Bug Summary

File:llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
Warning:line 4924, column 22
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SLPVectorizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/build-llvm/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/build-llvm/lib/Transforms/Vectorize -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-09-28-092409-31635-1 -x c++ /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp

/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp

1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallBitVector.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/iterator.h"
32#include "llvm/ADT/iterator_range.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/Analysis/AssumptionCache.h"
35#include "llvm/Analysis/CodeMetrics.h"
36#include "llvm/Analysis/DemandedBits.h"
37#include "llvm/Analysis/GlobalsModRef.h"
38#include "llvm/Analysis/LoopAccessAnalysis.h"
39#include "llvm/Analysis/LoopInfo.h"
40#include "llvm/Analysis/MemoryLocation.h"
41#include "llvm/Analysis/OptimizationRemarkEmitter.h"
42#include "llvm/Analysis/ScalarEvolution.h"
43#include "llvm/Analysis/ScalarEvolutionExpressions.h"
44#include "llvm/Analysis/TargetLibraryInfo.h"
45#include "llvm/Analysis/TargetTransformInfo.h"
46#include "llvm/Analysis/ValueTracking.h"
47#include "llvm/Analysis/VectorUtils.h"
48#include "llvm/IR/Attributes.h"
49#include "llvm/IR/BasicBlock.h"
50#include "llvm/IR/Constant.h"
51#include "llvm/IR/Constants.h"
52#include "llvm/IR/DataLayout.h"
53#include "llvm/IR/DebugLoc.h"
54#include "llvm/IR/DerivedTypes.h"
55#include "llvm/IR/Dominators.h"
56#include "llvm/IR/Function.h"
57#include "llvm/IR/IRBuilder.h"
58#include "llvm/IR/InstrTypes.h"
59#include "llvm/IR/Instruction.h"
60#include "llvm/IR/Instructions.h"
61#include "llvm/IR/IntrinsicInst.h"
62#include "llvm/IR/Intrinsics.h"
63#include "llvm/IR/Module.h"
64#include "llvm/IR/NoFolder.h"
65#include "llvm/IR/Operator.h"
66#include "llvm/IR/PatternMatch.h"
67#include "llvm/IR/Type.h"
68#include "llvm/IR/Use.h"
69#include "llvm/IR/User.h"
70#include "llvm/IR/Value.h"
71#include "llvm/IR/ValueHandle.h"
72#include "llvm/IR/Verifier.h"
73#include "llvm/InitializePasses.h"
74#include "llvm/Pass.h"
75#include "llvm/Support/Casting.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Compiler.h"
78#include "llvm/Support/DOTGraphTraits.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GraphWriter.h"
82#include "llvm/Support/KnownBits.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/Transforms/Utils/InjectTLIMappings.h"
86#include "llvm/Transforms/Utils/LoopUtils.h"
87#include "llvm/Transforms/Vectorize.h"
88#include <algorithm>
89#include <cassert>
90#include <cstdint>
91#include <iterator>
92#include <memory>
93#include <set>
94#include <string>
95#include <tuple>
96#include <utility>
97#include <vector>
98
99using namespace llvm;
100using namespace llvm::PatternMatch;
101using namespace slpvectorizer;
102
103#define SV_NAME"slp-vectorizer" "slp-vectorizer"
104#define DEBUG_TYPE"SLP" "SLP"
105
106STATISTIC(NumVectorInstructions, "Number of vector instructions generated")static llvm::Statistic NumVectorInstructions = {"SLP", "NumVectorInstructions"
, "Number of vector instructions generated"}
;
107
108cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
109 cl::desc("Run the SLP vectorization passes"));
110
111static cl::opt<int>
112 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
113 cl::desc("Only vectorize if you gain more than this "
114 "number "));
115
116static cl::opt<bool>
117ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
118 cl::desc("Attempt to vectorize horizontal reductions"));
119
120static cl::opt<bool> ShouldStartVectorizeHorAtStore(
121 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
122 cl::desc(
123 "Attempt to vectorize horizontal reductions feeding into a store"));
124
125static cl::opt<int>
126MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
127 cl::desc("Attempt to vectorize for this register size in bits"));
128
129static cl::opt<int>
130MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
131 cl::desc("Maximum depth of the lookup for consecutive stores."));
132
133/// Limits the size of scheduling regions in a block.
134/// It avoid long compile times for _very_ large blocks where vector
135/// instructions are spread over a wide range.
136/// This limit is way higher than needed by real-world functions.
137static cl::opt<int>
138ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
139 cl::desc("Limit the size of the SLP scheduling region per block"));
140
141static cl::opt<int> MinVectorRegSizeOption(
142 "slp-min-reg-size", cl::init(128), cl::Hidden,
143 cl::desc("Attempt to vectorize for this register size in bits"));
144
145static cl::opt<unsigned> RecursionMaxDepth(
146 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
147 cl::desc("Limit the recursion depth when building a vectorizable tree"));
148
149static cl::opt<unsigned> MinTreeSize(
150 "slp-min-tree-size", cl::init(3), cl::Hidden,
151 cl::desc("Only vectorize small trees if they are fully vectorizable"));
152
153// The maximum depth that the look-ahead score heuristic will explore.
154// The higher this value, the higher the compilation time overhead.
155static cl::opt<int> LookAheadMaxDepth(
156 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
157 cl::desc("The maximum look-ahead depth for operand reordering scores"));
158
159// The Look-ahead heuristic goes through the users of the bundle to calculate
160// the users cost in getExternalUsesCost(). To avoid compilation time increase
161// we limit the number of users visited to this value.
162static cl::opt<unsigned> LookAheadUsersBudget(
163 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
164 cl::desc("The maximum number of users to visit while visiting the "
165 "predecessors. This prevents compilation time increase."));
166
167static cl::opt<bool>
168 ViewSLPTree("view-slp-tree", cl::Hidden,
169 cl::desc("Display the SLP trees with Graphviz"));
170
171// Limit the number of alias checks. The limit is chosen so that
172// it has no negative effect on the llvm benchmarks.
173static const unsigned AliasedCheckLimit = 10;
174
175// Another limit for the alias checks: The maximum distance between load/store
176// instructions where alias checks are done.
177// This limit is useful for very large basic blocks.
178static const unsigned MaxMemDepDistance = 160;
179
180/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
181/// regions to be handled.
182static const int MinScheduleRegionSize = 16;
183
184/// Predicate for the element types that the SLP vectorizer supports.
185///
186/// The most important thing to filter here are types which are invalid in LLVM
187/// vectors. We also filter target specific types which have absolutely no
188/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
189/// avoids spending time checking the cost model and realizing that they will
190/// be inevitably scalarized.
191static bool isValidElementType(Type *Ty) {
192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
193 !Ty->isPPC_FP128Ty();
194}
195
196/// \returns true if all of the instructions in \p VL are in the same block or
197/// false otherwise.
198static bool allSameBlock(ArrayRef<Value *> VL) {
199 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
200 if (!I0)
201 return false;
202 BasicBlock *BB = I0->getParent();
203 for (int I = 1, E = VL.size(); I < E; I++) {
204 auto *II = dyn_cast<Instruction>(VL[I]);
205 if (!II)
206 return false;
207
208 if (BB != II->getParent())
209 return false;
210 }
211 return true;
212}
213
214/// \returns True if all of the values in \p VL are constants (but not
215/// globals/constant expressions).
216static bool allConstant(ArrayRef<Value *> VL) {
217 // Constant expressions and globals can't be vectorized like normal integer/FP
218 // constants.
219 for (Value *i : VL)
220 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
221 return false;
222 return true;
223}
224
225/// \returns True if all of the values in \p VL are identical.
226static bool isSplat(ArrayRef<Value *> VL) {
227 for (unsigned i = 1, e = VL.size(); i < e; ++i)
228 if (VL[i] != VL[0])
229 return false;
230 return true;
231}
232
233/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
234static bool isCommutative(Instruction *I) {
235 if (auto *Cmp = dyn_cast<CmpInst>(I))
236 return Cmp->isCommutative();
237 if (auto *BO = dyn_cast<BinaryOperator>(I))
238 return BO->isCommutative();
239 // TODO: This should check for generic Instruction::isCommutative(), but
240 // we need to confirm that the caller code correctly handles Intrinsics
241 // for example (does not have 2 operands).
242 return false;
243}
244
245/// Checks if the vector of instructions can be represented as a shuffle, like:
246/// %x0 = extractelement <4 x i8> %x, i32 0
247/// %x3 = extractelement <4 x i8> %x, i32 3
248/// %y1 = extractelement <4 x i8> %y, i32 1
249/// %y2 = extractelement <4 x i8> %y, i32 2
250/// %x0x0 = mul i8 %x0, %x0
251/// %x3x3 = mul i8 %x3, %x3
252/// %y1y1 = mul i8 %y1, %y1
253/// %y2y2 = mul i8 %y2, %y2
254/// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
255/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
256/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
257/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
258/// ret <4 x i8> %ins4
259/// can be transformed into:
260/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
261/// i32 6>
262/// %2 = mul <4 x i8> %1, %1
263/// ret <4 x i8> %2
264/// We convert this initially to something like:
265/// %x0 = extractelement <4 x i8> %x, i32 0
266/// %x3 = extractelement <4 x i8> %x, i32 3
267/// %y1 = extractelement <4 x i8> %y, i32 1
268/// %y2 = extractelement <4 x i8> %y, i32 2
269/// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
270/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
271/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
272/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
273/// %5 = mul <4 x i8> %4, %4
274/// %6 = extractelement <4 x i8> %5, i32 0
275/// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
276/// %7 = extractelement <4 x i8> %5, i32 1
277/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
278/// %8 = extractelement <4 x i8> %5, i32 2
279/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
280/// %9 = extractelement <4 x i8> %5, i32 3
281/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
282/// ret <4 x i8> %ins4
283/// InstCombiner transforms this into a shuffle and vector mul
284/// TODO: Can we split off and reuse the shuffle mask detection from
285/// TargetTransformInfo::getInstructionThroughput?
286static Optional<TargetTransformInfo::ShuffleKind>
287isShuffle(ArrayRef<Value *> VL) {
288 auto *EI0 = cast<ExtractElementInst>(VL[0]);
289 unsigned Size =
290 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
291 Value *Vec1 = nullptr;
292 Value *Vec2 = nullptr;
293 enum ShuffleMode { Unknown, Select, Permute };
294 ShuffleMode CommonShuffleMode = Unknown;
295 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
296 auto *EI = cast<ExtractElementInst>(VL[I]);
297 auto *Vec = EI->getVectorOperand();
298 // All vector operands must have the same number of vector elements.
299 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
300 return None;
301 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
302 if (!Idx)
303 return None;
304 // Undefined behavior if Idx is negative or >= Size.
305 if (Idx->getValue().uge(Size))
306 continue;
307 unsigned IntIdx = Idx->getValue().getZExtValue();
308 // We can extractelement from undef vector.
309 if (isa<UndefValue>(Vec))
310 continue;
311 // For correct shuffling we have to have at most 2 different vector operands
312 // in all extractelement instructions.
313 if (!Vec1 || Vec1 == Vec)
314 Vec1 = Vec;
315 else if (!Vec2 || Vec2 == Vec)
316 Vec2 = Vec;
317 else
318 return None;
319 if (CommonShuffleMode == Permute)
320 continue;
321 // If the extract index is not the same as the operation number, it is a
322 // permutation.
323 if (IntIdx != I) {
324 CommonShuffleMode = Permute;
325 continue;
326 }
327 CommonShuffleMode = Select;
328 }
329 // If we're not crossing lanes in different vectors, consider it as blending.
330 if (CommonShuffleMode == Select && Vec2)
331 return TargetTransformInfo::SK_Select;
332 // If Vec2 was never used, we have a permutation of a single vector, otherwise
333 // we have permutation of 2 vectors.
334 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
335 : TargetTransformInfo::SK_PermuteSingleSrc;
336}
337
338namespace {
339
340/// Main data required for vectorization of instructions.
341struct InstructionsState {
342 /// The very first instruction in the list with the main opcode.
343 Value *OpValue = nullptr;
344
345 /// The main/alternate instruction.
346 Instruction *MainOp = nullptr;
347 Instruction *AltOp = nullptr;
348
349 /// The main/alternate opcodes for the list of instructions.
350 unsigned getOpcode() const {
351 return MainOp ? MainOp->getOpcode() : 0;
352 }
353
354 unsigned getAltOpcode() const {
355 return AltOp ? AltOp->getOpcode() : 0;
356 }
357
358 /// Some of the instructions in the list have alternate opcodes.
359 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
360
361 bool isOpcodeOrAlt(Instruction *I) const {
362 unsigned CheckedOpcode = I->getOpcode();
363 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
364 }
365
366 InstructionsState() = delete;
367 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
368 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
369};
370
371} // end anonymous namespace
372
373/// Chooses the correct key for scheduling data. If \p Op has the same (or
374/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
375/// OpValue.
376static Value *isOneOf(const InstructionsState &S, Value *Op) {
377 auto *I = dyn_cast<Instruction>(Op);
378 if (I && S.isOpcodeOrAlt(I))
379 return Op;
380 return S.OpValue;
381}
382
383/// \returns true if \p Opcode is allowed as part of of the main/alternate
384/// instruction for SLP vectorization.
385///
386/// Example of unsupported opcode is SDIV that can potentially cause UB if the
387/// "shuffled out" lane would result in division by zero.
388static bool isValidForAlternation(unsigned Opcode) {
389 if (Instruction::isIntDivRem(Opcode))
390 return false;
391
392 return true;
393}
394
395/// \returns analysis of the Instructions in \p VL described in
396/// InstructionsState, the Opcode that we suppose the whole list
397/// could be vectorized even if its structure is diverse.
398static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
399 unsigned BaseIndex = 0) {
400 // Make sure these are all Instructions.
401 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
402 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
403
404 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
405 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
406 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
407 unsigned AltOpcode = Opcode;
408 unsigned AltIndex = BaseIndex;
409
410 // Check for one alternate opcode from another BinaryOperator.
411 // TODO - generalize to support all operators (types, calls etc.).
412 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
413 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
414 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
415 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
416 continue;
417 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
418 isValidForAlternation(Opcode)) {
419 AltOpcode = InstOpcode;
420 AltIndex = Cnt;
421 continue;
422 }
423 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
424 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
425 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
426 if (Ty0 == Ty1) {
427 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
428 continue;
429 if (Opcode == AltOpcode) {
430 assert(isValidForAlternation(Opcode) &&((isValidForAlternation(Opcode) && isValidForAlternation
(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? static_cast<void> (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 432, __PRETTY_FUNCTION__))
431 isValidForAlternation(InstOpcode) &&((isValidForAlternation(Opcode) && isValidForAlternation
(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? static_cast<void> (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 432, __PRETTY_FUNCTION__))
432 "Cast isn't safe for alternation, logic needs to be updated!")((isValidForAlternation(Opcode) && isValidForAlternation
(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? static_cast<void> (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 432, __PRETTY_FUNCTION__))
;
433 AltOpcode = InstOpcode;
434 AltIndex = Cnt;
435 continue;
436 }
437 }
438 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
439 continue;
440 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
441 }
442
443 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
444 cast<Instruction>(VL[AltIndex]));
445}
446
447/// \returns true if all of the values in \p VL have the same type or false
448/// otherwise.
449static bool allSameType(ArrayRef<Value *> VL) {
450 Type *Ty = VL[0]->getType();
451 for (int i = 1, e = VL.size(); i < e; i++)
452 if (VL[i]->getType() != Ty)
453 return false;
454
455 return true;
456}
457
458/// \returns True if Extract{Value,Element} instruction extracts element Idx.
459static Optional<unsigned> getExtractIndex(Instruction *E) {
460 unsigned Opcode = E->getOpcode();
461 assert((Opcode == Instruction::ExtractElement ||(((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? static_cast<void> (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 463, __PRETTY_FUNCTION__))
462 Opcode == Instruction::ExtractValue) &&(((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? static_cast<void> (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 463, __PRETTY_FUNCTION__))
463 "Expected extractelement or extractvalue instruction.")(((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? static_cast<void> (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 463, __PRETTY_FUNCTION__))
;
464 if (Opcode == Instruction::ExtractElement) {
465 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
466 if (!CI)
467 return None;
468 return CI->getZExtValue();
469 }
470 ExtractValueInst *EI = cast<ExtractValueInst>(E);
471 if (EI->getNumIndices() != 1)
472 return None;
473 return *EI->idx_begin();
474}
475
476/// \returns True if in-tree use also needs extract. This refers to
477/// possible scalar operand in vectorized instruction.
478static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
479 TargetLibraryInfo *TLI) {
480 unsigned Opcode = UserInst->getOpcode();
481 switch (Opcode) {
482 case Instruction::Load: {
483 LoadInst *LI = cast<LoadInst>(UserInst);
484 return (LI->getPointerOperand() == Scalar);
485 }
486 case Instruction::Store: {
487 StoreInst *SI = cast<StoreInst>(UserInst);
488 return (SI->getPointerOperand() == Scalar);
489 }
490 case Instruction::Call: {
491 CallInst *CI = cast<CallInst>(UserInst);
492 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
493 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
494 if (hasVectorInstrinsicScalarOpd(ID, i))
495 return (CI->getArgOperand(i) == Scalar);
496 }
497 LLVM_FALLTHROUGH[[gnu::fallthrough]];
498 }
499 default:
500 return false;
501 }
502}
503
504/// \returns the AA location that is being access by the instruction.
505static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
506 if (StoreInst *SI = dyn_cast<StoreInst>(I))
507 return MemoryLocation::get(SI);
508 if (LoadInst *LI = dyn_cast<LoadInst>(I))
509 return MemoryLocation::get(LI);
510 return MemoryLocation();
511}
512
513/// \returns True if the instruction is not a volatile or atomic load/store.
514static bool isSimple(Instruction *I) {
515 if (LoadInst *LI = dyn_cast<LoadInst>(I))
516 return LI->isSimple();
517 if (StoreInst *SI = dyn_cast<StoreInst>(I))
518 return SI->isSimple();
519 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
520 return !MI->isVolatile();
521 return true;
522}
523
524namespace llvm {
525
526static void inversePermutation(ArrayRef<unsigned> Indices,
527 SmallVectorImpl<int> &Mask) {
528 Mask.clear();
529 const unsigned E = Indices.size();
530 Mask.resize(E, E + 1);
531 for (unsigned I = 0; I < E; ++I)
532 Mask[Indices[I]] = I;
533}
534
535namespace slpvectorizer {
536
537/// Bottom Up SLP Vectorizer.
538class BoUpSLP {
539 struct TreeEntry;
540 struct ScheduleData;
541
542public:
543 using ValueList = SmallVector<Value *, 8>;
544 using InstrList = SmallVector<Instruction *, 16>;
545 using ValueSet = SmallPtrSet<Value *, 16>;
546 using StoreList = SmallVector<StoreInst *, 8>;
547 using ExtraValueToDebugLocsMap =
548 MapVector<Value *, SmallVector<Instruction *, 2>>;
549 using OrdersType = SmallVector<unsigned, 4>;
550
551 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
552 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
553 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
554 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
555 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
556 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
557 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
558 // Use the vector register size specified by the target unless overridden
559 // by a command-line option.
560 // TODO: It would be better to limit the vectorization factor based on
561 // data type rather than just register size. For example, x86 AVX has
562 // 256-bit registers, but it does not support integer operations
563 // at that width (that requires AVX2).
564 if (MaxVectorRegSizeOption.getNumOccurrences())
565 MaxVecRegSize = MaxVectorRegSizeOption;
566 else
567 MaxVecRegSize = TTI->getRegisterBitWidth(true);
568
569 if (MinVectorRegSizeOption.getNumOccurrences())
570 MinVecRegSize = MinVectorRegSizeOption;
571 else
572 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
573 }
574
575 /// Vectorize the tree that starts with the elements in \p VL.
576 /// Returns the vectorized root.
577 Value *vectorizeTree();
578
579 /// Vectorize the tree but with the list of externally used values \p
580 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
581 /// generated extractvalue instructions.
582 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
583
584 /// \returns the cost incurred by unwanted spills and fills, caused by
585 /// holding live values over call sites.
586 int getSpillCost() const;
587
588 /// \returns the vectorization cost of the subtree that starts at \p VL.
589 /// A negative number means that this is profitable.
590 int getTreeCost();
591
592 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
593 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
594 void buildTree(ArrayRef<Value *> Roots,
595 ArrayRef<Value *> UserIgnoreLst = None);
596
597 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
598 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
599 /// into account (and updating it, if required) list of externally used
600 /// values stored in \p ExternallyUsedValues.
601 void buildTree(ArrayRef<Value *> Roots,
602 ExtraValueToDebugLocsMap &ExternallyUsedValues,
603 ArrayRef<Value *> UserIgnoreLst = None);
604
605 /// Clear the internal data structures that are created by 'buildTree'.
606 void deleteTree() {
607 VectorizableTree.clear();
608 ScalarToTreeEntry.clear();
609 MustGather.clear();
610 ExternalUses.clear();
611 NumOpsWantToKeepOrder.clear();
612 NumOpsWantToKeepOriginalOrder = 0;
613 for (auto &Iter : BlocksSchedules) {
614 BlockScheduling *BS = Iter.second.get();
615 BS->clear();
616 }
617 MinBWs.clear();
618 }
619
620 unsigned getTreeSize() const { return VectorizableTree.size(); }
621
622 /// Perform LICM and CSE on the newly generated gather sequences.
623 void optimizeGatherSequence();
624
625 /// \returns The best order of instructions for vectorization.
626 Optional<ArrayRef<unsigned>> bestOrder() const {
627 assert(llvm::all_of(((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 634, __PRETTY_FUNCTION__))
628 NumOpsWantToKeepOrder,((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 634, __PRETTY_FUNCTION__))
629 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 634, __PRETTY_FUNCTION__))
630 return D.getFirst().size() ==((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 634, __PRETTY_FUNCTION__))
631 VectorizableTree[0]->Scalars.size();((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 634, __PRETTY_FUNCTION__))
632 }) &&((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 634, __PRETTY_FUNCTION__))
633 "All orders must have the same size as number of instructions in "((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 634, __PRETTY_FUNCTION__))
634 "tree node.")((llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(
NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst
().size() == VectorizableTree[0]->Scalars.size(); }) &&
"All orders must have the same size as number of instructions in "
"tree node.") ? static_cast<void> (0) : __assert_fail (
"llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && \"All orders must have the same size as number of instructions in \" \"tree node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 634, __PRETTY_FUNCTION__))
;
635 auto I = std::max_element(
636 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
637 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
638 const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
639 return D1.second < D2.second;
640 });
641 if (I == NumOpsWantToKeepOrder.end() ||
642 I->getSecond() <= NumOpsWantToKeepOriginalOrder)
643 return None;
644
645 return makeArrayRef(I->getFirst());
646 }
647
648 /// Builds the correct order for root instructions.
649 /// If some leaves have the same instructions to be vectorized, we may
650 /// incorrectly evaluate the best order for the root node (it is built for the
651 /// vector of instructions without repeated instructions and, thus, has less
652 /// elements than the root node). This function builds the correct order for
653 /// the root node.
654 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
655 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
656 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
657 /// be reordered, the best order will be \<1, 0\>. We need to extend this
658 /// order for the root node. For the root node this order should look like
659 /// \<3, 0, 1, 2\>. This function extends the order for the reused
660 /// instructions.
661 void findRootOrder(OrdersType &Order) {
662 // If the leaf has the same number of instructions to vectorize as the root
663 // - order must be set already.
664 unsigned RootSize = VectorizableTree[0]->Scalars.size();
665 if (Order.size() == RootSize)
666 return;
667 SmallVector<unsigned, 4> RealOrder(Order.size());
668 std::swap(Order, RealOrder);
669 SmallVector<int, 4> Mask;
670 inversePermutation(RealOrder, Mask);
671 Order.assign(Mask.begin(), Mask.end());
672 // The leaf has less number of instructions - need to find the true order of
673 // the root.
674 // Scan the nodes starting from the leaf back to the root.
675 const TreeEntry *PNode = VectorizableTree.back().get();
676 SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
677 SmallPtrSet<const TreeEntry *, 4> Visited;
678 while (!Nodes.empty() && Order.size() != RootSize) {
679 const TreeEntry *PNode = Nodes.pop_back_val();
680 if (!Visited.insert(PNode).second)
681 continue;
682 const TreeEntry &Node = *PNode;
683 for (const EdgeInfo &EI : Node.UserTreeIndices)
684 if (EI.UserTE)
685 Nodes.push_back(EI.UserTE);
686 if (Node.ReuseShuffleIndices.empty())
687 continue;
688 // Build the order for the parent node.
689 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
690 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
691 // The algorithm of the order extension is:
692 // 1. Calculate the number of the same instructions for the order.
693 // 2. Calculate the index of the new order: total number of instructions
694 // with order less than the order of the current instruction + reuse
695 // number of the current instruction.
696 // 3. The new order is just the index of the instruction in the original
697 // vector of the instructions.
698 for (unsigned I : Node.ReuseShuffleIndices)
699 ++OrderCounter[Order[I]];
700 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
701 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
702 unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
703 unsigned OrderIdx = Order[ReusedIdx];
704 unsigned NewIdx = 0;
705 for (unsigned J = 0; J < OrderIdx; ++J)
706 NewIdx += OrderCounter[J];
707 NewIdx += CurrentCounter[OrderIdx];
708 ++CurrentCounter[OrderIdx];
709 assert(NewOrder[NewIdx] == RootSize &&((NewOrder[NewIdx] == RootSize && "The order index should not be written already."
) ? static_cast<void> (0) : __assert_fail ("NewOrder[NewIdx] == RootSize && \"The order index should not be written already.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 710, __PRETTY_FUNCTION__))
710 "The order index should not be written already.")((NewOrder[NewIdx] == RootSize && "The order index should not be written already."
) ? static_cast<void> (0) : __assert_fail ("NewOrder[NewIdx] == RootSize && \"The order index should not be written already.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 710, __PRETTY_FUNCTION__))
;
711 NewOrder[NewIdx] = I;
712 }
713 std::swap(Order, NewOrder);
714 }
715 assert(Order.size() == RootSize &&((Order.size() == RootSize && "Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? static_cast<
void> (0) : __assert_fail ("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 717, __PRETTY_FUNCTION__))
716 "Root node is expected or the size of the order must be the same as "((Order.size() == RootSize && "Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? static_cast<
void> (0) : __assert_fail ("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 717, __PRETTY_FUNCTION__))
717 "the number of elements in the root node.")((Order.size() == RootSize && "Root node is expected or the size of the order must be the same as "
"the number of elements in the root node.") ? static_cast<
void> (0) : __assert_fail ("Order.size() == RootSize && \"Root node is expected or the size of the order must be the same as \" \"the number of elements in the root node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 717, __PRETTY_FUNCTION__))
;
718 assert(llvm::all_of(Order,((llvm::all_of(Order, [RootSize](unsigned Val) { return Val !=
RootSize; }) && "All indices must be initialized") ?
static_cast<void> (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 720, __PRETTY_FUNCTION__))
719 [RootSize](unsigned Val) { return Val != RootSize; }) &&((llvm::all_of(Order, [RootSize](unsigned Val) { return Val !=
RootSize; }) && "All indices must be initialized") ?
static_cast<void> (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 720, __PRETTY_FUNCTION__))
720 "All indices must be initialized")((llvm::all_of(Order, [RootSize](unsigned Val) { return Val !=
RootSize; }) && "All indices must be initialized") ?
static_cast<void> (0) : __assert_fail ("llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && \"All indices must be initialized\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 720, __PRETTY_FUNCTION__))
;
721 }
722
723 /// \return The vector element size in bits to use when vectorizing the
724 /// expression tree ending at \p V. If V is a store, the size is the width of
725 /// the stored value. Otherwise, the size is the width of the largest loaded
726 /// value reaching V. This method is used by the vectorizer to calculate
727 /// vectorization factors.
728 unsigned getVectorElementSize(Value *V);
729
730 /// Compute the minimum type sizes required to represent the entries in a
731 /// vectorizable tree.
732 void computeMinimumValueSizes();
733
734 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
735 unsigned getMaxVecRegSize() const {
736 return MaxVecRegSize;
737 }
738
739 // \returns minimum vector register size as set by cl::opt.
740 unsigned getMinVecRegSize() const {
741 return MinVecRegSize;
742 }
743
744 /// Check if homogeneous aggregate is isomorphic to some VectorType.
745 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
746 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
747 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
748 ///
749 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
750 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
751
752 /// \returns True if the VectorizableTree is both tiny and not fully
753 /// vectorizable. We do not vectorize such trees.
754 bool isTreeTinyAndNotFullyVectorizable() const;
755
756 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
757 /// can be load combined in the backend. Load combining may not be allowed in
758 /// the IR optimizer, so we do not want to alter the pattern. For example,
759 /// partially transforming a scalar bswap() pattern into vector code is
760 /// effectively impossible for the backend to undo.
761 /// TODO: If load combining is allowed in the IR optimizer, this analysis
762 /// may not be necessary.
763 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const;
764
765 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
766 /// can be load combined in the backend. Load combining may not be allowed in
767 /// the IR optimizer, so we do not want to alter the pattern. For example,
768 /// partially transforming a scalar bswap() pattern into vector code is
769 /// effectively impossible for the backend to undo.
770 /// TODO: If load combining is allowed in the IR optimizer, this analysis
771 /// may not be necessary.
772 bool isLoadCombineCandidate() const;
773
774 OptimizationRemarkEmitter *getORE() { return ORE; }
775
776 /// This structure holds any data we need about the edges being traversed
777 /// during buildTree_rec(). We keep track of:
778 /// (i) the user TreeEntry index, and
779 /// (ii) the index of the edge.
780 struct EdgeInfo {
781 EdgeInfo() = default;
782 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
783 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
784 /// The user TreeEntry.
785 TreeEntry *UserTE = nullptr;
786 /// The operand index of the use.
787 unsigned EdgeIdx = UINT_MAX(2147483647 *2U +1U);
788#ifndef NDEBUG
789 friend inline raw_ostream &operator<<(raw_ostream &OS,
790 const BoUpSLP::EdgeInfo &EI) {
791 EI.dump(OS);
792 return OS;
793 }
794 /// Debug print.
795 void dump(raw_ostream &OS) const {
796 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
797 << " EdgeIdx:" << EdgeIdx << "}";
798 }
799 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { dump(dbgs()); }
800#endif
801 };
802
803 /// A helper data structure to hold the operands of a vector of instructions.
804 /// This supports a fixed vector length for all operand vectors.
805 class VLOperands {
806 /// For each operand we need (i) the value, and (ii) the opcode that it
807 /// would be attached to if the expression was in a left-linearized form.
808 /// This is required to avoid illegal operand reordering.
809 /// For example:
810 /// \verbatim
811 /// 0 Op1
812 /// |/
813 /// Op1 Op2 Linearized + Op2
814 /// \ / ----------> |/
815 /// - -
816 ///
817 /// Op1 - Op2 (0 + Op1) - Op2
818 /// \endverbatim
819 ///
820 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
821 ///
822 /// Another way to think of this is to track all the operations across the
823 /// path from the operand all the way to the root of the tree and to
824 /// calculate the operation that corresponds to this path. For example, the
825 /// path from Op2 to the root crosses the RHS of the '-', therefore the
826 /// corresponding operation is a '-' (which matches the one in the
827 /// linearized tree, as shown above).
828 ///
829 /// For lack of a better term, we refer to this operation as Accumulated
830 /// Path Operation (APO).
831 struct OperandData {
832 OperandData() = default;
833 OperandData(Value *V, bool APO, bool IsUsed)
834 : V(V), APO(APO), IsUsed(IsUsed) {}
835 /// The operand value.
836 Value *V = nullptr;
837 /// TreeEntries only allow a single opcode, or an alternate sequence of
838 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
839 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
840 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
841 /// (e.g., Add/Mul)
842 bool APO = false;
843 /// Helper data for the reordering function.
844 bool IsUsed = false;
845 };
846
847 /// During operand reordering, we are trying to select the operand at lane
848 /// that matches best with the operand at the neighboring lane. Our
849 /// selection is based on the type of value we are looking for. For example,
850 /// if the neighboring lane has a load, we need to look for a load that is
851 /// accessing a consecutive address. These strategies are summarized in the
852 /// 'ReorderingMode' enumerator.
853 enum class ReorderingMode {
854 Load, ///< Matching loads to consecutive memory addresses
855 Opcode, ///< Matching instructions based on opcode (same or alternate)
856 Constant, ///< Matching constants
857 Splat, ///< Matching the same instruction multiple times (broadcast)
858 Failed, ///< We failed to create a vectorizable group
859 };
860
861 using OperandDataVec = SmallVector<OperandData, 2>;
862
863 /// A vector of operand vectors.
864 SmallVector<OperandDataVec, 4> OpsVec;
865
866 const DataLayout &DL;
867 ScalarEvolution &SE;
868 const BoUpSLP &R;
869
870 /// \returns the operand data at \p OpIdx and \p Lane.
871 OperandData &getData(unsigned OpIdx, unsigned Lane) {
872 return OpsVec[OpIdx][Lane];
873 }
874
875 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
876 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
877 return OpsVec[OpIdx][Lane];
878 }
879
880 /// Clears the used flag for all entries.
881 void clearUsed() {
882 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
883 OpIdx != NumOperands; ++OpIdx)
884 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
885 ++Lane)
886 OpsVec[OpIdx][Lane].IsUsed = false;
887 }
888
889 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
890 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
891 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
892 }
893
894 // The hard-coded scores listed here are not very important. When computing
895 // the scores of matching one sub-tree with another, we are basically
896 // counting the number of values that are matching. So even if all scores
897 // are set to 1, we would still get a decent matching result.
898 // However, sometimes we have to break ties. For example we may have to
899 // choose between matching loads vs matching opcodes. This is what these
900 // scores are helping us with: they provide the order of preference.
901
902 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
903 static const int ScoreConsecutiveLoads = 3;
904 /// ExtractElementInst from same vector and consecutive indexes.
905 static const int ScoreConsecutiveExtracts = 3;
906 /// Constants.
907 static const int ScoreConstants = 2;
908 /// Instructions with the same opcode.
909 static const int ScoreSameOpcode = 2;
910 /// Instructions with alt opcodes (e.g, add + sub).
911 static const int ScoreAltOpcodes = 1;
912 /// Identical instructions (a.k.a. splat or broadcast).
913 static const int ScoreSplat = 1;
914 /// Matching with an undef is preferable to failing.
915 static const int ScoreUndef = 1;
916 /// Score for failing to find a decent match.
917 static const int ScoreFail = 0;
918 /// User exteranl to the vectorized code.
919 static const int ExternalUseCost = 1;
920 /// The user is internal but in a different lane.
921 static const int UserInDiffLaneCost = ExternalUseCost;
922
923 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
924 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
925 ScalarEvolution &SE) {
926 auto *LI1 = dyn_cast<LoadInst>(V1);
927 auto *LI2 = dyn_cast<LoadInst>(V2);
928 if (LI1 && LI2)
929 return isConsecutiveAccess(LI1, LI2, DL, SE)
930 ? VLOperands::ScoreConsecutiveLoads
931 : VLOperands::ScoreFail;
932
933 auto *C1 = dyn_cast<Constant>(V1);
934 auto *C2 = dyn_cast<Constant>(V2);
935 if (C1 && C2)
936 return VLOperands::ScoreConstants;
937
938 // Extracts from consecutive indexes of the same vector better score as
939 // the extracts could be optimized away.
940 Value *EV;
941 ConstantInt *Ex1Idx, *Ex2Idx;
942 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
943 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
944 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
945 return VLOperands::ScoreConsecutiveExtracts;
946
947 auto *I1 = dyn_cast<Instruction>(V1);
948 auto *I2 = dyn_cast<Instruction>(V2);
949 if (I1 && I2) {
950 if (I1 == I2)
951 return VLOperands::ScoreSplat;
952 InstructionsState S = getSameOpcode({I1, I2});
953 // Note: Only consider instructions with <= 2 operands to avoid
954 // complexity explosion.
955 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
956 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
957 : VLOperands::ScoreSameOpcode;
958 }
959
960 if (isa<UndefValue>(V2))
961 return VLOperands::ScoreUndef;
962
963 return VLOperands::ScoreFail;
964 }
965
966 /// Holds the values and their lane that are taking part in the look-ahead
967 /// score calculation. This is used in the external uses cost calculation.
968 SmallDenseMap<Value *, int> InLookAheadValues;
969
970 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
971 /// either external to the vectorized code, or require shuffling.
972 int getExternalUsesCost(const std::pair<Value *, int> &LHS,
973 const std::pair<Value *, int> &RHS) {
974 int Cost = 0;
975 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
976 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
977 Value *V = Values[Idx].first;
978 // Calculate the absolute lane, using the minimum relative lane of LHS
979 // and RHS as base and Idx as the offset.
980 int Ln = std::min(LHS.second, RHS.second) + Idx;
981 assert(Ln >= 0 && "Bad lane calculation")((Ln >= 0 && "Bad lane calculation") ? static_cast
<void> (0) : __assert_fail ("Ln >= 0 && \"Bad lane calculation\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 981, __PRETTY_FUNCTION__))
;
982 unsigned UsersBudget = LookAheadUsersBudget;
983 for (User *U : V->users()) {
984 if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
985 // The user is in the VectorizableTree. Check if we need to insert.
986 auto It = llvm::find(UserTE->Scalars, U);
987 assert(It != UserTE->Scalars.end() && "U is in UserTE")((It != UserTE->Scalars.end() && "U is in UserTE")
? static_cast<void> (0) : __assert_fail ("It != UserTE->Scalars.end() && \"U is in UserTE\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 987, __PRETTY_FUNCTION__))
;
988 int UserLn = std::distance(UserTE->Scalars.begin(), It);
989 assert(UserLn >= 0 && "Bad lane")((UserLn >= 0 && "Bad lane") ? static_cast<void
> (0) : __assert_fail ("UserLn >= 0 && \"Bad lane\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 989, __PRETTY_FUNCTION__))
;
990 if (UserLn != Ln)
991 Cost += UserInDiffLaneCost;
992 } else {
993 // Check if the user is in the look-ahead code.
994 auto It2 = InLookAheadValues.find(U);
995 if (It2 != InLookAheadValues.end()) {
996 // The user is in the look-ahead code. Check the lane.
997 if (It2->second != Ln)
998 Cost += UserInDiffLaneCost;
999 } else {
1000 // The user is neither in SLP tree nor in the look-ahead code.
1001 Cost += ExternalUseCost;
1002 }
1003 }
1004 // Limit the number of visited uses to cap compilation time.
1005 if (--UsersBudget == 0)
1006 break;
1007 }
1008 }
1009 return Cost;
1010 }
1011
1012 /// Go through the operands of \p LHS and \p RHS recursively until \p
1013 /// MaxLevel, and return the cummulative score. For example:
1014 /// \verbatim
1015 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
1016 /// \ / \ / \ / \ /
1017 /// + + + +
1018 /// G1 G2 G3 G4
1019 /// \endverbatim
1020 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1021 /// each level recursively, accumulating the score. It starts from matching
1022 /// the additions at level 0, then moves on to the loads (level 1). The
1023 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1024 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1025 /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1026 /// Please note that the order of the operands does not matter, as we
1027 /// evaluate the score of all profitable combinations of operands. In
1028 /// other words the score of G1 and G4 is the same as G1 and G2. This
1029 /// heuristic is based on ideas described in:
1030 /// Look-ahead SLP: Auto-vectorization in the presence of commutative
1031 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1032 /// Luís F. W. Góes
1033 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1034 const std::pair<Value *, int> &RHS, int CurrLevel,
1035 int MaxLevel) {
1036
1037 Value *V1 = LHS.first;
1038 Value *V2 = RHS.first;
1039 // Get the shallow score of V1 and V2.
1040 int ShallowScoreAtThisLevel =
1041 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1042 getExternalUsesCost(LHS, RHS));
1043 int Lane1 = LHS.second;
1044 int Lane2 = RHS.second;
1045
1046 // If reached MaxLevel,
1047 // or if V1 and V2 are not instructions,
1048 // or if they are SPLAT,
1049 // or if they are not consecutive, early return the current cost.
1050 auto *I1 = dyn_cast<Instruction>(V1);
1051 auto *I2 = dyn_cast<Instruction>(V2);
1052 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1053 ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1054 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1055 return ShallowScoreAtThisLevel;
1056 assert(I1 && I2 && "Should have early exited.")((I1 && I2 && "Should have early exited.") ? static_cast
<void> (0) : __assert_fail ("I1 && I2 && \"Should have early exited.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1056, __PRETTY_FUNCTION__))
;
1057
1058 // Keep track of in-tree values for determining the external-use cost.
1059 InLookAheadValues[V1] = Lane1;
1060 InLookAheadValues[V2] = Lane2;
1061
1062 // Contains the I2 operand indexes that got matched with I1 operands.
1063 SmallSet<unsigned, 4> Op2Used;
1064
1065 // Recursion towards the operands of I1 and I2. We are trying all possbile
1066 // operand pairs, and keeping track of the best score.
1067 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1068 OpIdx1 != NumOperands1; ++OpIdx1) {
1069 // Try to pair op1I with the best operand of I2.
1070 int MaxTmpScore = 0;
1071 unsigned MaxOpIdx2 = 0;
1072 bool FoundBest = false;
1073 // If I2 is commutative try all combinations.
1074 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1075 unsigned ToIdx = isCommutative(I2)
1076 ? I2->getNumOperands()
1077 : std::min(I2->getNumOperands(), OpIdx1 + 1);
1078 assert(FromIdx <= ToIdx && "Bad index")((FromIdx <= ToIdx && "Bad index") ? static_cast<
void> (0) : __assert_fail ("FromIdx <= ToIdx && \"Bad index\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1078, __PRETTY_FUNCTION__))
;
1079 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1080 // Skip operands already paired with OpIdx1.
1081 if (Op2Used.count(OpIdx2))
1082 continue;
1083 // Recursively calculate the cost at each level
1084 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1085 {I2->getOperand(OpIdx2), Lane2},
1086 CurrLevel + 1, MaxLevel);
1087 // Look for the best score.
1088 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1089 MaxTmpScore = TmpScore;
1090 MaxOpIdx2 = OpIdx2;
1091 FoundBest = true;
1092 }
1093 }
1094 if (FoundBest) {
1095 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1096 Op2Used.insert(MaxOpIdx2);
1097 ShallowScoreAtThisLevel += MaxTmpScore;
1098 }
1099 }
1100 return ShallowScoreAtThisLevel;
1101 }
1102
1103 /// \Returns the look-ahead score, which tells us how much the sub-trees
1104 /// rooted at \p LHS and \p RHS match, the more they match the higher the
1105 /// score. This helps break ties in an informed way when we cannot decide on
1106 /// the order of the operands by just considering the immediate
1107 /// predecessors.
1108 int getLookAheadScore(const std::pair<Value *, int> &LHS,
1109 const std::pair<Value *, int> &RHS) {
1110 InLookAheadValues.clear();
1111 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1112 }
1113
1114 // Search all operands in Ops[*][Lane] for the one that matches best
1115 // Ops[OpIdx][LastLane] and return its opreand index.
1116 // If no good match can be found, return None.
1117 Optional<unsigned>
1118 getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1119 ArrayRef<ReorderingMode> ReorderingModes) {
1120 unsigned NumOperands = getNumOperands();
1121
1122 // The operand of the previous lane at OpIdx.
1123 Value *OpLastLane = getData(OpIdx, LastLane).V;
1124
1125 // Our strategy mode for OpIdx.
1126 ReorderingMode RMode = ReorderingModes[OpIdx];
1127
1128 // The linearized opcode of the operand at OpIdx, Lane.
1129 bool OpIdxAPO = getData(OpIdx, Lane).APO;
1130
1131 // The best operand index and its score.
1132 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1133 // are using the score to differentiate between the two.
1134 struct BestOpData {
1135 Optional<unsigned> Idx = None;
1136 unsigned Score = 0;
1137 } BestOp;
1138
1139 // Iterate through all unused operands and look for the best.
1140 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1141 // Get the operand at Idx and Lane.
1142 OperandData &OpData = getData(Idx, Lane);
1143 Value *Op = OpData.V;
1144 bool OpAPO = OpData.APO;
1145
1146 // Skip already selected operands.
1147 if (OpData.IsUsed)
1148 continue;
1149
1150 // Skip if we are trying to move the operand to a position with a
1151 // different opcode in the linearized tree form. This would break the
1152 // semantics.
1153 if (OpAPO != OpIdxAPO)
1154 continue;
1155
1156 // Look for an operand that matches the current mode.
1157 switch (RMode) {
1158 case ReorderingMode::Load:
1159 case ReorderingMode::Constant:
1160 case ReorderingMode::Opcode: {
1161 bool LeftToRight = Lane > LastLane;
1162 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1163 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1164 unsigned Score =
1165 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1166 if (Score > BestOp.Score) {
1167 BestOp.Idx = Idx;
1168 BestOp.Score = Score;
1169 }
1170 break;
1171 }
1172 case ReorderingMode::Splat:
1173 if (Op == OpLastLane)
1174 BestOp.Idx = Idx;
1175 break;
1176 case ReorderingMode::Failed:
1177 return None;
1178 }
1179 }
1180
1181 if (BestOp.Idx) {
1182 getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1183 return BestOp.Idx;
1184 }
1185 // If we could not find a good match return None.
1186 return None;
1187 }
1188
1189 /// Helper for reorderOperandVecs. \Returns the lane that we should start
1190 /// reordering from. This is the one which has the least number of operands
1191 /// that can freely move about.
1192 unsigned getBestLaneToStartReordering() const {
1193 unsigned BestLane = 0;
1194 unsigned Min = UINT_MAX(2147483647 *2U +1U);
1195 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1196 ++Lane) {
1197 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1198 if (NumFreeOps < Min) {
1199 Min = NumFreeOps;
1200 BestLane = Lane;
1201 }
1202 }
1203 return BestLane;
1204 }
1205
1206 /// \Returns the maximum number of operands that are allowed to be reordered
1207 /// for \p Lane. This is used as a heuristic for selecting the first lane to
1208 /// start operand reordering.
1209 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1210 unsigned CntTrue = 0;
1211 unsigned NumOperands = getNumOperands();
1212 // Operands with the same APO can be reordered. We therefore need to count
1213 // how many of them we have for each APO, like this: Cnt[APO] = x.
1214 // Since we only have two APOs, namely true and false, we can avoid using
1215 // a map. Instead we can simply count the number of operands that
1216 // correspond to one of them (in this case the 'true' APO), and calculate
1217 // the other by subtracting it from the total number of operands.
1218 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1219 if (getData(OpIdx, Lane).APO)
1220 ++CntTrue;
1221 unsigned CntFalse = NumOperands - CntTrue;
1222 return std::max(CntTrue, CntFalse);
1223 }
1224
1225 /// Go through the instructions in VL and append their operands.
1226 void appendOperandsOfVL(ArrayRef<Value *> VL) {
1227 assert(!VL.empty() && "Bad VL")((!VL.empty() && "Bad VL") ? static_cast<void> (
0) : __assert_fail ("!VL.empty() && \"Bad VL\"", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1227, __PRETTY_FUNCTION__))
;
1228 assert((empty() || VL.size() == getNumLanes()) &&(((empty() || VL.size() == getNumLanes()) && "Expected same number of lanes"
) ? static_cast<void> (0) : __assert_fail ("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1229, __PRETTY_FUNCTION__))
1229 "Expected same number of lanes")(((empty() || VL.size() == getNumLanes()) && "Expected same number of lanes"
) ? static_cast<void> (0) : __assert_fail ("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1229, __PRETTY_FUNCTION__))
;
1230 assert(isa<Instruction>(VL[0]) && "Expected instruction")((isa<Instruction>(VL[0]) && "Expected instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(VL[0]) && \"Expected instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1230, __PRETTY_FUNCTION__))
;
1231 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1232 OpsVec.resize(NumOperands);
1233 unsigned NumLanes = VL.size();
1234 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1235 OpsVec[OpIdx].resize(NumLanes);
1236 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1237 assert(isa<Instruction>(VL[Lane]) && "Expected instruction")((isa<Instruction>(VL[Lane]) && "Expected instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(VL[Lane]) && \"Expected instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1237, __PRETTY_FUNCTION__))
;
1238 // Our tree has just 3 nodes: the root and two operands.
1239 // It is therefore trivial to get the APO. We only need to check the
1240 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1241 // RHS operand. The LHS operand of both add and sub is never attached
1242 // to an inversese operation in the linearized form, therefore its APO
1243 // is false. The RHS is true only if VL[Lane] is an inverse operation.
1244
1245 // Since operand reordering is performed on groups of commutative
1246 // operations or alternating sequences (e.g., +, -), we can safely
1247 // tell the inverse operations by checking commutativity.
1248 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1249 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1250 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1251 APO, false};
1252 }
1253 }
1254 }
1255
1256 /// \returns the number of operands.
1257 unsigned getNumOperands() const { return OpsVec.size(); }
1258
1259 /// \returns the number of lanes.
1260 unsigned getNumLanes() const { return OpsVec[0].size(); }
1261
1262 /// \returns the operand value at \p OpIdx and \p Lane.
1263 Value *getValue(unsigned OpIdx, unsigned Lane) const {
1264 return getData(OpIdx, Lane).V;
1265 }
1266
1267 /// \returns true if the data structure is empty.
1268 bool empty() const { return OpsVec.empty(); }
1269
1270 /// Clears the data.
1271 void clear() { OpsVec.clear(); }
1272
1273 /// \Returns true if there are enough operands identical to \p Op to fill
1274 /// the whole vector.
1275 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1276 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1277 bool OpAPO = getData(OpIdx, Lane).APO;
1278 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1279 if (Ln == Lane)
1280 continue;
1281 // This is set to true if we found a candidate for broadcast at Lane.
1282 bool FoundCandidate = false;
1283 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1284 OperandData &Data = getData(OpI, Ln);
1285 if (Data.APO != OpAPO || Data.IsUsed)
1286 continue;
1287 if (Data.V == Op) {
1288 FoundCandidate = true;
1289 Data.IsUsed = true;
1290 break;
1291 }
1292 }
1293 if (!FoundCandidate)
1294 return false;
1295 }
1296 return true;
1297 }
1298
1299 public:
1300 /// Initialize with all the operands of the instruction vector \p RootVL.
1301 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1302 ScalarEvolution &SE, const BoUpSLP &R)
1303 : DL(DL), SE(SE), R(R) {
1304 // Append all the operands of RootVL.
1305 appendOperandsOfVL(RootVL);
1306 }
1307
1308 /// \Returns a value vector with the operands across all lanes for the
1309 /// opearnd at \p OpIdx.
1310 ValueList getVL(unsigned OpIdx) const {
1311 ValueList OpVL(OpsVec[OpIdx].size());
1312 assert(OpsVec[OpIdx].size() == getNumLanes() &&((OpsVec[OpIdx].size() == getNumLanes() && "Expected same num of lanes across all operands"
) ? static_cast<void> (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1313, __PRETTY_FUNCTION__))
1313 "Expected same num of lanes across all operands")((OpsVec[OpIdx].size() == getNumLanes() && "Expected same num of lanes across all operands"
) ? static_cast<void> (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1313, __PRETTY_FUNCTION__))
;
1314 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1315 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1316 return OpVL;
1317 }
1318
1319 // Performs operand reordering for 2 or more operands.
1320 // The original operands are in OrigOps[OpIdx][Lane].
1321 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1322 void reorder() {
1323 unsigned NumOperands = getNumOperands();
1324 unsigned NumLanes = getNumLanes();
1325 // Each operand has its own mode. We are using this mode to help us select
1326 // the instructions for each lane, so that they match best with the ones
1327 // we have selected so far.
1328 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1329
1330 // This is a greedy single-pass algorithm. We are going over each lane
1331 // once and deciding on the best order right away with no back-tracking.
1332 // However, in order to increase its effectiveness, we start with the lane
1333 // that has operands that can move the least. For example, given the
1334 // following lanes:
1335 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
1336 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
1337 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
1338 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
1339 // we will start at Lane 1, since the operands of the subtraction cannot
1340 // be reordered. Then we will visit the rest of the lanes in a circular
1341 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1342
1343 // Find the first lane that we will start our search from.
1344 unsigned FirstLane = getBestLaneToStartReordering();
1345
1346 // Initialize the modes.
1347 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1348 Value *OpLane0 = getValue(OpIdx, FirstLane);
1349 // Keep track if we have instructions with all the same opcode on one
1350 // side.
1351 if (isa<LoadInst>(OpLane0))
1352 ReorderingModes[OpIdx] = ReorderingMode::Load;
1353 else if (isa<Instruction>(OpLane0)) {
1354 // Check if OpLane0 should be broadcast.
1355 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1356 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1357 else
1358 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1359 }
1360 else if (isa<Constant>(OpLane0))
1361 ReorderingModes[OpIdx] = ReorderingMode::Constant;
1362 else if (isa<Argument>(OpLane0))
1363 // Our best hope is a Splat. It may save some cost in some cases.
1364 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1365 else
1366 // NOTE: This should be unreachable.
1367 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1368 }
1369
1370 // If the initial strategy fails for any of the operand indexes, then we
1371 // perform reordering again in a second pass. This helps avoid assigning
1372 // high priority to the failed strategy, and should improve reordering for
1373 // the non-failed operand indexes.
1374 for (int Pass = 0; Pass != 2; ++Pass) {
1375 // Skip the second pass if the first pass did not fail.
1376 bool StrategyFailed = false;
1377 // Mark all operand data as free to use.
1378 clearUsed();
1379 // We keep the original operand order for the FirstLane, so reorder the
1380 // rest of the lanes. We are visiting the nodes in a circular fashion,
1381 // using FirstLane as the center point and increasing the radius
1382 // distance.
1383 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1384 // Visit the lane on the right and then the lane on the left.
1385 for (int Direction : {+1, -1}) {
1386 int Lane = FirstLane + Direction * Distance;
1387 if (Lane < 0 || Lane >= (int)NumLanes)
1388 continue;
1389 int LastLane = Lane - Direction;
1390 assert(LastLane >= 0 && LastLane < (int)NumLanes &&((LastLane >= 0 && LastLane < (int)NumLanes &&
"Out of bounds") ? static_cast<void> (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1391, __PRETTY_FUNCTION__))
1391 "Out of bounds")((LastLane >= 0 && LastLane < (int)NumLanes &&
"Out of bounds") ? static_cast<void> (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1391, __PRETTY_FUNCTION__))
;
1392 // Look for a good match for each operand.
1393 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1394 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1395 Optional<unsigned> BestIdx =
1396 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1397 // By not selecting a value, we allow the operands that follow to
1398 // select a better matching value. We will get a non-null value in
1399 // the next run of getBestOperand().
1400 if (BestIdx) {
1401 // Swap the current operand with the one returned by
1402 // getBestOperand().
1403 swap(OpIdx, BestIdx.getValue(), Lane);
1404 } else {
1405 // We failed to find a best operand, set mode to 'Failed'.
1406 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1407 // Enable the second pass.
1408 StrategyFailed = true;
1409 }
1410 }
1411 }
1412 }
1413 // Skip second pass if the strategy did not fail.
1414 if (!StrategyFailed)
1415 break;
1416 }
1417 }
1418
1419#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1420 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static StringRef getModeStr(ReorderingMode RMode) {
1421 switch (RMode) {
1422 case ReorderingMode::Load:
1423 return "Load";
1424 case ReorderingMode::Opcode:
1425 return "Opcode";
1426 case ReorderingMode::Constant:
1427 return "Constant";
1428 case ReorderingMode::Splat:
1429 return "Splat";
1430 case ReorderingMode::Failed:
1431 return "Failed";
1432 }
1433 llvm_unreachable("Unimplemented Reordering Type")::llvm::llvm_unreachable_internal("Unimplemented Reordering Type"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1433)
;
1434 }
1435
1436 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static raw_ostream &printMode(ReorderingMode RMode,
1437 raw_ostream &OS) {
1438 return OS << getModeStr(RMode);
1439 }
1440
1441 /// Debug print.
1442 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static void dumpMode(ReorderingMode RMode) {
1443 printMode(RMode, dbgs());
1444 }
1445
1446 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1447 return printMode(RMode, OS);
1448 }
1449
1450 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) raw_ostream &print(raw_ostream &OS) const {
1451 const unsigned Indent = 2;
1452 unsigned Cnt = 0;
1453 for (const OperandDataVec &OpDataVec : OpsVec) {
1454 OS << "Operand " << Cnt++ << "\n";
1455 for (const OperandData &OpData : OpDataVec) {
1456 OS.indent(Indent) << "{";
1457 if (Value *V = OpData.V)
1458 OS << *V;
1459 else
1460 OS << "null";
1461 OS << ", APO:" << OpData.APO << "}\n";
1462 }
1463 OS << "\n";
1464 }
1465 return OS;
1466 }
1467
1468 /// Debug print.
1469 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { print(dbgs()); }
1470#endif
1471 };
1472
1473 /// Checks if the instruction is marked for deletion.
1474 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1475
1476 /// Marks values operands for later deletion by replacing them with Undefs.
1477 void eraseInstructions(ArrayRef<Value *> AV);
1478
1479 ~BoUpSLP();
1480
1481private:
1482 /// Checks if all users of \p I are the part of the vectorization tree.
1483 bool areAllUsersVectorized(Instruction *I) const;
1484
1485 /// \returns the cost of the vectorizable entry.
1486 int getEntryCost(TreeEntry *E);
1487
1488 /// This is the recursive part of buildTree.
1489 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1490 const EdgeInfo &EI);
1491
1492 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1493 /// be vectorized to use the original vector (or aggregate "bitcast" to a
1494 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1495 /// returns false, setting \p CurrentOrder to either an empty vector or a
1496 /// non-identity permutation that allows to reuse extract instructions.
1497 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1498 SmallVectorImpl<unsigned> &CurrentOrder) const;
1499
1500 /// Vectorize a single entry in the tree.
1501 Value *vectorizeTree(TreeEntry *E);
1502
1503 /// Vectorize a single entry in the tree, starting in \p VL.
1504 Value *vectorizeTree(ArrayRef<Value *> VL);
1505
1506 /// \returns the scalarization cost for this type. Scalarization in this
1507 /// context means the creation of vectors from a group of scalars.
1508 int getGatherCost(FixedVectorType *Ty,
1509 const DenseSet<unsigned> &ShuffledIndices) const;
1510
1511 /// \returns the scalarization cost for this list of values. Assuming that
1512 /// this subtree gets vectorized, we may need to extract the values from the
1513 /// roots. This method calculates the cost of extracting the values.
1514 int getGatherCost(ArrayRef<Value *> VL) const;
1515
1516 /// Set the Builder insert point to one after the last instruction in
1517 /// the bundle
1518 void setInsertPointAfterBundle(TreeEntry *E);
1519
1520 /// \returns a vector from a collection of scalars in \p VL.
1521 Value *gather(ArrayRef<Value *> VL);
1522
1523 /// \returns whether the VectorizableTree is fully vectorizable and will
1524 /// be beneficial even the tree height is tiny.
1525 bool isFullyVectorizableTinyTree() const;
1526
1527 /// Reorder commutative or alt operands to get better probability of
1528 /// generating vectorized code.
1529 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1530 SmallVectorImpl<Value *> &Left,
1531 SmallVectorImpl<Value *> &Right,
1532 const DataLayout &DL,
1533 ScalarEvolution &SE,
1534 const BoUpSLP &R);
1535 struct TreeEntry {
1536 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1537 TreeEntry(VecTreeTy &Container) : Container(Container) {}
1538
1539 /// \returns true if the scalars in VL are equal to this entry.
1540 bool isSame(ArrayRef<Value *> VL) const {
1541 if (VL.size() == Scalars.size())
1542 return std::equal(VL.begin(), VL.end(), Scalars.begin());
1543 return VL.size() == ReuseShuffleIndices.size() &&
1544 std::equal(
1545 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1546 [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1547 }
1548
1549 /// A vector of scalars.
1550 ValueList Scalars;
1551
1552 /// The Scalars are vectorized into this value. It is initialized to Null.
1553 Value *VectorizedValue = nullptr;
1554
1555 /// Do we need to gather this sequence ?
1556 enum EntryState { Vectorize, NeedToGather };
1557 EntryState State;
1558
1559 /// Does this sequence require some shuffling?
1560 SmallVector<int, 4> ReuseShuffleIndices;
1561
1562 /// Does this entry require reordering?
1563 SmallVector<unsigned, 4> ReorderIndices;
1564
1565 /// Points back to the VectorizableTree.
1566 ///
1567 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
1568 /// to be a pointer and needs to be able to initialize the child iterator.
1569 /// Thus we need a reference back to the container to translate the indices
1570 /// to entries.
1571 VecTreeTy &Container;
1572
1573 /// The TreeEntry index containing the user of this entry. We can actually
1574 /// have multiple users so the data structure is not truly a tree.
1575 SmallVector<EdgeInfo, 1> UserTreeIndices;
1576
1577 /// The index of this treeEntry in VectorizableTree.
1578 int Idx = -1;
1579
1580 private:
1581 /// The operands of each instruction in each lane Operands[op_index][lane].
1582 /// Note: This helps avoid the replication of the code that performs the
1583 /// reordering of operands during buildTree_rec() and vectorizeTree().
1584 SmallVector<ValueList, 2> Operands;
1585
1586 /// The main/alternate instruction.
1587 Instruction *MainOp = nullptr;
1588 Instruction *AltOp = nullptr;
1589
1590 public:
1591 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1592 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1593 if (Operands.size() < OpIdx + 1)
1594 Operands.resize(OpIdx + 1);
1595 assert(Operands[OpIdx].size() == 0 && "Already resized?")((Operands[OpIdx].size() == 0 && "Already resized?") ?
static_cast<void> (0) : __assert_fail ("Operands[OpIdx].size() == 0 && \"Already resized?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1595, __PRETTY_FUNCTION__))
;
1596 Operands[OpIdx].resize(Scalars.size());
1597 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1598 Operands[OpIdx][Lane] = OpVL[Lane];
1599 }
1600
1601 /// Set the operands of this bundle in their original order.
1602 void setOperandsInOrder() {
1603 assert(Operands.empty() && "Already initialized?")((Operands.empty() && "Already initialized?") ? static_cast
<void> (0) : __assert_fail ("Operands.empty() && \"Already initialized?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1603, __PRETTY_FUNCTION__))
;
1604 auto *I0 = cast<Instruction>(Scalars[0]);
1605 Operands.resize(I0->getNumOperands());
1606 unsigned NumLanes = Scalars.size();
1607 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1608 OpIdx != NumOperands; ++OpIdx) {
1609 Operands[OpIdx].resize(NumLanes);
1610 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1611 auto *I = cast<Instruction>(Scalars[Lane]);
1612 assert(I->getNumOperands() == NumOperands &&((I->getNumOperands() == NumOperands && "Expected same number of operands"
) ? static_cast<void> (0) : __assert_fail ("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1613, __PRETTY_FUNCTION__))
1613 "Expected same number of operands")((I->getNumOperands() == NumOperands && "Expected same number of operands"
) ? static_cast<void> (0) : __assert_fail ("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1613, __PRETTY_FUNCTION__))
;
1614 Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1615 }
1616 }
1617 }
1618
1619 /// \returns the \p OpIdx operand of this TreeEntry.
1620 ValueList &getOperand(unsigned OpIdx) {
1621 assert(OpIdx < Operands.size() && "Off bounds")((OpIdx < Operands.size() && "Off bounds") ? static_cast
<void> (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1621, __PRETTY_FUNCTION__))
;
1622 return Operands[OpIdx];
1623 }
1624
1625 /// \returns the number of operands.
1626 unsigned getNumOperands() const { return Operands.size(); }
1627
1628 /// \return the single \p OpIdx operand.
1629 Value *getSingleOperand(unsigned OpIdx) const {
1630 assert(OpIdx < Operands.size() && "Off bounds")((OpIdx < Operands.size() && "Off bounds") ? static_cast
<void> (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1630, __PRETTY_FUNCTION__))
;
1631 assert(!Operands[OpIdx].empty() && "No operand available")((!Operands[OpIdx].empty() && "No operand available")
? static_cast<void> (0) : __assert_fail ("!Operands[OpIdx].empty() && \"No operand available\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1631, __PRETTY_FUNCTION__))
;
1632 return Operands[OpIdx][0];
1633 }
1634
1635 /// Some of the instructions in the list have alternate opcodes.
1636 bool isAltShuffle() const {
1637 return getOpcode() != getAltOpcode();
1638 }
1639
1640 bool isOpcodeOrAlt(Instruction *I) const {
1641 unsigned CheckedOpcode = I->getOpcode();
1642 return (getOpcode() == CheckedOpcode ||
1643 getAltOpcode() == CheckedOpcode);
1644 }
1645
1646 /// Chooses the correct key for scheduling data. If \p Op has the same (or
1647 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1648 /// \p OpValue.
1649 Value *isOneOf(Value *Op) const {
1650 auto *I = dyn_cast<Instruction>(Op);
1651 if (I && isOpcodeOrAlt(I))
1652 return Op;
1653 return MainOp;
1654 }
1655
1656 void setOperations(const InstructionsState &S) {
1657 MainOp = S.MainOp;
1658 AltOp = S.AltOp;
1659 }
1660
1661 Instruction *getMainOp() const {
1662 return MainOp;
1663 }
1664
1665 Instruction *getAltOp() const {
1666 return AltOp;
1667 }
1668
1669 /// The main/alternate opcodes for the list of instructions.
1670 unsigned getOpcode() const {
1671 return MainOp ? MainOp->getOpcode() : 0;
1672 }
1673
1674 unsigned getAltOpcode() const {
1675 return AltOp ? AltOp->getOpcode() : 0;
1676 }
1677
1678 /// Update operations state of this entry if reorder occurred.
1679 bool updateStateIfReorder() {
1680 if (ReorderIndices.empty())
1681 return false;
1682 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1683 setOperations(S);
1684 return true;
1685 }
1686
1687#ifndef NDEBUG
1688 /// Debug printer.
1689 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const {
1690 dbgs() << Idx << ".\n";
1691 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1692 dbgs() << "Operand " << OpI << ":\n";
1693 for (const Value *V : Operands[OpI])
1694 dbgs().indent(2) << *V << "\n";
1695 }
1696 dbgs() << "Scalars: \n";
1697 for (Value *V : Scalars)
1698 dbgs().indent(2) << *V << "\n";
1699 dbgs() << "State: ";
1700 switch (State) {
1701 case Vectorize:
1702 dbgs() << "Vectorize\n";
1703 break;
1704 case NeedToGather:
1705 dbgs() << "NeedToGather\n";
1706 break;
1707 }
1708 dbgs() << "MainOp: ";
1709 if (MainOp)
1710 dbgs() << *MainOp << "\n";
1711 else
1712 dbgs() << "NULL\n";
1713 dbgs() << "AltOp: ";
1714 if (AltOp)
1715 dbgs() << *AltOp << "\n";
1716 else
1717 dbgs() << "NULL\n";
1718 dbgs() << "VectorizedValue: ";
1719 if (VectorizedValue)
1720 dbgs() << *VectorizedValue << "\n";
1721 else
1722 dbgs() << "NULL\n";
1723 dbgs() << "ReuseShuffleIndices: ";
1724 if (ReuseShuffleIndices.empty())
1725 dbgs() << "Emtpy";
1726 else
1727 for (unsigned ReuseIdx : ReuseShuffleIndices)
1728 dbgs() << ReuseIdx << ", ";
1729 dbgs() << "\n";
1730 dbgs() << "ReorderIndices: ";
1731 for (unsigned ReorderIdx : ReorderIndices)
1732 dbgs() << ReorderIdx << ", ";
1733 dbgs() << "\n";
1734 dbgs() << "UserTreeIndices: ";
1735 for (const auto &EInfo : UserTreeIndices)
1736 dbgs() << EInfo << ", ";
1737 dbgs() << "\n";
1738 }
1739#endif
1740 };
1741
1742 /// Create a new VectorizableTree entry.
1743 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1744 const InstructionsState &S,
1745 const EdgeInfo &UserTreeIdx,
1746 ArrayRef<unsigned> ReuseShuffleIndices = None,
1747 ArrayRef<unsigned> ReorderIndices = None) {
1748 bool Vectorized = (bool)Bundle;
1749 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1750 TreeEntry *Last = VectorizableTree.back().get();
1751 Last->Idx = VectorizableTree.size() - 1;
1752 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1753 Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1754 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1755 ReuseShuffleIndices.end());
1756 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1757 Last->setOperations(S);
1758 if (Vectorized) {
1759 for (Value *V : VL) {
1760 assert(!getTreeEntry(V) && "Scalar already in tree!")((!getTreeEntry(V) && "Scalar already in tree!") ? static_cast
<void> (0) : __assert_fail ("!getTreeEntry(V) && \"Scalar already in tree!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1760, __PRETTY_FUNCTION__))
;
1761 ScalarToTreeEntry[V] = Last;
1762 }
1763 // Update the scheduler bundle to point to this TreeEntry.
1764 unsigned Lane = 0;
1765 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1766 BundleMember = BundleMember->NextInBundle) {
1767 BundleMember->TE = Last;
1768 BundleMember->Lane = Lane;
1769 ++Lane;
1770 }
1771 assert((!Bundle.getValue() || Lane == VL.size()) &&(((!Bundle.getValue() || Lane == VL.size()) && "Bundle and VL out of sync"
) ? static_cast<void> (0) : __assert_fail ("(!Bundle.getValue() || Lane == VL.size()) && \"Bundle and VL out of sync\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1772, __PRETTY_FUNCTION__))
1772 "Bundle and VL out of sync")(((!Bundle.getValue() || Lane == VL.size()) && "Bundle and VL out of sync"
) ? static_cast<void> (0) : __assert_fail ("(!Bundle.getValue() || Lane == VL.size()) && \"Bundle and VL out of sync\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1772, __PRETTY_FUNCTION__))
;
1773 } else {
1774 MustGather.insert(VL.begin(), VL.end());
1775 }
1776
1777 if (UserTreeIdx.UserTE)
1778 Last->UserTreeIndices.push_back(UserTreeIdx);
1779
1780 return Last;
1781 }
1782
1783 /// -- Vectorization State --
1784 /// Holds all of the tree entries.
1785 TreeEntry::VecTreeTy VectorizableTree;
1786
1787#ifndef NDEBUG
1788 /// Debug printer.
1789 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dumpVectorizableTree() const {
1790 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1791 VectorizableTree[Id]->dump();
1792 dbgs() << "\n";
1793 }
1794 }
1795#endif
1796
1797 TreeEntry *getTreeEntry(Value *V) {
1798 auto I = ScalarToTreeEntry.find(V);
1799 if (I != ScalarToTreeEntry.end())
1800 return I->second;
1801 return nullptr;
1802 }
1803
1804 const TreeEntry *getTreeEntry(Value *V) const {
1805 auto I = ScalarToTreeEntry.find(V);
1806 if (I != ScalarToTreeEntry.end())
1807 return I->second;
1808 return nullptr;
1809 }
1810
1811 /// Maps a specific scalar to its tree entry.
1812 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1813
1814 /// Maps a value to the proposed vectorizable size.
1815 SmallDenseMap<Value *, unsigned> InstrElementSize;
1816
1817 /// A list of scalars that we found that we need to keep as scalars.
1818 ValueSet MustGather;
1819
1820 /// This POD struct describes one external user in the vectorized tree.
1821 struct ExternalUser {
1822 ExternalUser(Value *S, llvm::User *U, int L)
1823 : Scalar(S), User(U), Lane(L) {}
1824
1825 // Which scalar in our function.
1826 Value *Scalar;
1827
1828 // Which user that uses the scalar.
1829 llvm::User *User;
1830
1831 // Which lane does the scalar belong to.
1832 int Lane;
1833 };
1834 using UserList = SmallVector<ExternalUser, 16>;
1835
1836 /// Checks if two instructions may access the same memory.
1837 ///
1838 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1839 /// is invariant in the calling loop.
1840 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1841 Instruction *Inst2) {
1842 // First check if the result is already in the cache.
1843 AliasCacheKey key = std::make_pair(Inst1, Inst2);
1844 Optional<bool> &result = AliasCache[key];
1845 if (result.hasValue()) {
1846 return result.getValue();
1847 }
1848 MemoryLocation Loc2 = getLocation(Inst2, AA);
1849 bool aliased = true;
1850 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1851 // Do the alias check.
1852 aliased = AA->alias(Loc1, Loc2);
1853 }
1854 // Store the result in the cache.
1855 result = aliased;
1856 return aliased;
1857 }
1858
1859 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1860
1861 /// Cache for alias results.
1862 /// TODO: consider moving this to the AliasAnalysis itself.
1863 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1864
1865 /// Removes an instruction from its block and eventually deletes it.
1866 /// It's like Instruction::eraseFromParent() except that the actual deletion
1867 /// is delayed until BoUpSLP is destructed.
1868 /// This is required to ensure that there are no incorrect collisions in the
1869 /// AliasCache, which can happen if a new instruction is allocated at the
1870 /// same address as a previously deleted instruction.
1871 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1872 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1873 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1874 }
1875
1876 /// Temporary store for deleted instructions. Instructions will be deleted
1877 /// eventually when the BoUpSLP is destructed.
1878 DenseMap<Instruction *, bool> DeletedInstructions;
1879
1880 /// A list of values that need to extracted out of the tree.
1881 /// This list holds pairs of (Internal Scalar : External User). External User
1882 /// can be nullptr, it means that this Internal Scalar will be used later,
1883 /// after vectorization.
1884 UserList ExternalUses;
1885
1886 /// Values used only by @llvm.assume calls.
1887 SmallPtrSet<const Value *, 32> EphValues;
1888
1889 /// Holds all of the instructions that we gathered.
1890 SetVector<Instruction *> GatherSeq;
1891
1892 /// A list of blocks that we are going to CSE.
1893 SetVector<BasicBlock *> CSEBlocks;
1894
1895 /// Contains all scheduling relevant data for an instruction.
1896 /// A ScheduleData either represents a single instruction or a member of an
1897 /// instruction bundle (= a group of instructions which is combined into a
1898 /// vector instruction).
1899 struct ScheduleData {
1900 // The initial value for the dependency counters. It means that the
1901 // dependencies are not calculated yet.
1902 enum { InvalidDeps = -1 };
1903
1904 ScheduleData() = default;
1905
1906 void init(int BlockSchedulingRegionID, Value *OpVal) {
1907 FirstInBundle = this;
1908 NextInBundle = nullptr;
1909 NextLoadStore = nullptr;
1910 IsScheduled = false;
1911 SchedulingRegionID = BlockSchedulingRegionID;
1912 UnscheduledDepsInBundle = UnscheduledDeps;
1913 clearDependencies();
1914 OpValue = OpVal;
1915 TE = nullptr;
1916 Lane = -1;
1917 }
1918
1919 /// Returns true if the dependency information has been calculated.
1920 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1921
1922 /// Returns true for single instructions and for bundle representatives
1923 /// (= the head of a bundle).
1924 bool isSchedulingEntity() const { return FirstInBundle == this; }
1925
1926 /// Returns true if it represents an instruction bundle and not only a
1927 /// single instruction.
1928 bool isPartOfBundle() const {
1929 return NextInBundle != nullptr || FirstInBundle != this;
1930 }
1931
1932 /// Returns true if it is ready for scheduling, i.e. it has no more
1933 /// unscheduled depending instructions/bundles.
1934 bool isReady() const {
1935 assert(isSchedulingEntity() &&((isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? static_cast<void> (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1936, __PRETTY_FUNCTION__))
1936 "can't consider non-scheduling entity for ready list")((isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? static_cast<void> (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1936, __PRETTY_FUNCTION__))
;
1937 return UnscheduledDepsInBundle == 0 && !IsScheduled;
1938 }
1939
1940 /// Modifies the number of unscheduled dependencies, also updating it for
1941 /// the whole bundle.
1942 int incrementUnscheduledDeps(int Incr) {
1943 UnscheduledDeps += Incr;
1944 return FirstInBundle->UnscheduledDepsInBundle += Incr;
1945 }
1946
1947 /// Sets the number of unscheduled dependencies to the number of
1948 /// dependencies.
1949 void resetUnscheduledDeps() {
1950 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
1951 }
1952
1953 /// Clears all dependency information.
1954 void clearDependencies() {
1955 Dependencies = InvalidDeps;
1956 resetUnscheduledDeps();
1957 MemoryDependencies.clear();
1958 }
1959
1960 void dump(raw_ostream &os) const {
1961 if (!isSchedulingEntity()) {
1962 os << "/ " << *Inst;
1963 } else if (NextInBundle) {
1964 os << '[' << *Inst;
1965 ScheduleData *SD = NextInBundle;
1966 while (SD) {
1967 os << ';' << *SD->Inst;
1968 SD = SD->NextInBundle;
1969 }
1970 os << ']';
1971 } else {
1972 os << *Inst;
1973 }
1974 }
1975
1976 Instruction *Inst = nullptr;
1977
1978 /// Points to the head in an instruction bundle (and always to this for
1979 /// single instructions).
1980 ScheduleData *FirstInBundle = nullptr;
1981
1982 /// Single linked list of all instructions in a bundle. Null if it is a
1983 /// single instruction.
1984 ScheduleData *NextInBundle = nullptr;
1985
1986 /// Single linked list of all memory instructions (e.g. load, store, call)
1987 /// in the block - until the end of the scheduling region.
1988 ScheduleData *NextLoadStore = nullptr;
1989
1990 /// The dependent memory instructions.
1991 /// This list is derived on demand in calculateDependencies().
1992 SmallVector<ScheduleData *, 4> MemoryDependencies;
1993
1994 /// This ScheduleData is in the current scheduling region if this matches
1995 /// the current SchedulingRegionID of BlockScheduling.
1996 int SchedulingRegionID = 0;
1997
1998 /// Used for getting a "good" final ordering of instructions.
1999 int SchedulingPriority = 0;
2000
2001 /// The number of dependencies. Constitutes of the number of users of the
2002 /// instruction plus the number of dependent memory instructions (if any).
2003 /// This value is calculated on demand.
2004 /// If InvalidDeps, the number of dependencies is not calculated yet.
2005 int Dependencies = InvalidDeps;
2006
2007 /// The number of dependencies minus the number of dependencies of scheduled
2008 /// instructions. As soon as this is zero, the instruction/bundle gets ready
2009 /// for scheduling.
2010 /// Note that this is negative as long as Dependencies is not calculated.
2011 int UnscheduledDeps = InvalidDeps;
2012
2013 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2014 /// single instructions.
2015 int UnscheduledDepsInBundle = InvalidDeps;
2016
2017 /// True if this instruction is scheduled (or considered as scheduled in the
2018 /// dry-run).
2019 bool IsScheduled = false;
2020
2021 /// Opcode of the current instruction in the schedule data.
2022 Value *OpValue = nullptr;
2023
2024 /// The TreeEntry that this instruction corresponds to.
2025 TreeEntry *TE = nullptr;
2026
2027 /// The lane of this node in the TreeEntry.
2028 int Lane = -1;
2029 };
2030
2031#ifndef NDEBUG
2032 friend inline raw_ostream &operator<<(raw_ostream &os,
2033 const BoUpSLP::ScheduleData &SD) {
2034 SD.dump(os);
2035 return os;
2036 }
2037#endif
2038
2039 friend struct GraphTraits<BoUpSLP *>;
2040 friend struct DOTGraphTraits<BoUpSLP *>;
2041
2042 /// Contains all scheduling data for a basic block.
2043 struct BlockScheduling {
2044 BlockScheduling(BasicBlock *BB)
2045 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2046
2047 void clear() {
2048 ReadyInsts.clear();
2049 ScheduleStart = nullptr;
2050 ScheduleEnd = nullptr;
2051 FirstLoadStoreInRegion = nullptr;
2052 LastLoadStoreInRegion = nullptr;
2053
2054 // Reduce the maximum schedule region size by the size of the
2055 // previous scheduling run.
2056 ScheduleRegionSizeLimit -= ScheduleRegionSize;
2057 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2058 ScheduleRegionSizeLimit = MinScheduleRegionSize;
2059 ScheduleRegionSize = 0;
2060
2061 // Make a new scheduling region, i.e. all existing ScheduleData is not
2062 // in the new region yet.
2063 ++SchedulingRegionID;
2064 }
2065
2066 ScheduleData *getScheduleData(Value *V) {
2067 ScheduleData *SD = ScheduleDataMap[V];
2068 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2069 return SD;
2070 return nullptr;
2071 }
2072
2073 ScheduleData *getScheduleData(Value *V, Value *Key) {
2074 if (V == Key)
2075 return getScheduleData(V);
2076 auto I = ExtraScheduleDataMap.find(V);
2077 if (I != ExtraScheduleDataMap.end()) {
2078 ScheduleData *SD = I->second[Key];
2079 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2080 return SD;
2081 }
2082 return nullptr;
2083 }
2084
2085 bool isInSchedulingRegion(ScheduleData *SD) const {
2086 return SD->SchedulingRegionID == SchedulingRegionID;
2087 }
2088
2089 /// Marks an instruction as scheduled and puts all dependent ready
2090 /// instructions into the ready-list.
2091 template <typename ReadyListType>
2092 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2093 SD->IsScheduled = true;
2094 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule " << *SD <<
"\n"; } } while (false)
;
2095
2096 ScheduleData *BundleMember = SD;
2097 while (BundleMember) {
2098 if (BundleMember->Inst != BundleMember->OpValue) {
2099 BundleMember = BundleMember->NextInBundle;
2100 continue;
2101 }
2102 // Handle the def-use chain dependencies.
2103
2104 // Decrement the unscheduled counter and insert to ready list if ready.
2105 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2106 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2107 if (OpDef && OpDef->hasValidDependencies() &&
2108 OpDef->incrementUnscheduledDeps(-1) == 0) {
2109 // There are no more unscheduled dependencies after
2110 // decrementing, so we can put the dependent instruction
2111 // into the ready list.
2112 ScheduleData *DepBundle = OpDef->FirstInBundle;
2113 assert(!DepBundle->IsScheduled &&((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2114, __PRETTY_FUNCTION__))
2114 "already scheduled bundle gets ready")((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2114, __PRETTY_FUNCTION__))
;
2115 ReadyList.insert(DepBundle);
2116 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
2117 << "SLP: gets ready (def): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
;
2118 }
2119 });
2120 };
2121
2122 // If BundleMember is a vector bundle, its operands may have been
2123 // reordered duiring buildTree(). We therefore need to get its operands
2124 // through the TreeEntry.
2125 if (TreeEntry *TE = BundleMember->TE) {
2126 int Lane = BundleMember->Lane;
2127 assert(Lane >= 0 && "Lane not set")((Lane >= 0 && "Lane not set") ? static_cast<void
> (0) : __assert_fail ("Lane >= 0 && \"Lane not set\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2127, __PRETTY_FUNCTION__))
;
2128
2129 // Since vectorization tree is being built recursively this assertion
2130 // ensures that the tree entry has all operands set before reaching
2131 // this code. Couple of exceptions known at the moment are extracts
2132 // where their second (immediate) operand is not added. Since
2133 // immediates do not affect scheduler behavior this is considered
2134 // okay.
2135 auto *In = TE->getMainOp();
2136 assert(In &&((In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? static_cast<
void> (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2139, __PRETTY_FUNCTION__))
2137 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||((In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? static_cast<
void> (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2139, __PRETTY_FUNCTION__))
2138 In->getNumOperands() == TE->getNumOperands()) &&((In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? static_cast<
void> (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2139, __PRETTY_FUNCTION__))
2139 "Missed TreeEntry operands?")((In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst
>(In) || In->getNumOperands() == TE->getNumOperands(
)) && "Missed TreeEntry operands?") ? static_cast<
void> (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2139, __PRETTY_FUNCTION__))
;
2140 (void)In; // fake use to avoid build failure when assertions disabled
2141
2142 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2143 OpIdx != NumOperands; ++OpIdx)
2144 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2145 DecrUnsched(I);
2146 } else {
2147 // If BundleMember is a stand-alone instruction, no operand reordering
2148 // has taken place, so we directly access its operands.
2149 for (Use &U : BundleMember->Inst->operands())
2150 if (auto *I = dyn_cast<Instruction>(U.get()))
2151 DecrUnsched(I);
2152 }
2153 // Handle the memory dependencies.
2154 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2155 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2156 // There are no more unscheduled dependencies after decrementing,
2157 // so we can put the dependent instruction into the ready list.
2158 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2159 assert(!DepBundle->IsScheduled &&((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2160, __PRETTY_FUNCTION__))
2160 "already scheduled bundle gets ready")((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2160, __PRETTY_FUNCTION__))
;
2161 ReadyList.insert(DepBundle);
2162 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
2163 << "SLP: gets ready (mem): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
;
2164 }
2165 }
2166 BundleMember = BundleMember->NextInBundle;
2167 }
2168 }
2169
2170 void doForAllOpcodes(Value *V,
2171 function_ref<void(ScheduleData *SD)> Action) {
2172 if (ScheduleData *SD = getScheduleData(V))
2173 Action(SD);
2174 auto I = ExtraScheduleDataMap.find(V);
2175 if (I != ExtraScheduleDataMap.end())
2176 for (auto &P : I->second)
2177 if (P.second->SchedulingRegionID == SchedulingRegionID)
2178 Action(P.second);
2179 }
2180
2181 /// Put all instructions into the ReadyList which are ready for scheduling.
2182 template <typename ReadyListType>
2183 void initialFillReadyList(ReadyListType &ReadyList) {
2184 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2185 doForAllOpcodes(I, [&](ScheduleData *SD) {
2186 if (SD->isSchedulingEntity() && SD->isReady()) {
2187 ReadyList.insert(SD);
2188 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (false)
2189 << "SLP: initially in ready list: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (false)
;
2190 }
2191 });
2192 }
2193 }
2194
2195 /// Checks if a bundle of instructions can be scheduled, i.e. has no
2196 /// cyclic dependencies. This is only a dry-run, no instructions are
2197 /// actually moved at this stage.
2198 /// \returns the scheduling bundle. The returned Optional value is non-None
2199 /// if \p VL is allowed to be scheduled.
2200 Optional<ScheduleData *>
2201 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2202 const InstructionsState &S);
2203
2204 /// Un-bundles a group of instructions.
2205 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2206
2207 /// Allocates schedule data chunk.
2208 ScheduleData *allocateScheduleDataChunks();
2209
2210 /// Extends the scheduling region so that V is inside the region.
2211 /// \returns true if the region size is within the limit.
2212 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2213
2214 /// Initialize the ScheduleData structures for new instructions in the
2215 /// scheduling region.
2216 void initScheduleData(Instruction *FromI, Instruction *ToI,
2217 ScheduleData *PrevLoadStore,
2218 ScheduleData *NextLoadStore);
2219
2220 /// Updates the dependency information of a bundle and of all instructions/
2221 /// bundles which depend on the original bundle.
2222 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2223 BoUpSLP *SLP);
2224
2225 /// Sets all instruction in the scheduling region to un-scheduled.
2226 void resetSchedule();
2227
2228 BasicBlock *BB;
2229
2230 /// Simple memory allocation for ScheduleData.
2231 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2232
2233 /// The size of a ScheduleData array in ScheduleDataChunks.
2234 int ChunkSize;
2235
2236 /// The allocator position in the current chunk, which is the last entry
2237 /// of ScheduleDataChunks.
2238 int ChunkPos;
2239
2240 /// Attaches ScheduleData to Instruction.
2241 /// Note that the mapping survives during all vectorization iterations, i.e.
2242 /// ScheduleData structures are recycled.
2243 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2244
2245 /// Attaches ScheduleData to Instruction with the leading key.
2246 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2247 ExtraScheduleDataMap;
2248
2249 struct ReadyList : SmallVector<ScheduleData *, 8> {
2250 void insert(ScheduleData *SD) { push_back(SD); }
2251 };
2252
2253 /// The ready-list for scheduling (only used for the dry-run).
2254 ReadyList ReadyInsts;
2255
2256 /// The first instruction of the scheduling region.
2257 Instruction *ScheduleStart = nullptr;
2258
2259 /// The first instruction _after_ the scheduling region.
2260 Instruction *ScheduleEnd = nullptr;
2261
2262 /// The first memory accessing instruction in the scheduling region
2263 /// (can be null).
2264 ScheduleData *FirstLoadStoreInRegion = nullptr;
2265
2266 /// The last memory accessing instruction in the scheduling region
2267 /// (can be null).
2268 ScheduleData *LastLoadStoreInRegion = nullptr;
2269
2270 /// The current size of the scheduling region.
2271 int ScheduleRegionSize = 0;
2272
2273 /// The maximum size allowed for the scheduling region.
2274 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2275
2276 /// The ID of the scheduling region. For a new vectorization iteration this
2277 /// is incremented which "removes" all ScheduleData from the region.
2278 // Make sure that the initial SchedulingRegionID is greater than the
2279 // initial SchedulingRegionID in ScheduleData (which is 0).
2280 int SchedulingRegionID = 1;
2281 };
2282
2283 /// Attaches the BlockScheduling structures to basic blocks.
2284 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2285
2286 /// Performs the "real" scheduling. Done before vectorization is actually
2287 /// performed in a basic block.
2288 void scheduleBlock(BlockScheduling *BS);
2289
2290 /// List of users to ignore during scheduling and that don't need extracting.
2291 ArrayRef<Value *> UserIgnoreList;
2292
2293 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2294 /// sorted SmallVectors of unsigned.
2295 struct OrdersTypeDenseMapInfo {
2296 static OrdersType getEmptyKey() {
2297 OrdersType V;
2298 V.push_back(~1U);
2299 return V;
2300 }
2301
2302 static OrdersType getTombstoneKey() {
2303 OrdersType V;
2304 V.push_back(~2U);
2305 return V;
2306 }
2307
2308 static unsigned getHashValue(const OrdersType &V) {
2309 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2310 }
2311
2312 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2313 return LHS == RHS;
2314 }
2315 };
2316
2317 /// Contains orders of operations along with the number of bundles that have
2318 /// operations in this order. It stores only those orders that require
2319 /// reordering, if reordering is not required it is counted using \a
2320 /// NumOpsWantToKeepOriginalOrder.
2321 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2322 /// Number of bundles that do not require reordering.
2323 unsigned NumOpsWantToKeepOriginalOrder = 0;
2324
2325 // Analysis and block reference.
2326 Function *F;
2327 ScalarEvolution *SE;
2328 TargetTransformInfo *TTI;
2329 TargetLibraryInfo *TLI;
2330 AAResults *AA;
2331 LoopInfo *LI;
2332 DominatorTree *DT;
2333 AssumptionCache *AC;
2334 DemandedBits *DB;
2335 const DataLayout *DL;
2336 OptimizationRemarkEmitter *ORE;
2337
2338 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2339 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2340
2341 /// Instruction builder to construct the vectorized tree.
2342 IRBuilder<> Builder;
2343
2344 /// A map of scalar integer values to the smallest bit width with which they
2345 /// can legally be represented. The values map to (width, signed) pairs,
2346 /// where "width" indicates the minimum bit width and "signed" is True if the
2347 /// value must be signed-extended, rather than zero-extended, back to its
2348 /// original width.
2349 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2350};
2351
2352} // end namespace slpvectorizer
2353
2354template <> struct GraphTraits<BoUpSLP *> {
2355 using TreeEntry = BoUpSLP::TreeEntry;
2356
2357 /// NodeRef has to be a pointer per the GraphWriter.
2358 using NodeRef = TreeEntry *;
2359
2360 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2361
2362 /// Add the VectorizableTree to the index iterator to be able to return
2363 /// TreeEntry pointers.
2364 struct ChildIteratorType
2365 : public iterator_adaptor_base<
2366 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2367 ContainerTy &VectorizableTree;
2368
2369 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2370 ContainerTy &VT)
2371 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2372
2373 NodeRef operator*() { return I->UserTE; }
2374 };
2375
2376 static NodeRef getEntryNode(BoUpSLP &R) {
2377 return R.VectorizableTree[0].get();
2378 }
2379
2380 static ChildIteratorType child_begin(NodeRef N) {
2381 return {N->UserTreeIndices.begin(), N->Container};
2382 }
2383
2384 static ChildIteratorType child_end(NodeRef N) {
2385 return {N->UserTreeIndices.end(), N->Container};
2386 }
2387
2388 /// For the node iterator we just need to turn the TreeEntry iterator into a
2389 /// TreeEntry* iterator so that it dereferences to NodeRef.
2390 class nodes_iterator {
2391 using ItTy = ContainerTy::iterator;
2392 ItTy It;
2393
2394 public:
2395 nodes_iterator(const ItTy &It2) : It(It2) {}
2396 NodeRef operator*() { return It->get(); }
2397 nodes_iterator operator++() {
2398 ++It;
2399 return *this;
2400 }
2401 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2402 };
2403
2404 static nodes_iterator nodes_begin(BoUpSLP *R) {
2405 return nodes_iterator(R->VectorizableTree.begin());
2406 }
2407
2408 static nodes_iterator nodes_end(BoUpSLP *R) {
2409 return nodes_iterator(R->VectorizableTree.end());
2410 }
2411
2412 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2413};
2414
2415template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2416 using TreeEntry = BoUpSLP::TreeEntry;
2417
2418 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2419
2420 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2421 std::string Str;
2422 raw_string_ostream OS(Str);
2423 if (isSplat(Entry->Scalars)) {
2424 OS << "<splat> " << *Entry->Scalars[0];
2425 return Str;
2426 }
2427 for (auto V : Entry->Scalars) {
2428 OS << *V;
2429 if (std::any_of(
2430 R->ExternalUses.begin(), R->ExternalUses.end(),
2431 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
2432 OS << " <extract>";
2433 OS << "\n";
2434 }
2435 return Str;
2436 }
2437
2438 static std::string getNodeAttributes(const TreeEntry *Entry,
2439 const BoUpSLP *) {
2440 if (Entry->State == TreeEntry::NeedToGather)
2441 return "color=red";
2442 return "";
2443 }
2444};
2445
2446} // end namespace llvm
2447
2448BoUpSLP::~BoUpSLP() {
2449 for (const auto &Pair : DeletedInstructions) {
2450 // Replace operands of ignored instructions with Undefs in case if they were
2451 // marked for deletion.
2452 if (Pair.getSecond()) {
2453 Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2454 Pair.getFirst()->replaceAllUsesWith(Undef);
2455 }
2456 Pair.getFirst()->dropAllReferences();
2457 }
2458 for (const auto &Pair : DeletedInstructions) {
2459 assert(Pair.getFirst()->use_empty() &&((Pair.getFirst()->use_empty() && "trying to erase instruction with users."
) ? static_cast<void> (0) : __assert_fail ("Pair.getFirst()->use_empty() && \"trying to erase instruction with users.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2460, __PRETTY_FUNCTION__))
2460 "trying to erase instruction with users.")((Pair.getFirst()->use_empty() && "trying to erase instruction with users."
) ? static_cast<void> (0) : __assert_fail ("Pair.getFirst()->use_empty() && \"trying to erase instruction with users.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2460, __PRETTY_FUNCTION__))
;
2461 Pair.getFirst()->eraseFromParent();
2462 }
2463 assert(!verifyFunction(*F, &dbgs()))((!verifyFunction(*F, &dbgs())) ? static_cast<void>
(0) : __assert_fail ("!verifyFunction(*F, &dbgs())", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2463, __PRETTY_FUNCTION__))
;
2464}
2465
2466void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2467 for (auto *V : AV) {
2468 if (auto *I = dyn_cast<Instruction>(V))
2469 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2470 };
2471}
2472
2473void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2474 ArrayRef<Value *> UserIgnoreLst) {
2475 ExtraValueToDebugLocsMap ExternallyUsedValues;
2476 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2477}
2478
2479void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2480 ExtraValueToDebugLocsMap &ExternallyUsedValues,
2481 ArrayRef<Value *> UserIgnoreLst) {
2482 deleteTree();
2483 UserIgnoreList = UserIgnoreLst;
2484 if (!allSameType(Roots))
2485 return;
2486 buildTree_rec(Roots, 0, EdgeInfo());
2487
2488 // Collect the values that we need to extract from the tree.
2489 for (auto &TEPtr : VectorizableTree) {
2490 TreeEntry *Entry = TEPtr.get();
2491
2492 // No need to handle users of gathered values.
2493 if (Entry->State == TreeEntry::NeedToGather)
2494 continue;
2495
2496 // For each lane:
2497 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2498 Value *Scalar = Entry->Scalars[Lane];
2499 int FoundLane = Lane;
2500 if (!Entry->ReuseShuffleIndices.empty()) {
2501 FoundLane =
2502 std::distance(Entry->ReuseShuffleIndices.begin(),
2503 llvm::find(Entry->ReuseShuffleIndices, FoundLane));
2504 }
2505
2506 // Check if the scalar is externally used as an extra arg.
2507 auto ExtI = ExternallyUsedValues.find(Scalar);
2508 if (ExtI != ExternallyUsedValues.end()) {
2509 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
2510 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
;
2511 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2512 }
2513 for (User *U : Scalar->users()) {
2514 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Checking user:" << *U <<
".\n"; } } while (false)
;
2515
2516 Instruction *UserInst = dyn_cast<Instruction>(U);
2517 if (!UserInst)
2518 continue;
2519
2520 // Skip in-tree scalars that become vectors
2521 if (TreeEntry *UseEntry = getTreeEntry(U)) {
2522 Value *UseScalar = UseEntry->Scalars[0];
2523 // Some in-tree scalars will remain as scalar in vectorized
2524 // instructions. If that is the case, the one in Lane 0 will
2525 // be used.
2526 if (UseScalar != U ||
2527 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2528 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *Udo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
2529 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
;
2530 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state")((UseEntry->State != TreeEntry::NeedToGather && "Bad state"
) ? static_cast<void> (0) : __assert_fail ("UseEntry->State != TreeEntry::NeedToGather && \"Bad state\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2530, __PRETTY_FUNCTION__))
;
2531 continue;
2532 }
2533 }
2534
2535 // Ignore users in the user ignore list.
2536 if (is_contained(UserIgnoreList, UserInst))
2537 continue;
2538
2539 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
2540 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
;
2541 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2542 }
2543 }
2544 }
2545}
2546
2547void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2548 const EdgeInfo &UserTreeIdx) {
2549 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!")(((allConstant(VL) || allSameType(VL)) && "Invalid types!"
) ? static_cast<void> (0) : __assert_fail ("(allConstant(VL) || allSameType(VL)) && \"Invalid types!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2549, __PRETTY_FUNCTION__))
;
2550
2551 InstructionsState S = getSameOpcode(VL);
2552 if (Depth == RecursionMaxDepth) {
2553 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to max recursion depth.\n"
; } } while (false)
;
2554 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2555 return;
2556 }
2557
2558 // Don't handle vectors.
2559 if (S.OpValue->getType()->isVectorTy()) {
2560 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to vector type.\n"
; } } while (false)
;
2561 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2562 return;
2563 }
2564
2565 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2566 if (SI->getValueOperand()->getType()->isVectorTy()) {
2567 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to store vector type.\n"
; } } while (false)
;
2568 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2569 return;
2570 }
2571
2572 // If all of the operands are identical or constant we have a simple solution.
2573 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2574 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to C,S,B,O. \n"
; } } while (false)
;
2575 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2576 return;
2577 }
2578
2579 // We now know that this is a vector of instructions of the same type from
2580 // the same block.
2581
2582 // Don't vectorize ephemeral values.
2583 for (Value *V : VL) {
2584 if (EphValues.count(V)) {
2585 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
2586 << ") is ephemeral.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
;
2587 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2588 return;
2589 }
2590 }
2591
2592 // Check if this is a duplicate of another entry.
2593 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2594 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tChecking bundle: " <<
*S.OpValue << ".\n"; } } while (false)
;
2595 if (!E->isSame(VL)) {
2596 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to partial overlap.\n"
; } } while (false)
;
2597 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2598 return;
2599 }
2600 // Record the reuse of the tree node. FIXME, currently this is only used to
2601 // properly draw the graph rather than for the actual vectorization.
2602 E->UserTreeIndices.push_back(UserTreeIdx);
2603 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValuedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
2604 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
;
2605 return;
2606 }
2607
2608 // Check that none of the instructions in the bundle are already in the tree.
2609 for (Value *V : VL) {
2610 auto *I = dyn_cast<Instruction>(V);
2611 if (!I)
2612 continue;
2613 if (getTreeEntry(I)) {
2614 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
2615 << ") is already in tree.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
;
2616 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2617 return;
2618 }
2619 }
2620
2621 // If any of the scalars is marked as a value that needs to stay scalar, then
2622 // we need to gather the scalars.
2623 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2624 for (Value *V : VL) {
2625 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2626 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to gathered scalar.\n"
; } } while (false)
;
2627 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2628 return;
2629 }
2630 }
2631
2632 // Check that all of the users of the scalars that we want to vectorize are
2633 // schedulable.
2634 auto *VL0 = cast<Instruction>(S.OpValue);
2635 BasicBlock *BB = VL0->getParent();
2636
2637 if (!DT->isReachableFromEntry(BB)) {
2638 // Don't go into unreachable blocks. They may contain instructions with
2639 // dependency cycles which confuse the final scheduling.
2640 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle in unreachable block.\n"
; } } while (false)
;
2641 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2642 return;
2643 }
2644
2645 // Check that every instruction appears once in this bundle.
2646 SmallVector<unsigned, 4> ReuseShuffleIndicies;
2647 SmallVector<Value *, 4> UniqueValues;
2648 DenseMap<Value *, unsigned> UniquePositions;
2649 for (Value *V : VL) {
2650 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2651 ReuseShuffleIndicies.emplace_back(Res.first->second);
2652 if (Res.second)
2653 UniqueValues.emplace_back(V);
2654 }
2655 size_t NumUniqueScalarValues = UniqueValues.size();
2656 if (NumUniqueScalarValues == VL.size()) {
2657 ReuseShuffleIndicies.clear();
2658 } else {
2659 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Shuffle for reused scalars.\n"
; } } while (false)
;
2660 if (NumUniqueScalarValues <= 1 ||
2661 !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2662 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Scalar used twice in bundle.\n"
; } } while (false)
;
2663 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2664 return;
2665 }
2666 VL = UniqueValues;
2667 }
2668
2669 auto &BSRef = BlocksSchedules[BB];
2670 if (!BSRef)
2671 BSRef = std::make_unique<BlockScheduling>(BB);
2672
2673 BlockScheduling &BS = *BSRef.get();
2674
2675 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2676 if (!Bundle) {
2677 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are not able to schedule this bundle!\n"
; } } while (false)
;
2678 assert((!BS.getScheduleData(VL0) ||(((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle
()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2680, __PRETTY_FUNCTION__))
2679 !BS.getScheduleData(VL0)->isPartOfBundle()) &&(((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle
()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2680, __PRETTY_FUNCTION__))
2680 "tryScheduleBundle should cancelScheduling on failure")(((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle
()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2680, __PRETTY_FUNCTION__))
;
2681 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2682 ReuseShuffleIndicies);
2683 return;
2684 }
2685 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are able to schedule this bundle.\n"
; } } while (false)
;
2686
2687 unsigned ShuffleOrOp = S.isAltShuffle() ?
2688 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2689 switch (ShuffleOrOp) {
2690 case Instruction::PHI: {
2691 auto *PH = cast<PHINode>(VL0);
2692
2693 // Check for terminator values (e.g. invoke).
2694 for (Value *V : VL)
2695 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2696 Instruction *Term = dyn_cast<Instruction>(
2697 cast<PHINode>(V)->getIncomingValueForBlock(
2698 PH->getIncomingBlock(I)));
2699 if (Term && Term->isTerminator()) {
2700 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
2701 << "SLP: Need to swizzle PHINodes (terminator use).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
;
2702 BS.cancelScheduling(VL, VL0);
2703 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2704 ReuseShuffleIndicies);
2705 return;
2706 }
2707 }
2708
2709 TreeEntry *TE =
2710 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2711 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of PHINodes.\n"
; } } while (false)
;
2712
2713 // Keeps the reordered operands to avoid code duplication.
2714 SmallVector<ValueList, 2> OperandsVec;
2715 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2716 ValueList Operands;
2717 // Prepare the operand vector.
2718 for (Value *V : VL)
2719 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2720 PH->getIncomingBlock(I)));
2721 TE->setOperand(I, Operands);
2722 OperandsVec.push_back(Operands);
2723 }
2724 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2725 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2726 return;
2727 }
2728 case Instruction::ExtractValue:
2729 case Instruction::ExtractElement: {
2730 OrdersType CurrentOrder;
2731 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2732 if (Reuse) {
2733 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Reusing or shuffling extract sequence.\n"
; } } while (false)
;
2734 ++NumOpsWantToKeepOriginalOrder;
2735 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2736 ReuseShuffleIndicies);
2737 // This is a special case, as it does not gather, but at the same time
2738 // we are not extending buildTree_rec() towards the operands.
2739 ValueList Op0;
2740 Op0.assign(VL.size(), VL0->getOperand(0));
2741 VectorizableTree.back()->setOperand(0, Op0);
2742 return;
2743 }
2744 if (!CurrentOrder.empty()) {
2745 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2746 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2747 "with order";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2748 for (unsigned Idx : CurrentOrder)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2749 dbgs() << " " << Idx;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2750 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2751 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
;
2752 // Insert new order with initial value 0, if it does not exist,
2753 // otherwise return the iterator to the existing one.
2754 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2755 ReuseShuffleIndicies, CurrentOrder);
2756 findRootOrder(CurrentOrder);
2757 ++NumOpsWantToKeepOrder[CurrentOrder];
2758 // This is a special case, as it does not gather, but at the same time
2759 // we are not extending buildTree_rec() towards the operands.
2760 ValueList Op0;
2761 Op0.assign(VL.size(), VL0->getOperand(0));
2762 VectorizableTree.back()->setOperand(0, Op0);
2763 return;
2764 }
2765 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather extract sequence.\n";
} } while (false)
;
2766 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2767 ReuseShuffleIndicies);
2768 BS.cancelScheduling(VL, VL0);
2769 return;
2770 }
2771 case Instruction::Load: {
2772 // Check that a vectorized load would load the same memory as a scalar
2773 // load. For example, we don't want to vectorize loads that are smaller
2774 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2775 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2776 // from such a struct, we read/write packed bits disagreeing with the
2777 // unvectorized version.
2778 Type *ScalarTy = VL0->getType();
2779
2780 if (DL->getTypeSizeInBits(ScalarTy) !=
2781 DL->getTypeAllocSizeInBits(ScalarTy)) {
2782 BS.cancelScheduling(VL, VL0);
2783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2784 ReuseShuffleIndicies);
2785 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering loads of non-packed type.\n"
; } } while (false)
;
2786 return;
2787 }
2788
2789 // Make sure all loads in the bundle are simple - we can't vectorize
2790 // atomic or volatile loads.
2791 SmallVector<Value *, 4> PointerOps(VL.size());
2792 auto POIter = PointerOps.begin();
2793 for (Value *V : VL) {
2794 auto *L = cast<LoadInst>(V);
2795 if (!L->isSimple()) {
2796 BS.cancelScheduling(VL, VL0);
2797 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2798 ReuseShuffleIndicies);
2799 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple loads.\n"
; } } while (false)
;
2800 return;
2801 }
2802 *POIter = L->getPointerOperand();
2803 ++POIter;
2804 }
2805
2806 OrdersType CurrentOrder;
2807 // Check the order of pointer operands.
2808 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2809 Value *Ptr0;
2810 Value *PtrN;
2811 if (CurrentOrder.empty()) {
2812 Ptr0 = PointerOps.front();
2813 PtrN = PointerOps.back();
2814 } else {
2815 Ptr0 = PointerOps[CurrentOrder.front()];
2816 PtrN = PointerOps[CurrentOrder.back()];
2817 }
2818 const SCEV *Scev0 = SE->getSCEV(Ptr0);
2819 const SCEV *ScevN = SE->getSCEV(PtrN);
2820 const auto *Diff =
2821 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2822 uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2823 // Check that the sorted loads are consecutive.
2824 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
2825 if (CurrentOrder.empty()) {
2826 // Original loads are consecutive and does not require reordering.
2827 ++NumOpsWantToKeepOriginalOrder;
2828 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2829 UserTreeIdx, ReuseShuffleIndicies);
2830 TE->setOperandsInOrder();
2831 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of loads.\n";
} } while (false)
;
2832 } else {
2833 // Need to reorder.
2834 TreeEntry *TE =
2835 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2836 ReuseShuffleIndicies, CurrentOrder);
2837 TE->setOperandsInOrder();
2838 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled loads.\n"
; } } while (false)
;
2839 findRootOrder(CurrentOrder);
2840 ++NumOpsWantToKeepOrder[CurrentOrder];
2841 }
2842 return;
2843 }
2844 }
2845
2846 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-consecutive loads.\n"
; } } while (false)
;
2847 BS.cancelScheduling(VL, VL0);
2848 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2849 ReuseShuffleIndicies);
2850 return;
2851 }
2852 case Instruction::ZExt:
2853 case Instruction::SExt:
2854 case Instruction::FPToUI:
2855 case Instruction::FPToSI:
2856 case Instruction::FPExt:
2857 case Instruction::PtrToInt:
2858 case Instruction::IntToPtr:
2859 case Instruction::SIToFP:
2860 case Instruction::UIToFP:
2861 case Instruction::Trunc:
2862 case Instruction::FPTrunc:
2863 case Instruction::BitCast: {
2864 Type *SrcTy = VL0->getOperand(0)->getType();
2865 for (Value *V : VL) {
2866 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2867 if (Ty != SrcTy || !isValidElementType(Ty)) {
2868 BS.cancelScheduling(VL, VL0);
2869 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2870 ReuseShuffleIndicies);
2871 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
2872 << "SLP: Gathering casts with different src types.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
;
2873 return;
2874 }
2875 }
2876 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2877 ReuseShuffleIndicies);
2878 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of casts.\n";
} } while (false)
;
2879
2880 TE->setOperandsInOrder();
2881 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2882 ValueList Operands;
2883 // Prepare the operand vector.
2884 for (Value *V : VL)
2885 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2886
2887 buildTree_rec(Operands, Depth + 1, {TE, i});
2888 }
2889 return;
2890 }
2891 case Instruction::ICmp:
2892 case Instruction::FCmp: {
2893 // Check that all of the compares have the same predicate.
2894 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2895 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2896 Type *ComparedTy = VL0->getOperand(0)->getType();
2897 for (Value *V : VL) {
2898 CmpInst *Cmp = cast<CmpInst>(V);
2899 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2900 Cmp->getOperand(0)->getType() != ComparedTy) {
2901 BS.cancelScheduling(VL, VL0);
2902 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2903 ReuseShuffleIndicies);
2904 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
2905 << "SLP: Gathering cmp with different predicate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
;
2906 return;
2907 }
2908 }
2909
2910 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2911 ReuseShuffleIndicies);
2912 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of compares.\n"
; } } while (false)
;
2913
2914 ValueList Left, Right;
2915 if (cast<CmpInst>(VL0)->isCommutative()) {
2916 // Commutative predicate - collect + sort operands of the instructions
2917 // so that each side is more likely to have the same opcode.
2918 assert(P0 == SwapP0 && "Commutative Predicate mismatch")((P0 == SwapP0 && "Commutative Predicate mismatch") ?
static_cast<void> (0) : __assert_fail ("P0 == SwapP0 && \"Commutative Predicate mismatch\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2918, __PRETTY_FUNCTION__))
;
2919 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2920 } else {
2921 // Collect operands - commute if it uses the swapped predicate.
2922 for (Value *V : VL) {
2923 auto *Cmp = cast<CmpInst>(V);
2924 Value *LHS = Cmp->getOperand(0);
2925 Value *RHS = Cmp->getOperand(1);
2926 if (Cmp->getPredicate() != P0)
2927 std::swap(LHS, RHS);
2928 Left.push_back(LHS);
2929 Right.push_back(RHS);
2930 }
2931 }
2932 TE->setOperand(0, Left);
2933 TE->setOperand(1, Right);
2934 buildTree_rec(Left, Depth + 1, {TE, 0});
2935 buildTree_rec(Right, Depth + 1, {TE, 1});
2936 return;
2937 }
2938 case Instruction::Select:
2939 case Instruction::FNeg:
2940 case Instruction::Add:
2941 case Instruction::FAdd:
2942 case Instruction::Sub:
2943 case Instruction::FSub:
2944 case Instruction::Mul:
2945 case Instruction::FMul:
2946 case Instruction::UDiv:
2947 case Instruction::SDiv:
2948 case Instruction::FDiv:
2949 case Instruction::URem:
2950 case Instruction::SRem:
2951 case Instruction::FRem:
2952 case Instruction::Shl:
2953 case Instruction::LShr:
2954 case Instruction::AShr:
2955 case Instruction::And:
2956 case Instruction::Or:
2957 case Instruction::Xor: {
2958 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2959 ReuseShuffleIndicies);
2960 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of un/bin op.\n"
; } } while (false)
;
2961
2962 // Sort operands of the instructions so that each side is more likely to
2963 // have the same opcode.
2964 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
2965 ValueList Left, Right;
2966 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2967 TE->setOperand(0, Left);
2968 TE->setOperand(1, Right);
2969 buildTree_rec(Left, Depth + 1, {TE, 0});
2970 buildTree_rec(Right, Depth + 1, {TE, 1});
2971 return;
2972 }
2973
2974 TE->setOperandsInOrder();
2975 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2976 ValueList Operands;
2977 // Prepare the operand vector.
2978 for (Value *V : VL)
2979 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2980
2981 buildTree_rec(Operands, Depth + 1, {TE, i});
2982 }
2983 return;
2984 }
2985 case Instruction::GetElementPtr: {
2986 // We don't combine GEPs with complicated (nested) indexing.
2987 for (Value *V : VL) {
2988 if (cast<Instruction>(V)->getNumOperands() != 2) {
2989 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"
; } } while (false)
;
2990 BS.cancelScheduling(VL, VL0);
2991 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2992 ReuseShuffleIndicies);
2993 return;
2994 }
2995 }
2996
2997 // We can't combine several GEPs into one vector if they operate on
2998 // different types.
2999 Type *Ty0 = VL0->getOperand(0)->getType();
3000 for (Value *V : VL) {
3001 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3002 if (Ty0 != CurTy) {
3003 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
3004 << "SLP: not-vectorizable GEP (different types).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
;
3005 BS.cancelScheduling(VL, VL0);
3006 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3007 ReuseShuffleIndicies);
3008 return;
3009 }
3010 }
3011
3012 // We don't combine GEPs with non-constant indexes.
3013 Type *Ty1 = VL0->getOperand(1)->getType();
3014 for (Value *V : VL) {
3015 auto Op = cast<Instruction>(V)->getOperand(1);
3016 if (!isa<ConstantInt>(Op) ||
3017 (Op->getType() != Ty1 &&
3018 Op->getType()->getScalarSizeInBits() >
3019 DL->getIndexSizeInBits(
3020 V->getType()->getPointerAddressSpace()))) {
3021 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
3022 << "SLP: not-vectorizable GEP (non-constant indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
;
3023 BS.cancelScheduling(VL, VL0);
3024 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3025 ReuseShuffleIndicies);
3026 return;
3027 }
3028 }
3029
3030 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3031 ReuseShuffleIndicies);
3032 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of GEPs.\n"; }
} while (false)
;
3033 TE->setOperandsInOrder();
3034 for (unsigned i = 0, e = 2; i < e; ++i) {
3035 ValueList Operands;
3036 // Prepare the operand vector.
3037 for (Value *V : VL)
3038 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3039
3040 buildTree_rec(Operands, Depth + 1, {TE, i});
3041 }
3042 return;
3043 }
3044 case Instruction::Store: {
3045 // Check if the stores are consecutive or if we need to swizzle them.
3046 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3047 // Make sure all stores in the bundle are simple - we can't vectorize
3048 // atomic or volatile stores.
3049 SmallVector<Value *, 4> PointerOps(VL.size());
3050 ValueList Operands(VL.size());
3051 auto POIter = PointerOps.begin();
3052 auto OIter = Operands.begin();
3053 for (Value *V : VL) {
3054 auto *SI = cast<StoreInst>(V);
3055 if (!SI->isSimple()) {
3056 BS.cancelScheduling(VL, VL0);
3057 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3058 ReuseShuffleIndicies);
3059 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple stores.\n"
; } } while (false)
;
3060 return;
3061 }
3062 *POIter = SI->getPointerOperand();
3063 *OIter = SI->getValueOperand();
3064 ++POIter;
3065 ++OIter;
3066 }
3067
3068 OrdersType CurrentOrder;
3069 // Check the order of pointer operands.
3070 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
3071 Value *Ptr0;
3072 Value *PtrN;
3073 if (CurrentOrder.empty()) {
3074 Ptr0 = PointerOps.front();
3075 PtrN = PointerOps.back();
3076 } else {
3077 Ptr0 = PointerOps[CurrentOrder.front()];
3078 PtrN = PointerOps[CurrentOrder.back()];
3079 }
3080 const SCEV *Scev0 = SE->getSCEV(Ptr0);
3081 const SCEV *ScevN = SE->getSCEV(PtrN);
3082 const auto *Diff =
3083 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
3084 uint64_t Size = DL->getTypeAllocSize(ScalarTy);
3085 // Check that the sorted pointer operands are consecutive.
3086 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
3087 if (CurrentOrder.empty()) {
3088 // Original stores are consecutive and does not require reordering.
3089 ++NumOpsWantToKeepOriginalOrder;
3090 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3091 UserTreeIdx, ReuseShuffleIndicies);
3092 TE->setOperandsInOrder();
3093 buildTree_rec(Operands, Depth + 1, {TE, 0});
3094 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of stores.\n"
; } } while (false)
;
3095 } else {
3096 TreeEntry *TE =
3097 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3098 ReuseShuffleIndicies, CurrentOrder);
3099 TE->setOperandsInOrder();
3100 buildTree_rec(Operands, Depth + 1, {TE, 0});
3101 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled stores.\n"
; } } while (false)
;
3102 findRootOrder(CurrentOrder);
3103 ++NumOpsWantToKeepOrder[CurrentOrder];
3104 }
3105 return;
3106 }
3107 }
3108
3109 BS.cancelScheduling(VL, VL0);
3110 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3111 ReuseShuffleIndicies);
3112 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-consecutive store.\n"; }
} while (false)
;
3113 return;
3114 }
3115 case Instruction::Call: {
3116 // Check if the calls are all to the same vectorizable intrinsic or
3117 // library function.
3118 CallInst *CI = cast<CallInst>(VL0);
3119 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3120
3121 VFShape Shape = VFShape::get(
3122 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3123 false /*HasGlobalPred*/);
3124 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3125
3126 if (!VecFunc && !isTriviallyVectorizable(ID)) {
3127 BS.cancelScheduling(VL, VL0);
3128 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3129 ReuseShuffleIndicies);
3130 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-vectorizable call.\n"; }
} while (false)
;
3131 return;
3132 }
3133 Function *F = CI->getCalledFunction();
3134 unsigned NumArgs = CI->getNumArgOperands();
3135 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3136 for (unsigned j = 0; j != NumArgs; ++j)
3137 if (hasVectorInstrinsicScalarOpd(ID, j))
3138 ScalarArgs[j] = CI->getArgOperand(j);
3139 for (Value *V : VL) {
3140 CallInst *CI2 = dyn_cast<CallInst>(V);
3141 if (!CI2 || CI2->getCalledFunction() != F ||
3142 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3143 (VecFunc &&
3144 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3145 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3146 BS.cancelScheduling(VL, VL0);
3147 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3148 ReuseShuffleIndicies);
3149 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
3150 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
;
3151 return;
3152 }
3153 // Some intrinsics have scalar arguments and should be same in order for
3154 // them to be vectorized.
3155 for (unsigned j = 0; j != NumArgs; ++j) {
3156 if (hasVectorInstrinsicScalarOpd(ID, j)) {
3157 Value *A1J = CI2->getArgOperand(j);
3158 if (ScalarArgs[j] != A1J) {
3159 BS.cancelScheduling(VL, VL0);
3160 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3161 ReuseShuffleIndicies);
3162 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
3163 << " argument " << ScalarArgs[j] << "!=" << A1Jdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
3164 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
;
3165 return;
3166 }
3167 }
3168 }
3169 // Verify that the bundle operands are identical between the two calls.
3170 if (CI->hasOperandBundles() &&
3171 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3172 CI->op_begin() + CI->getBundleOperandsEndIndex(),
3173 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3174 BS.cancelScheduling(VL, VL0);
3175 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3176 ReuseShuffleIndicies);
3177 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
3178 << *CI << "!=" << *V << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
;
3179 return;
3180 }
3181 }
3182
3183 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3184 ReuseShuffleIndicies);
3185 TE->setOperandsInOrder();
3186 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3187 ValueList Operands;
3188 // Prepare the operand vector.
3189 for (Value *V : VL) {
3190 auto *CI2 = cast<CallInst>(V);
3191 Operands.push_back(CI2->getArgOperand(i));
3192 }
3193 buildTree_rec(Operands, Depth + 1, {TE, i});
3194 }
3195 return;
3196 }
3197 case Instruction::ShuffleVector: {
3198 // If this is not an alternate sequence of opcode like add-sub
3199 // then do not vectorize this instruction.
3200 if (!S.isAltShuffle()) {
3201 BS.cancelScheduling(VL, VL0);
3202 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3203 ReuseShuffleIndicies);
3204 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: ShuffleVector are not vectorized.\n"
; } } while (false)
;
3205 return;
3206 }
3207 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3208 ReuseShuffleIndicies);
3209 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a ShuffleVector op.\n"
; } } while (false)
;
3210
3211 // Reorder operands if reordering would enable vectorization.
3212 if (isa<BinaryOperator>(VL0)) {
3213 ValueList Left, Right;
3214 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3215 TE->setOperand(0, Left);
3216 TE->setOperand(1, Right);
3217 buildTree_rec(Left, Depth + 1, {TE, 0});
3218 buildTree_rec(Right, Depth + 1, {TE, 1});
3219 return;
3220 }
3221
3222 TE->setOperandsInOrder();
3223 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3224 ValueList Operands;
3225 // Prepare the operand vector.
3226 for (Value *V : VL)
3227 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3228
3229 buildTree_rec(Operands, Depth + 1, {TE, i});
3230 }
3231 return;
3232 }
3233 default:
3234 BS.cancelScheduling(VL, VL0);
3235 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3236 ReuseShuffleIndicies);
3237 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering unknown instruction.\n"
; } } while (false)
;
3238 return;
3239 }
3240}
3241
3242unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3243 unsigned N = 1;
3244 Type *EltTy = T;
3245
3246 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3247 isa<VectorType>(EltTy)) {
3248 if (auto *ST = dyn_cast<StructType>(EltTy)) {
3249 // Check that struct is homogeneous.
3250 for (const auto *Ty : ST->elements())
3251 if (Ty != *ST->element_begin())
3252 return 0;
3253 N *= ST->getNumElements();
3254 EltTy = *ST->element_begin();
3255 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3256 N *= AT->getNumElements();
3257 EltTy = AT->getElementType();
3258 } else {
3259 auto *VT = cast<FixedVectorType>(EltTy);
3260 N *= VT->getNumElements();
3261 EltTy = VT->getElementType();
3262 }
3263 }
3264
3265 if (!isValidElementType(EltTy))
3266 return 0;
3267 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3268 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3269 return 0;
3270 return N;
3271}
3272
3273bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3274 SmallVectorImpl<unsigned> &CurrentOrder) const {
3275 Instruction *E0 = cast<Instruction>(OpValue);
3276 assert(E0->getOpcode() == Instruction::ExtractElement ||((E0->getOpcode() == Instruction::ExtractElement || E0->
getOpcode() == Instruction::ExtractValue) ? static_cast<void
> (0) : __assert_fail ("E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3277, __PRETTY_FUNCTION__))
3277 E0->getOpcode() == Instruction::ExtractValue)((E0->getOpcode() == Instruction::ExtractElement || E0->
getOpcode() == Instruction::ExtractValue) ? static_cast<void
> (0) : __assert_fail ("E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3277, __PRETTY_FUNCTION__))
;
3278 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode")((E0->getOpcode() == getSameOpcode(VL).getOpcode() &&
"Invalid opcode") ? static_cast<void> (0) : __assert_fail
("E0->getOpcode() == getSameOpcode(VL).getOpcode() && \"Invalid opcode\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3278, __PRETTY_FUNCTION__))
;
3279 // Check if all of the extracts come from the same vector and from the
3280 // correct offset.
3281 Value *Vec = E0->getOperand(0);
3282
3283 CurrentOrder.clear();
3284
3285 // We have to extract from a vector/aggregate with the same number of elements.
3286 unsigned NElts;
3287 if (E0->getOpcode() == Instruction::ExtractValue) {
3288 const DataLayout &DL = E0->getModule()->getDataLayout();
3289 NElts = canMapToVector(Vec->getType(), DL);
3290 if (!NElts)
3291 return false;
3292 // Check if load can be rewritten as load of vector.
3293 LoadInst *LI = dyn_cast<LoadInst>(Vec);
3294 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3295 return false;
3296 } else {
3297 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3298 }
3299
3300 if (NElts != VL.size())
3301 return false;
3302
3303 // Check that all of the indices extract from the correct offset.
3304 bool ShouldKeepOrder = true;
3305 unsigned E = VL.size();
3306 // Assign to all items the initial value E + 1 so we can check if the extract
3307 // instruction index was used already.
3308 // Also, later we can check that all the indices are used and we have a
3309 // consecutive access in the extract instructions, by checking that no
3310 // element of CurrentOrder still has value E + 1.
3311 CurrentOrder.assign(E, E + 1);
3312 unsigned I = 0;
3313 for (; I < E; ++I) {
3314 auto *Inst = cast<Instruction>(VL[I]);
3315 if (Inst->getOperand(0) != Vec)
3316 break;
3317 Optional<unsigned> Idx = getExtractIndex(Inst);
3318 if (!Idx)
3319 break;
3320 const unsigned ExtIdx = *Idx;
3321 if (ExtIdx != I) {
3322 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3323 break;
3324 ShouldKeepOrder = false;
3325 CurrentOrder[ExtIdx] = I;
3326 } else {
3327 if (CurrentOrder[I] != E + 1)
3328 break;
3329 CurrentOrder[I] = I;
3330 }
3331 }
3332 if (I < E) {
3333 CurrentOrder.clear();
3334 return false;
3335 }
3336
3337 return ShouldKeepOrder;
3338}
3339
3340bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
3341 return I->hasOneUse() ||
3342 std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
3343 return ScalarToTreeEntry.count(U) > 0;
3344 });
3345}
3346
3347static std::pair<unsigned, unsigned>
3348getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3349 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3350 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3351
3352 // Calculate the cost of the scalar and vector calls.
3353 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements());
3354 int IntrinsicCost =
3355 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3356
3357 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3358 VecTy->getNumElements())),
3359 false /*HasGlobalPred*/);
3360 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3361 int LibCost = IntrinsicCost;
3362 if (!CI->isNoBuiltin() && VecFunc) {
3363 // Calculate the cost of the vector library call.
3364 SmallVector<Type *, 4> VecTys;
3365 for (Use &Arg : CI->args())
3366 VecTys.push_back(
3367 FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3368
3369 // If the corresponding vector call is cheaper, return its cost.
3370 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3371 TTI::TCK_RecipThroughput);
3372 }
3373 return {IntrinsicCost, LibCost};
3374}
3375
3376int BoUpSLP::getEntryCost(TreeEntry *E) {
3377 ArrayRef<Value*> VL = E->Scalars;
3378
3379 Type *ScalarTy = VL[0]->getType();
3380 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3381 ScalarTy = SI->getValueOperand()->getType();
3382 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3383 ScalarTy = CI->getOperand(0)->getType();
3384 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3385 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3386
3387 // If we have computed a smaller type for the expression, update VecTy so
3388 // that the costs will be accurate.
3389 if (MinBWs.count(VL[0]))
3390 VecTy = FixedVectorType::get(
3391 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3392
3393 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3394 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3395 int ReuseShuffleCost = 0;
3396 if (NeedToShuffleReuses) {
3397 ReuseShuffleCost =
3398 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3399 }
3400 if (E->State == TreeEntry::NeedToGather) {
3401 if (allConstant(VL))
3402 return 0;
3403 if (isSplat(VL)) {
3404 return ReuseShuffleCost +
3405 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
3406 }
3407 if (E->getOpcode() == Instruction::ExtractElement &&
3408 allSameType(VL) && allSameBlock(VL)) {
3409 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
3410 if (ShuffleKind.hasValue()) {
3411 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
3412 for (auto *V : VL) {
3413 // If all users of instruction are going to be vectorized and this
3414 // instruction itself is not going to be vectorized, consider this
3415 // instruction as dead and remove its cost from the final cost of the
3416 // vectorized tree.
3417 if (areAllUsersVectorized(cast<Instruction>(V)) &&
3418 !ScalarToTreeEntry.count(V)) {
3419 auto *IO = cast<ConstantInt>(
3420 cast<ExtractElementInst>(V)->getIndexOperand());
3421 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
3422 IO->getZExtValue());
3423 }
3424 }
3425 return ReuseShuffleCost + Cost;
3426 }
3427 }
3428 return ReuseShuffleCost + getGatherCost(VL);
3429 }
3430 assert(E->State == TreeEntry::Vectorize && "Unhandled state")((E->State == TreeEntry::Vectorize && "Unhandled state"
) ? static_cast<void> (0) : __assert_fail ("E->State == TreeEntry::Vectorize && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3430, __PRETTY_FUNCTION__))
;
3431 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL")((E->getOpcode() && allSameType(VL) && allSameBlock
(VL) && "Invalid VL") ? static_cast<void> (0) :
__assert_fail ("E->getOpcode() && allSameType(VL) && allSameBlock(VL) && \"Invalid VL\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3431, __PRETTY_FUNCTION__))
;
3432 Instruction *VL0 = E->getMainOp();
3433 unsigned ShuffleOrOp =
3434 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3435 switch (ShuffleOrOp) {
3436 case Instruction::PHI:
3437 return 0;
3438
3439 case Instruction::ExtractValue:
3440 case Instruction::ExtractElement: {
3441 if (NeedToShuffleReuses) {
3442 unsigned Idx = 0;
3443 for (unsigned I : E->ReuseShuffleIndices) {
3444 if (ShuffleOrOp == Instruction::ExtractElement) {
3445 auto *IO = cast<ConstantInt>(
3446 cast<ExtractElementInst>(VL[I])->getIndexOperand());
3447 Idx = IO->getZExtValue();
3448 ReuseShuffleCost -= TTI->getVectorInstrCost(
3449 Instruction::ExtractElement, VecTy, Idx);
3450 } else {
3451 ReuseShuffleCost -= TTI->getVectorInstrCost(
3452 Instruction::ExtractElement, VecTy, Idx);
3453 ++Idx;
3454 }
3455 }
3456 Idx = ReuseShuffleNumbers;
3457 for (Value *V : VL) {
3458 if (ShuffleOrOp == Instruction::ExtractElement) {
3459 auto *IO = cast<ConstantInt>(
3460 cast<ExtractElementInst>(V)->getIndexOperand());
3461 Idx = IO->getZExtValue();
3462 } else {
3463 --Idx;
3464 }
3465 ReuseShuffleCost +=
3466 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
3467 }
3468 }
3469 int DeadCost = ReuseShuffleCost;
3470 if (!E->ReorderIndices.empty()) {
3471 // TODO: Merge this shuffle with the ReuseShuffleCost.
3472 DeadCost += TTI->getShuffleCost(
3473 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3474 }
3475 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3476 Instruction *EI = cast<Instruction>(VL[I]);
3477 // If all users are going to be vectorized, instruction can be
3478 // considered as dead.
3479 // The same, if have only one user, it will be vectorized for sure.
3480 if (areAllUsersVectorized(EI)) {
3481 // Take credit for instruction that will become dead.
3482 if (EI->hasOneUse()) {
3483 Instruction *Ext = EI->user_back();
3484 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3485 all_of(Ext->users(),
3486 [](User *U) { return isa<GetElementPtrInst>(U); })) {
3487 // Use getExtractWithExtendCost() to calculate the cost of
3488 // extractelement/ext pair.
3489 DeadCost -= TTI->getExtractWithExtendCost(
3490 Ext->getOpcode(), Ext->getType(), VecTy, I);
3491 // Add back the cost of s|zext which is subtracted separately.
3492 DeadCost += TTI->getCastInstrCost(
3493 Ext->getOpcode(), Ext->getType(), EI->getType(),
3494 TTI::getCastContextHint(Ext), CostKind, Ext);
3495 continue;
3496 }
3497 }
3498 DeadCost -=
3499 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3500 }
3501 }
3502 return DeadCost;
3503 }
3504 case Instruction::ZExt:
3505 case Instruction::SExt:
3506 case Instruction::FPToUI:
3507 case Instruction::FPToSI:
3508 case Instruction::FPExt:
3509 case Instruction::PtrToInt:
3510 case Instruction::IntToPtr:
3511 case Instruction::SIToFP:
3512 case Instruction::UIToFP:
3513 case Instruction::Trunc:
3514 case Instruction::FPTrunc:
3515 case Instruction::BitCast: {
3516 Type *SrcTy = VL0->getOperand(0)->getType();
3517 int ScalarEltCost =
3518 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3519 TTI::getCastContextHint(VL0), CostKind, VL0);
3520 if (NeedToShuffleReuses) {
3521 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3522 }
3523
3524 // Calculate the cost of this instruction.
3525 int ScalarCost = VL.size() * ScalarEltCost;
3526
3527 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3528 int VecCost = 0;
3529 // Check if the values are candidates to demote.
3530 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3531 VecCost =
3532 ReuseShuffleCost +
3533 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3534 TTI::getCastContextHint(VL0), CostKind, VL0);
3535 }
3536 return VecCost - ScalarCost;
3537 }
3538 case Instruction::FCmp:
3539 case Instruction::ICmp:
3540 case Instruction::Select: {
3541 // Calculate the cost of this instruction.
3542 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
3543 Builder.getInt1Ty(),
3544 CostKind, VL0);
3545 if (NeedToShuffleReuses) {
3546 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3547 }
3548 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3549 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3550 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy,
3551 CostKind, VL0);
3552 return ReuseShuffleCost + VecCost - ScalarCost;
3553 }
3554 case Instruction::FNeg:
3555 case Instruction::Add:
3556 case Instruction::FAdd:
3557 case Instruction::Sub:
3558 case Instruction::FSub:
3559 case Instruction::Mul:
3560 case Instruction::FMul:
3561 case Instruction::UDiv:
3562 case Instruction::SDiv:
3563 case Instruction::FDiv:
3564 case Instruction::URem:
3565 case Instruction::SRem:
3566 case Instruction::FRem:
3567 case Instruction::Shl:
3568 case Instruction::LShr:
3569 case Instruction::AShr:
3570 case Instruction::And:
3571 case Instruction::Or:
3572 case Instruction::Xor: {
3573 // Certain instructions can be cheaper to vectorize if they have a
3574 // constant second vector operand.
3575 TargetTransformInfo::OperandValueKind Op1VK =
3576 TargetTransformInfo::OK_AnyValue;
3577 TargetTransformInfo::OperandValueKind Op2VK =
3578 TargetTransformInfo::OK_UniformConstantValue;
3579 TargetTransformInfo::OperandValueProperties Op1VP =
3580 TargetTransformInfo::OP_None;
3581 TargetTransformInfo::OperandValueProperties Op2VP =
3582 TargetTransformInfo::OP_PowerOf2;
3583
3584 // If all operands are exactly the same ConstantInt then set the
3585 // operand kind to OK_UniformConstantValue.
3586 // If instead not all operands are constants, then set the operand kind
3587 // to OK_AnyValue. If all operands are constants but not the same,
3588 // then set the operand kind to OK_NonUniformConstantValue.
3589 ConstantInt *CInt0 = nullptr;
3590 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3591 const Instruction *I = cast<Instruction>(VL[i]);
3592 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3593 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3594 if (!CInt) {
3595 Op2VK = TargetTransformInfo::OK_AnyValue;
3596 Op2VP = TargetTransformInfo::OP_None;
3597 break;
3598 }
3599 if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3600 !CInt->getValue().isPowerOf2())
3601 Op2VP = TargetTransformInfo::OP_None;
3602 if (i == 0) {
3603 CInt0 = CInt;
3604 continue;
3605 }
3606 if (CInt0 != CInt)
3607 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3608 }
3609
3610 SmallVector<const Value *, 4> Operands(VL0->operand_values());
3611 int ScalarEltCost = TTI->getArithmeticInstrCost(
3612 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP,
3613 Operands, VL0);
3614 if (NeedToShuffleReuses) {
3615 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3616 }
3617 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3618 int VecCost = TTI->getArithmeticInstrCost(
3619 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP,
3620 Operands, VL0);
3621 return ReuseShuffleCost + VecCost - ScalarCost;
3622 }
3623 case Instruction::GetElementPtr: {
3624 TargetTransformInfo::OperandValueKind Op1VK =
3625 TargetTransformInfo::OK_AnyValue;
3626 TargetTransformInfo::OperandValueKind Op2VK =
3627 TargetTransformInfo::OK_UniformConstantValue;
3628
3629 int ScalarEltCost =
3630 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind,
3631 Op1VK, Op2VK);
3632 if (NeedToShuffleReuses) {
3633 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3634 }
3635 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3636 int VecCost =
3637 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind,
3638 Op1VK, Op2VK);
3639 return ReuseShuffleCost + VecCost - ScalarCost;
3640 }
3641 case Instruction::Load: {
3642 // Cost of wide load - cost of scalar loads.
3643 Align alignment = cast<LoadInst>(VL0)->getAlign();
3644 int ScalarEltCost =
3645 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0,
3646 CostKind, VL0);
3647 if (NeedToShuffleReuses) {
3648 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3649 }
3650 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3651 int VecLdCost =
3652 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
3653 CostKind, VL0);
3654 if (!E->ReorderIndices.empty()) {
3655 // TODO: Merge this shuffle with the ReuseShuffleCost.
3656 VecLdCost += TTI->getShuffleCost(
3657 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3658 }
3659 return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3660 }
3661 case Instruction::Store: {
3662 // We know that we can merge the stores. Calculate the cost.
3663 bool IsReorder = !E->ReorderIndices.empty();
3664 auto *SI =
3665 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
3666 Align Alignment = SI->getAlign();
3667 int ScalarEltCost =
3668 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0,
3669 CostKind, VL0);
3670 if (NeedToShuffleReuses)
3671 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3672 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3673 int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
3674 VecTy, Alignment, 0, CostKind, VL0);
3675 if (IsReorder) {
3676 // TODO: Merge this shuffle with the ReuseShuffleCost.
3677 VecStCost += TTI->getShuffleCost(
3678 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3679 }
3680 return ReuseShuffleCost + VecStCost - ScalarStCost;
3681 }
3682 case Instruction::Call: {
3683 CallInst *CI = cast<CallInst>(VL0);
3684 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3685
3686 // Calculate the cost of the scalar and vector calls.
3687 IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1);
3688 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3689 if (NeedToShuffleReuses) {
3690 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3691 }
3692 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3693
3694 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
3695 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second);
3696
3697 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
3698 << " (" << VecCallCost << "-" << ScalarCallCost << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
3699 << " for " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
;
3700
3701 return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3702 }
3703 case Instruction::ShuffleVector: {
3704 assert(E->isAltShuffle() &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3709, __PRETTY_FUNCTION__))
3705 ((Instruction::isBinaryOp(E->getOpcode()) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3709, __PRETTY_FUNCTION__))
3706 Instruction::isBinaryOp(E->getAltOpcode())) ||((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3709, __PRETTY_FUNCTION__))
3707 (Instruction::isCast(E->getOpcode()) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3709, __PRETTY_FUNCTION__))
3708 Instruction::isCast(E->getAltOpcode()))) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3709, __PRETTY_FUNCTION__))
3709 "Invalid Shuffle Vector Operand")((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3709, __PRETTY_FUNCTION__))
;
3710 int ScalarCost = 0;
3711 if (NeedToShuffleReuses) {
3712 for (unsigned Idx : E->ReuseShuffleIndices) {
3713 Instruction *I = cast<Instruction>(VL[Idx]);
3714 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
3715 }
3716 for (Value *V : VL) {
3717 Instruction *I = cast<Instruction>(V);
3718 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
3719 }
3720 }
3721 for (Value *V : VL) {
3722 Instruction *I = cast<Instruction>(V);
3723 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode")((E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"
) ? static_cast<void> (0) : __assert_fail ("E->isOpcodeOrAlt(I) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3723, __PRETTY_FUNCTION__))
;
3724 ScalarCost += TTI->getInstructionCost(I, CostKind);
3725 }
3726 // VecCost is equal to sum of the cost of creating 2 vectors
3727 // and the cost of creating shuffle.
3728 int VecCost = 0;
3729 if (Instruction::isBinaryOp(E->getOpcode())) {
3730 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
3731 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
3732 CostKind);
3733 } else {
3734 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3735 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3736 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
3737 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
3738 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
3739 TTI::CastContextHint::None, CostKind);
3740 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
3741 TTI::CastContextHint::None, CostKind);
3742 }
3743 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
3744 return ReuseShuffleCost + VecCost - ScalarCost;
3745 }
3746 default:
3747 llvm_unreachable("Unknown instruction")::llvm::llvm_unreachable_internal("Unknown instruction", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3747)
;
3748 }
3749}
3750
3751bool BoUpSLP::isFullyVectorizableTinyTree() const {
3752 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
3753 << VectorizableTree.size() << " is fully vectorizable .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
;
3754
3755 // We only handle trees of heights 1 and 2.
3756 if (VectorizableTree.size() == 1 &&
3757 VectorizableTree[0]->State == TreeEntry::Vectorize)
3758 return true;
3759
3760 if (VectorizableTree.size() != 2)
3761 return false;
3762
3763 // Handle splat and all-constants stores.
3764 if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
3765 (allConstant(VectorizableTree[1]->Scalars) ||
3766 isSplat(VectorizableTree[1]->Scalars)))
3767 return true;
3768
3769 // Gathering cost would be too much for tiny trees.
3770 if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
3771 VectorizableTree[1]->State == TreeEntry::NeedToGather)
3772 return false;
3773
3774 return true;
3775}
3776
3777static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
3778 TargetTransformInfo *TTI) {
3779 // Look past the root to find a source value. Arbitrarily follow the
3780 // path through operand 0 of any 'or'. Also, peek through optional
3781 // shift-left-by-multiple-of-8-bits.
3782 Value *ZextLoad = Root;
3783 const APInt *ShAmtC;
3784 while (!isa<ConstantExpr>(ZextLoad) &&
3785 (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
3786 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
3787 ShAmtC->urem(8) == 0)))
3788 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
3789
3790 // Check if the input is an extended load of the required or/shift expression.
3791 Value *LoadPtr;
3792 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
3793 return false;
3794
3795 // Require that the total load bit width is a legal integer type.
3796 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
3797 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
3798 Type *SrcTy = LoadPtr->getType()->getPointerElementType();
3799 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
3800 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
3801 return false;
3802
3803 // Everything matched - assume that we can fold the whole sequence using
3804 // load combining.
3805 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
3806 << *(cast<Instruction>(Root)) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
;
3807
3808 return true;
3809}
3810
3811bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const {
3812 if (RdxOpcode != Instruction::Or)
3813 return false;
3814
3815 unsigned NumElts = VectorizableTree[0]->Scalars.size();
3816 Value *FirstReduced = VectorizableTree[0]->Scalars[0];
3817 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI);
3818}
3819
3820bool BoUpSLP::isLoadCombineCandidate() const {
3821 // Peek through a final sequence of stores and check if all operations are
3822 // likely to be load-combined.
3823 unsigned NumElts = VectorizableTree[0]->Scalars.size();
3824 for (Value *Scalar : VectorizableTree[0]->Scalars) {
3825 Value *X;
3826 if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
3827 !isLoadCombineCandidateImpl(X, NumElts, TTI))
3828 return false;
3829 }
3830 return true;
3831}
3832
3833bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
3834 // We can vectorize the tree if its size is greater than or equal to the
3835 // minimum size specified by the MinTreeSize command line option.
3836 if (VectorizableTree.size() >= MinTreeSize)
3837 return false;
3838
3839 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
3840 // can vectorize it if we can prove it fully vectorizable.
3841 if (isFullyVectorizableTinyTree())
3842 return false;
3843
3844 assert(VectorizableTree.empty()((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3846, __PRETTY_FUNCTION__))
3845 ? ExternalUses.empty()((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3846, __PRETTY_FUNCTION__))
3846 : true && "We shouldn't have any external users")((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3846, __PRETTY_FUNCTION__))
;
3847
3848 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
3849 // vectorizable.
3850 return true;
3851}
3852
3853int BoUpSLP::getSpillCost() const {
3854 // Walk from the bottom of the tree to the top, tracking which values are
3855 // live. When we see a call instruction that is not part of our tree,
3856 // query TTI to see if there is a cost to keeping values live over it
3857 // (for example, if spills and fills are required).
3858 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
3859 int Cost = 0;
3860
3861 SmallPtrSet<Instruction*, 4> LiveValues;
3862 Instruction *PrevInst = nullptr;
3863
3864 // The entries in VectorizableTree are not necessarily ordered by their
3865 // position in basic blocks. Collect them and order them by dominance so later
3866 // instructions are guaranteed to be visited first. For instructions in
3867 // different basic blocks, we only scan to the beginning of the block, so
3868 // their order does not matter, as long as all instructions in a basic block
3869 // are grouped together. Using dominance ensures a deterministic order.
3870 SmallVector<Instruction *, 16> OrderedScalars;
3871 for (const auto &TEPtr : VectorizableTree) {
3872 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
3873 if (!Inst)
3874 continue;
3875 OrderedScalars.push_back(Inst);
3876 }
3877 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) {
3878 return DT->dominates(B, A);
3879 });
3880
3881 for (Instruction *Inst : OrderedScalars) {
3882 if (!PrevInst) {
3883 PrevInst = Inst;
3884 continue;
3885 }
3886
3887 // Update LiveValues.
3888 LiveValues.erase(PrevInst);
3889 for (auto &J : PrevInst->operands()) {
3890 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
3891 LiveValues.insert(cast<Instruction>(&*J));
3892 }
3893
3894 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3895 dbgs() << "SLP: #LV: " << LiveValues.size();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3896 for (auto *X : LiveValues)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3897 dbgs() << " " << X->getName();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3898 dbgs() << ", Looking at ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3899 Inst->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3900 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
;
3901
3902 // Now find the sequence of instructions between PrevInst and Inst.
3903 unsigned NumCalls = 0;
3904 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
3905 PrevInstIt =
3906 PrevInst->getIterator().getReverse();
3907 while (InstIt != PrevInstIt) {
3908 if (PrevInstIt == PrevInst->getParent()->rend()) {
3909 PrevInstIt = Inst->getParent()->rbegin();
3910 continue;
3911 }
3912
3913 // Debug information does not impact spill cost.
3914 if ((isa<CallInst>(&*PrevInstIt) &&
3915 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
3916 &*PrevInstIt != PrevInst)
3917 NumCalls++;
3918
3919 ++PrevInstIt;
3920 }
3921
3922 if (NumCalls) {
3923 SmallVector<Type*, 4> V;
3924 for (auto *II : LiveValues)
3925 V.push_back(FixedVectorType::get(II->getType(), BundleWidth));
3926 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
3927 }
3928
3929 PrevInst = Inst;
3930 }
3931
3932 return Cost;
3933}
3934
3935int BoUpSLP::getTreeCost() {
3936 int Cost = 0;
3937 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
3938 << VectorizableTree.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
;
3939
3940 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
3941
3942 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
3943 TreeEntry &TE = *VectorizableTree[I].get();
3944
3945 // We create duplicate tree entries for gather sequences that have multiple
3946 // uses. However, we should not compute the cost of duplicate sequences.
3947 // For example, if we have a build vector (i.e., insertelement sequence)
3948 // that is used by more than one vector instruction, we only need to
3949 // compute the cost of the insertelement instructions once. The redundant
3950 // instructions will be eliminated by CSE.
3951 //
3952 // We should consider not creating duplicate tree entries for gather
3953 // sequences, and instead add additional edges to the tree representing
3954 // their uses. Since such an approach results in fewer total entries,
3955 // existing heuristics based on tree size may yield different results.
3956 //
3957 if (TE.State == TreeEntry::NeedToGather &&
3958 std::any_of(std::next(VectorizableTree.begin(), I + 1),
3959 VectorizableTree.end(),
3960 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
3961 return EntryPtr->State == TreeEntry::NeedToGather &&
3962 EntryPtr->isSame(TE.Scalars);
3963 }))
3964 continue;
3965
3966 int C = getEntryCost(&TE);
3967 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n"; } } while (false)
3968 << " for bundle that starts with " << *TE.Scalars[0]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n"; } } while (false)
3969 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n"; } } while (false)
;
3970 Cost += C;
3971 }
3972
3973 SmallPtrSet<Value *, 16> ExtractCostCalculated;
3974 int ExtractCost = 0;
3975 for (ExternalUser &EU : ExternalUses) {
3976 // We only add extract cost once for the same scalar.
3977 if (!ExtractCostCalculated.insert(EU.Scalar).second)
3978 continue;
3979
3980 // Uses by ephemeral values are free (because the ephemeral value will be
3981 // removed prior to code generation, and so the extraction will be
3982 // removed as well).
3983 if (EphValues.count(EU.User))
3984 continue;
3985
3986 // If we plan to rewrite the tree in a smaller type, we will need to sign
3987 // extend the extracted value back to the original type. Here, we account
3988 // for the extract and the added cost of the sign extend if needed.
3989 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
3990 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3991 if (MinBWs.count(ScalarRoot)) {
3992 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3993 auto Extend =
3994 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
3995 VecTy = FixedVectorType::get(MinTy, BundleWidth);
3996 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
3997 VecTy, EU.Lane);
3998 } else {
3999 ExtractCost +=
4000 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4001 }
4002 }
4003
4004 int SpillCost = getSpillCost();
4005 Cost += SpillCost + ExtractCost;
4006
4007#ifndef NDEBUG
4008 SmallString<256> Str;
4009 {
4010 raw_svector_ostream OS(Str);
4011 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4012 << "SLP: Extract Cost = " << ExtractCost << ".\n"
4013 << "SLP: Total Cost = " << Cost << ".\n";
4014 }
4015 LLVM_DEBUG(dbgs() << Str)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << Str; } } while (false)
;
4016 if (ViewSLPTree)
4017 ViewGraph(this, "SLP" + F->getName(), false, Str);
4018#endif
4019
4020 return Cost;
4021}
4022
4023int BoUpSLP::getGatherCost(FixedVectorType *Ty,
4024 const DenseSet<unsigned> &ShuffledIndices) const {
4025 unsigned NumElts = Ty->getNumElements();
4026 APInt DemandedElts = APInt::getNullValue(NumElts);
4027 for (unsigned I = 0; I < NumElts; ++I)
4028 if (!ShuffledIndices.count(I))
4029 DemandedElts.setBit(I);
4030 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4031 /*Extract*/ false);
4032 if (!ShuffledIndices.empty())
4033 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4034 return Cost;
4035}
4036
4037int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4038 // Find the type of the operands in VL.
4039 Type *ScalarTy = VL[0]->getType();
4040 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4041 ScalarTy = SI->getValueOperand()->getType();
4042 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4043 // Find the cost of inserting/extracting values from the vector.
4044 // Check if the same elements are inserted several times and count them as
4045 // shuffle candidates.
4046 DenseSet<unsigned> ShuffledElements;
4047 DenseSet<Value *> UniqueElements;
4048 // Iterate in reverse order to consider insert elements with the high cost.
4049 for (unsigned I = VL.size(); I > 0; --I) {
4050 unsigned Idx = I - 1;
4051 if (!UniqueElements.insert(VL[Idx]).second)
4052 ShuffledElements.insert(Idx);
4053 }
4054 return getGatherCost(VecTy, ShuffledElements);
4055}
4056
4057// Perform operand reordering on the instructions in VL and return the reordered
4058// operands in Left and Right.
4059void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4060 SmallVectorImpl<Value *> &Left,
4061 SmallVectorImpl<Value *> &Right,
4062 const DataLayout &DL,
4063 ScalarEvolution &SE,
4064 const BoUpSLP &R) {
4065 if (VL.empty())
4066 return;
4067 VLOperands Ops(VL, DL, SE, R);
4068 // Reorder the operands in place.
4069 Ops.reorder();
4070 Left = Ops.getVL(0);
4071 Right = Ops.getVL(1);
4072}
4073
4074void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
4075 // Get the basic block this bundle is in. All instructions in the bundle
4076 // should be in this block.
4077 auto *Front = E->getMainOp();
4078 auto *BB = Front->getParent();
4079 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),((llvm::all_of(make_range(E->Scalars.begin(), E->Scalars
.end()), [=](Value *V) -> bool { auto *I = cast<Instruction
>(V); return !E->isOpcodeOrAlt(I) || I->getParent() ==
BB; })) ? static_cast<void> (0) : __assert_fail ("llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4083, __PRETTY_FUNCTION__))
4080 [=](Value *V) -> bool {((llvm::all_of(make_range(E->Scalars.begin(), E->Scalars
.end()), [=](Value *V) -> bool { auto *I = cast<Instruction
>(V); return !E->isOpcodeOrAlt(I) || I->getParent() ==
BB; })) ? static_cast<void> (0) : __assert_fail ("llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4083, __PRETTY_FUNCTION__))
4081 auto *I = cast<Instruction>(V);((llvm::all_of(make_range(E->Scalars.begin(), E->Scalars
.end()), [=](Value *V) -> bool { auto *I = cast<Instruction
>(V); return !E->isOpcodeOrAlt(I) || I->getParent() ==
BB; })) ? static_cast<void> (0) : __assert_fail ("llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4083, __PRETTY_FUNCTION__))
4082 return !E->isOpcodeOrAlt(I) || I->getParent() == BB;((llvm::all_of(make_range(E->Scalars.begin(), E->Scalars
.end()), [=](Value *V) -> bool { auto *I = cast<Instruction
>(V); return !E->isOpcodeOrAlt(I) || I->getParent() ==
BB; })) ? static_cast<void> (0) : __assert_fail ("llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4083, __PRETTY_FUNCTION__))
4083 }))((llvm::all_of(make_range(E->Scalars.begin(), E->Scalars
.end()), [=](Value *V) -> bool { auto *I = cast<Instruction
>(V); return !E->isOpcodeOrAlt(I) || I->getParent() ==
BB; })) ? static_cast<void> (0) : __assert_fail ("llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4083, __PRETTY_FUNCTION__))
;
4084
4085 // The last instruction in the bundle in program order.
4086 Instruction *LastInst = nullptr;
4087
4088 // Find the last instruction. The common case should be that BB has been
4089 // scheduled, and the last instruction is VL.back(). So we start with
4090 // VL.back() and iterate over schedule data until we reach the end of the
4091 // bundle. The end of the bundle is marked by null ScheduleData.
4092 if (BlocksSchedules.count(BB)) {
4093 auto *Bundle =
4094 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4095 if (Bundle && Bundle->isPartOfBundle())
4096 for (; Bundle; Bundle = Bundle->NextInBundle)
4097 if (Bundle->OpValue == Bundle->Inst)
4098 LastInst = Bundle->Inst;
4099 }
4100
4101 // LastInst can still be null at this point if there's either not an entry
4102 // for BB in BlocksSchedules or there's no ScheduleData available for
4103 // VL.back(). This can be the case if buildTree_rec aborts for various
4104 // reasons (e.g., the maximum recursion depth is reached, the maximum region
4105 // size is reached, etc.). ScheduleData is initialized in the scheduling
4106 // "dry-run".
4107 //
4108 // If this happens, we can still find the last instruction by brute force. We
4109 // iterate forwards from Front (inclusive) until we either see all
4110 // instructions in the bundle or reach the end of the block. If Front is the
4111 // last instruction in program order, LastInst will be set to Front, and we
4112 // will visit all the remaining instructions in the block.
4113 //
4114 // One of the reasons we exit early from buildTree_rec is to place an upper
4115 // bound on compile-time. Thus, taking an additional compile-time hit here is
4116 // not ideal. However, this should be exceedingly rare since it requires that
4117 // we both exit early from buildTree_rec and that the bundle be out-of-order
4118 // (causing us to iterate all the way to the end of the block).
4119 if (!LastInst) {
4120 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4121 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4122 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4123 LastInst = &I;
4124 if (Bundle.empty())
4125 break;
4126 }
4127 }
4128 assert(LastInst && "Failed to find last instruction in bundle")((LastInst && "Failed to find last instruction in bundle"
) ? static_cast<void> (0) : __assert_fail ("LastInst && \"Failed to find last instruction in bundle\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4128, __PRETTY_FUNCTION__))
;
4129
4130 // Set the insertion point after the last instruction in the bundle. Set the
4131 // debug location to Front.
4132 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4133 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4134}
4135
4136Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4137 Value *Val0 =
4138 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4139 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4140 Value *Vec = UndefValue::get(VecTy);
4141 unsigned InsIndex = 0;
4142 for (Value *Val : VL) {
4143 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++));
4144 auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4145 if (!InsElt)
4146 continue;
4147 GatherSeq.insert(InsElt);
4148 CSEBlocks.insert(InsElt->getParent());
4149 // Add to our 'need-to-extract' list.
4150 if (TreeEntry *Entry = getTreeEntry(Val)) {
4151 // Find which lane we need to extract.
4152 unsigned FoundLane = std::distance(Entry->Scalars.begin(),
4153 find(Entry->Scalars, Val));
4154 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane")((FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"
) ? static_cast<void> (0) : __assert_fail ("FoundLane < Entry->Scalars.size() && \"Couldn't find extract lane\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4154, __PRETTY_FUNCTION__))
;
4155 if (!Entry->ReuseShuffleIndices.empty()) {
4156 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(),
4157 find(Entry->ReuseShuffleIndices, FoundLane));
4158 }
4159 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane));
4160 }
4161 }
4162
4163 return Vec;
4164}
4165
4166Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4167 InstructionsState S = getSameOpcode(VL);
4168 if (S.getOpcode()) {
4169 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4170 if (E->isSame(VL)) {
4171 Value *V = vectorizeTree(E);
4172 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
4173 // We need to get the vectorized value but without shuffle.
4174 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
4175 V = SV->getOperand(0);
4176 } else {
4177 // Reshuffle to get only unique values.
4178 SmallVector<int, 4> UniqueIdxs;
4179 SmallSet<int, 4> UsedIdxs;
4180 for (int Idx : E->ReuseShuffleIndices)
4181 if (UsedIdxs.insert(Idx).second)
4182 UniqueIdxs.emplace_back(Idx);
4183 V = Builder.CreateShuffleVector(V, UniqueIdxs);
4184 }
4185 }
4186 return V;
4187 }
4188 }
4189 }
4190
4191 // Check that every instruction appears once in this bundle.
4192 SmallVector<int, 4> ReuseShuffleIndicies;
4193 SmallVector<Value *, 4> UniqueValues;
4194 if (VL.size() > 2) {
4195 DenseMap<Value *, unsigned> UniquePositions;
4196 for (Value *V : VL) {
4197 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4198 ReuseShuffleIndicies.emplace_back(Res.first->second);
4199 if (Res.second || isa<Constant>(V))
4200 UniqueValues.emplace_back(V);
4201 }
4202 // Do not shuffle single element or if number of unique values is not power
4203 // of 2.
4204 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
4205 !llvm::isPowerOf2_32(UniqueValues.size()))
4206 ReuseShuffleIndicies.clear();
4207 else
4208 VL = UniqueValues;
4209 }
4210
4211 Value *Vec = gather(VL);
4212 if (!ReuseShuffleIndicies.empty()) {
4213 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle");
4214 if (auto *I = dyn_cast<Instruction>(Vec)) {
4215 GatherSeq.insert(I);
4216 CSEBlocks.insert(I->getParent());
4217 }
4218 }
4219 return Vec;
4220}
4221
4222Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
4223 IRBuilder<>::InsertPointGuard Guard(Builder);
4224
4225 if (E->VectorizedValue) {
4226 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*E->Scalars[0] << ".\n"; } } while (false)
;
4227 return E->VectorizedValue;
4228 }
4229
4230 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4231 if (E->State == TreeEntry::NeedToGather) {
4232 setInsertPointAfterBundle(E);
4233 Value *Vec = gather(E->Scalars);
4234 if (NeedToShuffleReuses) {
4235 Vec = Builder.CreateShuffleVector(Vec, E->ReuseShuffleIndices, "shuffle");
4236 if (auto *I = dyn_cast<Instruction>(Vec)) {
4237 GatherSeq.insert(I);
4238 CSEBlocks.insert(I->getParent());
4239 }
4240 }
4241 E->VectorizedValue = Vec;
4242 return Vec;
4243 }
4244
4245 assert(E->State == TreeEntry::Vectorize && "Unhandled state")((E->State == TreeEntry::Vectorize && "Unhandled state"
) ? static_cast<void> (0) : __assert_fail ("E->State == TreeEntry::Vectorize && \"Unhandled state\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4245, __PRETTY_FUNCTION__))
;
4246 unsigned ShuffleOrOp =
4247 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
4248 Instruction *VL0 = E->getMainOp();
4249 Type *ScalarTy = VL0->getType();
4250 if (auto *Store = dyn_cast<StoreInst>(VL0))
4251 ScalarTy = Store->getValueOperand()->getType();
4252 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
4253 switch (ShuffleOrOp) {
4254 case Instruction::PHI: {
4255 auto *PH = cast<PHINode>(VL0);
4256 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
4257 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4258 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
4259 Value *V = NewPhi;
4260 if (NeedToShuffleReuses)
4261 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4262
4263 E->VectorizedValue = V;
4264
4265 // PHINodes may have multiple entries from the same block. We want to
4266 // visit every block once.
4267 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
4268
4269 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
4270 ValueList Operands;
4271 BasicBlock *IBB = PH->getIncomingBlock(i);
4272
4273 if (!VisitedBBs.insert(IBB).second) {
4274 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
4275 continue;
4276 }
4277
4278 Builder.SetInsertPoint(IBB->getTerminator());
4279 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4280 Value *Vec = vectorizeTree(E->getOperand(i));
4281 NewPhi->addIncoming(Vec, IBB);
4282 }
4283
4284 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&((NewPhi->getNumIncomingValues() == PH->getNumIncomingValues
() && "Invalid number of incoming values") ? static_cast
<void> (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4285, __PRETTY_FUNCTION__))
4285 "Invalid number of incoming values")((NewPhi->getNumIncomingValues() == PH->getNumIncomingValues
() && "Invalid number of incoming values") ? static_cast
<void> (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4285, __PRETTY_FUNCTION__))
;
4286 return V;
4287 }
4288
4289 case Instruction::ExtractElement: {
4290 Value *V = E->getSingleOperand(0);
4291 if (!E->ReorderIndices.empty()) {
4292 SmallVector<int, 4> Mask;
4293 inversePermutation(E->ReorderIndices, Mask);
4294 Builder.SetInsertPoint(VL0);
4295 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle");
4296 }
4297 if (NeedToShuffleReuses) {
4298 // TODO: Merge this shuffle with the ReorderShuffleMask.
4299 if (E->ReorderIndices.empty())
4300 Builder.SetInsertPoint(VL0);
4301 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4302 }
4303 E->VectorizedValue = V;
4304 return V;
4305 }
4306 case Instruction::ExtractValue: {
4307 auto *LI = cast<LoadInst>(E->getSingleOperand(0));
4308 Builder.SetInsertPoint(LI);
4309 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
4310 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
4311 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
4312 Value *NewV = propagateMetadata(V, E->Scalars);
4313 if (!E->ReorderIndices.empty()) {
4314 SmallVector<int, 4> Mask;
4315 inversePermutation(E->ReorderIndices, Mask);
4316 NewV = Builder.CreateShuffleVector(NewV, Mask, "reorder_shuffle");
4317 }
4318 if (NeedToShuffleReuses) {
4319 // TODO: Merge this shuffle with the ReorderShuffleMask.
4320 NewV = Builder.CreateShuffleVector(NewV, E->ReuseShuffleIndices,
4321 "shuffle");
4322 }
4323 E->VectorizedValue = NewV;
4324 return NewV;
4325 }
4326 case Instruction::ZExt:
4327 case Instruction::SExt:
4328 case Instruction::FPToUI:
4329 case Instruction::FPToSI:
4330 case Instruction::FPExt:
4331 case Instruction::PtrToInt:
4332 case Instruction::IntToPtr:
4333 case Instruction::SIToFP:
4334 case Instruction::UIToFP:
4335 case Instruction::Trunc:
4336 case Instruction::FPTrunc:
4337 case Instruction::BitCast: {
4338 setInsertPointAfterBundle(E);
4339
4340 Value *InVec = vectorizeTree(E->getOperand(0));
4341
4342 if (E->VectorizedValue) {
4343 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4344 return E->VectorizedValue;
4345 }
4346
4347 auto *CI = cast<CastInst>(VL0);
4348 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
4349 if (NeedToShuffleReuses)
4350 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4351
4352 E->VectorizedValue = V;
4353 ++NumVectorInstructions;
4354 return V;
4355 }
4356 case Instruction::FCmp:
4357 case Instruction::ICmp: {
4358 setInsertPointAfterBundle(E);
4359
4360 Value *L = vectorizeTree(E->getOperand(0));
4361 Value *R = vectorizeTree(E->getOperand(1));
4362
4363 if (E->VectorizedValue) {
4364 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4365 return E->VectorizedValue;
4366 }
4367
4368 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4369 Value *V = Builder.CreateCmp(P0, L, R);
4370 propagateIRFlags(V, E->Scalars, VL0);
4371 if (NeedToShuffleReuses)
4372 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4373
4374 E->VectorizedValue = V;
4375 ++NumVectorInstructions;
4376 return V;
4377 }
4378 case Instruction::Select: {
4379 setInsertPointAfterBundle(E);
4380
4381 Value *Cond = vectorizeTree(E->getOperand(0));
4382 Value *True = vectorizeTree(E->getOperand(1));
4383 Value *False = vectorizeTree(E->getOperand(2));
4384
4385 if (E->VectorizedValue) {
4386 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4387 return E->VectorizedValue;
4388 }
4389
4390 Value *V = Builder.CreateSelect(Cond, True, False);
4391 if (NeedToShuffleReuses)
4392 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4393
4394 E->VectorizedValue = V;
4395 ++NumVectorInstructions;
4396 return V;
4397 }
4398 case Instruction::FNeg: {
4399 setInsertPointAfterBundle(E);
4400
4401 Value *Op = vectorizeTree(E->getOperand(0));
4402
4403 if (E->VectorizedValue) {
4404 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4405 return E->VectorizedValue;
4406 }
4407
4408 Value *V = Builder.CreateUnOp(
4409 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
4410 propagateIRFlags(V, E->Scalars, VL0);
4411 if (auto *I = dyn_cast<Instruction>(V))
4412 V = propagateMetadata(I, E->Scalars);
4413
4414 if (NeedToShuffleReuses)
4415 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4416
4417 E->VectorizedValue = V;
4418 ++NumVectorInstructions;
4419
4420 return V;
4421 }
4422 case Instruction::Add:
4423 case Instruction::FAdd:
4424 case Instruction::Sub:
4425 case Instruction::FSub:
4426 case Instruction::Mul:
4427 case Instruction::FMul:
4428 case Instruction::UDiv:
4429 case Instruction::SDiv:
4430 case Instruction::FDiv:
4431 case Instruction::URem:
4432 case Instruction::SRem:
4433 case Instruction::FRem:
4434 case Instruction::Shl:
4435 case Instruction::LShr:
4436 case Instruction::AShr:
4437 case Instruction::And:
4438 case Instruction::Or:
4439 case Instruction::Xor: {
4440 setInsertPointAfterBundle(E);
4441
4442 Value *LHS = vectorizeTree(E->getOperand(0));
4443 Value *RHS = vectorizeTree(E->getOperand(1));
4444
4445 if (E->VectorizedValue) {
4446 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4447 return E->VectorizedValue;
4448 }
4449
4450 Value *V = Builder.CreateBinOp(
4451 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
4452 RHS);
4453 propagateIRFlags(V, E->Scalars, VL0);
4454 if (auto *I = dyn_cast<Instruction>(V))
4455 V = propagateMetadata(I, E->Scalars);
4456
4457 if (NeedToShuffleReuses)
4458 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4459
4460 E->VectorizedValue = V;
4461 ++NumVectorInstructions;
4462
4463 return V;
4464 }
4465 case Instruction::Load: {
4466 // Loads are inserted at the head of the tree because we don't want to
4467 // sink them all the way down past store instructions.
4468 bool IsReorder = E->updateStateIfReorder();
4469 if (IsReorder)
4470 VL0 = E->getMainOp();
4471 setInsertPointAfterBundle(E);
4472
4473 LoadInst *LI = cast<LoadInst>(VL0);
4474 unsigned AS = LI->getPointerAddressSpace();
4475
4476 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
4477 VecTy->getPointerTo(AS));
4478
4479 // The pointer operand uses an in-tree scalar so we add the new BitCast to
4480 // ExternalUses list to make sure that an extract will be generated in the
4481 // future.
4482 Value *PO = LI->getPointerOperand();
4483 if (getTreeEntry(PO))
4484 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
4485
4486 LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
4487 Value *V = propagateMetadata(LI, E->Scalars);
4488 if (IsReorder) {
4489 SmallVector<int, 4> Mask;
4490 inversePermutation(E->ReorderIndices, Mask);
4491 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle");
4492 }
4493 if (NeedToShuffleReuses) {
4494 // TODO: Merge this shuffle with the ReorderShuffleMask.
4495 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4496 }
4497 E->VectorizedValue = V;
4498 ++NumVectorInstructions;
4499 return V;
4500 }
4501 case Instruction::Store: {
4502 bool IsReorder = !E->ReorderIndices.empty();
4503 auto *SI = cast<StoreInst>(
4504 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
4505 unsigned AS = SI->getPointerAddressSpace();
4506
4507 setInsertPointAfterBundle(E);
4508
4509 Value *VecValue = vectorizeTree(E->getOperand(0));
4510 if (IsReorder) {
4511 SmallVector<int, 4> Mask(E->ReorderIndices.begin(),
4512 E->ReorderIndices.end());
4513 VecValue = Builder.CreateShuffleVector(VecValue, Mask, "reorder_shuf");
4514 }
4515 Value *ScalarPtr = SI->getPointerOperand();
4516 Value *VecPtr = Builder.CreateBitCast(
4517 ScalarPtr, VecValue->getType()->getPointerTo(AS));
4518 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
4519 SI->getAlign());
4520
4521 // The pointer operand uses an in-tree scalar, so add the new BitCast to
4522 // ExternalUses to make sure that an extract will be generated in the
4523 // future.
4524 if (getTreeEntry(ScalarPtr))
4525 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4526
4527 Value *V = propagateMetadata(ST, E->Scalars);
4528 if (NeedToShuffleReuses)
4529 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4530
4531 E->VectorizedValue = V;
4532 ++NumVectorInstructions;
4533 return V;
4534 }
4535 case Instruction::GetElementPtr: {
4536 setInsertPointAfterBundle(E);
4537
4538 Value *Op0 = vectorizeTree(E->getOperand(0));
4539
4540 std::vector<Value *> OpVecs;
4541 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4542 ++j) {
4543 ValueList &VL = E->getOperand(j);
4544 // Need to cast all elements to the same type before vectorization to
4545 // avoid crash.
4546 Type *VL0Ty = VL0->getOperand(j)->getType();
4547 Type *Ty = llvm::all_of(
4548 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
4549 ? VL0Ty
4550 : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4551 ->getPointerOperandType()
4552 ->getScalarType());
4553 for (Value *&V : VL) {
4554 auto *CI = cast<ConstantInt>(V);
4555 V = ConstantExpr::getIntegerCast(CI, Ty,
4556 CI->getValue().isSignBitSet());
4557 }
4558 Value *OpVec = vectorizeTree(VL);
4559 OpVecs.push_back(OpVec);
4560 }
4561
4562 Value *V = Builder.CreateGEP(
4563 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4564 if (Instruction *I = dyn_cast<Instruction>(V))
4565 V = propagateMetadata(I, E->Scalars);
4566
4567 if (NeedToShuffleReuses)
4568 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4569
4570 E->VectorizedValue = V;
4571 ++NumVectorInstructions;
4572
4573 return V;
4574 }
4575 case Instruction::Call: {
4576 CallInst *CI = cast<CallInst>(VL0);
4577 setInsertPointAfterBundle(E);
4578
4579 Intrinsic::ID IID = Intrinsic::not_intrinsic;
4580 if (Function *FI = CI->getCalledFunction())
4581 IID = FI->getIntrinsicID();
4582
4583 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4584
4585 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4586 bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
4587 VecCallCosts.first <= VecCallCosts.second;
4588
4589 Value *ScalarArg = nullptr;
4590 std::vector<Value *> OpVecs;
4591 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4592 ValueList OpVL;
4593 // Some intrinsics have scalar arguments. This argument should not be
4594 // vectorized.
4595 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
4596 CallInst *CEI = cast<CallInst>(VL0);
4597 ScalarArg = CEI->getArgOperand(j);
4598 OpVecs.push_back(CEI->getArgOperand(j));
4599 continue;
4600 }
4601
4602 Value *OpVec = vectorizeTree(E->getOperand(j));
4603 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: OpVec[" << j << "]: "
<< *OpVec << "\n"; } } while (false)
;
4604 OpVecs.push_back(OpVec);
4605 }
4606
4607 Function *CF;
4608 if (!UseIntrinsic) {
4609 VFShape Shape =
4610 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
4611 VecTy->getNumElements())),
4612 false /*HasGlobalPred*/);
4613 CF = VFDatabase(*CI).getVectorizedFunction(Shape);
4614 } else {
4615 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())};
4616 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
4617 }
4618
4619 SmallVector<OperandBundleDef, 1> OpBundles;
4620 CI->getOperandBundlesAsDefs(OpBundles);
4621 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4622
4623 // The scalar argument uses an in-tree scalar so we add the new vectorized
4624 // call to ExternalUses list to make sure that an extract will be
4625 // generated in the future.
4626 if (ScalarArg && getTreeEntry(ScalarArg))
4627 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
4628
4629 propagateIRFlags(V, E->Scalars, VL0);
4630 if (NeedToShuffleReuses)
4631 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4632
4633 E->VectorizedValue = V;
4634 ++NumVectorInstructions;
4635 return V;
4636 }
4637 case Instruction::ShuffleVector: {
4638 assert(E->isAltShuffle() &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4643, __PRETTY_FUNCTION__))
4639 ((Instruction::isBinaryOp(E->getOpcode()) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4643, __PRETTY_FUNCTION__))
4640 Instruction::isBinaryOp(E->getAltOpcode())) ||((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4643, __PRETTY_FUNCTION__))
4641 (Instruction::isCast(E->getOpcode()) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4643, __PRETTY_FUNCTION__))
4642 Instruction::isCast(E->getAltOpcode()))) &&((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4643, __PRETTY_FUNCTION__))
4643 "Invalid Shuffle Vector Operand")((E->isAltShuffle() && ((Instruction::isBinaryOp(E
->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode
())) || (Instruction::isCast(E->getOpcode()) && Instruction
::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4643, __PRETTY_FUNCTION__))
;
4644
4645 Value *LHS = nullptr, *RHS = nullptr;
4646 if (Instruction::isBinaryOp(E->getOpcode())) {
4647 setInsertPointAfterBundle(E);
4648 LHS = vectorizeTree(E->getOperand(0));
4649 RHS = vectorizeTree(E->getOperand(1));
4650 } else {
4651 setInsertPointAfterBundle(E);
4652 LHS = vectorizeTree(E->getOperand(0));
4653 }
4654
4655 if (E->VectorizedValue) {
4656 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
4657 return E->VectorizedValue;
4658 }
4659
4660 Value *V0, *V1;
4661 if (Instruction::isBinaryOp(E->getOpcode())) {
4662 V0 = Builder.CreateBinOp(
4663 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
4664 V1 = Builder.CreateBinOp(
4665 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
4666 } else {
4667 V0 = Builder.CreateCast(
4668 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
4669 V1 = Builder.CreateCast(
4670 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
4671 }
4672
4673 // Create shuffle to take alternate operations from the vector.
4674 // Also, gather up main and alt scalar ops to propagate IR flags to
4675 // each vector operation.
4676 ValueList OpScalars, AltScalars;
4677 unsigned e = E->Scalars.size();
4678 SmallVector<int, 8> Mask(e);
4679 for (unsigned i = 0; i < e; ++i) {
4680 auto *OpInst = cast<Instruction>(E->Scalars[i]);
4681 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode")((E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"
) ? static_cast<void> (0) : __assert_fail ("E->isOpcodeOrAlt(OpInst) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4681, __PRETTY_FUNCTION__))
;
4682 if (OpInst->getOpcode() == E->getAltOpcode()) {
4683 Mask[i] = e + i;
4684 AltScalars.push_back(E->Scalars[i]);
4685 } else {
4686 Mask[i] = i;
4687 OpScalars.push_back(E->Scalars[i]);
4688 }
4689 }
4690
4691 propagateIRFlags(V0, OpScalars);
4692 propagateIRFlags(V1, AltScalars);
4693
4694 Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
4695 if (Instruction *I = dyn_cast<Instruction>(V))
4696 V = propagateMetadata(I, E->Scalars);
4697 if (NeedToShuffleReuses)
4698 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4699
4700 E->VectorizedValue = V;
4701 ++NumVectorInstructions;
4702
4703 return V;
4704 }
4705 default:
4706 llvm_unreachable("unknown inst")::llvm::llvm_unreachable_internal("unknown inst", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4706)
;
4707 }
4708 return nullptr;
4709}
4710
4711Value *BoUpSLP::vectorizeTree() {
4712 ExtraValueToDebugLocsMap ExternallyUsedValues;
4713 return vectorizeTree(ExternallyUsedValues);
4714}
4715
4716Value *
4717BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4718 // All blocks must be scheduled before any instructions are inserted.
4719 for (auto &BSIter : BlocksSchedules) {
4720 scheduleBlock(BSIter.second.get());
4721 }
4722
4723 Builder.SetInsertPoint(&F->getEntryBlock().front());
4724 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4725
4726 // If the vectorized tree can be rewritten in a smaller type, we truncate the
4727 // vectorized root. InstCombine will then rewrite the entire expression. We
4728 // sign extend the extracted values below.
4729 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4730 if (MinBWs.count(ScalarRoot)) {
4731 if (auto *I = dyn_cast<Instruction>(VectorRoot))
4732 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4733 auto BundleWidth = VectorizableTree[0]->Scalars.size();
4734 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4735 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
4736 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
4737 VectorizableTree[0]->VectorizedValue = Trunc;
4738 }
4739
4740 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
4741 << " values .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
;
4742
4743 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
4744 // specified by ScalarType.
4745 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
4746 if (!MinBWs.count(ScalarRoot))
4747 return Ex;
4748 if (MinBWs[ScalarRoot].second)
4749 return Builder.CreateSExt(Ex, ScalarType);
4750 return Builder.CreateZExt(Ex, ScalarType);
4751 };
4752
4753 // Extract all of the elements with the external uses.
4754 for (const auto &ExternalUse : ExternalUses) {
4755 Value *Scalar = ExternalUse.Scalar;
4756 llvm::User *User = ExternalUse.User;
4757
4758 // Skip users that we already RAUW. This happens when one instruction
4759 // has multiple uses of the same value.
4760 if (User && !is_contained(Scalar->users(), User))
4761 continue;
4762 TreeEntry *E = getTreeEntry(Scalar);
4763 assert(E && "Invalid scalar")((E && "Invalid scalar") ? static_cast<void> (0
) : __assert_fail ("E && \"Invalid scalar\"", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4763, __PRETTY_FUNCTION__))
;
4764 assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list")((E->State == TreeEntry::Vectorize && "Extracting from a gather list"
) ? static_cast<void> (0) : __assert_fail ("E->State == TreeEntry::Vectorize && \"Extracting from a gather list\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4764, __PRETTY_FUNCTION__))
;
4765
4766 Value *Vec = E->VectorizedValue;
4767 assert(Vec && "Can't find vectorizable value")((Vec && "Can't find vectorizable value") ? static_cast
<void> (0) : __assert_fail ("Vec && \"Can't find vectorizable value\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4767, __PRETTY_FUNCTION__))
;
4768
4769 Value *Lane = Builder.getInt32(ExternalUse.Lane);
4770 // If User == nullptr, the Scalar is used as extra arg. Generate
4771 // ExtractElement instruction and update the record for this scalar in
4772 // ExternallyUsedValues.
4773 if (!User) {
4774 assert(ExternallyUsedValues.count(Scalar) &&((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4776, __PRETTY_FUNCTION__))
4775 "Scalar with nullptr as an external user must be registered in "((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4776, __PRETTY_FUNCTION__))
4776 "ExternallyUsedValues map")((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4776, __PRETTY_FUNCTION__))
;
4777 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4778 Builder.SetInsertPoint(VecI->getParent(),
4779 std::next(VecI->getIterator()));
4780 } else {
4781 Builder.SetInsertPoint(&F->getEntryBlock().front());
4782 }
4783 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4784 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4785 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
4786 auto &Locs = ExternallyUsedValues[Scalar];
4787 ExternallyUsedValues.insert({Ex, Locs});
4788 ExternallyUsedValues.erase(Scalar);
4789 // Required to update internally referenced instructions.
4790 Scalar->replaceAllUsesWith(Ex);
4791 continue;
4792 }
4793
4794 // Generate extracts for out-of-tree users.
4795 // Find the insertion point for the extractelement lane.
4796 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4797 if (PHINode *PH = dyn_cast<PHINode>(User)) {
4798 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
4799 if (PH->getIncomingValue(i) == Scalar) {
4800 Instruction *IncomingTerminator =
4801 PH->getIncomingBlock(i)->getTerminator();
4802 if (isa<CatchSwitchInst>(IncomingTerminator)) {
4803 Builder.SetInsertPoint(VecI->getParent(),
4804 std::next(VecI->getIterator()));
4805 } else {
4806 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
4807 }
4808 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4809 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4810 CSEBlocks.insert(PH->getIncomingBlock(i));
4811 PH->setOperand(i, Ex);
4812 }
4813 }
4814 } else {
4815 Builder.SetInsertPoint(cast<Instruction>(User));
4816 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4817 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4818 CSEBlocks.insert(cast<Instruction>(User)->getParent());
4819 User->replaceUsesOfWith(Scalar, Ex);
4820 }
4821 } else {
4822 Builder.SetInsertPoint(&F->getEntryBlock().front());
4823 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4824 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4825 CSEBlocks.insert(&F->getEntryBlock());
4826 User->replaceUsesOfWith(Scalar, Ex);
4827 }
4828
4829 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Replaced:" << *User <<
".\n"; } } while (false)
;
4830 }
4831
4832 // For each vectorized value:
4833 for (auto &TEPtr : VectorizableTree) {
4834 TreeEntry *Entry = TEPtr.get();
4835
4836 // No need to handle users of gathered values.
4837 if (Entry->State == TreeEntry::NeedToGather)
4838 continue;
4839
4840 assert(Entry->VectorizedValue && "Can't find vectorizable value")((Entry->VectorizedValue && "Can't find vectorizable value"
) ? static_cast<void> (0) : __assert_fail ("Entry->VectorizedValue && \"Can't find vectorizable value\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4840, __PRETTY_FUNCTION__))
;
4841
4842 // For each lane:
4843 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4844 Value *Scalar = Entry->Scalars[Lane];
4845
4846#ifndef NDEBUG
4847 Type *Ty = Scalar->getType();
4848 if (!Ty->isVoidTy()) {
4849 for (User *U : Scalar->users()) {
4850 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tvalidating user:" <<
*U << ".\n"; } } while (false)
;
4851
4852 // It is legal to delete users in the ignorelist.
4853 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&(((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
"Deleting out-of-tree value") ? static_cast<void> (0) :
__assert_fail ("(getTreeEntry(U) || is_contained(UserIgnoreList, U)) && \"Deleting out-of-tree value\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4854, __PRETTY_FUNCTION__))
4854 "Deleting out-of-tree value")(((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
"Deleting out-of-tree value") ? static_cast<void> (0) :
__assert_fail ("(getTreeEntry(U) || is_contained(UserIgnoreList, U)) && \"Deleting out-of-tree value\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4854, __PRETTY_FUNCTION__))
;
4855 }
4856 }
4857#endif
4858 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tErasing scalar:" << *
Scalar << ".\n"; } } while (false)
;
4859 eraseInstruction(cast<Instruction>(Scalar));
4860 }
4861 }
4862
4863 Builder.ClearInsertionPoint();
4864 InstrElementSize.clear();
4865
4866 return VectorizableTree[0]->VectorizedValue;
4867}
4868
4869void BoUpSLP::optimizeGatherSequence() {
4870 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
20
Assuming 'DebugFlag' is false
21
Loop condition is false. Exiting loop
4871 << " gather sequences instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
;
4872 // LICM InsertElementInst sequences.
4873 for (Instruction *I : GatherSeq) {
4874 if (isDeleted(I))
4875 continue;
4876
4877 // Check if this block is inside a loop.
4878 Loop *L = LI->getLoopFor(I->getParent());
4879 if (!L)
4880 continue;
4881
4882 // Check if it has a preheader.
4883 BasicBlock *PreHeader = L->getLoopPreheader();
4884 if (!PreHeader)
4885 continue;
4886
4887 // If the vector or the element that we insert into it are
4888 // instructions that are defined in this basic block then we can't
4889 // hoist this instruction.
4890 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4891 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4892 if (Op0 && L->contains(Op0))
4893 continue;
4894 if (Op1 && L->contains(Op1))
4895 continue;
4896
4897 // We can hoist this instruction. Move it to the pre-header.
4898 I->moveBefore(PreHeader->getTerminator());
4899 }
4900
4901 // Make a list of all reachable blocks in our CSE queue.
4902 SmallVector<const DomTreeNode *, 8> CSEWorkList;
4903 CSEWorkList.reserve(CSEBlocks.size());
4904 for (BasicBlock *BB : CSEBlocks)
4905 if (DomTreeNode *N = DT->getNode(BB)) {
4906 assert(DT->isReachableFromEntry(N))((DT->isReachableFromEntry(N)) ? static_cast<void> (
0) : __assert_fail ("DT->isReachableFromEntry(N)", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4906, __PRETTY_FUNCTION__))
;
4907 CSEWorkList.push_back(N);
4908 }
4909
4910 // Sort blocks by domination. This ensures we visit a block after all blocks
4911 // dominating it are visited.
4912 llvm::stable_sort(CSEWorkList,
4913 [this](const DomTreeNode *A, const DomTreeNode *B) {
4914 return DT->properlyDominates(A, B);
4915 });
4916
4917 // Perform O(N^2) search over the gather sequences and merge identical
4918 // instructions. TODO: We can further optimize this scan if we split the
4919 // instructions into different buckets based on the insert lane.
4920 SmallVector<Instruction *, 16> Visited;
4921 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
22
Assuming 'I' is not equal to 'E'
23
Loop condition is true. Entering loop body
4922 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&(((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev
(I))) && "Worklist not sorted properly!") ? static_cast
<void> (0) : __assert_fail ("(I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4923, __PRETTY_FUNCTION__))
24
Assuming the condition is false
25
Calling 'DominatorTreeBase::dominates'
32
Returning from 'DominatorTreeBase::dominates'
33
'?' condition is true
4923 "Worklist not sorted properly!")(((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev
(I))) && "Worklist not sorted properly!") ? static_cast
<void> (0) : __assert_fail ("(I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4923, __PRETTY_FUNCTION__))
;
4924 BasicBlock *BB = (*I)->getBlock();
34
Called C++ object pointer is null
4925 // For all instructions in blocks containing gather sequences:
4926 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
4927 Instruction *In = &*it++;
4928 if (isDeleted(In))
4929 continue;
4930 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
4931 continue;
4932
4933 // Check if we can replace this instruction with any of the
4934 // visited instructions.
4935 for (Instruction *v : Visited) {
4936 if (In->isIdenticalTo(v) &&
4937 DT->dominates(v->getParent(), In->getParent())) {
4938 In->replaceAllUsesWith(v);
4939 eraseInstruction(In);
4940 In = nullptr;
4941 break;
4942 }
4943 }
4944 if (In) {
4945 assert(!is_contained(Visited, In))((!is_contained(Visited, In)) ? static_cast<void> (0) :
__assert_fail ("!is_contained(Visited, In)", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4945, __PRETTY_FUNCTION__))
;
4946 Visited.push_back(In);
4947 }
4948 }
4949 }
4950 CSEBlocks.clear();
4951 GatherSeq.clear();
4952}
4953
4954// Groups the instructions to a bundle (which is then a single scheduling entity)
4955// and schedules instructions until the bundle gets ready.
4956Optional<BoUpSLP::ScheduleData *>
4957BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
4958 const InstructionsState &S) {
4959 if (isa<PHINode>(S.OpValue))
4960 return nullptr;
4961
4962 // Initialize the instruction bundle.
4963 Instruction *OldScheduleEnd = ScheduleEnd;
4964 ScheduleData *PrevInBundle = nullptr;
4965 ScheduleData *Bundle = nullptr;
4966 bool ReSchedule = false;
4967 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle: " << *S.OpValue
<< "\n"; } } while (false)
;
4968
4969 // Make sure that the scheduling region contains all
4970 // instructions of the bundle.
4971 for (Value *V : VL) {
4972 if (!extendSchedulingRegion(V, S))
4973 return None;
4974 }
4975
4976 for (Value *V : VL) {
4977 ScheduleData *BundleMember = getScheduleData(V);
4978 assert(BundleMember &&((BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? static_cast<void> (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4979, __PRETTY_FUNCTION__))
4979 "no ScheduleData for bundle member (maybe not in same basic block)")((BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? static_cast<void> (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4979, __PRETTY_FUNCTION__))
;
4980 if (BundleMember->IsScheduled) {
4981 // A bundle member was scheduled as single instruction before and now
4982 // needs to be scheduled as part of the bundle. We just get rid of the
4983 // existing schedule.
4984 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
4985 << " was already scheduled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
;
4986 ReSchedule = true;
4987 }
4988 assert(BundleMember->isSchedulingEntity() &&((BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4989, __PRETTY_FUNCTION__))
4989 "bundle member already part of other bundle")((BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4989, __PRETTY_FUNCTION__))
;
4990 if (PrevInBundle) {
4991 PrevInBundle->NextInBundle = BundleMember;
4992 } else {
4993 Bundle = BundleMember;
4994 }
4995 BundleMember->UnscheduledDepsInBundle = 0;
4996 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
4997
4998 // Group the instructions to a bundle.
4999 BundleMember->FirstInBundle = Bundle;
5000 PrevInBundle = BundleMember;
5001 }
5002 if (ScheduleEnd != OldScheduleEnd) {
5003 // The scheduling region got new instructions at the lower end (or it is a
5004 // new region for the first bundle). This makes it necessary to
5005 // recalculate all dependencies.
5006 // It is seldom that this needs to be done a second time after adding the
5007 // initial bundle to the region.
5008 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5009 doForAllOpcodes(I, [](ScheduleData *SD) {
5010 SD->clearDependencies();
5011 });
5012 }
5013 ReSchedule = true;
5014 }
5015 if (ReSchedule) {
5016 resetSchedule();
5017 initialFillReadyList(ReadyInsts);
5018 }
5019 assert(Bundle && "Failed to find schedule bundle")((Bundle && "Failed to find schedule bundle") ? static_cast
<void> (0) : __assert_fail ("Bundle && \"Failed to find schedule bundle\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5019, __PRETTY_FUNCTION__))
;
5020
5021 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
5022 << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
;
5023
5024 calculateDependencies(Bundle, true, SLP);
5025
5026 // Now try to schedule the new bundle. As soon as the bundle is "ready" it
5027 // means that there are no cyclic dependencies and we can schedule it.
5028 // Note that's important that we don't "schedule" the bundle yet (see
5029 // cancelScheduling).
5030 while (!Bundle->isReady() && !ReadyInsts.empty()) {
5031
5032 ScheduleData *pickedSD = ReadyInsts.back();
5033 ReadyInsts.pop_back();
5034
5035 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
5036 schedule(pickedSD, ReadyInsts);
5037 }
5038 }
5039 if (!Bundle->isReady()) {
5040 cancelScheduling(VL, S.OpValue);
5041 return None;
5042 }
5043 return Bundle;
5044}
5045
5046void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
5047 Value *OpValue) {
5048 if (isa<PHINode>(OpValue))
5049 return;
5050
5051 ScheduleData *Bundle = getScheduleData(OpValue);
5052 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: cancel scheduling of " <<
*Bundle << "\n"; } } while (false)
;
5053 assert(!Bundle->IsScheduled &&((!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"
) ? static_cast<void> (0) : __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5054, __PRETTY_FUNCTION__))
5054 "Can't cancel bundle which is already scheduled")((!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"
) ? static_cast<void> (0) : __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5054, __PRETTY_FUNCTION__))
;
5055 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&((Bundle->isSchedulingEntity() && Bundle->isPartOfBundle
() && "tried to unbundle something which is not a bundle"
) ? static_cast<void> (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5056, __PRETTY_FUNCTION__))
5056 "tried to unbundle something which is not a bundle")((Bundle->isSchedulingEntity() && Bundle->isPartOfBundle
() && "tried to unbundle something which is not a bundle"
) ? static_cast<void> (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5056, __PRETTY_FUNCTION__))
;
5057
5058 // Un-bundle: make single instructions out of the bundle.
5059 ScheduleData *BundleMember = Bundle;
5060 while (BundleMember) {
5061 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links")((BundleMember->FirstInBundle == Bundle && "corrupt bundle links"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->FirstInBundle == Bundle && \"corrupt bundle links\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5061, __PRETTY_FUNCTION__))
;
5062 BundleMember->FirstInBundle = BundleMember;
5063 ScheduleData *Next = BundleMember->NextInBundle;
5064 BundleMember->NextInBundle = nullptr;
5065 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
5066 if (BundleMember->UnscheduledDepsInBundle == 0) {
5067 ReadyInsts.insert(BundleMember);
5068 }
5069 BundleMember = Next;
5070 }
5071}
5072
5073BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
5074 // Allocate a new ScheduleData for the instruction.
5075 if (ChunkPos >= ChunkSize) {
5076 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
5077 ChunkPos = 0;
5078 }
5079 return &(ScheduleDataChunks.back()[ChunkPos++]);
5080}
5081
5082bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
5083 const InstructionsState &S) {
5084 if (getScheduleData(V, isOneOf(S, V)))
5085 return true;
5086 Instruction *I = dyn_cast<Instruction>(V);
5087 assert(I && "bundle member must be an instruction")((I && "bundle member must be an instruction") ? static_cast
<void> (0) : __assert_fail ("I && \"bundle member must be an instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5087, __PRETTY_FUNCTION__))
;
5088 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled")((!isa<PHINode>(I) && "phi nodes don't need to be scheduled"
) ? static_cast<void> (0) : __assert_fail ("!isa<PHINode>(I) && \"phi nodes don't need to be scheduled\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5088, __PRETTY_FUNCTION__))
;
5089 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
5090 ScheduleData *ISD = getScheduleData(I);
5091 if (!ISD)
5092 return false;
5093 assert(isInSchedulingRegion(ISD) &&((isInSchedulingRegion(ISD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5094, __PRETTY_FUNCTION__))
5094 "ScheduleData not in scheduling region")((isInSchedulingRegion(ISD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5094, __PRETTY_FUNCTION__))
;
5095 ScheduleData *SD = allocateScheduleDataChunks();
5096 SD->Inst = I;
5097 SD->init(SchedulingRegionID, S.OpValue);
5098 ExtraScheduleDataMap[I][S.OpValue] = SD;
5099 return true;
5100 };
5101 if (CheckSheduleForI(I))
5102 return true;
5103 if (!ScheduleStart) {
5104 // It's the first instruction in the new region.
5105 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
5106 ScheduleStart = I;
5107 ScheduleEnd = I->getNextNode();
5108 if (isOneOf(S, I) != I)
5109 CheckSheduleForI(I);
5110 assert(ScheduleEnd && "tried to vectorize a terminator?")((ScheduleEnd && "tried to vectorize a terminator?") ?
static_cast<void> (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5110, __PRETTY_FUNCTION__))
;
5111 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initialize schedule region to "
<< *I << "\n"; } } while (false)
;
5112 return true;
5113 }
5114 // Search up and down at the same time, because we don't know if the new
5115 // instruction is above or below the existing scheduling region.
5116 BasicBlock::reverse_iterator UpIter =
5117 ++ScheduleStart->getIterator().getReverse();
5118 BasicBlock::reverse_iterator UpperEnd = BB->rend();
5119 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
5120 BasicBlock::iterator LowerEnd = BB->end();
5121 while (true) {
5122 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
5123 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: exceeded schedule region size limit\n"
; } } while (false)
;
5124 return false;
5125 }
5126
5127 if (UpIter != UpperEnd) {
5128 if (&*UpIter == I) {
5129 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
5130 ScheduleStart = I;
5131 if (isOneOf(S, I) != I)
5132 CheckSheduleForI(I);
5133 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
5134 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
;
5135 return true;
5136 }
5137 ++UpIter;
5138 }
5139 if (DownIter != LowerEnd) {
5140 if (&*DownIter == I) {
5141 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
5142 nullptr);
5143 ScheduleEnd = I->getNextNode();
5144 if (isOneOf(S, I) != I)
5145 CheckSheduleForI(I);
5146 assert(ScheduleEnd && "tried to vectorize a terminator?")((ScheduleEnd && "tried to vectorize a terminator?") ?
static_cast<void> (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5146, __PRETTY_FUNCTION__))
;
5147 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region end to "
<< *I << "\n"; } } while (false)
5148 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region end to "
<< *I << "\n"; } } while (false)
;
5149 return true;
5150 }
5151 ++DownIter;
5152 }
5153 assert((UpIter != UpperEnd || DownIter != LowerEnd) &&(((UpIter != UpperEnd || DownIter != LowerEnd) && "instruction not found in block"
) ? static_cast<void> (0) : __assert_fail ("(UpIter != UpperEnd || DownIter != LowerEnd) && \"instruction not found in block\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5154, __PRETTY_FUNCTION__))
5154 "instruction not found in block")(((UpIter != UpperEnd || DownIter != LowerEnd) && "instruction not found in block"
) ? static_cast<void> (0) : __assert_fail ("(UpIter != UpperEnd || DownIter != LowerEnd) && \"instruction not found in block\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5154, __PRETTY_FUNCTION__))
;
5155 }
5156 return true;
5157}
5158
5159void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
5160 Instruction *ToI,
5161 ScheduleData *PrevLoadStore,
5162 ScheduleData *NextLoadStore) {
5163 ScheduleData *CurrentLoadStore = PrevLoadStore;
5164 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
5165 ScheduleData *SD = ScheduleDataMap[I];
5166 if (!SD) {
5167 SD = allocateScheduleDataChunks();
5168 ScheduleDataMap[I] = SD;
5169 SD->Inst = I;
5170 }
5171 assert(!isInSchedulingRegion(SD) &&((!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5172, __PRETTY_FUNCTION__))
5172 "new ScheduleData already in scheduling region")((!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5172, __PRETTY_FUNCTION__))
;
5173 SD->init(SchedulingRegionID, I);
5174
5175 if (I->mayReadOrWriteMemory() &&
5176 (!isa<IntrinsicInst>(I) ||
5177 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
5178 // Update the linked list of memory accessing instructions.
5179 if (CurrentLoadStore) {
5180 CurrentLoadStore->NextLoadStore = SD;
5181 } else {
5182 FirstLoadStoreInRegion = SD;
5183 }
5184 CurrentLoadStore = SD;
5185 }
5186 }
5187 if (NextLoadStore) {
5188 if (CurrentLoadStore)
5189 CurrentLoadStore->NextLoadStore = NextLoadStore;
5190 } else {
5191 LastLoadStoreInRegion = CurrentLoadStore;
5192 }
5193}
5194
5195void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
5196 bool InsertInReadyList,
5197 BoUpSLP *SLP) {
5198 assert(SD->isSchedulingEntity())((SD->isSchedulingEntity()) ? static_cast<void> (0) :
__assert_fail ("SD->isSchedulingEntity()", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5198, __PRETTY_FUNCTION__))
;
5199
5200 SmallVector<ScheduleData *, 10> WorkList;
5201 WorkList.push_back(SD);
5202
5203 while (!WorkList.empty()) {
5204 ScheduleData *SD = WorkList.back();
5205 WorkList.pop_back();
5206
5207 ScheduleData *BundleMember = SD;
5208 while (BundleMember) {
5209 assert(isInSchedulingRegion(BundleMember))((isInSchedulingRegion(BundleMember)) ? static_cast<void>
(0) : __assert_fail ("isInSchedulingRegion(BundleMember)", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5209, __PRETTY_FUNCTION__))
;
5210 if (!BundleMember->hasValidDependencies()) {
5211
5212 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
5213 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
;
5214 BundleMember->Dependencies = 0;
5215 BundleMember->resetUnscheduledDeps();
5216
5217 // Handle def-use chain dependencies.
5218 if (BundleMember->OpValue != BundleMember->Inst) {
5219 ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
5220 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5221 BundleMember->Dependencies++;
5222 ScheduleData *DestBundle = UseSD->FirstInBundle;
5223 if (!DestBundle->IsScheduled)
5224 BundleMember->incrementUnscheduledDeps(1);
5225 if (!DestBundle->hasValidDependencies())
5226 WorkList.push_back(DestBundle);
5227 }
5228 } else {
5229 for (User *U : BundleMember->Inst->users()) {
5230 if (isa<Instruction>(U)) {
5231 ScheduleData *UseSD = getScheduleData(U);
5232 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5233 BundleMember->Dependencies++;
5234 ScheduleData *DestBundle = UseSD->FirstInBundle;
5235 if (!DestBundle->IsScheduled)
5236 BundleMember->incrementUnscheduledDeps(1);
5237 if (!DestBundle->hasValidDependencies())
5238 WorkList.push_back(DestBundle);
5239 }
5240 } else {
5241 // I'm not sure if this can ever happen. But we need to be safe.
5242 // This lets the instruction/bundle never be scheduled and
5243 // eventually disable vectorization.
5244 BundleMember->Dependencies++;
5245 BundleMember->incrementUnscheduledDeps(1);
5246 }
5247 }
5248 }
5249
5250 // Handle the memory dependencies.
5251 ScheduleData *DepDest = BundleMember->NextLoadStore;
5252 if (DepDest) {
5253 Instruction *SrcInst = BundleMember->Inst;
5254 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
5255 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
5256 unsigned numAliased = 0;
5257 unsigned DistToSrc = 1;
5258
5259 while (DepDest) {
5260 assert(isInSchedulingRegion(DepDest))((isInSchedulingRegion(DepDest)) ? static_cast<void> (0
) : __assert_fail ("isInSchedulingRegion(DepDest)", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5260, __PRETTY_FUNCTION__))
;
5261
5262 // We have two limits to reduce the complexity:
5263 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
5264 // SLP->isAliased (which is the expensive part in this loop).
5265 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
5266 // the whole loop (even if the loop is fast, it's quadratic).
5267 // It's important for the loop break condition (see below) to
5268 // check this limit even between two read-only instructions.
5269 if (DistToSrc >= MaxMemDepDistance ||
5270 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
5271 (numAliased >= AliasedCheckLimit ||
5272 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
5273
5274 // We increment the counter only if the locations are aliased
5275 // (instead of counting all alias checks). This gives a better
5276 // balance between reduced runtime and accurate dependencies.
5277 numAliased++;
5278
5279 DepDest->MemoryDependencies.push_back(BundleMember);
5280 BundleMember->Dependencies++;
5281 ScheduleData *DestBundle = DepDest->FirstInBundle;
5282 if (!DestBundle->IsScheduled) {
5283 BundleMember->incrementUnscheduledDeps(1);
5284 }
5285 if (!DestBundle->hasValidDependencies()) {
5286 WorkList.push_back(DestBundle);
5287 }
5288 }
5289 DepDest = DepDest->NextLoadStore;
5290
5291 // Example, explaining the loop break condition: Let's assume our
5292 // starting instruction is i0 and MaxMemDepDistance = 3.
5293 //
5294 // +--------v--v--v
5295 // i0,i1,i2,i3,i4,i5,i6,i7,i8
5296 // +--------^--^--^
5297 //
5298 // MaxMemDepDistance let us stop alias-checking at i3 and we add
5299 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
5300 // Previously we already added dependencies from i3 to i6,i7,i8
5301 // (because of MaxMemDepDistance). As we added a dependency from
5302 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
5303 // and we can abort this loop at i6.
5304 if (DistToSrc >= 2 * MaxMemDepDistance)
5305 break;
5306 DistToSrc++;
5307 }
5308 }
5309 }
5310 BundleMember = BundleMember->NextInBundle;
5311 }
5312 if (InsertInReadyList && SD->isReady()) {
5313 ReadyInsts.push_back(SD);
5314 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Instdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
5315 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
;
5316 }
5317 }
5318}
5319
5320void BoUpSLP::BlockScheduling::resetSchedule() {
5321 assert(ScheduleStart &&((ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? static_cast<void> (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5322, __PRETTY_FUNCTION__))
5322 "tried to reset schedule on block which has not been scheduled")((ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? static_cast<void> (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5322, __PRETTY_FUNCTION__))
;
5323 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5324 doForAllOpcodes(I, [&](ScheduleData *SD) {
5325 assert(isInSchedulingRegion(SD) &&((isInSchedulingRegion(SD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5326, __PRETTY_FUNCTION__))
5326 "ScheduleData not in scheduling region")((isInSchedulingRegion(SD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5326, __PRETTY_FUNCTION__))
;
5327 SD->IsScheduled = false;
5328 SD->resetUnscheduledDeps();
5329 });
5330 }
5331 ReadyInsts.clear();
5332}
5333
5334void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
5335 if (!BS->ScheduleStart)
5336 return;
5337
5338 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule block " << BS
->BB->getName() << "\n"; } } while (false)
;
5339
5340 BS->resetSchedule();
5341
5342 // For the real scheduling we use a more sophisticated ready-list: it is
5343 // sorted by the original instruction location. This lets the final schedule
5344 // be as close as possible to the original instruction order.
5345 struct ScheduleDataCompare {
5346 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
5347 return SD2->SchedulingPriority < SD1->SchedulingPriority;
5348 }
5349 };
5350 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
5351
5352 // Ensure that all dependency data is updated and fill the ready-list with
5353 // initial instructions.
5354 int Idx = 0;
5355 int NumToSchedule = 0;
5356 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
5357 I = I->getNextNode()) {
5358 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
5359 assert(SD->isPartOfBundle() ==((SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr
) && "scheduler and vectorizer bundle mismatch") ? static_cast
<void> (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5361, __PRETTY_FUNCTION__))
5360 (getTreeEntry(SD->Inst) != nullptr) &&((SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr
) && "scheduler and vectorizer bundle mismatch") ? static_cast
<void> (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5361, __PRETTY_FUNCTION__))
5361 "scheduler and vectorizer bundle mismatch")((SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr
) && "scheduler and vectorizer bundle mismatch") ? static_cast
<void> (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5361, __PRETTY_FUNCTION__))
;
5362 SD->FirstInBundle->SchedulingPriority = Idx++;
5363 if (SD->isSchedulingEntity()) {
5364 BS->calculateDependencies(SD, false, this);
5365 NumToSchedule++;
5366 }
5367 });
5368 }
5369 BS->initialFillReadyList(ReadyInsts);
5370
5371 Instruction *LastScheduledInst = BS->ScheduleEnd;
5372
5373 // Do the "real" scheduling.
5374 while (!ReadyInsts.empty()) {
5375 ScheduleData *picked = *ReadyInsts.begin();
5376 ReadyInsts.erase(ReadyInsts.begin());
5377
5378 // Move the scheduled instruction(s) to their dedicated places, if not
5379 // there yet.
5380 ScheduleData *BundleMember = picked;
5381 while (BundleMember) {
5382 Instruction *pickedInst = BundleMember->Inst;
5383 if (LastScheduledInst->getNextNode() != pickedInst) {
5384 BS->BB->getInstList().remove(pickedInst);
5385 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
5386 pickedInst);
5387 }
5388 LastScheduledInst = pickedInst;
5389 BundleMember = BundleMember->NextInBundle;
5390 }
5391
5392 BS->schedule(picked, ReadyInsts);
5393 NumToSchedule--;
5394 }
5395 assert(NumToSchedule == 0 && "could not schedule all instructions")((NumToSchedule == 0 && "could not schedule all instructions"
) ? static_cast<void> (0) : __assert_fail ("NumToSchedule == 0 && \"could not schedule all instructions\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5395, __PRETTY_FUNCTION__))
;
5396
5397 // Avoid duplicate scheduling of the block.
5398 BS->ScheduleStart = nullptr;
5399}
5400
5401unsigned BoUpSLP::getVectorElementSize(Value *V) {
5402 // If V is a store, just return the width of the stored value without
5403 // traversing the expression tree. This is the common case.
5404 if (auto *Store = dyn_cast<StoreInst>(V))
5405 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
5406
5407 auto E = InstrElementSize.find(V);
5408 if (E != InstrElementSize.end())
5409 return E->second;
5410
5411 // If V is not a store, we can traverse the expression tree to find loads
5412 // that feed it. The type of the loaded value may indicate a more suitable
5413 // width than V's type. We want to base the vector element size on the width
5414 // of memory operations where possible.
5415 SmallVector<Instruction *, 16> Worklist;
5416 SmallPtrSet<Instruction *, 16> Visited;
5417 if (auto *I = dyn_cast<Instruction>(V)) {
5418 Worklist.push_back(I);
5419 Visited.insert(I);
5420 }
5421
5422 // Traverse the expression tree in bottom-up order looking for loads. If we
5423 // encounter an instruction we don't yet handle, we give up.
5424 auto MaxWidth = 0u;
5425 auto FoundUnknownInst = false;
5426 while (!Worklist.empty() && !FoundUnknownInst) {
5427 auto *I = Worklist.pop_back_val();
5428
5429 // We should only be looking at scalar instructions here. If the current
5430 // instruction has a vector type, give up.
5431 auto *Ty = I->getType();
5432 if (isa<VectorType>(Ty))
5433 FoundUnknownInst = true;
5434
5435 // If the current instruction is a load, update MaxWidth to reflect the
5436 // width of the loaded value.
5437 else if (isa<LoadInst>(I))
5438 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
5439
5440 // Otherwise, we need to visit the operands of the instruction. We only
5441 // handle the interesting cases from buildTree here. If an operand is an
5442 // instruction we haven't yet visited, we add it to the worklist.
5443 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5444 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
5445 for (Use &U : I->operands())
5446 if (auto *J = dyn_cast<Instruction>(U.get()))
5447 if (Visited.insert(J).second)
5448 Worklist.push_back(J);
5449 }
5450
5451 // If we don't yet handle the instruction, give up.
5452 else
5453 FoundUnknownInst = true;
5454 }
5455
5456 int Width = MaxWidth;
5457 // If we didn't encounter a memory access in the expression tree, or if we
5458 // gave up for some reason, just return the width of V. Otherwise, return the
5459 // maximum width we found.
5460 if (!MaxWidth || FoundUnknownInst)
5461 Width = DL->getTypeSizeInBits(V->getType());
5462
5463 for (Instruction *I : Visited)
5464 InstrElementSize[I] = Width;
5465
5466 return Width;
5467}
5468
5469// Determine if a value V in a vectorizable expression Expr can be demoted to a
5470// smaller type with a truncation. We collect the values that will be demoted
5471// in ToDemote and additional roots that require investigating in Roots.
5472static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
5473 SmallVectorImpl<Value *> &ToDemote,
5474 SmallVectorImpl<Value *> &Roots) {
5475 // We can always demote constants.
5476 if (isa<Constant>(V)) {
5477 ToDemote.push_back(V);
5478 return true;
5479 }
5480
5481 // If the value is not an instruction in the expression with only one use, it
5482 // cannot be demoted.
5483 auto *I = dyn_cast<Instruction>(V);
5484 if (!I || !I->hasOneUse() || !Expr.count(I))
5485 return false;
5486
5487 switch (I->getOpcode()) {
5488
5489 // We can always demote truncations and extensions. Since truncations can
5490 // seed additional demotion, we save the truncated value.
5491 case Instruction::Trunc:
5492 Roots.push_back(I->getOperand(0));
5493 break;
5494 case Instruction::ZExt:
5495 case Instruction::SExt:
5496 break;
5497
5498 // We can demote certain binary operations if we can demote both of their
5499 // operands.
5500 case Instruction::Add:
5501 case Instruction::Sub:
5502 case Instruction::Mul:
5503 case Instruction::And:
5504 case Instruction::Or:
5505 case Instruction::Xor:
5506 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5507 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5508 return false;
5509 break;
5510
5511 // We can demote selects if we can demote their true and false values.
5512 case Instruction::Select: {
5513 SelectInst *SI = cast<SelectInst>(I);
5514 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5515 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5516 return false;
5517 break;
5518 }
5519
5520 // We can demote phis if we can demote all their incoming operands. Note that
5521 // we don't need to worry about cycles since we ensure single use above.
5522 case Instruction::PHI: {
5523 PHINode *PN = cast<PHINode>(I);
5524 for (Value *IncValue : PN->incoming_values())
5525 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5526 return false;
5527 break;
5528 }
5529
5530 // Otherwise, conservatively give up.
5531 default:
5532 return false;
5533 }
5534
5535 // Record the value that we can demote.
5536 ToDemote.push_back(V);
5537 return true;
5538}
5539
5540void BoUpSLP::computeMinimumValueSizes() {
5541 // If there are no external uses, the expression tree must be rooted by a
5542 // store. We can't demote in-memory values, so there is nothing to do here.
5543 if (ExternalUses.empty())
5544 return;
5545
5546 // We only attempt to truncate integer expressions.
5547 auto &TreeRoot = VectorizableTree[0]->Scalars;
5548 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5549 if (!TreeRootIT)
5550 return;
5551
5552 // If the expression is not rooted by a store, these roots should have
5553 // external uses. We will rely on InstCombine to rewrite the expression in
5554 // the narrower type. However, InstCombine only rewrites single-use values.
5555 // This means that if a tree entry other than a root is used externally, it
5556 // must have multiple uses and InstCombine will not rewrite it. The code
5557 // below ensures that only the roots are used externally.
5558 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
5559 for (auto &EU : ExternalUses)
5560 if (!Expr.erase(EU.Scalar))
5561 return;
5562 if (!Expr.empty())
5563 return;
5564
5565 // Collect the scalar values of the vectorizable expression. We will use this
5566 // context to determine which values can be demoted. If we see a truncation,
5567 // we mark it as seeding another demotion.
5568 for (auto &EntryPtr : VectorizableTree)
5569 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5570
5571 // Ensure the roots of the vectorizable tree don't form a cycle. They must
5572 // have a single external user that is not in the vectorizable tree.
5573 for (auto *Root : TreeRoot)
5574 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5575 return;
5576
5577 // Conservatively determine if we can actually truncate the roots of the
5578 // expression. Collect the values that can be demoted in ToDemote and
5579 // additional roots that require investigating in Roots.
5580 SmallVector<Value *, 32> ToDemote;
5581 SmallVector<Value *, 4> Roots;
5582 for (auto *Root : TreeRoot)
5583 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5584 return;
5585
5586 // The maximum bit width required to represent all the values that can be
5587 // demoted without loss of precision. It would be safe to truncate the roots
5588 // of the expression to this width.
5589 auto MaxBitWidth = 8u;
5590
5591 // We first check if all the bits of the roots are demanded. If they're not,
5592 // we can truncate the roots to this narrower type.
5593 for (auto *Root : TreeRoot) {
5594 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5595 MaxBitWidth = std::max<unsigned>(
5596 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5597 }
5598
5599 // True if the roots can be zero-extended back to their original type, rather
5600 // than sign-extended. We know that if the leading bits are not demanded, we
5601 // can safely zero-extend. So we initialize IsKnownPositive to True.
5602 bool IsKnownPositive = true;
5603
5604 // If all the bits of the roots are demanded, we can try a little harder to
5605 // compute a narrower type. This can happen, for example, if the roots are
5606 // getelementptr indices. InstCombine promotes these indices to the pointer
5607 // width. Thus, all their bits are technically demanded even though the
5608 // address computation might be vectorized in a smaller type.
5609 //
5610 // We start by looking at each entry that can be demoted. We compute the
5611 // maximum bit width required to store the scalar by using ValueTracking to
5612 // compute the number of high-order bits we can truncate.
5613 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
5614 llvm::all_of(TreeRoot, [](Value *R) {
5615 assert(R->hasOneUse() && "Root should have only one use!")((R->hasOneUse() && "Root should have only one use!"
) ? static_cast<void> (0) : __assert_fail ("R->hasOneUse() && \"Root should have only one use!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5615, __PRETTY_FUNCTION__))
;
5616 return isa<GetElementPtrInst>(R->user_back());
5617 })) {
5618 MaxBitWidth = 8u;
5619
5620 // Determine if the sign bit of all the roots is known to be zero. If not,
5621 // IsKnownPositive is set to False.
5622 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
5623 KnownBits Known = computeKnownBits(R, *DL);
5624 return Known.isNonNegative();
5625 });
5626
5627 // Determine the maximum number of bits required to store the scalar
5628 // values.
5629 for (auto *Scalar : ToDemote) {
5630 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
5631 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
5632 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
5633 }
5634
5635 // If we can't prove that the sign bit is zero, we must add one to the
5636 // maximum bit width to account for the unknown sign bit. This preserves
5637 // the existing sign bit so we can safely sign-extend the root back to the
5638 // original type. Otherwise, if we know the sign bit is zero, we will
5639 // zero-extend the root instead.
5640 //
5641 // FIXME: This is somewhat suboptimal, as there will be cases where adding
5642 // one to the maximum bit width will yield a larger-than-necessary
5643 // type. In general, we need to add an extra bit only if we can't
5644 // prove that the upper bit of the original type is equal to the
5645 // upper bit of the proposed smaller type. If these two bits are the
5646 // same (either zero or one) we know that sign-extending from the
5647 // smaller type will result in the same value. Here, since we can't
5648 // yet prove this, we are just making the proposed smaller type
5649 // larger to ensure correctness.
5650 if (!IsKnownPositive)
5651 ++MaxBitWidth;
5652 }
5653
5654 // Round MaxBitWidth up to the next power-of-two.
5655 if (!isPowerOf2_64(MaxBitWidth))
5656 MaxBitWidth = NextPowerOf2(MaxBitWidth);
5657
5658 // If the maximum bit width we compute is less than the with of the roots'
5659 // type, we can proceed with the narrowing. Otherwise, do nothing.
5660 if (MaxBitWidth >= TreeRootIT->getBitWidth())
5661 return;
5662
5663 // If we can truncate the root, we must collect additional values that might
5664 // be demoted as a result. That is, those seeded by truncations we will
5665 // modify.
5666 while (!Roots.empty())
5667 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
5668
5669 // Finally, map the values we can demote to the maximum bit with we computed.
5670 for (auto *Scalar : ToDemote)
5671 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
5672}
5673
5674namespace {
5675
5676/// The SLPVectorizer Pass.
5677struct SLPVectorizer : public FunctionPass {
5678 SLPVectorizerPass Impl;
5679
5680 /// Pass identification, replacement for typeid
5681 static char ID;
5682
5683 explicit SLPVectorizer() : FunctionPass(ID) {
5684 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
5685 }
5686
5687 bool doInitialization(Module &M) override {
5688 return false;
5689 }
5690
5691 bool runOnFunction(Function &F) override {
5692 if (skipFunction(F))
1
Assuming the condition is false
2
Taking false branch
5693 return false;
5694
5695 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5696 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5697 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5698 auto *TLI = TLIP
2.1
'TLIP' is null
2.1
'TLIP' is null
? &TLIP->getTLI(F) : nullptr;
3
'?' condition is false
5699 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5700 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5701 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5702 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5703 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
5704 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5705
5706 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4
Calling 'SLPVectorizerPass::runImpl'
5707 }
5708
5709 void getAnalysisUsage(AnalysisUsage &AU) const override {
5710 FunctionPass::getAnalysisUsage(AU);
5711 AU.addRequired<AssumptionCacheTracker>();
5712 AU.addRequired<ScalarEvolutionWrapperPass>();
5713 AU.addRequired<AAResultsWrapperPass>();
5714 AU.addRequired<TargetTransformInfoWrapperPass>();
5715 AU.addRequired<LoopInfoWrapperPass>();
5716 AU.addRequired<DominatorTreeWrapperPass>();
5717 AU.addRequired<DemandedBitsWrapperPass>();
5718 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5719 AU.addRequired<InjectTLIMappingsLegacy>();
5720 AU.addPreserved<LoopInfoWrapperPass>();
5721 AU.addPreserved<DominatorTreeWrapperPass>();
5722 AU.addPreserved<AAResultsWrapperPass>();
5723 AU.addPreserved<GlobalsAAWrapperPass>();
5724 AU.setPreservesCFG();
5725 }
5726};
5727
5728} // end anonymous namespace
5729
5730PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
5731 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
5732 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
5733 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
5734 auto *AA = &AM.getResult<AAManager>(F);
5735 auto *LI = &AM.getResult<LoopAnalysis>(F);
5736 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
5737 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
5738 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
5739 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5740
5741 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5742 if (!Changed)
5743 return PreservedAnalyses::all();
5744
5745 PreservedAnalyses PA;
5746 PA.preserveSet<CFGAnalyses>();
5747 PA.preserve<AAManager>();
5748 PA.preserve<GlobalsAA>();
5749 return PA;
5750}
5751
5752bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
5753 TargetTransformInfo *TTI_,
5754 TargetLibraryInfo *TLI_, AAResults *AA_,
5755 LoopInfo *LI_, DominatorTree *DT_,
5756 AssumptionCache *AC_, DemandedBits *DB_,
5757 OptimizationRemarkEmitter *ORE_) {
5758 if (!RunSLPVectorization)
5
Assuming the condition is false
6
Taking false branch
5759 return false;
5760 SE = SE_;
5761 TTI = TTI_;
5762 TLI = TLI_;
5763 AA = AA_;
5764 LI = LI_;
5765 DT = DT_;
5766 AC = AC_;
5767 DB = DB_;
5768 DL = &F.getParent()->getDataLayout();
5769
5770 Stores.clear();
5771 GEPs.clear();
5772 bool Changed = false;
5773
5774 // If the target claims to have no vector registers don't attempt
5775 // vectorization.
5776 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
7
Assuming the condition is false
8
Taking false branch
5777 return false;
5778
5779 // Don't vectorize when the attribute NoImplicitFloat is used.
5780 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
9
Assuming the condition is false
10
Taking false branch
5781 return false;
5782
5783 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing blocks in " <<
F.getName() << ".\n"; } } while (false)
;
11
Assuming 'DebugFlag' is false
12
Loop condition is false. Exiting loop
5784
5785 // Use the bottom up slp vectorizer to construct chains that start with
5786 // store instructions.
5787 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
5788
5789 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
5790 // delete instructions.
5791
5792 // Scan the blocks in the function in post order.
5793 for (auto BB : post_order(&F.getEntryBlock())) {
5794 collectSeedInstructions(BB);
5795
5796 // Vectorize trees that end at stores.
5797 if (!Stores.empty()) {
13
Assuming the condition is false
14
Taking false branch
5798 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
5799 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
;
5800 Changed |= vectorizeStoreChains(R);
5801 }
5802
5803 // Vectorize trees that end at reductions.
5804 Changed |= vectorizeChainsInBlock(BB, R);
5805
5806 // Vectorize the index computations of getelementptr instructions. This
5807 // is primarily intended to catch gather-like idioms ending at
5808 // non-consecutive loads.
5809 if (!GEPs.empty()) {
15
Assuming the condition is false
16
Taking false branch
5810 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
5811 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
;
5812 Changed |= vectorizeGEPIndices(BB, R);
5813 }
5814 }
5815
5816 if (Changed) {
17
Assuming 'Changed' is true
18
Taking true branch
5817 R.optimizeGatherSequence();
19
Calling 'BoUpSLP::optimizeGatherSequence'
5818 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: vectorized \"" << F.getName
() << "\"\n"; } } while (false)
;
5819 }
5820 return Changed;
5821}
5822
5823bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
5824 unsigned Idx) {
5825 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
5826 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
;
5827 const unsigned Sz = R.getVectorElementSize(Chain[0]);
5828 const unsigned MinVF = R.getMinVecRegSize() / Sz;
5829 unsigned VF = Chain.size();
5830
5831 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
5832 return false;
5833
5834 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
5835 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
;
5836
5837 R.buildTree(Chain);
5838 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5839 // TODO: Handle orders of size less than number of elements in the vector.
5840 if (Order && Order->size() == Chain.size()) {
5841 // TODO: reorder tree nodes without tree rebuilding.
5842 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
5843 llvm::transform(*Order, ReorderedOps.begin(),
5844 [Chain](const unsigned Idx) { return Chain[Idx]; });
5845 R.buildTree(ReorderedOps);
5846 }
5847 if (R.isTreeTinyAndNotFullyVectorizable())
5848 return false;
5849 if (R.isLoadCombineCandidate())
5850 return false;
5851
5852 R.computeMinimumValueSizes();
5853
5854 int Cost = R.getTreeCost();
5855
5856 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost=" << Cost <<
" for VF=" << VF << "\n"; } } while (false)
;
5857 if (Cost < -SLPCostThreshold) {
5858 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Decided to vectorize cost=" <<
Cost << "\n"; } } while (false)
;
5859
5860 using namespace ore;
5861
5862 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "StoresVectorized",
5863 cast<StoreInst>(Chain[0]))
5864 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
5865 << " and with tree size "
5866 << NV("TreeSize", R.getTreeSize()));
5867
5868 R.vectorizeTree();
5869 return true;
5870 }
5871
5872 return false;
5873}
5874
5875bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
5876 BoUpSLP &R) {
5877 // We may run into multiple chains that merge into a single chain. We mark the
5878 // stores that we vectorized so that we don't visit the same store twice.
5879 BoUpSLP::ValueSet VectorizedStores;
5880 bool Changed = false;
5881
5882 int E = Stores.size();
5883 SmallBitVector Tails(E, false);
5884 SmallVector<int, 16> ConsecutiveChain(E, E + 1);
5885 int MaxIter = MaxStoreLookup.getValue();
5886 int IterCnt;
5887 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
5888 &ConsecutiveChain](int K, int Idx) {
5889 if (IterCnt >= MaxIter)
5890 return true;
5891 ++IterCnt;
5892 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
5893 return false;
5894
5895 Tails.set(Idx);
5896 ConsecutiveChain[K] = Idx;
5897 return true;
5898 };
5899 // Do a quadratic search on all of the given stores in reverse order and find
5900 // all of the pairs of stores that follow each other.
5901 for (int Idx = E - 1; Idx >= 0; --Idx) {
5902 // If a store has multiple consecutive store candidates, search according
5903 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
5904 // This is because usually pairing with immediate succeeding or preceding
5905 // candidate create the best chance to find slp vectorization opportunity.
5906 const int MaxLookDepth = std::max(E - Idx, Idx + 1);
5907 IterCnt = 0;
5908 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
5909 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
5910 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
5911 break;
5912 }
5913
5914 // For stores that start but don't end a link in the chain:
5915 for (int Cnt = E; Cnt > 0; --Cnt) {
5916 int I = Cnt - 1;
5917 if (ConsecutiveChain[I] == E + 1 || Tails.test(I))
5918 continue;
5919 // We found a store instr that starts a chain. Now follow the chain and try
5920 // to vectorize it.
5921 BoUpSLP::ValueList Operands;
5922 // Collect the chain into a list.
5923 while (I != E + 1 && !VectorizedStores.count(Stores[I])) {
5924 Operands.push_back(Stores[I]);
5925 // Move to the next value in the chain.
5926 I = ConsecutiveChain[I];
5927 }
5928
5929 // If a vector register can't hold 1 element, we are done.
5930 unsigned MaxVecRegSize = R.getMaxVecRegSize();
5931 unsigned EltSize = R.getVectorElementSize(Stores[0]);
5932 if (MaxVecRegSize % EltSize != 0)
5933 continue;
5934
5935 unsigned MaxElts = MaxVecRegSize / EltSize;
5936 // FIXME: Is division-by-2 the correct step? Should we assert that the
5937 // register size is a power-of-2?
5938 unsigned StartIdx = 0;
5939 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) {
5940 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
5941 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
5942 if (!VectorizedStores.count(Slice.front()) &&
5943 !VectorizedStores.count(Slice.back()) &&
5944 vectorizeStoreChain(Slice, R, Cnt)) {
5945 // Mark the vectorized stores so that we don't vectorize them again.
5946 VectorizedStores.insert(Slice.begin(), Slice.end());
5947 Changed = true;
5948 // If we vectorized initial block, no need to try to vectorize it
5949 // again.
5950 if (Cnt == StartIdx)
5951 StartIdx += Size;
5952 Cnt += Size;
5953 continue;
5954 }
5955 ++Cnt;
5956 }
5957 // Check if the whole array was vectorized already - exit.
5958 if (StartIdx >= Operands.size())
5959 break;
5960 }
5961 }
5962
5963 return Changed;
5964}
5965
5966void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
5967 // Initialize the collections. We will make a single pass over the block.
5968 Stores.clear();
5969 GEPs.clear();
5970
5971 // Visit the store and getelementptr instructions in BB and organize them in
5972 // Stores and GEPs according to the underlying objects of their pointer
5973 // operands.
5974 for (Instruction &I : *BB) {
5975 // Ignore store instructions that are volatile or have a pointer operand
5976 // that doesn't point to a scalar type.
5977 if (auto *SI = dyn_cast<StoreInst>(&I)) {
5978 if (!SI->isSimple())
5979 continue;
5980 if (!isValidElementType(SI->getValueOperand()->getType()))
5981 continue;
5982 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
5983 }
5984
5985 // Ignore getelementptr instructions that have more than one index, a
5986 // constant index, or a pointer operand that doesn't point to a scalar
5987 // type.
5988 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
5989 auto Idx = GEP->idx_begin()->get();
5990 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
5991 continue;
5992 if (!isValidElementType(Idx->getType()))
5993 continue;
5994 if (GEP->getType()->isVectorTy())
5995 continue;
5996 GEPs[GEP->getPointerOperand()].push_back(GEP);
5997 }
5998 }
5999}
6000
6001bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
6002 if (!A || !B)
6003 return false;
6004 Value *VL[] = {A, B};
6005 return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
6006}
6007
6008bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
6009 bool AllowReorder,
6010 ArrayRef<Value *> InsertUses) {
6011 if (VL.size() < 2)
6012 return false;
6013
6014 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
6015 << VL.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
;
6016
6017 // Check that all of the parts are instructions of the same type,
6018 // we permit an alternate opcode via InstructionsState.
6019 InstructionsState S = getSameOpcode(VL);
6020 if (!S.getOpcode())
6021 return false;
6022
6023 Instruction *I0 = cast<Instruction>(S.OpValue);
6024 // Make sure invalid types (including vector type) are rejected before
6025 // determining vectorization factor for scalar instructions.
6026 for (Value *V : VL) {
6027 Type *Ty = V->getType();
6028 if (!isValidElementType(Ty)) {
6029 // NOTE: the following will give user internal llvm type name, which may
6030 // not be useful.
6031 R.getORE()->emit([&]() {
6032 std::string type_str;
6033 llvm::raw_string_ostream rso(type_str);
6034 Ty->print(rso);
6035 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "UnsupportedType", I0)
6036 << "Cannot SLP vectorize list: type "
6037 << rso.str() + " is unsupported by vectorizer";
6038 });
6039 return false;
6040 }
6041 }
6042
6043 unsigned Sz = R.getVectorElementSize(I0);
6044 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
6045 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
6046 if (MaxVF < 2) {
6047 R.getORE()->emit([&]() {
6048 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "SmallVF", I0)
6049 << "Cannot SLP vectorize list: vectorization factor "
6050 << "less than 2 is not supported";
6051 });
6052 return false;
6053 }
6054
6055 bool Changed = false;
6056 bool CandidateFound = false;
6057 int MinCost = SLPCostThreshold;
6058
6059 bool CompensateUseCost =
6060 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) {
6061 return V && isa<InsertElementInst>(V);
6062 });
6063 assert((!CompensateUseCost || InsertUses.size() == VL.size()) &&(((!CompensateUseCost || InsertUses.size() == VL.size()) &&
"Each scalar expected to have an associated InsertElement user."
) ? static_cast<void> (0) : __assert_fail ("(!CompensateUseCost || InsertUses.size() == VL.size()) && \"Each scalar expected to have an associated InsertElement user.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6064, __PRETTY_FUNCTION__))
6064 "Each scalar expected to have an associated InsertElement user.")(((!CompensateUseCost || InsertUses.size() == VL.size()) &&
"Each scalar expected to have an associated InsertElement user."
) ? static_cast<void> (0) : __assert_fail ("(!CompensateUseCost || InsertUses.size() == VL.size()) && \"Each scalar expected to have an associated InsertElement user.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6064, __PRETTY_FUNCTION__))
;
6065
6066 unsigned NextInst = 0, MaxInst = VL.size();
6067 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
6068 // No actual vectorization should happen, if number of parts is the same as
6069 // provided vectorization factor (i.e. the scalar type is used for vector
6070 // code during codegen).
6071 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF);
6072 if (TTI->getNumberOfParts(VecTy) == VF)
6073 continue;
6074 for (unsigned I = NextInst; I < MaxInst; ++I) {
6075 unsigned OpsWidth = 0;
6076
6077 if (I + VF > MaxInst)
6078 OpsWidth = MaxInst - I;
6079 else
6080 OpsWidth = VF;
6081
6082 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
6083 break;
6084
6085 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
6086 // Check that a previous iteration of this loop did not delete the Value.
6087 if (llvm::any_of(Ops, [&R](Value *V) {
6088 auto *I = dyn_cast<Instruction>(V);
6089 return I && R.isDeleted(I);
6090 }))
6091 continue;
6092
6093 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
6094 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
;
6095
6096 R.buildTree(Ops);
6097 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6098 // TODO: check if we can allow reordering for more cases.
6099 if (AllowReorder && Order) {
6100 // TODO: reorder tree nodes without tree rebuilding.
6101 // Conceptually, there is nothing actually preventing us from trying to
6102 // reorder a larger list. In fact, we do exactly this when vectorizing
6103 // reductions. However, at this point, we only expect to get here when
6104 // there are exactly two operations.
6105 assert(Ops.size() == 2)((Ops.size() == 2) ? static_cast<void> (0) : __assert_fail
("Ops.size() == 2", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6105, __PRETTY_FUNCTION__))
;
6106 Value *ReorderedOps[] = {Ops[1], Ops[0]};
6107 R.buildTree(ReorderedOps, None);
6108 }
6109 if (R.isTreeTinyAndNotFullyVectorizable())
6110 continue;
6111
6112 R.computeMinimumValueSizes();
6113 int Cost = R.getTreeCost();
6114 CandidateFound = true;
6115 if (CompensateUseCost) {
6116 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts
6117 // rather than sum of single inserts as the latter may overestimate
6118 // cost. This work should imply improving cost estimation for extracts
6119 // that added in for external (for vectorization tree) users,i.e. that
6120 // part should also switch to same interface.
6121 // For example, the following case is projected code after SLP:
6122 // %4 = extractelement <4 x i64> %3, i32 0
6123 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0
6124 // %5 = extractelement <4 x i64> %3, i32 1
6125 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1
6126 // %6 = extractelement <4 x i64> %3, i32 2
6127 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2
6128 // %7 = extractelement <4 x i64> %3, i32 3
6129 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3
6130 //
6131 // Extracts here added by SLP in order to feed users (the inserts) of
6132 // original scalars and contribute to "ExtractCost" at cost evaluation.
6133 // The inserts in turn form sequence to build an aggregate that
6134 // detected by findBuildAggregate routine.
6135 // SLP makes an assumption that such sequence will be optimized away
6136 // later (instcombine) so it tries to compensate ExctractCost with
6137 // cost of insert sequence.
6138 // Current per element cost calculation approach is not quite accurate
6139 // and tends to create bias toward favoring vectorization.
6140 // Switching to the TTI interface might help a bit.
6141 // Alternative solution could be pattern-match to detect a no-op or
6142 // shuffle.
6143 unsigned UserCost = 0;
6144 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) {
6145 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]);
6146 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
6147 UserCost += TTI->getVectorInstrCost(
6148 Instruction::InsertElement, IE->getType(), CI->getZExtValue());
6149 }
6150 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Compensate cost of users by: "
<< UserCost << ".\n"; } } while (false)
6151 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Compensate cost of users by: "
<< UserCost << ".\n"; } } while (false)
;
6152 Cost -= UserCost;
6153 }
6154
6155 MinCost = std::min(MinCost, Cost);
6156
6157 if (Cost < -SLPCostThreshold) {
6158 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing list at cost:" <<
Cost << ".\n"; } } while (false)
;
6159 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedList",
6160 cast<Instruction>(Ops[0]))
6161 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
6162 << " and with tree size "
6163 << ore::NV("TreeSize", R.getTreeSize()));
6164
6165 R.vectorizeTree();
6166 // Move to the next bundle.
6167 I += VF - 1;
6168 NextInst = I + 1;
6169 Changed = true;
6170 }
6171 }
6172 }
6173
6174 if (!Changed && CandidateFound) {
6175 R.getORE()->emit([&]() {
6176 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotBeneficial", I0)
6177 << "List vectorization was possible but not beneficial with cost "
6178 << ore::NV("Cost", MinCost) << " >= "
6179 << ore::NV("Treshold", -SLPCostThreshold);
6180 });
6181 } else if (!Changed) {
6182 R.getORE()->emit([&]() {
6183 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotPossible", I0)
6184 << "Cannot SLP vectorize list: vectorization was impossible"
6185 << " with available vectorization factors";
6186 });
6187 }
6188 return Changed;
6189}
6190
6191bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
6192 if (!I)
6193 return false;
6194
6195 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
6196 return false;
6197
6198 Value *P = I->getParent();
6199
6200 // Vectorize in current basic block only.
6201 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
6202 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
6203 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
6204 return false;
6205
6206 // Try to vectorize V.
6207 if (tryToVectorizePair(Op0, Op1, R))
6208 return true;
6209
6210 auto *A = dyn_cast<BinaryOperator>(Op0);
6211 auto *B = dyn_cast<BinaryOperator>(Op1);
6212 // Try to skip B.
6213 if (B && B->hasOneUse()) {
6214 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
6215 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
6216 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
6217 return true;
6218 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
6219 return true;
6220 }
6221
6222 // Try to skip A.
6223 if (A && A->hasOneUse()) {
6224 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
6225 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
6226 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
6227 return true;
6228 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
6229 return true;
6230 }
6231 return false;
6232}
6233
6234/// Generate a shuffle mask to be used in a reduction tree.
6235///
6236/// \param VecLen The length of the vector to be reduced.
6237/// \param NumEltsToRdx The number of elements that should be reduced in the
6238/// vector.
6239/// \param IsPairwise Whether the reduction is a pairwise or splitting
6240/// reduction. A pairwise reduction will generate a mask of
6241/// <0,2,...> or <1,3,..> while a splitting reduction will generate
6242/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
6243/// \param IsLeft True will generate a mask of even elements, odd otherwise.
6244static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen,
6245 unsigned NumEltsToRdx,
6246 bool IsPairwise, bool IsLeft) {
6247 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask")(((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"
) ? static_cast<void> (0) : __assert_fail ("(IsPairwise || !IsLeft) && \"Don't support a <0,1,undef,...> mask\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6247, __PRETTY_FUNCTION__))
;
6248
6249 SmallVector<int, 32> ShuffleMask(VecLen, -1);
6250
6251 if (IsPairwise)
6252 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
6253 for (unsigned i = 0; i != NumEltsToRdx; ++i)
6254 ShuffleMask[i] = 2 * i + !IsLeft;
6255 else
6256 // Move the upper half of the vector to the lower half.
6257 for (unsigned i = 0; i != NumEltsToRdx; ++i)
6258 ShuffleMask[i] = NumEltsToRdx + i;
6259
6260 return ShuffleMask;
6261}
6262
6263namespace {
6264
6265/// Model horizontal reductions.
6266///
6267/// A horizontal reduction is a tree of reduction operations (currently add and
6268/// fadd) that has operations that can be put into a vector as its leaf.
6269/// For example, this tree:
6270///
6271/// mul mul mul mul
6272/// \ / \ /
6273/// + +
6274/// \ /
6275/// +
6276/// This tree has "mul" as its reduced values and "+" as its reduction
6277/// operations. A reduction might be feeding into a store or a binary operation
6278/// feeding a phi.
6279/// ...
6280/// \ /
6281/// +
6282/// |
6283/// phi +=
6284///
6285/// Or:
6286/// ...
6287/// \ /
6288/// +
6289/// |
6290/// *p =
6291///
6292class HorizontalReduction {
6293 using ReductionOpsType = SmallVector<Value *, 16>;
6294 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
6295 ReductionOpsListType ReductionOps;
6296 SmallVector<Value *, 32> ReducedVals;
6297 // Use map vector to make stable output.
6298 MapVector<Instruction *, Value *> ExtraArgs;
6299
6300 /// Kind of the reduction data.
6301 enum ReductionKind {
6302 RK_None, /// Not a reduction.
6303 RK_Arithmetic, /// Binary reduction data.
6304 RK_SMin, /// Signed minimum reduction data.
6305 RK_UMin, /// Unsigned minimum reduction data.
6306 RK_SMax, /// Signed maximum reduction data.
6307 RK_UMax, /// Unsigned maximum reduction data.
6308 };
6309
6310 /// Contains info about operation, like its opcode, left and right operands.
6311 class OperationData {
6312 /// Opcode of the instruction.
6313 unsigned Opcode = 0;
6314
6315 /// Kind of the reduction operation.
6316 ReductionKind Kind = RK_None;
6317
6318 /// Checks if the reduction operation can be vectorized.
6319 bool isVectorizable() const {
6320 // We currently only support add/mul/logical && min/max reductions.
6321 return ((Kind == RK_Arithmetic &&
6322 (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
6323 Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
6324 Opcode == Instruction::And || Opcode == Instruction::Or ||
6325 Opcode == Instruction::Xor)) ||
6326 (Opcode == Instruction::ICmp &&
6327 (Kind == RK_SMin || Kind == RK_SMax ||
6328 Kind == RK_UMin || Kind == RK_UMax)));
6329 }
6330
6331 /// Creates reduction operation with the current opcode.
6332 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS,
6333 const Twine &Name) const {
6334 assert(isVectorizable() &&((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6335, __PRETTY_FUNCTION__))
6335 "Expected add|fadd or min/max reduction operation.")((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6335, __PRETTY_FUNCTION__))
;
6336 Value *Cmp = nullptr;
6337 switch (Kind) {
6338 case RK_Arithmetic:
6339 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
6340 Name);
6341 case RK_SMin:
6342 assert(Opcode == Instruction::ICmp && "Expected integer types.")((Opcode == Instruction::ICmp && "Expected integer types."
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::ICmp && \"Expected integer types.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6342, __PRETTY_FUNCTION__))
;
6343 Cmp = Builder.CreateICmpSLT(LHS, RHS);
6344 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6345 case RK_SMax:
6346 assert(Opcode == Instruction::ICmp && "Expected integer types.")((Opcode == Instruction::ICmp && "Expected integer types."
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::ICmp && \"Expected integer types.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6346, __PRETTY_FUNCTION__))
;
6347 Cmp = Builder.CreateICmpSGT(LHS, RHS);
6348 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6349 case RK_UMin:
6350 assert(Opcode == Instruction::ICmp && "Expected integer types.")((Opcode == Instruction::ICmp && "Expected integer types."
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::ICmp && \"Expected integer types.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6350, __PRETTY_FUNCTION__))
;
6351 Cmp = Builder.CreateICmpULT(LHS, RHS);
6352 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6353 case RK_UMax:
6354 assert(Opcode == Instruction::ICmp && "Expected integer types.")((Opcode == Instruction::ICmp && "Expected integer types."
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::ICmp && \"Expected integer types.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6354, __PRETTY_FUNCTION__))
;
6355 Cmp = Builder.CreateICmpUGT(LHS, RHS);
6356 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6357 case RK_None:
6358 break;
6359 }
6360 llvm_unreachable("Unknown reduction operation.")::llvm::llvm_unreachable_internal("Unknown reduction operation."
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6360)
;
6361 }
6362
6363 public:
6364 explicit OperationData() = default;
6365
6366 /// Construction for reduced values. They are identified by opcode only and
6367 /// don't have associated LHS/RHS values.
6368 explicit OperationData(Instruction &I) {
6369 Opcode = I.getOpcode();
6370 }
6371
6372 /// Constructor for reduction operations with opcode and its left and
6373 /// right operands.
6374 OperationData(unsigned Opcode, ReductionKind Kind)
6375 : Opcode(Opcode), Kind(Kind) {
6376 assert(Kind != RK_None && "One of the reduction operations is expected.")((Kind != RK_None && "One of the reduction operations is expected."
) ? static_cast<void> (0) : __assert_fail ("Kind != RK_None && \"One of the reduction operations is expected.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6376, __PRETTY_FUNCTION__))
;
6377 }
6378
6379 explicit operator bool() const { return Opcode; }
6380
6381 /// Return true if this operation is any kind of minimum or maximum.
6382 bool isMinMax() const {
6383 switch (Kind) {
6384 case RK_Arithmetic:
6385 return false;
6386 case RK_SMin:
6387 case RK_SMax:
6388 case RK_UMin:
6389 case RK_UMax:
6390 return true;
6391 case RK_None:
6392 break;
6393 }
6394 llvm_unreachable("Reduction kind is not set")::llvm::llvm_unreachable_internal("Reduction kind is not set"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6394)
;
6395 }
6396
6397 /// Get the index of the first operand.
6398 unsigned getFirstOperandIndex() const {
6399 assert(!!*this && "The opcode is not set.")((!!*this && "The opcode is not set.") ? static_cast<
void> (0) : __assert_fail ("!!*this && \"The opcode is not set.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6399, __PRETTY_FUNCTION__))
;
6400 // We allow calling this before 'Kind' is set, so handle that specially.
6401 if (Kind == RK_None)
6402 return 0;
6403 return isMinMax() ? 1 : 0;
6404 }
6405
6406 /// Total number of operands in the reduction operation.
6407 unsigned getNumberOfOperands() const {
6408 assert(Kind != RK_None && !!*this && "Expected reduction operation.")((Kind != RK_None && !!*this && "Expected reduction operation."
) ? static_cast<void> (0) : __assert_fail ("Kind != RK_None && !!*this && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6408, __PRETTY_FUNCTION__))
;
6409 return isMinMax() ? 3 : 2;
6410 }
6411
6412 /// Checks if the instruction is in basic block \p BB.
6413 /// For a min/max reduction check that both compare and select are in \p BB.
6414 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const {
6415 assert(Kind != RK_None && !!*this && "Expected reduction operation.")((Kind != RK_None && !!*this && "Expected reduction operation."
) ? static_cast<void> (0) : __assert_fail ("Kind != RK_None && !!*this && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6415, __PRETTY_FUNCTION__))
;
6416 if (IsRedOp && isMinMax()) {
6417 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
6418 return I->getParent() == BB && Cmp && Cmp->getParent() == BB;
6419 }
6420 return I->getParent() == BB;
6421 }
6422
6423 /// Expected number of uses for reduction operations/reduced values.
6424 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
6425 assert(Kind != RK_None && !!*this && "Expected reduction operation.")((Kind != RK_None && !!*this && "Expected reduction operation."
) ? static_cast<void> (0) : __assert_fail ("Kind != RK_None && !!*this && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6425, __PRETTY_FUNCTION__))
;
6426 // SelectInst must be used twice while the condition op must have single
6427 // use only.
6428 if (isMinMax())
6429 return I->hasNUses(2) &&
6430 (!IsReductionOp ||
6431 cast<SelectInst>(I)->getCondition()->hasOneUse());
6432
6433 // Arithmetic reduction operation must be used once only.
6434 return I->hasOneUse();
6435 }
6436
6437 /// Initializes the list of reduction operations.
6438 void initReductionOps(ReductionOpsListType &ReductionOps) {
6439 assert(Kind != RK_None && !!*this && "Expected reduction operation.")((Kind != RK_None && !!*this && "Expected reduction operation."
) ? static_cast<void> (0) : __assert_fail ("Kind != RK_None && !!*this && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6439, __PRETTY_FUNCTION__))
;
6440 if (isMinMax())
6441 ReductionOps.assign(2, ReductionOpsType());
6442 else
6443 ReductionOps.assign(1, ReductionOpsType());
6444 }
6445
6446 /// Add all reduction operations for the reduction instruction \p I.
6447 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
6448 assert(Kind != RK_None && !!*this && "Expected reduction operation.")((Kind != RK_None && !!*this && "Expected reduction operation."
) ? static_cast<void> (0) : __assert_fail ("Kind != RK_None && !!*this && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6448, __PRETTY_FUNCTION__))
;
6449 if (isMinMax()) {
6450 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
6451 ReductionOps[1].emplace_back(I);
6452 } else {
6453 ReductionOps[0].emplace_back(I);
6454 }
6455 }
6456
6457 /// Checks if instruction is associative and can be vectorized.
6458 bool isAssociative(Instruction *I) const {
6459 assert(Kind != RK_None && *this && "Expected reduction operation.")((Kind != RK_None && *this && "Expected reduction operation."
) ? static_cast<void> (0) : __assert_fail ("Kind != RK_None && *this && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6459, __PRETTY_FUNCTION__))
;
6460 switch (Kind) {
6461 case RK_Arithmetic:
6462 return I->isAssociative();
6463 case RK_SMin:
6464 case RK_SMax:
6465 case RK_UMin:
6466 case RK_UMax:
6467 assert(Opcode == Instruction::ICmp &&((Opcode == Instruction::ICmp && "Only integer compare operation is expected."
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::ICmp && \"Only integer compare operation is expected.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6468, __PRETTY_FUNCTION__))
6468 "Only integer compare operation is expected.")((Opcode == Instruction::ICmp && "Only integer compare operation is expected."
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::ICmp && \"Only integer compare operation is expected.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6468, __PRETTY_FUNCTION__))
;
6469 return true;
6470 case RK_None:
6471 break;
6472 }
6473 llvm_unreachable("Reduction kind is not set")::llvm::llvm_unreachable_internal("Reduction kind is not set"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6473)
;
6474 }
6475
6476 /// Checks if the reduction operation can be vectorized.
6477 bool isVectorizable(Instruction *I) const {
6478 return isVectorizable() && isAssociative(I);
6479 }
6480
6481 /// Checks if two operation data are both a reduction op or both a reduced
6482 /// value.
6483 bool operator==(const OperationData &OD) const {
6484 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) &&((((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0
)) && "One of the comparing operations is incorrect."
) ? static_cast<void> (0) : __assert_fail ("((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && \"One of the comparing operations is incorrect.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6485, __PRETTY_FUNCTION__))
6485 "One of the comparing operations is incorrect.")((((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0
)) && "One of the comparing operations is incorrect."
) ? static_cast<void> (0) : __assert_fail ("((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && \"One of the comparing operations is incorrect.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6485, __PRETTY_FUNCTION__))
;
6486 return Kind == OD.Kind && Opcode == OD.Opcode;
6487 }
6488 bool operator!=(const OperationData &OD) const { return !(*this == OD); }
6489 void clear() {
6490 Opcode = 0;
6491 Kind = RK_None;
6492 }
6493
6494 /// Get the opcode of the reduction operation.
6495 unsigned getOpcode() const {
6496 assert(isVectorizable() && "Expected vectorizable operation.")((isVectorizable() && "Expected vectorizable operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected vectorizable operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6496, __PRETTY_FUNCTION__))
;
6497 return Opcode;
6498 }
6499
6500 /// Get kind of reduction data.
6501 ReductionKind getKind() const { return Kind; }
6502 Value *getLHS(Instruction *I) const {
6503 if (Kind == RK_None)
6504 return nullptr;
6505 return I->getOperand(getFirstOperandIndex());
6506 }
6507 Value *getRHS(Instruction *I) const {
6508 if (Kind == RK_None)
6509 return nullptr;
6510 return I->getOperand(getFirstOperandIndex() + 1);
6511 }
6512
6513 /// Creates reduction operation with the current opcode with the IR flags
6514 /// from \p ReductionOps.
6515 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS,
6516 const Twine &Name,
6517 const ReductionOpsListType &ReductionOps) const {
6518 assert(isVectorizable() &&((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6519, __PRETTY_FUNCTION__))
6519 "Expected add|fadd or min/max reduction operation.")((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6519, __PRETTY_FUNCTION__))
;
6520 auto *Op = createOp(Builder, LHS, RHS, Name);
6521 switch (Kind) {
6522 case RK_Arithmetic:
6523 propagateIRFlags(Op, ReductionOps[0]);
6524 return Op;
6525 case RK_SMin:
6526 case RK_SMax:
6527 case RK_UMin:
6528 case RK_UMax:
6529 if (auto *SI = dyn_cast<SelectInst>(Op))
6530 propagateIRFlags(SI->getCondition(), ReductionOps[0]);
6531 propagateIRFlags(Op, ReductionOps[1]);
6532 return Op;
6533 case RK_None:
6534 break;
6535 }
6536 llvm_unreachable("Unknown reduction operation.")::llvm::llvm_unreachable_internal("Unknown reduction operation."
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6536)
;
6537 }
6538 /// Creates reduction operation with the current opcode with the IR flags
6539 /// from \p I.
6540 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS,
6541 const Twine &Name, Instruction *I) const {
6542 assert(isVectorizable() &&((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6543, __PRETTY_FUNCTION__))
6543 "Expected add|fadd or min/max reduction operation.")((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6543, __PRETTY_FUNCTION__))
;
6544 auto *Op = createOp(Builder, LHS, RHS, Name);
6545 switch (Kind) {
6546 case RK_Arithmetic:
6547 propagateIRFlags(Op, I);
6548 return Op;
6549 case RK_SMin:
6550 case RK_SMax:
6551 case RK_UMin:
6552 case RK_UMax:
6553 if (auto *SI = dyn_cast<SelectInst>(Op)) {
6554 propagateIRFlags(SI->getCondition(),
6555 cast<SelectInst>(I)->getCondition());
6556 }
6557 propagateIRFlags(Op, I);
6558 return Op;
6559 case RK_None:
6560 break;
6561 }
6562 llvm_unreachable("Unknown reduction operation.")::llvm::llvm_unreachable_internal("Unknown reduction operation."
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6562)
;
6563 }
6564
6565 TargetTransformInfo::ReductionFlags getFlags() const {
6566 TargetTransformInfo::ReductionFlags Flags;
6567 switch (Kind) {
6568 case RK_Arithmetic:
6569 break;
6570 case RK_SMin:
6571 Flags.IsSigned = true;
6572 Flags.IsMaxOp = false;
6573 break;
6574 case RK_SMax:
6575 Flags.IsSigned = true;
6576 Flags.IsMaxOp = true;
6577 break;
6578 case RK_UMin:
6579 Flags.IsSigned = false;
6580 Flags.IsMaxOp = false;
6581 break;
6582 case RK_UMax:
6583 Flags.IsSigned = false;
6584 Flags.IsMaxOp = true;
6585 break;
6586 case RK_None:
6587 llvm_unreachable("Reduction kind is not set")::llvm::llvm_unreachable_internal("Reduction kind is not set"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6587)
;
6588 }
6589 return Flags;
6590 }
6591 };
6592
6593 WeakTrackingVH ReductionRoot;
6594
6595 /// The operation data of the reduction operation.
6596 OperationData ReductionData;
6597
6598 /// The operation data of the values we perform a reduction on.
6599 OperationData ReducedValueData;
6600
6601 /// Should we model this reduction as a pairwise reduction tree or a tree that
6602 /// splits the vector in halves and adds those halves.
6603 bool IsPairwiseReduction = false;
6604
6605 /// Checks if the ParentStackElem.first should be marked as a reduction
6606 /// operation with an extra argument or as extra argument itself.
6607 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6608 Value *ExtraArg) {
6609 if (ExtraArgs.count(ParentStackElem.first)) {
6610 ExtraArgs[ParentStackElem.first] = nullptr;
6611 // We ran into something like:
6612 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6613 // The whole ParentStackElem.first should be considered as an extra value
6614 // in this case.
6615 // Do not perform analysis of remaining operands of ParentStackElem.first
6616 // instruction, this whole instruction is an extra argument.
6617 ParentStackElem.second = ParentStackElem.first->getNumOperands();
6618 } else {
6619 // We ran into something like:
6620 // ParentStackElem.first += ... + ExtraArg + ...
6621 ExtraArgs[ParentStackElem.first] = ExtraArg;
6622 }
6623 }
6624
6625 static OperationData getOperationData(Instruction *I) {
6626 if (!I)
6627 return OperationData();
6628
6629 Value *LHS;
6630 Value *RHS;
6631 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) {
6632 return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic);
6633 }
6634 if (auto *Select = dyn_cast<SelectInst>(I)) {
6635 // Look for a min/max pattern.
6636 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6637 return OperationData(Instruction::ICmp, RK_UMin);
6638 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6639 return OperationData(Instruction::ICmp, RK_SMin);
6640 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6641 return OperationData(Instruction::ICmp, RK_UMax);
6642 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6643 return OperationData(Instruction::ICmp, RK_SMax);
6644 } else {
6645 // Try harder: look for min/max pattern based on instructions producing
6646 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6647 // During the intermediate stages of SLP, it's very common to have
6648 // pattern like this (since optimizeGatherSequence is run only once
6649 // at the end):
6650 // %1 = extractelement <2 x i32> %a, i32 0
6651 // %2 = extractelement <2 x i32> %a, i32 1
6652 // %cond = icmp sgt i32 %1, %2
6653 // %3 = extractelement <2 x i32> %a, i32 0
6654 // %4 = extractelement <2 x i32> %a, i32 1
6655 // %select = select i1 %cond, i32 %3, i32 %4
6656 CmpInst::Predicate Pred;
6657 Instruction *L1;
6658 Instruction *L2;
6659
6660 LHS = Select->getTrueValue();
6661 RHS = Select->getFalseValue();
6662 Value *Cond = Select->getCondition();
6663
6664 // TODO: Support inverse predicates.
6665 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6666 if (!isa<ExtractElementInst>(RHS) ||
6667 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6668 return OperationData(*I);
6669 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6670 if (!isa<ExtractElementInst>(LHS) ||
6671 !L1->isIdenticalTo(cast<Instruction>(LHS)))
6672 return OperationData(*I);
6673 } else {
6674 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6675 return OperationData(*I);
6676 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6677 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6678 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6679 return OperationData(*I);
6680 }
6681 switch (Pred) {
6682 default:
6683 return OperationData(*I);
6684
6685 case CmpInst::ICMP_ULT:
6686 case CmpInst::ICMP_ULE:
6687 return OperationData(Instruction::ICmp, RK_UMin);
6688
6689 case CmpInst::ICMP_SLT:
6690 case CmpInst::ICMP_SLE:
6691 return OperationData(Instruction::ICmp, RK_SMin);
6692
6693 case CmpInst::ICMP_UGT:
6694 case CmpInst::ICMP_UGE:
6695 return OperationData(Instruction::ICmp, RK_UMax);
6696
6697 case CmpInst::ICMP_SGT:
6698 case CmpInst::ICMP_SGE:
6699 return OperationData(Instruction::ICmp, RK_SMax);
6700 }
6701 }
6702 }
6703 return OperationData(*I);
6704 }
6705
6706public:
6707 HorizontalReduction() = default;
6708
6709 /// Try to find a reduction tree.
6710 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6711 assert((!Phi || is_contained(Phi->operands(), B)) &&(((!Phi || is_contained(Phi->operands(), B)) && "Thi phi needs to use the binary operator"
) ? static_cast<void> (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Thi phi needs to use the binary operator\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6712, __PRETTY_FUNCTION__))
6712 "Thi phi needs to use the binary operator")(((!Phi || is_contained(Phi->operands(), B)) && "Thi phi needs to use the binary operator"
) ? static_cast<void> (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Thi phi needs to use the binary operator\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6712, __PRETTY_FUNCTION__))
;
6713
6714 ReductionData = getOperationData(B);
6715
6716 // We could have a initial reductions that is not an add.
6717 // r *= v1 + v2 + v3 + v4
6718 // In such a case start looking for a tree rooted in the first '+'.
6719 if (Phi) {
6720 if (ReductionData.getLHS(B) == Phi) {
6721 Phi = nullptr;
6722 B = dyn_cast<Instruction>(ReductionData.getRHS(B));
6723 ReductionData = getOperationData(B);
6724 } else if (ReductionData.getRHS(B) == Phi) {
6725 Phi = nullptr;
6726 B = dyn_cast<Instruction>(ReductionData.getLHS(B));
6727 ReductionData = getOperationData(B);
6728 }
6729 }
6730
6731 if (!ReductionData.isVectorizable(B))
6732 return false;
6733
6734 Type *Ty = B->getType();
6735 if (!isValidElementType(Ty))
6736 return false;
6737 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
6738 return false;
6739
6740 ReducedValueData.clear();
6741 ReductionRoot = B;
6742
6743 // Post order traverse the reduction tree starting at B. We only handle true
6744 // trees containing only binary operators.
6745 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6746 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
6747 ReductionData.initReductionOps(ReductionOps);
6748 while (!Stack.empty()) {
6749 Instruction *TreeN = Stack.back().first;
6750 unsigned EdgeToVist = Stack.back().second++;
6751 OperationData OpData = getOperationData(TreeN);
6752 bool IsReducedValue = OpData != ReductionData;
6753
6754 // Postorder vist.
6755 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
6756 if (IsReducedValue)
6757 ReducedVals.push_back(TreeN);
6758 else {
6759 auto I = ExtraArgs.find(TreeN);
6760 if (I != ExtraArgs.end() && !I->second) {
6761 // Check if TreeN is an extra argument of its parent operation.
6762 if (Stack.size() <= 1) {
6763 // TreeN can't be an extra argument as it is a root reduction
6764 // operation.
6765 return false;
6766 }
6767 // Yes, TreeN is an extra argument, do not add it to a list of
6768 // reduction operations.
6769 // Stack[Stack.size() - 2] always points to the parent operation.
6770 markExtraArg(Stack[Stack.size() - 2], TreeN);
6771 ExtraArgs.erase(TreeN);
6772 } else
6773 ReductionData.addReductionOps(TreeN, ReductionOps);
6774 }
6775 // Retract.
6776 Stack.pop_back();
6777 continue;
6778 }
6779
6780 // Visit left or right.
6781 Value *NextV = TreeN->getOperand(EdgeToVist);
6782 if (NextV != Phi) {
6783 auto *I = dyn_cast<Instruction>(NextV);
6784 OpData = getOperationData(I);
6785 // Continue analysis if the next operand is a reduction operation or
6786 // (possibly) a reduced value. If the reduced value opcode is not set,
6787 // the first met operation != reduction operation is considered as the
6788 // reduced value class.
6789 if (I && (!ReducedValueData || OpData == ReducedValueData ||
6790 OpData == ReductionData)) {
6791 const bool IsReductionOperation = OpData == ReductionData;
6792 // Only handle trees in the current basic block.
6793 if (!ReductionData.hasSameParent(I, B->getParent(),
6794 IsReductionOperation)) {
6795 // I is an extra argument for TreeN (its parent operation).
6796 markExtraArg(Stack.back(), I);
6797 continue;
6798 }
6799
6800 // Each tree node needs to have minimal number of users except for the
6801 // ultimate reduction.
6802 if (!ReductionData.hasRequiredNumberOfUses(I,
6803 OpData == ReductionData) &&
6804 I != B) {
6805 // I is an extra argument for TreeN (its parent operation).
6806 markExtraArg(Stack.back(), I);
6807 continue;
6808 }
6809
6810 if (IsReductionOperation) {
6811 // We need to be able to reassociate the reduction operations.
6812 if (!OpData.isAssociative(I)) {
6813 // I is an extra argument for TreeN (its parent operation).
6814 markExtraArg(Stack.back(), I);
6815 continue;
6816 }
6817 } else if (ReducedValueData &&
6818 ReducedValueData != OpData) {
6819 // Make sure that the opcodes of the operations that we are going to
6820 // reduce match.
6821 // I is an extra argument for TreeN (its parent operation).
6822 markExtraArg(Stack.back(), I);
6823 continue;
6824 } else if (!ReducedValueData)
6825 ReducedValueData = OpData;
6826
6827 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
6828 continue;
6829 }
6830 }
6831 // NextV is an extra argument for TreeN (its parent operation).
6832 markExtraArg(Stack.back(), NextV);
6833 }
6834 return true;
6835 }
6836
6837 /// Attempt to vectorize the tree found by matchAssociativeReduction.
6838 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
6839 // If there are a sufficient number of reduction values, reduce
6840 // to a nearby power-of-2. We can safely generate oversized
6841 // vectors and rely on the backend to split them to legal sizes.
6842 unsigned NumReducedVals = ReducedVals.size();
6843 if (NumReducedVals < 4)
6844 return false;
6845
6846 // FIXME: Fast-math-flags should be set based on the instructions in the
6847 // reduction (not all of 'fast' are required).
6848 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
6849 FastMathFlags Unsafe;
6850 Unsafe.setFast();
6851 Builder.setFastMathFlags(Unsafe);
6852
6853 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
6854 // The same extra argument may be used several times, so log each attempt
6855 // to use it.
6856 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
6857 assert(Pair.first && "DebugLoc must be set.")((Pair.first && "DebugLoc must be set.") ? static_cast
<void> (0) : __assert_fail ("Pair.first && \"DebugLoc must be set.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6857, __PRETTY_FUNCTION__))
;
6858 ExternallyUsedValues[Pair.second].push_back(Pair.first);
6859 }
6860
6861 // The compare instruction of a min/max is the insertion point for new
6862 // instructions and may be replaced with a new compare instruction.
6863 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
6864 assert(isa<SelectInst>(RdxRootInst) &&((isa<SelectInst>(RdxRootInst) && "Expected min/max reduction to have select root instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6865, __PRETTY_FUNCTION__))
6865 "Expected min/max reduction to have select root instruction")((isa<SelectInst>(RdxRootInst) && "Expected min/max reduction to have select root instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6865, __PRETTY_FUNCTION__))
;
6866 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
6867 assert(isa<Instruction>(ScalarCond) &&((isa<Instruction>(ScalarCond) && "Expected min/max reduction to have compare condition"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6868, __PRETTY_FUNCTION__))
6868 "Expected min/max reduction to have compare condition")((isa<Instruction>(ScalarCond) && "Expected min/max reduction to have compare condition"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6868, __PRETTY_FUNCTION__))
;
6869 return cast<Instruction>(ScalarCond);
6870 };
6871
6872 // The reduction root is used as the insertion point for new instructions,
6873 // so set it as externally used to prevent it from being deleted.
6874 ExternallyUsedValues[ReductionRoot];
6875 SmallVector<Value *, 16> IgnoreList;
6876 for (ReductionOpsType &RdxOp : ReductionOps)
6877 IgnoreList.append(RdxOp.begin(), RdxOp.end());
6878
6879 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
6880 if (NumReducedVals > ReduxWidth) {
6881 // In the loop below, we are building a tree based on a window of
6882 // 'ReduxWidth' values.
6883 // If the operands of those values have common traits (compare predicate,
6884 // constant operand, etc), then we want to group those together to
6885 // minimize the cost of the reduction.
6886
6887 // TODO: This should be extended to count common operands for
6888 // compares and binops.
6889
6890 // Step 1: Count the number of times each compare predicate occurs.
6891 SmallDenseMap<unsigned, unsigned> PredCountMap;
6892 for (Value *RdxVal : ReducedVals) {
6893 CmpInst::Predicate Pred;
6894 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
6895 ++PredCountMap[Pred];
6896 }
6897 // Step 2: Sort the values so the most common predicates come first.
6898 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
6899 CmpInst::Predicate PredA, PredB;
6900 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
6901 match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
6902 return PredCountMap[PredA] > PredCountMap[PredB];
6903 }
6904 return false;
6905 });
6906 }
6907
6908 Value *VectorizedTree = nullptr;
6909 unsigned i = 0;
6910 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
6911 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
6912 V.buildTree(VL, ExternallyUsedValues, IgnoreList);
6913 Optional<ArrayRef<unsigned>> Order = V.bestOrder();
6914 if (Order) {
6915 assert(Order->size() == VL.size() &&((Order->size() == VL.size() && "Order size must be the same as number of vectorized "
"instructions.") ? static_cast<void> (0) : __assert_fail
("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6917, __PRETTY_FUNCTION__))
6916 "Order size must be the same as number of vectorized "((Order->size() == VL.size() && "Order size must be the same as number of vectorized "
"instructions.") ? static_cast<void> (0) : __assert_fail
("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6917, __PRETTY_FUNCTION__))
6917 "instructions.")((Order->size() == VL.size() && "Order size must be the same as number of vectorized "
"instructions.") ? static_cast<void> (0) : __assert_fail
("Order->size() == VL.size() && \"Order size must be the same as number of vectorized \" \"instructions.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6917, __PRETTY_FUNCTION__))
;
6918 // TODO: reorder tree nodes without tree rebuilding.
6919 SmallVector<Value *, 4> ReorderedOps(VL.size());
6920 llvm::transform(*Order, ReorderedOps.begin(),
6921 [VL](const unsigned Idx) { return VL[Idx]; });
6922 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
6923 }
6924 if (V.isTreeTinyAndNotFullyVectorizable())
6925 break;
6926 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode()))
6927 break;
6928
6929 V.computeMinimumValueSizes();
6930
6931 // Estimate cost.
6932 int TreeCost = V.getTreeCost();
6933 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
6934 int Cost = TreeCost + ReductionCost;
6935 if (Cost >= -SLPCostThreshold) {
6936 V.getORE()->emit([&]() {
6937 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "HorSLPNotBeneficial",
6938 cast<Instruction>(VL[0]))
6939 << "Vectorizing horizontal reduction is possible"
6940 << "but not beneficial with cost " << ore::NV("Cost", Cost)
6941 << " and threshold "
6942 << ore::NV("Threshold", -SLPCostThreshold);
6943 });
6944 break;
6945 }
6946
6947 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
6948 << Cost << ". (HorRdx)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
;
6949 V.getORE()->emit([&]() {
6950 return OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedHorizontalReduction",
6951 cast<Instruction>(VL[0]))
6952 << "Vectorized horizontal reduction with cost "
6953 << ore::NV("Cost", Cost) << " and with tree size "
6954 << ore::NV("TreeSize", V.getTreeSize());
6955 });
6956
6957 // Vectorize a tree.
6958 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
6959 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
6960
6961 // Emit a reduction. For min/max, the root is a select, but the insertion
6962 // point is the compare condition of that select.
6963 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
6964 if (ReductionData.isMinMax())
6965 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
6966 else
6967 Builder.SetInsertPoint(RdxRootInst);
6968
6969 Value *ReducedSubTree =
6970 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
6971
6972 if (!VectorizedTree) {
6973 // Initialize the final value in the reduction.
6974 VectorizedTree = ReducedSubTree;
6975 } else {
6976 // Update the final value in the reduction.
6977 Builder.SetCurrentDebugLocation(Loc);
6978 VectorizedTree = ReductionData.createOp(
6979 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps);
6980 }
6981 i += ReduxWidth;
6982 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
6983 }
6984
6985 if (VectorizedTree) {
6986 // Finish the reduction.
6987 for (; i < NumReducedVals; ++i) {
6988 auto *I = cast<Instruction>(ReducedVals[i]);
6989 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6990 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, I, "",
6991 ReductionOps);
6992 }
6993 for (auto &Pair : ExternallyUsedValues) {
6994 // Add each externally used value to the final reduction.
6995 for (auto *I : Pair.second) {
6996 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6997 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree,
6998 Pair.first, "op.extra", I);
6999 }
7000 }
7001
7002 // Update users. For a min/max reduction that ends with a compare and
7003 // select, we also have to RAUW for the compare instruction feeding the
7004 // reduction root. That's because the original compare may have extra uses
7005 // besides the final select of the reduction.
7006 if (ReductionData.isMinMax()) {
7007 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) {
7008 Instruction *ScalarCmp =
7009 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot));
7010 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition());
7011 }
7012 }
7013 ReductionRoot->replaceAllUsesWith(VectorizedTree);
7014
7015 // Mark all scalar reduction ops for deletion, they are replaced by the
7016 // vector reductions.
7017 V.eraseInstructions(IgnoreList);
7018 }
7019 return VectorizedTree != nullptr;
7020 }
7021
7022 unsigned numReductionValues() const {
7023 return ReducedVals.size();
7024 }
7025
7026private:
7027 /// Calculate the cost of a reduction.
7028 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
7029 unsigned ReduxWidth) {
7030 Type *ScalarTy = FirstReducedVal->getType();
7031 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7032
7033 int PairwiseRdxCost;
7034 int SplittingRdxCost;
7035 switch (ReductionData.getKind()) {
7036 case RK_Arithmetic:
7037 PairwiseRdxCost =
7038 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
7039 /*IsPairwiseForm=*/true);
7040 SplittingRdxCost =
7041 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
7042 /*IsPairwiseForm=*/false);
7043 break;
7044 case RK_SMin:
7045 case RK_SMax:
7046 case RK_UMin:
7047 case RK_UMax: {
7048 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy));
7049 bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
7050 ReductionData.getKind() == RK_UMax;
7051 PairwiseRdxCost =
7052 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
7053 /*IsPairwiseForm=*/true, IsUnsigned);
7054 SplittingRdxCost =
7055 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
7056 /*IsPairwiseForm=*/false, IsUnsigned);
7057 break;
7058 }
7059 case RK_None:
7060 llvm_unreachable("Expected arithmetic or min/max reduction operation")::llvm::llvm_unreachable_internal("Expected arithmetic or min/max reduction operation"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7060)
;
7061 }
7062
7063 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
7064 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
7065
7066 int ScalarReduxCost = 0;
7067 switch (ReductionData.getKind()) {
7068 case RK_Arithmetic:
7069 ScalarReduxCost =
7070 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
7071 break;
7072 case RK_SMin:
7073 case RK_SMax:
7074 case RK_UMin:
7075 case RK_UMax:
7076 ScalarReduxCost =
7077 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
7078 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7079 CmpInst::makeCmpResultType(ScalarTy));
7080 break;
7081 case RK_None:
7082 llvm_unreachable("Expected arithmetic or min/max reduction operation")::llvm::llvm_unreachable_internal("Expected arithmetic or min/max reduction operation"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7082)
;
7083 }
7084 ScalarReduxCost *= (ReduxWidth - 1);
7085
7086 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
7087 << " for reduction that starts with " << *FirstReducedValdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
7088 << " (It is a "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
7089 << (IsPairwiseReduction ? "pairwise" : "splitting")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
7090 << " reduction)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
;
7091
7092 return VecReduxCost - ScalarReduxCost;
7093 }
7094
7095 /// Emit a horizontal reduction of the vectorized value.
7096 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
7097 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
7098 assert(VectorizedValue && "Need to have a vectorized tree node")((VectorizedValue && "Need to have a vectorized tree node"
) ? static_cast<void> (0) : __assert_fail ("VectorizedValue && \"Need to have a vectorized tree node\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7098, __PRETTY_FUNCTION__))
;
7099 assert(isPowerOf2_32(ReduxWidth) &&((isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7100, __PRETTY_FUNCTION__))
7100 "We only handle power-of-two reductions for now")((isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7100, __PRETTY_FUNCTION__))
;
7101
7102 if (!IsPairwiseReduction) {
7103 // FIXME: The builder should use an FMF guard. It should not be hard-coded
7104 // to 'fast'.
7105 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF")((Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"
) ? static_cast<void> (0) : __assert_fail ("Builder.getFastMathFlags().isFast() && \"Expected 'fast' FMF\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7105, __PRETTY_FUNCTION__))
;
7106 return createSimpleTargetReduction(
7107 Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
7108 ReductionData.getFlags(), ReductionOps.back());
7109 }
7110
7111 Value *TmpVec = VectorizedValue;
7112 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
7113 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true);
7114 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false);
7115
7116 Value *LeftShuf =
7117 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l");
7118 Value *RightShuf =
7119 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r");
7120 TmpVec = ReductionData.createOp(Builder, LeftShuf, RightShuf, "op.rdx",
7121 ReductionOps);
7122 }
7123
7124 // The result is in the first element of the vector.
7125 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
7126 }
7127};
7128
7129} // end anonymous namespace
7130
7131static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
7132 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
7133 return cast<FixedVectorType>(IE->getType())->getNumElements();
7134
7135 unsigned AggregateSize = 1;
7136 auto *IV = cast<InsertValueInst>(InsertInst);
7137 Type *CurrentType = IV->getType();
7138 do {
7139 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7140 for (auto *Elt : ST->elements())
7141 if (Elt != ST->getElementType(0)) // check homogeneity
7142 return None;
7143 AggregateSize *= ST->getNumElements();
7144 CurrentType = ST->getElementType(0);
7145 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7146 AggregateSize *= AT->getNumElements();
7147 CurrentType = AT->getElementType();
7148 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
7149 AggregateSize *= VT->getNumElements();
7150 return AggregateSize;
7151 } else if (CurrentType->isSingleValueType()) {
7152 return AggregateSize;
7153 } else {
7154 return None;
7155 }
7156 } while (true);
7157}
7158
7159static Optional<unsigned> getOperandIndex(Instruction *InsertInst,
7160 unsigned OperandOffset) {
7161 unsigned OperandIndex = OperandOffset;
7162 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
7163 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
7164 auto *VT = cast<FixedVectorType>(IE->getType());
7165 OperandIndex *= VT->getNumElements();
7166 OperandIndex += CI->getZExtValue();
7167 return OperandIndex;
7168 }
7169 return None;
7170 }
7171
7172 auto *IV = cast<InsertValueInst>(InsertInst);
7173 Type *CurrentType = IV->getType();
7174 for (unsigned int Index : IV->indices()) {
7175 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7176 OperandIndex *= ST->getNumElements();
7177 CurrentType = ST->getElementType(Index);
7178 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7179 OperandIndex *= AT->getNumElements();
7180 CurrentType = AT->getElementType();
7181 } else {
7182 return None;
7183 }
7184 OperandIndex += Index;
7185 }
7186 return OperandIndex;
7187}
7188
7189static bool findBuildAggregate_rec(Instruction *LastInsertInst,
7190 TargetTransformInfo *TTI,
7191 SmallVectorImpl<Value *> &BuildVectorOpds,
7192 SmallVectorImpl<Value *> &InsertElts,
7193 unsigned OperandOffset) {
7194 do {
7195 Value *InsertedOperand = LastInsertInst->getOperand(1);
7196 Optional<unsigned> OperandIndex =
7197 getOperandIndex(LastInsertInst, OperandOffset);
7198 if (!OperandIndex)
7199 return false;
7200 if (isa<InsertElementInst>(InsertedOperand) ||
7201 isa<InsertValueInst>(InsertedOperand)) {
7202 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
7203 BuildVectorOpds, InsertElts, *OperandIndex))
7204 return false;
7205 } else {
7206 BuildVectorOpds[*OperandIndex] = InsertedOperand;
7207 InsertElts[*OperandIndex] = LastInsertInst;
7208 }
7209 if (isa<UndefValue>(LastInsertInst->getOperand(0)))
7210 return true;
7211 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
7212 } while (LastInsertInst != nullptr &&
7213 (isa<InsertValueInst>(LastInsertInst) ||
7214 isa<InsertElementInst>(LastInsertInst)) &&
7215 LastInsertInst->hasOneUse());
7216 return false;
7217}
7218
7219/// Recognize construction of vectors like
7220/// %ra = insertelement <4 x float> undef, float %s0, i32 0
7221/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
7222/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
7223/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
7224/// starting from the last insertelement or insertvalue instruction.
7225///
7226/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
7227/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
7228/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
7229///
7230/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
7231///
7232/// \return true if it matches.
7233static bool findBuildAggregate(Instruction *LastInsertInst,
7234 TargetTransformInfo *TTI,
7235 SmallVectorImpl<Value *> &BuildVectorOpds,
7236 SmallVectorImpl<Value *> &InsertElts) {
7237
7238 assert((isa<InsertElementInst>(LastInsertInst) ||(((isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst
>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? static_cast<void> (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7240, __PRETTY_FUNCTION__))
7239 isa<InsertValueInst>(LastInsertInst)) &&(((isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst
>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? static_cast<void> (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7240, __PRETTY_FUNCTION__))
7240 "Expected insertelement or insertvalue instruction!")(((isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst
>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? static_cast<void> (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7240, __PRETTY_FUNCTION__))
;
7241
7242 assert((BuildVectorOpds.empty() && InsertElts.empty()) &&(((BuildVectorOpds.empty() && InsertElts.empty()) &&
"Expected empty result vectors!") ? static_cast<void> (
0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7243, __PRETTY_FUNCTION__))
7243 "Expected empty result vectors!")(((BuildVectorOpds.empty() && InsertElts.empty()) &&
"Expected empty result vectors!") ? static_cast<void> (
0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7243, __PRETTY_FUNCTION__))
;
7244
7245 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
7246 if (!AggregateSize)
7247 return false;
7248 BuildVectorOpds.resize(*AggregateSize);
7249 InsertElts.resize(*AggregateSize);
7250
7251 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
7252 0)) {
7253 llvm::erase_if(BuildVectorOpds,
7254 [](const Value *V) { return V == nullptr; });
7255 llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; });
7256 if (BuildVectorOpds.size() >= 2)
7257 return true;
7258 }
7259
7260 return false;
7261}
7262
7263static bool PhiTypeSorterFunc(Value *V, Value *V2) {
7264 return V->getType() < V2->getType();
7265}
7266
7267/// Try and get a reduction value from a phi node.
7268///
7269/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
7270/// if they come from either \p ParentBB or a containing loop latch.
7271///
7272/// \returns A candidate reduction value if possible, or \code nullptr \endcode
7273/// if not possible.
7274static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
7275 BasicBlock *ParentBB, LoopInfo *LI) {
7276 // There are situations where the reduction value is not dominated by the
7277 // reduction phi. Vectorizing such cases has been reported to cause
7278 // miscompiles. See PR25787.
7279 auto DominatedReduxValue = [&](Value *R) {
7280 return isa<Instruction>(R) &&
7281 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
7282 };
7283
7284 Value *Rdx = nullptr;
7285
7286 // Return the incoming value if it comes from the same BB as the phi node.
7287 if (P->getIncomingBlock(0) == ParentBB) {
7288 Rdx = P->getIncomingValue(0);
7289 } else if (P->getIncomingBlock(1) == ParentBB) {
7290 Rdx = P->getIncomingValue(1);
7291 }
7292
7293 if (Rdx && DominatedReduxValue(Rdx))
7294 return Rdx;
7295
7296 // Otherwise, check whether we have a loop latch to look at.
7297 Loop *BBL = LI->getLoopFor(ParentBB);
7298 if (!BBL)
7299 return nullptr;
7300 BasicBlock *BBLatch = BBL->getLoopLatch();
7301 if (!BBLatch)
7302 return nullptr;
7303
7304 // There is a loop latch, return the incoming value if it comes from
7305 // that. This reduction pattern occasionally turns up.
7306 if (P->getIncomingBlock(0) == BBLatch) {
7307 Rdx = P->getIncomingValue(0);
7308 } else if (P->getIncomingBlock(1) == BBLatch) {
7309 Rdx = P->getIncomingValue(1);
7310 }
7311
7312 if (Rdx && DominatedReduxValue(Rdx))
7313 return Rdx;
7314
7315 return nullptr;
7316}
7317
7318/// Attempt to reduce a horizontal reduction.
7319/// If it is legal to match a horizontal reduction feeding the phi node \a P
7320/// with reduction operators \a Root (or one of its operands) in a basic block
7321/// \a BB, then check if it can be done. If horizontal reduction is not found
7322/// and root instruction is a binary operation, vectorization of the operands is
7323/// attempted.
7324/// \returns true if a horizontal reduction was matched and reduced or operands
7325/// of one of the binary instruction were vectorized.
7326/// \returns false if a horizontal reduction was not matched (or not possible)
7327/// or no vectorization of any binary operation feeding \a Root instruction was
7328/// performed.
7329static bool tryToVectorizeHorReductionOrInstOperands(
7330 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
7331 TargetTransformInfo *TTI,
7332 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
7333 if (!ShouldVectorizeHor)
7334 return false;
7335
7336 if (!Root)
7337 return false;
7338
7339 if (Root->getParent() != BB || isa<PHINode>(Root))
7340 return false;
7341 // Start analysis starting from Root instruction. If horizontal reduction is
7342 // found, try to vectorize it. If it is not a horizontal reduction or
7343 // vectorization is not possible or not effective, and currently analyzed
7344 // instruction is a binary operation, try to vectorize the operands, using
7345 // pre-order DFS traversal order. If the operands were not vectorized, repeat
7346 // the same procedure considering each operand as a possible root of the
7347 // horizontal reduction.
7348 // Interrupt the process if the Root instruction itself was vectorized or all
7349 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
7350 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
7351 SmallPtrSet<Value *, 8> VisitedInstrs;
7352 bool Res = false;
7353 while (!Stack.empty()) {
7354 Instruction *Inst;
7355 unsigned Level;
7356 std::tie(Inst, Level) = Stack.pop_back_val();
7357 auto *BI = dyn_cast<BinaryOperator>(Inst);
7358 auto *SI = dyn_cast<SelectInst>(Inst);
7359 if (BI || SI) {
7360 HorizontalReduction HorRdx;
7361 if (HorRdx.matchAssociativeReduction(P, Inst)) {
7362 if (HorRdx.tryToReduce(R, TTI)) {
7363 Res = true;
7364 // Set P to nullptr to avoid re-analysis of phi node in
7365 // matchAssociativeReduction function unless this is the root node.
7366 P = nullptr;
7367 continue;
7368 }
7369 }
7370 if (P && BI) {
7371 Inst = dyn_cast<Instruction>(BI->getOperand(0));
7372 if (Inst == P)
7373 Inst = dyn_cast<Instruction>(BI->getOperand(1));
7374 if (!Inst) {
7375 // Set P to nullptr to avoid re-analysis of phi node in
7376 // matchAssociativeReduction function unless this is the root node.
7377 P = nullptr;
7378 continue;
7379 }
7380 }
7381 }
7382 // Set P to nullptr to avoid re-analysis of phi node in
7383 // matchAssociativeReduction function unless this is the root node.
7384 P = nullptr;
7385 if (Vectorize(Inst, R)) {
7386 Res = true;
7387 continue;
7388 }
7389
7390 // Try to vectorize operands.
7391 // Continue analysis for the instruction from the same basic block only to
7392 // save compile time.
7393 if (++Level < RecursionMaxDepth)
7394 for (auto *Op : Inst->operand_values())
7395 if (VisitedInstrs.insert(Op).second)
7396 if (auto *I = dyn_cast<Instruction>(Op))
7397 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
7398 Stack.emplace_back(I, Level);
7399 }
7400 return Res;
7401}
7402
7403bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
7404 BasicBlock *BB, BoUpSLP &R,
7405 TargetTransformInfo *TTI) {
7406 auto *I = dyn_cast_or_null<Instruction>(V);
7407 if (!I)
7408 return false;
7409
7410 if (!isa<BinaryOperator>(I))
7411 P = nullptr;
7412 // Try to match and vectorize a horizontal reduction.
7413 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
7414 return tryToVectorize(I, R);
7415 };
7416 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
7417 ExtraVectorization);
7418}
7419
7420bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
7421 BasicBlock *BB, BoUpSLP &R) {
7422 const DataLayout &DL = BB->getModule()->getDataLayout();
7423 if (!R.canMapToVector(IVI->getType(), DL))
7424 return false;
7425
7426 SmallVector<Value *, 16> BuildVectorOpds;
7427 SmallVector<Value *, 16> BuildVectorInsts;
7428 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
7429 return false;
7430
7431 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: array mappable to vector: " <<
*IVI << "\n"; } } while (false)
;
7432 // Aggregate value is unlikely to be processed in vector register, we need to
7433 // extract scalars into scalar registers, so NeedExtraction is set true.
7434 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7435 BuildVectorInsts);
7436}
7437
7438bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
7439 BasicBlock *BB, BoUpSLP &R) {
7440 SmallVector<Value *, 16> BuildVectorInsts;
7441 SmallVector<Value *, 16> BuildVectorOpds;
7442 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
7443 (llvm::all_of(BuildVectorOpds,
7444 [](Value *V) { return isa<ExtractElementInst>(V); }) &&
7445 isShuffle(BuildVectorOpds)))
7446 return false;
7447
7448 // Vectorize starting with the build vector operands ignoring the BuildVector
7449 // instructions for the purpose of scheduling and user extraction.
7450 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7451 BuildVectorInsts);
7452}
7453
7454bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
7455 BoUpSLP &R) {
7456 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
7457 return true;
7458
7459 bool OpsChanged = false;
7460 for (int Idx = 0; Idx < 2; ++Idx) {
7461 OpsChanged |=
7462 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
7463 }
7464 return OpsChanged;
7465}
7466
7467bool SLPVectorizerPass::vectorizeSimpleInstructions(
7468 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
7469 bool OpsChanged = false;
7470 for (auto *I : reverse(Instructions)) {
7471 if (R.isDeleted(I))
7472 continue;
7473 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
7474 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
7475 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
7476 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
7477 else if (auto *CI = dyn_cast<CmpInst>(I))
7478 OpsChanged |= vectorizeCmpInst(CI, BB, R);
7479 }
7480 Instructions.clear();
7481 return OpsChanged;
7482}
7483
7484bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
7485 bool Changed = false;
7486 SmallVector<Value *, 4> Incoming;
7487 SmallPtrSet<Value *, 16> VisitedInstrs;
7488 unsigned MaxVecRegSize = R.getMaxVecRegSize();
7489
7490 bool HaveVectorizedPhiNodes = true;
7491 while (HaveVectorizedPhiNodes) {
7492 HaveVectorizedPhiNodes = false;
7493
7494 // Collect the incoming values from the PHIs.
7495 Incoming.clear();
7496 for (Instruction &I : *BB) {
7497 PHINode *P = dyn_cast<PHINode>(&I);
7498 if (!P)
7499 break;
7500
7501 if (!VisitedInstrs.count(P) && !R.isDeleted(P))
7502 Incoming.push_back(P);
7503 }
7504
7505 // Sort by type.
7506 llvm::stable_sort(Incoming, PhiTypeSorterFunc);
7507
7508 // Try to vectorize elements base on their type.
7509 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
7510 E = Incoming.end();
7511 IncIt != E;) {
7512
7513 // Look for the next elements with the same type.
7514 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
7515 Type *EltTy = (*IncIt)->getType();
7516
7517 assert(EltTy->isSized() &&((EltTy->isSized() && "Instructions should all be sized at this point"
) ? static_cast<void> (0) : __assert_fail ("EltTy->isSized() && \"Instructions should all be sized at this point\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7518, __PRETTY_FUNCTION__))
7518 "Instructions should all be sized at this point")((EltTy->isSized() && "Instructions should all be sized at this point"
) ? static_cast<void> (0) : __assert_fail ("EltTy->isSized() && \"Instructions should all be sized at this point\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7518, __PRETTY_FUNCTION__))
;
7519 TypeSize EltTS = DL->getTypeSizeInBits(EltTy);
7520 if (EltTS.isScalable()) {
7521 // For now, just ignore vectorizing scalable types.
7522 ++IncIt;
7523 continue;
7524 }
7525
7526 unsigned EltSize = EltTS.getFixedSize();
7527 unsigned MaxNumElts = MaxVecRegSize / EltSize;
7528 if (MaxNumElts < 2) {
7529 ++IncIt;
7530 continue;
7531 }
7532
7533 while (SameTypeIt != E &&
7534 (*SameTypeIt)->getType() == EltTy &&
7535 static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) {
7536 VisitedInstrs.insert(*SameTypeIt);
7537 ++SameTypeIt;
7538 }
7539
7540 // Try to vectorize them.
7541 unsigned NumElts = (SameTypeIt - IncIt);
7542 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (false)
7543 << NumElts << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (false)
;
7544 // The order in which the phi nodes appear in the program does not matter.
7545 // So allow tryToVectorizeList to reorder them if it is beneficial. This
7546 // is done when there are exactly two elements since tryToVectorizeList
7547 // asserts that there are only two values when AllowReorder is true.
7548 bool AllowReorder = NumElts == 2;
7549 if (NumElts > 1 &&
7550 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) {
7551 // Success start over because instructions might have been changed.
7552 HaveVectorizedPhiNodes = true;
7553 Changed = true;
7554 break;
7555 }
7556
7557 // Start over at the next instruction of a different type (or the end).
7558 IncIt = SameTypeIt;
7559 }
7560 }
7561
7562 VisitedInstrs.clear();
7563
7564 SmallVector<Instruction *, 8> PostProcessInstructions;
7565 SmallDenseSet<Instruction *, 4> KeyNodes;
7566 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
7567 // Skip instructions with scalable type. The num of elements is unknown at
7568 // compile-time for scalable type.
7569 if (isa<ScalableVectorType>(it->getType()))
7570 continue;
7571
7572 // Skip instructions marked for the deletion.
7573 if (R.isDeleted(&*it))
7574 continue;
7575 // We may go through BB multiple times so skip the one we have checked.
7576 if (!VisitedInstrs.insert(&*it).second) {
7577 if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
7578 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
7579 // We would like to start over since some instructions are deleted
7580 // and the iterator may become invalid value.
7581 Changed = true;
7582 it = BB->begin();
7583 e = BB->end();
7584 }
7585 continue;
7586 }
7587
7588 if (isa<DbgInfoIntrinsic>(it))
7589 continue;
7590
7591 // Try to vectorize reductions that use PHINodes.
7592 if (PHINode *P = dyn_cast<PHINode>(it)) {
7593 // Check that the PHI is a reduction PHI.
7594 if (P->getNumIncomingValues() != 2)
7595 return Changed;
7596
7597 // Try to match and vectorize a horizontal reduction.
7598 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
7599 TTI)) {
7600 Changed = true;
7601 it = BB->begin();
7602 e = BB->end();
7603 continue;
7604 }
7605 continue;
7606 }
7607
7608 // Ran into an instruction without users, like terminator, or function call
7609 // with ignored return value, store. Ignore unused instructions (basing on
7610 // instruction type, except for CallInst and InvokeInst).
7611 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
7612 isa<InvokeInst>(it))) {
7613 KeyNodes.insert(&*it);
7614 bool OpsChanged = false;
7615 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
7616 for (auto *V : it->operand_values()) {
7617 // Try to match and vectorize a horizontal reduction.
7618 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
7619 }
7620 }
7621 // Start vectorization of post-process list of instructions from the
7622 // top-tree instructions to try to vectorize as many instructions as
7623 // possible.
7624 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
7625 if (OpsChanged) {
7626 // We would like to start over since some instructions are deleted
7627 // and the iterator may become invalid value.
7628 Changed = true;
7629 it = BB->begin();
7630 e = BB->end();
7631 continue;
7632 }
7633 }
7634
7635 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7636 isa<InsertValueInst>(it))
7637 PostProcessInstructions.push_back(&*it);
7638 }
7639
7640 return Changed;
7641}
7642
7643bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7644 auto Changed = false;
7645 for (auto &Entry : GEPs) {
7646 // If the getelementptr list has fewer than two elements, there's nothing
7647 // to do.
7648 if (Entry.second.size() < 2)
7649 continue;
7650
7651 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
7652 << Entry.second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
;
7653
7654 // Process the GEP list in chunks suitable for the target's supported
7655 // vector size. If a vector register can't hold 1 element, we are done. We
7656 // are trying to vectorize the index computations, so the maximum number of
7657 // elements is based on the size of the index expression, rather than the
7658 // size of the GEP itself (the target's pointer size).
7659 unsigned MaxVecRegSize = R.getMaxVecRegSize();
7660 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
7661 if (MaxVecRegSize < EltSize)
7662 continue;
7663
7664 unsigned MaxElts = MaxVecRegSize / EltSize;
7665 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
7666 auto Len = std::min<unsigned>(BE - BI, MaxElts);
7667 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
7668
7669 // Initialize a set a candidate getelementptrs. Note that we use a
7670 // SetVector here to preserve program order. If the index computations
7671 // are vectorizable and begin with loads, we want to minimize the chance
7672 // of having to reorder them later.
7673 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
7674
7675 // Some of the candidates may have already been vectorized after we
7676 // initially collected them. If so, they are marked as deleted, so remove
7677 // them from the set of candidates.
7678 Candidates.remove_if(
7679 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
7680
7681 // Remove from the set of candidates all pairs of getelementptrs with
7682 // constant differences. Such getelementptrs are likely not good
7683 // candidates for vectorization in a bottom-up phase since one can be
7684 // computed from the other. We also ensure all candidate getelementptr
7685 // indices are unique.
7686 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
7687 auto *GEPI = GEPList[I];
7688 if (!Candidates.count(GEPI))
7689 continue;
7690 auto *SCEVI = SE->getSCEV(GEPList[I]);
7691 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
7692 auto *GEPJ = GEPList[J];
7693 auto *SCEVJ = SE->getSCEV(GEPList[J]);
7694 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
7695 Candidates.remove(GEPI);
7696 Candidates.remove(GEPJ);
7697 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7698 Candidates.remove(GEPJ);
7699 }
7700 }
7701 }
7702
7703 // We break out of the above computation as soon as we know there are
7704 // fewer than two candidates remaining.
7705 if (Candidates.size() < 2)
7706 continue;
7707
7708 // Add the single, non-constant index of each candidate to the bundle. We
7709 // ensured the indices met these constraints when we originally collected
7710 // the getelementptrs.
7711 SmallVector<Value *, 16> Bundle(Candidates.size());
7712 auto BundleIndex = 0u;
7713 for (auto *V : Candidates) {
7714 auto *GEP = cast<GetElementPtrInst>(V);
7715 auto *GEPIdx = GEP->idx_begin()->get();
7716 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx))((GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx
)) ? static_cast<void> (0) : __assert_fail ("GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7716, __PRETTY_FUNCTION__))
;
7717 Bundle[BundleIndex++] = GEPIdx;
7718 }
7719
7720 // Try and vectorize the indices. We are currently only interested in
7721 // gather-like cases of the form:
7722 //
7723 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
7724 //
7725 // where the loads of "a", the loads of "b", and the subtractions can be
7726 // performed in parallel. It's likely that detecting this pattern in a
7727 // bottom-up phase will be simpler and less costly than building a
7728 // full-blown top-down phase beginning at the consecutive loads.
7729 Changed |= tryToVectorizeList(Bundle, R);
7730 }
7731 }
7732 return Changed;
7733}
7734
7735bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
7736 bool Changed = false;
7737 // Attempt to sort and vectorize each of the store-groups.
7738 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
7739 ++it) {
7740 if (it->second.size() < 2)
7741 continue;
7742
7743 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
7744 << it->second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
;
7745
7746 Changed |= vectorizeStores(it->second, R);
7747 }
7748 return Changed;
7749}
7750
7751char SLPVectorizer::ID = 0;
7752
7753static const char lv_name[] = "SLP Vectorizer";
7754
7755INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)static void *initializeSLPVectorizerPassOnce(PassRegistry &
Registry) {
7756INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
7757INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
7758INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
7759INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
7760INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
7761INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)initializeDemandedBitsWrapperPassPass(Registry);
7762INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
7763INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)initializeInjectTLIMappingsLegacyPass(Registry);
7764INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo( lv_name, "slp-vectorizer", &
SLPVectorizer::ID, PassInfo::NormalCtor_t(callDefaultCtor<
SLPVectorizer>), false, false); Registry.registerPass(*PI,
true); return PI; } static llvm::once_flag InitializeSLPVectorizerPassFlag
; void llvm::initializeSLPVectorizerPass(PassRegistry &Registry
) { llvm::call_once(InitializeSLPVectorizerPassFlag, initializeSLPVectorizerPassOnce
, std::ref(Registry)); }
7765
7766Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }

/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h

1//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file defines a set of templates that efficiently compute a dominator
11/// tree over a generic graph. This is used typically in LLVM for fast
12/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
13/// graph types.
14///
15/// Unlike ADT/* graph algorithms, generic dominator tree has more requirements
16/// on the graph's NodeRef. The NodeRef should be a pointer and,
17/// NodeRef->getParent() must return the parent node that is also a pointer.
18///
19/// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits.
20///
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_SUPPORT_GENERICDOMTREE_H
24#define LLVM_SUPPORT_GENERICDOMTREE_H
25
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/GraphTraits.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/Support/CFGDiff.h"
32#include "llvm/Support/CFGUpdate.h"
33#include "llvm/Support/raw_ostream.h"
34#include <algorithm>
35#include <cassert>
36#include <cstddef>
37#include <iterator>
38#include <memory>
39#include <type_traits>
40#include <utility>
41
42namespace llvm {
43
44template <typename NodeT, bool IsPostDom>
45class DominatorTreeBase;
46
47namespace DomTreeBuilder {
48template <typename DomTreeT>
49struct SemiNCAInfo;
50} // namespace DomTreeBuilder
51
52/// Base class for the actual dominator tree node.
53template <class NodeT> class DomTreeNodeBase {
54 friend class PostDominatorTree;
55 friend class DominatorTreeBase<NodeT, false>;
56 friend class DominatorTreeBase<NodeT, true>;
57 friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
58 friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
59
60 NodeT *TheBB;
61 DomTreeNodeBase *IDom;
62 unsigned Level;
63 SmallVector<DomTreeNodeBase *, 4> Children;
64 mutable unsigned DFSNumIn = ~0;
65 mutable unsigned DFSNumOut = ~0;
66
67 public:
68 DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom)
69 : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {}
70
71 using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator;
72 using const_iterator =
73 typename SmallVector<DomTreeNodeBase *, 4>::const_iterator;
74
75 iterator begin() { return Children.begin(); }
76 iterator end() { return Children.end(); }
77 const_iterator begin() const { return Children.begin(); }
78 const_iterator end() const { return Children.end(); }
79
80 DomTreeNodeBase *const &back() const { return Children.back(); }
81 DomTreeNodeBase *&back() { return Children.back(); }
82
83 iterator_range<iterator> children() { return make_range(begin(), end()); }
84 iterator_range<const_iterator> children() const {
85 return make_range(begin(), end());
86 }
87
88 NodeT *getBlock() const { return TheBB; }
89 DomTreeNodeBase *getIDom() const { return IDom; }
90 unsigned getLevel() const { return Level; }
91
92 std::unique_ptr<DomTreeNodeBase> addChild(
93 std::unique_ptr<DomTreeNodeBase> C) {
94 Children.push_back(C.get());
95 return C;
96 }
97
98 bool isLeaf() const { return Children.empty(); }
99 size_t getNumChildren() const { return Children.size(); }
100
101 void clearAllChildren() { Children.clear(); }
102
103 bool compare(const DomTreeNodeBase *Other) const {
104 if (getNumChildren() != Other->getNumChildren())
105 return true;
106
107 if (Level != Other->Level) return true;
108
109 SmallPtrSet<const NodeT *, 4> OtherChildren;
110 for (const DomTreeNodeBase *I : *Other) {
111 const NodeT *Nd = I->getBlock();
112 OtherChildren.insert(Nd);
113 }
114
115 for (const DomTreeNodeBase *I : *this) {
116 const NodeT *N = I->getBlock();
117 if (OtherChildren.count(N) == 0)
118 return true;
119 }
120 return false;
121 }
122
123 void setIDom(DomTreeNodeBase *NewIDom) {
124 assert(IDom && "No immediate dominator?")((IDom && "No immediate dominator?") ? static_cast<
void> (0) : __assert_fail ("IDom && \"No immediate dominator?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 124, __PRETTY_FUNCTION__))
;
125 if (IDom == NewIDom) return;
126
127 auto I = find(IDom->Children, this);
128 assert(I != IDom->Children.end() &&((I != IDom->Children.end() && "Not in immediate dominator children set!"
) ? static_cast<void> (0) : __assert_fail ("I != IDom->Children.end() && \"Not in immediate dominator children set!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 129, __PRETTY_FUNCTION__))
129 "Not in immediate dominator children set!")((I != IDom->Children.end() && "Not in immediate dominator children set!"
) ? static_cast<void> (0) : __assert_fail ("I != IDom->Children.end() && \"Not in immediate dominator children set!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 129, __PRETTY_FUNCTION__))
;
130 // I am no longer your child...
131 IDom->Children.erase(I);
132
133 // Switch to new dominator
134 IDom = NewIDom;
135 IDom->Children.push_back(this);
136
137 UpdateLevel();
138 }
139
140 /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes
141 /// in the dominator tree. They are only guaranteed valid if
142 /// updateDFSNumbers() has been called.
143 unsigned getDFSNumIn() const { return DFSNumIn; }
144 unsigned getDFSNumOut() const { return DFSNumOut; }
145
146private:
147 // Return true if this node is dominated by other. Use this only if DFS info
148 // is valid.
149 bool DominatedBy(const DomTreeNodeBase *other) const {
150 return this->DFSNumIn >= other->DFSNumIn &&
151 this->DFSNumOut <= other->DFSNumOut;
152 }
153
154 void UpdateLevel() {
155 assert(IDom)((IDom) ? static_cast<void> (0) : __assert_fail ("IDom"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 155, __PRETTY_FUNCTION__))
;
156 if (Level == IDom->Level + 1) return;
157
158 SmallVector<DomTreeNodeBase *, 64> WorkStack = {this};
159
160 while (!WorkStack.empty()) {
161 DomTreeNodeBase *Current = WorkStack.pop_back_val();
162 Current->Level = Current->IDom->Level + 1;
163
164 for (DomTreeNodeBase *C : *Current) {
165 assert(C->IDom)((C->IDom) ? static_cast<void> (0) : __assert_fail (
"C->IDom", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 165, __PRETTY_FUNCTION__))
;
166 if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C);
167 }
168 }
169 }
170};
171
172template <class NodeT>
173raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) {
174 if (Node->getBlock())
175 Node->getBlock()->printAsOperand(O, false);
176 else
177 O << " <<exit node>>";
178
179 O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} ["
180 << Node->getLevel() << "]\n";
181
182 return O;
183}
184
185template <class NodeT>
186void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O,
187 unsigned Lev) {
188 O.indent(2 * Lev) << "[" << Lev << "] " << N;
189 for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
190 E = N->end();
191 I != E; ++I)
192 PrintDomTree<NodeT>(*I, O, Lev + 1);
193}
194
195namespace DomTreeBuilder {
196// The routines below are provided in a separate header but referenced here.
197template <typename DomTreeT>
198void Calculate(DomTreeT &DT);
199
200template <typename DomTreeT>
201void CalculateWithUpdates(DomTreeT &DT,
202 ArrayRef<typename DomTreeT::UpdateType> Updates);
203
204template <typename DomTreeT>
205void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
206 typename DomTreeT::NodePtr To);
207
208template <typename DomTreeT>
209void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
210 typename DomTreeT::NodePtr To);
211
212template <typename DomTreeT>
213void ApplyUpdates(DomTreeT &DT,
214 GraphDiff<typename DomTreeT::NodePtr,
215 DomTreeT::IsPostDominator> &PreViewCFG,
216 GraphDiff<typename DomTreeT::NodePtr,
217 DomTreeT::IsPostDominator> *PostViewCFG);
218
219template <typename DomTreeT>
220bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL);
221} // namespace DomTreeBuilder
222
223/// Core dominator tree base class.
224///
225/// This class is a generic template over graph nodes. It is instantiated for
226/// various graphs in the LLVM IR or in the code generator.
227template <typename NodeT, bool IsPostDom>
228class DominatorTreeBase {
229 public:
230 static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value,
231 "Currently DominatorTreeBase supports only pointer nodes");
232 using NodeType = NodeT;
233 using NodePtr = NodeT *;
234 using ParentPtr = decltype(std::declval<NodeT *>()->getParent());
235 static_assert(std::is_pointer<ParentPtr>::value,
236 "Currently NodeT's parent must be a pointer type");
237 using ParentType = std::remove_pointer_t<ParentPtr>;
238 static constexpr bool IsPostDominator = IsPostDom;
239
240 using UpdateType = cfg::Update<NodePtr>;
241 using UpdateKind = cfg::UpdateKind;
242 static constexpr UpdateKind Insert = UpdateKind::Insert;
243 static constexpr UpdateKind Delete = UpdateKind::Delete;
244
245 enum class VerificationLevel { Fast, Basic, Full };
246
247protected:
248 // Dominators always have a single root, postdominators can have more.
249 SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots;
250
251 using DomTreeNodeMapType =
252 DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>;
253 DomTreeNodeMapType DomTreeNodes;
254 DomTreeNodeBase<NodeT> *RootNode = nullptr;
255 ParentPtr Parent = nullptr;
256
257 mutable bool DFSInfoValid = false;
258 mutable unsigned int SlowQueries = 0;
259
260 friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>;
261
262 public:
263 DominatorTreeBase() {}
264
265 DominatorTreeBase(DominatorTreeBase &&Arg)
266 : Roots(std::move(Arg.Roots)),
267 DomTreeNodes(std::move(Arg.DomTreeNodes)),
268 RootNode(Arg.RootNode),
269 Parent(Arg.Parent),
270 DFSInfoValid(Arg.DFSInfoValid),
271 SlowQueries(Arg.SlowQueries) {
272 Arg.wipe();
273 }
274
275 DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
276 Roots = std::move(RHS.Roots);
277 DomTreeNodes = std::move(RHS.DomTreeNodes);
278 RootNode = RHS.RootNode;
279 Parent = RHS.Parent;
280 DFSInfoValid = RHS.DFSInfoValid;
281 SlowQueries = RHS.SlowQueries;
282 RHS.wipe();
283 return *this;
284 }
285
286 DominatorTreeBase(const DominatorTreeBase &) = delete;
287 DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
288
289 /// Iteration over roots.
290 ///
291 /// This may include multiple blocks if we are computing post dominators.
292 /// For forward dominators, this will always be a single block (the entry
293 /// block).
294 using root_iterator = typename SmallVectorImpl<NodeT *>::iterator;
295 using const_root_iterator = typename SmallVectorImpl<NodeT *>::const_iterator;
296
297 root_iterator root_begin() { return Roots.begin(); }
298 const_root_iterator root_begin() const { return Roots.begin(); }
299 root_iterator root_end() { return Roots.end(); }
300 const_root_iterator root_end() const { return Roots.end(); }
301
302 size_t root_size() const { return Roots.size(); }
303
304 iterator_range<root_iterator> roots() {
305 return make_range(root_begin(), root_end());
306 }
307 iterator_range<const_root_iterator> roots() const {
308 return make_range(root_begin(), root_end());
309 }
310
311 /// isPostDominator - Returns true if analysis based of postdoms
312 ///
313 bool isPostDominator() const { return IsPostDominator; }
314
315 /// compare - Return false if the other dominator tree base matches this
316 /// dominator tree base. Otherwise return true.
317 bool compare(const DominatorTreeBase &Other) const {
318 if (Parent != Other.Parent) return true;
319
320 if (Roots.size() != Other.Roots.size())
321 return true;
322
323 if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin()))
324 return true;
325
326 const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
327 if (DomTreeNodes.size() != OtherDomTreeNodes.size())
328 return true;
329
330 for (const auto &DomTreeNode : DomTreeNodes) {
331 NodeT *BB = DomTreeNode.first;
332 typename DomTreeNodeMapType::const_iterator OI =
333 OtherDomTreeNodes.find(BB);
334 if (OI == OtherDomTreeNodes.end())
335 return true;
336
337 DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second;
338 DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
339
340 if (MyNd.compare(&OtherNd))
341 return true;
342 }
343
344 return false;
345 }
346
347 /// getNode - return the (Post)DominatorTree node for the specified basic
348 /// block. This is the same as using operator[] on this class. The result
349 /// may (but is not required to) be null for a forward (backwards)
350 /// statically unreachable block.
351 DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const {
352 auto I = DomTreeNodes.find(BB);
353 if (I != DomTreeNodes.end())
354 return I->second.get();
355 return nullptr;
356 }
357
358 /// See getNode.
359 DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const {
360 return getNode(BB);
361 }
362
363 /// getRootNode - This returns the entry node for the CFG of the function. If
364 /// this tree represents the post-dominance relations for a function, however,
365 /// this root may be a node with the block == NULL. This is the case when
366 /// there are multiple exit nodes from a particular function. Consumers of
367 /// post-dominance information must be capable of dealing with this
368 /// possibility.
369 ///
370 DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
371 const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
372
373 /// Get all nodes dominated by R, including R itself.
374 void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
375 Result.clear();
376 const DomTreeNodeBase<NodeT> *RN = getNode(R);
377 if (!RN)
378 return; // If R is unreachable, it will not be present in the DOM tree.
379 SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
380 WL.push_back(RN);
381
382 while (!WL.empty()) {
383 const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
384 Result.push_back(N->getBlock());
385 WL.append(N->begin(), N->end());
386 }
387 }
388
389 /// properlyDominates - Returns true iff A dominates B and A != B.
390 /// Note that this is not a constant time operation!
391 ///
392 bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
393 const DomTreeNodeBase<NodeT> *B) const {
394 if (!A || !B)
395 return false;
396 if (A == B)
397 return false;
398 return dominates(A, B);
399 }
400
401 bool properlyDominates(const NodeT *A, const NodeT *B) const;
402
403 /// isReachableFromEntry - Return true if A is dominated by the entry
404 /// block of the function containing it.
405 bool isReachableFromEntry(const NodeT *A) const {
406 assert(!this->isPostDominator() &&((!this->isPostDominator() && "This is not implemented for post dominators"
) ? static_cast<void> (0) : __assert_fail ("!this->isPostDominator() && \"This is not implemented for post dominators\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 407, __PRETTY_FUNCTION__))
407 "This is not implemented for post dominators")((!this->isPostDominator() && "This is not implemented for post dominators"
) ? static_cast<void> (0) : __assert_fail ("!this->isPostDominator() && \"This is not implemented for post dominators\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 407, __PRETTY_FUNCTION__))
;
408 return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
409 }
410
411 bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
412
413 /// dominates - Returns true iff A dominates B. Note that this is not a
414 /// constant time operation!
415 ///
416 bool dominates(const DomTreeNodeBase<NodeT> *A,
417 const DomTreeNodeBase<NodeT> *B) const {
418 // A node trivially dominates itself.
419 if (B == A)
26
Assuming 'B' is not equal to 'A'
27
Taking false branch
420 return true;
421
422 // An unreachable node is dominated by anything.
423 if (!isReachableFromEntry(B))
28
Assuming the condition is false
29
Taking false branch
424 return true;
425
426 // And dominates nothing.
427 if (!isReachableFromEntry(A))
30
Assuming pointer value is null
31
Taking true branch
428 return false;
429
430 if (B->getIDom() == A) return true;
431
432 if (A->getIDom() == B) return false;
433
434 // A can only dominate B if it is higher in the tree.
435 if (A->getLevel() >= B->getLevel()) return false;
436
437 // Compare the result of the tree walk and the dfs numbers, if expensive
438 // checks are enabled.
439#ifdef EXPENSIVE_CHECKS
440 assert((!DFSInfoValid ||(((!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy
(A))) && "Tree walk disagrees with dfs numbers!") ? static_cast
<void> (0) : __assert_fail ("(!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && \"Tree walk disagrees with dfs numbers!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 442, __PRETTY_FUNCTION__))
441 (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&(((!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy
(A))) && "Tree walk disagrees with dfs numbers!") ? static_cast
<void> (0) : __assert_fail ("(!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && \"Tree walk disagrees with dfs numbers!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 442, __PRETTY_FUNCTION__))
442 "Tree walk disagrees with dfs numbers!")(((!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy
(A))) && "Tree walk disagrees with dfs numbers!") ? static_cast
<void> (0) : __assert_fail ("(!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && \"Tree walk disagrees with dfs numbers!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 442, __PRETTY_FUNCTION__))
;
443#endif
444
445 if (DFSInfoValid)
446 return B->DominatedBy(A);
447
448 // If we end up with too many slow queries, just update the
449 // DFS numbers on the theory that we are going to keep querying.
450 SlowQueries++;
451 if (SlowQueries > 32) {
452 updateDFSNumbers();
453 return B->DominatedBy(A);
454 }
455
456 return dominatedBySlowTreeWalk(A, B);
457 }
458
459 bool dominates(const NodeT *A, const NodeT *B) const;
460
461 NodeT *getRoot() const {
462 assert(this->Roots.size() == 1 && "Should always have entry node!")((this->Roots.size() == 1 && "Should always have entry node!"
) ? static_cast<void> (0) : __assert_fail ("this->Roots.size() == 1 && \"Should always have entry node!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 462, __PRETTY_FUNCTION__))
;
463 return this->Roots[0];
464 }
465
466 /// findNearestCommonDominator - Find nearest common dominator basic block
467 /// for basic block A and B. If there is no such block then return nullptr.
468 NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const {
469 assert(A && B && "Pointers are not valid")((A && B && "Pointers are not valid") ? static_cast
<void> (0) : __assert_fail ("A && B && \"Pointers are not valid\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 469, __PRETTY_FUNCTION__))
;
470 assert(A->getParent() == B->getParent() &&((A->getParent() == B->getParent() && "Two blocks are not in same function"
) ? static_cast<void> (0) : __assert_fail ("A->getParent() == B->getParent() && \"Two blocks are not in same function\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 471, __PRETTY_FUNCTION__))
471 "Two blocks are not in same function")((A->getParent() == B->getParent() && "Two blocks are not in same function"
) ? static_cast<void> (0) : __assert_fail ("A->getParent() == B->getParent() && \"Two blocks are not in same function\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 471, __PRETTY_FUNCTION__))
;
472
473 // If either A or B is a entry block then it is nearest common dominator
474 // (for forward-dominators).
475 if (!isPostDominator()) {
476 NodeT &Entry = A->getParent()->front();
477 if (A == &Entry || B == &Entry)
478 return &Entry;
479 }
480
481 DomTreeNodeBase<NodeT> *NodeA = getNode(A);
482 DomTreeNodeBase<NodeT> *NodeB = getNode(B);
483
484 if (!NodeA || !NodeB) return nullptr;
485
486 // Use level information to go up the tree until the levels match. Then
487 // continue going up til we arrive at the same node.
488 while (NodeA && NodeA != NodeB) {
489 if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB);
490
491 NodeA = NodeA->IDom;
492 }
493
494 return NodeA ? NodeA->getBlock() : nullptr;
495 }
496
497 const NodeT *findNearestCommonDominator(const NodeT *A,
498 const NodeT *B) const {
499 // Cast away the const qualifiers here. This is ok since
500 // const is re-introduced on the return type.
501 return findNearestCommonDominator(const_cast<NodeT *>(A),
502 const_cast<NodeT *>(B));
503 }
504
505 bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const {
506 return isPostDominator() && !A->getBlock();
507 }
508
509 //===--------------------------------------------------------------------===//
510 // API to update (Post)DominatorTree information based on modifications to
511 // the CFG...
512
513 /// Inform the dominator tree about a sequence of CFG edge insertions and
514 /// deletions and perform a batch update on the tree.
515 ///
516 /// This function should be used when there were multiple CFG updates after
517 /// the last dominator tree update. It takes care of performing the updates
518 /// in sync with the CFG and optimizes away the redundant operations that
519 /// cancel each other.
520 /// The functions expects the sequence of updates to be balanced. Eg.:
521 /// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because
522 /// logically it results in a single insertions.
523 /// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make
524 /// sense to insert the same edge twice.
525 ///
526 /// What's more, the functions assumes that it's safe to ask every node in the
527 /// CFG about its children and inverse children. This implies that deletions
528 /// of CFG edges must not delete the CFG nodes before calling this function.
529 ///
530 /// The applyUpdates function can reorder the updates and remove redundant
531 /// ones internally. The batch updater is also able to detect sequences of
532 /// zero and exactly one update -- it's optimized to do less work in these
533 /// cases.
534 ///
535 /// Note that for postdominators it automatically takes care of applying
536 /// updates on reverse edges internally (so there's no need to swap the
537 /// From and To pointers when constructing DominatorTree::UpdateType).
538 /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T>
539 /// with the same template parameter T.
540 ///
541 /// \param Updates An unordered sequence of updates to perform. The current
542 /// CFG and the reverse of these updates provides the pre-view of the CFG.
543 ///
544 void applyUpdates(ArrayRef<UpdateType> Updates) {
545 GraphDiff<NodePtr, IsPostDominator> PreViewCFG(
546 Updates, /*ReverseApplyUpdates=*/true);
547 DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr);
548 }
549
550 /// \param Updates An unordered sequence of updates to perform. The current
551 /// CFG and the reverse of these updates provides the pre-view of the CFG.
552 /// \param PostViewUpdates An unordered sequence of update to perform in order
553 /// to obtain a post-view of the CFG. The DT will be updates assuming the
554 /// obtained PostViewCFG is the desired end state.
555 void applyUpdates(ArrayRef<UpdateType> Updates,
556 ArrayRef<UpdateType> PostViewUpdates) {
557 // GraphDiff<NodePtr, IsPostDom> *PostViewCFG = nullptr) {
558 if (Updates.empty()) {
559 GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates);
560 DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG);
561 } else {
562 // TODO:
563 // PreViewCFG needs to merge Updates and PostViewCFG. The updates in
564 // Updates need to be reversed, and match the direction in PostViewCFG.
565 // Normally, a PostViewCFG is created without reversing updates, so one
566 // of the internal vectors needs reversing in order to do the
567 // legalization of the merged vector of updates.
568 llvm_unreachable("Currently unsupported to update given a set of "::llvm::llvm_unreachable_internal("Currently unsupported to update given a set of "
"updates towards a PostView", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 569)
569 "updates towards a PostView")::llvm::llvm_unreachable_internal("Currently unsupported to update given a set of "
"updates towards a PostView", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 569)
;
570 }
571 }
572
573 /// Inform the dominator tree about a CFG edge insertion and update the tree.
574 ///
575 /// This function has to be called just before or just after making the update
576 /// on the actual CFG. There cannot be any other updates that the dominator
577 /// tree doesn't know about.
578 ///
579 /// Note that for postdominators it automatically takes care of inserting
580 /// a reverse edge internally (so there's no need to swap the parameters).
581 ///
582 void insertEdge(NodeT *From, NodeT *To) {
583 assert(From)((From) ? static_cast<void> (0) : __assert_fail ("From"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 583, __PRETTY_FUNCTION__))
;
584 assert(To)((To) ? static_cast<void> (0) : __assert_fail ("To", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 584, __PRETTY_FUNCTION__))
;
585 assert(From->getParent() == Parent)((From->getParent() == Parent) ? static_cast<void> (
0) : __assert_fail ("From->getParent() == Parent", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 585, __PRETTY_FUNCTION__))
;
586 assert(To->getParent() == Parent)((To->getParent() == Parent) ? static_cast<void> (0)
: __assert_fail ("To->getParent() == Parent", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 586, __PRETTY_FUNCTION__))
;
587 DomTreeBuilder::InsertEdge(*this, From, To);
588 }
589
590 /// Inform the dominator tree about a CFG edge deletion and update the tree.
591 ///
592 /// This function has to be called just after making the update on the actual
593 /// CFG. An internal functions checks if the edge doesn't exist in the CFG in
594 /// DEBUG mode. There cannot be any other updates that the
595 /// dominator tree doesn't know about.
596 ///
597 /// Note that for postdominators it automatically takes care of deleting
598 /// a reverse edge internally (so there's no need to swap the parameters).
599 ///
600 void deleteEdge(NodeT *From, NodeT *To) {
601 assert(From)((From) ? static_cast<void> (0) : __assert_fail ("From"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 601, __PRETTY_FUNCTION__))
;
602 assert(To)((To) ? static_cast<void> (0) : __assert_fail ("To", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 602, __PRETTY_FUNCTION__))
;
603 assert(From->getParent() == Parent)((From->getParent() == Parent) ? static_cast<void> (
0) : __assert_fail ("From->getParent() == Parent", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 603, __PRETTY_FUNCTION__))
;
604 assert(To->getParent() == Parent)((To->getParent() == Parent) ? static_cast<void> (0)
: __assert_fail ("To->getParent() == Parent", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 604, __PRETTY_FUNCTION__))
;
605 DomTreeBuilder::DeleteEdge(*this, From, To);
606 }
607
608 /// Add a new node to the dominator tree information.
609 ///
610 /// This creates a new node as a child of DomBB dominator node, linking it
611 /// into the children list of the immediate dominator.
612 ///
613 /// \param BB New node in CFG.
614 /// \param DomBB CFG node that is dominator for BB.
615 /// \returns New dominator tree node that represents new CFG node.
616 ///
617 DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
618 assert(getNode(BB) == nullptr && "Block already in dominator tree!")((getNode(BB) == nullptr && "Block already in dominator tree!"
) ? static_cast<void> (0) : __assert_fail ("getNode(BB) == nullptr && \"Block already in dominator tree!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 618, __PRETTY_FUNCTION__))
;
619 DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
620 assert(IDomNode && "Not immediate dominator specified for block!")((IDomNode && "Not immediate dominator specified for block!"
) ? static_cast<void> (0) : __assert_fail ("IDomNode && \"Not immediate dominator specified for block!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 620, __PRETTY_FUNCTION__))
;
621 DFSInfoValid = false;
622 return createChild(BB, IDomNode);
623 }
624
625 /// Add a new node to the forward dominator tree and make it a new root.
626 ///
627 /// \param BB New node in CFG.
628 /// \returns New dominator tree node that represents new CFG node.
629 ///
630 DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) {
631 assert(getNode(BB) == nullptr && "Block already in dominator tree!")((getNode(BB) == nullptr && "Block already in dominator tree!"
) ? static_cast<void> (0) : __assert_fail ("getNode(BB) == nullptr && \"Block already in dominator tree!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 631, __PRETTY_FUNCTION__))
;
632 assert(!this->isPostDominator() &&((!this->isPostDominator() && "Cannot change root of post-dominator tree"
) ? static_cast<void> (0) : __assert_fail ("!this->isPostDominator() && \"Cannot change root of post-dominator tree\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 633, __PRETTY_FUNCTION__))
633 "Cannot change root of post-dominator tree")((!this->isPostDominator() && "Cannot change root of post-dominator tree"
) ? static_cast<void> (0) : __assert_fail ("!this->isPostDominator() && \"Cannot change root of post-dominator tree\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 633, __PRETTY_FUNCTION__))
;
634 DFSInfoValid = false;
635 DomTreeNodeBase<NodeT> *NewNode = createNode(BB);
636 if (Roots.empty()) {
637 addRoot(BB);
638 } else {
639 assert(Roots.size() == 1)((Roots.size() == 1) ? static_cast<void> (0) : __assert_fail
("Roots.size() == 1", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 639, __PRETTY_FUNCTION__))
;
640 NodeT *OldRoot = Roots.front();
641 auto &OldNode = DomTreeNodes[OldRoot];
642 OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot]));
643 OldNode->IDom = NewNode;
644 OldNode->UpdateLevel();
645 Roots[0] = BB;
646 }
647 return RootNode = NewNode;
648 }
649
650 /// changeImmediateDominator - This method is used to update the dominator
651 /// tree information when a node's immediate dominator changes.
652 ///
653 void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
654 DomTreeNodeBase<NodeT> *NewIDom) {
655 assert(N && NewIDom && "Cannot change null node pointers!")((N && NewIDom && "Cannot change null node pointers!"
) ? static_cast<void> (0) : __assert_fail ("N && NewIDom && \"Cannot change null node pointers!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 655, __PRETTY_FUNCTION__))
;
656 DFSInfoValid = false;
657 N->setIDom(NewIDom);
658 }
659
660 void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
661 changeImmediateDominator(getNode(BB), getNode(NewBB));
662 }
663
664 /// eraseNode - Removes a node from the dominator tree. Block must not
665 /// dominate any other blocks. Removes node from its immediate dominator's
666 /// children list. Deletes dominator node associated with basic block BB.
667 void eraseNode(NodeT *BB) {
668 DomTreeNodeBase<NodeT> *Node = getNode(BB);
669 assert(Node && "Removing node that isn't in dominator tree.")((Node && "Removing node that isn't in dominator tree."
) ? static_cast<void> (0) : __assert_fail ("Node && \"Removing node that isn't in dominator tree.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 669, __PRETTY_FUNCTION__))
;
670 assert(Node->isLeaf() && "Node is not a leaf node.")((Node->isLeaf() && "Node is not a leaf node.") ? static_cast
<void> (0) : __assert_fail ("Node->isLeaf() && \"Node is not a leaf node.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 670, __PRETTY_FUNCTION__))
;
671
672 DFSInfoValid = false;
673
674 // Remove node from immediate dominator's children list.
675 DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
676 if (IDom) {
677 const auto I = find(IDom->Children, Node);
678 assert(I != IDom->Children.end() &&((I != IDom->Children.end() && "Not in immediate dominator children set!"
) ? static_cast<void> (0) : __assert_fail ("I != IDom->Children.end() && \"Not in immediate dominator children set!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 679, __PRETTY_FUNCTION__))
679 "Not in immediate dominator children set!")((I != IDom->Children.end() && "Not in immediate dominator children set!"
) ? static_cast<void> (0) : __assert_fail ("I != IDom->Children.end() && \"Not in immediate dominator children set!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 679, __PRETTY_FUNCTION__))
;
680 // I am no longer your child...
681 IDom->Children.erase(I);
682 }
683
684 DomTreeNodes.erase(BB);
685
686 if (!IsPostDom) return;
687
688 // Remember to update PostDominatorTree roots.
689 auto RIt = llvm::find(Roots, BB);
690 if (RIt != Roots.end()) {
691 std::swap(*RIt, Roots.back());
692 Roots.pop_back();
693 }
694 }
695
696 /// splitBlock - BB is split and now it has one successor. Update dominator
697 /// tree to reflect this change.
698 void splitBlock(NodeT *NewBB) {
699 if (IsPostDominator)
700 Split<Inverse<NodeT *>>(NewBB);
701 else
702 Split<NodeT *>(NewBB);
703 }
704
705 /// print - Convert to human readable form
706 ///
707 void print(raw_ostream &O) const {
708 O << "=============================--------------------------------\n";
709 if (IsPostDominator)
710 O << "Inorder PostDominator Tree: ";
711 else
712 O << "Inorder Dominator Tree: ";
713 if (!DFSInfoValid)
714 O << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
715 O << "\n";
716
717 // The postdom tree can have a null root if there are no returns.
718 if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1);
719 O << "Roots: ";
720 for (const NodePtr Block : Roots) {
721 Block->printAsOperand(O, false);
722 O << " ";
723 }
724 O << "\n";
725 }
726
727public:
728 /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
729 /// dominator tree in dfs order.
730 void updateDFSNumbers() const {
731 if (DFSInfoValid) {
732 SlowQueries = 0;
733 return;
734 }
735
736 SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
737 typename DomTreeNodeBase<NodeT>::const_iterator>,
738 32> WorkStack;
739
740 const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
741 assert((!Parent || ThisRoot) && "Empty constructed DomTree")(((!Parent || ThisRoot) && "Empty constructed DomTree"
) ? static_cast<void> (0) : __assert_fail ("(!Parent || ThisRoot) && \"Empty constructed DomTree\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 741, __PRETTY_FUNCTION__))
;
742 if (!ThisRoot)
743 return;
744
745 // Both dominators and postdominators have a single root node. In the case
746 // case of PostDominatorTree, this node is a virtual root.
747 WorkStack.push_back({ThisRoot, ThisRoot->begin()});
748
749 unsigned DFSNum = 0;
750 ThisRoot->DFSNumIn = DFSNum++;
751
752 while (!WorkStack.empty()) {
753 const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
754 const auto ChildIt = WorkStack.back().second;
755
756 // If we visited all of the children of this node, "recurse" back up the
757 // stack setting the DFOutNum.
758 if (ChildIt == Node->end()) {
759 Node->DFSNumOut = DFSNum++;
760 WorkStack.pop_back();
761 } else {
762 // Otherwise, recursively visit this child.
763 const DomTreeNodeBase<NodeT> *Child = *ChildIt;
764 ++WorkStack.back().second;
765
766 WorkStack.push_back({Child, Child->begin()});
767 Child->DFSNumIn = DFSNum++;
768 }
769 }
770
771 SlowQueries = 0;
772 DFSInfoValid = true;
773 }
774
775 /// recalculate - compute a dominator tree for the given function
776 void recalculate(ParentType &Func) {
777 Parent = &Func;
778 DomTreeBuilder::Calculate(*this);
779 }
780
781 void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) {
782 Parent = &Func;
783 DomTreeBuilder::CalculateWithUpdates(*this, Updates);
784 }
785
786 /// verify - checks if the tree is correct. There are 3 level of verification:
787 /// - Full -- verifies if the tree is correct by making sure all the
788 /// properties (including the parent and the sibling property)
789 /// hold.
790 /// Takes O(N^3) time.
791 ///
792 /// - Basic -- checks if the tree is correct, but compares it to a freshly
793 /// constructed tree instead of checking the sibling property.
794 /// Takes O(N^2) time.
795 ///
796 /// - Fast -- checks basic tree structure and compares it with a freshly
797 /// constructed tree.
798 /// Takes O(N^2) time worst case, but is faster in practise (same
799 /// as tree construction).
800 bool verify(VerificationLevel VL = VerificationLevel::Full) const {
801 return DomTreeBuilder::Verify(*this, VL);
802 }
803
804 void reset() {
805 DomTreeNodes.clear();
806 Roots.clear();
807 RootNode = nullptr;
808 Parent = nullptr;
809 DFSInfoValid = false;
810 SlowQueries = 0;
811 }
812
813protected:
814 void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
815
816 DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) {
817 return (DomTreeNodes[BB] = IDom->addChild(
818 std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom)))
819 .get();
820 }
821
822 DomTreeNodeBase<NodeT> *createNode(NodeT *BB) {
823 return (DomTreeNodes[BB] =
824 std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr))
825 .get();
826 }
827
828 // NewBB is split and now it has one successor. Update dominator tree to
829 // reflect this change.
830 template <class N>
831 void Split(typename GraphTraits<N>::NodeRef NewBB) {
832 using GraphT = GraphTraits<N>;
833 using NodeRef = typename GraphT::NodeRef;
834 assert(std::distance(GraphT::child_begin(NewBB),((std::distance(GraphT::child_begin(NewBB), GraphT::child_end
(NewBB)) == 1 && "NewBB should have a single successor!"
) ? static_cast<void> (0) : __assert_fail ("std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 && \"NewBB should have a single successor!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 836, __PRETTY_FUNCTION__))
835 GraphT::child_end(NewBB)) == 1 &&((std::distance(GraphT::child_begin(NewBB), GraphT::child_end
(NewBB)) == 1 && "NewBB should have a single successor!"
) ? static_cast<void> (0) : __assert_fail ("std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 && \"NewBB should have a single successor!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 836, __PRETTY_FUNCTION__))
836 "NewBB should have a single successor!")((std::distance(GraphT::child_begin(NewBB), GraphT::child_end
(NewBB)) == 1 && "NewBB should have a single successor!"
) ? static_cast<void> (0) : __assert_fail ("std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 && \"NewBB should have a single successor!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 836, __PRETTY_FUNCTION__))
;
837 NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
838
839 SmallVector<NodeRef, 4> PredBlocks;
840 for (auto Pred : children<Inverse<N>>(NewBB))
841 PredBlocks.push_back(Pred);
842
843 assert(!PredBlocks.empty() && "No predblocks?")((!PredBlocks.empty() && "No predblocks?") ? static_cast
<void> (0) : __assert_fail ("!PredBlocks.empty() && \"No predblocks?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 843, __PRETTY_FUNCTION__))
;
844
845 bool NewBBDominatesNewBBSucc = true;
846 for (auto Pred : children<Inverse<N>>(NewBBSucc)) {
847 if (Pred != NewBB && !dominates(NewBBSucc, Pred) &&
848 isReachableFromEntry(Pred)) {
849 NewBBDominatesNewBBSucc = false;
850 break;
851 }
852 }
853
854 // Find NewBB's immediate dominator and create new dominator tree node for
855 // NewBB.
856 NodeT *NewBBIDom = nullptr;
857 unsigned i = 0;
858 for (i = 0; i < PredBlocks.size(); ++i)
859 if (isReachableFromEntry(PredBlocks[i])) {
860 NewBBIDom = PredBlocks[i];
861 break;
862 }
863
864 // It's possible that none of the predecessors of NewBB are reachable;
865 // in that case, NewBB itself is unreachable, so nothing needs to be
866 // changed.
867 if (!NewBBIDom) return;
868
869 for (i = i + 1; i < PredBlocks.size(); ++i) {
870 if (isReachableFromEntry(PredBlocks[i]))
871 NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
872 }
873
874 // Create the new dominator tree node... and set the idom of NewBB.
875 DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom);
876
877 // If NewBB strictly dominates other blocks, then it is now the immediate
878 // dominator of NewBBSucc. Update the dominator tree as appropriate.
879 if (NewBBDominatesNewBBSucc) {
880 DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc);
881 changeImmediateDominator(NewBBSuccNode, NewBBNode);
882 }
883 }
884
885 private:
886 bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
887 const DomTreeNodeBase<NodeT> *B) const {
888 assert(A != B)((A != B) ? static_cast<void> (0) : __assert_fail ("A != B"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 888, __PRETTY_FUNCTION__))
;
889 assert(isReachableFromEntry(B))((isReachableFromEntry(B)) ? static_cast<void> (0) : __assert_fail
("isReachableFromEntry(B)", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 889, __PRETTY_FUNCTION__))
;
890 assert(isReachableFromEntry(A))((isReachableFromEntry(A)) ? static_cast<void> (0) : __assert_fail
("isReachableFromEntry(A)", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/Support/GenericDomTree.h"
, 890, __PRETTY_FUNCTION__))
;
891
892 const unsigned ALevel = A->getLevel();
893 const DomTreeNodeBase<NodeT> *IDom;
894
895 // Don't walk nodes above A's subtree. When we reach A's level, we must
896 // either find A or be in some other subtree not dominated by A.
897 while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel)
898 B = IDom; // Walk up the tree
899
900 return B == A;
901 }
902
903 /// Wipe this tree's state without releasing any resources.
904 ///
905 /// This is essentially a post-move helper only. It leaves the object in an
906 /// assignable and destroyable state, but otherwise invalid.
907 void wipe() {
908 DomTreeNodes.clear();
909 RootNode = nullptr;
910 Parent = nullptr;
911 }
912};
913
914template <typename T>
915using DomTreeBase = DominatorTreeBase<T, false>;
916
917template <typename T>
918using PostDomTreeBase = DominatorTreeBase<T, true>;
919
920// These two functions are declared out of line as a workaround for building
921// with old (< r147295) versions of clang because of pr11642.
922template <typename NodeT, bool IsPostDom>
923bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A,
924 const NodeT *B) const {
925 if (A == B)
926 return true;
927
928 // Cast away the const qualifiers here. This is ok since
929 // this function doesn't actually return the values returned
930 // from getNode.
931 return dominates(getNode(const_cast<NodeT *>(A)),
932 getNode(const_cast<NodeT *>(B)));
933}
934template <typename NodeT, bool IsPostDom>
935bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates(
936 const NodeT *A, const NodeT *B) const {
937 if (A == B)
938 return false;
939
940 // Cast away the const qualifiers here. This is ok since
941 // this function doesn't actually return the values returned
942 // from getNode.
943 return dominates(getNode(const_cast<NodeT *>(A)),
944 getNode(const_cast<NodeT *>(B)));
945}
946
947} // end namespace llvm
948
949#endif // LLVM_SUPPORT_GENERICDOMTREE_H