Bug Summary

File:llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
Warning:line 6707, column 49
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SLPVectorizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/lib/Transforms/Vectorize -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/lib/Transforms/Vectorize -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-04-14-063029-18377-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp

1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallBitVector.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/iterator.h"
32#include "llvm/ADT/iterator_range.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/Analysis/AssumptionCache.h"
35#include "llvm/Analysis/CodeMetrics.h"
36#include "llvm/Analysis/DemandedBits.h"
37#include "llvm/Analysis/GlobalsModRef.h"
38#include "llvm/Analysis/IVDescriptors.h"
39#include "llvm/Analysis/LoopAccessAnalysis.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/MemoryLocation.h"
42#include "llvm/Analysis/OptimizationRemarkEmitter.h"
43#include "llvm/Analysis/ScalarEvolution.h"
44#include "llvm/Analysis/ScalarEvolutionExpressions.h"
45#include "llvm/Analysis/TargetLibraryInfo.h"
46#include "llvm/Analysis/TargetTransformInfo.h"
47#include "llvm/Analysis/ValueTracking.h"
48#include "llvm/Analysis/VectorUtils.h"
49#include "llvm/IR/Attributes.h"
50#include "llvm/IR/BasicBlock.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
54#include "llvm/IR/DebugLoc.h"
55#include "llvm/IR/DerivedTypes.h"
56#include "llvm/IR/Dominators.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/IRBuilder.h"
59#include "llvm/IR/InstrTypes.h"
60#include "llvm/IR/Instruction.h"
61#include "llvm/IR/Instructions.h"
62#include "llvm/IR/IntrinsicInst.h"
63#include "llvm/IR/Intrinsics.h"
64#include "llvm/IR/Module.h"
65#include "llvm/IR/NoFolder.h"
66#include "llvm/IR/Operator.h"
67#include "llvm/IR/PatternMatch.h"
68#include "llvm/IR/Type.h"
69#include "llvm/IR/Use.h"
70#include "llvm/IR/User.h"
71#include "llvm/IR/Value.h"
72#include "llvm/IR/ValueHandle.h"
73#include "llvm/IR/Verifier.h"
74#include "llvm/InitializePasses.h"
75#include "llvm/Pass.h"
76#include "llvm/Support/Casting.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/Compiler.h"
79#include "llvm/Support/DOTGraphTraits.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/ErrorHandling.h"
82#include "llvm/Support/GraphWriter.h"
83#include "llvm/Support/InstructionCost.h"
84#include "llvm/Support/KnownBits.h"
85#include "llvm/Support/MathExtras.h"
86#include "llvm/Support/raw_ostream.h"
87#include "llvm/Transforms/Utils/InjectTLIMappings.h"
88#include "llvm/Transforms/Utils/LoopUtils.h"
89#include "llvm/Transforms/Vectorize.h"
90#include <algorithm>
91#include <cassert>
92#include <cstdint>
93#include <iterator>
94#include <memory>
95#include <set>
96#include <string>
97#include <tuple>
98#include <utility>
99#include <vector>
100
101using namespace llvm;
102using namespace llvm::PatternMatch;
103using namespace slpvectorizer;
104
105#define SV_NAME"slp-vectorizer" "slp-vectorizer"
106#define DEBUG_TYPE"SLP" "SLP"
107
108STATISTIC(NumVectorInstructions, "Number of vector instructions generated")static llvm::Statistic NumVectorInstructions = {"SLP", "NumVectorInstructions"
, "Number of vector instructions generated"}
;
109
110cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
111 cl::desc("Run the SLP vectorization passes"));
112
113static cl::opt<int>
114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
115 cl::desc("Only vectorize if you gain more than this "
116 "number "));
117
118static cl::opt<bool>
119ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
120 cl::desc("Attempt to vectorize horizontal reductions"));
121
122static cl::opt<bool> ShouldStartVectorizeHorAtStore(
123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
124 cl::desc(
125 "Attempt to vectorize horizontal reductions feeding into a store"));
126
127static cl::opt<int>
128MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
129 cl::desc("Attempt to vectorize for this register size in bits"));
130
131static cl::opt<unsigned>
132MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
133 cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
134
135static cl::opt<int>
136MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
137 cl::desc("Maximum depth of the lookup for consecutive stores."));
138
139/// Limits the size of scheduling regions in a block.
140/// It avoid long compile times for _very_ large blocks where vector
141/// instructions are spread over a wide range.
142/// This limit is way higher than needed by real-world functions.
143static cl::opt<int>
144ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
145 cl::desc("Limit the size of the SLP scheduling region per block"));
146
147static cl::opt<int> MinVectorRegSizeOption(
148 "slp-min-reg-size", cl::init(128), cl::Hidden,
149 cl::desc("Attempt to vectorize for this register size in bits"));
150
151static cl::opt<unsigned> RecursionMaxDepth(
152 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
153 cl::desc("Limit the recursion depth when building a vectorizable tree"));
154
155static cl::opt<unsigned> MinTreeSize(
156 "slp-min-tree-size", cl::init(3), cl::Hidden,
157 cl::desc("Only vectorize small trees if they are fully vectorizable"));
158
159// The maximum depth that the look-ahead score heuristic will explore.
160// The higher this value, the higher the compilation time overhead.
161static cl::opt<int> LookAheadMaxDepth(
162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
163 cl::desc("The maximum look-ahead depth for operand reordering scores"));
164
165// The Look-ahead heuristic goes through the users of the bundle to calculate
166// the users cost in getExternalUsesCost(). To avoid compilation time increase
167// we limit the number of users visited to this value.
168static cl::opt<unsigned> LookAheadUsersBudget(
169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
170 cl::desc("The maximum number of users to visit while visiting the "
171 "predecessors. This prevents compilation time increase."));
172
173static cl::opt<bool>
174 ViewSLPTree("view-slp-tree", cl::Hidden,
175 cl::desc("Display the SLP trees with Graphviz"));
176
177// Limit the number of alias checks. The limit is chosen so that
178// it has no negative effect on the llvm benchmarks.
179static const unsigned AliasedCheckLimit = 10;
180
181// Another limit for the alias checks: The maximum distance between load/store
182// instructions where alias checks are done.
183// This limit is useful for very large basic blocks.
184static const unsigned MaxMemDepDistance = 160;
185
186/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
187/// regions to be handled.
188static const int MinScheduleRegionSize = 16;
189
190/// Predicate for the element types that the SLP vectorizer supports.
191///
192/// The most important thing to filter here are types which are invalid in LLVM
193/// vectors. We also filter target specific types which have absolutely no
194/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
195/// avoids spending time checking the cost model and realizing that they will
196/// be inevitably scalarized.
197static bool isValidElementType(Type *Ty) {
198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
199 !Ty->isPPC_FP128Ty();
200}
201
202/// \returns true if all of the instructions in \p VL are in the same block or
203/// false otherwise.
204static bool allSameBlock(ArrayRef<Value *> VL) {
205 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
206 if (!I0)
207 return false;
208 BasicBlock *BB = I0->getParent();
209 for (int I = 1, E = VL.size(); I < E; I++) {
210 auto *II = dyn_cast<Instruction>(VL[I]);
211 if (!II)
212 return false;
213
214 if (BB != II->getParent())
215 return false;
216 }
217 return true;
218}
219
220/// \returns True if all of the values in \p VL are constants (but not
221/// globals/constant expressions).
222static bool allConstant(ArrayRef<Value *> VL) {
223 // Constant expressions and globals can't be vectorized like normal integer/FP
224 // constants.
225 for (Value *i : VL)
226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
227 return false;
228 return true;
229}
230
231/// \returns True if all of the values in \p VL are identical.
232static bool isSplat(ArrayRef<Value *> VL) {
233 for (unsigned i = 1, e = VL.size(); i < e; ++i)
234 if (VL[i] != VL[0])
235 return false;
236 return true;
237}
238
239/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
240static bool isCommutative(Instruction *I) {
241 if (auto *Cmp = dyn_cast<CmpInst>(I))
242 return Cmp->isCommutative();
243 if (auto *BO = dyn_cast<BinaryOperator>(I))
244 return BO->isCommutative();
245 // TODO: This should check for generic Instruction::isCommutative(), but
246 // we need to confirm that the caller code correctly handles Intrinsics
247 // for example (does not have 2 operands).
248 return false;
249}
250
251/// Checks if the vector of instructions can be represented as a shuffle, like:
252/// %x0 = extractelement <4 x i8> %x, i32 0
253/// %x3 = extractelement <4 x i8> %x, i32 3
254/// %y1 = extractelement <4 x i8> %y, i32 1
255/// %y2 = extractelement <4 x i8> %y, i32 2
256/// %x0x0 = mul i8 %x0, %x0
257/// %x3x3 = mul i8 %x3, %x3
258/// %y1y1 = mul i8 %y1, %y1
259/// %y2y2 = mul i8 %y2, %y2
260/// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
261/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
262/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
263/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
264/// ret <4 x i8> %ins4
265/// can be transformed into:
266/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
267/// i32 6>
268/// %2 = mul <4 x i8> %1, %1
269/// ret <4 x i8> %2
270/// We convert this initially to something like:
271/// %x0 = extractelement <4 x i8> %x, i32 0
272/// %x3 = extractelement <4 x i8> %x, i32 3
273/// %y1 = extractelement <4 x i8> %y, i32 1
274/// %y2 = extractelement <4 x i8> %y, i32 2
275/// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
276/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
277/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
278/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
279/// %5 = mul <4 x i8> %4, %4
280/// %6 = extractelement <4 x i8> %5, i32 0
281/// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
282/// %7 = extractelement <4 x i8> %5, i32 1
283/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
284/// %8 = extractelement <4 x i8> %5, i32 2
285/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
286/// %9 = extractelement <4 x i8> %5, i32 3
287/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
288/// ret <4 x i8> %ins4
289/// InstCombiner transforms this into a shuffle and vector mul
290/// Mask will return the Shuffle Mask equivalent to the extracted elements.
291/// TODO: Can we split off and reuse the shuffle mask detection from
292/// TargetTransformInfo::getInstructionThroughput?
293static Optional<TargetTransformInfo::ShuffleKind>
294isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
295 auto *EI0 = cast<ExtractElementInst>(VL[0]);
296 unsigned Size =
297 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
298 Value *Vec1 = nullptr;
299 Value *Vec2 = nullptr;
300 enum ShuffleMode { Unknown, Select, Permute };
301 ShuffleMode CommonShuffleMode = Unknown;
302 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
303 auto *EI = cast<ExtractElementInst>(VL[I]);
304 auto *Vec = EI->getVectorOperand();
305 // All vector operands must have the same number of vector elements.
306 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
307 return None;
308 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
309 if (!Idx)
310 return None;
311 // Undefined behavior if Idx is negative or >= Size.
312 if (Idx->getValue().uge(Size)) {
313 Mask.push_back(UndefMaskElem);
314 continue;
315 }
316 unsigned IntIdx = Idx->getValue().getZExtValue();
317 Mask.push_back(IntIdx);
318 // We can extractelement from undef or poison vector.
319 if (isa<UndefValue>(Vec))
320 continue;
321 // For correct shuffling we have to have at most 2 different vector operands
322 // in all extractelement instructions.
323 if (!Vec1 || Vec1 == Vec)
324 Vec1 = Vec;
325 else if (!Vec2 || Vec2 == Vec)
326 Vec2 = Vec;
327 else
328 return None;
329 if (CommonShuffleMode == Permute)
330 continue;
331 // If the extract index is not the same as the operation number, it is a
332 // permutation.
333 if (IntIdx != I) {
334 CommonShuffleMode = Permute;
335 continue;
336 }
337 CommonShuffleMode = Select;
338 }
339 // If we're not crossing lanes in different vectors, consider it as blending.
340 if (CommonShuffleMode == Select && Vec2)
341 return TargetTransformInfo::SK_Select;
342 // If Vec2 was never used, we have a permutation of a single vector, otherwise
343 // we have permutation of 2 vectors.
344 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
345 : TargetTransformInfo::SK_PermuteSingleSrc;
346}
347
348namespace {
349
350/// Main data required for vectorization of instructions.
351struct InstructionsState {
352 /// The very first instruction in the list with the main opcode.
353 Value *OpValue = nullptr;
354
355 /// The main/alternate instruction.
356 Instruction *MainOp = nullptr;
357 Instruction *AltOp = nullptr;
358
359 /// The main/alternate opcodes for the list of instructions.
360 unsigned getOpcode() const {
361 return MainOp ? MainOp->getOpcode() : 0;
362 }
363
364 unsigned getAltOpcode() const {
365 return AltOp ? AltOp->getOpcode() : 0;
366 }
367
368 /// Some of the instructions in the list have alternate opcodes.
369 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
370
371 bool isOpcodeOrAlt(Instruction *I) const {
372 unsigned CheckedOpcode = I->getOpcode();
373 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
374 }
375
376 InstructionsState() = delete;
377 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
378 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
379};
380
381} // end anonymous namespace
382
383/// Chooses the correct key for scheduling data. If \p Op has the same (or
384/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
385/// OpValue.
386static Value *isOneOf(const InstructionsState &S, Value *Op) {
387 auto *I = dyn_cast<Instruction>(Op);
388 if (I && S.isOpcodeOrAlt(I))
389 return Op;
390 return S.OpValue;
391}
392
393/// \returns true if \p Opcode is allowed as part of of the main/alternate
394/// instruction for SLP vectorization.
395///
396/// Example of unsupported opcode is SDIV that can potentially cause UB if the
397/// "shuffled out" lane would result in division by zero.
398static bool isValidForAlternation(unsigned Opcode) {
399 if (Instruction::isIntDivRem(Opcode))
400 return false;
401
402 return true;
403}
404
405/// \returns analysis of the Instructions in \p VL described in
406/// InstructionsState, the Opcode that we suppose the whole list
407/// could be vectorized even if its structure is diverse.
408static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
409 unsigned BaseIndex = 0) {
410 // Make sure these are all Instructions.
411 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
412 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
413
414 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
415 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
416 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
417 unsigned AltOpcode = Opcode;
418 unsigned AltIndex = BaseIndex;
419
420 // Check for one alternate opcode from another BinaryOperator.
421 // TODO - generalize to support all operators (types, calls etc.).
422 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
423 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
424 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
425 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
426 continue;
427 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
428 isValidForAlternation(Opcode)) {
429 AltOpcode = InstOpcode;
430 AltIndex = Cnt;
431 continue;
432 }
433 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
434 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
435 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
436 if (Ty0 == Ty1) {
437 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
438 continue;
439 if (Opcode == AltOpcode) {
440 assert(isValidForAlternation(Opcode) &&((isValidForAlternation(Opcode) && isValidForAlternation
(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? static_cast<void> (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 442, __PRETTY_FUNCTION__))
441 isValidForAlternation(InstOpcode) &&((isValidForAlternation(Opcode) && isValidForAlternation
(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? static_cast<void> (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 442, __PRETTY_FUNCTION__))
442 "Cast isn't safe for alternation, logic needs to be updated!")((isValidForAlternation(Opcode) && isValidForAlternation
(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? static_cast<void> (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 442, __PRETTY_FUNCTION__))
;
443 AltOpcode = InstOpcode;
444 AltIndex = Cnt;
445 continue;
446 }
447 }
448 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
449 continue;
450 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
451 }
452
453 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
454 cast<Instruction>(VL[AltIndex]));
455}
456
457/// \returns true if all of the values in \p VL have the same type or false
458/// otherwise.
459static bool allSameType(ArrayRef<Value *> VL) {
460 Type *Ty = VL[0]->getType();
461 for (int i = 1, e = VL.size(); i < e; i++)
462 if (VL[i]->getType() != Ty)
463 return false;
464
465 return true;
466}
467
468/// \returns True if Extract{Value,Element} instruction extracts element Idx.
469static Optional<unsigned> getExtractIndex(Instruction *E) {
470 unsigned Opcode = E->getOpcode();
471 assert((Opcode == Instruction::ExtractElement ||(((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? static_cast<void> (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 473, __PRETTY_FUNCTION__))
472 Opcode == Instruction::ExtractValue) &&(((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? static_cast<void> (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 473, __PRETTY_FUNCTION__))
473 "Expected extractelement or extractvalue instruction.")(((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? static_cast<void> (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 473, __PRETTY_FUNCTION__))
;
474 if (Opcode == Instruction::ExtractElement) {
475 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
476 if (!CI)
477 return None;
478 return CI->getZExtValue();
479 }
480 ExtractValueInst *EI = cast<ExtractValueInst>(E);
481 if (EI->getNumIndices() != 1)
482 return None;
483 return *EI->idx_begin();
484}
485
486/// \returns True if in-tree use also needs extract. This refers to
487/// possible scalar operand in vectorized instruction.
488static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
489 TargetLibraryInfo *TLI) {
490 unsigned Opcode = UserInst->getOpcode();
491 switch (Opcode) {
492 case Instruction::Load: {
493 LoadInst *LI = cast<LoadInst>(UserInst);
494 return (LI->getPointerOperand() == Scalar);
495 }
496 case Instruction::Store: {
497 StoreInst *SI = cast<StoreInst>(UserInst);
498 return (SI->getPointerOperand() == Scalar);
499 }
500 case Instruction::Call: {
501 CallInst *CI = cast<CallInst>(UserInst);
502 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
503 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
504 if (hasVectorInstrinsicScalarOpd(ID, i))
505 return (CI->getArgOperand(i) == Scalar);
506 }
507 LLVM_FALLTHROUGH[[gnu::fallthrough]];
508 }
509 default:
510 return false;
511 }
512}
513
514/// \returns the AA location that is being access by the instruction.
515static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
516 if (StoreInst *SI = dyn_cast<StoreInst>(I))
517 return MemoryLocation::get(SI);
518 if (LoadInst *LI = dyn_cast<LoadInst>(I))
519 return MemoryLocation::get(LI);
520 return MemoryLocation();
521}
522
523/// \returns True if the instruction is not a volatile or atomic load/store.
524static bool isSimple(Instruction *I) {
525 if (LoadInst *LI = dyn_cast<LoadInst>(I))
526 return LI->isSimple();
527 if (StoreInst *SI = dyn_cast<StoreInst>(I))
528 return SI->isSimple();
529 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
530 return !MI->isVolatile();
531 return true;
532}
533
534namespace llvm {
535
536static void inversePermutation(ArrayRef<unsigned> Indices,
537 SmallVectorImpl<int> &Mask) {
538 Mask.clear();
539 const unsigned E = Indices.size();
540 Mask.resize(E, E + 1);
541 for (unsigned I = 0; I < E; ++I)
542 Mask[Indices[I]] = I;
543}
544
545namespace slpvectorizer {
546
547/// Bottom Up SLP Vectorizer.
548class BoUpSLP {
549 struct TreeEntry;
550 struct ScheduleData;
551
552public:
553 using ValueList = SmallVector<Value *, 8>;
554 using InstrList = SmallVector<Instruction *, 16>;
555 using ValueSet = SmallPtrSet<Value *, 16>;
556 using StoreList = SmallVector<StoreInst *, 8>;
557 using ExtraValueToDebugLocsMap =
558 MapVector<Value *, SmallVector<Instruction *, 2>>;
559 using OrdersType = SmallVector<unsigned, 4>;
560
561 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
562 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
563 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
564 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
565 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
566 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
567 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
568 // Use the vector register size specified by the target unless overridden
569 // by a command-line option.
570 // TODO: It would be better to limit the vectorization factor based on
571 // data type rather than just register size. For example, x86 AVX has
572 // 256-bit registers, but it does not support integer operations
573 // at that width (that requires AVX2).
574 if (MaxVectorRegSizeOption.getNumOccurrences())
575 MaxVecRegSize = MaxVectorRegSizeOption;
576 else
577 MaxVecRegSize =
578 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
579 .getFixedSize();
580
581 if (MinVectorRegSizeOption.getNumOccurrences())
582 MinVecRegSize = MinVectorRegSizeOption;
583 else
584 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
585 }
586
587 /// Vectorize the tree that starts with the elements in \p VL.
588 /// Returns the vectorized root.
589 Value *vectorizeTree();
590
591 /// Vectorize the tree but with the list of externally used values \p
592 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
593 /// generated extractvalue instructions.
594 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
595
596 /// \returns the cost incurred by unwanted spills and fills, caused by
597 /// holding live values over call sites.
598 InstructionCost getSpillCost() const;
599
600 /// \returns the vectorization cost of the subtree that starts at \p VL.
601 /// A negative number means that this is profitable.
602 InstructionCost getTreeCost();
603
604 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
605 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
606 void buildTree(ArrayRef<Value *> Roots,
607 ArrayRef<Value *> UserIgnoreLst = None);
608
609 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
610 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
611 /// into account (and updating it, if required) list of externally used
612 /// values stored in \p ExternallyUsedValues.
613 void buildTree(ArrayRef<Value *> Roots,
614 ExtraValueToDebugLocsMap &ExternallyUsedValues,
615 ArrayRef<Value *> UserIgnoreLst = None);
616
617 /// Clear the internal data structures that are created by 'buildTree'.
618 void deleteTree() {
619 VectorizableTree.clear();
620 ScalarToTreeEntry.clear();
621 MustGather.clear();
622 ExternalUses.clear();
623 NumOpsWantToKeepOrder.clear();
624 NumOpsWantToKeepOriginalOrder = 0;
625 for (auto &Iter : BlocksSchedules) {
626 BlockScheduling *BS = Iter.second.get();
627 BS->clear();
628 }
629 MinBWs.clear();
630 InstrElementSize.clear();
631 }
632
633 unsigned getTreeSize() const { return VectorizableTree.size(); }
634
635 /// Perform LICM and CSE on the newly generated gather sequences.
636 void optimizeGatherSequence();
637
638 /// \returns The best order of instructions for vectorization.
639 Optional<ArrayRef<unsigned>> bestOrder() const {
640 assert(llvm::all_of(((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __PRETTY_FUNCTION__))
641 NumOpsWantToKeepOrder,((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __PRETTY_FUNCTION__))
642 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __PRETTY_FUNCTION__))
643 return D.getFirst().size() ==((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __PRETTY_FUNCTION__))
644 VectorizableTree[0]->Scalars.size();((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __PRETTY_FUNCTION__))
645 }) &&((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __PRETTY_FUNCTION__))
646 "All orders must have the same size as number of instructions in "((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __PRETTY_FUNCTION__))
647 "tree node.")((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 647, __PRETTY_FUNCTION__))
;
648 auto I = std::max_element(
649 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
650 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
651 const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
652 return D1.second < D2.second;
653 });
654 if (I == NumOpsWantToKeepOrder.end() ||
655 I->getSecond() <= NumOpsWantToKeepOriginalOrder)
656 return None;
657
658 return makeArrayRef(I->getFirst());
659 }
660
661 /// Builds the correct order for root instructions.
662 /// If some leaves have the same instructions to be vectorized, we may
663 /// incorrectly evaluate the best order for the root node (it is built for the
664 /// vector of instructions without repeated instructions and, thus, has less
665 /// elements than the root node). This function builds the correct order for
666 /// the root node.
667 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
668 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
669 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
670 /// be reordered, the best order will be \<1, 0\>. We need to extend this
671 /// order for the root node. For the root node this order should look like
672 /// \<3, 0, 1, 2\>. This function extends the order for the reused
673 /// instructions.
674 void findRootOrder(OrdersType &Order) {
675 // If the leaf has the same number of instructions to vectorize as the root
676 // - order must be set already.
677 unsigned RootSize = VectorizableTree[0]->Scalars.size();
678 if (Order.size() == RootSize)
679 return;
680 SmallVector<unsigned, 4> RealOrder(Order.size());
681 std::swap(Order, RealOrder);
682 SmallVector<int, 4> Mask;
683 inversePermutation(RealOrder, Mask);
684 Order.assign(Mask.begin(), Mask.end());
685 // The leaf has less number of instructions - need to find the true order of
686 // the root.
687 // Scan the nodes starting from the leaf back to the root.
688 const TreeEntry *PNode = VectorizableTree.back().get();
689 SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
690 SmallPtrSet<const TreeEntry *, 4> Visited;
691 while (!Nodes.empty() && Order.size() != RootSize) {
692 const TreeEntry *PNode = Nodes.pop_back_val();
693 if (!Visited.insert(PNode).second)
694 continue;
695 const TreeEntry &Node = *PNode;
696 for (const EdgeInfo &EI : Node.UserTreeIndices)
697 if (EI.UserTE)
698 Nodes.push_back(EI.UserTE);
699 if (Node.ReuseShuffleIndices.empty())
700 continue;
701 // Build the order for the parent node.
702 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
703 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
704 // The algorithm of the order extension is:
705 // 1. Calculate the number of the same instructions for the order.
706 // 2. Calculate the index of the new order: total number of instructions
707 // with order less than the order of the current instruction + reuse
708 // number of the current instruction.
709 // 3. The new order is just the index of the instruction in the original
710 // vector of the instructions.
711 for (unsigned I : Node.ReuseShuffleIndices)
712 ++OrderCounter[Order[I]];
713 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
714 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
715 unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
716 unsigned OrderIdx = Order[ReusedIdx];
717 unsigned NewIdx = 0;
718 for (unsigned J = 0; J < OrderIdx; ++J)
719 NewIdx += OrderCounter[J];
720 NewIdx += CurrentCounter[OrderIdx];
721 ++CurrentCounter[OrderIdx];
722 assert(NewOrder[NewIdx] == RootSize &&((NewOrder[NewIdx] == RootSize && "The order index should not be written already."
) ? static_cast<void> (0) : __assert_fail ("NewOrder[NewIdx] == RootSize && \"The order index should not be written already.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 723, __PRETTY_FUNCTION__))
723 "The order index should not be written already.")((NewOrder[NewIdx] == RootSize && "The order index should not be written already."
) ? static_cast<void> (0) : __assert_fail ("NewOrder[NewIdx] == RootSize && \"The order index should not be written already.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 723, __PRETTY_FUNCTION__))
;
724 NewOrder[NewIdx] = I;
725 }
726 std::swap(Order, NewOrder);
727 }
728 assert(Order.size() == RootSize &&((Order.size() == RootSize && "Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? static_cast<
void> (0) : __assert_fail ("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 730, __PRETTY_FUNCTION__))
729 "Root node is expected or the size of the order must be the same as "((Order.size() == RootSize && "Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? static_cast<
void> (0) : __assert_fail ("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 730, __PRETTY_FUNCTION__))
730 "the number of elements in the root node.")((Order.size() == RootSize && "Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? static_cast<
void> (0) : __assert_fail ("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 730, __PRETTY_FUNCTION__))
;
731 assert(llvm::all_of(Order,((llvm::all_of(Order, [RootSize](unsigned Val) { return Val !=
RootSize; }) && "All indices must be initialized") ?
static_cast<void> (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 733, __PRETTY_FUNCTION__))
732 [RootSize](unsigned Val) { return Val != RootSize; }) &&((llvm::all_of(Order, [RootSize](unsigned Val) { return Val !=
RootSize; }) && "All indices must be initialized") ?
static_cast<void> (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 733, __PRETTY_FUNCTION__))
733 "All indices must be initialized")((llvm::all_of(Order, [RootSize](unsigned Val) { return Val !=
RootSize; }) && "All indices must be initialized") ?
static_cast<void> (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 733, __PRETTY_FUNCTION__))
;
734 }
735
736 /// \return The vector element size in bits to use when vectorizing the
737 /// expression tree ending at \p V. If V is a store, the size is the width of
738 /// the stored value. Otherwise, the size is the width of the largest loaded
739 /// value reaching V. This method is used by the vectorizer to calculate
740 /// vectorization factors.
741 unsigned getVectorElementSize(Value *V);
742
743 /// Compute the minimum type sizes required to represent the entries in a
744 /// vectorizable tree.
745 void computeMinimumValueSizes();
746
747 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
748 unsigned getMaxVecRegSize() const {
749 return MaxVecRegSize;
750 }
751
752 // \returns minimum vector register size as set by cl::opt.
753 unsigned getMinVecRegSize() const {
754 return MinVecRegSize;
755 }
756
757 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
758 unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
759 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
760 return MaxVF ? MaxVF : UINT_MAX(2147483647 *2U +1U);
761 }
762
763 /// Check if homogeneous aggregate is isomorphic to some VectorType.
764 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
765 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
766 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
767 ///
768 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
769 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
770
771 /// \returns True if the VectorizableTree is both tiny and not fully
772 /// vectorizable. We do not vectorize such trees.
773 bool isTreeTinyAndNotFullyVectorizable() const;
774
775 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
776 /// can be load combined in the backend. Load combining may not be allowed in
777 /// the IR optimizer, so we do not want to alter the pattern. For example,
778 /// partially transforming a scalar bswap() pattern into vector code is
779 /// effectively impossible for the backend to undo.
780 /// TODO: If load combining is allowed in the IR optimizer, this analysis
781 /// may not be necessary.
782 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
783
784 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
785 /// can be load combined in the backend. Load combining may not be allowed in
786 /// the IR optimizer, so we do not want to alter the pattern. For example,
787 /// partially transforming a scalar bswap() pattern into vector code is
788 /// effectively impossible for the backend to undo.
789 /// TODO: If load combining is allowed in the IR optimizer, this analysis
790 /// may not be necessary.
791 bool isLoadCombineCandidate() const;
792
793 OptimizationRemarkEmitter *getORE() { return ORE; }
794
795 /// This structure holds any data we need about the edges being traversed
796 /// during buildTree_rec(). We keep track of:
797 /// (i) the user TreeEntry index, and
798 /// (ii) the index of the edge.
799 struct EdgeInfo {
800 EdgeInfo() = default;
801 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
802 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
803 /// The user TreeEntry.
804 TreeEntry *UserTE = nullptr;
805 /// The operand index of the use.
806 unsigned EdgeIdx = UINT_MAX(2147483647 *2U +1U);
807#ifndef NDEBUG
808 friend inline raw_ostream &operator<<(raw_ostream &OS,
809 const BoUpSLP::EdgeInfo &EI) {
810 EI.dump(OS);
811 return OS;
812 }
813 /// Debug print.
814 void dump(raw_ostream &OS) const {
815 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
816 << " EdgeIdx:" << EdgeIdx << "}";
817 }
818 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { dump(dbgs()); }
819#endif
820 };
821
822 /// A helper data structure to hold the operands of a vector of instructions.
823 /// This supports a fixed vector length for all operand vectors.
824 class VLOperands {
825 /// For each operand we need (i) the value, and (ii) the opcode that it
826 /// would be attached to if the expression was in a left-linearized form.
827 /// This is required to avoid illegal operand reordering.
828 /// For example:
829 /// \verbatim
830 /// 0 Op1
831 /// |/
832 /// Op1 Op2 Linearized + Op2
833 /// \ / ----------> |/
834 /// - -
835 ///
836 /// Op1 - Op2 (0 + Op1) - Op2
837 /// \endverbatim
838 ///
839 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
840 ///
841 /// Another way to think of this is to track all the operations across the
842 /// path from the operand all the way to the root of the tree and to
843 /// calculate the operation that corresponds to this path. For example, the
844 /// path from Op2 to the root crosses the RHS of the '-', therefore the
845 /// corresponding operation is a '-' (which matches the one in the
846 /// linearized tree, as shown above).
847 ///
848 /// For lack of a better term, we refer to this operation as Accumulated
849 /// Path Operation (APO).
850 struct OperandData {
851 OperandData() = default;
852 OperandData(Value *V, bool APO, bool IsUsed)
853 : V(V), APO(APO), IsUsed(IsUsed) {}
854 /// The operand value.
855 Value *V = nullptr;
856 /// TreeEntries only allow a single opcode, or an alternate sequence of
857 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
858 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
859 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
860 /// (e.g., Add/Mul)
861 bool APO = false;
862 /// Helper data for the reordering function.
863 bool IsUsed = false;
864 };
865
866 /// During operand reordering, we are trying to select the operand at lane
867 /// that matches best with the operand at the neighboring lane. Our
868 /// selection is based on the type of value we are looking for. For example,
869 /// if the neighboring lane has a load, we need to look for a load that is
870 /// accessing a consecutive address. These strategies are summarized in the
871 /// 'ReorderingMode' enumerator.
872 enum class ReorderingMode {
873 Load, ///< Matching loads to consecutive memory addresses
874 Opcode, ///< Matching instructions based on opcode (same or alternate)
875 Constant, ///< Matching constants
876 Splat, ///< Matching the same instruction multiple times (broadcast)
877 Failed, ///< We failed to create a vectorizable group
878 };
879
880 using OperandDataVec = SmallVector<OperandData, 2>;
881
882 /// A vector of operand vectors.
883 SmallVector<OperandDataVec, 4> OpsVec;
884
885 const DataLayout &DL;
886 ScalarEvolution &SE;
887 const BoUpSLP &R;
888
889 /// \returns the operand data at \p OpIdx and \p Lane.
890 OperandData &getData(unsigned OpIdx, unsigned Lane) {
891 return OpsVec[OpIdx][Lane];
892 }
893
894 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
895 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
896 return OpsVec[OpIdx][Lane];
897 }
898
899 /// Clears the used flag for all entries.
900 void clearUsed() {
901 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
902 OpIdx != NumOperands; ++OpIdx)
903 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
904 ++Lane)
905 OpsVec[OpIdx][Lane].IsUsed = false;
906 }
907
908 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
909 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
910 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
911 }
912
913 // The hard-coded scores listed here are not very important. When computing
914 // the scores of matching one sub-tree with another, we are basically
915 // counting the number of values that are matching. So even if all scores
916 // are set to 1, we would still get a decent matching result.
917 // However, sometimes we have to break ties. For example we may have to
918 // choose between matching loads vs matching opcodes. This is what these
919 // scores are helping us with: they provide the order of preference.
920
921 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
922 static const int ScoreConsecutiveLoads = 3;
923 /// ExtractElementInst from same vector and consecutive indexes.
924 static const int ScoreConsecutiveExtracts = 3;
925 /// Constants.
926 static const int ScoreConstants = 2;
927 /// Instructions with the same opcode.
928 static const int ScoreSameOpcode = 2;
929 /// Instructions with alt opcodes (e.g, add + sub).
930 static const int ScoreAltOpcodes = 1;
931 /// Identical instructions (a.k.a. splat or broadcast).
932 static const int ScoreSplat = 1;
933 /// Matching with an undef is preferable to failing.
934 static const int ScoreUndef = 1;
935 /// Score for failing to find a decent match.
936 static const int ScoreFail = 0;
937 /// User exteranl to the vectorized code.
938 static const int ExternalUseCost = 1;
939 /// The user is internal but in a different lane.
940 static const int UserInDiffLaneCost = ExternalUseCost;
941
942 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
943 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
944 ScalarEvolution &SE) {
945 auto *LI1 = dyn_cast<LoadInst>(V1);
946 auto *LI2 = dyn_cast<LoadInst>(V2);
947 if (LI1 && LI2) {
948 if (LI1->getParent() != LI2->getParent())
949 return VLOperands::ScoreFail;
950
951 Optional<int> Dist =
952 getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(),
953 DL, SE, /*StrictCheck=*/true);
954 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
955 : VLOperands::ScoreFail;
956 }
957
958 auto *C1 = dyn_cast<Constant>(V1);
959 auto *C2 = dyn_cast<Constant>(V2);
960 if (C1 && C2)
961 return VLOperands::ScoreConstants;
962
963 // Extracts from consecutive indexes of the same vector better score as
964 // the extracts could be optimized away.
965 Value *EV;
966 ConstantInt *Ex1Idx, *Ex2Idx;
967 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
968 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
969 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
970 return VLOperands::ScoreConsecutiveExtracts;
971
972 auto *I1 = dyn_cast<Instruction>(V1);
973 auto *I2 = dyn_cast<Instruction>(V2);
974 if (I1 && I2) {
975 if (I1 == I2)
976 return VLOperands::ScoreSplat;
977 InstructionsState S = getSameOpcode({I1, I2});
978 // Note: Only consider instructions with <= 2 operands to avoid
979 // complexity explosion.
980 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
981 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
982 : VLOperands::ScoreSameOpcode;
983 }
984
985 if (isa<UndefValue>(V2))
986 return VLOperands::ScoreUndef;
987
988 return VLOperands::ScoreFail;
989 }
990
991 /// Holds the values and their lane that are taking part in the look-ahead
992 /// score calculation. This is used in the external uses cost calculation.
993 SmallDenseMap<Value *, int> InLookAheadValues;
994
995 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
996 /// either external to the vectorized code, or require shuffling.
997 int getExternalUsesCost(const std::pair<Value *, int> &LHS,
998 const std::pair<Value *, int> &RHS) {
999 int Cost = 0;
1000 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
1001 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
1002 Value *V = Values[Idx].first;
1003 if (isa<Constant>(V)) {
1004 // Since this is a function pass, it doesn't make semantic sense to
1005 // walk the users of a subclass of Constant. The users could be in
1006 // another function, or even another module that happens to be in
1007 // the same LLVMContext.
1008 continue;
1009 }
1010
1011 // Calculate the absolute lane, using the minimum relative lane of LHS
1012 // and RHS as base and Idx as the offset.
1013 int Ln = std::min(LHS.second, RHS.second) + Idx;
1014 assert(Ln >= 0 && "Bad lane calculation")((Ln >= 0 && "Bad lane calculation") ? static_cast
<void> (0) : __assert_fail ("Ln >= 0 && \"Bad lane calculation\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1014, __PRETTY_FUNCTION__))
;
1015 unsigned UsersBudget = LookAheadUsersBudget;
1016 for (User *U : V->users()) {
1017 if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
1018 // The user is in the VectorizableTree. Check if we need to insert.
1019 auto It = llvm::find(UserTE->Scalars, U);
1020 assert(It != UserTE->Scalars.end() && "U is in UserTE")((It != UserTE->Scalars.end() && "U is in UserTE")
? static_cast<void> (0) : __assert_fail ("It != UserTE->Scalars.end() && \"U is in UserTE\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1020, __PRETTY_FUNCTION__))
;
1021 int UserLn = std::distance(UserTE->Scalars.begin(), It);
1022 assert(UserLn >= 0 && "Bad lane")((UserLn >= 0 && "Bad lane") ? static_cast<void
> (0) : __assert_fail ("UserLn >= 0 && \"Bad lane\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1022, __PRETTY_FUNCTION__))
;
1023 if (UserLn != Ln)
1024 Cost += UserInDiffLaneCost;
1025 } else {
1026 // Check if the user is in the look-ahead code.
1027 auto It2 = InLookAheadValues.find(U);
1028 if (It2 != InLookAheadValues.end()) {
1029 // The user is in the look-ahead code. Check the lane.
1030 if (It2->second != Ln)
1031 Cost += UserInDiffLaneCost;
1032 } else {
1033 // The user is neither in SLP tree nor in the look-ahead code.
1034 Cost += ExternalUseCost;
1035 }
1036 }
1037 // Limit the number of visited uses to cap compilation time.
1038 if (--UsersBudget == 0)
1039 break;
1040 }
1041 }
1042 return Cost;
1043 }
1044
1045 /// Go through the operands of \p LHS and \p RHS recursively until \p
1046 /// MaxLevel, and return the cummulative score. For example:
1047 /// \verbatim
1048 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
1049 /// \ / \ / \ / \ /
1050 /// + + + +
1051 /// G1 G2 G3 G4
1052 /// \endverbatim
1053 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1054 /// each level recursively, accumulating the score. It starts from matching
1055 /// the additions at level 0, then moves on to the loads (level 1). The
1056 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1057 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1058 /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1059 /// Please note that the order of the operands does not matter, as we
1060 /// evaluate the score of all profitable combinations of operands. In
1061 /// other words the score of G1 and G4 is the same as G1 and G2. This
1062 /// heuristic is based on ideas described in:
1063 /// Look-ahead SLP: Auto-vectorization in the presence of commutative
1064 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1065 /// Luís F. W. Góes
1066 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1067 const std::pair<Value *, int> &RHS, int CurrLevel,
1068 int MaxLevel) {
1069
1070 Value *V1 = LHS.first;
1071 Value *V2 = RHS.first;
1072 // Get the shallow score of V1 and V2.
1073 int ShallowScoreAtThisLevel =
1074 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1075 getExternalUsesCost(LHS, RHS));
1076 int Lane1 = LHS.second;
1077 int Lane2 = RHS.second;
1078
1079 // If reached MaxLevel,
1080 // or if V1 and V2 are not instructions,
1081 // or if they are SPLAT,
1082 // or if they are not consecutive, early return the current cost.
1083 auto *I1 = dyn_cast<Instruction>(V1);
1084 auto *I2 = dyn_cast<Instruction>(V2);
1085 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1086 ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1087 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1088 return ShallowScoreAtThisLevel;
1089 assert(I1 && I2 && "Should have early exited.")((I1 && I2 && "Should have early exited.") ? static_cast
<void> (0) : __assert_fail ("I1 && I2 && \"Should have early exited.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1089, __PRETTY_FUNCTION__))
;
1090
1091 // Keep track of in-tree values for determining the external-use cost.
1092 InLookAheadValues[V1] = Lane1;
1093 InLookAheadValues[V2] = Lane2;
1094
1095 // Contains the I2 operand indexes that got matched with I1 operands.
1096 SmallSet<unsigned, 4> Op2Used;
1097
1098 // Recursion towards the operands of I1 and I2. We are trying all possbile
1099 // operand pairs, and keeping track of the best score.
1100 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1101 OpIdx1 != NumOperands1; ++OpIdx1) {
1102 // Try to pair op1I with the best operand of I2.
1103 int MaxTmpScore = 0;
1104 unsigned MaxOpIdx2 = 0;
1105 bool FoundBest = false;
1106 // If I2 is commutative try all combinations.
1107 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1108 unsigned ToIdx = isCommutative(I2)
1109 ? I2->getNumOperands()
1110 : std::min(I2->getNumOperands(), OpIdx1 + 1);
1111 assert(FromIdx <= ToIdx && "Bad index")((FromIdx <= ToIdx && "Bad index") ? static_cast<
void> (0) : __assert_fail ("FromIdx <= ToIdx && \"Bad index\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1111, __PRETTY_FUNCTION__))
;
1112 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1113 // Skip operands already paired with OpIdx1.
1114 if (Op2Used.count(OpIdx2))
1115 continue;
1116 // Recursively calculate the cost at each level
1117 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1118 {I2->getOperand(OpIdx2), Lane2},
1119 CurrLevel + 1, MaxLevel);
1120 // Look for the best score.
1121 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1122 MaxTmpScore = TmpScore;
1123 MaxOpIdx2 = OpIdx2;
1124 FoundBest = true;
1125 }
1126 }
1127 if (FoundBest) {
1128 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1129 Op2Used.insert(MaxOpIdx2);
1130 ShallowScoreAtThisLevel += MaxTmpScore;
1131 }
1132 }
1133 return ShallowScoreAtThisLevel;
1134 }
1135
1136 /// \Returns the look-ahead score, which tells us how much the sub-trees
1137 /// rooted at \p LHS and \p RHS match, the more they match the higher the
1138 /// score. This helps break ties in an informed way when we cannot decide on
1139 /// the order of the operands by just considering the immediate
1140 /// predecessors.
1141 int getLookAheadScore(const std::pair<Value *, int> &LHS,
1142 const std::pair<Value *, int> &RHS) {
1143 InLookAheadValues.clear();
1144 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1145 }
1146
1147 // Search all operands in Ops[*][Lane] for the one that matches best
1148 // Ops[OpIdx][LastLane] and return its opreand index.
1149 // If no good match can be found, return None.
1150 Optional<unsigned>
1151 getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1152 ArrayRef<ReorderingMode> ReorderingModes) {
1153 unsigned NumOperands = getNumOperands();
1154
1155 // The operand of the previous lane at OpIdx.
1156 Value *OpLastLane = getData(OpIdx, LastLane).V;
1157
1158 // Our strategy mode for OpIdx.
1159 ReorderingMode RMode = ReorderingModes[OpIdx];
1160
1161 // The linearized opcode of the operand at OpIdx, Lane.
1162 bool OpIdxAPO = getData(OpIdx, Lane).APO;
1163
1164 // The best operand index and its score.
1165 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1166 // are using the score to differentiate between the two.
1167 struct BestOpData {
1168 Optional<unsigned> Idx = None;
1169 unsigned Score = 0;
1170 } BestOp;
1171
1172 // Iterate through all unused operands and look for the best.
1173 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1174 // Get the operand at Idx and Lane.
1175 OperandData &OpData = getData(Idx, Lane);
1176 Value *Op = OpData.V;
1177 bool OpAPO = OpData.APO;
1178
1179 // Skip already selected operands.
1180 if (OpData.IsUsed)
1181 continue;
1182
1183 // Skip if we are trying to move the operand to a position with a
1184 // different opcode in the linearized tree form. This would break the
1185 // semantics.
1186 if (OpAPO != OpIdxAPO)
1187 continue;
1188
1189 // Look for an operand that matches the current mode.
1190 switch (RMode) {
1191 case ReorderingMode::Load:
1192 case ReorderingMode::Constant:
1193 case ReorderingMode::Opcode: {
1194 bool LeftToRight = Lane > LastLane;
1195 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1196 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1197 unsigned Score =
1198 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1199 if (Score > BestOp.Score) {
1200 BestOp.Idx = Idx;
1201 BestOp.Score = Score;
1202 }
1203 break;
1204 }
1205 case ReorderingMode::Splat:
1206 if (Op == OpLastLane)
1207 BestOp.Idx = Idx;
1208 break;
1209 case ReorderingMode::Failed:
1210 return None;
1211 }
1212 }
1213
1214 if (BestOp.Idx) {
1215 getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1216 return BestOp.Idx;
1217 }
1218 // If we could not find a good match return None.
1219 return None;
1220 }
1221
1222 /// Helper for reorderOperandVecs. \Returns the lane that we should start
1223 /// reordering from. This is the one which has the least number of operands
1224 /// that can freely move about.
1225 unsigned getBestLaneToStartReordering() const {
1226 unsigned BestLane = 0;
1227 unsigned Min = UINT_MAX(2147483647 *2U +1U);
1228 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1229 ++Lane) {
1230 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1231 if (NumFreeOps < Min) {
1232 Min = NumFreeOps;
1233 BestLane = Lane;
1234 }
1235 }
1236 return BestLane;
1237 }
1238
1239 /// \Returns the maximum number of operands that are allowed to be reordered
1240 /// for \p Lane. This is used as a heuristic for selecting the first lane to
1241 /// start operand reordering.
1242 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1243 unsigned CntTrue = 0;
1244 unsigned NumOperands = getNumOperands();
1245 // Operands with the same APO can be reordered. We therefore need to count
1246 // how many of them we have for each APO, like this: Cnt[APO] = x.
1247 // Since we only have two APOs, namely true and false, we can avoid using
1248 // a map. Instead we can simply count the number of operands that
1249 // correspond to one of them (in this case the 'true' APO), and calculate
1250 // the other by subtracting it from the total number of operands.
1251 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1252 if (getData(OpIdx, Lane).APO)
1253 ++CntTrue;
1254 unsigned CntFalse = NumOperands - CntTrue;
1255 return std::max(CntTrue, CntFalse);
1256 }
1257
1258 /// Go through the instructions in VL and append their operands.
1259 void appendOperandsOfVL(ArrayRef<Value *> VL) {
1260 assert(!VL.empty() && "Bad VL")((!VL.empty() && "Bad VL") ? static_cast<void> (
0) : __assert_fail ("!VL.empty() && \"Bad VL\"", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1260, __PRETTY_FUNCTION__))
;
1261 assert((empty() || VL.size() == getNumLanes()) &&(((empty() || VL.size() == getNumLanes()) && "Expected same number of lanes"
) ? static_cast<void> (0) : __assert_fail ("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1262, __PRETTY_FUNCTION__))
1262 "Expected same number of lanes")(((empty() || VL.size() == getNumLanes()) && "Expected same number of lanes"
) ? static_cast<void> (0) : __assert_fail ("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1262, __PRETTY_FUNCTION__))
;
1263 assert(isa<Instruction>(VL[0]) && "Expected instruction")((isa<Instruction>(VL[0]) && "Expected instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(VL[0]) && \"Expected instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1263, __PRETTY_FUNCTION__))
;
1264 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1265 OpsVec.resize(NumOperands);
1266 unsigned NumLanes = VL.size();
1267 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1268 OpsVec[OpIdx].resize(NumLanes);
1269 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1270 assert(isa<Instruction>(VL[Lane]) && "Expected instruction")((isa<Instruction>(VL[Lane]) && "Expected instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(VL[Lane]) && \"Expected instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1270, __PRETTY_FUNCTION__))
;
1271 // Our tree has just 3 nodes: the root and two operands.
1272 // It is therefore trivial to get the APO. We only need to check the
1273 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1274 // RHS operand. The LHS operand of both add and sub is never attached
1275 // to an inversese operation in the linearized form, therefore its APO
1276 // is false. The RHS is true only if VL[Lane] is an inverse operation.
1277
1278 // Since operand reordering is performed on groups of commutative
1279 // operations or alternating sequences (e.g., +, -), we can safely
1280 // tell the inverse operations by checking commutativity.
1281 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1282 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1283 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1284 APO, false};
1285 }
1286 }
1287 }
1288
1289 /// \returns the number of operands.
1290 unsigned getNumOperands() const { return OpsVec.size(); }
1291
1292 /// \returns the number of lanes.
1293 unsigned getNumLanes() const { return OpsVec[0].size(); }
1294
1295 /// \returns the operand value at \p OpIdx and \p Lane.
1296 Value *getValue(unsigned OpIdx, unsigned Lane) const {
1297 return getData(OpIdx, Lane).V;
1298 }
1299
1300 /// \returns true if the data structure is empty.
1301 bool empty() const { return OpsVec.empty(); }
1302
1303 /// Clears the data.
1304 void clear() { OpsVec.clear(); }
1305
1306 /// \Returns true if there are enough operands identical to \p Op to fill
1307 /// the whole vector.
1308 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1309 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1310 bool OpAPO = getData(OpIdx, Lane).APO;
1311 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1312 if (Ln == Lane)
1313 continue;
1314 // This is set to true if we found a candidate for broadcast at Lane.
1315 bool FoundCandidate = false;
1316 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1317 OperandData &Data = getData(OpI, Ln);
1318 if (Data.APO != OpAPO || Data.IsUsed)
1319 continue;
1320 if (Data.V == Op) {
1321 FoundCandidate = true;
1322 Data.IsUsed = true;
1323 break;
1324 }
1325 }
1326 if (!FoundCandidate)
1327 return false;
1328 }
1329 return true;
1330 }
1331
1332 public:
1333 /// Initialize with all the operands of the instruction vector \p RootVL.
1334 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1335 ScalarEvolution &SE, const BoUpSLP &R)
1336 : DL(DL), SE(SE), R(R) {
1337 // Append all the operands of RootVL.
1338 appendOperandsOfVL(RootVL);
1339 }
1340
1341 /// \Returns a value vector with the operands across all lanes for the
1342 /// opearnd at \p OpIdx.
1343 ValueList getVL(unsigned OpIdx) const {
1344 ValueList OpVL(OpsVec[OpIdx].size());
1345 assert(OpsVec[OpIdx].size() == getNumLanes() &&((OpsVec[OpIdx].size() == getNumLanes() && "Expected same num of lanes across all operands"
) ? static_cast<void> (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1346, __PRETTY_FUNCTION__))
1346 "Expected same num of lanes across all operands")((OpsVec[OpIdx].size() == getNumLanes() && "Expected same num of lanes across all operands"
) ? static_cast<void> (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1346, __PRETTY_FUNCTION__))
;
1347 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1348 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1349 return OpVL;
1350 }
1351
1352 // Performs operand reordering for 2 or more operands.
1353 // The original operands are in OrigOps[OpIdx][Lane].
1354 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1355 void reorder() {
1356 unsigned NumOperands = getNumOperands();
1357 unsigned NumLanes = getNumLanes();
1358 // Each operand has its own mode. We are using this mode to help us select
1359 // the instructions for each lane, so that they match best with the ones
1360 // we have selected so far.
1361 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1362
1363 // This is a greedy single-pass algorithm. We are going over each lane
1364 // once and deciding on the best order right away with no back-tracking.
1365 // However, in order to increase its effectiveness, we start with the lane
1366 // that has operands that can move the least. For example, given the
1367 // following lanes:
1368 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
1369 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
1370 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
1371 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
1372 // we will start at Lane 1, since the operands of the subtraction cannot
1373 // be reordered. Then we will visit the rest of the lanes in a circular
1374 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1375
1376 // Find the first lane that we will start our search from.
1377 unsigned FirstLane = getBestLaneToStartReordering();
1378
1379 // Initialize the modes.
1380 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1381 Value *OpLane0 = getValue(OpIdx, FirstLane);
1382 // Keep track if we have instructions with all the same opcode on one
1383 // side.
1384 if (isa<LoadInst>(OpLane0))
1385 ReorderingModes[OpIdx] = ReorderingMode::Load;
1386 else if (isa<Instruction>(OpLane0)) {
1387 // Check if OpLane0 should be broadcast.
1388 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1389 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1390 else
1391 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1392 }
1393 else if (isa<Constant>(OpLane0))
1394 ReorderingModes[OpIdx] = ReorderingMode::Constant;
1395 else if (isa<Argument>(OpLane0))
1396 // Our best hope is a Splat. It may save some cost in some cases.
1397 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1398 else
1399 // NOTE: This should be unreachable.
1400 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1401 }
1402
1403 // If the initial strategy fails for any of the operand indexes, then we
1404 // perform reordering again in a second pass. This helps avoid assigning
1405 // high priority to the failed strategy, and should improve reordering for
1406 // the non-failed operand indexes.
1407 for (int Pass = 0; Pass != 2; ++Pass) {
1408 // Skip the second pass if the first pass did not fail.
1409 bool StrategyFailed = false;
1410 // Mark all operand data as free to use.
1411 clearUsed();
1412 // We keep the original operand order for the FirstLane, so reorder the
1413 // rest of the lanes. We are visiting the nodes in a circular fashion,
1414 // using FirstLane as the center point and increasing the radius
1415 // distance.
1416 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1417 // Visit the lane on the right and then the lane on the left.
1418 for (int Direction : {+1, -1}) {
1419 int Lane = FirstLane + Direction * Distance;
1420 if (Lane < 0 || Lane >= (int)NumLanes)
1421 continue;
1422 int LastLane = Lane - Direction;
1423 assert(LastLane >= 0 && LastLane < (int)NumLanes &&((LastLane >= 0 && LastLane < (int)NumLanes &&
"Out of bounds") ? static_cast<void> (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1424, __PRETTY_FUNCTION__))
1424 "Out of bounds")((LastLane >= 0 && LastLane < (int)NumLanes &&
"Out of bounds") ? static_cast<void> (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1424, __PRETTY_FUNCTION__))
;
1425 // Look for a good match for each operand.
1426 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1427 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1428 Optional<unsigned> BestIdx =
1429 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1430 // By not selecting a value, we allow the operands that follow to
1431 // select a better matching value. We will get a non-null value in
1432 // the next run of getBestOperand().
1433 if (BestIdx) {
1434 // Swap the current operand with the one returned by
1435 // getBestOperand().
1436 swap(OpIdx, BestIdx.getValue(), Lane);
1437 } else {
1438 // We failed to find a best operand, set mode to 'Failed'.
1439 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1440 // Enable the second pass.
1441 StrategyFailed = true;
1442 }
1443 }
1444 }
1445 }
1446 // Skip second pass if the strategy did not fail.
1447 if (!StrategyFailed)
1448 break;
1449 }
1450 }
1451
1452#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static StringRef getModeStr(ReorderingMode RMode) {
1454 switch (RMode) {
1455 case ReorderingMode::Load:
1456 return "Load";
1457 case ReorderingMode::Opcode:
1458 return "Opcode";
1459 case ReorderingMode::Constant:
1460 return "Constant";
1461 case ReorderingMode::Splat:
1462 return "Splat";
1463 case ReorderingMode::Failed:
1464 return "Failed";
1465 }
1466 llvm_unreachable("Unimplemented Reordering Type")::llvm::llvm_unreachable_internal("Unimplemented Reordering Type"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1466)
;
1467 }
1468
1469 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static raw_ostream &printMode(ReorderingMode RMode,
1470 raw_ostream &OS) {
1471 return OS << getModeStr(RMode);
1472 }
1473
1474 /// Debug print.
1475 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static void dumpMode(ReorderingMode RMode) {
1476 printMode(RMode, dbgs());
1477 }
1478
1479 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1480 return printMode(RMode, OS);
1481 }
1482
1483 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) raw_ostream &print(raw_ostream &OS) const {
1484 const unsigned Indent = 2;
1485 unsigned Cnt = 0;
1486 for (const OperandDataVec &OpDataVec : OpsVec) {
1487 OS << "Operand " << Cnt++ << "\n";
1488 for (const OperandData &OpData : OpDataVec) {
1489 OS.indent(Indent) << "{";
1490 if (Value *V = OpData.V)
1491 OS << *V;
1492 else
1493 OS << "null";
1494 OS << ", APO:" << OpData.APO << "}\n";
1495 }
1496 OS << "\n";
1497 }
1498 return OS;
1499 }
1500
1501 /// Debug print.
1502 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { print(dbgs()); }
1503#endif
1504 };
1505
1506 /// Checks if the instruction is marked for deletion.
1507 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1508
1509 /// Marks values operands for later deletion by replacing them with Undefs.
1510 void eraseInstructions(ArrayRef<Value *> AV);
1511
1512 ~BoUpSLP();
1513
1514private:
1515 /// Checks if all users of \p I are the part of the vectorization tree.
1516 bool areAllUsersVectorized(Instruction *I) const;
1517
1518 /// \returns the cost of the vectorizable entry.
1519 InstructionCost getEntryCost(TreeEntry *E);
1520
1521 /// This is the recursive part of buildTree.
1522 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1523 const EdgeInfo &EI);
1524
1525 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1526 /// be vectorized to use the original vector (or aggregate "bitcast" to a
1527 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1528 /// returns false, setting \p CurrentOrder to either an empty vector or a
1529 /// non-identity permutation that allows to reuse extract instructions.
1530 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1531 SmallVectorImpl<unsigned> &CurrentOrder) const;
1532
1533 /// Vectorize a single entry in the tree.
1534 Value *vectorizeTree(TreeEntry *E);
1535
1536 /// Vectorize a single entry in the tree, starting in \p VL.
1537 Value *vectorizeTree(ArrayRef<Value *> VL);
1538
1539 /// \returns the scalarization cost for this type. Scalarization in this
1540 /// context means the creation of vectors from a group of scalars.
1541 InstructionCost
1542 getGatherCost(FixedVectorType *Ty,
1543 const DenseSet<unsigned> &ShuffledIndices) const;
1544
1545 /// \returns the scalarization cost for this list of values. Assuming that
1546 /// this subtree gets vectorized, we may need to extract the values from the
1547 /// roots. This method calculates the cost of extracting the values.
1548 InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1549
1550 /// Set the Builder insert point to one after the last instruction in
1551 /// the bundle
1552 void setInsertPointAfterBundle(TreeEntry *E);
1553
1554 /// \returns a vector from a collection of scalars in \p VL.
1555 Value *gather(ArrayRef<Value *> VL);
1556
1557 /// \returns whether the VectorizableTree is fully vectorizable and will
1558 /// be beneficial even the tree height is tiny.
1559 bool isFullyVectorizableTinyTree() const;
1560
1561 /// Reorder commutative or alt operands to get better probability of
1562 /// generating vectorized code.
1563 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1564 SmallVectorImpl<Value *> &Left,
1565 SmallVectorImpl<Value *> &Right,
1566 const DataLayout &DL,
1567 ScalarEvolution &SE,
1568 const BoUpSLP &R);
1569 struct TreeEntry {
1570 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1571 TreeEntry(VecTreeTy &Container) : Container(Container) {}
1572
1573 /// \returns true if the scalars in VL are equal to this entry.
1574 bool isSame(ArrayRef<Value *> VL) const {
1575 if (VL.size() == Scalars.size())
1576 return std::equal(VL.begin(), VL.end(), Scalars.begin());
1577 return VL.size() == ReuseShuffleIndices.size() &&
1578 std::equal(
1579 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1580 [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1581 }
1582
1583 /// A vector of scalars.
1584 ValueList Scalars;
1585
1586 /// The Scalars are vectorized into this value. It is initialized to Null.
1587 Value *VectorizedValue = nullptr;
1588
1589 /// Do we need to gather this sequence or vectorize it
1590 /// (either with vector instruction or with scatter/gather
1591 /// intrinsics for store/load)?
1592 enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
1593 EntryState State;
1594
1595 /// Does this sequence require some shuffling?
1596 SmallVector<int, 4> ReuseShuffleIndices;
1597
1598 /// Does this entry require reordering?
1599 SmallVector<unsigned, 4> ReorderIndices;
1600
1601 /// Points back to the VectorizableTree.
1602 ///
1603 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
1604 /// to be a pointer and needs to be able to initialize the child iterator.
1605 /// Thus we need a reference back to the container to translate the indices
1606 /// to entries.
1607 VecTreeTy &Container;
1608
1609 /// The TreeEntry index containing the user of this entry. We can actually
1610 /// have multiple users so the data structure is not truly a tree.
1611 SmallVector<EdgeInfo, 1> UserTreeIndices;
1612
1613 /// The index of this treeEntry in VectorizableTree.
1614 int Idx = -1;
1615
1616 private:
1617 /// The operands of each instruction in each lane Operands[op_index][lane].
1618 /// Note: This helps avoid the replication of the code that performs the
1619 /// reordering of operands during buildTree_rec() and vectorizeTree().
1620 SmallVector<ValueList, 2> Operands;
1621
1622 /// The main/alternate instruction.
1623 Instruction *MainOp = nullptr;
1624 Instruction *AltOp = nullptr;
1625
1626 public:
1627 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1628 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1629 if (Operands.size() < OpIdx + 1)
1630 Operands.resize(OpIdx + 1);
1631 assert(Operands[OpIdx].size() == 0 && "Already resized?")((Operands[OpIdx].size() == 0 && "Already resized?") ?
static_cast<void> (0) : __assert_fail ("Operands[OpIdx].size() == 0 && \"Already resized?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1631, __PRETTY_FUNCTION__))
;
1632 Operands[OpIdx].resize(Scalars.size());
1633 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1634 Operands[OpIdx][Lane] = OpVL[Lane];
1635 }
1636
1637 /// Set the operands of this bundle in their original order.
1638 void setOperandsInOrder() {
1639 assert(Operands.empty() && "Already initialized?")((Operands.empty() && "Already initialized?") ? static_cast
<void> (0) : __assert_fail ("Operands.empty() && \"Already initialized?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1639, __PRETTY_FUNCTION__))
;
1640 auto *I0 = cast<Instruction>(Scalars[0]);
1641 Operands.resize(I0->getNumOperands());
1642 unsigned NumLanes = Scalars.size();
1643 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1644 OpIdx != NumOperands; ++OpIdx) {
1645 Operands[OpIdx].resize(NumLanes);
1646 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1647 auto *I = cast<Instruction>(Scalars[Lane]);
1648 assert(I->getNumOperands() == NumOperands &&((I->getNumOperands() == NumOperands && "Expected same number of operands"
) ? static_cast<void> (0) : __assert_fail ("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1649, __PRETTY_FUNCTION__))
1649 "Expected same number of operands")((I->getNumOperands() == NumOperands && "Expected same number of operands"
) ? static_cast<void> (0) : __assert_fail ("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1649, __PRETTY_FUNCTION__))
;
1650 Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1651 }
1652 }
1653 }
1654
1655 /// \returns the \p OpIdx operand of this TreeEntry.
1656 ValueList &getOperand(unsigned OpIdx) {
1657 assert(OpIdx < Operands.size() && "Off bounds")((OpIdx < Operands.size() && "Off bounds") ? static_cast
<void> (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1657, __PRETTY_FUNCTION__))
;
1658 return Operands[OpIdx];
1659 }
1660
1661 /// \returns the number of operands.
1662 unsigned getNumOperands() const { return Operands.size(); }
1663
1664 /// \return the single \p OpIdx operand.
1665 Value *getSingleOperand(unsigned OpIdx) const {
1666 assert(OpIdx < Operands.size() && "Off bounds")((OpIdx < Operands.size() && "Off bounds") ? static_cast
<void> (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1666, __PRETTY_FUNCTION__))
;
1667 assert(!Operands[OpIdx].empty() && "No operand available")((!Operands[OpIdx].empty() && "No operand available")
? static_cast<void> (0) : __assert_fail ("!Operands[OpIdx].empty() && \"No operand available\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1667, __PRETTY_FUNCTION__))
;
1668 return Operands[OpIdx][0];
1669 }
1670
1671 /// Some of the instructions in the list have alternate opcodes.
1672 bool isAltShuffle() const {
1673 return getOpcode() != getAltOpcode();
1674 }
1675
1676 bool isOpcodeOrAlt(Instruction *I) const {
1677 unsigned CheckedOpcode = I->getOpcode();
1678 return (getOpcode() == CheckedOpcode ||
1679 getAltOpcode() == CheckedOpcode);
1680 }
1681
1682 /// Chooses the correct key for scheduling data. If \p Op has the same (or
1683 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1684 /// \p OpValue.
1685 Value *isOneOf(Value *Op) const {
1686 auto *I = dyn_cast<Instruction>(Op);
1687 if (I && isOpcodeOrAlt(I))
1688 return Op;
1689 return MainOp;
1690 }
1691
1692 void setOperations(const InstructionsState &S) {
1693 MainOp = S.MainOp;
1694 AltOp = S.AltOp;
1695 }
1696
1697 Instruction *getMainOp() const {
1698 return MainOp;
1699 }
1700
1701 Instruction *getAltOp() const {
1702 return AltOp;
1703 }
1704
1705 /// The main/alternate opcodes for the list of instructions.
1706 unsigned getOpcode() const {
1707 return MainOp ? MainOp->getOpcode() : 0;
1708 }
1709
1710 unsigned getAltOpcode() const {
1711 return AltOp ? AltOp->getOpcode() : 0;
1712 }
1713
1714 /// Update operations state of this entry if reorder occurred.
1715 bool updateStateIfReorder() {
1716 if (ReorderIndices.empty())
1717 return false;
1718 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1719 setOperations(S);
1720 return true;
1721 }
1722
1723#ifndef NDEBUG
1724 /// Debug printer.
1725 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const {
1726 dbgs() << Idx << ".\n";
1727 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1728 dbgs() << "Operand " << OpI << ":\n";
1729 for (const Value *V : Operands[OpI])
1730 dbgs().indent(2) << *V << "\n";
1731 }
1732 dbgs() << "Scalars: \n";
1733 for (Value *V : Scalars)
1734 dbgs().indent(2) << *V << "\n";
1735 dbgs() << "State: ";
1736 switch (State) {
1737 case Vectorize:
1738 dbgs() << "Vectorize\n";
1739 break;
1740 case ScatterVectorize:
1741 dbgs() << "ScatterVectorize\n";
1742 break;
1743 case NeedToGather:
1744 dbgs() << "NeedToGather\n";
1745 break;
1746 }
1747 dbgs() << "MainOp: ";
1748 if (MainOp)
1749 dbgs() << *MainOp << "\n";
1750 else
1751 dbgs() << "NULL\n";
1752 dbgs() << "AltOp: ";
1753 if (AltOp)
1754 dbgs() << *AltOp << "\n";
1755 else
1756 dbgs() << "NULL\n";
1757 dbgs() << "VectorizedValue: ";
1758 if (VectorizedValue)
1759 dbgs() << *VectorizedValue << "\n";
1760 else
1761 dbgs() << "NULL\n";
1762 dbgs() << "ReuseShuffleIndices: ";
1763 if (ReuseShuffleIndices.empty())
1764 dbgs() << "Empty";
1765 else
1766 for (unsigned ReuseIdx : ReuseShuffleIndices)
1767 dbgs() << ReuseIdx << ", ";
1768 dbgs() << "\n";
1769 dbgs() << "ReorderIndices: ";
1770 for (unsigned ReorderIdx : ReorderIndices)
1771 dbgs() << ReorderIdx << ", ";
1772 dbgs() << "\n";
1773 dbgs() << "UserTreeIndices: ";
1774 for (const auto &EInfo : UserTreeIndices)
1775 dbgs() << EInfo << ", ";
1776 dbgs() << "\n";
1777 }
1778#endif
1779 };
1780
1781#ifndef NDEBUG
1782 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost,
1783 InstructionCost VecCost,
1784 InstructionCost ScalarCost) const {
1785 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
1786 dbgs() << "SLP: Costs:\n";
1787 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n";
1788 dbgs() << "SLP: VectorCost = " << VecCost << "\n";
1789 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n";
1790 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " <<
1791 ReuseShuffleCost + VecCost - ScalarCost << "\n";
1792 }
1793#endif
1794
1795 /// Create a new VectorizableTree entry.
1796 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1797 const InstructionsState &S,
1798 const EdgeInfo &UserTreeIdx,
1799 ArrayRef<unsigned> ReuseShuffleIndices = None,
1800 ArrayRef<unsigned> ReorderIndices = None) {
1801 TreeEntry::EntryState EntryState =
1802 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1803 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
1804 ReuseShuffleIndices, ReorderIndices);
1805 }
1806
1807 TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
1808 TreeEntry::EntryState EntryState,
1809 Optional<ScheduleData *> Bundle,
1810 const InstructionsState &S,
1811 const EdgeInfo &UserTreeIdx,
1812 ArrayRef<unsigned> ReuseShuffleIndices = None,
1813 ArrayRef<unsigned> ReorderIndices = None) {
1814 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||((((!Bundle && EntryState == TreeEntry::NeedToGather)
|| (Bundle && EntryState != TreeEntry::NeedToGather)
) && "Need to vectorize gather entry?") ? static_cast
<void> (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1816, __PRETTY_FUNCTION__))
1815 (Bundle && EntryState != TreeEntry::NeedToGather)) &&((((!Bundle && EntryState == TreeEntry::NeedToGather)
|| (Bundle && EntryState != TreeEntry::NeedToGather)
) && "Need to vectorize gather entry?") ? static_cast
<void> (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1816, __PRETTY_FUNCTION__))
1816 "Need to vectorize gather entry?")((((!Bundle && EntryState == TreeEntry::NeedToGather)
|| (Bundle && EntryState != TreeEntry::NeedToGather)
) && "Need to vectorize gather entry?") ? static_cast
<void> (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1816, __PRETTY_FUNCTION__))
;
1817 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1818 TreeEntry *Last = VectorizableTree.back().get();
1819 Last->Idx = VectorizableTree.size() - 1;
1820 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1821 Last->State = EntryState;
1822 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1823 ReuseShuffleIndices.end());
1824 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1825 Last->setOperations(S);
1826 if (Last->State != TreeEntry::NeedToGather) {
1827 for (Value *V : VL) {
1828 assert(!getTreeEntry(V) && "Scalar already in tree!")((!getTreeEntry(V) && "Scalar already in tree!") ? static_cast
<void> (0) : __assert_fail ("!getTreeEntry(V) && \"Scalar already in tree!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1828, __PRETTY_FUNCTION__))
;
1829 ScalarToTreeEntry[V] = Last;
1830 }
1831 // Update the scheduler bundle to point to this TreeEntry.
1832 unsigned Lane = 0;
1833 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1834 BundleMember = BundleMember->NextInBundle) {
1835 BundleMember->TE = Last;
1836 BundleMember->Lane = Lane;
1837 ++Lane;
1838 }
1839 assert((!Bundle.getValue() || Lane == VL.size()) &&(((!Bundle.getValue() || Lane == VL.size()) && "Bundle and VL out of sync"
) ? static_cast<void> (0) : __assert_fail ("(!Bundle.getValue() || Lane == VL.size()) && \"Bundle and VL out of sync\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1840, __PRETTY_FUNCTION__))
1840 "Bundle and VL out of sync")(((!Bundle.getValue() || Lane == VL.size()) && "Bundle and VL out of sync"
) ? static_cast<void> (0) : __assert_fail ("(!Bundle.getValue() || Lane == VL.size()) && \"Bundle and VL out of sync\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1840, __PRETTY_FUNCTION__))
;
1841 } else {
1842 MustGather.insert(VL.begin(), VL.end());
1843 }
1844
1845 if (UserTreeIdx.UserTE)
1846 Last->UserTreeIndices.push_back(UserTreeIdx);
1847
1848 return Last;
1849 }
1850
1851 /// -- Vectorization State --
1852 /// Holds all of the tree entries.
1853 TreeEntry::VecTreeTy VectorizableTree;
1854
1855#ifndef NDEBUG
1856 /// Debug printer.
1857 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dumpVectorizableTree() const {
1858 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1859 VectorizableTree[Id]->dump();
1860 dbgs() << "\n";
1861 }
1862 }
1863#endif
1864
1865 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
1866
1867 const TreeEntry *getTreeEntry(Value *V) const {
1868 return ScalarToTreeEntry.lookup(V);
1869 }
1870
1871 /// Maps a specific scalar to its tree entry.
1872 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1873
1874 /// Maps a value to the proposed vectorizable size.
1875 SmallDenseMap<Value *, unsigned> InstrElementSize;
1876
1877 /// A list of scalars that we found that we need to keep as scalars.
1878 ValueSet MustGather;
1879
1880 /// This POD struct describes one external user in the vectorized tree.
1881 struct ExternalUser {
1882 ExternalUser(Value *S, llvm::User *U, int L)
1883 : Scalar(S), User(U), Lane(L) {}
1884
1885 // Which scalar in our function.
1886 Value *Scalar;
1887
1888 // Which user that uses the scalar.
1889 llvm::User *User;
1890
1891 // Which lane does the scalar belong to.
1892 int Lane;
1893 };
1894 using UserList = SmallVector<ExternalUser, 16>;
1895
1896 /// Checks if two instructions may access the same memory.
1897 ///
1898 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1899 /// is invariant in the calling loop.
1900 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1901 Instruction *Inst2) {
1902 // First check if the result is already in the cache.
1903 AliasCacheKey key = std::make_pair(Inst1, Inst2);
1904 Optional<bool> &result = AliasCache[key];
1905 if (result.hasValue()) {
1906 return result.getValue();
1907 }
1908 MemoryLocation Loc2 = getLocation(Inst2, AA);
1909 bool aliased = true;
1910 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1911 // Do the alias check.
1912 aliased = !AA->isNoAlias(Loc1, Loc2);
1913 }
1914 // Store the result in the cache.
1915 result = aliased;
1916 return aliased;
1917 }
1918
1919 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1920
1921 /// Cache for alias results.
1922 /// TODO: consider moving this to the AliasAnalysis itself.
1923 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1924
1925 /// Removes an instruction from its block and eventually deletes it.
1926 /// It's like Instruction::eraseFromParent() except that the actual deletion
1927 /// is delayed until BoUpSLP is destructed.
1928 /// This is required to ensure that there are no incorrect collisions in the
1929 /// AliasCache, which can happen if a new instruction is allocated at the
1930 /// same address as a previously deleted instruction.
1931 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1932 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1933 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1934 }
1935
1936 /// Temporary store for deleted instructions. Instructions will be deleted
1937 /// eventually when the BoUpSLP is destructed.
1938 DenseMap<Instruction *, bool> DeletedInstructions;
1939
1940 /// A list of values that need to extracted out of the tree.
1941 /// This list holds pairs of (Internal Scalar : External User). External User
1942 /// can be nullptr, it means that this Internal Scalar will be used later,
1943 /// after vectorization.
1944 UserList ExternalUses;
1945
1946 /// Values used only by @llvm.assume calls.
1947 SmallPtrSet<const Value *, 32> EphValues;
1948
1949 /// Holds all of the instructions that we gathered.
1950 SetVector<Instruction *> GatherSeq;
1951
1952 /// A list of blocks that we are going to CSE.
1953 SetVector<BasicBlock *> CSEBlocks;
1954
1955 /// Contains all scheduling relevant data for an instruction.
1956 /// A ScheduleData either represents a single instruction or a member of an
1957 /// instruction bundle (= a group of instructions which is combined into a
1958 /// vector instruction).
1959 struct ScheduleData {
1960 // The initial value for the dependency counters. It means that the
1961 // dependencies are not calculated yet.
1962 enum { InvalidDeps = -1 };
1963
1964 ScheduleData() = default;
1965
1966 void init(int BlockSchedulingRegionID, Value *OpVal) {
1967 FirstInBundle = this;
1968 NextInBundle = nullptr;
1969 NextLoadStore = nullptr;
1970 IsScheduled = false;
1971 SchedulingRegionID = BlockSchedulingRegionID;
1972 UnscheduledDepsInBundle = UnscheduledDeps;
1973 clearDependencies();
1974 OpValue = OpVal;
1975 TE = nullptr;
1976 Lane = -1;
1977 }
1978
1979 /// Returns true if the dependency information has been calculated.
1980 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1981
1982 /// Returns true for single instructions and for bundle representatives
1983 /// (= the head of a bundle).
1984 bool isSchedulingEntity() const { return FirstInBundle == this; }
1985
1986 /// Returns true if it represents an instruction bundle and not only a
1987 /// single instruction.
1988 bool isPartOfBundle() const {
1989 return NextInBundle != nullptr || FirstInBundle != this;
1990 }
1991
1992 /// Returns true if it is ready for scheduling, i.e. it has no more
1993 /// unscheduled depending instructions/bundles.
1994 bool isReady() const {
1995 assert(isSchedulingEntity() &&((isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? static_cast<void> (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1996, __PRETTY_FUNCTION__))
1996 "can't consider non-scheduling entity for ready list")((isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? static_cast<void> (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1996, __PRETTY_FUNCTION__))
;
1997 return UnscheduledDepsInBundle == 0 && !IsScheduled;
1998 }
1999
2000 /// Modifies the number of unscheduled dependencies, also updating it for
2001 /// the whole bundle.
2002 int incrementUnscheduledDeps(int Incr) {
2003 UnscheduledDeps += Incr;
2004 return FirstInBundle->UnscheduledDepsInBundle += Incr;
2005 }
2006
2007 /// Sets the number of unscheduled dependencies to the number of
2008 /// dependencies.
2009 void resetUnscheduledDeps() {
2010 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
2011 }
2012
2013 /// Clears all dependency information.
2014 void clearDependencies() {
2015 Dependencies = InvalidDeps;
2016 resetUnscheduledDeps();
2017 MemoryDependencies.clear();
2018 }
2019
2020 void dump(raw_ostream &os) const {
2021 if (!isSchedulingEntity()) {
2022 os << "/ " << *Inst;
2023 } else if (NextInBundle) {
2024 os << '[' << *Inst;
2025 ScheduleData *SD = NextInBundle;
2026 while (SD) {
2027 os << ';' << *SD->Inst;
2028 SD = SD->NextInBundle;
2029 }
2030 os << ']';
2031 } else {
2032 os << *Inst;
2033 }
2034 }
2035
2036 Instruction *Inst = nullptr;
2037
2038 /// Points to the head in an instruction bundle (and always to this for
2039 /// single instructions).
2040 ScheduleData *FirstInBundle = nullptr;
2041
2042 /// Single linked list of all instructions in a bundle. Null if it is a
2043 /// single instruction.
2044 ScheduleData *NextInBundle = nullptr;
2045
2046 /// Single linked list of all memory instructions (e.g. load, store, call)
2047 /// in the block - until the end of the scheduling region.
2048 ScheduleData *NextLoadStore = nullptr;
2049
2050 /// The dependent memory instructions.
2051 /// This list is derived on demand in calculateDependencies().
2052 SmallVector<ScheduleData *, 4> MemoryDependencies;
2053
2054 /// This ScheduleData is in the current scheduling region if this matches
2055 /// the current SchedulingRegionID of BlockScheduling.
2056 int SchedulingRegionID = 0;
2057
2058 /// Used for getting a "good" final ordering of instructions.
2059 int SchedulingPriority = 0;
2060
2061 /// The number of dependencies. Constitutes of the number of users of the
2062 /// instruction plus the number of dependent memory instructions (if any).
2063 /// This value is calculated on demand.
2064 /// If InvalidDeps, the number of dependencies is not calculated yet.
2065 int Dependencies = InvalidDeps;
2066
2067 /// The number of dependencies minus the number of dependencies of scheduled
2068 /// instructions. As soon as this is zero, the instruction/bundle gets ready
2069 /// for scheduling.
2070 /// Note that this is negative as long as Dependencies is not calculated.
2071 int UnscheduledDeps = InvalidDeps;
2072
2073 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2074 /// single instructions.
2075 int UnscheduledDepsInBundle = InvalidDeps;
2076
2077 /// True if this instruction is scheduled (or considered as scheduled in the
2078 /// dry-run).
2079 bool IsScheduled = false;
2080
2081 /// Opcode of the current instruction in the schedule data.
2082 Value *OpValue = nullptr;
2083
2084 /// The TreeEntry that this instruction corresponds to.
2085 TreeEntry *TE = nullptr;
2086
2087 /// The lane of this node in the TreeEntry.
2088 int Lane = -1;
2089 };
2090
2091#ifndef NDEBUG
2092 friend inline raw_ostream &operator<<(raw_ostream &os,
2093 const BoUpSLP::ScheduleData &SD) {
2094 SD.dump(os);
2095 return os;
2096 }
2097#endif
2098
2099 friend struct GraphTraits<BoUpSLP *>;
2100 friend struct DOTGraphTraits<BoUpSLP *>;
2101
2102 /// Contains all scheduling data for a basic block.
2103 struct BlockScheduling {
2104 BlockScheduling(BasicBlock *BB)
2105 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2106
2107 void clear() {
2108 ReadyInsts.clear();
2109 ScheduleStart = nullptr;
2110 ScheduleEnd = nullptr;
2111 FirstLoadStoreInRegion = nullptr;
2112 LastLoadStoreInRegion = nullptr;
2113
2114 // Reduce the maximum schedule region size by the size of the
2115 // previous scheduling run.
2116 ScheduleRegionSizeLimit -= ScheduleRegionSize;
2117 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2118 ScheduleRegionSizeLimit = MinScheduleRegionSize;
2119 ScheduleRegionSize = 0;
2120
2121 // Make a new scheduling region, i.e. all existing ScheduleData is not
2122 // in the new region yet.
2123 ++SchedulingRegionID;
2124 }
2125
2126 ScheduleData *getScheduleData(Value *V) {
2127 ScheduleData *SD = ScheduleDataMap[V];
2128 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2129 return SD;
2130 return nullptr;
2131 }
2132
2133 ScheduleData *getScheduleData(Value *V, Value *Key) {
2134 if (V == Key)
2135 return getScheduleData(V);
2136 auto I = ExtraScheduleDataMap.find(V);
2137 if (I != ExtraScheduleDataMap.end()) {
2138 ScheduleData *SD = I->second[Key];
2139 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2140 return SD;
2141 }
2142 return nullptr;
2143 }
2144
2145 bool isInSchedulingRegion(ScheduleData *SD) const {
2146 return SD->SchedulingRegionID == SchedulingRegionID;
2147 }
2148
2149 /// Marks an instruction as scheduled and puts all dependent ready
2150 /// instructions into the ready-list.
2151 template <typename ReadyListType>
2152 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2153 SD->IsScheduled = true;
2154 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule " << *SD <<
"\n"; } } while (false)
;
2155
2156 ScheduleData *BundleMember = SD;
2157 while (BundleMember) {
2158 if (BundleMember->Inst != BundleMember->OpValue) {
2159 BundleMember = BundleMember->NextInBundle;
2160 continue;
2161 }
2162 // Handle the def-use chain dependencies.
2163
2164 // Decrement the unscheduled counter and insert to ready list if ready.
2165 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2166 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2167 if (OpDef && OpDef->hasValidDependencies() &&
2168 OpDef->incrementUnscheduledDeps(-1) == 0) {
2169 // There are no more unscheduled dependencies after
2170 // decrementing, so we can put the dependent instruction
2171 // into the ready list.
2172 ScheduleData *DepBundle = OpDef->FirstInBundle;
2173 assert(!DepBundle->IsScheduled &&((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2174, __PRETTY_FUNCTION__))
2174 "already scheduled bundle gets ready")((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2174, __PRETTY_FUNCTION__))
;
2175 ReadyList.insert(DepBundle);
2176 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
2177 << "SLP: gets ready (def): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
;
2178 }
2179 });
2180 };
2181
2182 // If BundleMember is a vector bundle, its operands may have been
2183 // reordered duiring buildTree(). We therefore need to get its operands
2184 // through the TreeEntry.
2185 if (TreeEntry *TE = BundleMember->TE) {
2186 int Lane = BundleMember->Lane;
2187 assert(Lane >= 0 && "Lane not set")((Lane >= 0 && "Lane not set") ? static_cast<void
> (0) : __assert_fail ("Lane >= 0 && \"Lane not set\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2187, __PRETTY_FUNCTION__))
;
2188
2189 // Since vectorization tree is being built recursively this assertion
2190 // ensures that the tree entry has all operands set before reaching
2191 // this code. Couple of exceptions known at the moment are extracts
2192 // where their second (immediate) operand is not added. Since
2193 // immediates do not affect scheduler behavior this is considered
2194 // okay.
2195 auto *In = TE->getMainOp();
2196 assert(In &&((In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? static_cast<
void> (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2199, __PRETTY_FUNCTION__))
2197 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||((In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? static_cast<
void> (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2199, __PRETTY_FUNCTION__))
2198 In->getNumOperands() == TE->getNumOperands()) &&((In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? static_cast<
void> (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2199, __PRETTY_FUNCTION__))
2199 "Missed TreeEntry operands?")((In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? static_cast<
void> (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2199, __PRETTY_FUNCTION__))
;
2200 (void)In; // fake use to avoid build failure when assertions disabled
2201
2202 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2203 OpIdx != NumOperands; ++OpIdx)
2204 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2205 DecrUnsched(I);
2206 } else {
2207 // If BundleMember is a stand-alone instruction, no operand reordering
2208 // has taken place, so we directly access its operands.
2209 for (Use &U : BundleMember->Inst->operands())
2210 if (auto *I = dyn_cast<Instruction>(U.get()))
2211 DecrUnsched(I);
2212 }
2213 // Handle the memory dependencies.
2214 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2215 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2216 // There are no more unscheduled dependencies after decrementing,
2217 // so we can put the dependent instruction into the ready list.
2218 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2219 assert(!DepBundle->IsScheduled &&((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2220, __PRETTY_FUNCTION__))
2220 "already scheduled bundle gets ready")((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2220, __PRETTY_FUNCTION__))
;
2221 ReadyList.insert(DepBundle);
2222 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
2223 << "SLP: gets ready (mem): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
;
2224 }
2225 }
2226 BundleMember = BundleMember->NextInBundle;
2227 }
2228 }
2229
2230 void doForAllOpcodes(Value *V,
2231 function_ref<void(ScheduleData *SD)> Action) {
2232 if (ScheduleData *SD = getScheduleData(V))
2233 Action(SD);
2234 auto I = ExtraScheduleDataMap.find(V);
2235 if (I != ExtraScheduleDataMap.end())
2236 for (auto &P : I->second)
2237 if (P.second->SchedulingRegionID == SchedulingRegionID)
2238 Action(P.second);
2239 }
2240
2241 /// Put all instructions into the ReadyList which are ready for scheduling.
2242 template <typename ReadyListType>
2243 void initialFillReadyList(ReadyListType &ReadyList) {
2244 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2245 doForAllOpcodes(I, [&](ScheduleData *SD) {
2246 if (SD->isSchedulingEntity() && SD->isReady()) {
2247 ReadyList.insert(SD);
2248 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (false)
2249 << "SLP: initially in ready list: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (false)
;
2250 }
2251 });
2252 }
2253 }
2254
2255 /// Checks if a bundle of instructions can be scheduled, i.e. has no
2256 /// cyclic dependencies. This is only a dry-run, no instructions are
2257 /// actually moved at this stage.
2258 /// \returns the scheduling bundle. The returned Optional value is non-None
2259 /// if \p VL is allowed to be scheduled.
2260 Optional<ScheduleData *>
2261 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2262 const InstructionsState &S);
2263
2264 /// Un-bundles a group of instructions.
2265 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2266
2267 /// Allocates schedule data chunk.
2268 ScheduleData *allocateScheduleDataChunks();
2269
2270 /// Extends the scheduling region so that V is inside the region.
2271 /// \returns true if the region size is within the limit.
2272 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2273
2274 /// Initialize the ScheduleData structures for new instructions in the
2275 /// scheduling region.
2276 void initScheduleData(Instruction *FromI, Instruction *ToI,
2277 ScheduleData *PrevLoadStore,
2278 ScheduleData *NextLoadStore);
2279
2280 /// Updates the dependency information of a bundle and of all instructions/
2281 /// bundles which depend on the original bundle.
2282 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2283 BoUpSLP *SLP);
2284
2285 /// Sets all instruction in the scheduling region to un-scheduled.
2286 void resetSchedule();
2287
2288 BasicBlock *BB;
2289
2290 /// Simple memory allocation for ScheduleData.
2291 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2292
2293 /// The size of a ScheduleData array in ScheduleDataChunks.
2294 int ChunkSize;
2295
2296 /// The allocator position in the current chunk, which is the last entry
2297 /// of ScheduleDataChunks.
2298 int ChunkPos;
2299
2300 /// Attaches ScheduleData to Instruction.
2301 /// Note that the mapping survives during all vectorization iterations, i.e.
2302 /// ScheduleData structures are recycled.
2303 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2304
2305 /// Attaches ScheduleData to Instruction with the leading key.
2306 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2307 ExtraScheduleDataMap;
2308
2309 struct ReadyList : SmallVector<ScheduleData *, 8> {
2310 void insert(ScheduleData *SD) { push_back(SD); }
2311 };
2312
2313 /// The ready-list for scheduling (only used for the dry-run).
2314 ReadyList ReadyInsts;
2315
2316 /// The first instruction of the scheduling region.
2317 Instruction *ScheduleStart = nullptr;
2318
2319 /// The first instruction _after_ the scheduling region.
2320 Instruction *ScheduleEnd = nullptr;
2321
2322 /// The first memory accessing instruction in the scheduling region
2323 /// (can be null).
2324 ScheduleData *FirstLoadStoreInRegion = nullptr;
2325
2326 /// The last memory accessing instruction in the scheduling region
2327 /// (can be null).
2328 ScheduleData *LastLoadStoreInRegion = nullptr;
2329
2330 /// The current size of the scheduling region.
2331 int ScheduleRegionSize = 0;
2332
2333 /// The maximum size allowed for the scheduling region.
2334 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2335
2336 /// The ID of the scheduling region. For a new vectorization iteration this
2337 /// is incremented which "removes" all ScheduleData from the region.
2338 // Make sure that the initial SchedulingRegionID is greater than the
2339 // initial SchedulingRegionID in ScheduleData (which is 0).
2340 int SchedulingRegionID = 1;
2341 };
2342
2343 /// Attaches the BlockScheduling structures to basic blocks.
2344 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2345
2346 /// Performs the "real" scheduling. Done before vectorization is actually
2347 /// performed in a basic block.
2348 void scheduleBlock(BlockScheduling *BS);
2349
2350 /// List of users to ignore during scheduling and that don't need extracting.
2351 ArrayRef<Value *> UserIgnoreList;
2352
2353 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2354 /// sorted SmallVectors of unsigned.
2355 struct OrdersTypeDenseMapInfo {
2356 static OrdersType getEmptyKey() {
2357 OrdersType V;
2358 V.push_back(~1U);
2359 return V;
2360 }
2361
2362 static OrdersType getTombstoneKey() {
2363 OrdersType V;
2364 V.push_back(~2U);
2365 return V;
2366 }
2367
2368 static unsigned getHashValue(const OrdersType &V) {
2369 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2370 }
2371
2372 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2373 return LHS == RHS;
2374 }
2375 };
2376
2377 /// Contains orders of operations along with the number of bundles that have
2378 /// operations in this order. It stores only those orders that require
2379 /// reordering, if reordering is not required it is counted using \a
2380 /// NumOpsWantToKeepOriginalOrder.
2381 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2382 /// Number of bundles that do not require reordering.
2383 unsigned NumOpsWantToKeepOriginalOrder = 0;
2384
2385 // Analysis and block reference.
2386 Function *F;
2387 ScalarEvolution *SE;
2388 TargetTransformInfo *TTI;
2389 TargetLibraryInfo *TLI;
2390 AAResults *AA;
2391 LoopInfo *LI;
2392 DominatorTree *DT;
2393 AssumptionCache *AC;
2394 DemandedBits *DB;
2395 const DataLayout *DL;
2396 OptimizationRemarkEmitter *ORE;
2397
2398 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2399 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2400
2401 /// Instruction builder to construct the vectorized tree.
2402 IRBuilder<> Builder;
2403
2404 /// A map of scalar integer values to the smallest bit width with which they
2405 /// can legally be represented. The values map to (width, signed) pairs,
2406 /// where "width" indicates the minimum bit width and "signed" is True if the
2407 /// value must be signed-extended, rather than zero-extended, back to its
2408 /// original width.
2409 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2410};
2411
2412} // end namespace slpvectorizer
2413
2414template <> struct GraphTraits<BoUpSLP *> {
2415 using TreeEntry = BoUpSLP::TreeEntry;
2416
2417 /// NodeRef has to be a pointer per the GraphWriter.
2418 using NodeRef = TreeEntry *;
2419
2420 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2421
2422 /// Add the VectorizableTree to the index iterator to be able to return
2423 /// TreeEntry pointers.
2424 struct ChildIteratorType
2425 : public iterator_adaptor_base<
2426 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2427 ContainerTy &VectorizableTree;
2428
2429 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2430 ContainerTy &VT)
2431 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2432
2433 NodeRef operator*() { return I->UserTE; }
2434 };
2435
2436 static NodeRef getEntryNode(BoUpSLP &R) {
2437 return R.VectorizableTree[0].get();
2438 }
2439
2440 static ChildIteratorType child_begin(NodeRef N) {
2441 return {N->UserTreeIndices.begin(), N->Container};
2442 }
2443
2444 static ChildIteratorType child_end(NodeRef N) {
2445 return {N->UserTreeIndices.end(), N->Container};
2446 }
2447
2448 /// For the node iterator we just need to turn the TreeEntry iterator into a
2449 /// TreeEntry* iterator so that it dereferences to NodeRef.
2450 class nodes_iterator {
2451 using ItTy = ContainerTy::iterator;
2452 ItTy It;
2453
2454 public:
2455 nodes_iterator(const ItTy &It2) : It(It2) {}
2456 NodeRef operator*() { return It->get(); }
2457 nodes_iterator operator++() {
2458 ++It;
2459 return *this;
2460 }
2461 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2462 };
2463
2464 static nodes_iterator nodes_begin(BoUpSLP *R) {
2465 return nodes_iterator(R->VectorizableTree.begin());
2466 }
2467
2468 static nodes_iterator nodes_end(BoUpSLP *R) {
2469 return nodes_iterator(R->VectorizableTree.end());
2470 }
2471
2472 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2473};
2474
2475template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2476 using TreeEntry = BoUpSLP::TreeEntry;
2477
2478 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2479
2480 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2481 std::string Str;
2482 raw_string_ostream OS(Str);
2483 if (isSplat(Entry->Scalars)) {
2484 OS << "<splat> " << *Entry->Scalars[0];
2485 return Str;
2486 }
2487 for (auto V : Entry->Scalars) {
2488 OS << *V;
2489 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
2490 return EU.Scalar == V;
2491 }))
2492 OS << " <extract>";
2493 OS << "\n";
2494 }
2495 return Str;
2496 }
2497
2498 static std::string getNodeAttributes(const TreeEntry *Entry,
2499 const BoUpSLP *) {
2500 if (Entry->State == TreeEntry::NeedToGather)
2501 return "color=red";
2502 return "";
2503 }
2504};
2505
2506} // end namespace llvm
2507
2508BoUpSLP::~BoUpSLP() {
2509 for (const auto &Pair : DeletedInstructions) {
2510 // Replace operands of ignored instructions with Undefs in case if they were
2511 // marked for deletion.
2512 if (Pair.getSecond()) {
2513 Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2514 Pair.getFirst()->replaceAllUsesWith(Undef);
2515 }
2516 Pair.getFirst()->dropAllReferences();
2517 }
2518 for (const auto &Pair : DeletedInstructions) {
2519 assert(Pair.getFirst()->use_empty() &&((Pair.getFirst()->use_empty() && "trying to erase instruction with users."
) ? static_cast<void> (0) : __assert_fail ("Pair.getFirst()->use_empty() && \"trying to erase instruction with users.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2520, __PRETTY_FUNCTION__))
2520 "trying to erase instruction with users.")((Pair.getFirst()->use_empty() && "trying to erase instruction with users."
) ? static_cast<void> (0) : __assert_fail ("Pair.getFirst()->use_empty() && \"trying to erase instruction with users.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2520, __PRETTY_FUNCTION__))
;
2521 Pair.getFirst()->eraseFromParent();
2522 }
2523#ifdef EXPENSIVE_CHECKS
2524 // If we could guarantee that this call is not extremely slow, we could
2525 // remove the ifdef limitation (see PR47712).
2526 assert(!verifyFunction(*F, &dbgs()))((!verifyFunction(*F, &dbgs())) ? static_cast<void>
(0) : __assert_fail ("!verifyFunction(*F, &dbgs())", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2526, __PRETTY_FUNCTION__))
;
2527#endif
2528}
2529
2530void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2531 for (auto *V : AV) {
2532 if (auto *I = dyn_cast<Instruction>(V))
2533 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2534 };
2535}
2536
2537void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2538 ArrayRef<Value *> UserIgnoreLst) {
2539 ExtraValueToDebugLocsMap ExternallyUsedValues;
2540 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2541}
2542
2543void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2544 ExtraValueToDebugLocsMap &ExternallyUsedValues,
2545 ArrayRef<Value *> UserIgnoreLst) {
2546 deleteTree();
2547 UserIgnoreList = UserIgnoreLst;
2548 if (!allSameType(Roots))
2549 return;
2550 buildTree_rec(Roots, 0, EdgeInfo());
2551
2552 // Collect the values that we need to extract from the tree.
2553 for (auto &TEPtr : VectorizableTree) {
2554 TreeEntry *Entry = TEPtr.get();
2555
2556 // No need to handle users of gathered values.
2557 if (Entry->State == TreeEntry::NeedToGather)
2558 continue;
2559
2560 // For each lane:
2561 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2562 Value *Scalar = Entry->Scalars[Lane];
2563 int FoundLane = Lane;
2564 if (!Entry->ReuseShuffleIndices.empty()) {
2565 FoundLane =
2566 std::distance(Entry->ReuseShuffleIndices.begin(),
2567 llvm::find(Entry->ReuseShuffleIndices, FoundLane));
2568 }
2569
2570 // Check if the scalar is externally used as an extra arg.
2571 auto ExtI = ExternallyUsedValues.find(Scalar);
2572 if (ExtI != ExternallyUsedValues.end()) {
2573 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
2574 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
;
2575 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2576 }
2577 for (User *U : Scalar->users()) {
2578 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Checking user:" << *U <<
".\n"; } } while (false)
;
2579
2580 Instruction *UserInst = dyn_cast<Instruction>(U);
2581 if (!UserInst)
2582 continue;
2583
2584 // Skip in-tree scalars that become vectors
2585 if (TreeEntry *UseEntry = getTreeEntry(U)) {
2586 Value *UseScalar = UseEntry->Scalars[0];
2587 // Some in-tree scalars will remain as scalar in vectorized
2588 // instructions. If that is the case, the one in Lane 0 will
2589 // be used.
2590 if (UseScalar != U ||
2591 UseEntry->State == TreeEntry::ScatterVectorize ||
2592 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2593 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *Udo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
2594 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
;
2595 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state")((UseEntry->State != TreeEntry::NeedToGather && "Bad state"
) ? static_cast<void> (0) : __assert_fail ("UseEntry->State != TreeEntry::NeedToGather && \"Bad state\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2595, __PRETTY_FUNCTION__))
;
2596 continue;
2597 }
2598 }
2599
2600 // Ignore users in the user ignore list.
2601 if (is_contained(UserIgnoreList, UserInst))
2602 continue;
2603
2604 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
2605 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
;
2606 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2607 }
2608 }
2609 }
2610}
2611
2612void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2613 const EdgeInfo &UserTreeIdx) {
2614 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!")(((allConstant(VL) || allSameType(VL)) && "Invalid types!"
) ? static_cast<void> (0) : __assert_fail ("(allConstant(VL) || allSameType(VL)) && \"Invalid types!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2614, __PRETTY_FUNCTION__))
;
2615
2616 InstructionsState S = getSameOpcode(VL);
2617 if (Depth == RecursionMaxDepth) {
2618 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to max recursion depth.\n"
; } } while (false)
;
2619 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2620 return;
2621 }
2622
2623 // Don't handle vectors.
2624 if (S.OpValue->getType()->isVectorTy()) {
2625 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to vector type.\n"
; } } while (false)
;
2626 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2627 return;
2628 }
2629
2630 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2631 if (SI->getValueOperand()->getType()->isVectorTy()) {
2632 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to store vector type.\n"
; } } while (false)
;
2633 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2634 return;
2635 }
2636
2637 // If all of the operands are identical or constant we have a simple solution.
2638 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2639 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to C,S,B,O. \n"
; } } while (false)
;
2640 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2641 return;
2642 }
2643
2644 // We now know that this is a vector of instructions of the same type from
2645 // the same block.
2646
2647 // Don't vectorize ephemeral values.
2648 for (Value *V : VL) {
2649 if (EphValues.count(V)) {
2650 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
2651 << ") is ephemeral.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
;
2652 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2653 return;
2654 }
2655 }
2656
2657 // Check if this is a duplicate of another entry.
2658 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2659 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tChecking bundle: " <<
*S.OpValue << ".\n"; } } while (false)
;
2660 if (!E->isSame(VL)) {
2661 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to partial overlap.\n"
; } } while (false)
;
2662 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2663 return;
2664 }
2665 // Record the reuse of the tree node. FIXME, currently this is only used to
2666 // properly draw the graph rather than for the actual vectorization.
2667 E->UserTreeIndices.push_back(UserTreeIdx);
2668 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValuedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
2669 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
;
2670 return;
2671 }
2672
2673 // Check that none of the instructions in the bundle are already in the tree.
2674 for (Value *V : VL) {
2675 auto *I = dyn_cast<Instruction>(V);
2676 if (!I)
2677 continue;
2678 if (getTreeEntry(I)) {
2679 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
2680 << ") is already in tree.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
;
2681 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2682 return;
2683 }
2684 }
2685
2686 // If any of the scalars is marked as a value that needs to stay scalar, then
2687 // we need to gather the scalars.
2688 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2689 for (Value *V : VL) {
2690 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2691 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to gathered scalar.\n"
; } } while (false)
;
2692 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2693 return;
2694 }
2695 }
2696
2697 // Check that all of the users of the scalars that we want to vectorize are
2698 // schedulable.
2699 auto *VL0 = cast<Instruction>(S.OpValue);
2700 BasicBlock *BB = VL0->getParent();
2701
2702 if (!DT->isReachableFromEntry(BB)) {
2703 // Don't go into unreachable blocks. They may contain instructions with
2704 // dependency cycles which confuse the final scheduling.
2705 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle in unreachable block.\n"
; } } while (false)
;
2706 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2707 return;
2708 }
2709
2710 // Check that every instruction appears once in this bundle.
2711 SmallVector<unsigned, 4> ReuseShuffleIndicies;
2712 SmallVector<Value *, 4> UniqueValues;
2713 DenseMap<Value *, unsigned> UniquePositions;
2714 for (Value *V : VL) {
2715 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2716 ReuseShuffleIndicies.emplace_back(Res.first->second);
2717 if (Res.second)
2718 UniqueValues.emplace_back(V);
2719 }
2720 size_t NumUniqueScalarValues = UniqueValues.size();
2721 if (NumUniqueScalarValues == VL.size()) {
2722 ReuseShuffleIndicies.clear();
2723 } else {
2724 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Shuffle for reused scalars.\n"
; } } while (false)
;
2725 if (NumUniqueScalarValues <= 1 ||
2726 !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2727 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Scalar used twice in bundle.\n"
; } } while (false)
;
2728 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2729 return;
2730 }
2731 VL = UniqueValues;
2732 }
2733
2734 auto &BSRef = BlocksSchedules[BB];
2735 if (!BSRef)
2736 BSRef = std::make_unique<BlockScheduling>(BB);
2737
2738 BlockScheduling &BS = *BSRef.get();
2739
2740 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2741 if (!Bundle) {
2742 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are not able to schedule this bundle!\n"
; } } while (false)
;
2743 assert((!BS.getScheduleData(VL0) ||(((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle
()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2745, __PRETTY_FUNCTION__))
2744 !BS.getScheduleData(VL0)->isPartOfBundle()) &&(((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle
()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2745, __PRETTY_FUNCTION__))
2745 "tryScheduleBundle should cancelScheduling on failure")(((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle
()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2745, __PRETTY_FUNCTION__))
;
2746 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2747 ReuseShuffleIndicies);
2748 return;
2749 }
2750 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are able to schedule this bundle.\n"
; } } while (false)
;
2751
2752 unsigned ShuffleOrOp = S.isAltShuffle() ?
2753 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2754 switch (ShuffleOrOp) {
2755 case Instruction::PHI: {
2756 auto *PH = cast<PHINode>(VL0);
2757
2758 // Check for terminator values (e.g. invoke).
2759 for (Value *V : VL)
2760 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2761 Instruction *Term = dyn_cast<Instruction>(
2762 cast<PHINode>(V)->getIncomingValueForBlock(
2763 PH->getIncomingBlock(I)));
2764 if (Term && Term->isTerminator()) {
2765 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
2766 << "SLP: Need to swizzle PHINodes (terminator use).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
;
2767 BS.cancelScheduling(VL, VL0);
2768 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2769 ReuseShuffleIndicies);
2770 return;
2771 }
2772 }
2773
2774 TreeEntry *TE =
2775 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2776 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of PHINodes.\n"
; } } while (false)
;
2777
2778 // Keeps the reordered operands to avoid code duplication.
2779 SmallVector<ValueList, 2> OperandsVec;
2780 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2781 ValueList Operands;
2782 // Prepare the operand vector.
2783 for (Value *V : VL)
2784 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2785 PH->getIncomingBlock(I)));
2786 TE->setOperand(I, Operands);
2787 OperandsVec.push_back(Operands);
2788 }
2789 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2790 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2791 return;
2792 }
2793 case Instruction::ExtractValue:
2794 case Instruction::ExtractElement: {
2795 OrdersType CurrentOrder;
2796 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2797 if (Reuse) {
2798 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Reusing or shuffling extract sequence.\n"
; } } while (false)
;
2799 ++NumOpsWantToKeepOriginalOrder;
2800 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2801 ReuseShuffleIndicies);
2802 // This is a special case, as it does not gather, but at the same time
2803 // we are not extending buildTree_rec() towards the operands.
2804 ValueList Op0;
2805 Op0.assign(VL.size(), VL0->getOperand(0));
2806 VectorizableTree.back()->setOperand(0, Op0);
2807 return;
2808 }
2809 if (!CurrentOrder.empty()) {
2810 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2811 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2812 "with order";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2813 for (unsigned Idx : CurrentOrder)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2814 dbgs() << " " << Idx;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2815 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2816 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
;
2817 // Insert new order with initial value 0, if it does not exist,
2818 // otherwise return the iterator to the existing one.
2819 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2820 ReuseShuffleIndicies, CurrentOrder);
2821 findRootOrder(CurrentOrder);
2822 ++NumOpsWantToKeepOrder[CurrentOrder];
2823 // This is a special case, as it does not gather, but at the same time
2824 // we are not extending buildTree_rec() towards the operands.
2825 ValueList Op0;
2826 Op0.assign(VL.size(), VL0->getOperand(0));
2827 VectorizableTree.back()->setOperand(0, Op0);
2828 return;
2829 }
2830 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather extract sequence.\n";
} } while (false)
;
2831 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2832 ReuseShuffleIndicies);
2833 BS.cancelScheduling(VL, VL0);
2834 return;
2835 }
2836 case Instruction::Load: {
2837 // Check that a vectorized load would load the same memory as a scalar
2838 // load. For example, we don't want to vectorize loads that are smaller
2839 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2840 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2841 // from such a struct, we read/write packed bits disagreeing with the
2842 // unvectorized version.
2843 Type *ScalarTy = VL0->getType();
2844
2845 if (DL->getTypeSizeInBits(ScalarTy) !=
2846 DL->getTypeAllocSizeInBits(ScalarTy)) {
2847 BS.cancelScheduling(VL, VL0);
2848 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2849 ReuseShuffleIndicies);
2850 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering loads of non-packed type.\n"
; } } while (false)
;
2851 return;
2852 }
2853
2854 // Make sure all loads in the bundle are simple - we can't vectorize
2855 // atomic or volatile loads.
2856 SmallVector<Value *, 4> PointerOps(VL.size());
2857 auto POIter = PointerOps.begin();
2858 for (Value *V : VL) {
2859 auto *L = cast<LoadInst>(V);
2860 if (!L->isSimple()) {
2861 BS.cancelScheduling(VL, VL0);
2862 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2863 ReuseShuffleIndicies);
2864 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple loads.\n"
; } } while (false)
;
2865 return;
2866 }
2867 *POIter = L->getPointerOperand();
2868 ++POIter;
2869 }
2870
2871 OrdersType CurrentOrder;
2872 // Check the order of pointer operands.
2873 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2874 Value *Ptr0;
2875 Value *PtrN;
2876 if (CurrentOrder.empty()) {
2877 Ptr0 = PointerOps.front();
2878 PtrN = PointerOps.back();
2879 } else {
2880 Ptr0 = PointerOps[CurrentOrder.front()];
2881 PtrN = PointerOps[CurrentOrder.back()];
2882 }
2883 Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE);
2884 // Check that the sorted loads are consecutive.
2885 if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
2886 if (CurrentOrder.empty()) {
2887 // Original loads are consecutive and does not require reordering.
2888 ++NumOpsWantToKeepOriginalOrder;
2889 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2890 UserTreeIdx, ReuseShuffleIndicies);
2891 TE->setOperandsInOrder();
2892 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of loads.\n";
} } while (false)
;
2893 } else {
2894 // Need to reorder.
2895 TreeEntry *TE =
2896 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2897 ReuseShuffleIndicies, CurrentOrder);
2898 TE->setOperandsInOrder();
2899 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled loads.\n"
; } } while (false)
;
2900 findRootOrder(CurrentOrder);
2901 ++NumOpsWantToKeepOrder[CurrentOrder];
2902 }
2903 return;
2904 }
2905 // Vectorizing non-consecutive loads with `llvm.masked.gather`.
2906 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
2907 UserTreeIdx, ReuseShuffleIndicies);
2908 TE->setOperandsInOrder();
2909 buildTree_rec(PointerOps, Depth + 1, {TE, 0});
2910 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of non-consecutive loads.\n"
; } } while (false)
;
2911 return;
2912 }
2913
2914 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-consecutive loads.\n"
; } } while (false)
;
2915 BS.cancelScheduling(VL, VL0);
2916 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2917 ReuseShuffleIndicies);
2918 return;
2919 }
2920 case Instruction::ZExt:
2921 case Instruction::SExt:
2922 case Instruction::FPToUI:
2923 case Instruction::FPToSI:
2924 case Instruction::FPExt:
2925 case Instruction::PtrToInt:
2926 case Instruction::IntToPtr:
2927 case Instruction::SIToFP:
2928 case Instruction::UIToFP:
2929 case Instruction::Trunc:
2930 case Instruction::FPTrunc:
2931 case Instruction::BitCast: {
2932 Type *SrcTy = VL0->getOperand(0)->getType();
2933 for (Value *V : VL) {
2934 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2935 if (Ty != SrcTy || !isValidElementType(Ty)) {
2936 BS.cancelScheduling(VL, VL0);
2937 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2938 ReuseShuffleIndicies);
2939 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
2940 << "SLP: Gathering casts with different src types.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
;
2941 return;
2942 }
2943 }
2944 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2945 ReuseShuffleIndicies);
2946 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of casts.\n";
} } while (false)
;
2947
2948 TE->setOperandsInOrder();
2949 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2950 ValueList Operands;
2951 // Prepare the operand vector.
2952 for (Value *V : VL)
2953 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2954
2955 buildTree_rec(Operands, Depth + 1, {TE, i});
2956 }
2957 return;
2958 }
2959 case Instruction::ICmp:
2960 case Instruction::FCmp: {
2961 // Check that all of the compares have the same predicate.
2962 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2963 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2964 Type *ComparedTy = VL0->getOperand(0)->getType();
2965 for (Value *V : VL) {
2966 CmpInst *Cmp = cast<CmpInst>(V);
2967 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2968 Cmp->getOperand(0)->getType() != ComparedTy) {
2969 BS.cancelScheduling(VL, VL0);
2970 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2971 ReuseShuffleIndicies);
2972 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
2973 << "SLP: Gathering cmp with different predicate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
;
2974 return;
2975 }
2976 }
2977
2978 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2979 ReuseShuffleIndicies);
2980 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of compares.\n"
; } } while (false)
;
2981
2982 ValueList Left, Right;
2983 if (cast<CmpInst>(VL0)->isCommutative()) {
2984 // Commutative predicate - collect + sort operands of the instructions
2985 // so that each side is more likely to have the same opcode.
2986 assert(P0 == SwapP0 && "Commutative Predicate mismatch")((P0 == SwapP0 && "Commutative Predicate mismatch") ?
static_cast<void> (0) : __assert_fail ("P0 == SwapP0 && \"Commutative Predicate mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2986, __PRETTY_FUNCTION__))
;
2987 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2988 } else {
2989 // Collect operands - commute if it uses the swapped predicate.
2990 for (Value *V : VL) {
2991 auto *Cmp = cast<CmpInst>(V);
2992 Value *LHS = Cmp->getOperand(0);
2993 Value *RHS = Cmp->getOperand(1);
2994 if (Cmp->getPredicate() != P0)
2995 std::swap(LHS, RHS);
2996 Left.push_back(LHS);
2997 Right.push_back(RHS);
2998 }
2999 }
3000 TE->setOperand(0, Left);
3001 TE->setOperand(1, Right);
3002 buildTree_rec(Left, Depth + 1, {TE, 0});
3003 buildTree_rec(Right, Depth + 1, {TE, 1});
3004 return;
3005 }
3006 case Instruction::Select:
3007 case Instruction::FNeg:
3008 case Instruction::Add:
3009 case Instruction::FAdd:
3010 case Instruction::Sub:
3011 case Instruction::FSub:
3012 case Instruction::Mul:
3013 case Instruction::FMul:
3014 case Instruction::UDiv:
3015 case Instruction::SDiv:
3016 case Instruction::FDiv:
3017 case Instruction::URem:
3018 case Instruction::SRem:
3019 case Instruction::FRem:
3020 case Instruction::Shl:
3021 case Instruction::LShr:
3022 case Instruction::AShr:
3023 case Instruction::And:
3024 case Instruction::Or:
3025 case Instruction::Xor: {
3026 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3027 ReuseShuffleIndicies);
3028 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of un/bin op.\n"
; } } while (false)
;
3029
3030 // Sort operands of the instructions so that each side is more likely to
3031 // have the same opcode.
3032 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
3033 ValueList Left, Right;
3034 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3035 TE->setOperand(0, Left);
3036 TE->setOperand(1, Right);
3037 buildTree_rec(Left, Depth + 1, {TE, 0});
3038 buildTree_rec(Right, Depth + 1, {TE, 1});
3039 return;
3040 }
3041
3042 TE->setOperandsInOrder();
3043 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3044 ValueList Operands;
3045 // Prepare the operand vector.
3046 for (Value *V : VL)
3047 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3048
3049 buildTree_rec(Operands, Depth + 1, {TE, i});
3050 }
3051 return;
3052 }
3053 case Instruction::GetElementPtr: {
3054 // We don't combine GEPs with complicated (nested) indexing.
3055 for (Value *V : VL) {
3056 if (cast<Instruction>(V)->getNumOperands() != 2) {
3057 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"
; } } while (false)
;
3058 BS.cancelScheduling(VL, VL0);
3059 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3060 ReuseShuffleIndicies);
3061 return;
3062 }
3063 }
3064
3065 // We can't combine several GEPs into one vector if they operate on
3066 // different types.
3067 Type *Ty0 = VL0->getOperand(0)->getType();
3068 for (Value *V : VL) {
3069 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3070 if (Ty0 != CurTy) {
3071 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
3072 << "SLP: not-vectorizable GEP (different types).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
;
3073 BS.cancelScheduling(VL, VL0);
3074 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3075 ReuseShuffleIndicies);
3076 return;
3077 }
3078 }
3079
3080 // We don't combine GEPs with non-constant indexes.
3081 Type *Ty1 = VL0->getOperand(1)->getType();
3082 for (Value *V : VL) {
3083 auto Op = cast<Instruction>(V)->getOperand(1);
3084 if (!isa<ConstantInt>(Op) ||
3085 (Op->getType() != Ty1 &&
3086 Op->getType()->getScalarSizeInBits() >
3087 DL->getIndexSizeInBits(
3088 V->getType()->getPointerAddressSpace()))) {
3089 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
3090 << "SLP: not-vectorizable GEP (non-constant indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
;
3091 BS.cancelScheduling(VL, VL0);
3092 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3093 ReuseShuffleIndicies);
3094 return;
3095 }
3096 }
3097
3098 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3099 ReuseShuffleIndicies);
3100 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of GEPs.\n"; }
} while (false)
;
3101 TE->setOperandsInOrder();
3102 for (unsigned i = 0, e = 2; i < e; ++i) {
3103 ValueList Operands;
3104 // Prepare the operand vector.
3105 for (Value *V : VL)
3106 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3107
3108 buildTree_rec(Operands, Depth + 1, {TE, i});
3109 }
3110 return;
3111 }
3112 case Instruction::Store: {
3113 // Check if the stores are consecutive or if we need to swizzle them.
3114 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3115 // Avoid types that are padded when being allocated as scalars, while
3116 // being packed together in a vector (such as i1).
3117 if (DL->getTypeSizeInBits(ScalarTy) !=
3118 DL->getTypeAllocSizeInBits(ScalarTy)) {
3119 BS.cancelScheduling(VL, VL0);
3120 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3121 ReuseShuffleIndicies);
3122 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering stores of non-packed type.\n"
; } } while (false)
;
3123 return;
3124 }
3125 // Make sure all stores in the bundle are simple - we can't vectorize
3126 // atomic or volatile stores.
3127 SmallVector<Value *, 4> PointerOps(VL.size());
3128 ValueList Operands(VL.size());
3129 auto POIter = PointerOps.begin();
3130 auto OIter = Operands.begin();
3131 for (Value *V : VL) {
3132 auto *SI = cast<StoreInst>(V);
3133 if (!SI->isSimple()) {
3134 BS.cancelScheduling(VL, VL0);
3135 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3136 ReuseShuffleIndicies);
3137 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple stores.\n"
; } } while (false)
;
3138 return;
3139 }
3140 *POIter = SI->getPointerOperand();
3141 *OIter = SI->getValueOperand();
3142 ++POIter;
3143 ++OIter;
3144 }
3145
3146 OrdersType CurrentOrder;
3147 // Check the order of pointer operands.
3148 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
3149 Value *Ptr0;
3150 Value *PtrN;
3151 if (CurrentOrder.empty()) {
3152 Ptr0 = PointerOps.front();
3153 PtrN = PointerOps.back();
3154 } else {
3155 Ptr0 = PointerOps[CurrentOrder.front()];
3156 PtrN = PointerOps[CurrentOrder.back()];
3157 }
3158 Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE);
3159 // Check that the sorted pointer operands are consecutive.
3160 if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
3161 if (CurrentOrder.empty()) {
3162 // Original stores are consecutive and does not require reordering.
3163 ++NumOpsWantToKeepOriginalOrder;
3164 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3165 UserTreeIdx, ReuseShuffleIndicies);
3166 TE->setOperandsInOrder();
3167 buildTree_rec(Operands, Depth + 1, {TE, 0});
3168 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of stores.\n"
; } } while (false)
;
3169 } else {
3170 TreeEntry *TE =
3171 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3172 ReuseShuffleIndicies, CurrentOrder);
3173 TE->setOperandsInOrder();
3174 buildTree_rec(Operands, Depth + 1, {TE, 0});
3175 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled stores.\n"
; } } while (false)
;
3176 findRootOrder(CurrentOrder);
3177 ++NumOpsWantToKeepOrder[CurrentOrder];
3178 }
3179 return;
3180 }
3181 }
3182
3183 BS.cancelScheduling(VL, VL0);
3184 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3185 ReuseShuffleIndicies);
3186 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-consecutive store.\n"; }
} while (false)
;
3187 return;
3188 }
3189 case Instruction::Call: {
3190 // Check if the calls are all to the same vectorizable intrinsic or
3191 // library function.
3192 CallInst *CI = cast<CallInst>(VL0);
3193 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3194
3195 VFShape Shape = VFShape::get(
3196 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3197 false /*HasGlobalPred*/);
3198 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3199
3200 if (!VecFunc && !isTriviallyVectorizable(ID)) {
3201 BS.cancelScheduling(VL, VL0);
3202 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3203 ReuseShuffleIndicies);
3204 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-vectorizable call.\n"; }
} while (false)
;
3205 return;
3206 }
3207 Function *F = CI->getCalledFunction();
3208 unsigned NumArgs = CI->getNumArgOperands();
3209 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3210 for (unsigned j = 0; j != NumArgs; ++j)
3211 if (hasVectorInstrinsicScalarOpd(ID, j))
3212 ScalarArgs[j] = CI->getArgOperand(j);
3213 for (Value *V : VL) {
3214 CallInst *CI2 = dyn_cast<CallInst>(V);
3215 if (!CI2 || CI2->getCalledFunction() != F ||
3216 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3217 (VecFunc &&
3218 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3219 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3220 BS.cancelScheduling(VL, VL0);
3221 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3222 ReuseShuffleIndicies);
3223 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
3224 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
;
3225 return;
3226 }
3227 // Some intrinsics have scalar arguments and should be same in order for
3228 // them to be vectorized.
3229 for (unsigned j = 0; j != NumArgs; ++j) {
3230 if (hasVectorInstrinsicScalarOpd(ID, j)) {
3231 Value *A1J = CI2->getArgOperand(j);
3232 if (ScalarArgs[j] != A1J) {
3233 BS.cancelScheduling(VL, VL0);
3234 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3235 ReuseShuffleIndicies);
3236 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
3237 << " argument " << ScalarArgs[j] << "!=" << A1Jdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
3238 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
;
3239 return;
3240 }
3241 }
3242 }
3243 // Verify that the bundle operands are identical between the two calls.
3244 if (CI->hasOperandBundles() &&
3245 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3246 CI->op_begin() + CI->getBundleOperandsEndIndex(),
3247 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3248 BS.cancelScheduling(VL, VL0);
3249 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3250 ReuseShuffleIndicies);
3251 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
3252 << *CI << "!=" << *V << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
;
3253 return;
3254 }
3255 }
3256
3257 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3258 ReuseShuffleIndicies);
3259 TE->setOperandsInOrder();
3260 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3261 ValueList Operands;
3262 // Prepare the operand vector.
3263 for (Value *V : VL) {
3264 auto *CI2 = cast<CallInst>(V);
3265 Operands.push_back(CI2->getArgOperand(i));
3266 }
3267 buildTree_rec(Operands, Depth + 1, {TE, i});
3268 }
3269 return;
3270 }
3271 case Instruction::ShuffleVector: {
3272 // If this is not an alternate sequence of opcode like add-sub
3273 // then do not vectorize this instruction.
3274 if (!S.isAltShuffle()) {
3275 BS.cancelScheduling(VL, VL0);
3276 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3277 ReuseShuffleIndicies);
3278 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: ShuffleVector are not vectorized.\n"
; } } while (false)
;
3279 return;
3280 }
3281 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3282 ReuseShuffleIndicies);
3283 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a ShuffleVector op.\n"
; } } while (false)
;
3284
3285 // Reorder operands if reordering would enable vectorization.
3286 if (isa<BinaryOperator>(VL0)) {
3287 ValueList Left, Right;
3288 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3289 TE->setOperand(0, Left);
3290 TE->setOperand(1, Right);
3291 buildTree_rec(Left, Depth + 1, {TE, 0});
3292 buildTree_rec(Right, Depth + 1, {TE, 1});
3293 return;
3294 }
3295
3296 TE->setOperandsInOrder();
3297 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3298 ValueList Operands;
3299 // Prepare the operand vector.
3300 for (Value *V : VL)
3301 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3302
3303 buildTree_rec(Operands, Depth + 1, {TE, i});
3304 }
3305 return;
3306 }
3307 default:
3308 BS.cancelScheduling(VL, VL0);
3309 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3310 ReuseShuffleIndicies);
3311 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering unknown instruction.\n"
; } } while (false)
;
3312 return;
3313 }
3314}
3315
3316unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3317 unsigned N = 1;
3318 Type *EltTy = T;
3319
3320 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3321 isa<VectorType>(EltTy)) {
3322 if (auto *ST = dyn_cast<StructType>(EltTy)) {
3323 // Check that struct is homogeneous.
3324 for (const auto *Ty : ST->elements())
3325 if (Ty != *ST->element_begin())
3326 return 0;
3327 N *= ST->getNumElements();
3328 EltTy = *ST->element_begin();
3329 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3330 N *= AT->getNumElements();
3331 EltTy = AT->getElementType();
3332 } else {
3333 auto *VT = cast<FixedVectorType>(EltTy);
3334 N *= VT->getNumElements();
3335 EltTy = VT->getElementType();
3336 }
3337 }
3338
3339 if (!isValidElementType(EltTy))
3340 return 0;
3341 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3342 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3343 return 0;
3344 return N;
3345}
3346
3347bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3348 SmallVectorImpl<unsigned> &CurrentOrder) const {
3349 Instruction *E0 = cast<Instruction>(OpValue);
3350 assert(E0->getOpcode() == Instruction::ExtractElement ||((E0->getOpcode() == Instruction::ExtractElement || E0->
getOpcode() == Instruction::ExtractValue) ? static_cast<void
> (0) : __assert_fail ("E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3351, __PRETTY_FUNCTION__))
3351 E0->getOpcode() == Instruction::ExtractValue)((E0->getOpcode() == Instruction::ExtractElement || E0->
getOpcode() == Instruction::ExtractValue) ? static_cast<void
> (0) : __assert_fail ("E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3351, __PRETTY_FUNCTION__))
;
3352 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode")((E0->getOpcode() == getSameOpcode(VL).getOpcode() &&
"Invalid opcode") ? static_cast<void> (0) : __assert_fail
("E0->getOpcode() == getSameOpcode(VL).getOpcode() && \"Invalid opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3352, __PRETTY_FUNCTION__))
;
3353 // Check if all of the extracts come from the same vector and from the
3354 // correct offset.
3355 Value *Vec = E0->getOperand(0);
3356
3357 CurrentOrder.clear();
3358
3359 // We have to extract from a vector/aggregate with the same number of elements.
3360 unsigned NElts;
3361 if (E0->getOpcode() == Instruction::ExtractValue) {
3362 const DataLayout &DL = E0->getModule()->getDataLayout();
3363 NElts = canMapToVector(Vec->getType(), DL);
3364 if (!NElts)
3365 return false;
3366 // Check if load can be rewritten as load of vector.
3367 LoadInst *LI = dyn_cast<LoadInst>(Vec);
3368 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3369 return false;
3370 } else {
3371 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3372 }
3373
3374 if (NElts != VL.size())
3375 return false;
3376
3377 // Check that all of the indices extract from the correct offset.
3378 bool ShouldKeepOrder = true;
3379 unsigned E = VL.size();
3380 // Assign to all items the initial value E + 1 so we can check if the extract
3381 // instruction index was used already.
3382 // Also, later we can check that all the indices are used and we have a
3383 // consecutive access in the extract instructions, by checking that no
3384 // element of CurrentOrder still has value E + 1.
3385 CurrentOrder.assign(E, E + 1);
3386 unsigned I = 0;
3387 for (; I < E; ++I) {
3388 auto *Inst = cast<Instruction>(VL[I]);
3389 if (Inst->getOperand(0) != Vec)
3390 break;
3391 Optional<unsigned> Idx = getExtractIndex(Inst);
3392 if (!Idx)
3393 break;
3394 const unsigned ExtIdx = *Idx;
3395 if (ExtIdx != I) {
3396 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3397 break;
3398 ShouldKeepOrder = false;
3399 CurrentOrder[ExtIdx] = I;
3400 } else {
3401 if (CurrentOrder[I] != E + 1)
3402 break;
3403 CurrentOrder[I] = I;
3404 }
3405 }
3406 if (I < E) {
3407 CurrentOrder.clear();
3408 return false;
3409 }
3410
3411 return ShouldKeepOrder;
3412}
3413
3414bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
3415 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) {
3416 return ScalarToTreeEntry.count(U) > 0;
3417 });
3418}
3419
3420static std::pair<InstructionCost, InstructionCost>
3421getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3422 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3423 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3424
3425 // Calculate the cost of the scalar and vector calls.
3426 SmallVector<Type *, 4> VecTys;
3427 for (Use &Arg : CI->args())
3428 VecTys.push_back(
3429 FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3430 FastMathFlags FMF;
3431 if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
3432 FMF = FPCI->getFastMathFlags();
3433 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3434 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
3435 dyn_cast<IntrinsicInst>(CI));
3436 auto IntrinsicCost =
3437 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3438
3439 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3440 VecTy->getNumElements())),
3441 false /*HasGlobalPred*/);
3442 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3443 auto LibCost = IntrinsicCost;
3444 if (!CI->isNoBuiltin() && VecFunc) {
3445 // Calculate the cost of the vector library call.
3446 // If the corresponding vector call is cheaper, return its cost.
3447 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3448 TTI::TCK_RecipThroughput);
3449 }
3450 return {IntrinsicCost, LibCost};
3451}
3452
3453/// Compute the cost of creating a vector of type \p VecTy containing the
3454/// extracted values from \p VL.
3455static InstructionCost
3456computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
3457 TargetTransformInfo::ShuffleKind ShuffleKind,
3458 ArrayRef<int> Mask, TargetTransformInfo &TTI) {
3459 unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
3460
3461 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
3462 VecTy->getNumElements() < NumOfParts)
3463 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
3464
3465 bool AllConsecutive = true;
3466 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
3467 unsigned Idx = -1;
3468 InstructionCost Cost = 0;
3469
3470 // Process extracts in blocks of EltsPerVector to check if the source vector
3471 // operand can be re-used directly. If not, add the cost of creating a shuffle
3472 // to extract the values into a vector register.
3473 for (auto *V : VL) {
3474 ++Idx;
3475
3476 // Reached the start of a new vector registers.
3477 if (Idx % EltsPerVector == 0) {
3478 AllConsecutive = true;
3479 continue;
3480 }
3481
3482 // Check all extracts for a vector register on the target directly
3483 // extract values in order.
3484 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
3485 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
3486 AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
3487 CurrentIdx % EltsPerVector == Idx % EltsPerVector;
3488
3489 if (AllConsecutive)
3490 continue;
3491
3492 // Skip all indices, except for the last index per vector block.
3493 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
3494 continue;
3495
3496 // If we have a series of extracts which are not consecutive and hence
3497 // cannot re-use the source vector register directly, compute the shuffle
3498 // cost to extract the a vector with EltsPerVector elements.
3499 Cost += TTI.getShuffleCost(
3500 TargetTransformInfo::SK_PermuteSingleSrc,
3501 FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
3502 }
3503 return Cost;
3504}
3505
3506InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) {
3507 ArrayRef<Value*> VL = E->Scalars;
3508
3509 Type *ScalarTy = VL[0]->getType();
3510 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3511 ScalarTy = SI->getValueOperand()->getType();
3512 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3513 ScalarTy = CI->getOperand(0)->getType();
3514 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3515 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3516
3517 // If we have computed a smaller type for the expression, update VecTy so
3518 // that the costs will be accurate.
3519 if (MinBWs.count(VL[0]))
3520 VecTy = FixedVectorType::get(
3521 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3522
3523 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3524 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3525 InstructionCost ReuseShuffleCost = 0;
3526 if (NeedToShuffleReuses) {
3527 ReuseShuffleCost =
3528 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
3529 E->ReuseShuffleIndices);
3530 }
3531 if (E->State == TreeEntry::NeedToGather) {
3532 if (allConstant(VL))
3533 return 0;
3534 if (isSplat(VL)) {
3535 return ReuseShuffleCost +
3536 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None,
3537 0);
3538 }
3539 if (E->getOpcode() == Instruction::ExtractElement &&
3540 allSameType(VL) && allSameBlock(VL)) {
3541 SmallVector<int> Mask;
3542 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
3543 isShuffle(VL, Mask);
3544 if (ShuffleKind.hasValue()) {
3545 InstructionCost Cost =
3546 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
3547 for (auto *V : VL) {
3548 // If all users of instruction are going to be vectorized and this
3549 // instruction itself is not going to be vectorized, consider this
3550 // instruction as dead and remove its cost from the final cost of the
3551 // vectorized tree.
3552 if (areAllUsersVectorized(cast<Instruction>(V)) &&
3553 !ScalarToTreeEntry.count(V)) {
3554 auto *IO = cast<ConstantInt>(
3555 cast<ExtractElementInst>(V)->getIndexOperand());
3556 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
3557 IO->getZExtValue());
3558 }
3559 }
3560 return ReuseShuffleCost + Cost;
3561 }
3562 }
3563 return ReuseShuffleCost + getGatherCost(VL);
3564 }
3565 assert((E->State == TreeEntry::Vectorize ||(((E->State == TreeEntry::Vectorize || E->State == TreeEntry
::ScatterVectorize) && "Unhandled state") ? static_cast
<void> (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3567, __PRETTY_FUNCTION__))
3566 E->State == TreeEntry::ScatterVectorize) &&(((E->State == TreeEntry::Vectorize || E->State == TreeEntry
::ScatterVectorize) && "Unhandled state") ? static_cast
<void> (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3567, __PRETTY_FUNCTION__))
3567 "Unhandled state")(((E->State == TreeEntry::Vectorize || E->State == TreeEntry
::ScatterVectorize) && "Unhandled state") ? static_cast
<void> (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3567, __PRETTY_FUNCTION__))
;
3568 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL")((E->getOpcode() && allSameType(VL) && allSameBlock
(VL) && "Invalid VL") ? static_cast<void> (0) :
__assert_fail ("E->getOpcode() && allSameType(VL) && allSameBlock(VL) && \"Invalid VL\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3568, __PRETTY_FUNCTION__))
;
3569 Instruction *VL0 = E->getMainOp();
3570 unsigned ShuffleOrOp =
3571 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3572 switch (ShuffleOrOp) {
3573 case Instruction::PHI:
3574 return 0;
3575
3576 case Instruction::ExtractValue:
3577 case Instruction::ExtractElement: {
3578 // The common cost of removal ExtractElement/ExtractValue instructions +
3579 // the cost of shuffles, if required to resuffle the original vector.
3580 InstructionCost CommonCost = 0;
3581 if (NeedToShuffleReuses) {
3582 unsigned Idx = 0;
3583 for (unsigned I : E->ReuseShuffleIndices) {
3584 if (ShuffleOrOp == Instruction::ExtractElement) {
3585 auto *IO = cast<ConstantInt>(
3586 cast<ExtractElementInst>(VL[I])->getIndexOperand());
3587 Idx = IO->getZExtValue();
3588 ReuseShuffleCost -= TTI->getVectorInstrCost(
3589 Instruction::ExtractElement, VecTy, Idx);
3590 } else {
3591 ReuseShuffleCost -= TTI->getVectorInstrCost(
3592 Instruction::ExtractElement, VecTy, Idx);
3593 ++Idx;
3594 }
3595 }
3596 Idx = ReuseShuffleNumbers;
3597 for (Value *V : VL) {
3598 if (ShuffleOrOp == Instruction::ExtractElement) {
3599 auto *IO = cast<ConstantInt>(
3600 cast<ExtractElementInst>(V)->getIndexOperand());
3601 Idx = IO->getZExtValue();
3602 } else {
3603 --Idx;
3604 }
3605 ReuseShuffleCost +=
3606 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
3607 }
3608 CommonCost = ReuseShuffleCost;
3609 } else if (!E->ReorderIndices.empty()) {
3610 SmallVector<int> NewMask;
3611 inversePermutation(E->ReorderIndices, NewMask);
3612 CommonCost = TTI->getShuffleCost(
3613 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3614 }
3615 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3616 Instruction *EI = cast<Instruction>(VL[I]);
3617 // If all users are going to be vectorized, instruction can be
3618 // considered as dead.
3619 // The same, if have only one user, it will be vectorized for sure.
3620 if (areAllUsersVectorized(EI)) {
3621 // Take credit for instruction that will become dead.
3622 if (EI->hasOneUse()) {
3623 Instruction *Ext = EI->user_back();
3624 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3625 all_of(Ext->users(),
3626 [](User *U) { return isa<GetElementPtrInst>(U); })) {
3627 // Use getExtractWithExtendCost() to calculate the cost of
3628 // extractelement/ext pair.
3629 CommonCost -= TTI->getExtractWithExtendCost(
3630 Ext->getOpcode(), Ext->getType(), VecTy, I);
3631 // Add back the cost of s|zext which is subtracted separately.
3632 CommonCost += TTI->getCastInstrCost(
3633 Ext->getOpcode(), Ext->getType(), EI->getType(),
3634 TTI::getCastContextHint(Ext), CostKind, Ext);
3635 continue;
3636 }
3637 }
3638 CommonCost -=
3639 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3640 }
3641 }
3642 return CommonCost;
3643 }
3644 case Instruction::ZExt:
3645 case Instruction::SExt:
3646 case Instruction::FPToUI:
3647 case Instruction::FPToSI:
3648 case Instruction::FPExt:
3649 case Instruction::PtrToInt:
3650 case Instruction::IntToPtr:
3651 case Instruction::SIToFP:
3652 case Instruction::UIToFP:
3653 case Instruction::Trunc:
3654 case Instruction::FPTrunc:
3655 case Instruction::BitCast: {
3656 Type *SrcTy = VL0->getOperand(0)->getType();
3657 InstructionCost ScalarEltCost =
3658 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3659 TTI::getCastContextHint(VL0), CostKind, VL0);
3660 if (NeedToShuffleReuses) {
3661 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3662 }
3663
3664 // Calculate the cost of this instruction.
3665 InstructionCost ScalarCost = VL.size() * ScalarEltCost;
3666
3667 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3668 InstructionCost VecCost = 0;
3669 // Check if the values are candidates to demote.
3670 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3671 VecCost =
3672 ReuseShuffleCost +
3673 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3674 TTI::getCastContextHint(VL0), CostKind, VL0);
3675 }
3676 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
3677 return VecCost - ScalarCost;
3678 }
3679 case Instruction::FCmp:
3680 case Instruction::ICmp:
3681 case Instruction::Select: {
3682 // Calculate the cost of this instruction.
3683 InstructionCost ScalarEltCost =
3684 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
3685 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
3686 if (NeedToShuffleReuses) {
3687 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3688 }
3689 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3690 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3691
3692 // Check if all entries in VL are either compares or selects with compares
3693 // as condition that have the same predicates.
3694 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
3695 bool First = true;
3696 for (auto *V : VL) {
3697 CmpInst::Predicate CurrentPred;
3698 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
3699 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
3700 !match(V, MatchCmp)) ||
3701 (!First && VecPred != CurrentPred)) {
3702 VecPred = CmpInst::BAD_ICMP_PREDICATE;
3703 break;
3704 }
3705 First = false;
3706 VecPred = CurrentPred;
3707 }
3708
3709 InstructionCost VecCost = TTI->getCmpSelInstrCost(
3710 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
3711 // Check if it is possible and profitable to use min/max for selects in
3712 // VL.
3713 //
3714 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
3715 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
3716 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
3717 {VecTy, VecTy});
3718 InstructionCost IntrinsicCost =
3719 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3720 // If the selects are the only uses of the compares, they will be dead
3721 // and we can adjust the cost by removing their cost.
3722 if (IntrinsicAndUse.second)
3723 IntrinsicCost -=
3724 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
3725 CmpInst::BAD_ICMP_PREDICATE, CostKind);
3726 VecCost = std::min(VecCost, IntrinsicCost);
3727 }
3728 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
3729 return ReuseShuffleCost + VecCost - ScalarCost;
3730 }
3731 case Instruction::FNeg:
3732 case Instruction::Add:
3733 case Instruction::FAdd:
3734 case Instruction::Sub:
3735 case Instruction::FSub:
3736 case Instruction::Mul:
3737 case Instruction::FMul:
3738 case Instruction::UDiv:
3739 case Instruction::SDiv:
3740 case Instruction::FDiv:
3741 case Instruction::URem:
3742 case Instruction::SRem:
3743 case Instruction::FRem:
3744 case Instruction::Shl:
3745 case Instruction::LShr:
3746 case Instruction::AShr:
3747 case Instruction::And:
3748 case Instruction::Or:
3749 case Instruction::Xor: {
3750 // Certain instructions can be cheaper to vectorize if they have a
3751 // constant second vector operand.
3752 TargetTransformInfo::OperandValueKind Op1VK =
3753 TargetTransformInfo::OK_AnyValue;
3754 TargetTransformInfo::OperandValueKind Op2VK =
3755 TargetTransformInfo::OK_UniformConstantValue;
3756 TargetTransformInfo::OperandValueProperties Op1VP =
3757 TargetTransformInfo::OP_None;
3758 TargetTransformInfo::OperandValueProperties Op2VP =
3759 TargetTransformInfo::OP_PowerOf2;
3760
3761 // If all operands are exactly the same ConstantInt then set the
3762 // operand kind to OK_UniformConstantValue.
3763 // If instead not all operands are constants, then set the operand kind
3764 // to OK_AnyValue. If all operands are constants but not the same,
3765 // then set the operand kind to OK_NonUniformConstantValue.
3766 ConstantInt *CInt0 = nullptr;
3767 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3768 const Instruction *I = cast<Instruction>(VL[i]);
3769 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3770 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3771 if (!CInt) {
3772 Op2VK = TargetTransformInfo::OK_AnyValue;
3773 Op2VP = TargetTransformInfo::OP_None;
3774 break;
3775 }
3776 if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3777 !CInt->getValue().isPowerOf2())
3778 Op2VP = TargetTransformInfo::OP_None;
3779 if (i == 0) {
3780 CInt0 = CInt;
3781 continue;
3782 }
3783 if (CInt0 != CInt)
3784 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3785 }
3786
3787 SmallVector<const Value *, 4> Operands(VL0->operand_values());
3788 InstructionCost ScalarEltCost =
3789 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
3790 Op2VK, Op1VP, Op2VP, Operands, VL0);
3791 if (NeedToShuffleReuses) {
3792 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3793 }
3794 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3795 InstructionCost VecCost =
3796 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
3797 Op2VK, Op1VP, Op2VP, Operands, VL0);
3798 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
3799 return ReuseShuffleCost + VecCost - ScalarCost;
3800 }
3801 case Instruction::GetElementPtr: {
3802 TargetTransformInfo::OperandValueKind Op1VK =
3803 TargetTransformInfo::OK_AnyValue;
3804 TargetTransformInfo::OperandValueKind Op2VK =
3805 TargetTransformInfo::OK_UniformConstantValue;
3806
3807 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
3808 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
3809 if (NeedToShuffleReuses) {
3810 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3811 }
3812 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3813 InstructionCost VecCost = TTI->getArithmeticInstrCost(
3814 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
3815 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
3816 return ReuseShuffleCost + VecCost - ScalarCost;
3817 }
3818 case Instruction::Load: {
3819 // Cost of wide load - cost of scalar loads.
3820 Align alignment = cast<LoadInst>(VL0)->getAlign();
3821 InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
3822 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0);
3823 if (NeedToShuffleReuses) {
3824 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3825 }
3826 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3827 InstructionCost VecLdCost;
3828 if (E->State == TreeEntry::Vectorize) {
3829 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
3830 CostKind, VL0);
3831 } else {
3832 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState")((E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"
) ? static_cast<void> (0) : __assert_fail ("E->State == TreeEntry::ScatterVectorize && \"Unknown EntryState\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3832, __PRETTY_FUNCTION__))
;
3833 VecLdCost = TTI->getGatherScatterOpCost(
3834 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
3835 /*VariableMask=*/false, alignment, CostKind, VL0);
3836 }
3837 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) {
3838 SmallVector<int> NewMask;
3839 inversePermutation(E->ReorderIndices, NewMask);
3840 VecLdCost += TTI->getShuffleCost(
3841 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3842 }
3843 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost
); } } while (false)
;
3844 return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3845 }
3846 case Instruction::Store: {
3847 // We know that we can merge the stores. Calculate the cost.
3848 bool IsReorder = !E->ReorderIndices.empty();
3849 auto *SI =
3850 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
3851 Align Alignment = SI->getAlign();
3852 InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
3853 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
3854 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3855 InstructionCost VecStCost = TTI->getMemoryOpCost(
3856 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
3857 if (IsReorder) {
3858 SmallVector<int> NewMask;
3859 inversePermutation(E->ReorderIndices, NewMask);
3860 VecStCost += TTI->getShuffleCost(
3861 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3862 }
3863 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost
); } } while (false)
;
3864 return VecStCost - ScalarStCost;
3865 }
3866 case Instruction::Call: {
3867 CallInst *CI = cast<CallInst>(VL0);
3868 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3869
3870 // Calculate the cost of the scalar and vector calls.
3871 IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
3872 InstructionCost ScalarEltCost =
3873 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3874 if (NeedToShuffleReuses) {
3875 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3876 }
3877 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3878
3879 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
3880 InstructionCost VecCallCost =
3881 std::min(VecCallCosts.first, VecCallCosts.second);
3882
3883 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
3884 << " (" << VecCallCost << "-" << ScalarCallCost << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
3885 << " for " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
;
3886
3887 return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3888 }
3889 case Instruction::ShuffleVector: {
3890 assert(E->isAltShuffle() &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3895, __PRETTY_FUNCTION__))
3891 ((Instruction::isBinaryOp(E->getOpcode()) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3895, __PRETTY_FUNCTION__))
3892 Instruction::isBinaryOp(E->getAltOpcode())) ||((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3895, __PRETTY_FUNCTION__))
3893 (Instruction::isCast(E->getOpcode()) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3895, __PRETTY_FUNCTION__))
3894 Instruction::isCast(E->getAltOpcode()))) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3895, __PRETTY_FUNCTION__))
3895 "Invalid Shuffle Vector Operand")((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3895, __PRETTY_FUNCTION__))
;
3896 InstructionCost ScalarCost = 0;
3897 if (NeedToShuffleReuses) {
3898 for (unsigned Idx : E->ReuseShuffleIndices) {
3899 Instruction *I = cast<Instruction>(VL[Idx]);
3900 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
3901 }
3902 for (Value *V : VL) {
3903 Instruction *I = cast<Instruction>(V);
3904 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
3905 }
3906 }
3907 for (Value *V : VL) {
3908 Instruction *I = cast<Instruction>(V);
3909 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode")((E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"
) ? static_cast<void> (0) : __assert_fail ("E->isOpcodeOrAlt(I) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3909, __PRETTY_FUNCTION__))
;
3910 ScalarCost += TTI->getInstructionCost(I, CostKind);
3911 }
3912 // VecCost is equal to sum of the cost of creating 2 vectors
3913 // and the cost of creating shuffle.
3914 InstructionCost VecCost = 0;
3915 if (Instruction::isBinaryOp(E->getOpcode())) {
3916 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
3917 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
3918 CostKind);
3919 } else {
3920 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3921 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3922 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
3923 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
3924 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
3925 TTI::CastContextHint::None, CostKind);
3926 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
3927 TTI::CastContextHint::None, CostKind);
3928 }
3929
3930 SmallVector<int> Mask(E->Scalars.size());
3931 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
3932 auto *OpInst = cast<Instruction>(E->Scalars[I]);
3933 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode")((E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"
) ? static_cast<void> (0) : __assert_fail ("E->isOpcodeOrAlt(OpInst) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3933, __PRETTY_FUNCTION__))
;
3934 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
3935 }
3936 VecCost +=
3937 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
3938 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost
); } } while (false)
;
3939 return ReuseShuffleCost + VecCost - ScalarCost;
3940 }
3941 default:
3942 llvm_unreachable("Unknown instruction")::llvm::llvm_unreachable_internal("Unknown instruction", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3942)
;
3943 }
3944}
3945
3946bool BoUpSLP::isFullyVectorizableTinyTree() const {
3947 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
3948 << VectorizableTree.size() << " is fully vectorizable .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
;
3949
3950 // We only handle trees of heights 1 and 2.
3951 if (VectorizableTree.size() == 1 &&
3952 VectorizableTree[0]->State == TreeEntry::Vectorize)
3953 return true;
3954
3955 if (VectorizableTree.size() != 2)
3956 return false;
3957
3958 // Handle splat and all-constants stores.
3959 if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
3960 (allConstant(VectorizableTree[1]->Scalars) ||
3961 isSplat(VectorizableTree[1]->Scalars)))
3962 return true;
3963
3964 // Gathering cost would be too much for tiny trees.
3965 if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
3966 VectorizableTree[1]->State == TreeEntry::NeedToGather)
3967 return false;
3968
3969 return true;
3970}
3971
3972static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
3973 TargetTransformInfo *TTI) {
3974 // Look past the root to find a source value. Arbitrarily follow the
3975 // path through operand 0 of any 'or'. Also, peek through optional
3976 // shift-left-by-multiple-of-8-bits.
3977 Value *ZextLoad = Root;
3978 const APInt *ShAmtC;
3979 while (!isa<ConstantExpr>(ZextLoad) &&
3980 (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
3981 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
3982 ShAmtC->urem(8) == 0)))
3983 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
3984
3985 // Check if the input is an extended load of the required or/shift expression.
3986 Value *LoadPtr;
3987 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
3988 return false;
3989
3990 // Require that the total load bit width is a legal integer type.
3991 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
3992 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
3993 Type *SrcTy = LoadPtr->getType()->getPointerElementType();
3994 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
3995 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
3996 return false;
3997
3998 // Everything matched - assume that we can fold the whole sequence using
3999 // load combining.
4000 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
4001 << *(cast<Instruction>(Root)) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
;
4002
4003 return true;
4004}
4005
4006bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
4007 if (RdxKind != RecurKind::Or)
4008 return false;
4009
4010 unsigned NumElts = VectorizableTree[0]->Scalars.size();
4011 Value *FirstReduced = VectorizableTree[0]->Scalars[0];
4012 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI);
4013}
4014
4015bool BoUpSLP::isLoadCombineCandidate() const {
4016 // Peek through a final sequence of stores and check if all operations are
4017 // likely to be load-combined.
4018 unsigned NumElts = VectorizableTree[0]->Scalars.size();
4019 for (Value *Scalar : VectorizableTree[0]->Scalars) {
4020 Value *X;
4021 if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
4022 !isLoadCombineCandidateImpl(X, NumElts, TTI))
4023 return false;
4024 }
4025 return true;
4026}
4027
4028bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4029 // We can vectorize the tree if its size is greater than or equal to the
4030 // minimum size specified by the MinTreeSize command line option.
4031 if (VectorizableTree.size() >= MinTreeSize)
4032 return false;
4033
4034 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4035 // can vectorize it if we can prove it fully vectorizable.
4036 if (isFullyVectorizableTinyTree())
4037 return false;
4038
4039 assert(VectorizableTree.empty()((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4041, __PRETTY_FUNCTION__))
4040 ? ExternalUses.empty()((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4041, __PRETTY_FUNCTION__))
4041 : true && "We shouldn't have any external users")((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4041, __PRETTY_FUNCTION__))
;
4042
4043 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4044 // vectorizable.
4045 return true;
4046}
4047
4048InstructionCost BoUpSLP::getSpillCost() const {
4049 // Walk from the bottom of the tree to the top, tracking which values are
4050 // live. When we see a call instruction that is not part of our tree,
4051 // query TTI to see if there is a cost to keeping values live over it
4052 // (for example, if spills and fills are required).
4053 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
4054 InstructionCost Cost = 0;
4055
4056 SmallPtrSet<Instruction*, 4> LiveValues;
4057 Instruction *PrevInst = nullptr;
4058
4059 // The entries in VectorizableTree are not necessarily ordered by their
4060 // position in basic blocks. Collect them and order them by dominance so later
4061 // instructions are guaranteed to be visited first. For instructions in
4062 // different basic blocks, we only scan to the beginning of the block, so
4063 // their order does not matter, as long as all instructions in a basic block
4064 // are grouped together. Using dominance ensures a deterministic order.
4065 SmallVector<Instruction *, 16> OrderedScalars;
4066 for (const auto &TEPtr : VectorizableTree) {
4067 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
4068 if (!Inst)
4069 continue;
4070 OrderedScalars.push_back(Inst);
4071 }
4072 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) {
4073 return DT->dominates(B, A);
4074 });
4075
4076 for (Instruction *Inst : OrderedScalars) {
4077 if (!PrevInst) {
4078 PrevInst = Inst;
4079 continue;
4080 }
4081
4082 // Update LiveValues.
4083 LiveValues.erase(PrevInst);
4084 for (auto &J : PrevInst->operands()) {
4085 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
4086 LiveValues.insert(cast<Instruction>(&*J));
4087 }
4088
4089 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4090 dbgs() << "SLP: #LV: " << LiveValues.size();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4091 for (auto *X : LiveValues)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4092 dbgs() << " " << X->getName();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4093 dbgs() << ", Looking at ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4094 Inst->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
4095 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
;
4096
4097 // Now find the sequence of instructions between PrevInst and Inst.
4098 unsigned NumCalls = 0;
4099 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
4100 PrevInstIt =
4101 PrevInst->getIterator().getReverse();
4102 while (InstIt != PrevInstIt) {
4103 if (PrevInstIt == PrevInst->getParent()->rend()) {
4104 PrevInstIt = Inst->getParent()->rbegin();
4105 continue;
4106 }
4107
4108 // Debug information does not impact spill cost.
4109 if ((isa<CallInst>(&*PrevInstIt) &&
4110 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
4111 &*PrevInstIt != PrevInst)
4112 NumCalls++;
4113
4114 ++PrevInstIt;
4115 }
4116
4117 if (NumCalls) {
4118 SmallVector<Type*, 4> V;
4119 for (auto *II : LiveValues)
4120 V.push_back(FixedVectorType::get(II->getType(), BundleWidth));
4121 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
4122 }
4123
4124 PrevInst = Inst;
4125 }
4126
4127 return Cost;
4128}
4129
4130InstructionCost BoUpSLP::getTreeCost() {
4131 InstructionCost Cost = 0;
4132 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
4133 << VectorizableTree.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
;
4134
4135 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
4136
4137 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
4138 TreeEntry &TE = *VectorizableTree[I].get();
4139
4140 // We create duplicate tree entries for gather sequences that have multiple
4141 // uses. However, we should not compute the cost of duplicate sequences.
4142 // For example, if we have a build vector (i.e., insertelement sequence)
4143 // that is used by more than one vector instruction, we only need to
4144 // compute the cost of the insertelement instructions once. The redundant
4145 // instructions will be eliminated by CSE.
4146 //
4147 // We should consider not creating duplicate tree entries for gather
4148 // sequences, and instead add additional edges to the tree representing
4149 // their uses. Since such an approach results in fewer total entries,
4150 // existing heuristics based on tree size may yield different results.
4151 //
4152 if (TE.State == TreeEntry::NeedToGather &&
4153 std::any_of(std::next(VectorizableTree.begin(), I + 1),
4154 VectorizableTree.end(),
4155 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
4156 return EntryPtr->State == TreeEntry::NeedToGather &&
4157 EntryPtr->isSame(TE.Scalars);
4158 }))
4159 continue;
4160
4161 InstructionCost C = getEntryCost(&TE);
4162 Cost += C;
4163 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4164 << " for bundle that starts with " << *TE.Scalars[0]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4165 << ".\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
4166 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
;
4167 }
4168
4169 SmallPtrSet<Value *, 16> ExtractCostCalculated;
4170 InstructionCost ExtractCost = 0;
4171 for (ExternalUser &EU : ExternalUses) {
4172 // We only add extract cost once for the same scalar.
4173 if (!ExtractCostCalculated.insert(EU.Scalar).second)
4174 continue;
4175
4176 // Uses by ephemeral values are free (because the ephemeral value will be
4177 // removed prior to code generation, and so the extraction will be
4178 // removed as well).
4179 if (EphValues.count(EU.User))
4180 continue;
4181
4182 // If we plan to rewrite the tree in a smaller type, we will need to sign
4183 // extend the extracted value back to the original type. Here, we account
4184 // for the extract and the added cost of the sign extend if needed.
4185 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
4186 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4187 if (MinBWs.count(ScalarRoot)) {
4188 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4189 auto Extend =
4190 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
4191 VecTy = FixedVectorType::get(MinTy, BundleWidth);
4192 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
4193 VecTy, EU.Lane);
4194 } else {
4195 ExtractCost +=
4196 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4197 }
4198 }
4199
4200 InstructionCost SpillCost = getSpillCost();
4201 Cost += SpillCost + ExtractCost;
4202
4203#ifndef NDEBUG
4204 SmallString<256> Str;
4205 {
4206 raw_svector_ostream OS(Str);
4207 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4208 << "SLP: Extract Cost = " << ExtractCost << ".\n"
4209 << "SLP: Total Cost = " << Cost << ".\n";
4210 }
4211 LLVM_DEBUG(dbgs() << Str)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << Str; } } while (false)
;
4212 if (ViewSLPTree)
4213 ViewGraph(this, "SLP" + F->getName(), false, Str);
4214#endif
4215
4216 return Cost;
4217}
4218
4219InstructionCost
4220BoUpSLP::getGatherCost(FixedVectorType *Ty,
4221 const DenseSet<unsigned> &ShuffledIndices) const {
4222 unsigned NumElts = Ty->getNumElements();
4223 APInt DemandedElts = APInt::getNullValue(NumElts);
4224 for (unsigned I = 0; I < NumElts; ++I)
4225 if (!ShuffledIndices.count(I))
4226 DemandedElts.setBit(I);
4227 InstructionCost Cost =
4228 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4229 /*Extract*/ false);
4230 if (!ShuffledIndices.empty())
4231 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4232 return Cost;
4233}
4234
4235InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4236 // Find the type of the operands in VL.
4237 Type *ScalarTy = VL[0]->getType();
4238 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4239 ScalarTy = SI->getValueOperand()->getType();
4240 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4241 // Find the cost of inserting/extracting values from the vector.
4242 // Check if the same elements are inserted several times and count them as
4243 // shuffle candidates.
4244 DenseSet<unsigned> ShuffledElements;
4245 DenseSet<Value *> UniqueElements;
4246 // Iterate in reverse order to consider insert elements with the high cost.
4247 for (unsigned I = VL.size(); I > 0; --I) {
4248 unsigned Idx = I - 1;
4249 if (!UniqueElements.insert(VL[Idx]).second)
4250 ShuffledElements.insert(Idx);
4251 }
4252 return getGatherCost(VecTy, ShuffledElements);
4253}
4254
4255// Perform operand reordering on the instructions in VL and return the reordered
4256// operands in Left and Right.
4257void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4258 SmallVectorImpl<Value *> &Left,
4259 SmallVectorImpl<Value *> &Right,
4260 const DataLayout &DL,
4261 ScalarEvolution &SE,
4262 const BoUpSLP &R) {
4263 if (VL.empty())
4264 return;
4265 VLOperands Ops(VL, DL, SE, R);
4266 // Reorder the operands in place.
4267 Ops.reorder();
4268 Left = Ops.getVL(0);
4269 Right = Ops.getVL(1);
4270}
4271
4272void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
4273 // Get the basic block this bundle is in. All instructions in the bundle
4274 // should be in this block.
4275 auto *Front = E->getMainOp();
4276 auto *BB = Front->getParent();
4277 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {((llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB; })) ? static_cast<void>
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4280, __PRETTY_FUNCTION__))
4278 auto *I = cast<Instruction>(V);((llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB; })) ? static_cast<void>
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4280, __PRETTY_FUNCTION__))
4279 return !E->isOpcodeOrAlt(I) || I->getParent() == BB;((llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB; })) ? static_cast<void>
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4280, __PRETTY_FUNCTION__))
4280 }))((llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB; })) ? static_cast<void>
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4280, __PRETTY_FUNCTION__))
;
4281
4282 // The last instruction in the bundle in program order.
4283 Instruction *LastInst = nullptr;
4284
4285 // Find the last instruction. The common case should be that BB has been
4286 // scheduled, and the last instruction is VL.back(). So we start with
4287 // VL.back() and iterate over schedule data until we reach the end of the
4288 // bundle. The end of the bundle is marked by null ScheduleData.
4289 if (BlocksSchedules.count(BB)) {
4290 auto *Bundle =
4291 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4292 if (Bundle && Bundle->isPartOfBundle())
4293 for (; Bundle; Bundle = Bundle->NextInBundle)
4294 if (Bundle->OpValue == Bundle->Inst)
4295 LastInst = Bundle->Inst;
4296 }
4297
4298 // LastInst can still be null at this point if there's either not an entry
4299 // for BB in BlocksSchedules or there's no ScheduleData available for
4300 // VL.back(). This can be the case if buildTree_rec aborts for various
4301 // reasons (e.g., the maximum recursion depth is reached, the maximum region
4302 // size is reached, etc.). ScheduleData is initialized in the scheduling
4303 // "dry-run".
4304 //
4305 // If this happens, we can still find the last instruction by brute force. We
4306 // iterate forwards from Front (inclusive) until we either see all
4307 // instructions in the bundle or reach the end of the block. If Front is the
4308 // last instruction in program order, LastInst will be set to Front, and we
4309 // will visit all the remaining instructions in the block.
4310 //
4311 // One of the reasons we exit early from buildTree_rec is to place an upper
4312 // bound on compile-time. Thus, taking an additional compile-time hit here is
4313 // not ideal. However, this should be exceedingly rare since it requires that
4314 // we both exit early from buildTree_rec and that the bundle be out-of-order
4315 // (causing us to iterate all the way to the end of the block).
4316 if (!LastInst) {
4317 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4318 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4319 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4320 LastInst = &I;
4321 if (Bundle.empty())
4322 break;
4323 }
4324 }
4325 assert(LastInst && "Failed to find last instruction in bundle")((LastInst && "Failed to find last instruction in bundle"
) ? static_cast<void> (0) : __assert_fail ("LastInst && \"Failed to find last instruction in bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4325, __PRETTY_FUNCTION__))
;
4326
4327 // Set the insertion point after the last instruction in the bundle. Set the
4328 // debug location to Front.
4329 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4330 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4331}
4332
4333Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4334 Value *Val0 =
4335 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4336 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4337 Value *Vec = PoisonValue::get(VecTy);
4338 unsigned InsIndex = 0;
4339 for (Value *Val : VL) {
4340 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++));
4341 auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4342 if (!InsElt)
4343 continue;
4344 GatherSeq.insert(InsElt);
4345 CSEBlocks.insert(InsElt->getParent());
4346 // Add to our 'need-to-extract' list.
4347 if (TreeEntry *Entry = getTreeEntry(Val)) {
4348 // Find which lane we need to extract.
4349 unsigned FoundLane = std::distance(Entry->Scalars.begin(),
4350 find(Entry->Scalars, Val));
4351 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane")((FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"
) ? static_cast<void> (0) : __assert_fail ("FoundLane < Entry->Scalars.size() && \"Couldn't find extract lane\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4351, __PRETTY_FUNCTION__))
;
4352 if (!Entry->ReuseShuffleIndices.empty()) {
4353 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(),
4354 find(Entry->ReuseShuffleIndices, FoundLane));
4355 }
4356 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane));
4357 }
4358 }
4359
4360 return Vec;
4361}
4362
4363Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4364 InstructionsState S = getSameOpcode(VL);
4365 if (S.getOpcode()) {
4366 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4367 if (E->isSame(VL)) {
4368 Value *V = vectorizeTree(E);
4369 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
4370 // Reshuffle to get only unique values.
4371 // If some of the scalars are duplicated in the vectorization tree
4372 // entry, we do not vectorize them but instead generate a mask for the
4373 // reuses. But if there are several users of the same entry, they may
4374 // have different vectorization factors. This is especially important
4375 // for PHI nodes. In this case, we need to adapt the resulting
4376 // instruction for the user vectorization factor and have to reshuffle
4377 // it again to take only unique elements of the vector. Without this
4378 // code the function incorrectly returns reduced vector instruction
4379 // with the same elements, not with the unique ones.
4380 // block:
4381 // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
4382 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
4383 // ... (use %2)
4384 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
4385 // br %block
4386 SmallVector<int, 4> UniqueIdxs;
4387 SmallSet<int, 4> UsedIdxs;
4388 int Pos = 0;
4389 for (int Idx : E->ReuseShuffleIndices) {
4390 if (UsedIdxs.insert(Idx).second)
4391 UniqueIdxs.emplace_back(Pos);
4392 ++Pos;
4393 }
4394 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
4395 }
4396 return V;
4397 }
4398 }
4399 }
4400
4401 // Check that every instruction appears once in this bundle.
4402 SmallVector<int, 4> ReuseShuffleIndicies;
4403 SmallVector<Value *, 4> UniqueValues;
4404 if (VL.size() > 2) {
4405 DenseMap<Value *, unsigned> UniquePositions;
4406 for (Value *V : VL) {
4407 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4408 ReuseShuffleIndicies.emplace_back(Res.first->second);
4409 if (Res.second || isa<Constant>(V))
4410 UniqueValues.emplace_back(V);
4411 }
4412 // Do not shuffle single element or if number of unique values is not power
4413 // of 2.
4414 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
4415 !llvm::isPowerOf2_32(UniqueValues.size()))
4416 ReuseShuffleIndicies.clear();
4417 else
4418 VL = UniqueValues;
4419 }
4420
4421 Value *Vec = gather(VL);
4422 if (!ReuseShuffleIndicies.empty()) {
4423 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle");
4424 if (auto *I = dyn_cast<Instruction>(Vec)) {
4425 GatherSeq.insert(I);
4426 CSEBlocks.insert(I->getParent());
4427 }
4428 }
4429 return Vec;
4430}
4431
4432namespace {
4433/// Merges shuffle masks and emits final shuffle instruction, if required.
4434class ShuffleInstructionBuilder {
4435 IRBuilderBase &Builder;
4436 bool IsFinalized = false;
4437 SmallVector<int, 4> Mask;
4438
4439public:
4440 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {}
4441
4442 /// Adds a mask, inverting it before applying.
4443 void addInversedMask(ArrayRef<unsigned> SubMask) {
4444 if (SubMask.empty())
4445 return;
4446 SmallVector<int, 4> NewMask;
4447 inversePermutation(SubMask, NewMask);
4448 addMask(NewMask);
4449 }
4450
4451 /// Functions adds masks, merging them into single one.
4452 void addMask(ArrayRef<unsigned> SubMask) {
4453 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
4454 addMask(NewMask);
4455 }
4456
4457 void addMask(ArrayRef<int> SubMask) {
4458 if (SubMask.empty())
4459 return;
4460 if (Mask.empty()) {
4461 Mask.append(SubMask.begin(), SubMask.end());
4462 return;
4463 }
4464 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
4465 int TermValue = std::min(Mask.size(), SubMask.size());
4466 for (int I = 0, E = SubMask.size(); I < E; ++I) {
4467 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) {
4468 NewMask[I] = E;
4469 continue;
4470 }
4471 NewMask[I] = Mask[SubMask[I]];
4472 }
4473 Mask.swap(NewMask);
4474 }
4475
4476 Value *finalize(Value *V) {
4477 IsFinalized = true;
4478 if (Mask.empty())
4479 return V;
4480 return Builder.CreateShuffleVector(V, Mask, "shuffle");
4481 }
4482
4483 ~ShuffleInstructionBuilder() {
4484 assert((IsFinalized || Mask.empty()) &&(((IsFinalized || Mask.empty()) && "Shuffle construction must be finalized."
) ? static_cast<void> (0) : __assert_fail ("(IsFinalized || Mask.empty()) && \"Shuffle construction must be finalized.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4485, __PRETTY_FUNCTION__))
4485 "Shuffle construction must be finalized.")(((IsFinalized || Mask.empty()) && "Shuffle construction must be finalized."
) ? static_cast<void> (0) : __assert_fail ("(IsFinalized || Mask.empty()) && \"Shuffle construction must be finalized.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4485, __PRETTY_FUNCTION__))
;
4486 }
4487};
4488} // namespace
4489
4490Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
4491 IRBuilder<>::InsertPointGuard Guard(Builder);
4492
4493 if (E->VectorizedValue) {
4494 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*E->Scalars[0] << ".\n"; } } while (false)
;
4495 return E->VectorizedValue;
4496 }
4497
4498 ShuffleInstructionBuilder ShuffleBuilder(Builder);
4499 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4500 if (E->State == TreeEntry::NeedToGather) {
4501 setInsertPointAfterBundle(E);
4502 Value *Vec = gather(E->Scalars);
4503 if (NeedToShuffleReuses) {
4504 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4505 Vec = ShuffleBuilder.finalize(Vec);
4506 if (auto *I = dyn_cast<Instruction>(Vec)) {
4507 GatherSeq.insert(I);
4508 CSEBlocks.insert(I->getParent());
4509 }
4510 }
4511 E->VectorizedValue = Vec;
4512 return Vec;
4513 }
4514
4515 assert((E->State == TreeEntry::Vectorize ||(((E->State == TreeEntry::Vectorize || E->State == TreeEntry
::ScatterVectorize) && "Unhandled state") ? static_cast
<void> (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4517, __PRETTY_FUNCTION__))
4516 E->State == TreeEntry::ScatterVectorize) &&(((E->State == TreeEntry::Vectorize || E->State == TreeEntry
::ScatterVectorize) && "Unhandled state") ? static_cast
<void> (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4517, __PRETTY_FUNCTION__))
4517 "Unhandled state")(((E->State == TreeEntry::Vectorize || E->State == TreeEntry
::ScatterVectorize) && "Unhandled state") ? static_cast
<void> (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4517, __PRETTY_FUNCTION__))
;
4518 unsigned ShuffleOrOp =
4519 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
4520 Instruction *VL0 = E->getMainOp();
4521 Type *ScalarTy = VL0->getType();
4522 if (auto *Store = dyn_cast<StoreInst>(VL0))
4523 ScalarTy = Store->getValueOperand()->getType();
4524 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
4525 switch (ShuffleOrOp) {
4526 case Instruction::PHI: {
4527 auto *PH = cast<PHINode>(VL0);
4528 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
4529 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4530 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
4531 Value *V = NewPhi;
4532 if (NeedToShuffleReuses)
4533 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4534
4535 E->VectorizedValue = V;
4536
4537 // PHINodes may have multiple entries from the same block. We want to
4538 // visit every block once.
4539 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
4540
4541 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
4542 ValueList Operands;
4543 BasicBlock *IBB = PH->getIncomingBlock(i);
4544
4545 if (!VisitedBBs.insert(IBB).second) {
4546 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
4547 continue;
4548 }
4549
4550 Builder.SetInsertPoint(IBB->getTerminator());
4551 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4552 Value *Vec = vectorizeTree(E->getOperand(i));
4553 NewPhi->addIncoming(Vec, IBB);
4554 }
4555
4556 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&((NewPhi->getNumIncomingValues() == PH->getNumIncomingValues
() && "Invalid number of incoming values") ? static_cast
<void> (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4557, __PRETTY_FUNCTION__))
4557 "Invalid number of incoming values")((NewPhi->getNumIncomingValues() == PH->getNumIncomingValues
() && "Invalid number of incoming values") ? static_cast
<void> (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4557, __PRETTY_FUNCTION__))
;
4558 return V;
4559 }
4560
4561 case Instruction::ExtractElement: {
4562 Value *V = E->getSingleOperand(0);
4563 Builder.SetInsertPoint(VL0);
4564 ShuffleBuilder.addInversedMask(E->ReorderIndices);
4565 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4566 V = ShuffleBuilder.finalize(V);
4567 E->VectorizedValue = V;
4568 return V;
4569 }
4570 case Instruction::ExtractValue: {
4571 auto *LI = cast<LoadInst>(E->getSingleOperand(0));
4572 Builder.SetInsertPoint(LI);
4573 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
4574 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
4575 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
4576 Value *NewV = propagateMetadata(V, E->Scalars);
4577 ShuffleBuilder.addInversedMask(E->ReorderIndices);
4578 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4579 NewV = ShuffleBuilder.finalize(NewV);
4580 E->VectorizedValue = NewV;
4581 return NewV;
4582 }
4583 case Instruction::ZExt:
4584 case Instruction::SExt:
4585 case Instruction::FPToUI:
4586 case Instruction::FPToSI:
4587 case Instruction::FPExt:
4588 case Instruction::PtrToInt:
4589 case Instruction::IntToPtr:
4590 case Instruction::SIToFP:
4591 case Instruction::UIToFP:
4592 case Instruction::Trunc:
4593 case Instruction::FPTrunc:
4594 case Instruction::BitCast: {
4595 setInsertPointAfterBundle(E);
4596
4597 Value *InVec = vectorizeTree(E->getOperand(0));
4598
4599 if (E->VectorizedValue) {
4600 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4601 return E->VectorizedValue;
4602 }
4603
4604 auto *CI = cast<CastInst>(VL0);
4605 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
4606 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4607 V = ShuffleBuilder.finalize(V);
4608
4609 E->VectorizedValue = V;
4610 ++NumVectorInstructions;
4611 return V;
4612 }
4613 case Instruction::FCmp:
4614 case Instruction::ICmp: {
4615 setInsertPointAfterBundle(E);
4616
4617 Value *L = vectorizeTree(E->getOperand(0));
4618 Value *R = vectorizeTree(E->getOperand(1));
4619
4620 if (E->VectorizedValue) {
4621 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4622 return E->VectorizedValue;
4623 }
4624
4625 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4626 Value *V = Builder.CreateCmp(P0, L, R);
4627 propagateIRFlags(V, E->Scalars, VL0);
4628 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4629 V = ShuffleBuilder.finalize(V);
4630
4631 E->VectorizedValue = V;
4632 ++NumVectorInstructions;
4633 return V;
4634 }
4635 case Instruction::Select: {
4636 setInsertPointAfterBundle(E);
4637
4638 Value *Cond = vectorizeTree(E->getOperand(0));
4639 Value *True = vectorizeTree(E->getOperand(1));
4640 Value *False = vectorizeTree(E->getOperand(2));
4641
4642 if (E->VectorizedValue) {
4643 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4644 return E->VectorizedValue;
4645 }
4646
4647 Value *V = Builder.CreateSelect(Cond, True, False);
4648 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4649 V = ShuffleBuilder.finalize(V);
4650
4651 E->VectorizedValue = V;
4652 ++NumVectorInstructions;
4653 return V;
4654 }
4655 case Instruction::FNeg: {
4656 setInsertPointAfterBundle(E);
4657
4658 Value *Op = vectorizeTree(E->getOperand(0));
4659
4660 if (E->VectorizedValue) {
4661 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4662 return E->VectorizedValue;
4663 }
4664
4665 Value *V = Builder.CreateUnOp(
4666 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
4667 propagateIRFlags(V, E->Scalars, VL0);
4668 if (auto *I = dyn_cast<Instruction>(V))
4669 V = propagateMetadata(I, E->Scalars);
4670
4671 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4672 V = ShuffleBuilder.finalize(V);
4673
4674 E->VectorizedValue = V;
4675 ++NumVectorInstructions;
4676
4677 return V;
4678 }
4679 case Instruction::Add:
4680 case Instruction::FAdd:
4681 case Instruction::Sub:
4682 case Instruction::FSub:
4683 case Instruction::Mul:
4684 case Instruction::FMul:
4685 case Instruction::UDiv:
4686 case Instruction::SDiv:
4687 case Instruction::FDiv:
4688 case Instruction::URem:
4689 case Instruction::SRem:
4690 case Instruction::FRem:
4691 case Instruction::Shl:
4692 case Instruction::LShr:
4693 case Instruction::AShr:
4694 case Instruction::And:
4695 case Instruction::Or:
4696 case Instruction::Xor: {
4697 setInsertPointAfterBundle(E);
4698
4699 Value *LHS = vectorizeTree(E->getOperand(0));
4700 Value *RHS = vectorizeTree(E->getOperand(1));
4701
4702 if (E->VectorizedValue) {
4703 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4704 return E->VectorizedValue;
4705 }
4706
4707 Value *V = Builder.CreateBinOp(
4708 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
4709 RHS);
4710 propagateIRFlags(V, E->Scalars, VL0);
4711 if (auto *I = dyn_cast<Instruction>(V))
4712 V = propagateMetadata(I, E->Scalars);
4713
4714 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4715 V = ShuffleBuilder.finalize(V);
4716
4717 E->VectorizedValue = V;
4718 ++NumVectorInstructions;
4719
4720 return V;
4721 }
4722 case Instruction::Load: {
4723 // Loads are inserted at the head of the tree because we don't want to
4724 // sink them all the way down past store instructions.
4725 bool IsReorder = E->updateStateIfReorder();
4726 if (IsReorder)
4727 VL0 = E->getMainOp();
4728 setInsertPointAfterBundle(E);
4729
4730 LoadInst *LI = cast<LoadInst>(VL0);
4731 Instruction *NewLI;
4732 unsigned AS = LI->getPointerAddressSpace();
4733 Value *PO = LI->getPointerOperand();
4734 if (E->State == TreeEntry::Vectorize) {
4735
4736 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
4737
4738 // The pointer operand uses an in-tree scalar so we add the new BitCast
4739 // to ExternalUses list to make sure that an extract will be generated
4740 // in the future.
4741 if (getTreeEntry(PO))
4742 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
4743
4744 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
4745 } else {
4746 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state")((E->State == TreeEntry::ScatterVectorize && "Unhandled state"
) ? static_cast<void> (0) : __assert_fail ("E->State == TreeEntry::ScatterVectorize && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4746, __PRETTY_FUNCTION__))
;
4747 Value *VecPtr = vectorizeTree(E->getOperand(0));
4748 // Use the minimum alignment of the gathered loads.
4749 Align CommonAlignment = LI->getAlign();
4750 for (Value *V : E->Scalars)
4751 CommonAlignment =
4752 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
4753 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment);
4754 }
4755 Value *V = propagateMetadata(NewLI, E->Scalars);
4756
4757 ShuffleBuilder.addInversedMask(E->ReorderIndices);
4758 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4759 V = ShuffleBuilder.finalize(V);
4760 E->VectorizedValue = V;
4761 ++NumVectorInstructions;
4762 return V;
4763 }
4764 case Instruction::Store: {
4765 bool IsReorder = !E->ReorderIndices.empty();
4766 auto *SI = cast<StoreInst>(
4767 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
4768 unsigned AS = SI->getPointerAddressSpace();
4769
4770 setInsertPointAfterBundle(E);
4771
4772 Value *VecValue = vectorizeTree(E->getOperand(0));
4773 ShuffleBuilder.addMask(E->ReorderIndices);
4774 VecValue = ShuffleBuilder.finalize(VecValue);
4775
4776 Value *ScalarPtr = SI->getPointerOperand();
4777 Value *VecPtr = Builder.CreateBitCast(
4778 ScalarPtr, VecValue->getType()->getPointerTo(AS));
4779 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
4780 SI->getAlign());
4781
4782 // The pointer operand uses an in-tree scalar, so add the new BitCast to
4783 // ExternalUses to make sure that an extract will be generated in the
4784 // future.
4785 if (getTreeEntry(ScalarPtr))
4786 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4787
4788 Value *V = propagateMetadata(ST, E->Scalars);
4789
4790 E->VectorizedValue = V;
4791 ++NumVectorInstructions;
4792 return V;
4793 }
4794 case Instruction::GetElementPtr: {
4795 setInsertPointAfterBundle(E);
4796
4797 Value *Op0 = vectorizeTree(E->getOperand(0));
4798
4799 std::vector<Value *> OpVecs;
4800 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4801 ++j) {
4802 ValueList &VL = E->getOperand(j);
4803 // Need to cast all elements to the same type before vectorization to
4804 // avoid crash.
4805 Type *VL0Ty = VL0->getOperand(j)->getType();
4806 Type *Ty = llvm::all_of(
4807 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
4808 ? VL0Ty
4809 : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4810 ->getPointerOperandType()
4811 ->getScalarType());
4812 for (Value *&V : VL) {
4813 auto *CI = cast<ConstantInt>(V);
4814 V = ConstantExpr::getIntegerCast(CI, Ty,
4815 CI->getValue().isSignBitSet());
4816 }
4817 Value *OpVec = vectorizeTree(VL);
4818 OpVecs.push_back(OpVec);
4819 }
4820
4821 Value *V = Builder.CreateGEP(
4822 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4823 if (Instruction *I = dyn_cast<Instruction>(V))
4824 V = propagateMetadata(I, E->Scalars);
4825
4826 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4827 V = ShuffleBuilder.finalize(V);
4828
4829 E->VectorizedValue = V;
4830 ++NumVectorInstructions;
4831
4832 return V;
4833 }
4834 case Instruction::Call: {
4835 CallInst *CI = cast<CallInst>(VL0);
4836 setInsertPointAfterBundle(E);
4837
4838 Intrinsic::ID IID = Intrinsic::not_intrinsic;
4839 if (Function *FI = CI->getCalledFunction())
4840 IID = FI->getIntrinsicID();
4841
4842 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4843
4844 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4845 bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
4846 VecCallCosts.first <= VecCallCosts.second;
4847
4848 Value *ScalarArg = nullptr;
4849 std::vector<Value *> OpVecs;
4850 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4851 ValueList OpVL;
4852 // Some intrinsics have scalar arguments. This argument should not be
4853 // vectorized.
4854 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
4855 CallInst *CEI = cast<CallInst>(VL0);
4856 ScalarArg = CEI->getArgOperand(j);
4857 OpVecs.push_back(CEI->getArgOperand(j));
4858 continue;
4859 }
4860
4861 Value *OpVec = vectorizeTree(E->getOperand(j));
4862 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: OpVec[" << j << "]: "
<< *OpVec << "\n"; } } while (false)
;
4863 OpVecs.push_back(OpVec);
4864 }
4865
4866 Function *CF;
4867 if (!UseIntrinsic) {
4868 VFShape Shape =
4869 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
4870 VecTy->getNumElements())),
4871 false /*HasGlobalPred*/);
4872 CF = VFDatabase(*CI).getVectorizedFunction(Shape);
4873 } else {
4874 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())};
4875 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
4876 }
4877
4878 SmallVector<OperandBundleDef, 1> OpBundles;
4879 CI->getOperandBundlesAsDefs(OpBundles);
4880 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4881
4882 // The scalar argument uses an in-tree scalar so we add the new vectorized
4883 // call to ExternalUses list to make sure that an extract will be
4884 // generated in the future.
4885 if (ScalarArg && getTreeEntry(ScalarArg))
4886 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
4887
4888 propagateIRFlags(V, E->Scalars, VL0);
4889 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4890 V = ShuffleBuilder.finalize(V);
4891
4892 E->VectorizedValue = V;
4893 ++NumVectorInstructions;
4894 return V;
4895 }
4896 case Instruction::ShuffleVector: {
4897 assert(E->isAltShuffle() &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4902, __PRETTY_FUNCTION__))
4898 ((Instruction::isBinaryOp(E->getOpcode()) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4902, __PRETTY_FUNCTION__))
4899 Instruction::isBinaryOp(E->getAltOpcode())) ||((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4902, __PRETTY_FUNCTION__))
4900 (Instruction::isCast(E->getOpcode()) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4902, __PRETTY_FUNCTION__))
4901 Instruction::isCast(E->getAltOpcode()))) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4902, __PRETTY_FUNCTION__))
4902 "Invalid Shuffle Vector Operand")((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4902, __PRETTY_FUNCTION__))
;
4903
4904 Value *LHS = nullptr, *RHS = nullptr;
4905 if (Instruction::isBinaryOp(E->getOpcode())) {
4906 setInsertPointAfterBundle(E);
4907 LHS = vectorizeTree(E->getOperand(0));
4908 RHS = vectorizeTree(E->getOperand(1));
4909 } else {
4910 setInsertPointAfterBundle(E);
4911 LHS = vectorizeTree(E->getOperand(0));
4912 }
4913
4914 if (E->VectorizedValue) {
4915 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4916 return E->VectorizedValue;
4917 }
4918
4919 Value *V0, *V1;
4920 if (Instruction::isBinaryOp(E->getOpcode())) {
4921 V0 = Builder.CreateBinOp(
4922 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
4923 V1 = Builder.CreateBinOp(
4924 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
4925 } else {
4926 V0 = Builder.CreateCast(
4927 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
4928 V1 = Builder.CreateCast(
4929 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
4930 }
4931
4932 // Create shuffle to take alternate operations from the vector.
4933 // Also, gather up main and alt scalar ops to propagate IR flags to
4934 // each vector operation.
4935 ValueList OpScalars, AltScalars;
4936 unsigned e = E->Scalars.size();
4937 SmallVector<int, 8> Mask(e);
4938 for (unsigned i = 0; i < e; ++i) {
4939 auto *OpInst = cast<Instruction>(E->Scalars[i]);
4940 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode")((E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"
) ? static_cast<void> (0) : __assert_fail ("E->isOpcodeOrAlt(OpInst) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4940, __PRETTY_FUNCTION__))
;
4941 if (OpInst->getOpcode() == E->getAltOpcode()) {
4942 Mask[i] = e + i;
4943 AltScalars.push_back(E->Scalars[i]);
4944 } else {
4945 Mask[i] = i;
4946 OpScalars.push_back(E->Scalars[i]);
4947 }
4948 }
4949
4950 propagateIRFlags(V0, OpScalars);
4951 propagateIRFlags(V1, AltScalars);
4952
4953 Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
4954 if (Instruction *I = dyn_cast<Instruction>(V))
4955 V = propagateMetadata(I, E->Scalars);
4956 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4957 V = ShuffleBuilder.finalize(V);
4958
4959 E->VectorizedValue = V;
4960 ++NumVectorInstructions;
4961
4962 return V;
4963 }
4964 default:
4965 llvm_unreachable("unknown inst")::llvm::llvm_unreachable_internal("unknown inst", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4965)
;
4966 }
4967 return nullptr;
4968}
4969
4970Value *BoUpSLP::vectorizeTree() {
4971 ExtraValueToDebugLocsMap ExternallyUsedValues;
4972 return vectorizeTree(ExternallyUsedValues);
4973}
4974
4975Value *
4976BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4977 // All blocks must be scheduled before any instructions are inserted.
4978 for (auto &BSIter : BlocksSchedules) {
4979 scheduleBlock(BSIter.second.get());
4980 }
4981
4982 Builder.SetInsertPoint(&F->getEntryBlock().front());
4983 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4984
4985 // If the vectorized tree can be rewritten in a smaller type, we truncate the
4986 // vectorized root. InstCombine will then rewrite the entire expression. We
4987 // sign extend the extracted values below.
4988 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4989 if (MinBWs.count(ScalarRoot)) {
4990 if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
4991 // If current instr is a phi and not the last phi, insert it after the
4992 // last phi node.
4993 if (isa<PHINode>(I))
4994 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
4995 else
4996 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4997 }
4998 auto BundleWidth = VectorizableTree[0]->Scalars.size();
4999 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5000 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
5001 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
5002 VectorizableTree[0]->VectorizedValue = Trunc;
5003 }
5004
5005 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
5006 << " values .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
;
5007
5008 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
5009 // specified by ScalarType.
5010 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
5011 if (!MinBWs.count(ScalarRoot))
5012 return Ex;
5013 if (MinBWs[ScalarRoot].second)
5014 return Builder.CreateSExt(Ex, ScalarType);
5015 return Builder.CreateZExt(Ex, ScalarType);
5016 };
5017
5018 // Extract all of the elements with the external uses.
5019 for (const auto &ExternalUse : ExternalUses) {
5020 Value *Scalar = ExternalUse.Scalar;
5021 llvm::User *User = ExternalUse.User;
5022
5023 // Skip users that we already RAUW. This happens when one instruction
5024 // has multiple uses of the same value.
5025 if (User && !is_contained(Scalar->users(), User))
5026 continue;
5027 TreeEntry *E = getTreeEntry(Scalar);
5028 assert(E && "Invalid scalar")((E && "Invalid scalar") ? static_cast<void> (0
) : __assert_fail ("E && \"Invalid scalar\"", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5028, __PRETTY_FUNCTION__))
;
5029 assert(E->State != TreeEntry::NeedToGather &&((E->State != TreeEntry::NeedToGather && "Extracting from a gather list"
) ? static_cast<void> (0) : __assert_fail ("E->State != TreeEntry::NeedToGather && \"Extracting from a gather list\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5030, __PRETTY_FUNCTION__))
5030 "Extracting from a gather list")((E->State != TreeEntry::NeedToGather && "Extracting from a gather list"
) ? static_cast<void> (0) : __assert_fail ("E->State != TreeEntry::NeedToGather && \"Extracting from a gather list\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5030, __PRETTY_FUNCTION__))
;
5031
5032 Value *Vec = E->VectorizedValue;
5033 assert(Vec && "Can't find vectorizable value")((Vec && "Can't find vectorizable value") ? static_cast
<void> (0) : __assert_fail ("Vec && \"Can't find vectorizable value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5033, __PRETTY_FUNCTION__))
;
5034
5035 Value *Lane = Builder.getInt32(ExternalUse.Lane);
5036 // If User == nullptr, the Scalar is used as extra arg. Generate
5037 // ExtractElement instruction and update the record for this scalar in
5038 // ExternallyUsedValues.
5039 if (!User) {
5040 assert(ExternallyUsedValues.count(Scalar) &&((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5042, __PRETTY_FUNCTION__))
5041 "Scalar with nullptr as an external user must be registered in "((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5042, __PRETTY_FUNCTION__))
5042 "ExternallyUsedValues map")((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5042, __PRETTY_FUNCTION__))
;
5043 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5044 Builder.SetInsertPoint(VecI->getParent(),
5045 std::next(VecI->getIterator()));
5046 } else {
5047 Builder.SetInsertPoint(&F->getEntryBlock().front());
5048 }
5049 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5050 Ex = extend(ScalarRoot, Ex, Scalar->getType());
5051 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
5052 auto &Locs = ExternallyUsedValues[Scalar];
5053 ExternallyUsedValues.insert({Ex, Locs});
5054 ExternallyUsedValues.erase(Scalar);
5055 // Required to update internally referenced instructions.
5056 Scalar->replaceAllUsesWith(Ex);
5057 continue;
5058 }
5059
5060 // Generate extracts for out-of-tree users.
5061 // Find the insertion point for the extractelement lane.
5062 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5063 if (PHINode *PH = dyn_cast<PHINode>(User)) {
5064 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
5065 if (PH->getIncomingValue(i) == Scalar) {
5066 Instruction *IncomingTerminator =
5067 PH->getIncomingBlock(i)->getTerminator();
5068 if (isa<CatchSwitchInst>(IncomingTerminator)) {
5069 Builder.SetInsertPoint(VecI->getParent(),
5070 std::next(VecI->getIterator()));
5071 } else {
5072 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
5073 }
5074 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5075 Ex = extend(ScalarRoot, Ex, Scalar->getType());
5076 CSEBlocks.insert(PH->getIncomingBlock(i));
5077 PH->setOperand(i, Ex);
5078 }
5079 }
5080 } else {
5081 Builder.SetInsertPoint(cast<Instruction>(User));
5082 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5083 Ex = extend(ScalarRoot, Ex, Scalar->getType());
5084 CSEBlocks.insert(cast<Instruction>(User)->getParent());
5085 User->replaceUsesOfWith(Scalar, Ex);
5086 }
5087 } else {
5088 Builder.SetInsertPoint(&F->getEntryBlock().front());
5089 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5090 Ex = extend(ScalarRoot, Ex, Scalar->getType());
5091 CSEBlocks.insert(&F->getEntryBlock());
5092 User->replaceUsesOfWith(Scalar, Ex);
5093 }
5094
5095 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Replaced:" << *User <<
".\n"; } } while (false)
;
5096 }
5097
5098 // For each vectorized value:
5099 for (auto &TEPtr : VectorizableTree) {
5100 TreeEntry *Entry = TEPtr.get();
5101
5102 // No need to handle users of gathered values.
5103 if (Entry->State == TreeEntry::NeedToGather)
5104 continue;
5105
5106 assert(Entry->VectorizedValue && "Can't find vectorizable value")((Entry->VectorizedValue && "Can't find vectorizable value"
) ? static_cast<void> (0) : __assert_fail ("Entry->VectorizedValue && \"Can't find vectorizable value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5106, __PRETTY_FUNCTION__))
;
5107
5108 // For each lane:
5109 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
5110 Value *Scalar = Entry->Scalars[Lane];
5111
5112#ifndef NDEBUG
5113 Type *Ty = Scalar->getType();
5114 if (!Ty->isVoidTy()) {
5115 for (User *U : Scalar->users()) {
5116 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tvalidating user:" <<
*U << ".\n"; } } while (false)
;
5117
5118 // It is legal to delete users in the ignorelist.
5119 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&(((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
"Deleting out-of-tree value") ? static_cast<void> (0) :
__assert_fail ("(getTreeEntry(U) || is_contained(UserIgnoreList, U)) && \"Deleting out-of-tree value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5120, __PRETTY_FUNCTION__))
5120 "Deleting out-of-tree value")(((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
"Deleting out-of-tree value") ? static_cast<void> (0) :
__assert_fail ("(getTreeEntry(U) || is_contained(UserIgnoreList, U)) && \"Deleting out-of-tree value\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5120, __PRETTY_FUNCTION__))
;
5121 }
5122 }
5123#endif
5124 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tErasing scalar:" << *
Scalar << ".\n"; } } while (false)
;
5125 eraseInstruction(cast<Instruction>(Scalar));
5126 }
5127 }
5128
5129 Builder.ClearInsertionPoint();
5130 InstrElementSize.clear();
5131
5132 return VectorizableTree[0]->VectorizedValue;
5133}
5134
5135void BoUpSLP::optimizeGatherSequence() {
5136 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
5137 << " gather sequences instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
;
5138 // LICM InsertElementInst sequences.
5139 for (Instruction *I : GatherSeq) {
5140 if (isDeleted(I))
5141 continue;
5142
5143 // Check if this block is inside a loop.
5144 Loop *L = LI->getLoopFor(I->getParent());
5145 if (!L)
5146 continue;
5147
5148 // Check if it has a preheader.
5149 BasicBlock *PreHeader = L->getLoopPreheader();
5150 if (!PreHeader)
5151 continue;
5152
5153 // If the vector or the element that we insert into it are
5154 // instructions that are defined in this basic block then we can't
5155 // hoist this instruction.
5156 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5157 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5158 if (Op0 && L->contains(Op0))
5159 continue;
5160 if (Op1 && L->contains(Op1))
5161 continue;
5162
5163 // We can hoist this instruction. Move it to the pre-header.
5164 I->moveBefore(PreHeader->getTerminator());
5165 }
5166
5167 // Make a list of all reachable blocks in our CSE queue.
5168 SmallVector<const DomTreeNode *, 8> CSEWorkList;
5169 CSEWorkList.reserve(CSEBlocks.size());
5170 for (BasicBlock *BB : CSEBlocks)
5171 if (DomTreeNode *N = DT->getNode(BB)) {
5172 assert(DT->isReachableFromEntry(N))((DT->isReachableFromEntry(N)) ? static_cast<void> (
0) : __assert_fail ("DT->isReachableFromEntry(N)", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5172, __PRETTY_FUNCTION__))
;
5173 CSEWorkList.push_back(N);
5174 }
5175
5176 // Sort blocks by domination. This ensures we visit a block after all blocks
5177 // dominating it are visited.
5178 llvm::stable_sort(CSEWorkList,
5179 [this](const DomTreeNode *A, const DomTreeNode *B) {
5180 return DT->properlyDominates(A, B);
5181 });
5182
5183 // Perform O(N^2) search over the gather sequences and merge identical
5184 // instructions. TODO: We can further optimize this scan if we split the
5185 // instructions into different buckets based on the insert lane.
5186 SmallVector<Instruction *, 16> Visited;
5187 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
5188 assert(*I &&((*I && (I == CSEWorkList.begin() || !DT->dominates
(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? static_cast<void> (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5190, __PRETTY_FUNCTION__))
5189 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&((*I && (I == CSEWorkList.begin() || !DT->dominates
(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? static_cast<void> (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5190, __PRETTY_FUNCTION__))
5190 "Worklist not sorted properly!")((*I && (I == CSEWorkList.begin() || !DT->dominates
(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? static_cast<void> (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5190, __PRETTY_FUNCTION__))
;
5191 BasicBlock *BB = (*I)->getBlock();
5192 // For all instructions in blocks containing gather sequences:
5193 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
5194 Instruction *In = &*it++;
5195 if (isDeleted(In))
5196 continue;
5197 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
5198 continue;
5199
5200 // Check if we can replace this instruction with any of the
5201 // visited instructions.
5202 for (Instruction *v : Visited) {
5203 if (In->isIdenticalTo(v) &&
5204 DT->dominates(v->getParent(), In->getParent())) {
5205 In->replaceAllUsesWith(v);
5206 eraseInstruction(In);
5207 In = nullptr;
5208 break;
5209 }
5210 }
5211 if (In) {
5212 assert(!is_contained(Visited, In))((!is_contained(Visited, In)) ? static_cast<void> (0) :
__assert_fail ("!is_contained(Visited, In)", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5212, __PRETTY_FUNCTION__))
;
5213 Visited.push_back(In);
5214 }
5215 }
5216 }
5217 CSEBlocks.clear();
5218 GatherSeq.clear();
5219}
5220
5221// Groups the instructions to a bundle (which is then a single scheduling entity)
5222// and schedules instructions until the bundle gets ready.
5223Optional<BoUpSLP::ScheduleData *>
5224BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
5225 const InstructionsState &S) {
5226 if (isa<PHINode>(S.OpValue))
5227 return nullptr;
5228
5229 // Initialize the instruction bundle.
5230 Instruction *OldScheduleEnd = ScheduleEnd;
5231 ScheduleData *PrevInBundle = nullptr;
5232 ScheduleData *Bundle = nullptr;
5233 bool ReSchedule = false;
5234 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle: " << *S.OpValue
<< "\n"; } } while (false)
;
5235
5236 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
5237 ScheduleData *Bundle) {
5238 // The scheduling region got new instructions at the lower end (or it is a
5239 // new region for the first bundle). This makes it necessary to
5240 // recalculate all dependencies.
5241 // It is seldom that this needs to be done a second time after adding the
5242 // initial bundle to the region.
5243 if (ScheduleEnd != OldScheduleEnd) {
5244 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
5245 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
5246 ReSchedule = true;
5247 }
5248 if (ReSchedule) {
5249 resetSchedule();
5250 initialFillReadyList(ReadyInsts);
5251 }
5252 if (Bundle) {
5253 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundledo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
5254 << " in block " << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
;
5255 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
5256 }
5257
5258 // Now try to schedule the new bundle or (if no bundle) just calculate
5259 // dependencies. As soon as the bundle is "ready" it means that there are no
5260 // cyclic dependencies and we can schedule it. Note that's important that we
5261 // don't "schedule" the bundle yet (see cancelScheduling).
5262 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
5263 !ReadyInsts.empty()) {
5264 ScheduleData *Picked = ReadyInsts.pop_back_val();
5265 if (Picked->isSchedulingEntity() && Picked->isReady())
5266 schedule(Picked, ReadyInsts);
5267 }
5268 };
5269
5270 // Make sure that the scheduling region contains all
5271 // instructions of the bundle.
5272 for (Value *V : VL) {
5273 if (!extendSchedulingRegion(V, S)) {
5274 // If the scheduling region got new instructions at the lower end (or it
5275 // is a new region for the first bundle). This makes it necessary to
5276 // recalculate all dependencies.
5277 // Otherwise the compiler may crash trying to incorrectly calculate
5278 // dependencies and emit instruction in the wrong order at the actual
5279 // scheduling.
5280 TryScheduleBundle(/*ReSchedule=*/false, nullptr);
5281 return None;
5282 }
5283 }
5284
5285 for (Value *V : VL) {
5286 ScheduleData *BundleMember = getScheduleData(V);
5287 assert(BundleMember &&((BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? static_cast<void> (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5288, __PRETTY_FUNCTION__))
5288 "no ScheduleData for bundle member (maybe not in same basic block)")((BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? static_cast<void> (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5288, __PRETTY_FUNCTION__))
;
5289 if (BundleMember->IsScheduled) {
5290 // A bundle member was scheduled as single instruction before and now
5291 // needs to be scheduled as part of the bundle. We just get rid of the
5292 // existing schedule.
5293 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
5294 << " was already scheduled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
;
5295 ReSchedule = true;
5296 }
5297 assert(BundleMember->isSchedulingEntity() &&((BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5298, __PRETTY_FUNCTION__))
5298 "bundle member already part of other bundle")((BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5298, __PRETTY_FUNCTION__))
;
5299 if (PrevInBundle) {
5300 PrevInBundle->NextInBundle = BundleMember;
5301 } else {
5302 Bundle = BundleMember;
5303 }
5304 BundleMember->UnscheduledDepsInBundle = 0;
5305 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
5306
5307 // Group the instructions to a bundle.
5308 BundleMember->FirstInBundle = Bundle;
5309 PrevInBundle = BundleMember;
5310 }
5311 assert(Bundle && "Failed to find schedule bundle")((Bundle && "Failed to find schedule bundle") ? static_cast
<void> (0) : __assert_fail ("Bundle && \"Failed to find schedule bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5311, __PRETTY_FUNCTION__))
;
5312 TryScheduleBundle(ReSchedule, Bundle);
5313 if (!Bundle->isReady()) {
5314 cancelScheduling(VL, S.OpValue);
5315 return None;
5316 }
5317 return Bundle;
5318}
5319
5320void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
5321 Value *OpValue) {
5322 if (isa<PHINode>(OpValue))
5323 return;
5324
5325 ScheduleData *Bundle = getScheduleData(OpValue);
5326 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: cancel scheduling of " <<
*Bundle << "\n"; } } while (false)
;
5327 assert(!Bundle->IsScheduled &&((!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"
) ? static_cast<void> (0) : __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5328, __PRETTY_FUNCTION__))
5328 "Can't cancel bundle which is already scheduled")((!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"
) ? static_cast<void> (0) : __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5328, __PRETTY_FUNCTION__))
;
5329 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&((Bundle->isSchedulingEntity() && Bundle->isPartOfBundle
() && "tried to unbundle something which is not a bundle"
) ? static_cast<void> (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5330, __PRETTY_FUNCTION__))
5330 "tried to unbundle something which is not a bundle")((Bundle->isSchedulingEntity() && Bundle->isPartOfBundle
() && "tried to unbundle something which is not a bundle"
) ? static_cast<void> (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5330, __PRETTY_FUNCTION__))
;
5331
5332 // Un-bundle: make single instructions out of the bundle.
5333 ScheduleData *BundleMember = Bundle;
5334 while (BundleMember) {
5335 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links")((BundleMember->FirstInBundle == Bundle && "corrupt bundle links"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->FirstInBundle == Bundle && \"corrupt bundle links\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5335, __PRETTY_FUNCTION__))
;
5336 BundleMember->FirstInBundle = BundleMember;
5337 ScheduleData *Next = BundleMember->NextInBundle;
5338 BundleMember->NextInBundle = nullptr;
5339 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
5340 if (BundleMember->UnscheduledDepsInBundle == 0) {
5341 ReadyInsts.insert(BundleMember);
5342 }
5343 BundleMember = Next;
5344 }
5345}
5346
5347BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
5348 // Allocate a new ScheduleData for the instruction.
5349 if (ChunkPos >= ChunkSize) {
5350 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
5351 ChunkPos = 0;
5352 }
5353 return &(ScheduleDataChunks.back()[ChunkPos++]);
5354}
5355
5356bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
5357 const InstructionsState &S) {
5358 if (getScheduleData(V, isOneOf(S, V)))
5359 return true;
5360 Instruction *I = dyn_cast<Instruction>(V);
5361 assert(I && "bundle member must be an instruction")((I && "bundle member must be an instruction") ? static_cast
<void> (0) : __assert_fail ("I && \"bundle member must be an instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5361, __PRETTY_FUNCTION__))
;
5362 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled")((!isa<PHINode>(I) && "phi nodes don't need to be scheduled"
) ? static_cast<void> (0) : __assert_fail ("!isa<PHINode>(I) && \"phi nodes don't need to be scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5362, __PRETTY_FUNCTION__))
;
5363 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
5364 ScheduleData *ISD = getScheduleData(I);
5365 if (!ISD)
5366 return false;
5367 assert(isInSchedulingRegion(ISD) &&((isInSchedulingRegion(ISD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5368, __PRETTY_FUNCTION__))
5368 "ScheduleData not in scheduling region")((isInSchedulingRegion(ISD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5368, __PRETTY_FUNCTION__))
;
5369 ScheduleData *SD = allocateScheduleDataChunks();
5370 SD->Inst = I;
5371 SD->init(SchedulingRegionID, S.OpValue);
5372 ExtraScheduleDataMap[I][S.OpValue] = SD;
5373 return true;
5374 };
5375 if (CheckSheduleForI(I))
5376 return true;
5377 if (!ScheduleStart) {
5378 // It's the first instruction in the new region.
5379 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
5380 ScheduleStart = I;
5381 ScheduleEnd = I->getNextNode();
5382 if (isOneOf(S, I) != I)
5383 CheckSheduleForI(I);
5384 assert(ScheduleEnd && "tried to vectorize a terminator?")((ScheduleEnd && "tried to vectorize a terminator?") ?
static_cast<void> (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5384, __PRETTY_FUNCTION__))
;
5385 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initialize schedule region to "
<< *I << "\n"; } } while (false)
;
5386 return true;
5387 }
5388 // Search up and down at the same time, because we don't know if the new
5389 // instruction is above or below the existing scheduling region.
5390 BasicBlock::reverse_iterator UpIter =
5391 ++ScheduleStart->getIterator().getReverse();
5392 BasicBlock::reverse_iterator UpperEnd = BB->rend();
5393 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
5394 BasicBlock::iterator LowerEnd = BB->end();
5395 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
5396 &*DownIter != I) {
5397 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
5398 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: exceeded schedule region size limit\n"
; } } while (false)
;
5399 return false;
5400 }
5401
5402 ++UpIter;
5403 ++DownIter;
5404 }
5405 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
5406 assert(I->getParent() == ScheduleStart->getParent() &&((I->getParent() == ScheduleStart->getParent() &&
"Instruction is in wrong basic block.") ? static_cast<void
> (0) : __assert_fail ("I->getParent() == ScheduleStart->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5407, __PRETTY_FUNCTION__))
5407 "Instruction is in wrong basic block.")((I->getParent() == ScheduleStart->getParent() &&
"Instruction is in wrong basic block.") ? static_cast<void
> (0) : __assert_fail ("I->getParent() == ScheduleStart->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5407, __PRETTY_FUNCTION__))
;
5408 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
5409 ScheduleStart = I;
5410 if (isOneOf(S, I) != I)
5411 CheckSheduleForI(I);
5412 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
5413 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
;
5414 return true;
5415 }
5416 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&(((UpIter == UpperEnd || (DownIter != LowerEnd && &
*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? static_cast<void> (0) : __assert_fail (
"(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5418, __PRETTY_FUNCTION__))
5417 "Expected to reach top of the basic block or instruction down the "(((UpIter == UpperEnd || (DownIter != LowerEnd && &
*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? static_cast<void> (0) : __assert_fail (
"(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5418, __PRETTY_FUNCTION__))
5418 "lower end.")(((UpIter == UpperEnd || (DownIter != LowerEnd && &
*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? static_cast<void> (0) : __assert_fail (
"(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5418, __PRETTY_FUNCTION__))
;
5419 assert(I->getParent() == ScheduleEnd->getParent() &&((I->getParent() == ScheduleEnd->getParent() &&
"Instruction is in wrong basic block.") ? static_cast<void
> (0) : __assert_fail ("I->getParent() == ScheduleEnd->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5420, __PRETTY_FUNCTION__))
5420 "Instruction is in wrong basic block.")((I->getParent() == ScheduleEnd->getParent() &&
"Instruction is in wrong basic block.") ? static_cast<void
> (0) : __assert_fail ("I->getParent() == ScheduleEnd->getParent() && \"Instruction is in wrong basic block.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5420, __PRETTY_FUNCTION__))
;
5421 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
5422 nullptr);
5423 ScheduleEnd = I->getNextNode();
5424 if (isOneOf(S, I) != I)
5425 CheckSheduleForI(I);
5426 assert(ScheduleEnd && "tried to vectorize a terminator?")((ScheduleEnd && "tried to vectorize a terminator?") ?
static_cast<void> (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5426, __PRETTY_FUNCTION__))
;
5427 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region end to "
<< *I << "\n"; } } while (false)
;
5428 return true;
5429}
5430
5431void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
5432 Instruction *ToI,
5433 ScheduleData *PrevLoadStore,
5434 ScheduleData *NextLoadStore) {
5435 ScheduleData *CurrentLoadStore = PrevLoadStore;
5436 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
5437 ScheduleData *SD = ScheduleDataMap[I];
5438 if (!SD) {
5439 SD = allocateScheduleDataChunks();
5440 ScheduleDataMap[I] = SD;
5441 SD->Inst = I;
5442 }
5443 assert(!isInSchedulingRegion(SD) &&((!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5444, __PRETTY_FUNCTION__))
5444 "new ScheduleData already in scheduling region")((!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5444, __PRETTY_FUNCTION__))
;
5445 SD->init(SchedulingRegionID, I);
5446
5447 if (I->mayReadOrWriteMemory() &&
5448 (!isa<IntrinsicInst>(I) ||
5449 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
5450 cast<IntrinsicInst>(I)->getIntrinsicID() !=
5451 Intrinsic::pseudoprobe))) {
5452 // Update the linked list of memory accessing instructions.
5453 if (CurrentLoadStore) {
5454 CurrentLoadStore->NextLoadStore = SD;
5455 } else {
5456 FirstLoadStoreInRegion = SD;
5457 }
5458 CurrentLoadStore = SD;
5459 }
5460 }
5461 if (NextLoadStore) {
5462 if (CurrentLoadStore)
5463 CurrentLoadStore->NextLoadStore = NextLoadStore;
5464 } else {
5465 LastLoadStoreInRegion = CurrentLoadStore;
5466 }
5467}
5468
5469void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
5470 bool InsertInReadyList,
5471 BoUpSLP *SLP) {
5472 assert(SD->isSchedulingEntity())((SD->isSchedulingEntity()) ? static_cast<void> (0) :
__assert_fail ("SD->isSchedulingEntity()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5472, __PRETTY_FUNCTION__))
;
5473
5474 SmallVector<ScheduleData *, 10> WorkList;
5475 WorkList.push_back(SD);
5476
5477 while (!WorkList.empty()) {
5478 ScheduleData *SD = WorkList.pop_back_val();
5479
5480 ScheduleData *BundleMember = SD;
5481 while (BundleMember) {
5482 assert(isInSchedulingRegion(BundleMember))((isInSchedulingRegion(BundleMember)) ? static_cast<void>
(0) : __assert_fail ("isInSchedulingRegion(BundleMember)", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5482, __PRETTY_FUNCTION__))
;
5483 if (!BundleMember->hasValidDependencies()) {
5484
5485 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
5486 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
;
5487 BundleMember->Dependencies = 0;
5488 BundleMember->resetUnscheduledDeps();
5489
5490 // Handle def-use chain dependencies.
5491 if (BundleMember->OpValue != BundleMember->Inst) {
5492 ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
5493 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5494 BundleMember->Dependencies++;
5495 ScheduleData *DestBundle = UseSD->FirstInBundle;
5496 if (!DestBundle->IsScheduled)
5497 BundleMember->incrementUnscheduledDeps(1);
5498 if (!DestBundle->hasValidDependencies())
5499 WorkList.push_back(DestBundle);
5500 }
5501 } else {
5502 for (User *U : BundleMember->Inst->users()) {
5503 if (isa<Instruction>(U)) {
5504 ScheduleData *UseSD = getScheduleData(U);
5505 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5506 BundleMember->Dependencies++;
5507 ScheduleData *DestBundle = UseSD->FirstInBundle;
5508 if (!DestBundle->IsScheduled)
5509 BundleMember->incrementUnscheduledDeps(1);
5510 if (!DestBundle->hasValidDependencies())
5511 WorkList.push_back(DestBundle);
5512 }
5513 } else {
5514 // I'm not sure if this can ever happen. But we need to be safe.
5515 // This lets the instruction/bundle never be scheduled and
5516 // eventually disable vectorization.
5517 BundleMember->Dependencies++;
5518 BundleMember->incrementUnscheduledDeps(1);
5519 }
5520 }
5521 }
5522
5523 // Handle the memory dependencies.
5524 ScheduleData *DepDest = BundleMember->NextLoadStore;
5525 if (DepDest) {
5526 Instruction *SrcInst = BundleMember->Inst;
5527 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
5528 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
5529 unsigned numAliased = 0;
5530 unsigned DistToSrc = 1;
5531
5532 while (DepDest) {
5533 assert(isInSchedulingRegion(DepDest))((isInSchedulingRegion(DepDest)) ? static_cast<void> (0
) : __assert_fail ("isInSchedulingRegion(DepDest)", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5533, __PRETTY_FUNCTION__))
;
5534
5535 // We have two limits to reduce the complexity:
5536 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
5537 // SLP->isAliased (which is the expensive part in this loop).
5538 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
5539 // the whole loop (even if the loop is fast, it's quadratic).
5540 // It's important for the loop break condition (see below) to
5541 // check this limit even between two read-only instructions.
5542 if (DistToSrc >= MaxMemDepDistance ||
5543 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
5544 (numAliased >= AliasedCheckLimit ||
5545 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
5546
5547 // We increment the counter only if the locations are aliased
5548 // (instead of counting all alias checks). This gives a better
5549 // balance between reduced runtime and accurate dependencies.
5550 numAliased++;
5551
5552 DepDest->MemoryDependencies.push_back(BundleMember);
5553 BundleMember->Dependencies++;
5554 ScheduleData *DestBundle = DepDest->FirstInBundle;
5555 if (!DestBundle->IsScheduled) {
5556 BundleMember->incrementUnscheduledDeps(1);
5557 }
5558 if (!DestBundle->hasValidDependencies()) {
5559 WorkList.push_back(DestBundle);
5560 }
5561 }
5562 DepDest = DepDest->NextLoadStore;
5563
5564 // Example, explaining the loop break condition: Let's assume our
5565 // starting instruction is i0 and MaxMemDepDistance = 3.
5566 //
5567 // +--------v--v--v
5568 // i0,i1,i2,i3,i4,i5,i6,i7,i8
5569 // +--------^--^--^
5570 //
5571 // MaxMemDepDistance let us stop alias-checking at i3 and we add
5572 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
5573 // Previously we already added dependencies from i3 to i6,i7,i8
5574 // (because of MaxMemDepDistance). As we added a dependency from
5575 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
5576 // and we can abort this loop at i6.
5577 if (DistToSrc >= 2 * MaxMemDepDistance)
5578 break;
5579 DistToSrc++;
5580 }
5581 }
5582 }
5583 BundleMember = BundleMember->NextInBundle;
5584 }
5585 if (InsertInReadyList && SD->isReady()) {
5586 ReadyInsts.push_back(SD);
5587 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Instdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
5588 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
;
5589 }
5590 }
5591}
5592
5593void BoUpSLP::BlockScheduling::resetSchedule() {
5594 assert(ScheduleStart &&((ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? static_cast<void> (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5595, __PRETTY_FUNCTION__))
5595 "tried to reset schedule on block which has not been scheduled")((ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? static_cast<void> (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5595, __PRETTY_FUNCTION__))
;
5596 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5597 doForAllOpcodes(I, [&](ScheduleData *SD) {
5598 assert(isInSchedulingRegion(SD) &&((isInSchedulingRegion(SD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5599, __PRETTY_FUNCTION__))
5599 "ScheduleData not in scheduling region")((isInSchedulingRegion(SD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5599, __PRETTY_FUNCTION__))
;
5600 SD->IsScheduled = false;
5601 SD->resetUnscheduledDeps();
5602 });
5603 }
5604 ReadyInsts.clear();
5605}
5606
5607void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
5608 if (!BS->ScheduleStart)
5609 return;
5610
5611 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule block " << BS
->BB->getName() << "\n"; } } while (false)
;
5612
5613 BS->resetSchedule();
5614
5615 // For the real scheduling we use a more sophisticated ready-list: it is
5616 // sorted by the original instruction location. This lets the final schedule
5617 // be as close as possible to the original instruction order.
5618 struct ScheduleDataCompare {
5619 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
5620 return SD2->SchedulingPriority < SD1->SchedulingPriority;
5621 }
5622 };
5623 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
5624
5625 // Ensure that all dependency data is updated and fill the ready-list with
5626 // initial instructions.
5627 int Idx = 0;
5628 int NumToSchedule = 0;
5629 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
5630 I = I->getNextNode()) {
5631 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
5632 assert(SD->isPartOfBundle() ==((SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr
) && "scheduler and vectorizer bundle mismatch") ? static_cast
<void> (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5634, __PRETTY_FUNCTION__))
5633 (getTreeEntry(SD->Inst) != nullptr) &&((SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr
) && "scheduler and vectorizer bundle mismatch") ? static_cast
<void> (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5634, __PRETTY_FUNCTION__))
5634 "scheduler and vectorizer bundle mismatch")((SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr
) && "scheduler and vectorizer bundle mismatch") ? static_cast
<void> (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5634, __PRETTY_FUNCTION__))
;
5635 SD->FirstInBundle->SchedulingPriority = Idx++;
5636 if (SD->isSchedulingEntity()) {
5637 BS->calculateDependencies(SD, false, this);
5638 NumToSchedule++;
5639 }
5640 });
5641 }
5642 BS->initialFillReadyList(ReadyInsts);
5643
5644 Instruction *LastScheduledInst = BS->ScheduleEnd;
5645
5646 // Do the "real" scheduling.
5647 while (!ReadyInsts.empty()) {
5648 ScheduleData *picked = *ReadyInsts.begin();
5649 ReadyInsts.erase(ReadyInsts.begin());
5650
5651 // Move the scheduled instruction(s) to their dedicated places, if not
5652 // there yet.
5653 ScheduleData *BundleMember = picked;
5654 while (BundleMember) {
5655 Instruction *pickedInst = BundleMember->Inst;
5656 if (LastScheduledInst->getNextNode() != pickedInst) {
5657 BS->BB->getInstList().remove(pickedInst);
5658 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
5659 pickedInst);
5660 }
5661 LastScheduledInst = pickedInst;
5662 BundleMember = BundleMember->NextInBundle;
5663 }
5664
5665 BS->schedule(picked, ReadyInsts);
5666 NumToSchedule--;
5667 }
5668 assert(NumToSchedule == 0 && "could not schedule all instructions")((NumToSchedule == 0 && "could not schedule all instructions"
) ? static_cast<void> (0) : __assert_fail ("NumToSchedule == 0 && \"could not schedule all instructions\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5668, __PRETTY_FUNCTION__))
;
5669
5670 // Avoid duplicate scheduling of the block.
5671 BS->ScheduleStart = nullptr;
5672}
5673
5674unsigned BoUpSLP::getVectorElementSize(Value *V) {
5675 // If V is a store, just return the width of the stored value (or value
5676 // truncated just before storing) without traversing the expression tree.
5677 // This is the common case.
5678 if (auto *Store = dyn_cast<StoreInst>(V)) {
5679 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
5680 return DL->getTypeSizeInBits(Trunc->getSrcTy());
5681 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
5682 }
5683
5684 auto E = InstrElementSize.find(V);
5685 if (E != InstrElementSize.end())
5686 return E->second;
5687
5688 // If V is not a store, we can traverse the expression tree to find loads
5689 // that feed it. The type of the loaded value may indicate a more suitable
5690 // width than V's type. We want to base the vector element size on the width
5691 // of memory operations where possible.
5692 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
5693 SmallPtrSet<Instruction *, 16> Visited;
5694 if (auto *I = dyn_cast<Instruction>(V)) {
5695 Worklist.emplace_back(I, I->getParent());
5696 Visited.insert(I);
5697 }
5698
5699 // Traverse the expression tree in bottom-up order looking for loads. If we
5700 // encounter an instruction we don't yet handle, we give up.
5701 auto Width = 0u;
5702 while (!Worklist.empty()) {
5703 Instruction *I;
5704 BasicBlock *Parent;
5705 std::tie(I, Parent) = Worklist.pop_back_val();
5706
5707 // We should only be looking at scalar instructions here. If the current
5708 // instruction has a vector type, skip.
5709 auto *Ty = I->getType();
5710 if (isa<VectorType>(Ty))
5711 continue;
5712
5713 // If the current instruction is a load, update MaxWidth to reflect the
5714 // width of the loaded value.
5715 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
5716 isa<ExtractValueInst>(I))
5717 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
5718
5719 // Otherwise, we need to visit the operands of the instruction. We only
5720 // handle the interesting cases from buildTree here. If an operand is an
5721 // instruction we haven't yet visited and from the same basic block as the
5722 // user or the use is a PHI node, we add it to the worklist.
5723 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5724 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
5725 isa<UnaryOperator>(I)) {
5726 for (Use &U : I->operands())
5727 if (auto *J = dyn_cast<Instruction>(U.get()))
5728 if (Visited.insert(J).second &&
5729 (isa<PHINode>(I) || J->getParent() == Parent))
5730 Worklist.emplace_back(J, J->getParent());
5731 } else {
5732 break;
5733 }
5734 }
5735
5736 // If we didn't encounter a memory access in the expression tree, or if we
5737 // gave up for some reason, just return the width of V. Otherwise, return the
5738 // maximum width we found.
5739 if (!Width) {
5740 if (auto *CI = dyn_cast<CmpInst>(V))
5741 V = CI->getOperand(0);
5742 Width = DL->getTypeSizeInBits(V->getType());
5743 }
5744
5745 for (Instruction *I : Visited)
5746 InstrElementSize[I] = Width;
5747
5748 return Width;
5749}
5750
5751// Determine if a value V in a vectorizable expression Expr can be demoted to a
5752// smaller type with a truncation. We collect the values that will be demoted
5753// in ToDemote and additional roots that require investigating in Roots.
5754static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
5755 SmallVectorImpl<Value *> &ToDemote,
5756 SmallVectorImpl<Value *> &Roots) {
5757 // We can always demote constants.
5758 if (isa<Constant>(V)) {
5759 ToDemote.push_back(V);
5760 return true;
5761 }
5762
5763 // If the value is not an instruction in the expression with only one use, it
5764 // cannot be demoted.
5765 auto *I = dyn_cast<Instruction>(V);
5766 if (!I || !I->hasOneUse() || !Expr.count(I))
5767 return false;
5768
5769 switch (I->getOpcode()) {
5770
5771 // We can always demote truncations and extensions. Since truncations can
5772 // seed additional demotion, we save the truncated value.
5773 case Instruction::Trunc:
5774 Roots.push_back(I->getOperand(0));
5775 break;
5776 case Instruction::ZExt:
5777 case Instruction::SExt:
5778 break;
5779
5780 // We can demote certain binary operations if we can demote both of their
5781 // operands.
5782 case Instruction::Add:
5783 case Instruction::Sub:
5784 case Instruction::Mul:
5785 case Instruction::And:
5786 case Instruction::Or:
5787 case Instruction::Xor:
5788 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5789 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5790 return false;
5791 break;
5792
5793 // We can demote selects if we can demote their true and false values.
5794 case Instruction::Select: {
5795 SelectInst *SI = cast<SelectInst>(I);
5796 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5797 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5798 return false;
5799 break;
5800 }
5801
5802 // We can demote phis if we can demote all their incoming operands. Note that
5803 // we don't need to worry about cycles since we ensure single use above.
5804 case Instruction::PHI: {
5805 PHINode *PN = cast<PHINode>(I);
5806 for (Value *IncValue : PN->incoming_values())
5807 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5808 return false;
5809 break;
5810 }
5811
5812 // Otherwise, conservatively give up.
5813 default:
5814 return false;
5815 }
5816
5817 // Record the value that we can demote.
5818 ToDemote.push_back(V);
5819 return true;
5820}
5821
5822void BoUpSLP::computeMinimumValueSizes() {
5823 // If there are no external uses, the expression tree must be rooted by a
5824 // store. We can't demote in-memory values, so there is nothing to do here.
5825 if (ExternalUses.empty())
5826 return;
5827
5828 // We only attempt to truncate integer expressions.
5829 auto &TreeRoot = VectorizableTree[0]->Scalars;
5830 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5831 if (!TreeRootIT)
5832 return;
5833
5834 // If the expression is not rooted by a store, these roots should have
5835 // external uses. We will rely on InstCombine to rewrite the expression in
5836 // the narrower type. However, InstCombine only rewrites single-use values.
5837 // This means that if a tree entry other than a root is used externally, it
5838 // must have multiple uses and InstCombine will not rewrite it. The code
5839 // below ensures that only the roots are used externally.
5840 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
5841 for (auto &EU : ExternalUses)
5842 if (!Expr.erase(EU.Scalar))
5843 return;
5844 if (!Expr.empty())
5845 return;
5846
5847 // Collect the scalar values of the vectorizable expression. We will use this
5848 // context to determine which values can be demoted. If we see a truncation,
5849 // we mark it as seeding another demotion.
5850 for (auto &EntryPtr : VectorizableTree)
5851 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5852
5853 // Ensure the roots of the vectorizable tree don't form a cycle. They must
5854 // have a single external user that is not in the vectorizable tree.
5855 for (auto *Root : TreeRoot)
5856 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5857 return;
5858
5859 // Conservatively determine if we can actually truncate the roots of the
5860 // expression. Collect the values that can be demoted in ToDemote and
5861 // additional roots that require investigating in Roots.
5862 SmallVector<Value *, 32> ToDemote;
5863 SmallVector<Value *, 4> Roots;
5864 for (auto *Root : TreeRoot)
5865 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5866 return;
5867
5868 // The maximum bit width required to represent all the values that can be
5869 // demoted without loss of precision. It would be safe to truncate the roots
5870 // of the expression to this width.
5871 auto MaxBitWidth = 8u;
5872
5873 // We first check if all the bits of the roots are demanded. If they're not,
5874 // we can truncate the roots to this narrower type.
5875 for (auto *Root : TreeRoot) {
5876 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5877 MaxBitWidth = std::max<unsigned>(
5878 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5879 }
5880
5881 // True if the roots can be zero-extended back to their original type, rather
5882 // than sign-extended. We know that if the leading bits are not demanded, we
5883 // can safely zero-extend. So we initialize IsKnownPositive to True.
5884 bool IsKnownPositive = true;
5885
5886 // If all the bits of the roots are demanded, we can try a little harder to
5887 // compute a narrower type. This can happen, for example, if the roots are
5888 // getelementptr indices. InstCombine promotes these indices to the pointer
5889 // width. Thus, all their bits are technically demanded even though the
5890 // address computation might be vectorized in a smaller type.
5891 //
5892 // We start by looking at each entry that can be demoted. We compute the
5893 // maximum bit width required to store the scalar by using ValueTracking to
5894 // compute the number of high-order bits we can truncate.
5895 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
5896 llvm::all_of(TreeRoot, [](Value *R) {
5897 assert(R->hasOneUse() && "Root should have only one use!")((R->hasOneUse() && "Root should have only one use!"
) ? static_cast<void> (0) : __assert_fail ("R->hasOneUse() && \"Root should have only one use!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5897, __PRETTY_FUNCTION__))
;
5898 return isa<GetElementPtrInst>(R->user_back());
5899 })) {
5900 MaxBitWidth = 8u;
5901
5902 // Determine if the sign bit of all the roots is known to be zero. If not,
5903 // IsKnownPositive is set to False.
5904 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
5905 KnownBits Known = computeKnownBits(R, *DL);
5906 return Known.isNonNegative();
5907 });
5908
5909 // Determine the maximum number of bits required to store the scalar
5910 // values.
5911 for (auto *Scalar : ToDemote) {
5912 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
5913 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
5914 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
5915 }
5916
5917 // If we can't prove that the sign bit is zero, we must add one to the
5918 // maximum bit width to account for the unknown sign bit. This preserves
5919 // the existing sign bit so we can safely sign-extend the root back to the
5920 // original type. Otherwise, if we know the sign bit is zero, we will
5921 // zero-extend the root instead.
5922 //
5923 // FIXME: This is somewhat suboptimal, as there will be cases where adding
5924 // one to the maximum bit width will yield a larger-than-necessary
5925 // type. In general, we need to add an extra bit only if we can't
5926 // prove that the upper bit of the original type is equal to the
5927 // upper bit of the proposed smaller type. If these two bits are the
5928 // same (either zero or one) we know that sign-extending from the
5929 // smaller type will result in the same value. Here, since we can't
5930 // yet prove this, we are just making the proposed smaller type
5931 // larger to ensure correctness.
5932 if (!IsKnownPositive)
5933 ++MaxBitWidth;
5934 }
5935
5936 // Round MaxBitWidth up to the next power-of-two.
5937 if (!isPowerOf2_64(MaxBitWidth))
5938 MaxBitWidth = NextPowerOf2(MaxBitWidth);
5939
5940 // If the maximum bit width we compute is less than the with of the roots'
5941 // type, we can proceed with the narrowing. Otherwise, do nothing.
5942 if (MaxBitWidth >= TreeRootIT->getBitWidth())
5943 return;
5944
5945 // If we can truncate the root, we must collect additional values that might
5946 // be demoted as a result. That is, those seeded by truncations we will
5947 // modify.
5948 while (!Roots.empty())
5949 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
5950
5951 // Finally, map the values we can demote to the maximum bit with we computed.
5952 for (auto *Scalar : ToDemote)
5953 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
5954}
5955
5956namespace {
5957
5958/// The SLPVectorizer Pass.
5959struct SLPVectorizer : public FunctionPass {
5960 SLPVectorizerPass Impl;
5961
5962 /// Pass identification, replacement for typeid
5963 static char ID;
5964
5965 explicit SLPVectorizer() : FunctionPass(ID) {
5966 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
5967 }
5968
5969 bool doInitialization(Module &M) override {
5970 return false;
5971 }
5972
5973 bool runOnFunction(Function &F) override {
5974 if (skipFunction(F))
5975 return false;
5976
5977 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5978 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5979 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5980 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
5981 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5982 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5983 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5984 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5985 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
5986 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5987
5988 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5989 }
5990
5991 void getAnalysisUsage(AnalysisUsage &AU) const override {
5992 FunctionPass::getAnalysisUsage(AU);
5993 AU.addRequired<AssumptionCacheTracker>();
5994 AU.addRequired<ScalarEvolutionWrapperPass>();
5995 AU.addRequired<AAResultsWrapperPass>();
5996 AU.addRequired<TargetTransformInfoWrapperPass>();
5997 AU.addRequired<LoopInfoWrapperPass>();
5998 AU.addRequired<DominatorTreeWrapperPass>();
5999 AU.addRequired<DemandedBitsWrapperPass>();
6000 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
6001 AU.addRequired<InjectTLIMappingsLegacy>();
6002 AU.addPreserved<LoopInfoWrapperPass>();
6003 AU.addPreserved<DominatorTreeWrapperPass>();
6004 AU.addPreserved<AAResultsWrapperPass>();
6005 AU.addPreserved<GlobalsAAWrapperPass>();
6006 AU.setPreservesCFG();
6007 }
6008};
6009
6010} // end anonymous namespace
6011
6012PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
6013 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
6014 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
6015 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6016 auto *AA = &AM.getResult<AAManager>(F);
6017 auto *LI = &AM.getResult<LoopAnalysis>(F);
6018 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
6019 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
6020 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
6021 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
6022
6023 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6024 if (!Changed)
6025 return PreservedAnalyses::all();
6026
6027 PreservedAnalyses PA;
6028 PA.preserveSet<CFGAnalyses>();
6029 PA.preserve<AAManager>();
6030 PA.preserve<GlobalsAA>();
6031 return PA;
6032}
6033
6034bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
6035 TargetTransformInfo *TTI_,
6036 TargetLibraryInfo *TLI_, AAResults *AA_,
6037 LoopInfo *LI_, DominatorTree *DT_,
6038 AssumptionCache *AC_, DemandedBits *DB_,
6039 OptimizationRemarkEmitter *ORE_) {
6040 if (!RunSLPVectorization)
6041 return false;
6042 SE = SE_;
6043 TTI = TTI_;
6044 TLI = TLI_;
6045 AA = AA_;
6046 LI = LI_;
6047 DT = DT_;
6048 AC = AC_;
6049 DB = DB_;
6050 DL = &F.getParent()->getDataLayout();
6051
6052 Stores.clear();
6053 GEPs.clear();
6054 bool Changed = false;
6055
6056 // If the target claims to have no vector registers don't attempt
6057 // vectorization.
6058 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
6059 return false;
6060
6061 // Don't vectorize when the attribute NoImplicitFloat is used.
6062 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
6063 return false;
6064
6065 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing blocks in " <<
F.getName() << ".\n"; } } while (false)
;
6066
6067 // Use the bottom up slp vectorizer to construct chains that start with
6068 // store instructions.
6069 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
6070
6071 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6072 // delete instructions.
6073
6074 // Scan the blocks in the function in post order.
6075 for (auto BB : post_order(&F.getEntryBlock())) {
6076 collectSeedInstructions(BB);
6077
6078 // Vectorize trees that end at stores.
6079 if (!Stores.empty()) {
6080 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
6081 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
;
6082 Changed |= vectorizeStoreChains(R);
6083 }
6084
6085 // Vectorize trees that end at reductions.
6086 Changed |= vectorizeChainsInBlock(BB, R);
6087
6088 // Vectorize the index computations of getelementptr instructions. This
6089 // is primarily intended to catch gather-like idioms ending at
6090 // non-consecutive loads.
6091 if (!GEPs.empty()) {
6092 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
6093 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
;
6094 Changed |= vectorizeGEPIndices(BB, R);
6095 }
6096 }
6097
6098 if (Changed) {
6099 R.optimizeGatherSequence();
6100 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: vectorized \"" << F.getName
() << "\"\n"; } } while (false)
;
6101 }
6102 return Changed;
6103}
6104
6105bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
6106 unsigned Idx) {
6107 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
6108 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
;
6109 const unsigned Sz = R.getVectorElementSize(Chain[0]);
6110 const unsigned MinVF = R.getMinVecRegSize() / Sz;
6111 unsigned VF = Chain.size();
6112
6113 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
6114 return false;
6115
6116 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
6117 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
;
6118
6119 R.buildTree(Chain);
6120 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6121 // TODO: Handle orders of size less than number of elements in the vector.
6122 if (Order && Order->size() == Chain.size()) {
6123 // TODO: reorder tree nodes without tree rebuilding.
6124 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
6125 llvm::transform(*Order, ReorderedOps.begin(),
6126 [Chain](const unsigned Idx) { return Chain[Idx]; });
6127 R.buildTree(ReorderedOps);
6128 }
6129 if (R.isTreeTinyAndNotFullyVectorizable())
6130 return false;
6131 if (R.isLoadCombineCandidate())
6132 return false;
6133
6134 R.computeMinimumValueSizes();
6135
6136 InstructionCost Cost = R.getTreeCost();
6137
6138 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost = " << Cost
<< " for VF =" << VF << "\n"; } } while (false
)
;
6139 if (Cost < -SLPCostThreshold) {
6140 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Decided to vectorize cost = "
<< Cost << "\n"; } } while (false)
;
6141
6142 using namespace ore;
6143
6144 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "StoresVectorized",
6145 cast<StoreInst>(Chain[0]))
6146 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
6147 << " and with tree size "
6148 << NV("TreeSize", R.getTreeSize()));
6149
6150 R.vectorizeTree();
6151 return true;
6152 }
6153
6154 return false;
6155}
6156
6157bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
6158 BoUpSLP &R) {
6159 // We may run into multiple chains that merge into a single chain. We mark the
6160 // stores that we vectorized so that we don't visit the same store twice.
6161 BoUpSLP::ValueSet VectorizedStores;
6162 bool Changed = false;
6163
6164 int E = Stores.size();
6165 SmallBitVector Tails(E, false);
6166 int MaxIter = MaxStoreLookup.getValue();
6167 SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
6168 E, std::make_pair(E, INT_MAX2147483647));
6169 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
6170 int IterCnt;
6171 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
6172 &CheckedPairs,
6173 &ConsecutiveChain](int K, int Idx) {
6174 if (IterCnt >= MaxIter)
6175 return true;
6176 if (CheckedPairs[Idx].test(K))
6177 return ConsecutiveChain[K].second == 1 &&
6178 ConsecutiveChain[K].first == Idx;
6179 ++IterCnt;
6180 CheckedPairs[Idx].set(K);
6181 CheckedPairs[K].set(Idx);
6182 Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(),
6183 Stores[Idx]->getPointerOperand(), *DL,
6184 *SE, /*StrictCheck=*/true);
6185 if (!Diff || *Diff == 0)
6186 return false;
6187 int Val = *Diff;
6188 if (Val < 0) {
6189 if (ConsecutiveChain[Idx].second > -Val) {
6190 Tails.set(K);
6191 ConsecutiveChain[Idx] = std::make_pair(K, -Val);
6192 }
6193 return false;
6194 }
6195 if (ConsecutiveChain[K].second <= Val)
6196 return false;
6197
6198 Tails.set(Idx);
6199 ConsecutiveChain[K] = std::make_pair(Idx, Val);
6200 return Val == 1;
6201 };
6202 // Do a quadratic search on all of the given stores in reverse order and find
6203 // all of the pairs of stores that follow each other.
6204 for (int Idx = E - 1; Idx >= 0; --Idx) {
6205 // If a store has multiple consecutive store candidates, search according
6206 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6207 // This is because usually pairing with immediate succeeding or preceding
6208 // candidate create the best chance to find slp vectorization opportunity.
6209 const int MaxLookDepth = std::max(E - Idx, Idx + 1);
6210 IterCnt = 0;
6211 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
6212 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
6213 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
6214 break;
6215 }
6216
6217 // Tracks if we tried to vectorize stores starting from the given tail
6218 // already.
6219 SmallBitVector TriedTails(E, false);
6220 // For stores that start but don't end a link in the chain:
6221 for (int Cnt = E; Cnt > 0; --Cnt) {
6222 int I = Cnt - 1;
6223 if (ConsecutiveChain[I].first == E || Tails.test(I))
6224 continue;
6225 // We found a store instr that starts a chain. Now follow the chain and try
6226 // to vectorize it.
6227 BoUpSLP::ValueList Operands;
6228 // Collect the chain into a list.
6229 while (I != E && !VectorizedStores.count(Stores[I])) {
6230 Operands.push_back(Stores[I]);
6231 Tails.set(I);
6232 if (ConsecutiveChain[I].second != 1) {
6233 // Mark the new end in the chain and go back, if required. It might be
6234 // required if the original stores come in reversed order, for example.
6235 if (ConsecutiveChain[I].first != E &&
6236 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
6237 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
6238 TriedTails.set(I);
6239 Tails.reset(ConsecutiveChain[I].first);
6240 if (Cnt < ConsecutiveChain[I].first + 2)
6241 Cnt = ConsecutiveChain[I].first + 2;
6242 }
6243 break;
6244 }
6245 // Move to the next value in the chain.
6246 I = ConsecutiveChain[I].first;
6247 }
6248 assert(!Operands.empty() && "Expected non-empty list of stores.")((!Operands.empty() && "Expected non-empty list of stores."
) ? static_cast<void> (0) : __assert_fail ("!Operands.empty() && \"Expected non-empty list of stores.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6248, __PRETTY_FUNCTION__))
;
6249
6250 unsigned MaxVecRegSize = R.getMaxVecRegSize();
6251 unsigned EltSize = R.getVectorElementSize(Operands[0]);
6252 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
6253
6254 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
6255 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
6256 MaxElts);
6257
6258 // FIXME: Is division-by-2 the correct step? Should we assert that the
6259 // register size is a power-of-2?
6260 unsigned StartIdx = 0;
6261 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
6262 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
6263 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
6264 if (!VectorizedStores.count(Slice.front()) &&
6265 !VectorizedStores.count(Slice.back()) &&
6266 vectorizeStoreChain(Slice, R, Cnt)) {
6267 // Mark the vectorized stores so that we don't vectorize them again.
6268 VectorizedStores.insert(Slice.begin(), Slice.end());
6269 Changed = true;
6270 // If we vectorized initial block, no need to try to vectorize it
6271 // again.
6272 if (Cnt == StartIdx)
6273 StartIdx += Size;
6274 Cnt += Size;
6275 continue;
6276 }
6277 ++Cnt;
6278 }
6279 // Check if the whole array was vectorized already - exit.
6280 if (StartIdx >= Operands.size())
6281 break;
6282 }
6283 }
6284
6285 return Changed;
6286}
6287
6288void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
6289 // Initialize the collections. We will make a single pass over the block.
6290 Stores.clear();
6291 GEPs.clear();
6292
6293 // Visit the store and getelementptr instructions in BB and organize them in
6294 // Stores and GEPs according to the underlying objects of their pointer
6295 // operands.
6296 for (Instruction &I : *BB) {
6297 // Ignore store instructions that are volatile or have a pointer operand
6298 // that doesn't point to a scalar type.
6299 if (auto *SI = dyn_cast<StoreInst>(&I)) {
6300 if (!SI->isSimple())
6301 continue;
6302 if (!isValidElementType(SI->getValueOperand()->getType()))
6303 continue;
6304 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
6305 }
6306
6307 // Ignore getelementptr instructions that have more than one index, a
6308 // constant index, or a pointer operand that doesn't point to a scalar
6309 // type.
6310 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
6311 auto Idx = GEP->idx_begin()->get();
6312 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
6313 continue;
6314 if (!isValidElementType(Idx->getType()))
6315 continue;
6316 if (GEP->getType()->isVectorTy())
6317 continue;
6318 GEPs[GEP->getPointerOperand()].push_back(GEP);
6319 }
6320 }
6321}
6322
6323bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
6324 if (!A || !B)
6325 return false;
6326 Value *VL[] = {A, B};
6327 return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
6328}
6329
6330bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
6331 bool AllowReorder,
6332 ArrayRef<Value *> InsertUses) {
6333 if (VL.size() < 2)
6334 return false;
6335
6336 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
6337 << VL.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
;
6338
6339 // Check that all of the parts are instructions of the same type,
6340 // we permit an alternate opcode via InstructionsState.
6341 InstructionsState S = getSameOpcode(VL);
6342 if (!S.getOpcode())
6343 return false;
6344
6345 Instruction *I0 = cast<Instruction>(S.OpValue);
6346 // Make sure invalid types (including vector type) are rejected before
6347 // determining vectorization factor for scalar instructions.
6348 for (Value *V : VL) {
6349 Type *Ty = V->getType();
6350 if (!isValidElementType(Ty)) {
6351 // NOTE: the following will give user internal llvm type name, which may
6352 // not be useful.
6353 R.getORE()->emit([&]() {
6354 std::string type_str;
6355 llvm::raw_string_ostream rso(type_str);
6356 Ty->print(rso);
6357 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "UnsupportedType", I0)
6358 << "Cannot SLP vectorize list: type "
6359 << rso.str() + " is unsupported by vectorizer";
6360 });
6361 return false;
6362 }
6363 }
6364
6365 unsigned Sz = R.getVectorElementSize(I0);
6366 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
6367 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
6368 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
6369 if (MaxVF < 2) {
6370 R.getORE()->emit([&]() {
6371 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "SmallVF", I0)
6372 << "Cannot SLP vectorize list: vectorization factor "
6373 << "less than 2 is not supported";
6374 });
6375 return false;
6376 }
6377
6378 bool Changed = false;
6379 bool CandidateFound = false;
6380 InstructionCost MinCost = SLPCostThreshold.getValue();
6381
6382 bool CompensateUseCost =
6383 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) {
6384 return V && isa<InsertElementInst>(V);
6385 });
6386 assert((!CompensateUseCost || InsertUses.size() == VL.size()) &&(((!CompensateUseCost || InsertUses.size() == VL.size()) &&
"Each scalar expected to have an associated InsertElement user."
) ? static_cast<void> (0) : __assert_fail ("(!CompensateUseCost || InsertUses.size() == VL.size()) && \"Each scalar expected to have an associated InsertElement user.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6387, __PRETTY_FUNCTION__))
6387 "Each scalar expected to have an associated InsertElement user.")(((!CompensateUseCost || InsertUses.size() == VL.size()) &&
"Each scalar expected to have an associated InsertElement user."
) ? static_cast<void> (0) : __assert_fail ("(!CompensateUseCost || InsertUses.size() == VL.size()) && \"Each scalar expected to have an associated InsertElement user.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6387, __PRETTY_FUNCTION__))
;
6388
6389 unsigned NextInst = 0, MaxInst = VL.size();
6390 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
6391 // No actual vectorization should happen, if number of parts is the same as
6392 // provided vectorization factor (i.e. the scalar type is used for vector
6393 // code during codegen).
6394 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF);
6395 if (TTI->getNumberOfParts(VecTy) == VF)
6396 continue;
6397 for (unsigned I = NextInst; I < MaxInst; ++I) {
6398 unsigned OpsWidth = 0;
6399
6400 if (I + VF > MaxInst)
6401 OpsWidth = MaxInst - I;
6402 else
6403 OpsWidth = VF;
6404
6405 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
6406 break;
6407
6408 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
6409 // Check that a previous iteration of this loop did not delete the Value.
6410 if (llvm::any_of(Ops, [&R](Value *V) {
6411 auto *I = dyn_cast<Instruction>(V);
6412 return I && R.isDeleted(I);
6413 }))
6414 continue;
6415
6416 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
6417 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
;
6418
6419 R.buildTree(Ops);
6420 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6421 // TODO: check if we can allow reordering for more cases.
6422 if (AllowReorder && Order) {
6423 // TODO: reorder tree nodes without tree rebuilding.
6424 // Conceptually, there is nothing actually preventing us from trying to
6425 // reorder a larger list. In fact, we do exactly this when vectorizing
6426 // reductions. However, at this point, we only expect to get here when
6427 // there are exactly two operations.
6428 assert(Ops.size() == 2)((Ops.size() == 2) ? static_cast<void> (0) : __assert_fail
("Ops.size() == 2", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6428, __PRETTY_FUNCTION__))
;
6429 Value *ReorderedOps[] = {Ops[1], Ops[0]};
6430 R.buildTree(ReorderedOps, None);
6431 }
6432 if (R.isTreeTinyAndNotFullyVectorizable())
6433 continue;
6434
6435 R.computeMinimumValueSizes();
6436 InstructionCost Cost = R.getTreeCost();
6437 CandidateFound = true;
6438 if (CompensateUseCost) {
6439 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts
6440 // rather than sum of single inserts as the latter may overestimate
6441 // cost. This work should imply improving cost estimation for extracts
6442 // that added in for external (for vectorization tree) users,i.e. that
6443 // part should also switch to same interface.
6444 // For example, the following case is projected code after SLP:
6445 // %4 = extractelement <4 x i64> %3, i32 0
6446 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0
6447 // %5 = extractelement <4 x i64> %3, i32 1
6448 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1
6449 // %6 = extractelement <4 x i64> %3, i32 2
6450 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2
6451 // %7 = extractelement <4 x i64> %3, i32 3
6452 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3
6453 //
6454 // Extracts here added by SLP in order to feed users (the inserts) of
6455 // original scalars and contribute to "ExtractCost" at cost evaluation.
6456 // The inserts in turn form sequence to build an aggregate that
6457 // detected by findBuildAggregate routine.
6458 // SLP makes an assumption that such sequence will be optimized away
6459 // later (instcombine) so it tries to compensate ExctractCost with
6460 // cost of insert sequence.
6461 // Current per element cost calculation approach is not quite accurate
6462 // and tends to create bias toward favoring vectorization.
6463 // Switching to the TTI interface might help a bit.
6464 // Alternative solution could be pattern-match to detect a no-op or
6465 // shuffle.
6466 InstructionCost UserCost = 0;
6467 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) {
6468 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]);
6469 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
6470 UserCost += TTI->getVectorInstrCost(
6471 Instruction::InsertElement, IE->getType(), CI->getZExtValue());
6472 }
6473 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Compensate cost of users by: "
<< UserCost << ".\n"; } } while (false)
6474 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Compensate cost of users by: "
<< UserCost << ".\n"; } } while (false)
;
6475 Cost -= UserCost;
6476 }
6477
6478 MinCost = std::min(MinCost, Cost);
6479
6480 if (Cost < -SLPCostThreshold) {
6481 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing list at cost:" <<
Cost << ".\n"; } } while (false)
;
6482 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedList",
6483 cast<Instruction>(Ops[0]))
6484 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
6485 << " and with tree size "
6486 << ore::NV("TreeSize", R.getTreeSize()));
6487
6488 R.vectorizeTree();
6489 // Move to the next bundle.
6490 I += VF - 1;
6491 NextInst = I + 1;
6492 Changed = true;
6493 }
6494 }
6495 }
6496
6497 if (!Changed && CandidateFound) {
6498 R.getORE()->emit([&]() {
6499 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotBeneficial", I0)
6500 << "List vectorization was possible but not beneficial with cost "
6501 << ore::NV("Cost", MinCost) << " >= "
6502 << ore::NV("Treshold", -SLPCostThreshold);
6503 });
6504 } else if (!Changed) {
6505 R.getORE()->emit([&]() {
6506 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotPossible", I0)
6507 << "Cannot SLP vectorize list: vectorization was impossible"
6508 << " with available vectorization factors";
6509 });
6510 }
6511 return Changed;
6512}
6513
6514bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
6515 if (!I)
6516 return false;
6517
6518 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
6519 return false;
6520
6521 Value *P = I->getParent();
6522
6523 // Vectorize in current basic block only.
6524 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
6525 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
6526 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
6527 return false;
6528
6529 // Try to vectorize V.
6530 if (tryToVectorizePair(Op0, Op1, R))
6531 return true;
6532
6533 auto *A = dyn_cast<BinaryOperator>(Op0);
6534 auto *B = dyn_cast<BinaryOperator>(Op1);
6535 // Try to skip B.
6536 if (B && B->hasOneUse()) {
6537 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
6538 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
6539 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
6540 return true;
6541 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
6542 return true;
6543 }
6544
6545 // Try to skip A.
6546 if (A && A->hasOneUse()) {
6547 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
6548 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
6549 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
6550 return true;
6551 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
6552 return true;
6553 }
6554 return false;
6555}
6556
6557namespace {
6558
6559/// Model horizontal reductions.
6560///
6561/// A horizontal reduction is a tree of reduction instructions that has values
6562/// that can be put into a vector as its leaves. For example:
6563///
6564/// mul mul mul mul
6565/// \ / \ /
6566/// + +
6567/// \ /
6568/// +
6569/// This tree has "mul" as its leaf values and "+" as its reduction
6570/// instructions. A reduction can feed into a store or a binary operation
6571/// feeding a phi.
6572/// ...
6573/// \ /
6574/// +
6575/// |
6576/// phi +=
6577///
6578/// Or:
6579/// ...
6580/// \ /
6581/// +
6582/// |
6583/// *p =
6584///
6585class HorizontalReduction {
6586 using ReductionOpsType = SmallVector<Value *, 16>;
6587 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
6588 ReductionOpsListType ReductionOps;
6589 SmallVector<Value *, 32> ReducedVals;
6590 // Use map vector to make stable output.
6591 MapVector<Instruction *, Value *> ExtraArgs;
6592 WeakTrackingVH ReductionRoot;
6593 /// The type of reduction operation.
6594 RecurKind RdxKind;
6595
6596 /// Checks if instruction is associative and can be vectorized.
6597 static bool isVectorizable(RecurKind Kind, Instruction *I) {
6598 if (Kind == RecurKind::None)
6599 return false;
6600 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind))
6601 return true;
6602
6603 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
6604 // FP min/max are associative except for NaN and -0.0. We do not
6605 // have to rule out -0.0 here because the intrinsic semantics do not
6606 // specify a fixed result for it.
6607 return I->getFastMathFlags().noNaNs();
6608 }
6609
6610 return I->isAssociative();
6611 }
6612
6613 /// Checks if the ParentStackElem.first should be marked as a reduction
6614 /// operation with an extra argument or as extra argument itself.
6615 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6616 Value *ExtraArg) {
6617 if (ExtraArgs.count(ParentStackElem.first)) {
6618 ExtraArgs[ParentStackElem.first] = nullptr;
6619 // We ran into something like:
6620 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6621 // The whole ParentStackElem.first should be considered as an extra value
6622 // in this case.
6623 // Do not perform analysis of remaining operands of ParentStackElem.first
6624 // instruction, this whole instruction is an extra argument.
6625 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first);
6626 } else {
6627 // We ran into something like:
6628 // ParentStackElem.first += ... + ExtraArg + ...
6629 ExtraArgs[ParentStackElem.first] = ExtraArg;
6630 }
6631 }
6632
6633 /// Creates reduction operation with the current opcode.
6634 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
6635 Value *RHS, const Twine &Name, bool UseSelect) {
6636 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
6637 switch (Kind) {
6638 case RecurKind::Add:
6639 case RecurKind::Mul:
6640 case RecurKind::Or:
6641 case RecurKind::And:
6642 case RecurKind::Xor:
6643 case RecurKind::FAdd:
6644 case RecurKind::FMul:
6645 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
6646 Name);
6647 case RecurKind::FMax:
6648 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
6649 case RecurKind::FMin:
6650 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
6651 case RecurKind::SMax:
6652 if (UseSelect) {
6653 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
6654 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6655 }
6656 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
6657 case RecurKind::SMin:
6658 if (UseSelect) {
6659 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
6660 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6661 }
6662 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
6663 case RecurKind::UMax:
6664 if (UseSelect) {
6665 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
6666 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6667 }
6668 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
6669 case RecurKind::UMin:
6670 if (UseSelect) {
6671 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
6672 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6673 }
6674 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
6675 default:
6676 llvm_unreachable("Unknown reduction operation.")::llvm::llvm_unreachable_internal("Unknown reduction operation."
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6676)
;
6677 }
6678 }
6679
6680 /// Creates reduction operation with the current opcode with the IR flags
6681 /// from \p ReductionOps.
6682 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
6683 Value *RHS, const Twine &Name,
6684 const ReductionOpsListType &ReductionOps) {
6685 bool UseSelect = ReductionOps.size() == 2;
6686 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&(((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
"Expected cmp + select pairs for reduction") ? static_cast<
void> (0) : __assert_fail ("(!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6687, __PRETTY_FUNCTION__))
6687 "Expected cmp + select pairs for reduction")(((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
"Expected cmp + select pairs for reduction") ? static_cast<
void> (0) : __assert_fail ("(!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6687, __PRETTY_FUNCTION__))
;
6688 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
6689 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
6690 if (auto *Sel = dyn_cast<SelectInst>(Op)) {
6691 propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
6692 propagateIRFlags(Op, ReductionOps[1]);
6693 return Op;
6694 }
6695 }
6696 propagateIRFlags(Op, ReductionOps[0]);
6697 return Op;
6698 }
6699 /// Creates reduction operation with the current opcode with the IR flags
6700 /// from \p I.
6701 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
6702 Value *RHS, const Twine &Name, Instruction *I) {
6703 auto *SelI = dyn_cast<SelectInst>(I);
1
Assuming 'I' is not a 'SelectInst'
2
'SelI' initialized to a null pointer value
6704 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
6705 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
3
Calling 'RecurrenceDescriptor::isIntMinMaxRecurrenceKind'
5
Returning from 'RecurrenceDescriptor::isIntMinMaxRecurrenceKind'
6
Taking true branch
6706 if (auto *Sel
7.1
'Sel' is non-null
7.1
'Sel' is non-null
= dyn_cast<SelectInst>(Op))
7
Assuming 'Op' is a 'SelectInst'
8
Taking true branch
6707 propagateIRFlags(Sel->getCondition(), SelI->getCondition());
9
Called C++ object pointer is null
6708 }
6709 propagateIRFlags(Op, I);
6710 return Op;
6711 }
6712
6713 static RecurKind getRdxKind(Instruction *I) {
6714 assert(I && "Expected instruction for reduction matching")((I && "Expected instruction for reduction matching")
? static_cast<void> (0) : __assert_fail ("I && \"Expected instruction for reduction matching\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6714, __PRETTY_FUNCTION__))
;
6715 TargetTransformInfo::ReductionFlags RdxFlags;
6716 if (match(I, m_Add(m_Value(), m_Value())))
6717 return RecurKind::Add;
6718 if (match(I, m_Mul(m_Value(), m_Value())))
6719 return RecurKind::Mul;
6720 if (match(I, m_And(m_Value(), m_Value())))
6721 return RecurKind::And;
6722 if (match(I, m_Or(m_Value(), m_Value())))
6723 return RecurKind::Or;
6724 if (match(I, m_Xor(m_Value(), m_Value())))
6725 return RecurKind::Xor;
6726 if (match(I, m_FAdd(m_Value(), m_Value())))
6727 return RecurKind::FAdd;
6728 if (match(I, m_FMul(m_Value(), m_Value())))
6729 return RecurKind::FMul;
6730
6731 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
6732 return RecurKind::FMax;
6733 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
6734 return RecurKind::FMin;
6735
6736 // This matches either cmp+select or intrinsics. SLP is expected to handle
6737 // either form.
6738 // TODO: If we are canonicalizing to intrinsics, we can remove several
6739 // special-case paths that deal with selects.
6740 if (match(I, m_SMax(m_Value(), m_Value())))
6741 return RecurKind::SMax;
6742 if (match(I, m_SMin(m_Value(), m_Value())))
6743 return RecurKind::SMin;
6744 if (match(I, m_UMax(m_Value(), m_Value())))
6745 return RecurKind::UMax;
6746 if (match(I, m_UMin(m_Value(), m_Value())))
6747 return RecurKind::UMin;
6748
6749 if (auto *Select = dyn_cast<SelectInst>(I)) {
6750 // Try harder: look for min/max pattern based on instructions producing
6751 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6752 // During the intermediate stages of SLP, it's very common to have
6753 // pattern like this (since optimizeGatherSequence is run only once
6754 // at the end):
6755 // %1 = extractelement <2 x i32> %a, i32 0
6756 // %2 = extractelement <2 x i32> %a, i32 1
6757 // %cond = icmp sgt i32 %1, %2
6758 // %3 = extractelement <2 x i32> %a, i32 0
6759 // %4 = extractelement <2 x i32> %a, i32 1
6760 // %select = select i1 %cond, i32 %3, i32 %4
6761 CmpInst::Predicate Pred;
6762 Instruction *L1;
6763 Instruction *L2;
6764
6765 Value *LHS = Select->getTrueValue();
6766 Value *RHS = Select->getFalseValue();
6767 Value *Cond = Select->getCondition();
6768
6769 // TODO: Support inverse predicates.
6770 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6771 if (!isa<ExtractElementInst>(RHS) ||
6772 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6773 return RecurKind::None;
6774 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6775 if (!isa<ExtractElementInst>(LHS) ||
6776 !L1->isIdenticalTo(cast<Instruction>(LHS)))
6777 return RecurKind::None;
6778 } else {
6779 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6780 return RecurKind::None;
6781 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6782 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6783 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6784 return RecurKind::None;
6785 }
6786
6787 TargetTransformInfo::ReductionFlags RdxFlags;
6788 switch (Pred) {
6789 default:
6790 return RecurKind::None;
6791 case CmpInst::ICMP_SGT:
6792 case CmpInst::ICMP_SGE:
6793 return RecurKind::SMax;
6794 case CmpInst::ICMP_SLT:
6795 case CmpInst::ICMP_SLE:
6796 return RecurKind::SMin;
6797 case CmpInst::ICMP_UGT:
6798 case CmpInst::ICMP_UGE:
6799 return RecurKind::UMax;
6800 case CmpInst::ICMP_ULT:
6801 case CmpInst::ICMP_ULE:
6802 return RecurKind::UMin;
6803 }
6804 }
6805 return RecurKind::None;
6806 }
6807
6808 /// Get the index of the first operand.
6809 static unsigned getFirstOperandIndex(Instruction *I) {
6810 return isa<SelectInst>(I) ? 1 : 0;
6811 }
6812
6813 /// Total number of operands in the reduction operation.
6814 static unsigned getNumberOfOperands(Instruction *I) {
6815 return isa<SelectInst>(I) ? 3 : 2;
6816 }
6817
6818 /// Checks if the instruction is in basic block \p BB.
6819 /// For a min/max reduction check that both compare and select are in \p BB.
6820 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) {
6821 auto *Sel = dyn_cast<SelectInst>(I);
6822 if (IsRedOp && Sel) {
6823 auto *Cmp = cast<Instruction>(Sel->getCondition());
6824 return Sel->getParent() == BB && Cmp->getParent() == BB;
6825 }
6826 return I->getParent() == BB;
6827 }
6828
6829 /// Expected number of uses for reduction operations/reduced values.
6830 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) {
6831 // SelectInst must be used twice while the condition op must have single
6832 // use only.
6833 if (MatchCmpSel) {
6834 if (auto *Sel = dyn_cast<SelectInst>(I))
6835 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
6836 return I->hasNUses(2);
6837 }
6838
6839 // Arithmetic reduction operation must be used once only.
6840 return I->hasOneUse();
6841 }
6842
6843 /// Initializes the list of reduction operations.
6844 void initReductionOps(Instruction *I) {
6845 if (isa<SelectInst>(I))
6846 ReductionOps.assign(2, ReductionOpsType());
6847 else
6848 ReductionOps.assign(1, ReductionOpsType());
6849 }
6850
6851 /// Add all reduction operations for the reduction instruction \p I.
6852 void addReductionOps(Instruction *I) {
6853 if (auto *Sel = dyn_cast<SelectInst>(I)) {
6854 ReductionOps[0].emplace_back(Sel->getCondition());
6855 ReductionOps[1].emplace_back(Sel);
6856 } else {
6857 ReductionOps[0].emplace_back(I);
6858 }
6859 }
6860
6861 static Value *getLHS(RecurKind Kind, Instruction *I) {
6862 if (Kind == RecurKind::None)
6863 return nullptr;
6864 return I->getOperand(getFirstOperandIndex(I));
6865 }
6866 static Value *getRHS(RecurKind Kind, Instruction *I) {
6867 if (Kind == RecurKind::None)
6868 return nullptr;
6869 return I->getOperand(getFirstOperandIndex(I) + 1);
6870 }
6871
6872public:
6873 HorizontalReduction() = default;
6874
6875 /// Try to find a reduction tree.
6876 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6877 assert((!Phi || is_contained(Phi->operands(), B)) &&(((!Phi || is_contained(Phi->operands(), B)) && "Phi needs to use the binary operator"
) ? static_cast<void> (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Phi needs to use the binary operator\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6878, __PRETTY_FUNCTION__))
6878 "Phi needs to use the binary operator")(((!Phi || is_contained(Phi->operands(), B)) && "Phi needs to use the binary operator"
) ? static_cast<void> (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Phi needs to use the binary operator\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6878, __PRETTY_FUNCTION__))
;
6879
6880 RdxKind = getRdxKind(B);
6881
6882 // We could have a initial reductions that is not an add.
6883 // r *= v1 + v2 + v3 + v4
6884 // In such a case start looking for a tree rooted in the first '+'.
6885 if (Phi) {
6886 if (getLHS(RdxKind, B) == Phi) {
6887 Phi = nullptr;
6888 B = dyn_cast<Instruction>(getRHS(RdxKind, B));
6889 if (!B)
6890 return false;
6891 RdxKind = getRdxKind(B);
6892 } else if (getRHS(RdxKind, B) == Phi) {
6893 Phi = nullptr;
6894 B = dyn_cast<Instruction>(getLHS(RdxKind, B));
6895 if (!B)
6896 return false;
6897 RdxKind = getRdxKind(B);
6898 }
6899 }
6900
6901 if (!isVectorizable(RdxKind, B))
6902 return false;
6903
6904 // Analyze "regular" integer/FP types for reductions - no target-specific
6905 // types or pointers.
6906 Type *Ty = B->getType();
6907 if (!isValidElementType(Ty) || Ty->isPointerTy())
6908 return false;
6909
6910 // Though the ultimate reduction may have multiple uses, its condition must
6911 // have only single use.
6912 if (auto *SI = dyn_cast<SelectInst>(B))
6913 if (!SI->getCondition()->hasOneUse())
6914 return false;
6915
6916 ReductionRoot = B;
6917
6918 // The opcode for leaf values that we perform a reduction on.
6919 // For example: load(x) + load(y) + load(z) + fptoui(w)
6920 // The leaf opcode for 'w' does not match, so we don't include it as a
6921 // potential candidate for the reduction.
6922 unsigned LeafOpcode = 0;
6923
6924 // Post order traverse the reduction tree starting at B. We only handle true
6925 // trees containing only binary operators.
6926 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6927 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B)));
6928 initReductionOps(B);
6929 while (!Stack.empty()) {
6930 Instruction *TreeN = Stack.back().first;
6931 unsigned EdgeToVisit = Stack.back().second++;
6932 const RecurKind TreeRdxKind = getRdxKind(TreeN);
6933 bool IsReducedValue = TreeRdxKind != RdxKind;
6934
6935 // Postorder visit.
6936 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) {
6937 if (IsReducedValue)
6938 ReducedVals.push_back(TreeN);
6939 else {
6940 auto ExtraArgsIter = ExtraArgs.find(TreeN);
6941 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
6942 // Check if TreeN is an extra argument of its parent operation.
6943 if (Stack.size() <= 1) {
6944 // TreeN can't be an extra argument as it is a root reduction
6945 // operation.
6946 return false;
6947 }
6948 // Yes, TreeN is an extra argument, do not add it to a list of
6949 // reduction operations.
6950 // Stack[Stack.size() - 2] always points to the parent operation.
6951 markExtraArg(Stack[Stack.size() - 2], TreeN);
6952 ExtraArgs.erase(TreeN);
6953 } else
6954 addReductionOps(TreeN);
6955 }
6956 // Retract.
6957 Stack.pop_back();
6958 continue;
6959 }
6960
6961 // Visit left or right.
6962 Value *EdgeVal = TreeN->getOperand(EdgeToVisit);
6963 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
6964 if (!EdgeInst) {
6965 // Edge value is not a reduction instruction or a leaf instruction.
6966 // (It may be a constant, function argument, or something else.)
6967 markExtraArg(Stack.back(), EdgeVal);
6968 continue;
6969 }
6970 RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
6971 // Continue analysis if the next operand is a reduction operation or
6972 // (possibly) a leaf value. If the leaf value opcode is not set,
6973 // the first met operation != reduction operation is considered as the
6974 // leaf opcode.
6975 // Only handle trees in the current basic block.
6976 // Each tree node needs to have minimal number of users except for the
6977 // ultimate reduction.
6978 const bool IsRdxInst = EdgeRdxKind == RdxKind;
6979 if (EdgeInst != Phi && EdgeInst != B &&
6980 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) &&
6981 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) &&
6982 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
6983 if (IsRdxInst) {
6984 // We need to be able to reassociate the reduction operations.
6985 if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
6986 // I is an extra argument for TreeN (its parent operation).
6987 markExtraArg(Stack.back(), EdgeInst);
6988 continue;
6989 }
6990 } else if (!LeafOpcode) {
6991 LeafOpcode = EdgeInst->getOpcode();
6992 }
6993 Stack.push_back(
6994 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
6995 continue;
6996 }
6997 // I is an extra argument for TreeN (its parent operation).
6998 markExtraArg(Stack.back(), EdgeInst);
6999 }
7000 return true;
7001 }
7002
7003 /// Attempt to vectorize the tree found by matchAssociativeReduction.
7004 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
7005 // If there are a sufficient number of reduction values, reduce
7006 // to a nearby power-of-2. We can safely generate oversized
7007 // vectors and rely on the backend to split them to legal sizes.
7008 unsigned NumReducedVals = ReducedVals.size();
7009 if (NumReducedVals < 4)
7010 return false;
7011
7012 // Intersect the fast-math-flags from all reduction operations.
7013 FastMathFlags RdxFMF;
7014 RdxFMF.set();
7015 for (ReductionOpsType &RdxOp : ReductionOps) {
7016 for (Value *RdxVal : RdxOp) {
7017 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
7018 RdxFMF &= FPMO->getFastMathFlags();
7019 }
7020 }
7021
7022 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
7023 Builder.setFastMathFlags(RdxFMF);
7024
7025 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
7026 // The same extra argument may be used several times, so log each attempt
7027 // to use it.
7028 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
7029 assert(Pair.first && "DebugLoc must be set.")((Pair.first && "DebugLoc must be set.") ? static_cast
<void> (0) : __assert_fail ("Pair.first && \"DebugLoc must be set.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7029, __PRETTY_FUNCTION__))
;
7030 ExternallyUsedValues[Pair.second].push_back(Pair.first);
7031 }
7032
7033 // The compare instruction of a min/max is the insertion point for new
7034 // instructions and may be replaced with a new compare instruction.
7035 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
7036 assert(isa<SelectInst>(RdxRootInst) &&((isa<SelectInst>(RdxRootInst) && "Expected min/max reduction to have select root instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7037, __PRETTY_FUNCTION__))
7037 "Expected min/max reduction to have select root instruction")((isa<SelectInst>(RdxRootInst) && "Expected min/max reduction to have select root instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7037, __PRETTY_FUNCTION__))
;
7038 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
7039 assert(isa<Instruction>(ScalarCond) &&((isa<Instruction>(ScalarCond) && "Expected min/max reduction to have compare condition"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7040, __PRETTY_FUNCTION__))
7040 "Expected min/max reduction to have compare condition")((isa<Instruction>(ScalarCond) && "Expected min/max reduction to have compare condition"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7040, __PRETTY_FUNCTION__))
;
7041 return cast<Instruction>(ScalarCond);
7042 };
7043
7044 // The reduction root is used as the insertion point for new instructions,
7045 // so set it as externally used to prevent it from being deleted.
7046 ExternallyUsedValues[ReductionRoot];
7047 SmallVector<Value *, 16> IgnoreList;
7048 for (ReductionOpsType &RdxOp : ReductionOps)
7049 IgnoreList.append(RdxOp.begin(), RdxOp.end());
7050
7051 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
7052 if (NumReducedVals > ReduxWidth) {
7053 // In the loop below, we are building a tree based on a window of
7054 // 'ReduxWidth' values.
7055 // If the operands of those values have common traits (compare predicate,
7056 // constant operand, etc), then we want to group those together to
7057 // minimize the cost of the reduction.
7058
7059 // TODO: This should be extended to count common operands for
7060 // compares and binops.
7061
7062 // Step 1: Count the number of times each compare predicate occurs.
7063 SmallDenseMap<unsigned, unsigned> PredCountMap;
7064 for (Value *RdxVal : ReducedVals) {
7065 CmpInst::Predicate Pred;
7066 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
7067 ++PredCountMap[Pred];
7068 }
7069 // Step 2: Sort the values so the most common predicates come first.
7070 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
7071 CmpInst::Predicate PredA, PredB;
7072 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
7073 match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
7074 return PredCountMap[PredA] > PredCountMap[PredB];
7075 }
7076 return false;
7077 });
7078 }
7079
7080 Value *VectorizedTree = nullptr;
7081 unsigned i = 0;
7082 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
7083 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
7084 V.buildTree(VL, ExternallyUsedValues, IgnoreList);
7085 Optional<ArrayRef<unsigned>> Order = V.bestOrder();
7086 if (Order) {
7087 assert(Order->size() == VL.size() &&((Order->size() == VL.size() && "Order size must be the same as number of vectorized "
"instructions.") ? static_cast<void> (0) : __assert_fail
("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7089, __PRETTY_FUNCTION__))
7088 "Order size must be the same as number of vectorized "((Order->size() == VL.size() && "Order size must be the same as number of vectorized "
"instructions.") ? static_cast<void> (0) : __assert_fail
("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7089, __PRETTY_FUNCTION__))
7089 "instructions.")((Order->size() == VL.size() && "Order size must be the same as number of vectorized "
"instructions.") ? static_cast<void> (0) : __assert_fail
("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7089, __PRETTY_FUNCTION__))
;
7090 // TODO: reorder tree nodes without tree rebuilding.
7091 SmallVector<Value *, 4> ReorderedOps(VL.size());
7092 llvm::transform(*Order, ReorderedOps.begin(),
7093 [VL](const unsigned Idx) { return VL[Idx]; });
7094 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
7095 }
7096 if (V.isTreeTinyAndNotFullyVectorizable())
7097 break;
7098 if (V.isLoadCombineReductionCandidate(RdxKind))
7099 break;
7100
7101 V.computeMinimumValueSizes();
7102
7103 // Estimate cost.
7104 InstructionCost TreeCost = V.getTreeCost();
7105 InstructionCost ReductionCost =
7106 getReductionCost(TTI, ReducedVals[i], ReduxWidth);
7107 InstructionCost Cost = TreeCost + ReductionCost;
7108 if (!Cost.isValid()) {
7109 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "Encountered invalid baseline cost.\n"
; } } while (false)
;
7110 return false;
7111 }
7112 if (Cost >= -SLPCostThreshold) {
7113 V.getORE()->emit([&]() {
7114 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "HorSLPNotBeneficial",
7115 cast<Instruction>(VL[0]))
7116 << "Vectorizing horizontal reduction is possible"
7117 << "but not beneficial with cost " << ore::NV("Cost", Cost)
7118 << " and threshold "
7119 << ore::NV("Threshold", -SLPCostThreshold);
7120 });
7121 break;
7122 }
7123
7124 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
7125 << Cost << ". (HorRdx)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
;
7126 V.getORE()->emit([&]() {
7127 return OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedHorizontalReduction",
7128 cast<Instruction>(VL[0]))
7129 << "Vectorized horizontal reduction with cost "
7130 << ore::NV("Cost", Cost) << " and with tree size "
7131 << ore::NV("TreeSize", V.getTreeSize());
7132 });
7133
7134 // Vectorize a tree.
7135 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
7136 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
7137
7138 // Emit a reduction. If the root is a select (min/max idiom), the insert
7139 // point is the compare condition of that select.
7140 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
7141 if (isa<SelectInst>(RdxRootInst))
7142 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
7143 else
7144 Builder.SetInsertPoint(RdxRootInst);
7145
7146 Value *ReducedSubTree =
7147 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
7148
7149 if (!VectorizedTree) {
7150 // Initialize the final value in the reduction.
7151 VectorizedTree = ReducedSubTree;
7152 } else {
7153 // Update the final value in the reduction.
7154 Builder.SetCurrentDebugLocation(Loc);
7155 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7156 ReducedSubTree, "op.rdx", ReductionOps);
7157 }
7158 i += ReduxWidth;
7159 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
7160 }
7161
7162 if (VectorizedTree) {
7163 // Finish the reduction.
7164 for (; i < NumReducedVals; ++i) {
7165 auto *I = cast<Instruction>(ReducedVals[i]);
7166 Builder.SetCurrentDebugLocation(I->getDebugLoc());
7167 VectorizedTree =
7168 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
7169 }
7170 for (auto &Pair : ExternallyUsedValues) {
7171 // Add each externally used value to the final reduction.
7172 for (auto *I : Pair.second) {
7173 Builder.SetCurrentDebugLocation(I->getDebugLoc());
7174 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7175 Pair.first, "op.extra", I);
7176 }
7177 }
7178
7179 ReductionRoot->replaceAllUsesWith(VectorizedTree);
7180
7181 // Mark all scalar reduction ops for deletion, they are replaced by the
7182 // vector reductions.
7183 V.eraseInstructions(IgnoreList);
7184 }
7185 return VectorizedTree != nullptr;
7186 }
7187
7188 unsigned numReductionValues() const { return ReducedVals.size(); }
7189
7190private:
7191 /// Calculate the cost of a reduction.
7192 InstructionCost getReductionCost(TargetTransformInfo *TTI,
7193 Value *FirstReducedVal,
7194 unsigned ReduxWidth) {
7195 Type *ScalarTy = FirstReducedVal->getType();
7196 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7197 InstructionCost VectorCost, ScalarCost;
7198 switch (RdxKind) {
7199 case RecurKind::Add:
7200 case RecurKind::Mul:
7201 case RecurKind::Or:
7202 case RecurKind::And:
7203 case RecurKind::Xor:
7204 case RecurKind::FAdd:
7205 case RecurKind::FMul: {
7206 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
7207 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy,
7208 /*IsPairwiseForm=*/false);
7209 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
7210 break;
7211 }
7212 case RecurKind::FMax:
7213 case RecurKind::FMin: {
7214 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7215 VectorCost =
7216 TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7217 /*pairwise=*/false, /*unsigned=*/false);
7218 ScalarCost =
7219 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
7220 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7221 CmpInst::makeCmpResultType(ScalarTy));
7222 break;
7223 }
7224 case RecurKind::SMax:
7225 case RecurKind::SMin:
7226 case RecurKind::UMax:
7227 case RecurKind::UMin: {
7228 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7229 bool IsUnsigned =
7230 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
7231 VectorCost =
7232 TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7233 /*IsPairwiseForm=*/false, IsUnsigned);
7234 ScalarCost =
7235 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
7236 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7237 CmpInst::makeCmpResultType(ScalarTy));
7238 break;
7239 }
7240 default:
7241 llvm_unreachable("Expected arithmetic or min/max reduction operation")::llvm::llvm_unreachable_internal("Expected arithmetic or min/max reduction operation"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7241)
;
7242 }
7243
7244 // Scalar cost is repeated for N-1 elements.
7245 ScalarCost *= (ReduxWidth - 1);
7246 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
7247 << " for reduction that starts with " << *FirstReducedValdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
7248 << " (It is a splitting reduction)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
;
7249 return VectorCost - ScalarCost;
7250 }
7251
7252 /// Emit a horizontal reduction of the vectorized value.
7253 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
7254 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
7255 assert(VectorizedValue && "Need to have a vectorized tree node")((VectorizedValue && "Need to have a vectorized tree node"
) ? static_cast<void> (0) : __assert_fail ("VectorizedValue && \"Need to have a vectorized tree node\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7255, __PRETTY_FUNCTION__))
;
7256 assert(isPowerOf2_32(ReduxWidth) &&((isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7257, __PRETTY_FUNCTION__))
7257 "We only handle power-of-two reductions for now")((isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7257, __PRETTY_FUNCTION__))
;
7258
7259 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
7260 ReductionOps.back());
7261 }
7262};
7263
7264} // end anonymous namespace
7265
7266static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
7267 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
7268 return cast<FixedVectorType>(IE->getType())->getNumElements();
7269
7270 unsigned AggregateSize = 1;
7271 auto *IV = cast<InsertValueInst>(InsertInst);
7272 Type *CurrentType = IV->getType();
7273 do {
7274 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7275 for (auto *Elt : ST->elements())
7276 if (Elt != ST->getElementType(0)) // check homogeneity
7277 return None;
7278 AggregateSize *= ST->getNumElements();
7279 CurrentType = ST->getElementType(0);
7280 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7281 AggregateSize *= AT->getNumElements();
7282 CurrentType = AT->getElementType();
7283 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
7284 AggregateSize *= VT->getNumElements();
7285 return AggregateSize;
7286 } else if (CurrentType->isSingleValueType()) {
7287 return AggregateSize;
7288 } else {
7289 return None;
7290 }
7291 } while (true);
7292}
7293
7294static Optional<unsigned> getOperandIndex(Instruction *InsertInst,
7295 unsigned OperandOffset) {
7296 unsigned OperandIndex = OperandOffset;
7297 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
7298 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
7299 auto *VT = cast<FixedVectorType>(IE->getType());
7300 OperandIndex *= VT->getNumElements();
7301 OperandIndex += CI->getZExtValue();
7302 return OperandIndex;
7303 }
7304 return None;
7305 }
7306
7307 auto *IV = cast<InsertValueInst>(InsertInst);
7308 Type *CurrentType = IV->getType();
7309 for (unsigned int Index : IV->indices()) {
7310 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7311 OperandIndex *= ST->getNumElements();
7312 CurrentType = ST->getElementType(Index);
7313 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7314 OperandIndex *= AT->getNumElements();
7315 CurrentType = AT->getElementType();
7316 } else {
7317 return None;
7318 }
7319 OperandIndex += Index;
7320 }
7321 return OperandIndex;
7322}
7323
7324static bool findBuildAggregate_rec(Instruction *LastInsertInst,
7325 TargetTransformInfo *TTI,
7326 SmallVectorImpl<Value *> &BuildVectorOpds,
7327 SmallVectorImpl<Value *> &InsertElts,
7328 unsigned OperandOffset) {
7329 do {
7330 Value *InsertedOperand = LastInsertInst->getOperand(1);
7331 Optional<unsigned> OperandIndex =
7332 getOperandIndex(LastInsertInst, OperandOffset);
7333 if (!OperandIndex)
7334 return false;
7335 if (isa<InsertElementInst>(InsertedOperand) ||
7336 isa<InsertValueInst>(InsertedOperand)) {
7337 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
7338 BuildVectorOpds, InsertElts, *OperandIndex))
7339 return false;
7340 } else {
7341 BuildVectorOpds[*OperandIndex] = InsertedOperand;
7342 InsertElts[*OperandIndex] = LastInsertInst;
7343 }
7344 if (isa<UndefValue>(LastInsertInst->getOperand(0)))
7345 return true;
7346 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
7347 } while (LastInsertInst != nullptr &&
7348 (isa<InsertValueInst>(LastInsertInst) ||
7349 isa<InsertElementInst>(LastInsertInst)) &&
7350 LastInsertInst->hasOneUse());
7351 return false;
7352}
7353
7354/// Recognize construction of vectors like
7355/// %ra = insertelement <4 x float> poison, float %s0, i32 0
7356/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
7357/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
7358/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
7359/// starting from the last insertelement or insertvalue instruction.
7360///
7361/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
7362/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
7363/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
7364///
7365/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
7366///
7367/// \return true if it matches.
7368static bool findBuildAggregate(Instruction *LastInsertInst,
7369 TargetTransformInfo *TTI,
7370 SmallVectorImpl<Value *> &BuildVectorOpds,
7371 SmallVectorImpl<Value *> &InsertElts) {
7372
7373 assert((isa<InsertElementInst>(LastInsertInst) ||(((isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst
>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? static_cast<void> (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7375, __PRETTY_FUNCTION__))
7374 isa<InsertValueInst>(LastInsertInst)) &&(((isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst
>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? static_cast<void> (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7375, __PRETTY_FUNCTION__))
7375 "Expected insertelement or insertvalue instruction!")(((isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst
>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? static_cast<void> (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7375, __PRETTY_FUNCTION__))
;
7376
7377 assert((BuildVectorOpds.empty() && InsertElts.empty()) &&(((BuildVectorOpds.empty() && InsertElts.empty()) &&
"Expected empty result vectors!") ? static_cast<void> (
0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7378, __PRETTY_FUNCTION__))
7378 "Expected empty result vectors!")(((BuildVectorOpds.empty() && InsertElts.empty()) &&
"Expected empty result vectors!") ? static_cast<void> (
0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7378, __PRETTY_FUNCTION__))
;
7379
7380 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
7381 if (!AggregateSize)
7382 return false;
7383 BuildVectorOpds.resize(*AggregateSize);
7384 InsertElts.resize(*AggregateSize);
7385
7386 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
7387 0)) {
7388 llvm::erase_value(BuildVectorOpds, nullptr);
7389 llvm::erase_value(InsertElts, nullptr);
7390 if (BuildVectorOpds.size() >= 2)
7391 return true;
7392 }
7393
7394 return false;
7395}
7396
7397static bool PhiTypeSorterFunc(Value *V, Value *V2) {
7398 return V->getType() < V2->getType();
7399}
7400
7401/// Try and get a reduction value from a phi node.
7402///
7403/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
7404/// if they come from either \p ParentBB or a containing loop latch.
7405///
7406/// \returns A candidate reduction value if possible, or \code nullptr \endcode
7407/// if not possible.
7408static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
7409 BasicBlock *ParentBB, LoopInfo *LI) {
7410 // There are situations where the reduction value is not dominated by the
7411 // reduction phi. Vectorizing such cases has been reported to cause
7412 // miscompiles. See PR25787.
7413 auto DominatedReduxValue = [&](Value *R) {
7414 return isa<Instruction>(R) &&
7415 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
7416 };
7417
7418 Value *Rdx = nullptr;
7419
7420 // Return the incoming value if it comes from the same BB as the phi node.
7421 if (P->getIncomingBlock(0) == ParentBB) {
7422 Rdx = P->getIncomingValue(0);
7423 } else if (P->getIncomingBlock(1) == ParentBB) {
7424 Rdx = P->getIncomingValue(1);
7425 }
7426
7427 if (Rdx && DominatedReduxValue(Rdx))
7428 return Rdx;
7429
7430 // Otherwise, check whether we have a loop latch to look at.
7431 Loop *BBL = LI->getLoopFor(ParentBB);
7432 if (!BBL)
7433 return nullptr;
7434 BasicBlock *BBLatch = BBL->getLoopLatch();
7435 if (!BBLatch)
7436 return nullptr;
7437
7438 // There is a loop latch, return the incoming value if it comes from
7439 // that. This reduction pattern occasionally turns up.
7440 if (P->getIncomingBlock(0) == BBLatch) {
7441 Rdx = P->getIncomingValue(0);
7442 } else if (P->getIncomingBlock(1) == BBLatch) {
7443 Rdx = P->getIncomingValue(1);
7444 }
7445
7446 if (Rdx && DominatedReduxValue(Rdx))
7447 return Rdx;
7448
7449 return nullptr;
7450}
7451
7452static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
7453 if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
7454 return true;
7455 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
7456 return true;
7457 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
7458 return true;
7459 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
7460 return true;
7461 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
7462 return true;
7463 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
7464 return true;
7465 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
7466 return true;
7467 return false;
7468}
7469
7470/// Attempt to reduce a horizontal reduction.
7471/// If it is legal to match a horizontal reduction feeding the phi node \a P
7472/// with reduction operators \a Root (or one of its operands) in a basic block
7473/// \a BB, then check if it can be done. If horizontal reduction is not found
7474/// and root instruction is a binary operation, vectorization of the operands is
7475/// attempted.
7476/// \returns true if a horizontal reduction was matched and reduced or operands
7477/// of one of the binary instruction were vectorized.
7478/// \returns false if a horizontal reduction was not matched (or not possible)
7479/// or no vectorization of any binary operation feeding \a Root instruction was
7480/// performed.
7481static bool tryToVectorizeHorReductionOrInstOperands(
7482 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
7483 TargetTransformInfo *TTI,
7484 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
7485 if (!ShouldVectorizeHor)
7486 return false;
7487
7488 if (!Root)
7489 return false;
7490
7491 if (Root->getParent() != BB || isa<PHINode>(Root))
7492 return false;
7493 // Start analysis starting from Root instruction. If horizontal reduction is
7494 // found, try to vectorize it. If it is not a horizontal reduction or
7495 // vectorization is not possible or not effective, and currently analyzed
7496 // instruction is a binary operation, try to vectorize the operands, using
7497 // pre-order DFS traversal order. If the operands were not vectorized, repeat
7498 // the same procedure considering each operand as a possible root of the
7499 // horizontal reduction.
7500 // Interrupt the process if the Root instruction itself was vectorized or all
7501 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
7502 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
7503 // CmpInsts so we can skip extra attempts in
7504 // tryToVectorizeHorReductionOrInstOperands and save compile time.
7505 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
7506 SmallPtrSet<Value *, 8> VisitedInstrs;
7507 bool Res = false;
7508 while (!Stack.empty()) {
7509 Instruction *Inst;
7510 unsigned Level;
7511 std::tie(Inst, Level) = Stack.pop_back_val();
7512 Value *B0, *B1;
7513 bool IsBinop = matchRdxBop(Inst, B0, B1);
7514 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
7515 if (IsBinop || IsSelect) {
7516 HorizontalReduction HorRdx;
7517 if (HorRdx.matchAssociativeReduction(P, Inst)) {
7518 if (HorRdx.tryToReduce(R, TTI)) {
7519 Res = true;
7520 // Set P to nullptr to avoid re-analysis of phi node in
7521 // matchAssociativeReduction function unless this is the root node.
7522 P = nullptr;
7523 continue;
7524 }
7525 }
7526 if (P && IsBinop) {
7527 Inst = dyn_cast<Instruction>(B0);
7528 if (Inst == P)
7529 Inst = dyn_cast<Instruction>(B1);
7530 if (!Inst) {
7531 // Set P to nullptr to avoid re-analysis of phi node in
7532 // matchAssociativeReduction function unless this is the root node.
7533 P = nullptr;
7534 continue;
7535 }
7536 }
7537 }
7538 // Set P to nullptr to avoid re-analysis of phi node in
7539 // matchAssociativeReduction function unless this is the root node.
7540 P = nullptr;
7541 // Do not try to vectorize CmpInst operands, this is done separately.
7542 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
7543 Res = true;
7544 continue;
7545 }
7546
7547 // Try to vectorize operands.
7548 // Continue analysis for the instruction from the same basic block only to
7549 // save compile time.
7550 if (++Level < RecursionMaxDepth)
7551 for (auto *Op : Inst->operand_values())
7552 if (VisitedInstrs.insert(Op).second)
7553 if (auto *I = dyn_cast<Instruction>(Op))
7554 // Do not try to vectorize CmpInst operands, this is done
7555 // separately.
7556 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
7557 I->getParent() == BB)
7558 Stack.emplace_back(I, Level);
7559 }
7560 return Res;
7561}
7562
7563bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
7564 BasicBlock *BB, BoUpSLP &R,
7565 TargetTransformInfo *TTI) {
7566 auto *I = dyn_cast_or_null<Instruction>(V);
7567 if (!I)
7568 return false;
7569
7570 if (!isa<BinaryOperator>(I))
7571 P = nullptr;
7572 // Try to match and vectorize a horizontal reduction.
7573 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
7574 return tryToVectorize(I, R);
7575 };
7576 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
7577 ExtraVectorization);
7578}
7579
7580bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
7581 BasicBlock *BB, BoUpSLP &R) {
7582 const DataLayout &DL = BB->getModule()->getDataLayout();
7583 if (!R.canMapToVector(IVI->getType(), DL))
7584 return false;
7585
7586 SmallVector<Value *, 16> BuildVectorOpds;
7587 SmallVector<Value *, 16> BuildVectorInsts;
7588 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
7589 return false;
7590
7591 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: array mappable to vector: " <<
*IVI << "\n"; } } while (false)
;
7592 // Aggregate value is unlikely to be processed in vector register, we need to
7593 // extract scalars into scalar registers, so NeedExtraction is set true.
7594 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7595 BuildVectorInsts);
7596}
7597
7598bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
7599 BasicBlock *BB, BoUpSLP &R) {
7600 SmallVector<Value *, 16> BuildVectorInsts;
7601 SmallVector<Value *, 16> BuildVectorOpds;
7602 SmallVector<int> Mask;
7603 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
7604 (llvm::all_of(BuildVectorOpds,
7605 [](Value *V) { return isa<ExtractElementInst>(V); }) &&
7606 isShuffle(BuildVectorOpds, Mask)))
7607 return false;
7608
7609 // Vectorize starting with the build vector operands ignoring the BuildVector
7610 // instructions for the purpose of scheduling and user extraction.
7611 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7612 BuildVectorInsts);
7613}
7614
7615bool SLPVectorizerPass::vectorizeSimpleInstructions(
7616 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
7617 bool AtTerminator) {
7618 bool OpsChanged = false;
7619 SmallVector<Instruction *, 4> PostponedCmps;
7620 for (auto *I : reverse(Instructions)) {
7621 if (R.isDeleted(I))
7622 continue;
7623 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
7624 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
7625 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
7626 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
7627 else if (isa<CmpInst>(I))
7628 PostponedCmps.push_back(I);
7629 }
7630 if (AtTerminator) {
7631 // Try to find reductions first.
7632 for (Instruction *I : PostponedCmps) {
7633 if (R.isDeleted(I))
7634 continue;
7635 for (Value *Op : I->operands())
7636 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
7637 }
7638 // Try to vectorize operands as vector bundles.
7639 for (Instruction *I : PostponedCmps) {
7640 if (R.isDeleted(I))
7641 continue;
7642 OpsChanged |= tryToVectorize(I, R);
7643 }
7644 Instructions.clear();
7645 } else {
7646 // Insert in reverse order since the PostponedCmps vector was filled in
7647 // reverse order.
7648 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
7649 }
7650 return OpsChanged;
7651}
7652
7653bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
7654 bool Changed = false;
7655 SmallVector<Value *, 4> Incoming;
7656 SmallPtrSet<Value *, 16> VisitedInstrs;
7657
7658 bool HaveVectorizedPhiNodes = true;
7659 while (HaveVectorizedPhiNodes) {
7660 HaveVectorizedPhiNodes = false;
7661
7662 // Collect the incoming values from the PHIs.
7663 Incoming.clear();
7664 for (Instruction &I : *BB) {
7665 PHINode *P = dyn_cast<PHINode>(&I);
7666 if (!P)
7667 break;
7668
7669 if (!VisitedInstrs.count(P) && !R.isDeleted(P))
7670 Incoming.push_back(P);
7671 }
7672
7673 // Sort by type.
7674 llvm::stable_sort(Incoming, PhiTypeSorterFunc);
7675
7676 // Try to vectorize elements base on their type.
7677 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
7678 E = Incoming.end();
7679 IncIt != E;) {
7680
7681 // Look for the next elements with the same type.
7682 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
7683 while (SameTypeIt != E &&
7684 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
7685 VisitedInstrs.insert(*SameTypeIt);
7686 ++SameTypeIt;
7687 }
7688
7689 // Try to vectorize them.
7690 unsigned NumElts = (SameTypeIt - IncIt);
7691 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (false)
7692 << NumElts << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (false)
;
7693 // The order in which the phi nodes appear in the program does not matter.
7694 // So allow tryToVectorizeList to reorder them if it is beneficial. This
7695 // is done when there are exactly two elements since tryToVectorizeList
7696 // asserts that there are only two values when AllowReorder is true.
7697 bool AllowReorder = NumElts == 2;
7698 if (NumElts > 1 &&
7699 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) {
7700 // Success start over because instructions might have been changed.
7701 HaveVectorizedPhiNodes = true;
7702 Changed = true;
7703 break;
7704 }
7705
7706 // Start over at the next instruction of a different type (or the end).
7707 IncIt = SameTypeIt;
7708 }
7709 }
7710
7711 VisitedInstrs.clear();
7712
7713 SmallVector<Instruction *, 8> PostProcessInstructions;
7714 SmallDenseSet<Instruction *, 4> KeyNodes;
7715 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
7716 // Skip instructions with scalable type. The num of elements is unknown at
7717 // compile-time for scalable type.
7718 if (isa<ScalableVectorType>(it->getType()))
7719 continue;
7720
7721 // Skip instructions marked for the deletion.
7722 if (R.isDeleted(&*it))
7723 continue;
7724 // We may go through BB multiple times so skip the one we have checked.
7725 if (!VisitedInstrs.insert(&*it).second) {
7726 if (it->use_empty() && KeyNodes.contains(&*it) &&
7727 vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
7728 it->isTerminator())) {
7729 // We would like to start over since some instructions are deleted
7730 // and the iterator may become invalid value.
7731 Changed = true;
7732 it = BB->begin();
7733 e = BB->end();
7734 }
7735 continue;
7736 }
7737
7738 if (isa<DbgInfoIntrinsic>(it))
7739 continue;
7740
7741 // Try to vectorize reductions that use PHINodes.
7742 if (PHINode *P = dyn_cast<PHINode>(it)) {
7743 // Check that the PHI is a reduction PHI.
7744 if (P->getNumIncomingValues() == 2) {
7745 // Try to match and vectorize a horizontal reduction.
7746 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
7747 TTI)) {
7748 Changed = true;
7749 it = BB->begin();
7750 e = BB->end();
7751 continue;
7752 }
7753 }
7754 // Try to vectorize the incoming values of the PHI, to catch reductions
7755 // that feed into PHIs.
7756 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
7757 // Skip if the incoming block is the current BB for now. Also, bypass
7758 // unreachable IR for efficiency and to avoid crashing.
7759 // TODO: Collect the skipped incoming values and try to vectorize them
7760 // after processing BB.
7761 if (BB == P->getIncomingBlock(I) ||
7762 !DT->isReachableFromEntry(P->getIncomingBlock(I)))
7763 continue;
7764
7765 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
7766 P->getIncomingBlock(I), R, TTI);
7767 }
7768 continue;
7769 }
7770
7771 // Ran into an instruction without users, like terminator, or function call
7772 // with ignored return value, store. Ignore unused instructions (basing on
7773 // instruction type, except for CallInst and InvokeInst).
7774 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
7775 isa<InvokeInst>(it))) {
7776 KeyNodes.insert(&*it);
7777 bool OpsChanged = false;
7778 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
7779 for (auto *V : it->operand_values()) {
7780 // Try to match and vectorize a horizontal reduction.
7781 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
7782 }
7783 }
7784 // Start vectorization of post-process list of instructions from the
7785 // top-tree instructions to try to vectorize as many instructions as
7786 // possible.
7787 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
7788 it->isTerminator());
7789 if (OpsChanged) {
7790 // We would like to start over since some instructions are deleted
7791 // and the iterator may become invalid value.
7792 Changed = true;
7793 it = BB->begin();
7794 e = BB->end();
7795 continue;
7796 }
7797 }
7798
7799 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7800 isa<InsertValueInst>(it))
7801 PostProcessInstructions.push_back(&*it);
7802 }
7803
7804 return Changed;
7805}
7806
7807bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7808 auto Changed = false;
7809 for (auto &Entry : GEPs) {
7810 // If the getelementptr list has fewer than two elements, there's nothing
7811 // to do.
7812 if (Entry.second.size() < 2)
7813 continue;
7814
7815 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
7816 << Entry.second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
;
7817
7818 // Process the GEP list in chunks suitable for the target's supported
7819 // vector size. If a vector register can't hold 1 element, we are done. We
7820 // are trying to vectorize the index computations, so the maximum number of
7821 // elements is based on the size of the index expression, rather than the
7822 // size of the GEP itself (the target's pointer size).
7823 unsigned MaxVecRegSize = R.getMaxVecRegSize();
7824 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
7825 if (MaxVecRegSize < EltSize)
7826 continue;
7827
7828 unsigned MaxElts = MaxVecRegSize / EltSize;
7829 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
7830 auto Len = std::min<unsigned>(BE - BI, MaxElts);
7831 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
7832
7833 // Initialize a set a candidate getelementptrs. Note that we use a
7834 // SetVector here to preserve program order. If the index computations
7835 // are vectorizable and begin with loads, we want to minimize the chance
7836 // of having to reorder them later.
7837 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
7838
7839 // Some of the candidates may have already been vectorized after we
7840 // initially collected them. If so, they are marked as deleted, so remove
7841 // them from the set of candidates.
7842 Candidates.remove_if(
7843 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
7844
7845 // Remove from the set of candidates all pairs of getelementptrs with
7846 // constant differences. Such getelementptrs are likely not good
7847 // candidates for vectorization in a bottom-up phase since one can be
7848 // computed from the other. We also ensure all candidate getelementptr
7849 // indices are unique.
7850 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
7851 auto *GEPI = GEPList[I];
7852 if (!Candidates.count(GEPI))
7853 continue;
7854 auto *SCEVI = SE->getSCEV(GEPList[I]);
7855 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
7856 auto *GEPJ = GEPList[J];
7857 auto *SCEVJ = SE->getSCEV(GEPList[J]);
7858 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
7859 Candidates.remove(GEPI);
7860 Candidates.remove(GEPJ);
7861 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7862 Candidates.remove(GEPJ);
7863 }
7864 }
7865 }
7866
7867 // We break out of the above computation as soon as we know there are
7868 // fewer than two candidates remaining.
7869 if (Candidates.size() < 2)
7870 continue;
7871
7872 // Add the single, non-constant index of each candidate to the bundle. We
7873 // ensured the indices met these constraints when we originally collected
7874 // the getelementptrs.
7875 SmallVector<Value *, 16> Bundle(Candidates.size());
7876 auto BundleIndex = 0u;
7877 for (auto *V : Candidates) {
7878 auto *GEP = cast<GetElementPtrInst>(V);
7879 auto *GEPIdx = GEP->idx_begin()->get();
7880 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx))((GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx
)) ? static_cast<void> (0) : __assert_fail ("GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7880, __PRETTY_FUNCTION__))
;
7881 Bundle[BundleIndex++] = GEPIdx;
7882 }
7883
7884 // Try and vectorize the indices. We are currently only interested in
7885 // gather-like cases of the form:
7886 //
7887 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
7888 //
7889 // where the loads of "a", the loads of "b", and the subtractions can be
7890 // performed in parallel. It's likely that detecting this pattern in a
7891 // bottom-up phase will be simpler and less costly than building a
7892 // full-blown top-down phase beginning at the consecutive loads.
7893 Changed |= tryToVectorizeList(Bundle, R);
7894 }
7895 }
7896 return Changed;
7897}
7898
7899bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
7900 bool Changed = false;
7901 // Attempt to sort and vectorize each of the store-groups.
7902 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
7903 ++it) {
7904 if (it->second.size() < 2)
7905 continue;
7906
7907 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
7908 << it->second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
;
7909
7910 Changed |= vectorizeStores(it->second, R);
7911 }
7912 return Changed;
7913}
7914
7915char SLPVectorizer::ID = 0;
7916
7917static const char lv_name[] = "SLP Vectorizer";
7918
7919INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)static void *initializeSLPVectorizerPassOnce(PassRegistry &
Registry) {
7920INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
7921INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
7922INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
7923INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
7924INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
7925INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)initializeDemandedBitsWrapperPassPass(Registry);
7926INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
7927INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)initializeInjectTLIMappingsLegacyPass(Registry);
7928INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo( lv_name, "slp-vectorizer", &
SLPVectorizer::ID, PassInfo::NormalCtor_t(callDefaultCtor<
SLPVectorizer>), false, false); Registry.registerPass(*PI,
true); return PI; } static llvm::once_flag InitializeSLPVectorizerPassFlag
; void llvm::initializeSLPVectorizerPass(PassRegistry &Registry
) { llvm::call_once(InitializeSLPVectorizerPassFlag, initializeSLPVectorizerPassOnce
, std::ref(Registry)); }
7929
7930Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include/llvm/Analysis/IVDescriptors.h

1//===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file "describes" induction and recurrence variables.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H
14#define LLVM_ANALYSIS_IVDESCRIPTORS_H
15
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/IR/InstrTypes.h"
21#include "llvm/IR/Instruction.h"
22#include "llvm/IR/Operator.h"
23#include "llvm/IR/ValueHandle.h"
24#include "llvm/Support/Casting.h"
25
26namespace llvm {
27
28class DemandedBits;
29class AssumptionCache;
30class Loop;
31class PredicatedScalarEvolution;
32class ScalarEvolution;
33class SCEV;
34class DominatorTree;
35
36/// These are the kinds of recurrences that we support.
37enum class RecurKind {
38 None, ///< Not a recurrence.
39 Add, ///< Sum of integers.
40 Mul, ///< Product of integers.
41 Or, ///< Bitwise or logical OR of integers.
42 And, ///< Bitwise or logical AND of integers.
43 Xor, ///< Bitwise or logical XOR of integers.
44 SMin, ///< Signed integer min implemented in terms of select(cmp()).
45 SMax, ///< Signed integer max implemented in terms of select(cmp()).
46 UMin, ///< Unisgned integer min implemented in terms of select(cmp()).
47 UMax, ///< Unsigned integer max implemented in terms of select(cmp()).
48 FAdd, ///< Sum of floats.
49 FMul, ///< Product of floats.
50 FMin, ///< FP min implemented in terms of select(cmp()).
51 FMax ///< FP max implemented in terms of select(cmp()).
52};
53
54/// The RecurrenceDescriptor is used to identify recurrences variables in a
55/// loop. Reduction is a special case of recurrence that has uses of the
56/// recurrence variable outside the loop. The method isReductionPHI identifies
57/// reductions that are basic recurrences.
58///
59/// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
60/// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
61/// array[i]; } is a summation of array elements. Basic recurrences are a
62/// special case of chains of recurrences (CR). See ScalarEvolution for CR
63/// references.
64
65/// This struct holds information about recurrence variables.
66class RecurrenceDescriptor {
67public:
68 RecurrenceDescriptor() = default;
69
70 RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurKind K,
71 FastMathFlags FMF, Instruction *ExactFP, Type *RT,
72 bool Signed, bool Ordered,
73 SmallPtrSetImpl<Instruction *> &CI)
74 : StartValue(Start), LoopExitInstr(Exit), Kind(K), FMF(FMF),
75 ExactFPMathInst(ExactFP), RecurrenceType(RT), IsSigned(Signed),
76 IsOrdered(Ordered) {
77 CastInsts.insert(CI.begin(), CI.end());
78 }
79
80 /// This POD struct holds information about a potential recurrence operation.
81 class InstDesc {
82 public:
83 InstDesc(bool IsRecur, Instruction *I, Instruction *ExactFP = nullptr)
84 : IsRecurrence(IsRecur), PatternLastInst(I),
85 RecKind(RecurKind::None), ExactFPMathInst(ExactFP) {}
86
87 InstDesc(Instruction *I, RecurKind K, Instruction *ExactFP = nullptr)
88 : IsRecurrence(true), PatternLastInst(I), RecKind(K),
89 ExactFPMathInst(ExactFP) {}
90
91 bool isRecurrence() const { return IsRecurrence; }
92
93 bool needsExactFPMath() const { return ExactFPMathInst != nullptr; }
94
95 Instruction *getExactFPMathInst() const { return ExactFPMathInst; }
96
97 RecurKind getRecKind() const { return RecKind; }
98
99 Instruction *getPatternInst() const { return PatternLastInst; }
100
101 private:
102 // Is this instruction a recurrence candidate.
103 bool IsRecurrence;
104 // The last instruction in a min/max pattern (select of the select(icmp())
105 // pattern), or the current recurrence instruction otherwise.
106 Instruction *PatternLastInst;
107 // If this is a min/max pattern.
108 RecurKind RecKind;
109 // Recurrence does not allow floating-point reassociation.
110 Instruction *ExactFPMathInst;
111 };
112
113 /// Returns a struct describing if the instruction 'I' can be a recurrence
114 /// variable of type 'Kind'. If the recurrence is a min/max pattern of
115 /// select(icmp()) this function advances the instruction pointer 'I' from the
116 /// compare instruction to the select instruction and stores this pointer in
117 /// 'PatternLastInst' member of the returned struct.
118 static InstDesc isRecurrenceInstr(Instruction *I, RecurKind Kind,
119 InstDesc &Prev, FastMathFlags FMF);
120
121 /// Returns true if instruction I has multiple uses in Insts
122 static bool hasMultipleUsesOf(Instruction *I,
123 SmallPtrSetImpl<Instruction *> &Insts,
124 unsigned MaxNumUses);
125
126 /// Returns true if all uses of the instruction I is within the Set.
127 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
128
129 /// Returns a struct describing if the instruction is a
130 /// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
131 /// or max(X, Y). \p Prev specifies the description of an already processed
132 /// select instruction, so its corresponding cmp can be matched to it.
133 static InstDesc isMinMaxSelectCmpPattern(Instruction *I,
134 const InstDesc &Prev);
135
136 /// Returns a struct describing if the instruction is a
137 /// Select(FCmp(X, Y), (Z = X op PHINode), PHINode) instruction pattern.
138 static InstDesc isConditionalRdxPattern(RecurKind Kind, Instruction *I);
139
140 /// Returns identity corresponding to the RecurrenceKind.
141 static Constant *getRecurrenceIdentity(RecurKind K, Type *Tp,
142 FastMathFlags FMF);
143
144 /// Returns the opcode corresponding to the RecurrenceKind.
145 static unsigned getOpcode(RecurKind Kind);
146
147 /// Returns true if Phi is a reduction of type Kind and adds it to the
148 /// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are
149 /// non-null, the minimal bit width needed to compute the reduction will be
150 /// computed.
151 static bool AddReductionVar(PHINode *Phi, RecurKind Kind, Loop *TheLoop,
152 FastMathFlags FMF,
153 RecurrenceDescriptor &RedDes,
154 DemandedBits *DB = nullptr,
155 AssumptionCache *AC = nullptr,
156 DominatorTree *DT = nullptr);
157
158 /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor
159 /// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are
160 /// non-null, the minimal bit width needed to compute the reduction will be
161 /// computed.
162 static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
163 RecurrenceDescriptor &RedDes,
164 DemandedBits *DB = nullptr,
165 AssumptionCache *AC = nullptr,
166 DominatorTree *DT = nullptr);
167
168 /// Returns true if Phi is a first-order recurrence. A first-order recurrence
169 /// is a non-reduction recurrence relation in which the value of the
170 /// recurrence in the current loop iteration equals a value defined in the
171 /// previous iteration. \p SinkAfter includes pairs of instructions where the
172 /// first will be rescheduled to appear after the second if/when the loop is
173 /// vectorized. It may be augmented with additional pairs if needed in order
174 /// to handle Phi as a first-order recurrence.
175 static bool
176 isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
177 DenseMap<Instruction *, Instruction *> &SinkAfter,
178 DominatorTree *DT);
179
180 RecurKind getRecurrenceKind() const { return Kind; }
181
182 unsigned getOpcode() const { return getOpcode(getRecurrenceKind()); }
183
184 FastMathFlags getFastMathFlags() const { return FMF; }
185
186 TrackingVH<Value> getRecurrenceStartValue() const { return StartValue; }
187
188 Instruction *getLoopExitInstr() const { return LoopExitInstr; }
189
190 /// Returns true if the recurrence has floating-point math that requires
191 /// precise (ordered) operations.
192 bool hasExactFPMath() const { return ExactFPMathInst != nullptr; }
193
194 /// Returns 1st non-reassociative FP instruction in the PHI node's use-chain.
195 Instruction *getExactFPMathInst() const { return ExactFPMathInst; }
196
197 /// Returns true if the recurrence kind is an integer kind.
198 static bool isIntegerRecurrenceKind(RecurKind Kind);
199
200 /// Returns true if the recurrence kind is a floating point kind.
201 static bool isFloatingPointRecurrenceKind(RecurKind Kind);
202
203 /// Returns true if the recurrence kind is an arithmetic kind.
204 static bool isArithmeticRecurrenceKind(RecurKind Kind);
205
206 /// Returns true if the recurrence kind is an integer min/max kind.
207 static bool isIntMinMaxRecurrenceKind(RecurKind Kind) {
208 return Kind
3.1
'Kind' is equal to UMin
3.1
'Kind' is equal to UMin
== RecurKind::UMin || Kind == RecurKind::UMax ||
4
Returning the value 1, which participates in a condition later
209 Kind == RecurKind::SMin || Kind == RecurKind::SMax;
210 }
211
212 /// Returns true if the recurrence kind is a floating-point min/max kind.
213 static bool isFPMinMaxRecurrenceKind(RecurKind Kind) {
214 return Kind == RecurKind::FMin || Kind == RecurKind::FMax;
215 }
216
217 /// Returns true if the recurrence kind is any min/max kind.
218 static bool isMinMaxRecurrenceKind(RecurKind Kind) {
219 return isIntMinMaxRecurrenceKind(Kind) || isFPMinMaxRecurrenceKind(Kind);
220 }
221
222 /// Returns the type of the recurrence. This type can be narrower than the
223 /// actual type of the Phi if the recurrence has been type-promoted.
224 Type *getRecurrenceType() const { return RecurrenceType; }
225
226 /// Returns a reference to the instructions used for type-promoting the
227 /// recurrence.
228 const SmallPtrSet<Instruction *, 8> &getCastInsts() const { return CastInsts; }
229
230 /// Returns true if all source operands of the recurrence are SExtInsts.
231 bool isSigned() const { return IsSigned; }
232
233 /// Expose an ordered FP reduction to the instance users.
234 bool isOrdered() const { return IsOrdered; }
235
236 /// Attempts to find a chain of operations from Phi to LoopExitInst that can
237 /// be treated as a set of reductions instructions for in-loop reductions.
238 SmallVector<Instruction *, 4> getReductionOpChain(PHINode *Phi,
239 Loop *L) const;
240
241private:
242 // The starting value of the recurrence.
243 // It does not have to be zero!
244 TrackingVH<Value> StartValue;
245 // The instruction who's value is used outside the loop.
246 Instruction *LoopExitInstr = nullptr;
247 // The kind of the recurrence.
248 RecurKind Kind = RecurKind::None;
249 // The fast-math flags on the recurrent instructions. We propagate these
250 // fast-math flags into the vectorized FP instructions we generate.
251 FastMathFlags FMF;
252 // First instance of non-reassociative floating-point in the PHI's use-chain.
253 Instruction *ExactFPMathInst = nullptr;
254 // The type of the recurrence.
255 Type *RecurrenceType = nullptr;
256 // True if all source operands of the recurrence are SExtInsts.
257 bool IsSigned = false;
258 // True if this recurrence can be treated as an in-order reduction.
259 // Currently only a non-reassociative FAdd can be considered in-order,
260 // if it is also the only FAdd in the PHI's use chain.
261 bool IsOrdered = false;
262 // Instructions used for type-promoting the recurrence.
263 SmallPtrSet<Instruction *, 8> CastInsts;
264};
265
266/// A struct for saving information about induction variables.
267class InductionDescriptor {
268public:
269 /// This enum represents the kinds of inductions that we support.
270 enum InductionKind {
271 IK_NoInduction, ///< Not an induction variable.
272 IK_IntInduction, ///< Integer induction variable. Step = C.
273 IK_PtrInduction, ///< Pointer induction var. Step = C / sizeof(elem).
274 IK_FpInduction ///< Floating point induction variable.
275 };
276
277public:
278 /// Default constructor - creates an invalid induction.
279 InductionDescriptor() = default;
280
281 Value *getStartValue() const { return StartValue; }
282 InductionKind getKind() const { return IK; }
283 const SCEV *getStep() const { return Step; }
284 BinaryOperator *getInductionBinOp() const { return InductionBinOp; }
285 ConstantInt *getConstIntStepValue() const;
286
287 /// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an
288 /// induction, the induction descriptor \p D will contain the data describing
289 /// this induction. If by some other means the caller has a better SCEV
290 /// expression for \p Phi than the one returned by the ScalarEvolution
291 /// analysis, it can be passed through \p Expr. If the def-use chain
292 /// associated with the phi includes casts (that we know we can ignore
293 /// under proper runtime checks), they are passed through \p CastsToIgnore.
294 static bool
295 isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
296 InductionDescriptor &D, const SCEV *Expr = nullptr,
297 SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr);
298
299 /// Returns true if \p Phi is a floating point induction in the loop \p L.
300 /// If \p Phi is an induction, the induction descriptor \p D will contain
301 /// the data describing this induction.
302 static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
303 InductionDescriptor &D);
304
305 /// Returns true if \p Phi is a loop \p L induction, in the context associated
306 /// with the run-time predicate of PSE. If \p Assume is true, this can add
307 /// further SCEV predicates to \p PSE in order to prove that \p Phi is an
308 /// induction.
309 /// If \p Phi is an induction, \p D will contain the data describing this
310 /// induction.
311 static bool isInductionPHI(PHINode *Phi, const Loop *L,
312 PredicatedScalarEvolution &PSE,
313 InductionDescriptor &D, bool Assume = false);
314
315 /// Returns floating-point induction operator that does not allow
316 /// reassociation (transforming the induction requires an override of normal
317 /// floating-point rules).
318 Instruction *getExactFPMathInst() {
319 if (IK == IK_FpInduction && InductionBinOp &&
320 !InductionBinOp->hasAllowReassoc())
321 return InductionBinOp;
322 return nullptr;
323 }
324
325 /// Returns binary opcode of the induction operator.
326 Instruction::BinaryOps getInductionOpcode() const {
327 return InductionBinOp ? InductionBinOp->getOpcode()
328 : Instruction::BinaryOpsEnd;
329 }
330
331 /// Returns a reference to the type cast instructions in the induction
332 /// update chain, that are redundant when guarded with a runtime
333 /// SCEV overflow check.
334 const SmallVectorImpl<Instruction *> &getCastInsts() const {
335 return RedundantCasts;
336 }
337
338private:
339 /// Private constructor - used by \c isInductionPHI.
340 InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step,
341 BinaryOperator *InductionBinOp = nullptr,
342 SmallVectorImpl<Instruction *> *Casts = nullptr);
343
344 /// Start value.
345 TrackingVH<Value> StartValue;
346 /// Induction kind.
347 InductionKind IK = IK_NoInduction;
348 /// Step value.
349 const SCEV *Step = nullptr;
350 // Instruction that advances induction variable.
351 BinaryOperator *InductionBinOp = nullptr;
352 // Instructions used for type-casts of the induction variable,
353 // that are redundant when guarded with a runtime SCEV overflow check.
354 SmallVector<Instruction *, 2> RedundantCasts;
355};
356
357} // end namespace llvm
358
359#endif // LLVM_ANALYSIS_IVDESCRIPTORS_H