsVec[OpIdx].size());
1345 assert(OpsVec[OpIdx].size() == getNumLanes() &&(static_cast <bool> (OpsVec[OpIdx].size() == getNumLanes
() && "Expected same num of lanes across all operands"
) ? void (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1346, __extension__ __PRETTY_FUNCTION__))
1346 "Expected same num of lanes across all operands")(static_cast <bool> (OpsVec[OpIdx].size() == getNumLanes
() && "Expected same num of lanes across all operands"
) ? void (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1346, __extension__ __PRETTY_FUNCTION__))
;
1347 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1348 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1349 return OpVL;
1350 }
1351
1352 // Performs operand reordering for 2 or more operands.
1353 // The original operands are in OrigOps[OpIdx][Lane].
1354 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1355 void reorder() {
1356 unsigned NumOperands = getNumOperands();
1357 unsigned NumLanes = getNumLanes();
1358 // Each operand has its own mode. We are using this mode to help us select
1359 // the instructions for each lane, so that they match best with the ones
1360 // we have selected so far.
1361 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1362
1363 // This is a greedy single-pass algorithm. We are going over each lane
1364 // once and deciding on the best order right away with no back-tracking.
1365 // However, in order to increase its effectiveness, we start with the lane
1366 // that has operands that can move the least. For example, given the
1367 // following lanes:
1368 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
1369 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
1370 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
1371 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
1372 // we will start at Lane 1, since the operands of the subtraction cannot
1373 // be reordered. Then we will visit the rest of the lanes in a circular
1374 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1375
1376 // Find the first lane that we will start our search from.
1377 unsigned FirstLane = getBestLaneToStartReordering();
1378
1379 // Initialize the modes.
1380 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1381 Value *OpLane0 = getValue(OpIdx, FirstLane);
1382 // Keep track if we have instructions with all the same opcode on one
1383 // side.
1384 if (isa<LoadInst>(OpLane0))
1385 ReorderingModes[OpIdx] = ReorderingMode::Load;
1386 else if (isa<Instruction>(OpLane0)) {
1387 // Check if OpLane0 should be broadcast.
1388 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1389 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1390 else
1391 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1392 }
1393 else if (isa<Constant>(OpLane0))
1394 ReorderingModes[OpIdx] = ReorderingMode::Constant;
1395 else if (isa<Argument>(OpLane0))
1396 // Our best hope is a Splat. It may save some cost in some cases.
1397 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1398 else
1399 // NOTE: This should be unreachable.
1400 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1401 }
1402
1403 // If the initial strategy fails for any of the operand indexes, then we
1404 // perform reordering again in a second pass. This helps avoid assigning
1405 // high priority to the failed strategy, and should improve reordering for
1406 // the non-failed operand indexes.
1407 for (int Pass = 0; Pass != 2; ++Pass) {
1408 // Skip the second pass if the first pass did not fail.
1409 bool StrategyFailed = false;
1410 // Mark all operand data as free to use.
1411 clearUsed();
1412 // We keep the original operand order for the FirstLane, so reorder the
1413 // rest of the lanes. We are visiting the nodes in a circular fashion,
1414 // using FirstLane as the center point and increasing the radius
1415 // distance.
1416 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1417 // Visit the lane on the right and then the lane on the left.
1418 for (int Direction : {+1, -1}) {
1419 int Lane = FirstLane + Direction * Distance;
1420 if (Lane < 0 || Lane >= (int)NumLanes)
1421 continue;
1422 int LastLane = Lane - Direction;
1423 assert(LastLane >= 0 && LastLane < (int)NumLanes &&(static_cast <bool> (LastLane >= 0 && LastLane
< (int)NumLanes && "Out of bounds") ? void (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1424, __extension__ __PRETTY_FUNCTION__))
1424 "Out of bounds")(static_cast <bool> (LastLane >= 0 && LastLane
< (int)NumLanes && "Out of bounds") ? void (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1424, __extension__ __PRETTY_FUNCTION__))
;
1425 // Look for a good match for each operand.
1426 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1427 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1428 Optional<unsigned> BestIdx =
1429 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1430 // By not selecting a value, we allow the operands that follow to
1431 // select a better matching value. We will get a non-null value in
1432 // the next run of getBestOperand().
1433 if (BestIdx) {
1434 // Swap the current operand with the one returned by
1435 // getBestOperand().
1436 swap(OpIdx, BestIdx.getValue(), Lane);
1437 } else {
1438 // We failed to find a best operand, set mode to 'Failed'.
1439 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1440 // Enable the second pass.
1441 StrategyFailed = true;
1442 }
1443 }
1444 }
1445 }
1446 // Skip second pass if the strategy did not fail.
1447 if (!StrategyFailed)
1448 break;
1449 }
1450 }
1451
1452#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static StringRef getModeStr(ReorderingMode RMode) {
1454 switch (RMode) {
1455 case ReorderingMode::Load:
1456 return "Load";
1457 case ReorderingMode::Opcode:
1458 return "Opcode";
1459 case ReorderingMode::Constant:
1460 return "Constant";
1461 case ReorderingMode::Splat:
1462 return "Splat";
1463 case ReorderingMode::Failed:
1464 return "Failed";
1465 }
1466 llvm_unreachable("Unimplemented Reordering Type")::llvm::llvm_unreachable_internal("Unimplemented Reordering Type"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1466)
;
1467 }
1468
1469 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static raw_ostream &printMode(ReorderingMode RMode,
1470 raw_ostream &OS) {
1471 return OS << getModeStr(RMode);
1472 }
1473
1474 /// Debug print.
1475 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static void dumpMode(ReorderingMode RMode) {
1476 printMode(RMode, dbgs());
1477 }
1478
1479 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1480 return printMode(RMode, OS);
1481 }
1482
1483 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) raw_ostream &print(raw_ostream &OS) const {
1484 const unsigned Indent = 2;
1485 unsigned Cnt = 0;
1486 for (const OperandDataVec &OpDataVec : OpsVec) {
1487 OS << "Operand " << Cnt++ << "\n";
1488 for (const OperandData &OpData : OpDataVec) {
1489 OS.indent(Indent) << "{";
1490 if (Value *V = OpData.V)
1491 OS << *V;
1492 else
1493 OS << "null";
1494 OS << ", APO:" << OpData.APO << "}\n";
1495 }
1496 OS << "\n";
1497 }
1498 return OS;
1499 }
1500
1501 /// Debug print.
1502 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { print(dbgs()); }
1503#endif
1504 };
1505
1506 /// Checks if the instruction is marked for deletion.
1507 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1508
1509 /// Marks values operands for later deletion by replacing them with Undefs.
1510 void eraseInstructions(ArrayRef<Value *> AV);
1511
1512 ~BoUpSLP();
1513
1514private:
1515 /// Checks if all users of \p I are the part of the vectorization tree.
1516 bool areAllUsersVectorized(Instruction *I) const;
1517
1518 /// \returns the cost of the vectorizable entry.
1519 InstructionCost getEntryCost(const TreeEntry *E);
1520
1521 /// This is the recursive part of buildTree.
1522 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1523 const EdgeInfo &EI);
1524
1525 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1526 /// be vectorized to use the original vector (or aggregate "bitcast" to a
1527 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1528 /// returns false, setting \p CurrentOrder to either an empty vector or a
1529 /// non-identity permutation that allows to reuse extract instructions.
1530 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1531 SmallVectorImpl<unsigned> &CurrentOrder) const;
1532
1533 /// Vectorize a single entry in the tree.
1534 Value *vectorizeTree(TreeEntry *E);
1535
1536 /// Vectorize a single entry in the tree, starting in \p VL.
1537 Value *vectorizeTree(ArrayRef<Value *> VL);
1538
1539 /// \returns the scalarization cost for this type. Scalarization in this
1540 /// context means the creation of vectors from a group of scalars.
1541 InstructionCost
1542 getGatherCost(FixedVectorType *Ty,
1543 const DenseSet<unsigned> &ShuffledIndices) const;
1544
1545 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1546 /// tree entries.
1547 /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1548 /// previous tree entries. \p Mask is filled with the shuffle mask.
1549 Optional<TargetTransformInfo::ShuffleKind>
1550 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1551 SmallVectorImpl<const TreeEntry *> &Entries);
1552
1553 /// \returns the scalarization cost for this list of values. Assuming that
1554 /// this subtree gets vectorized, we may need to extract the values from the
1555 /// roots. This method calculates the cost of extracting the values.
1556 InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1557
1558 /// Set the Builder insert point to one after the last instruction in
1559 /// the bundle
1560 void setInsertPointAfterBundle(const TreeEntry *E);
1561
1562 /// \returns a vector from a collection of scalars in \p VL.
1563 Value *gather(ArrayRef<Value *> VL);
1564
1565 /// \returns whether the VectorizableTree is fully vectorizable and will
1566 /// be beneficial even the tree height is tiny.
1567 bool isFullyVectorizableTinyTree() const;
1568
1569 /// Reorder commutative or alt operands to get better probability of
1570 /// generating vectorized code.
1571 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1572 SmallVectorImpl<Value *> &Left,
1573 SmallVectorImpl<Value *> &Right,
1574 const DataLayout &DL,
1575 ScalarEvolution &SE,
1576 const BoUpSLP &R);
1577 struct TreeEntry {
1578 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1579 TreeEntry(VecTreeTy &Container) : Container(Container) {}
1580
1581 /// \returns true if the scalars in VL are equal to this entry.
1582 bool isSame(ArrayRef<Value *> VL) const {
1583 if (VL.size() == Scalars.size())
1584 return std::equal(VL.begin(), VL.end(), Scalars.begin());
1585 return VL.size() == ReuseShuffleIndices.size() &&
1586 std::equal(
1587 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1588 [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1589 }
1590
1591 /// A vector of scalars.
1592 ValueList Scalars;
1593
1594 /// The Scalars are vectorized into this value. It is initialized to Null.
1595 Value *VectorizedValue = nullptr;
1596
1597 /// Do we need to gather this sequence or vectorize it
1598 /// (either with vector instruction or with scatter/gather
1599 /// intrinsics for store/load)?
1600 enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
1601 EntryState State;
1602
1603 /// Does this sequence require some shuffling?
1604 SmallVector<int, 4> ReuseShuffleIndices;
1605
1606 /// Does this entry require reordering?
1607 SmallVector<unsigned, 4> ReorderIndices;
1608
1609 /// Points back to the VectorizableTree.
1610 ///
1611 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
1612 /// to be a pointer and needs to be able to initialize the child iterator.
1613 /// Thus we need a reference back to the container to translate the indices
1614 /// to entries.
1615 VecTreeTy &Container;
1616
1617 /// The TreeEntry index containing the user of this entry. We can actually
1618 /// have multiple users so the data structure is not truly a tree.
1619 SmallVector<EdgeInfo, 1> UserTreeIndices;
1620
1621 /// The index of this treeEntry in VectorizableTree.
1622 int Idx = -1;
1623
1624 private:
1625 /// The operands of each instruction in each lane Operands[op_index][lane].
1626 /// Note: This helps avoid the replication of the code that performs the
1627 /// reordering of operands during buildTree_rec() and vectorizeTree().
1628 SmallVector<ValueList, 2> Operands;
1629
1630 /// The main/alternate instruction.
1631 Instruction *MainOp = nullptr;
1632 Instruction *AltOp = nullptr;
1633
1634 public:
1635 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1636 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1637 if (Operands.size() < OpIdx + 1)
1638 Operands.resize(OpIdx + 1);
1639 assert(Operands[OpIdx].empty() && "Already resized?")(static_cast <bool> (Operands[OpIdx].empty() &&
"Already resized?") ? void (0) : __assert_fail ("Operands[OpIdx].empty() && \"Already resized?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1639, __extension__ __PRETTY_FUNCTION__))
;
1640 Operands[OpIdx].resize(Scalars.size());
1641 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1642 Operands[OpIdx][Lane] = OpVL[Lane];
1643 }
1644
1645 /// Set the operands of this bundle in their original order.
1646 void setOperandsInOrder() {
1647 assert(Operands.empty() && "Already initialized?")(static_cast <bool> (Operands.empty() && "Already initialized?"
) ? void (0) : __assert_fail ("Operands.empty() && \"Already initialized?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1647, __extension__ __PRETTY_FUNCTION__))
;
1648 auto *I0 = cast<Instruction>(Scalars[0]);
1649 Operands.resize(I0->getNumOperands());
1650 unsigned NumLanes = Scalars.size();
1651 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1652 OpIdx != NumOperands; ++OpIdx) {
1653 Operands[OpIdx].resize(NumLanes);
1654 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1655 auto *I = cast<Instruction>(Scalars[Lane]);
1656 assert(I->getNumOperands() == NumOperands &&(static_cast <bool> (I->getNumOperands() == NumOperands
&& "Expected same number of operands") ? void (0) : __assert_fail
("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1657, __extension__ __PRETTY_FUNCTION__))
1657 "Expected same number of operands")(static_cast <bool> (I->getNumOperands() == NumOperands
&& "Expected same number of operands") ? void (0) : __assert_fail
("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1657, __extension__ __PRETTY_FUNCTION__))
;
1658 Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1659 }
1660 }
1661 }
1662
1663 /// \returns the \p OpIdx operand of this TreeEntry.
1664 ValueList &getOperand(unsigned OpIdx) {
1665 assert(OpIdx < Operands.size() && "Off bounds")(static_cast <bool> (OpIdx < Operands.size() &&
"Off bounds") ? void (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1665, __extension__ __PRETTY_FUNCTION__))
;
1666 return Operands[OpIdx];
1667 }
1668
1669 /// \returns the number of operands.
1670 unsigned getNumOperands() const { return Operands.size(); }
1671
1672 /// \return the single \p OpIdx operand.
1673 Value *getSingleOperand(unsigned OpIdx) const {
1674 assert(OpIdx < Operands.size() && "Off bounds")(static_cast <bool> (OpIdx < Operands.size() &&
"Off bounds") ? void (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1674, __extension__ __PRETTY_FUNCTION__))
;
1675 assert(!Operands[OpIdx].empty() && "No operand available")(static_cast <bool> (!Operands[OpIdx].empty() &&
"No operand available") ? void (0) : __assert_fail ("!Operands[OpIdx].empty() && \"No operand available\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1675, __extension__ __PRETTY_FUNCTION__))
;
1676 return Operands[OpIdx][0];
1677 }
1678
1679 /// Some of the instructions in the list have alternate opcodes.
1680 bool isAltShuffle() const {
1681 return getOpcode() != getAltOpcode();
1682 }
1683
1684 bool isOpcodeOrAlt(Instruction *I) const {
1685 unsigned CheckedOpcode = I->getOpcode();
1686 return (getOpcode() == CheckedOpcode ||
1687 getAltOpcode() == CheckedOpcode);
1688 }
1689
1690 /// Chooses the correct key for scheduling data. If \p Op has the same (or
1691 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1692 /// \p OpValue.
1693 Value *isOneOf(Value *Op) const {
1694 auto *I = dyn_cast<Instruction>(Op);
1695 if (I && isOpcodeOrAlt(I))
1696 return Op;
1697 return MainOp;
1698 }
1699
1700 void setOperations(const InstructionsState &S) {
1701 MainOp = S.MainOp;
1702 AltOp = S.AltOp;
1703 }
1704
1705 Instruction *getMainOp() const {
1706 return MainOp;
1707 }
1708
1709 Instruction *getAltOp() const {
1710 return AltOp;
1711 }
1712
1713 /// The main/alternate opcodes for the list of instructions.
1714 unsigned getOpcode() const {
1715 return MainOp ? MainOp->getOpcode() : 0;
1716 }
1717
1718 unsigned getAltOpcode() const {
1719 return AltOp ? AltOp->getOpcode() : 0;
1720 }
1721
1722 /// Update operations state of this entry if reorder occurred.
1723 bool updateStateIfReorder() {
1724 if (ReorderIndices.empty())
1725 return false;
1726 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1727 setOperations(S);
1728 return true;
1729 }
1730
1731#ifndef NDEBUG
1732 /// Debug printer.
1733 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const {
1734 dbgs() << Idx << ".\n";
1735 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1736 dbgs() << "Operand " << OpI << ":\n";
1737 for (const Value *V : Operands[OpI])
1738 dbgs().indent(2) << *V << "\n";
1739 }
1740 dbgs() << "Scalars: \n";
1741 for (Value *V : Scalars)
1742 dbgs().indent(2) << *V << "\n";
1743 dbgs() << "State: ";
1744 switch (State) {
1745 case Vectorize:
1746 dbgs() << "Vectorize\n";
1747 break;
1748 case ScatterVectorize:
1749 dbgs() << "ScatterVectorize\n";
1750 break;
1751 case NeedToGather:
1752 dbgs() << "NeedToGather\n";
1753 break;
1754 }
1755 dbgs() << "MainOp: ";
1756 if (MainOp)
1757 dbgs() << *MainOp << "\n";
1758 else
1759 dbgs() << "NULL\n";
1760 dbgs() << "AltOp: ";
1761 if (AltOp)
1762 dbgs() << *AltOp << "\n";
1763 else
1764 dbgs() << "NULL\n";
1765 dbgs() << "VectorizedValue: ";
1766 if (VectorizedValue)
1767 dbgs() << *VectorizedValue << "\n";
1768 else
1769 dbgs() << "NULL\n";
1770 dbgs() << "ReuseShuffleIndices: ";
1771 if (ReuseShuffleIndices.empty())
1772 dbgs() << "Empty";
1773 else
1774 for (unsigned ReuseIdx : ReuseShuffleIndices)
1775 dbgs() << ReuseIdx << ", ";
1776 dbgs() << "\n";
1777 dbgs() << "ReorderIndices: ";
1778 for (unsigned ReorderIdx : ReorderIndices)
1779 dbgs() << ReorderIdx << ", ";
1780 dbgs() << "\n";
1781 dbgs() << "UserTreeIndices: ";
1782 for (const auto &EInfo : UserTreeIndices)
1783 dbgs() << EInfo << ", ";
1784 dbgs() << "\n";
1785 }
1786#endif
1787 };
1788
1789#ifndef NDEBUG
1790 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
1791 InstructionCost VecCost,
1792 InstructionCost ScalarCost) const {
1793 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
1794 dbgs() << "SLP: Costs:\n";
1795 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n";
1796 dbgs() << "SLP: VectorCost = " << VecCost << "\n";
1797 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n";
1798 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " <<
1799 ReuseShuffleCost + VecCost - ScalarCost << "\n";
1800 }
1801#endif
1802
1803 /// Create a new VectorizableTree entry.
1804 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1805 const InstructionsState &S,
1806 const EdgeInfo &UserTreeIdx,
1807 ArrayRef<unsigned> ReuseShuffleIndices = None,
1808 ArrayRef<unsigned> ReorderIndices = None) {
1809 TreeEntry::EntryState EntryState =
1810 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1811 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
1812 ReuseShuffleIndices, ReorderIndices);
1813 }
1814
1815 TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
1816 TreeEntry::EntryState EntryState,
1817 Optional<ScheduleData *> Bundle,
1818 const InstructionsState &S,
1819 const EdgeInfo &UserTreeIdx,
1820 ArrayRef<unsigned> ReuseShuffleIndices = None,
1821 ArrayRef<unsigned> ReorderIndices = None) {
1822 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1824, __extension__ __PRETTY_FUNCTION__))
1823 (Bundle && EntryState != TreeEntry::NeedToGather)) &&(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1824, __extension__ __PRETTY_FUNCTION__))
1824 "Need to vectorize gather entry?")(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1824, __extension__ __PRETTY_FUNCTION__))
;
1825 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1826 TreeEntry *Last = VectorizableTree.back().get();
1827 Last->Idx = VectorizableTree.size() - 1;
1828 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1829 Last->State = EntryState;
1830 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1831 ReuseShuffleIndices.end());
1832 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1833 Last->setOperations(S);
1834 if (Last->State != TreeEntry::NeedToGather) {
1835 for (Value *V : VL) {
1836 assert(!getTreeEntry(V) && "Scalar already in tree!")(static_cast <bool> (!getTreeEntry(V) && "Scalar already in tree!"
) ? void (0) : __assert_fail ("!getTreeEntry(V) && \"Scalar already in tree!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1836, __extension__ __PRETTY_FUNCTION__))
;
1837 ScalarToTreeEntry[V] = Last;
1838 }
1839 // Update the scheduler bundle to point to this TreeEntry.
1840 unsigned Lane = 0;
1841 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1842 BundleMember = BundleMember->NextInBundle) {
1843 BundleMember->TE = Last;
1844 BundleMember->Lane = Lane;
1845 ++Lane;
1846 }
1847 assert((!Bundle.getValue() || Lane == VL.size()) &&(static_cast <bool> ((!Bundle.getValue() || Lane == VL.
size()) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(!Bundle.getValue() || Lane == VL.size()) && \"Bundle and VL out of sync\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1848, __extension__ __PRETTY_FUNCTION__))
1848 "Bundle and VL out of sync")(static_cast <bool> ((!Bundle.getValue() || Lane == VL.
size()) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(!Bundle.getValue() || Lane == VL.size()) && \"Bundle and VL out of sync\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1848, __extension__ __PRETTY_FUNCTION__))
;
1849 } else {
1850 MustGather.insert(VL.begin(), VL.end());
1851 }
1852
1853 if (UserTreeIdx.UserTE)
1854 Last->UserTreeIndices.push_back(UserTreeIdx);
1855
1856 return Last;
1857 }
1858
1859 /// -- Vectorization State --
1860 /// Holds all of the tree entries.
1861 TreeEntry::VecTreeTy VectorizableTree;
1862
1863#ifndef NDEBUG
1864 /// Debug printer.
1865 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dumpVectorizableTree() const {
1866 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1867 VectorizableTree[Id]->dump();
1868 dbgs() << "\n";
1869 }
1870 }
1871#endif
1872
1873 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
1874
1875 const TreeEntry *getTreeEntry(Value *V) const {
1876 return ScalarToTreeEntry.lookup(V);
1877 }
1878
1879 /// Maps a specific scalar to its tree entry.
1880 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1881
1882 /// Maps a value to the proposed vectorizable size.
1883 SmallDenseMap<Value *, unsigned> InstrElementSize;
1884
1885 /// A list of scalars that we found that we need to keep as scalars.
1886 ValueSet MustGather;
1887
1888 /// This POD struct describes one external user in the vectorized tree.
1889 struct ExternalUser {
1890 ExternalUser(Value *S, llvm::User *U, int L)
1891 : Scalar(S), User(U), Lane(L) {}
1892
1893 // Which scalar in our function.
1894 Value *Scalar;
1895
1896 // Which user that uses the scalar.
1897 llvm::User *User;
1898
1899 // Which lane does the scalar belong to.
1900 int Lane;
1901 };
1902 using UserList = SmallVector<ExternalUser, 16>;
1903
1904 /// Checks if two instructions may access the same memory.
1905 ///
1906 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1907 /// is invariant in the calling loop.
1908 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1909 Instruction *Inst2) {
1910 // First check if the result is already in the cache.
1911 AliasCacheKey key = std::make_pair(Inst1, Inst2);
1912 Optional<bool> &result = AliasCache[key];
1913 if (result.hasValue()) {
1914 return result.getValue();
1915 }
1916 MemoryLocation Loc2 = getLocation(Inst2, AA);
1917 bool aliased = true;
1918 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1919 // Do the alias check.
1920 aliased = !AA->isNoAlias(Loc1, Loc2);
1921 }
1922 // Store the result in the cache.
1923 result = aliased;
1924 return aliased;
1925 }
1926
1927 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1928
1929 /// Cache for alias results.
1930 /// TODO: consider moving this to the AliasAnalysis itself.
1931 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1932
1933 /// Removes an instruction from its block and eventually deletes it.
1934 /// It's like Instruction::eraseFromParent() except that the actual deletion
1935 /// is delayed until BoUpSLP is destructed.
1936 /// This is required to ensure that there are no incorrect collisions in the
1937 /// AliasCache, which can happen if a new instruction is allocated at the
1938 /// same address as a previously deleted instruction.
1939 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1940 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1941 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1942 }
1943
1944 /// Temporary store for deleted instructions. Instructions will be deleted
1945 /// eventually when the BoUpSLP is destructed.
1946 DenseMap<Instruction *, bool> DeletedInstructions;
1947
1948 /// A list of values that need to extracted out of the tree.
1949 /// This list holds pairs of (Internal Scalar : External User). External User
1950 /// can be nullptr, it means that this Internal Scalar will be used later,
1951 /// after vectorization.
1952 UserList ExternalUses;
1953
1954 /// Values used only by @llvm.assume calls.
1955 SmallPtrSet<const Value *, 32> EphValues;
1956
1957 /// Holds all of the instructions that we gathered.
1958 SetVector<Instruction *> GatherSeq;
1959
1960 /// A list of blocks that we are going to CSE.
1961 SetVector<BasicBlock *> CSEBlocks;
1962
1963 /// Contains all scheduling relevant data for an instruction.
1964 /// A ScheduleData either represents a single instruction or a member of an
1965 /// instruction bundle (= a group of instructions which is combined into a
1966 /// vector instruction).
1967 struct ScheduleData {
1968 // The initial value for the dependency counters. It means that the
1969 // dependencies are not calculated yet.
1970 enum { InvalidDeps = -1 };
1971
1972 ScheduleData() = default;
1973
1974 void init(int BlockSchedulingRegionID, Value *OpVal) {
1975 FirstInBundle = this;
1976 NextInBundle = nullptr;
1977 NextLoadStore = nullptr;
1978 IsScheduled = false;
1979 SchedulingRegionID = BlockSchedulingRegionID;
1980 UnscheduledDepsInBundle = UnscheduledDeps;
1981 clearDependencies();
1982 OpValue = OpVal;
1983 TE = nullptr;
1984 Lane = -1;
1985 }
1986
1987 /// Returns true if the dependency information has been calculated.
1988 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1989
1990 /// Returns true for single instructions and for bundle representatives
1991 /// (= the head of a bundle).
1992 bool isSchedulingEntity() const { return FirstInBundle == this; }
1993
1994 /// Returns true if it represents an instruction bundle and not only a
1995 /// single instruction.
1996 bool isPartOfBundle() const {
1997 return NextInBundle != nullptr || FirstInBundle != this;
1998 }
1999
2000 /// Returns true if it is ready for scheduling, i.e. it has no more
2001 /// unscheduled depending instructions/bundles.
2002 bool isReady() const {
2003 assert(isSchedulingEntity() &&(static_cast <bool> (isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2004, __extension__ __PRETTY_FUNCTION__))
2004 "can't consider non-scheduling entity for ready list")(static_cast <bool> (isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2004, __extension__ __PRETTY_FUNCTION__))
;
2005 return UnscheduledDepsInBundle == 0 && !IsScheduled;
2006 }
2007
2008 /// Modifies the number of unscheduled dependencies, also updating it for
2009 /// the whole bundle.
2010 int incrementUnscheduledDeps(int Incr) {
2011 UnscheduledDeps += Incr;
2012 return FirstInBundle->UnscheduledDepsInBundle += Incr;
2013 }
2014
2015 /// Sets the number of unscheduled dependencies to the number of
2016 /// dependencies.
2017 void resetUnscheduledDeps() {
2018 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
2019 }
2020
2021 /// Clears all dependency information.
2022 void clearDependencies() {
2023 Dependencies = InvalidDeps;
2024 resetUnscheduledDeps();
2025 MemoryDependencies.clear();
2026 }
2027
2028 void dump(raw_ostream &os) const {
2029 if (!isSchedulingEntity()) {
2030 os << "/ " << *Inst;
2031 } else if (NextInBundle) {
2032 os << '[' << *Inst;
2033 ScheduleData *SD = NextInBundle;
2034 while (SD) {
2035 os << ';' << *SD->Inst;
2036 SD = SD->NextInBundle;
2037 }
2038 os << ']';
2039 } else {
2040 os << *Inst;
2041 }
2042 }
2043
2044 Instruction *Inst = nullptr;
2045
2046 /// Points to the head in an instruction bundle (and always to this for
2047 /// single instructions).
2048 ScheduleData *FirstInBundle = nullptr;
2049
2050 /// Single linked list of all instructions in a bundle. Null if it is a
2051 /// single instruction.
2052 ScheduleData *NextInBundle = nullptr;
2053
2054 /// Single linked list of all memory instructions (e.g. load, store, call)
2055 /// in the block - until the end of the scheduling region.
2056 ScheduleData *NextLoadStore = nullptr;
2057
2058 /// The dependent memory instructions.
2059 /// This list is derived on demand in calculateDependencies().
2060 SmallVector<ScheduleData *, 4> MemoryDependencies;
2061
2062 /// This ScheduleData is in the current scheduling region if this matches
2063 /// the current SchedulingRegionID of BlockScheduling.
2064 int SchedulingRegionID = 0;
2065
2066 /// Used for getting a "good" final ordering of instructions.
2067 int SchedulingPriority = 0;
2068
2069 /// The number of dependencies. Constitutes of the number of users of the
2070 /// instruction plus the number of dependent memory instructions (if any).
2071 /// This value is calculated on demand.
2072 /// If InvalidDeps, the number of dependencies is not calculated yet.
2073 int Dependencies = InvalidDeps;
2074
2075 /// The number of dependencies minus the number of dependencies of scheduled
2076 /// instructions. As soon as this is zero, the instruction/bundle gets ready
2077 /// for scheduling.
2078 /// Note that this is negative as long as Dependencies is not calculated.
2079 int UnscheduledDeps = InvalidDeps;
2080
2081 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2082 /// single instructions.
2083 int UnscheduledDepsInBundle = InvalidDeps;
2084
2085 /// True if this instruction is scheduled (or considered as scheduled in the
2086 /// dry-run).
2087 bool IsScheduled = false;
2088
2089 /// Opcode of the current instruction in the schedule data.
2090 Value *OpValue = nullptr;
2091
2092 /// The TreeEntry that this instruction corresponds to.
2093 TreeEntry *TE = nullptr;
2094
2095 /// The lane of this node in the TreeEntry.
2096 int Lane = -1;
2097 };
2098
2099#ifndef NDEBUG
2100 friend inline raw_ostream &operator<<(raw_ostream &os,
2101 const BoUpSLP::ScheduleData &SD) {
2102 SD.dump(os);
2103 return os;
2104 }
2105#endif
2106
2107 friend struct GraphTraits<BoUpSLP *>;
2108 friend struct DOTGraphTraits<BoUpSLP *>;
2109
2110 /// Contains all scheduling data for a basic block.
2111 struct BlockScheduling {
2112 BlockScheduling(BasicBlock *BB)
2113 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2114
2115 void clear() {
2116 ReadyInsts.clear();
2117 ScheduleStart = nullptr;
2118 ScheduleEnd = nullptr;
2119 FirstLoadStoreInRegion = nullptr;
2120 LastLoadStoreInRegion = nullptr;
2121
2122 // Reduce the maximum schedule region size by the size of the
2123 // previous scheduling run.
2124 ScheduleRegionSizeLimit -= ScheduleRegionSize;
2125 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2126 ScheduleRegionSizeLimit = MinScheduleRegionSize;
2127 ScheduleRegionSize = 0;
2128
2129 // Make a new scheduling region, i.e. all existing ScheduleData is not
2130 // in the new region yet.
2131 ++SchedulingRegionID;
2132 }
2133
2134 ScheduleData *getScheduleData(Value *V) {
2135 ScheduleData *SD = ScheduleDataMap[V];
2136 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2137 return SD;
2138 return nullptr;
2139 }
2140
2141 ScheduleData *getScheduleData(Value *V, Value *Key) {
2142 if (V == Key)
2143 return getScheduleData(V);
2144 auto I = ExtraScheduleDataMap.find(V);
2145 if (I != ExtraScheduleDataMap.end()) {
2146 ScheduleData *SD = I->second[Key];
2147 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2148 return SD;
2149 }
2150 return nullptr;
2151 }
2152
2153 bool isInSchedulingRegion(ScheduleData *SD) const {
2154 return SD->SchedulingRegionID == SchedulingRegionID;
2155 }
2156
2157 /// Marks an instruction as scheduled and puts all dependent ready
2158 /// instructions into the ready-list.
2159 template <typename ReadyListType>
2160 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2161 SD->IsScheduled = true;
2162 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule " << *SD <<
"\n"; } } while (false)
;
2163
2164 ScheduleData *BundleMember = SD;
2165 while (BundleMember) {
2166 if (BundleMember->Inst != BundleMember->OpValue) {
2167 BundleMember = BundleMember->NextInBundle;
2168 continue;
2169 }
2170 // Handle the def-use chain dependencies.
2171
2172 // Decrement the unscheduled counter and insert to ready list if ready.
2173 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2174 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2175 if (OpDef && OpDef->hasValidDependencies() &&
2176 OpDef->incrementUnscheduledDeps(-1) == 0) {
2177 // There are no more unscheduled dependencies after
2178 // decrementing, so we can put the dependent instruction
2179 // into the ready list.
2180 ScheduleData *DepBundle = OpDef->FirstInBundle;
2181 assert(!DepBundle->IsScheduled &&(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2182, __extension__ __PRETTY_FUNCTION__))
2182 "already scheduled bundle gets ready")(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2182, __extension__ __PRETTY_FUNCTION__))
;
2183 ReadyList.insert(DepBundle);
2184 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
2185 << "SLP: gets ready (def): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
;
2186 }
2187 });
2188 };
2189
2190 // If BundleMember is a vector bundle, its operands may have been
2191 // reordered duiring buildTree(). We therefore need to get its operands
2192 // through the TreeEntry.
2193 if (TreeEntry *TE = BundleMember->TE) {
2194 int Lane = BundleMember->Lane;
2195 assert(Lane >= 0 && "Lane not set")(static_cast <bool> (Lane >= 0 && "Lane not set"
) ? void (0) : __assert_fail ("Lane >= 0 && \"Lane not set\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2195, __extension__ __PRETTY_FUNCTION__))
;
2196
2197 // Since vectorization tree is being built recursively this assertion
2198 // ensures that the tree entry has all operands set before reaching
2199 // this code. Couple of exceptions known at the moment are extracts
2200 // where their second (immediate) operand is not added. Since
2201 // immediates do not affect scheduler behavior this is considered
2202 // okay.
2203 auto *In = TE->getMainOp();
2204 assert(In &&(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || In->getNumOperands
() == TE->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2207, __extension__ __PRETTY_FUNCTION__))
2205 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || In->getNumOperands
() == TE->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2207, __extension__ __PRETTY_FUNCTION__))
2206 In->getNumOperands() == TE->getNumOperands()) &&(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || In->getNumOperands
() == TE->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2207, __extension__ __PRETTY_FUNCTION__))
2207 "Missed TreeEntry operands?")(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || In->getNumOperands
() == TE->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2207, __extension__ __PRETTY_FUNCTION__))
;
2208 (void)In; // fake use to avoid build failure when assertions disabled
2209
2210 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2211 OpIdx != NumOperands; ++OpIdx)
2212 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2213 DecrUnsched(I);
2214 } else {
2215 // If BundleMember is a stand-alone instruction, no operand reordering
2216 // has taken place, so we directly access its operands.
2217 for (Use &U : BundleMember->Inst->operands())
2218 if (auto *I = dyn_cast<Instruction>(U.get()))
2219 DecrUnsched(I);
2220 }
2221 // Handle the memory dependencies.
2222 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2223 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2224 // There are no more unscheduled dependencies after decrementing,
2225 // so we can put the dependent instruction into the ready list.
2226 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2227 assert(!DepBundle->IsScheduled &&(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2228, __extension__ __PRETTY_FUNCTION__))
2228 "already scheduled bundle gets ready")(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2228, __extension__ __PRETTY_FUNCTION__))
;
2229 ReadyList.insert(DepBundle);
2230 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
2231 << "SLP: gets ready (mem): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
;
2232 }
2233 }
2234 BundleMember = BundleMember->NextInBundle;
2235 }
2236 }
2237
2238 void doForAllOpcodes(Value *V,
2239 function_ref<void(ScheduleData *SD)> Action) {
2240 if (ScheduleData *SD = getScheduleData(V))
2241 Action(SD);
2242 auto I = ExtraScheduleDataMap.find(V);
2243 if (I != ExtraScheduleDataMap.end())
2244 for (auto &P : I->second)
2245 if (P.second->SchedulingRegionID == SchedulingRegionID)
2246 Action(P.second);
2247 }
2248
2249 /// Put all instructions into the ReadyList which are ready for scheduling.
2250 template <typename ReadyListType>
2251 void initialFillReadyList(ReadyListType &ReadyList) {
2252 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2253 doForAllOpcodes(I, [&](ScheduleData *SD) {
2254 if (SD->isSchedulingEntity() && SD->isReady()) {
2255 ReadyList.insert(SD);
2256 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (false)
2257 << "SLP: initially in ready list: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (false)
;
2258 }
2259 });
2260 }
2261 }
2262
2263 /// Checks if a bundle of instructions can be scheduled, i.e. has no
2264 /// cyclic dependencies. This is only a dry-run, no instructions are
2265 /// actually moved at this stage.
2266 /// \returns the scheduling bundle. The returned Optional value is non-None
2267 /// if \p VL is allowed to be scheduled.
2268 Optional<ScheduleData *>
2269 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2270 const InstructionsState &S);
2271
2272 /// Un-bundles a group of instructions.
2273 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2274
2275 /// Allocates schedule data chunk.
2276 ScheduleData *allocateScheduleDataChunks();
2277
2278 /// Extends the scheduling region so that V is inside the region.
2279 /// \returns true if the region size is within the limit.
2280 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2281
2282 /// Initialize the ScheduleData structures for new instructions in the
2283 /// scheduling region.
2284 void initScheduleData(Instruction *FromI, Instruction *ToI,
2285 ScheduleData *PrevLoadStore,
2286 ScheduleData *NextLoadStore);
2287
2288 /// Updates the dependency information of a bundle and of all instructions/
2289 /// bundles which depend on the original bundle.
2290 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2291 BoUpSLP *SLP);
2292
2293 /// Sets all instruction in the scheduling region to un-scheduled.
2294 void resetSchedule();
2295
2296 BasicBlock *BB;
2297
2298 /// Simple memory allocation for ScheduleData.
2299 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2300
2301 /// The size of a ScheduleData array in ScheduleDataChunks.
2302 int ChunkSize;
2303
2304 /// The allocator position in the current chunk, which is the last entry
2305 /// of ScheduleDataChunks.
2306 int ChunkPos;
2307
2308 /// Attaches ScheduleData to Instruction.
2309 /// Note that the mapping survives during all vectorization iterations, i.e.
2310 /// ScheduleData structures are recycled.
2311 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2312
2313 /// Attaches ScheduleData to Instruction with the leading key.
2314 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2315 ExtraScheduleDataMap;
2316
2317 struct ReadyList : SmallVector<ScheduleData *, 8> {
2318 void insert(ScheduleData *SD) { push_back(SD); }
2319 };
2320
2321 /// The ready-list for scheduling (only used for the dry-run).
2322 ReadyList ReadyInsts;
2323
2324 /// The first instruction of the scheduling region.
2325 Instruction *ScheduleStart = nullptr;
2326
2327 /// The first instruction _after_ the scheduling region.
2328 Instruction *ScheduleEnd = nullptr;
2329
2330 /// The first memory accessing instruction in the scheduling region
2331 /// (can be null).
2332 ScheduleData *FirstLoadStoreInRegion = nullptr;
2333
2334 /// The last memory accessing instruction in the scheduling region
2335 /// (can be null).
2336 ScheduleData *LastLoadStoreInRegion = nullptr;
2337
2338 /// The current size of the scheduling region.
2339 int ScheduleRegionSize = 0;
2340
2341 /// The maximum size allowed for the scheduling region.
2342 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2343
2344 /// The ID of the scheduling region. For a new vectorization iteration this
2345 /// is incremented which "removes" all ScheduleData from the region.
2346 // Make sure that the initial SchedulingRegionID is greater than the
2347 // initial SchedulingRegionID in ScheduleData (which is 0).
2348 int SchedulingRegionID = 1;
2349 };
2350
2351 /// Attaches the BlockScheduling structures to basic blocks.
2352 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2353
2354 /// Performs the "real" scheduling. Done before vectorization is actually
2355 /// performed in a basic block.
2356 void scheduleBlock(BlockScheduling *BS);
2357
2358 /// List of users to ignore during scheduling and that don't need extracting.
2359 ArrayRef<Value *> UserIgnoreList;
2360
2361 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2362 /// sorted SmallVectors of unsigned.
2363 struct OrdersTypeDenseMapInfo {
2364 static OrdersType getEmptyKey() {
2365 OrdersType V;
2366 V.push_back(~1U);
2367 return V;
2368 }
2369
2370 static OrdersType getTombstoneKey() {
2371 OrdersType V;
2372 V.push_back(~2U);
2373 return V;
2374 }
2375
2376 static unsigned getHashValue(const OrdersType &V) {
2377 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2378 }
2379
2380 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2381 return LHS == RHS;
2382 }
2383 };
2384
2385 /// Contains orders of operations along with the number of bundles that have
2386 /// operations in this order. It stores only those orders that require
2387 /// reordering, if reordering is not required it is counted using \a
2388 /// NumOpsWantToKeepOriginalOrder.
2389 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2390 /// Number of bundles that do not require reordering.
2391 unsigned NumOpsWantToKeepOriginalOrder = 0;
2392
2393 // Analysis and block reference.
2394 Function *F;
2395 ScalarEvolution *SE;
2396 TargetTransformInfo *TTI;
2397 TargetLibraryInfo *TLI;
2398 AAResults *AA;
2399 LoopInfo *LI;
2400 DominatorTree *DT;
2401 AssumptionCache *AC;
2402 DemandedBits *DB;
2403 const DataLayout *DL;
2404 OptimizationRemarkEmitter *ORE;
2405
2406 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2407 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2408
2409 /// Instruction builder to construct the vectorized tree.
2410 IRBuilder<> Builder;
2411
2412 /// A map of scalar integer values to the smallest bit width with which they
2413 /// can legally be represented. The values map to (width, signed) pairs,
2414 /// where "width" indicates the minimum bit width and "signed" is True if the
2415 /// value must be signed-extended, rather than zero-extended, back to its
2416 /// original width.
2417 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2418};
2419
2420} // end namespace slpvectorizer
2421
2422template <> struct GraphTraits<BoUpSLP *> {
2423 using TreeEntry = BoUpSLP::TreeEntry;
2424
2425 /// NodeRef has to be a pointer per the GraphWriter.
2426 using NodeRef = TreeEntry *;
2427
2428 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2429
2430 /// Add the VectorizableTree to the index iterator to be able to return
2431 /// TreeEntry pointers.
2432 struct ChildIteratorType
2433 : public iterator_adaptor_base<
2434 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2435 ContainerTy &VectorizableTree;
2436
2437 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2438 ContainerTy &VT)
2439 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2440
2441 NodeRef operator*() { return I->UserTE; }
2442 };
2443
2444 static NodeRef getEntryNode(BoUpSLP &R) {
2445 return R.VectorizableTree[0].get();
2446 }
2447
2448 static ChildIteratorType child_begin(NodeRef N) {
2449 return {N->UserTreeIndices.begin(), N->Container};
2450 }
2451
2452 static ChildIteratorType child_end(NodeRef N) {
2453 return {N->UserTreeIndices.end(), N->Container};
2454 }
2455
2456 /// For the node iterator we just need to turn the TreeEntry iterator into a
2457 /// TreeEntry* iterator so that it dereferences to NodeRef.
2458 class nodes_iterator {
2459 using ItTy = ContainerTy::iterator;
2460 ItTy It;
2461
2462 public:
2463 nodes_iterator(const ItTy &It2) : It(It2) {}
2464 NodeRef operator*() { return It->get(); }
2465 nodes_iterator operator++() {
2466 ++It;
2467 return *this;
2468 }
2469 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2470 };
2471
2472 static nodes_iterator nodes_begin(BoUpSLP *R) {
2473 return nodes_iterator(R->VectorizableTree.begin());
2474 }
2475
2476 static nodes_iterator nodes_end(BoUpSLP *R) {
2477 return nodes_iterator(R->VectorizableTree.end());
2478 }
2479
2480 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2481};
2482
2483template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2484 using TreeEntry = BoUpSLP::TreeEntry;
2485
2486 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2487
2488 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2489 std::string Str;
2490 raw_string_ostream OS(Str);
2491 if (isSplat(Entry->Scalars)) {
2492 OS << "<splat> " << *Entry->Scalars[0];
2493 return Str;
2494 }
2495 for (auto V : Entry->Scalars) {
2496 OS << *V;
2497 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
2498 return EU.Scalar == V;
2499 }))
2500 OS << " <extract>";
2501 OS << "\n";
2502 }
2503 return Str;
2504 }
2505
2506 static std::string getNodeAttributes(const TreeEntry *Entry,
2507 const BoUpSLP *) {
2508 if (Entry->State == TreeEntry::NeedToGather)
2509 return "color=red";
2510 return "";
2511 }
2512};
2513
2514} // end namespace llvm
2515
2516BoUpSLP::~BoUpSLP() {
2517 for (const auto &Pair : DeletedInstructions) {
2518 // Replace operands of ignored instructions with Undefs in case if they were
2519 // marked for deletion.
2520 if (Pair.getSecond()) {
2521 Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2522 Pair.getFirst()->replaceAllUsesWith(Undef);
2523 }
2524 Pair.getFirst()->dropAllReferences();
2525 }
2526 for (const auto &Pair : DeletedInstructions) {
2527 assert(Pair.getFirst()->use_empty() &&(static_cast <bool> (Pair.getFirst()->use_empty() &&
"trying to erase instruction with users.") ? void (0) : __assert_fail
("Pair.getFirst()->use_empty() && \"trying to erase instruction with users.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2528, __extension__ __PRETTY_FUNCTION__))
2528 "trying to erase instruction with users.")(static_cast <bool> (Pair.getFirst()->use_empty() &&
"trying to erase instruction with users.") ? void (0) : __assert_fail
("Pair.getFirst()->use_empty() && \"trying to erase instruction with users.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2528, __extension__ __PRETTY_FUNCTION__))
;
2529 Pair.getFirst()->eraseFromParent();
2530 }
2531#ifdef EXPENSIVE_CHECKS
2532 // If we could guarantee that this call is not extremely slow, we could
2533 // remove the ifdef limitation (see PR47712).
2534 assert(!verifyFunction(*F, &dbgs()))(static_cast <bool> (!verifyFunction(*F, &dbgs())) ?
void (0) : __assert_fail ("!verifyFunction(*F, &dbgs())"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2534, __extension__ __PRETTY_FUNCTION__))
;
2535#endif
2536}
2537
2538void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2539 for (auto *V : AV) {
2540 if (auto *I = dyn_cast<Instruction>(V))
2541 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2542 };
2543}
2544
2545void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2546 ArrayRef<Value *> UserIgnoreLst) {
2547 ExtraValueToDebugLocsMap ExternallyUsedValues;
2548 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2549}
2550
2551static int findLaneForValue(ArrayRef<Value *> Scalars,
2552 ArrayRef<int> ReuseShuffleIndices, Value *V) {
2553 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2554 assert(FoundLane < Scalars.size() && "Couldn't find extract lane")(static_cast <bool> (FoundLane < Scalars.size() &&
"Couldn't find extract lane") ? void (0) : __assert_fail ("FoundLane < Scalars.size() && \"Couldn't find extract lane\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2554, __extension__ __PRETTY_FUNCTION__))
;
2555 if (!ReuseShuffleIndices.empty()) {
2556 FoundLane = std::distance(ReuseShuffleIndices.begin(),
2557 find(ReuseShuffleIndices, FoundLane));
2558 }
2559 return FoundLane;
2560}
2561
2562void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2563 ExtraValueToDebugLocsMap &ExternallyUsedValues,
2564 ArrayRef<Value *> UserIgnoreLst) {
2565 deleteTree();
2566 UserIgnoreList = UserIgnoreLst;
2567 if (!allSameType(Roots))
2568 return;
2569 buildTree_rec(Roots, 0, EdgeInfo());
2570
2571 // Collect the values that we need to extract from the tree.
2572 for (auto &TEPtr : VectorizableTree) {
2573 TreeEntry *Entry = TEPtr.get();
2574
2575 // No need to handle users of gathered values.
2576 if (Entry->State == TreeEntry::NeedToGather)
2577 continue;
2578
2579 // For each lane:
2580 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2581 Value *Scalar = Entry->Scalars[Lane];
2582 int FoundLane =
2583 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar);
2584
2585 // Check if the scalar is externally used as an extra arg.
2586 auto ExtI = ExternallyUsedValues.find(Scalar);
2587 if (ExtI != ExternallyUsedValues.end()) {
2588 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
2589 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
;
2590 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2591 }
2592 for (User *U : Scalar->users()) {
2593 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Checking user:" << *U <<
".\n"; } } while (false)
;
2594
2595 Instruction *UserInst = dyn_cast<Instruction>(U);
2596 if (!UserInst)
2597 continue;
2598
2599 // Skip in-tree scalars that become vectors
2600 if (TreeEntry *UseEntry = getTreeEntry(U)) {
2601 Value *UseScalar = UseEntry->Scalars[0];
2602 // Some in-tree scalars will remain as scalar in vectorized
2603 // instructions. If that is the case, the one in Lane 0 will
2604 // be used.
2605 if (UseScalar != U ||
2606 UseEntry->State == TreeEntry::ScatterVectorize ||
2607 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2608 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *Udo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
2609 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
;
2610 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state")(static_cast <bool> (UseEntry->State != TreeEntry::NeedToGather
&& "Bad state") ? void (0) : __assert_fail ("UseEntry->State != TreeEntry::NeedToGather && \"Bad state\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2610, __extension__ __PRETTY_FUNCTION__))
;
2611 continue;
2612 }
2613 }
2614
2615 // Ignore users in the user ignore list.
2616 if (is_contained(UserIgnoreList, UserInst))
2617 continue;
2618
2619 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
2620 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
;
2621 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2622 }
2623 }
2624 }
2625}
2626
2627void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2628 const EdgeInfo &UserTreeIdx) {
2629 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!")(static_cast <bool> ((allConstant(VL) || allSameType(VL
)) && "Invalid types!") ? void (0) : __assert_fail ("(allConstant(VL) || allSameType(VL)) && \"Invalid types!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2629, __extension__ __PRETTY_FUNCTION__))
;
1
Assuming the condition is false
2
Assuming the condition is true
3
'?' condition is true
2630
2631 InstructionsState S = getSameOpcode(VL);
2632 if (Depth == RecursionMaxDepth) {
4
Assuming the condition is false
5
Taking false branch
2633 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to max recursion depth.\n"
; } } while (false)
;
2634 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2635 return;
2636 }
2637
2638 // Don't handle vectors.
2639 if (S.OpValue->getType()->isVectorTy()) {
6
Taking false branch
2640 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to vector type.\n"
; } } while (false)
;
2641 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2642 return;
2643 }
2644
2645 if (StoreInst *SI
7.1
'SI' is null
7.1
'SI' is null
= dyn_cast<StoreInst>(S.OpValue))
7
Assuming field 'OpValue' is not a 'StoreInst'
8
Taking false branch
2646 if (SI->getValueOperand()->getType()->isVectorTy()) {
2647 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to store vector type.\n"
; } } while (false)
;
2648 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2649 return;
2650 }
2651
2652 // If all of the operands are identical or constant we have a simple solution.
2653 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
9
Assuming the condition is false
10
Assuming the condition is false
11
Assuming the condition is false
12
Taking false branch
2654 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to C,S,B,O. \n"
; } } while (false)
;
2655 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2656 return;
2657 }
2658
2659 // We now know that this is a vector of instructions of the same type from
2660 // the same block.
2661
2662 // Don't vectorize ephemeral values.
2663 for (Value *V : VL) {
13
Assuming '__begin1' is equal to '__end1'
2664 if (EphValues.count(V)) {
2665 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
2666 << ") is ephemeral.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
;
2667 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2668 return;
2669 }
2670 }
2671
2672 // Check if this is a duplicate of another entry.
2673 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
14
Assuming 'E' is null
15
Taking false branch
2674 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tChecking bundle: " <<
*S.OpValue << ".\n"; } } while (false)
;
2675 if (!E->isSame(VL)) {
2676 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to partial overlap.\n"
; } } while (false)
;
2677 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2678 return;
2679 }
2680 // Record the reuse of the tree node. FIXME, currently this is only used to
2681 // properly draw the graph rather than for the actual vectorization.
2682 E->UserTreeIndices.push_back(UserTreeIdx);
2683 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValuedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
2684 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
;
2685 return;
2686 }
2687
2688 // Check that none of the instructions in the bundle are already in the tree.
2689 for (Value *V : VL) {
16
Assuming '__begin1' is equal to '__end1'
2690 auto *I = dyn_cast<Instruction>(V);
2691 if (!I)
2692 continue;
2693 if (getTreeEntry(I)) {
2694 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
2695 << ") is already in tree.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
;
2696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2697 return;
2698 }
2699 }
2700
2701 // If any of the scalars is marked as a value that needs to stay scalar, then
2702 // we need to gather the scalars.
2703 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2704 for (Value *V : VL) {
17
Assuming '__begin1' is equal to '__end1'
2705 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2706 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to gathered scalar.\n"
; } } while (false)
;
2707 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2708 return;
2709 }
2710 }
2711
2712 // Check that all of the users of the scalars that we want to vectorize are
2713 // schedulable.
2714 auto *VL0 = cast<Instruction>(S.OpValue);
18
Field 'OpValue' is a 'Instruction'
2715 BasicBlock *BB = VL0->getParent();
2716
2717 if (!DT->isReachableFromEntry(BB)) {
19
Assuming the condition is false
20
Taking false branch
2718 // Don't go into unreachable blocks. They may contain instructions with
2719 // dependency cycles which confuse the final scheduling.
2720 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle in unreachable block.\n"
; } } while (false)
;
2721 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2722 return;
2723 }
2724
2725 // Check that every instruction appears once in this bundle.
2726 SmallVector<unsigned, 4> ReuseShuffleIndicies;
2727 SmallVector<Value *, 4> UniqueValues;
2728 DenseMap<Value *, unsigned> UniquePositions;
2729 for (Value *V : VL) {
21
Assuming '__begin1' is equal to '__end1'
2730 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2731 ReuseShuffleIndicies.emplace_back(Res.first->second);
2732 if (Res.second)
2733 UniqueValues.emplace_back(V);
2734 }
2735 size_t NumUniqueScalarValues = UniqueValues.size();
2736 if (NumUniqueScalarValues == VL.size()) {
22
Assuming the condition is true
23
Taking true branch
2737 ReuseShuffleIndicies.clear();
2738 } else {
2739 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Shuffle for reused scalars.\n"
; } } while (false)
;
2740 if (NumUniqueScalarValues <= 1 ||
2741 !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2742 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Scalar used twice in bundle.\n"
; } } while (false)
;
2743 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2744 return;
2745 }
2746 VL = UniqueValues;
2747 }
2748
2749 auto &BSRef = BlocksSchedules[BB];
2750 if (!BSRef)
24
Taking false branch
2751 BSRef = std::make_unique<BlockScheduling>(BB);
2752
2753 BlockScheduling &BS = *BSRef.get();
2754
2755 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
25
Calling 'BlockScheduling::tryScheduleBundle'
2756 if (!Bundle) {
2757 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are not able to schedule this bundle!\n"
; } } while (false)
;
2758 assert((!BS.getScheduleData(VL0) ||(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2760, __extension__ __PRETTY_FUNCTION__))
2759 !BS.getScheduleData(VL0)->isPartOfBundle()) &&(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2760, __extension__ __PRETTY_FUNCTION__))
2760 "tryScheduleBundle should cancelScheduling on failure")(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2760, __extension__ __PRETTY_FUNCTION__))
;
2761 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2762 ReuseShuffleIndicies);
2763 return;
2764 }
2765 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are able to schedule this bundle.\n"
; } } while (false)
;
2766
2767 unsigned ShuffleOrOp = S.isAltShuffle() ?
2768 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2769 switch (ShuffleOrOp) {
2770 case Instruction::PHI: {
2771 auto *PH = cast<PHINode>(VL0);
2772
2773 // Check for terminator values (e.g. invoke).
2774 for (Value *V : VL)
2775 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2776 Instruction *Term = dyn_cast<Instruction>(
2777 cast<PHINode>(V)->getIncomingValueForBlock(
2778 PH->getIncomingBlock(I)));
2779 if (Term && Term->isTerminator()) {
2780 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
2781 << "SLP: Need to swizzle PHINodes (terminator use).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
;
2782 BS.cancelScheduling(VL, VL0);
2783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2784 ReuseShuffleIndicies);
2785 return;
2786 }
2787 }
2788
2789 TreeEntry *TE =
2790 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2791 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of PHINodes.\n"
; } } while (false)
;
2792
2793 // Keeps the reordered operands to avoid code duplication.
2794 SmallVector<ValueList, 2> OperandsVec;
2795 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2796 ValueList Operands;
2797 // Prepare the operand vector.
2798 for (Value *V : VL)
2799 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2800 PH->getIncomingBlock(I)));
2801 TE->setOperand(I, Operands);
2802 OperandsVec.push_back(Operands);
2803 }
2804 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2805 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2806 return;
2807 }
2808 case Instruction::ExtractValue:
2809 case Instruction::ExtractElement: {
2810 OrdersType CurrentOrder;
2811 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2812 if (Reuse) {
2813 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Reusing or shuffling extract sequence.\n"
; } } while (false)
;
2814 ++NumOpsWantToKeepOriginalOrder;
2815 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2816 ReuseShuffleIndicies);
2817 // This is a special case, as it does not gather, but at the same time
2818 // we are not extending buildTree_rec() towards the operands.
2819 ValueList Op0;
2820 Op0.assign(VL.size(), VL0->getOperand(0));
2821 VectorizableTree.back()->setOperand(0, Op0);
2822 return;
2823 }
2824 if (!CurrentOrder.empty()) {
2825 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2826 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2827 "with order";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2828 for (unsigned Idx : CurrentOrder)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2829 dbgs() << " " << Idx;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2830 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2831 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
;
2832 // Insert new order with initial value 0, if it does not exist,
2833 // otherwise return the iterator to the existing one.
2834 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2835 ReuseShuffleIndicies, CurrentOrder);
2836 findRootOrder(CurrentOrder);
2837 ++NumOpsWantToKeepOrder[CurrentOrder];
2838 // This is a special case, as it does not gather, but at the same time
2839 // we are not extending buildTree_rec() towards the operands.
2840 ValueList Op0;
2841 Op0.assign(VL.size(), VL0->getOperand(0));
2842 VectorizableTree.back()->setOperand(0, Op0);
2843 return;
2844 }
2845 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather extract sequence.\n";
} } while (false)
;
2846 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2847 ReuseShuffleIndicies);
2848 BS.cancelScheduling(VL, VL0);
2849 return;
2850 }
2851 case Instruction::Load: {
2852 // Check that a vectorized load would load the same memory as a scalar
2853 // load. For example, we don't want to vectorize loads that are smaller
2854 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2855 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2856 // from such a struct, we read/write packed bits disagreeing with the
2857 // unvectorized version.
2858 Type *ScalarTy = VL0->getType();
2859
2860 if (DL->getTypeSizeInBits(ScalarTy) !=
2861 DL->getTypeAllocSizeInBits(ScalarTy)) {
2862 BS.cancelScheduling(VL, VL0);
2863 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2864 ReuseShuffleIndicies);
2865 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering loads of non-packed type.\n"
; } } while (false)
;
2866 return;
2867 }
2868
2869 // Make sure all loads in the bundle are simple - we can't vectorize
2870 // atomic or volatile loads.
2871 SmallVector<Value *, 4> PointerOps(VL.size());
2872 auto POIter = PointerOps.begin();
2873 for (Value *V : VL) {
2874 auto *L = cast<LoadInst>(V);
2875 if (!L->isSimple()) {
2876 BS.cancelScheduling(VL, VL0);
2877 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2878 ReuseShuffleIndicies);
2879 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple loads.\n"
; } } while (false)
;
2880 return;
2881 }
2882 *POIter = L->getPointerOperand();
2883 ++POIter;
2884 }
2885
2886 OrdersType CurrentOrder;
2887 // Check the order of pointer operands.
2888 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2889 Value *Ptr0;
2890 Value *PtrN;
2891 if (CurrentOrder.empty()) {
2892 Ptr0 = PointerOps.front();
2893 PtrN = PointerOps.back();
2894 } else {
2895 Ptr0 = PointerOps[CurrentOrder.front()];
2896 PtrN = PointerOps[CurrentOrder.back()];
2897 }
2898 Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE);
2899 // Check that the sorted loads are consecutive.
2900 if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
2901 if (CurrentOrder.empty()) {
2902 // Original loads are consecutive and does not require reordering.
2903 ++NumOpsWantToKeepOriginalOrder;
2904 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2905 UserTreeIdx, ReuseShuffleIndicies);
2906 TE->setOperandsInOrder();
2907 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of loads.\n";
} } while (false)
;
2908 } else {
2909 // Need to reorder.
2910 TreeEntry *TE =
2911 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2912 ReuseShuffleIndicies, CurrentOrder);
2913 TE->setOperandsInOrder();
2914 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled loads.\n"
; } } while (false)
;
2915 findRootOrder(CurrentOrder);
2916 ++NumOpsWantToKeepOrder[CurrentOrder];
2917 }
2918 return;
2919 }
2920 // Vectorizing non-consecutive loads with `llvm.masked.gather`.
2921 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
2922 UserTreeIdx, ReuseShuffleIndicies);
2923 TE->setOperandsInOrder();
2924 buildTree_rec(PointerOps, Depth + 1, {TE, 0});
2925 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of non-consecutive loads.\n"
; } } while (false)
;
2926 return;
2927 }
2928
2929 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-consecutive loads.\n"
; } } while (false)
;
2930 BS.cancelScheduling(VL, VL0);
2931 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2932 ReuseShuffleIndicies);
2933 return;
2934 }
2935 case Instruction::ZExt:
2936 case Instruction::SExt:
2937 case Instruction::FPToUI:
2938 case Instruction::FPToSI:
2939 case Instruction::FPExt:
2940 case Instruction::PtrToInt:
2941 case Instruction::IntToPtr:
2942 case Instruction::SIToFP:
2943 case Instruction::UIToFP:
2944 case Instruction::Trunc:
2945 case Instruction::FPTrunc:
2946 case Instruction::BitCast: {
2947 Type *SrcTy = VL0->getOperand(0)->getType();
2948 for (Value *V : VL) {
2949 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2950 if (Ty != SrcTy || !isValidElementType(Ty)) {
2951 BS.cancelScheduling(VL, VL0);
2952 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2953 ReuseShuffleIndicies);
2954 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
2955 << "SLP: Gathering casts with different src types.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
;
2956 return;
2957 }
2958 }
2959 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2960 ReuseShuffleIndicies);
2961 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of casts.\n";
} } while (false)
;
2962
2963 TE->setOperandsInOrder();
2964 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2965 ValueList Operands;
2966 // Prepare the operand vector.
2967 for (Value *V : VL)
2968 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2969
2970 buildTree_rec(Operands, Depth + 1, {TE, i});
2971 }
2972 return;
2973 }
2974 case Instruction::ICmp:
2975 case Instruction::FCmp: {
2976 // Check that all of the compares have the same predicate.
2977 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2978 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2979 Type *ComparedTy = VL0->getOperand(0)->getType();
2980 for (Value *V : VL) {
2981 CmpInst *Cmp = cast<CmpInst>(V);
2982 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2983 Cmp->getOperand(0)->getType() != ComparedTy) {
2984 BS.cancelScheduling(VL, VL0);
2985 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2986 ReuseShuffleIndicies);
2987 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
2988 << "SLP: Gathering cmp with different predicate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
;
2989 return;
2990 }
2991 }
2992
2993 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2994 ReuseShuffleIndicies);
2995 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of compares.\n"
; } } while (false)
;
2996
2997 ValueList Left, Right;
2998 if (cast<CmpInst>(VL0)->isCommutative()) {
2999 // Commutative predicate - collect + sort operands of the instructions
3000 // so that each side is more likely to have the same opcode.
3001 assert(P0 == SwapP0 && "Commutative Predicate mismatch")(static_cast <bool> (P0 == SwapP0 && "Commutative Predicate mismatch"
) ? void (0) : __assert_fail ("P0 == SwapP0 && \"Commutative Predicate mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3001, __extension__ __PRETTY_FUNCTION__))
;
3002 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3003 } else {
3004 // Collect operands - commute if it uses the swapped predicate.
3005 for (Value *V : VL) {
3006 auto *Cmp = cast<CmpInst>(V);
3007 Value *LHS = Cmp->getOperand(0);
3008 Value *RHS = Cmp->getOperand(1);
3009 if (Cmp->getPredicate() != P0)
3010 std::swap(LHS, RHS);
3011 Left.push_back(LHS);
3012 Right.push_back(RHS);
3013 }
3014 }
3015 TE->setOperand(0, Left);
3016 TE->setOperand(1, Right);
3017 buildTree_rec(Left, Depth + 1, {TE, 0});
3018 buildTree_rec(Right, Depth + 1, {TE, 1});
3019 return;
3020 }
3021 case Instruction::Select:
3022 case Instruction::FNeg:
3023 case Instruction::Add:
3024 case Instruction::FAdd:
3025 case Instruction::Sub:
3026 case Instruction::FSub:
3027 case Instruction::Mul:
3028 case Instruction::FMul:
3029 case Instruction::UDiv:
3030 case Instruction::SDiv:
3031 case Instruction::FDiv:
3032 case Instruction::URem:
3033 case Instruction::SRem:
3034 case Instruction::FRem:
3035 case Instruction::Shl:
3036 case Instruction::LShr:
3037 case Instruction::AShr:
3038 case Instruction::And:
3039 case Instruction::Or:
3040 case Instruction::Xor: {
3041 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3042 ReuseShuffleIndicies);
3043 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of un/bin op.\n"
; } } while (false)
;
3044
3045 // Sort operands of the instructions so that each side is more likely to
3046 // have the same opcode.
3047 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
3048 ValueList Left, Right;
3049 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3050 TE->setOperand(0, Left);
3051 TE->setOperand(1, Right);
3052 buildTree_rec(Left, Depth + 1, {TE, 0});
3053 buildTree_rec(Right, Depth + 1, {TE, 1});
3054 return;
3055 }
3056
3057 TE->setOperandsInOrder();
3058 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3059 ValueList Operands;
3060 // Prepare the operand vector.
3061 for (Value *V : VL)
3062 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3063
3064 buildTree_rec(Operands, Depth + 1, {TE, i});
3065 }
3066 return;
3067 }
3068 case Instruction::GetElementPtr: {
3069 // We don't combine GEPs with complicated (nested) indexing.
3070 for (Value *V : VL) {
3071 if (cast<Instruction>(V)->getNumOperands() != 2) {
3072 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"
; } } while (false)
;
3073 BS.cancelScheduling(VL, VL0);
3074 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3075 ReuseShuffleIndicies);
3076 return;
3077 }
3078 }
3079
3080 // We can't combine several GEPs into one vector if they operate on
3081 // different types.
3082 Type *Ty0 = VL0->getOperand(0)->getType();
3083 for (Value *V : VL) {
3084 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3085 if (Ty0 != CurTy) {
3086 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
3087 << "SLP: not-vectorizable GEP (different types).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
;
3088 BS.cancelScheduling(VL, VL0);
3089 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3090 ReuseShuffleIndicies);
3091 return;
3092 }
3093 }
3094
3095 // We don't combine GEPs with non-constant indexes.
3096 Type *Ty1 = VL0->getOperand(1)->getType();
3097 for (Value *V : VL) {
3098 auto Op = cast<Instruction>(V)->getOperand(1);
3099 if (!isa<ConstantInt>(Op) ||
3100 (Op->getType() != Ty1 &&
3101 Op->getType()->getScalarSizeInBits() >
3102 DL->getIndexSizeInBits(
3103 V->getType()->getPointerAddressSpace()))) {
3104 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
3105 << "SLP: not-vectorizable GEP (non-constant indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
;
3106 BS.cancelScheduling(VL, VL0);
3107 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3108 ReuseShuffleIndicies);
3109 return;
3110 }
3111 }
3112
3113 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3114 ReuseShuffleIndicies);
3115 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of GEPs.\n"; }
} while (false)
;
3116 TE->setOperandsInOrder();
3117 for (unsigned i = 0, e = 2; i < e; ++i) {
3118 ValueList Operands;
3119 // Prepare the operand vector.
3120 for (Value *V : VL)
3121 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3122
3123 buildTree_rec(Operands, Depth + 1, {TE, i});
3124 }
3125 return;
3126 }
3127 case Instruction::Store: {
3128 // Check if the stores are consecutive or if we need to swizzle them.
3129 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3130 // Avoid types that are padded when being allocated as scalars, while
3131 // being packed together in a vector (such as i1).
3132 if (DL->getTypeSizeInBits(ScalarTy) !=
3133 DL->getTypeAllocSizeInBits(ScalarTy)) {
3134 BS.cancelScheduling(VL, VL0);
3135 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3136 ReuseShuffleIndicies);
3137 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering stores of non-packed type.\n"
; } } while (false)
;
3138 return;
3139 }
3140 // Make sure all stores in the bundle are simple - we can't vectorize
3141 // atomic or volatile stores.
3142 SmallVector<Value *, 4> PointerOps(VL.size());
3143 ValueList Operands(VL.size());
3144 auto POIter = PointerOps.begin();
3145 auto OIter = Operands.begin();
3146 for (Value *V : VL) {
3147 auto *SI = cast<StoreInst>(V);
3148 if (!SI->isSimple()) {
3149 BS.cancelScheduling(VL, VL0);
3150 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3151 ReuseShuffleIndicies);
3152 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple stores.\n"
; } } while (false)
;
3153 return;
3154 }
3155 *POIter = SI->getPointerOperand();
3156 *OIter = SI->getValueOperand();
3157 ++POIter;
3158 ++OIter;
3159 }
3160
3161 OrdersType CurrentOrder;
3162 // Check the order of pointer operands.
3163 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
3164 Value *Ptr0;
3165 Value *PtrN;
3166 if (CurrentOrder.empty()) {
3167 Ptr0 = PointerOps.front();
3168 PtrN = PointerOps.back();
3169 } else {
3170 Ptr0 = PointerOps[CurrentOrder.front()];
3171 PtrN = PointerOps[CurrentOrder.back()];
3172 }
3173 Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE);
3174 // Check that the sorted pointer operands are consecutive.
3175 if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
3176 if (CurrentOrder.empty()) {
3177 // Original stores are consecutive and does not require reordering.
3178 ++NumOpsWantToKeepOriginalOrder;
3179 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3180 UserTreeIdx, ReuseShuffleIndicies);
3181 TE->setOperandsInOrder();
3182 buildTree_rec(Operands, Depth + 1, {TE, 0});
3183 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of stores.\n"
; } } while (false)
;
3184 } else {
3185 TreeEntry *TE =
3186 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3187 ReuseShuffleIndicies, CurrentOrder);
3188 TE->setOperandsInOrder();
3189 buildTree_rec(Operands, Depth + 1, {TE, 0});
3190 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled stores.\n"
; } } while (false)
;
3191 findRootOrder(CurrentOrder);
3192 ++NumOpsWantToKeepOrder[CurrentOrder];
3193 }
3194 return;
3195 }
3196 }
3197
3198 BS.cancelScheduling(VL, VL0);
3199 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3200 ReuseShuffleIndicies);
3201 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-consecutive store.\n"; }
} while (false)
;
3202 return;
3203 }
3204 case Instruction::Call: {
3205 // Check if the calls are all to the same vectorizable intrinsic or
3206 // library function.
3207 CallInst *CI = cast<CallInst>(VL0);
3208 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3209
3210 VFShape Shape = VFShape::get(
3211 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3212 false /*HasGlobalPred*/);
3213 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3214
3215 if (!VecFunc && !isTriviallyVectorizable(ID)) {
3216 BS.cancelScheduling(VL, VL0);
3217 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3218 ReuseShuffleIndicies);
3219 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-vectorizable call.\n"; }
} while (false)
;
3220 return;
3221 }
3222 Function *F = CI->getCalledFunction();
3223 unsigned NumArgs = CI->getNumArgOperands();
3224 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3225 for (unsigned j = 0; j != NumArgs; ++j)
3226 if (hasVectorInstrinsicScalarOpd(ID, j))
3227 ScalarArgs[j] = CI->getArgOperand(j);
3228 for (Value *V : VL) {
3229 CallInst *CI2 = dyn_cast<CallInst>(V);
3230 if (!CI2 || CI2->getCalledFunction() != F ||
3231 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3232 (VecFunc &&
3233 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3234 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3235 BS.cancelScheduling(VL, VL0);
3236 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3237 ReuseShuffleIndicies);
3238 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
3239 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
;
3240 return;
3241 }
3242 // Some intrinsics have scalar arguments and should be same in order for
3243 // them to be vectorized.
3244 for (unsigned j = 0; j != NumArgs; ++j) {
3245 if (hasVectorInstrinsicScalarOpd(ID, j)) {
3246 Value *A1J = CI2->getArgOperand(j);
3247 if (ScalarArgs[j] != A1J) {
3248 BS.cancelScheduling(VL, VL0);
3249 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3250 ReuseShuffleIndicies);
3251 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
3252 << " argument " << ScalarArgs[j] << "!=" << A1Jdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
3253 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
;
3254 return;
3255 }
3256 }
3257 }
3258 // Verify that the bundle operands are identical between the two calls.
3259 if (CI->hasOperandBundles() &&
3260 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3261 CI->op_begin() + CI->getBundleOperandsEndIndex(),
3262 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3263 BS.cancelScheduling(VL, VL0);
3264 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3265 ReuseShuffleIndicies);
3266 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
3267 << *CI << "!=" << *V << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
;
3268 return;
3269 }
3270 }
3271
3272 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3273 ReuseShuffleIndicies);
3274 TE->setOperandsInOrder();
3275 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3276 ValueList Operands;
3277 // Prepare the operand vector.
3278 for (Value *V : VL) {
3279 auto *CI2 = cast<CallInst>(V);
3280 Operands.push_back(CI2->getArgOperand(i));
3281 }
3282 buildTree_rec(Operands, Depth + 1, {TE, i});
3283 }
3284 return;
3285 }
3286 case Instruction::ShuffleVector: {
3287 // If this is not an alternate sequence of opcode like add-sub
3288 // then do not vectorize this instruction.
3289 if (!S.isAltShuffle()) {
3290 BS.cancelScheduling(VL, VL0);
3291 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3292 ReuseShuffleIndicies);
3293 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: ShuffleVector are not vectorized.\n"
; } } while (false)
;
3294 return;
3295 }
3296 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3297 ReuseShuffleIndicies);
3298 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a ShuffleVector op.\n"
; } } while (false)
;
3299
3300 // Reorder operands if reordering would enable vectorization.
3301 if (isa<BinaryOperator>(VL0)) {
3302 ValueList Left, Right;
3303 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3304 TE->setOperand(0, Left);
3305 TE->setOperand(1, Right);
3306 buildTree_rec(Left, Depth + 1, {TE, 0});
3307 buildTree_rec(Right, Depth + 1, {TE, 1});
3308 return;
3309 }
3310
3311 TE->setOperandsInOrder();
3312 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3313 ValueList Operands;
3314 // Prepare the operand vector.
3315 for (Value *V : VL)
3316 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3317
3318 buildTree_rec(Operands, Depth + 1, {TE, i});
3319 }
3320 return;
3321 }
3322 default:
3323 BS.cancelScheduling(VL, VL0);
3324 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3325 ReuseShuffleIndicies);
3326 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering unknown instruction.\n"
; } } while (false)
;
3327 return;
3328 }
3329}
3330
3331unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3332 unsigned N = 1;
3333 Type *EltTy = T;
3334
3335 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3336 isa<VectorType>(EltTy)) {
3337 if (auto *ST = dyn_cast<StructType>(EltTy)) {
3338 // Check that struct is homogeneous.
3339 for (const auto *Ty : ST->elements())
3340 if (Ty != *ST->element_begin())
3341 return 0;
3342 N *= ST->getNumElements();
3343 EltTy = *ST->element_begin();
3344 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3345 N *= AT->getNumElements();
3346 EltTy = AT->getElementType();
3347 } else {
3348 auto *VT = cast<FixedVectorType>(EltTy);
3349 N *= VT->getNumElements();
3350 EltTy = VT->getElementType();
3351 }
3352 }
3353
3354 if (!isValidElementType(EltTy))
3355 return 0;
3356 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3357 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3358 return 0;
3359 return N;
3360}
3361
3362bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3363 SmallVectorImpl<unsigned> &CurrentOrder) const {
3364 Instruction *E0 = cast<Instruction>(OpValue);
3365 assert(E0->getOpcode() == Instruction::ExtractElement ||(static_cast <bool> (E0->getOpcode() == Instruction::
ExtractElement || E0->getOpcode() == Instruction::ExtractValue
) ? void (0) : __assert_fail ("E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3366, __extension__ __PRETTY_FUNCTION__))
3366 E0->getOpcode() == Instruction::ExtractValue)(static_cast <bool> (E0->getOpcode() == Instruction::
ExtractElement || E0->getOpcode() == Instruction::ExtractValue
) ? void (0) : __assert_fail ("E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3366, __extension__ __PRETTY_FUNCTION__))
;
3367 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode")(static_cast <bool> (E0->getOpcode() == getSameOpcode
(VL).getOpcode() && "Invalid opcode") ? void (0) : __assert_fail
("E0->getOpcode() == getSameOpcode(VL).getOpcode() && \"Invalid opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3367, __extension__ __PRETTY_FUNCTION__))
;
3368 // Check if all of the extracts come from the same vector and from the
3369 // correct offset.
3370 Value *Vec = E0->getOperand(0);
3371
3372 CurrentOrder.clear();
3373
3374 // We have to extract from a vector/aggregate with the same number of elements.
3375 unsigned NElts;
3376 if (E0->getOpcode() == Instruction::ExtractValue) {
3377 const DataLayout &DL = E0->getModule()->getDataLayout();
3378 NElts = canMapToVector(Vec->getType(), DL);
3379 if (!NElts)
3380 return false;
3381 // Check if load can be rewritten as load of vector.
3382 LoadInst *LI = dyn_cast<LoadInst>(Vec);
3383 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3384 return false;
3385 } else {
3386 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3387 }
3388
3389 if (NElts != VL.size())
3390 return false;
3391
3392 // Check that all of the indices extract from the correct offset.
3393 bool ShouldKeepOrder = true;
3394 unsigned E = VL.size();
3395 // Assign to all items the initial value E + 1 so we can check if the extract
3396 // instruction index was used already.
3397 // Also, later we can check that all the indices are used and we have a
3398 // consecutive access in the extract instructions, by checking that no
3399 // element of CurrentOrder still has value E + 1.
3400 CurrentOrder.assign(E, E + 1);
3401 unsigned I = 0;
3402 for (; I < E; ++I) {
3403 auto *Inst = cast<Instruction>(VL[I]);
3404 if (Inst->getOperand(0) != Vec)
3405 break;
3406 Optional<unsigned> Idx = getExtractIndex(Inst);
3407 if (!Idx)
3408 break;
3409 const unsigned ExtIdx = *Idx;
3410 if (ExtIdx != I) {
3411 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3412 break;
3413 ShouldKeepOrder = false;
3414 CurrentOrder[ExtIdx] = I;
3415 } else {
3416 if (CurrentOrder[I] != E + 1)
3417 break;
3418 CurrentOrder[I] = I;
3419 }
3420 }
3421 if (I < E) {
3422 CurrentOrder.clear();
3423 return false;
3424 }
3425
3426 return ShouldKeepOrder;
3427}
3428
3429bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
3430 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) {
3431 return ScalarToTreeEntry.count(U) > 0;
3432 });
3433}
3434
3435static std::pair<InstructionCost, InstructionCost>
3436getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3437 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3438 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3439
3440 // Calculate the cost of the scalar and vector calls.
3441 SmallVector<Type *, 4> VecTys;
3442 for (Use &Arg : CI->args())
3443 VecTys.push_back(
3444 FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3445 FastMathFlags FMF;
3446 if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
3447 FMF = FPCI->getFastMathFlags();
3448 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3449 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
3450 dyn_cast<IntrinsicInst>(CI));
3451 auto IntrinsicCost =
3452 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3453
3454 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3455 VecTy->getNumElements())),
3456 false /*HasGlobalPred*/);
3457 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3458 auto LibCost = IntrinsicCost;
3459 if (!CI->isNoBuiltin() && VecFunc) {
3460 // Calculate the cost of the vector library call.
3461 // If the corresponding vector call is cheaper, return its cost.
3462 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3463 TTI::TCK_RecipThroughput);
3464 }
3465 return {IntrinsicCost, LibCost};
3466}
3467
3468/// Compute the cost of creating a vector of type \p VecTy containing the
3469/// extracted values from \p VL.
3470static InstructionCost
3471computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
3472 TargetTransformInfo::ShuffleKind ShuffleKind,
3473 ArrayRef<int> Mask, TargetTransformInfo &TTI) {
3474 unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
3475
3476 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
3477 VecTy->getNumElements() < NumOfParts)
3478 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
3479
3480 bool AllConsecutive = true;
3481 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
3482 unsigned Idx = -1;
3483 InstructionCost Cost = 0;
3484
3485 // Process extracts in blocks of EltsPerVector to check if the source vector
3486 // operand can be re-used directly. If not, add the cost of creating a shuffle
3487 // to extract the values into a vector register.
3488 for (auto *V : VL) {
3489 ++Idx;
3490
3491 // Reached the start of a new vector registers.
3492 if (Idx % EltsPerVector == 0) {
3493 AllConsecutive = true;
3494 continue;
3495 }
3496
3497 // Check all extracts for a vector register on the target directly
3498 // extract values in order.
3499 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
3500 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
3501 AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
3502 CurrentIdx % EltsPerVector == Idx % EltsPerVector;
3503
3504 if (AllConsecutive)
3505 continue;
3506
3507 // Skip all indices, except for the last index per vector block.
3508 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
3509 continue;
3510
3511 // If we have a series of extracts which are not consecutive and hence
3512 // cannot re-use the source vector register directly, compute the shuffle
3513 // cost to extract the a vector with EltsPerVector elements.
3514 Cost += TTI.getShuffleCost(
3515 TargetTransformInfo::SK_PermuteSingleSrc,
3516 FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
3517 }
3518 return Cost;
3519}
3520
3521InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E) {
3522 ArrayRef<Value*> VL = E->Scalars;
3523
3524 Type *ScalarTy = VL[0]->getType();
3525 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3526 ScalarTy = SI->getValueOperand()->getType();
3527 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3528 ScalarTy = CI->getOperand(0)->getType();
3529 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3530 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3531
3532 // If we have computed a smaller type for the expression, update VecTy so
3533 // that the costs will be accurate.
3534 if (MinBWs.count(VL[0]))
3535 VecTy = FixedVectorType::get(
3536 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3537
3538 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3539 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3540 InstructionCost ReuseShuffleCost = 0;
3541 if (NeedToShuffleReuses) {
3542 ReuseShuffleCost =
3543 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
3544 E->ReuseShuffleIndices);
3545 }
3546 // FIXME: it tries to fix a problem with MSVC buildbots.
3547 TargetTransformInfo &TTIRef = *TTI;
3548 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL,
3549 VecTy](InstructionCost &Cost, bool IsGather) {
3550 DenseMap<Value *, int> ExtractVectorsTys;
3551 for (auto *V : VL) {
3552 // If all users of instruction are going to be vectorized and this
3553 // instruction itself is not going to be vectorized, consider this
3554 // instruction as dead and remove its cost from the final cost of the
3555 // vectorized tree.
3556 if (IsGather && (!areAllUsersVectorized(cast<Instruction>(V)) ||
3557 ScalarToTreeEntry.count(V)))
3558 continue;
3559 auto *EE = cast<ExtractElementInst>(V);
3560 unsigned Idx = *getExtractIndex(EE);
3561 if (TTIRef.getNumberOfParts(VecTy) !=
3562 TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
3563 auto It =
3564 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
3565 It->getSecond() = std::min<int>(It->second, Idx);
3566 }
3567 // Take credit for instruction that will become dead.
3568 if (EE->hasOneUse()) {
3569 Instruction *Ext = EE->user_back();
3570 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3571 all_of(Ext->users(),
3572 [](User *U) { return isa<GetElementPtrInst>(U); })) {
3573 // Use getExtractWithExtendCost() to calculate the cost of
3574 // extractelement/ext pair.
3575 Cost -=
3576 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
3577 EE->getVectorOperandType(), Idx);
3578 // Add back the cost of s|zext which is subtracted separately.
3579 Cost += TTIRef.getCastInstrCost(
3580 Ext->getOpcode(), Ext->getType(), EE->getType(),
3581 TTI::getCastContextHint(Ext), CostKind, Ext);
3582 continue;
3583 }
3584 }
3585 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
3586 EE->getVectorOperandType(), Idx);
3587 }
3588 // Add a cost for subvector extracts/inserts if required.
3589 for (const auto &Data : ExtractVectorsTys) {
3590 auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
3591 unsigned NumElts = VecTy->getNumElements();
3592 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
3593 unsigned Idx = (Data.second / NumElts) * NumElts;
3594 unsigned EENumElts = EEVTy->getNumElements();
3595 if (Idx + NumElts <= EENumElts) {
3596 Cost +=
3597 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3598 EEVTy, None, Idx, VecTy);
3599 } else {
3600 // Need to round up the subvector type vectorization factor to avoid a
3601 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
3602 // <= EENumElts.
3603 auto *SubVT =
3604 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
3605 Cost +=
3606 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3607 EEVTy, None, Idx, SubVT);
3608 }
3609 } else {
3610 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
3611 VecTy, None, 0, EEVTy);
3612 }
3613 }
3614 };
3615 if (E->State == TreeEntry::NeedToGather) {
3616 if (allConstant(VL))
3617 return 0;
3618 if (isSplat(VL)) {
3619 return ReuseShuffleCost +
3620 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None,
3621 0);
3622 }
3623 if (E->getOpcode() == Instruction::ExtractElement &&
3624 allSameType(VL) && allSameBlock(VL)) {
3625 SmallVector<int> Mask;
3626 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
3627 isShuffle(VL, Mask);
3628 if (ShuffleKind.hasValue()) {
3629 InstructionCost Cost =
3630 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
3631 AdjustExtractsCost(Cost, /*IsGather=*/true);
3632 return ReuseShuffleCost + Cost;
3633 }
3634 }
3635 InstructionCost GatherCost = 0;
3636 SmallVector<int> Mask;
3637 SmallVector<const TreeEntry *> Entries;
3638 Optional<TargetTransformInfo::ShuffleKind> Shuffle =
3639 isGatherShuffledEntry(E, Mask, Entries);
3640 if (Shuffle.hasValue()) {
3641 if (ShuffleVectorInst::isIdentityMask(Mask)) {
3642 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
3643 dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
3644 << "SLP: perfect diamond match for gather bundle that starts with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
3645 << *VL.front() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
;
3646 } else {
3647 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
3648 << " entries for bundle that starts with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
3649 << *VL.front() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
;
3650 GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask);
3651 }
3652 } else {
3653 GatherCost = getGatherCost(VL);
3654 }
3655 return ReuseShuffleCost + GatherCost;
3656 }
3657 assert((E->State == TreeEntry::Vectorize ||(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3659, __extension__ __PRETTY_FUNCTION__))
3658 E->State == TreeEntry::ScatterVectorize) &&(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3659, __extension__ __PRETTY_FUNCTION__))
3659 "Unhandled state")(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3659, __extension__ __PRETTY_FUNCTION__))
;
3660 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL")(static_cast <bool> (E->getOpcode() && allSameType
(VL) && allSameBlock(VL) && "Invalid VL") ? void
(0) : __assert_fail ("E->getOpcode() && allSameType(VL) && allSameBlock(VL) && \"Invalid VL\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3660, __extension__ __PRETTY_FUNCTION__))
;
3661 Instruction *VL0 = E->getMainOp();
3662 unsigned ShuffleOrOp =
3663 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3664 switch (ShuffleOrOp) {
3665 case Instruction::PHI:
3666 return 0;
3667
3668 case Instruction::ExtractValue:
3669 case Instruction::ExtractElement: {
3670 // The common cost of removal ExtractElement/ExtractValue instructions +
3671 // the cost of shuffles, if required to resuffle the original vector.
3672 InstructionCost CommonCost = 0;
3673 if (NeedToShuffleReuses) {
3674 unsigned Idx = 0;
3675 for (unsigned I : E->ReuseShuffleIndices) {
3676 if (ShuffleOrOp == Instruction::ExtractElement) {
3677 auto *EE = cast<ExtractElementInst>(VL[I]);
3678 ReuseShuffleCost -= TTI->getVectorInstrCost(
3679 Instruction::ExtractElement, EE->getVectorOperandType(),
3680 *getExtractIndex(EE));
3681 } else {
3682 ReuseShuffleCost -= TTI->getVectorInstrCost(
3683 Instruction::ExtractElement, VecTy, Idx);
3684 ++Idx;
3685 }
3686 }
3687 Idx = ReuseShuffleNumbers;
3688 for (Value *V : VL) {
3689 if (ShuffleOrOp == Instruction::ExtractElement) {
3690 auto *EE = cast<ExtractElementInst>(V);
3691 ReuseShuffleCost += TTI->getVectorInstrCost(
3692 Instruction::ExtractElement, EE->getVectorOperandType(),
3693 *getExtractIndex(EE));
3694 } else {
3695 --Idx;
3696 ReuseShuffleCost += TTI->getVectorInstrCost(
3697 Instruction::ExtractElement, VecTy, Idx);
3698 }
3699 }
3700 CommonCost = ReuseShuffleCost;
3701 } else if (!E->ReorderIndices.empty()) {
3702 SmallVector<int> NewMask;
3703 inversePermutation(E->ReorderIndices, NewMask);
3704 CommonCost = TTI->getShuffleCost(
3705 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3706 }
3707 if (ShuffleOrOp == Instruction::ExtractValue) {
3708 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3709 auto *EI = cast<Instruction>(VL[I]);
3710 // Take credit for instruction that will become dead.
3711 if (EI->hasOneUse()) {
3712 Instruction *Ext = EI->user_back();
3713 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3714 all_of(Ext->users(),
3715 [](User *U) { return isa<GetElementPtrInst>(U); })) {
3716 // Use getExtractWithExtendCost() to calculate the cost of
3717 // extractelement/ext pair.
3718 CommonCost -= TTI->getExtractWithExtendCost(
3719 Ext->getOpcode(), Ext->getType(), VecTy, I);
3720 // Add back the cost of s|zext which is subtracted separately.
3721 CommonCost += TTI->getCastInstrCost(
3722 Ext->getOpcode(), Ext->getType(), EI->getType(),
3723 TTI::getCastContextHint(Ext), CostKind, Ext);
3724 continue;
3725 }
3726 }
3727 CommonCost -=
3728 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3729 }
3730 } else {
3731 AdjustExtractsCost(CommonCost, /*IsGather=*/false);
3732 }
3733 return CommonCost;
3734 }
3735 case Instruction::ZExt:
3736 case Instruction::SExt:
3737 case Instruction::FPToUI:
3738 case Instruction::FPToSI:
3739 case Instruction::FPExt:
3740 case Instruction::PtrToInt:
3741 case Instruction::IntToPtr:
3742 case Instruction::SIToFP:
3743 case Instruction::UIToFP:
3744 case Instruction::Trunc:
3745 case Instruction::FPTrunc:
3746 case Instruction::BitCast: {
3747 Type *SrcTy = VL0->getOperand(0)->getType();
3748 InstructionCost ScalarEltCost =
3749 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3750 TTI::getCastContextHint(VL0), CostKind, VL0);
3751 if (NeedToShuffleReuses) {
3752 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3753 }
3754
3755 // Calculate the cost of this instruction.
3756 InstructionCost ScalarCost = VL.size() * ScalarEltCost;
3757
3758 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3759 InstructionCost VecCost = 0;
3760 // Check if the values are candidates to demote.
3761 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3762 VecCost =
3763 ReuseShuffleCost +
3764 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3765 TTI::getCastContextHint(VL0), CostKind, VL0);
3766 }
3767 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
3768 return VecCost - ScalarCost;
3769 }
3770 case Instruction::FCmp:
3771 case Instruction::ICmp:
3772 case Instruction::Select: {
3773 // Calculate the cost of this instruction.
3774 InstructionCost ScalarEltCost =
3775 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
3776 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
3777 if (NeedToShuffleReuses) {
3778 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3779 }
3780 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3781 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3782
3783 // Check if all entries in VL are either compares or selects with compares
3784 // as condition that have the same predicates.
3785 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
3786 bool First = true;
3787 for (auto *V : VL) {
3788 CmpInst::Predicate CurrentPred;
3789 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
3790 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
3791 !match(V, MatchCmp)) ||
3792 (!First && VecPred != CurrentPred)) {
3793 VecPred = CmpInst::BAD_ICMP_PREDICATE;
3794 break;
3795 }
3796 First = false;
3797 VecPred = CurrentPred;
3798 }
3799
3800 InstructionCost VecCost = TTI->getCmpSelInstrCost(
3801 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
3802 // Check if it is possible and profitable to use min/max for selects in
3803 // VL.
3804 //
3805 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
3806 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
3807 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
3808 {VecTy, VecTy});
3809 InstructionCost IntrinsicCost =
3810 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3811 // If the selects are the only uses of the compares, they will be dead
3812 // and we can adjust the cost by removing their cost.
3813 if (IntrinsicAndUse.second)
3814 IntrinsicCost -=
3815 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
3816 CmpInst::BAD_ICMP_PREDICATE, CostKind);
3817 VecCost = std::min(VecCost, IntrinsicCost);
3818 }
3819 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
3820 return ReuseShuffleCost + VecCost - ScalarCost;
3821 }
3822 case Instruction::FNeg:
3823 case Instruction::Add:
3824 case Instruction::FAdd:
3825 case Instruction::Sub:
3826 case Instruction::FSub:
3827 case Instruction::Mul:
3828 case Instruction::FMul:
3829 case Instruction::UDiv:
3830 case Instruction::SDiv:
3831 case Instruction::FDiv:
3832 case Instruction::URem:
3833 case Instruction::SRem:
3834 case Instruction::FRem:
3835 case Instruction::Shl:
3836 case Instruction::LShr:
3837 case Instruction::AShr:
3838 case Instruction::And:
3839 case Instruction::Or:
3840 case Instruction::Xor: {
3841 // Certain instructions can be cheaper to vectorize if they have a
3842 // constant second vector operand.
3843 TargetTransformInfo::OperandValueKind Op1VK =
3844 TargetTransformInfo::OK_AnyValue;
3845 TargetTransformInfo::OperandValueKind Op2VK =
3846 TargetTransformInfo::OK_UniformConstantValue;
3847 TargetTransformInfo::OperandValueProperties Op1VP =
3848 TargetTransformInfo::OP_None;
3849 TargetTransformInfo::OperandValueProperties Op2VP =
3850 TargetTransformInfo::OP_PowerOf2;
3851
3852 // If all operands are exactly the same ConstantInt then set the
3853 // operand kind to OK_UniformConstantValue.
3854 // If instead not all operands are constants, then set the operand kind
3855 // to OK_AnyValue. If all operands are constants but not the same,
3856 // then set the operand kind to OK_NonUniformConstantValue.
3857 ConstantInt *CInt0 = nullptr;
3858 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3859 const Instruction *I = cast<Instruction>(VL[i]);
3860 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3861 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3862 if (!CInt) {
3863 Op2VK = TargetTransformInfo::OK_AnyValue;
3864 Op2VP = TargetTransformInfo::OP_None;
3865 break;
3866 }
3867 if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3868 !CInt->getValue().isPowerOf2())
3869 Op2VP = TargetTransformInfo::OP_None;
3870 if (i == 0) {
3871 CInt0 = CInt;
3872 continue;
3873 }
3874 if (CInt0 != CInt)
3875 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3876 }
3877
3878 SmallVector<const Value *, 4> Operands(VL0->operand_values());
3879 InstructionCost ScalarEltCost =
3880 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
3881 Op2VK, Op1VP, Op2VP, Operands, VL0);
3882 if (NeedToShuffleReuses) {
3883 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3884 }
3885 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3886 InstructionCost VecCost =
3887 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
3888 Op2VK, Op1VP, Op2VP, Operands, VL0);
3889 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
3890 return ReuseShuffleCost + VecCost - ScalarCost;
3891 }
3892 case Instruction::GetElementPtr: {
3893 TargetTransformInfo::OperandValueKind Op1VK =
3894 TargetTransformInfo::OK_AnyValue;
3895 TargetTransformInfo::OperandValueKind Op2VK =
3896 TargetTransformInfo::OK_UniformConstantValue;
3897
3898 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
3899 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
3900 if (NeedToShuffleReuses) {
3901 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3902 }
3903 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3904 InstructionCost VecCost = TTI->getArithmeticInstrCost(
3905 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
3906 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
3907 return ReuseShuffleCost + VecCost - ScalarCost;
3908 }
3909 case Instruction::Load: {
3910 // Cost of wide load - cost of scalar loads.
3911 Align alignment = cast<LoadInst>(VL0)->getAlign();
3912 InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
3913 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0);
3914 if (NeedToShuffleReuses) {
3915 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3916 }
3917 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3918 InstructionCost VecLdCost;
3919 if (E->State == TreeEntry::Vectorize) {
3920 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
3921 CostKind, VL0);
3922 } else {
3923 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState")(static_cast <bool> (E->State == TreeEntry::ScatterVectorize
&& "Unknown EntryState") ? void (0) : __assert_fail (
"E->State == TreeEntry::ScatterVectorize && \"Unknown EntryState\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3923, __extension__ __PRETTY_FUNCTION__))
;
3924 VecLdCost = TTI->getGatherScatterOpCost(
3925 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
3926 /*VariableMask=*/false, alignment, CostKind, VL0);
3927 }
3928 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) {
3929 SmallVector<int> NewMask;
3930 inversePermutation(E->ReorderIndices, NewMask);
3931 VecLdCost += TTI->getShuffleCost(
3932 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3933 }
3934 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost
); } } while (false)
;
3935 return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3936 }
3937 case Instruction::Store: {
3938 // We know that we can merge the stores. Calculate the cost.
3939 bool IsReorder = !E->ReorderIndices.empty();
3940 auto *SI =
3941 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
3942 Align Alignment = SI->getAlign();
3943 InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
3944 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
3945 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3946 InstructionCost VecStCost = TTI->getMemoryOpCost(
3947 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
3948 if (IsReorder) {
3949 SmallVector<int> NewMask;
3950 inversePermutation(E->ReorderIndices, NewMask);
3951 VecStCost += TTI->getShuffleCost(
3952 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3953 }
3954 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost
); } } while (false)
;
3955 return VecStCost - ScalarStCost;
3956 }
3957 case Instruction::Call: {
3958 CallInst *CI = cast<CallInst>(VL0);
3959 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3960
3961 // Calculate the cost of the scalar and vector calls.
3962 IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
3963 InstructionCost ScalarEltCost =
3964 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3965 if (NeedToShuffleReuses) {
3966 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3967 }
3968 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3969
3970 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
3971 InstructionCost VecCallCost =
3972 std::min(VecCallCosts.first, VecCallCosts.second);
3973
3974 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
3975 << " (" << VecCallCost << "-" << ScalarCallCost << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
3976 << " for " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
;
3977
3978 return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3979 }
3980 case Instruction::ShuffleVector: {
3981 assert(E->isAltShuffle() &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3986, __extension__ __PRETTY_FUNCTION__))
3982 ((Instruction::isBinaryOp(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3986, __extension__ __PRETTY_FUNCTION__))
3983 Instruction::isBinaryOp(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3986, __extension__ __PRETTY_FUNCTION__))
3984 (Instruction::isCast(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3986, __extension__ __PRETTY_FUNCTION__))
3985 Instruction::isCast(E->getAltOpcode()))) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3986, __extension__ __PRETTY_FUNCTION__))
3986 "Invalid Shuffle Vector Operand")(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3986, __extension__ __PRETTY_FUNCTION__))
;
3987 InstructionCost ScalarCost = 0;
3988 if (NeedToShuffleReuses) {
3989 for (unsigned Idx : E->ReuseShuffleIndices) {
3990 Instruction *I = cast<Instruction>(VL[Idx]);
3991 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
3992 }
3993 for (Value *V : VL) {
3994 Instruction *I = cast<Instruction>(V);
3995 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
3996 }
3997 }
3998 for (Value *V : VL) {
3999 Instruction *I = cast<Instruction>(V);
4000 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"
) ? void (0) : __assert_fail ("E->isOpcodeOrAlt(I) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4000, __extension__ __PRETTY_FUNCTION__))
;
4001 ScalarCost += TTI->getInstructionCost(I, CostKind);
4002 }
4003 // VecCost is equal to sum of the cost of creating 2 vectors
4004 // and the cost of creating shuffle.
4005 InstructionCost VecCost = 0;
4006 if (Instruction::isBinaryOp(E->getOpcode())) {
4007 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
4008 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
4009 CostKind);
4010 } else {
4011 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
4012 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
4013 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
4014 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
4015 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
4016 TTI::CastContextHint::None, CostKind);
4017 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
4018 TTI::CastContextHint::None, CostKind);
4019 }
4020
4021 SmallVector<int> Mask(E->Scalars.size());
4022 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
4023 auto *OpInst = cast<Instruction>(E->Scalars[I]);
4024 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(OpInst) &&
"Unexpected main/alternate opcode") ? void (0) : __assert_fail
("E->isOpcodeOrAlt(OpInst) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4024, __extension__ __PRETTY_FUNCTION__))
;
4025 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
4026 }
4027 VecCost +=
4028 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
4029 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
4030 return ReuseShuffleCost + VecCost - ScalarCost;
4031 }
4032 default:
4033 llvm_unreachable("Unknown instruction")::llvm::llvm_unreachable_internal("Unknown instruction", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4033)
;
4034 }
4035}
4036
4037bool BoUpSLP::isFullyVectorizableTinyTree() const {
4038 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
4039 << VectorizableTree.size() << " is fully vectorizable .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
;
4040
4041 // We only handle trees of heights 1 and 2.
4042 if (VectorizableTree.size() == 1 &&
4043 VectorizableTree[0]->State == TreeEntry::Vectorize)
4044 return true;
4045
4046 if (VectorizableTree.size() != 2)
4047 return false;
4048
4049 // Handle splat and all-constants stores. Also try to vectorize tiny trees
4050 // with the second gather nodes if they have less scalar operands rather than
4051 // the initial tree element (may be profitable to shuffle the second gather).
4052 if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
4053 (allConstant(VectorizableTree[1]->Scalars) ||
4054 isSplat(VectorizableTree[1]->Scalars) ||
4055 (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4056 VectorizableTree[1]->Scalars.size() <
4057 VectorizableTree[0]->Scalars.size())))
4058 return true;
4059
4060 // Gathering cost would be too much for tiny trees.
4061 if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
4062 VectorizableTree[1]->State == TreeEntry::NeedToGather)
4063 return false;
4064
4065 return true;
4066}
4067
4068static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
4069 TargetTransformInfo *TTI) {
4070 // Look past the root to find a source value. Arbitrarily follow the
4071 // path through operand 0 of any 'or'. Also, peek through optional
4072 // shift-left-by-multiple-of-8-bits.
4073 Value *ZextLoad = Root;
4074 const APInt *ShAmtC;
4075 while (!isa<ConstantExpr>(ZextLoad) &&
4076 (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
4077 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
4078 ShAmtC->urem(8) == 0)))
4079 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
4080
4081 // Check if the input is an extended load of the required or/shift expression.
4082 Value *LoadPtr;
4083 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
4084 return false;
4085
4086 // Require that the total load bit width is a legal integer type.
4087 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
4088 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
4089 Type *SrcTy = LoadPtr->getType()->getPointerElementType();
4090 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
4091 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
4092 return false;
4093
4094 // Everything matched - assume that we can fold the whole sequence using
4095 // load combining.
4096 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
4097 << *(cast<Instruction>(Root)) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
;
4098
4099 return true;
4100}
4101
4102bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
4103 if (RdxKind != RecurKind::Or)
4104 return false;
4105
4106 unsigned NumElts = VectorizableTree[0]->Scalars.size();
4107 Value *FirstReduced = VectorizableTree[0]->Scalars[0];
4108 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI);
4109}
4110
4111bool BoUpSLP::isLoadCombineCandidate() const {
4112 // Peek through a final sequence of stores and check if all operations are
4113 // likely to be load-combined.
4114 unsigned NumElts = VectorizableTree[0]->Scalars.size();
4115 for (Value *Scalar : VectorizableTree[0]->Scalars) {
4116 Value *X;
4117 if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
4118 !isLoadCombineCandidateImpl(X, NumElts, TTI))
4119 return false;
4120 }
4121 return true;
4122}
4123
4124bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4125 // We can vectorize the tree if its size is greater than or equal to the
4126 // minimum size specified by the MinTreeSize command line option.
4127 if (VectorizableTree.size() >= MinTreeSize)
4128 return false;
4129
4130 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4131 // can vectorize it if we can prove it fully vectorizable.
4132 if (isFullyVectorizableTinyTree())
4133 return false;
4134
4135 assert(VectorizableTree.empty()(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4137, __extension__ __PRETTY_FUNCTION__))
4136 ? ExternalUses.empty()(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4137, __extension__ __PRETTY_FUNCTION__))
4137 : true && "We shouldn't have any external users")(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4137, __extension__ __PRETTY_FUNCTION__))
;
4138
4139 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4140 // vectorizable.
4141 return true;
4142}
4143
4144InstructionCost BoUpSLP::getSpillCost() const {
4145 // Walk from the bottom of the tree to the top, tracking which values are
4146 // live. When we see a call instruction that is not part of our tree,
4147 // query TTI to see if there is a cost to keeping values live over it
4148 // (for example, if spills and fills are required).
4149 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
4150 InstructionCost Cost = 0;
4151
4152 SmallPtrSet<Instruction*, 4> LiveValues;
4153 Instruction *PrevInst = nullptr;
4154
4155 // The entries in VectorizableTree are not necessarily ordered by their
4156 // position in basic blocks. Collect them and order them by dominance so later
4157 // instructions are guaranteed to be visited first. For instructions in
4158 // different basic blocks, we only scan to the beginning of the block, so
4159 // their order does not matter, as long as all instructions in a basic block
4160 // are grouped together. Using dominance ensures a deterministic order.
4161 SmallVector<Instruction *, 16> OrderedScalars;
4162 for (const auto &TEPtr : VectorizableTree) {
4163 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
4164 if (!Inst)
4165 continue;
4166 OrderedScalars.push_back(Inst);
4167 }
4168 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) {
4169 return DT->dominates(B, A);
4170 });
4171
4172 for (Instruction *Inst : OrderedScalars) {
4173 if (!PrevInst) {
4174 PrevInst = Inst;
4175 continue;
4176 }
4177
4178 // Update LiveValues.
4179 LiveValues.erase(PrevInst);
4180 for (auto &J : PrevInst->operands()) {
4181 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
4182 LiveValues.insert(cast<Instruction>(&*J));
4183 }
4184
4185 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4186 dbgs() << "SLP: #LV: " << LiveValues.size();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4187 for (auto *X : LiveValues)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4188 dbgs() << " " << X->getName();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4189 dbgs() << ", Looking at ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4190 Inst->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4191 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
;
4192
4193 // Now find the sequence of instructions between PrevInst and Inst.
4194 unsigned NumCalls = 0;
4195 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
4196 PrevInstIt =
4197 PrevInst->getIterator().getReverse();
4198 while (InstIt != PrevInstIt) {
4199 if (PrevInstIt == PrevInst->getParent()->rend()) {
4200 PrevInstIt = Inst->getParent()->rbegin();
4201 continue;
4202 }
4203
4204 // Debug information does not impact spill cost.
4205 if ((isa<CallInst>(&*PrevInstIt) &&
4206 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
4207 &*PrevInstIt != PrevInst)
4208 NumCalls++;
4209
4210 ++PrevInstIt;
4211 }
4212
4213 if (NumCalls) {
4214 SmallVector<Type*, 4> V;
4215 for (auto *II : LiveValues)
4216 V.push_back(FixedVectorType::get(II->getType(), BundleWidth));
4217 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
4218 }
4219
4220 PrevInst = Inst;
4221 }
4222
4223 return Cost;
4224}
4225
4226InstructionCost BoUpSLP::getTreeCost() {
4227 InstructionCost Cost = 0;
4228 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
4229 << VectorizableTree.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
;
4230
4231 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
4232
4233 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
4234 TreeEntry &TE = *VectorizableTree[I].get();
4235
4236 // We create duplicate tree entries for gather sequences that have multiple
4237 // uses. However, we should not compute the cost of duplicate sequences.
4238 // For example, if we have a build vector (i.e., insertelement sequence)
4239 // that is used by more than one vector instruction, we only need to
4240 // compute the cost of the insertelement instructions once. The redundant
4241 // instructions will be eliminated by CSE.
4242 //
4243 // We should consider not creating duplicate tree entries for gather
4244 // sequences, and instead add additional edges to the tree representing
4245 // their uses. Since such an approach results in fewer total entries,
4246 // existing heuristics based on tree size may yield different results.
4247 //
4248 if (TE.State == TreeEntry::NeedToGather &&
4249 std::any_of(std::next(VectorizableTree.begin(), I + 1),
4250 VectorizableTree.end(),
4251 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
4252 return EntryPtr->State == TreeEntry::NeedToGather &&
4253 EntryPtr->isSame(TE.Scalars);
4254 }))
4255 continue;
4256
4257 InstructionCost C = getEntryCost(&TE);
4258 Cost += C;
4259 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4260 << " for bundle that starts with " << *TE.Scalars[0]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4261 << ".\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4262 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
;
4263 }
4264
4265 SmallPtrSet<Value *, 16> ExtractCostCalculated;
4266 InstructionCost ExtractCost = 0;
4267 for (ExternalUser &EU : ExternalUses) {
4268 // We only add extract cost once for the same scalar.
4269 if (!ExtractCostCalculated.insert(EU.Scalar).second)
4270 continue;
4271
4272 // Uses by ephemeral values are free (because the ephemeral value will be
4273 // removed prior to code generation, and so the extraction will be
4274 // removed as well).
4275 if (EphValues.count(EU.User))
4276 continue;
4277
4278 // If we plan to rewrite the tree in a smaller type, we will need to sign
4279 // extend the extracted value back to the original type. Here, we account
4280 // for the extract and the added cost of the sign extend if needed.
4281 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
4282 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4283 if (MinBWs.count(ScalarRoot)) {
4284 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4285 auto Extend =
4286 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
4287 VecTy = FixedVectorType::get(MinTy, BundleWidth);
4288 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
4289 VecTy, EU.Lane);
4290 } else {
4291 ExtractCost +=
4292 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4293 }
4294 }
4295
4296 InstructionCost SpillCost = getSpillCost();
4297 Cost += SpillCost + ExtractCost;
4298
4299#ifndef NDEBUG
4300 SmallString<256> Str;
4301 {
4302 raw_svector_ostream OS(Str);
4303 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4304 << "SLP: Extract Cost = " << ExtractCost << ".\n"
4305 << "SLP: Total Cost = " << Cost << ".\n";
4306 }
4307 LLVM_DEBUG(dbgs() << Str)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << Str; } } while (false)
;
4308 if (ViewSLPTree)
4309 ViewGraph(this, "SLP" + F->getName(), false, Str);
4310#endif
4311
4312 return Cost;
4313}
4314
4315Optional<TargetTransformInfo::ShuffleKind>
4316BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
4317 SmallVectorImpl<const TreeEntry *> &Entries) {
4318 Mask.assign(TE->Scalars.size(), UndefMaskElem);
4319 Entries.clear();
4320 DenseMap<Value *, const TreeEntry *> UsedValuesEntry;
4321 unsigned VF = 0;
4322 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is
4323 // landed.
4324 auto &&GetVF = [](const TreeEntry *TE) {
4325 if (!TE->ReuseShuffleIndices.empty())
4326 return TE->ReuseShuffleIndices.size();
4327 return TE->Scalars.size();
4328 };
4329 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
4330 Value *V = TE->Scalars[I];
4331 if (isa<UndefValue>(V))
4332 continue;
4333 const TreeEntry *VTE = UsedValuesEntry.lookup(V);
4334 if (!VTE) {
4335 if (Entries.size() == 2)
4336 return None;
4337 VTE = getTreeEntry(V);
4338 if (!VTE || find_if(
4339 VectorizableTree,
4340 [VTE, TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
4341 return EntryPtr.get() == VTE || EntryPtr.get() == TE;
4342 })->get() == TE) {
4343 // Check if it is used in one of the gathered entries.
4344 const auto *It =
4345 find_if(VectorizableTree,
4346 [V, TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
4347 return EntryPtr.get() == TE ||
4348 (EntryPtr->State == TreeEntry::NeedToGather &&
4349 is_contained(EntryPtr->Scalars, V));
4350 });
4351 // The vector factor of shuffled entries must be the same.
4352 if (It->get() == TE)
4353 return None;
4354 VTE = It->get();
4355 }
4356 Entries.push_back(VTE);
4357 if (Entries.size() == 1) {
4358 VF = GetVF(VTE);
4359 } else if (VF != GetVF(VTE)) {
4360 assert(Entries.size() == 2 && "Expected shuffle of 1 or 2 entries.")(static_cast <bool> (Entries.size() == 2 && "Expected shuffle of 1 or 2 entries."
) ? void (0) : __assert_fail ("Entries.size() == 2 && \"Expected shuffle of 1 or 2 entries.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4360, __extension__ __PRETTY_FUNCTION__))
;
4361 assert(VF > 0 && "Expected non-zero vector factor.")(static_cast <bool> (VF > 0 && "Expected non-zero vector factor."
) ? void (0) : __assert_fail ("VF > 0 && \"Expected non-zero vector factor.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4361, __extension__ __PRETTY_FUNCTION__))
;
4362 return None;
4363 }
4364 for (Value *SV : VTE->Scalars)
4365 UsedValuesEntry.try_emplace(SV, VTE);
4366 }
4367 int FoundLane = findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V);
4368 Mask[I] = (Entries.front() == VTE ? 0 : VF) + FoundLane;
4369 // Extra check required by isSingleSourceMaskImpl function (called by
4370 // ShuffleVectorInst::isSingleSourceMask).
4371 if (Mask[I] >= 2 * E)
4372 return None;
4373 }
4374 switch (Entries.size()) {
4375 case 1:
4376 return TargetTransformInfo::SK_PermuteSingleSrc;
4377 case 2:
4378 return TargetTransformInfo::SK_PermuteTwoSrc;
4379 default:
4380 break;
4381 }
4382 return None;
4383}
4384
4385InstructionCost
4386BoUpSLP::getGatherCost(FixedVectorType *Ty,
4387 const DenseSet<unsigned> &ShuffledIndices) const {
4388 unsigned NumElts = Ty->getNumElements();
4389 APInt DemandedElts = APInt::getNullValue(NumElts);
4390 for (unsigned I = 0; I < NumElts; ++I)
4391 if (!ShuffledIndices.count(I))
4392 DemandedElts.setBit(I);
4393 InstructionCost Cost =
4394 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4395 /*Extract*/ false);
4396 if (!ShuffledIndices.empty())
4397 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4398 return Cost;
4399}
4400
4401InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4402 // Find the type of the operands in VL.
4403 Type *ScalarTy = VL[0]->getType();
4404 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4405 ScalarTy = SI->getValueOperand()->getType();
4406 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4407 // Find the cost of inserting/extracting values from the vector.
4408 // Check if the same elements are inserted several times and count them as
4409 // shuffle candidates.
4410 DenseSet<unsigned> ShuffledElements;
4411 DenseSet<Value *> UniqueElements;
4412 // Iterate in reverse order to consider insert elements with the high cost.
4413 for (unsigned I = VL.size(); I > 0; --I) {
4414 unsigned Idx = I - 1;
4415 if (!UniqueElements.insert(VL[Idx]).second)
4416 ShuffledElements.insert(Idx);
4417 }
4418 return getGatherCost(VecTy, ShuffledElements);
4419}
4420
4421// Perform operand reordering on the instructions in VL and return the reordered
4422// operands in Left and Right.
4423void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4424 SmallVectorImpl<Value *> &Left,
4425 SmallVectorImpl<Value *> &Right,
4426 const DataLayout &DL,
4427 ScalarEvolution &SE,
4428 const BoUpSLP &R) {
4429 if (VL.empty())
4430 return;
4431 VLOperands Ops(VL, DL, SE, R);
4432 // Reorder the operands in place.
4433 Ops.reorder();
4434 Left = Ops.getVL(0);
4435 Right = Ops.getVL(1);
4436}
4437
4438void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
4439 // Get the basic block this bundle is in. All instructions in the bundle
4440 // should be in this block.
4441 auto *Front = E->getMainOp();
4442 auto *BB = Front->getParent();
4443 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4446, __extension__ __PRETTY_FUNCTION__))
4444 auto *I = cast<Instruction>(V);(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4446, __extension__ __PRETTY_FUNCTION__))
4445 return !E->isOpcodeOrAlt(I) || I->getParent() == BB;(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4446, __extension__ __PRETTY_FUNCTION__))
4446 }))(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4446, __extension__ __PRETTY_FUNCTION__))
;
4447
4448 // The last instruction in the bundle in program order.
4449 Instruction *LastInst = nullptr;
4450
4451 // Find the last instruction. The common case should be that BB has been
4452 // scheduled, and the last instruction is VL.back(). So we start with
4453 // VL.back() and iterate over schedule data until we reach the end of the
4454 // bundle. The end of the bundle is marked by null ScheduleData.
4455 if (BlocksSchedules.count(BB)) {
4456 auto *Bundle =
4457 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4458 if (Bundle && Bundle->isPartOfBundle())
4459 for (; Bundle; Bundle = Bundle->NextInBundle)
4460 if (Bundle->OpValue == Bundle->Inst)
4461 LastInst = Bundle->Inst;
4462 }
4463
4464 // LastInst can still be null at this point if there's either not an entry
4465 // for BB in BlocksSchedules or there's no ScheduleData available for
4466 // VL.back(). This can be the case if buildTree_rec aborts for various
4467 // reasons (e.g., the maximum recursion depth is reached, the maximum region
4468 // size is reached, etc.). ScheduleData is initialized in the scheduling
4469 // "dry-run".
4470 //
4471 // If this happens, we can still find the last instruction by brute force. We
4472 // iterate forwards from Front (inclusive) until we either see all
4473 // instructions in the bundle or reach the end of the block. If Front is the
4474 // last instruction in program order, LastInst will be set to Front, and we
4475 // will visit all the remaining instructions in the block.
4476 //
4477 // One of the reasons we exit early from buildTree_rec is to place an upper
4478 // bound on compile-time. Thus, taking an additional compile-time hit here is
4479 // not ideal. However, this should be exceedingly rare since it requires that
4480 // we both exit early from buildTree_rec and that the bundle be out-of-order
4481 // (causing us to iterate all the way to the end of the block).
4482 if (!LastInst) {
4483 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4484 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4485 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4486 LastInst = &I;
4487 if (Bundle.empty())
4488 break;
4489 }
4490 }
4491 assert(LastInst && "Failed to find last instruction in bundle")(static_cast <bool> (LastInst && "Failed to find last instruction in bundle"
) ? void (0) : __assert_fail ("LastInst && \"Failed to find last instruction in bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4491, __extension__ __PRETTY_FUNCTION__))
;
4492
4493 // Set the insertion point after the last instruction in the bundle. Set the
4494 // debug location to Front.
4495 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4496 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4497}
4498
4499Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4500 Value *Val0 =
4501 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4502 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4503 Value *Vec = PoisonValue::get(VecTy);
4504 unsigned InsIndex = 0;
4505 for (Value *Val : VL) {
4506 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++));
4507 auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4508 if (!InsElt)
4509 continue;
4510 GatherSeq.insert(InsElt);
4511 CSEBlocks.insert(InsElt->getParent());
4512 // Add to our 'need-to-extract' list.
4513 if (TreeEntry *Entry = getTreeEntry(Val)) {
4514 // Find which lane we need to extract.
4515 int FoundLane =
4516 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Val);
4517 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane));
4518 }
4519 }
4520
4521 return Vec;
4522}
4523
4524Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4525 InstructionsState S = getSameOpcode(VL);
4526 if (S.getOpcode()) {
4527 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4528 if (E->isSame(VL)) {
4529 Value *V = vectorizeTree(E);
4530 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
4531 // Reshuffle to get only unique values.
4532 // If some of the scalars are duplicated in the vectorization tree
4533 // entry, we do not vectorize them but instead generate a mask for the
4534 // reuses. But if there are several users of the same entry, they may
4535 // have different vectorization factors. This is especially important
4536 // for PHI nodes. In this case, we need to adapt the resulting
4537 // instruction for the user vectorization factor and have to reshuffle
4538 // it again to take only unique elements of the vector. Without this
4539 // code the function incorrectly returns reduced vector instruction
4540 // with the same elements, not with the unique ones.
4541 // block:
4542 // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
4543 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
4544 // ... (use %2)
4545 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
4546 // br %block
4547 SmallVector<int, 4> UniqueIdxs;
4548 SmallSet<int, 4> UsedIdxs;
4549 int Pos = 0;
4550 for (int Idx : E->ReuseShuffleIndices) {
4551 if (UsedIdxs.insert(Idx).second)
4552 UniqueIdxs.emplace_back(Pos);
4553 ++Pos;
4554 }
4555 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
4556 }
4557 return V;
4558 }
4559 }
4560 }
4561
4562 // Check that every instruction appears once in this bundle.
4563 SmallVector<int, 4> ReuseShuffleIndicies;
4564 SmallVector<Value *, 4> UniqueValues;
4565 if (VL.size() > 2) {
4566 DenseMap<Value *, unsigned> UniquePositions;
4567 for (Value *V : VL) {
4568 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4569 ReuseShuffleIndicies.emplace_back(Res.first->second);
4570 if (Res.second || isa<Constant>(V))
4571 UniqueValues.emplace_back(V);
4572 }
4573 // Do not shuffle single element or if number of unique values is not power
4574 // of 2.
4575 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
4576 !llvm::isPowerOf2_32(UniqueValues.size()))
4577 ReuseShuffleIndicies.clear();
4578 else
4579 VL = UniqueValues;
4580 }
4581
4582 Value *Vec = gather(VL);
4583 if (!ReuseShuffleIndicies.empty()) {
4584 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle");
4585 if (auto *I = dyn_cast<Instruction>(Vec)) {
4586 GatherSeq.insert(I);
4587 CSEBlocks.insert(I->getParent());
4588 }
4589 }
4590 return Vec;
4591}
4592
4593namespace {
4594/// Merges shuffle masks and emits final shuffle instruction, if required.
4595class ShuffleInstructionBuilder {
4596 IRBuilderBase &Builder;
4597 bool IsFinalized = false;
4598 SmallVector<int, 4> Mask;
4599
4600public:
4601 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {}
4602
4603 /// Adds a mask, inverting it before applying.
4604 void addInversedMask(ArrayRef<unsigned> SubMask) {
4605 if (SubMask.empty())
4606 return;
4607 SmallVector<int, 4> NewMask;
4608 inversePermutation(SubMask, NewMask);
4609 addMask(NewMask);
4610 }
4611
4612 /// Functions adds masks, merging them into single one.
4613 void addMask(ArrayRef<unsigned> SubMask) {
4614 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
4615 addMask(NewMask);
4616 }
4617
4618 void addMask(ArrayRef<int> SubMask) {
4619 if (SubMask.empty())
4620 return;
4621 if (Mask.empty()) {
4622 Mask.append(SubMask.begin(), SubMask.end());
4623 return;
4624 }
4625 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
4626 int TermValue = std::min(Mask.size(), SubMask.size());
4627 for (int I = 0, E = SubMask.size(); I < E; ++I) {
4628 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) {
4629 NewMask[I] = E;
4630 continue;
4631 }
4632 NewMask[I] = Mask[SubMask[I]];
4633 }
4634 Mask.swap(NewMask);
4635 }
4636
4637 Value *finalize(Value *V) {
4638 IsFinalized = true;
4639 if (Mask.empty())
4640 return V;
4641 return Builder.CreateShuffleVector(V, Mask, "shuffle");
4642 }
4643
4644 ~ShuffleInstructionBuilder() {
4645 assert((IsFinalized || Mask.empty()) &&(static_cast <bool> ((IsFinalized || Mask.empty()) &&
"Shuffle construction must be finalized.") ? void (0) : __assert_fail
("(IsFinalized || Mask.empty()) && \"Shuffle construction must be finalized.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4646, __extension__ __PRETTY_FUNCTION__))
4646 "Shuffle construction must be finalized.")(static_cast <bool> ((IsFinalized || Mask.empty()) &&
"Shuffle construction must be finalized.") ? void (0) : __assert_fail
("(IsFinalized || Mask.empty()) && \"Shuffle construction must be finalized.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4646, __extension__ __PRETTY_FUNCTION__))
;
4647 }
4648};
4649} // namespace
4650
4651Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
4652 IRBuilder<>::InsertPointGuard Guard(Builder);
4653
4654 if (E->VectorizedValue) {
4655 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*E->Scalars[0] << ".\n"; } } while (false)
;
4656 return E->VectorizedValue;
4657 }
4658
4659 ShuffleInstructionBuilder ShuffleBuilder(Builder);
4660 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4661 if (E->State == TreeEntry::NeedToGather) {
4662 setInsertPointAfterBundle(E);
4663 Value *Vec;
4664 SmallVector<int> Mask;
4665 SmallVector<const TreeEntry *> Entries;
4666 Optional<TargetTransformInfo::ShuffleKind> Shuffle =
4667 isGatherShuffledEntry(E, Mask, Entries);
4668 if (Shuffle.hasValue()) {
4669 assert((Entries.size() == 1 || Entries.size() == 2) &&(static_cast <bool> ((Entries.size() == 1 || Entries.size
() == 2) && "Expected shuffle of 1 or 2 entries.") ? void
(0) : __assert_fail ("(Entries.size() == 1 || Entries.size() == 2) && \"Expected shuffle of 1 or 2 entries.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4670, __extension__ __PRETTY_FUNCTION__))
4670 "Expected shuffle of 1 or 2 entries.")(static_cast <bool> ((Entries.size() == 1 || Entries.size
() == 2) && "Expected shuffle of 1 or 2 entries.") ? void
(0) : __assert_fail ("(Entries.size() == 1 || Entries.size() == 2) && \"Expected shuffle of 1 or 2 entries.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4670, __extension__ __PRETTY_FUNCTION__))
;
4671 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
4672 Entries.back()->VectorizedValue, Mask);
4673 } else {
4674 Vec = gather(E->Scalars);
4675 }
4676 if (NeedToShuffleReuses) {
4677 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4678 Vec = ShuffleBuilder.finalize(Vec);
4679 if (auto *I = dyn_cast<Instruction>(Vec)) {
4680 GatherSeq.insert(I);
4681 CSEBlocks.insert(I->getParent());
4682 }
4683 }
4684 E->VectorizedValue = Vec;
4685 return Vec;
4686 }
4687
4688 assert((E->State == TreeEntry::Vectorize ||(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4690, __extension__ __PRETTY_FUNCTION__))
4689 E->State == TreeEntry::ScatterVectorize) &&(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4690, __extension__ __PRETTY_FUNCTION__))
4690 "Unhandled state")(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4690, __extension__ __PRETTY_FUNCTION__))
;
4691 unsigned ShuffleOrOp =
4692 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
4693 Instruction *VL0 = E->getMainOp();
4694 Type *ScalarTy = VL0->getType();
4695 if (auto *Store = dyn_cast<StoreInst>(VL0))
4696 ScalarTy = Store->getValueOperand()->getType();
4697 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
4698 switch (ShuffleOrOp) {
4699 case Instruction::PHI: {
4700 auto *PH = cast<PHINode>(VL0);
4701 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
4702 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4703 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
4704 Value *V = NewPhi;
4705 if (NeedToShuffleReuses)
4706 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4707
4708 E->VectorizedValue = V;
4709
4710 // PHINodes may have multiple entries from the same block. We want to
4711 // visit every block once.
4712 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
4713
4714 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
4715 ValueList Operands;
4716 BasicBlock *IBB = PH->getIncomingBlock(i);
4717
4718 if (!VisitedBBs.insert(IBB).second) {
4719 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
4720 continue;
4721 }
4722
4723 Builder.SetInsertPoint(IBB->getTerminator());
4724 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4725 Value *Vec = vectorizeTree(E->getOperand(i));
4726 NewPhi->addIncoming(Vec, IBB);
4727 }
4728
4729 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&(static_cast <bool> (NewPhi->getNumIncomingValues() ==
PH->getNumIncomingValues() && "Invalid number of incoming values"
) ? void (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4730, __extension__ __PRETTY_FUNCTION__))
4730 "Invalid number of incoming values")(static_cast <bool> (NewPhi->getNumIncomingValues() ==
PH->getNumIncomingValues() && "Invalid number of incoming values"
) ? void (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4730, __extension__ __PRETTY_FUNCTION__))
;
4731 return V;
4732 }
4733
4734 case Instruction::ExtractElement: {
4735 Value *V = E->getSingleOperand(0);
4736 Builder.SetInsertPoint(VL0);
4737 ShuffleBuilder.addInversedMask(E->ReorderIndices);
4738 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4739 V = ShuffleBuilder.finalize(V);
4740 E->VectorizedValue = V;
4741 return V;
4742 }
4743 case Instruction::ExtractValue: {
4744 auto *LI = cast<LoadInst>(E->getSingleOperand(0));
4745 Builder.SetInsertPoint(LI);
4746 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
4747 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
4748 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
4749 Value *NewV = propagateMetadata(V, E->Scalars);
4750 ShuffleBuilder.addInversedMask(E->ReorderIndices);
4751 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4752 NewV = ShuffleBuilder.finalize(NewV);
4753 E->VectorizedValue = NewV;
4754 return NewV;
4755 }
4756 case Instruction::ZExt:
4757 case Instruction::SExt:
4758 case Instruction::FPToUI:
4759 case Instruction::FPToSI:
4760 case Instruction::FPExt:
4761 case Instruction::PtrToInt:
4762 case Instruction::IntToPtr:
4763 case Instruction::SIToFP:
4764 case Instruction::UIToFP:
4765 case Instruction::Trunc:
4766 case Instruction::FPTrunc:
4767 case Instruction::BitCast: {
4768 setInsertPointAfterBundle(E);
4769
4770 Value *InVec = vectorizeTree(E->getOperand(0));
4771
4772 if (E->VectorizedValue) {
4773 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4774 return E->VectorizedValue;
4775 }
4776
4777 auto *CI = cast<CastInst>(VL0);
4778 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
4779 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4780 V = ShuffleBuilder.finalize(V);
4781
4782 E->VectorizedValue = V;
4783 ++NumVectorInstructions;
4784 return V;
4785 }
4786 case Instruction::FCmp:
4787 case Instruction::ICmp: {
4788 setInsertPointAfterBundle(E);
4789
4790 Value *L = vectorizeTree(E->getOperand(0));
4791 Value *R = vectorizeTree(E->getOperand(1));
4792
4793 if (E->VectorizedValue) {
4794 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4795 return E->VectorizedValue;
4796 }
4797
4798 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4799 Value *V = Builder.CreateCmp(P0, L, R);
4800 propagateIRFlags(V, E->Scalars, VL0);
4801 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4802 V = ShuffleBuilder.finalize(V);
4803
4804 E->VectorizedValue = V;
4805 ++NumVectorInstructions;
4806 return V;
4807 }
4808 case Instruction::Select: {
4809 setInsertPointAfterBundle(E);
4810
4811 Value *Cond = vectorizeTree(E->getOperand(0));
4812 Value *True = vectorizeTree(E->getOperand(1));
4813 Value *False = vectorizeTree(E->getOperand(2));
4814
4815 if (E->VectorizedValue) {
4816 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4817 return E->VectorizedValue;
4818 }
4819
4820 Value *V = Builder.CreateSelect(Cond, True, False);
4821 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4822 V = ShuffleBuilder.finalize(V);
4823
4824 E->VectorizedValue = V;
4825 ++NumVectorInstructions;
4826 return V;
4827 }
4828 case Instruction::FNeg: {
4829 setInsertPointAfterBundle(E);
4830
4831 Value *Op = vectorizeTree(E->getOperand(0));
4832
4833 if (E->VectorizedValue) {
4834 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4835 return E->VectorizedValue;
4836 }
4837
4838 Value *V = Builder.CreateUnOp(
4839 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
4840 propagateIRFlags(V, E->Scalars, VL0);
4841 if (auto *I = dyn_cast<Instruction>(V))
4842 V = propagateMetadata(I, E->Scalars);
4843
4844 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4845 V = ShuffleBuilder.finalize(V);
4846
4847 E->VectorizedValue = V;
4848 ++NumVectorInstructions;
4849
4850 return V;
4851 }
4852 case Instruction::Add:
4853 case Instruction::FAdd:
4854 case Instruction::Sub:
4855 case Instruction::FSub:
4856 case Instruction::Mul:
4857 case Instruction::FMul:
4858 case Instruction::UDiv:
4859 case Instruction::SDiv:
4860 case Instruction::FDiv:
4861 case Instruction::URem:
4862 case Instruction::SRem:
4863 case Instruction::FRem:
4864 case Instruction::Shl:
4865 case Instruction::LShr:
4866 case Instruction::AShr:
4867 case Instruction::And:
4868 case Instruction::Or:
4869 case Instruction::Xor: {
4870 setInsertPointAfterBundle(E);
4871
4872 Value *LHS = vectorizeTree(E->getOperand(0));
4873 Value *RHS = vectorizeTree(E->getOperand(1));
4874
4875 if (E->VectorizedValue) {
4876 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4877 return E->VectorizedValue;
4878 }
4879
4880 Value *V = Builder.CreateBinOp(
4881 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
4882 RHS);
4883 propagateIRFlags(V, E->Scalars, VL0);
4884 if (auto *I = dyn_cast<Instruction>(V))
4885 V = propagateMetadata(I, E->Scalars);
4886
4887 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4888 V = ShuffleBuilder.finalize(V);
4889
4890 E->VectorizedValue = V;
4891 ++NumVectorInstructions;
4892
4893 return V;
4894 }
4895 case Instruction::Load: {
4896 // Loads are inserted at the head of the tree because we don't want to
4897 // sink them all the way down past store instructions.
4898 bool IsReorder = E->updateStateIfReorder();
4899 if (IsReorder)
4900 VL0 = E->getMainOp();
4901 setInsertPointAfterBundle(E);
4902
4903 LoadInst *LI = cast<LoadInst>(VL0);
4904 Instruction *NewLI;
4905 unsigned AS = LI->getPointerAddressSpace();
4906 Value *PO = LI->getPointerOperand();
4907 if (E->State == TreeEntry::Vectorize) {
4908
4909 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
4910
4911 // The pointer operand uses an in-tree scalar so we add the new BitCast
4912 // to ExternalUses list to make sure that an extract will be generated
4913 // in the future.
4914 if (getTreeEntry(PO))
4915 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
4916
4917 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
4918 } else {
4919 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state")(static_cast <bool> (E->State == TreeEntry::ScatterVectorize
&& "Unhandled state") ? void (0) : __assert_fail ("E->State == TreeEntry::ScatterVectorize && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4919, __extension__ __PRETTY_FUNCTION__))
;
4920 Value *VecPtr = vectorizeTree(E->getOperand(0));
4921 // Use the minimum alignment of the gathered loads.
4922 Align CommonAlignment = LI->getAlign();
4923 for (Value *V : E->Scalars)
4924 CommonAlignment =
4925 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
4926 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment);
4927 }
4928 Value *V = propagateMetadata(NewLI, E->Scalars);
4929
4930 ShuffleBuilder.addInversedMask(E->ReorderIndices);
4931 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4932 V = ShuffleBuilder.finalize(V);
4933 E->VectorizedValue = V;
4934 ++NumVectorInstructions;
4935 return V;
4936 }
4937 case Instruction::Store: {
4938 bool IsReorder = !E->ReorderIndices.empty();
4939 auto *SI = cast<StoreInst>(
4940 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
4941 unsigned AS = SI->getPointerAddressSpace();
4942
4943 setInsertPointAfterBundle(E);
4944
4945 Value *VecValue = vectorizeTree(E->getOperand(0));
4946 ShuffleBuilder.addMask(E->ReorderIndices);
4947 VecValue = ShuffleBuilder.finalize(VecValue);
4948
4949 Value *ScalarPtr = SI->getPointerOperand();
4950 Value *VecPtr = Builder.CreateBitCast(
4951 ScalarPtr, VecValue->getType()->getPointerTo(AS));
4952 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
4953 SI->getAlign());
4954
4955 // The pointer operand uses an in-tree scalar, so add the new BitCast to
4956 // ExternalUses to make sure that an extract will be generated in the
4957 // future.
4958 if (getTreeEntry(ScalarPtr))
4959 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4960
4961 Value *V = propagateMetadata(ST, E->Scalars);
4962
4963 E->VectorizedValue = V;
4964 ++NumVectorInstructions;
4965 return V;
4966 }
4967 case Instruction::GetElementPtr: {
4968 setInsertPointAfterBundle(E);
4969
4970 Value *Op0 = vectorizeTree(E->getOperand(0));
4971
4972 std::vector<Value *> OpVecs;
4973 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4974 ++j) {
4975 ValueList &VL = E->getOperand(j);
4976 // Need to cast all elements to the same type before vectorization to
4977 // avoid crash.
4978 Type *VL0Ty = VL0->getOperand(j)->getType();
4979 Type *Ty = llvm::all_of(
4980 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
4981 ? VL0Ty
4982 : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4983 ->getPointerOperandType()
4984 ->getScalarType());
4985 for (Value *&V : VL) {
4986 auto *CI = cast<ConstantInt>(V);
4987 V = ConstantExpr::getIntegerCast(CI, Ty,
4988 CI->getValue().isSignBitSet());
4989 }
4990 Value *OpVec = vectorizeTree(VL);
4991 OpVecs.push_back(OpVec);
4992 }
4993
4994 Value *V = Builder.CreateGEP(
4995 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4996 if (Instruction *I = dyn_cast<Instruction>(V))
4997 V = propagateMetadata(I, E->Scalars);
4998
4999 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5000 V = ShuffleBuilder.finalize(V);
5001
5002 E->VectorizedValue = V;
5003 ++NumVectorInstructions;
5004
5005 return V;
5006 }
5007 case Instruction::Call: {
5008 CallInst *CI = cast<CallInst>(VL0);
5009 setInsertPointAfterBundle(E);
5010
5011 Intrinsic::ID IID = Intrinsic::not_intrinsic;
5012 if (Function *FI = CI->getCalledFunction())
5013 IID = FI->getIntrinsicID();
5014
5015 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5016
5017 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5018 bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
5019 VecCallCosts.first <= VecCallCosts.second;
5020
5021 Value *ScalarArg = nullptr;
5022 std::vector<Value *> OpVecs;
5023 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
5024 ValueList OpVL;
5025 // Some intrinsics have scalar arguments. This argument should not be
5026 // vectorized.
5027 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
5028 CallInst *CEI = cast<CallInst>(VL0);
5029 ScalarArg = CEI->getArgOperand(j);
5030 OpVecs.push_back(CEI->getArgOperand(j));
5031 continue;
5032 }
5033
5034 Value *OpVec = vectorizeTree(E->getOperand(j));
5035 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: OpVec[" << j << "]: "
<< *OpVec << "\n"; } } while (false)
;
5036 OpVecs.push_back(OpVec);
5037 }
5038
5039 Function *CF;
5040 if (!UseIntrinsic) {
5041 VFShape Shape =
5042 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5043 VecTy->getNumElements())),
5044 false /*HasGlobalPred*/);
5045 CF = VFDatabase(*CI).getVectorizedFunction(Shape);
5046 } else {
5047 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())};
5048 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
5049 }
5050
5051 SmallVector<OperandBundleDef, 1> OpBundles;
5052 CI->getOperandBundlesAsDefs(OpBundles);
5053 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
5054
5055 // The scalar argument uses an in-tree scalar so we add the new vectorized
5056 // call to ExternalUses list to make sure that an extract will be
5057 // generated in the future.
5058 if (ScalarArg && getTreeEntry(ScalarArg))
5059 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
5060
5061 propagateIRFlags(V, E->Scalars, VL0);
5062 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5063 V = ShuffleBuilder.finalize(V);
5064
5065 E->VectorizedValue = V;
5066 ++NumVectorInstructions;
5067 return V;
5068 }
5069 case Instruction::ShuffleVector: {
5070 assert(E->isAltShuffle() &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5075, __extension__ __PRETTY_FUNCTION__))
5071 ((Instruction::isBinaryOp(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5075, __extension__ __PRETTY_FUNCTION__))
5072 Instruction::isBinaryOp(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5075, __extension__ __PRETTY_FUNCTION__))
5073 (Instruction::isCast(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5075, __extension__ __PRETTY_FUNCTION__))
5074 Instruction::isCast(E->getAltOpcode()))) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5075, __extension__ __PRETTY_FUNCTION__))
5075 "Invalid Shuffle Vector Operand")(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5075, __extension__ __PRETTY_FUNCTION__))
;
5076
5077 Value *LHS = nullptr, *RHS = nullptr;
5078 if (Instruction::isBinaryOp(E->getOpcode())) {
5079 setInsertPointAfterBundle(E);
5080 LHS = vectorizeTree(E->getOperand(0));
5081 RHS = vectorizeTree(E->getOperand(1));
5082 } else {
5083 setInsertPointAfterBundle(E);
5084 LHS = vectorizeTree(E->getOperand(0));
5085 }
5086
5087 if (E->VectorizedValue) {
5088 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
5089 return E->VectorizedValue;
5090 }
5091
5092 Value *V0, *V1;
5093 if (Instruction::isBinaryOp(E->getOpcode())) {
5094 V0 = Builder.CreateBinOp(
5095 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
5096 V1 = Builder.CreateBinOp(
5097 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
5098 } else {
5099 V0 = Builder.CreateCast(
5100 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
5101 V1 = Builder.CreateCast(
5102 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
5103 }
5104
5105 // Create shuffle to take alternate operations from the vector.
5106 // Also, gather up main and alt scalar ops to propagate IR flags to
5107 // each vector operation.
5108 ValueList OpScalars, AltScalars;
5109 unsigned e = E->Scalars.size();
5110 SmallVector<int, 8> Mask(e);
5111 for (unsigned i = 0; i < e; ++i) {
5112 auto *OpInst = cast<Instruction>(E->Scalars[i]);
5113 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(OpInst) &&
"Unexpected main/alternate opcode") ? void (0) : __assert_fail
("E->isOpcodeOrAlt(OpInst) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5113, __extension__ __PRETTY_FUNCTION__))
;
5114 if (OpInst->getOpcode() == E->getAltOpcode()) {
5115 Mask[i] = e + i;
5116 AltScalars.push_back(E->Scalars[i]);
5117 } else {
5118 Mask[i] = i;
5119 OpScalars.push_back(E->Scalars[i]);
5120 }
5121 }
5122
5123 propagateIRFlags(V0, OpScalars);
5124 propagateIRFlags(V1, AltScalars);
5125
5126 Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
5127 if (Instruction *I = dyn_cast<Instruction>(V))
5128 V = propagateMetadata(I, E->Scalars);
5129 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5130 V = ShuffleBuilder.finalize(V);
5131
5132 E->VectorizedValue = V;
5133 ++NumVectorInstructions;
5134
5135 return V;
5136 }
5137 default:
5138 llvm_unreachable("unknown inst")::llvm::llvm_unreachable_internal("unknown inst", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5138)
;
5139 }
5140 return nullptr;
5141}
5142
5143Value *BoUpSLP::vectorizeTree() {
5144 ExtraValueToDebugLocsMap ExternallyUsedValues;
5145 return vectorizeTree(ExternallyUsedValues);
5146}
5147
5148Value *
5149BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
5150 // All blocks must be scheduled before any instructions are inserted.
5151 for (auto &BSIter : BlocksSchedules) {
5152 scheduleBlock(BSIter.second.get());
5153 }
5154
5155 Builder.SetInsertPoint(&F->getEntryBlock().front());
5156 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
5157
5158 // If the vectorized tree can be rewritten in a smaller type, we truncate the
5159 // vectorized root. InstCombine will then rewrite the entire expression. We
5160 // sign extend the extracted values below.
5161 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5162 if (MinBWs.count(ScalarRoot)) {
5163 if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
5164 // If current instr is a phi and not the last phi, insert it after the
5165 // last phi node.
5166 if (isa<PHINode>(I))
5167 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
5168 else
5169 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
5170 }
5171 auto BundleWidth = VectorizableTree[0]->Scalars.size();
5172 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5173 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
5174 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
5175 VectorizableTree[0]->VectorizedValue = Trunc;
5176 }
5177
5178 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
5179 << " values .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
;
5180
5181 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
5182 // specified by ScalarType.
5183 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
5184 if (!MinBWs.count(ScalarRoot))
5185 return Ex;
5186 if (MinBWs[ScalarRoot].second)
5187 return Builder.CreateSExt(Ex, ScalarType);
5188 return Builder.CreateZExt(Ex, ScalarType);
5189 };
5190
5191 // Extract all of the elements with the external uses.
5192 for (const auto &ExternalUse : ExternalUses) {
5193 Value *Scalar = ExternalUse.Scalar;
5194 llvm::User *User = ExternalUse.User;
5195
5196 // Skip users that we already RAUW. This happens when one instruction
5197 // has multiple uses of the same value.
5198 if (User && !is_contained(Scalar->users(), User))
5199 continue;
5200 TreeEntry *E = getTreeEntry(Scalar);
5201 assert(E && "Invalid scalar")(static_cast <bool> (E && "Invalid scalar") ? void
(0) : __assert_fail ("E && \"Invalid scalar\"", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5201, __extension__ __PRETTY_FUNCTION__))
;
5202 assert(E->State != TreeEntry::NeedToGather &&(static_cast <bool> (E->State != TreeEntry::NeedToGather
&& "Extracting from a gather list") ? void (0) : __assert_fail
("E->State != TreeEntry::NeedToGather && \"Extracting from a gather list\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5203, __extension__ __PRETTY_FUNCTION__))
5203 "Extracting from a gather list")(static_cast <bool> (E->State != TreeEntry::NeedToGather
&& "Extracting from a gather list") ? void (0) : __assert_fail
("E->State != TreeEntry::NeedToGather && \"Extracting from a gather list\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5203, __extension__ __PRETTY_FUNCTION__))
;
5204
5205 Value *Vec = E->VectorizedValue;
5206 assert(Vec && "Can't find vectorizable value")(static_cast <bool> (Vec && "Can't find vectorizable value"
) ? void (0) : __assert_fail ("Vec && \"Can't find vectorizable value\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5206, __extension__ __PRETTY_FUNCTION__))
;
5207
5208 Value *Lane = Builder.getInt32(ExternalUse.Lane);
5209 // If User == nullptr, the Scalar is used as extra arg. Generate
5210 // ExtractElement instruction and update the record for this scalar in
5211 // ExternallyUsedValues.
5212 if (!User) {
5213 assert(ExternallyUsedValues.count(Scalar) &&(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5215, __extension__ __PRETTY_FUNCTION__))
5214 "Scalar with nullptr as an external user must be registered in "(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5215, __extension__ __PRETTY_FUNCTION__))
5215 "ExternallyUsedValues map")(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5215, __extension__ __PRETTY_FUNCTION__))
;
5216 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5217 Builder.SetInsertPoint(VecI->getParent(),
5218 std::next(VecI->getIterator()));
5219 } else {
5220 Builder.SetInsertPoint(&F->getEntryBlock().front());
5221 }
5222 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5223 Ex = extend(ScalarRoot, Ex, Scalar->getType());
5224 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
5225 auto &Locs = ExternallyUsedValues[Scalar];
5226 ExternallyUsedValues.insert({Ex, Locs});
5227 ExternallyUsedValues.erase(Scalar);
5228 // Required to update internally referenced instructions.
5229 Scalar->replaceAllUsesWith(Ex);
5230 continue;
5231 }
5232
5233 // Generate extracts for out-of-tree users.
5234 // Find the insertion point for the extractelement lane.
5235 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5236 if (PHINode *PH = dyn_cast<PHINode>(User)) {
5237 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
5238 if (PH->getIncomingValue(i) == Scalar) {
5239 Instruction *IncomingTerminator =
5240 PH->getIncomingBlock(i)->getTerminator();
5241 if (isa<CatchSwitchInst>(IncomingTerminator)) {
5242 Builder.SetInsertPoint(VecI->getParent(),
5243 std::next(VecI->getIterator()));
5244 } else {
5245 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
5246 }
5247 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5248 Ex = extend(ScalarRoot, Ex, Scalar->getType());
5249 CSEBlocks.insert(PH->getIncomingBlock(i));
5250 PH->setOperand(i, Ex);
5251 }
5252 }
5253 } else {
5254 Builder.SetInsertPoint(cast<Instruction>(User));
5255 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5256 Ex = extend(ScalarRoot, Ex, Scalar->getType());
5257 CSEBlocks.insert(cast<Instruction>(User)->getParent());
5258 User->replaceUsesOfWith(Scalar, Ex);
5259 }
5260 } else {
5261 Builder.SetInsertPoint(&F->getEntryBlock().front());
5262 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5263 Ex = extend(ScalarRoot, Ex, Scalar->getType());
5264 CSEBlocks.insert(&F->getEntryBlock());
5265 User->replaceUsesOfWith(Scalar, Ex);
5266 }
5267
5268 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Replaced:" << *User <<
".\n"; } } while (false)
;
5269 }
5270
5271 // For each vectorized value:
5272 for (auto &TEPtr : VectorizableTree) {
5273 TreeEntry *Entry = TEPtr.get();
5274
5275 // No need to handle users of gathered values.
5276 if (Entry->State == TreeEntry::NeedToGather)
5277 continue;
5278
5279 assert(Entry->VectorizedValue && "Can't find vectorizable value")(static_cast <bool> (Entry->VectorizedValue &&
"Can't find vectorizable value") ? void (0) : __assert_fail (
"Entry->VectorizedValue && \"Can't find vectorizable value\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5279, __extension__ __PRETTY_FUNCTION__))
;
5280
5281 // For each lane:
5282 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
5283 Value *Scalar = Entry->Scalars[Lane];
5284
5285#ifndef NDEBUG
5286 Type *Ty = Scalar->getType();
5287 if (!Ty->isVoidTy()) {
5288 for (User *U : Scalar->users()) {
5289 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tvalidating user:" <<
*U << ".\n"; } } while (false)
;
5290
5291 // It is legal to delete users in the ignorelist.
5292 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&(static_cast <bool> ((getTreeEntry(U) || is_contained(UserIgnoreList
, U)) && "Deleting out-of-tree value") ? void (0) : __assert_fail
("(getTreeEntry(U) || is_contained(UserIgnoreList, U)) && \"Deleting out-of-tree value\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5293, __extension__ __PRETTY_FUNCTION__))
5293 "Deleting out-of-tree value")(static_cast <bool> ((getTreeEntry(U) || is_contained(UserIgnoreList
, U)) && "Deleting out-of-tree value") ? void (0) : __assert_fail
("(getTreeEntry(U) || is_contained(UserIgnoreList, U)) && \"Deleting out-of-tree value\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5293, __extension__ __PRETTY_FUNCTION__))
;
5294 }
5295 }
5296#endif
5297 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tErasing scalar:" << *
Scalar << ".\n"; } } while (false)
;
5298 eraseInstruction(cast<Instruction>(Scalar));
5299 }
5300 }
5301
5302 Builder.ClearInsertionPoint();
5303 InstrElementSize.clear();
5304
5305 return VectorizableTree[0]->VectorizedValue;
5306}
5307
5308void BoUpSLP::optimizeGatherSequence() {
5309 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
5310 << " gather sequences instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
;
5311 // LICM InsertElementInst sequences.
5312 for (Instruction *I : GatherSeq) {
5313 if (isDeleted(I))
5314 continue;
5315
5316 // Check if this block is inside a loop.
5317 Loop *L = LI->getLoopFor(I->getParent());
5318 if (!L)
5319 continue;
5320
5321 // Check if it has a preheader.
5322 BasicBlock *PreHeader = L->getLoopPreheader();
5323 if (!PreHeader)
5324 continue;
5325
5326 // If the vector or the element that we insert into it are
5327 // instructions that are defined in this basic block then we can't
5328 // hoist this instruction.
5329 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5330 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5331 if (Op0 && L->contains(Op0))
5332 continue;
5333 if (Op1 && L->contains(Op1))
5334 continue;
5335
5336 // We can hoist this instruction. Move it to the pre-header.
5337 I->moveBefore(PreHeader->getTerminator());
5338 }
5339
5340 // Make a list of all reachable blocks in our CSE queue.
5341 SmallVector<const DomTreeNode *, 8> CSEWorkList;
5342 CSEWorkList.reserve(CSEBlocks.size());
5343 for (BasicBlock *BB : CSEBlocks)
5344 if (DomTreeNode *N = DT->getNode(BB)) {
5345 assert(DT->isReachableFromEntry(N))(static_cast <bool> (DT->isReachableFromEntry(N)) ? void
(0) : __assert_fail ("DT->isReachableFromEntry(N)", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5345, __extension__ __PRETTY_FUNCTION__))
;
5346 CSEWorkList.push_back(N);
5347 }
5348
5349 // Sort blocks by domination. This ensures we visit a block after all blocks
5350 // dominating it are visited.
5351 llvm::stable_sort(CSEWorkList,
5352 [this](const DomTreeNode *A, const DomTreeNode *B) {
5353 return DT->properlyDominates(A, B);
5354 });
5355
5356 // Perform O(N^2) search over the gather sequences and merge identical
5357 // instructions. TODO: We can further optimize this scan if we split the
5358 // instructions into different buckets based on the insert lane.
5359 SmallVector<Instruction *, 16> Visited;
5360 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
5361 assert(*I &&(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5363, __extension__ __PRETTY_FUNCTION__))
5362 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5363, __extension__ __PRETTY_FUNCTION__))
5363 "Worklist not sorted properly!")(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5363, __extension__ __PRETTY_FUNCTION__))
;
5364 BasicBlock *BB = (*I)->getBlock();
5365 // For all instructions in blocks containing gather sequences:
5366 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
5367 Instruction *In = &*it++;
5368 if (isDeleted(In))
5369 continue;
5370 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
5371 continue;
5372
5373 // Check if we can replace this instruction with any of the
5374 // visited instructions.
5375 for (Instruction *v : Visited) {
5376 if (In->isIdenticalTo(v) &&
5377 DT->dominates(v->getParent(), In->getParent())) {
5378 In->replaceAllUsesWith(v);
5379 eraseInstruction(In);
5380 In = nullptr;
5381 break;
5382 }
5383 }
5384 if (In) {
5385 assert(!is_contained(Visited, In))(static_cast <bool> (!is_contained(Visited, In)) ? void
(0) : __assert_fail ("!is_contained(Visited, In)", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5385, __extension__ __PRETTY_FUNCTION__))
;
5386 Visited.push_back(In);
5387 }
5388 }
5389 }
5390 CSEBlocks.clear();
5391 GatherSeq.clear();
5392}
5393
5394// Groups the instructions to a bundle (which is then a single scheduling entity)
5395// and schedules instructions until the bundle gets ready.
5396Optional<BoUpSLP::ScheduleData *>
5397BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
5398 const InstructionsState &S) {
5399 if (isa<PHINode>(S.OpValue))
26
Assuming field 'OpValue' is not a 'PHINode'
27
Taking false branch
5400 return nullptr;
5401
5402 // Initialize the instruction bundle.
5403 Instruction *OldScheduleEnd = ScheduleEnd;
5404 ScheduleData *PrevInBundle = nullptr;
5405 ScheduleData *Bundle = nullptr;
5406 bool ReSchedule = false;
5407 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle: " << *S.OpValue
<< "\n"; } } while (false)
;
28
Assuming 'DebugFlag' is false
29
Loop condition is false. Exiting loop
5408
5409 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
5410 ScheduleData *Bundle) {
5411 // The scheduling region got new instructions at the lower end (or it is a
5412 // new region for the first bundle). This makes it necessary to
5413 // recalculate all dependencies.
5414 // It is seldom that this needs to be done a second time after adding the
5415 // initial bundle to the region.
5416 if (ScheduleEnd != OldScheduleEnd) {
39
Assuming 'OldScheduleEnd' is equal to field 'ScheduleEnd'
40
Taking false branch
5417 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
5418 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
5419 ReSchedule = true;
5420 }
5421 if (ReSchedule
40.1
'ReSchedule' is false
40.1
'ReSchedule' is false
) {
41
Taking false branch
5422 resetSchedule();
5423 initialFillReadyList(ReadyInsts);
5424 }
5425 if (Bundle
41.1
'Bundle' is non-null
41.1
'Bundle' is non-null
) {
42
Taking true branch
5426 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundledo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
43
Assuming 'DebugFlag' is false
44
Loop condition is false. Exiting loop
5427 << " in block " << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
;
5428 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
45
Calling 'BlockScheduling::calculateDependencies'
5429 }
5430
5431 // Now try to schedule the new bundle or (if no bundle) just calculate
5432 // dependencies. As soon as the bundle is "ready" it means that there are no
5433 // cyclic dependencies and we can schedule it. Note that's important that we
5434 // don't "schedule" the bundle yet (see cancelScheduling).
5435 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
5436 !ReadyInsts.empty()) {
5437 ScheduleData *Picked = ReadyInsts.pop_back_val();
5438 if (Picked->isSchedulingEntity() && Picked->isReady())
5439 schedule(Picked, ReadyInsts);
5440 }
5441 };
5442
5443 // Make sure that the scheduling region contains all
5444 // instructions of the bundle.
5445 for (Value *V : VL) {
30
Assuming '__begin1' is equal to '__end1'
5446 if (!extendSchedulingRegion(V, S)) {
5447 // If the scheduling region got new instructions at the lower end (or it
5448 // is a new region for the first bundle). This makes it necessary to
5449 // recalculate all dependencies.
5450 // Otherwise the compiler may crash trying to incorrectly calculate
5451 // dependencies and emit instruction in the wrong order at the actual
5452 // scheduling.
5453 TryScheduleBundle(/*ReSchedule=*/false, nullptr);
5454 return None;
5455 }
5456 }
5457
5458 for (Value *V : VL) {
31
Assuming '__begin1' is not equal to '__end1'
5459 ScheduleData *BundleMember = getScheduleData(V);
5460 assert(BundleMember &&(static_cast <bool> (BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? void (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5461, __extension__ __PRETTY_FUNCTION__))
32
'?' condition is true
5461 "no ScheduleData for bundle member (maybe not in same basic block)")(static_cast <bool> (BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? void (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5461, __extension__ __PRETTY_FUNCTION__))
;
5462 if (BundleMember->IsScheduled) {
33
Assuming field 'IsScheduled' is false
34
Taking false branch
5463 // A bundle member was scheduled as single instruction before and now
5464 // needs to be scheduled as part of the bundle. We just get rid of the
5465 // existing schedule.
5466 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
5467 << " was already scheduled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
;
5468 ReSchedule = true;
5469 }
5470 assert(BundleMember->isSchedulingEntity() &&(static_cast <bool> (BundleMember->isSchedulingEntity
() && "bundle member already part of other bundle") ?
void (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5471, __extension__ __PRETTY_FUNCTION__))
35
'?' condition is true
5471 "bundle member already part of other bundle")(static_cast <bool> (BundleMember->isSchedulingEntity
() && "bundle member already part of other bundle") ?
void (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5471, __extension__ __PRETTY_FUNCTION__))
;
5472 if (PrevInBundle
35.1
'PrevInBundle' is null
35.1
'PrevInBundle' is null
) {
36
Taking false branch
5473 PrevInBundle->NextInBundle = BundleMember;
5474 } else {
5475 Bundle = BundleMember;
5476 }
5477 BundleMember->UnscheduledDepsInBundle = 0;
5478 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
5479
5480 // Group the instructions to a bundle.
5481 BundleMember->FirstInBundle = Bundle;
5482 PrevInBundle = BundleMember;
5483 }
5484 assert(Bundle && "Failed to find schedule bundle")(static_cast <bool> (Bundle && "Failed to find schedule bundle"
) ? void (0) : __assert_fail ("Bundle && \"Failed to find schedule bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5484, __extension__ __PRETTY_FUNCTION__))
;
37
'?' condition is true
5485 TryScheduleBundle(ReSchedule, Bundle);
38
Calling 'operator()'
5486 if (!Bundle->isReady()) {
5487 cancelScheduling(VL, S.OpValue);
5488 return None;
5489 }
5490 return Bundle;
5491}
5492
5493void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
5494 Value *OpValue) {
5495 if (isa<PHINode>(OpValue))
5496 return;
5497
5498 ScheduleData *Bundle = getScheduleData(OpValue);
5499 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: cancel scheduling of " <<
*Bundle << "\n"; } } while (false)
;
5500 assert(!Bundle->IsScheduled &&(static_cast <bool> (!Bundle->IsScheduled &&
"Can't cancel bundle which is already scheduled") ? void (0)
: __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5501, __extension__ __PRETTY_FUNCTION__))
5501 "Can't cancel bundle which is already scheduled")(static_cast <bool> (!Bundle->IsScheduled &&
"Can't cancel bundle which is already scheduled") ? void (0)
: __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5501, __extension__ __PRETTY_FUNCTION__))
;
5502 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&(static_cast <bool> (Bundle->isSchedulingEntity() &&
Bundle->isPartOfBundle() && "tried to unbundle something which is not a bundle"
) ? void (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5503, __extension__ __PRETTY_FUNCTION__))
5503 "tried to unbundle something which is not a bundle")(static_cast <bool> (Bundle->isSchedulingEntity() &&
Bundle->isPartOfBundle() && "tried to unbundle something which is not a bundle"
) ? void (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5503, __extension__ __PRETTY_FUNCTION__))
;
5504
5505 // Un-bundle: make single instructions out of the bundle.
5506 ScheduleData *BundleMember = Bundle;
5507 while (BundleMember) {
5508 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links")(static_cast <bool> (BundleMember->FirstInBundle == Bundle
&& "corrupt bundle links") ? void (0) : __assert_fail
("BundleMember->FirstInBundle == Bundle && \"corrupt bundle links\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5508, __extension__ __PRETTY_FUNCTION__))
;
5509 BundleMember->FirstInBundle = BundleMember;
5510 ScheduleData *Next = BundleMember->NextInBundle;
5511 BundleMember->NextInBundle = nullptr;
5512 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
5513 if (BundleMember->UnscheduledDepsInBundle == 0) {
5514 ReadyInsts.insert(BundleMember);
5515 }
5516 BundleMember = Next;
5517 }
5518}
5519
5520BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
5521 // Allocate a new ScheduleData for the instruction.
5522 if (ChunkPos >= ChunkSize) {
5523 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
5524 ChunkPos = 0;
5525 }
5526 return &(ScheduleDataChunks.back()[ChunkPos++]);
5527}
5528
5529bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
5530 const InstructionsState &S) {
5531 if (getScheduleData(V, isOneOf(S, V)))
5532 return true;
5533 Instruction *I = dyn_cast<Instruction>(V);
5534 assert(I && "bundle member must be an instruction")(static_cast <bool> (I && "bundle member must be an instruction"
) ? void (0) : __assert_fail ("I && \"bundle member must be an instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5534, __extension__ __PRETTY_FUNCTION__))
;
5535 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled")(static_cast <bool> (!isa<PHINode>(I) && "phi nodes don't need to be scheduled"
) ? void (0) : __assert_fail ("!isa<PHINode>(I) && \"phi nodes don't need to be scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5535, __extension__ __PRETTY_FUNCTION__))
;
5536 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
5537 ScheduleData *ISD = getScheduleData(I);
5538 if (!ISD)
5539 return false;
5540 assert(isInSchedulingRegion(ISD) &&(static_cast <bool> (isInSchedulingRegion(ISD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5541, __extension__ __PRETTY_FUNCTION__))
5541 "ScheduleData not in scheduling region")(static_cast <bool> (isInSchedulingRegion(ISD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5541, __extension__ __PRETTY_FUNCTION__))
;
5542 ScheduleData *SD = allocateScheduleDataChunks();
5543 SD->Inst = I;
5544 SD->init(SchedulingRegionID, S.OpValue);
5545 ExtraScheduleDataMap[I][S.OpValue] = SD;
5546 return true;
5547 };
5548 if (CheckSheduleForI(I))
5549 return true;
5550 if (!ScheduleStart) {
5551 // It's the first instruction in the new region.
5552 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
5553 ScheduleStart = I;
5554 ScheduleEnd = I->getNextNode();
5555 if (isOneOf(S, I) != I)
5556 CheckSheduleForI(I);
5557 assert(ScheduleEnd && "tried to vectorize a terminator?")(static_cast <bool> (ScheduleEnd && "tried to vectorize a terminator?"
) ? void (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5557, __extension__ __PRETTY_FUNCTION__))
;
5558 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initialize schedule region to "
<< *I << "\n"; } } while (false)
;
5559 return true;
5560 }
5561 // Search up and down at the same time, because we don't know if the new
5562 // instruction is above or below the existing scheduling region.
5563 BasicBlock::reverse_iterator UpIter =
5564 ++ScheduleStart->getIterator().getReverse();
5565 BasicBlock::reverse_iterator UpperEnd = BB->rend();
5566 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
5567 BasicBlock::iterator LowerEnd = BB->end();
5568 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
5569 &*DownIter != I) {
5570 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
5571 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: exceeded schedule region size limit\n"
; } } while (false)
;
5572 return false;
5573 }
5574
5575 ++UpIter;
5576 ++DownIter;
5577 }
5578 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
5579 assert(I->getParent() == ScheduleStart->getParent() &&(static_cast <bool> (I->getParent() == ScheduleStart
->getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleStart->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5580, __extension__ __PRETTY_FUNCTION__))
5580 "Instruction is in wrong basic block.")(static_cast <bool> (I->getParent() == ScheduleStart
->getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleStart->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5580, __extension__ __PRETTY_FUNCTION__))
;
5581 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
5582 ScheduleStart = I;
5583 if (isOneOf(S, I) != I)
5584 CheckSheduleForI(I);
5585 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
5586 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
;
5587 return true;
5588 }
5589 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5591, __extension__ __PRETTY_FUNCTION__))
5590 "Expected to reach top of the basic block or instruction down the "(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5591, __extension__ __PRETTY_FUNCTION__))
5591 "lower end.")(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5591, __extension__ __PRETTY_FUNCTION__))
;
5592 assert(I->getParent() == ScheduleEnd->getParent() &&(static_cast <bool> (I->getParent() == ScheduleEnd->
getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleEnd->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5593, __extension__ __PRETTY_FUNCTION__))
5593 "Instruction is in wrong basic block.")(static_cast <bool> (I->getParent() == ScheduleEnd->
getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleEnd->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5593, __extension__ __PRETTY_FUNCTION__))
;
5594 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
5595 nullptr);
5596 ScheduleEnd = I->getNextNode();
5597 if (isOneOf(S, I) != I)
5598 CheckSheduleForI(I);
5599 assert(ScheduleEnd && "tried to vectorize a terminator?")(static_cast <bool> (ScheduleEnd && "tried to vectorize a terminator?"
) ? void (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5599, __extension__ __PRETTY_FUNCTION__))
;
5600 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region end to "
<< *I << "\n"; } } while (false)
;
5601 return true;
5602}
5603
5604void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
5605 Instruction *ToI,
5606 ScheduleData *PrevLoadStore,
5607 ScheduleData *NextLoadStore) {
5608 ScheduleData *CurrentLoadStore = PrevLoadStore;
5609 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
5610 ScheduleData *SD = ScheduleDataMap[I];
5611 if (!SD) {
5612 SD = allocateScheduleDataChunks();
5613 ScheduleDataMap[I] = SD;
5614 SD->Inst = I;
5615 }
5616 assert(!isInSchedulingRegion(SD) &&(static_cast <bool> (!isInSchedulingRegion(SD) &&
"new ScheduleData already in scheduling region") ? void (0) :
__assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5617, __extension__ __PRETTY_FUNCTION__))
5617 "new ScheduleData already in scheduling region")(static_cast <bool> (!isInSchedulingRegion(SD) &&
"new ScheduleData already in scheduling region") ? void (0) :
__assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5617, __extension__ __PRETTY_FUNCTION__))
;
5618 SD->init(SchedulingRegionID, I);
5619
5620 if (I->mayReadOrWriteMemory() &&
5621 (!isa<IntrinsicInst>(I) ||
5622 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
5623 cast<IntrinsicInst>(I)->getIntrinsicID() !=
5624 Intrinsic::pseudoprobe))) {
5625 // Update the linked list of memory accessing instructions.
5626 if (CurrentLoadStore) {
5627 CurrentLoadStore->NextLoadStore = SD;
5628 } else {
5629 FirstLoadStoreInRegion = SD;
5630 }
5631 CurrentLoadStore = SD;
5632 }
5633 }
5634 if (NextLoadStore) {
5635 if (CurrentLoadStore)
5636 CurrentLoadStore->NextLoadStore = NextLoadStore;
5637 } else {
5638 LastLoadStoreInRegion = CurrentLoadStore;
5639 }
5640}
5641
5642void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
5643 bool InsertInReadyList,
5644 BoUpSLP *SLP) {
5645 assert(SD->isSchedulingEntity())(static_cast <bool> (SD->isSchedulingEntity()) ? void
(0) : __assert_fail ("SD->isSchedulingEntity()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5645, __extension__ __PRETTY_FUNCTION__))
;
46
'?' condition is true
5646
5647 SmallVector<ScheduleData *, 10> WorkList;
5648 WorkList.push_back(SD);
5649
5650 while (!WorkList.empty()) {
47
Calling 'SmallVectorBase::empty'
50
Returning from 'SmallVectorBase::empty'
51
Loop condition is true. Entering loop body
5651 ScheduleData *SD = WorkList.pop_back_val();
52
'SD' initialized here
5652
5653 ScheduleData *BundleMember = SD;
5654 while (BundleMember) {
53
Assuming pointer value is null
54
Loop condition is false. Execution continues on line 5758
5655 assert(isInSchedulingRegion(BundleMember))(static_cast <bool> (isInSchedulingRegion(BundleMember)
) ? void (0) : __assert_fail ("isInSchedulingRegion(BundleMember)"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5655, __extension__ __PRETTY_FUNCTION__))
;
5656 if (!BundleMember->hasValidDependencies()) {
5657
5658 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
5659 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
;
5660 BundleMember->Dependencies = 0;
5661 BundleMember->resetUnscheduledDeps();
5662
5663 // Handle def-use chain dependencies.
5664 if (BundleMember->OpValue != BundleMember->Inst) {
5665 ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
5666 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5667 BundleMember->Dependencies++;
5668 ScheduleData *DestBundle = UseSD->FirstInBundle;
5669 if (!DestBundle->IsScheduled)
5670 BundleMember->incrementUnscheduledDeps(1);
5671 if (!DestBundle->hasValidDependencies())
5672 WorkList.push_back(DestBundle);
5673 }
5674 } else {
5675 for (User *U : BundleMember->Inst->users()) {
5676 if (isa<Instruction>(U)) {
5677 ScheduleData *UseSD = getScheduleData(U);
5678 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5679 BundleMember->Dependencies++;
5680 ScheduleData *DestBundle = UseSD->FirstInBundle;
5681 if (!DestBundle->IsScheduled)
5682 BundleMember->incrementUnscheduledDeps(1);
5683 if (!DestBundle->hasValidDependencies())
5684 WorkList.push_back(DestBundle);
5685 }
5686 } else {
5687 // I'm not sure if this can ever happen. But we need to be safe.
5688 // This lets the instruction/bundle never be scheduled and
5689 // eventually disable vectorization.
5690 BundleMember->Dependencies++;
5691 BundleMember->incrementUnscheduledDeps(1);
5692 }
5693 }
5694 }
5695
5696 // Handle the memory dependencies.
5697 ScheduleData *DepDest = BundleMember->NextLoadStore;
5698 if (DepDest) {
5699 Instruction *SrcInst = BundleMember->Inst;
5700 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
5701 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
5702 unsigned numAliased = 0;
5703 unsigned DistToSrc = 1;
5704
5705 while (DepDest) {
5706 assert(isInSchedulingRegion(DepDest))(static_cast <bool> (isInSchedulingRegion(DepDest)) ? void
(0) : __assert_fail ("isInSchedulingRegion(DepDest)", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5706, __extension__ __PRETTY_FUNCTION__))
;
5707
5708 // We have two limits to reduce the complexity:
5709 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
5710 // SLP->isAliased (which is the expensive part in this loop).
5711 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
5712 // the whole loop (even if the loop is fast, it's quadratic).
5713 // It's important for the loop break condition (see below) to
5714 // check this limit even between two read-only instructions.
5715 if (DistToSrc >= MaxMemDepDistance ||
5716 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
5717 (numAliased >= AliasedCheckLimit ||
5718 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
5719
5720 // We increment the counter only if the locations are aliased
5721 // (instead of counting all alias checks). This gives a better
5722 // balance between reduced runtime and accurate dependencies.
5723 numAliased++;
5724
5725 DepDest->MemoryDependencies.push_back(BundleMember);
5726 BundleMember->Dependencies++;
5727 ScheduleData *DestBundle = DepDest->FirstInBundle;
5728 if (!DestBundle->IsScheduled) {
5729 BundleMember->incrementUnscheduledDeps(1);
5730 }
5731 if (!DestBundle->hasValidDependencies()) {
5732 WorkList.push_back(DestBundle);
5733 }
5734 }
5735 DepDest = DepDest->NextLoadStore;
5736
5737 // Example, explaining the loop break condition: Let's assume our
5738 // starting instruction is i0 and MaxMemDepDistance = 3.
5739 //
5740 // +--------v--v--v
5741 // i0,i1,i2,i3,i4,i5,i6,i7,i8
5742 // +--------^--^--^
5743 //
5744 // MaxMemDepDistance let us stop alias-checking at i3 and we add
5745 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
5746 // Previously we already added dependencies from i3 to i6,i7,i8
5747 // (because of MaxMemDepDistance). As we added a dependency from
5748 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
5749 // and we can abort this loop at i6.
5750 if (DistToSrc >= 2 * MaxMemDepDistance)
5751 break;
5752 DistToSrc++;
5753 }
5754 }
5755 }
5756 BundleMember = BundleMember->NextInBundle;
5757 }
5758 if (InsertInReadyList
54.1
'InsertInReadyList' is true
54.1
'InsertInReadyList' is true
&& SD->isReady()) {
55
Called C++ object pointer is null
5759 ReadyInsts.push_back(SD);
5760 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Instdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
5761 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
;
5762 }
5763 }
5764}
5765
5766void BoUpSLP::BlockScheduling::resetSchedule() {
5767 assert(ScheduleStart &&(static_cast <bool> (ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? void (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5768, __extension__ __PRETTY_FUNCTION__))
5768 "tried to reset schedule on block which has not been scheduled")(static_cast <bool> (ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? void (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5768, __extension__ __PRETTY_FUNCTION__))
;
5769 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5770 doForAllOpcodes(I, [&](ScheduleData *SD) {
5771 assert(isInSchedulingRegion(SD) &&(static_cast <bool> (isInSchedulingRegion(SD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5772, __extension__ __PRETTY_FUNCTION__))
5772 "ScheduleData not in scheduling region")(static_cast <bool> (isInSchedulingRegion(SD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5772, __extension__ __PRETTY_FUNCTION__))
;
5773 SD->IsScheduled = false;
5774 SD->resetUnscheduledDeps();
5775 });
5776 }
5777 ReadyInsts.clear();
5778}
5779
5780void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
5781 if (!BS->ScheduleStart)
5782 return;
5783
5784 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule block " << BS
->BB->getName() << "\n"; } } while (false)
;
5785
5786 BS->resetSchedule();
5787
5788 // For the real scheduling we use a more sophisticated ready-list: it is
5789 // sorted by the original instruction location. This lets the final schedule
5790 // be as close as possible to the original instruction order.
5791 struct ScheduleDataCompare {
5792 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
5793 return SD2->SchedulingPriority < SD1->SchedulingPriority;
5794 }
5795 };
5796 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
5797
5798 // Ensure that all dependency data is updated and fill the ready-list with
5799 // initial instructions.
5800 int Idx = 0;
5801 int NumToSchedule = 0;
5802 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
5803 I = I->getNextNode()) {
5804 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
5805 assert(SD->isPartOfBundle() ==(static_cast <bool> (SD->isPartOfBundle() == (getTreeEntry
(SD->Inst) != nullptr) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5807, __extension__ __PRETTY_FUNCTION__))
5806 (getTreeEntry(SD->Inst) != nullptr) &&(static_cast <bool> (SD->isPartOfBundle() == (getTreeEntry
(SD->Inst) != nullptr) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5807, __extension__ __PRETTY_FUNCTION__))
5807 "scheduler and vectorizer bundle mismatch")(static_cast <bool> (SD->isPartOfBundle() == (getTreeEntry
(SD->Inst) != nullptr) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5807, __extension__ __PRETTY_FUNCTION__))
;
5808 SD->FirstInBundle->SchedulingPriority = Idx++;
5809 if (SD->isSchedulingEntity()) {
5810 BS->calculateDependencies(SD, false, this);
5811 NumToSchedule++;
5812 }
5813 });
5814 }
5815 BS->initialFillReadyList(ReadyInsts);
5816
5817 Instruction *LastScheduledInst = BS->ScheduleEnd;
5818
5819 // Do the "real" scheduling.
5820 while (!ReadyInsts.empty()) {
5821 ScheduleData *picked = *ReadyInsts.begin();
5822 ReadyInsts.erase(ReadyInsts.begin());
5823
5824 // Move the scheduled instruction(s) to their dedicated places, if not
5825 // there yet.
5826 ScheduleData *BundleMember = picked;
5827 while (BundleMember) {
5828 Instruction *pickedInst = BundleMember->Inst;
5829 if (LastScheduledInst->getNextNode() != pickedInst) {
5830 BS->BB->getInstList().remove(pickedInst);
5831 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
5832 pickedInst);
5833 }
5834 LastScheduledInst = pickedInst;
5835 BundleMember = BundleMember->NextInBundle;
5836 }
5837
5838 BS->schedule(picked, ReadyInsts);
5839 NumToSchedule--;
5840 }
5841 assert(NumToSchedule == 0 && "could not schedule all instructions")(static_cast <bool> (NumToSchedule == 0 && "could not schedule all instructions"
) ? void (0) : __assert_fail ("NumToSchedule == 0 && \"could not schedule all instructions\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5841, __extension__ __PRETTY_FUNCTION__))
;
5842
5843 // Avoid duplicate scheduling of the block.
5844 BS->ScheduleStart = nullptr;
5845}
5846
5847unsigned BoUpSLP::getVectorElementSize(Value *V) {
5848 // If V is a store, just return the width of the stored value (or value
5849 // truncated just before storing) without traversing the expression tree.
5850 // This is the common case.
5851 if (auto *Store = dyn_cast<StoreInst>(V)) {
5852 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
5853 return DL->getTypeSizeInBits(Trunc->getSrcTy());
5854 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
5855 }
5856
5857 auto E = InstrElementSize.find(V);
5858 if (E != InstrElementSize.end())
5859 return E->second;
5860
5861 // If V is not a store, we can traverse the expression tree to find loads
5862 // that feed it. The type of the loaded value may indicate a more suitable
5863 // width than V's type. We want to base the vector element size on the width
5864 // of memory operations where possible.
5865 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
5866 SmallPtrSet<Instruction *, 16> Visited;
5867 if (auto *I = dyn_cast<Instruction>(V)) {
5868 Worklist.emplace_back(I, I->getParent());
5869 Visited.insert(I);
5870 }
5871
5872 // Traverse the expression tree in bottom-up order looking for loads. If we
5873 // encounter an instruction we don't yet handle, we give up.
5874 auto Width = 0u;
5875 while (!Worklist.empty()) {
5876 Instruction *I;
5877 BasicBlock *Parent;
5878 std::tie(I, Parent) = Worklist.pop_back_val();
5879
5880 // We should only be looking at scalar instructions here. If the current
5881 // instruction has a vector type, skip.
5882 auto *Ty = I->getType();
5883 if (isa<VectorType>(Ty))
5884 continue;
5885
5886 // If the current instruction is a load, update MaxWidth to reflect the
5887 // width of the loaded value.
5888 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
5889 isa<ExtractValueInst>(I))
5890 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
5891
5892 // Otherwise, we need to visit the operands of the instruction. We only
5893 // handle the interesting cases from buildTree here. If an operand is an
5894 // instruction we haven't yet visited and from the same basic block as the
5895 // user or the use is a PHI node, we add it to the worklist.
5896 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5897 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
5898 isa<UnaryOperator>(I)) {
5899 for (Use &U : I->operands())
5900 if (auto *J = dyn_cast<Instruction>(U.get()))
5901 if (Visited.insert(J).second &&
5902 (isa<PHINode>(I) || J->getParent() == Parent))
5903 Worklist.emplace_back(J, J->getParent());
5904 } else {
5905 break;
5906 }
5907 }
5908
5909 // If we didn't encounter a memory access in the expression tree, or if we
5910 // gave up for some reason, just return the width of V. Otherwise, return the
5911 // maximum width we found.
5912 if (!Width) {
5913 if (auto *CI = dyn_cast<CmpInst>(V))
5914 V = CI->getOperand(0);
5915 Width = DL->getTypeSizeInBits(V->getType());
5916 }
5917
5918 for (Instruction *I : Visited)
5919 InstrElementSize[I] = Width;
5920
5921 return Width;
5922}
5923
5924// Determine if a value V in a vectorizable expression Expr can be demoted to a
5925// smaller type with a truncation. We collect the values that will be demoted
5926// in ToDemote and additional roots that require investigating in Roots.
5927static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
5928 SmallVectorImpl<Value *> &ToDemote,
5929 SmallVectorImpl<Value *> &Roots) {
5930 // We can always demote constants.
5931 if (isa<Constant>(V)) {
5932 ToDemote.push_back(V);
5933 return true;
5934 }
5935
5936 // If the value is not an instruction in the expression with only one use, it
5937 // cannot be demoted.
5938 auto *I = dyn_cast<Instruction>(V);
5939 if (!I || !I->hasOneUse() || !Expr.count(I))
5940 return false;
5941
5942 switch (I->getOpcode()) {
5943
5944 // We can always demote truncations and extensions. Since truncations can
5945 // seed additional demotion, we save the truncated value.
5946 case Instruction::Trunc:
5947 Roots.push_back(I->getOperand(0));
5948 break;
5949 case Instruction::ZExt:
5950 case Instruction::SExt:
5951 break;
5952
5953 // We can demote certain binary operations if we can demote both of their
5954 // operands.
5955 case Instruction::Add:
5956 case Instruction::Sub:
5957 case Instruction::Mul:
5958 case Instruction::And:
5959 case Instruction::Or:
5960 case Instruction::Xor:
5961 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5962 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5963 return false;
5964 break;
5965
5966 // We can demote selects if we can demote their true and false values.
5967 case Instruction::Select: {
5968 SelectInst *SI = cast<SelectInst>(I);
5969 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5970 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5971 return false;
5972 break;
5973 }
5974
5975 // We can demote phis if we can demote all their incoming operands. Note that
5976 // we don't need to worry about cycles since we ensure single use above.
5977 case Instruction::PHI: {
5978 PHINode *PN = cast<PHINode>(I);
5979 for (Value *IncValue : PN->incoming_values())
5980 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5981 return false;
5982 break;
5983 }
5984
5985 // Otherwise, conservatively give up.
5986 default:
5987 return false;
5988 }
5989
5990 // Record the value that we can demote.
5991 ToDemote.push_back(V);
5992 return true;
5993}
5994
5995void BoUpSLP::computeMinimumValueSizes() {
5996 // If there are no external uses, the expression tree must be rooted by a
5997 // store. We can't demote in-memory values, so there is nothing to do here.
5998 if (ExternalUses.empty())
5999 return;
6000
6001 // We only attempt to truncate integer expressions.
6002 auto &TreeRoot = VectorizableTree[0]->Scalars;
6003 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
6004 if (!TreeRootIT)
6005 return;
6006
6007 // If the expression is not rooted by a store, these roots should have
6008 // external uses. We will rely on InstCombine to rewrite the expression in
6009 // the narrower type. However, InstCombine only rewrites single-use values.
6010 // This means that if a tree entry other than a root is used externally, it
6011 // must have multiple uses and InstCombine will not rewrite it. The code
6012 // below ensures that only the roots are used externally.
6013 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
6014 for (auto &EU : ExternalUses)
6015 if (!Expr.erase(EU.Scalar))
6016 return;
6017 if (!Expr.empty())
6018 return;
6019
6020 // Collect the scalar values of the vectorizable expression. We will use this
6021 // context to determine which values can be demoted. If we see a truncation,
6022 // we mark it as seeding another demotion.
6023 for (auto &EntryPtr : VectorizableTree)
6024 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
6025
6026 // Ensure the roots of the vectorizable tree don't form a cycle. They must
6027 // have a single external user that is not in the vectorizable tree.
6028 for (auto *Root : TreeRoot)
6029 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
6030 return;
6031
6032 // Conservatively determine if we can actually truncate the roots of the
6033 // expression. Collect the values that can be demoted in ToDemote and
6034 // additional roots that require investigating in Roots.
6035 SmallVector<Value *, 32> ToDemote;
6036 SmallVector<Value *, 4> Roots;
6037 for (auto *Root : TreeRoot)
6038 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
6039 return;
6040
6041 // The maximum bit width required to represent all the values that can be
6042 // demoted without loss of precision. It would be safe to truncate the roots
6043 // of the expression to this width.
6044 auto MaxBitWidth = 8u;
6045
6046 // We first check if all the bits of the roots are demanded. If they're not,
6047 // we can truncate the roots to this narrower type.
6048 for (auto *Root : TreeRoot) {
6049 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
6050 MaxBitWidth = std::max<unsigned>(
6051 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
6052 }
6053
6054 // True if the roots can be zero-extended back to their original type, rather
6055 // than sign-extended. We know that if the leading bits are not demanded, we
6056 // can safely zero-extend. So we initialize IsKnownPositive to True.
6057 bool IsKnownPositive = true;
6058
6059 // If all the bits of the roots are demanded, we can try a little harder to
6060 // compute a narrower type. This can happen, for example, if the roots are
6061 // getelementptr indices. InstCombine promotes these indices to the pointer
6062 // width. Thus, all their bits are technically demanded even though the
6063 // address computation might be vectorized in a smaller type.
6064 //
6065 // We start by looking at each entry that can be demoted. We compute the
6066 // maximum bit width required to store the scalar by using ValueTracking to
6067 // compute the number of high-order bits we can truncate.
6068 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
6069 llvm::all_of(TreeRoot, [](Value *R) {
6070 assert(R->hasOneUse() && "Root should have only one use!")(static_cast <bool> (R->hasOneUse() && "Root should have only one use!"
) ? void (0) : __assert_fail ("R->hasOneUse() && \"Root should have only one use!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6070, __extension__ __PRETTY_FUNCTION__))
;
6071 return isa<GetElementPtrInst>(R->user_back());
6072 })) {
6073 MaxBitWidth = 8u;
6074
6075 // Determine if the sign bit of all the roots is known to be zero. If not,
6076 // IsKnownPositive is set to False.
6077 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
6078 KnownBits Known = computeKnownBits(R, *DL);
6079 return Known.isNonNegative();
6080 });
6081
6082 // Determine the maximum number of bits required to store the scalar
6083 // values.
6084 for (auto *Scalar : ToDemote) {
6085 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
6086 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
6087 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
6088 }
6089
6090 // If we can't prove that the sign bit is zero, we must add one to the
6091 // maximum bit width to account for the unknown sign bit. This preserves
6092 // the existing sign bit so we can safely sign-extend the root back to the
6093 // original type. Otherwise, if we know the sign bit is zero, we will
6094 // zero-extend the root instead.
6095 //
6096 // FIXME: This is somewhat suboptimal, as there will be cases where adding
6097 // one to the maximum bit width will yield a larger-than-necessary
6098 // type. In general, we need to add an extra bit only if we can't
6099 // prove that the upper bit of the original type is equal to the
6100 // upper bit of the proposed smaller type. If these two bits are the
6101 // same (either zero or one) we know that sign-extending from the
6102 // smaller type will result in the same value. Here, since we can't
6103 // yet prove this, we are just making the proposed smaller type
6104 // larger to ensure correctness.
6105 if (!IsKnownPositive)
6106 ++MaxBitWidth;
6107 }
6108
6109 // Round MaxBitWidth up to the next power-of-two.
6110 if (!isPowerOf2_64(MaxBitWidth))
6111 MaxBitWidth = NextPowerOf2(MaxBitWidth);
6112
6113 // If the maximum bit width we compute is less than the with of the roots'
6114 // type, we can proceed with the narrowing. Otherwise, do nothing.
6115 if (MaxBitWidth >= TreeRootIT->getBitWidth())
6116 return;
6117
6118 // If we can truncate the root, we must collect additional values that might
6119 // be demoted as a result. That is, those seeded by truncations we will
6120 // modify.
6121 while (!Roots.empty())
6122 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
6123
6124 // Finally, map the values we can demote to the maximum bit with we computed.
6125 for (auto *Scalar : ToDemote)
6126 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
6127}
6128
6129namespace {
6130
6131/// The SLPVectorizer Pass.
6132struct SLPVectorizer : public FunctionPass {
6133 SLPVectorizerPass Impl;
6134
6135 /// Pass identification, replacement for typeid
6136 static char ID;
6137
6138 explicit SLPVectorizer() : FunctionPass(ID) {
6139 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
6140 }
6141
6142 bool doInitialization(Module &M) override {
6143 return false;
6144 }
6145
6146 bool runOnFunction(Function &F) override {
6147 if (skipFunction(F))
6148 return false;
6149
6150 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6151 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
6152 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6153 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
6154 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6155 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6156 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6157 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6158 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
6159 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
6160
6161 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6162 }
6163
6164 void getAnalysisUsage(AnalysisUsage &AU) const override {
6165 FunctionPass::getAnalysisUsage(AU);
6166 AU.addRequired<AssumptionCacheTracker>();
6167 AU.addRequired<ScalarEvolutionWrapperPass>();
6168 AU.addRequired<AAResultsWrapperPass>();
6169 AU.addRequired<TargetTransformInfoWrapperPass>();
6170 AU.addRequired<LoopInfoWrapperPass>();
6171 AU.addRequired<DominatorTreeWrapperPass>();
6172 AU.addRequired<DemandedBitsWrapperPass>();
6173 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
6174 AU.addRequired<InjectTLIMappingsLegacy>();
6175 AU.addPreserved<LoopInfoWrapperPass>();
6176 AU.addPreserved<DominatorTreeWrapperPass>();
6177 AU.addPreserved<AAResultsWrapperPass>();
6178 AU.addPreserved<GlobalsAAWrapperPass>();
6179 AU.setPreservesCFG();
6180 }
6181};
6182
6183} // end anonymous namespace
6184
6185PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
6186 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
6187 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
6188 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6189 auto *AA = &AM.getResult<AAManager>(F);
6190 auto *LI = &AM.getResult<LoopAnalysis>(F);
6191 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
6192 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
6193 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
6194 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
6195
6196 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6197 if (!Changed)
6198 return PreservedAnalyses::all();
6199
6200 PreservedAnalyses PA;
6201 PA.preserveSet<CFGAnalyses>();
6202 PA.preserve<AAManager>();
6203 PA.preserve<GlobalsAA>();
6204 return PA;
6205}
6206
6207bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
6208 TargetTransformInfo *TTI_,
6209 TargetLibraryInfo *TLI_, AAResults *AA_,
6210 LoopInfo *LI_, DominatorTree *DT_,
6211 AssumptionCache *AC_, DemandedBits *DB_,
6212 OptimizationRemarkEmitter *ORE_) {
6213 if (!RunSLPVectorization)
6214 return false;
6215 SE = SE_;
6216 TTI = TTI_;
6217 TLI = TLI_;
6218 AA = AA_;
6219 LI = LI_;
6220 DT = DT_;
6221 AC = AC_;
6222 DB = DB_;
6223 DL = &F.getParent()->getDataLayout();
6224
6225 Stores.clear();
6226 GEPs.clear();
6227 bool Changed = false;
6228
6229 // If the target claims to have no vector registers don't attempt
6230 // vectorization.
6231 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
6232 return false;
6233
6234 // Don't vectorize when the attribute NoImplicitFloat is used.
6235 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
6236 return false;
6237
6238 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing blocks in " <<
F.getName() << ".\n"; } } while (false)
;
6239
6240 // Use the bottom up slp vectorizer to construct chains that start with
6241 // store instructions.
6242 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
6243
6244 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6245 // delete instructions.
6246
6247 // Scan the blocks in the function in post order.
6248 for (auto BB : post_order(&F.getEntryBlock())) {
6249 collectSeedInstructions(BB);
6250
6251 // Vectorize trees that end at stores.
6252 if (!Stores.empty()) {
6253 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
6254 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
;
6255 Changed |= vectorizeStoreChains(R);
6256 }
6257
6258 // Vectorize trees that end at reductions.
6259 Changed |= vectorizeChainsInBlock(BB, R);
6260
6261 // Vectorize the index computations of getelementptr instructions. This
6262 // is primarily intended to catch gather-like idioms ending at
6263 // non-consecutive loads.
6264 if (!GEPs.empty()) {
6265 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
6266 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
;
6267 Changed |= vectorizeGEPIndices(BB, R);
6268 }
6269 }
6270
6271 if (Changed) {
6272 R.optimizeGatherSequence();
6273 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: vectorized \"" << F.getName
() << "\"\n"; } } while (false)
;
6274 }
6275 return Changed;
6276}
6277
6278bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
6279 unsigned Idx) {
6280 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
6281 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
;
6282 const unsigned Sz = R.getVectorElementSize(Chain[0]);
6283 const unsigned MinVF = R.getMinVecRegSize() / Sz;
6284 unsigned VF = Chain.size();
6285
6286 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
6287 return false;
6288
6289 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
6290 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
;
6291
6292 R.buildTree(Chain);
6293 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6294 // TODO: Handle orders of size less than number of elements in the vector.
6295 if (Order && Order->size() == Chain.size()) {
6296 // TODO: reorder tree nodes without tree rebuilding.
6297 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
6298 llvm::transform(*Order, ReorderedOps.begin(),
6299 [Chain](const unsigned Idx) { return Chain[Idx]; });
6300 R.buildTree(ReorderedOps);
6301 }
6302 if (R.isTreeTinyAndNotFullyVectorizable())
6303 return false;
6304 if (R.isLoadCombineCandidate())
6305 return false;
6306
6307 R.computeMinimumValueSizes();
6308
6309 InstructionCost Cost = R.getTreeCost();
6310
6311 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost = " << Cost
<< " for VF =" << VF << "\n"; } } while (false
)
;
6312 if (Cost < -SLPCostThreshold) {
6313 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Decided to vectorize cost = "
<< Cost << "\n"; } } while (false)
;
6314
6315 using namespace ore;
6316
6317 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "StoresVectorized",
6318 cast<StoreInst>(Chain[0]))
6319 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
6320 << " and with tree size "
6321 << NV("TreeSize", R.getTreeSize()));
6322
6323 R.vectorizeTree();
6324 return true;
6325 }
6326
6327 return false;
6328}
6329
6330bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
6331 BoUpSLP &R) {
6332 // We may run into multiple chains that merge into a single chain. We mark the
6333 // stores that we vectorized so that we don't visit the same store twice.
6334 BoUpSLP::ValueSet VectorizedStores;
6335 bool Changed = false;
6336
6337 int E = Stores.size();
6338 SmallBitVector Tails(E, false);
6339 int MaxIter = MaxStoreLookup.getValue();
6340 SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
6341 E, std::make_pair(E, INT_MAX2147483647));
6342 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
6343 int IterCnt;
6344 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
6345 &CheckedPairs,
6346 &ConsecutiveChain](int K, int Idx) {
6347 if (IterCnt >= MaxIter)
6348 return true;
6349 if (CheckedPairs[Idx].test(K))
6350 return ConsecutiveChain[K].second == 1 &&
6351 ConsecutiveChain[K].first == Idx;
6352 ++IterCnt;
6353 CheckedPairs[Idx].set(K);
6354 CheckedPairs[K].set(Idx);
6355 Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(),
6356 Stores[Idx]->getPointerOperand(), *DL,
6357 *SE, /*StrictCheck=*/true);
6358 if (!Diff || *Diff == 0)
6359 return false;
6360 int Val = *Diff;
6361 if (Val < 0) {
6362 if (ConsecutiveChain[Idx].second > -Val) {
6363 Tails.set(K);
6364 ConsecutiveChain[Idx] = std::make_pair(K, -Val);
6365 }
6366 return false;
6367 }
6368 if (ConsecutiveChain[K].second <= Val)
6369 return false;
6370
6371 Tails.set(Idx);
6372 ConsecutiveChain[K] = std::make_pair(Idx, Val);
6373 return Val == 1;
6374 };
6375 // Do a quadratic search on all of the given stores in reverse order and find
6376 // all of the pairs of stores that follow each other.
6377 for (int Idx = E - 1; Idx >= 0; --Idx) {
6378 // If a store has multiple consecutive store candidates, search according
6379 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6380 // This is because usually pairing with immediate succeeding or preceding
6381 // candidate create the best chance to find slp vectorization opportunity.
6382 const int MaxLookDepth = std::max(E - Idx, Idx + 1);
6383 IterCnt = 0;
6384 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
6385 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
6386 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
6387 break;
6388 }
6389
6390 // Tracks if we tried to vectorize stores starting from the given tail
6391 // already.
6392 SmallBitVector TriedTails(E, false);
6393 // For stores that start but don't end a link in the chain:
6394 for (int Cnt = E; Cnt > 0; --Cnt) {
6395 int I = Cnt - 1;
6396 if (ConsecutiveChain[I].first == E || Tails.test(I))
6397 continue;
6398 // We found a store instr that starts a chain. Now follow the chain and try
6399 // to vectorize it.
6400 BoUpSLP::ValueList Operands;
6401 // Collect the chain into a list.
6402 while (I != E && !VectorizedStores.count(Stores[I])) {
6403 Operands.push_back(Stores[I]);
6404 Tails.set(I);
6405 if (ConsecutiveChain[I].second != 1) {
6406 // Mark the new end in the chain and go back, if required. It might be
6407 // required if the original stores come in reversed order, for example.
6408 if (ConsecutiveChain[I].first != E &&
6409 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
6410 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
6411 TriedTails.set(I);
6412 Tails.reset(ConsecutiveChain[I].first);
6413 if (Cnt < ConsecutiveChain[I].first + 2)
6414 Cnt = ConsecutiveChain[I].first + 2;
6415 }
6416 break;
6417 }
6418 // Move to the next value in the chain.
6419 I = ConsecutiveChain[I].first;
6420 }
6421 assert(!Operands.empty() && "Expected non-empty list of stores.")(static_cast <bool> (!Operands.empty() && "Expected non-empty list of stores."
) ? void (0) : __assert_fail ("!Operands.empty() && \"Expected non-empty list of stores.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6421, __extension__ __PRETTY_FUNCTION__))
;
6422
6423 unsigned MaxVecRegSize = R.getMaxVecRegSize();
6424 unsigned EltSize = R.getVectorElementSize(Operands[0]);
6425 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
6426
6427 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
6428 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
6429 MaxElts);
6430
6431 // FIXME: Is division-by-2 the correct step? Should we assert that the
6432 // register size is a power-of-2?
6433 unsigned StartIdx = 0;
6434 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
6435 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
6436 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
6437 if (!VectorizedStores.count(Slice.front()) &&
6438 !VectorizedStores.count(Slice.back()) &&
6439 vectorizeStoreChain(Slice, R, Cnt)) {
6440 // Mark the vectorized stores so that we don't vectorize them again.
6441 VectorizedStores.insert(Slice.begin(), Slice.end());
6442 Changed = true;
6443 // If we vectorized initial block, no need to try to vectorize it
6444 // again.
6445 if (Cnt == StartIdx)
6446 StartIdx += Size;
6447 Cnt += Size;
6448 continue;
6449 }
6450 ++Cnt;
6451 }
6452 // Check if the whole array was vectorized already - exit.
6453 if (StartIdx >= Operands.size())
6454 break;
6455 }
6456 }
6457
6458 return Changed;
6459}
6460
6461void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
6462 // Initialize the collections. We will make a single pass over the block.
6463 Stores.clear();
6464 GEPs.clear();
6465
6466 // Visit the store and getelementptr instructions in BB and organize them in
6467 // Stores and GEPs according to the underlying objects of their pointer
6468 // operands.
6469 for (Instruction &I : *BB) {
6470 // Ignore store instructions that are volatile or have a pointer operand
6471 // that doesn't point to a scalar type.
6472 if (auto *SI = dyn_cast<StoreInst>(&I)) {
6473 if (!SI->isSimple())
6474 continue;
6475 if (!isValidElementType(SI->getValueOperand()->getType()))
6476 continue;
6477 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
6478 }
6479
6480 // Ignore getelementptr instructions that have more than one index, a
6481 // constant index, or a pointer operand that doesn't point to a scalar
6482 // type.
6483 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
6484 auto Idx = GEP->idx_begin()->get();
6485 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
6486 continue;
6487 if (!isValidElementType(Idx->getType()))
6488 continue;
6489 if (GEP->getType()->isVectorTy())
6490 continue;
6491 GEPs[GEP->getPointerOperand()].push_back(GEP);
6492 }
6493 }
6494}
6495
6496bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
6497 if (!A || !B)
6498 return false;
6499 Value *VL[] = {A, B};
6500 return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
6501}
6502
6503bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
6504 bool AllowReorder,
6505 ArrayRef<Value *> InsertUses) {
6506 if (VL.size() < 2)
6507 return false;
6508
6509 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
6510 << VL.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
;
6511
6512 // Check that all of the parts are instructions of the same type,
6513 // we permit an alternate opcode via InstructionsState.
6514 InstructionsState S = getSameOpcode(VL);
6515 if (!S.getOpcode())
6516 return false;
6517
6518 Instruction *I0 = cast<Instruction>(S.OpValue);
6519 // Make sure invalid types (including vector type) are rejected before
6520 // determining vectorization factor for scalar instructions.
6521 for (Value *V : VL) {
6522 Type *Ty = V->getType();
6523 if (!isValidElementType(Ty)) {
6524 // NOTE: the following will give user internal llvm type name, which may
6525 // not be useful.
6526 R.getORE()->emit([&]() {
6527 std::string type_str;
6528 llvm::raw_string_ostream rso(type_str);
6529 Ty->print(rso);
6530 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "UnsupportedType", I0)
6531 << "Cannot SLP vectorize list: type "
6532 << rso.str() + " is unsupported by vectorizer";
6533 });
6534 return false;
6535 }
6536 }
6537
6538 unsigned Sz = R.getVectorElementSize(I0);
6539 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
6540 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
6541 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
6542 if (MaxVF < 2) {
6543 R.getORE()->emit([&]() {
6544 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "SmallVF", I0)
6545 << "Cannot SLP vectorize list: vectorization factor "
6546 << "less than 2 is not supported";
6547 });
6548 return false;
6549 }
6550
6551 bool Changed = false;
6552 bool CandidateFound = false;
6553 InstructionCost MinCost = SLPCostThreshold.getValue();
6554
6555 bool CompensateUseCost =
6556 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) {
6557 return V && isa<InsertElementInst>(V);
6558 });
6559 assert((!CompensateUseCost || InsertUses.size() == VL.size()) &&(static_cast <bool> ((!CompensateUseCost || InsertUses.
size() == VL.size()) && "Each scalar expected to have an associated InsertElement user."
) ? void (0) : __assert_fail ("(!CompensateUseCost || InsertUses.size() == VL.size()) && \"Each scalar expected to have an associated InsertElement user.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6560, __extension__ __PRETTY_FUNCTION__))
6560 "Each scalar expected to have an associated InsertElement user.")(static_cast <bool> ((!CompensateUseCost || InsertUses.
size() == VL.size()) && "Each scalar expected to have an associated InsertElement user."
) ? void (0) : __assert_fail ("(!CompensateUseCost || InsertUses.size() == VL.size()) && \"Each scalar expected to have an associated InsertElement user.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6560, __extension__ __PRETTY_FUNCTION__))
;
6561
6562 unsigned NextInst = 0, MaxInst = VL.size();
6563 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
6564 // No actual vectorization should happen, if number of parts is the same as
6565 // provided vectorization factor (i.e. the scalar type is used for vector
6566 // code during codegen).
6567 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF);
6568 if (TTI->getNumberOfParts(VecTy) == VF)
6569 continue;
6570 for (unsigned I = NextInst; I < MaxInst; ++I) {
6571 unsigned OpsWidth = 0;
6572
6573 if (I + VF > MaxInst)
6574 OpsWidth = MaxInst - I;
6575 else
6576 OpsWidth = VF;
6577
6578 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
6579 break;
6580
6581 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
6582 // Check that a previous iteration of this loop did not delete the Value.
6583 if (llvm::any_of(Ops, [&R](Value *V) {
6584 auto *I = dyn_cast<Instruction>(V);
6585 return I && R.isDeleted(I);
6586 }))
6587 continue;
6588
6589 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
6590 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
;
6591
6592 R.buildTree(Ops);
6593 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6594 // TODO: check if we can allow reordering for more cases.
6595 if (AllowReorder && Order) {
6596 // TODO: reorder tree nodes without tree rebuilding.
6597 // Conceptually, there is nothing actually preventing us from trying to
6598 // reorder a larger list. In fact, we do exactly this when vectorizing
6599 // reductions. However, at this point, we only expect to get here when
6600 // there are exactly two operations.
6601 assert(Ops.size() == 2)(static_cast <bool> (Ops.size() == 2) ? void (0) : __assert_fail
("Ops.size() == 2", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6601, __extension__ __PRETTY_FUNCTION__))
;
6602 Value *ReorderedOps[] = {Ops[1], Ops[0]};
6603 R.buildTree(ReorderedOps, None);
6604 }
6605 if (R.isTreeTinyAndNotFullyVectorizable())
6606 continue;
6607
6608 R.computeMinimumValueSizes();
6609 InstructionCost Cost = R.getTreeCost();
6610 CandidateFound = true;
6611 if (CompensateUseCost) {
6612 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts
6613 // rather than sum of single inserts as the latter may overestimate
6614 // cost. This work should imply improving cost estimation for extracts
6615 // that added in for external (for vectorization tree) users,i.e. that
6616 // part should also switch to same interface.
6617 // For example, the following case is projected code after SLP:
6618 // %4 = extractelement <4 x i64> %3, i32 0
6619 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0
6620 // %5 = extractelement <4 x i64> %3, i32 1
6621 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1
6622 // %6 = extractelement <4 x i64> %3, i32 2
6623 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2
6624 // %7 = extractelement <4 x i64> %3, i32 3
6625 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3
6626 //
6627 // Extracts here added by SLP in order to feed users (the inserts) of
6628 // original scalars and contribute to "ExtractCost" at cost evaluation.
6629 // The inserts in turn form sequence to build an aggregate that
6630 // detected by findBuildAggregate routine.
6631 // SLP makes an assumption that such sequence will be optimized away
6632 // later (instcombine) so it tries to compensate ExctractCost with
6633 // cost of insert sequence.
6634 // Current per element cost calculation approach is not quite accurate
6635 // and tends to create bias toward favoring vectorization.
6636 // Switching to the TTI interface might help a bit.
6637 // Alternative solution could be pattern-match to detect a no-op or
6638 // shuffle.
6639 InstructionCost UserCost = 0;
6640 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) {
6641 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]);
6642 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
6643 UserCost += TTI->getVectorInstrCost(
6644 Instruction::InsertElement, IE->getType(), CI->getZExtValue());
6645 }
6646 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Compensate cost of users by: "
<< UserCost << ".\n"; } } while (false)
6647 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Compensate cost of users by: "
<< UserCost << ".\n"; } } while (false)
;
6648 Cost -= UserCost;
6649 }
6650
6651 MinCost = std::min(MinCost, Cost);
6652
6653 if (Cost < -SLPCostThreshold) {
6654 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing list at cost:" <<
Cost << ".\n"; } } while (false)
;
6655 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedList",
6656 cast<Instruction>(Ops[0]))
6657 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
6658 << " and with tree size "
6659 << ore::NV("TreeSize", R.getTreeSize()));
6660
6661 R.vectorizeTree();
6662 // Move to the next bundle.
6663 I += VF - 1;
6664 NextInst = I + 1;
6665 Changed = true;
6666 }
6667 }
6668 }
6669
6670 if (!Changed && CandidateFound) {
6671 R.getORE()->emit([&]() {
6672 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotBeneficial", I0)
6673 << "List vectorization was possible but not beneficial with cost "
6674 << ore::NV("Cost", MinCost) << " >= "
6675 << ore::NV("Treshold", -SLPCostThreshold);
6676 });
6677 } else if (!Changed) {
6678 R.getORE()->emit([&]() {
6679 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotPossible", I0)
6680 << "Cannot SLP vectorize list: vectorization was impossible"
6681 << " with available vectorization factors";
6682 });
6683 }
6684 return Changed;
6685}
6686
6687bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
6688 if (!I)
6689 return false;
6690
6691 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
6692 return false;
6693
6694 Value *P = I->getParent();
6695
6696 // Vectorize in current basic block only.
6697 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
6698 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
6699 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
6700 return false;
6701
6702 // Try to vectorize V.
6703 if (tryToVectorizePair(Op0, Op1, R))
6704 return true;
6705
6706 auto *A = dyn_cast<BinaryOperator>(Op0);
6707 auto *B = dyn_cast<BinaryOperator>(Op1);
6708 // Try to skip B.
6709 if (B && B->hasOneUse()) {
6710 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
6711 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
6712 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
6713 return true;
6714 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
6715 return true;
6716 }
6717
6718 // Try to skip A.
6719 if (A && A->hasOneUse()) {
6720 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
6721 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
6722 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
6723 return true;
6724 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
6725 return true;
6726 }
6727 return false;
6728}
6729
6730namespace {
6731
6732/// Model horizontal reductions.
6733///
6734/// A horizontal reduction is a tree of reduction instructions that has values
6735/// that can be put into a vector as its leaves. For example:
6736///
6737/// mul mul mul mul
6738/// \ / \ /
6739/// + +
6740/// \ /
6741/// +
6742/// This tree has "mul" as its leaf values and "+" as its reduction
6743/// instructions. A reduction can feed into a store or a binary operation
6744/// feeding a phi.
6745/// ...
6746/// \ /
6747/// +
6748/// |
6749/// phi +=
6750///
6751/// Or:
6752/// ...
6753/// \ /
6754/// +
6755/// |
6756/// *p =
6757///
6758class HorizontalReduction {
6759 using ReductionOpsType = SmallVector<Value *, 16>;
6760 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
6761 ReductionOpsListType ReductionOps;
6762 SmallVector<Value *, 32> ReducedVals;
6763 // Use map vector to make stable output.
6764 MapVector<Instruction *, Value *> ExtraArgs;
6765 WeakTrackingVH ReductionRoot;
6766 /// The type of reduction operation.
6767 RecurKind RdxKind;
6768
6769 /// Checks if instruction is associative and can be vectorized.
6770 static bool isVectorizable(RecurKind Kind, Instruction *I) {
6771 if (Kind == RecurKind::None)
6772 return false;
6773 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind))
6774 return true;
6775
6776 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
6777 // FP min/max are associative except for NaN and -0.0. We do not
6778 // have to rule out -0.0 here because the intrinsic semantics do not
6779 // specify a fixed result for it.
6780 return I->getFastMathFlags().noNaNs();
6781 }
6782
6783 return I->isAssociative();
6784 }
6785
6786 /// Checks if the ParentStackElem.first should be marked as a reduction
6787 /// operation with an extra argument or as extra argument itself.
6788 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6789 Value *ExtraArg) {
6790 if (ExtraArgs.count(ParentStackElem.first)) {
6791 ExtraArgs[ParentStackElem.first] = nullptr;
6792 // We ran into something like:
6793 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6794 // The whole ParentStackElem.first should be considered as an extra value
6795 // in this case.
6796 // Do not perform analysis of remaining operands of ParentStackElem.first
6797 // instruction, this whole instruction is an extra argument.
6798 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first);
6799 } else {
6800 // We ran into something like:
6801 // ParentStackElem.first += ... + ExtraArg + ...
6802 ExtraArgs[ParentStackElem.first] = ExtraArg;
6803 }
6804 }
6805
6806 /// Creates reduction operation with the current opcode.
6807 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
6808 Value *RHS, const Twine &Name, bool UseSelect) {
6809 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
6810 switch (Kind) {
6811 case RecurKind::Add:
6812 case RecurKind::Mul:
6813 case RecurKind::Or:
6814 case RecurKind::And:
6815 case RecurKind::Xor:
6816 case RecurKind::FAdd:
6817 case RecurKind::FMul:
6818 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
6819 Name);
6820 case RecurKind::FMax:
6821 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
6822 case RecurKind::FMin:
6823 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
6824 case RecurKind::SMax:
6825 if (UseSelect) {
6826 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
6827 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6828 }
6829 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
6830 case RecurKind::SMin:
6831 if (UseSelect) {
6832 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
6833 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6834 }
6835 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
6836 case RecurKind::UMax:
6837 if (UseSelect) {
6838 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
6839 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6840 }
6841 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
6842 case RecurKind::UMin:
6843 if (UseSelect) {
6844 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
6845 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6846 }
6847 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
6848 default:
6849 llvm_unreachable("Unknown reduction operation.")::llvm::llvm_unreachable_internal("Unknown reduction operation."
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6849)
;
6850 }
6851 }
6852
6853 /// Creates reduction operation with the current opcode with the IR flags
6854 /// from \p ReductionOps.
6855 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
6856 Value *RHS, const Twine &Name,
6857 const ReductionOpsListType &ReductionOps) {
6858 bool UseSelect = ReductionOps.size() == 2;
6859 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&(static_cast <bool> ((!UseSelect || isa<SelectInst>
(ReductionOps[1][0])) && "Expected cmp + select pairs for reduction"
) ? void (0) : __assert_fail ("(!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6860, __extension__ __PRETTY_FUNCTION__))
6860 "Expected cmp + select pairs for reduction")(static_cast <bool> ((!UseSelect || isa<SelectInst>
(ReductionOps[1][0])) && "Expected cmp + select pairs for reduction"
) ? void (0) : __assert_fail ("(!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6860, __extension__ __PRETTY_FUNCTION__))
;
6861 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
6862 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
6863 if (auto *Sel = dyn_cast<SelectInst>(Op)) {
6864 propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
6865 propagateIRFlags(Op, ReductionOps[1]);
6866 return Op;
6867 }
6868 }
6869 propagateIRFlags(Op, ReductionOps[0]);
6870 return Op;
6871 }
6872
6873 /// Creates reduction operation with the current opcode with the IR flags
6874 /// from \p I.
6875 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
6876 Value *RHS, const Twine &Name, Instruction *I) {
6877 auto *SelI = dyn_cast<SelectInst>(I);
6878 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
6879 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
6880 if (auto *Sel = dyn_cast<SelectInst>(Op))
6881 propagateIRFlags(Sel->getCondition(), SelI->getCondition());
6882 }
6883 propagateIRFlags(Op, I);
6884 return Op;
6885 }
6886
6887 static RecurKind getRdxKind(Instruction *I) {
6888 assert(I && "Expected instruction for reduction matching")(static_cast <bool> (I && "Expected instruction for reduction matching"
) ? void (0) : __assert_fail ("I && \"Expected instruction for reduction matching\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6888, __extension__ __PRETTY_FUNCTION__))
;
6889 TargetTransformInfo::ReductionFlags RdxFlags;
6890 if (match(I, m_Add(m_Value(), m_Value())))
6891 return RecurKind::Add;
6892 if (match(I, m_Mul(m_Value(), m_Value())))
6893 return RecurKind::Mul;
6894 if (match(I, m_And(m_Value(), m_Value())))
6895 return RecurKind::And;
6896 if (match(I, m_Or(m_Value(), m_Value())))
6897 return RecurKind::Or;
6898 if (match(I, m_Xor(m_Value(), m_Value())))
6899 return RecurKind::Xor;
6900 if (match(I, m_FAdd(m_Value(), m_Value())))
6901 return RecurKind::FAdd;
6902 if (match(I, m_FMul(m_Value(), m_Value())))
6903 return RecurKind::FMul;
6904
6905 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
6906 return RecurKind::FMax;
6907 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
6908 return RecurKind::FMin;
6909
6910 // This matches either cmp+select or intrinsics. SLP is expected to handle
6911 // either form.
6912 // TODO: If we are canonicalizing to intrinsics, we can remove several
6913 // special-case paths that deal with selects.
6914 if (match(I, m_SMax(m_Value(), m_Value())))
6915 return RecurKind::SMax;
6916 if (match(I, m_SMin(m_Value(), m_Value())))
6917 return RecurKind::SMin;
6918 if (match(I, m_UMax(m_Value(), m_Value())))
6919 return RecurKind::UMax;
6920 if (match(I, m_UMin(m_Value(), m_Value())))
6921 return RecurKind::UMin;
6922
6923 if (auto *Select = dyn_cast<SelectInst>(I)) {
6924 // Try harder: look for min/max pattern based on instructions producing
6925 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6926 // During the intermediate stages of SLP, it's very common to have
6927 // pattern like this (since optimizeGatherSequence is run only once
6928 // at the end):
6929 // %1 = extractelement <2 x i32> %a, i32 0
6930 // %2 = extractelement <2 x i32> %a, i32 1
6931 // %cond = icmp sgt i32 %1, %2
6932 // %3 = extractelement <2 x i32> %a, i32 0
6933 // %4 = extractelement <2 x i32> %a, i32 1
6934 // %select = select i1 %cond, i32 %3, i32 %4
6935 CmpInst::Predicate Pred;
6936 Instruction *L1;
6937 Instruction *L2;
6938
6939 Value *LHS = Select->getTrueValue();
6940 Value *RHS = Select->getFalseValue();
6941 Value *Cond = Select->getCondition();
6942
6943 // TODO: Support inverse predicates.
6944 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6945 if (!isa<ExtractElementInst>(RHS) ||
6946 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6947 return RecurKind::None;
6948 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6949 if (!isa<ExtractElementInst>(LHS) ||
6950 !L1->isIdenticalTo(cast<Instruction>(LHS)))
6951 return RecurKind::None;
6952 } else {
6953 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6954 return RecurKind::None;
6955 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6956 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6957 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6958 return RecurKind::None;
6959 }
6960
6961 TargetTransformInfo::ReductionFlags RdxFlags;
6962 switch (Pred) {
6963 default:
6964 return RecurKind::None;
6965 case CmpInst::ICMP_SGT:
6966 case CmpInst::ICMP_SGE:
6967 return RecurKind::SMax;
6968 case CmpInst::ICMP_SLT:
6969 case CmpInst::ICMP_SLE:
6970 return RecurKind::SMin;
6971 case CmpInst::ICMP_UGT:
6972 case CmpInst::ICMP_UGE:
6973 return RecurKind::UMax;
6974 case CmpInst::ICMP_ULT:
6975 case CmpInst::ICMP_ULE:
6976 return RecurKind::UMin;
6977 }
6978 }
6979 return RecurKind::None;
6980 }
6981
6982 /// Get the index of the first operand.
6983 static unsigned getFirstOperandIndex(Instruction *I) {
6984 return isa<SelectInst>(I) ? 1 : 0;
6985 }
6986
6987 /// Total number of operands in the reduction operation.
6988 static unsigned getNumberOfOperands(Instruction *I) {
6989 return isa<SelectInst>(I) ? 3 : 2;
6990 }
6991
6992 /// Checks if the instruction is in basic block \p BB.
6993 /// For a min/max reduction check that both compare and select are in \p BB.
6994 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) {
6995 auto *Sel = dyn_cast<SelectInst>(I);
6996 if (IsRedOp && Sel) {
6997 auto *Cmp = cast<Instruction>(Sel->getCondition());
6998 return Sel->getParent() == BB && Cmp->getParent() == BB;
6999 }
7000 return I->getParent() == BB;
7001 }
7002
7003 /// Expected number of uses for reduction operations/reduced values.
7004 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) {
7005 // SelectInst must be used twice while the condition op must have single
7006 // use only.
7007 if (MatchCmpSel) {
7008 if (auto *Sel = dyn_cast<SelectInst>(I))
7009 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
7010 return I->hasNUses(2);
7011 }
7012
7013 // Arithmetic reduction operation must be used once only.
7014 return I->hasOneUse();
7015 }
7016
7017 /// Initializes the list of reduction operations.
7018 void initReductionOps(Instruction *I) {
7019 if (isa<SelectInst>(I))
7020 ReductionOps.assign(2, ReductionOpsType());
7021 else
7022 ReductionOps.assign(1, ReductionOpsType());
7023 }
7024
7025 /// Add all reduction operations for the reduction instruction \p I.
7026 void addReductionOps(Instruction *I) {
7027 if (auto *Sel = dyn_cast<SelectInst>(I)) {
7028 ReductionOps[0].emplace_back(Sel->getCondition());
7029 ReductionOps[1].emplace_back(Sel);
7030 } else {
7031 ReductionOps[0].emplace_back(I);
7032 }
7033 }
7034
7035 static Value *getLHS(RecurKind Kind, Instruction *I) {
7036 if (Kind == RecurKind::None)
7037 return nullptr;
7038 return I->getOperand(getFirstOperandIndex(I));
7039 }
7040 static Value *getRHS(RecurKind Kind, Instruction *I) {
7041 if (Kind == RecurKind::None)
7042 return nullptr;
7043 return I->getOperand(getFirstOperandIndex(I) + 1);
7044 }
7045
7046public:
7047 HorizontalReduction() = default;
7048
7049 /// Try to find a reduction tree.
7050 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
7051 assert((!Phi || is_contained(Phi->operands(), B)) &&(static_cast <bool> ((!Phi || is_contained(Phi->operands
(), B)) && "Phi needs to use the binary operator") ? void
(0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Phi needs to use the binary operator\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7052, __extension__ __PRETTY_FUNCTION__))
7052 "Phi needs to use the binary operator")(static_cast <bool> ((!Phi || is_contained(Phi->operands
(), B)) && "Phi needs to use the binary operator") ? void
(0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Phi needs to use the binary operator\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7052, __extension__ __PRETTY_FUNCTION__))
;
7053
7054 RdxKind = getRdxKind(B);
7055
7056 // We could have a initial reductions that is not an add.
7057 // r *= v1 + v2 + v3 + v4
7058 // In such a case start looking for a tree rooted in the first '+'.
7059 if (Phi) {
7060 if (getLHS(RdxKind, B) == Phi) {
7061 Phi = nullptr;
7062 B = dyn_cast<Instruction>(getRHS(RdxKind, B));
7063 if (!B)
7064 return false;
7065 RdxKind = getRdxKind(B);
7066 } else if (getRHS(RdxKind, B) == Phi) {
7067 Phi = nullptr;
7068 B = dyn_cast<Instruction>(getLHS(RdxKind, B));
7069 if (!B)
7070 return false;
7071 RdxKind = getRdxKind(B);
7072 }
7073 }
7074
7075 if (!isVectorizable(RdxKind, B))
7076 return false;
7077
7078 // Analyze "regular" integer/FP types for reductions - no target-specific
7079 // types or pointers.
7080 Type *Ty = B->getType();
7081 if (!isValidElementType(Ty) || Ty->isPointerTy())
7082 return false;
7083
7084 // Though the ultimate reduction may have multiple uses, its condition must
7085 // have only single use.
7086 if (auto *SI = dyn_cast<SelectInst>(B))
7087 if (!SI->getCondition()->hasOneUse())
7088 return false;
7089
7090 ReductionRoot = B;
7091
7092 // The opcode for leaf values that we perform a reduction on.
7093 // For example: load(x) + load(y) + load(z) + fptoui(w)
7094 // The leaf opcode for 'w' does not match, so we don't include it as a
7095 // potential candidate for the reduction.
7096 unsigned LeafOpcode = 0;
7097
7098 // Post order traverse the reduction tree starting at B. We only handle true
7099 // trees containing only binary operators.
7100 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
7101 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B)));
7102 initReductionOps(B);
7103 while (!Stack.empty()) {
7104 Instruction *TreeN = Stack.back().first;
7105 unsigned EdgeToVisit = Stack.back().second++;
7106 const RecurKind TreeRdxKind = getRdxKind(TreeN);
7107 bool IsReducedValue = TreeRdxKind != RdxKind;
7108
7109 // Postorder visit.
7110 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) {
7111 if (IsReducedValue)
7112 ReducedVals.push_back(TreeN);
7113 else {
7114 auto ExtraArgsIter = ExtraArgs.find(TreeN);
7115 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
7116 // Check if TreeN is an extra argument of its parent operation.
7117 if (Stack.size() <= 1) {
7118 // TreeN can't be an extra argument as it is a root reduction
7119 // operation.
7120 return false;
7121 }
7122 // Yes, TreeN is an extra argument, do not add it to a list of
7123 // reduction operations.
7124 // Stack[Stack.size() - 2] always points to the parent operation.
7125 markExtraArg(Stack[Stack.size() - 2], TreeN);
7126 ExtraArgs.erase(TreeN);
7127 } else
7128 addReductionOps(TreeN);
7129 }
7130 // Retract.
7131 Stack.pop_back();
7132 continue;
7133 }
7134
7135 // Visit left or right.
7136 Value *EdgeVal = TreeN->getOperand(EdgeToVisit);
7137 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
7138 if (!EdgeInst) {
7139 // Edge value is not a reduction instruction or a leaf instruction.
7140 // (It may be a constant, function argument, or something else.)
7141 markExtraArg(Stack.back(), EdgeVal);
7142 continue;
7143 }
7144 RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
7145 // Continue analysis if the next operand is a reduction operation or
7146 // (possibly) a leaf value. If the leaf value opcode is not set,
7147 // the first met operation != reduction operation is considered as the
7148 // leaf opcode.
7149 // Only handle trees in the current basic block.
7150 // Each tree node needs to have minimal number of users except for the
7151 // ultimate reduction.
7152 const bool IsRdxInst = EdgeRdxKind == RdxKind;
7153 if (EdgeInst != Phi && EdgeInst != B &&
7154 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) &&
7155 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) &&
7156 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
7157 if (IsRdxInst) {
7158 // We need to be able to reassociate the reduction operations.
7159 if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
7160 // I is an extra argument for TreeN (its parent operation).
7161 markExtraArg(Stack.back(), EdgeInst);
7162 continue;
7163 }
7164 } else if (!LeafOpcode) {
7165 LeafOpcode = EdgeInst->getOpcode();
7166 }
7167 Stack.push_back(
7168 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
7169 continue;
7170 }
7171 // I is an extra argument for TreeN (its parent operation).
7172 markExtraArg(Stack.back(), EdgeInst);
7173 }
7174 return true;
7175 }
7176
7177 /// Attempt to vectorize the tree found by matchAssociativeReduction.
7178 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
7179 // If there are a sufficient number of reduction values, reduce
7180 // to a nearby power-of-2. We can safely generate oversized
7181 // vectors and rely on the backend to split them to legal sizes.
7182 unsigned NumReducedVals = ReducedVals.size();
7183 if (NumReducedVals < 4)
7184 return false;
7185
7186 // Intersect the fast-math-flags from all reduction operations.
7187 FastMathFlags RdxFMF;
7188 RdxFMF.set();
7189 for (ReductionOpsType &RdxOp : ReductionOps) {
7190 for (Value *RdxVal : RdxOp) {
7191 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
7192 RdxFMF &= FPMO->getFastMathFlags();
7193 }
7194 }
7195
7196 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
7197 Builder.setFastMathFlags(RdxFMF);
7198
7199 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
7200 // The same extra argument may be used several times, so log each attempt
7201 // to use it.
7202 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
7203 assert(Pair.first && "DebugLoc must be set.")(static_cast <bool> (Pair.first && "DebugLoc must be set."
) ? void (0) : __assert_fail ("Pair.first && \"DebugLoc must be set.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7203, __extension__ __PRETTY_FUNCTION__))
;
7204 ExternallyUsedValues[Pair.second].push_back(Pair.first);
7205 }
7206
7207 // The compare instruction of a min/max is the insertion point for new
7208 // instructions and may be replaced with a new compare instruction.
7209 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
7210 assert(isa<SelectInst>(RdxRootInst) &&(static_cast <bool> (isa<SelectInst>(RdxRootInst)
&& "Expected min/max reduction to have select root instruction"
) ? void (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7211, __extension__ __PRETTY_FUNCTION__))
7211 "Expected min/max reduction to have select root instruction")(static_cast <bool> (isa<SelectInst>(RdxRootInst)
&& "Expected min/max reduction to have select root instruction"
) ? void (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7211, __extension__ __PRETTY_FUNCTION__))
;
7212 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
7213 assert(isa<Instruction>(ScalarCond) &&(static_cast <bool> (isa<Instruction>(ScalarCond)
&& "Expected min/max reduction to have compare condition"
) ? void (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7214, __extension__ __PRETTY_FUNCTION__))
7214 "Expected min/max reduction to have compare condition")(static_cast <bool> (isa<Instruction>(ScalarCond)
&& "Expected min/max reduction to have compare condition"
) ? void (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7214, __extension__ __PRETTY_FUNCTION__))
;
7215 return cast<Instruction>(ScalarCond);
7216 };
7217
7218 // The reduction root is used as the insertion point for new instructions,
7219 // so set it as externally used to prevent it from being deleted.
7220 ExternallyUsedValues[ReductionRoot];
7221 SmallVector<Value *, 16> IgnoreList;
7222 for (ReductionOpsType &RdxOp : ReductionOps)
7223 IgnoreList.append(RdxOp.begin(), RdxOp.end());
7224
7225 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
7226 if (NumReducedVals > ReduxWidth) {
7227 // In the loop below, we are building a tree based on a window of
7228 // 'ReduxWidth' values.
7229 // If the operands of those values have common traits (compare predicate,
7230 // constant operand, etc), then we want to group those together to
7231 // minimize the cost of the reduction.
7232
7233 // TODO: This should be extended to count common operands for
7234 // compares and binops.
7235
7236 // Step 1: Count the number of times each compare predicate occurs.
7237 SmallDenseMap<unsigned, unsigned> PredCountMap;
7238 for (Value *RdxVal : ReducedVals) {
7239 CmpInst::Predicate Pred;
7240 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
7241 ++PredCountMap[Pred];
7242 }
7243 // Step 2: Sort the values so the most common predicates come first.
7244 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
7245 CmpInst::Predicate PredA, PredB;
7246 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
7247 match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
7248 return PredCountMap[PredA] > PredCountMap[PredB];
7249 }
7250 return false;
7251 });
7252 }
7253
7254 Value *VectorizedTree = nullptr;
7255 unsigned i = 0;
7256 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
7257 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
7258 V.buildTree(VL, ExternallyUsedValues, IgnoreList);
7259 Optional<ArrayRef<unsigned>> Order = V.bestOrder();
7260 if (Order) {
7261 assert(Order->size() == VL.size() &&(static_cast <bool> (Order->size() == VL.size() &&
"Order size must be the same as number of vectorized " "instructions."
) ? void (0) : __assert_fail ("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7263, __extension__ __PRETTY_FUNCTION__))
7262 "Order size must be the same as number of vectorized "(static_cast <bool> (Order->size() == VL.size() &&
"Order size must be the same as number of vectorized " "instructions."
) ? void (0) : __assert_fail ("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7263, __extension__ __PRETTY_FUNCTION__))
7263 "instructions.")(static_cast <bool> (Order->size() == VL.size() &&
"Order size must be the same as number of vectorized " "instructions."
) ? void (0) : __assert_fail ("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7263, __extension__ __PRETTY_FUNCTION__))
;
7264 // TODO: reorder tree nodes without tree rebuilding.
7265 SmallVector<Value *, 4> ReorderedOps(VL.size());
7266 llvm::transform(*Order, ReorderedOps.begin(),
7267 [VL](const unsigned Idx) { return VL[Idx]; });
7268 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
7269 }
7270 if (V.isTreeTinyAndNotFullyVectorizable())
7271 break;
7272 if (V.isLoadCombineReductionCandidate(RdxKind))
7273 break;
7274
7275 V.computeMinimumValueSizes();
7276
7277 // Estimate cost.
7278 InstructionCost TreeCost = V.getTreeCost();
7279 InstructionCost ReductionCost =
7280 getReductionCost(TTI, ReducedVals[i], ReduxWidth);
7281 InstructionCost Cost = TreeCost + ReductionCost;
7282 if (!Cost.isValid()) {
7283 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "Encountered invalid baseline cost.\n"
; } } while (false)
;
7284 return false;
7285 }
7286 if (Cost >= -SLPCostThreshold) {
7287 V.getORE()->emit([&]() {
7288 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "HorSLPNotBeneficial",
7289 cast<Instruction>(VL[0]))
7290 << "Vectorizing horizontal reduction is possible"
7291 << "but not beneficial with cost " << ore::NV("Cost", Cost)
7292 << " and threshold "
7293 << ore::NV("Threshold", -SLPCostThreshold);
7294 });
7295 break;
7296 }
7297
7298 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
7299 << Cost << ". (HorRdx)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
;
7300 V.getORE()->emit([&]() {
7301 return OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedHorizontalReduction",
7302 cast<Instruction>(VL[0]))
7303 << "Vectorized horizontal reduction with cost "
7304 << ore::NV("Cost", Cost) << " and with tree size "
7305 << ore::NV("TreeSize", V.getTreeSize());
7306 });
7307
7308 // Vectorize a tree.
7309 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
7310 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
7311
7312 // Emit a reduction. If the root is a select (min/max idiom), the insert
7313 // point is the compare condition of that select.
7314 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
7315 if (isa<SelectInst>(RdxRootInst))
7316 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
7317 else
7318 Builder.SetInsertPoint(RdxRootInst);
7319
7320 Value *ReducedSubTree =
7321 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
7322
7323 if (!VectorizedTree) {
7324 // Initialize the final value in the reduction.
7325 VectorizedTree = ReducedSubTree;
7326 } else {
7327 // Update the final value in the reduction.
7328 Builder.SetCurrentDebugLocation(Loc);
7329 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7330 ReducedSubTree, "op.rdx", ReductionOps);
7331 }
7332 i += ReduxWidth;
7333 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
7334 }
7335
7336 if (VectorizedTree) {
7337 // Finish the reduction.
7338 for (; i < NumReducedVals; ++i) {
7339 auto *I = cast<Instruction>(ReducedVals[i]);
7340 Builder.SetCurrentDebugLocation(I->getDebugLoc());
7341 VectorizedTree =
7342 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
7343 }
7344 for (auto &Pair : ExternallyUsedValues) {
7345 // Add each externally used value to the final reduction.
7346 for (auto *I : Pair.second) {
7347 Builder.SetCurrentDebugLocation(I->getDebugLoc());
7348 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7349 Pair.first, "op.extra", I);
7350 }
7351 }
7352
7353 ReductionRoot->replaceAllUsesWith(VectorizedTree);
7354
7355 // Mark all scalar reduction ops for deletion, they are replaced by the
7356 // vector reductions.
7357 V.eraseInstructions(IgnoreList);
7358 }
7359 return VectorizedTree != nullptr;
7360 }
7361
7362 unsigned numReductionValues() const { return ReducedVals.size(); }
7363
7364private:
7365 /// Calculate the cost of a reduction.
7366 InstructionCost getReductionCost(TargetTransformInfo *TTI,
7367 Value *FirstReducedVal,
7368 unsigned ReduxWidth) {
7369 Type *ScalarTy = FirstReducedVal->getType();
7370 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7371 InstructionCost VectorCost, ScalarCost;
7372 switch (RdxKind) {
7373 case RecurKind::Add:
7374 case RecurKind::Mul:
7375 case RecurKind::Or:
7376 case RecurKind::And:
7377 case RecurKind::Xor:
7378 case RecurKind::FAdd:
7379 case RecurKind::FMul: {
7380 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
7381 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy,
7382 /*IsPairwiseForm=*/false);
7383 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
7384 break;
7385 }
7386 case RecurKind::FMax:
7387 case RecurKind::FMin: {
7388 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7389 VectorCost =
7390 TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7391 /*pairwise=*/false, /*unsigned=*/false);
7392 ScalarCost =
7393 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
7394 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7395 CmpInst::makeCmpResultType(ScalarTy));
7396 break;
7397 }
7398 case RecurKind::SMax:
7399 case RecurKind::SMin:
7400 case RecurKind::UMax:
7401 case RecurKind::UMin: {
7402 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7403 bool IsUnsigned =
7404 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
7405 VectorCost =
7406 TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7407 /*IsPairwiseForm=*/false, IsUnsigned);
7408 ScalarCost =
7409 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
7410 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7411 CmpInst::makeCmpResultType(ScalarTy));
7412 break;
7413 }
7414 default:
7415 llvm_unreachable("Expected arithmetic or min/max reduction operation")::llvm::llvm_unreachable_internal("Expected arithmetic or min/max reduction operation"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7415)
;
7416 }
7417
7418 // Scalar cost is repeated for N-1 elements.
7419 ScalarCost *= (ReduxWidth - 1);
7420 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
7421 << " for reduction that starts with " << *FirstReducedValdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
7422 << " (It is a splitting reduction)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
;
7423 return VectorCost - ScalarCost;
7424 }
7425
7426 /// Emit a horizontal reduction of the vectorized value.
7427 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
7428 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
7429 assert(VectorizedValue && "Need to have a vectorized tree node")(static_cast <bool> (VectorizedValue && "Need to have a vectorized tree node"
) ? void (0) : __assert_fail ("VectorizedValue && \"Need to have a vectorized tree node\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7429, __extension__ __PRETTY_FUNCTION__))
;
7430 assert(isPowerOf2_32(ReduxWidth) &&(static_cast <bool> (isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now") ? void (0)
: __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7431, __extension__ __PRETTY_FUNCTION__))
7431 "We only handle power-of-two reductions for now")(static_cast <bool> (isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now") ? void (0)
: __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7431, __extension__ __PRETTY_FUNCTION__))
;
7432
7433 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
7434 ReductionOps.back());
7435 }
7436};
7437
7438} // end anonymous namespace
7439
7440static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
7441 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
7442 return cast<FixedVectorType>(IE->getType())->getNumElements();
7443
7444 unsigned AggregateSize = 1;
7445 auto *IV = cast<InsertValueInst>(InsertInst);
7446 Type *CurrentType = IV->getType();
7447 do {
7448 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7449 for (auto *Elt : ST->elements())
7450 if (Elt != ST->getElementType(0)) // check homogeneity
7451 return None;
7452 AggregateSize *= ST->getNumElements();
7453 CurrentType = ST->getElementType(0);
7454 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7455 AggregateSize *= AT->getNumElements();
7456 CurrentType = AT->getElementType();
7457 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
7458 AggregateSize *= VT->getNumElements();
7459 return AggregateSize;
7460 } else if (CurrentType->isSingleValueType()) {
7461 return AggregateSize;
7462 } else {
7463 return None;
7464 }
7465 } while (true);
7466}
7467
7468static Optional<unsigned> getOperandIndex(Instruction *InsertInst,
7469 unsigned OperandOffset) {
7470 unsigned OperandIndex = OperandOffset;
7471 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
7472 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
7473 auto *VT = cast<FixedVectorType>(IE->getType());
7474 OperandIndex *= VT->getNumElements();
7475 OperandIndex += CI->getZExtValue();
7476 return OperandIndex;
7477 }
7478 return None;
7479 }
7480
7481 auto *IV = cast<InsertValueInst>(InsertInst);
7482 Type *CurrentType = IV->getType();
7483 for (unsigned int Index : IV->indices()) {
7484 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7485 OperandIndex *= ST->getNumElements();
7486 CurrentType = ST->getElementType(Index);
7487 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7488 OperandIndex *= AT->getNumElements();
7489 CurrentType = AT->getElementType();
7490 } else {
7491 return None;
7492 }
7493 OperandIndex += Index;
7494 }
7495 return OperandIndex;
7496}
7497
7498static bool findBuildAggregate_rec(Instruction *LastInsertInst,
7499 TargetTransformInfo *TTI,
7500 SmallVectorImpl<Value *> &BuildVectorOpds,
7501 SmallVectorImpl<Value *> &InsertElts,
7502 unsigned OperandOffset) {
7503 do {
7504 Value *InsertedOperand = LastInsertInst->getOperand(1);
7505 Optional<unsigned> OperandIndex =
7506 getOperandIndex(LastInsertInst, OperandOffset);
7507 if (!OperandIndex)
7508 return false;
7509 if (isa<InsertElementInst>(InsertedOperand) ||
7510 isa<InsertValueInst>(InsertedOperand)) {
7511 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
7512 BuildVectorOpds, InsertElts, *OperandIndex))
7513 return false;
7514 } else {
7515 BuildVectorOpds[*OperandIndex] = InsertedOperand;
7516 InsertElts[*OperandIndex] = LastInsertInst;
7517 }
7518 if (isa<UndefValue>(LastInsertInst->getOperand(0)))
7519 return true;
7520 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
7521 } while (LastInsertInst != nullptr &&
7522 (isa<InsertValueInst>(LastInsertInst) ||
7523 isa<InsertElementInst>(LastInsertInst)) &&
7524 LastInsertInst->hasOneUse());
7525 return false;
7526}
7527
7528/// Recognize construction of vectors like
7529/// %ra = insertelement <4 x float> poison, float %s0, i32 0
7530/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
7531/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
7532/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
7533/// starting from the last insertelement or insertvalue instruction.
7534///
7535/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
7536/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
7537/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
7538///
7539/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
7540///
7541/// \return true if it matches.
7542static bool findBuildAggregate(Instruction *LastInsertInst,
7543 TargetTransformInfo *TTI,
7544 SmallVectorImpl<Value *> &BuildVectorOpds,
7545 SmallVectorImpl<Value *> &InsertElts) {
7546
7547 assert((isa<InsertElementInst>(LastInsertInst) ||(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7549, __extension__ __PRETTY_FUNCTION__))
7548 isa<InsertValueInst>(LastInsertInst)) &&(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7549, __extension__ __PRETTY_FUNCTION__))
7549 "Expected insertelement or insertvalue instruction!")(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7549, __extension__ __PRETTY_FUNCTION__))
;
7550
7551 assert((BuildVectorOpds.empty() && InsertElts.empty()) &&(static_cast <bool> ((BuildVectorOpds.empty() &&
InsertElts.empty()) && "Expected empty result vectors!"
) ? void (0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7552, __extension__ __PRETTY_FUNCTION__))
7552 "Expected empty result vectors!")(static_cast <bool> ((BuildVectorOpds.empty() &&
InsertElts.empty()) && "Expected empty result vectors!"
) ? void (0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7552, __extension__ __PRETTY_FUNCTION__))
;
7553
7554 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
7555 if (!AggregateSize)
7556 return false;
7557 BuildVectorOpds.resize(*AggregateSize);
7558 InsertElts.resize(*AggregateSize);
7559
7560 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
7561 0)) {
7562 llvm::erase_value(BuildVectorOpds, nullptr);
7563 llvm::erase_value(InsertElts, nullptr);
7564 if (BuildVectorOpds.size() >= 2)
7565 return true;
7566 }
7567
7568 return false;
7569}
7570
7571static bool PhiTypeSorterFunc(Value *V, Value *V2) {
7572 return V->getType() < V2->getType();
7573}
7574
7575/// Try and get a reduction value from a phi node.
7576///
7577/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
7578/// if they come from either \p ParentBB or a containing loop latch.
7579///
7580/// \returns A candidate reduction value if possible, or \code nullptr \endcode
7581/// if not possible.
7582static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
7583 BasicBlock *ParentBB, LoopInfo *LI) {
7584 // There are situations where the reduction value is not dominated by the
7585 // reduction phi. Vectorizing such cases has been reported to cause
7586 // miscompiles. See PR25787.
7587 auto DominatedReduxValue = [&](Value *R) {
7588 return isa<Instruction>(R) &&
7589 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
7590 };
7591
7592 Value *Rdx = nullptr;
7593
7594 // Return the incoming value if it comes from the same BB as the phi node.
7595 if (P->getIncomingBlock(0) == ParentBB) {
7596 Rdx = P->getIncomingValue(0);
7597 } else if (P->getIncomingBlock(1) == ParentBB) {
7598 Rdx = P->getIncomingValue(1);
7599 }
7600
7601 if (Rdx && DominatedReduxValue(Rdx))
7602 return Rdx;
7603
7604 // Otherwise, check whether we have a loop latch to look at.
7605 Loop *BBL = LI->getLoopFor(ParentBB);
7606 if (!BBL)
7607 return nullptr;
7608 BasicBlock *BBLatch = BBL->getLoopLatch();
7609 if (!BBLatch)
7610 return nullptr;
7611
7612 // There is a loop latch, return the incoming value if it comes from
7613 // that. This reduction pattern occasionally turns up.
7614 if (P->getIncomingBlock(0) == BBLatch) {
7615 Rdx = P->getIncomingValue(0);
7616 } else if (P->getIncomingBlock(1) == BBLatch) {
7617 Rdx = P->getIncomingValue(1);
7618 }
7619
7620 if (Rdx && DominatedReduxValue(Rdx))
7621 return Rdx;
7622
7623 return nullptr;
7624}
7625
7626static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
7627 if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
7628 return true;
7629 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
7630 return true;
7631 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
7632 return true;
7633 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
7634 return true;
7635 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
7636 return true;
7637 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
7638 return true;
7639 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
7640 return true;
7641 return false;
7642}
7643
7644/// Attempt to reduce a horizontal reduction.
7645/// If it is legal to match a horizontal reduction feeding the phi node \a P
7646/// with reduction operators \a Root (or one of its operands) in a basic block
7647/// \a BB, then check if it can be done. If horizontal reduction is not found
7648/// and root instruction is a binary operation, vectorization of the operands is
7649/// attempted.
7650/// \returns true if a horizontal reduction was matched and reduced or operands
7651/// of one of the binary instruction were vectorized.
7652/// \returns false if a horizontal reduction was not matched (or not possible)
7653/// or no vectorization of any binary operation feeding \a Root instruction was
7654/// performed.
7655static bool tryToVectorizeHorReductionOrInstOperands(
7656 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
7657 TargetTransformInfo *TTI,
7658 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
7659 if (!ShouldVectorizeHor)
7660 return false;
7661
7662 if (!Root)
7663 return false;
7664
7665 if (Root->getParent() != BB || isa<PHINode>(Root))
7666 return false;
7667 // Start analysis starting from Root instruction. If horizontal reduction is
7668 // found, try to vectorize it. If it is not a horizontal reduction or
7669 // vectorization is not possible or not effective, and currently analyzed
7670 // instruction is a binary operation, try to vectorize the operands, using
7671 // pre-order DFS traversal order. If the operands were not vectorized, repeat
7672 // the same procedure considering each operand as a possible root of the
7673 // horizontal reduction.
7674 // Interrupt the process if the Root instruction itself was vectorized or all
7675 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
7676 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
7677 // CmpInsts so we can skip extra attempts in
7678 // tryToVectorizeHorReductionOrInstOperands and save compile time.
7679 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
7680 SmallPtrSet<Value *, 8> VisitedInstrs;
7681 bool Res = false;
7682 while (!Stack.empty()) {
7683 Instruction *Inst;
7684 unsigned Level;
7685 std::tie(Inst, Level) = Stack.pop_back_val();
7686 Value *B0, *B1;
7687 bool IsBinop = matchRdxBop(Inst, B0, B1);
7688 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
7689 if (IsBinop || IsSelect) {
7690 HorizontalReduction HorRdx;
7691 if (HorRdx.matchAssociativeReduction(P, Inst)) {
7692 if (HorRdx.tryToReduce(R, TTI)) {
7693 Res = true;
7694 // Set P to nullptr to avoid re-analysis of phi node in
7695 // matchAssociativeReduction function unless this is the root node.
7696 P = nullptr;
7697 continue;
7698 }
7699 }
7700 if (P && IsBinop) {
7701 Inst = dyn_cast<Instruction>(B0);
7702 if (Inst == P)
7703 Inst = dyn_cast<Instruction>(B1);
7704 if (!Inst) {
7705 // Set P to nullptr to avoid re-analysis of phi node in
7706 // matchAssociativeReduction function unless this is the root node.
7707 P = nullptr;
7708 continue;
7709 }
7710 }
7711 }
7712 // Set P to nullptr to avoid re-analysis of phi node in
7713 // matchAssociativeReduction function unless this is the root node.
7714 P = nullptr;
7715 // Do not try to vectorize CmpInst operands, this is done separately.
7716 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
7717 Res = true;
7718 continue;
7719 }
7720
7721 // Try to vectorize operands.
7722 // Continue analysis for the instruction from the same basic block only to
7723 // save compile time.
7724 if (++Level < RecursionMaxDepth)
7725 for (auto *Op : Inst->operand_values())
7726 if (VisitedInstrs.insert(Op).second)
7727 if (auto *I = dyn_cast<Instruction>(Op))
7728 // Do not try to vectorize CmpInst operands, this is done
7729 // separately.
7730 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
7731 I->getParent() == BB)
7732 Stack.emplace_back(I, Level);
7733 }
7734 return Res;
7735}
7736
7737bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
7738 BasicBlock *BB, BoUpSLP &R,
7739 TargetTransformInfo *TTI) {
7740 auto *I = dyn_cast_or_null<Instruction>(V);
7741 if (!I)
7742 return false;
7743
7744 if (!isa<BinaryOperator>(I))
7745 P = nullptr;
7746 // Try to match and vectorize a horizontal reduction.
7747 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
7748 return tryToVectorize(I, R);
7749 };
7750 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
7751 ExtraVectorization);
7752}
7753
7754bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
7755 BasicBlock *BB, BoUpSLP &R) {
7756 const DataLayout &DL = BB->getModule()->getDataLayout();
7757 if (!R.canMapToVector(IVI->getType(), DL))
7758 return false;
7759
7760 SmallVector<Value *, 16> BuildVectorOpds;
7761 SmallVector<Value *, 16> BuildVectorInsts;
7762 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
7763 return false;
7764
7765 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: array mappable to vector: " <<
*IVI << "\n"; } } while (false)
;
7766 // Aggregate value is unlikely to be processed in vector register, we need to
7767 // extract scalars into scalar registers, so NeedExtraction is set true.
7768 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7769 BuildVectorInsts);
7770}
7771
7772bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
7773 BasicBlock *BB, BoUpSLP &R) {
7774 SmallVector<Value *, 16> BuildVectorInsts;
7775 SmallVector<Value *, 16> BuildVectorOpds;
7776 SmallVector<int> Mask;
7777 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
7778 (llvm::all_of(BuildVectorOpds,
7779 [](Value *V) { return isa<ExtractElementInst>(V); }) &&
7780 isShuffle(BuildVectorOpds, Mask)))
7781 return false;
7782
7783 // Vectorize starting with the build vector operands ignoring the BuildVector
7784 // instructions for the purpose of scheduling and user extraction.
7785 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7786 BuildVectorInsts);
7787}
7788
7789bool SLPVectorizerPass::vectorizeSimpleInstructions(
7790 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
7791 bool AtTerminator) {
7792 bool OpsChanged = false;
7793 SmallVector<Instruction *, 4> PostponedCmps;
7794 for (auto *I : reverse(Instructions)) {
7795 if (R.isDeleted(I))
7796 continue;
7797 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
7798 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
7799 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
7800 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
7801 else if (isa<CmpInst>(I))
7802 PostponedCmps.push_back(I);
7803 }
7804 if (AtTerminator) {
7805 // Try to find reductions first.
7806 for (Instruction *I : PostponedCmps) {
7807 if (R.isDeleted(I))
7808 continue;
7809 for (Value *Op : I->operands())
7810 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
7811 }
7812 // Try to vectorize operands as vector bundles.
7813 for (Instruction *I : PostponedCmps) {
7814 if (R.isDeleted(I))
7815 continue;
7816 OpsChanged |= tryToVectorize(I, R);
7817 }
7818 Instructions.clear();
7819 } else {
7820 // Insert in reverse order since the PostponedCmps vector was filled in
7821 // reverse order.
7822 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
7823 }
7824 return OpsChanged;
7825}
7826
7827bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
7828 bool Changed = false;
7829 SmallVector<Value *, 4> Incoming;
7830 SmallPtrSet<Value *, 16> VisitedInstrs;
7831
7832 bool HaveVectorizedPhiNodes = true;
7833 while (HaveVectorizedPhiNodes) {
7834 HaveVectorizedPhiNodes = false;
7835
7836 // Collect the incoming values from the PHIs.
7837 Incoming.clear();
7838 for (Instruction &I : *BB) {
7839 PHINode *P = dyn_cast<PHINode>(&I);
7840 if (!P)
7841 break;
7842
7843 if (!VisitedInstrs.count(P) && !R.isDeleted(P))
7844 Incoming.push_back(P);
7845 }
7846
7847 // Sort by type.
7848 llvm::stable_sort(Incoming, PhiTypeSorterFunc);
7849
7850 // Try to vectorize elements base on their type.
7851 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
7852 E = Incoming.end();
7853 IncIt != E;) {
7854
7855 // Look for the next elements with the same type.
7856 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
7857 while (SameTypeIt != E &&
7858 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
7859 VisitedInstrs.insert(*SameTypeIt);
7860 ++SameTypeIt;
7861 }
7862
7863 // Try to vectorize them.
7864 unsigned NumElts = (SameTypeIt - IncIt);
7865 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (false)
7866 << NumElts << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (false)
;
7867 // The order in which the phi nodes appear in the program does not matter.
7868 // So allow tryToVectorizeList to reorder them if it is beneficial. This
7869 // is done when there are exactly two elements since tryToVectorizeList
7870 // asserts that there are only two values when AllowReorder is true.
7871 bool AllowReorder = NumElts == 2;
7872 if (NumElts > 1 &&
7873 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) {
7874 // Success start over because instructions might have been changed.
7875 HaveVectorizedPhiNodes = true;
7876 Changed = true;
7877 break;
7878 }
7879
7880 // Start over at the next instruction of a different type (or the end).
7881 IncIt = SameTypeIt;
7882 }
7883 }
7884
7885 VisitedInstrs.clear();
7886
7887 SmallVector<Instruction *, 8> PostProcessInstructions;
7888 SmallDenseSet<Instruction *, 4> KeyNodes;
7889 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
7890 // Skip instructions with scalable type. The num of elements is unknown at
7891 // compile-time for scalable type.
7892 if (isa<ScalableVectorType>(it->getType()))
7893 continue;
7894
7895 // Skip instructions marked for the deletion.
7896 if (R.isDeleted(&*it))
7897 continue;
7898 // We may go through BB multiple times so skip the one we have checked.
7899 if (!VisitedInstrs.insert(&*it).second) {
7900 if (it->use_empty() && KeyNodes.contains(&*it) &&
7901 vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
7902 it->isTerminator())) {
7903 // We would like to start over since some instructions are deleted
7904 // and the iterator may become invalid value.
7905 Changed = true;
7906 it = BB->begin();
7907 e = BB->end();
7908 }
7909 continue;
7910 }
7911
7912 if (isa<DbgInfoIntrinsic>(it))
7913 continue;
7914
7915 // Try to vectorize reductions that use PHINodes.
7916 if (PHINode *P = dyn_cast<PHINode>(it)) {
7917 // Check that the PHI is a reduction PHI.
7918 if (P->getNumIncomingValues() == 2) {
7919 // Try to match and vectorize a horizontal reduction.
7920 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
7921 TTI)) {
7922 Changed = true;
7923 it = BB->begin();
7924 e = BB->end();
7925 continue;
7926 }
7927 }
7928 // Try to vectorize the incoming values of the PHI, to catch reductions
7929 // that feed into PHIs.
7930 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
7931 // Skip if the incoming block is the current BB for now. Also, bypass
7932 // unreachable IR for efficiency and to avoid crashing.
7933 // TODO: Collect the skipped incoming values and try to vectorize them
7934 // after processing BB.
7935 if (BB == P->getIncomingBlock(I) ||
7936 !DT->isReachableFromEntry(P->getIncomingBlock(I)))
7937 continue;
7938
7939 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
7940 P->getIncomingBlock(I), R, TTI);
7941 }
7942 continue;
7943 }
7944
7945 // Ran into an instruction without users, like terminator, or function call
7946 // with ignored return value, store. Ignore unused instructions (basing on
7947 // instruction type, except for CallInst and InvokeInst).
7948 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
7949 isa<InvokeInst>(it))) {
7950 KeyNodes.insert(&*it);
7951 bool OpsChanged = false;
7952 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
7953 for (auto *V : it->operand_values()) {
7954 // Try to match and vectorize a horizontal reduction.
7955 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
7956 }
7957 }
7958 // Start vectorization of post-process list of instructions from the
7959 // top-tree instructions to try to vectorize as many instructions as
7960 // possible.
7961 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
7962 it->isTerminator());
7963 if (OpsChanged) {
7964 // We would like to start over since some instructions are deleted
7965 // and the iterator may become invalid value.
7966 Changed = true;
7967 it = BB->begin();
7968 e = BB->end();
7969 continue;
7970 }
7971 }
7972
7973 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7974 isa<InsertValueInst>(it))
7975 PostProcessInstructions.push_back(&*it);
7976 }
7977
7978 return Changed;
7979}
7980
7981bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7982 auto Changed = false;
7983 for (auto &Entry : GEPs) {
7984 // If the getelementptr list has fewer than two elements, there's nothing
7985 // to do.
7986 if (Entry.second.size() < 2)
7987 continue;
7988
7989 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
7990 << Entry.second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
;
7991
7992 // Process the GEP list in chunks suitable for the target's supported
7993 // vector size. If a vector register can't hold 1 element, we are done. We
7994 // are trying to vectorize the index computations, so the maximum number of
7995 // elements is based on the size of the index expression, rather than the
7996 // size of the GEP itself (the target's pointer size).
7997 unsigned MaxVecRegSize = R.getMaxVecRegSize();
7998 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
7999 if (MaxVecRegSize < EltSize)
8000 continue;
8001
8002 unsigned MaxElts = MaxVecRegSize / EltSize;
8003 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
8004 auto Len = std::min<unsigned>(BE - BI, MaxElts);
8005 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
8006
8007 // Initialize a set a candidate getelementptrs. Note that we use a
8008 // SetVector here to preserve program order. If the index computations
8009 // are vectorizable and begin with loads, we want to minimize the chance
8010 // of having to reorder them later.
8011 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
8012
8013 // Some of the candidates may have already been vectorized after we
8014 // initially collected them. If so, they are marked as deleted, so remove
8015 // them from the set of candidates.
8016 Candidates.remove_if(
8017 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
8018
8019 // Remove from the set of candidates all pairs of getelementptrs with
8020 // constant differences. Such getelementptrs are likely not good
8021 // candidates for vectorization in a bottom-up phase since one can be
8022 // computed from the other. We also ensure all candidate getelementptr
8023 // indices are unique.
8024 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
8025 auto *GEPI = GEPList[I];
8026 if (!Candidates.count(GEPI))
8027 continue;
8028 auto *SCEVI = SE->getSCEV(GEPList[I]);
8029 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
8030 auto *GEPJ = GEPList[J];
8031 auto *SCEVJ = SE->getSCEV(GEPList[J]);
8032 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
8033 Candidates.remove(GEPI);
8034 Candidates.remove(GEPJ);
8035 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
8036 Candidates.remove(GEPJ);
8037 }
8038 }
8039 }
8040
8041 // We break out of the above computation as soon as we know there are
8042 // fewer than two candidates remaining.
8043 if (Candidates.size() < 2)
8044 continue;
8045
8046 // Add the single, non-constant index of each candidate to the bundle. We
8047 // ensured the indices met these constraints when we originally collected
8048 // the getelementptrs.
8049 SmallVector<Value *, 16> Bundle(Candidates.size());
8050 auto BundleIndex = 0u;
8051 for (auto *V : Candidates) {
8052 auto *GEP = cast<GetElementPtrInst>(V);
8053 auto *GEPIdx = GEP->idx_begin()->get();
8054 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx))(static_cast <bool> (GEP->getNumIndices() == 1 || !isa
<Constant>(GEPIdx)) ? void (0) : __assert_fail ("GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 8054, __extension__ __PRETTY_FUNCTION__))
;
8055 Bundle[BundleIndex++] = GEPIdx;
8056 }
8057
8058 // Try and vectorize the indices. We are currently only interested in
8059 // gather-like cases of the form:
8060 //
8061 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
8062 //
8063 // where the loads of "a", the loads of "b", and the subtractions can be
8064 // performed in parallel. It's likely that detecting this pattern in a
8065 // bottom-up phase will be simpler and less costly than building a
8066 // full-blown top-down phase beginning at the consecutive loads.
8067 Changed |= tryToVectorizeList(Bundle, R);
8068 }
8069 }
8070 return Changed;
8071}
8072
8073bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
8074 bool Changed = false;
8075 // Attempt to sort and vectorize each of the store-groups.
8076 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
8077 ++it) {
8078 if (it->second.size() < 2)
8079 continue;
8080
8081 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
8082 << it->second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
;
8083
8084 Changed |= vectorizeStores(it->second, R);
8085 }
8086 return Changed;
8087}
8088
8089char SLPVectorizer::ID = 0;
8090
8091static const char lv_name[] = "SLP Vectorizer";
8092
8093INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)static void *initializeSLPVectorizerPassOnce(PassRegistry &
Registry) {
8094INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
8095INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
8096INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
8097INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
8098INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
8099INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)initializeDemandedBitsWrapperPassPass(Registry);
8100INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
8101INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)initializeInjectTLIMappingsLegacyPass(Registry);
8102INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo( lv_name, "slp-vectorizer", &
SLPVectorizer::ID, PassInfo::NormalCtor_t(callDefaultCtor<
SLPVectorizer>), false, false); Registry.registerPass(*PI,
true); return PI; } static llvm::once_flag InitializeSLPVectorizerPassFlag
; void llvm::initializeSLPVectorizerPass(PassRegistry &Registry
) { llvm::call_once(InitializeSLPVectorizerPassFlag, initializeSLPVectorizerPassOnce
, std::ref(Registry)); }
8103
8104Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }

/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h

1//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the SmallVector class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_SMALLVECTOR_H
14#define LLVM_ADT_SMALLVECTOR_H
15
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/ErrorHandling.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Support/MemAlloc.h"
21#include "llvm/Support/type_traits.h"
22#include <algorithm>
23#include <cassert>
24#include <cstddef>
25#include <cstdlib>
26#include <cstring>
27#include <initializer_list>
28#include <iterator>
29#include <limits>
30#include <memory>
31#include <new>
32#include <type_traits>
33#include <utility>
34
35namespace llvm {
36
37/// This is all the stuff common to all SmallVectors.
38///
39/// The template parameter specifies the type which should be used to hold the
40/// Size and Capacity of the SmallVector, so it can be adjusted.
41/// Using 32 bit size is desirable to shrink the size of the SmallVector.
42/// Using 64 bit size is desirable for cases like SmallVector<char>, where a
43/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
44/// buffering bitcode output - which can exceed 4GB.
45template <class Size_T> class SmallVectorBase {
46protected:
47 void *BeginX;
48 Size_T Size = 0, Capacity;
49
50 /// The maximum value of the Size_T used.
51 static constexpr size_t SizeTypeMax() {
52 return std::numeric_limits<Size_T>::max();
53 }
54
55 SmallVectorBase() = delete;
56 SmallVectorBase(void *FirstEl, size_t TotalCapacity)
57 : BeginX(FirstEl), Capacity(TotalCapacity) {}
58
59 /// This is a helper for \a grow() that's out of line to reduce code
60 /// duplication. This function will report a fatal error if it can't grow at
61 /// least to \p MinSize.
62 void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity);
63
64 /// This is an implementation of the grow() method which only works
65 /// on POD-like data types and is out of line to reduce code duplication.
66 /// This function will report a fatal error if it cannot increase capacity.
67 void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
68
69public:
70 size_t size() const { return Size; }
71 size_t capacity() const { return Capacity; }
72
73 LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size; }
48
Assuming field 'Size' is not equal to 0, which participates in a condition later
49
Returning zero, which participates in a condition later
74
75 /// Set the array size to \p N, which the current array must have enough
76 /// capacity for.
77 ///
78 /// This does not construct or destroy any elements in the vector.
79 ///
80 /// Clients can use this in conjunction with capacity() to write past the end
81 /// of the buffer when they know that more elements are available, and only
82 /// update the size later. This avoids the cost of value initializing elements
83 /// which will only be overwritten.
84 void set_size(size_t N) {
85 assert(N <= capacity())(static_cast <bool> (N <= capacity()) ? void (0) : __assert_fail
("N <= capacity()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 85, __extension__ __PRETTY_FUNCTION__))
;
86 Size = N;
87 }
88};
89
90template <class T>
91using SmallVectorSizeType =
92 typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
93 uint32_t>::type;
94
95/// Figure out the offset of the first element.
96template <class T, typename = void> struct SmallVectorAlignmentAndSize {
97 alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
98 SmallVectorBase<SmallVectorSizeType<T>>)];
99 alignas(T) char FirstEl[sizeof(T)];
100};
101
102/// This is the part of SmallVectorTemplateBase which does not depend on whether
103/// the type T is a POD. The extra dummy template argument is used by ArrayRef
104/// to avoid unnecessarily requiring T to be complete.
105template <typename T, typename = void>
106class SmallVectorTemplateCommon
107 : public SmallVectorBase<SmallVectorSizeType<T>> {
108 using Base = SmallVectorBase<SmallVectorSizeType<T>>;
109
110 /// Find the address of the first element. For this pointer math to be valid
111 /// with small-size of 0 for T with lots of alignment, it's important that
112 /// SmallVectorStorage is properly-aligned even for small-size of 0.
113 void *getFirstEl() const {
114 return const_cast<void *>(reinterpret_cast<const void *>(
115 reinterpret_cast<const char *>(this) +
116 offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl
)
));
117 }
118 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
119
120protected:
121 SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
122
123 void grow_pod(size_t MinSize, size_t TSize) {
124 Base::grow_pod(getFirstEl(), MinSize, TSize);
125 }
126
127 /// Return true if this is a smallvector which has not had dynamic
128 /// memory allocated for it.
129 bool isSmall() const { return this->BeginX == getFirstEl(); }
130
131 /// Put this vector in a state of being small.
132 void resetToSmall() {
133 this->BeginX = getFirstEl();
134 this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
135 }
136
137 /// Return true if V is an internal reference to the given range.
138 bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
139 // Use std::less to avoid UB.
140 std::less<> LessThan;
141 return !LessThan(V, First) && LessThan(V, Last);
142 }
143
144 /// Return true if V is an internal reference to this vector.
145 bool isReferenceToStorage(const void *V) const {
146 return isReferenceToRange(V, this->begin(), this->end());
147 }
148
149 /// Return true if First and Last form a valid (possibly empty) range in this
150 /// vector's storage.
151 bool isRangeInStorage(const void *First, const void *Last) const {
152 // Use std::less to avoid UB.
153 std::less<> LessThan;
154 return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
155 !LessThan(this->end(), Last);
156 }
157
158 /// Return true unless Elt will be invalidated by resizing the vector to
159 /// NewSize.
160 bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
161 // Past the end.
162 if (LLVM_LIKELY(!isReferenceToStorage(Elt))__builtin_expect((bool)(!isReferenceToStorage(Elt)), true))
163 return true;
164
165 // Return false if Elt will be destroyed by shrinking.
166 if (NewSize <= this->size())
167 return Elt < this->begin() + NewSize;
168
169 // Return false if we need to grow.
170 return NewSize <= this->capacity();
171 }
172
173 /// Check whether Elt will be invalidated by resizing the vector to NewSize.
174 void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
175 assert(isSafeToReferenceAfterResize(Elt, NewSize) &&(static_cast <bool> (isSafeToReferenceAfterResize(Elt, NewSize
) && "Attempting to reference an element of the vector in an operation "
"that invalidates it") ? void (0) : __assert_fail ("isSafeToReferenceAfterResize(Elt, NewSize) && \"Attempting to reference an element of the vector in an operation \" \"that invalidates it\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 177, __extension__ __PRETTY_FUNCTION__))
176 "Attempting to reference an element of the vector in an operation "(static_cast <bool> (isSafeToReferenceAfterResize(Elt, NewSize
) && "Attempting to reference an element of the vector in an operation "
"that invalidates it") ? void (0) : __assert_fail ("isSafeToReferenceAfterResize(Elt, NewSize) && \"Attempting to reference an element of the vector in an operation \" \"that invalidates it\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 177, __extension__ __PRETTY_FUNCTION__))
177 "that invalidates it")(static_cast <bool> (isSafeToReferenceAfterResize(Elt, NewSize
) && "Attempting to reference an element of the vector in an operation "
"that invalidates it") ? void (0) : __assert_fail ("isSafeToReferenceAfterResize(Elt, NewSize) && \"Attempting to reference an element of the vector in an operation \" \"that invalidates it\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 177, __extension__ __PRETTY_FUNCTION__))
;
178 }
179
180 /// Check whether Elt will be invalidated by increasing the size of the
181 /// vector by N.
182 void assertSafeToAdd(const void *Elt, size_t N = 1) {
183 this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
184 }
185
186 /// Check whether any part of the range will be invalidated by clearing.
187 void assertSafeToReferenceAfterClear(const T *From, const T *To) {
188 if (From == To)
189 return;
190 this->assertSafeToReferenceAfterResize(From, 0);
191 this->assertSafeToReferenceAfterResize(To - 1, 0);
192 }
193 template <
194 class ItTy,
195 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
196 bool> = false>
197 void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
198
199 /// Check whether any part of the range will be invalidated by growing.
200 void assertSafeToAddRange(const T *From, const T *To) {
201 if (From == To)
202 return;
203 this->assertSafeToAdd(From, To - From);
204 this->assertSafeToAdd(To - 1, To - From);
205 }
206 template <
207 class ItTy,
208 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
209 bool> = false>
210 void assertSafeToAddRange(ItTy, ItTy) {}
211
212 /// Reserve enough space to add one element, and return the updated element
213 /// pointer in case it was a reference to the storage.
214 template <class U>
215 static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
216 size_t N) {
217 size_t NewSize = This->size() + N;
218 if (LLVM_LIKELY(NewSize <= This->capacity())__builtin_expect((bool)(NewSize <= This->capacity()), true
)
)
219 return &Elt;
220
221 bool ReferencesStorage = false;
222 int64_t Index = -1;
223 if (!U::TakesParamByValue) {
224 if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))__builtin_expect((bool)(This->isReferenceToStorage(&Elt
)), false)
) {
225 ReferencesStorage = true;
226 Index = &Elt - This->begin();
227 }
228 }
229 This->grow(NewSize);
230 return ReferencesStorage ? This->begin() + Index : &Elt;
231 }
232
233public:
234 using size_type = size_t;
235 using difference_type = ptrdiff_t;
236 using value_type = T;
237 using iterator = T *;
238 using const_iterator = const T *;
239
240 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
241 using reverse_iterator = std::reverse_iterator<iterator>;
242
243 using reference = T &;
244 using const_reference = const T &;
245 using pointer = T *;
246 using const_pointer = const T *;
247
248 using Base::capacity;
249 using Base::empty;
250 using Base::size;
251
252 // forward iterator creation methods.
253 iterator begin() { return (iterator)this->BeginX; }
254 const_iterator begin() const { return (const_iterator)this->BeginX; }
255 iterator end() { return begin() + size(); }
256 const_iterator end() const { return begin() + size(); }
257
258 // reverse iterator creation methods.
259 reverse_iterator rbegin() { return reverse_iterator(end()); }
260 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
261 reverse_iterator rend() { return reverse_iterator(begin()); }
262 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
263
264 size_type size_in_bytes() const { return size() * sizeof(T); }
265 size_type max_size() const {
266 return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
267 }
268
269 size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
270
271 /// Return a pointer to the vector's buffer, even if empty().
272 pointer data() { return pointer(begin()); }
273 /// Return a pointer to the vector's buffer, even if empty().
274 const_pointer data() const { return const_pointer(begin()); }
275
276 reference operator[](size_type idx) {
277 assert(idx < size())(static_cast <bool> (idx < size()) ? void (0) : __assert_fail
("idx < size()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 277, __extension__ __PRETTY_FUNCTION__))
;
278 return begin()[idx];
279 }
280 const_reference operator[](size_type idx) const {
281 assert(idx < size())(static_cast <bool> (idx < size()) ? void (0) : __assert_fail
("idx < size()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 281, __extension__ __PRETTY_FUNCTION__))
;
282 return begin()[idx];
283 }
284
285 reference front() {
286 assert(!empty())(static_cast <bool> (!empty()) ? void (0) : __assert_fail
("!empty()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 286, __extension__ __PRETTY_FUNCTION__))
;
287 return begin()[0];
288 }
289 const_reference front() const {
290 assert(!empty())(static_cast <bool> (!empty()) ? void (0) : __assert_fail
("!empty()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 290, __extension__ __PRETTY_FUNCTION__))
;
291 return begin()[0];
292 }
293
294 reference back() {
295 assert(!empty())(static_cast <bool> (!empty()) ? void (0) : __assert_fail
("!empty()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 295, __extension__ __PRETTY_FUNCTION__))
;
296 return end()[-1];
297 }
298 const_reference back() const {
299 assert(!empty())(static_cast <bool> (!empty()) ? void (0) : __assert_fail
("!empty()", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 299, __extension__ __PRETTY_FUNCTION__))
;
300 return end()[-1];
301 }
302};
303
304/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
305/// method implementations that are designed to work with non-trivial T's.
306///
307/// We approximate is_trivially_copyable with trivial move/copy construction and
308/// trivial destruction. While the standard doesn't specify that you're allowed
309/// copy these types with memcpy, there is no way for the type to observe this.
310/// This catches the important case of std::pair<POD, POD>, which is not
311/// trivially assignable.
312template <typename T, bool = (is_trivially_copy_constructible<T>::value) &&
313 (is_trivially_move_constructible<T>::value) &&
314 std::is_trivially_destructible<T>::value>
315class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
316 friend class SmallVectorTemplateCommon<T>;
317
318protected:
319 static constexpr bool TakesParamByValue = false;
320 using ValueParamT = const T &;
321
322 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
323
324 static void destroy_range(T *S, T *E) {
325 while (S != E) {
326 --E;
327 E->~T();
328 }
329 }
330
331 /// Move the range [I, E) into the uninitialized memory starting with "Dest",
332 /// constructing elements as needed.
333 template<typename It1, typename It2>
334 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
335 std::uninitialized_copy(std::make_move_iterator(I),
336 std::make_move_iterator(E), Dest);
337 }
338
339 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
340 /// constructing elements as needed.
341 template<typename It1, typename It2>
342 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
343 std::uninitialized_copy(I, E, Dest);
344 }
345
346 /// Grow the allocated memory (without initializing new elements), doubling
347 /// the size of the allocated memory. Guarantees space for at least one more
348 /// element, or MinSize more elements if specified.
349 void grow(size_t MinSize = 0);
350
351 /// Create a new allocation big enough for \p MinSize and pass back its size
352 /// in \p NewCapacity. This is the first section of \a grow().
353 T *mallocForGrow(size_t MinSize, size_t &NewCapacity) {
354 return static_cast<T *>(
355 SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
356 MinSize, sizeof(T), NewCapacity));
357 }
358
359 /// Move existing elements over to the new allocation \p NewElts, the middle
360 /// section of \a grow().
361 void moveElementsForGrow(T *NewElts);
362
363 /// Transfer ownership of the allocation, finishing up \a grow().
364 void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
365
366 /// Reserve enough space to add one element, and return the updated element
367 /// pointer in case it was a reference to the storage.
368 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
369 return this->reserveForParamAndGetAddressImpl(this, Elt, N);
370 }
371
372 /// Reserve enough space to add one element, and return the updated element
373 /// pointer in case it was a reference to the storage.
374 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
375 return const_cast<T *>(
376 this->reserveForParamAndGetAddressImpl(this, Elt, N));
377 }
378
379 static T &&forward_value_param(T &&V) { return std::move(V); }
380 static const T &forward_value_param(const T &V) { return V; }
381
382 void growAndAssign(size_t NumElts, const T &Elt) {
383 // Grow manually in case Elt is an internal reference.
384 size_t NewCapacity;
385 T *NewElts = mallocForGrow(NumElts, NewCapacity);
386 std::uninitialized_fill_n(NewElts, NumElts, Elt);
387 this->destroy_range(this->begin(), this->end());
388 takeAllocationForGrow(NewElts, NewCapacity);
389 this->set_size(NumElts);
390 }
391
392 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
393 // Grow manually in case one of Args is an internal reference.
394 size_t NewCapacity;
395 T *NewElts = mallocForGrow(0, NewCapacity);
396 ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
397 moveElementsForGrow(NewElts);
398 takeAllocationForGrow(NewElts, NewCapacity);
399 this->set_size(this->size() + 1);
400 return this->back();
401 }
402
403public:
404 void push_back(const T &Elt) {
405 const T *EltPtr = reserveForParamAndGetAddress(Elt);
406 ::new ((void *)this->end()) T(*EltPtr);
407 this->set_size(this->size() + 1);
408 }
409
410 void push_back(T &&Elt) {
411 T *EltPtr = reserveForParamAndGetAddress(Elt);
412 ::new ((void *)this->end()) T(::std::move(*EltPtr));
413 this->set_size(this->size() + 1);
414 }
415
416 void pop_back() {
417 this->set_size(this->size() - 1);
418 this->end()->~T();
419 }
420};
421
422// Define this out-of-line to dissuade the C++ compiler from inlining it.
423template <typename T, bool TriviallyCopyable>
424void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
425 size_t NewCapacity;
426 T *NewElts = mallocForGrow(MinSize, NewCapacity);
427 moveElementsForGrow(NewElts);
428 takeAllocationForGrow(NewElts, NewCapacity);
429}
430
431// Define this out-of-line to dissuade the C++ compiler from inlining it.
432template <typename T, bool TriviallyCopyable>
433void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
434 T *NewElts) {
435 // Move the elements over.
436 this->uninitialized_move(this->begin(), this->end(), NewElts);
437
438 // Destroy the original elements.
439 destroy_range(this->begin(), this->end());
440}
441
442// Define this out-of-line to dissuade the C++ compiler from inlining it.
443template <typename T, bool TriviallyCopyable>
444void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
445 T *NewElts, size_t NewCapacity) {
446 // If this wasn't grown from the inline copy, deallocate the old space.
447 if (!this->isSmall())
448 free(this->begin());
449
450 this->BeginX = NewElts;
451 this->Capacity = NewCapacity;
452}
453
454/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
455/// method implementations that are designed to work with trivially copyable
456/// T's. This allows using memcpy in place of copy/move construction and
457/// skipping destruction.
458template <typename T>
459class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
460 friend class SmallVectorTemplateCommon<T>;
461
462protected:
463 /// True if it's cheap enough to take parameters by value. Doing so avoids
464 /// overhead related to mitigations for reference invalidation.
465 static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
466
467 /// Either const T& or T, depending on whether it's cheap enough to take
468 /// parameters by value.
469 using ValueParamT =
470 typename std::conditional<TakesParamByValue, T, const T &>::type;
471
472 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
473
474 // No need to do a destroy loop for POD's.
475 static void destroy_range(T *, T *) {}
476
477 /// Move the range [I, E) onto the uninitialized memory
478 /// starting with "Dest", constructing elements into it as needed.
479 template<typename It1, typename It2>
480 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
481 // Just do a copy.
482 uninitialized_copy(I, E, Dest);
483 }
484
485 /// Copy the range [I, E) onto the uninitialized memory
486 /// starting with "Dest", constructing elements into it as needed.
487 template<typename It1, typename It2>
488 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
489 // Arbitrary iterator types; just use the basic implementation.
490 std::uninitialized_copy(I, E, Dest);
491 }
492
493 /// Copy the range [I, E) onto the uninitialized memory
494 /// starting with "Dest", constructing elements into it as needed.
495 template <typename T1, typename T2>
496 static void uninitialized_copy(
497 T1 *I, T1 *E, T2 *Dest,
498 std::enable_if_t<std::is_same<typename std::remove_const<T1>::type,
499 T2>::value> * = nullptr) {
500 // Use memcpy for PODs iterated by pointers (which includes SmallVector
501 // iterators): std::uninitialized_copy optimizes to memmove, but we can
502 // use memcpy here. Note that I and E are iterators and thus might be
503 // invalid for memcpy if they are equal.
504 if (I != E)
505 memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
506 }
507
508 /// Double the size of the allocated memory, guaranteeing space for at
509 /// least one more element or MinSize if specified.
510 void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
511
512 /// Reserve enough space to add one element, and return the updated element
513 /// pointer in case it was a reference to the storage.
514 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
515 return this->reserveForParamAndGetAddressImpl(this, Elt, N);
516 }
517
518 /// Reserve enough space to add one element, and return the updated element
519 /// pointer in case it was a reference to the storage.
520 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
521 return const_cast<T *>(
522 this->reserveForParamAndGetAddressImpl(this, Elt, N));
523 }
524
525 /// Copy \p V or return a reference, depending on \a ValueParamT.
526 static ValueParamT forward_value_param(ValueParamT V) { return V; }
527
528 void growAndAssign(size_t NumElts, T Elt) {
529 // Elt has been copied in case it's an internal reference, side-stepping
530 // reference invalidation problems without losing the realloc optimization.
531 this->set_size(0);
532 this->grow(NumElts);
533 std::uninitialized_fill_n(this->begin(), NumElts, Elt);
534 this->set_size(NumElts);
535 }
536
537 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
538 // Use push_back with a copy in case Args has an internal reference,
539 // side-stepping reference invalidation problems without losing the realloc
540 // optimization.
541 push_back(T(std::forward<ArgTypes>(Args)...));
542 return this->back();
543 }
544
545public:
546 void push_back(ValueParamT Elt) {
547 const T *EltPtr = reserveForParamAndGetAddress(Elt);
548 memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
549 this->set_size(this->size() + 1);
550 }
551
552 void pop_back() { this->set_size(this->size() - 1); }
553};
554
555/// This class consists of common code factored out of the SmallVector class to
556/// reduce code duplication based on the SmallVector 'N' template parameter.
557template <typename T>
558class SmallVectorImpl : public SmallVectorTemplateBase<T> {
559 using SuperClass = SmallVectorTemplateBase<T>;
560
561public:
562 using iterator = typename SuperClass::iterator;
563 using const_iterator = typename SuperClass::const_iterator;
564 using reference = typename SuperClass::reference;
565 using size_type = typename SuperClass::size_type;
566
567protected:
568 using SmallVectorTemplateBase<T>::TakesParamByValue;
569 using ValueParamT = typename SuperClass::ValueParamT;
570
571 // Default ctor - Initialize to empty.
572 explicit SmallVectorImpl(unsigned N)
573 : SmallVectorTemplateBase<T>(N) {}
574
575public:
576 SmallVectorImpl(const SmallVectorImpl &) = delete;
577
578 ~SmallVectorImpl() {
579 // Subclass has already destructed this vector's elements.
580 // If this wasn't grown from the inline copy, deallocate the old space.
581 if (!this->isSmall())
582 free(this->begin());
583 }
584
585 void clear() {
586 this->destroy_range(this->begin(), this->end());
587 this->Size = 0;
588 }
589
590private:
591 template <bool ForOverwrite> void resizeImpl(size_type N) {
592 if (N < this->size()) {
593 this->pop_back_n(this->size() - N);
594 } else if (N > this->size()) {
595 this->reserve(N);
596 for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
597 if (ForOverwrite)
598 new (&*I) T;
599 else
600 new (&*I) T();
601 this->set_size(N);
602 }
603 }
604
605public:
606 void resize(size_type N) { resizeImpl<false>(N); }
607
608 /// Like resize, but \ref T is POD, the new values won't be initialized.
609 void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
610
611 void resize(size_type N, ValueParamT NV) {
612 if (N == this->size())
613 return;
614
615 if (N < this->size()) {
616 this->pop_back_n(this->size() - N);
617 return;
618 }
619
620 // N > this->size(). Defer to append.
621 this->append(N - this->size(), NV);
622 }
623
624 void reserve(size_type N) {
625 if (this->capacity() < N)
626 this->grow(N);
627 }
628
629 void pop_back_n(size_type NumItems) {
630 assert(this->size() >= NumItems)(static_cast <bool> (this->size() >= NumItems) ? void
(0) : __assert_fail ("this->size() >= NumItems", "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 630, __extension__ __PRETTY_FUNCTION__))
;
631 this->destroy_range(this->end() - NumItems, this->end());
632 this->set_size(this->size() - NumItems);
633 }
634
635 LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() {
636 T Result = ::std::move(this->back());
637 this->pop_back();
638 return Result;
639 }
640
641 void swap(SmallVectorImpl &RHS);
642
643 /// Add the specified range to the end of the SmallVector.
644 template <typename in_iter,
645 typename = std::enable_if_t<std::is_convertible<
646 typename std::iterator_traits<in_iter>::iterator_category,
647 std::input_iterator_tag>::value>>
648 void append(in_iter in_start, in_iter in_end) {
649 this->assertSafeToAddRange(in_start, in_end);
650 size_type NumInputs = std::distance(in_start, in_end);
651 this->reserve(this->size() + NumInputs);
652 this->uninitialized_copy(in_start, in_end, this->end());
653 this->set_size(this->size() + NumInputs);
654 }
655
656 /// Append \p NumInputs copies of \p Elt to the end.
657 void append(size_type NumInputs, ValueParamT Elt) {
658 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
659 std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
660 this->set_size(this->size() + NumInputs);
661 }
662
663 void append(std::initializer_list<T> IL) {
664 append(IL.begin(), IL.end());
665 }
666
667 void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
668
669 void assign(size_type NumElts, ValueParamT Elt) {
670 // Note that Elt could be an internal reference.
671 if (NumElts > this->capacity()) {
672 this->growAndAssign(NumElts, Elt);
673 return;
674 }
675
676 // Assign over existing elements.
677 std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
678 if (NumElts > this->size())
679 std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
680 else if (NumElts < this->size())
681 this->destroy_range(this->begin() + NumElts, this->end());
682 this->set_size(NumElts);
683 }
684
685 // FIXME: Consider assigning over existing elements, rather than clearing &
686 // re-initializing them - for all assign(...) variants.
687
688 template <typename in_iter,
689 typename = std::enable_if_t<std::is_convertible<
690 typename std::iterator_traits<in_iter>::iterator_category,
691 std::input_iterator_tag>::value>>
692 void assign(in_iter in_start, in_iter in_end) {
693 this->assertSafeToReferenceAfterClear(in_start, in_end);
694 clear();
695 append(in_start, in_end);
696 }
697
698 void assign(std::initializer_list<T> IL) {
699 clear();
700 append(IL);
701 }
702
703 void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
704
705 iterator erase(const_iterator CI) {
706 // Just cast away constness because this is a non-const member function.
707 iterator I = const_cast<iterator>(CI);
708
709 assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.")(static_cast <bool> (this->isReferenceToStorage(CI) &&
"Iterator to erase is out of bounds.") ? void (0) : __assert_fail
("this->isReferenceToStorage(CI) && \"Iterator to erase is out of bounds.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 709, __extension__ __PRETTY_FUNCTION__))
;
710
711 iterator N = I;
712 // Shift all elts down one.
713 std::move(I+1, this->end(), I);
714 // Drop the last elt.
715 this->pop_back();
716 return(N);
717 }
718
719 iterator erase(const_iterator CS, const_iterator CE) {
720 // Just cast away constness because this is a non-const member function.
721 iterator S = const_cast<iterator>(CS);
722 iterator E = const_cast<iterator>(CE);
723
724 assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.")(static_cast <bool> (this->isRangeInStorage(S, E) &&
"Range to erase is out of bounds.") ? void (0) : __assert_fail
("this->isRangeInStorage(S, E) && \"Range to erase is out of bounds.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 724, __extension__ __PRETTY_FUNCTION__))
;
725
726 iterator N = S;
727 // Shift all elts down.
728 iterator I = std::move(E, this->end(), S);
729 // Drop the last elts.
730 this->destroy_range(I, this->end());
731 this->set_size(I - this->begin());
732 return(N);
733 }
734
735private:
736 template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
737 // Callers ensure that ArgType is derived from T.
738 static_assert(
739 std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
740 T>::value,
741 "ArgType must be derived from T!");
742
743 if (I == this->end()) { // Important special case for empty vector.
744 this->push_back(::std::forward<ArgType>(Elt));
745 return this->end()-1;
746 }
747
748 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")(static_cast <bool> (this->isReferenceToStorage(I) &&
"Insertion iterator is out of bounds.") ? void (0) : __assert_fail
("this->isReferenceToStorage(I) && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 748, __extension__ __PRETTY_FUNCTION__))
;
749
750 // Grow if necessary.
751 size_t Index = I - this->begin();
752 std::remove_reference_t<ArgType> *EltPtr =
753 this->reserveForParamAndGetAddress(Elt);
754 I = this->begin() + Index;
755
756 ::new ((void*) this->end()) T(::std::move(this->back()));
757 // Push everything else over.
758 std::move_backward(I, this->end()-1, this->end());
759 this->set_size(this->size() + 1);
760
761 // If we just moved the element we're inserting, be sure to update
762 // the reference (never happens if TakesParamByValue).
763 static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
764 "ArgType must be 'T' when taking by value!");
765 if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
766 ++EltPtr;
767
768 *I = ::std::forward<ArgType>(*EltPtr);
769 return I;
770 }
771
772public:
773 iterator insert(iterator I, T &&Elt) {
774 return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
775 }
776
777 iterator insert(iterator I, const T &Elt) {
778 return insert_one_impl(I, this->forward_value_param(Elt));
779 }
780
781 iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
782 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
783 size_t InsertElt = I - this->begin();
784
785 if (I == this->end()) { // Important special case for empty vector.
786 append(NumToInsert, Elt);
787 return this->begin()+InsertElt;
788 }
789
790 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")(static_cast <bool> (this->isReferenceToStorage(I) &&
"Insertion iterator is out of bounds.") ? void (0) : __assert_fail
("this->isReferenceToStorage(I) && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 790, __extension__ __PRETTY_FUNCTION__))
;
791
792 // Ensure there is enough space, and get the (maybe updated) address of
793 // Elt.
794 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
795
796 // Uninvalidate the iterator.
797 I = this->begin()+InsertElt;
798
799 // If there are more elements between the insertion point and the end of the
800 // range than there are being inserted, we can use a simple approach to
801 // insertion. Since we already reserved space, we know that this won't
802 // reallocate the vector.
803 if (size_t(this->end()-I) >= NumToInsert) {
804 T *OldEnd = this->end();
805 append(std::move_iterator<iterator>(this->end() - NumToInsert),
806 std::move_iterator<iterator>(this->end()));
807
808 // Copy the existing elements that get replaced.
809 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
810
811 // If we just moved the element we're inserting, be sure to update
812 // the reference (never happens if TakesParamByValue).
813 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
814 EltPtr += NumToInsert;
815
816 std::fill_n(I, NumToInsert, *EltPtr);
817 return I;
818 }
819
820 // Otherwise, we're inserting more elements than exist already, and we're
821 // not inserting at the end.
822
823 // Move over the elements that we're about to overwrite.
824 T *OldEnd = this->end();
825 this->set_size(this->size() + NumToInsert);
826 size_t NumOverwritten = OldEnd-I;
827 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
828
829 // If we just moved the element we're inserting, be sure to update
830 // the reference (never happens if TakesParamByValue).
831 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
832 EltPtr += NumToInsert;
833
834 // Replace the overwritten part.
835 std::fill_n(I, NumOverwritten, *EltPtr);
836
837 // Insert the non-overwritten middle part.
838 std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
839 return I;
840 }
841
842 template <typename ItTy,
843 typename = std::enable_if_t<std::is_convertible<
844 typename std::iterator_traits<ItTy>::iterator_category,
845 std::input_iterator_tag>::value>>
846 iterator insert(iterator I, ItTy From, ItTy To) {
847 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
848 size_t InsertElt = I - this->begin();
849
850 if (I == this->end()) { // Important special case for empty vector.
851 append(From, To);
852 return this->begin()+InsertElt;
853 }
854
855 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")(static_cast <bool> (this->isReferenceToStorage(I) &&
"Insertion iterator is out of bounds.") ? void (0) : __assert_fail
("this->isReferenceToStorage(I) && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/ADT/SmallVector.h"
, 855, __extension__ __PRETTY_FUNCTION__))
;
856
857 // Check that the reserve that follows doesn't invalidate the iterators.
858 this->assertSafeToAddRange(From, To);
859
860 size_t NumToInsert = std::distance(From, To);
861
862 // Ensure there is enough space.
863 reserve(this->size() + NumToInsert);
864
865 // Uninvalidate the iterator.
866 I = this->begin()+InsertElt;
867
868 // If there are more elements between the insertion point and the end of the
869 // range than there are being inserted, we can use a simple approach to
870 // insertion. Since we already reserved space, we know that this won't
871 // reallocate the vector.
872 if (size_t(this->end()-I) >= NumToInsert) {
873 T *OldEnd = this->end();
874 append(std::move_iterator<iterator>(this->end() - NumToInsert),
875 std::move_iterator<iterator>(this->end()));
876
877 // Copy the existing elements that get replaced.
878 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
879
880 std::copy(From, To, I);
881 return I;
882 }
883
884 // Otherwise, we're inserting more elements than exist already, and we're
885 // not inserting at the end.
886
887 // Move over the elements that we're about to overwrite.
888 T *OldEnd = this->end();
889 this->set_size(this->size() + NumToInsert);
890 size_t NumOverwritten = OldEnd-I;
891 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
892
893 // Replace the overwritten part.
894 for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
895 *J = *From;
896 ++J; ++From;
897 }
898
899 // Insert the non-overwritten middle part.
900 this->uninitialized_copy(From, To, OldEnd);
901 return I;
902 }
903
904 void insert(iterator I, std::initializer_list<T> IL) {
905 insert(I, IL.begin(), IL.end());
906 }
907
908 template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
909 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
910 return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
911
912 ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
913 this->set_size(this->size() + 1);
914 return this->back();
915 }
916
917 SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
918
919 SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
920
921 bool operator==(const SmallVectorImpl &RHS) const {
922 if (this->size() != RHS.size()) return false;
923 return std::equal(this->begin(), this->end(), RHS.begin());
924 }
925 bool operator!=(const SmallVectorImpl &RHS) const {
926 return !(*this == RHS);
927 }
928
929 bool operator<(const SmallVectorImpl &RHS) const {
930 return std::lexicographical_compare(this->begin(), this->end(),
931 RHS.begin(), RHS.end());
932 }
933};
934
935template <typename T>
936void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
937 if (this == &RHS) return;
938
939 // We can only avoid copying elements if neither vector is small.
940 if (!this->isSmall() && !RHS.isSmall()) {
941 std::swap(this->BeginX, RHS.BeginX);
942 std::swap(this->Size, RHS.Size);
943 std::swap(this->Capacity, RHS.Capacity);
944 return;
945 }
946 this->reserve(RHS.size());
947 RHS.reserve(this->size());
948
949 // Swap the shared elements.
950 size_t NumShared = this->size();
951 if (NumShared > RHS.size()) NumShared = RHS.size();
952 for (size_type i = 0; i != NumShared; ++i)
953 std::swap((*this)[i], RHS[i]);
954
955 // Copy over the extra elts.
956 if (this->size() > RHS.size()) {
957 size_t EltDiff = this->size() - RHS.size();
958 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
959 RHS.set_size(RHS.size() + EltDiff);
960 this->destroy_range(this->begin()+NumShared, this->end());
961 this->set_size(NumShared);
962 } else if (RHS.size() > this->size()) {
963 size_t EltDiff = RHS.size() - this->size();
964 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
965 this->set_size(this->size() + EltDiff);
966 this->destroy_range(RHS.begin()+NumShared, RHS.end());
967 RHS.set_size(NumShared);
968 }
969}
970
971template <typename T>
972SmallVectorImpl<T> &SmallVectorImpl<T>::
973 operator=(const SmallVectorImpl<T> &RHS) {
974 // Avoid self-assignment.
975 if (this == &RHS) return *this;
976
977 // If we already have sufficient space, assign the common elements, then
978 // destroy any excess.
979 size_t RHSSize = RHS.size();
980 size_t CurSize = this->size();
981 if (CurSize >= RHSSize) {
982 // Assign common elements.
983 iterator NewEnd;
984 if (RHSSize)
985 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
986 else
987 NewEnd = this->begin();
988
989 // Destroy excess elements.
990 this->destroy_range(NewEnd, this->end());
991
992 // Trim.
993 this->set_size(RHSSize);
994 return *this;
995 }
996
997 // If we have to grow to have enough elements, destroy the current elements.
998 // This allows us to avoid copying them during the grow.
999 // FIXME: don't do this if they're efficiently moveable.
1000 if (this->capacity() < RHSSize) {
1001 // Destroy current elements.
1002 this->clear();
1003 CurSize = 0;
1004 this->grow(RHSSize);
1005 } else if (CurSize) {
1006 // Otherwise, use assignment for the already-constructed elements.
1007 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
1008 }
1009
1010 // Copy construct the new elements in place.
1011 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
1012 this->begin()+CurSize);
1013
1014 // Set end.
1015 this->set_size(RHSSize);
1016 return *this;
1017}
1018
1019template <typename T>
1020SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
1021 // Avoid self-assignment.
1022 if (this == &RHS) return *this;
1023
1024 // If the RHS isn't small, clear this vector and then steal its buffer.
1025 if (!RHS.isSmall()) {
1026 this->destroy_range(this->begin(), this->end());
1027 if (!this->isSmall()) free(this->begin());
1028 this->BeginX = RHS.BeginX;
1029 this->Size = RHS.Size;
1030 this->Capacity = RHS.Capacity;
1031 RHS.resetToSmall();
1032 return *this;
1033 }
1034
1035 // If we already have sufficient space, assign the common elements, then
1036 // destroy any excess.
1037 size_t RHSSize = RHS.size();
1038 size_t CurSize = this->size();
1039 if (CurSize >= RHSSize) {
1040 // Assign common elements.
1041 iterator NewEnd = this->begin();
1042 if (RHSSize)
1043 NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
1044
1045 // Destroy excess elements and trim the bounds.
1046 this->destroy_range(NewEnd, this->end());
1047 this->set_size(RHSSize);
1048
1049 // Clear the RHS.
1050 RHS.clear();
1051
1052 return *this;
1053 }
1054
1055 // If we have to grow to have enough elements, destroy the current elements.
1056 // This allows us to avoid copying them during the grow.
1057 // FIXME: this may not actually make any sense if we can efficiently move
1058 // elements.
1059 if (this->capacity() < RHSSize) {
1060 // Destroy current elements.
1061 this->clear();
1062 CurSize = 0;
1063 this->grow(RHSSize);
1064 } else if (CurSize) {
1065 // Otherwise, use assignment for the already-constructed elements.
1066 std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
1067 }
1068
1069 // Move-construct the new elements in place.
1070 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
1071 this->begin()+CurSize);
1072
1073 // Set end.
1074 this->set_size(RHSSize);
1075
1076 RHS.clear();
1077 return *this;
1078}
1079
1080/// Storage for the SmallVector elements. This is specialized for the N=0 case
1081/// to avoid allocating unnecessary storage.
1082template <typename T, unsigned N>
1083struct SmallVectorStorage {
1084 alignas(T) char InlineElts[N * sizeof(T)];
1085};
1086
1087/// We need the storage to be properly aligned even for small-size of 0 so that
1088/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
1089/// well-defined.
1090template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
1091
1092/// Forward declaration of SmallVector so that
1093/// calculateSmallVectorDefaultInlinedElements can reference
1094/// `sizeof(SmallVector<T, 0>)`.
1095template <typename T, unsigned N> class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector;
1096
1097/// Helper class for calculating the default number of inline elements for
1098/// `SmallVector<T>`.
1099///
1100/// This should be migrated to a constexpr function when our minimum
1101/// compiler support is enough for multi-statement constexpr functions.
1102template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
1103 // Parameter controlling the default number of inlined elements
1104 // for `SmallVector<T>`.
1105 //
1106 // The default number of inlined elements ensures that
1107 // 1. There is at least one inlined element.
1108 // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
1109 // it contradicts 1.
1110 static constexpr size_t kPreferredSmallVectorSizeof = 64;
1111
1112 // static_assert that sizeof(T) is not "too big".
1113 //
1114 // Because our policy guarantees at least one inlined element, it is possible
1115 // for an arbitrarily large inlined element to allocate an arbitrarily large
1116 // amount of inline storage. We generally consider it an antipattern for a
1117 // SmallVector to allocate an excessive amount of inline storage, so we want
1118 // to call attention to these cases and make sure that users are making an
1119 // intentional decision if they request a lot of inline storage.
1120 //
1121 // We want this assertion to trigger in pathological cases, but otherwise
1122 // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
1123 // larger than kPreferredSmallVectorSizeof (otherwise,
1124 // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
1125 // pattern seems useful in practice).
1126 //
1127 // One wrinkle is that this assertion is in theory non-portable, since
1128 // sizeof(T) is in general platform-dependent. However, we don't expect this
1129 // to be much of an issue, because most LLVM development happens on 64-bit
1130 // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
1131 // 32-bit hosts, dodging the issue. The reverse situation, where development
1132 // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
1133 // 64-bit host, is expected to be very rare.
1134 static_assert(
1135 sizeof(T) <= 256,
1136 "You are trying to use a default number of inlined elements for "
1137 "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
1138 "explicit number of inlined elements with `SmallVector<T, N>` to make "
1139 "sure you really want that much inline storage.");
1140
1141 // Discount the size of the header itself when calculating the maximum inline
1142 // bytes.
1143 static constexpr size_t PreferredInlineBytes =
1144 kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
1145 static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
1146 static constexpr size_t value =
1147 NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
1148};
1149
1150/// This is a 'vector' (really, a variable-sized array), optimized
1151/// for the case when the array is small. It contains some number of elements
1152/// in-place, which allows it to avoid heap allocation when the actual number of
1153/// elements is below that threshold. This allows normal "small" cases to be
1154/// fast without losing generality for large inputs.
1155///
1156/// \note
1157/// In the absence of a well-motivated choice for the number of inlined
1158/// elements \p N, it is recommended to use \c SmallVector<T> (that is,
1159/// omitting the \p N). This will choose a default number of inlined elements
1160/// reasonable for allocation on the stack (for example, trying to keep \c
1161/// sizeof(SmallVector<T>) around 64 bytes).
1162///
1163/// \warning This does not attempt to be exception safe.
1164///
1165/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
1166template <typename T,
1167 unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
1168class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector : public SmallVectorImpl<T>,
1169 SmallVectorStorage<T, N> {
1170public:
1171 SmallVector() : SmallVectorImpl<T>(N) {}
1172
1173 ~SmallVector() {
1174 // Destroy the constructed elements in the vector.
1175 this->destroy_range(this->begin(), this->end());
1176 }
1177
1178 explicit SmallVector(size_t Size, const T &Value = T())
1179 : SmallVectorImpl<T>(N) {
1180 this->assign(Size, Value);
1181 }
1182
1183 template <typename ItTy,
1184 typename = std::enable_if_t<std::is_convertible<
1185 typename std::iterator_traits<ItTy>::iterator_category,
1186 std::input_iterator_tag>::value>>
1187 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
1188 this->append(S, E);
1189 }
1190
1191 template <typename RangeTy>
1192 explicit SmallVector(const iterator_range<RangeTy> &R)
1193 : SmallVectorImpl<T>(N) {
1194 this->append(R.begin(), R.end());
1195 }
1196
1197 SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
1198 this->assign(IL);
1199 }
1200
1201 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
1202 if (!RHS.empty())
1203 SmallVectorImpl<T>::operator=(RHS);
1204 }
1205
1206 SmallVector &operator=(const SmallVector &RHS) {
1207 SmallVectorImpl<T>::operator=(RHS);
1208 return *this;
1209 }
1210
1211 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
1212 if (!RHS.empty())
1213 SmallVectorImpl<T>::operator=(::std::move(RHS));
1214 }
1215
1216 SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
1217 if (!RHS.empty())
1218 SmallVectorImpl<T>::operator=(::std::move(RHS));
1219 }
1220
1221 SmallVector &operator=(SmallVector &&RHS) {
1222 SmallVectorImpl<T>::operator=(::std::move(RHS));
1223 return *this;
1224 }
1225
1226 SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
1227 SmallVectorImpl<T>::operator=(::std::move(RHS));
1228 return *this;
1229 }
1230
1231 SmallVector &operator=(std::initializer_list<T> IL) {
1232 this->assign(IL);
1233 return *this;
1234 }
1235};
1236
1237template <typename T, unsigned N>
1238inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
1239 return X.capacity_in_bytes();
1240}
1241
1242/// Given a range of type R, iterate the entire range and return a
1243/// SmallVector with elements of the vector. This is useful, for example,
1244/// when you want to iterate a range and then sort the results.
1245template <unsigned Size, typename R>
1246SmallVector<typename std::remove_const<typename std::remove_reference<
1247 decltype(*std::begin(std::declval<R &>()))>::type>::type,
1248 Size>
1249to_vector(R &&Range) {
1250 return {std::begin(Range), std::end(Range)};
1251}
1252
1253} // end namespace llvm
1254
1255namespace std {
1256
1257 /// Implement std::swap in terms of SmallVector swap.
1258 template<typename T>
1259 inline void
1260 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
1261 LHS.swap(RHS);
1262 }
1263
1264 /// Implement std::swap in terms of SmallVector swap.
1265 template<typename T, unsigned N>
1266 inline void
1267 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
1268 LHS.swap(RHS);
1269 }
1270
1271} // end namespace std
1272
1273#endif // LLVM_ADT_SMALLVECTOR_H