Bug Summary

File:llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
Warning:line 6251, column 30
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SLPVectorizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/build-llvm/lib/Transforms/Vectorize -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/build-llvm/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/build-llvm/lib/Transforms/Vectorize -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-06-10-162512-48765-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp

/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp

1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SetOperations.h"
26#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallBitVector.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/iterator.h"
33#include "llvm/ADT/iterator_range.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/AssumptionCache.h"
36#include "llvm/Analysis/CodeMetrics.h"
37#include "llvm/Analysis/DemandedBits.h"
38#include "llvm/Analysis/GlobalsModRef.h"
39#include "llvm/Analysis/IVDescriptors.h"
40#include "llvm/Analysis/LoopAccessAnalysis.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Analysis/MemoryLocation.h"
43#include "llvm/Analysis/OptimizationRemarkEmitter.h"
44#include "llvm/Analysis/ScalarEvolution.h"
45#include "llvm/Analysis/ScalarEvolutionExpressions.h"
46#include "llvm/Analysis/TargetLibraryInfo.h"
47#include "llvm/Analysis/TargetTransformInfo.h"
48#include "llvm/Analysis/ValueTracking.h"
49#include "llvm/Analysis/VectorUtils.h"
50#include "llvm/IR/Attributes.h"
51#include "llvm/IR/BasicBlock.h"
52#include "llvm/IR/Constant.h"
53#include "llvm/IR/Constants.h"
54#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DebugLoc.h"
56#include "llvm/IR/DerivedTypes.h"
57#include "llvm/IR/Dominators.h"
58#include "llvm/IR/Function.h"
59#include "llvm/IR/IRBuilder.h"
60#include "llvm/IR/InstrTypes.h"
61#include "llvm/IR/Instruction.h"
62#include "llvm/IR/Instructions.h"
63#include "llvm/IR/IntrinsicInst.h"
64#include "llvm/IR/Intrinsics.h"
65#include "llvm/IR/Module.h"
66#include "llvm/IR/NoFolder.h"
67#include "llvm/IR/Operator.h"
68#include "llvm/IR/PatternMatch.h"
69#include "llvm/IR/Type.h"
70#include "llvm/IR/Use.h"
71#include "llvm/IR/User.h"
72#include "llvm/IR/Value.h"
73#include "llvm/IR/ValueHandle.h"
74#include "llvm/IR/Verifier.h"
75#include "llvm/InitializePasses.h"
76#include "llvm/Pass.h"
77#include "llvm/Support/Casting.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/Compiler.h"
80#include "llvm/Support/DOTGraphTraits.h"
81#include "llvm/Support/Debug.h"
82#include "llvm/Support/ErrorHandling.h"
83#include "llvm/Support/GraphWriter.h"
84#include "llvm/Support/InstructionCost.h"
85#include "llvm/Support/KnownBits.h"
86#include "llvm/Support/MathExtras.h"
87#include "llvm/Support/raw_ostream.h"
88#include "llvm/Transforms/Utils/InjectTLIMappings.h"
89#include "llvm/Transforms/Utils/LoopUtils.h"
90#include "llvm/Transforms/Vectorize.h"
91#include <algorithm>
92#include <cassert>
93#include <cstdint>
94#include <iterator>
95#include <memory>
96#include <set>
97#include <string>
98#include <tuple>
99#include <utility>
100#include <vector>
101
102using namespace llvm;
103using namespace llvm::PatternMatch;
104using namespace slpvectorizer;
105
106#define SV_NAME"slp-vectorizer" "slp-vectorizer"
107#define DEBUG_TYPE"SLP" "SLP"
108
109STATISTIC(NumVectorInstructions, "Number of vector instructions generated")static llvm::Statistic NumVectorInstructions = {"SLP", "NumVectorInstructions"
, "Number of vector instructions generated"}
;
110
111cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
112 cl::desc("Run the SLP vectorization passes"));
113
114static cl::opt<int>
115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
116 cl::desc("Only vectorize if you gain more than this "
117 "number "));
118
119static cl::opt<bool>
120ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
121 cl::desc("Attempt to vectorize horizontal reductions"));
122
123static cl::opt<bool> ShouldStartVectorizeHorAtStore(
124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
125 cl::desc(
126 "Attempt to vectorize horizontal reductions feeding into a store"));
127
128static cl::opt<int>
129MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
130 cl::desc("Attempt to vectorize for this register size in bits"));
131
132static cl::opt<unsigned>
133MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
134 cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
135
136static cl::opt<int>
137MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
138 cl::desc("Maximum depth of the lookup for consecutive stores."));
139
140/// Limits the size of scheduling regions in a block.
141/// It avoid long compile times for _very_ large blocks where vector
142/// instructions are spread over a wide range.
143/// This limit is way higher than needed by real-world functions.
144static cl::opt<int>
145ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
146 cl::desc("Limit the size of the SLP scheduling region per block"));
147
148static cl::opt<int> MinVectorRegSizeOption(
149 "slp-min-reg-size", cl::init(128), cl::Hidden,
150 cl::desc("Attempt to vectorize for this register size in bits"));
151
152static cl::opt<unsigned> RecursionMaxDepth(
153 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
154 cl::desc("Limit the recursion depth when building a vectorizable tree"));
155
156static cl::opt<unsigned> MinTreeSize(
157 "slp-min-tree-size", cl::init(3), cl::Hidden,
158 cl::desc("Only vectorize small trees if they are fully vectorizable"));
159
160// The maximum depth that the look-ahead score heuristic will explore.
161// The higher this value, the higher the compilation time overhead.
162static cl::opt<int> LookAheadMaxDepth(
163 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
164 cl::desc("The maximum look-ahead depth for operand reordering scores"));
165
166// The Look-ahead heuristic goes through the users of the bundle to calculate
167// the users cost in getExternalUsesCost(). To avoid compilation time increase
168// we limit the number of users visited to this value.
169static cl::opt<unsigned> LookAheadUsersBudget(
170 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
171 cl::desc("The maximum number of users to visit while visiting the "
172 "predecessors. This prevents compilation time increase."));
173
174static cl::opt<bool>
175 ViewSLPTree("view-slp-tree", cl::Hidden,
176 cl::desc("Display the SLP trees with Graphviz"));
177
178// Limit the number of alias checks. The limit is chosen so that
179// it has no negative effect on the llvm benchmarks.
180static const unsigned AliasedCheckLimit = 10;
181
182// Another limit for the alias checks: The maximum distance between load/store
183// instructions where alias checks are done.
184// This limit is useful for very large basic blocks.
185static const unsigned MaxMemDepDistance = 160;
186
187/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
188/// regions to be handled.
189static const int MinScheduleRegionSize = 16;
190
191/// Predicate for the element types that the SLP vectorizer supports.
192///
193/// The most important thing to filter here are types which are invalid in LLVM
194/// vectors. We also filter target specific types which have absolutely no
195/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
196/// avoids spending time checking the cost model and realizing that they will
197/// be inevitably scalarized.
198static bool isValidElementType(Type *Ty) {
199 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
200 !Ty->isPPC_FP128Ty();
201}
202
203/// \returns true if all of the instructions in \p VL are in the same block or
204/// false otherwise.
205static bool allSameBlock(ArrayRef<Value *> VL) {
206 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
207 if (!I0)
208 return false;
209 BasicBlock *BB = I0->getParent();
210 for (int I = 1, E = VL.size(); I < E; I++) {
211 auto *II = dyn_cast<Instruction>(VL[I]);
212 if (!II)
213 return false;
214
215 if (BB != II->getParent())
216 return false;
217 }
218 return true;
219}
220
221/// \returns True if the value is a constant (but not globals/constant
222/// expressions).
223static bool isConstant(Value *V) {
224 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
225}
226
227/// \returns True if all of the values in \p VL are constants (but not
228/// globals/constant expressions).
229static bool allConstant(ArrayRef<Value *> VL) {
230 // Constant expressions and globals can't be vectorized like normal integer/FP
231 // constants.
232 return all_of(VL, isConstant);
233}
234
235/// \returns True if all of the values in \p VL are identical.
236static bool isSplat(ArrayRef<Value *> VL) {
237 for (unsigned i = 1, e = VL.size(); i < e; ++i)
238 if (VL[i] != VL[0])
239 return false;
240 return true;
241}
242
243/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
244static bool isCommutative(Instruction *I) {
245 if (auto *Cmp = dyn_cast<CmpInst>(I))
246 return Cmp->isCommutative();
247 if (auto *BO = dyn_cast<BinaryOperator>(I))
248 return BO->isCommutative();
249 // TODO: This should check for generic Instruction::isCommutative(), but
250 // we need to confirm that the caller code correctly handles Intrinsics
251 // for example (does not have 2 operands).
252 return false;
253}
254
255/// Checks if the vector of instructions can be represented as a shuffle, like:
256/// %x0 = extractelement <4 x i8> %x, i32 0
257/// %x3 = extractelement <4 x i8> %x, i32 3
258/// %y1 = extractelement <4 x i8> %y, i32 1
259/// %y2 = extractelement <4 x i8> %y, i32 2
260/// %x0x0 = mul i8 %x0, %x0
261/// %x3x3 = mul i8 %x3, %x3
262/// %y1y1 = mul i8 %y1, %y1
263/// %y2y2 = mul i8 %y2, %y2
264/// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
265/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
266/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
267/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
268/// ret <4 x i8> %ins4
269/// can be transformed into:
270/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
271/// i32 6>
272/// %2 = mul <4 x i8> %1, %1
273/// ret <4 x i8> %2
274/// We convert this initially to something like:
275/// %x0 = extractelement <4 x i8> %x, i32 0
276/// %x3 = extractelement <4 x i8> %x, i32 3
277/// %y1 = extractelement <4 x i8> %y, i32 1
278/// %y2 = extractelement <4 x i8> %y, i32 2
279/// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
280/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
281/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
282/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
283/// %5 = mul <4 x i8> %4, %4
284/// %6 = extractelement <4 x i8> %5, i32 0
285/// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
286/// %7 = extractelement <4 x i8> %5, i32 1
287/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
288/// %8 = extractelement <4 x i8> %5, i32 2
289/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
290/// %9 = extractelement <4 x i8> %5, i32 3
291/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
292/// ret <4 x i8> %ins4
293/// InstCombiner transforms this into a shuffle and vector mul
294/// Mask will return the Shuffle Mask equivalent to the extracted elements.
295/// TODO: Can we split off and reuse the shuffle mask detection from
296/// TargetTransformInfo::getInstructionThroughput?
297static Optional<TargetTransformInfo::ShuffleKind>
298isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
299 auto *EI0 = cast<ExtractElementInst>(VL[0]);
300 unsigned Size =
301 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
302 Value *Vec1 = nullptr;
303 Value *Vec2 = nullptr;
304 enum ShuffleMode { Unknown, Select, Permute };
305 ShuffleMode CommonShuffleMode = Unknown;
306 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
307 auto *EI = cast<ExtractElementInst>(VL[I]);
308 auto *Vec = EI->getVectorOperand();
309 // All vector operands must have the same number of vector elements.
310 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
311 return None;
312 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
313 if (!Idx)
314 return None;
315 // Undefined behavior if Idx is negative or >= Size.
316 if (Idx->getValue().uge(Size)) {
317 Mask.push_back(UndefMaskElem);
318 continue;
319 }
320 unsigned IntIdx = Idx->getValue().getZExtValue();
321 Mask.push_back(IntIdx);
322 // We can extractelement from undef or poison vector.
323 if (isa<UndefValue>(Vec))
324 continue;
325 // For correct shuffling we have to have at most 2 different vector operands
326 // in all extractelement instructions.
327 if (!Vec1 || Vec1 == Vec)
328 Vec1 = Vec;
329 else if (!Vec2 || Vec2 == Vec)
330 Vec2 = Vec;
331 else
332 return None;
333 if (CommonShuffleMode == Permute)
334 continue;
335 // If the extract index is not the same as the operation number, it is a
336 // permutation.
337 if (IntIdx != I) {
338 CommonShuffleMode = Permute;
339 continue;
340 }
341 CommonShuffleMode = Select;
342 }
343 // If we're not crossing lanes in different vectors, consider it as blending.
344 if (CommonShuffleMode == Select && Vec2)
345 return TargetTransformInfo::SK_Select;
346 // If Vec2 was never used, we have a permutation of a single vector, otherwise
347 // we have permutation of 2 vectors.
348 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
349 : TargetTransformInfo::SK_PermuteSingleSrc;
350}
351
352namespace {
353
354/// Main data required for vectorization of instructions.
355struct InstructionsState {
356 /// The very first instruction in the list with the main opcode.
357 Value *OpValue = nullptr;
358
359 /// The main/alternate instruction.
360 Instruction *MainOp = nullptr;
361 Instruction *AltOp = nullptr;
362
363 /// The main/alternate opcodes for the list of instructions.
364 unsigned getOpcode() const {
365 return MainOp ? MainOp->getOpcode() : 0;
366 }
367
368 unsigned getAltOpcode() const {
369 return AltOp ? AltOp->getOpcode() : 0;
370 }
371
372 /// Some of the instructions in the list have alternate opcodes.
373 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
374
375 bool isOpcodeOrAlt(Instruction *I) const {
376 unsigned CheckedOpcode = I->getOpcode();
377 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
378 }
379
380 InstructionsState() = delete;
381 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
382 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
383};
384
385} // end anonymous namespace
386
387/// Chooses the correct key for scheduling data. If \p Op has the same (or
388/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
389/// OpValue.
390static Value *isOneOf(const InstructionsState &S, Value *Op) {
391 auto *I = dyn_cast<Instruction>(Op);
392 if (I && S.isOpcodeOrAlt(I))
393 return Op;
394 return S.OpValue;
395}
396
397/// \returns true if \p Opcode is allowed as part of of the main/alternate
398/// instruction for SLP vectorization.
399///
400/// Example of unsupported opcode is SDIV that can potentially cause UB if the
401/// "shuffled out" lane would result in division by zero.
402static bool isValidForAlternation(unsigned Opcode) {
403 if (Instruction::isIntDivRem(Opcode))
404 return false;
405
406 return true;
407}
408
409/// \returns analysis of the Instructions in \p VL described in
410/// InstructionsState, the Opcode that we suppose the whole list
411/// could be vectorized even if its structure is diverse.
412static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
413 unsigned BaseIndex = 0) {
414 // Make sure these are all Instructions.
415 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
416 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
417
418 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
419 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
420 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
421 unsigned AltOpcode = Opcode;
422 unsigned AltIndex = BaseIndex;
423
424 // Check for one alternate opcode from another BinaryOperator.
425 // TODO - generalize to support all operators (types, calls etc.).
426 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
427 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
428 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
429 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
430 continue;
431 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
432 isValidForAlternation(Opcode)) {
433 AltOpcode = InstOpcode;
434 AltIndex = Cnt;
435 continue;
436 }
437 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
438 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
439 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
440 if (Ty0 == Ty1) {
441 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
442 continue;
443 if (Opcode == AltOpcode) {
444 assert(isValidForAlternation(Opcode) &&(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 446, __extension__ __PRETTY_FUNCTION__))
445 isValidForAlternation(InstOpcode) &&(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 446, __extension__ __PRETTY_FUNCTION__))
446 "Cast isn't safe for alternation, logic needs to be updated!")(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 446, __extension__ __PRETTY_FUNCTION__))
;
447 AltOpcode = InstOpcode;
448 AltIndex = Cnt;
449 continue;
450 }
451 }
452 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
453 continue;
454 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
455 }
456
457 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
458 cast<Instruction>(VL[AltIndex]));
459}
460
461/// \returns true if all of the values in \p VL have the same type or false
462/// otherwise.
463static bool allSameType(ArrayRef<Value *> VL) {
464 Type *Ty = VL[0]->getType();
465 for (int i = 1, e = VL.size(); i < e; i++)
466 if (VL[i]->getType() != Ty)
467 return false;
468
469 return true;
470}
471
472/// \returns True if Extract{Value,Element} instruction extracts element Idx.
473static Optional<unsigned> getExtractIndex(Instruction *E) {
474 unsigned Opcode = E->getOpcode();
475 assert((Opcode == Instruction::ExtractElement ||(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 477, __extension__ __PRETTY_FUNCTION__))
476 Opcode == Instruction::ExtractValue) &&(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 477, __extension__ __PRETTY_FUNCTION__))
477 "Expected extractelement or extractvalue instruction.")(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 477, __extension__ __PRETTY_FUNCTION__))
;
478 if (Opcode == Instruction::ExtractElement) {
479 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
480 if (!CI)
481 return None;
482 return CI->getZExtValue();
483 }
484 ExtractValueInst *EI = cast<ExtractValueInst>(E);
485 if (EI->getNumIndices() != 1)
486 return None;
487 return *EI->idx_begin();
488}
489
490/// \returns True if in-tree use also needs extract. This refers to
491/// possible scalar operand in vectorized instruction.
492static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
493 TargetLibraryInfo *TLI) {
494 unsigned Opcode = UserInst->getOpcode();
495 switch (Opcode) {
496 case Instruction::Load: {
497 LoadInst *LI = cast<LoadInst>(UserInst);
498 return (LI->getPointerOperand() == Scalar);
499 }
500 case Instruction::Store: {
501 StoreInst *SI = cast<StoreInst>(UserInst);
502 return (SI->getPointerOperand() == Scalar);
503 }
504 case Instruction::Call: {
505 CallInst *CI = cast<CallInst>(UserInst);
506 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
507 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
508 if (hasVectorInstrinsicScalarOpd(ID, i))
509 return (CI->getArgOperand(i) == Scalar);
510 }
511 LLVM_FALLTHROUGH[[gnu::fallthrough]];
512 }
513 default:
514 return false;
515 }
516}
517
518/// \returns the AA location that is being access by the instruction.
519static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
520 if (StoreInst *SI = dyn_cast<StoreInst>(I))
521 return MemoryLocation::get(SI);
522 if (LoadInst *LI = dyn_cast<LoadInst>(I))
523 return MemoryLocation::get(LI);
524 return MemoryLocation();
525}
526
527/// \returns True if the instruction is not a volatile or atomic load/store.
528static bool isSimple(Instruction *I) {
529 if (LoadInst *LI = dyn_cast<LoadInst>(I))
530 return LI->isSimple();
531 if (StoreInst *SI = dyn_cast<StoreInst>(I))
532 return SI->isSimple();
533 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
534 return !MI->isVolatile();
535 return true;
536}
537
538namespace llvm {
539
540static void inversePermutation(ArrayRef<unsigned> Indices,
541 SmallVectorImpl<int> &Mask) {
542 Mask.clear();
543 const unsigned E = Indices.size();
544 Mask.resize(E, E + 1);
545 for (unsigned I = 0; I < E; ++I)
546 Mask[Indices[I]] = I;
547}
548
549/// \returns inserting index of InsertElement or InsertValue instruction,
550/// using Offset as base offset for index.
551static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) {
552 int Index = Offset;
553 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
554 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
555 auto *VT = cast<FixedVectorType>(IE->getType());
556 if (CI->getValue().uge(VT->getNumElements()))
557 return UndefMaskElem;
558 Index *= VT->getNumElements();
559 Index += CI->getZExtValue();
560 return Index;
561 }
562 if (isa<UndefValue>(IE->getOperand(2)))
563 return UndefMaskElem;
564 return None;
565 }
566
567 auto *IV = cast<InsertValueInst>(InsertInst);
568 Type *CurrentType = IV->getType();
569 for (unsigned I : IV->indices()) {
570 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
571 Index *= ST->getNumElements();
572 CurrentType = ST->getElementType(I);
573 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
574 Index *= AT->getNumElements();
575 CurrentType = AT->getElementType();
576 } else {
577 return None;
578 }
579 Index += I;
580 }
581 return Index;
582}
583
584namespace slpvectorizer {
585
586/// Bottom Up SLP Vectorizer.
587class BoUpSLP {
588 struct TreeEntry;
589 struct ScheduleData;
590
591public:
592 using ValueList = SmallVector<Value *, 8>;
593 using InstrList = SmallVector<Instruction *, 16>;
594 using ValueSet = SmallPtrSet<Value *, 16>;
595 using StoreList = SmallVector<StoreInst *, 8>;
596 using ExtraValueToDebugLocsMap =
597 MapVector<Value *, SmallVector<Instruction *, 2>>;
598 using OrdersType = SmallVector<unsigned, 4>;
599
600 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
601 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
602 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
603 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
604 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
605 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
606 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
607 // Use the vector register size specified by the target unless overridden
608 // by a command-line option.
609 // TODO: It would be better to limit the vectorization factor based on
610 // data type rather than just register size. For example, x86 AVX has
611 // 256-bit registers, but it does not support integer operations
612 // at that width (that requires AVX2).
613 if (MaxVectorRegSizeOption.getNumOccurrences())
614 MaxVecRegSize = MaxVectorRegSizeOption;
615 else
616 MaxVecRegSize =
617 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
618 .getFixedSize();
619
620 if (MinVectorRegSizeOption.getNumOccurrences())
621 MinVecRegSize = MinVectorRegSizeOption;
622 else
623 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
624 }
625
626 /// Vectorize the tree that starts with the elements in \p VL.
627 /// Returns the vectorized root.
628 Value *vectorizeTree();
629
630 /// Vectorize the tree but with the list of externally used values \p
631 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
632 /// generated extractvalue instructions.
633 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
634
635 /// \returns the cost incurred by unwanted spills and fills, caused by
636 /// holding live values over call sites.
637 InstructionCost getSpillCost() const;
638
639 /// \returns the vectorization cost of the subtree that starts at \p VL.
640 /// A negative number means that this is profitable.
641 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
642
643 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
644 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
645 void buildTree(ArrayRef<Value *> Roots,
646 ArrayRef<Value *> UserIgnoreLst = None);
647
648 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
649 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
650 /// into account (and updating it, if required) list of externally used
651 /// values stored in \p ExternallyUsedValues.
652 void buildTree(ArrayRef<Value *> Roots,
653 ExtraValueToDebugLocsMap &ExternallyUsedValues,
654 ArrayRef<Value *> UserIgnoreLst = None);
655
656 /// Clear the internal data structures that are created by 'buildTree'.
657 void deleteTree() {
658 VectorizableTree.clear();
659 ScalarToTreeEntry.clear();
660 MustGather.clear();
661 ExternalUses.clear();
662 NumOpsWantToKeepOrder.clear();
663 NumOpsWantToKeepOriginalOrder = 0;
664 for (auto &Iter : BlocksSchedules) {
665 BlockScheduling *BS = Iter.second.get();
666 BS->clear();
667 }
668 MinBWs.clear();
669 InstrElementSize.clear();
670 }
671
672 unsigned getTreeSize() const { return VectorizableTree.size(); }
673
674 /// Perform LICM and CSE on the newly generated gather sequences.
675 void optimizeGatherSequence();
676
677 /// \returns The best order of instructions for vectorization.
678 Optional<ArrayRef<unsigned>> bestOrder() const {
679 assert(llvm::all_of((static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 686, __extension__ __PRETTY_FUNCTION__))
680 NumOpsWantToKeepOrder,(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 686, __extension__ __PRETTY_FUNCTION__))
681 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 686, __extension__ __PRETTY_FUNCTION__))
682 return D.getFirst().size() ==(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 686, __extension__ __PRETTY_FUNCTION__))
683 VectorizableTree[0]->Scalars.size();(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 686, __extension__ __PRETTY_FUNCTION__))
684 }) &&(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 686, __extension__ __PRETTY_FUNCTION__))
685 "All orders must have the same size as number of instructions in "(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 686, __extension__ __PRETTY_FUNCTION__))
686 "tree node.")(static_cast <bool> (llvm::all_of( NumOpsWantToKeepOrder
, [this](const decltype(NumOpsWantToKeepOrder)::value_type &
D) { return D.getFirst().size() == VectorizableTree[0]->Scalars
.size(); }) && "All orders must have the same size as number of instructions in "
"tree node.") ? void (0) : __assert_fail ("llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 686, __extension__ __PRETTY_FUNCTION__))
;
687 auto I = std::max_element(
688 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
689 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
690 const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
691 return D1.second < D2.second;
692 });
693 if (I == NumOpsWantToKeepOrder.end() ||
694 I->getSecond() <= NumOpsWantToKeepOriginalOrder)
695 return None;
696
697 return makeArrayRef(I->getFirst());
698 }
699
700 /// Builds the correct order for root instructions.
701 /// If some leaves have the same instructions to be vectorized, we may
702 /// incorrectly evaluate the best order for the root node (it is built for the
703 /// vector of instructions without repeated instructions and, thus, has less
704 /// elements than the root node). This function builds the correct order for
705 /// the root node.
706 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
707 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
708 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
709 /// be reordered, the best order will be \<1, 0\>. We need to extend this
710 /// order for the root node. For the root node this order should look like
711 /// \<3, 0, 1, 2\>. This function extends the order for the reused
712 /// instructions.
713 void findRootOrder(OrdersType &Order) {
714 // If the leaf has the same number of instructions to vectorize as the root
715 // - order must be set already.
716 unsigned RootSize = VectorizableTree[0]->Scalars.size();
717 if (Order.size() == RootSize)
718 return;
719 SmallVector<unsigned, 4> RealOrder(Order.size());
720 std::swap(Order, RealOrder);
721 SmallVector<int, 4> Mask;
722 inversePermutation(RealOrder, Mask);
723 Order.assign(Mask.begin(), Mask.end());
724 // The leaf has less number of instructions - need to find the true order of
725 // the root.
726 // Scan the nodes starting from the leaf back to the root.
727 const TreeEntry *PNode = VectorizableTree.back().get();
728 SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
729 SmallPtrSet<const TreeEntry *, 4> Visited;
730 while (!Nodes.empty() && Order.size() != RootSize) {
731 const TreeEntry *PNode = Nodes.pop_back_val();
732 if (!Visited.insert(PNode).second)
733 continue;
734 const TreeEntry &Node = *PNode;
735 for (const EdgeInfo &EI : Node.UserTreeIndices)
736 if (EI.UserTE)
737 Nodes.push_back(EI.UserTE);
738 if (Node.ReuseShuffleIndices.empty())
739 continue;
740 // Build the order for the parent node.
741 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
742 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
743 // The algorithm of the order extension is:
744 // 1. Calculate the number of the same instructions for the order.
745 // 2. Calculate the index of the new order: total number of instructions
746 // with order less than the order of the current instruction + reuse
747 // number of the current instruction.
748 // 3. The new order is just the index of the instruction in the original
749 // vector of the instructions.
750 for (unsigned I : Node.ReuseShuffleIndices)
751 ++OrderCounter[Order[I]];
752 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
753 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
754 unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
755 unsigned OrderIdx = Order[ReusedIdx];
756 unsigned NewIdx = 0;
757 for (unsigned J = 0; J < OrderIdx; ++J)
758 NewIdx += OrderCounter[J];
759 NewIdx += CurrentCounter[OrderIdx];
760 ++CurrentCounter[OrderIdx];
761 assert(NewOrder[NewIdx] == RootSize &&(static_cast <bool> (NewOrder[NewIdx] == RootSize &&
"The order index should not be written already.") ? void (0)
: __assert_fail ("NewOrder[NewIdx] == RootSize && \"The order index should not be written already.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 762, __extension__ __PRETTY_FUNCTION__))
762 "The order index should not be written already.")(static_cast <bool> (NewOrder[NewIdx] == RootSize &&
"The order index should not be written already.") ? void (0)
: __assert_fail ("NewOrder[NewIdx] == RootSize && \"The order index should not be written already.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 762, __extension__ __PRETTY_FUNCTION__))
;
763 NewOrder[NewIdx] = I;
764 }
765 std::swap(Order, NewOrder);
766 }
767 assert(Order.size() == RootSize &&(static_cast <bool> (Order.size() == RootSize &&
"Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? void (0) : __assert_fail
("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 769, __extension__ __PRETTY_FUNCTION__))
768 "Root node is expected or the size of the order must be the same as "(static_cast <bool> (Order.size() == RootSize &&
"Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? void (0) : __assert_fail
("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 769, __extension__ __PRETTY_FUNCTION__))
769 "the number of elements in the root node.")(static_cast <bool> (Order.size() == RootSize &&
"Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? void (0) : __assert_fail
("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 769, __extension__ __PRETTY_FUNCTION__))
;
770 assert(llvm::all_of(Order,(static_cast <bool> (llvm::all_of(Order, [RootSize](unsigned
Val) { return Val != RootSize; }) && "All indices must be initialized"
) ? void (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 772, __extension__ __PRETTY_FUNCTION__))
771 [RootSize](unsigned Val) { return Val != RootSize; }) &&(static_cast <bool> (llvm::all_of(Order, [RootSize](unsigned
Val) { return Val != RootSize; }) && "All indices must be initialized"
) ? void (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 772, __extension__ __PRETTY_FUNCTION__))
772 "All indices must be initialized")(static_cast <bool> (llvm::all_of(Order, [RootSize](unsigned
Val) { return Val != RootSize; }) && "All indices must be initialized"
) ? void (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 772, __extension__ __PRETTY_FUNCTION__))
;
773 }
774
775 /// \return The vector element size in bits to use when vectorizing the
776 /// expression tree ending at \p V. If V is a store, the size is the width of
777 /// the stored value. Otherwise, the size is the width of the largest loaded
778 /// value reaching V. This method is used by the vectorizer to calculate
779 /// vectorization factors.
780 unsigned getVectorElementSize(Value *V);
781
782 /// Compute the minimum type sizes required to represent the entries in a
783 /// vectorizable tree.
784 void computeMinimumValueSizes();
785
786 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
787 unsigned getMaxVecRegSize() const {
788 return MaxVecRegSize;
789 }
790
791 // \returns minimum vector register size as set by cl::opt.
792 unsigned getMinVecRegSize() const {
793 return MinVecRegSize;
794 }
795
796 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
797 unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
798 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
799 return MaxVF ? MaxVF : UINT_MAX(2147483647 *2U +1U);
800 }
801
802 /// Check if homogeneous aggregate is isomorphic to some VectorType.
803 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
804 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
805 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
806 ///
807 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
808 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
809
810 /// \returns True if the VectorizableTree is both tiny and not fully
811 /// vectorizable. We do not vectorize such trees.
812 bool isTreeTinyAndNotFullyVectorizable() const;
813
814 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
815 /// can be load combined in the backend. Load combining may not be allowed in
816 /// the IR optimizer, so we do not want to alter the pattern. For example,
817 /// partially transforming a scalar bswap() pattern into vector code is
818 /// effectively impossible for the backend to undo.
819 /// TODO: If load combining is allowed in the IR optimizer, this analysis
820 /// may not be necessary.
821 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
822
823 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
824 /// can be load combined in the backend. Load combining may not be allowed in
825 /// the IR optimizer, so we do not want to alter the pattern. For example,
826 /// partially transforming a scalar bswap() pattern into vector code is
827 /// effectively impossible for the backend to undo.
828 /// TODO: If load combining is allowed in the IR optimizer, this analysis
829 /// may not be necessary.
830 bool isLoadCombineCandidate() const;
831
832 OptimizationRemarkEmitter *getORE() { return ORE; }
833
834 /// This structure holds any data we need about the edges being traversed
835 /// during buildTree_rec(). We keep track of:
836 /// (i) the user TreeEntry index, and
837 /// (ii) the index of the edge.
838 struct EdgeInfo {
839 EdgeInfo() = default;
840 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
841 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
842 /// The user TreeEntry.
843 TreeEntry *UserTE = nullptr;
844 /// The operand index of the use.
845 unsigned EdgeIdx = UINT_MAX(2147483647 *2U +1U);
846#ifndef NDEBUG
847 friend inline raw_ostream &operator<<(raw_ostream &OS,
848 const BoUpSLP::EdgeInfo &EI) {
849 EI.dump(OS);
850 return OS;
851 }
852 /// Debug print.
853 void dump(raw_ostream &OS) const {
854 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
855 << " EdgeIdx:" << EdgeIdx << "}";
856 }
857 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { dump(dbgs()); }
858#endif
859 };
860
861 /// A helper data structure to hold the operands of a vector of instructions.
862 /// This supports a fixed vector length for all operand vectors.
863 class VLOperands {
864 /// For each operand we need (i) the value, and (ii) the opcode that it
865 /// would be attached to if the expression was in a left-linearized form.
866 /// This is required to avoid illegal operand reordering.
867 /// For example:
868 /// \verbatim
869 /// 0 Op1
870 /// |/
871 /// Op1 Op2 Linearized + Op2
872 /// \ / ----------> |/
873 /// - -
874 ///
875 /// Op1 - Op2 (0 + Op1) - Op2
876 /// \endverbatim
877 ///
878 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
879 ///
880 /// Another way to think of this is to track all the operations across the
881 /// path from the operand all the way to the root of the tree and to
882 /// calculate the operation that corresponds to this path. For example, the
883 /// path from Op2 to the root crosses the RHS of the '-', therefore the
884 /// corresponding operation is a '-' (which matches the one in the
885 /// linearized tree, as shown above).
886 ///
887 /// For lack of a better term, we refer to this operation as Accumulated
888 /// Path Operation (APO).
889 struct OperandData {
890 OperandData() = default;
891 OperandData(Value *V, bool APO, bool IsUsed)
892 : V(V), APO(APO), IsUsed(IsUsed) {}
893 /// The operand value.
894 Value *V = nullptr;
895 /// TreeEntries only allow a single opcode, or an alternate sequence of
896 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
897 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
898 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
899 /// (e.g., Add/Mul)
900 bool APO = false;
901 /// Helper data for the reordering function.
902 bool IsUsed = false;
903 };
904
905 /// During operand reordering, we are trying to select the operand at lane
906 /// that matches best with the operand at the neighboring lane. Our
907 /// selection is based on the type of value we are looking for. For example,
908 /// if the neighboring lane has a load, we need to look for a load that is
909 /// accessing a consecutive address. These strategies are summarized in the
910 /// 'ReorderingMode' enumerator.
911 enum class ReorderingMode {
912 Load, ///< Matching loads to consecutive memory addresses
913 Opcode, ///< Matching instructions based on opcode (same or alternate)
914 Constant, ///< Matching constants
915 Splat, ///< Matching the same instruction multiple times (broadcast)
916 Failed, ///< We failed to create a vectorizable group
917 };
918
919 using OperandDataVec = SmallVector<OperandData, 2>;
920
921 /// A vector of operand vectors.
922 SmallVector<OperandDataVec, 4> OpsVec;
923
924 const DataLayout &DL;
925 ScalarEvolution &SE;
926 const BoUpSLP &R;
927
928 /// \returns the operand data at \p OpIdx and \p Lane.
929 OperandData &getData(unsigned OpIdx, unsigned Lane) {
930 return OpsVec[OpIdx][Lane];
931 }
932
933 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
934 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
935 return OpsVec[OpIdx][Lane];
936 }
937
938 /// Clears the used flag for all entries.
939 void clearUsed() {
940 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
941 OpIdx != NumOperands; ++OpIdx)
942 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
943 ++Lane)
944 OpsVec[OpIdx][Lane].IsUsed = false;
945 }
946
947 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
948 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
949 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
950 }
951
952 // The hard-coded scores listed here are not very important. When computing
953 // the scores of matching one sub-tree with another, we are basically
954 // counting the number of values that are matching. So even if all scores
955 // are set to 1, we would still get a decent matching result.
956 // However, sometimes we have to break ties. For example we may have to
957 // choose between matching loads vs matching opcodes. This is what these
958 // scores are helping us with: they provide the order of preference.
959
960 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
961 static const int ScoreConsecutiveLoads = 3;
962 /// ExtractElementInst from same vector and consecutive indexes.
963 static const int ScoreConsecutiveExtracts = 3;
964 /// Constants.
965 static const int ScoreConstants = 2;
966 /// Instructions with the same opcode.
967 static const int ScoreSameOpcode = 2;
968 /// Instructions with alt opcodes (e.g, add + sub).
969 static const int ScoreAltOpcodes = 1;
970 /// Identical instructions (a.k.a. splat or broadcast).
971 static const int ScoreSplat = 1;
972 /// Matching with an undef is preferable to failing.
973 static const int ScoreUndef = 1;
974 /// Score for failing to find a decent match.
975 static const int ScoreFail = 0;
976 /// User exteranl to the vectorized code.
977 static const int ExternalUseCost = 1;
978 /// The user is internal but in a different lane.
979 static const int UserInDiffLaneCost = ExternalUseCost;
980
981 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
982 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
983 ScalarEvolution &SE) {
984 auto *LI1 = dyn_cast<LoadInst>(V1);
985 auto *LI2 = dyn_cast<LoadInst>(V2);
986 if (LI1 && LI2) {
987 if (LI1->getParent() != LI2->getParent())
988 return VLOperands::ScoreFail;
989
990 Optional<int> Dist =
991 getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(),
992 DL, SE, /*StrictCheck=*/true);
993 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
994 : VLOperands::ScoreFail;
995 }
996
997 auto *C1 = dyn_cast<Constant>(V1);
998 auto *C2 = dyn_cast<Constant>(V2);
999 if (C1 && C2)
1000 return VLOperands::ScoreConstants;
1001
1002 // Extracts from consecutive indexes of the same vector better score as
1003 // the extracts could be optimized away.
1004 Value *EV;
1005 ConstantInt *Ex1Idx, *Ex2Idx;
1006 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
1007 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
1008 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
1009 return VLOperands::ScoreConsecutiveExtracts;
1010
1011 auto *I1 = dyn_cast<Instruction>(V1);
1012 auto *I2 = dyn_cast<Instruction>(V2);
1013 if (I1 && I2) {
1014 if (I1 == I2)
1015 return VLOperands::ScoreSplat;
1016 InstructionsState S = getSameOpcode({I1, I2});
1017 // Note: Only consider instructions with <= 2 operands to avoid
1018 // complexity explosion.
1019 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
1020 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1021 : VLOperands::ScoreSameOpcode;
1022 }
1023
1024 if (isa<UndefValue>(V2))
1025 return VLOperands::ScoreUndef;
1026
1027 return VLOperands::ScoreFail;
1028 }
1029
1030 /// Holds the values and their lane that are taking part in the look-ahead
1031 /// score calculation. This is used in the external uses cost calculation.
1032 SmallDenseMap<Value *, int> InLookAheadValues;
1033
1034 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
1035 /// either external to the vectorized code, or require shuffling.
1036 int getExternalUsesCost(const std::pair<Value *, int> &LHS,
1037 const std::pair<Value *, int> &RHS) {
1038 int Cost = 0;
1039 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
1040 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
1041 Value *V = Values[Idx].first;
1042 if (isa<Constant>(V)) {
1043 // Since this is a function pass, it doesn't make semantic sense to
1044 // walk the users of a subclass of Constant. The users could be in
1045 // another function, or even another module that happens to be in
1046 // the same LLVMContext.
1047 continue;
1048 }
1049
1050 // Calculate the absolute lane, using the minimum relative lane of LHS
1051 // and RHS as base and Idx as the offset.
1052 int Ln = std::min(LHS.second, RHS.second) + Idx;
1053 assert(Ln >= 0 && "Bad lane calculation")(static_cast <bool> (Ln >= 0 && "Bad lane calculation"
) ? void (0) : __assert_fail ("Ln >= 0 && \"Bad lane calculation\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1053, __extension__ __PRETTY_FUNCTION__))
;
1054 unsigned UsersBudget = LookAheadUsersBudget;
1055 for (User *U : V->users()) {
1056 if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
1057 // The user is in the VectorizableTree. Check if we need to insert.
1058 auto It = llvm::find(UserTE->Scalars, U);
1059 assert(It != UserTE->Scalars.end() && "U is in UserTE")(static_cast <bool> (It != UserTE->Scalars.end() &&
"U is in UserTE") ? void (0) : __assert_fail ("It != UserTE->Scalars.end() && \"U is in UserTE\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1059, __extension__ __PRETTY_FUNCTION__))
;
1060 int UserLn = std::distance(UserTE->Scalars.begin(), It);
1061 assert(UserLn >= 0 && "Bad lane")(static_cast <bool> (UserLn >= 0 && "Bad lane"
) ? void (0) : __assert_fail ("UserLn >= 0 && \"Bad lane\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1061, __extension__ __PRETTY_FUNCTION__))
;
1062 if (UserLn != Ln)
1063 Cost += UserInDiffLaneCost;
1064 } else {
1065 // Check if the user is in the look-ahead code.
1066 auto It2 = InLookAheadValues.find(U);
1067 if (It2 != InLookAheadValues.end()) {
1068 // The user is in the look-ahead code. Check the lane.
1069 if (It2->second != Ln)
1070 Cost += UserInDiffLaneCost;
1071 } else {
1072 // The user is neither in SLP tree nor in the look-ahead code.
1073 Cost += ExternalUseCost;
1074 }
1075 }
1076 // Limit the number of visited uses to cap compilation time.
1077 if (--UsersBudget == 0)
1078 break;
1079 }
1080 }
1081 return Cost;
1082 }
1083
1084 /// Go through the operands of \p LHS and \p RHS recursively until \p
1085 /// MaxLevel, and return the cummulative score. For example:
1086 /// \verbatim
1087 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
1088 /// \ / \ / \ / \ /
1089 /// + + + +
1090 /// G1 G2 G3 G4
1091 /// \endverbatim
1092 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1093 /// each level recursively, accumulating the score. It starts from matching
1094 /// the additions at level 0, then moves on to the loads (level 1). The
1095 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1096 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1097 /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1098 /// Please note that the order of the operands does not matter, as we
1099 /// evaluate the score of all profitable combinations of operands. In
1100 /// other words the score of G1 and G4 is the same as G1 and G2. This
1101 /// heuristic is based on ideas described in:
1102 /// Look-ahead SLP: Auto-vectorization in the presence of commutative
1103 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1104 /// Luís F. W. Góes
1105 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1106 const std::pair<Value *, int> &RHS, int CurrLevel,
1107 int MaxLevel) {
1108
1109 Value *V1 = LHS.first;
1110 Value *V2 = RHS.first;
1111 // Get the shallow score of V1 and V2.
1112 int ShallowScoreAtThisLevel =
1113 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1114 getExternalUsesCost(LHS, RHS));
1115 int Lane1 = LHS.second;
1116 int Lane2 = RHS.second;
1117
1118 // If reached MaxLevel,
1119 // or if V1 and V2 are not instructions,
1120 // or if they are SPLAT,
1121 // or if they are not consecutive, early return the current cost.
1122 auto *I1 = dyn_cast<Instruction>(V1);
1123 auto *I2 = dyn_cast<Instruction>(V2);
1124 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1125 ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1126 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1127 return ShallowScoreAtThisLevel;
1128 assert(I1 && I2 && "Should have early exited.")(static_cast <bool> (I1 && I2 && "Should have early exited."
) ? void (0) : __assert_fail ("I1 && I2 && \"Should have early exited.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1128, __extension__ __PRETTY_FUNCTION__))
;
1129
1130 // Keep track of in-tree values for determining the external-use cost.
1131 InLookAheadValues[V1] = Lane1;
1132 InLookAheadValues[V2] = Lane2;
1133
1134 // Contains the I2 operand indexes that got matched with I1 operands.
1135 SmallSet<unsigned, 4> Op2Used;
1136
1137 // Recursion towards the operands of I1 and I2. We are trying all possbile
1138 // operand pairs, and keeping track of the best score.
1139 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1140 OpIdx1 != NumOperands1; ++OpIdx1) {
1141 // Try to pair op1I with the best operand of I2.
1142 int MaxTmpScore = 0;
1143 unsigned MaxOpIdx2 = 0;
1144 bool FoundBest = false;
1145 // If I2 is commutative try all combinations.
1146 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1147 unsigned ToIdx = isCommutative(I2)
1148 ? I2->getNumOperands()
1149 : std::min(I2->getNumOperands(), OpIdx1 + 1);
1150 assert(FromIdx <= ToIdx && "Bad index")(static_cast <bool> (FromIdx <= ToIdx && "Bad index"
) ? void (0) : __assert_fail ("FromIdx <= ToIdx && \"Bad index\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1150, __extension__ __PRETTY_FUNCTION__))
;
1151 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1152 // Skip operands already paired with OpIdx1.
1153 if (Op2Used.count(OpIdx2))
1154 continue;
1155 // Recursively calculate the cost at each level
1156 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1157 {I2->getOperand(OpIdx2), Lane2},
1158 CurrLevel + 1, MaxLevel);
1159 // Look for the best score.
1160 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1161 MaxTmpScore = TmpScore;
1162 MaxOpIdx2 = OpIdx2;
1163 FoundBest = true;
1164 }
1165 }
1166 if (FoundBest) {
1167 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1168 Op2Used.insert(MaxOpIdx2);
1169 ShallowScoreAtThisLevel += MaxTmpScore;
1170 }
1171 }
1172 return ShallowScoreAtThisLevel;
1173 }
1174
1175 /// \Returns the look-ahead score, which tells us how much the sub-trees
1176 /// rooted at \p LHS and \p RHS match, the more they match the higher the
1177 /// score. This helps break ties in an informed way when we cannot decide on
1178 /// the order of the operands by just considering the immediate
1179 /// predecessors.
1180 int getLookAheadScore(const std::pair<Value *, int> &LHS,
1181 const std::pair<Value *, int> &RHS) {
1182 InLookAheadValues.clear();
1183 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1184 }
1185
1186 // Search all operands in Ops[*][Lane] for the one that matches best
1187 // Ops[OpIdx][LastLane] and return its opreand index.
1188 // If no good match can be found, return None.
1189 Optional<unsigned>
1190 getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1191 ArrayRef<ReorderingMode> ReorderingModes) {
1192 unsigned NumOperands = getNumOperands();
1193
1194 // The operand of the previous lane at OpIdx.
1195 Value *OpLastLane = getData(OpIdx, LastLane).V;
1196
1197 // Our strategy mode for OpIdx.
1198 ReorderingMode RMode = ReorderingModes[OpIdx];
1199
1200 // The linearized opcode of the operand at OpIdx, Lane.
1201 bool OpIdxAPO = getData(OpIdx, Lane).APO;
1202
1203 // The best operand index and its score.
1204 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1205 // are using the score to differentiate between the two.
1206 struct BestOpData {
1207 Optional<unsigned> Idx = None;
1208 unsigned Score = 0;
1209 } BestOp;
1210
1211 // Iterate through all unused operands and look for the best.
1212 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1213 // Get the operand at Idx and Lane.
1214 OperandData &OpData = getData(Idx, Lane);
1215 Value *Op = OpData.V;
1216 bool OpAPO = OpData.APO;
1217
1218 // Skip already selected operands.
1219 if (OpData.IsUsed)
1220 continue;
1221
1222 // Skip if we are trying to move the operand to a position with a
1223 // different opcode in the linearized tree form. This would break the
1224 // semantics.
1225 if (OpAPO != OpIdxAPO)
1226 continue;
1227
1228 // Look for an operand that matches the current mode.
1229 switch (RMode) {
1230 case ReorderingMode::Load:
1231 case ReorderingMode::Constant:
1232 case ReorderingMode::Opcode: {
1233 bool LeftToRight = Lane > LastLane;
1234 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1235 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1236 unsigned Score =
1237 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1238 if (Score > BestOp.Score) {
1239 BestOp.Idx = Idx;
1240 BestOp.Score = Score;
1241 }
1242 break;
1243 }
1244 case ReorderingMode::Splat:
1245 if (Op == OpLastLane)
1246 BestOp.Idx = Idx;
1247 break;
1248 case ReorderingMode::Failed:
1249 return None;
1250 }
1251 }
1252
1253 if (BestOp.Idx) {
1254 getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1255 return BestOp.Idx;
1256 }
1257 // If we could not find a good match return None.
1258 return None;
1259 }
1260
1261 /// Helper for reorderOperandVecs. \Returns the lane that we should start
1262 /// reordering from. This is the one which has the least number of operands
1263 /// that can freely move about.
1264 unsigned getBestLaneToStartReordering() const {
1265 unsigned BestLane = 0;
1266 unsigned Min = UINT_MAX(2147483647 *2U +1U);
1267 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1268 ++Lane) {
1269 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1270 if (NumFreeOps < Min) {
1271 Min = NumFreeOps;
1272 BestLane = Lane;
1273 }
1274 }
1275 return BestLane;
1276 }
1277
1278 /// \Returns the maximum number of operands that are allowed to be reordered
1279 /// for \p Lane. This is used as a heuristic for selecting the first lane to
1280 /// start operand reordering.
1281 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1282 unsigned CntTrue = 0;
1283 unsigned NumOperands = getNumOperands();
1284 // Operands with the same APO can be reordered. We therefore need to count
1285 // how many of them we have for each APO, like this: Cnt[APO] = x.
1286 // Since we only have two APOs, namely true and false, we can avoid using
1287 // a map. Instead we can simply count the number of operands that
1288 // correspond to one of them (in this case the 'true' APO), and calculate
1289 // the other by subtracting it from the total number of operands.
1290 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1291 if (getData(OpIdx, Lane).APO)
1292 ++CntTrue;
1293 unsigned CntFalse = NumOperands - CntTrue;
1294 return std::max(CntTrue, CntFalse);
1295 }
1296
1297 /// Go through the instructions in VL and append their operands.
1298 void appendOperandsOfVL(ArrayRef<Value *> VL) {
1299 assert(!VL.empty() && "Bad VL")(static_cast <bool> (!VL.empty() && "Bad VL") ?
void (0) : __assert_fail ("!VL.empty() && \"Bad VL\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1299, __extension__ __PRETTY_FUNCTION__))
;
1300 assert((empty() || VL.size() == getNumLanes()) &&(static_cast <bool> ((empty() || VL.size() == getNumLanes
()) && "Expected same number of lanes") ? void (0) : __assert_fail
("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1301, __extension__ __PRETTY_FUNCTION__))
1301 "Expected same number of lanes")(static_cast <bool> ((empty() || VL.size() == getNumLanes
()) && "Expected same number of lanes") ? void (0) : __assert_fail
("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1301, __extension__ __PRETTY_FUNCTION__))
;
1302 assert(isa<Instruction>(VL[0]) && "Expected instruction")(static_cast <bool> (isa<Instruction>(VL[0]) &&
"Expected instruction") ? void (0) : __assert_fail ("isa<Instruction>(VL[0]) && \"Expected instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1302, __extension__ __PRETTY_FUNCTION__))
;
1303 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1304 OpsVec.resize(NumOperands);
1305 unsigned NumLanes = VL.size();
1306 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1307 OpsVec[OpIdx].resize(NumLanes);
1308 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1309 assert(isa<Instruction>(VL[Lane]) && "Expected instruction")(static_cast <bool> (isa<Instruction>(VL[Lane]) &&
"Expected instruction") ? void (0) : __assert_fail ("isa<Instruction>(VL[Lane]) && \"Expected instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1309, __extension__ __PRETTY_FUNCTION__))
;
1310 // Our tree has just 3 nodes: the root and two operands.
1311 // It is therefore trivial to get the APO. We only need to check the
1312 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1313 // RHS operand. The LHS operand of both add and sub is never attached
1314 // to an inversese operation in the linearized form, therefore its APO
1315 // is false. The RHS is true only if VL[Lane] is an inverse operation.
1316
1317 // Since operand reordering is performed on groups of commutative
1318 // operations or alternating sequences (e.g., +, -), we can safely
1319 // tell the inverse operations by checking commutativity.
1320 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1321 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1322 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1323 APO, false};
1324 }
1325 }
1326 }
1327
1328 /// \returns the number of operands.
1329 unsigned getNumOperands() const { return OpsVec.size(); }
1330
1331 /// \returns the number of lanes.
1332 unsigned getNumLanes() const { return OpsVec[0].size(); }
1333
1334 /// \returns the operand value at \p OpIdx and \p Lane.
1335 Value *getValue(unsigned OpIdx, unsigned Lane) const {
1336 return getData(OpIdx, Lane).V;
1337 }
1338
1339 /// \returns true if the data structure is empty.
1340 bool empty() const { return OpsVec.empty(); }
1341
1342 /// Clears the data.
1343 void clear() { OpsVec.clear(); }
1344
1345 /// \Returns true if there are enough operands identical to \p Op to fill
1346 /// the whole vector.
1347 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1348 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1349 bool OpAPO = getData(OpIdx, Lane).APO;
1350 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1351 if (Ln == Lane)
1352 continue;
1353 // This is set to true if we found a candidate for broadcast at Lane.
1354 bool FoundCandidate = false;
1355 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1356 OperandData &Data = getData(OpI, Ln);
1357 if (Data.APO != OpAPO || Data.IsUsed)
1358 continue;
1359 if (Data.V == Op) {
1360 FoundCandidate = true;
1361 Data.IsUsed = true;
1362 break;
1363 }
1364 }
1365 if (!FoundCandidate)
1366 return false;
1367 }
1368 return true;
1369 }
1370
1371 public:
1372 /// Initialize with all the operands of the instruction vector \p RootVL.
1373 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1374 ScalarEvolution &SE, const BoUpSLP &R)
1375 : DL(DL), SE(SE), R(R) {
1376 // Append all the operands of RootVL.
1377 appendOperandsOfVL(RootVL);
1378 }
1379
1380 /// \Returns a value vector with the operands across all lanes for the
1381 /// opearnd at \p OpIdx.
1382 ValueList getVL(unsigned OpIdx) const {
1383 ValueList OpVL(OpsVec[OpIdx].size());
1384 assert(OpsVec[OpIdx].size() == getNumLanes() &&(static_cast <bool> (OpsVec[OpIdx].size() == getNumLanes
() && "Expected same num of lanes across all operands"
) ? void (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1385, __extension__ __PRETTY_FUNCTION__))
1385 "Expected same num of lanes across all operands")(static_cast <bool> (OpsVec[OpIdx].size() == getNumLanes
() && "Expected same num of lanes across all operands"
) ? void (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1385, __extension__ __PRETTY_FUNCTION__))
;
1386 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1387 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1388 return OpVL;
1389 }
1390
1391 // Performs operand reordering for 2 or more operands.
1392 // The original operands are in OrigOps[OpIdx][Lane].
1393 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1394 void reorder() {
1395 unsigned NumOperands = getNumOperands();
1396 unsigned NumLanes = getNumLanes();
1397 // Each operand has its own mode. We are using this mode to help us select
1398 // the instructions for each lane, so that they match best with the ones
1399 // we have selected so far.
1400 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1401
1402 // This is a greedy single-pass algorithm. We are going over each lane
1403 // once and deciding on the best order right away with no back-tracking.
1404 // However, in order to increase its effectiveness, we start with the lane
1405 // that has operands that can move the least. For example, given the
1406 // following lanes:
1407 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
1408 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
1409 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
1410 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
1411 // we will start at Lane 1, since the operands of the subtraction cannot
1412 // be reordered. Then we will visit the rest of the lanes in a circular
1413 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1414
1415 // Find the first lane that we will start our search from.
1416 unsigned FirstLane = getBestLaneToStartReordering();
1417
1418 // Initialize the modes.
1419 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1420 Value *OpLane0 = getValue(OpIdx, FirstLane);
1421 // Keep track if we have instructions with all the same opcode on one
1422 // side.
1423 if (isa<LoadInst>(OpLane0))
1424 ReorderingModes[OpIdx] = ReorderingMode::Load;
1425 else if (isa<Instruction>(OpLane0)) {
1426 // Check if OpLane0 should be broadcast.
1427 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1428 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1429 else
1430 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1431 }
1432 else if (isa<Constant>(OpLane0))
1433 ReorderingModes[OpIdx] = ReorderingMode::Constant;
1434 else if (isa<Argument>(OpLane0))
1435 // Our best hope is a Splat. It may save some cost in some cases.
1436 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1437 else
1438 // NOTE: This should be unreachable.
1439 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1440 }
1441
1442 // If the initial strategy fails for any of the operand indexes, then we
1443 // perform reordering again in a second pass. This helps avoid assigning
1444 // high priority to the failed strategy, and should improve reordering for
1445 // the non-failed operand indexes.
1446 for (int Pass = 0; Pass != 2; ++Pass) {
1447 // Skip the second pass if the first pass did not fail.
1448 bool StrategyFailed = false;
1449 // Mark all operand data as free to use.
1450 clearUsed();
1451 // We keep the original operand order for the FirstLane, so reorder the
1452 // rest of the lanes. We are visiting the nodes in a circular fashion,
1453 // using FirstLane as the center point and increasing the radius
1454 // distance.
1455 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1456 // Visit the lane on the right and then the lane on the left.
1457 for (int Direction : {+1, -1}) {
1458 int Lane = FirstLane + Direction * Distance;
1459 if (Lane < 0 || Lane >= (int)NumLanes)
1460 continue;
1461 int LastLane = Lane - Direction;
1462 assert(LastLane >= 0 && LastLane < (int)NumLanes &&(static_cast <bool> (LastLane >= 0 && LastLane
< (int)NumLanes && "Out of bounds") ? void (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1463, __extension__ __PRETTY_FUNCTION__))
1463 "Out of bounds")(static_cast <bool> (LastLane >= 0 && LastLane
< (int)NumLanes && "Out of bounds") ? void (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1463, __extension__ __PRETTY_FUNCTION__))
;
1464 // Look for a good match for each operand.
1465 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1466 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1467 Optional<unsigned> BestIdx =
1468 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1469 // By not selecting a value, we allow the operands that follow to
1470 // select a better matching value. We will get a non-null value in
1471 // the next run of getBestOperand().
1472 if (BestIdx) {
1473 // Swap the current operand with the one returned by
1474 // getBestOperand().
1475 swap(OpIdx, BestIdx.getValue(), Lane);
1476 } else {
1477 // We failed to find a best operand, set mode to 'Failed'.
1478 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1479 // Enable the second pass.
1480 StrategyFailed = true;
1481 }
1482 }
1483 }
1484 }
1485 // Skip second pass if the strategy did not fail.
1486 if (!StrategyFailed)
1487 break;
1488 }
1489 }
1490
1491#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1492 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static StringRef getModeStr(ReorderingMode RMode) {
1493 switch (RMode) {
1494 case ReorderingMode::Load:
1495 return "Load";
1496 case ReorderingMode::Opcode:
1497 return "Opcode";
1498 case ReorderingMode::Constant:
1499 return "Constant";
1500 case ReorderingMode::Splat:
1501 return "Splat";
1502 case ReorderingMode::Failed:
1503 return "Failed";
1504 }
1505 llvm_unreachable("Unimplemented Reordering Type")::llvm::llvm_unreachable_internal("Unimplemented Reordering Type"
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1505)
;
1506 }
1507
1508 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static raw_ostream &printMode(ReorderingMode RMode,
1509 raw_ostream &OS) {
1510 return OS << getModeStr(RMode);
1511 }
1512
1513 /// Debug print.
1514 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static void dumpMode(ReorderingMode RMode) {
1515 printMode(RMode, dbgs());
1516 }
1517
1518 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1519 return printMode(RMode, OS);
1520 }
1521
1522 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) raw_ostream &print(raw_ostream &OS) const {
1523 const unsigned Indent = 2;
1524 unsigned Cnt = 0;
1525 for (const OperandDataVec &OpDataVec : OpsVec) {
1526 OS << "Operand " << Cnt++ << "\n";
1527 for (const OperandData &OpData : OpDataVec) {
1528 OS.indent(Indent) << "{";
1529 if (Value *V = OpData.V)
1530 OS << *V;
1531 else
1532 OS << "null";
1533 OS << ", APO:" << OpData.APO << "}\n";
1534 }
1535 OS << "\n";
1536 }
1537 return OS;
1538 }
1539
1540 /// Debug print.
1541 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { print(dbgs()); }
1542#endif
1543 };
1544
1545 /// Checks if the instruction is marked for deletion.
1546 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1547
1548 /// Marks values operands for later deletion by replacing them with Undefs.
1549 void eraseInstructions(ArrayRef<Value *> AV);
1550
1551 ~BoUpSLP();
1552
1553private:
1554 /// Checks if all users of \p I are the part of the vectorization tree.
1555 bool areAllUsersVectorized(Instruction *I,
1556 ArrayRef<Value *> VectorizedVals) const;
1557
1558 /// \returns the cost of the vectorizable entry.
1559 InstructionCost getEntryCost(const TreeEntry *E,
1560 ArrayRef<Value *> VectorizedVals);
1561
1562 /// This is the recursive part of buildTree.
1563 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1564 const EdgeInfo &EI);
1565
1566 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1567 /// be vectorized to use the original vector (or aggregate "bitcast" to a
1568 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1569 /// returns false, setting \p CurrentOrder to either an empty vector or a
1570 /// non-identity permutation that allows to reuse extract instructions.
1571 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1572 SmallVectorImpl<unsigned> &CurrentOrder) const;
1573
1574 /// Vectorize a single entry in the tree.
1575 Value *vectorizeTree(TreeEntry *E);
1576
1577 /// Vectorize a single entry in the tree, starting in \p VL.
1578 Value *vectorizeTree(ArrayRef<Value *> VL);
1579
1580 /// \returns the scalarization cost for this type. Scalarization in this
1581 /// context means the creation of vectors from a group of scalars.
1582 InstructionCost
1583 getGatherCost(FixedVectorType *Ty,
1584 const DenseSet<unsigned> &ShuffledIndices) const;
1585
1586 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1587 /// tree entries.
1588 /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1589 /// previous tree entries. \p Mask is filled with the shuffle mask.
1590 Optional<TargetTransformInfo::ShuffleKind>
1591 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1592 SmallVectorImpl<const TreeEntry *> &Entries);
1593
1594 /// \returns the scalarization cost for this list of values. Assuming that
1595 /// this subtree gets vectorized, we may need to extract the values from the
1596 /// roots. This method calculates the cost of extracting the values.
1597 InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1598
1599 /// Set the Builder insert point to one after the last instruction in
1600 /// the bundle
1601 void setInsertPointAfterBundle(const TreeEntry *E);
1602
1603 /// \returns a vector from a collection of scalars in \p VL.
1604 Value *gather(ArrayRef<Value *> VL);
1605
1606 /// \returns whether the VectorizableTree is fully vectorizable and will
1607 /// be beneficial even the tree height is tiny.
1608 bool isFullyVectorizableTinyTree() const;
1609
1610 /// Reorder commutative or alt operands to get better probability of
1611 /// generating vectorized code.
1612 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1613 SmallVectorImpl<Value *> &Left,
1614 SmallVectorImpl<Value *> &Right,
1615 const DataLayout &DL,
1616 ScalarEvolution &SE,
1617 const BoUpSLP &R);
1618 struct TreeEntry {
1619 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1620 TreeEntry(VecTreeTy &Container) : Container(Container) {}
1621
1622 /// \returns true if the scalars in VL are equal to this entry.
1623 bool isSame(ArrayRef<Value *> VL) const {
1624 if (VL.size() == Scalars.size())
1625 return std::equal(VL.begin(), VL.end(), Scalars.begin());
1626 return VL.size() == ReuseShuffleIndices.size() &&
1627 std::equal(
1628 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1629 [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1630 }
1631
1632 /// A vector of scalars.
1633 ValueList Scalars;
1634
1635 /// The Scalars are vectorized into this value. It is initialized to Null.
1636 Value *VectorizedValue = nullptr;
1637
1638 /// Do we need to gather this sequence or vectorize it
1639 /// (either with vector instruction or with scatter/gather
1640 /// intrinsics for store/load)?
1641 enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
1642 EntryState State;
1643
1644 /// Does this sequence require some shuffling?
1645 SmallVector<int, 4> ReuseShuffleIndices;
1646
1647 /// Does this entry require reordering?
1648 SmallVector<unsigned, 4> ReorderIndices;
1649
1650 /// Points back to the VectorizableTree.
1651 ///
1652 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
1653 /// to be a pointer and needs to be able to initialize the child iterator.
1654 /// Thus we need a reference back to the container to translate the indices
1655 /// to entries.
1656 VecTreeTy &Container;
1657
1658 /// The TreeEntry index containing the user of this entry. We can actually
1659 /// have multiple users so the data structure is not truly a tree.
1660 SmallVector<EdgeInfo, 1> UserTreeIndices;
1661
1662 /// The index of this treeEntry in VectorizableTree.
1663 int Idx = -1;
1664
1665 private:
1666 /// The operands of each instruction in each lane Operands[op_index][lane].
1667 /// Note: This helps avoid the replication of the code that performs the
1668 /// reordering of operands during buildTree_rec() and vectorizeTree().
1669 SmallVector<ValueList, 2> Operands;
1670
1671 /// The main/alternate instruction.
1672 Instruction *MainOp = nullptr;
1673 Instruction *AltOp = nullptr;
1674
1675 public:
1676 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1677 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1678 if (Operands.size() < OpIdx + 1)
1679 Operands.resize(OpIdx + 1);
1680 assert(Operands[OpIdx].empty() && "Already resized?")(static_cast <bool> (Operands[OpIdx].empty() &&
"Already resized?") ? void (0) : __assert_fail ("Operands[OpIdx].empty() && \"Already resized?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1680, __extension__ __PRETTY_FUNCTION__))
;
1681 Operands[OpIdx].resize(Scalars.size());
1682 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1683 Operands[OpIdx][Lane] = OpVL[Lane];
1684 }
1685
1686 /// Set the operands of this bundle in their original order.
1687 void setOperandsInOrder() {
1688 assert(Operands.empty() && "Already initialized?")(static_cast <bool> (Operands.empty() && "Already initialized?"
) ? void (0) : __assert_fail ("Operands.empty() && \"Already initialized?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1688, __extension__ __PRETTY_FUNCTION__))
;
1689 auto *I0 = cast<Instruction>(Scalars[0]);
1690 Operands.resize(I0->getNumOperands());
1691 unsigned NumLanes = Scalars.size();
1692 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1693 OpIdx != NumOperands; ++OpIdx) {
1694 Operands[OpIdx].resize(NumLanes);
1695 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1696 auto *I = cast<Instruction>(Scalars[Lane]);
1697 assert(I->getNumOperands() == NumOperands &&(static_cast <bool> (I->getNumOperands() == NumOperands
&& "Expected same number of operands") ? void (0) : __assert_fail
("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1698, __extension__ __PRETTY_FUNCTION__))
1698 "Expected same number of operands")(static_cast <bool> (I->getNumOperands() == NumOperands
&& "Expected same number of operands") ? void (0) : __assert_fail
("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1698, __extension__ __PRETTY_FUNCTION__))
;
1699 Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1700 }
1701 }
1702 }
1703
1704 /// \returns the \p OpIdx operand of this TreeEntry.
1705 ValueList &getOperand(unsigned OpIdx) {
1706 assert(OpIdx < Operands.size() && "Off bounds")(static_cast <bool> (OpIdx < Operands.size() &&
"Off bounds") ? void (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1706, __extension__ __PRETTY_FUNCTION__))
;
1707 return Operands[OpIdx];
1708 }
1709
1710 /// \returns the number of operands.
1711 unsigned getNumOperands() const { return Operands.size(); }
1712
1713 /// \return the single \p OpIdx operand.
1714 Value *getSingleOperand(unsigned OpIdx) const {
1715 assert(OpIdx < Operands.size() && "Off bounds")(static_cast <bool> (OpIdx < Operands.size() &&
"Off bounds") ? void (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1715, __extension__ __PRETTY_FUNCTION__))
;
1716 assert(!Operands[OpIdx].empty() && "No operand available")(static_cast <bool> (!Operands[OpIdx].empty() &&
"No operand available") ? void (0) : __assert_fail ("!Operands[OpIdx].empty() && \"No operand available\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1716, __extension__ __PRETTY_FUNCTION__))
;
1717 return Operands[OpIdx][0];
1718 }
1719
1720 /// Some of the instructions in the list have alternate opcodes.
1721 bool isAltShuffle() const {
1722 return getOpcode() != getAltOpcode();
1723 }
1724
1725 bool isOpcodeOrAlt(Instruction *I) const {
1726 unsigned CheckedOpcode = I->getOpcode();
1727 return (getOpcode() == CheckedOpcode ||
1728 getAltOpcode() == CheckedOpcode);
1729 }
1730
1731 /// Chooses the correct key for scheduling data. If \p Op has the same (or
1732 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1733 /// \p OpValue.
1734 Value *isOneOf(Value *Op) const {
1735 auto *I = dyn_cast<Instruction>(Op);
1736 if (I && isOpcodeOrAlt(I))
1737 return Op;
1738 return MainOp;
1739 }
1740
1741 void setOperations(const InstructionsState &S) {
1742 MainOp = S.MainOp;
1743 AltOp = S.AltOp;
1744 }
1745
1746 Instruction *getMainOp() const {
1747 return MainOp;
1748 }
1749
1750 Instruction *getAltOp() const {
1751 return AltOp;
1752 }
1753
1754 /// The main/alternate opcodes for the list of instructions.
1755 unsigned getOpcode() const {
1756 return MainOp ? MainOp->getOpcode() : 0;
1757 }
1758
1759 unsigned getAltOpcode() const {
1760 return AltOp ? AltOp->getOpcode() : 0;
1761 }
1762
1763 /// Update operations state of this entry if reorder occurred.
1764 bool updateStateIfReorder() {
1765 if (ReorderIndices.empty())
1766 return false;
1767 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1768 setOperations(S);
1769 return true;
1770 }
1771
1772#ifndef NDEBUG
1773 /// Debug printer.
1774 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const {
1775 dbgs() << Idx << ".\n";
1776 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1777 dbgs() << "Operand " << OpI << ":\n";
1778 for (const Value *V : Operands[OpI])
1779 dbgs().indent(2) << *V << "\n";
1780 }
1781 dbgs() << "Scalars: \n";
1782 for (Value *V : Scalars)
1783 dbgs().indent(2) << *V << "\n";
1784 dbgs() << "State: ";
1785 switch (State) {
1786 case Vectorize:
1787 dbgs() << "Vectorize\n";
1788 break;
1789 case ScatterVectorize:
1790 dbgs() << "ScatterVectorize\n";
1791 break;
1792 case NeedToGather:
1793 dbgs() << "NeedToGather\n";
1794 break;
1795 }
1796 dbgs() << "MainOp: ";
1797 if (MainOp)
1798 dbgs() << *MainOp << "\n";
1799 else
1800 dbgs() << "NULL\n";
1801 dbgs() << "AltOp: ";
1802 if (AltOp)
1803 dbgs() << *AltOp << "\n";
1804 else
1805 dbgs() << "NULL\n";
1806 dbgs() << "VectorizedValue: ";
1807 if (VectorizedValue)
1808 dbgs() << *VectorizedValue << "\n";
1809 else
1810 dbgs() << "NULL\n";
1811 dbgs() << "ReuseShuffleIndices: ";
1812 if (ReuseShuffleIndices.empty())
1813 dbgs() << "Empty";
1814 else
1815 for (unsigned ReuseIdx : ReuseShuffleIndices)
1816 dbgs() << ReuseIdx << ", ";
1817 dbgs() << "\n";
1818 dbgs() << "ReorderIndices: ";
1819 for (unsigned ReorderIdx : ReorderIndices)
1820 dbgs() << ReorderIdx << ", ";
1821 dbgs() << "\n";
1822 dbgs() << "UserTreeIndices: ";
1823 for (const auto &EInfo : UserTreeIndices)
1824 dbgs() << EInfo << ", ";
1825 dbgs() << "\n";
1826 }
1827#endif
1828 };
1829
1830#ifndef NDEBUG
1831 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
1832 InstructionCost VecCost,
1833 InstructionCost ScalarCost) const {
1834 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
1835 dbgs() << "SLP: Costs:\n";
1836 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n";
1837 dbgs() << "SLP: VectorCost = " << VecCost << "\n";
1838 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n";
1839 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " <<
1840 ReuseShuffleCost + VecCost - ScalarCost << "\n";
1841 }
1842#endif
1843
1844 /// Create a new VectorizableTree entry.
1845 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1846 const InstructionsState &S,
1847 const EdgeInfo &UserTreeIdx,
1848 ArrayRef<unsigned> ReuseShuffleIndices = None,
1849 ArrayRef<unsigned> ReorderIndices = None) {
1850 TreeEntry::EntryState EntryState =
1851 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1852 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
1853 ReuseShuffleIndices, ReorderIndices);
1854 }
1855
1856 TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
1857 TreeEntry::EntryState EntryState,
1858 Optional<ScheduleData *> Bundle,
1859 const InstructionsState &S,
1860 const EdgeInfo &UserTreeIdx,
1861 ArrayRef<unsigned> ReuseShuffleIndices = None,
1862 ArrayRef<unsigned> ReorderIndices = None) {
1863 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1865, __extension__ __PRETTY_FUNCTION__))
1864 (Bundle && EntryState != TreeEntry::NeedToGather)) &&(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1865, __extension__ __PRETTY_FUNCTION__))
1865 "Need to vectorize gather entry?")(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1865, __extension__ __PRETTY_FUNCTION__))
;
1866 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1867 TreeEntry *Last = VectorizableTree.back().get();
1868 Last->Idx = VectorizableTree.size() - 1;
1869 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1870 Last->State = EntryState;
1871 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1872 ReuseShuffleIndices.end());
1873 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1874 Last->setOperations(S);
1875 if (Last->State != TreeEntry::NeedToGather) {
1876 for (Value *V : VL) {
1877 assert(!getTreeEntry(V) && "Scalar already in tree!")(static_cast <bool> (!getTreeEntry(V) && "Scalar already in tree!"
) ? void (0) : __assert_fail ("!getTreeEntry(V) && \"Scalar already in tree!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1877, __extension__ __PRETTY_FUNCTION__))
;
1878 ScalarToTreeEntry[V] = Last;
1879 }
1880 // Update the scheduler bundle to point to this TreeEntry.
1881 unsigned Lane = 0;
1882 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1883 BundleMember = BundleMember->NextInBundle) {
1884 BundleMember->TE = Last;
1885 BundleMember->Lane = Lane;
1886 ++Lane;
1887 }
1888 assert((!Bundle.getValue() || Lane == VL.size()) &&(static_cast <bool> ((!Bundle.getValue() || Lane == VL.
size()) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(!Bundle.getValue() || Lane == VL.size()) && \"Bundle and VL out of sync\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1889, __extension__ __PRETTY_FUNCTION__))
1889 "Bundle and VL out of sync")(static_cast <bool> ((!Bundle.getValue() || Lane == VL.
size()) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(!Bundle.getValue() || Lane == VL.size()) && \"Bundle and VL out of sync\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1889, __extension__ __PRETTY_FUNCTION__))
;
1890 } else {
1891 MustGather.insert(VL.begin(), VL.end());
1892 }
1893
1894 if (UserTreeIdx.UserTE)
1895 Last->UserTreeIndices.push_back(UserTreeIdx);
1896
1897 return Last;
1898 }
1899
1900 /// -- Vectorization State --
1901 /// Holds all of the tree entries.
1902 TreeEntry::VecTreeTy VectorizableTree;
1903
1904#ifndef NDEBUG
1905 /// Debug printer.
1906 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dumpVectorizableTree() const {
1907 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1908 VectorizableTree[Id]->dump();
1909 dbgs() << "\n";
1910 }
1911 }
1912#endif
1913
1914 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
1915
1916 const TreeEntry *getTreeEntry(Value *V) const {
1917 return ScalarToTreeEntry.lookup(V);
1918 }
1919
1920 /// Maps a specific scalar to its tree entry.
1921 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1922
1923 /// Maps a value to the proposed vectorizable size.
1924 SmallDenseMap<Value *, unsigned> InstrElementSize;
1925
1926 /// A list of scalars that we found that we need to keep as scalars.
1927 ValueSet MustGather;
1928
1929 /// This POD struct describes one external user in the vectorized tree.
1930 struct ExternalUser {
1931 ExternalUser(Value *S, llvm::User *U, int L)
1932 : Scalar(S), User(U), Lane(L) {}
1933
1934 // Which scalar in our function.
1935 Value *Scalar;
1936
1937 // Which user that uses the scalar.
1938 llvm::User *User;
1939
1940 // Which lane does the scalar belong to.
1941 int Lane;
1942 };
1943 using UserList = SmallVector<ExternalUser, 16>;
1944
1945 /// Checks if two instructions may access the same memory.
1946 ///
1947 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1948 /// is invariant in the calling loop.
1949 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1950 Instruction *Inst2) {
1951 // First check if the result is already in the cache.
1952 AliasCacheKey key = std::make_pair(Inst1, Inst2);
1953 Optional<bool> &result = AliasCache[key];
1954 if (result.hasValue()) {
1955 return result.getValue();
1956 }
1957 MemoryLocation Loc2 = getLocation(Inst2, AA);
1958 bool aliased = true;
1959 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1960 // Do the alias check.
1961 aliased = !AA->isNoAlias(Loc1, Loc2);
1962 }
1963 // Store the result in the cache.
1964 result = aliased;
1965 return aliased;
1966 }
1967
1968 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1969
1970 /// Cache for alias results.
1971 /// TODO: consider moving this to the AliasAnalysis itself.
1972 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1973
1974 /// Removes an instruction from its block and eventually deletes it.
1975 /// It's like Instruction::eraseFromParent() except that the actual deletion
1976 /// is delayed until BoUpSLP is destructed.
1977 /// This is required to ensure that there are no incorrect collisions in the
1978 /// AliasCache, which can happen if a new instruction is allocated at the
1979 /// same address as a previously deleted instruction.
1980 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1981 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1982 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1983 }
1984
1985 /// Temporary store for deleted instructions. Instructions will be deleted
1986 /// eventually when the BoUpSLP is destructed.
1987 DenseMap<Instruction *, bool> DeletedInstructions;
1988
1989 /// A list of values that need to extracted out of the tree.
1990 /// This list holds pairs of (Internal Scalar : External User). External User
1991 /// can be nullptr, it means that this Internal Scalar will be used later,
1992 /// after vectorization.
1993 UserList ExternalUses;
1994
1995 /// Values used only by @llvm.assume calls.
1996 SmallPtrSet<const Value *, 32> EphValues;
1997
1998 /// Holds all of the instructions that we gathered.
1999 SetVector<Instruction *> GatherSeq;
2000
2001 /// A list of blocks that we are going to CSE.
2002 SetVector<BasicBlock *> CSEBlocks;
2003
2004 /// Contains all scheduling relevant data for an instruction.
2005 /// A ScheduleData either represents a single instruction or a member of an
2006 /// instruction bundle (= a group of instructions which is combined into a
2007 /// vector instruction).
2008 struct ScheduleData {
2009 // The initial value for the dependency counters. It means that the
2010 // dependencies are not calculated yet.
2011 enum { InvalidDeps = -1 };
2012
2013 ScheduleData() = default;
2014
2015 void init(int BlockSchedulingRegionID, Value *OpVal) {
2016 FirstInBundle = this;
2017 NextInBundle = nullptr;
2018 NextLoadStore = nullptr;
2019 IsScheduled = false;
2020 SchedulingRegionID = BlockSchedulingRegionID;
2021 UnscheduledDepsInBundle = UnscheduledDeps;
2022 clearDependencies();
2023 OpValue = OpVal;
2024 TE = nullptr;
2025 Lane = -1;
2026 }
2027
2028 /// Returns true if the dependency information has been calculated.
2029 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2030
2031 /// Returns true for single instructions and for bundle representatives
2032 /// (= the head of a bundle).
2033 bool isSchedulingEntity() const { return FirstInBundle == this; }
2034
2035 /// Returns true if it represents an instruction bundle and not only a
2036 /// single instruction.
2037 bool isPartOfBundle() const {
2038 return NextInBundle != nullptr || FirstInBundle != this;
2039 }
2040
2041 /// Returns true if it is ready for scheduling, i.e. it has no more
2042 /// unscheduled depending instructions/bundles.
2043 bool isReady() const {
2044 assert(isSchedulingEntity() &&(static_cast <bool> (isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2045, __extension__ __PRETTY_FUNCTION__))
2045 "can't consider non-scheduling entity for ready list")(static_cast <bool> (isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2045, __extension__ __PRETTY_FUNCTION__))
;
2046 return UnscheduledDepsInBundle == 0 && !IsScheduled;
2047 }
2048
2049 /// Modifies the number of unscheduled dependencies, also updating it for
2050 /// the whole bundle.
2051 int incrementUnscheduledDeps(int Incr) {
2052 UnscheduledDeps += Incr;
2053 return FirstInBundle->UnscheduledDepsInBundle += Incr;
2054 }
2055
2056 /// Sets the number of unscheduled dependencies to the number of
2057 /// dependencies.
2058 void resetUnscheduledDeps() {
2059 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
2060 }
2061
2062 /// Clears all dependency information.
2063 void clearDependencies() {
2064 Dependencies = InvalidDeps;
2065 resetUnscheduledDeps();
2066 MemoryDependencies.clear();
2067 }
2068
2069 void dump(raw_ostream &os) const {
2070 if (!isSchedulingEntity()) {
2071 os << "/ " << *Inst;
2072 } else if (NextInBundle) {
2073 os << '[' << *Inst;
2074 ScheduleData *SD = NextInBundle;
2075 while (SD) {
2076 os << ';' << *SD->Inst;
2077 SD = SD->NextInBundle;
2078 }
2079 os << ']';
2080 } else {
2081 os << *Inst;
2082 }
2083 }
2084
2085 Instruction *Inst = nullptr;
2086
2087 /// Points to the head in an instruction bundle (and always to this for
2088 /// single instructions).
2089 ScheduleData *FirstInBundle = nullptr;
2090
2091 /// Single linked list of all instructions in a bundle. Null if it is a
2092 /// single instruction.
2093 ScheduleData *NextInBundle = nullptr;
2094
2095 /// Single linked list of all memory instructions (e.g. load, store, call)
2096 /// in the block - until the end of the scheduling region.
2097 ScheduleData *NextLoadStore = nullptr;
2098
2099 /// The dependent memory instructions.
2100 /// This list is derived on demand in calculateDependencies().
2101 SmallVector<ScheduleData *, 4> MemoryDependencies;
2102
2103 /// This ScheduleData is in the current scheduling region if this matches
2104 /// the current SchedulingRegionID of BlockScheduling.
2105 int SchedulingRegionID = 0;
2106
2107 /// Used for getting a "good" final ordering of instructions.
2108 int SchedulingPriority = 0;
2109
2110 /// The number of dependencies. Constitutes of the number of users of the
2111 /// instruction plus the number of dependent memory instructions (if any).
2112 /// This value is calculated on demand.
2113 /// If InvalidDeps, the number of dependencies is not calculated yet.
2114 int Dependencies = InvalidDeps;
2115
2116 /// The number of dependencies minus the number of dependencies of scheduled
2117 /// instructions. As soon as this is zero, the instruction/bundle gets ready
2118 /// for scheduling.
2119 /// Note that this is negative as long as Dependencies is not calculated.
2120 int UnscheduledDeps = InvalidDeps;
2121
2122 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2123 /// single instructions.
2124 int UnscheduledDepsInBundle = InvalidDeps;
2125
2126 /// True if this instruction is scheduled (or considered as scheduled in the
2127 /// dry-run).
2128 bool IsScheduled = false;
2129
2130 /// Opcode of the current instruction in the schedule data.
2131 Value *OpValue = nullptr;
2132
2133 /// The TreeEntry that this instruction corresponds to.
2134 TreeEntry *TE = nullptr;
2135
2136 /// The lane of this node in the TreeEntry.
2137 int Lane = -1;
2138 };
2139
2140#ifndef NDEBUG
2141 friend inline raw_ostream &operator<<(raw_ostream &os,
2142 const BoUpSLP::ScheduleData &SD) {
2143 SD.dump(os);
2144 return os;
2145 }
2146#endif
2147
2148 friend struct GraphTraits<BoUpSLP *>;
2149 friend struct DOTGraphTraits<BoUpSLP *>;
2150
2151 /// Contains all scheduling data for a basic block.
2152 struct BlockScheduling {
2153 BlockScheduling(BasicBlock *BB)
2154 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2155
2156 void clear() {
2157 ReadyInsts.clear();
2158 ScheduleStart = nullptr;
2159 ScheduleEnd = nullptr;
2160 FirstLoadStoreInRegion = nullptr;
2161 LastLoadStoreInRegion = nullptr;
2162
2163 // Reduce the maximum schedule region size by the size of the
2164 // previous scheduling run.
2165 ScheduleRegionSizeLimit -= ScheduleRegionSize;
2166 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2167 ScheduleRegionSizeLimit = MinScheduleRegionSize;
2168 ScheduleRegionSize = 0;
2169
2170 // Make a new scheduling region, i.e. all existing ScheduleData is not
2171 // in the new region yet.
2172 ++SchedulingRegionID;
2173 }
2174
2175 ScheduleData *getScheduleData(Value *V) {
2176 ScheduleData *SD = ScheduleDataMap[V];
2177 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2178 return SD;
2179 return nullptr;
2180 }
2181
2182 ScheduleData *getScheduleData(Value *V, Value *Key) {
2183 if (V == Key)
2184 return getScheduleData(V);
2185 auto I = ExtraScheduleDataMap.find(V);
2186 if (I != ExtraScheduleDataMap.end()) {
2187 ScheduleData *SD = I->second[Key];
2188 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2189 return SD;
2190 }
2191 return nullptr;
2192 }
2193
2194 bool isInSchedulingRegion(ScheduleData *SD) const {
2195 return SD->SchedulingRegionID == SchedulingRegionID;
2196 }
2197
2198 /// Marks an instruction as scheduled and puts all dependent ready
2199 /// instructions into the ready-list.
2200 template <typename ReadyListType>
2201 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2202 SD->IsScheduled = true;
2203 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule " << *SD <<
"\n"; } } while (false)
;
2204
2205 ScheduleData *BundleMember = SD;
2206 while (BundleMember) {
2207 if (BundleMember->Inst != BundleMember->OpValue) {
2208 BundleMember = BundleMember->NextInBundle;
2209 continue;
2210 }
2211 // Handle the def-use chain dependencies.
2212
2213 // Decrement the unscheduled counter and insert to ready list if ready.
2214 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2215 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2216 if (OpDef && OpDef->hasValidDependencies() &&
2217 OpDef->incrementUnscheduledDeps(-1) == 0) {
2218 // There are no more unscheduled dependencies after
2219 // decrementing, so we can put the dependent instruction
2220 // into the ready list.
2221 ScheduleData *DepBundle = OpDef->FirstInBundle;
2222 assert(!DepBundle->IsScheduled &&(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2223, __extension__ __PRETTY_FUNCTION__))
2223 "already scheduled bundle gets ready")(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2223, __extension__ __PRETTY_FUNCTION__))
;
2224 ReadyList.insert(DepBundle);
2225 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
2226 << "SLP: gets ready (def): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
;
2227 }
2228 });
2229 };
2230
2231 // If BundleMember is a vector bundle, its operands may have been
2232 // reordered duiring buildTree(). We therefore need to get its operands
2233 // through the TreeEntry.
2234 if (TreeEntry *TE = BundleMember->TE) {
2235 int Lane = BundleMember->Lane;
2236 assert(Lane >= 0 && "Lane not set")(static_cast <bool> (Lane >= 0 && "Lane not set"
) ? void (0) : __assert_fail ("Lane >= 0 && \"Lane not set\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2236, __extension__ __PRETTY_FUNCTION__))
;
2237
2238 // Since vectorization tree is being built recursively this assertion
2239 // ensures that the tree entry has all operands set before reaching
2240 // this code. Couple of exceptions known at the moment are extracts
2241 // where their second (immediate) operand is not added. Since
2242 // immediates do not affect scheduler behavior this is considered
2243 // okay.
2244 auto *In = TE->getMainOp();
2245 assert(In &&(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || isa<InsertElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? void (0) : __assert_fail
("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || isa<InsertElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2249, __extension__ __PRETTY_FUNCTION__))
2246 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || isa<InsertElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? void (0) : __assert_fail
("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || isa<InsertElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2249, __extension__ __PRETTY_FUNCTION__))
2247 isa<InsertElementInst>(In) ||(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || isa<InsertElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? void (0) : __assert_fail
("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || isa<InsertElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2249, __extension__ __PRETTY_FUNCTION__))
2248 In->getNumOperands() == TE->getNumOperands()) &&(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || isa<InsertElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? void (0) : __assert_fail
("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || isa<InsertElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2249, __extension__ __PRETTY_FUNCTION__))
2249 "Missed TreeEntry operands?")(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || isa<InsertElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? void (0) : __assert_fail
("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || isa<InsertElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2249, __extension__ __PRETTY_FUNCTION__))
;
2250 (void)In; // fake use to avoid build failure when assertions disabled
2251
2252 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2253 OpIdx != NumOperands; ++OpIdx)
2254 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2255 DecrUnsched(I);
2256 } else {
2257 // If BundleMember is a stand-alone instruction, no operand reordering
2258 // has taken place, so we directly access its operands.
2259 for (Use &U : BundleMember->Inst->operands())
2260 if (auto *I = dyn_cast<Instruction>(U.get()))
2261 DecrUnsched(I);
2262 }
2263 // Handle the memory dependencies.
2264 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2265 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2266 // There are no more unscheduled dependencies after decrementing,
2267 // so we can put the dependent instruction into the ready list.
2268 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2269 assert(!DepBundle->IsScheduled &&(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2270, __extension__ __PRETTY_FUNCTION__))
2270 "already scheduled bundle gets ready")(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2270, __extension__ __PRETTY_FUNCTION__))
;
2271 ReadyList.insert(DepBundle);
2272 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
2273 << "SLP: gets ready (mem): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
;
2274 }
2275 }
2276 BundleMember = BundleMember->NextInBundle;
2277 }
2278 }
2279
2280 void doForAllOpcodes(Value *V,
2281 function_ref<void(ScheduleData *SD)> Action) {
2282 if (ScheduleData *SD = getScheduleData(V))
2283 Action(SD);
2284 auto I = ExtraScheduleDataMap.find(V);
2285 if (I != ExtraScheduleDataMap.end())
2286 for (auto &P : I->second)
2287 if (P.second->SchedulingRegionID == SchedulingRegionID)
2288 Action(P.second);
2289 }
2290
2291 /// Put all instructions into the ReadyList which are ready for scheduling.
2292 template <typename ReadyListType>
2293 void initialFillReadyList(ReadyListType &ReadyList) {
2294 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2295 doForAllOpcodes(I, [&](ScheduleData *SD) {
2296 if (SD->isSchedulingEntity() && SD->isReady()) {
2297 ReadyList.insert(SD);
2298 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (false)
2299 << "SLP: initially in ready list: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (false)
;
2300 }
2301 });
2302 }
2303 }
2304
2305 /// Checks if a bundle of instructions can be scheduled, i.e. has no
2306 /// cyclic dependencies. This is only a dry-run, no instructions are
2307 /// actually moved at this stage.
2308 /// \returns the scheduling bundle. The returned Optional value is non-None
2309 /// if \p VL is allowed to be scheduled.
2310 Optional<ScheduleData *>
2311 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2312 const InstructionsState &S);
2313
2314 /// Un-bundles a group of instructions.
2315 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2316
2317 /// Allocates schedule data chunk.
2318 ScheduleData *allocateScheduleDataChunks();
2319
2320 /// Extends the scheduling region so that V is inside the region.
2321 /// \returns true if the region size is within the limit.
2322 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2323
2324 /// Initialize the ScheduleData structures for new instructions in the
2325 /// scheduling region.
2326 void initScheduleData(Instruction *FromI, Instruction *ToI,
2327 ScheduleData *PrevLoadStore,
2328 ScheduleData *NextLoadStore);
2329
2330 /// Updates the dependency information of a bundle and of all instructions/
2331 /// bundles which depend on the original bundle.
2332 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2333 BoUpSLP *SLP);
2334
2335 /// Sets all instruction in the scheduling region to un-scheduled.
2336 void resetSchedule();
2337
2338 BasicBlock *BB;
2339
2340 /// Simple memory allocation for ScheduleData.
2341 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2342
2343 /// The size of a ScheduleData array in ScheduleDataChunks.
2344 int ChunkSize;
2345
2346 /// The allocator position in the current chunk, which is the last entry
2347 /// of ScheduleDataChunks.
2348 int ChunkPos;
2349
2350 /// Attaches ScheduleData to Instruction.
2351 /// Note that the mapping survives during all vectorization iterations, i.e.
2352 /// ScheduleData structures are recycled.
2353 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2354
2355 /// Attaches ScheduleData to Instruction with the leading key.
2356 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2357 ExtraScheduleDataMap;
2358
2359 struct ReadyList : SmallVector<ScheduleData *, 8> {
2360 void insert(ScheduleData *SD) { push_back(SD); }
2361 };
2362
2363 /// The ready-list for scheduling (only used for the dry-run).
2364 ReadyList ReadyInsts;
2365
2366 /// The first instruction of the scheduling region.
2367 Instruction *ScheduleStart = nullptr;
2368
2369 /// The first instruction _after_ the scheduling region.
2370 Instruction *ScheduleEnd = nullptr;
2371
2372 /// The first memory accessing instruction in the scheduling region
2373 /// (can be null).
2374 ScheduleData *FirstLoadStoreInRegion = nullptr;
2375
2376 /// The last memory accessing instruction in the scheduling region
2377 /// (can be null).
2378 ScheduleData *LastLoadStoreInRegion = nullptr;
2379
2380 /// The current size of the scheduling region.
2381 int ScheduleRegionSize = 0;
2382
2383 /// The maximum size allowed for the scheduling region.
2384 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2385
2386 /// The ID of the scheduling region. For a new vectorization iteration this
2387 /// is incremented which "removes" all ScheduleData from the region.
2388 // Make sure that the initial SchedulingRegionID is greater than the
2389 // initial SchedulingRegionID in ScheduleData (which is 0).
2390 int SchedulingRegionID = 1;
2391 };
2392
2393 /// Attaches the BlockScheduling structures to basic blocks.
2394 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2395
2396 /// Performs the "real" scheduling. Done before vectorization is actually
2397 /// performed in a basic block.
2398 void scheduleBlock(BlockScheduling *BS);
2399
2400 /// List of users to ignore during scheduling and that don't need extracting.
2401 ArrayRef<Value *> UserIgnoreList;
2402
2403 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2404 /// sorted SmallVectors of unsigned.
2405 struct OrdersTypeDenseMapInfo {
2406 static OrdersType getEmptyKey() {
2407 OrdersType V;
2408 V.push_back(~1U);
2409 return V;
2410 }
2411
2412 static OrdersType getTombstoneKey() {
2413 OrdersType V;
2414 V.push_back(~2U);
2415 return V;
2416 }
2417
2418 static unsigned getHashValue(const OrdersType &V) {
2419 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2420 }
2421
2422 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2423 return LHS == RHS;
2424 }
2425 };
2426
2427 /// Contains orders of operations along with the number of bundles that have
2428 /// operations in this order. It stores only those orders that require
2429 /// reordering, if reordering is not required it is counted using \a
2430 /// NumOpsWantToKeepOriginalOrder.
2431 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2432 /// Number of bundles that do not require reordering.
2433 unsigned NumOpsWantToKeepOriginalOrder = 0;
2434
2435 // Analysis and block reference.
2436 Function *F;
2437 ScalarEvolution *SE;
2438 TargetTransformInfo *TTI;
2439 TargetLibraryInfo *TLI;
2440 AAResults *AA;
2441 LoopInfo *LI;
2442 DominatorTree *DT;
2443 AssumptionCache *AC;
2444 DemandedBits *DB;
2445 const DataLayout *DL;
2446 OptimizationRemarkEmitter *ORE;
2447
2448 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2449 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2450
2451 /// Instruction builder to construct the vectorized tree.
2452 IRBuilder<> Builder;
2453
2454 /// A map of scalar integer values to the smallest bit width with which they
2455 /// can legally be represented. The values map to (width, signed) pairs,
2456 /// where "width" indicates the minimum bit width and "signed" is True if the
2457 /// value must be signed-extended, rather than zero-extended, back to its
2458 /// original width.
2459 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2460};
2461
2462} // end namespace slpvectorizer
2463
2464template <> struct GraphTraits<BoUpSLP *> {
2465 using TreeEntry = BoUpSLP::TreeEntry;
2466
2467 /// NodeRef has to be a pointer per the GraphWriter.
2468 using NodeRef = TreeEntry *;
2469
2470 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2471
2472 /// Add the VectorizableTree to the index iterator to be able to return
2473 /// TreeEntry pointers.
2474 struct ChildIteratorType
2475 : public iterator_adaptor_base<
2476 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2477 ContainerTy &VectorizableTree;
2478
2479 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2480 ContainerTy &VT)
2481 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2482
2483 NodeRef operator*() { return I->UserTE; }
2484 };
2485
2486 static NodeRef getEntryNode(BoUpSLP &R) {
2487 return R.VectorizableTree[0].get();
2488 }
2489
2490 static ChildIteratorType child_begin(NodeRef N) {
2491 return {N->UserTreeIndices.begin(), N->Container};
2492 }
2493
2494 static ChildIteratorType child_end(NodeRef N) {
2495 return {N->UserTreeIndices.end(), N->Container};
2496 }
2497
2498 /// For the node iterator we just need to turn the TreeEntry iterator into a
2499 /// TreeEntry* iterator so that it dereferences to NodeRef.
2500 class nodes_iterator {
2501 using ItTy = ContainerTy::iterator;
2502 ItTy It;
2503
2504 public:
2505 nodes_iterator(const ItTy &It2) : It(It2) {}
2506 NodeRef operator*() { return It->get(); }
2507 nodes_iterator operator++() {
2508 ++It;
2509 return *this;
2510 }
2511 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2512 };
2513
2514 static nodes_iterator nodes_begin(BoUpSLP *R) {
2515 return nodes_iterator(R->VectorizableTree.begin());
2516 }
2517
2518 static nodes_iterator nodes_end(BoUpSLP *R) {
2519 return nodes_iterator(R->VectorizableTree.end());
2520 }
2521
2522 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2523};
2524
2525template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2526 using TreeEntry = BoUpSLP::TreeEntry;
2527
2528 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2529
2530 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2531 std::string Str;
2532 raw_string_ostream OS(Str);
2533 if (isSplat(Entry->Scalars)) {
2534 OS << "<splat> " << *Entry->Scalars[0];
2535 return Str;
2536 }
2537 for (auto V : Entry->Scalars) {
2538 OS << *V;
2539 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
2540 return EU.Scalar == V;
2541 }))
2542 OS << " <extract>";
2543 OS << "\n";
2544 }
2545 return Str;
2546 }
2547
2548 static std::string getNodeAttributes(const TreeEntry *Entry,
2549 const BoUpSLP *) {
2550 if (Entry->State == TreeEntry::NeedToGather)
2551 return "color=red";
2552 return "";
2553 }
2554};
2555
2556} // end namespace llvm
2557
2558BoUpSLP::~BoUpSLP() {
2559 for (const auto &Pair : DeletedInstructions) {
2560 // Replace operands of ignored instructions with Undefs in case if they were
2561 // marked for deletion.
2562 if (Pair.getSecond()) {
2563 Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2564 Pair.getFirst()->replaceAllUsesWith(Undef);
2565 }
2566 Pair.getFirst()->dropAllReferences();
2567 }
2568 for (const auto &Pair : DeletedInstructions) {
2569 assert(Pair.getFirst()->use_empty() &&(static_cast <bool> (Pair.getFirst()->use_empty() &&
"trying to erase instruction with users.") ? void (0) : __assert_fail
("Pair.getFirst()->use_empty() && \"trying to erase instruction with users.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2570, __extension__ __PRETTY_FUNCTION__))
2570 "trying to erase instruction with users.")(static_cast <bool> (Pair.getFirst()->use_empty() &&
"trying to erase instruction with users.") ? void (0) : __assert_fail
("Pair.getFirst()->use_empty() && \"trying to erase instruction with users.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2570, __extension__ __PRETTY_FUNCTION__))
;
2571 Pair.getFirst()->eraseFromParent();
2572 }
2573#ifdef EXPENSIVE_CHECKS
2574 // If we could guarantee that this call is not extremely slow, we could
2575 // remove the ifdef limitation (see PR47712).
2576 assert(!verifyFunction(*F, &dbgs()))(static_cast <bool> (!verifyFunction(*F, &dbgs())) ?
void (0) : __assert_fail ("!verifyFunction(*F, &dbgs())"
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2576, __extension__ __PRETTY_FUNCTION__))
;
2577#endif
2578}
2579
2580void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2581 for (auto *V : AV) {
2582 if (auto *I = dyn_cast<Instruction>(V))
2583 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2584 };
2585}
2586
2587void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2588 ArrayRef<Value *> UserIgnoreLst) {
2589 ExtraValueToDebugLocsMap ExternallyUsedValues;
2590 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2591}
2592
2593static int findLaneForValue(ArrayRef<Value *> Scalars,
2594 ArrayRef<int> ReuseShuffleIndices, Value *V) {
2595 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2596 assert(FoundLane < Scalars.size() && "Couldn't find extract lane")(static_cast <bool> (FoundLane < Scalars.size() &&
"Couldn't find extract lane") ? void (0) : __assert_fail ("FoundLane < Scalars.size() && \"Couldn't find extract lane\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2596, __extension__ __PRETTY_FUNCTION__))
;
2597 if (!ReuseShuffleIndices.empty()) {
2598 FoundLane = std::distance(ReuseShuffleIndices.begin(),
2599 find(ReuseShuffleIndices, FoundLane));
2600 }
2601 return FoundLane;
2602}
2603
2604void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2605 ExtraValueToDebugLocsMap &ExternallyUsedValues,
2606 ArrayRef<Value *> UserIgnoreLst) {
2607 deleteTree();
2608 UserIgnoreList = UserIgnoreLst;
2609 if (!allSameType(Roots))
2610 return;
2611 buildTree_rec(Roots, 0, EdgeInfo());
2612
2613 // Collect the values that we need to extract from the tree.
2614 for (auto &TEPtr : VectorizableTree) {
2615 TreeEntry *Entry = TEPtr.get();
2616
2617 // No need to handle users of gathered values.
2618 if (Entry->State == TreeEntry::NeedToGather)
2619 continue;
2620
2621 // For each lane:
2622 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2623 Value *Scalar = Entry->Scalars[Lane];
2624 int FoundLane =
2625 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar);
2626
2627 // Check if the scalar is externally used as an extra arg.
2628 auto ExtI = ExternallyUsedValues.find(Scalar);
2629 if (ExtI != ExternallyUsedValues.end()) {
2630 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
2631 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
;
2632 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2633 }
2634 for (User *U : Scalar->users()) {
2635 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Checking user:" << *U <<
".\n"; } } while (false)
;
2636
2637 Instruction *UserInst = dyn_cast<Instruction>(U);
2638 if (!UserInst)
2639 continue;
2640
2641 // Skip in-tree scalars that become vectors
2642 if (TreeEntry *UseEntry = getTreeEntry(U)) {
2643 Value *UseScalar = UseEntry->Scalars[0];
2644 // Some in-tree scalars will remain as scalar in vectorized
2645 // instructions. If that is the case, the one in Lane 0 will
2646 // be used.
2647 if (UseScalar != U ||
2648 UseEntry->State == TreeEntry::ScatterVectorize ||
2649 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2650 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *Udo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
2651 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
;
2652 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state")(static_cast <bool> (UseEntry->State != TreeEntry::NeedToGather
&& "Bad state") ? void (0) : __assert_fail ("UseEntry->State != TreeEntry::NeedToGather && \"Bad state\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2652, __extension__ __PRETTY_FUNCTION__))
;
2653 continue;
2654 }
2655 }
2656
2657 // Ignore users in the user ignore list.
2658 if (is_contained(UserIgnoreList, UserInst))
2659 continue;
2660
2661 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
2662 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
;
2663 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2664 }
2665 }
2666 }
2667}
2668
2669void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2670 const EdgeInfo &UserTreeIdx) {
2671 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!")(static_cast <bool> ((allConstant(VL) || allSameType(VL
)) && "Invalid types!") ? void (0) : __assert_fail ("(allConstant(VL) || allSameType(VL)) && \"Invalid types!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2671, __extension__ __PRETTY_FUNCTION__))
;
1
Assuming the condition is true
2
'?' condition is true
2672
2673 InstructionsState S = getSameOpcode(VL);
2674 if (Depth == RecursionMaxDepth) {
3
Assuming the condition is false
4
Taking false branch
2675 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to max recursion depth.\n"
; } } while (false)
;
2676 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2677 return;
2678 }
2679
2680 // Don't handle vectors.
2681 if (S.OpValue->getType()->isVectorTy() &&
2682 !isa<InsertElementInst>(S.OpValue)) {
2683 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to vector type.\n"
; } } while (false)
;
2684 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2685 return;
2686 }
2687
2688 if (StoreInst *SI
5.1
'SI' is null
5.1
'SI' is null
= dyn_cast<StoreInst>(S.OpValue))
5
Assuming field 'OpValue' is not a 'StoreInst'
6
Taking false branch
2689 if (SI->getValueOperand()->getType()->isVectorTy()) {
2690 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to store vector type.\n"
; } } while (false)
;
2691 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2692 return;
2693 }
2694
2695 // If all of the operands are identical or constant we have a simple solution.
2696 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
7
Assuming the condition is false
8
Assuming the condition is false
9
Taking false branch
2697 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to C,S,B,O. \n"
; } } while (false)
;
2698 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2699 return;
2700 }
2701
2702 // We now know that this is a vector of instructions of the same type from
2703 // the same block.
2704
2705 // Don't vectorize ephemeral values.
2706 for (Value *V : VL) {
10
Assuming '__begin1' is equal to '__end1'
2707 if (EphValues.count(V)) {
2708 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
2709 << ") is ephemeral.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
;
2710 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2711 return;
2712 }
2713 }
2714
2715 // Check if this is a duplicate of another entry.
2716 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
11
Assuming 'E' is null
12
Taking false branch
2717 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tChecking bundle: " <<
*S.OpValue << ".\n"; } } while (false)
;
2718 if (!E->isSame(VL)) {
2719 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to partial overlap.\n"
; } } while (false)
;
2720 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2721 return;
2722 }
2723 // Record the reuse of the tree node. FIXME, currently this is only used to
2724 // properly draw the graph rather than for the actual vectorization.
2725 E->UserTreeIndices.push_back(UserTreeIdx);
2726 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValuedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
2727 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
;
2728 return;
2729 }
2730
2731 // Check that none of the instructions in the bundle are already in the tree.
2732 for (Value *V : VL) {
13
Assuming '__begin1' is equal to '__end1'
2733 auto *I = dyn_cast<Instruction>(V);
2734 if (!I)
2735 continue;
2736 if (getTreeEntry(I)) {
2737 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
2738 << ") is already in tree.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
;
2739 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2740 return;
2741 }
2742 }
2743
2744 // If any of the scalars is marked as a value that needs to stay scalar, then
2745 // we need to gather the scalars.
2746 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2747 for (Value *V : VL) {
14
Assuming '__begin1' is equal to '__end1'
2748 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2749 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to gathered scalar.\n"
; } } while (false)
;
2750 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2751 return;
2752 }
2753 }
2754
2755 // Check that all of the users of the scalars that we want to vectorize are
2756 // schedulable.
2757 auto *VL0 = cast<Instruction>(S.OpValue);
15
Field 'OpValue' is a 'Instruction'
2758 BasicBlock *BB = VL0->getParent();
2759
2760 if (!DT->isReachableFromEntry(BB)) {
16
Assuming the condition is false
17
Taking false branch
2761 // Don't go into unreachable blocks. They may contain instructions with
2762 // dependency cycles which confuse the final scheduling.
2763 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle in unreachable block.\n"
; } } while (false)
;
2764 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2765 return;
2766 }
2767
2768 // Check that every instruction appears once in this bundle.
2769 SmallVector<unsigned, 4> ReuseShuffleIndicies;
2770 SmallVector<Value *, 4> UniqueValues;
2771 DenseMap<Value *, unsigned> UniquePositions;
2772 for (Value *V : VL) {
18
Assuming '__begin1' is equal to '__end1'
2773 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2774 ReuseShuffleIndicies.emplace_back(Res.first->second);
2775 if (Res.second)
2776 UniqueValues.emplace_back(V);
2777 }
2778 size_t NumUniqueScalarValues = UniqueValues.size();
2779 if (NumUniqueScalarValues == VL.size()) {
19
Assuming the condition is true
20
Taking true branch
2780 ReuseShuffleIndicies.clear();
2781 } else {
2782 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Shuffle for reused scalars.\n"
; } } while (false)
;
2783 if (NumUniqueScalarValues <= 1 ||
2784 !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2785 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Scalar used twice in bundle.\n"
; } } while (false)
;
2786 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2787 return;
2788 }
2789 VL = UniqueValues;
2790 }
2791
2792 auto &BSRef = BlocksSchedules[BB];
2793 if (!BSRef)
21
Taking false branch
2794 BSRef = std::make_unique<BlockScheduling>(BB);
2795
2796 BlockScheduling &BS = *BSRef.get();
2797
2798 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
22
Calling 'BlockScheduling::tryScheduleBundle'
2799 if (!Bundle) {
2800 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are not able to schedule this bundle!\n"
; } } while (false)
;
2801 assert((!BS.getScheduleData(VL0) ||(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2803, __extension__ __PRETTY_FUNCTION__))
2802 !BS.getScheduleData(VL0)->isPartOfBundle()) &&(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2803, __extension__ __PRETTY_FUNCTION__))
2803 "tryScheduleBundle should cancelScheduling on failure")(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2803, __extension__ __PRETTY_FUNCTION__))
;
2804 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2805 ReuseShuffleIndicies);
2806 return;
2807 }
2808 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are able to schedule this bundle.\n"
; } } while (false)
;
2809
2810 unsigned ShuffleOrOp = S.isAltShuffle() ?
2811 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2812 switch (ShuffleOrOp) {
2813 case Instruction::PHI: {
2814 auto *PH = cast<PHINode>(VL0);
2815
2816 // Check for terminator values (e.g. invoke).
2817 for (Value *V : VL)
2818 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2819 Instruction *Term = dyn_cast<Instruction>(
2820 cast<PHINode>(V)->getIncomingValueForBlock(
2821 PH->getIncomingBlock(I)));
2822 if (Term && Term->isTerminator()) {
2823 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
2824 << "SLP: Need to swizzle PHINodes (terminator use).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
;
2825 BS.cancelScheduling(VL, VL0);
2826 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2827 ReuseShuffleIndicies);
2828 return;
2829 }
2830 }
2831
2832 TreeEntry *TE =
2833 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2834 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of PHINodes.\n"
; } } while (false)
;
2835
2836 // Keeps the reordered operands to avoid code duplication.
2837 SmallVector<ValueList, 2> OperandsVec;
2838 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2839 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
2840 ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
2841 TE->setOperand(I, Operands);
2842 OperandsVec.push_back(Operands);
2843 continue;
2844 }
2845 ValueList Operands;
2846 // Prepare the operand vector.
2847 for (Value *V : VL)
2848 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2849 PH->getIncomingBlock(I)));
2850 TE->setOperand(I, Operands);
2851 OperandsVec.push_back(Operands);
2852 }
2853 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2854 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2855 return;
2856 }
2857 case Instruction::ExtractValue:
2858 case Instruction::ExtractElement: {
2859 OrdersType CurrentOrder;
2860 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2861 if (Reuse) {
2862 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Reusing or shuffling extract sequence.\n"
; } } while (false)
;
2863 ++NumOpsWantToKeepOriginalOrder;
2864 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2865 ReuseShuffleIndicies);
2866 // This is a special case, as it does not gather, but at the same time
2867 // we are not extending buildTree_rec() towards the operands.
2868 ValueList Op0;
2869 Op0.assign(VL.size(), VL0->getOperand(0));
2870 VectorizableTree.back()->setOperand(0, Op0);
2871 return;
2872 }
2873 if (!CurrentOrder.empty()) {
2874 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2875 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2876 "with order";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2877 for (unsigned Idx : CurrentOrder)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2878 dbgs() << " " << Idx;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2879 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2880 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
;
2881 // Insert new order with initial value 0, if it does not exist,
2882 // otherwise return the iterator to the existing one.
2883 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2884 ReuseShuffleIndicies, CurrentOrder);
2885 findRootOrder(CurrentOrder);
2886 ++NumOpsWantToKeepOrder[CurrentOrder];
2887 // This is a special case, as it does not gather, but at the same time
2888 // we are not extending buildTree_rec() towards the operands.
2889 ValueList Op0;
2890 Op0.assign(VL.size(), VL0->getOperand(0));
2891 VectorizableTree.back()->setOperand(0, Op0);
2892 return;
2893 }
2894 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather extract sequence.\n";
} } while (false)
;
2895 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2896 ReuseShuffleIndicies);
2897 BS.cancelScheduling(VL, VL0);
2898 return;
2899 }
2900 case Instruction::InsertElement: {
2901 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique")(static_cast <bool> (ReuseShuffleIndicies.empty() &&
"All inserts should be unique") ? void (0) : __assert_fail (
"ReuseShuffleIndicies.empty() && \"All inserts should be unique\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2901, __extension__ __PRETTY_FUNCTION__))
;
2902
2903 // Check that we have a buildvector and not a shuffle of 2 or more
2904 // different vectors.
2905 ValueSet SourceVectors;
2906 for (Value *V : VL)
2907 SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
2908
2909 if (count_if(VL, [&SourceVectors](Value *V) {
2910 return !SourceVectors.contains(V);
2911 }) >= 2) {
2912 // Found 2nd source vector - cancel.
2913 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather of insertelement vectors with "
"different source vectors.\n"; } } while (false)
2914 "different source vectors.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather of insertelement vectors with "
"different source vectors.\n"; } } while (false)
;
2915 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2916 ReuseShuffleIndicies);
2917 BS.cancelScheduling(VL, VL0);
2918 return;
2919 }
2920
2921 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx);
2922 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added inserts bundle.\n"; } }
while (false)
;
2923
2924 constexpr int NumOps = 2;
2925 ValueList VectorOperands[NumOps];
2926 for (int I = 0; I < NumOps; ++I) {
2927 for (Value *V : VL)
2928 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
2929
2930 TE->setOperand(I, VectorOperands[I]);
2931 }
2932 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0});
2933 return;
2934 }
2935 case Instruction::Load: {
2936 // Check that a vectorized load would load the same memory as a scalar
2937 // load. For example, we don't want to vectorize loads that are smaller
2938 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2939 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2940 // from such a struct, we read/write packed bits disagreeing with the
2941 // unvectorized version.
2942 Type *ScalarTy = VL0->getType();
2943
2944 if (DL->getTypeSizeInBits(ScalarTy) !=
2945 DL->getTypeAllocSizeInBits(ScalarTy)) {
2946 BS.cancelScheduling(VL, VL0);
2947 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2948 ReuseShuffleIndicies);
2949 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering loads of non-packed type.\n"
; } } while (false)
;
2950 return;
2951 }
2952
2953 // Make sure all loads in the bundle are simple - we can't vectorize
2954 // atomic or volatile loads.
2955 SmallVector<Value *, 4> PointerOps(VL.size());
2956 auto POIter = PointerOps.begin();
2957 for (Value *V : VL) {
2958 auto *L = cast<LoadInst>(V);
2959 if (!L->isSimple()) {
2960 BS.cancelScheduling(VL, VL0);
2961 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2962 ReuseShuffleIndicies);
2963 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple loads.\n"
; } } while (false)
;
2964 return;
2965 }
2966 *POIter = L->getPointerOperand();
2967 ++POIter;
2968 }
2969
2970 OrdersType CurrentOrder;
2971 // Check the order of pointer operands.
2972 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2973 Value *Ptr0;
2974 Value *PtrN;
2975 if (CurrentOrder.empty()) {
2976 Ptr0 = PointerOps.front();
2977 PtrN = PointerOps.back();
2978 } else {
2979 Ptr0 = PointerOps[CurrentOrder.front()];
2980 PtrN = PointerOps[CurrentOrder.back()];
2981 }
2982 Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE);
2983 // Check that the sorted loads are consecutive.
2984 if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
2985 if (CurrentOrder.empty()) {
2986 // Original loads are consecutive and does not require reordering.
2987 ++NumOpsWantToKeepOriginalOrder;
2988 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2989 UserTreeIdx, ReuseShuffleIndicies);
2990 TE->setOperandsInOrder();
2991 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of loads.\n";
} } while (false)
;
2992 } else {
2993 // Need to reorder.
2994 TreeEntry *TE =
2995 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2996 ReuseShuffleIndicies, CurrentOrder);
2997 TE->setOperandsInOrder();
2998 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled loads.\n"
; } } while (false)
;
2999 findRootOrder(CurrentOrder);
3000 ++NumOpsWantToKeepOrder[CurrentOrder];
3001 }
3002 return;
3003 }
3004 // Vectorizing non-consecutive loads with `llvm.masked.gather`.
3005 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
3006 UserTreeIdx, ReuseShuffleIndicies);
3007 TE->setOperandsInOrder();
3008 buildTree_rec(PointerOps, Depth + 1, {TE, 0});
3009 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of non-consecutive loads.\n"
; } } while (false)
;
3010 return;
3011 }
3012
3013 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-consecutive loads.\n"
; } } while (false)
;
3014 BS.cancelScheduling(VL, VL0);
3015 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3016 ReuseShuffleIndicies);
3017 return;
3018 }
3019 case Instruction::ZExt:
3020 case Instruction::SExt:
3021 case Instruction::FPToUI:
3022 case Instruction::FPToSI:
3023 case Instruction::FPExt:
3024 case Instruction::PtrToInt:
3025 case Instruction::IntToPtr:
3026 case Instruction::SIToFP:
3027 case Instruction::UIToFP:
3028 case Instruction::Trunc:
3029 case Instruction::FPTrunc:
3030 case Instruction::BitCast: {
3031 Type *SrcTy = VL0->getOperand(0)->getType();
3032 for (Value *V : VL) {
3033 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
3034 if (Ty != SrcTy || !isValidElementType(Ty)) {
3035 BS.cancelScheduling(VL, VL0);
3036 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3037 ReuseShuffleIndicies);
3038 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
3039 << "SLP: Gathering casts with different src types.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
;
3040 return;
3041 }
3042 }
3043 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3044 ReuseShuffleIndicies);
3045 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of casts.\n";
} } while (false)
;
3046
3047 TE->setOperandsInOrder();
3048 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3049 ValueList Operands;
3050 // Prepare the operand vector.
3051 for (Value *V : VL)
3052 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3053
3054 buildTree_rec(Operands, Depth + 1, {TE, i});
3055 }
3056 return;
3057 }
3058 case Instruction::ICmp:
3059 case Instruction::FCmp: {
3060 // Check that all of the compares have the same predicate.
3061 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3062 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
3063 Type *ComparedTy = VL0->getOperand(0)->getType();
3064 for (Value *V : VL) {
3065 CmpInst *Cmp = cast<CmpInst>(V);
3066 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
3067 Cmp->getOperand(0)->getType() != ComparedTy) {
3068 BS.cancelScheduling(VL, VL0);
3069 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3070 ReuseShuffleIndicies);
3071 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
3072 << "SLP: Gathering cmp with different predicate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
;
3073 return;
3074 }
3075 }
3076
3077 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3078 ReuseShuffleIndicies);
3079 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of compares.\n"
; } } while (false)
;
3080
3081 ValueList Left, Right;
3082 if (cast<CmpInst>(VL0)->isCommutative()) {
3083 // Commutative predicate - collect + sort operands of the instructions
3084 // so that each side is more likely to have the same opcode.
3085 assert(P0 == SwapP0 && "Commutative Predicate mismatch")(static_cast <bool> (P0 == SwapP0 && "Commutative Predicate mismatch"
) ? void (0) : __assert_fail ("P0 == SwapP0 && \"Commutative Predicate mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3085, __extension__ __PRETTY_FUNCTION__))
;
3086 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3087 } else {
3088 // Collect operands - commute if it uses the swapped predicate.
3089 for (Value *V : VL) {
3090 auto *Cmp = cast<CmpInst>(V);
3091 Value *LHS = Cmp->getOperand(0);
3092 Value *RHS = Cmp->getOperand(1);
3093 if (Cmp->getPredicate() != P0)
3094 std::swap(LHS, RHS);
3095 Left.push_back(LHS);
3096 Right.push_back(RHS);
3097 }
3098 }
3099 TE->setOperand(0, Left);
3100 TE->setOperand(1, Right);
3101 buildTree_rec(Left, Depth + 1, {TE, 0});
3102 buildTree_rec(Right, Depth + 1, {TE, 1});
3103 return;
3104 }
3105 case Instruction::Select:
3106 case Instruction::FNeg:
3107 case Instruction::Add:
3108 case Instruction::FAdd:
3109 case Instruction::Sub:
3110 case Instruction::FSub:
3111 case Instruction::Mul:
3112 case Instruction::FMul:
3113 case Instruction::UDiv:
3114 case Instruction::SDiv:
3115 case Instruction::FDiv:
3116 case Instruction::URem:
3117 case Instruction::SRem:
3118 case Instruction::FRem:
3119 case Instruction::Shl:
3120 case Instruction::LShr:
3121 case Instruction::AShr:
3122 case Instruction::And:
3123 case Instruction::Or:
3124 case Instruction::Xor: {
3125 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3126 ReuseShuffleIndicies);
3127 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of un/bin op.\n"
; } } while (false)
;
3128
3129 // Sort operands of the instructions so that each side is more likely to
3130 // have the same opcode.
3131 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
3132 ValueList Left, Right;
3133 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3134 TE->setOperand(0, Left);
3135 TE->setOperand(1, Right);
3136 buildTree_rec(Left, Depth + 1, {TE, 0});
3137 buildTree_rec(Right, Depth + 1, {TE, 1});
3138 return;
3139 }
3140
3141 TE->setOperandsInOrder();
3142 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3143 ValueList Operands;
3144 // Prepare the operand vector.
3145 for (Value *V : VL)
3146 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3147
3148 buildTree_rec(Operands, Depth + 1, {TE, i});
3149 }
3150 return;
3151 }
3152 case Instruction::GetElementPtr: {
3153 // We don't combine GEPs with complicated (nested) indexing.
3154 for (Value *V : VL) {
3155 if (cast<Instruction>(V)->getNumOperands() != 2) {
3156 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"
; } } while (false)
;
3157 BS.cancelScheduling(VL, VL0);
3158 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3159 ReuseShuffleIndicies);
3160 return;
3161 }
3162 }
3163
3164 // We can't combine several GEPs into one vector if they operate on
3165 // different types.
3166 Type *Ty0 = VL0->getOperand(0)->getType();
3167 for (Value *V : VL) {
3168 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3169 if (Ty0 != CurTy) {
3170 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
3171 << "SLP: not-vectorizable GEP (different types).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
;
3172 BS.cancelScheduling(VL, VL0);
3173 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3174 ReuseShuffleIndicies);
3175 return;
3176 }
3177 }
3178
3179 // We don't combine GEPs with non-constant indexes.
3180 Type *Ty1 = VL0->getOperand(1)->getType();
3181 for (Value *V : VL) {
3182 auto Op = cast<Instruction>(V)->getOperand(1);
3183 if (!isa<ConstantInt>(Op) ||
3184 (Op->getType() != Ty1 &&
3185 Op->getType()->getScalarSizeInBits() >
3186 DL->getIndexSizeInBits(
3187 V->getType()->getPointerAddressSpace()))) {
3188 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
3189 << "SLP: not-vectorizable GEP (non-constant indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
;
3190 BS.cancelScheduling(VL, VL0);
3191 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3192 ReuseShuffleIndicies);
3193 return;
3194 }
3195 }
3196
3197 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3198 ReuseShuffleIndicies);
3199 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of GEPs.\n"; }
} while (false)
;
3200 TE->setOperandsInOrder();
3201 for (unsigned i = 0, e = 2; i < e; ++i) {
3202 ValueList Operands;
3203 // Prepare the operand vector.
3204 for (Value *V : VL)
3205 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3206
3207 buildTree_rec(Operands, Depth + 1, {TE, i});
3208 }
3209 return;
3210 }
3211 case Instruction::Store: {
3212 // Check if the stores are consecutive or if we need to swizzle them.
3213 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3214 // Avoid types that are padded when being allocated as scalars, while
3215 // being packed together in a vector (such as i1).
3216 if (DL->getTypeSizeInBits(ScalarTy) !=
3217 DL->getTypeAllocSizeInBits(ScalarTy)) {
3218 BS.cancelScheduling(VL, VL0);
3219 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3220 ReuseShuffleIndicies);
3221 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering stores of non-packed type.\n"
; } } while (false)
;
3222 return;
3223 }
3224 // Make sure all stores in the bundle are simple - we can't vectorize
3225 // atomic or volatile stores.
3226 SmallVector<Value *, 4> PointerOps(VL.size());
3227 ValueList Operands(VL.size());
3228 auto POIter = PointerOps.begin();
3229 auto OIter = Operands.begin();
3230 for (Value *V : VL) {
3231 auto *SI = cast<StoreInst>(V);
3232 if (!SI->isSimple()) {
3233 BS.cancelScheduling(VL, VL0);
3234 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3235 ReuseShuffleIndicies);
3236 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple stores.\n"
; } } while (false)
;
3237 return;
3238 }
3239 *POIter = SI->getPointerOperand();
3240 *OIter = SI->getValueOperand();
3241 ++POIter;
3242 ++OIter;
3243 }
3244
3245 OrdersType CurrentOrder;
3246 // Check the order of pointer operands.
3247 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
3248 Value *Ptr0;
3249 Value *PtrN;
3250 if (CurrentOrder.empty()) {
3251 Ptr0 = PointerOps.front();
3252 PtrN = PointerOps.back();
3253 } else {
3254 Ptr0 = PointerOps[CurrentOrder.front()];
3255 PtrN = PointerOps[CurrentOrder.back()];
3256 }
3257 Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE);
3258 // Check that the sorted pointer operands are consecutive.
3259 if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
3260 if (CurrentOrder.empty()) {
3261 // Original stores are consecutive and does not require reordering.
3262 ++NumOpsWantToKeepOriginalOrder;
3263 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3264 UserTreeIdx, ReuseShuffleIndicies);
3265 TE->setOperandsInOrder();
3266 buildTree_rec(Operands, Depth + 1, {TE, 0});
3267 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of stores.\n"
; } } while (false)
;
3268 } else {
3269 TreeEntry *TE =
3270 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3271 ReuseShuffleIndicies, CurrentOrder);
3272 TE->setOperandsInOrder();
3273 buildTree_rec(Operands, Depth + 1, {TE, 0});
3274 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled stores.\n"
; } } while (false)
;
3275 findRootOrder(CurrentOrder);
3276 ++NumOpsWantToKeepOrder[CurrentOrder];
3277 }
3278 return;
3279 }
3280 }
3281
3282 BS.cancelScheduling(VL, VL0);
3283 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3284 ReuseShuffleIndicies);
3285 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-consecutive store.\n"; }
} while (false)
;
3286 return;
3287 }
3288 case Instruction::Call: {
3289 // Check if the calls are all to the same vectorizable intrinsic or
3290 // library function.
3291 CallInst *CI = cast<CallInst>(VL0);
3292 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3293
3294 VFShape Shape = VFShape::get(
3295 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3296 false /*HasGlobalPred*/);
3297 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3298
3299 if (!VecFunc && !isTriviallyVectorizable(ID)) {
3300 BS.cancelScheduling(VL, VL0);
3301 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3302 ReuseShuffleIndicies);
3303 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-vectorizable call.\n"; }
} while (false)
;
3304 return;
3305 }
3306 Function *F = CI->getCalledFunction();
3307 unsigned NumArgs = CI->getNumArgOperands();
3308 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3309 for (unsigned j = 0; j != NumArgs; ++j)
3310 if (hasVectorInstrinsicScalarOpd(ID, j))
3311 ScalarArgs[j] = CI->getArgOperand(j);
3312 for (Value *V : VL) {
3313 CallInst *CI2 = dyn_cast<CallInst>(V);
3314 if (!CI2 || CI2->getCalledFunction() != F ||
3315 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3316 (VecFunc &&
3317 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3318 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3319 BS.cancelScheduling(VL, VL0);
3320 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3321 ReuseShuffleIndicies);
3322 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
3323 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
;
3324 return;
3325 }
3326 // Some intrinsics have scalar arguments and should be same in order for
3327 // them to be vectorized.
3328 for (unsigned j = 0; j != NumArgs; ++j) {
3329 if (hasVectorInstrinsicScalarOpd(ID, j)) {
3330 Value *A1J = CI2->getArgOperand(j);
3331 if (ScalarArgs[j] != A1J) {
3332 BS.cancelScheduling(VL, VL0);
3333 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3334 ReuseShuffleIndicies);
3335 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
3336 << " argument " << ScalarArgs[j] << "!=" << A1Jdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
3337 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
;
3338 return;
3339 }
3340 }
3341 }
3342 // Verify that the bundle operands are identical between the two calls.
3343 if (CI->hasOperandBundles() &&
3344 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3345 CI->op_begin() + CI->getBundleOperandsEndIndex(),
3346 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3347 BS.cancelScheduling(VL, VL0);
3348 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3349 ReuseShuffleIndicies);
3350 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
3351 << *CI << "!=" << *V << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
;
3352 return;
3353 }
3354 }
3355
3356 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3357 ReuseShuffleIndicies);
3358 TE->setOperandsInOrder();
3359 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3360 ValueList Operands;
3361 // Prepare the operand vector.
3362 for (Value *V : VL) {
3363 auto *CI2 = cast<CallInst>(V);
3364 Operands.push_back(CI2->getArgOperand(i));
3365 }
3366 buildTree_rec(Operands, Depth + 1, {TE, i});
3367 }
3368 return;
3369 }
3370 case Instruction::ShuffleVector: {
3371 // If this is not an alternate sequence of opcode like add-sub
3372 // then do not vectorize this instruction.
3373 if (!S.isAltShuffle()) {
3374 BS.cancelScheduling(VL, VL0);
3375 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3376 ReuseShuffleIndicies);
3377 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: ShuffleVector are not vectorized.\n"
; } } while (false)
;
3378 return;
3379 }
3380 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3381 ReuseShuffleIndicies);
3382 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a ShuffleVector op.\n"
; } } while (false)
;
3383
3384 // Reorder operands if reordering would enable vectorization.
3385 if (isa<BinaryOperator>(VL0)) {
3386 ValueList Left, Right;
3387 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3388 TE->setOperand(0, Left);
3389 TE->setOperand(1, Right);
3390 buildTree_rec(Left, Depth + 1, {TE, 0});
3391 buildTree_rec(Right, Depth + 1, {TE, 1});
3392 return;
3393 }
3394
3395 TE->setOperandsInOrder();
3396 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3397 ValueList Operands;
3398 // Prepare the operand vector.
3399 for (Value *V : VL)
3400 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3401
3402 buildTree_rec(Operands, Depth + 1, {TE, i});
3403 }
3404 return;
3405 }
3406 default:
3407 BS.cancelScheduling(VL, VL0);
3408 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3409 ReuseShuffleIndicies);
3410 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering unknown instruction.\n"
; } } while (false)
;
3411 return;
3412 }
3413}
3414
3415unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3416 unsigned N = 1;
3417 Type *EltTy = T;
3418
3419 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3420 isa<VectorType>(EltTy)) {
3421 if (auto *ST = dyn_cast<StructType>(EltTy)) {
3422 // Check that struct is homogeneous.
3423 for (const auto *Ty : ST->elements())
3424 if (Ty != *ST->element_begin())
3425 return 0;
3426 N *= ST->getNumElements();
3427 EltTy = *ST->element_begin();
3428 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3429 N *= AT->getNumElements();
3430 EltTy = AT->getElementType();
3431 } else {
3432 auto *VT = cast<FixedVectorType>(EltTy);
3433 N *= VT->getNumElements();
3434 EltTy = VT->getElementType();
3435 }
3436 }
3437
3438 if (!isValidElementType(EltTy))
3439 return 0;
3440 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3441 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3442 return 0;
3443 return N;
3444}
3445
3446bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3447 SmallVectorImpl<unsigned> &CurrentOrder) const {
3448 Instruction *E0 = cast<Instruction>(OpValue);
3449 assert(E0->getOpcode() == Instruction::ExtractElement ||(static_cast <bool> (E0->getOpcode() == Instruction::
ExtractElement || E0->getOpcode() == Instruction::ExtractValue
) ? void (0) : __assert_fail ("E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue"
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3450, __extension__ __PRETTY_FUNCTION__))
3450 E0->getOpcode() == Instruction::ExtractValue)(static_cast <bool> (E0->getOpcode() == Instruction::
ExtractElement || E0->getOpcode() == Instruction::ExtractValue
) ? void (0) : __assert_fail ("E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue"
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3450, __extension__ __PRETTY_FUNCTION__))
;
3451 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode")(static_cast <bool> (E0->getOpcode() == getSameOpcode
(VL).getOpcode() && "Invalid opcode") ? void (0) : __assert_fail
("E0->getOpcode() == getSameOpcode(VL).getOpcode() && \"Invalid opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3451, __extension__ __PRETTY_FUNCTION__))
;
3452 // Check if all of the extracts come from the same vector and from the
3453 // correct offset.
3454 Value *Vec = E0->getOperand(0);
3455
3456 CurrentOrder.clear();
3457
3458 // We have to extract from a vector/aggregate with the same number of elements.
3459 unsigned NElts;
3460 if (E0->getOpcode() == Instruction::ExtractValue) {
3461 const DataLayout &DL = E0->getModule()->getDataLayout();
3462 NElts = canMapToVector(Vec->getType(), DL);
3463 if (!NElts)
3464 return false;
3465 // Check if load can be rewritten as load of vector.
3466 LoadInst *LI = dyn_cast<LoadInst>(Vec);
3467 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3468 return false;
3469 } else {
3470 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3471 }
3472
3473 if (NElts != VL.size())
3474 return false;
3475
3476 // Check that all of the indices extract from the correct offset.
3477 bool ShouldKeepOrder = true;
3478 unsigned E = VL.size();
3479 // Assign to all items the initial value E + 1 so we can check if the extract
3480 // instruction index was used already.
3481 // Also, later we can check that all the indices are used and we have a
3482 // consecutive access in the extract instructions, by checking that no
3483 // element of CurrentOrder still has value E + 1.
3484 CurrentOrder.assign(E, E + 1);
3485 unsigned I = 0;
3486 for (; I < E; ++I) {
3487 auto *Inst = cast<Instruction>(VL[I]);
3488 if (Inst->getOperand(0) != Vec)
3489 break;
3490 Optional<unsigned> Idx = getExtractIndex(Inst);
3491 if (!Idx)
3492 break;
3493 const unsigned ExtIdx = *Idx;
3494 if (ExtIdx != I) {
3495 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3496 break;
3497 ShouldKeepOrder = false;
3498 CurrentOrder[ExtIdx] = I;
3499 } else {
3500 if (CurrentOrder[I] != E + 1)
3501 break;
3502 CurrentOrder[I] = I;
3503 }
3504 }
3505 if (I < E) {
3506 CurrentOrder.clear();
3507 return false;
3508 }
3509
3510 return ShouldKeepOrder;
3511}
3512
3513bool BoUpSLP::areAllUsersVectorized(Instruction *I,
3514 ArrayRef<Value *> VectorizedVals) const {
3515 return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
3516 llvm::all_of(I->users(), [this](User *U) {
3517 return ScalarToTreeEntry.count(U) > 0;
3518 });
3519}
3520
3521static std::pair<InstructionCost, InstructionCost>
3522getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3523 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3524 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3525
3526 // Calculate the cost of the scalar and vector calls.
3527 SmallVector<Type *, 4> VecTys;
3528 for (Use &Arg : CI->args())
3529 VecTys.push_back(
3530 FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3531 FastMathFlags FMF;
3532 if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
3533 FMF = FPCI->getFastMathFlags();
3534 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3535 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
3536 dyn_cast<IntrinsicInst>(CI));
3537 auto IntrinsicCost =
3538 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3539
3540 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3541 VecTy->getNumElements())),
3542 false /*HasGlobalPred*/);
3543 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3544 auto LibCost = IntrinsicCost;
3545 if (!CI->isNoBuiltin() && VecFunc) {
3546 // Calculate the cost of the vector library call.
3547 // If the corresponding vector call is cheaper, return its cost.
3548 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3549 TTI::TCK_RecipThroughput);
3550 }
3551 return {IntrinsicCost, LibCost};
3552}
3553
3554/// Compute the cost of creating a vector of type \p VecTy containing the
3555/// extracted values from \p VL.
3556static InstructionCost
3557computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
3558 TargetTransformInfo::ShuffleKind ShuffleKind,
3559 ArrayRef<int> Mask, TargetTransformInfo &TTI) {
3560 unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
3561
3562 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
3563 VecTy->getNumElements() < NumOfParts)
3564 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
3565
3566 bool AllConsecutive = true;
3567 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
3568 unsigned Idx = -1;
3569 InstructionCost Cost = 0;
3570
3571 // Process extracts in blocks of EltsPerVector to check if the source vector
3572 // operand can be re-used directly. If not, add the cost of creating a shuffle
3573 // to extract the values into a vector register.
3574 for (auto *V : VL) {
3575 ++Idx;
3576
3577 // Reached the start of a new vector registers.
3578 if (Idx % EltsPerVector == 0) {
3579 AllConsecutive = true;
3580 continue;
3581 }
3582
3583 // Check all extracts for a vector register on the target directly
3584 // extract values in order.
3585 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
3586 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
3587 AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
3588 CurrentIdx % EltsPerVector == Idx % EltsPerVector;
3589
3590 if (AllConsecutive)
3591 continue;
3592
3593 // Skip all indices, except for the last index per vector block.
3594 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
3595 continue;
3596
3597 // If we have a series of extracts which are not consecutive and hence
3598 // cannot re-use the source vector register directly, compute the shuffle
3599 // cost to extract the a vector with EltsPerVector elements.
3600 Cost += TTI.getShuffleCost(
3601 TargetTransformInfo::SK_PermuteSingleSrc,
3602 FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
3603 }
3604 return Cost;
3605}
3606
3607InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
3608 ArrayRef<Value *> VectorizedVals) {
3609 ArrayRef<Value*> VL = E->Scalars;
3610
3611 Type *ScalarTy = VL[0]->getType();
3612 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3613 ScalarTy = SI->getValueOperand()->getType();
3614 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3615 ScalarTy = CI->getOperand(0)->getType();
3616 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
3617 ScalarTy = IE->getOperand(1)->getType();
3618 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3619 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3620
3621 // If we have computed a smaller type for the expression, update VecTy so
3622 // that the costs will be accurate.
3623 if (MinBWs.count(VL[0]))
3624 VecTy = FixedVectorType::get(
3625 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3626
3627 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3628 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3629 InstructionCost ReuseShuffleCost = 0;
3630 if (NeedToShuffleReuses) {
3631 ReuseShuffleCost =
3632 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
3633 E->ReuseShuffleIndices);
3634 }
3635 // FIXME: it tries to fix a problem with MSVC buildbots.
3636 TargetTransformInfo &TTIRef = *TTI;
3637 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
3638 VectorizedVals](InstructionCost &Cost,
3639 bool IsGather) {
3640 DenseMap<Value *, int> ExtractVectorsTys;
3641 for (auto *V : VL) {
3642 // If all users of instruction are going to be vectorized and this
3643 // instruction itself is not going to be vectorized, consider this
3644 // instruction as dead and remove its cost from the final cost of the
3645 // vectorized tree.
3646 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
3647 (IsGather && ScalarToTreeEntry.count(V)))
3648 continue;
3649 auto *EE = cast<ExtractElementInst>(V);
3650 unsigned Idx = *getExtractIndex(EE);
3651 if (TTIRef.getNumberOfParts(VecTy) !=
3652 TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
3653 auto It =
3654 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
3655 It->getSecond() = std::min<int>(It->second, Idx);
3656 }
3657 // Take credit for instruction that will become dead.
3658 if (EE->hasOneUse()) {
3659 Instruction *Ext = EE->user_back();
3660 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3661 all_of(Ext->users(),
3662 [](User *U) { return isa<GetElementPtrInst>(U); })) {
3663 // Use getExtractWithExtendCost() to calculate the cost of
3664 // extractelement/ext pair.
3665 Cost -=
3666 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
3667 EE->getVectorOperandType(), Idx);
3668 // Add back the cost of s|zext which is subtracted separately.
3669 Cost += TTIRef.getCastInstrCost(
3670 Ext->getOpcode(), Ext->getType(), EE->getType(),
3671 TTI::getCastContextHint(Ext), CostKind, Ext);
3672 continue;
3673 }
3674 }
3675 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
3676 EE->getVectorOperandType(), Idx);
3677 }
3678 // Add a cost for subvector extracts/inserts if required.
3679 for (const auto &Data : ExtractVectorsTys) {
3680 auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
3681 unsigned NumElts = VecTy->getNumElements();
3682 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
3683 unsigned Idx = (Data.second / NumElts) * NumElts;
3684 unsigned EENumElts = EEVTy->getNumElements();
3685 if (Idx + NumElts <= EENumElts) {
3686 Cost +=
3687 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3688 EEVTy, None, Idx, VecTy);
3689 } else {
3690 // Need to round up the subvector type vectorization factor to avoid a
3691 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
3692 // <= EENumElts.
3693 auto *SubVT =
3694 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
3695 Cost +=
3696 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3697 EEVTy, None, Idx, SubVT);
3698 }
3699 } else {
3700 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
3701 VecTy, None, 0, EEVTy);
3702 }
3703 }
3704 };
3705 if (E->State == TreeEntry::NeedToGather) {
3706 if (allConstant(VL))
3707 return 0;
3708 if (isa<InsertElementInst>(VL[0]))
3709 return InstructionCost::getInvalid();
3710 SmallVector<int> Mask;
3711 SmallVector<const TreeEntry *> Entries;
3712 Optional<TargetTransformInfo::ShuffleKind> Shuffle =
3713 isGatherShuffledEntry(E, Mask, Entries);
3714 if (Shuffle.hasValue()) {
3715 InstructionCost GatherCost = 0;
3716 if (ShuffleVectorInst::isIdentityMask(Mask)) {
3717 // Perfect match in the graph, will reuse the previously vectorized
3718 // node. Cost is 0.
3719 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
3720 dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
3721 << "SLP: perfect diamond match for gather bundle that starts with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
3722 << *VL.front() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
;
3723 } else {
3724 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
3725 << " entries for bundle that starts with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
3726 << *VL.front() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
;
3727 // Detected that instead of gather we can emit a shuffle of single/two
3728 // previously vectorized nodes. Add the cost of the permutation rather
3729 // than gather.
3730 GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask);
3731 }
3732 return ReuseShuffleCost + GatherCost;
3733 }
3734 if (isSplat(VL)) {
3735 // Found the broadcasting of the single scalar, calculate the cost as the
3736 // broadcast.
3737 return ReuseShuffleCost +
3738 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None,
3739 0);
3740 }
3741 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) &&
3742 allSameBlock(VL)) {
3743 // Check that gather of extractelements can be represented as just a
3744 // shuffle of a single/two vectors the scalars are extracted from.
3745 SmallVector<int> Mask;
3746 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
3747 isShuffle(VL, Mask);
3748 if (ShuffleKind.hasValue()) {
3749 // Found the bunch of extractelement instructions that must be gathered
3750 // into a vector and can be represented as a permutation elements in a
3751 // single input vector or of 2 input vectors.
3752 InstructionCost Cost =
3753 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
3754 AdjustExtractsCost(Cost, /*IsGather=*/true);
3755 return ReuseShuffleCost + Cost;
3756 }
3757 }
3758 return ReuseShuffleCost + getGatherCost(VL);
3759 }
3760 assert((E->State == TreeEntry::Vectorize ||(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3762, __extension__ __PRETTY_FUNCTION__))
3761 E->State == TreeEntry::ScatterVectorize) &&(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3762, __extension__ __PRETTY_FUNCTION__))
3762 "Unhandled state")(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3762, __extension__ __PRETTY_FUNCTION__))
;
3763 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL")(static_cast <bool> (E->getOpcode() && allSameType
(VL) && allSameBlock(VL) && "Invalid VL") ? void
(0) : __assert_fail ("E->getOpcode() && allSameType(VL) && allSameBlock(VL) && \"Invalid VL\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3763, __extension__ __PRETTY_FUNCTION__))
;
3764 Instruction *VL0 = E->getMainOp();
3765 unsigned ShuffleOrOp =
3766 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3767 switch (ShuffleOrOp) {
3768 case Instruction::PHI:
3769 return 0;
3770
3771 case Instruction::ExtractValue:
3772 case Instruction::ExtractElement: {
3773 // The common cost of removal ExtractElement/ExtractValue instructions +
3774 // the cost of shuffles, if required to resuffle the original vector.
3775 InstructionCost CommonCost = 0;
3776 if (NeedToShuffleReuses) {
3777 unsigned Idx = 0;
3778 for (unsigned I : E->ReuseShuffleIndices) {
3779 if (ShuffleOrOp == Instruction::ExtractElement) {
3780 auto *EE = cast<ExtractElementInst>(VL[I]);
3781 ReuseShuffleCost -= TTI->getVectorInstrCost(
3782 Instruction::ExtractElement, EE->getVectorOperandType(),
3783 *getExtractIndex(EE));
3784 } else {
3785 ReuseShuffleCost -= TTI->getVectorInstrCost(
3786 Instruction::ExtractElement, VecTy, Idx);
3787 ++Idx;
3788 }
3789 }
3790 Idx = ReuseShuffleNumbers;
3791 for (Value *V : VL) {
3792 if (ShuffleOrOp == Instruction::ExtractElement) {
3793 auto *EE = cast<ExtractElementInst>(V);
3794 ReuseShuffleCost += TTI->getVectorInstrCost(
3795 Instruction::ExtractElement, EE->getVectorOperandType(),
3796 *getExtractIndex(EE));
3797 } else {
3798 --Idx;
3799 ReuseShuffleCost += TTI->getVectorInstrCost(
3800 Instruction::ExtractElement, VecTy, Idx);
3801 }
3802 }
3803 CommonCost = ReuseShuffleCost;
3804 } else if (!E->ReorderIndices.empty()) {
3805 SmallVector<int> NewMask;
3806 inversePermutation(E->ReorderIndices, NewMask);
3807 CommonCost = TTI->getShuffleCost(
3808 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3809 }
3810 if (ShuffleOrOp == Instruction::ExtractValue) {
3811 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3812 auto *EI = cast<Instruction>(VL[I]);
3813 // Take credit for instruction that will become dead.
3814 if (EI->hasOneUse()) {
3815 Instruction *Ext = EI->user_back();
3816 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3817 all_of(Ext->users(),
3818 [](User *U) { return isa<GetElementPtrInst>(U); })) {
3819 // Use getExtractWithExtendCost() to calculate the cost of
3820 // extractelement/ext pair.
3821 CommonCost -= TTI->getExtractWithExtendCost(
3822 Ext->getOpcode(), Ext->getType(), VecTy, I);
3823 // Add back the cost of s|zext which is subtracted separately.
3824 CommonCost += TTI->getCastInstrCost(
3825 Ext->getOpcode(), Ext->getType(), EI->getType(),
3826 TTI::getCastContextHint(Ext), CostKind, Ext);
3827 continue;
3828 }
3829 }
3830 CommonCost -=
3831 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3832 }
3833 } else {
3834 AdjustExtractsCost(CommonCost, /*IsGather=*/false);
3835 }
3836 return CommonCost;
3837 }
3838 case Instruction::InsertElement: {
3839 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
3840
3841 unsigned const NumElts = SrcVecTy->getNumElements();
3842 unsigned const NumScalars = VL.size();
3843 APInt DemandedElts = APInt::getNullValue(NumElts);
3844 // TODO: Add support for Instruction::InsertValue.
3845 unsigned Offset = UINT_MAX(2147483647 *2U +1U);
3846 bool IsIdentity = true;
3847 SmallVector<int> ShuffleMask(NumElts, UndefMaskElem);
3848 for (unsigned I = 0; I < NumScalars; ++I) {
3849 Optional<int> InsertIdx = getInsertIndex(VL[I], 0);
3850 if (!InsertIdx || *InsertIdx == UndefMaskElem)
3851 continue;
3852 unsigned Idx = *InsertIdx;
3853 DemandedElts.setBit(Idx);
3854 if (Idx < Offset) {
3855 Offset = Idx;
3856 IsIdentity &= I == 0;
3857 } else {
3858 assert(Idx >= Offset && "Failed to find vector index offset")(static_cast <bool> (Idx >= Offset && "Failed to find vector index offset"
) ? void (0) : __assert_fail ("Idx >= Offset && \"Failed to find vector index offset\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3858, __extension__ __PRETTY_FUNCTION__))
;
3859 IsIdentity &= Idx - Offset == I;
3860 }
3861 ShuffleMask[Idx] = I;
3862 }
3863 assert(Offset < NumElts && "Failed to find vector index offset")(static_cast <bool> (Offset < NumElts && "Failed to find vector index offset"
) ? void (0) : __assert_fail ("Offset < NumElts && \"Failed to find vector index offset\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3863, __extension__ __PRETTY_FUNCTION__))
;
3864
3865 InstructionCost Cost = 0;
3866 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
3867 /*Insert*/ true, /*Extract*/ false);
3868
3869 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0)
3870 Cost += TTI->getShuffleCost(
3871 TargetTransformInfo::SK_InsertSubvector, SrcVecTy, /*Mask*/ None,
3872 Offset,
3873 FixedVectorType::get(SrcVecTy->getElementType(), NumScalars));
3874 else if (!IsIdentity)
3875 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy,
3876 ShuffleMask);
3877
3878 return Cost;
3879 }
3880 case Instruction::ZExt:
3881 case Instruction::SExt:
3882 case Instruction::FPToUI:
3883 case Instruction::FPToSI:
3884 case Instruction::FPExt:
3885 case Instruction::PtrToInt:
3886 case Instruction::IntToPtr:
3887 case Instruction::SIToFP:
3888 case Instruction::UIToFP:
3889 case Instruction::Trunc:
3890 case Instruction::FPTrunc:
3891 case Instruction::BitCast: {
3892 Type *SrcTy = VL0->getOperand(0)->getType();
3893 InstructionCost ScalarEltCost =
3894 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3895 TTI::getCastContextHint(VL0), CostKind, VL0);
3896 if (NeedToShuffleReuses) {
3897 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3898 }
3899
3900 // Calculate the cost of this instruction.
3901 InstructionCost ScalarCost = VL.size() * ScalarEltCost;
3902
3903 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3904 InstructionCost VecCost = 0;
3905 // Check if the values are candidates to demote.
3906 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3907 VecCost =
3908 ReuseShuffleCost +
3909 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3910 TTI::getCastContextHint(VL0), CostKind, VL0);
3911 }
3912 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
3913 return VecCost - ScalarCost;
3914 }
3915 case Instruction::FCmp:
3916 case Instruction::ICmp:
3917 case Instruction::Select: {
3918 // Calculate the cost of this instruction.
3919 InstructionCost ScalarEltCost =
3920 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
3921 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
3922 if (NeedToShuffleReuses) {
3923 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3924 }
3925 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3926 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3927
3928 // Check if all entries in VL are either compares or selects with compares
3929 // as condition that have the same predicates.
3930 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
3931 bool First = true;
3932 for (auto *V : VL) {
3933 CmpInst::Predicate CurrentPred;
3934 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
3935 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
3936 !match(V, MatchCmp)) ||
3937 (!First && VecPred != CurrentPred)) {
3938 VecPred = CmpInst::BAD_ICMP_PREDICATE;
3939 break;
3940 }
3941 First = false;
3942 VecPred = CurrentPred;
3943 }
3944
3945 InstructionCost VecCost = TTI->getCmpSelInstrCost(
3946 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
3947 // Check if it is possible and profitable to use min/max for selects in
3948 // VL.
3949 //
3950 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
3951 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
3952 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
3953 {VecTy, VecTy});
3954 InstructionCost IntrinsicCost =
3955 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3956 // If the selects are the only uses of the compares, they will be dead
3957 // and we can adjust the cost by removing their cost.
3958 if (IntrinsicAndUse.second)
3959 IntrinsicCost -=
3960 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
3961 CmpInst::BAD_ICMP_PREDICATE, CostKind);
3962 VecCost = std::min(VecCost, IntrinsicCost);
3963 }
3964 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
3965 return ReuseShuffleCost + VecCost - ScalarCost;
3966 }
3967 case Instruction::FNeg:
3968 case Instruction::Add:
3969 case Instruction::FAdd:
3970 case Instruction::Sub:
3971 case Instruction::FSub:
3972 case Instruction::Mul:
3973 case Instruction::FMul:
3974 case Instruction::UDiv:
3975 case Instruction::SDiv:
3976 case Instruction::FDiv:
3977 case Instruction::URem:
3978 case Instruction::SRem:
3979 case Instruction::FRem:
3980 case Instruction::Shl:
3981 case Instruction::LShr:
3982 case Instruction::AShr:
3983 case Instruction::And:
3984 case Instruction::Or:
3985 case Instruction::Xor: {
3986 // Certain instructions can be cheaper to vectorize if they have a
3987 // constant second vector operand.
3988 TargetTransformInfo::OperandValueKind Op1VK =
3989 TargetTransformInfo::OK_AnyValue;
3990 TargetTransformInfo::OperandValueKind Op2VK =
3991 TargetTransformInfo::OK_UniformConstantValue;
3992 TargetTransformInfo::OperandValueProperties Op1VP =
3993 TargetTransformInfo::OP_None;
3994 TargetTransformInfo::OperandValueProperties Op2VP =
3995 TargetTransformInfo::OP_PowerOf2;
3996
3997 // If all operands are exactly the same ConstantInt then set the
3998 // operand kind to OK_UniformConstantValue.
3999 // If instead not all operands are constants, then set the operand kind
4000 // to OK_AnyValue. If all operands are constants but not the same,
4001 // then set the operand kind to OK_NonUniformConstantValue.
4002 ConstantInt *CInt0 = nullptr;
4003 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
4004 const Instruction *I = cast<Instruction>(VL[i]);
4005 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
4006 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
4007 if (!CInt) {
4008 Op2VK = TargetTransformInfo::OK_AnyValue;
4009 Op2VP = TargetTransformInfo::OP_None;
4010 break;
4011 }
4012 if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
4013 !CInt->getValue().isPowerOf2())
4014 Op2VP = TargetTransformInfo::OP_None;
4015 if (i == 0) {
4016 CInt0 = CInt;
4017 continue;
4018 }
4019 if (CInt0 != CInt)
4020 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
4021 }
4022
4023 SmallVector<const Value *, 4> Operands(VL0->operand_values());
4024 InstructionCost ScalarEltCost =
4025 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
4026 Op2VK, Op1VP, Op2VP, Operands, VL0);
4027 if (NeedToShuffleReuses) {
4028 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4029 }
4030 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4031 InstructionCost VecCost =
4032 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
4033 Op2VK, Op1VP, Op2VP, Operands, VL0);
4034 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
4035 return ReuseShuffleCost + VecCost - ScalarCost;
4036 }
4037 case Instruction::GetElementPtr: {
4038 TargetTransformInfo::OperandValueKind Op1VK =
4039 TargetTransformInfo::OK_AnyValue;
4040 TargetTransformInfo::OperandValueKind Op2VK =
4041 TargetTransformInfo::OK_UniformConstantValue;
4042
4043 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
4044 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
4045 if (NeedToShuffleReuses) {
4046 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4047 }
4048 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4049 InstructionCost VecCost = TTI->getArithmeticInstrCost(
4050 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
4051 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
4052 return ReuseShuffleCost + VecCost - ScalarCost;
4053 }
4054 case Instruction::Load: {
4055 // Cost of wide load - cost of scalar loads.
4056 Align alignment = cast<LoadInst>(VL0)->getAlign();
4057 InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4058 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0);
4059 if (NeedToShuffleReuses) {
4060 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4061 }
4062 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
4063 InstructionCost VecLdCost;
4064 if (E->State == TreeEntry::Vectorize) {
4065 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
4066 CostKind, VL0);
4067 } else {
4068 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState")(static_cast <bool> (E->State == TreeEntry::ScatterVectorize
&& "Unknown EntryState") ? void (0) : __assert_fail (
"E->State == TreeEntry::ScatterVectorize && \"Unknown EntryState\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4068, __extension__ __PRETTY_FUNCTION__))
;
4069 VecLdCost = TTI->getGatherScatterOpCost(
4070 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
4071 /*VariableMask=*/false, alignment, CostKind, VL0);
4072 }
4073 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) {
4074 SmallVector<int> NewMask;
4075 inversePermutation(E->ReorderIndices, NewMask);
4076 VecLdCost += TTI->getShuffleCost(
4077 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
4078 }
4079 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost
); } } while (false)
;
4080 return ReuseShuffleCost + VecLdCost - ScalarLdCost;
4081 }
4082 case Instruction::Store: {
4083 // We know that we can merge the stores. Calculate the cost.
4084 bool IsReorder = !E->ReorderIndices.empty();
4085 auto *SI =
4086 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
4087 Align Alignment = SI->getAlign();
4088 InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4089 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
4090 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
4091 InstructionCost VecStCost = TTI->getMemoryOpCost(
4092 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
4093 if (IsReorder) {
4094 SmallVector<int> NewMask;
4095 inversePermutation(E->ReorderIndices, NewMask);
4096 VecStCost += TTI->getShuffleCost(
4097 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
4098 }
4099 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost
); } } while (false)
;
4100 return VecStCost - ScalarStCost;
4101 }
4102 case Instruction::Call: {
4103 CallInst *CI = cast<CallInst>(VL0);
4104 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4105
4106 // Calculate the cost of the scalar and vector calls.
4107 IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
4108 InstructionCost ScalarEltCost =
4109 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
4110 if (NeedToShuffleReuses) {
4111 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4112 }
4113 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
4114
4115 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4116 InstructionCost VecCallCost =
4117 std::min(VecCallCosts.first, VecCallCosts.second);
4118
4119 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
4120 << " (" << VecCallCost << "-" << ScalarCallCost << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
4121 << " for " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
;
4122
4123 return ReuseShuffleCost + VecCallCost - ScalarCallCost;
4124 }
4125 case Instruction::ShuffleVector: {
4126 assert(E->isAltShuffle() &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4131, __extension__ __PRETTY_FUNCTION__))
4127 ((Instruction::isBinaryOp(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4131, __extension__ __PRETTY_FUNCTION__))
4128 Instruction::isBinaryOp(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4131, __extension__ __PRETTY_FUNCTION__))
4129 (Instruction::isCast(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4131, __extension__ __PRETTY_FUNCTION__))
4130 Instruction::isCast(E->getAltOpcode()))) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4131, __extension__ __PRETTY_FUNCTION__))
4131 "Invalid Shuffle Vector Operand")(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4131, __extension__ __PRETTY_FUNCTION__))
;
4132 InstructionCost ScalarCost = 0;
4133 if (NeedToShuffleReuses) {
4134 for (unsigned Idx : E->ReuseShuffleIndices) {
4135 Instruction *I = cast<Instruction>(VL[Idx]);
4136 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
4137 }
4138 for (Value *V : VL) {
4139 Instruction *I = cast<Instruction>(V);
4140 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
4141 }
4142 }
4143 for (Value *V : VL) {
4144 Instruction *I = cast<Instruction>(V);
4145 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"
) ? void (0) : __assert_fail ("E->isOpcodeOrAlt(I) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4145, __extension__ __PRETTY_FUNCTION__))
;
4146 ScalarCost += TTI->getInstructionCost(I, CostKind);
4147 }
4148 // VecCost is equal to sum of the cost of creating 2 vectors
4149 // and the cost of creating shuffle.
4150 InstructionCost VecCost = 0;
4151 if (Instruction::isBinaryOp(E->getOpcode())) {
4152 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
4153 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
4154 CostKind);
4155 } else {
4156 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
4157 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
4158 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
4159 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
4160 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
4161 TTI::CastContextHint::None, CostKind);
4162 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
4163 TTI::CastContextHint::None, CostKind);
4164 }
4165
4166 SmallVector<int> Mask(E->Scalars.size());
4167 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
4168 auto *OpInst = cast<Instruction>(E->Scalars[I]);
4169 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(OpInst) &&
"Unexpected main/alternate opcode") ? void (0) : __assert_fail
("E->isOpcodeOrAlt(OpInst) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4169, __extension__ __PRETTY_FUNCTION__))
;
4170 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
4171 }
4172 VecCost +=
4173 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
4174 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
4175 return ReuseShuffleCost + VecCost - ScalarCost;
4176 }
4177 default:
4178 llvm_unreachable("Unknown instruction")::llvm::llvm_unreachable_internal("Unknown instruction", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4178)
;
4179 }
4180}
4181
4182bool BoUpSLP::isFullyVectorizableTinyTree() const {
4183 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
4184 << VectorizableTree.size() << " is fully vectorizable .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
;
4185
4186 // We only handle trees of heights 1 and 2.
4187 if (VectorizableTree.size() == 1 &&
4188 VectorizableTree[0]->State == TreeEntry::Vectorize)
4189 return true;
4190
4191 if (VectorizableTree.size() != 2)
4192 return false;
4193
4194 // Handle splat and all-constants stores. Also try to vectorize tiny trees
4195 // with the second gather nodes if they have less scalar operands rather than
4196 // the initial tree element (may be profitable to shuffle the second gather)
4197 // or they are extractelements, which form shuffle.
4198 SmallVector<int> Mask;
4199 if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
4200 (allConstant(VectorizableTree[1]->Scalars) ||
4201 isSplat(VectorizableTree[1]->Scalars) ||
4202 (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4203 VectorizableTree[1]->Scalars.size() <
4204 VectorizableTree[0]->Scalars.size()) ||
4205 (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4206 VectorizableTree[1]->getOpcode() == Instruction::ExtractElement &&
4207 isShuffle(VectorizableTree[1]->Scalars, Mask))))
4208 return true;
4209
4210 // Gathering cost would be too much for tiny trees.
4211 if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
4212 VectorizableTree[1]->State == TreeEntry::NeedToGather)
4213 return false;
4214
4215 return true;
4216}
4217
4218static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
4219 TargetTransformInfo *TTI,
4220 bool MustMatchOrInst) {
4221 // Look past the root to find a source value. Arbitrarily follow the
4222 // path through operand 0 of any 'or'. Also, peek through optional
4223 // shift-left-by-multiple-of-8-bits.
4224 Value *ZextLoad = Root;
4225 const APInt *ShAmtC;
4226 bool FoundOr = false;
4227 while (!isa<ConstantExpr>(ZextLoad) &&
4228 (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
4229 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
4230 ShAmtC->urem(8) == 0))) {
4231 auto *BinOp = cast<BinaryOperator>(ZextLoad);
4232 ZextLoad = BinOp->getOperand(0);
4233 if (BinOp->getOpcode() == Instruction::Or)
4234 FoundOr = true;
4235 }
4236 // Check if the input is an extended load of the required or/shift expression.
4237 Value *LoadPtr;
4238 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
4239 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
4240 return false;
4241
4242 // Require that the total load bit width is a legal integer type.
4243 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
4244 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
4245 Type *SrcTy = LoadPtr->getType()->getPointerElementType();
4246 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
4247 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
4248 return false;
4249
4250 // Everything matched - assume that we can fold the whole sequence using
4251 // load combining.
4252 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
4253 << *(cast<Instruction>(Root)) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
;
4254
4255 return true;
4256}
4257
4258bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
4259 if (RdxKind != RecurKind::Or)
4260 return false;
4261
4262 unsigned NumElts = VectorizableTree[0]->Scalars.size();
4263 Value *FirstReduced = VectorizableTree[0]->Scalars[0];
4264 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
4265 /* MatchOr */ false);
4266}
4267
4268bool BoUpSLP::isLoadCombineCandidate() const {
4269 // Peek through a final sequence of stores and check if all operations are
4270 // likely to be load-combined.
4271 unsigned NumElts = VectorizableTree[0]->Scalars.size();
4272 for (Value *Scalar : VectorizableTree[0]->Scalars) {
4273 Value *X;
4274 if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
4275 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
4276 return false;
4277 }
4278 return true;
4279}
4280
4281bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4282 // No need to vectorize inserts of gathered values.
4283 if (VectorizableTree.size() == 2 &&
4284 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
4285 VectorizableTree[1]->State == TreeEntry::NeedToGather)
4286 return true;
4287
4288 // We can vectorize the tree if its size is greater than or equal to the
4289 // minimum size specified by the MinTreeSize command line option.
4290 if (VectorizableTree.size() >= MinTreeSize)
4291 return false;
4292
4293 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4294 // can vectorize it if we can prove it fully vectorizable.
4295 if (isFullyVectorizableTinyTree())
4296 return false;
4297
4298 assert(VectorizableTree.empty()(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4300, __extension__ __PRETTY_FUNCTION__))
4299 ? ExternalUses.empty()(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4300, __extension__ __PRETTY_FUNCTION__))
4300 : true && "We shouldn't have any external users")(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4300, __extension__ __PRETTY_FUNCTION__))
;
4301
4302 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4303 // vectorizable.
4304 return true;
4305}
4306
4307InstructionCost BoUpSLP::getSpillCost() const {
4308 // Walk from the bottom of the tree to the top, tracking which values are
4309 // live. When we see a call instruction that is not part of our tree,
4310 // query TTI to see if there is a cost to keeping values live over it
4311 // (for example, if spills and fills are required).
4312 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
4313 InstructionCost Cost = 0;
4314
4315 SmallPtrSet<Instruction*, 4> LiveValues;
4316 Instruction *PrevInst = nullptr;
4317
4318 // The entries in VectorizableTree are not necessarily ordered by their
4319 // position in basic blocks. Collect them and order them by dominance so later
4320 // instructions are guaranteed to be visited first. For instructions in
4321 // different basic blocks, we only scan to the beginning of the block, so
4322 // their order does not matter, as long as all instructions in a basic block
4323 // are grouped together. Using dominance ensures a deterministic order.
4324 SmallVector<Instruction *, 16> OrderedScalars;
4325 for (const auto &TEPtr : VectorizableTree) {
4326 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
4327 if (!Inst)
4328 continue;
4329 OrderedScalars.push_back(Inst);
4330 }
4331 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
4332 auto *NodeA = DT->getNode(A->getParent());
4333 auto *NodeB = DT->getNode(B->getParent());
4334 assert(NodeA && "Should only process reachable instructions")(static_cast <bool> (NodeA && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeA && \"Should only process reachable instructions\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4334, __extension__ __PRETTY_FUNCTION__))
;
4335 assert(NodeB && "Should only process reachable instructions")(static_cast <bool> (NodeB && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeB && \"Should only process reachable instructions\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4335, __extension__ __PRETTY_FUNCTION__))
;
4336 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4337, __extension__ __PRETTY_FUNCTION__))
4337 "Different nodes should have different DFS numbers")(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4337, __extension__ __PRETTY_FUNCTION__))
;
4338 if (NodeA != NodeB)
4339 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
4340 return B->comesBefore(A);
4341 });
4342
4343 for (Instruction *Inst : OrderedScalars) {
4344 if (!PrevInst) {
4345 PrevInst = Inst;
4346 continue;
4347 }
4348
4349 // Update LiveValues.
4350 LiveValues.erase(PrevInst);
4351 for (auto &J : PrevInst->operands()) {
4352 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
4353 LiveValues.insert(cast<Instruction>(&*J));
4354 }
4355
4356 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4357 dbgs() << "SLP: #LV: " << LiveValues.size();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4358 for (auto *X : LiveValues)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4359 dbgs() << " " << X->getName();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4360 dbgs() << ", Looking at ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4361 Inst->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4362 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
;
4363
4364 // Now find the sequence of instructions between PrevInst and Inst.
4365 unsigned NumCalls = 0;
4366 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
4367 PrevInstIt =
4368 PrevInst->getIterator().getReverse();
4369 while (InstIt != PrevInstIt) {
4370 if (PrevInstIt == PrevInst->getParent()->rend()) {
4371 PrevInstIt = Inst->getParent()->rbegin();
4372 continue;
4373 }
4374
4375 // Debug information does not impact spill cost.
4376 if ((isa<CallInst>(&*PrevInstIt) &&
4377 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
4378 &*PrevInstIt != PrevInst)
4379 NumCalls++;
4380
4381 ++PrevInstIt;
4382 }
4383
4384 if (NumCalls) {
4385 SmallVector<Type*, 4> V;
4386 for (auto *II : LiveValues) {
4387 auto *ScalarTy = II->getType();
4388 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
4389 ScalarTy = VectorTy->getElementType();
4390 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
4391 }
4392 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
4393 }
4394
4395 PrevInst = Inst;
4396 }
4397
4398 return Cost;
4399}
4400
4401InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
4402 InstructionCost Cost = 0;
4403 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
4404 << VectorizableTree.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
;
4405
4406 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
4407
4408 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
4409 TreeEntry &TE = *VectorizableTree[I].get();
4410
4411 InstructionCost C = getEntryCost(&TE, VectorizedVals);
4412 Cost += C;
4413 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4414 << " for bundle that starts with " << *TE.Scalars[0]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4415 << ".\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4416 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
;
4417 }
4418
4419 SmallPtrSet<Value *, 16> ExtractCostCalculated;
4420 InstructionCost ExtractCost = 0;
4421 SmallBitVector IsIdentity;
4422 SmallVector<unsigned> VF;
4423 SmallVector<SmallVector<int>> ShuffleMask;
4424 SmallVector<Value *> FirstUsers;
4425 SmallVector<APInt> DemandedElts;
4426 for (ExternalUser &EU : ExternalUses) {
4427 // We only add extract cost once for the same scalar.
4428 if (!ExtractCostCalculated.insert(EU.Scalar).second)
4429 continue;
4430
4431 // Uses by ephemeral values are free (because the ephemeral value will be
4432 // removed prior to code generation, and so the extraction will be
4433 // removed as well).
4434 if (EphValues.count(EU.User))
4435 continue;
4436
4437 // No extract cost for vector "scalar"
4438 if (isa<FixedVectorType>(EU.Scalar->getType()))
4439 continue;
4440
4441 // Already counted the cost for external uses when tried to adjust the cost
4442 // for extractelements, no need to add it again.
4443 if (isa<ExtractElementInst>(EU.Scalar))
4444 continue;
4445
4446 // If found user is an insertelement, do not calculate extract cost but try
4447 // to detect it as a final shuffled/identity match.
4448 if (EU.User && isa<InsertElementInst>(EU.User)) {
4449 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) {
4450 Optional<int> InsertIdx = getInsertIndex(EU.User, 0);
4451 if (!InsertIdx || *InsertIdx == UndefMaskElem)
4452 continue;
4453 Value *VU = EU.User;
4454 auto *It = find_if(FirstUsers, [VU](Value *V) {
4455 // Checks if 2 insertelements are from the same buildvector.
4456 if (VU->getType() != V->getType())
4457 return false;
4458 auto *IE1 = cast<InsertElementInst>(VU);
4459 auto *IE2 = cast<InsertElementInst>(V);
4460 // Go though of insertelement instructions trying to find either VU as
4461 // the original vector for IE2 or V as the original vector for IE1.
4462 do {
4463 if (IE1 == VU || IE2 == V)
4464 return true;
4465 if (IE1)
4466 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
4467 if (IE2)
4468 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
4469 } while (IE1 || IE2);
4470 return false;
4471 });
4472 int VecId = -1;
4473 if (It == FirstUsers.end()) {
4474 VF.push_back(FTy->getNumElements());
4475 ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
4476 FirstUsers.push_back(EU.User);
4477 DemandedElts.push_back(APInt::getNullValue(VF.back()));
4478 IsIdentity.push_back(true);
4479 VecId = FirstUsers.size() - 1;
4480 } else {
4481 VecId = std::distance(FirstUsers.begin(), It);
4482 }
4483 int Idx = *InsertIdx;
4484 ShuffleMask[VecId][Idx] = EU.Lane;
4485 IsIdentity.set(IsIdentity.test(VecId) &
4486 (EU.Lane == Idx || EU.Lane == UndefMaskElem));
4487 DemandedElts[VecId].setBit(Idx);
4488 }
4489 }
4490
4491 // If we plan to rewrite the tree in a smaller type, we will need to sign
4492 // extend the extracted value back to the original type. Here, we account
4493 // for the extract and the added cost of the sign extend if needed.
4494 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
4495 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4496 if (MinBWs.count(ScalarRoot)) {
4497 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4498 auto Extend =
4499 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
4500 VecTy = FixedVectorType::get(MinTy, BundleWidth);
4501 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
4502 VecTy, EU.Lane);
4503 } else {
4504 ExtractCost +=
4505 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4506 }
4507 }
4508
4509 InstructionCost SpillCost = getSpillCost();
4510 Cost += SpillCost + ExtractCost;
4511 for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
4512 if (!IsIdentity.test(I)) {
4513 InstructionCost C = TTI->getShuffleCost(
4514 TTI::SK_PermuteSingleSrc,
4515 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]);
4516 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users " <<
*VectorizableTree.front()->Scalars.front() << ".\n"
<< "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4517 << " for final shuffle of insertelement external users "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users " <<
*VectorizableTree.front()->Scalars.front() << ".\n"
<< "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4518 << *VectorizableTree.front()->Scalars.front() << ".\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users " <<
*VectorizableTree.front()->Scalars.front() << ".\n"
<< "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4519 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users " <<
*VectorizableTree.front()->Scalars.front() << ".\n"
<< "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
;
4520 Cost += C;
4521 }
4522 unsigned VF = ShuffleMask[I].size();
4523 for (int &Mask : ShuffleMask[I])
4524 Mask = (Mask == UndefMaskElem ? 0 : VF) + Mask;
4525 InstructionCost C = TTI->getShuffleCost(
4526 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()),
4527 ShuffleMask[I]);
4528 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4529 dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4530 << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4531 << " for final shuffle of vector node and external insertelement users "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4532 << *VectorizableTree.front()->Scalars.front() << ".\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4533 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
;
4534 Cost += C;
4535 InstructionCost InsertCost = TTI->getScalarizationOverhead(
4536 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
4537 /*Insert*/ true,
4538 /*Extract*/ false);
4539 Cost -= InsertCost;
4540 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
4541 << " for insertelements gather.\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
4542 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
;
4543 }
4544
4545#ifndef NDEBUG
4546 SmallString<256> Str;
4547 {
4548 raw_svector_ostream OS(Str);
4549 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4550 << "SLP: Extract Cost = " << ExtractCost << ".\n"
4551 << "SLP: Total Cost = " << Cost << ".\n";
4552 }
4553 LLVM_DEBUG(dbgs() << Str)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << Str; } } while (false)
;
4554 if (ViewSLPTree)
4555 ViewGraph(this, "SLP" + F->getName(), false, Str);
4556#endif
4557
4558 return Cost;
4559}
4560
4561Optional<TargetTransformInfo::ShuffleKind>
4562BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
4563 SmallVectorImpl<const TreeEntry *> &Entries) {
4564 // TODO: currently checking only for Scalars in the tree entry, need to count
4565 // reused elements too for better cost estimation.
4566 Mask.assign(TE->Scalars.size(), UndefMaskElem);
4567 Entries.clear();
4568 // Build a lists of values to tree entries.
4569 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
4570 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
4571 if (EntryPtr.get() == TE)
4572 break;
4573 if (EntryPtr->State != TreeEntry::NeedToGather)
4574 continue;
4575 for (Value *V : EntryPtr->Scalars)
4576 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
4577 }
4578 // Find all tree entries used by the gathered values. If no common entries
4579 // found - not a shuffle.
4580 // Here we build a set of tree nodes for each gathered value and trying to
4581 // find the intersection between these sets. If we have at least one common
4582 // tree node for each gathered value - we have just a permutation of the
4583 // single vector. If we have 2 different sets, we're in situation where we
4584 // have a permutation of 2 input vectors.
4585 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
4586 DenseMap<Value *, int> UsedValuesEntry;
4587 for (Value *V : TE->Scalars) {
4588 if (isa<UndefValue>(V))
4589 continue;
4590 // Build a list of tree entries where V is used.
4591 SmallPtrSet<const TreeEntry *, 4> VToTEs;
4592 auto It = ValueToTEs.find(V);
4593 if (It != ValueToTEs.end())
4594 VToTEs = It->second;
4595 if (const TreeEntry *VTE = getTreeEntry(V))
4596 VToTEs.insert(VTE);
4597 if (VToTEs.empty())
4598 return None;
4599 if (UsedTEs.empty()) {
4600 // The first iteration, just insert the list of nodes to vector.
4601 UsedTEs.push_back(VToTEs);
4602 } else {
4603 // Need to check if there are any previously used tree nodes which use V.
4604 // If there are no such nodes, consider that we have another one input
4605 // vector.
4606 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
4607 unsigned Idx = 0;
4608 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
4609 // Do we have a non-empty intersection of previously listed tree entries
4610 // and tree entries using current V?
4611 set_intersect(VToTEs, Set);
4612 if (!VToTEs.empty()) {
4613 // Yes, write the new subset and continue analysis for the next
4614 // scalar.
4615 Set.swap(VToTEs);
4616 break;
4617 }
4618 VToTEs = SavedVToTEs;
4619 ++Idx;
4620 }
4621 // No non-empty intersection found - need to add a second set of possible
4622 // source vectors.
4623 if (Idx == UsedTEs.size()) {
4624 // If the number of input vectors is greater than 2 - not a permutation,
4625 // fallback to the regular gather.
4626 if (UsedTEs.size() == 2)
4627 return None;
4628 UsedTEs.push_back(SavedVToTEs);
4629 Idx = UsedTEs.size() - 1;
4630 }
4631 UsedValuesEntry.try_emplace(V, Idx);
4632 }
4633 }
4634
4635 unsigned VF = 0;
4636 if (UsedTEs.size() == 1) {
4637 // Try to find the perfect match in another gather node at first.
4638 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
4639 return EntryPtr->isSame(TE->Scalars);
4640 });
4641 if (It != UsedTEs.front().end()) {
4642 Entries.push_back(*It);
4643 std::iota(Mask.begin(), Mask.end(), 0);
4644 return TargetTransformInfo::SK_PermuteSingleSrc;
4645 }
4646 // No perfect match, just shuffle, so choose the first tree node.
4647 Entries.push_back(*UsedTEs.front().begin());
4648 } else {
4649 // Try to find nodes with the same vector factor.
4650 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.")(static_cast <bool> (UsedTEs.size() == 2 && "Expected at max 2 permuted entries."
) ? void (0) : __assert_fail ("UsedTEs.size() == 2 && \"Expected at max 2 permuted entries.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4650, __extension__ __PRETTY_FUNCTION__))
;
4651 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is
4652 // landed.
4653 auto &&GetVF = [](const TreeEntry *TE) {
4654 if (!TE->ReuseShuffleIndices.empty())
4655 return TE->ReuseShuffleIndices.size();
4656 return TE->Scalars.size();
4657 };
4658 DenseMap<int, const TreeEntry *> VFToTE;
4659 for (const TreeEntry *TE : UsedTEs.front())
4660 VFToTE.try_emplace(GetVF(TE), TE);
4661 for (const TreeEntry *TE : UsedTEs.back()) {
4662 auto It = VFToTE.find(GetVF(TE));
4663 if (It != VFToTE.end()) {
4664 VF = It->first;
4665 Entries.push_back(It->second);
4666 Entries.push_back(TE);
4667 break;
4668 }
4669 }
4670 // No 2 source vectors with the same vector factor - give up and do regular
4671 // gather.
4672 if (Entries.empty())
4673 return None;
4674 }
4675
4676 // Build a shuffle mask for better cost estimation and vector emission.
4677 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
4678 Value *V = TE->Scalars[I];
4679 if (isa<UndefValue>(V))
4680 continue;
4681 unsigned Idx = UsedValuesEntry.lookup(V);
4682 const TreeEntry *VTE = Entries[Idx];
4683 int FoundLane = findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V);
4684 Mask[I] = Idx * VF + FoundLane;
4685 // Extra check required by isSingleSourceMaskImpl function (called by
4686 // ShuffleVectorInst::isSingleSourceMask).
4687 if (Mask[I] >= 2 * E)
4688 return None;
4689 }
4690 switch (Entries.size()) {
4691 case 1:
4692 return TargetTransformInfo::SK_PermuteSingleSrc;
4693 case 2:
4694 return TargetTransformInfo::SK_PermuteTwoSrc;
4695 default:
4696 break;
4697 }
4698 return None;
4699}
4700
4701InstructionCost
4702BoUpSLP::getGatherCost(FixedVectorType *Ty,
4703 const DenseSet<unsigned> &ShuffledIndices) const {
4704 unsigned NumElts = Ty->getNumElements();
4705 APInt DemandedElts = APInt::getNullValue(NumElts);
4706 for (unsigned I = 0; I < NumElts; ++I)
4707 if (!ShuffledIndices.count(I))
4708 DemandedElts.setBit(I);
4709 InstructionCost Cost =
4710 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4711 /*Extract*/ false);
4712 if (!ShuffledIndices.empty())
4713 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4714 return Cost;
4715}
4716
4717InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4718 // Find the type of the operands in VL.
4719 Type *ScalarTy = VL[0]->getType();
4720 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4721 ScalarTy = SI->getValueOperand()->getType();
4722 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4723 // Find the cost of inserting/extracting values from the vector.
4724 // Check if the same elements are inserted several times and count them as
4725 // shuffle candidates.
4726 DenseSet<unsigned> ShuffledElements;
4727 DenseSet<Value *> UniqueElements;
4728 // Iterate in reverse order to consider insert elements with the high cost.
4729 for (unsigned I = VL.size(); I > 0; --I) {
4730 unsigned Idx = I - 1;
4731 if (isConstant(VL[Idx]))
4732 continue;
4733 if (!UniqueElements.insert(VL[Idx]).second)
4734 ShuffledElements.insert(Idx);
4735 }
4736 return getGatherCost(VecTy, ShuffledElements);
4737}
4738
4739// Perform operand reordering on the instructions in VL and return the reordered
4740// operands in Left and Right.
4741void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4742 SmallVectorImpl<Value *> &Left,
4743 SmallVectorImpl<Value *> &Right,
4744 const DataLayout &DL,
4745 ScalarEvolution &SE,
4746 const BoUpSLP &R) {
4747 if (VL.empty())
4748 return;
4749 VLOperands Ops(VL, DL, SE, R);
4750 // Reorder the operands in place.
4751 Ops.reorder();
4752 Left = Ops.getVL(0);
4753 Right = Ops.getVL(1);
4754}
4755
4756void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
4757 // Get the basic block this bundle is in. All instructions in the bundle
4758 // should be in this block.
4759 auto *Front = E->getMainOp();
4760 auto *BB = Front->getParent();
4761 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4764, __extension__ __PRETTY_FUNCTION__))
4762 auto *I = cast<Instruction>(V);(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4764, __extension__ __PRETTY_FUNCTION__))
4763 return !E->isOpcodeOrAlt(I) || I->getParent() == BB;(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4764, __extension__ __PRETTY_FUNCTION__))
4764 }))(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4764, __extension__ __PRETTY_FUNCTION__))
;
4765
4766 // The last instruction in the bundle in program order.
4767 Instruction *LastInst = nullptr;
4768
4769 // Find the last instruction. The common case should be that BB has been
4770 // scheduled, and the last instruction is VL.back(). So we start with
4771 // VL.back() and iterate over schedule data until we reach the end of the
4772 // bundle. The end of the bundle is marked by null ScheduleData.
4773 if (BlocksSchedules.count(BB)) {
4774 auto *Bundle =
4775 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4776 if (Bundle && Bundle->isPartOfBundle())
4777 for (; Bundle; Bundle = Bundle->NextInBundle)
4778 if (Bundle->OpValue == Bundle->Inst)
4779 LastInst = Bundle->Inst;
4780 }
4781
4782 // LastInst can still be null at this point if there's either not an entry
4783 // for BB in BlocksSchedules or there's no ScheduleData available for
4784 // VL.back(). This can be the case if buildTree_rec aborts for various
4785 // reasons (e.g., the maximum recursion depth is reached, the maximum region
4786 // size is reached, etc.). ScheduleData is initialized in the scheduling
4787 // "dry-run".
4788 //
4789 // If this happens, we can still find the last instruction by brute force. We
4790 // iterate forwards from Front (inclusive) until we either see all
4791 // instructions in the bundle or reach the end of the block. If Front is the
4792 // last instruction in program order, LastInst will be set to Front, and we
4793 // will visit all the remaining instructions in the block.
4794 //
4795 // One of the reasons we exit early from buildTree_rec is to place an upper
4796 // bound on compile-time. Thus, taking an additional compile-time hit here is
4797 // not ideal. However, this should be exceedingly rare since it requires that
4798 // we both exit early from buildTree_rec and that the bundle be out-of-order
4799 // (causing us to iterate all the way to the end of the block).
4800 if (!LastInst) {
4801 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4802 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4803 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4804 LastInst = &I;
4805 if (Bundle.empty())
4806 break;
4807 }
4808 }
4809 assert(LastInst && "Failed to find last instruction in bundle")(static_cast <bool> (LastInst && "Failed to find last instruction in bundle"
) ? void (0) : __assert_fail ("LastInst && \"Failed to find last instruction in bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4809, __extension__ __PRETTY_FUNCTION__))
;
4810
4811 // Set the insertion point after the last instruction in the bundle. Set the
4812 // debug location to Front.
4813 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4814 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4815}
4816
4817Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4818 // List of instructions/lanes from current block and/or the blocks which are
4819 // part of the current loop. These instructions will be inserted at the end to
4820 // make it possible to optimize loops and hoist invariant instructions out of
4821 // the loops body with better chances for success.
4822 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
4823 SmallSet<int, 4> PostponedIndices;
4824 Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
4825 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
4826 SmallPtrSet<BasicBlock *, 4> Visited;
4827 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
4828 InsertBB = InsertBB->getSinglePredecessor();
4829 return InsertBB && InsertBB == InstBB;
4830 };
4831 for (int I = 0, E = VL.size(); I < E; ++I) {
4832 if (auto *Inst = dyn_cast<Instruction>(VL[I]))
4833 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
4834 getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
4835 PostponedIndices.insert(I).second)
4836 PostponedInsts.emplace_back(Inst, I);
4837 }
4838
4839 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
4840 // No need to insert undefs elements - exit.
4841 if (isa<UndefValue>(V))
4842 return Vec;
4843 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
4844 auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4845 if (!InsElt)
4846 return Vec;
4847 GatherSeq.insert(InsElt);
4848 CSEBlocks.insert(InsElt->getParent());
4849 // Add to our 'need-to-extract' list.
4850 if (TreeEntry *Entry = getTreeEntry(V)) {
4851 // Find which lane we need to extract.
4852 unsigned FoundLane =
4853 std::distance(Entry->Scalars.begin(), find(Entry->Scalars, V));
4854 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane")(static_cast <bool> (FoundLane < Entry->Scalars.size
() && "Couldn't find extract lane") ? void (0) : __assert_fail
("FoundLane < Entry->Scalars.size() && \"Couldn't find extract lane\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4854, __extension__ __PRETTY_FUNCTION__))
;
4855 if (!Entry->ReuseShuffleIndices.empty()) {
4856 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(),
4857 find(Entry->ReuseShuffleIndices, FoundLane));
4858 }
4859 ExternalUses.emplace_back(V, InsElt, FoundLane);
4860 }
4861 return Vec;
4862 };
4863 Value *Val0 =
4864 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4865 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4866 Value *Vec = PoisonValue::get(VecTy);
4867 for (int I = 0, E = VL.size(); I < E; ++I) {
4868 if (PostponedIndices.contains(I))
4869 continue;
4870 Vec = CreateInsertElement(Vec, VL[I], I);
4871 }
4872 // Append instructions, which are/may be part of the loop, in the end to make
4873 // it possible to hoist non-loop-based instructions.
4874 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
4875 Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
4876
4877 return Vec;
4878}
4879
4880namespace {
4881/// Merges shuffle masks and emits final shuffle instruction, if required.
4882class ShuffleInstructionBuilder {
4883 IRBuilderBase &Builder;
4884 const unsigned VF = 0;
4885 bool IsFinalized = false;
4886 SmallVector<int, 4> Mask;
4887
4888public:
4889 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF)
4890 : Builder(Builder), VF(VF) {}
4891
4892 /// Adds a mask, inverting it before applying.
4893 void addInversedMask(ArrayRef<unsigned> SubMask) {
4894 if (SubMask.empty())
4895 return;
4896 SmallVector<int, 4> NewMask;
4897 inversePermutation(SubMask, NewMask);
4898 addMask(NewMask);
4899 }
4900
4901 /// Functions adds masks, merging them into single one.
4902 void addMask(ArrayRef<unsigned> SubMask) {
4903 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
4904 addMask(NewMask);
4905 }
4906
4907 void addMask(ArrayRef<int> SubMask) {
4908 if (SubMask.empty())
4909 return;
4910 if (Mask.empty()) {
4911 Mask.append(SubMask.begin(), SubMask.end());
4912 return;
4913 }
4914 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
4915 int TermValue = std::min(Mask.size(), SubMask.size());
4916 for (int I = 0, E = SubMask.size(); I < E; ++I) {
4917 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
4918 Mask[SubMask[I]] >= TermValue) {
4919 NewMask[I] = UndefMaskElem;
4920 continue;
4921 }
4922 NewMask[I] = Mask[SubMask[I]];
4923 }
4924 Mask.swap(NewMask);
4925 }
4926
4927 Value *finalize(Value *V) {
4928 IsFinalized = true;
4929 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
4930 if (VF == ValueVF && Mask.empty())
4931 return V;
4932 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
4933 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
4934 addMask(NormalizedMask);
4935
4936 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
4937 return V;
4938 return Builder.CreateShuffleVector(V, Mask, "shuffle");
4939 }
4940
4941 ~ShuffleInstructionBuilder() {
4942 assert((IsFinalized || Mask.empty()) &&(static_cast <bool> ((IsFinalized || Mask.empty()) &&
"Shuffle construction must be finalized.") ? void (0) : __assert_fail
("(IsFinalized || Mask.empty()) && \"Shuffle construction must be finalized.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4943, __extension__ __PRETTY_FUNCTION__))
4943 "Shuffle construction must be finalized.")(static_cast <bool> ((IsFinalized || Mask.empty()) &&
"Shuffle construction must be finalized.") ? void (0) : __assert_fail
("(IsFinalized || Mask.empty()) && \"Shuffle construction must be finalized.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4943, __extension__ __PRETTY_FUNCTION__))
;
4944 }
4945};
4946} // namespace
4947
4948Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4949 unsigned VF = VL.size();
4950 InstructionsState S = getSameOpcode(VL);
4951 if (S.getOpcode()) {
4952 if (TreeEntry *E = getTreeEntry(S.OpValue))
4953 if (E->isSame(VL)) {
4954 Value *V = vectorizeTree(E);
4955 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
4956 if (!E->ReuseShuffleIndices.empty()) {
4957 // Reshuffle to get only unique values.
4958 // If some of the scalars are duplicated in the vectorization tree
4959 // entry, we do not vectorize them but instead generate a mask for
4960 // the reuses. But if there are several users of the same entry,
4961 // they may have different vectorization factors. This is especially
4962 // important for PHI nodes. In this case, we need to adapt the
4963 // resulting instruction for the user vectorization factor and have
4964 // to reshuffle it again to take only unique elements of the vector.
4965 // Without this code the function incorrectly returns reduced vector
4966 // instruction with the same elements, not with the unique ones.
4967
4968 // block:
4969 // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
4970 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
4971 // ... (use %2)
4972 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
4973 // br %block
4974 SmallVector<int> UniqueIdxs;
4975 SmallSet<int, 4> UsedIdxs;
4976 int Pos = 0;
4977 int Sz = VL.size();
4978 for (int Idx : E->ReuseShuffleIndices) {
4979 if (Idx != Sz && UsedIdxs.insert(Idx).second)
4980 UniqueIdxs.emplace_back(Pos);
4981 ++Pos;
4982 }
4983 assert(VF >= UsedIdxs.size() && "Expected vectorization factor "(static_cast <bool> (VF >= UsedIdxs.size() &&
"Expected vectorization factor " "less than original vector size."
) ? void (0) : __assert_fail ("VF >= UsedIdxs.size() && \"Expected vectorization factor \" \"less than original vector size.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4984, __extension__ __PRETTY_FUNCTION__))
4984 "less than original vector size.")(static_cast <bool> (VF >= UsedIdxs.size() &&
"Expected vectorization factor " "less than original vector size."
) ? void (0) : __assert_fail ("VF >= UsedIdxs.size() && \"Expected vectorization factor \" \"less than original vector size.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4984, __extension__ __PRETTY_FUNCTION__))
;
4985 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
4986 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
4987 } else {
4988 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&(static_cast <bool> (VF < cast<FixedVectorType>
(V->getType())->getNumElements() && "Expected vectorization factor less "
"than original vector size.") ? void (0) : __assert_fail ("VF < cast<FixedVectorType>(V->getType())->getNumElements() && \"Expected vectorization factor less \" \"than original vector size.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4990, __extension__ __PRETTY_FUNCTION__))
4989 "Expected vectorization factor less "(static_cast <bool> (VF < cast<FixedVectorType>
(V->getType())->getNumElements() && "Expected vectorization factor less "
"than original vector size.") ? void (0) : __assert_fail ("VF < cast<FixedVectorType>(V->getType())->getNumElements() && \"Expected vectorization factor less \" \"than original vector size.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4990, __extension__ __PRETTY_FUNCTION__))
4990 "than original vector size.")(static_cast <bool> (VF < cast<FixedVectorType>
(V->getType())->getNumElements() && "Expected vectorization factor less "
"than original vector size.") ? void (0) : __assert_fail ("VF < cast<FixedVectorType>(V->getType())->getNumElements() && \"Expected vectorization factor less \" \"than original vector size.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4990, __extension__ __PRETTY_FUNCTION__))
;
4991 SmallVector<int> UniformMask(VF, 0);
4992 std::iota(UniformMask.begin(), UniformMask.end(), 0);
4993 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
4994 }
4995 }
4996 return V;
4997 }
4998 }
4999
5000 // Check that every instruction appears once in this bundle.
5001 SmallVector<int> ReuseShuffleIndicies;
5002 SmallVector<Value *> UniqueValues;
5003 if (VL.size() > 2) {
5004 DenseMap<Value *, unsigned> UniquePositions;
5005 unsigned NumValues =
5006 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
5007 return !isa<UndefValue>(V);
5008 }).base());
5009 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
5010 int UniqueVals = 0;
5011 bool HasUndefs = false;
5012 for (Value *V : VL.drop_back(VL.size() - VF)) {
5013 if (isa<UndefValue>(V)) {
5014 ReuseShuffleIndicies.emplace_back(UndefMaskElem);
5015 HasUndefs = true;
5016 continue;
5017 }
5018 if (isConstant(V)) {
5019 ReuseShuffleIndicies.emplace_back(UniqueValues.size());
5020 UniqueValues.emplace_back(V);
5021 continue;
5022 }
5023 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
5024 ReuseShuffleIndicies.emplace_back(Res.first->second);
5025 if (Res.second) {
5026 UniqueValues.emplace_back(V);
5027 ++UniqueVals;
5028 }
5029 }
5030 if (HasUndefs && UniqueVals == 1 && UniqueValues.size() == 1) {
5031 // Emit pure splat vector.
5032 // FIXME: why it is not identified as an identity.
5033 unsigned NumUndefs = count(ReuseShuffleIndicies, UndefMaskElem);
5034 if (NumUndefs == ReuseShuffleIndicies.size() - 1)
5035 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
5036 UndefMaskElem);
5037 else
5038 ReuseShuffleIndicies.assign(VF, 0);
5039 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
5040 ReuseShuffleIndicies.clear();
5041 UniqueValues.clear();
5042 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
5043 }
5044 UniqueValues.append(VF - UniqueValues.size(),
5045 UndefValue::get(VL[0]->getType()));
5046 VL = UniqueValues;
5047 }
5048
5049 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5050 Value *Vec = gather(VL);
5051 if (!ReuseShuffleIndicies.empty()) {
5052 ShuffleBuilder.addMask(ReuseShuffleIndicies);
5053 Vec = ShuffleBuilder.finalize(Vec);
5054 if (auto *I = dyn_cast<Instruction>(Vec)) {
5055 GatherSeq.insert(I);
5056 CSEBlocks.insert(I->getParent());
5057 }
5058 }
5059 return Vec;
5060}
5061
5062Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
5063 IRBuilder<>::InsertPointGuard Guard(Builder);
5064
5065 if (E->VectorizedValue) {
5066 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*E->Scalars[0] << ".\n"; } } while (false)
;
5067 return E->VectorizedValue;
5068 }
5069
5070 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
5071 unsigned VF = E->Scalars.size();
5072 if (NeedToShuffleReuses)
5073 VF = E->ReuseShuffleIndices.size();
5074 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5075 if (E->State == TreeEntry::NeedToGather) {
5076 setInsertPointAfterBundle(E);
5077 Value *Vec;
5078 SmallVector<int> Mask;
5079 SmallVector<const TreeEntry *> Entries;
5080 Optional<TargetTransformInfo::ShuffleKind> Shuffle =
5081 isGatherShuffledEntry(E, Mask, Entries);
5082 if (Shuffle.hasValue()) {
5083 assert((Entries.size() == 1 || Entries.size() == 2) &&(static_cast <bool> ((Entries.size() == 1 || Entries.size
() == 2) && "Expected shuffle of 1 or 2 entries.") ? void
(0) : __assert_fail ("(Entries.size() == 1 || Entries.size() == 2) && \"Expected shuffle of 1 or 2 entries.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5084, __extension__ __PRETTY_FUNCTION__))
5084 "Expected shuffle of 1 or 2 entries.")(static_cast <bool> ((Entries.size() == 1 || Entries.size
() == 2) && "Expected shuffle of 1 or 2 entries.") ? void
(0) : __assert_fail ("(Entries.size() == 1 || Entries.size() == 2) && \"Expected shuffle of 1 or 2 entries.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5084, __extension__ __PRETTY_FUNCTION__))
;
5085 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
5086 Entries.back()->VectorizedValue, Mask);
5087 } else {
5088 Vec = gather(E->Scalars);
5089 }
5090 if (NeedToShuffleReuses) {
5091 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5092 Vec = ShuffleBuilder.finalize(Vec);
5093 if (auto *I = dyn_cast<Instruction>(Vec)) {
5094 GatherSeq.insert(I);
5095 CSEBlocks.insert(I->getParent());
5096 }
5097 }
5098 E->VectorizedValue = Vec;
5099 return Vec;
5100 }
5101
5102 assert((E->State == TreeEntry::Vectorize ||(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5104, __extension__ __PRETTY_FUNCTION__))
5103 E->State == TreeEntry::ScatterVectorize) &&(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5104, __extension__ __PRETTY_FUNCTION__))
5104 "Unhandled state")(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5104, __extension__ __PRETTY_FUNCTION__))
;
5105 unsigned ShuffleOrOp =
5106 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5107 Instruction *VL0 = E->getMainOp();
5108 Type *ScalarTy = VL0->getType();
5109 if (auto *Store = dyn_cast<StoreInst>(VL0))
5110 ScalarTy = Store->getValueOperand()->getType();
5111 else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
5112 ScalarTy = IE->getOperand(1)->getType();
5113 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
5114 switch (ShuffleOrOp) {
5115 case Instruction::PHI: {
5116 auto *PH = cast<PHINode>(VL0);
5117 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
5118 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5119 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
5120 Value *V = NewPhi;
5121 if (NeedToShuffleReuses)
5122 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
5123
5124 E->VectorizedValue = V;
5125
5126 // PHINodes may have multiple entries from the same block. We want to
5127 // visit every block once.
5128 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
5129
5130 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
5131 ValueList Operands;
5132 BasicBlock *IBB = PH->getIncomingBlock(i);
5133
5134 if (!VisitedBBs.insert(IBB).second) {
5135 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
5136 continue;
5137 }
5138
5139 Builder.SetInsertPoint(IBB->getTerminator());
5140 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5141 Value *Vec = vectorizeTree(E->getOperand(i));
5142 NewPhi->addIncoming(Vec, IBB);
5143 }
5144
5145 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&(static_cast <bool> (NewPhi->getNumIncomingValues() ==
PH->getNumIncomingValues() && "Invalid number of incoming values"
) ? void (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5146, __extension__ __PRETTY_FUNCTION__))
5146 "Invalid number of incoming values")(static_cast <bool> (NewPhi->getNumIncomingValues() ==
PH->getNumIncomingValues() && "Invalid number of incoming values"
) ? void (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5146, __extension__ __PRETTY_FUNCTION__))
;
5147 return V;
5148 }
5149
5150 case Instruction::ExtractElement: {
5151 Value *V = E->getSingleOperand(0);
5152 Builder.SetInsertPoint(VL0);
5153 ShuffleBuilder.addInversedMask(E->ReorderIndices);
5154 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5155 V = ShuffleBuilder.finalize(V);
5156 E->VectorizedValue = V;
5157 return V;
5158 }
5159 case Instruction::ExtractValue: {
5160 auto *LI = cast<LoadInst>(E->getSingleOperand(0));
5161 Builder.SetInsertPoint(LI);
5162 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
5163 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
5164 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
5165 Value *NewV = propagateMetadata(V, E->Scalars);
5166 ShuffleBuilder.addInversedMask(E->ReorderIndices);
5167 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5168 NewV = ShuffleBuilder.finalize(NewV);
5169 E->VectorizedValue = NewV;
5170 return NewV;
5171 }
5172 case Instruction::InsertElement: {
5173 Builder.SetInsertPoint(VL0);
5174 Value *V = vectorizeTree(E->getOperand(1));
5175
5176 const unsigned NumElts =
5177 cast<FixedVectorType>(VL0->getType())->getNumElements();
5178 const unsigned NumScalars = E->Scalars.size();
5179
5180 // Create InsertVector shuffle if necessary
5181 Instruction *FirstInsert = nullptr;
5182 bool IsIdentity = true;
5183 unsigned Offset = UINT_MAX(2147483647 *2U +1U);
5184 for (unsigned I = 0; I < NumScalars; ++I) {
5185 Value *Scalar = E->Scalars[I];
5186 if (!FirstInsert &&
5187 !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0)))
5188 FirstInsert = cast<Instruction>(Scalar);
5189 Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5190 if (!InsertIdx || *InsertIdx == UndefMaskElem)
5191 continue;
5192 unsigned Idx = *InsertIdx;
5193 if (Idx < Offset) {
5194 Offset = Idx;
5195 IsIdentity &= I == 0;
5196 } else {
5197 assert(Idx >= Offset && "Failed to find vector index offset")(static_cast <bool> (Idx >= Offset && "Failed to find vector index offset"
) ? void (0) : __assert_fail ("Idx >= Offset && \"Failed to find vector index offset\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5197, __extension__ __PRETTY_FUNCTION__))
;
5198 IsIdentity &= Idx - Offset == I;
5199 }
5200 }
5201 assert(Offset < NumElts && "Failed to find vector index offset")(static_cast <bool> (Offset < NumElts && "Failed to find vector index offset"
) ? void (0) : __assert_fail ("Offset < NumElts && \"Failed to find vector index offset\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5201, __extension__ __PRETTY_FUNCTION__))
;
5202
5203 // Create shuffle to resize vector
5204 SmallVector<int> Mask(NumElts, UndefMaskElem);
5205 if (!IsIdentity) {
5206 for (unsigned I = 0; I < NumScalars; ++I) {
5207 Value *Scalar = E->Scalars[I];
5208 Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5209 if (!InsertIdx || *InsertIdx == UndefMaskElem)
5210 continue;
5211 Mask[*InsertIdx - Offset] = I;
5212 }
5213 } else {
5214 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
5215 }
5216 if (!IsIdentity || NumElts != NumScalars)
5217 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), Mask);
5218
5219 if (NumElts != NumScalars) {
5220 SmallVector<int> InsertMask(NumElts);
5221 std::iota(InsertMask.begin(), InsertMask.end(), 0);
5222 for (unsigned I = 0; I < NumElts; I++) {
5223 if (Mask[I] != UndefMaskElem)
5224 InsertMask[Offset + I] = NumElts + I;
5225 }
5226
5227 V = Builder.CreateShuffleVector(
5228 FirstInsert->getOperand(0), V, InsertMask,
5229 cast<Instruction>(E->Scalars.back())->getName());
5230 }
5231
5232 ++NumVectorInstructions;
5233 E->VectorizedValue = V;
5234 return V;
5235 }
5236 case Instruction::ZExt:
5237 case Instruction::SExt:
5238 case Instruction::FPToUI:
5239 case Instruction::FPToSI:
5240 case Instruction::FPExt:
5241 case Instruction::PtrToInt:
5242 case Instruction::IntToPtr:
5243 case Instruction::SIToFP:
5244 case Instruction::UIToFP:
5245 case Instruction::Trunc:
5246 case Instruction::FPTrunc:
5247 case Instruction::BitCast: {
5248 setInsertPointAfterBundle(E);
5249
5250 Value *InVec = vectorizeTree(E->getOperand(0));
5251
5252 if (E->VectorizedValue) {
5253 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
5254 return E->VectorizedValue;
5255 }
5256
5257 auto *CI = cast<CastInst>(VL0);
5258 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
5259 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5260 V = ShuffleBuilder.finalize(V);
5261
5262 E->VectorizedValue = V;
5263 ++NumVectorInstructions;
5264 return V;
5265 }
5266 case Instruction::FCmp:
5267 case Instruction::ICmp: {
5268 setInsertPointAfterBundle(E);
5269
5270 Value *L = vectorizeTree(E->getOperand(0));
5271 Value *R = vectorizeTree(E->getOperand(1));
5272
5273 if (E->VectorizedValue) {
5274 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
5275 return E->VectorizedValue;
5276 }
5277
5278 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5279 Value *V = Builder.CreateCmp(P0, L, R);
5280 propagateIRFlags(V, E->Scalars, VL0);
5281 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5282 V = ShuffleBuilder.finalize(V);
5283
5284 E->VectorizedValue = V;
5285 ++NumVectorInstructions;
5286 return V;
5287 }
5288 case Instruction::Select: {
5289 setInsertPointAfterBundle(E);
5290
5291 Value *Cond = vectorizeTree(E->getOperand(0));
5292 Value *True = vectorizeTree(E->getOperand(1));
5293 Value *False = vectorizeTree(E->getOperand(2));
5294
5295 if (E->VectorizedValue) {
5296 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
5297 return E->VectorizedValue;
5298 }
5299
5300 Value *V = Builder.CreateSelect(Cond, True, False);
5301 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5302 V = ShuffleBuilder.finalize(V);
5303
5304 E->VectorizedValue = V;
5305 ++NumVectorInstructions;
5306 return V;
5307 }
5308 case Instruction::FNeg: {
5309 setInsertPointAfterBundle(E);
5310
5311 Value *Op = vectorizeTree(E->getOperand(0));
5312
5313 if (E->VectorizedValue) {
5314 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
5315 return E->VectorizedValue;
5316 }
5317
5318 Value *V = Builder.CreateUnOp(
5319 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
5320 propagateIRFlags(V, E->Scalars, VL0);
5321 if (auto *I = dyn_cast<Instruction>(V))
5322 V = propagateMetadata(I, E->Scalars);
5323
5324 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5325 V = ShuffleBuilder.finalize(V);
5326
5327 E->VectorizedValue = V;
5328 ++NumVectorInstructions;
5329
5330 return V;
5331 }
5332 case Instruction::Add:
5333 case Instruction::FAdd:
5334 case Instruction::Sub:
5335 case Instruction::FSub:
5336 case Instruction::Mul:
5337 case Instruction::FMul:
5338 case Instruction::UDiv:
5339 case Instruction::SDiv:
5340 case Instruction::FDiv:
5341 case Instruction::URem:
5342 case Instruction::SRem:
5343 case Instruction::FRem:
5344 case Instruction::Shl:
5345 case Instruction::LShr:
5346 case Instruction::AShr:
5347 case Instruction::And:
5348 case Instruction::Or:
5349 case Instruction::Xor: {
5350 setInsertPointAfterBundle(E);
5351
5352 Value *LHS = vectorizeTree(E->getOperand(0));
5353 Value *RHS = vectorizeTree(E->getOperand(1));
5354
5355 if (E->VectorizedValue) {
5356 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
5357 return E->VectorizedValue;
5358 }
5359
5360 Value *V = Builder.CreateBinOp(
5361 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
5362 RHS);
5363 propagateIRFlags(V, E->Scalars, VL0);
5364 if (auto *I = dyn_cast<Instruction>(V))
5365 V = propagateMetadata(I, E->Scalars);
5366
5367 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5368 V = ShuffleBuilder.finalize(V);
5369
5370 E->VectorizedValue = V;
5371 ++NumVectorInstructions;
5372
5373 return V;
5374 }
5375 case Instruction::Load: {
5376 // Loads are inserted at the head of the tree because we don't want to
5377 // sink them all the way down past store instructions.
5378 bool IsReorder = E->updateStateIfReorder();
5379 if (IsReorder)
5380 VL0 = E->getMainOp();
5381 setInsertPointAfterBundle(E);
5382
5383 LoadInst *LI = cast<LoadInst>(VL0);
5384 Instruction *NewLI;
5385 unsigned AS = LI->getPointerAddressSpace();
5386 Value *PO = LI->getPointerOperand();
5387 if (E->State == TreeEntry::Vectorize) {
5388
5389 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
5390
5391 // The pointer operand uses an in-tree scalar so we add the new BitCast
5392 // to ExternalUses list to make sure that an extract will be generated
5393 // in the future.
5394 if (getTreeEntry(PO))
5395 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
5396
5397 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
5398 } else {
5399 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state")(static_cast <bool> (E->State == TreeEntry::ScatterVectorize
&& "Unhandled state") ? void (0) : __assert_fail ("E->State == TreeEntry::ScatterVectorize && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5399, __extension__ __PRETTY_FUNCTION__))
;
5400 Value *VecPtr = vectorizeTree(E->getOperand(0));
5401 // Use the minimum alignment of the gathered loads.
5402 Align CommonAlignment = LI->getAlign();
5403 for (Value *V : E->Scalars)
5404 CommonAlignment =
5405 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
5406 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment);
5407 }
5408 Value *V = propagateMetadata(NewLI, E->Scalars);
5409
5410 ShuffleBuilder.addInversedMask(E->ReorderIndices);
5411 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5412 V = ShuffleBuilder.finalize(V);
5413 E->VectorizedValue = V;
5414 ++NumVectorInstructions;
5415 return V;
5416 }
5417 case Instruction::Store: {
5418 bool IsReorder = !E->ReorderIndices.empty();
5419 auto *SI = cast<StoreInst>(
5420 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
5421 unsigned AS = SI->getPointerAddressSpace();
5422
5423 setInsertPointAfterBundle(E);
5424
5425 Value *VecValue = vectorizeTree(E->getOperand(0));
5426 ShuffleBuilder.addMask(E->ReorderIndices);
5427 VecValue = ShuffleBuilder.finalize(VecValue);
5428
5429 Value *ScalarPtr = SI->getPointerOperand();
5430 Value *VecPtr = Builder.CreateBitCast(
5431 ScalarPtr, VecValue->getType()->getPointerTo(AS));
5432 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
5433 SI->getAlign());
5434
5435 // The pointer operand uses an in-tree scalar, so add the new BitCast to
5436 // ExternalUses to make sure that an extract will be generated in the
5437 // future.
5438 if (getTreeEntry(ScalarPtr))
5439 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
5440
5441 Value *V = propagateMetadata(ST, E->Scalars);
5442
5443 E->VectorizedValue = V;
5444 ++NumVectorInstructions;
5445 return V;
5446 }
5447 case Instruction::GetElementPtr: {
5448 setInsertPointAfterBundle(E);
5449
5450 Value *Op0 = vectorizeTree(E->getOperand(0));
5451
5452 std::vector<Value *> OpVecs;
5453 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
5454 ++j) {
5455 ValueList &VL = E->getOperand(j);
5456 // Need to cast all elements to the same type before vectorization to
5457 // avoid crash.
5458 Type *VL0Ty = VL0->getOperand(j)->getType();
5459 Type *Ty = llvm::all_of(
5460 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
5461 ? VL0Ty
5462 : DL->getIndexType(cast<GetElementPtrInst>(VL0)
5463 ->getPointerOperandType()
5464 ->getScalarType());
5465 for (Value *&V : VL) {
5466 auto *CI = cast<ConstantInt>(V);
5467 V = ConstantExpr::getIntegerCast(CI, Ty,
5468 CI->getValue().isSignBitSet());
5469 }
5470 Value *OpVec = vectorizeTree(VL);
5471 OpVecs.push_back(OpVec);
5472 }
5473
5474 Value *V = Builder.CreateGEP(
5475 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
5476 if (Instruction *I = dyn_cast<Instruction>(V))
5477 V = propagateMetadata(I, E->Scalars);
5478
5479 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5480 V = ShuffleBuilder.finalize(V);
5481
5482 E->VectorizedValue = V;
5483 ++NumVectorInstructions;
5484
5485 return V;
5486 }
5487 case Instruction::Call: {
5488 CallInst *CI = cast<CallInst>(VL0);
5489 setInsertPointAfterBundle(E);
5490
5491 Intrinsic::ID IID = Intrinsic::not_intrinsic;
5492 if (Function *FI = CI->getCalledFunction())
5493 IID = FI->getIntrinsicID();
5494
5495 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5496
5497 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5498 bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
5499 VecCallCosts.first <= VecCallCosts.second;
5500
5501 Value *ScalarArg = nullptr;
5502 std::vector<Value *> OpVecs;
5503 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
5504 ValueList OpVL;
5505 // Some intrinsics have scalar arguments. This argument should not be
5506 // vectorized.
5507 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
5508 CallInst *CEI = cast<CallInst>(VL0);
5509 ScalarArg = CEI->getArgOperand(j);
5510 OpVecs.push_back(CEI->getArgOperand(j));
5511 continue;
5512 }
5513
5514 Value *OpVec = vectorizeTree(E->getOperand(j));
5515 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: OpVec[" << j << "]: "
<< *OpVec << "\n"; } } while (false)
;
5516 OpVecs.push_back(OpVec);
5517 }
5518
5519 Function *CF;
5520 if (!UseIntrinsic) {
5521 VFShape Shape =
5522 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5523 VecTy->getNumElements())),
5524 false /*HasGlobalPred*/);
5525 CF = VFDatabase(*CI).getVectorizedFunction(Shape);
5526 } else {
5527 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())};
5528 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
5529 }
5530
5531 SmallVector<OperandBundleDef, 1> OpBundles;
5532 CI->getOperandBundlesAsDefs(OpBundles);
5533 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
5534
5535 // The scalar argument uses an in-tree scalar so we add the new vectorized
5536 // call to ExternalUses list to make sure that an extract will be
5537 // generated in the future.
5538 if (ScalarArg && getTreeEntry(ScalarArg))
5539 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
5540
5541 propagateIRFlags(V, E->Scalars, VL0);
5542 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5543 V = ShuffleBuilder.finalize(V);
5544
5545 E->VectorizedValue = V;
5546 ++NumVectorInstructions;
5547 return V;
5548 }
5549 case Instruction::ShuffleVector: {
5550 assert(E->isAltShuffle() &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5555, __extension__ __PRETTY_FUNCTION__))
5551 ((Instruction::isBinaryOp(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5555, __extension__ __PRETTY_FUNCTION__))
5552 Instruction::isBinaryOp(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5555, __extension__ __PRETTY_FUNCTION__))
5553 (Instruction::isCast(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5555, __extension__ __PRETTY_FUNCTION__))
5554 Instruction::isCast(E->getAltOpcode()))) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5555, __extension__ __PRETTY_FUNCTION__))
5555 "Invalid Shuffle Vector Operand")(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
()))) && "Invalid Shuffle Vector Operand") ? void (0)
: __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5555, __extension__ __PRETTY_FUNCTION__))
;
5556
5557 Value *LHS = nullptr, *RHS = nullptr;
5558 if (Instruction::isBinaryOp(E->getOpcode())) {
5559 setInsertPointAfterBundle(E);
5560 LHS = vectorizeTree(E->getOperand(0));
5561 RHS = vectorizeTree(E->getOperand(1));
5562 } else {
5563 setInsertPointAfterBundle(E);
5564 LHS = vectorizeTree(E->getOperand(0));
5565 }
5566
5567 if (E->VectorizedValue) {
5568 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
5569 return E->VectorizedValue;
5570 }
5571
5572 Value *V0, *V1;
5573 if (Instruction::isBinaryOp(E->getOpcode())) {
5574 V0 = Builder.CreateBinOp(
5575 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
5576 V1 = Builder.CreateBinOp(
5577 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
5578 } else {
5579 V0 = Builder.CreateCast(
5580 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
5581 V1 = Builder.CreateCast(
5582 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
5583 }
5584
5585 // Create shuffle to take alternate operations from the vector.
5586 // Also, gather up main and alt scalar ops to propagate IR flags to
5587 // each vector operation.
5588 ValueList OpScalars, AltScalars;
5589 unsigned e = E->Scalars.size();
5590 SmallVector<int, 8> Mask(e);
5591 for (unsigned i = 0; i < e; ++i) {
5592 auto *OpInst = cast<Instruction>(E->Scalars[i]);
5593 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(OpInst) &&
"Unexpected main/alternate opcode") ? void (0) : __assert_fail
("E->isOpcodeOrAlt(OpInst) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5593, __extension__ __PRETTY_FUNCTION__))
;
5594 if (OpInst->getOpcode() == E->getAltOpcode()) {
5595 Mask[i] = e + i;
5596 AltScalars.push_back(E->Scalars[i]);
5597 } else {
5598 Mask[i] = i;
5599 OpScalars.push_back(E->Scalars[i]);
5600 }
5601 }
5602
5603 propagateIRFlags(V0, OpScalars);
5604 propagateIRFlags(V1, AltScalars);
5605
5606 Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
5607 if (Instruction *I = dyn_cast<Instruction>(V))
5608 V = propagateMetadata(I, E->Scalars);
5609 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5610 V = ShuffleBuilder.finalize(V);
5611
5612 E->VectorizedValue = V;
5613 ++NumVectorInstructions;
5614
5615 return V;
5616 }
5617 default:
5618 llvm_unreachable("unknown inst")::llvm::llvm_unreachable_internal("unknown inst", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5618)
;
5619 }
5620 return nullptr;
5621}
5622
5623Value *BoUpSLP::vectorizeTree() {
5624 ExtraValueToDebugLocsMap ExternallyUsedValues;
5625 return vectorizeTree(ExternallyUsedValues);
5626}
5627
5628Value *
5629BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
5630 // All blocks must be scheduled before any instructions are inserted.
5631 for (auto &BSIter : BlocksSchedules) {
5632 scheduleBlock(BSIter.second.get());
5633 }
5634
5635 Builder.SetInsertPoint(&F->getEntryBlock().front());
5636 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
5637
5638 // If the vectorized tree can be rewritten in a smaller type, we truncate the
5639 // vectorized root. InstCombine will then rewrite the entire expression. We
5640 // sign extend the extracted values below.
5641 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5642 if (MinBWs.count(ScalarRoot)) {
5643 if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
5644 // If current instr is a phi and not the last phi, insert it after the
5645 // last phi node.
5646 if (isa<PHINode>(I))
5647 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
5648 else
5649 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
5650 }
5651 auto BundleWidth = VectorizableTree[0]->Scalars.size();
5652 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5653 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
5654 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
5655 VectorizableTree[0]->VectorizedValue = Trunc;
5656 }
5657
5658 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
5659 << " values .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
;
5660
5661 // Extract all of the elements with the external uses.
5662 for (const auto &ExternalUse : ExternalUses) {
5663 Value *Scalar = ExternalUse.Scalar;
5664 llvm::User *User = ExternalUse.User;
5665
5666 // Skip users that we already RAUW. This happens when one instruction
5667 // has multiple uses of the same value.
5668 if (User && !is_contained(Scalar->users(), User))
5669 continue;
5670 TreeEntry *E = getTreeEntry(Scalar);
5671 assert(E && "Invalid scalar")(static_cast <bool> (E && "Invalid scalar") ? void
(0) : __assert_fail ("E && \"Invalid scalar\"", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5671, __extension__ __PRETTY_FUNCTION__))
;
5672 assert(E->State != TreeEntry::NeedToGather &&(static_cast <bool> (E->State != TreeEntry::NeedToGather
&& "Extracting from a gather list") ? void (0) : __assert_fail
("E->State != TreeEntry::NeedToGather && \"Extracting from a gather list\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5673, __extension__ __PRETTY_FUNCTION__))
5673 "Extracting from a gather list")(static_cast <bool> (E->State != TreeEntry::NeedToGather
&& "Extracting from a gather list") ? void (0) : __assert_fail
("E->State != TreeEntry::NeedToGather && \"Extracting from a gather list\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5673, __extension__ __PRETTY_FUNCTION__))
;
5674
5675 Value *Vec = E->VectorizedValue;
5676 assert(Vec && "Can't find vectorizable value")(static_cast <bool> (Vec && "Can't find vectorizable value"
) ? void (0) : __assert_fail ("Vec && \"Can't find vectorizable value\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5676, __extension__ __PRETTY_FUNCTION__))
;
5677
5678 Value *Lane = Builder.getInt32(ExternalUse.Lane);
5679 auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
5680 if (Scalar->getType() != Vec->getType()) {
5681 Value *Ex;
5682 // "Reuse" the existing extract to improve final codegen.
5683 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
5684 Ex = Builder.CreateExtractElement(ES->getOperand(0),
5685 ES->getOperand(1));
5686 } else {
5687 Ex = Builder.CreateExtractElement(Vec, Lane);
5688 }
5689 // If necessary, sign-extend or zero-extend ScalarRoot
5690 // to the larger type.
5691 if (!MinBWs.count(ScalarRoot))
5692 return Ex;
5693 if (MinBWs[ScalarRoot].second)
5694 return Builder.CreateSExt(Ex, Scalar->getType());
5695 return Builder.CreateZExt(Ex, Scalar->getType());
5696 }
5697 assert(isa<FixedVectorType>(Scalar->getType()) &&(static_cast <bool> (isa<FixedVectorType>(Scalar->
getType()) && isa<InsertElementInst>(Scalar) &&
"In-tree scalar of vector type is not insertelement?") ? void
(0) : __assert_fail ("isa<FixedVectorType>(Scalar->getType()) && isa<InsertElementInst>(Scalar) && \"In-tree scalar of vector type is not insertelement?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5699, __extension__ __PRETTY_FUNCTION__))
5698 isa<InsertElementInst>(Scalar) &&(static_cast <bool> (isa<FixedVectorType>(Scalar->
getType()) && isa<InsertElementInst>(Scalar) &&
"In-tree scalar of vector type is not insertelement?") ? void
(0) : __assert_fail ("isa<FixedVectorType>(Scalar->getType()) && isa<InsertElementInst>(Scalar) && \"In-tree scalar of vector type is not insertelement?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5699, __extension__ __PRETTY_FUNCTION__))
5699 "In-tree scalar of vector type is not insertelement?")(static_cast <bool> (isa<FixedVectorType>(Scalar->
getType()) && isa<InsertElementInst>(Scalar) &&
"In-tree scalar of vector type is not insertelement?") ? void
(0) : __assert_fail ("isa<FixedVectorType>(Scalar->getType()) && isa<InsertElementInst>(Scalar) && \"In-tree scalar of vector type is not insertelement?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5699, __extension__ __PRETTY_FUNCTION__))
;
5700 return Vec;
5701 };
5702 // If User == nullptr, the Scalar is used as extra arg. Generate
5703 // ExtractElement instruction and update the record for this scalar in
5704 // ExternallyUsedValues.
5705 if (!User) {
5706 assert(ExternallyUsedValues.count(Scalar) &&(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5708, __extension__ __PRETTY_FUNCTION__))
5707 "Scalar with nullptr as an external user must be registered in "(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5708, __extension__ __PRETTY_FUNCTION__))
5708 "ExternallyUsedValues map")(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5708, __extension__ __PRETTY_FUNCTION__))
;
5709 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5710 Builder.SetInsertPoint(VecI->getParent(),
5711 std::next(VecI->getIterator()));
5712 } else {
5713 Builder.SetInsertPoint(&F->getEntryBlock().front());
5714 }
5715 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5716 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
5717 auto &Locs = ExternallyUsedValues[Scalar];
5718 ExternallyUsedValues.insert({NewInst, Locs});
5719 ExternallyUsedValues.erase(Scalar);
5720 // Required to update internally referenced instructions.
5721 Scalar->replaceAllUsesWith(NewInst);
5722 continue;
5723 }
5724
5725 // Generate extracts for out-of-tree users.
5726 // Find the insertion point for the extractelement lane.
5727 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5728 if (PHINode *PH = dyn_cast<PHINode>(User)) {
5729 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
5730 if (PH->getIncomingValue(i) == Scalar) {
5731 Instruction *IncomingTerminator =
5732 PH->getIncomingBlock(i)->getTerminator();
5733 if (isa<CatchSwitchInst>(IncomingTerminator)) {
5734 Builder.SetInsertPoint(VecI->getParent(),
5735 std::next(VecI->getIterator()));
5736 } else {
5737 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
5738 }
5739 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5740 CSEBlocks.insert(PH->getIncomingBlock(i));
5741 PH->setOperand(i, NewInst);
5742 }
5743 }
5744 } else {
5745 Builder.SetInsertPoint(cast<Instruction>(User));
5746 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5747 CSEBlocks.insert(cast<Instruction>(User)->getParent());
5748 User->replaceUsesOfWith(Scalar, NewInst);
5749 }
5750 } else {
5751 Builder.SetInsertPoint(&F->getEntryBlock().front());
5752 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5753 CSEBlocks.insert(&F->getEntryBlock());
5754 User->replaceUsesOfWith(Scalar, NewInst);
5755 }
5756
5757 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Replaced:" << *User <<
".\n"; } } while (false)
;
5758 }
5759
5760 // For each vectorized value:
5761 for (auto &TEPtr : VectorizableTree) {
5762 TreeEntry *Entry = TEPtr.get();
5763
5764 // No need to handle users of gathered values.
5765 if (Entry->State == TreeEntry::NeedToGather)
5766 continue;
5767
5768 assert(Entry->VectorizedValue && "Can't find vectorizable value")(static_cast <bool> (Entry->VectorizedValue &&
"Can't find vectorizable value") ? void (0) : __assert_fail (
"Entry->VectorizedValue && \"Can't find vectorizable value\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5768, __extension__ __PRETTY_FUNCTION__))
;
5769
5770 // For each lane:
5771 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
5772 Value *Scalar = Entry->Scalars[Lane];
5773
5774#ifndef NDEBUG
5775 Type *Ty = Scalar->getType();
5776 if (!Ty->isVoidTy()) {
5777 for (User *U : Scalar->users()) {
5778 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tvalidating user:" <<
*U << ".\n"; } } while (false)
;
5779
5780 // It is legal to delete users in the ignorelist.
5781 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&(static_cast <bool> ((getTreeEntry(U) || is_contained(UserIgnoreList
, U)) && "Deleting out-of-tree value") ? void (0) : __assert_fail
("(getTreeEntry(U) || is_contained(UserIgnoreList, U)) && \"Deleting out-of-tree value\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5782, __extension__ __PRETTY_FUNCTION__))
5782 "Deleting out-of-tree value")(static_cast <bool> ((getTreeEntry(U) || is_contained(UserIgnoreList
, U)) && "Deleting out-of-tree value") ? void (0) : __assert_fail
("(getTreeEntry(U) || is_contained(UserIgnoreList, U)) && \"Deleting out-of-tree value\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5782, __extension__ __PRETTY_FUNCTION__))
;
5783 }
5784 }
5785#endif
5786 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tErasing scalar:" << *
Scalar << ".\n"; } } while (false)
;
5787 eraseInstruction(cast<Instruction>(Scalar));
5788 }
5789 }
5790
5791 Builder.ClearInsertionPoint();
5792 InstrElementSize.clear();
5793
5794 return VectorizableTree[0]->VectorizedValue;
5795}
5796
5797void BoUpSLP::optimizeGatherSequence() {
5798 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
5799 << " gather sequences instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
;
5800 // LICM InsertElementInst sequences.
5801 for (Instruction *I : GatherSeq) {
5802 if (isDeleted(I))
5803 continue;
5804
5805 // Check if this block is inside a loop.
5806 Loop *L = LI->getLoopFor(I->getParent());
5807 if (!L)
5808 continue;
5809
5810 // Check if it has a preheader.
5811 BasicBlock *PreHeader = L->getLoopPreheader();
5812 if (!PreHeader)
5813 continue;
5814
5815 // If the vector or the element that we insert into it are
5816 // instructions that are defined in this basic block then we can't
5817 // hoist this instruction.
5818 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5819 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5820 if (Op0 && L->contains(Op0))
5821 continue;
5822 if (Op1 && L->contains(Op1))
5823 continue;
5824
5825 // We can hoist this instruction. Move it to the pre-header.
5826 I->moveBefore(PreHeader->getTerminator());
5827 }
5828
5829 // Make a list of all reachable blocks in our CSE queue.
5830 SmallVector<const DomTreeNode *, 8> CSEWorkList;
5831 CSEWorkList.reserve(CSEBlocks.size());
5832 for (BasicBlock *BB : CSEBlocks)
5833 if (DomTreeNode *N = DT->getNode(BB)) {
5834 assert(DT->isReachableFromEntry(N))(static_cast <bool> (DT->isReachableFromEntry(N)) ? void
(0) : __assert_fail ("DT->isReachableFromEntry(N)", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5834, __extension__ __PRETTY_FUNCTION__))
;
5835 CSEWorkList.push_back(N);
5836 }
5837
5838 // Sort blocks by domination. This ensures we visit a block after all blocks
5839 // dominating it are visited.
5840 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
5841 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&(static_cast <bool> ((A == B) == (A->getDFSNumIn() ==
B->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5842, __extension__ __PRETTY_FUNCTION__))
5842 "Different nodes should have different DFS numbers")(static_cast <bool> ((A == B) == (A->getDFSNumIn() ==
B->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5842, __extension__ __PRETTY_FUNCTION__))
;
5843 return A->getDFSNumIn() < B->getDFSNumIn();
5844 });
5845
5846 // Perform O(N^2) search over the gather sequences and merge identical
5847 // instructions. TODO: We can further optimize this scan if we split the
5848 // instructions into different buckets based on the insert lane.
5849 SmallVector<Instruction *, 16> Visited;
5850 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
5851 assert(*I &&(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5853, __extension__ __PRETTY_FUNCTION__))
5852 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5853, __extension__ __PRETTY_FUNCTION__))
5853 "Worklist not sorted properly!")(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5853, __extension__ __PRETTY_FUNCTION__))
;
5854 BasicBlock *BB = (*I)->getBlock();
5855 // For all instructions in blocks containing gather sequences:
5856 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
5857 Instruction *In = &*it++;
5858 if (isDeleted(In))
5859 continue;
5860 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
5861 continue;
5862
5863 // Check if we can replace this instruction with any of the
5864 // visited instructions.
5865 for (Instruction *v : Visited) {
5866 if (In->isIdenticalTo(v) &&
5867 DT->dominates(v->getParent(), In->getParent())) {
5868 In->replaceAllUsesWith(v);
5869 eraseInstruction(In);
5870 In = nullptr;
5871 break;
5872 }
5873 }
5874 if (In) {
5875 assert(!is_contained(Visited, In))(static_cast <bool> (!is_contained(Visited, In)) ? void
(0) : __assert_fail ("!is_contained(Visited, In)", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5875, __extension__ __PRETTY_FUNCTION__))
;
5876 Visited.push_back(In);
5877 }
5878 }
5879 }
5880 CSEBlocks.clear();
5881 GatherSeq.clear();
5882}
5883
5884// Groups the instructions to a bundle (which is then a single scheduling entity)
5885// and schedules instructions until the bundle gets ready.
5886Optional<BoUpSLP::ScheduleData *>
5887BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
5888 const InstructionsState &S) {
5889 if (isa<PHINode>(S.OpValue))
23
Assuming field 'OpValue' is not a 'PHINode'
24
Taking false branch
5890 return nullptr;
5891
5892 // Initialize the instruction bundle.
5893 Instruction *OldScheduleEnd = ScheduleEnd;
5894 ScheduleData *PrevInBundle = nullptr;
5895 ScheduleData *Bundle = nullptr;
5896 bool ReSchedule = false;
5897 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle: " << *S.OpValue
<< "\n"; } } while (false)
;
25
Assuming 'DebugFlag' is false
26
Loop condition is false. Exiting loop
5898
5899 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
5900 ScheduleData *Bundle) {
5901 // The scheduling region got new instructions at the lower end (or it is a
5902 // new region for the first bundle). This makes it necessary to
5903 // recalculate all dependencies.
5904 // It is seldom that this needs to be done a second time after adding the
5905 // initial bundle to the region.
5906 if (ScheduleEnd != OldScheduleEnd) {
36
Assuming 'OldScheduleEnd' is equal to field 'ScheduleEnd'
37
Taking false branch
5907 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
5908 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
5909 ReSchedule = true;
5910 }
5911 if (ReSchedule
37.1
'ReSchedule' is false
37.1
'ReSchedule' is false
) {
38
Taking false branch
5912 resetSchedule();
5913 initialFillReadyList(ReadyInsts);
5914 }
5915 if (Bundle
38.1
'Bundle' is non-null
38.1
'Bundle' is non-null
) {
39
Taking true branch
5916 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundledo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
40
Assuming 'DebugFlag' is false
41
Loop condition is false. Exiting loop
5917 << " in block " << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
;
5918 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
42
Calling 'BlockScheduling::calculateDependencies'
5919 }
5920
5921 // Now try to schedule the new bundle or (if no bundle) just calculate
5922 // dependencies. As soon as the bundle is "ready" it means that there are no
5923 // cyclic dependencies and we can schedule it. Note that's important that we
5924 // don't "schedule" the bundle yet (see cancelScheduling).
5925 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
5926 !ReadyInsts.empty()) {
5927 ScheduleData *Picked = ReadyInsts.pop_back_val();
5928 if (Picked->isSchedulingEntity() && Picked->isReady())
5929 schedule(Picked, ReadyInsts);
5930 }
5931 };
5932
5933 // Make sure that the scheduling region contains all
5934 // instructions of the bundle.
5935 for (Value *V : VL) {
27
Assuming '__begin1' is equal to '__end1'
5936 if (!extendSchedulingRegion(V, S)) {
5937 // If the scheduling region got new instructions at the lower end (or it
5938 // is a new region for the first bundle). This makes it necessary to
5939 // recalculate all dependencies.
5940 // Otherwise the compiler may crash trying to incorrectly calculate
5941 // dependencies and emit instruction in the wrong order at the actual
5942 // scheduling.
5943 TryScheduleBundle(/*ReSchedule=*/false, nullptr);
5944 return None;
5945 }
5946 }
5947
5948 for (Value *V : VL) {
28
Assuming '__begin1' is not equal to '__end1'
5949 ScheduleData *BundleMember = getScheduleData(V);
5950 assert(BundleMember &&(static_cast <bool> (BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? void (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5951, __extension__ __PRETTY_FUNCTION__))
29
'?' condition is true
5951 "no ScheduleData for bundle member (maybe not in same basic block)")(static_cast <bool> (BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? void (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5951, __extension__ __PRETTY_FUNCTION__))
;
5952 if (BundleMember->IsScheduled) {
30
Assuming field 'IsScheduled' is false
31
Taking false branch
5953 // A bundle member was scheduled as single instruction before and now
5954 // needs to be scheduled as part of the bundle. We just get rid of the
5955 // existing schedule.
5956 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
5957 << " was already scheduled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
;
5958 ReSchedule = true;
5959 }
5960 assert(BundleMember->isSchedulingEntity() &&(static_cast <bool> (BundleMember->isSchedulingEntity
() && "bundle member already part of other bundle") ?
void (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5961, __extension__ __PRETTY_FUNCTION__))
32
'?' condition is true
5961 "bundle member already part of other bundle")(static_cast <bool> (BundleMember->isSchedulingEntity
() && "bundle member already part of other bundle") ?
void (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5961, __extension__ __PRETTY_FUNCTION__))
;
5962 if (PrevInBundle
32.1
'PrevInBundle' is null
32.1
'PrevInBundle' is null
) {
33
Taking false branch
5963 PrevInBundle->NextInBundle = BundleMember;
5964 } else {
5965 Bundle = BundleMember;
5966 }
5967 BundleMember->UnscheduledDepsInBundle = 0;
5968 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
5969
5970 // Group the instructions to a bundle.
5971 BundleMember->FirstInBundle = Bundle;
5972 PrevInBundle = BundleMember;
5973 }
5974 assert(Bundle && "Failed to find schedule bundle")(static_cast <bool> (Bundle && "Failed to find schedule bundle"
) ? void (0) : __assert_fail ("Bundle && \"Failed to find schedule bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5974, __extension__ __PRETTY_FUNCTION__))
;
34
'?' condition is true
5975 TryScheduleBundle(ReSchedule, Bundle);
35
Calling 'operator()'
5976 if (!Bundle->isReady()) {
5977 cancelScheduling(VL, S.OpValue);
5978 return None;
5979 }
5980 return Bundle;
5981}
5982
5983void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
5984 Value *OpValue) {
5985 if (isa<PHINode>(OpValue))
5986 return;
5987
5988 ScheduleData *Bundle = getScheduleData(OpValue);
5989 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: cancel scheduling of " <<
*Bundle << "\n"; } } while (false)
;
5990 assert(!Bundle->IsScheduled &&(static_cast <bool> (!Bundle->IsScheduled &&
"Can't cancel bundle which is already scheduled") ? void (0)
: __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5991, __extension__ __PRETTY_FUNCTION__))
5991 "Can't cancel bundle which is already scheduled")(static_cast <bool> (!Bundle->IsScheduled &&
"Can't cancel bundle which is already scheduled") ? void (0)
: __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5991, __extension__ __PRETTY_FUNCTION__))
;
5992 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&(static_cast <bool> (Bundle->isSchedulingEntity() &&
Bundle->isPartOfBundle() && "tried to unbundle something which is not a bundle"
) ? void (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5993, __extension__ __PRETTY_FUNCTION__))
5993 "tried to unbundle something which is not a bundle")(static_cast <bool> (Bundle->isSchedulingEntity() &&
Bundle->isPartOfBundle() && "tried to unbundle something which is not a bundle"
) ? void (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5993, __extension__ __PRETTY_FUNCTION__))
;
5994
5995 // Un-bundle: make single instructions out of the bundle.
5996 ScheduleData *BundleMember = Bundle;
5997 while (BundleMember) {
5998 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links")(static_cast <bool> (BundleMember->FirstInBundle == Bundle
&& "corrupt bundle links") ? void (0) : __assert_fail
("BundleMember->FirstInBundle == Bundle && \"corrupt bundle links\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5998, __extension__ __PRETTY_FUNCTION__))
;
5999 BundleMember->FirstInBundle = BundleMember;
6000 ScheduleData *Next = BundleMember->NextInBundle;
6001 BundleMember->NextInBundle = nullptr;
6002 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
6003 if (BundleMember->UnscheduledDepsInBundle == 0) {
6004 ReadyInsts.insert(BundleMember);
6005 }
6006 BundleMember = Next;
6007 }
6008}
6009
6010BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
6011 // Allocate a new ScheduleData for the instruction.
6012 if (ChunkPos >= ChunkSize) {
6013 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
6014 ChunkPos = 0;
6015 }
6016 return &(ScheduleDataChunks.back()[ChunkPos++]);
6017}
6018
6019bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
6020 const InstructionsState &S) {
6021 if (getScheduleData(V, isOneOf(S, V)))
6022 return true;
6023 Instruction *I = dyn_cast<Instruction>(V);
6024 assert(I && "bundle member must be an instruction")(static_cast <bool> (I && "bundle member must be an instruction"
) ? void (0) : __assert_fail ("I && \"bundle member must be an instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6024, __extension__ __PRETTY_FUNCTION__))
;
6025 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled")(static_cast <bool> (!isa<PHINode>(I) && "phi nodes don't need to be scheduled"
) ? void (0) : __assert_fail ("!isa<PHINode>(I) && \"phi nodes don't need to be scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6025, __extension__ __PRETTY_FUNCTION__))
;
6026 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
6027 ScheduleData *ISD = getScheduleData(I);
6028 if (!ISD)
6029 return false;
6030 assert(isInSchedulingRegion(ISD) &&(static_cast <bool> (isInSchedulingRegion(ISD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6031, __extension__ __PRETTY_FUNCTION__))
6031 "ScheduleData not in scheduling region")(static_cast <bool> (isInSchedulingRegion(ISD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6031, __extension__ __PRETTY_FUNCTION__))
;
6032 ScheduleData *SD = allocateScheduleDataChunks();
6033 SD->Inst = I;
6034 SD->init(SchedulingRegionID, S.OpValue);
6035 ExtraScheduleDataMap[I][S.OpValue] = SD;
6036 return true;
6037 };
6038 if (CheckSheduleForI(I))
6039 return true;
6040 if (!ScheduleStart) {
6041 // It's the first instruction in the new region.
6042 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
6043 ScheduleStart = I;
6044 ScheduleEnd = I->getNextNode();
6045 if (isOneOf(S, I) != I)
6046 CheckSheduleForI(I);
6047 assert(ScheduleEnd && "tried to vectorize a terminator?")(static_cast <bool> (ScheduleEnd && "tried to vectorize a terminator?"
) ? void (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6047, __extension__ __PRETTY_FUNCTION__))
;
6048 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initialize schedule region to "
<< *I << "\n"; } } while (false)
;
6049 return true;
6050 }
6051 // Search up and down at the same time, because we don't know if the new
6052 // instruction is above or below the existing scheduling region.
6053 BasicBlock::reverse_iterator UpIter =
6054 ++ScheduleStart->getIterator().getReverse();
6055 BasicBlock::reverse_iterator UpperEnd = BB->rend();
6056 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
6057 BasicBlock::iterator LowerEnd = BB->end();
6058 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
6059 &*DownIter != I) {
6060 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
6061 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: exceeded schedule region size limit\n"
; } } while (false)
;
6062 return false;
6063 }
6064
6065 ++UpIter;
6066 ++DownIter;
6067 }
6068 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
6069 assert(I->getParent() == ScheduleStart->getParent() &&(static_cast <bool> (I->getParent() == ScheduleStart
->getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleStart->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6070, __extension__ __PRETTY_FUNCTION__))
6070 "Instruction is in wrong basic block.")(static_cast <bool> (I->getParent() == ScheduleStart
->getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleStart->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6070, __extension__ __PRETTY_FUNCTION__))
;
6071 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
6072 ScheduleStart = I;
6073 if (isOneOf(S, I) != I)
6074 CheckSheduleForI(I);
6075 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
6076 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
;
6077 return true;
6078 }
6079 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6081, __extension__ __PRETTY_FUNCTION__))
6080 "Expected to reach top of the basic block or instruction down the "(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6081, __extension__ __PRETTY_FUNCTION__))
6081 "lower end.")(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6081, __extension__ __PRETTY_FUNCTION__))
;
6082 assert(I->getParent() == ScheduleEnd->getParent() &&(static_cast <bool> (I->getParent() == ScheduleEnd->
getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleEnd->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6083, __extension__ __PRETTY_FUNCTION__))
6083 "Instruction is in wrong basic block.")(static_cast <bool> (I->getParent() == ScheduleEnd->
getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleEnd->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6083, __extension__ __PRETTY_FUNCTION__))
;
6084 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
6085 nullptr);
6086 ScheduleEnd = I->getNextNode();
6087 if (isOneOf(S, I) != I)
6088 CheckSheduleForI(I);
6089 assert(ScheduleEnd && "tried to vectorize a terminator?")(static_cast <bool> (ScheduleEnd && "tried to vectorize a terminator?"
) ? void (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6089, __extension__ __PRETTY_FUNCTION__))
;
6090 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region end to "
<< *I << "\n"; } } while (false)
;
6091 return true;
6092}
6093
6094void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
6095 Instruction *ToI,
6096 ScheduleData *PrevLoadStore,
6097 ScheduleData *NextLoadStore) {
6098 ScheduleData *CurrentLoadStore = PrevLoadStore;
6099 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
6100 ScheduleData *SD = ScheduleDataMap[I];
6101 if (!SD) {
6102 SD = allocateScheduleDataChunks();
6103 ScheduleDataMap[I] = SD;
6104 SD->Inst = I;
6105 }
6106 assert(!isInSchedulingRegion(SD) &&(static_cast <bool> (!isInSchedulingRegion(SD) &&
"new ScheduleData already in scheduling region") ? void (0) :
__assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6107, __extension__ __PRETTY_FUNCTION__))
6107 "new ScheduleData already in scheduling region")(static_cast <bool> (!isInSchedulingRegion(SD) &&
"new ScheduleData already in scheduling region") ? void (0) :
__assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6107, __extension__ __PRETTY_FUNCTION__))
;
6108 SD->init(SchedulingRegionID, I);
6109
6110 if (I->mayReadOrWriteMemory() &&
6111 (!isa<IntrinsicInst>(I) ||
6112 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
6113 cast<IntrinsicInst>(I)->getIntrinsicID() !=
6114 Intrinsic::pseudoprobe))) {
6115 // Update the linked list of memory accessing instructions.
6116 if (CurrentLoadStore) {
6117 CurrentLoadStore->NextLoadStore = SD;
6118 } else {
6119 FirstLoadStoreInRegion = SD;
6120 }
6121 CurrentLoadStore = SD;
6122 }
6123 }
6124 if (NextLoadStore) {
6125 if (CurrentLoadStore)
6126 CurrentLoadStore->NextLoadStore = NextLoadStore;
6127 } else {
6128 LastLoadStoreInRegion = CurrentLoadStore;
6129 }
6130}
6131
6132void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
6133 bool InsertInReadyList,
6134 BoUpSLP *SLP) {
6135 assert(SD->isSchedulingEntity())(static_cast <bool> (SD->isSchedulingEntity()) ? void
(0) : __assert_fail ("SD->isSchedulingEntity()", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6135, __extension__ __PRETTY_FUNCTION__))
;
43
'?' condition is true
6136
6137 SmallVector<ScheduleData *, 10> WorkList;
6138 WorkList.push_back(SD);
6139
6140 while (!WorkList.empty()) {
44
Calling 'SmallVectorBase::empty'
47
Returning from 'SmallVectorBase::empty'
48
Loop condition is true. Entering loop body
6141 ScheduleData *SD = WorkList.pop_back_val();
49
'SD' initialized here
6142
6143 ScheduleData *BundleMember = SD;
6144 while (BundleMember) {
50
Assuming pointer value is null
51
Loop condition is false. Execution continues on line 6251
6145 assert(isInSchedulingRegion(BundleMember))(static_cast <bool> (isInSchedulingRegion(BundleMember)
) ? void (0) : __assert_fail ("isInSchedulingRegion(BundleMember)"
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6145, __extension__ __PRETTY_FUNCTION__))
;
6146 if (!BundleMember->hasValidDependencies()) {
6147
6148 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
6149 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
;
6150 BundleMember->Dependencies = 0;
6151 BundleMember->resetUnscheduledDeps();
6152
6153 // Handle def-use chain dependencies.
6154 if (BundleMember->OpValue != BundleMember->Inst) {
6155 ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
6156 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
6157 BundleMember->Dependencies++;
6158 ScheduleData *DestBundle = UseSD->FirstInBundle;
6159 if (!DestBundle->IsScheduled)
6160 BundleMember->incrementUnscheduledDeps(1);
6161 if (!DestBundle->hasValidDependencies())
6162 WorkList.push_back(DestBundle);
6163 }
6164 } else {
6165 for (User *U : BundleMember->Inst->users()) {
6166 if (isa<Instruction>(U)) {
6167 ScheduleData *UseSD = getScheduleData(U);
6168 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle) &&
6169 // Ignore inner deps for insertelement
6170 !(UseSD->FirstInBundle == SD &&
6171 isa<InsertElementInst>(BundleMember->Inst))) {
6172 BundleMember->Dependencies++;
6173 ScheduleData *DestBundle = UseSD->FirstInBundle;
6174 if (!DestBundle->IsScheduled)
6175 BundleMember->incrementUnscheduledDeps(1);
6176 if (!DestBundle->hasValidDependencies())
6177 WorkList.push_back(DestBundle);
6178 }
6179 } else {
6180 // I'm not sure if this can ever happen. But we need to be safe.
6181 // This lets the instruction/bundle never be scheduled and
6182 // eventually disable vectorization.
6183 BundleMember->Dependencies++;
6184 BundleMember->incrementUnscheduledDeps(1);
6185 }
6186 }
6187 }
6188
6189 // Handle the memory dependencies.
6190 ScheduleData *DepDest = BundleMember->NextLoadStore;
6191 if (DepDest) {
6192 Instruction *SrcInst = BundleMember->Inst;
6193 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
6194 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
6195 unsigned numAliased = 0;
6196 unsigned DistToSrc = 1;
6197
6198 while (DepDest) {
6199 assert(isInSchedulingRegion(DepDest))(static_cast <bool> (isInSchedulingRegion(DepDest)) ? void
(0) : __assert_fail ("isInSchedulingRegion(DepDest)", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6199, __extension__ __PRETTY_FUNCTION__))
;
6200
6201 // We have two limits to reduce the complexity:
6202 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
6203 // SLP->isAliased (which is the expensive part in this loop).
6204 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
6205 // the whole loop (even if the loop is fast, it's quadratic).
6206 // It's important for the loop break condition (see below) to
6207 // check this limit even between two read-only instructions.
6208 if (DistToSrc >= MaxMemDepDistance ||
6209 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
6210 (numAliased >= AliasedCheckLimit ||
6211 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
6212
6213 // We increment the counter only if the locations are aliased
6214 // (instead of counting all alias checks). This gives a better
6215 // balance between reduced runtime and accurate dependencies.
6216 numAliased++;
6217
6218 DepDest->MemoryDependencies.push_back(BundleMember);
6219 BundleMember->Dependencies++;
6220 ScheduleData *DestBundle = DepDest->FirstInBundle;
6221 if (!DestBundle->IsScheduled) {
6222 BundleMember->incrementUnscheduledDeps(1);
6223 }
6224 if (!DestBundle->hasValidDependencies()) {
6225 WorkList.push_back(DestBundle);
6226 }
6227 }
6228 DepDest = DepDest->NextLoadStore;
6229
6230 // Example, explaining the loop break condition: Let's assume our
6231 // starting instruction is i0 and MaxMemDepDistance = 3.
6232 //
6233 // +--------v--v--v
6234 // i0,i1,i2,i3,i4,i5,i6,i7,i8
6235 // +--------^--^--^
6236 //
6237 // MaxMemDepDistance let us stop alias-checking at i3 and we add
6238 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
6239 // Previously we already added dependencies from i3 to i6,i7,i8
6240 // (because of MaxMemDepDistance). As we added a dependency from
6241 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
6242 // and we can abort this loop at i6.
6243 if (DistToSrc >= 2 * MaxMemDepDistance)
6244 break;
6245 DistToSrc++;
6246 }
6247 }
6248 }
6249 BundleMember = BundleMember->NextInBundle;
6250 }
6251 if (InsertInReadyList
51.1
'InsertInReadyList' is true
51.1
'InsertInReadyList' is true
&& SD->isReady()) {
52
Called C++ object pointer is null
6252 ReadyInsts.push_back(SD);
6253 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Instdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
6254 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
;
6255 }
6256 }
6257}
6258
6259void BoUpSLP::BlockScheduling::resetSchedule() {
6260 assert(ScheduleStart &&(static_cast <bool> (ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? void (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6261, __extension__ __PRETTY_FUNCTION__))
6261 "tried to reset schedule on block which has not been scheduled")(static_cast <bool> (ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? void (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6261, __extension__ __PRETTY_FUNCTION__))
;
6262 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
6263 doForAllOpcodes(I, [&](ScheduleData *SD) {
6264 assert(isInSchedulingRegion(SD) &&(static_cast <bool> (isInSchedulingRegion(SD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6265, __extension__ __PRETTY_FUNCTION__))
6265 "ScheduleData not in scheduling region")(static_cast <bool> (isInSchedulingRegion(SD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6265, __extension__ __PRETTY_FUNCTION__))
;
6266 SD->IsScheduled = false;
6267 SD->resetUnscheduledDeps();
6268 });
6269 }
6270 ReadyInsts.clear();
6271}
6272
6273void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
6274 if (!BS->ScheduleStart)
6275 return;
6276
6277 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule block " << BS
->BB->getName() << "\n"; } } while (false)
;
6278
6279 BS->resetSchedule();
6280
6281 // For the real scheduling we use a more sophisticated ready-list: it is
6282 // sorted by the original instruction location. This lets the final schedule
6283 // be as close as possible to the original instruction order.
6284 struct ScheduleDataCompare {
6285 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
6286 return SD2->SchedulingPriority < SD1->SchedulingPriority;
6287 }
6288 };
6289 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
6290
6291 // Ensure that all dependency data is updated and fill the ready-list with
6292 // initial instructions.
6293 int Idx = 0;
6294 int NumToSchedule = 0;
6295 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
6296 I = I->getNextNode()) {
6297 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
6298 assert(SD->isPartOfBundle() ==(static_cast <bool> (SD->isPartOfBundle() == (getTreeEntry
(SD->Inst) != nullptr) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6300, __extension__ __PRETTY_FUNCTION__))
6299 (getTreeEntry(SD->Inst) != nullptr) &&(static_cast <bool> (SD->isPartOfBundle() == (getTreeEntry
(SD->Inst) != nullptr) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6300, __extension__ __PRETTY_FUNCTION__))
6300 "scheduler and vectorizer bundle mismatch")(static_cast <bool> (SD->isPartOfBundle() == (getTreeEntry
(SD->Inst) != nullptr) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6300, __extension__ __PRETTY_FUNCTION__))
;
6301 SD->FirstInBundle->SchedulingPriority = Idx++;
6302 if (SD->isSchedulingEntity()) {
6303 BS->calculateDependencies(SD, false, this);
6304 NumToSchedule++;
6305 }
6306 });
6307 }
6308 BS->initialFillReadyList(ReadyInsts);
6309
6310 Instruction *LastScheduledInst = BS->ScheduleEnd;
6311
6312 // Do the "real" scheduling.
6313 while (!ReadyInsts.empty()) {
6314 ScheduleData *picked = *ReadyInsts.begin();
6315 ReadyInsts.erase(ReadyInsts.begin());
6316
6317 // Move the scheduled instruction(s) to their dedicated places, if not
6318 // there yet.
6319 ScheduleData *BundleMember = picked;
6320 while (BundleMember) {
6321 Instruction *pickedInst = BundleMember->Inst;
6322 if (LastScheduledInst->getNextNode() != pickedInst) {
6323 BS->BB->getInstList().remove(pickedInst);
6324 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
6325 pickedInst);
6326 }
6327 LastScheduledInst = pickedInst;
6328 BundleMember = BundleMember->NextInBundle;
6329 }
6330
6331 BS->schedule(picked, ReadyInsts);
6332 NumToSchedule--;
6333 }
6334 assert(NumToSchedule == 0 && "could not schedule all instructions")(static_cast <bool> (NumToSchedule == 0 && "could not schedule all instructions"
) ? void (0) : __assert_fail ("NumToSchedule == 0 && \"could not schedule all instructions\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6334, __extension__ __PRETTY_FUNCTION__))
;
6335
6336 // Avoid duplicate scheduling of the block.
6337 BS->ScheduleStart = nullptr;
6338}
6339
6340unsigned BoUpSLP::getVectorElementSize(Value *V) {
6341 // If V is a store, just return the width of the stored value (or value
6342 // truncated just before storing) without traversing the expression tree.
6343 // This is the common case.
6344 if (auto *Store = dyn_cast<StoreInst>(V)) {
6345 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
6346 return DL->getTypeSizeInBits(Trunc->getSrcTy());
6347 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
6348 }
6349
6350 if (auto *IEI = dyn_cast<InsertElementInst>(V))
6351 return getVectorElementSize(IEI->getOperand(1));
6352
6353 auto E = InstrElementSize.find(V);
6354 if (E != InstrElementSize.end())
6355 return E->second;
6356
6357 // If V is not a store, we can traverse the expression tree to find loads
6358 // that feed it. The type of the loaded value may indicate a more suitable
6359 // width than V's type. We want to base the vector element size on the width
6360 // of memory operations where possible.
6361 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
6362 SmallPtrSet<Instruction *, 16> Visited;
6363 if (auto *I = dyn_cast<Instruction>(V)) {
6364 Worklist.emplace_back(I, I->getParent());
6365 Visited.insert(I);
6366 }
6367
6368 // Traverse the expression tree in bottom-up order looking for loads. If we
6369 // encounter an instruction we don't yet handle, we give up.
6370 auto Width = 0u;
6371 while (!Worklist.empty()) {
6372 Instruction *I;
6373 BasicBlock *Parent;
6374 std::tie(I, Parent) = Worklist.pop_back_val();
6375
6376 // We should only be looking at scalar instructions here. If the current
6377 // instruction has a vector type, skip.
6378 auto *Ty = I->getType();
6379 if (isa<VectorType>(Ty))
6380 continue;
6381
6382 // If the current instruction is a load, update MaxWidth to reflect the
6383 // width of the loaded value.
6384 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
6385 isa<ExtractValueInst>(I))
6386 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
6387
6388 // Otherwise, we need to visit the operands of the instruction. We only
6389 // handle the interesting cases from buildTree here. If an operand is an
6390 // instruction we haven't yet visited and from the same basic block as the
6391 // user or the use is a PHI node, we add it to the worklist.
6392 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6393 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
6394 isa<UnaryOperator>(I)) {
6395 for (Use &U : I->operands())
6396 if (auto *J = dyn_cast<Instruction>(U.get()))
6397 if (Visited.insert(J).second &&
6398 (isa<PHINode>(I) || J->getParent() == Parent))
6399 Worklist.emplace_back(J, J->getParent());
6400 } else {
6401 break;
6402 }
6403 }
6404
6405 // If we didn't encounter a memory access in the expression tree, or if we
6406 // gave up for some reason, just return the width of V. Otherwise, return the
6407 // maximum width we found.
6408 if (!Width) {
6409 if (auto *CI = dyn_cast<CmpInst>(V))
6410 V = CI->getOperand(0);
6411 Width = DL->getTypeSizeInBits(V->getType());
6412 }
6413
6414 for (Instruction *I : Visited)
6415 InstrElementSize[I] = Width;
6416
6417 return Width;
6418}
6419
6420// Determine if a value V in a vectorizable expression Expr can be demoted to a
6421// smaller type with a truncation. We collect the values that will be demoted
6422// in ToDemote and additional roots that require investigating in Roots.
6423static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
6424 SmallVectorImpl<Value *> &ToDemote,
6425 SmallVectorImpl<Value *> &Roots) {
6426 // We can always demote constants.
6427 if (isa<Constant>(V)) {
6428 ToDemote.push_back(V);
6429 return true;
6430 }
6431
6432 // If the value is not an instruction in the expression with only one use, it
6433 // cannot be demoted.
6434 auto *I = dyn_cast<Instruction>(V);
6435 if (!I || !I->hasOneUse() || !Expr.count(I))
6436 return false;
6437
6438 switch (I->getOpcode()) {
6439
6440 // We can always demote truncations and extensions. Since truncations can
6441 // seed additional demotion, we save the truncated value.
6442 case Instruction::Trunc:
6443 Roots.push_back(I->getOperand(0));
6444 break;
6445 case Instruction::ZExt:
6446 case Instruction::SExt:
6447 if (isa<ExtractElementInst>(I->getOperand(0)) ||
6448 isa<InsertElementInst>(I->getOperand(0)))
6449 return false;
6450 break;
6451
6452 // We can demote certain binary operations if we can demote both of their
6453 // operands.
6454 case Instruction::Add:
6455 case Instruction::Sub:
6456 case Instruction::Mul:
6457 case Instruction::And:
6458 case Instruction::Or:
6459 case Instruction::Xor:
6460 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
6461 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
6462 return false;
6463 break;
6464
6465 // We can demote selects if we can demote their true and false values.
6466 case Instruction::Select: {
6467 SelectInst *SI = cast<SelectInst>(I);
6468 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
6469 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
6470 return false;
6471 break;
6472 }
6473
6474 // We can demote phis if we can demote all their incoming operands. Note that
6475 // we don't need to worry about cycles since we ensure single use above.
6476 case Instruction::PHI: {
6477 PHINode *PN = cast<PHINode>(I);
6478 for (Value *IncValue : PN->incoming_values())
6479 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
6480 return false;
6481 break;
6482 }
6483
6484 // Otherwise, conservatively give up.
6485 default:
6486 return false;
6487 }
6488
6489 // Record the value that we can demote.
6490 ToDemote.push_back(V);
6491 return true;
6492}
6493
6494void BoUpSLP::computeMinimumValueSizes() {
6495 // If there are no external uses, the expression tree must be rooted by a
6496 // store. We can't demote in-memory values, so there is nothing to do here.
6497 if (ExternalUses.empty())
6498 return;
6499
6500 // We only attempt to truncate integer expressions.
6501 auto &TreeRoot = VectorizableTree[0]->Scalars;
6502 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
6503 if (!TreeRootIT)
6504 return;
6505
6506 // If the expression is not rooted by a store, these roots should have
6507 // external uses. We will rely on InstCombine to rewrite the expression in
6508 // the narrower type. However, InstCombine only rewrites single-use values.
6509 // This means that if a tree entry other than a root is used externally, it
6510 // must have multiple uses and InstCombine will not rewrite it. The code
6511 // below ensures that only the roots are used externally.
6512 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
6513 for (auto &EU : ExternalUses)
6514 if (!Expr.erase(EU.Scalar))
6515 return;
6516 if (!Expr.empty())
6517 return;
6518
6519 // Collect the scalar values of the vectorizable expression. We will use this
6520 // context to determine which values can be demoted. If we see a truncation,
6521 // we mark it as seeding another demotion.
6522 for (auto &EntryPtr : VectorizableTree)
6523 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
6524
6525 // Ensure the roots of the vectorizable tree don't form a cycle. They must
6526 // have a single external user that is not in the vectorizable tree.
6527 for (auto *Root : TreeRoot)
6528 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
6529 return;
6530
6531 // Conservatively determine if we can actually truncate the roots of the
6532 // expression. Collect the values that can be demoted in ToDemote and
6533 // additional roots that require investigating in Roots.
6534 SmallVector<Value *, 32> ToDemote;
6535 SmallVector<Value *, 4> Roots;
6536 for (auto *Root : TreeRoot)
6537 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
6538 return;
6539
6540 // The maximum bit width required to represent all the values that can be
6541 // demoted without loss of precision. It would be safe to truncate the roots
6542 // of the expression to this width.
6543 auto MaxBitWidth = 8u;
6544
6545 // We first check if all the bits of the roots are demanded. If they're not,
6546 // we can truncate the roots to this narrower type.
6547 for (auto *Root : TreeRoot) {
6548 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
6549 MaxBitWidth = std::max<unsigned>(
6550 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
6551 }
6552
6553 // True if the roots can be zero-extended back to their original type, rather
6554 // than sign-extended. We know that if the leading bits are not demanded, we
6555 // can safely zero-extend. So we initialize IsKnownPositive to True.
6556 bool IsKnownPositive = true;
6557
6558 // If all the bits of the roots are demanded, we can try a little harder to
6559 // compute a narrower type. This can happen, for example, if the roots are
6560 // getelementptr indices. InstCombine promotes these indices to the pointer
6561 // width. Thus, all their bits are technically demanded even though the
6562 // address computation might be vectorized in a smaller type.
6563 //
6564 // We start by looking at each entry that can be demoted. We compute the
6565 // maximum bit width required to store the scalar by using ValueTracking to
6566 // compute the number of high-order bits we can truncate.
6567 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
6568 llvm::all_of(TreeRoot, [](Value *R) {
6569 assert(R->hasOneUse() && "Root should have only one use!")(static_cast <bool> (R->hasOneUse() && "Root should have only one use!"
) ? void (0) : __assert_fail ("R->hasOneUse() && \"Root should have only one use!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6569, __extension__ __PRETTY_FUNCTION__))
;
6570 return isa<GetElementPtrInst>(R->user_back());
6571 })) {
6572 MaxBitWidth = 8u;
6573
6574 // Determine if the sign bit of all the roots is known to be zero. If not,
6575 // IsKnownPositive is set to False.
6576 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
6577 KnownBits Known = computeKnownBits(R, *DL);
6578 return Known.isNonNegative();
6579 });
6580
6581 // Determine the maximum number of bits required to store the scalar
6582 // values.
6583 for (auto *Scalar : ToDemote) {
6584 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
6585 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
6586 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
6587 }
6588
6589 // If we can't prove that the sign bit is zero, we must add one to the
6590 // maximum bit width to account for the unknown sign bit. This preserves
6591 // the existing sign bit so we can safely sign-extend the root back to the
6592 // original type. Otherwise, if we know the sign bit is zero, we will
6593 // zero-extend the root instead.
6594 //
6595 // FIXME: This is somewhat suboptimal, as there will be cases where adding
6596 // one to the maximum bit width will yield a larger-than-necessary
6597 // type. In general, we need to add an extra bit only if we can't
6598 // prove that the upper bit of the original type is equal to the
6599 // upper bit of the proposed smaller type. If these two bits are the
6600 // same (either zero or one) we know that sign-extending from the
6601 // smaller type will result in the same value. Here, since we can't
6602 // yet prove this, we are just making the proposed smaller type
6603 // larger to ensure correctness.
6604 if (!IsKnownPositive)
6605 ++MaxBitWidth;
6606 }
6607
6608 // Round MaxBitWidth up to the next power-of-two.
6609 if (!isPowerOf2_64(MaxBitWidth))
6610 MaxBitWidth = NextPowerOf2(MaxBitWidth);
6611
6612 // If the maximum bit width we compute is less than the with of the roots'
6613 // type, we can proceed with the narrowing. Otherwise, do nothing.
6614 if (MaxBitWidth >= TreeRootIT->getBitWidth())
6615 return;
6616
6617 // If we can truncate the root, we must collect additional values that might
6618 // be demoted as a result. That is, those seeded by truncations we will
6619 // modify.
6620 while (!Roots.empty())
6621 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
6622
6623 // Finally, map the values we can demote to the maximum bit with we computed.
6624 for (auto *Scalar : ToDemote)
6625 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
6626}
6627
6628namespace {
6629
6630/// The SLPVectorizer Pass.
6631struct SLPVectorizer : public FunctionPass {
6632 SLPVectorizerPass Impl;
6633
6634 /// Pass identification, replacement for typeid
6635 static char ID;
6636
6637 explicit SLPVectorizer() : FunctionPass(ID) {
6638 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
6639 }
6640
6641 bool doInitialization(Module &M) override {
6642 return false;
6643 }
6644
6645 bool runOnFunction(Function &F) override {
6646 if (skipFunction(F))
6647 return false;
6648
6649 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6650 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
6651 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6652 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
6653 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6654 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6655 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6656 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6657 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
6658 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
6659
6660 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6661 }
6662
6663 void getAnalysisUsage(AnalysisUsage &AU) const override {
6664 FunctionPass::getAnalysisUsage(AU);
6665 AU.addRequired<AssumptionCacheTracker>();
6666 AU.addRequired<ScalarEvolutionWrapperPass>();
6667 AU.addRequired<AAResultsWrapperPass>();
6668 AU.addRequired<TargetTransformInfoWrapperPass>();
6669 AU.addRequired<LoopInfoWrapperPass>();
6670 AU.addRequired<DominatorTreeWrapperPass>();
6671 AU.addRequired<DemandedBitsWrapperPass>();
6672 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
6673 AU.addRequired<InjectTLIMappingsLegacy>();
6674 AU.addPreserved<LoopInfoWrapperPass>();
6675 AU.addPreserved<DominatorTreeWrapperPass>();
6676 AU.addPreserved<AAResultsWrapperPass>();
6677 AU.addPreserved<GlobalsAAWrapperPass>();
6678 AU.setPreservesCFG();
6679 }
6680};
6681
6682} // end anonymous namespace
6683
6684PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
6685 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
6686 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
6687 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6688 auto *AA = &AM.getResult<AAManager>(F);
6689 auto *LI = &AM.getResult<LoopAnalysis>(F);
6690 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
6691 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
6692 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
6693 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
6694
6695 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6696 if (!Changed)
6697 return PreservedAnalyses::all();
6698
6699 PreservedAnalyses PA;
6700 PA.preserveSet<CFGAnalyses>();
6701 return PA;
6702}
6703
6704bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
6705 TargetTransformInfo *TTI_,
6706 TargetLibraryInfo *TLI_, AAResults *AA_,
6707 LoopInfo *LI_, DominatorTree *DT_,
6708 AssumptionCache *AC_, DemandedBits *DB_,
6709 OptimizationRemarkEmitter *ORE_) {
6710 if (!RunSLPVectorization)
6711 return false;
6712 SE = SE_;
6713 TTI = TTI_;
6714 TLI = TLI_;
6715 AA = AA_;
6716 LI = LI_;
6717 DT = DT_;
6718 AC = AC_;
6719 DB = DB_;
6720 DL = &F.getParent()->getDataLayout();
6721
6722 Stores.clear();
6723 GEPs.clear();
6724 bool Changed = false;
6725
6726 // If the target claims to have no vector registers don't attempt
6727 // vectorization.
6728 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
6729 return false;
6730
6731 // Don't vectorize when the attribute NoImplicitFloat is used.
6732 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
6733 return false;
6734
6735 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing blocks in " <<
F.getName() << ".\n"; } } while (false)
;
6736
6737 // Use the bottom up slp vectorizer to construct chains that start with
6738 // store instructions.
6739 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
6740
6741 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6742 // delete instructions.
6743
6744 // Update DFS numbers now so that we can use them for ordering.
6745 DT->updateDFSNumbers();
6746
6747 // Scan the blocks in the function in post order.
6748 for (auto BB : post_order(&F.getEntryBlock())) {
6749 collectSeedInstructions(BB);
6750
6751 // Vectorize trees that end at stores.
6752 if (!Stores.empty()) {
6753 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
6754 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
;
6755 Changed |= vectorizeStoreChains(R);
6756 }
6757
6758 // Vectorize trees that end at reductions.
6759 Changed |= vectorizeChainsInBlock(BB, R);
6760
6761 // Vectorize the index computations of getelementptr instructions. This
6762 // is primarily intended to catch gather-like idioms ending at
6763 // non-consecutive loads.
6764 if (!GEPs.empty()) {
6765 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
6766 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
;
6767 Changed |= vectorizeGEPIndices(BB, R);
6768 }
6769 }
6770
6771 if (Changed) {
6772 R.optimizeGatherSequence();
6773 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: vectorized \"" << F.getName
() << "\"\n"; } } while (false)
;
6774 }
6775 return Changed;
6776}
6777
6778/// Order may have elements assigned special value (size) which is out of
6779/// bounds. Such indices only appear on places which correspond to undef values
6780/// (see canReuseExtract for details) and used in order to avoid undef values
6781/// have effect on operands ordering.
6782/// The first loop below simply finds all unused indices and then the next loop
6783/// nest assigns these indices for undef values positions.
6784/// As an example below Order has two undef positions and they have assigned
6785/// values 3 and 7 respectively:
6786/// before: 6 9 5 4 9 2 1 0
6787/// after: 6 3 5 4 7 2 1 0
6788/// \returns Fixed ordering.
6789static BoUpSLP::OrdersType fixupOrderingIndices(ArrayRef<unsigned> Order) {
6790 BoUpSLP::OrdersType NewOrder(Order.begin(), Order.end());
6791 const unsigned Sz = NewOrder.size();
6792 SmallBitVector UsedIndices(Sz);
6793 SmallVector<int> MaskedIndices;
6794 for (int I = 0, E = NewOrder.size(); I < E; ++I) {
6795 if (NewOrder[I] < Sz)
6796 UsedIndices.set(NewOrder[I]);
6797 else
6798 MaskedIndices.push_back(I);
6799 }
6800 if (MaskedIndices.empty())
6801 return NewOrder;
6802 SmallVector<int> AvailableIndices(MaskedIndices.size());
6803 unsigned Cnt = 0;
6804 int Idx = UsedIndices.find_first();
6805 do {
6806 AvailableIndices[Cnt] = Idx;
6807 Idx = UsedIndices.find_next(Idx);
6808 ++Cnt;
6809 } while (Idx > 0);
6810 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices.")(static_cast <bool> (Cnt == MaskedIndices.size() &&
"Non-synced masked/available indices.") ? void (0) : __assert_fail
("Cnt == MaskedIndices.size() && \"Non-synced masked/available indices.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6810, __extension__ __PRETTY_FUNCTION__))
;
6811 for (int I = 0, E = MaskedIndices.size(); I < E; ++I)
6812 NewOrder[MaskedIndices[I]] = AvailableIndices[I];
6813 return NewOrder;
6814}
6815
6816bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
6817 unsigned Idx) {
6818 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
6819 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
;
6820 const unsigned Sz = R.getVectorElementSize(Chain[0]);
6821 const unsigned MinVF = R.getMinVecRegSize() / Sz;
6822 unsigned VF = Chain.size();
6823
6824 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
6825 return false;
6826
6827 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
6828 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
;
6829
6830 R.buildTree(Chain);
6831 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6832 // TODO: Handle orders of size less than number of elements in the vector.
6833 if (Order && Order->size() == Chain.size()) {
6834 // TODO: reorder tree nodes without tree rebuilding.
6835 SmallVector<Value *, 4> ReorderedOps(Chain.size());
6836 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
6837 [Chain](const unsigned Idx) { return Chain[Idx]; });
6838 R.buildTree(ReorderedOps);
6839 }
6840 if (R.isTreeTinyAndNotFullyVectorizable())
6841 return false;
6842 if (R.isLoadCombineCandidate())
6843 return false;
6844
6845 R.computeMinimumValueSizes();
6846
6847 InstructionCost Cost = R.getTreeCost();
6848
6849 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost = " << Cost
<< " for VF =" << VF << "\n"; } } while (false
)
;
6850 if (Cost < -SLPCostThreshold) {
6851 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Decided to vectorize cost = "
<< Cost << "\n"; } } while (false)
;
6852
6853 using namespace ore;
6854
6855 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "StoresVectorized",
6856 cast<StoreInst>(Chain[0]))
6857 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
6858 << " and with tree size "
6859 << NV("TreeSize", R.getTreeSize()));
6860
6861 R.vectorizeTree();
6862 return true;
6863 }
6864
6865 return false;
6866}
6867
6868bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
6869 BoUpSLP &R) {
6870 // We may run into multiple chains that merge into a single chain. We mark the
6871 // stores that we vectorized so that we don't visit the same store twice.
6872 BoUpSLP::ValueSet VectorizedStores;
6873 bool Changed = false;
6874
6875 int E = Stores.size();
6876 SmallBitVector Tails(E, false);
6877 int MaxIter = MaxStoreLookup.getValue();
6878 SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
6879 E, std::make_pair(E, INT_MAX2147483647));
6880 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
6881 int IterCnt;
6882 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
6883 &CheckedPairs,
6884 &ConsecutiveChain](int K, int Idx) {
6885 if (IterCnt >= MaxIter)
6886 return true;
6887 if (CheckedPairs[Idx].test(K))
6888 return ConsecutiveChain[K].second == 1 &&
6889 ConsecutiveChain[K].first == Idx;
6890 ++IterCnt;
6891 CheckedPairs[Idx].set(K);
6892 CheckedPairs[K].set(Idx);
6893 Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(),
6894 Stores[Idx]->getPointerOperand(), *DL,
6895 *SE, /*StrictCheck=*/true);
6896 if (!Diff || *Diff == 0)
6897 return false;
6898 int Val = *Diff;
6899 if (Val < 0) {
6900 if (ConsecutiveChain[Idx].second > -Val) {
6901 Tails.set(K);
6902 ConsecutiveChain[Idx] = std::make_pair(K, -Val);
6903 }
6904 return false;
6905 }
6906 if (ConsecutiveChain[K].second <= Val)
6907 return false;
6908
6909 Tails.set(Idx);
6910 ConsecutiveChain[K] = std::make_pair(Idx, Val);
6911 return Val == 1;
6912 };
6913 // Do a quadratic search on all of the given stores in reverse order and find
6914 // all of the pairs of stores that follow each other.
6915 for (int Idx = E - 1; Idx >= 0; --Idx) {
6916 // If a store has multiple consecutive store candidates, search according
6917 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6918 // This is because usually pairing with immediate succeeding or preceding
6919 // candidate create the best chance to find slp vectorization opportunity.
6920 const int MaxLookDepth = std::max(E - Idx, Idx + 1);
6921 IterCnt = 0;
6922 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
6923 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
6924 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
6925 break;
6926 }
6927
6928 // Tracks if we tried to vectorize stores starting from the given tail
6929 // already.
6930 SmallBitVector TriedTails(E, false);
6931 // For stores that start but don't end a link in the chain:
6932 for (int Cnt = E; Cnt > 0; --Cnt) {
6933 int I = Cnt - 1;
6934 if (ConsecutiveChain[I].first == E || Tails.test(I))
6935 continue;
6936 // We found a store instr that starts a chain. Now follow the chain and try
6937 // to vectorize it.
6938 BoUpSLP::ValueList Operands;
6939 // Collect the chain into a list.
6940 while (I != E && !VectorizedStores.count(Stores[I])) {
6941 Operands.push_back(Stores[I]);
6942 Tails.set(I);
6943 if (ConsecutiveChain[I].second != 1) {
6944 // Mark the new end in the chain and go back, if required. It might be
6945 // required if the original stores come in reversed order, for example.
6946 if (ConsecutiveChain[I].first != E &&
6947 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
6948 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
6949 TriedTails.set(I);
6950 Tails.reset(ConsecutiveChain[I].first);
6951 if (Cnt < ConsecutiveChain[I].first + 2)
6952 Cnt = ConsecutiveChain[I].first + 2;
6953 }
6954 break;
6955 }
6956 // Move to the next value in the chain.
6957 I = ConsecutiveChain[I].first;
6958 }
6959 assert(!Operands.empty() && "Expected non-empty list of stores.")(static_cast <bool> (!Operands.empty() && "Expected non-empty list of stores."
) ? void (0) : __assert_fail ("!Operands.empty() && \"Expected non-empty list of stores.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6959, __extension__ __PRETTY_FUNCTION__))
;
6960
6961 unsigned MaxVecRegSize = R.getMaxVecRegSize();
6962 unsigned EltSize = R.getVectorElementSize(Operands[0]);
6963 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
6964
6965 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
6966 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
6967 MaxElts);
6968
6969 // FIXME: Is division-by-2 the correct step? Should we assert that the
6970 // register size is a power-of-2?
6971 unsigned StartIdx = 0;
6972 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
6973 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
6974 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
6975 if (!VectorizedStores.count(Slice.front()) &&
6976 !VectorizedStores.count(Slice.back()) &&
6977 vectorizeStoreChain(Slice, R, Cnt)) {
6978 // Mark the vectorized stores so that we don't vectorize them again.
6979 VectorizedStores.insert(Slice.begin(), Slice.end());
6980 Changed = true;
6981 // If we vectorized initial block, no need to try to vectorize it
6982 // again.
6983 if (Cnt == StartIdx)
6984 StartIdx += Size;
6985 Cnt += Size;
6986 continue;
6987 }
6988 ++Cnt;
6989 }
6990 // Check if the whole array was vectorized already - exit.
6991 if (StartIdx >= Operands.size())
6992 break;
6993 }
6994 }
6995
6996 return Changed;
6997}
6998
6999void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
7000 // Initialize the collections. We will make a single pass over the block.
7001 Stores.clear();
7002 GEPs.clear();
7003
7004 // Visit the store and getelementptr instructions in BB and organize them in
7005 // Stores and GEPs according to the underlying objects of their pointer
7006 // operands.
7007 for (Instruction &I : *BB) {
7008 // Ignore store instructions that are volatile or have a pointer operand
7009 // that doesn't point to a scalar type.
7010 if (auto *SI = dyn_cast<StoreInst>(&I)) {
7011 if (!SI->isSimple())
7012 continue;
7013 if (!isValidElementType(SI->getValueOperand()->getType()))
7014 continue;
7015 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
7016 }
7017
7018 // Ignore getelementptr instructions that have more than one index, a
7019 // constant index, or a pointer operand that doesn't point to a scalar
7020 // type.
7021 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
7022 auto Idx = GEP->idx_begin()->get();
7023 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
7024 continue;
7025 if (!isValidElementType(Idx->getType()))
7026 continue;
7027 if (GEP->getType()->isVectorTy())
7028 continue;
7029 GEPs[GEP->getPointerOperand()].push_back(GEP);
7030 }
7031 }
7032}
7033
7034bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
7035 if (!A || !B)
7036 return false;
7037 Value *VL[] = {A, B};
7038 return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
7039}
7040
7041bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
7042 bool AllowReorder) {
7043 if (VL.size() < 2)
7044 return false;
7045
7046 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
7047 << VL.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
;
7048
7049 // Check that all of the parts are instructions of the same type,
7050 // we permit an alternate opcode via InstructionsState.
7051 InstructionsState S = getSameOpcode(VL);
7052 if (!S.getOpcode())
7053 return false;
7054
7055 Instruction *I0 = cast<Instruction>(S.OpValue);
7056 // Make sure invalid types (including vector type) are rejected before
7057 // determining vectorization factor for scalar instructions.
7058 for (Value *V : VL) {
7059 Type *Ty = V->getType();
7060 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
7061 // NOTE: the following will give user internal llvm type name, which may
7062 // not be useful.
7063 R.getORE()->emit([&]() {
7064 std::string type_str;
7065 llvm::raw_string_ostream rso(type_str);
7066 Ty->print(rso);
7067 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "UnsupportedType", I0)
7068 << "Cannot SLP vectorize list: type "
7069 << rso.str() + " is unsupported by vectorizer";
7070 });
7071 return false;
7072 }
7073 }
7074
7075 unsigned Sz = R.getVectorElementSize(I0);
7076 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
7077 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
7078 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
7079 if (MaxVF < 2) {
7080 R.getORE()->emit([&]() {
7081 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "SmallVF", I0)
7082 << "Cannot SLP vectorize list: vectorization factor "
7083 << "less than 2 is not supported";
7084 });
7085 return false;
7086 }
7087
7088 bool Changed = false;
7089 bool CandidateFound = false;
7090 InstructionCost MinCost = SLPCostThreshold.getValue();
7091 Type *ScalarTy = VL[0]->getType();
7092 if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
7093 ScalarTy = IE->getOperand(1)->getType();
7094
7095 unsigned NextInst = 0, MaxInst = VL.size();
7096 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
7097 // No actual vectorization should happen, if number of parts is the same as
7098 // provided vectorization factor (i.e. the scalar type is used for vector
7099 // code during codegen).
7100 auto *VecTy = FixedVectorType::get(ScalarTy, VF);
7101 if (TTI->getNumberOfParts(VecTy) == VF)
7102 continue;
7103 for (unsigned I = NextInst; I < MaxInst; ++I) {
7104 unsigned OpsWidth = 0;
7105
7106 if (I + VF > MaxInst)
7107 OpsWidth = MaxInst - I;
7108 else
7109 OpsWidth = VF;
7110
7111 if (!isPowerOf2_32(OpsWidth))
7112 continue;
7113
7114 if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
7115 break;
7116
7117 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
7118 // Check that a previous iteration of this loop did not delete the Value.
7119 if (llvm::any_of(Ops, [&R](Value *V) {
7120 auto *I = dyn_cast<Instruction>(V);
7121 return I && R.isDeleted(I);
7122 }))
7123 continue;
7124
7125 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
7126 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
;
7127
7128 R.buildTree(Ops);
7129 if (AllowReorder) {
7130 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
7131 if (Order) {
7132 // TODO: reorder tree nodes without tree rebuilding.
7133 SmallVector<Value *, 4> ReorderedOps(Ops.size());
7134 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7135 [Ops](const unsigned Idx) { return Ops[Idx]; });
7136 R.buildTree(ReorderedOps);
7137 }
7138 }
7139 if (R.isTreeTinyAndNotFullyVectorizable())
7140 continue;
7141
7142 R.computeMinimumValueSizes();
7143 InstructionCost Cost = R.getTreeCost();
7144 CandidateFound = true;
7145 MinCost = std::min(MinCost, Cost);
7146
7147 if (Cost < -SLPCostThreshold) {
7148 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing list at cost:" <<
Cost << ".\n"; } } while (false)
;
7149 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedList",
7150 cast<Instruction>(Ops[0]))
7151 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
7152 << " and with tree size "
7153 << ore::NV("TreeSize", R.getTreeSize()));
7154
7155 R.vectorizeTree();
7156 // Move to the next bundle.
7157 I += VF - 1;
7158 NextInst = I + 1;
7159 Changed = true;
7160 }
7161 }
7162 }
7163
7164 if (!Changed && CandidateFound) {
7165 R.getORE()->emit([&]() {
7166 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotBeneficial", I0)
7167 << "List vectorization was possible but not beneficial with cost "
7168 << ore::NV("Cost", MinCost) << " >= "
7169 << ore::NV("Treshold", -SLPCostThreshold);
7170 });
7171 } else if (!Changed) {
7172 R.getORE()->emit([&]() {
7173 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotPossible", I0)
7174 << "Cannot SLP vectorize list: vectorization was impossible"
7175 << " with available vectorization factors";
7176 });
7177 }
7178 return Changed;
7179}
7180
7181bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
7182 if (!I)
7183 return false;
7184
7185 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
7186 return false;
7187
7188 Value *P = I->getParent();
7189
7190 // Vectorize in current basic block only.
7191 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
7192 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
7193 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
7194 return false;
7195
7196 // Try to vectorize V.
7197 if (tryToVectorizePair(Op0, Op1, R))
7198 return true;
7199
7200 auto *A = dyn_cast<BinaryOperator>(Op0);
7201 auto *B = dyn_cast<BinaryOperator>(Op1);
7202 // Try to skip B.
7203 if (B && B->hasOneUse()) {
7204 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
7205 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
7206 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
7207 return true;
7208 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
7209 return true;
7210 }
7211
7212 // Try to skip A.
7213 if (A && A->hasOneUse()) {
7214 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
7215 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
7216 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
7217 return true;
7218 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
7219 return true;
7220 }
7221 return false;
7222}
7223
7224namespace {
7225
7226/// Model horizontal reductions.
7227///
7228/// A horizontal reduction is a tree of reduction instructions that has values
7229/// that can be put into a vector as its leaves. For example:
7230///
7231/// mul mul mul mul
7232/// \ / \ /
7233/// + +
7234/// \ /
7235/// +
7236/// This tree has "mul" as its leaf values and "+" as its reduction
7237/// instructions. A reduction can feed into a store or a binary operation
7238/// feeding a phi.
7239/// ...
7240/// \ /
7241/// +
7242/// |
7243/// phi +=
7244///
7245/// Or:
7246/// ...
7247/// \ /
7248/// +
7249/// |
7250/// *p =
7251///
7252class HorizontalReduction {
7253 using ReductionOpsType = SmallVector<Value *, 16>;
7254 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
7255 ReductionOpsListType ReductionOps;
7256 SmallVector<Value *, 32> ReducedVals;
7257 // Use map vector to make stable output.
7258 MapVector<Instruction *, Value *> ExtraArgs;
7259 WeakTrackingVH ReductionRoot;
7260 /// The type of reduction operation.
7261 RecurKind RdxKind;
7262
7263 /// Checks if instruction is associative and can be vectorized.
7264 static bool isVectorizable(RecurKind Kind, Instruction *I) {
7265 if (Kind == RecurKind::None)
7266 return false;
7267 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind))
7268 return true;
7269
7270 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
7271 // FP min/max are associative except for NaN and -0.0. We do not
7272 // have to rule out -0.0 here because the intrinsic semantics do not
7273 // specify a fixed result for it.
7274 return I->getFastMathFlags().noNaNs();
7275 }
7276
7277 return I->isAssociative();
7278 }
7279
7280 /// Checks if the ParentStackElem.first should be marked as a reduction
7281 /// operation with an extra argument or as extra argument itself.
7282 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
7283 Value *ExtraArg) {
7284 if (ExtraArgs.count(ParentStackElem.first)) {
7285 ExtraArgs[ParentStackElem.first] = nullptr;
7286 // We ran into something like:
7287 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
7288 // The whole ParentStackElem.first should be considered as an extra value
7289 // in this case.
7290 // Do not perform analysis of remaining operands of ParentStackElem.first
7291 // instruction, this whole instruction is an extra argument.
7292 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first);
7293 } else {
7294 // We ran into something like:
7295 // ParentStackElem.first += ... + ExtraArg + ...
7296 ExtraArgs[ParentStackElem.first] = ExtraArg;
7297 }
7298 }
7299
7300 /// Creates reduction operation with the current opcode.
7301 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
7302 Value *RHS, const Twine &Name, bool UseSelect) {
7303 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
7304 switch (Kind) {
7305 case RecurKind::Add:
7306 case RecurKind::Mul:
7307 case RecurKind::Or:
7308 case RecurKind::And:
7309 case RecurKind::Xor:
7310 case RecurKind::FAdd:
7311 case RecurKind::FMul:
7312 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
7313 Name);
7314 case RecurKind::FMax:
7315 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
7316 case RecurKind::FMin:
7317 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
7318 case RecurKind::SMax:
7319 if (UseSelect) {
7320 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
7321 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7322 }
7323 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
7324 case RecurKind::SMin:
7325 if (UseSelect) {
7326 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
7327 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7328 }
7329 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
7330 case RecurKind::UMax:
7331 if (UseSelect) {
7332 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
7333 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7334 }
7335 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
7336 case RecurKind::UMin:
7337 if (UseSelect) {
7338 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
7339 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7340 }
7341 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
7342 default:
7343 llvm_unreachable("Unknown reduction operation.")::llvm::llvm_unreachable_internal("Unknown reduction operation."
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7343)
;
7344 }
7345 }
7346
7347 /// Creates reduction operation with the current opcode with the IR flags
7348 /// from \p ReductionOps.
7349 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7350 Value *RHS, const Twine &Name,
7351 const ReductionOpsListType &ReductionOps) {
7352 bool UseSelect = ReductionOps.size() == 2;
7353 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&(static_cast <bool> ((!UseSelect || isa<SelectInst>
(ReductionOps[1][0])) && "Expected cmp + select pairs for reduction"
) ? void (0) : __assert_fail ("(!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7354, __extension__ __PRETTY_FUNCTION__))
7354 "Expected cmp + select pairs for reduction")(static_cast <bool> ((!UseSelect || isa<SelectInst>
(ReductionOps[1][0])) && "Expected cmp + select pairs for reduction"
) ? void (0) : __assert_fail ("(!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7354, __extension__ __PRETTY_FUNCTION__))
;
7355 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
7356 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7357 if (auto *Sel = dyn_cast<SelectInst>(Op)) {
7358 propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
7359 propagateIRFlags(Op, ReductionOps[1]);
7360 return Op;
7361 }
7362 }
7363 propagateIRFlags(Op, ReductionOps[0]);
7364 return Op;
7365 }
7366
7367 /// Creates reduction operation with the current opcode with the IR flags
7368 /// from \p I.
7369 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7370 Value *RHS, const Twine &Name, Instruction *I) {
7371 auto *SelI = dyn_cast<SelectInst>(I);
7372 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
7373 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7374 if (auto *Sel = dyn_cast<SelectInst>(Op))
7375 propagateIRFlags(Sel->getCondition(), SelI->getCondition());
7376 }
7377 propagateIRFlags(Op, I);
7378 return Op;
7379 }
7380
7381 static RecurKind getRdxKind(Instruction *I) {
7382 assert(I && "Expected instruction for reduction matching")(static_cast <bool> (I && "Expected instruction for reduction matching"
) ? void (0) : __assert_fail ("I && \"Expected instruction for reduction matching\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7382, __extension__ __PRETTY_FUNCTION__))
;
7383 TargetTransformInfo::ReductionFlags RdxFlags;
7384 if (match(I, m_Add(m_Value(), m_Value())))
7385 return RecurKind::Add;
7386 if (match(I, m_Mul(m_Value(), m_Value())))
7387 return RecurKind::Mul;
7388 if (match(I, m_And(m_Value(), m_Value())))
7389 return RecurKind::And;
7390 if (match(I, m_Or(m_Value(), m_Value())))
7391 return RecurKind::Or;
7392 if (match(I, m_Xor(m_Value(), m_Value())))
7393 return RecurKind::Xor;
7394 if (match(I, m_FAdd(m_Value(), m_Value())))
7395 return RecurKind::FAdd;
7396 if (match(I, m_FMul(m_Value(), m_Value())))
7397 return RecurKind::FMul;
7398
7399 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
7400 return RecurKind::FMax;
7401 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
7402 return RecurKind::FMin;
7403
7404 // This matches either cmp+select or intrinsics. SLP is expected to handle
7405 // either form.
7406 // TODO: If we are canonicalizing to intrinsics, we can remove several
7407 // special-case paths that deal with selects.
7408 if (match(I, m_SMax(m_Value(), m_Value())))
7409 return RecurKind::SMax;
7410 if (match(I, m_SMin(m_Value(), m_Value())))
7411 return RecurKind::SMin;
7412 if (match(I, m_UMax(m_Value(), m_Value())))
7413 return RecurKind::UMax;
7414 if (match(I, m_UMin(m_Value(), m_Value())))
7415 return RecurKind::UMin;
7416
7417 if (auto *Select = dyn_cast<SelectInst>(I)) {
7418 // Try harder: look for min/max pattern based on instructions producing
7419 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
7420 // During the intermediate stages of SLP, it's very common to have
7421 // pattern like this (since optimizeGatherSequence is run only once
7422 // at the end):
7423 // %1 = extractelement <2 x i32> %a, i32 0
7424 // %2 = extractelement <2 x i32> %a, i32 1
7425 // %cond = icmp sgt i32 %1, %2
7426 // %3 = extractelement <2 x i32> %a, i32 0
7427 // %4 = extractelement <2 x i32> %a, i32 1
7428 // %select = select i1 %cond, i32 %3, i32 %4
7429 CmpInst::Predicate Pred;
7430 Instruction *L1;
7431 Instruction *L2;
7432
7433 Value *LHS = Select->getTrueValue();
7434 Value *RHS = Select->getFalseValue();
7435 Value *Cond = Select->getCondition();
7436
7437 // TODO: Support inverse predicates.
7438 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
7439 if (!isa<ExtractElementInst>(RHS) ||
7440 !L2->isIdenticalTo(cast<Instruction>(RHS)))
7441 return RecurKind::None;
7442 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
7443 if (!isa<ExtractElementInst>(LHS) ||
7444 !L1->isIdenticalTo(cast<Instruction>(LHS)))
7445 return RecurKind::None;
7446 } else {
7447 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
7448 return RecurKind::None;
7449 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
7450 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
7451 !L2->isIdenticalTo(cast<Instruction>(RHS)))
7452 return RecurKind::None;
7453 }
7454
7455 TargetTransformInfo::ReductionFlags RdxFlags;
7456 switch (Pred) {
7457 default:
7458 return RecurKind::None;
7459 case CmpInst::ICMP_SGT:
7460 case CmpInst::ICMP_SGE:
7461 return RecurKind::SMax;
7462 case CmpInst::ICMP_SLT:
7463 case CmpInst::ICMP_SLE:
7464 return RecurKind::SMin;
7465 case CmpInst::ICMP_UGT:
7466 case CmpInst::ICMP_UGE:
7467 return RecurKind::UMax;
7468 case CmpInst::ICMP_ULT:
7469 case CmpInst::ICMP_ULE:
7470 return RecurKind::UMin;
7471 }
7472 }
7473 return RecurKind::None;
7474 }
7475
7476 /// Get the index of the first operand.
7477 static unsigned getFirstOperandIndex(Instruction *I) {
7478 return isa<SelectInst>(I) ? 1 : 0;
7479 }
7480
7481 /// Total number of operands in the reduction operation.
7482 static unsigned getNumberOfOperands(Instruction *I) {
7483 return isa<SelectInst>(I) ? 3 : 2;
7484 }
7485
7486 /// Checks if the instruction is in basic block \p BB.
7487 /// For a min/max reduction check that both compare and select are in \p BB.
7488 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) {
7489 auto *Sel = dyn_cast<SelectInst>(I);
7490 if (IsRedOp && Sel) {
7491 auto *Cmp = cast<Instruction>(Sel->getCondition());
7492 return Sel->getParent() == BB && Cmp->getParent() == BB;
7493 }
7494 return I->getParent() == BB;
7495 }
7496
7497 /// Expected number of uses for reduction operations/reduced values.
7498 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) {
7499 // SelectInst must be used twice while the condition op must have single
7500 // use only.
7501 if (MatchCmpSel) {
7502 if (auto *Sel = dyn_cast<SelectInst>(I))
7503 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
7504 return I->hasNUses(2);
7505 }
7506
7507 // Arithmetic reduction operation must be used once only.
7508 return I->hasOneUse();
7509 }
7510
7511 /// Initializes the list of reduction operations.
7512 void initReductionOps(Instruction *I) {
7513 if (isa<SelectInst>(I))
7514 ReductionOps.assign(2, ReductionOpsType());
7515 else
7516 ReductionOps.assign(1, ReductionOpsType());
7517 }
7518
7519 /// Add all reduction operations for the reduction instruction \p I.
7520 void addReductionOps(Instruction *I) {
7521 if (auto *Sel = dyn_cast<SelectInst>(I)) {
7522 ReductionOps[0].emplace_back(Sel->getCondition());
7523 ReductionOps[1].emplace_back(Sel);
7524 } else {
7525 ReductionOps[0].emplace_back(I);
7526 }
7527 }
7528
7529 static Value *getLHS(RecurKind Kind, Instruction *I) {
7530 if (Kind == RecurKind::None)
7531 return nullptr;
7532 return I->getOperand(getFirstOperandIndex(I));
7533 }
7534 static Value *getRHS(RecurKind Kind, Instruction *I) {
7535 if (Kind == RecurKind::None)
7536 return nullptr;
7537 return I->getOperand(getFirstOperandIndex(I) + 1);
7538 }
7539
7540public:
7541 HorizontalReduction() = default;
7542
7543 /// Try to find a reduction tree.
7544 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
7545 assert((!Phi || is_contained(Phi->operands(), B)) &&(static_cast <bool> ((!Phi || is_contained(Phi->operands
(), B)) && "Phi needs to use the binary operator") ? void
(0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Phi needs to use the binary operator\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7546, __extension__ __PRETTY_FUNCTION__))
7546 "Phi needs to use the binary operator")(static_cast <bool> ((!Phi || is_contained(Phi->operands
(), B)) && "Phi needs to use the binary operator") ? void
(0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Phi needs to use the binary operator\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7546, __extension__ __PRETTY_FUNCTION__))
;
7547
7548 RdxKind = getRdxKind(B);
7549
7550 // We could have a initial reductions that is not an add.
7551 // r *= v1 + v2 + v3 + v4
7552 // In such a case start looking for a tree rooted in the first '+'.
7553 if (Phi) {
7554 if (getLHS(RdxKind, B) == Phi) {
7555 Phi = nullptr;
7556 B = dyn_cast<Instruction>(getRHS(RdxKind, B));
7557 if (!B)
7558 return false;
7559 RdxKind = getRdxKind(B);
7560 } else if (getRHS(RdxKind, B) == Phi) {
7561 Phi = nullptr;
7562 B = dyn_cast<Instruction>(getLHS(RdxKind, B));
7563 if (!B)
7564 return false;
7565 RdxKind = getRdxKind(B);
7566 }
7567 }
7568
7569 if (!isVectorizable(RdxKind, B))
7570 return false;
7571
7572 // Analyze "regular" integer/FP types for reductions - no target-specific
7573 // types or pointers.
7574 Type *Ty = B->getType();
7575 if (!isValidElementType(Ty) || Ty->isPointerTy())
7576 return false;
7577
7578 // Though the ultimate reduction may have multiple uses, its condition must
7579 // have only single use.
7580 if (auto *SI = dyn_cast<SelectInst>(B))
7581 if (!SI->getCondition()->hasOneUse())
7582 return false;
7583
7584 ReductionRoot = B;
7585
7586 // The opcode for leaf values that we perform a reduction on.
7587 // For example: load(x) + load(y) + load(z) + fptoui(w)
7588 // The leaf opcode for 'w' does not match, so we don't include it as a
7589 // potential candidate for the reduction.
7590 unsigned LeafOpcode = 0;
7591
7592 // Post order traverse the reduction tree starting at B. We only handle true
7593 // trees containing only binary operators.
7594 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
7595 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B)));
7596 initReductionOps(B);
7597 while (!Stack.empty()) {
7598 Instruction *TreeN = Stack.back().first;
7599 unsigned EdgeToVisit = Stack.back().second++;
7600 const RecurKind TreeRdxKind = getRdxKind(TreeN);
7601 bool IsReducedValue = TreeRdxKind != RdxKind;
7602
7603 // Postorder visit.
7604 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) {
7605 if (IsReducedValue)
7606 ReducedVals.push_back(TreeN);
7607 else {
7608 auto ExtraArgsIter = ExtraArgs.find(TreeN);
7609 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
7610 // Check if TreeN is an extra argument of its parent operation.
7611 if (Stack.size() <= 1) {
7612 // TreeN can't be an extra argument as it is a root reduction
7613 // operation.
7614 return false;
7615 }
7616 // Yes, TreeN is an extra argument, do not add it to a list of
7617 // reduction operations.
7618 // Stack[Stack.size() - 2] always points to the parent operation.
7619 markExtraArg(Stack[Stack.size() - 2], TreeN);
7620 ExtraArgs.erase(TreeN);
7621 } else
7622 addReductionOps(TreeN);
7623 }
7624 // Retract.
7625 Stack.pop_back();
7626 continue;
7627 }
7628
7629 // Visit left or right.
7630 Value *EdgeVal = TreeN->getOperand(EdgeToVisit);
7631 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
7632 if (!EdgeInst) {
7633 // Edge value is not a reduction instruction or a leaf instruction.
7634 // (It may be a constant, function argument, or something else.)
7635 markExtraArg(Stack.back(), EdgeVal);
7636 continue;
7637 }
7638 RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
7639 // Continue analysis if the next operand is a reduction operation or
7640 // (possibly) a leaf value. If the leaf value opcode is not set,
7641 // the first met operation != reduction operation is considered as the
7642 // leaf opcode.
7643 // Only handle trees in the current basic block.
7644 // Each tree node needs to have minimal number of users except for the
7645 // ultimate reduction.
7646 const bool IsRdxInst = EdgeRdxKind == RdxKind;
7647 if (EdgeInst != Phi && EdgeInst != B &&
7648 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) &&
7649 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) &&
7650 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
7651 if (IsRdxInst) {
7652 // We need to be able to reassociate the reduction operations.
7653 if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
7654 // I is an extra argument for TreeN (its parent operation).
7655 markExtraArg(Stack.back(), EdgeInst);
7656 continue;
7657 }
7658 } else if (!LeafOpcode) {
7659 LeafOpcode = EdgeInst->getOpcode();
7660 }
7661 Stack.push_back(
7662 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
7663 continue;
7664 }
7665 // I is an extra argument for TreeN (its parent operation).
7666 markExtraArg(Stack.back(), EdgeInst);
7667 }
7668 return true;
7669 }
7670
7671 /// Attempt to vectorize the tree found by matchAssociativeReduction.
7672 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
7673 // If there are a sufficient number of reduction values, reduce
7674 // to a nearby power-of-2. We can safely generate oversized
7675 // vectors and rely on the backend to split them to legal sizes.
7676 unsigned NumReducedVals = ReducedVals.size();
7677 if (NumReducedVals < 4)
7678 return false;
7679
7680 // Intersect the fast-math-flags from all reduction operations.
7681 FastMathFlags RdxFMF;
7682 RdxFMF.set();
7683 for (ReductionOpsType &RdxOp : ReductionOps) {
7684 for (Value *RdxVal : RdxOp) {
7685 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
7686 RdxFMF &= FPMO->getFastMathFlags();
7687 }
7688 }
7689
7690 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
7691 Builder.setFastMathFlags(RdxFMF);
7692
7693 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
7694 // The same extra argument may be used several times, so log each attempt
7695 // to use it.
7696 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
7697 assert(Pair.first && "DebugLoc must be set.")(static_cast <bool> (Pair.first && "DebugLoc must be set."
) ? void (0) : __assert_fail ("Pair.first && \"DebugLoc must be set.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7697, __extension__ __PRETTY_FUNCTION__))
;
7698 ExternallyUsedValues[Pair.second].push_back(Pair.first);
7699 }
7700
7701 // The compare instruction of a min/max is the insertion point for new
7702 // instructions and may be replaced with a new compare instruction.
7703 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
7704 assert(isa<SelectInst>(RdxRootInst) &&(static_cast <bool> (isa<SelectInst>(RdxRootInst)
&& "Expected min/max reduction to have select root instruction"
) ? void (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7705, __extension__ __PRETTY_FUNCTION__))
7705 "Expected min/max reduction to have select root instruction")(static_cast <bool> (isa<SelectInst>(RdxRootInst)
&& "Expected min/max reduction to have select root instruction"
) ? void (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7705, __extension__ __PRETTY_FUNCTION__))
;
7706 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
7707 assert(isa<Instruction>(ScalarCond) &&(static_cast <bool> (isa<Instruction>(ScalarCond)
&& "Expected min/max reduction to have compare condition"
) ? void (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7708, __extension__ __PRETTY_FUNCTION__))
7708 "Expected min/max reduction to have compare condition")(static_cast <bool> (isa<Instruction>(ScalarCond)
&& "Expected min/max reduction to have compare condition"
) ? void (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7708, __extension__ __PRETTY_FUNCTION__))
;
7709 return cast<Instruction>(ScalarCond);
7710 };
7711
7712 // The reduction root is used as the insertion point for new instructions,
7713 // so set it as externally used to prevent it from being deleted.
7714 ExternallyUsedValues[ReductionRoot];
7715 SmallVector<Value *, 16> IgnoreList;
7716 for (ReductionOpsType &RdxOp : ReductionOps)
7717 IgnoreList.append(RdxOp.begin(), RdxOp.end());
7718
7719 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
7720 if (NumReducedVals > ReduxWidth) {
7721 // In the loop below, we are building a tree based on a window of
7722 // 'ReduxWidth' values.
7723 // If the operands of those values have common traits (compare predicate,
7724 // constant operand, etc), then we want to group those together to
7725 // minimize the cost of the reduction.
7726
7727 // TODO: This should be extended to count common operands for
7728 // compares and binops.
7729
7730 // Step 1: Count the number of times each compare predicate occurs.
7731 SmallDenseMap<unsigned, unsigned> PredCountMap;
7732 for (Value *RdxVal : ReducedVals) {
7733 CmpInst::Predicate Pred;
7734 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
7735 ++PredCountMap[Pred];
7736 }
7737 // Step 2: Sort the values so the most common predicates come first.
7738 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
7739 CmpInst::Predicate PredA, PredB;
7740 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
7741 match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
7742 return PredCountMap[PredA] > PredCountMap[PredB];
7743 }
7744 return false;
7745 });
7746 }
7747
7748 Value *VectorizedTree = nullptr;
7749 unsigned i = 0;
7750 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
7751 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
7752 V.buildTree(VL, ExternallyUsedValues, IgnoreList);
7753 Optional<ArrayRef<unsigned>> Order = V.bestOrder();
7754 if (Order) {
7755 assert(Order->size() == VL.size() &&(static_cast <bool> (Order->size() == VL.size() &&
"Order size must be the same as number of vectorized " "instructions."
) ? void (0) : __assert_fail ("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7757, __extension__ __PRETTY_FUNCTION__))
7756 "Order size must be the same as number of vectorized "(static_cast <bool> (Order->size() == VL.size() &&
"Order size must be the same as number of vectorized " "instructions."
) ? void (0) : __assert_fail ("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7757, __extension__ __PRETTY_FUNCTION__))
7757 "instructions.")(static_cast <bool> (Order->size() == VL.size() &&
"Order size must be the same as number of vectorized " "instructions."
) ? void (0) : __assert_fail ("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7757, __extension__ __PRETTY_FUNCTION__))
;
7758 // TODO: reorder tree nodes without tree rebuilding.
7759 SmallVector<Value *, 4> ReorderedOps(VL.size());
7760 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7761 [VL](const unsigned Idx) { return VL[Idx]; });
7762 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
7763 }
7764 if (V.isTreeTinyAndNotFullyVectorizable())
7765 break;
7766 if (V.isLoadCombineReductionCandidate(RdxKind))
7767 break;
7768
7769 V.computeMinimumValueSizes();
7770
7771 // Estimate cost.
7772 InstructionCost TreeCost =
7773 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
7774 InstructionCost ReductionCost =
7775 getReductionCost(TTI, ReducedVals[i], ReduxWidth);
7776 InstructionCost Cost = TreeCost + ReductionCost;
7777 if (!Cost.isValid()) {
7778 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "Encountered invalid baseline cost.\n"
; } } while (false)
;
7779 return false;
7780 }
7781 if (Cost >= -SLPCostThreshold) {
7782 V.getORE()->emit([&]() {
7783 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "HorSLPNotBeneficial",
7784 cast<Instruction>(VL[0]))
7785 << "Vectorizing horizontal reduction is possible"
7786 << "but not beneficial with cost " << ore::NV("Cost", Cost)
7787 << " and threshold "
7788 << ore::NV("Threshold", -SLPCostThreshold);
7789 });
7790 break;
7791 }
7792
7793 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
7794 << Cost << ". (HorRdx)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
;
7795 V.getORE()->emit([&]() {
7796 return OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedHorizontalReduction",
7797 cast<Instruction>(VL[0]))
7798 << "Vectorized horizontal reduction with cost "
7799 << ore::NV("Cost", Cost) << " and with tree size "
7800 << ore::NV("TreeSize", V.getTreeSize());
7801 });
7802
7803 // Vectorize a tree.
7804 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
7805 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
7806
7807 // Emit a reduction. If the root is a select (min/max idiom), the insert
7808 // point is the compare condition of that select.
7809 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
7810 if (isa<SelectInst>(RdxRootInst))
7811 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
7812 else
7813 Builder.SetInsertPoint(RdxRootInst);
7814
7815 Value *ReducedSubTree =
7816 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
7817
7818 if (!VectorizedTree) {
7819 // Initialize the final value in the reduction.
7820 VectorizedTree = ReducedSubTree;
7821 } else {
7822 // Update the final value in the reduction.
7823 Builder.SetCurrentDebugLocation(Loc);
7824 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7825 ReducedSubTree, "op.rdx", ReductionOps);
7826 }
7827 i += ReduxWidth;
7828 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
7829 }
7830
7831 if (VectorizedTree) {
7832 // Finish the reduction.
7833 for (; i < NumReducedVals; ++i) {
7834 auto *I = cast<Instruction>(ReducedVals[i]);
7835 Builder.SetCurrentDebugLocation(I->getDebugLoc());
7836 VectorizedTree =
7837 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
7838 }
7839 for (auto &Pair : ExternallyUsedValues) {
7840 // Add each externally used value to the final reduction.
7841 for (auto *I : Pair.second) {
7842 Builder.SetCurrentDebugLocation(I->getDebugLoc());
7843 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7844 Pair.first, "op.extra", I);
7845 }
7846 }
7847
7848 ReductionRoot->replaceAllUsesWith(VectorizedTree);
7849
7850 // Mark all scalar reduction ops for deletion, they are replaced by the
7851 // vector reductions.
7852 V.eraseInstructions(IgnoreList);
7853 }
7854 return VectorizedTree != nullptr;
7855 }
7856
7857 unsigned numReductionValues() const { return ReducedVals.size(); }
7858
7859private:
7860 /// Calculate the cost of a reduction.
7861 InstructionCost getReductionCost(TargetTransformInfo *TTI,
7862 Value *FirstReducedVal,
7863 unsigned ReduxWidth) {
7864 Type *ScalarTy = FirstReducedVal->getType();
7865 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7866 InstructionCost VectorCost, ScalarCost;
7867 switch (RdxKind) {
7868 case RecurKind::Add:
7869 case RecurKind::Mul:
7870 case RecurKind::Or:
7871 case RecurKind::And:
7872 case RecurKind::Xor:
7873 case RecurKind::FAdd:
7874 case RecurKind::FMul: {
7875 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
7876 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy,
7877 /*IsPairwiseForm=*/false);
7878 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
7879 break;
7880 }
7881 case RecurKind::FMax:
7882 case RecurKind::FMin: {
7883 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7884 VectorCost =
7885 TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7886 /*pairwise=*/false, /*unsigned=*/false);
7887 ScalarCost =
7888 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
7889 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7890 CmpInst::makeCmpResultType(ScalarTy));
7891 break;
7892 }
7893 case RecurKind::SMax:
7894 case RecurKind::SMin:
7895 case RecurKind::UMax:
7896 case RecurKind::UMin: {
7897 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7898 bool IsUnsigned =
7899 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
7900 VectorCost =
7901 TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7902 /*IsPairwiseForm=*/false, IsUnsigned);
7903 ScalarCost =
7904 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
7905 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7906 CmpInst::makeCmpResultType(ScalarTy));
7907 break;
7908 }
7909 default:
7910 llvm_unreachable("Expected arithmetic or min/max reduction operation")::llvm::llvm_unreachable_internal("Expected arithmetic or min/max reduction operation"
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7910)
;
7911 }
7912
7913 // Scalar cost is repeated for N-1 elements.
7914 ScalarCost *= (ReduxWidth - 1);
7915 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
7916 << " for reduction that starts with " << *FirstReducedValdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
7917 << " (It is a splitting reduction)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
;
7918 return VectorCost - ScalarCost;
7919 }
7920
7921 /// Emit a horizontal reduction of the vectorized value.
7922 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
7923 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
7924 assert(VectorizedValue && "Need to have a vectorized tree node")(static_cast <bool> (VectorizedValue && "Need to have a vectorized tree node"
) ? void (0) : __assert_fail ("VectorizedValue && \"Need to have a vectorized tree node\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7924, __extension__ __PRETTY_FUNCTION__))
;
7925 assert(isPowerOf2_32(ReduxWidth) &&(static_cast <bool> (isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now") ? void (0)
: __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7926, __extension__ __PRETTY_FUNCTION__))
7926 "We only handle power-of-two reductions for now")(static_cast <bool> (isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now") ? void (0)
: __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7926, __extension__ __PRETTY_FUNCTION__))
;
7927
7928 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
7929 ReductionOps.back());
7930 }
7931};
7932
7933} // end anonymous namespace
7934
7935static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
7936 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
7937 return cast<FixedVectorType>(IE->getType())->getNumElements();
7938
7939 unsigned AggregateSize = 1;
7940 auto *IV = cast<InsertValueInst>(InsertInst);
7941 Type *CurrentType = IV->getType();
7942 do {
7943 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7944 for (auto *Elt : ST->elements())
7945 if (Elt != ST->getElementType(0)) // check homogeneity
7946 return None;
7947 AggregateSize *= ST->getNumElements();
7948 CurrentType = ST->getElementType(0);
7949 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7950 AggregateSize *= AT->getNumElements();
7951 CurrentType = AT->getElementType();
7952 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
7953 AggregateSize *= VT->getNumElements();
7954 return AggregateSize;
7955 } else if (CurrentType->isSingleValueType()) {
7956 return AggregateSize;
7957 } else {
7958 return None;
7959 }
7960 } while (true);
7961}
7962
7963static bool findBuildAggregate_rec(Instruction *LastInsertInst,
7964 TargetTransformInfo *TTI,
7965 SmallVectorImpl<Value *> &BuildVectorOpds,
7966 SmallVectorImpl<Value *> &InsertElts,
7967 unsigned OperandOffset) {
7968 do {
7969 Value *InsertedOperand = LastInsertInst->getOperand(1);
7970 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset);
7971 if (!OperandIndex)
7972 return false;
7973 if (isa<InsertElementInst>(InsertedOperand) ||
7974 isa<InsertValueInst>(InsertedOperand)) {
7975 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
7976 BuildVectorOpds, InsertElts, *OperandIndex))
7977 return false;
7978 } else {
7979 BuildVectorOpds[*OperandIndex] = InsertedOperand;
7980 InsertElts[*OperandIndex] = LastInsertInst;
7981 }
7982 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
7983 } while (LastInsertInst != nullptr &&
7984 (isa<InsertValueInst>(LastInsertInst) ||
7985 isa<InsertElementInst>(LastInsertInst)) &&
7986 LastInsertInst->hasOneUse());
7987 return true;
7988}
7989
7990/// Recognize construction of vectors like
7991/// %ra = insertelement <4 x float> poison, float %s0, i32 0
7992/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
7993/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
7994/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
7995/// starting from the last insertelement or insertvalue instruction.
7996///
7997/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
7998/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
7999/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
8000///
8001/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
8002///
8003/// \return true if it matches.
8004static bool findBuildAggregate(Instruction *LastInsertInst,
8005 TargetTransformInfo *TTI,
8006 SmallVectorImpl<Value *> &BuildVectorOpds,
8007 SmallVectorImpl<Value *> &InsertElts) {
8008
8009 assert((isa<InsertElementInst>(LastInsertInst) ||(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 8011, __extension__ __PRETTY_FUNCTION__))
8010 isa<InsertValueInst>(LastInsertInst)) &&(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 8011, __extension__ __PRETTY_FUNCTION__))
8011 "Expected insertelement or insertvalue instruction!")(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 8011, __extension__ __PRETTY_FUNCTION__))
;
8012
8013 assert((BuildVectorOpds.empty() && InsertElts.empty()) &&(static_cast <bool> ((BuildVectorOpds.empty() &&
InsertElts.empty()) && "Expected empty result vectors!"
) ? void (0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 8014, __extension__ __PRETTY_FUNCTION__))
8014 "Expected empty result vectors!")(static_cast <bool> ((BuildVectorOpds.empty() &&
InsertElts.empty()) && "Expected empty result vectors!"
) ? void (0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 8014, __extension__ __PRETTY_FUNCTION__))
;
8015
8016 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
8017 if (!AggregateSize)
8018 return false;
8019 BuildVectorOpds.resize(*AggregateSize);
8020 InsertElts.resize(*AggregateSize);
8021
8022 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
8023 0)) {
8024 llvm::erase_value(BuildVectorOpds, nullptr);
8025 llvm::erase_value(InsertElts, nullptr);
8026 if (BuildVectorOpds.size() >= 2)
8027 return true;
8028 }
8029
8030 return false;
8031}
8032
8033static bool PhiTypeSorterFunc(Value *V, Value *V2) {
8034 return V->getType() < V2->getType();
8035}
8036
8037/// Try and get a reduction value from a phi node.
8038///
8039/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
8040/// if they come from either \p ParentBB or a containing loop latch.
8041///
8042/// \returns A candidate reduction value if possible, or \code nullptr \endcode
8043/// if not possible.
8044static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
8045 BasicBlock *ParentBB, LoopInfo *LI) {
8046 // There are situations where the reduction value is not dominated by the
8047 // reduction phi. Vectorizing such cases has been reported to cause
8048 // miscompiles. See PR25787.
8049 auto DominatedReduxValue = [&](Value *R) {
8050 return isa<Instruction>(R) &&
8051 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
8052 };
8053
8054 Value *Rdx = nullptr;
8055
8056 // Return the incoming value if it comes from the same BB as the phi node.
8057 if (P->getIncomingBlock(0) == ParentBB) {
8058 Rdx = P->getIncomingValue(0);
8059 } else if (P->getIncomingBlock(1) == ParentBB) {
8060 Rdx = P->getIncomingValue(1);
8061 }
8062
8063 if (Rdx && DominatedReduxValue(Rdx))
8064 return Rdx;
8065
8066 // Otherwise, check whether we have a loop latch to look at.
8067 Loop *BBL = LI->getLoopFor(ParentBB);
8068 if (!BBL)
8069 return nullptr;
8070 BasicBlock *BBLatch = BBL->getLoopLatch();
8071 if (!BBLatch)
8072 return nullptr;
8073
8074 // There is a loop latch, return the incoming value if it comes from
8075 // that. This reduction pattern occasionally turns up.
8076 if (P->getIncomingBlock(0) == BBLatch) {
8077 Rdx = P->getIncomingValue(0);
8078 } else if (P->getIncomingBlock(1) == BBLatch) {
8079 Rdx = P->getIncomingValue(1);
8080 }
8081
8082 if (Rdx && DominatedReduxValue(Rdx))
8083 return Rdx;
8084
8085 return nullptr;
8086}
8087
8088static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
8089 if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
8090 return true;
8091 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
8092 return true;
8093 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
8094 return true;
8095 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
8096 return true;
8097 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
8098 return true;
8099 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
8100 return true;
8101 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
8102 return true;
8103 return false;
8104}
8105
8106/// Attempt to reduce a horizontal reduction.
8107/// If it is legal to match a horizontal reduction feeding the phi node \a P
8108/// with reduction operators \a Root (or one of its operands) in a basic block
8109/// \a BB, then check if it can be done. If horizontal reduction is not found
8110/// and root instruction is a binary operation, vectorization of the operands is
8111/// attempted.
8112/// \returns true if a horizontal reduction was matched and reduced or operands
8113/// of one of the binary instruction were vectorized.
8114/// \returns false if a horizontal reduction was not matched (or not possible)
8115/// or no vectorization of any binary operation feeding \a Root instruction was
8116/// performed.
8117static bool tryToVectorizeHorReductionOrInstOperands(
8118 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
8119 TargetTransformInfo *TTI,
8120 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
8121 if (!ShouldVectorizeHor)
8122 return false;
8123
8124 if (!Root)
8125 return false;
8126
8127 if (Root->getParent() != BB || isa<PHINode>(Root))
8128 return false;
8129 // Start analysis starting from Root instruction. If horizontal reduction is
8130 // found, try to vectorize it. If it is not a horizontal reduction or
8131 // vectorization is not possible or not effective, and currently analyzed
8132 // instruction is a binary operation, try to vectorize the operands, using
8133 // pre-order DFS traversal order. If the operands were not vectorized, repeat
8134 // the same procedure considering each operand as a possible root of the
8135 // horizontal reduction.
8136 // Interrupt the process if the Root instruction itself was vectorized or all
8137 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
8138 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
8139 // CmpInsts so we can skip extra attempts in
8140 // tryToVectorizeHorReductionOrInstOperands and save compile time.
8141 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
8142 SmallPtrSet<Value *, 8> VisitedInstrs;
8143 bool Res = false;
8144 while (!Stack.empty()) {
8145 Instruction *Inst;
8146 unsigned Level;
8147 std::tie(Inst, Level) = Stack.pop_back_val();
8148 Value *B0, *B1;
8149 bool IsBinop = matchRdxBop(Inst, B0, B1);
8150 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
8151 if (IsBinop || IsSelect) {
8152 HorizontalReduction HorRdx;
8153 if (HorRdx.matchAssociativeReduction(P, Inst)) {
8154 if (HorRdx.tryToReduce(R, TTI)) {
8155 Res = true;
8156 // Set P to nullptr to avoid re-analysis of phi node in
8157 // matchAssociativeReduction function unless this is the root node.
8158 P = nullptr;
8159 continue;
8160 }
8161 }
8162 if (P && IsBinop) {
8163 Inst = dyn_cast<Instruction>(B0);
8164 if (Inst == P)
8165 Inst = dyn_cast<Instruction>(B1);
8166 if (!Inst) {
8167 // Set P to nullptr to avoid re-analysis of phi node in
8168 // matchAssociativeReduction function unless this is the root node.
8169 P = nullptr;
8170 continue;
8171 }
8172 }
8173 }
8174 // Set P to nullptr to avoid re-analysis of phi node in
8175 // matchAssociativeReduction function unless this is the root node.
8176 P = nullptr;
8177 // Do not try to vectorize CmpInst operands, this is done separately.
8178 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
8179 Res = true;
8180 continue;
8181 }
8182
8183 // Try to vectorize operands.
8184 // Continue analysis for the instruction from the same basic block only to
8185 // save compile time.
8186 if (++Level < RecursionMaxDepth)
8187 for (auto *Op : Inst->operand_values())
8188 if (VisitedInstrs.insert(Op).second)
8189 if (auto *I = dyn_cast<Instruction>(Op))
8190 // Do not try to vectorize CmpInst operands, this is done
8191 // separately.
8192 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
8193 I->getParent() == BB)
8194 Stack.emplace_back(I, Level);
8195 }
8196 return Res;
8197}
8198
8199bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
8200 BasicBlock *BB, BoUpSLP &R,
8201 TargetTransformInfo *TTI) {
8202 auto *I = dyn_cast_or_null<Instruction>(V);
8203 if (!I)
8204 return false;
8205
8206 if (!isa<BinaryOperator>(I))
8207 P = nullptr;
8208 // Try to match and vectorize a horizontal reduction.
8209 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
8210 return tryToVectorize(I, R);
8211 };
8212 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
8213 ExtraVectorization);
8214}
8215
8216bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
8217 BasicBlock *BB, BoUpSLP &R) {
8218 const DataLayout &DL = BB->getModule()->getDataLayout();
8219 if (!R.canMapToVector(IVI->getType(), DL))
8220 return false;
8221
8222 SmallVector<Value *, 16> BuildVectorOpds;
8223 SmallVector<Value *, 16> BuildVectorInsts;
8224 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
8225 return false;
8226
8227 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: array mappable to vector: " <<
*IVI << "\n"; } } while (false)
;
8228 // Aggregate value is unlikely to be processed in vector register, we need to
8229 // extract scalars into scalar registers, so NeedExtraction is set true.
8230 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false);
8231}
8232
8233bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
8234 BasicBlock *BB, BoUpSLP &R) {
8235 SmallVector<Value *, 16> BuildVectorInsts;
8236 SmallVector<Value *, 16> BuildVectorOpds;
8237 SmallVector<int> Mask;
8238 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
8239 (llvm::all_of(BuildVectorOpds,
8240 [](Value *V) { return isa<ExtractElementInst>(V); }) &&
8241 isShuffle(BuildVectorOpds, Mask)))
8242 return false;
8243
8244 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: array mappable to vector: " <<
*IEI << "\n"; } } while (false)
;
8245 return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/false);
8246}
8247
8248bool SLPVectorizerPass::vectorizeSimpleInstructions(
8249 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
8250 bool AtTerminator) {
8251 bool OpsChanged = false;
8252 SmallVector<Instruction *, 4> PostponedCmps;
8253 for (auto *I : reverse(Instructions)) {
8254 if (R.isDeleted(I))
8255 continue;
8256 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
8257 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
8258 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
8259 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
8260 else if (isa<CmpInst>(I))
8261 PostponedCmps.push_back(I);
8262 }
8263 if (AtTerminator) {
8264 // Try to find reductions first.
8265 for (Instruction *I : PostponedCmps) {
8266 if (R.isDeleted(I))
8267 continue;
8268 for (Value *Op : I->operands())
8269 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
8270 }
8271 // Try to vectorize operands as vector bundles.
8272 for (Instruction *I : PostponedCmps) {
8273 if (R.isDeleted(I))
8274 continue;
8275 OpsChanged |= tryToVectorize(I, R);
8276 }
8277 Instructions.clear();
8278 } else {
8279 // Insert in reverse order since the PostponedCmps vector was filled in
8280 // reverse order.
8281 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
8282 }
8283 return OpsChanged;
8284}
8285
8286bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
8287 bool Changed = false;
8288 SmallVector<Value *, 4> Incoming;
8289 SmallPtrSet<Value *, 16> VisitedInstrs;
8290
8291 bool HaveVectorizedPhiNodes = true;
8292 while (HaveVectorizedPhiNodes) {
8293 HaveVectorizedPhiNodes = false;
8294
8295 // Collect the incoming values from the PHIs.
8296 Incoming.clear();
8297 for (Instruction &I : *BB) {
8298 PHINode *P = dyn_cast<PHINode>(&I);
8299 if (!P)
8300 break;
8301
8302 if (!VisitedInstrs.count(P) && !R.isDeleted(P))
8303 Incoming.push_back(P);
8304 }
8305
8306 // Sort by type.
8307 llvm::stable_sort(Incoming, PhiTypeSorterFunc);
8308
8309 // Try to vectorize elements base on their type.
8310 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
8311 E = Incoming.end();
8312 IncIt != E;) {
8313
8314 // Look for the next elements with the same type.
8315 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
8316 while (SameTypeIt != E &&
8317 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
8318 VisitedInstrs.insert(*SameTypeIt);
8319 ++SameTypeIt;
8320 }
8321
8322 // Try to vectorize them.
8323 unsigned NumElts = (SameTypeIt - IncIt);
8324 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (false)
8325 << NumElts << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (false)
;
8326 // The order in which the phi nodes appear in the program does not matter.
8327 // So allow tryToVectorizeList to reorder them if it is beneficial. This
8328 // is done when there are exactly two elements since tryToVectorizeList
8329 // asserts that there are only two values when AllowReorder is true.
8330 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
8331 /*AllowReorder=*/true)) {
8332 // Success start over because instructions might have been changed.
8333 HaveVectorizedPhiNodes = true;
8334 Changed = true;
8335 break;
8336 }
8337
8338 // Start over at the next instruction of a different type (or the end).
8339 IncIt = SameTypeIt;
8340 }
8341 }
8342
8343 VisitedInstrs.clear();
8344
8345 SmallVector<Instruction *, 8> PostProcessInstructions;
8346 SmallDenseSet<Instruction *, 4> KeyNodes;
8347 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
8348 // Skip instructions with scalable type. The num of elements is unknown at
8349 // compile-time for scalable type.
8350 if (isa<ScalableVectorType>(it->getType()))
8351 continue;
8352
8353 // Skip instructions marked for the deletion.
8354 if (R.isDeleted(&*it))
8355 continue;
8356 // We may go through BB multiple times so skip the one we have checked.
8357 if (!VisitedInstrs.insert(&*it).second) {
8358 if (it->use_empty() && KeyNodes.contains(&*it) &&
8359 vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8360 it->isTerminator())) {
8361 // We would like to start over since some instructions are deleted
8362 // and the iterator may become invalid value.
8363 Changed = true;
8364 it = BB->begin();
8365 e = BB->end();
8366 }
8367 continue;
8368 }
8369
8370 if (isa<DbgInfoIntrinsic>(it))
8371 continue;
8372
8373 // Try to vectorize reductions that use PHINodes.
8374 if (PHINode *P = dyn_cast<PHINode>(it)) {
8375 // Check that the PHI is a reduction PHI.
8376 if (P->getNumIncomingValues() == 2) {
8377 // Try to match and vectorize a horizontal reduction.
8378 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
8379 TTI)) {
8380 Changed = true;
8381 it = BB->begin();
8382 e = BB->end();
8383 continue;
8384 }
8385 }
8386 // Try to vectorize the incoming values of the PHI, to catch reductions
8387 // that feed into PHIs.
8388 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
8389 // Skip if the incoming block is the current BB for now. Also, bypass
8390 // unreachable IR for efficiency and to avoid crashing.
8391 // TODO: Collect the skipped incoming values and try to vectorize them
8392 // after processing BB.
8393 if (BB == P->getIncomingBlock(I) ||
8394 !DT->isReachableFromEntry(P->getIncomingBlock(I)))
8395 continue;
8396
8397 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
8398 P->getIncomingBlock(I), R, TTI);
8399 }
8400 continue;
8401 }
8402
8403 // Ran into an instruction without users, like terminator, or function call
8404 // with ignored return value, store. Ignore unused instructions (basing on
8405 // instruction type, except for CallInst and InvokeInst).
8406 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
8407 isa<InvokeInst>(it))) {
8408 KeyNodes.insert(&*it);
8409 bool OpsChanged = false;
8410 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
8411 for (auto *V : it->operand_values()) {
8412 // Try to match and vectorize a horizontal reduction.
8413 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
8414 }
8415 }
8416 // Start vectorization of post-process list of instructions from the
8417 // top-tree instructions to try to vectorize as many instructions as
8418 // possible.
8419 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8420 it->isTerminator());
8421 if (OpsChanged) {
8422 // We would like to start over since some instructions are deleted
8423 // and the iterator may become invalid value.
8424 Changed = true;
8425 it = BB->begin();
8426 e = BB->end();
8427 continue;
8428 }
8429 }
8430
8431 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
8432 isa<InsertValueInst>(it))
8433 PostProcessInstructions.push_back(&*it);
8434 }
8435
8436 return Changed;
8437}
8438
8439bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
8440 auto Changed = false;
8441 for (auto &Entry : GEPs) {
8442 // If the getelementptr list has fewer than two elements, there's nothing
8443 // to do.
8444 if (Entry.second.size() < 2)
8445 continue;
8446
8447 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
8448 << Entry.second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
;
8449
8450 // Process the GEP list in chunks suitable for the target's supported
8451 // vector size. If a vector register can't hold 1 element, we are done. We
8452 // are trying to vectorize the index computations, so the maximum number of
8453 // elements is based on the size of the index expression, rather than the
8454 // size of the GEP itself (the target's pointer size).
8455 unsigned MaxVecRegSize = R.getMaxVecRegSize();
8456 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
8457 if (MaxVecRegSize < EltSize)
8458 continue;
8459
8460 unsigned MaxElts = MaxVecRegSize / EltSize;
8461 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
8462 auto Len = std::min<unsigned>(BE - BI, MaxElts);
8463 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
8464
8465 // Initialize a set a candidate getelementptrs. Note that we use a
8466 // SetVector here to preserve program order. If the index computations
8467 // are vectorizable and begin with loads, we want to minimize the chance
8468 // of having to reorder them later.
8469 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
8470
8471 // Some of the candidates may have already been vectorized after we
8472 // initially collected them. If so, they are marked as deleted, so remove
8473 // them from the set of candidates.
8474 Candidates.remove_if(
8475 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
8476
8477 // Remove from the set of candidates all pairs of getelementptrs with
8478 // constant differences. Such getelementptrs are likely not good
8479 // candidates for vectorization in a bottom-up phase since one can be
8480 // computed from the other. We also ensure all candidate getelementptr
8481 // indices are unique.
8482 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
8483 auto *GEPI = GEPList[I];
8484 if (!Candidates.count(GEPI))
8485 continue;
8486 auto *SCEVI = SE->getSCEV(GEPList[I]);
8487 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
8488 auto *GEPJ = GEPList[J];
8489 auto *SCEVJ = SE->getSCEV(GEPList[J]);
8490 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
8491 Candidates.remove(GEPI);
8492 Candidates.remove(GEPJ);
8493 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
8494 Candidates.remove(GEPJ);
8495 }
8496 }
8497 }
8498
8499 // We break out of the above computation as soon as we know there are
8500 // fewer than two candidates remaining.
8501 if (Candidates.size() < 2)
8502 continue;
8503
8504 // Add the single, non-constant index of each candidate to the bundle. We
8505 // ensured the indices met these constraints when we originally collected
8506 // the getelementptrs.
8507 SmallVector<Value *, 16> Bundle(Candidates.size());
8508 auto BundleIndex = 0u;
8509 for (auto *V : Candidates) {
8510 auto *GEP = cast<GetElementPtrInst>(V);
8511 auto *GEPIdx = GEP->idx_begin()->get();
8512 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx))(static_cast <bool> (GEP->getNumIndices() == 1 || !isa
<Constant>(GEPIdx)) ? void (0) : __assert_fail ("GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)"
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 8512, __extension__ __PRETTY_FUNCTION__))
;
8513 Bundle[BundleIndex++] = GEPIdx;
8514 }
8515
8516 // Try and vectorize the indices. We are currently only interested in
8517 // gather-like cases of the form:
8518 //
8519 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
8520 //
8521 // where the loads of "a", the loads of "b", and the subtractions can be
8522 // performed in parallel. It's likely that detecting this pattern in a
8523 // bottom-up phase will be simpler and less costly than building a
8524 // full-blown top-down phase beginning at the consecutive loads.
8525 Changed |= tryToVectorizeList(Bundle, R);
8526 }
8527 }
8528 return Changed;
8529}
8530
8531bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
8532 bool Changed = false;
8533 // Attempt to sort and vectorize each of the store-groups.
8534 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
8535 ++it) {
8536 if (it->second.size() < 2)
8537 continue;
8538
8539 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
8540 << it->second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
;
8541
8542 Changed |= vectorizeStores(it->second, R);
8543 }
8544 return Changed;
8545}
8546
8547char SLPVectorizer::ID = 0;
8548
8549static const char lv_name[] = "SLP Vectorizer";
8550
8551INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)static void *initializeSLPVectorizerPassOnce(PassRegistry &
Registry) {
8552INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
8553INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
8554INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
8555INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
8556INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
8557INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)initializeDemandedBitsWrapperPassPass(Registry);
8558INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
8559INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)initializeInjectTLIMappingsLegacyPass(Registry);
8560INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo( lv_name, "slp-vectorizer", &
SLPVectorizer::ID, PassInfo::NormalCtor_t(callDefaultCtor<
SLPVectorizer>), false, false); Registry.registerPass(*PI,
true); return PI; } static llvm::once_flag InitializeSLPVectorizerPassFlag
; void llvm::initializeSLPVectorizerPass(PassRegistry &Registry
) { llvm::call_once(InitializeSLPVectorizerPassFlag, initializeSLPVectorizerPassOnce
, std::ref(Registry)); }
8561
8562Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }

/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h

1//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the SmallVector class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_SMALLVECTOR_H
14#define LLVM_ADT_SMALLVECTOR_H
15
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/ErrorHandling.h"
19#include "llvm/Support/MemAlloc.h"
20#include "llvm/Support/type_traits.h"
21#include <algorithm>
22#include <cassert>
23#include <cstddef>
24#include <cstdlib>
25#include <cstring>
26#include <initializer_list>
27#include <iterator>
28#include <limits>
29#include <memory>
30#include <new>
31#include <type_traits>
32#include <utility>
33
34namespace llvm {
35
36/// This is all the stuff common to all SmallVectors.
37///
38/// The template parameter specifies the type which should be used to hold the
39/// Size and Capacity of the SmallVector, so it can be adjusted.
40/// Using 32 bit size is desirable to shrink the size of the SmallVector.
41/// Using 64 bit size is desirable for cases like SmallVector<char>, where a
42/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
43/// buffering bitcode output - which can exceed 4GB.
44template <class Size_T> class SmallVectorBase {
45protected:
46 void *BeginX;
47 Size_T Size = 0, Capacity;
48
49 /// The maximum value of the Size_T used.
50 static constexpr size_t SizeTypeMax() {
51 return std::numeric_limits<Size_T>::max();
52 }
53
54 SmallVectorBase() = delete;
55 SmallVectorBase(void *FirstEl, size_t TotalCapacity)
56 : BeginX(FirstEl), Capacity(TotalCapacity) {}
57
58 /// This is a helper for \a grow() that's out of line to reduce code
59 /// duplication. This function will report a fatal error if it can't grow at
60 /// least to \p MinSize.
61 void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity);
62
63 /// This is an implementation of the grow() method which only works
64 /// on POD-like data types and is out of line to reduce code duplication.
65 /// This function will report a fatal error if it cannot increase capacity.
66 void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
67
68public:
69 size_t size() const { return Size; }
70 size_t capacity() const { return Capacity; }
71
72 LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size; }
45
Assuming field 'Size' is not equal to 0, which participates in a condition later
46
Returning zero, which participates in a condition later
73
74 /// Set the array size to \p N, which the current array must have enough
75 /// capacity for.
76 ///
77 /// This does not construct or destroy any elements in the vector.
78 ///
79 /// Clients can use this in conjunction with capacity() to write past the end
80 /// of the buffer when they know that more elements are available, and only
81 /// update the size later. This avoids the cost of value initializing elements
82 /// which will only be overwritten.
83 void set_size(size_t N) {
84 assert(N <= capacity())(static_cast <bool> (N <= capacity()) ? void (0) : __assert_fail
("N <= capacity()", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 84, __extension__ __PRETTY_FUNCTION__))
;
85 Size = N;
86 }
87};
88
89template <class T>
90using SmallVectorSizeType =
91 typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
92 uint32_t>::type;
93
94/// Figure out the offset of the first element.
95template <class T, typename = void> struct SmallVectorAlignmentAndSize {
96 alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
97 SmallVectorBase<SmallVectorSizeType<T>>)];
98 alignas(T) char FirstEl[sizeof(T)];
99};
100
101/// This is the part of SmallVectorTemplateBase which does not depend on whether
102/// the type T is a POD. The extra dummy template argument is used by ArrayRef
103/// to avoid unnecessarily requiring T to be complete.
104template <typename T, typename = void>
105class SmallVectorTemplateCommon
106 : public SmallVectorBase<SmallVectorSizeType<T>> {
107 using Base = SmallVectorBase<SmallVectorSizeType<T>>;
108
109 /// Find the address of the first element. For this pointer math to be valid
110 /// with small-size of 0 for T with lots of alignment, it's important that
111 /// SmallVectorStorage is properly-aligned even for small-size of 0.
112 void *getFirstEl() const {
113 return const_cast<void *>(reinterpret_cast<const void *>(
114 reinterpret_cast<const char *>(this) +
115 offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl
)
));
116 }
117 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
118
119protected:
120 SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
121
122 void grow_pod(size_t MinSize, size_t TSize) {
123 Base::grow_pod(getFirstEl(), MinSize, TSize);
124 }
125
126 /// Return true if this is a smallvector which has not had dynamic
127 /// memory allocated for it.
128 bool isSmall() const { return this->BeginX == getFirstEl(); }
129
130 /// Put this vector in a state of being small.
131 void resetToSmall() {
132 this->BeginX = getFirstEl();
133 this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
134 }
135
136 /// Return true if V is an internal reference to the given range.
137 bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
138 // Use std::less to avoid UB.
139 std::less<> LessThan;
140 return !LessThan(V, First) && LessThan(V, Last);
141 }
142
143 /// Return true if V is an internal reference to this vector.
144 bool isReferenceToStorage(const void *V) const {
145 return isReferenceToRange(V, this->begin(), this->end());
146 }
147
148 /// Return true if First and Last form a valid (possibly empty) range in this
149 /// vector's storage.
150 bool isRangeInStorage(const void *First, const void *Last) const {
151 // Use std::less to avoid UB.
152 std::less<> LessThan;
153 return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
154 !LessThan(this->end(), Last);
155 }
156
157 /// Return true unless Elt will be invalidated by resizing the vector to
158 /// NewSize.
159 bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
160 // Past the end.
161 if (LLVM_LIKELY(!isReferenceToStorage(Elt))__builtin_expect((bool)(!isReferenceToStorage(Elt)), true))
162 return true;
163
164 // Return false if Elt will be destroyed by shrinking.
165 if (NewSize <= this->size())
166 return Elt < this->begin() + NewSize;
167
168 // Return false if we need to grow.
169 return NewSize <= this->capacity();
170 }
171
172 /// Check whether Elt will be invalidated by resizing the vector to NewSize.
173 void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
174 assert(isSafeToReferenceAfterResize(Elt, NewSize) &&(static_cast <bool> (isSafeToReferenceAfterResize(Elt, NewSize
) && "Attempting to reference an element of the vector in an operation "
"that invalidates it") ? void (0) : __assert_fail ("isSafeToReferenceAfterResize(Elt, NewSize) && \"Attempting to reference an element of the vector in an operation \" \"that invalidates it\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 176, __extension__ __PRETTY_FUNCTION__))
175 "Attempting to reference an element of the vector in an operation "(static_cast <bool> (isSafeToReferenceAfterResize(Elt, NewSize
) && "Attempting to reference an element of the vector in an operation "
"that invalidates it") ? void (0) : __assert_fail ("isSafeToReferenceAfterResize(Elt, NewSize) && \"Attempting to reference an element of the vector in an operation \" \"that invalidates it\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 176, __extension__ __PRETTY_FUNCTION__))
176 "that invalidates it")(static_cast <bool> (isSafeToReferenceAfterResize(Elt, NewSize
) && "Attempting to reference an element of the vector in an operation "
"that invalidates it") ? void (0) : __assert_fail ("isSafeToReferenceAfterResize(Elt, NewSize) && \"Attempting to reference an element of the vector in an operation \" \"that invalidates it\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 176, __extension__ __PRETTY_FUNCTION__))
;
177 }
178
179 /// Check whether Elt will be invalidated by increasing the size of the
180 /// vector by N.
181 void assertSafeToAdd(const void *Elt, size_t N = 1) {
182 this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
183 }
184
185 /// Check whether any part of the range will be invalidated by clearing.
186 void assertSafeToReferenceAfterClear(const T *From, const T *To) {
187 if (From == To)
188 return;
189 this->assertSafeToReferenceAfterResize(From, 0);
190 this->assertSafeToReferenceAfterResize(To - 1, 0);
191 }
192 template <
193 class ItTy,
194 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
195 bool> = false>
196 void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
197
198 /// Check whether any part of the range will be invalidated by growing.
199 void assertSafeToAddRange(const T *From, const T *To) {
200 if (From == To)
201 return;
202 this->assertSafeToAdd(From, To - From);
203 this->assertSafeToAdd(To - 1, To - From);
204 }
205 template <
206 class ItTy,
207 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
208 bool> = false>
209 void assertSafeToAddRange(ItTy, ItTy) {}
210
211 /// Reserve enough space to add one element, and return the updated element
212 /// pointer in case it was a reference to the storage.
213 template <class U>
214 static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
215 size_t N) {
216 size_t NewSize = This->size() + N;
217 if (LLVM_LIKELY(NewSize <= This->capacity())__builtin_expect((bool)(NewSize <= This->capacity()), true
)
)
218 return &Elt;
219
220 bool ReferencesStorage = false;
221 int64_t Index = -1;
222 if (!U::TakesParamByValue) {
223 if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))__builtin_expect((bool)(This->isReferenceToStorage(&Elt
)), false)
) {
224 ReferencesStorage = true;
225 Index = &Elt - This->begin();
226 }
227 }
228 This->grow(NewSize);
229 return ReferencesStorage ? This->begin() + Index : &Elt;
230 }
231
232public:
233 using size_type = size_t;
234 using difference_type = ptrdiff_t;
235 using value_type = T;
236 using iterator = T *;
237 using const_iterator = const T *;
238
239 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
240 using reverse_iterator = std::reverse_iterator<iterator>;
241
242 using reference = T &;
243 using const_reference = const T &;
244 using pointer = T *;
245 using const_pointer = const T *;
246
247 using Base::capacity;
248 using Base::empty;
249 using Base::size;
250
251 // forward iterator creation methods.
252 iterator begin() { return (iterator)this->BeginX; }
253 const_iterator begin() const { return (const_iterator)this->BeginX; }
254 iterator end() { return begin() + size(); }
255 const_iterator end() const { return begin() + size(); }
256
257 // reverse iterator creation methods.
258 reverse_iterator rbegin() { return reverse_iterator(end()); }
259 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
260 reverse_iterator rend() { return reverse_iterator(begin()); }
261 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
262
263 size_type size_in_bytes() const { return size() * sizeof(T); }
264 size_type max_size() const {
265 return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
266 }
267
268 size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
269
270 /// Return a pointer to the vector's buffer, even if empty().
271 pointer data() { return pointer(begin()); }
272 /// Return a pointer to the vector's buffer, even if empty().
273 const_pointer data() const { return const_pointer(begin()); }
274
275 reference operator[](size_type idx) {
276 assert(idx < size())(static_cast <bool> (idx < size()) ? void (0) : __assert_fail
("idx < size()", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 276, __extension__ __PRETTY_FUNCTION__))
;
277 return begin()[idx];
278 }
279 const_reference operator[](size_type idx) const {
280 assert(idx < size())(static_cast <bool> (idx < size()) ? void (0) : __assert_fail
("idx < size()", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 280, __extension__ __PRETTY_FUNCTION__))
;
281 return begin()[idx];
282 }
283
284 reference front() {
285 assert(!empty())(static_cast <bool> (!empty()) ? void (0) : __assert_fail
("!empty()", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 285, __extension__ __PRETTY_FUNCTION__))
;
286 return begin()[0];
287 }
288 const_reference front() const {
289 assert(!empty())(static_cast <bool> (!empty()) ? void (0) : __assert_fail
("!empty()", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 289, __extension__ __PRETTY_FUNCTION__))
;
290 return begin()[0];
291 }
292
293 reference back() {
294 assert(!empty())(static_cast <bool> (!empty()) ? void (0) : __assert_fail
("!empty()", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 294, __extension__ __PRETTY_FUNCTION__))
;
295 return end()[-1];
296 }
297 const_reference back() const {
298 assert(!empty())(static_cast <bool> (!empty()) ? void (0) : __assert_fail
("!empty()", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 298, __extension__ __PRETTY_FUNCTION__))
;
299 return end()[-1];
300 }
301};
302
303/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
304/// method implementations that are designed to work with non-trivial T's.
305///
306/// We approximate is_trivially_copyable with trivial move/copy construction and
307/// trivial destruction. While the standard doesn't specify that you're allowed
308/// copy these types with memcpy, there is no way for the type to observe this.
309/// This catches the important case of std::pair<POD, POD>, which is not
310/// trivially assignable.
311template <typename T, bool = (is_trivially_copy_constructible<T>::value) &&
312 (is_trivially_move_constructible<T>::value) &&
313 std::is_trivially_destructible<T>::value>
314class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
315 friend class SmallVectorTemplateCommon<T>;
316
317protected:
318 static constexpr bool TakesParamByValue = false;
319 using ValueParamT = const T &;
320
321 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
322
323 static void destroy_range(T *S, T *E) {
324 while (S != E) {
325 --E;
326 E->~T();
327 }
328 }
329
330 /// Move the range [I, E) into the uninitialized memory starting with "Dest",
331 /// constructing elements as needed.
332 template<typename It1, typename It2>
333 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
334 std::uninitialized_copy(std::make_move_iterator(I),
335 std::make_move_iterator(E), Dest);
336 }
337
338 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
339 /// constructing elements as needed.
340 template<typename It1, typename It2>
341 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
342 std::uninitialized_copy(I, E, Dest);
343 }
344
345 /// Grow the allocated memory (without initializing new elements), doubling
346 /// the size of the allocated memory. Guarantees space for at least one more
347 /// element, or MinSize more elements if specified.
348 void grow(size_t MinSize = 0);
349
350 /// Create a new allocation big enough for \p MinSize and pass back its size
351 /// in \p NewCapacity. This is the first section of \a grow().
352 T *mallocForGrow(size_t MinSize, size_t &NewCapacity) {
353 return static_cast<T *>(
354 SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
355 MinSize, sizeof(T), NewCapacity));
356 }
357
358 /// Move existing elements over to the new allocation \p NewElts, the middle
359 /// section of \a grow().
360 void moveElementsForGrow(T *NewElts);
361
362 /// Transfer ownership of the allocation, finishing up \a grow().
363 void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
364
365 /// Reserve enough space to add one element, and return the updated element
366 /// pointer in case it was a reference to the storage.
367 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
368 return this->reserveForParamAndGetAddressImpl(this, Elt, N);
369 }
370
371 /// Reserve enough space to add one element, and return the updated element
372 /// pointer in case it was a reference to the storage.
373 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
374 return const_cast<T *>(
375 this->reserveForParamAndGetAddressImpl(this, Elt, N));
376 }
377
378 static T &&forward_value_param(T &&V) { return std::move(V); }
379 static const T &forward_value_param(const T &V) { return V; }
380
381 void growAndAssign(size_t NumElts, const T &Elt) {
382 // Grow manually in case Elt is an internal reference.
383 size_t NewCapacity;
384 T *NewElts = mallocForGrow(NumElts, NewCapacity);
385 std::uninitialized_fill_n(NewElts, NumElts, Elt);
386 this->destroy_range(this->begin(), this->end());
387 takeAllocationForGrow(NewElts, NewCapacity);
388 this->set_size(NumElts);
389 }
390
391 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
392 // Grow manually in case one of Args is an internal reference.
393 size_t NewCapacity;
394 T *NewElts = mallocForGrow(0, NewCapacity);
395 ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
396 moveElementsForGrow(NewElts);
397 takeAllocationForGrow(NewElts, NewCapacity);
398 this->set_size(this->size() + 1);
399 return this->back();
400 }
401
402public:
403 void push_back(const T &Elt) {
404 const T *EltPtr = reserveForParamAndGetAddress(Elt);
405 ::new ((void *)this->end()) T(*EltPtr);
406 this->set_size(this->size() + 1);
407 }
408
409 void push_back(T &&Elt) {
410 T *EltPtr = reserveForParamAndGetAddress(Elt);
411 ::new ((void *)this->end()) T(::std::move(*EltPtr));
412 this->set_size(this->size() + 1);
413 }
414
415 void pop_back() {
416 this->set_size(this->size() - 1);
417 this->end()->~T();
418 }
419};
420
421// Define this out-of-line to dissuade the C++ compiler from inlining it.
422template <typename T, bool TriviallyCopyable>
423void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
424 size_t NewCapacity;
425 T *NewElts = mallocForGrow(MinSize, NewCapacity);
426 moveElementsForGrow(NewElts);
427 takeAllocationForGrow(NewElts, NewCapacity);
428}
429
430// Define this out-of-line to dissuade the C++ compiler from inlining it.
431template <typename T, bool TriviallyCopyable>
432void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
433 T *NewElts) {
434 // Move the elements over.
435 this->uninitialized_move(this->begin(), this->end(), NewElts);
436
437 // Destroy the original elements.
438 destroy_range(this->begin(), this->end());
439}
440
441// Define this out-of-line to dissuade the C++ compiler from inlining it.
442template <typename T, bool TriviallyCopyable>
443void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
444 T *NewElts, size_t NewCapacity) {
445 // If this wasn't grown from the inline copy, deallocate the old space.
446 if (!this->isSmall())
447 free(this->begin());
448
449 this->BeginX = NewElts;
450 this->Capacity = NewCapacity;
451}
452
453/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
454/// method implementations that are designed to work with trivially copyable
455/// T's. This allows using memcpy in place of copy/move construction and
456/// skipping destruction.
457template <typename T>
458class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
459 friend class SmallVectorTemplateCommon<T>;
460
461protected:
462 /// True if it's cheap enough to take parameters by value. Doing so avoids
463 /// overhead related to mitigations for reference invalidation.
464 static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
465
466 /// Either const T& or T, depending on whether it's cheap enough to take
467 /// parameters by value.
468 using ValueParamT =
469 typename std::conditional<TakesParamByValue, T, const T &>::type;
470
471 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
472
473 // No need to do a destroy loop for POD's.
474 static void destroy_range(T *, T *) {}
475
476 /// Move the range [I, E) onto the uninitialized memory
477 /// starting with "Dest", constructing elements into it as needed.
478 template<typename It1, typename It2>
479 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
480 // Just do a copy.
481 uninitialized_copy(I, E, Dest);
482 }
483
484 /// Copy the range [I, E) onto the uninitialized memory
485 /// starting with "Dest", constructing elements into it as needed.
486 template<typename It1, typename It2>
487 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
488 // Arbitrary iterator types; just use the basic implementation.
489 std::uninitialized_copy(I, E, Dest);
490 }
491
492 /// Copy the range [I, E) onto the uninitialized memory
493 /// starting with "Dest", constructing elements into it as needed.
494 template <typename T1, typename T2>
495 static void uninitialized_copy(
496 T1 *I, T1 *E, T2 *Dest,
497 std::enable_if_t<std::is_same<typename std::remove_const<T1>::type,
498 T2>::value> * = nullptr) {
499 // Use memcpy for PODs iterated by pointers (which includes SmallVector
500 // iterators): std::uninitialized_copy optimizes to memmove, but we can
501 // use memcpy here. Note that I and E are iterators and thus might be
502 // invalid for memcpy if they are equal.
503 if (I != E)
504 memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
505 }
506
507 /// Double the size of the allocated memory, guaranteeing space for at
508 /// least one more element or MinSize if specified.
509 void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
510
511 /// Reserve enough space to add one element, and return the updated element
512 /// pointer in case it was a reference to the storage.
513 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
514 return this->reserveForParamAndGetAddressImpl(this, Elt, N);
515 }
516
517 /// Reserve enough space to add one element, and return the updated element
518 /// pointer in case it was a reference to the storage.
519 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
520 return const_cast<T *>(
521 this->reserveForParamAndGetAddressImpl(this, Elt, N));
522 }
523
524 /// Copy \p V or return a reference, depending on \a ValueParamT.
525 static ValueParamT forward_value_param(ValueParamT V) { return V; }
526
527 void growAndAssign(size_t NumElts, T Elt) {
528 // Elt has been copied in case it's an internal reference, side-stepping
529 // reference invalidation problems without losing the realloc optimization.
530 this->set_size(0);
531 this->grow(NumElts);
532 std::uninitialized_fill_n(this->begin(), NumElts, Elt);
533 this->set_size(NumElts);
534 }
535
536 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
537 // Use push_back with a copy in case Args has an internal reference,
538 // side-stepping reference invalidation problems without losing the realloc
539 // optimization.
540 push_back(T(std::forward<ArgTypes>(Args)...));
541 return this->back();
542 }
543
544public:
545 void push_back(ValueParamT Elt) {
546 const T *EltPtr = reserveForParamAndGetAddress(Elt);
547 memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
548 this->set_size(this->size() + 1);
549 }
550
551 void pop_back() { this->set_size(this->size() - 1); }
552};
553
554/// This class consists of common code factored out of the SmallVector class to
555/// reduce code duplication based on the SmallVector 'N' template parameter.
556template <typename T>
557class SmallVectorImpl : public SmallVectorTemplateBase<T> {
558 using SuperClass = SmallVectorTemplateBase<T>;
559
560public:
561 using iterator = typename SuperClass::iterator;
562 using const_iterator = typename SuperClass::const_iterator;
563 using reference = typename SuperClass::reference;
564 using size_type = typename SuperClass::size_type;
565
566protected:
567 using SmallVectorTemplateBase<T>::TakesParamByValue;
568 using ValueParamT = typename SuperClass::ValueParamT;
569
570 // Default ctor - Initialize to empty.
571 explicit SmallVectorImpl(unsigned N)
572 : SmallVectorTemplateBase<T>(N) {}
573
574public:
575 SmallVectorImpl(const SmallVectorImpl &) = delete;
576
577 ~SmallVectorImpl() {
578 // Subclass has already destructed this vector's elements.
579 // If this wasn't grown from the inline copy, deallocate the old space.
580 if (!this->isSmall())
581 free(this->begin());
582 }
583
584 void clear() {
585 this->destroy_range(this->begin(), this->end());
586 this->Size = 0;
587 }
588
589private:
590 template <bool ForOverwrite> void resizeImpl(size_type N) {
591 if (N < this->size()) {
592 this->pop_back_n(this->size() - N);
593 } else if (N > this->size()) {
594 this->reserve(N);
595 for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
596 if (ForOverwrite)
597 new (&*I) T;
598 else
599 new (&*I) T();
600 this->set_size(N);
601 }
602 }
603
604public:
605 void resize(size_type N) { resizeImpl<false>(N); }
606
607 /// Like resize, but \ref T is POD, the new values won't be initialized.
608 void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
609
610 void resize(size_type N, ValueParamT NV) {
611 if (N == this->size())
612 return;
613
614 if (N < this->size()) {
615 this->pop_back_n(this->size() - N);
616 return;
617 }
618
619 // N > this->size(). Defer to append.
620 this->append(N - this->size(), NV);
621 }
622
623 void reserve(size_type N) {
624 if (this->capacity() < N)
625 this->grow(N);
626 }
627
628 void pop_back_n(size_type NumItems) {
629 assert(this->size() >= NumItems)(static_cast <bool> (this->size() >= NumItems) ? void
(0) : __assert_fail ("this->size() >= NumItems", "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 629, __extension__ __PRETTY_FUNCTION__))
;
630 this->destroy_range(this->end() - NumItems, this->end());
631 this->set_size(this->size() - NumItems);
632 }
633
634 LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() {
635 T Result = ::std::move(this->back());
636 this->pop_back();
637 return Result;
638 }
639
640 void swap(SmallVectorImpl &RHS);
641
642 /// Add the specified range to the end of the SmallVector.
643 template <typename in_iter,
644 typename = std::enable_if_t<std::is_convertible<
645 typename std::iterator_traits<in_iter>::iterator_category,
646 std::input_iterator_tag>::value>>
647 void append(in_iter in_start, in_iter in_end) {
648 this->assertSafeToAddRange(in_start, in_end);
649 size_type NumInputs = std::distance(in_start, in_end);
650 this->reserve(this->size() + NumInputs);
651 this->uninitialized_copy(in_start, in_end, this->end());
652 this->set_size(this->size() + NumInputs);
653 }
654
655 /// Append \p NumInputs copies of \p Elt to the end.
656 void append(size_type NumInputs, ValueParamT Elt) {
657 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
658 std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
659 this->set_size(this->size() + NumInputs);
660 }
661
662 void append(std::initializer_list<T> IL) {
663 append(IL.begin(), IL.end());
664 }
665
666 void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
667
668 void assign(size_type NumElts, ValueParamT Elt) {
669 // Note that Elt could be an internal reference.
670 if (NumElts > this->capacity()) {
671 this->growAndAssign(NumElts, Elt);
672 return;
673 }
674
675 // Assign over existing elements.
676 std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
677 if (NumElts > this->size())
678 std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
679 else if (NumElts < this->size())
680 this->destroy_range(this->begin() + NumElts, this->end());
681 this->set_size(NumElts);
682 }
683
684 // FIXME: Consider assigning over existing elements, rather than clearing &
685 // re-initializing them - for all assign(...) variants.
686
687 template <typename in_iter,
688 typename = std::enable_if_t<std::is_convertible<
689 typename std::iterator_traits<in_iter>::iterator_category,
690 std::input_iterator_tag>::value>>
691 void assign(in_iter in_start, in_iter in_end) {
692 this->assertSafeToReferenceAfterClear(in_start, in_end);
693 clear();
694 append(in_start, in_end);
695 }
696
697 void assign(std::initializer_list<T> IL) {
698 clear();
699 append(IL);
700 }
701
702 void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
703
704 iterator erase(const_iterator CI) {
705 // Just cast away constness because this is a non-const member function.
706 iterator I = const_cast<iterator>(CI);
707
708 assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.")(static_cast <bool> (this->isReferenceToStorage(CI) &&
"Iterator to erase is out of bounds.") ? void (0) : __assert_fail
("this->isReferenceToStorage(CI) && \"Iterator to erase is out of bounds.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 708, __extension__ __PRETTY_FUNCTION__))
;
709
710 iterator N = I;
711 // Shift all elts down one.
712 std::move(I+1, this->end(), I);
713 // Drop the last elt.
714 this->pop_back();
715 return(N);
716 }
717
718 iterator erase(const_iterator CS, const_iterator CE) {
719 // Just cast away constness because this is a non-const member function.
720 iterator S = const_cast<iterator>(CS);
721 iterator E = const_cast<iterator>(CE);
722
723 assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.")(static_cast <bool> (this->isRangeInStorage(S, E) &&
"Range to erase is out of bounds.") ? void (0) : __assert_fail
("this->isRangeInStorage(S, E) && \"Range to erase is out of bounds.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 723, __extension__ __PRETTY_FUNCTION__))
;
724
725 iterator N = S;
726 // Shift all elts down.
727 iterator I = std::move(E, this->end(), S);
728 // Drop the last elts.
729 this->destroy_range(I, this->end());
730 this->set_size(I - this->begin());
731 return(N);
732 }
733
734private:
735 template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
736 // Callers ensure that ArgType is derived from T.
737 static_assert(
738 std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
739 T>::value,
740 "ArgType must be derived from T!");
741
742 if (I == this->end()) { // Important special case for empty vector.
743 this->push_back(::std::forward<ArgType>(Elt));
744 return this->end()-1;
745 }
746
747 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")(static_cast <bool> (this->isReferenceToStorage(I) &&
"Insertion iterator is out of bounds.") ? void (0) : __assert_fail
("this->isReferenceToStorage(I) && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 747, __extension__ __PRETTY_FUNCTION__))
;
748
749 // Grow if necessary.
750 size_t Index = I - this->begin();
751 std::remove_reference_t<ArgType> *EltPtr =
752 this->reserveForParamAndGetAddress(Elt);
753 I = this->begin() + Index;
754
755 ::new ((void*) this->end()) T(::std::move(this->back()));
756 // Push everything else over.
757 std::move_backward(I, this->end()-1, this->end());
758 this->set_size(this->size() + 1);
759
760 // If we just moved the element we're inserting, be sure to update
761 // the reference (never happens if TakesParamByValue).
762 static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
763 "ArgType must be 'T' when taking by value!");
764 if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
765 ++EltPtr;
766
767 *I = ::std::forward<ArgType>(*EltPtr);
768 return I;
769 }
770
771public:
772 iterator insert(iterator I, T &&Elt) {
773 return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
774 }
775
776 iterator insert(iterator I, const T &Elt) {
777 return insert_one_impl(I, this->forward_value_param(Elt));
778 }
779
780 iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
781 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
782 size_t InsertElt = I - this->begin();
783
784 if (I == this->end()) { // Important special case for empty vector.
785 append(NumToInsert, Elt);
786 return this->begin()+InsertElt;
787 }
788
789 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")(static_cast <bool> (this->isReferenceToStorage(I) &&
"Insertion iterator is out of bounds.") ? void (0) : __assert_fail
("this->isReferenceToStorage(I) && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 789, __extension__ __PRETTY_FUNCTION__))
;
790
791 // Ensure there is enough space, and get the (maybe updated) address of
792 // Elt.
793 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
794
795 // Uninvalidate the iterator.
796 I = this->begin()+InsertElt;
797
798 // If there are more elements between the insertion point and the end of the
799 // range than there are being inserted, we can use a simple approach to
800 // insertion. Since we already reserved space, we know that this won't
801 // reallocate the vector.
802 if (size_t(this->end()-I) >= NumToInsert) {
803 T *OldEnd = this->end();
804 append(std::move_iterator<iterator>(this->end() - NumToInsert),
805 std::move_iterator<iterator>(this->end()));
806
807 // Copy the existing elements that get replaced.
808 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
809
810 // If we just moved the element we're inserting, be sure to update
811 // the reference (never happens if TakesParamByValue).
812 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
813 EltPtr += NumToInsert;
814
815 std::fill_n(I, NumToInsert, *EltPtr);
816 return I;
817 }
818
819 // Otherwise, we're inserting more elements than exist already, and we're
820 // not inserting at the end.
821
822 // Move over the elements that we're about to overwrite.
823 T *OldEnd = this->end();
824 this->set_size(this->size() + NumToInsert);
825 size_t NumOverwritten = OldEnd-I;
826 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
827
828 // If we just moved the element we're inserting, be sure to update
829 // the reference (never happens if TakesParamByValue).
830 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
831 EltPtr += NumToInsert;
832
833 // Replace the overwritten part.
834 std::fill_n(I, NumOverwritten, *EltPtr);
835
836 // Insert the non-overwritten middle part.
837 std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
838 return I;
839 }
840
841 template <typename ItTy,
842 typename = std::enable_if_t<std::is_convertible<
843 typename std::iterator_traits<ItTy>::iterator_category,
844 std::input_iterator_tag>::value>>
845 iterator insert(iterator I, ItTy From, ItTy To) {
846 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
847 size_t InsertElt = I - this->begin();
848
849 if (I == this->end()) { // Important special case for empty vector.
850 append(From, To);
851 return this->begin()+InsertElt;
852 }
853
854 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")(static_cast <bool> (this->isReferenceToStorage(I) &&
"Insertion iterator is out of bounds.") ? void (0) : __assert_fail
("this->isReferenceToStorage(I) && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-13~++20210610111127+c5ffc6f8bd6a/llvm/include/llvm/ADT/SmallVector.h"
, 854, __extension__ __PRETTY_FUNCTION__))
;
855
856 // Check that the reserve that follows doesn't invalidate the iterators.
857 this->assertSafeToAddRange(From, To);
858
859 size_t NumToInsert = std::distance(From, To);
860
861 // Ensure there is enough space.
862 reserve(this->size() + NumToInsert);
863
864 // Uninvalidate the iterator.
865 I = this->begin()+InsertElt;
866
867 // If there are more elements between the insertion point and the end of the
868 // range than there are being inserted, we can use a simple approach to
869 // insertion. Since we already reserved space, we know that this won't
870 // reallocate the vector.
871 if (size_t(this->end()-I) >= NumToInsert) {
872 T *OldEnd = this->end();
873 append(std::move_iterator<iterator>(this->end() - NumToInsert),
874 std::move_iterator<iterator>(this->end()));
875
876 // Copy the existing elements that get replaced.
877 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
878
879 std::copy(From, To, I);
880 return I;
881 }
882
883 // Otherwise, we're inserting more elements than exist already, and we're
884 // not inserting at the end.
885
886 // Move over the elements that we're about to overwrite.
887 T *OldEnd = this->end();
888 this->set_size(this->size() + NumToInsert);
889 size_t NumOverwritten = OldEnd-I;
890 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
891
892 // Replace the overwritten part.
893 for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
894 *J = *From;
895 ++J; ++From;
896 }
897
898 // Insert the non-overwritten middle part.
899 this->uninitialized_copy(From, To, OldEnd);
900 return I;
901 }
902
903 void insert(iterator I, std::initializer_list<T> IL) {
904 insert(I, IL.begin(), IL.end());
905 }
906
907 template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
908 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
909 return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
910
911 ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
912 this->set_size(this->size() + 1);
913 return this->back();
914 }
915
916 SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
917
918 SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
919
920 bool operator==(const SmallVectorImpl &RHS) const {
921 if (this->size() != RHS.size()) return false;
922 return std::equal(this->begin(), this->end(), RHS.begin());
923 }
924 bool operator!=(const SmallVectorImpl &RHS) const {
925 return !(*this == RHS);
926 }
927
928 bool operator<(const SmallVectorImpl &RHS) const {
929 return std::lexicographical_compare(this->begin(), this->end(),
930 RHS.begin(), RHS.end());
931 }
932};
933
934template <typename T>
935void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
936 if (this == &RHS) return;
937
938 // We can only avoid copying elements if neither vector is small.
939 if (!this->isSmall() && !RHS.isSmall()) {
940 std::swap(this->BeginX, RHS.BeginX);
941 std::swap(this->Size, RHS.Size);
942 std::swap(this->Capacity, RHS.Capacity);
943 return;
944 }
945 this->reserve(RHS.size());
946 RHS.reserve(this->size());
947
948 // Swap the shared elements.
949 size_t NumShared = this->size();
950 if (NumShared > RHS.size()) NumShared = RHS.size();
951 for (size_type i = 0; i != NumShared; ++i)
952 std::swap((*this)[i], RHS[i]);
953
954 // Copy over the extra elts.
955 if (this->size() > RHS.size()) {
956 size_t EltDiff = this->size() - RHS.size();
957 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
958 RHS.set_size(RHS.size() + EltDiff);
959 this->destroy_range(this->begin()+NumShared, this->end());
960 this->set_size(NumShared);
961 } else if (RHS.size() > this->size()) {
962 size_t EltDiff = RHS.size() - this->size();
963 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
964 this->set_size(this->size() + EltDiff);
965 this->destroy_range(RHS.begin()+NumShared, RHS.end());
966 RHS.set_size(NumShared);
967 }
968}
969
970template <typename T>
971SmallVectorImpl<T> &SmallVectorImpl<T>::
972 operator=(const SmallVectorImpl<T> &RHS) {
973 // Avoid self-assignment.
974 if (this == &RHS) return *this;
975
976 // If we already have sufficient space, assign the common elements, then
977 // destroy any excess.
978 size_t RHSSize = RHS.size();
979 size_t CurSize = this->size();
980 if (CurSize >= RHSSize) {
981 // Assign common elements.
982 iterator NewEnd;
983 if (RHSSize)
984 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
985 else
986 NewEnd = this->begin();
987
988 // Destroy excess elements.
989 this->destroy_range(NewEnd, this->end());
990
991 // Trim.
992 this->set_size(RHSSize);
993 return *this;
994 }
995
996 // If we have to grow to have enough elements, destroy the current elements.
997 // This allows us to avoid copying them during the grow.
998 // FIXME: don't do this if they're efficiently moveable.
999 if (this->capacity() < RHSSize) {
1000 // Destroy current elements.
1001 this->clear();
1002 CurSize = 0;
1003 this->grow(RHSSize);
1004 } else if (CurSize) {
1005 // Otherwise, use assignment for the already-constructed elements.
1006 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
1007 }
1008
1009 // Copy construct the new elements in place.
1010 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
1011 this->begin()+CurSize);
1012
1013 // Set end.
1014 this->set_size(RHSSize);
1015 return *this;
1016}
1017
1018template <typename T>
1019SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
1020 // Avoid self-assignment.
1021 if (this == &RHS) return *this;
1022
1023 // If the RHS isn't small, clear this vector and then steal its buffer.
1024 if (!RHS.isSmall()) {
1025 this->destroy_range(this->begin(), this->end());
1026 if (!this->isSmall()) free(this->begin());
1027 this->BeginX = RHS.BeginX;
1028 this->Size = RHS.Size;
1029 this->Capacity = RHS.Capacity;
1030 RHS.resetToSmall();
1031 return *this;
1032 }
1033
1034 // If we already have sufficient space, assign the common elements, then
1035 // destroy any excess.
1036 size_t RHSSize = RHS.size();
1037 size_t CurSize = this->size();
1038 if (CurSize >= RHSSize) {
1039 // Assign common elements.
1040 iterator NewEnd = this->begin();
1041 if (RHSSize)
1042 NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
1043
1044 // Destroy excess elements and trim the bounds.
1045 this->destroy_range(NewEnd, this->end());
1046 this->set_size(RHSSize);
1047
1048 // Clear the RHS.
1049 RHS.clear();
1050
1051 return *this;
1052 }
1053
1054 // If we have to grow to have enough elements, destroy the current elements.
1055 // This allows us to avoid copying them during the grow.
1056 // FIXME: this may not actually make any sense if we can efficiently move
1057 // elements.
1058 if (this->capacity() < RHSSize) {
1059 // Destroy current elements.
1060 this->clear();
1061 CurSize = 0;
1062 this->grow(RHSSize);
1063 } else if (CurSize) {
1064 // Otherwise, use assignment for the already-constructed elements.
1065 std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
1066 }
1067
1068 // Move-construct the new elements in place.
1069 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
1070 this->begin()+CurSize);
1071
1072 // Set end.
1073 this->set_size(RHSSize);
1074
1075 RHS.clear();
1076 return *this;
1077}
1078
1079/// Storage for the SmallVector elements. This is specialized for the N=0 case
1080/// to avoid allocating unnecessary storage.
1081template <typename T, unsigned N>
1082struct SmallVectorStorage {
1083 alignas(T) char InlineElts[N * sizeof(T)];
1084};
1085
1086/// We need the storage to be properly aligned even for small-size of 0 so that
1087/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
1088/// well-defined.
1089template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
1090
1091/// Forward declaration of SmallVector so that
1092/// calculateSmallVectorDefaultInlinedElements can reference
1093/// `sizeof(SmallVector<T, 0>)`.
1094template <typename T, unsigned N> class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector;
1095
1096/// Helper class for calculating the default number of inline elements for
1097/// `SmallVector<T>`.
1098///
1099/// This should be migrated to a constexpr function when our minimum
1100/// compiler support is enough for multi-statement constexpr functions.
1101template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
1102 // Parameter controlling the default number of inlined elements
1103 // for `SmallVector<T>`.
1104 //
1105 // The default number of inlined elements ensures that
1106 // 1. There is at least one inlined element.
1107 // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
1108 // it contradicts 1.
1109 static constexpr size_t kPreferredSmallVectorSizeof = 64;
1110
1111 // static_assert that sizeof(T) is not "too big".
1112 //
1113 // Because our policy guarantees at least one inlined element, it is possible
1114 // for an arbitrarily large inlined element to allocate an arbitrarily large
1115 // amount of inline storage. We generally consider it an antipattern for a
1116 // SmallVector to allocate an excessive amount of inline storage, so we want
1117 // to call attention to these cases and make sure that users are making an
1118 // intentional decision if they request a lot of inline storage.
1119 //
1120 // We want this assertion to trigger in pathological cases, but otherwise
1121 // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
1122 // larger than kPreferredSmallVectorSizeof (otherwise,
1123 // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
1124 // pattern seems useful in practice).
1125 //
1126 // One wrinkle is that this assertion is in theory non-portable, since
1127 // sizeof(T) is in general platform-dependent. However, we don't expect this
1128 // to be much of an issue, because most LLVM development happens on 64-bit
1129 // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
1130 // 32-bit hosts, dodging the issue. The reverse situation, where development
1131 // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
1132 // 64-bit host, is expected to be very rare.
1133 static_assert(
1134 sizeof(T) <= 256,
1135 "You are trying to use a default number of inlined elements for "
1136 "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
1137 "explicit number of inlined elements with `SmallVector<T, N>` to make "
1138 "sure you really want that much inline storage.");
1139
1140 // Discount the size of the header itself when calculating the maximum inline
1141 // bytes.
1142 static constexpr size_t PreferredInlineBytes =
1143 kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
1144 static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
1145 static constexpr size_t value =
1146 NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
1147};
1148
1149/// This is a 'vector' (really, a variable-sized array), optimized
1150/// for the case when the array is small. It contains some number of elements
1151/// in-place, which allows it to avoid heap allocation when the actual number of
1152/// elements is below that threshold. This allows normal "small" cases to be
1153/// fast without losing generality for large inputs.
1154///
1155/// \note
1156/// In the absence of a well-motivated choice for the number of inlined
1157/// elements \p N, it is recommended to use \c SmallVector<T> (that is,
1158/// omitting the \p N). This will choose a default number of inlined elements
1159/// reasonable for allocation on the stack (for example, trying to keep \c
1160/// sizeof(SmallVector<T>) around 64 bytes).
1161///
1162/// \warning This does not attempt to be exception safe.
1163///
1164/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
1165template <typename T,
1166 unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
1167class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector : public SmallVectorImpl<T>,
1168 SmallVectorStorage<T, N> {
1169public:
1170 SmallVector() : SmallVectorImpl<T>(N) {}
1171
1172 ~SmallVector() {
1173 // Destroy the constructed elements in the vector.
1174 this->destroy_range(this->begin(), this->end());
1175 }
1176
1177 explicit SmallVector(size_t Size, const T &Value = T())
1178 : SmallVectorImpl<T>(N) {
1179 this->assign(Size, Value);
1180 }
1181
1182 template <typename ItTy,
1183 typename = std::enable_if_t<std::is_convertible<
1184 typename std::iterator_traits<ItTy>::iterator_category,
1185 std::input_iterator_tag>::value>>
1186 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
1187 this->append(S, E);
1188 }
1189
1190 template <typename RangeTy>
1191 explicit SmallVector(const iterator_range<RangeTy> &R)
1192 : SmallVectorImpl<T>(N) {
1193 this->append(R.begin(), R.end());
1194 }
1195
1196 SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
1197 this->assign(IL);
1198 }
1199
1200 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
1201 if (!RHS.empty())
1202 SmallVectorImpl<T>::operator=(RHS);
1203 }
1204
1205 SmallVector &operator=(const SmallVector &RHS) {
1206 SmallVectorImpl<T>::operator=(RHS);
1207 return *this;
1208 }
1209
1210 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
1211 if (!RHS.empty())
1212 SmallVectorImpl<T>::operator=(::std::move(RHS));
1213 }
1214
1215 SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
1216 if (!RHS.empty())
1217 SmallVectorImpl<T>::operator=(::std::move(RHS));
1218 }
1219
1220 SmallVector &operator=(SmallVector &&RHS) {
1221 SmallVectorImpl<T>::operator=(::std::move(RHS));
1222 return *this;
1223 }
1224
1225 SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
1226 SmallVectorImpl<T>::operator=(::std::move(RHS));
1227 return *this;
1228 }
1229
1230 SmallVector &operator=(std::initializer_list<T> IL) {
1231 this->assign(IL);
1232 return *this;
1233 }
1234};
1235
1236template <typename T, unsigned N>
1237inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
1238 return X.capacity_in_bytes();
1239}
1240
1241/// Given a range of type R, iterate the entire range and return a
1242/// SmallVector with elements of the vector. This is useful, for example,
1243/// when you want to iterate a range and then sort the results.
1244template <unsigned Size, typename R>
1245SmallVector<typename std::remove_const<typename std::remove_reference<
1246 decltype(*std::begin(std::declval<R &>()))>::type>::type,
1247 Size>
1248to_vector(R &&Range) {
1249 return {std::begin(Range), std::end(Range)};
1250}
1251
1252} // end namespace llvm
1253
1254namespace std {
1255
1256 /// Implement std::swap in terms of SmallVector swap.
1257 template<typename T>
1258 inline void
1259 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
1260 LHS.swap(RHS);
1261 }
1262
1263 /// Implement std::swap in terms of SmallVector swap.
1264 template<typename T, unsigned N>
1265 inline void
1266 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
1267 LHS.swap(RHS);
1268 }
1269
1270} // end namespace std
1271
1272#endif // LLVM_ADT_SMALLVECTOR_H