Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
Warning:line 2835, column 23
Access to field 'IsScheduled' results in a dereference of a null pointer (loaded from variable 'SD')

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SLPVectorizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Vectorize -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/PriorityQueue.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SetOperations.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/SmallBitVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/iterator.h"
34#include "llvm/ADT/iterator_range.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AssumptionCache.h"
37#include "llvm/Analysis/CodeMetrics.h"
38#include "llvm/Analysis/DemandedBits.h"
39#include "llvm/Analysis/GlobalsModRef.h"
40#include "llvm/Analysis/IVDescriptors.h"
41#include "llvm/Analysis/LoopAccessAnalysis.h"
42#include "llvm/Analysis/LoopInfo.h"
43#include "llvm/Analysis/MemoryLocation.h"
44#include "llvm/Analysis/OptimizationRemarkEmitter.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Analysis/ScalarEvolutionExpressions.h"
47#include "llvm/Analysis/TargetLibraryInfo.h"
48#include "llvm/Analysis/TargetTransformInfo.h"
49#include "llvm/Analysis/ValueTracking.h"
50#include "llvm/Analysis/VectorUtils.h"
51#include "llvm/IR/Attributes.h"
52#include "llvm/IR/BasicBlock.h"
53#include "llvm/IR/Constant.h"
54#include "llvm/IR/Constants.h"
55#include "llvm/IR/DataLayout.h"
56#include "llvm/IR/DerivedTypes.h"
57#include "llvm/IR/Dominators.h"
58#include "llvm/IR/Function.h"
59#include "llvm/IR/IRBuilder.h"
60#include "llvm/IR/InstrTypes.h"
61#include "llvm/IR/Instruction.h"
62#include "llvm/IR/Instructions.h"
63#include "llvm/IR/IntrinsicInst.h"
64#include "llvm/IR/Intrinsics.h"
65#include "llvm/IR/Module.h"
66#include "llvm/IR/Operator.h"
67#include "llvm/IR/PatternMatch.h"
68#include "llvm/IR/Type.h"
69#include "llvm/IR/Use.h"
70#include "llvm/IR/User.h"
71#include "llvm/IR/Value.h"
72#include "llvm/IR/ValueHandle.h"
73#ifdef EXPENSIVE_CHECKS
74#include "llvm/IR/Verifier.h"
75#endif
76#include "llvm/Pass.h"
77#include "llvm/Support/Casting.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/Compiler.h"
80#include "llvm/Support/DOTGraphTraits.h"
81#include "llvm/Support/Debug.h"
82#include "llvm/Support/ErrorHandling.h"
83#include "llvm/Support/GraphWriter.h"
84#include "llvm/Support/InstructionCost.h"
85#include "llvm/Support/KnownBits.h"
86#include "llvm/Support/MathExtras.h"
87#include "llvm/Support/raw_ostream.h"
88#include "llvm/Transforms/Utils/InjectTLIMappings.h"
89#include "llvm/Transforms/Utils/Local.h"
90#include "llvm/Transforms/Utils/LoopUtils.h"
91#include "llvm/Transforms/Vectorize.h"
92#include <algorithm>
93#include <cassert>
94#include <cstdint>
95#include <iterator>
96#include <memory>
97#include <set>
98#include <string>
99#include <tuple>
100#include <utility>
101#include <vector>
102
103using namespace llvm;
104using namespace llvm::PatternMatch;
105using namespace slpvectorizer;
106
107#define SV_NAME"slp-vectorizer" "slp-vectorizer"
108#define DEBUG_TYPE"SLP" "SLP"
109
110STATISTIC(NumVectorInstructions, "Number of vector instructions generated")static llvm::Statistic NumVectorInstructions = {"SLP", "NumVectorInstructions"
, "Number of vector instructions generated"}
;
111
112cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
113 cl::desc("Run the SLP vectorization passes"));
114
115static cl::opt<int>
116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117 cl::desc("Only vectorize if you gain more than this "
118 "number "));
119
120static cl::opt<bool>
121ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122 cl::desc("Attempt to vectorize horizontal reductions"));
123
124static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126 cl::desc(
127 "Attempt to vectorize horizontal reductions feeding into a store"));
128
129static cl::opt<int>
130MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131 cl::desc("Attempt to vectorize for this register size in bits"));
132
133static cl::opt<unsigned>
134MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
135 cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
136
137static cl::opt<int>
138MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
139 cl::desc("Maximum depth of the lookup for consecutive stores."));
140
141/// Limits the size of scheduling regions in a block.
142/// It avoid long compile times for _very_ large blocks where vector
143/// instructions are spread over a wide range.
144/// This limit is way higher than needed by real-world functions.
145static cl::opt<int>
146ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
147 cl::desc("Limit the size of the SLP scheduling region per block"));
148
149static cl::opt<int> MinVectorRegSizeOption(
150 "slp-min-reg-size", cl::init(128), cl::Hidden,
151 cl::desc("Attempt to vectorize for this register size in bits"));
152
153static cl::opt<unsigned> RecursionMaxDepth(
154 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
155 cl::desc("Limit the recursion depth when building a vectorizable tree"));
156
157static cl::opt<unsigned> MinTreeSize(
158 "slp-min-tree-size", cl::init(3), cl::Hidden,
159 cl::desc("Only vectorize small trees if they are fully vectorizable"));
160
161// The maximum depth that the look-ahead score heuristic will explore.
162// The higher this value, the higher the compilation time overhead.
163static cl::opt<int> LookAheadMaxDepth(
164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
165 cl::desc("The maximum look-ahead depth for operand reordering scores"));
166
167static cl::opt<bool>
168 ViewSLPTree("view-slp-tree", cl::Hidden,
169 cl::desc("Display the SLP trees with Graphviz"));
170
171// Limit the number of alias checks. The limit is chosen so that
172// it has no negative effect on the llvm benchmarks.
173static const unsigned AliasedCheckLimit = 10;
174
175// Another limit for the alias checks: The maximum distance between load/store
176// instructions where alias checks are done.
177// This limit is useful for very large basic blocks.
178static const unsigned MaxMemDepDistance = 160;
179
180/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
181/// regions to be handled.
182static const int MinScheduleRegionSize = 16;
183
184/// Predicate for the element types that the SLP vectorizer supports.
185///
186/// The most important thing to filter here are types which are invalid in LLVM
187/// vectors. We also filter target specific types which have absolutely no
188/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
189/// avoids spending time checking the cost model and realizing that they will
190/// be inevitably scalarized.
191static bool isValidElementType(Type *Ty) {
192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
193 !Ty->isPPC_FP128Ty();
194}
195
196/// \returns True if the value is a constant (but not globals/constant
197/// expressions).
198static bool isConstant(Value *V) {
199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
200}
201
202/// Checks if \p V is one of vector-like instructions, i.e. undef,
203/// insertelement/extractelement with constant indices for fixed vector type or
204/// extractvalue instruction.
205static bool isVectorLikeInstWithConstOps(Value *V) {
206 if (!isa<InsertElementInst, ExtractElementInst>(V) &&
207 !isa<ExtractValueInst, UndefValue>(V))
208 return false;
209 auto *I = dyn_cast<Instruction>(V);
210 if (!I || isa<ExtractValueInst>(I))
211 return true;
212 if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
213 return false;
214 if (isa<ExtractElementInst>(I))
215 return isConstant(I->getOperand(1));
216 assert(isa<InsertElementInst>(V) && "Expected only insertelement.")(static_cast <bool> (isa<InsertElementInst>(V) &&
"Expected only insertelement.") ? void (0) : __assert_fail (
"isa<InsertElementInst>(V) && \"Expected only insertelement.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 216, __extension__
__PRETTY_FUNCTION__))
;
217 return isConstant(I->getOperand(2));
218}
219
220/// \returns true if all of the instructions in \p VL are in the same block or
221/// false otherwise.
222static bool allSameBlock(ArrayRef<Value *> VL) {
223 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
224 if (!I0)
225 return false;
226 if (all_of(VL, isVectorLikeInstWithConstOps))
227 return true;
228
229 BasicBlock *BB = I0->getParent();
230 for (int I = 1, E = VL.size(); I < E; I++) {
231 auto *II = dyn_cast<Instruction>(VL[I]);
232 if (!II)
233 return false;
234
235 if (BB != II->getParent())
236 return false;
237 }
238 return true;
239}
240
241/// \returns True if all of the values in \p VL are constants (but not
242/// globals/constant expressions).
243static bool allConstant(ArrayRef<Value *> VL) {
244 // Constant expressions and globals can't be vectorized like normal integer/FP
245 // constants.
246 return all_of(VL, isConstant);
247}
248
249/// \returns True if all of the values in \p VL are identical or some of them
250/// are UndefValue.
251static bool isSplat(ArrayRef<Value *> VL) {
252 Value *FirstNonUndef = nullptr;
253 for (Value *V : VL) {
254 if (isa<UndefValue>(V))
255 continue;
256 if (!FirstNonUndef) {
257 FirstNonUndef = V;
258 continue;
259 }
260 if (V != FirstNonUndef)
261 return false;
262 }
263 return FirstNonUndef != nullptr;
264}
265
266/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
267static bool isCommutative(Instruction *I) {
268 if (auto *Cmp = dyn_cast<CmpInst>(I))
269 return Cmp->isCommutative();
270 if (auto *BO = dyn_cast<BinaryOperator>(I))
271 return BO->isCommutative();
272 // TODO: This should check for generic Instruction::isCommutative(), but
273 // we need to confirm that the caller code correctly handles Intrinsics
274 // for example (does not have 2 operands).
275 return false;
276}
277
278/// Checks if the given value is actually an undefined constant vector.
279static bool isUndefVector(const Value *V) {
280 if (isa<UndefValue>(V))
281 return true;
282 auto *C = dyn_cast<Constant>(V);
283 if (!C)
284 return false;
285 if (!C->containsUndefOrPoisonElement())
286 return false;
287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType());
288 if (!VecTy)
289 return false;
290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
291 if (Constant *Elem = C->getAggregateElement(I))
292 if (!isa<UndefValue>(Elem))
293 return false;
294 }
295 return true;
296}
297
298/// Checks if the vector of instructions can be represented as a shuffle, like:
299/// %x0 = extractelement <4 x i8> %x, i32 0
300/// %x3 = extractelement <4 x i8> %x, i32 3
301/// %y1 = extractelement <4 x i8> %y, i32 1
302/// %y2 = extractelement <4 x i8> %y, i32 2
303/// %x0x0 = mul i8 %x0, %x0
304/// %x3x3 = mul i8 %x3, %x3
305/// %y1y1 = mul i8 %y1, %y1
306/// %y2y2 = mul i8 %y2, %y2
307/// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
308/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
309/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
310/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
311/// ret <4 x i8> %ins4
312/// can be transformed into:
313/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
314/// i32 6>
315/// %2 = mul <4 x i8> %1, %1
316/// ret <4 x i8> %2
317/// We convert this initially to something like:
318/// %x0 = extractelement <4 x i8> %x, i32 0
319/// %x3 = extractelement <4 x i8> %x, i32 3
320/// %y1 = extractelement <4 x i8> %y, i32 1
321/// %y2 = extractelement <4 x i8> %y, i32 2
322/// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
323/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
324/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
325/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
326/// %5 = mul <4 x i8> %4, %4
327/// %6 = extractelement <4 x i8> %5, i32 0
328/// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
329/// %7 = extractelement <4 x i8> %5, i32 1
330/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
331/// %8 = extractelement <4 x i8> %5, i32 2
332/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
333/// %9 = extractelement <4 x i8> %5, i32 3
334/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
335/// ret <4 x i8> %ins4
336/// InstCombiner transforms this into a shuffle and vector mul
337/// Mask will return the Shuffle Mask equivalent to the extracted elements.
338/// TODO: Can we split off and reuse the shuffle mask detection from
339/// TargetTransformInfo::getInstructionThroughput?
340static Optional<TargetTransformInfo::ShuffleKind>
341isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
342 const auto *It =
343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
344 if (It == VL.end())
345 return None;
346 auto *EI0 = cast<ExtractElementInst>(*It);
347 if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
348 return None;
349 unsigned Size =
350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
351 Value *Vec1 = nullptr;
352 Value *Vec2 = nullptr;
353 enum ShuffleMode { Unknown, Select, Permute };
354 ShuffleMode CommonShuffleMode = Unknown;
355 Mask.assign(VL.size(), UndefMaskElem);
356 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
357 // Undef can be represented as an undef element in a vector.
358 if (isa<UndefValue>(VL[I]))
359 continue;
360 auto *EI = cast<ExtractElementInst>(VL[I]);
361 if (isa<ScalableVectorType>(EI->getVectorOperandType()))
362 return None;
363 auto *Vec = EI->getVectorOperand();
364 // We can extractelement from undef or poison vector.
365 if (isUndefVector(Vec))
366 continue;
367 // All vector operands must have the same number of vector elements.
368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
369 return None;
370 if (isa<UndefValue>(EI->getIndexOperand()))
371 continue;
372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
373 if (!Idx)
374 return None;
375 // Undefined behavior if Idx is negative or >= Size.
376 if (Idx->getValue().uge(Size))
377 continue;
378 unsigned IntIdx = Idx->getValue().getZExtValue();
379 Mask[I] = IntIdx;
380 // For correct shuffling we have to have at most 2 different vector operands
381 // in all extractelement instructions.
382 if (!Vec1 || Vec1 == Vec) {
383 Vec1 = Vec;
384 } else if (!Vec2 || Vec2 == Vec) {
385 Vec2 = Vec;
386 Mask[I] += Size;
387 } else {
388 return None;
389 }
390 if (CommonShuffleMode == Permute)
391 continue;
392 // If the extract index is not the same as the operation number, it is a
393 // permutation.
394 if (IntIdx != I) {
395 CommonShuffleMode = Permute;
396 continue;
397 }
398 CommonShuffleMode = Select;
399 }
400 // If we're not crossing lanes in different vectors, consider it as blending.
401 if (CommonShuffleMode == Select && Vec2)
402 return TargetTransformInfo::SK_Select;
403 // If Vec2 was never used, we have a permutation of a single vector, otherwise
404 // we have permutation of 2 vectors.
405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
406 : TargetTransformInfo::SK_PermuteSingleSrc;
407}
408
409namespace {
410
411/// Main data required for vectorization of instructions.
412struct InstructionsState {
413 /// The very first instruction in the list with the main opcode.
414 Value *OpValue = nullptr;
415
416 /// The main/alternate instruction.
417 Instruction *MainOp = nullptr;
418 Instruction *AltOp = nullptr;
419
420 /// The main/alternate opcodes for the list of instructions.
421 unsigned getOpcode() const {
422 return MainOp ? MainOp->getOpcode() : 0;
423 }
424
425 unsigned getAltOpcode() const {
426 return AltOp ? AltOp->getOpcode() : 0;
427 }
428
429 /// Some of the instructions in the list have alternate opcodes.
430 bool isAltShuffle() const { return AltOp != MainOp; }
431
432 bool isOpcodeOrAlt(Instruction *I) const {
433 unsigned CheckedOpcode = I->getOpcode();
434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
435 }
436
437 InstructionsState() = delete;
438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
440};
441
442} // end anonymous namespace
443
444/// Chooses the correct key for scheduling data. If \p Op has the same (or
445/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
446/// OpValue.
447static Value *isOneOf(const InstructionsState &S, Value *Op) {
448 auto *I = dyn_cast<Instruction>(Op);
449 if (I && S.isOpcodeOrAlt(I))
450 return Op;
451 return S.OpValue;
452}
453
454/// \returns true if \p Opcode is allowed as part of of the main/alternate
455/// instruction for SLP vectorization.
456///
457/// Example of unsupported opcode is SDIV that can potentially cause UB if the
458/// "shuffled out" lane would result in division by zero.
459static bool isValidForAlternation(unsigned Opcode) {
460 if (Instruction::isIntDivRem(Opcode))
461 return false;
462
463 return true;
464}
465
466static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
467 unsigned BaseIndex = 0);
468
469/// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
470/// compatible instructions or constants, or just some other regular values.
471static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
472 Value *Op1) {
473 return (isConstant(BaseOp0) && isConstant(Op0)) ||
474 (isConstant(BaseOp1) && isConstant(Op1)) ||
475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
477 getSameOpcode({BaseOp0, Op0}).getOpcode() ||
478 getSameOpcode({BaseOp1, Op1}).getOpcode();
479}
480
481/// \returns analysis of the Instructions in \p VL described in
482/// InstructionsState, the Opcode that we suppose the whole list
483/// could be vectorized even if its structure is diverse.
484static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
485 unsigned BaseIndex) {
486 // Make sure these are all Instructions.
487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
488 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
489
490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
493 CmpInst::Predicate BasePred =
494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
495 : CmpInst::BAD_ICMP_PREDICATE;
496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
497 unsigned AltOpcode = Opcode;
498 unsigned AltIndex = BaseIndex;
499
500 // Check for one alternate opcode from another BinaryOperator.
501 // TODO - generalize to support all operators (types, calls etc.).
502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
505 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
506 continue;
507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
508 isValidForAlternation(Opcode)) {
509 AltOpcode = InstOpcode;
510 AltIndex = Cnt;
511 continue;
512 }
513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
516 if (Ty0 == Ty1) {
517 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
518 continue;
519 if (Opcode == AltOpcode) {
520 assert(isValidForAlternation(Opcode) &&(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 522, __extension__
__PRETTY_FUNCTION__))
521 isValidForAlternation(InstOpcode) &&(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 522, __extension__
__PRETTY_FUNCTION__))
522 "Cast isn't safe for alternation, logic needs to be updated!")(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 522, __extension__
__PRETTY_FUNCTION__))
;
523 AltOpcode = InstOpcode;
524 AltIndex = Cnt;
525 continue;
526 }
527 }
528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) {
529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]);
530 auto *Inst = cast<Instruction>(VL[Cnt]);
531 Type *Ty0 = BaseInst->getOperand(0)->getType();
532 Type *Ty1 = Inst->getOperand(0)->getType();
533 if (Ty0 == Ty1) {
534 Value *BaseOp0 = BaseInst->getOperand(0);
535 Value *BaseOp1 = BaseInst->getOperand(1);
536 Value *Op0 = Inst->getOperand(0);
537 Value *Op1 = Inst->getOperand(1);
538 CmpInst::Predicate CurrentPred =
539 cast<CmpInst>(VL[Cnt])->getPredicate();
540 CmpInst::Predicate SwappedCurrentPred =
541 CmpInst::getSwappedPredicate(CurrentPred);
542 // Check for compatible operands. If the corresponding operands are not
543 // compatible - need to perform alternate vectorization.
544 if (InstOpcode == Opcode) {
545 if (BasePred == CurrentPred &&
546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1))
547 continue;
548 if (BasePred == SwappedCurrentPred &&
549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0))
550 continue;
551 if (E == 2 &&
552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
553 continue;
554 auto *AltInst = cast<CmpInst>(VL[AltIndex]);
555 CmpInst::Predicate AltPred = AltInst->getPredicate();
556 Value *AltOp0 = AltInst->getOperand(0);
557 Value *AltOp1 = AltInst->getOperand(1);
558 // Check if operands are compatible with alternate operands.
559 if (AltPred == CurrentPred &&
560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1))
561 continue;
562 if (AltPred == SwappedCurrentPred &&
563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0))
564 continue;
565 }
566 if (BaseIndex == AltIndex && BasePred != CurrentPred) {
567 assert(isValidForAlternation(Opcode) &&(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 569, __extension__
__PRETTY_FUNCTION__))
568 isValidForAlternation(InstOpcode) &&(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 569, __extension__
__PRETTY_FUNCTION__))
569 "Cast isn't safe for alternation, logic needs to be updated!")(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 569, __extension__
__PRETTY_FUNCTION__))
;
570 AltIndex = Cnt;
571 continue;
572 }
573 auto *AltInst = cast<CmpInst>(VL[AltIndex]);
574 CmpInst::Predicate AltPred = AltInst->getPredicate();
575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
576 AltPred == CurrentPred || AltPred == SwappedCurrentPred)
577 continue;
578 }
579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
580 continue;
581 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
582 }
583
584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
585 cast<Instruction>(VL[AltIndex]));
586}
587
588/// \returns true if all of the values in \p VL have the same type or false
589/// otherwise.
590static bool allSameType(ArrayRef<Value *> VL) {
591 Type *Ty = VL[0]->getType();
592 for (int i = 1, e = VL.size(); i < e; i++)
593 if (VL[i]->getType() != Ty)
594 return false;
595
596 return true;
597}
598
599/// \returns True if Extract{Value,Element} instruction extracts element Idx.
600static Optional<unsigned> getExtractIndex(Instruction *E) {
601 unsigned Opcode = E->getOpcode();
602 assert((Opcode == Instruction::ExtractElement ||(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 604, __extension__
__PRETTY_FUNCTION__))
603 Opcode == Instruction::ExtractValue) &&(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 604, __extension__
__PRETTY_FUNCTION__))
604 "Expected extractelement or extractvalue instruction.")(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 604, __extension__
__PRETTY_FUNCTION__))
;
605 if (Opcode == Instruction::ExtractElement) {
606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
607 if (!CI)
608 return None;
609 return CI->getZExtValue();
610 }
611 ExtractValueInst *EI = cast<ExtractValueInst>(E);
612 if (EI->getNumIndices() != 1)
613 return None;
614 return *EI->idx_begin();
615}
616
617/// \returns True if in-tree use also needs extract. This refers to
618/// possible scalar operand in vectorized instruction.
619static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
620 TargetLibraryInfo *TLI) {
621 unsigned Opcode = UserInst->getOpcode();
622 switch (Opcode) {
623 case Instruction::Load: {
624 LoadInst *LI = cast<LoadInst>(UserInst);
625 return (LI->getPointerOperand() == Scalar);
626 }
627 case Instruction::Store: {
628 StoreInst *SI = cast<StoreInst>(UserInst);
629 return (SI->getPointerOperand() == Scalar);
630 }
631 case Instruction::Call: {
632 CallInst *CI = cast<CallInst>(UserInst);
633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
635 if (hasVectorInstrinsicScalarOpd(ID, i))
636 return (CI->getArgOperand(i) == Scalar);
637 }
638 LLVM_FALLTHROUGH[[gnu::fallthrough]];
639 }
640 default:
641 return false;
642 }
643}
644
645/// \returns the AA location that is being access by the instruction.
646static MemoryLocation getLocation(Instruction *I) {
647 if (StoreInst *SI = dyn_cast<StoreInst>(I))
648 return MemoryLocation::get(SI);
649 if (LoadInst *LI = dyn_cast<LoadInst>(I))
650 return MemoryLocation::get(LI);
651 return MemoryLocation();
652}
653
654/// \returns True if the instruction is not a volatile or atomic load/store.
655static bool isSimple(Instruction *I) {
656 if (LoadInst *LI = dyn_cast<LoadInst>(I))
657 return LI->isSimple();
658 if (StoreInst *SI = dyn_cast<StoreInst>(I))
659 return SI->isSimple();
660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
661 return !MI->isVolatile();
662 return true;
663}
664
665/// Shuffles \p Mask in accordance with the given \p SubMask.
666static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
667 if (SubMask.empty())
668 return;
669 if (Mask.empty()) {
670 Mask.append(SubMask.begin(), SubMask.end());
671 return;
672 }
673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem);
674 int TermValue = std::min(Mask.size(), SubMask.size());
675 for (int I = 0, E = SubMask.size(); I < E; ++I) {
676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
677 Mask[SubMask[I]] >= TermValue)
678 continue;
679 NewMask[I] = Mask[SubMask[I]];
680 }
681 Mask.swap(NewMask);
682}
683
684/// Order may have elements assigned special value (size) which is out of
685/// bounds. Such indices only appear on places which correspond to undef values
686/// (see canReuseExtract for details) and used in order to avoid undef values
687/// have effect on operands ordering.
688/// The first loop below simply finds all unused indices and then the next loop
689/// nest assigns these indices for undef values positions.
690/// As an example below Order has two undef positions and they have assigned
691/// values 3 and 7 respectively:
692/// before: 6 9 5 4 9 2 1 0
693/// after: 6 3 5 4 7 2 1 0
694static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
695 const unsigned Sz = Order.size();
696 SmallBitVector UnusedIndices(Sz, /*t=*/true);
697 SmallBitVector MaskedIndices(Sz);
698 for (unsigned I = 0; I < Sz; ++I) {
699 if (Order[I] < Sz)
700 UnusedIndices.reset(Order[I]);
701 else
702 MaskedIndices.set(I);
703 }
704 if (MaskedIndices.none())
705 return;
706 assert(UnusedIndices.count() == MaskedIndices.count() &&(static_cast <bool> (UnusedIndices.count() == MaskedIndices
.count() && "Non-synced masked/available indices.") ?
void (0) : __assert_fail ("UnusedIndices.count() == MaskedIndices.count() && \"Non-synced masked/available indices.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 707, __extension__
__PRETTY_FUNCTION__))
707 "Non-synced masked/available indices.")(static_cast <bool> (UnusedIndices.count() == MaskedIndices
.count() && "Non-synced masked/available indices.") ?
void (0) : __assert_fail ("UnusedIndices.count() == MaskedIndices.count() && \"Non-synced masked/available indices.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 707, __extension__
__PRETTY_FUNCTION__))
;
708 int Idx = UnusedIndices.find_first();
709 int MIdx = MaskedIndices.find_first();
710 while (MIdx >= 0) {
711 assert(Idx >= 0 && "Indices must be synced.")(static_cast <bool> (Idx >= 0 && "Indices must be synced."
) ? void (0) : __assert_fail ("Idx >= 0 && \"Indices must be synced.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 711, __extension__
__PRETTY_FUNCTION__))
;
712 Order[MIdx] = Idx;
713 Idx = UnusedIndices.find_next(Idx);
714 MIdx = MaskedIndices.find_next(MIdx);
715 }
716}
717
718namespace llvm {
719
720static void inversePermutation(ArrayRef<unsigned> Indices,
721 SmallVectorImpl<int> &Mask) {
722 Mask.clear();
723 const unsigned E = Indices.size();
724 Mask.resize(E, UndefMaskElem);
725 for (unsigned I = 0; I < E; ++I)
726 Mask[Indices[I]] = I;
727}
728
729/// \returns inserting index of InsertElement or InsertValue instruction,
730/// using Offset as base offset for index.
731static Optional<unsigned> getInsertIndex(Value *InsertInst,
732 unsigned Offset = 0) {
733 int Index = Offset;
734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
736 auto *VT = cast<FixedVectorType>(IE->getType());
737 if (CI->getValue().uge(VT->getNumElements()))
738 return None;
739 Index *= VT->getNumElements();
740 Index += CI->getZExtValue();
741 return Index;
742 }
743 return None;
744 }
745
746 auto *IV = cast<InsertValueInst>(InsertInst);
747 Type *CurrentType = IV->getType();
748 for (unsigned I : IV->indices()) {
749 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
750 Index *= ST->getNumElements();
751 CurrentType = ST->getElementType(I);
752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
753 Index *= AT->getNumElements();
754 CurrentType = AT->getElementType();
755 } else {
756 return None;
757 }
758 Index += I;
759 }
760 return Index;
761}
762
763/// Reorders the list of scalars in accordance with the given \p Mask.
764static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
765 ArrayRef<int> Mask) {
766 assert(!Mask.empty() && "Expected non-empty mask.")(static_cast <bool> (!Mask.empty() && "Expected non-empty mask."
) ? void (0) : __assert_fail ("!Mask.empty() && \"Expected non-empty mask.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 766, __extension__
__PRETTY_FUNCTION__))
;
767 SmallVector<Value *> Prev(Scalars.size(),
768 UndefValue::get(Scalars.front()->getType()));
769 Prev.swap(Scalars);
770 for (unsigned I = 0, E = Prev.size(); I < E; ++I)
771 if (Mask[I] != UndefMaskElem)
772 Scalars[Mask[I]] = Prev[I];
773}
774
775/// Checks if the provided value does not require scheduling. It does not
776/// require scheduling if this is not an instruction or it is an instruction
777/// that does not read/write memory and all operands are either not instructions
778/// or phi nodes or instructions from different blocks.
779static bool areAllOperandsNonInsts(Value *V) {
780 auto *I = dyn_cast<Instruction>(V);
781 if (!I)
782 return true;
783 return !mayHaveNonDefUseDependency(*I) &&
784 all_of(I->operands(), [I](Value *V) {
785 auto *IO = dyn_cast<Instruction>(V);
786 if (!IO)
787 return true;
788 return isa<PHINode>(IO) || IO->getParent() != I->getParent();
789 });
790}
791
792/// Checks if the provided value does not require scheduling. It does not
793/// require scheduling if this is not an instruction or it is an instruction
794/// that does not read/write memory and all users are phi nodes or instructions
795/// from the different blocks.
796static bool isUsedOutsideBlock(Value *V) {
797 auto *I = dyn_cast<Instruction>(V);
798 if (!I)
799 return true;
800 // Limits the number of uses to save compile time.
801 constexpr int UsesLimit = 8;
802 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) &&
803 all_of(I->users(), [I](User *U) {
804 auto *IU = dyn_cast<Instruction>(U);
805 if (!IU)
806 return true;
807 return IU->getParent() != I->getParent() || isa<PHINode>(IU);
808 });
809}
810
811/// Checks if the specified value does not require scheduling. It does not
812/// require scheduling if all operands and all users do not need to be scheduled
813/// in the current basic block.
814static bool doesNotNeedToBeScheduled(Value *V) {
815 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V);
816}
817
818/// Checks if the specified array of instructions does not require scheduling.
819/// It is so if all either instructions have operands that do not require
820/// scheduling or their users do not require scheduling since they are phis or
821/// in other basic blocks.
822static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) {
823 return !VL.empty() &&
824 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts));
825}
826
827namespace slpvectorizer {
828
829/// Bottom Up SLP Vectorizer.
830class BoUpSLP {
831 struct TreeEntry;
832 struct ScheduleData;
833
834public:
835 using ValueList = SmallVector<Value *, 8>;
836 using InstrList = SmallVector<Instruction *, 16>;
837 using ValueSet = SmallPtrSet<Value *, 16>;
838 using StoreList = SmallVector<StoreInst *, 8>;
839 using ExtraValueToDebugLocsMap =
840 MapVector<Value *, SmallVector<Instruction *, 2>>;
841 using OrdersType = SmallVector<unsigned, 4>;
842
843 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
844 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
845 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
846 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
847 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li),
848 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
849 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
850 // Use the vector register size specified by the target unless overridden
851 // by a command-line option.
852 // TODO: It would be better to limit the vectorization factor based on
853 // data type rather than just register size. For example, x86 AVX has
854 // 256-bit registers, but it does not support integer operations
855 // at that width (that requires AVX2).
856 if (MaxVectorRegSizeOption.getNumOccurrences())
857 MaxVecRegSize = MaxVectorRegSizeOption;
858 else
859 MaxVecRegSize =
860 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
861 .getFixedSize();
862
863 if (MinVectorRegSizeOption.getNumOccurrences())
864 MinVecRegSize = MinVectorRegSizeOption;
865 else
866 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
867 }
868
869 /// Vectorize the tree that starts with the elements in \p VL.
870 /// Returns the vectorized root.
871 Value *vectorizeTree();
872
873 /// Vectorize the tree but with the list of externally used values \p
874 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
875 /// generated extractvalue instructions.
876 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
877
878 /// \returns the cost incurred by unwanted spills and fills, caused by
879 /// holding live values over call sites.
880 InstructionCost getSpillCost() const;
881
882 /// \returns the vectorization cost of the subtree that starts at \p VL.
883 /// A negative number means that this is profitable.
884 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
885
886 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
887 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
888 void buildTree(ArrayRef<Value *> Roots,
889 ArrayRef<Value *> UserIgnoreLst = None);
890
891 /// Builds external uses of the vectorized scalars, i.e. the list of
892 /// vectorized scalars to be extracted, their lanes and their scalar users. \p
893 /// ExternallyUsedValues contains additional list of external uses to handle
894 /// vectorization of reductions.
895 void
896 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
897
898 /// Clear the internal data structures that are created by 'buildTree'.
899 void deleteTree() {
900 VectorizableTree.clear();
901 ScalarToTreeEntry.clear();
902 MustGather.clear();
903 ExternalUses.clear();
904 for (auto &Iter : BlocksSchedules) {
905 BlockScheduling *BS = Iter.second.get();
906 BS->clear();
907 }
908 MinBWs.clear();
909 InstrElementSize.clear();
910 }
911
912 unsigned getTreeSize() const { return VectorizableTree.size(); }
913
914 /// Perform LICM and CSE on the newly generated gather sequences.
915 void optimizeGatherSequence();
916
917 /// Checks if the specified gather tree entry \p TE can be represented as a
918 /// shuffled vector entry + (possibly) permutation with other gathers. It
919 /// implements the checks only for possibly ordered scalars (Loads,
920 /// ExtractElement, ExtractValue), which can be part of the graph.
921 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
922
923 /// Gets reordering data for the given tree entry. If the entry is vectorized
924 /// - just return ReorderIndices, otherwise check if the scalars can be
925 /// reordered and return the most optimal order.
926 /// \param TopToBottom If true, include the order of vectorized stores and
927 /// insertelement nodes, otherwise skip them.
928 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom);
929
930 /// Reorders the current graph to the most profitable order starting from the
931 /// root node to the leaf nodes. The best order is chosen only from the nodes
932 /// of the same size (vectorization factor). Smaller nodes are considered
933 /// parts of subgraph with smaller VF and they are reordered independently. We
934 /// can make it because we still need to extend smaller nodes to the wider VF
935 /// and we can merge reordering shuffles with the widening shuffles.
936 void reorderTopToBottom();
937
938 /// Reorders the current graph to the most profitable order starting from
939 /// leaves to the root. It allows to rotate small subgraphs and reduce the
940 /// number of reshuffles if the leaf nodes use the same order. In this case we
941 /// can merge the orders and just shuffle user node instead of shuffling its
942 /// operands. Plus, even the leaf nodes have different orders, it allows to
943 /// sink reordering in the graph closer to the root node and merge it later
944 /// during analysis.
945 void reorderBottomToTop(bool IgnoreReorder = false);
946
947 /// \return The vector element size in bits to use when vectorizing the
948 /// expression tree ending at \p V. If V is a store, the size is the width of
949 /// the stored value. Otherwise, the size is the width of the largest loaded
950 /// value reaching V. This method is used by the vectorizer to calculate
951 /// vectorization factors.
952 unsigned getVectorElementSize(Value *V);
953
954 /// Compute the minimum type sizes required to represent the entries in a
955 /// vectorizable tree.
956 void computeMinimumValueSizes();
957
958 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
959 unsigned getMaxVecRegSize() const {
960 return MaxVecRegSize;
961 }
962
963 // \returns minimum vector register size as set by cl::opt.
964 unsigned getMinVecRegSize() const {
965 return MinVecRegSize;
966 }
967
968 unsigned getMinVF(unsigned Sz) const {
969 return std::max(2U, getMinVecRegSize() / Sz);
970 }
971
972 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
973 unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
974 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
975 return MaxVF ? MaxVF : UINT_MAX(2147483647 *2U +1U);
976 }
977
978 /// Check if homogeneous aggregate is isomorphic to some VectorType.
979 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
980 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
981 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
982 ///
983 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
984 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
985
986 /// \returns True if the VectorizableTree is both tiny and not fully
987 /// vectorizable. We do not vectorize such trees.
988 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
989
990 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
991 /// can be load combined in the backend. Load combining may not be allowed in
992 /// the IR optimizer, so we do not want to alter the pattern. For example,
993 /// partially transforming a scalar bswap() pattern into vector code is
994 /// effectively impossible for the backend to undo.
995 /// TODO: If load combining is allowed in the IR optimizer, this analysis
996 /// may not be necessary.
997 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
998
999 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
1000 /// can be load combined in the backend. Load combining may not be allowed in
1001 /// the IR optimizer, so we do not want to alter the pattern. For example,
1002 /// partially transforming a scalar bswap() pattern into vector code is
1003 /// effectively impossible for the backend to undo.
1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis
1005 /// may not be necessary.
1006 bool isLoadCombineCandidate() const;
1007
1008 OptimizationRemarkEmitter *getORE() { return ORE; }
1009
1010 /// This structure holds any data we need about the edges being traversed
1011 /// during buildTree_rec(). We keep track of:
1012 /// (i) the user TreeEntry index, and
1013 /// (ii) the index of the edge.
1014 struct EdgeInfo {
1015 EdgeInfo() = default;
1016 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
1017 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
1018 /// The user TreeEntry.
1019 TreeEntry *UserTE = nullptr;
1020 /// The operand index of the use.
1021 unsigned EdgeIdx = UINT_MAX(2147483647 *2U +1U);
1022#ifndef NDEBUG
1023 friend inline raw_ostream &operator<<(raw_ostream &OS,
1024 const BoUpSLP::EdgeInfo &EI) {
1025 EI.dump(OS);
1026 return OS;
1027 }
1028 /// Debug print.
1029 void dump(raw_ostream &OS) const {
1030 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
1031 << " EdgeIdx:" << EdgeIdx << "}";
1032 }
1033 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { dump(dbgs()); }
1034#endif
1035 };
1036
1037 /// A helper data structure to hold the operands of a vector of instructions.
1038 /// This supports a fixed vector length for all operand vectors.
1039 class VLOperands {
1040 /// For each operand we need (i) the value, and (ii) the opcode that it
1041 /// would be attached to if the expression was in a left-linearized form.
1042 /// This is required to avoid illegal operand reordering.
1043 /// For example:
1044 /// \verbatim
1045 /// 0 Op1
1046 /// |/
1047 /// Op1 Op2 Linearized + Op2
1048 /// \ / ----------> |/
1049 /// - -
1050 ///
1051 /// Op1 - Op2 (0 + Op1) - Op2
1052 /// \endverbatim
1053 ///
1054 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1055 ///
1056 /// Another way to think of this is to track all the operations across the
1057 /// path from the operand all the way to the root of the tree and to
1058 /// calculate the operation that corresponds to this path. For example, the
1059 /// path from Op2 to the root crosses the RHS of the '-', therefore the
1060 /// corresponding operation is a '-' (which matches the one in the
1061 /// linearized tree, as shown above).
1062 ///
1063 /// For lack of a better term, we refer to this operation as Accumulated
1064 /// Path Operation (APO).
1065 struct OperandData {
1066 OperandData() = default;
1067 OperandData(Value *V, bool APO, bool IsUsed)
1068 : V(V), APO(APO), IsUsed(IsUsed) {}
1069 /// The operand value.
1070 Value *V = nullptr;
1071 /// TreeEntries only allow a single opcode, or an alternate sequence of
1072 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1073 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1074 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1075 /// (e.g., Add/Mul)
1076 bool APO = false;
1077 /// Helper data for the reordering function.
1078 bool IsUsed = false;
1079 };
1080
1081 /// During operand reordering, we are trying to select the operand at lane
1082 /// that matches best with the operand at the neighboring lane. Our
1083 /// selection is based on the type of value we are looking for. For example,
1084 /// if the neighboring lane has a load, we need to look for a load that is
1085 /// accessing a consecutive address. These strategies are summarized in the
1086 /// 'ReorderingMode' enumerator.
1087 enum class ReorderingMode {
1088 Load, ///< Matching loads to consecutive memory addresses
1089 Opcode, ///< Matching instructions based on opcode (same or alternate)
1090 Constant, ///< Matching constants
1091 Splat, ///< Matching the same instruction multiple times (broadcast)
1092 Failed, ///< We failed to create a vectorizable group
1093 };
1094
1095 using OperandDataVec = SmallVector<OperandData, 2>;
1096
1097 /// A vector of operand vectors.
1098 SmallVector<OperandDataVec, 4> OpsVec;
1099
1100 const DataLayout &DL;
1101 ScalarEvolution &SE;
1102 const BoUpSLP &R;
1103
1104 /// \returns the operand data at \p OpIdx and \p Lane.
1105 OperandData &getData(unsigned OpIdx, unsigned Lane) {
1106 return OpsVec[OpIdx][Lane];
1107 }
1108
1109 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1110 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1111 return OpsVec[OpIdx][Lane];
1112 }
1113
1114 /// Clears the used flag for all entries.
1115 void clearUsed() {
1116 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1117 OpIdx != NumOperands; ++OpIdx)
1118 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1119 ++Lane)
1120 OpsVec[OpIdx][Lane].IsUsed = false;
1121 }
1122
1123 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1124 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1125 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1126 }
1127
1128 // The hard-coded scores listed here are not very important, though it shall
1129 // be higher for better matches to improve the resulting cost. When
1130 // computing the scores of matching one sub-tree with another, we are
1131 // basically counting the number of values that are matching. So even if all
1132 // scores are set to 1, we would still get a decent matching result.
1133 // However, sometimes we have to break ties. For example we may have to
1134 // choose between matching loads vs matching opcodes. This is what these
1135 // scores are helping us with: they provide the order of preference. Also,
1136 // this is important if the scalar is externally used or used in another
1137 // tree entry node in the different lane.
1138
1139 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1140 static const int ScoreConsecutiveLoads = 4;
1141 /// The same load multiple times. This should have a better score than
1142 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it
1143 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for
1144 /// a vector load and 1.0 for a broadcast.
1145 static const int ScoreSplatLoads = 3;
1146 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1147 static const int ScoreReversedLoads = 3;
1148 /// ExtractElementInst from same vector and consecutive indexes.
1149 static const int ScoreConsecutiveExtracts = 4;
1150 /// ExtractElementInst from same vector and reversed indices.
1151 static const int ScoreReversedExtracts = 3;
1152 /// Constants.
1153 static const int ScoreConstants = 2;
1154 /// Instructions with the same opcode.
1155 static const int ScoreSameOpcode = 2;
1156 /// Instructions with alt opcodes (e.g, add + sub).
1157 static const int ScoreAltOpcodes = 1;
1158 /// Identical instructions (a.k.a. splat or broadcast).
1159 static const int ScoreSplat = 1;
1160 /// Matching with an undef is preferable to failing.
1161 static const int ScoreUndef = 1;
1162 /// Score for failing to find a decent match.
1163 static const int ScoreFail = 0;
1164 /// Score if all users are vectorized.
1165 static const int ScoreAllUserVectorized = 1;
1166
1167 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1168 /// \p U1 and \p U2 are the users of \p V1 and \p V2.
1169 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1170 /// MainAltOps.
1171 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2,
1172 const DataLayout &DL, ScalarEvolution &SE, int NumLanes,
1173 ArrayRef<Value *> MainAltOps) {
1174 if (V1 == V2) {
1175 if (isa<LoadInst>(V1)) {
1176 // Retruns true if the users of V1 and V2 won't need to be extracted.
1177 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) {
1178 // Bail out if we have too many uses to save compilation time.
1179 static constexpr unsigned Limit = 8;
1180 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit))
1181 return false;
1182
1183 auto AllUsersVectorized = [U1, U2, this](Value *V) {
1184 return llvm::all_of(V->users(), [U1, U2, this](Value *U) {
1185 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr;
1186 });
1187 };
1188 return AllUsersVectorized(V1) && AllUsersVectorized(V2);
1189 };
1190 // A broadcast of a load can be cheaper on some targets.
1191 if (R.TTI->isLegalBroadcastLoad(V1->getType(), NumLanes) &&
1192 ((int)V1->getNumUses() == NumLanes ||
1193 AllUsersAreInternal(V1, V2)))
1194 return VLOperands::ScoreSplatLoads;
1195 }
1196 return VLOperands::ScoreSplat;
1197 }
1198
1199 auto *LI1 = dyn_cast<LoadInst>(V1);
1200 auto *LI2 = dyn_cast<LoadInst>(V2);
1201 if (LI1 && LI2) {
1202 if (LI1->getParent() != LI2->getParent())
1203 return VLOperands::ScoreFail;
1204
1205 Optional<int> Dist = getPointersDiff(
1206 LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1207 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1208 if (!Dist || *Dist == 0)
1209 return VLOperands::ScoreFail;
1210 // The distance is too large - still may be profitable to use masked
1211 // loads/gathers.
1212 if (std::abs(*Dist) > NumLanes / 2)
1213 return VLOperands::ScoreAltOpcodes;
1214 // This still will detect consecutive loads, but we might have "holes"
1215 // in some cases. It is ok for non-power-2 vectorization and may produce
1216 // better results. It should not affect current vectorization.
1217 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads
1218 : VLOperands::ScoreReversedLoads;
1219 }
1220
1221 auto *C1 = dyn_cast<Constant>(V1);
1222 auto *C2 = dyn_cast<Constant>(V2);
1223 if (C1 && C2)
1224 return VLOperands::ScoreConstants;
1225
1226 // Extracts from consecutive indexes of the same vector better score as
1227 // the extracts could be optimized away.
1228 Value *EV1;
1229 ConstantInt *Ex1Idx;
1230 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1231 // Undefs are always profitable for extractelements.
1232 if (isa<UndefValue>(V2))
1233 return VLOperands::ScoreConsecutiveExtracts;
1234 Value *EV2 = nullptr;
1235 ConstantInt *Ex2Idx = nullptr;
1236 if (match(V2,
1237 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1238 m_Undef())))) {
1239 // Undefs are always profitable for extractelements.
1240 if (!Ex2Idx)
1241 return VLOperands::ScoreConsecutiveExtracts;
1242 if (isUndefVector(EV2) && EV2->getType() == EV1->getType())
1243 return VLOperands::ScoreConsecutiveExtracts;
1244 if (EV2 == EV1) {
1245 int Idx1 = Ex1Idx->getZExtValue();
1246 int Idx2 = Ex2Idx->getZExtValue();
1247 int Dist = Idx2 - Idx1;
1248 // The distance is too large - still may be profitable to use
1249 // shuffles.
1250 if (std::abs(Dist) == 0)
1251 return VLOperands::ScoreSplat;
1252 if (std::abs(Dist) > NumLanes / 2)
1253 return VLOperands::ScoreSameOpcode;
1254 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts
1255 : VLOperands::ScoreReversedExtracts;
1256 }
1257 return VLOperands::ScoreAltOpcodes;
1258 }
1259 return VLOperands::ScoreFail;
1260 }
1261
1262 auto *I1 = dyn_cast<Instruction>(V1);
1263 auto *I2 = dyn_cast<Instruction>(V2);
1264 if (I1 && I2) {
1265 if (I1->getParent() != I2->getParent())
1266 return VLOperands::ScoreFail;
1267 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1268 Ops.push_back(I1);
1269 Ops.push_back(I2);
1270 InstructionsState S = getSameOpcode(Ops);
1271 // Note: Only consider instructions with <= 2 operands to avoid
1272 // complexity explosion.
1273 if (S.getOpcode() &&
1274 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1275 !S.isAltShuffle()) &&
1276 all_of(Ops, [&S](Value *V) {
1277 return cast<Instruction>(V)->getNumOperands() ==
1278 S.MainOp->getNumOperands();
1279 }))
1280 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1281 : VLOperands::ScoreSameOpcode;
1282 }
1283
1284 if (isa<UndefValue>(V2))
1285 return VLOperands::ScoreUndef;
1286
1287 return VLOperands::ScoreFail;
1288 }
1289
1290 /// \param Lane lane of the operands under analysis.
1291 /// \param OpIdx operand index in \p Lane lane we're looking the best
1292 /// candidate for.
1293 /// \param Idx operand index of the current candidate value.
1294 /// \returns The additional score due to possible broadcasting of the
1295 /// elements in the lane. It is more profitable to have power-of-2 unique
1296 /// elements in the lane, it will be vectorized with higher probability
1297 /// after removing duplicates. Currently the SLP vectorizer supports only
1298 /// vectorization of the power-of-2 number of unique scalars.
1299 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1300 Value *IdxLaneV = getData(Idx, Lane).V;
1301 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1302 return 0;
1303 SmallPtrSet<Value *, 4> Uniques;
1304 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1305 if (Ln == Lane)
1306 continue;
1307 Value *OpIdxLnV = getData(OpIdx, Ln).V;
1308 if (!isa<Instruction>(OpIdxLnV))
1309 return 0;
1310 Uniques.insert(OpIdxLnV);
1311 }
1312 int UniquesCount = Uniques.size();
1313 int UniquesCntWithIdxLaneV =
1314 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1315 Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1316 int UniquesCntWithOpIdxLaneV =
1317 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1318 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1319 return 0;
1320 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1321 UniquesCntWithOpIdxLaneV) -
1322 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1323 }
1324
1325 /// \param Lane lane of the operands under analysis.
1326 /// \param OpIdx operand index in \p Lane lane we're looking the best
1327 /// candidate for.
1328 /// \param Idx operand index of the current candidate value.
1329 /// \returns The additional score for the scalar which users are all
1330 /// vectorized.
1331 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1332 Value *IdxLaneV = getData(Idx, Lane).V;
1333 Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1334 // Do not care about number of uses for vector-like instructions
1335 // (extractelement/extractvalue with constant indices), they are extracts
1336 // themselves and already externally used. Vectorization of such
1337 // instructions does not add extra extractelement instruction, just may
1338 // remove it.
1339 if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1340 isVectorLikeInstWithConstOps(OpIdxLaneV))
1341 return VLOperands::ScoreAllUserVectorized;
1342 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1343 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1344 return 0;
1345 return R.areAllUsersVectorized(IdxLaneI, None)
1346 ? VLOperands::ScoreAllUserVectorized
1347 : 0;
1348 }
1349
1350 /// Go through the operands of \p LHS and \p RHS recursively until \p
1351 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are
1352 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands
1353 /// of \p U1 and \p U2), except at the beginning of the recursion where
1354 /// these are set to nullptr.
1355 ///
1356 /// For example:
1357 /// \verbatim
1358 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
1359 /// \ / \ / \ / \ /
1360 /// + + + +
1361 /// G1 G2 G3 G4
1362 /// \endverbatim
1363 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1364 /// each level recursively, accumulating the score. It starts from matching
1365 /// the additions at level 0, then moves on to the loads (level 1). The
1366 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1367 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1368 /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1369 /// Please note that the order of the operands does not matter, as we
1370 /// evaluate the score of all profitable combinations of operands. In
1371 /// other words the score of G1 and G4 is the same as G1 and G2. This
1372 /// heuristic is based on ideas described in:
1373 /// Look-ahead SLP: Auto-vectorization in the presence of commutative
1374 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1375 /// Luís F. W. Góes
1376 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1,
1377 Instruction *U2, int CurrLevel, int MaxLevel,
1378 ArrayRef<Value *> MainAltOps) {
1379
1380 // Get the shallow score of V1 and V2.
1381 int ShallowScoreAtThisLevel =
1382 getShallowScore(LHS, RHS, U1, U2, DL, SE, getNumLanes(), MainAltOps);
1383
1384 // If reached MaxLevel,
1385 // or if V1 and V2 are not instructions,
1386 // or if they are SPLAT,
1387 // or if they are not consecutive,
1388 // or if profitable to vectorize loads or extractelements, early return
1389 // the current cost.
1390 auto *I1 = dyn_cast<Instruction>(LHS);
1391 auto *I2 = dyn_cast<Instruction>(RHS);
1392 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1393 ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1394 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1395 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1396 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1397 ShallowScoreAtThisLevel))
1398 return ShallowScoreAtThisLevel;
1399 assert(I1 && I2 && "Should have early exited.")(static_cast <bool> (I1 && I2 && "Should have early exited."
) ? void (0) : __assert_fail ("I1 && I2 && \"Should have early exited.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1399, __extension__
__PRETTY_FUNCTION__))
;
1400
1401 // Contains the I2 operand indexes that got matched with I1 operands.
1402 SmallSet<unsigned, 4> Op2Used;
1403
1404 // Recursion towards the operands of I1 and I2. We are trying all possible
1405 // operand pairs, and keeping track of the best score.
1406 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1407 OpIdx1 != NumOperands1; ++OpIdx1) {
1408 // Try to pair op1I with the best operand of I2.
1409 int MaxTmpScore = 0;
1410 unsigned MaxOpIdx2 = 0;
1411 bool FoundBest = false;
1412 // If I2 is commutative try all combinations.
1413 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1414 unsigned ToIdx = isCommutative(I2)
1415 ? I2->getNumOperands()
1416 : std::min(I2->getNumOperands(), OpIdx1 + 1);
1417 assert(FromIdx <= ToIdx && "Bad index")(static_cast <bool> (FromIdx <= ToIdx && "Bad index"
) ? void (0) : __assert_fail ("FromIdx <= ToIdx && \"Bad index\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1417, __extension__
__PRETTY_FUNCTION__))
;
1418 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1419 // Skip operands already paired with OpIdx1.
1420 if (Op2Used.count(OpIdx2))
1421 continue;
1422 // Recursively calculate the cost at each level
1423 int TmpScore =
1424 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1425 I1, I2, CurrLevel + 1, MaxLevel, None);
1426 // Look for the best score.
1427 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1428 MaxTmpScore = TmpScore;
1429 MaxOpIdx2 = OpIdx2;
1430 FoundBest = true;
1431 }
1432 }
1433 if (FoundBest) {
1434 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1435 Op2Used.insert(MaxOpIdx2);
1436 ShallowScoreAtThisLevel += MaxTmpScore;
1437 }
1438 }
1439 return ShallowScoreAtThisLevel;
1440 }
1441
1442 /// Score scaling factor for fully compatible instructions but with
1443 /// different number of external uses. Allows better selection of the
1444 /// instructions with less external uses.
1445 static const int ScoreScaleFactor = 10;
1446
1447 /// \Returns the look-ahead score, which tells us how much the sub-trees
1448 /// rooted at \p LHS and \p RHS match, the more they match the higher the
1449 /// score. This helps break ties in an informed way when we cannot decide on
1450 /// the order of the operands by just considering the immediate
1451 /// predecessors.
1452 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1453 int Lane, unsigned OpIdx, unsigned Idx,
1454 bool &IsUsed) {
1455 // Keep track of the instruction stack as we recurse into the operands
1456 // during the look-ahead score exploration.
1457 int Score = getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr,
1458 1, LookAheadMaxDepth, MainAltOps);
1459 if (Score) {
1460 int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1461 if (Score <= -SplatScore) {
1462 // Set the minimum score for splat-like sequence to avoid setting
1463 // failed state.
1464 Score = 1;
1465 } else {
1466 Score += SplatScore;
1467 // Scale score to see the difference between different operands
1468 // and similar operands but all vectorized/not all vectorized
1469 // uses. It does not affect actual selection of the best
1470 // compatible operand in general, just allows to select the
1471 // operand with all vectorized uses.
1472 Score *= ScoreScaleFactor;
1473 Score += getExternalUseScore(Lane, OpIdx, Idx);
1474 IsUsed = true;
1475 }
1476 }
1477 return Score;
1478 }
1479
1480 /// Best defined scores per lanes between the passes. Used to choose the
1481 /// best operand (with the highest score) between the passes.
1482 /// The key - {Operand Index, Lane}.
1483 /// The value - the best score between the passes for the lane and the
1484 /// operand.
1485 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1486 BestScoresPerLanes;
1487
1488 // Search all operands in Ops[*][Lane] for the one that matches best
1489 // Ops[OpIdx][LastLane] and return its opreand index.
1490 // If no good match can be found, return None.
1491 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1492 ArrayRef<ReorderingMode> ReorderingModes,
1493 ArrayRef<Value *> MainAltOps) {
1494 unsigned NumOperands = getNumOperands();
1495
1496 // The operand of the previous lane at OpIdx.
1497 Value *OpLastLane = getData(OpIdx, LastLane).V;
1498
1499 // Our strategy mode for OpIdx.
1500 ReorderingMode RMode = ReorderingModes[OpIdx];
1501 if (RMode == ReorderingMode::Failed)
1502 return None;
1503
1504 // The linearized opcode of the operand at OpIdx, Lane.
1505 bool OpIdxAPO = getData(OpIdx, Lane).APO;
1506
1507 // The best operand index and its score.
1508 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1509 // are using the score to differentiate between the two.
1510 struct BestOpData {
1511 Optional<unsigned> Idx = None;
1512 unsigned Score = 0;
1513 } BestOp;
1514 BestOp.Score =
1515 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1516 .first->second;
1517
1518 // Track if the operand must be marked as used. If the operand is set to
1519 // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1520 // want to reestimate the operands again on the following iterations).
1521 bool IsUsed =
1522 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1523 // Iterate through all unused operands and look for the best.
1524 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1525 // Get the operand at Idx and Lane.
1526 OperandData &OpData = getData(Idx, Lane);
1527 Value *Op = OpData.V;
1528 bool OpAPO = OpData.APO;
1529
1530 // Skip already selected operands.
1531 if (OpData.IsUsed)
1532 continue;
1533
1534 // Skip if we are trying to move the operand to a position with a
1535 // different opcode in the linearized tree form. This would break the
1536 // semantics.
1537 if (OpAPO != OpIdxAPO)
1538 continue;
1539
1540 // Look for an operand that matches the current mode.
1541 switch (RMode) {
1542 case ReorderingMode::Load:
1543 case ReorderingMode::Constant:
1544 case ReorderingMode::Opcode: {
1545 bool LeftToRight = Lane > LastLane;
1546 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1547 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1548 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1549 OpIdx, Idx, IsUsed);
1550 if (Score > static_cast<int>(BestOp.Score)) {
1551 BestOp.Idx = Idx;
1552 BestOp.Score = Score;
1553 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1554 }
1555 break;
1556 }
1557 case ReorderingMode::Splat:
1558 if (Op == OpLastLane)
1559 BestOp.Idx = Idx;
1560 break;
1561 case ReorderingMode::Failed:
1562 llvm_unreachable("Not expected Failed reordering mode.")::llvm::llvm_unreachable_internal("Not expected Failed reordering mode."
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1562)
;
1563 }
1564 }
1565
1566 if (BestOp.Idx) {
1567 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed;
1568 return BestOp.Idx;
1569 }
1570 // If we could not find a good match return None.
1571 return None;
1572 }
1573
1574 /// Helper for reorderOperandVecs.
1575 /// \returns the lane that we should start reordering from. This is the one
1576 /// which has the least number of operands that can freely move about or
1577 /// less profitable because it already has the most optimal set of operands.
1578 unsigned getBestLaneToStartReordering() const {
1579 unsigned Min = UINT_MAX(2147483647 *2U +1U);
1580 unsigned SameOpNumber = 0;
1581 // std::pair<unsigned, unsigned> is used to implement a simple voting
1582 // algorithm and choose the lane with the least number of operands that
1583 // can freely move about or less profitable because it already has the
1584 // most optimal set of operands. The first unsigned is a counter for
1585 // voting, the second unsigned is the counter of lanes with instructions
1586 // with same/alternate opcodes and same parent basic block.
1587 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1588 // Try to be closer to the original results, if we have multiple lanes
1589 // with same cost. If 2 lanes have the same cost, use the one with the
1590 // lowest index.
1591 for (int I = getNumLanes(); I > 0; --I) {
1592 unsigned Lane = I - 1;
1593 OperandsOrderData NumFreeOpsHash =
1594 getMaxNumOperandsThatCanBeReordered(Lane);
1595 // Compare the number of operands that can move and choose the one with
1596 // the least number.
1597 if (NumFreeOpsHash.NumOfAPOs < Min) {
1598 Min = NumFreeOpsHash.NumOfAPOs;
1599 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1600 HashMap.clear();
1601 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1602 } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1603 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1604 // Select the most optimal lane in terms of number of operands that
1605 // should be moved around.
1606 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1607 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1608 } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1609 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1610 auto It = HashMap.find(NumFreeOpsHash.Hash);
1611 if (It == HashMap.end())
1612 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1613 else
1614 ++It->second.first;
1615 }
1616 }
1617 // Select the lane with the minimum counter.
1618 unsigned BestLane = 0;
1619 unsigned CntMin = UINT_MAX(2147483647 *2U +1U);
1620 for (const auto &Data : reverse(HashMap)) {
1621 if (Data.second.first < CntMin) {
1622 CntMin = Data.second.first;
1623 BestLane = Data.second.second;
1624 }
1625 }
1626 return BestLane;
1627 }
1628
1629 /// Data structure that helps to reorder operands.
1630 struct OperandsOrderData {
1631 /// The best number of operands with the same APOs, which can be
1632 /// reordered.
1633 unsigned NumOfAPOs = UINT_MAX(2147483647 *2U +1U);
1634 /// Number of operands with the same/alternate instruction opcode and
1635 /// parent.
1636 unsigned NumOpsWithSameOpcodeParent = 0;
1637 /// Hash for the actual operands ordering.
1638 /// Used to count operands, actually their position id and opcode
1639 /// value. It is used in the voting mechanism to find the lane with the
1640 /// least number of operands that can freely move about or less profitable
1641 /// because it already has the most optimal set of operands. Can be
1642 /// replaced with SmallVector<unsigned> instead but hash code is faster
1643 /// and requires less memory.
1644 unsigned Hash = 0;
1645 };
1646 /// \returns the maximum number of operands that are allowed to be reordered
1647 /// for \p Lane and the number of compatible instructions(with the same
1648 /// parent/opcode). This is used as a heuristic for selecting the first lane
1649 /// to start operand reordering.
1650 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1651 unsigned CntTrue = 0;
1652 unsigned NumOperands = getNumOperands();
1653 // Operands with the same APO can be reordered. We therefore need to count
1654 // how many of them we have for each APO, like this: Cnt[APO] = x.
1655 // Since we only have two APOs, namely true and false, we can avoid using
1656 // a map. Instead we can simply count the number of operands that
1657 // correspond to one of them (in this case the 'true' APO), and calculate
1658 // the other by subtracting it from the total number of operands.
1659 // Operands with the same instruction opcode and parent are more
1660 // profitable since we don't need to move them in many cases, with a high
1661 // probability such lane already can be vectorized effectively.
1662 bool AllUndefs = true;
1663 unsigned NumOpsWithSameOpcodeParent = 0;
1664 Instruction *OpcodeI = nullptr;
1665 BasicBlock *Parent = nullptr;
1666 unsigned Hash = 0;
1667 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1668 const OperandData &OpData = getData(OpIdx, Lane);
1669 if (OpData.APO)
1670 ++CntTrue;
1671 // Use Boyer-Moore majority voting for finding the majority opcode and
1672 // the number of times it occurs.
1673 if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1674 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() ||
1675 I->getParent() != Parent) {
1676 if (NumOpsWithSameOpcodeParent == 0) {
1677 NumOpsWithSameOpcodeParent = 1;
1678 OpcodeI = I;
1679 Parent = I->getParent();
1680 } else {
1681 --NumOpsWithSameOpcodeParent;
1682 }
1683 } else {
1684 ++NumOpsWithSameOpcodeParent;
1685 }
1686 }
1687 Hash = hash_combine(
1688 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1689 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1690 }
1691 if (AllUndefs)
1692 return {};
1693 OperandsOrderData Data;
1694 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1695 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1696 Data.Hash = Hash;
1697 return Data;
1698 }
1699
1700 /// Go through the instructions in VL and append their operands.
1701 void appendOperandsOfVL(ArrayRef<Value *> VL) {
1702 assert(!VL.empty() && "Bad VL")(static_cast <bool> (!VL.empty() && "Bad VL") ?
void (0) : __assert_fail ("!VL.empty() && \"Bad VL\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1702, __extension__
__PRETTY_FUNCTION__))
;
1703 assert((empty() || VL.size() == getNumLanes()) &&(static_cast <bool> ((empty() || VL.size() == getNumLanes
()) && "Expected same number of lanes") ? void (0) : __assert_fail
("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1704, __extension__
__PRETTY_FUNCTION__))
1704 "Expected same number of lanes")(static_cast <bool> ((empty() || VL.size() == getNumLanes
()) && "Expected same number of lanes") ? void (0) : __assert_fail
("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1704, __extension__
__PRETTY_FUNCTION__))
;
1705 assert(isa<Instruction>(VL[0]) && "Expected instruction")(static_cast <bool> (isa<Instruction>(VL[0]) &&
"Expected instruction") ? void (0) : __assert_fail ("isa<Instruction>(VL[0]) && \"Expected instruction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1705, __extension__
__PRETTY_FUNCTION__))
;
1706 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1707 OpsVec.resize(NumOperands);
1708 unsigned NumLanes = VL.size();
1709 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1710 OpsVec[OpIdx].resize(NumLanes);
1711 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1712 assert(isa<Instruction>(VL[Lane]) && "Expected instruction")(static_cast <bool> (isa<Instruction>(VL[Lane]) &&
"Expected instruction") ? void (0) : __assert_fail ("isa<Instruction>(VL[Lane]) && \"Expected instruction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1712, __extension__
__PRETTY_FUNCTION__))
;
1713 // Our tree has just 3 nodes: the root and two operands.
1714 // It is therefore trivial to get the APO. We only need to check the
1715 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1716 // RHS operand. The LHS operand of both add and sub is never attached
1717 // to an inversese operation in the linearized form, therefore its APO
1718 // is false. The RHS is true only if VL[Lane] is an inverse operation.
1719
1720 // Since operand reordering is performed on groups of commutative
1721 // operations or alternating sequences (e.g., +, -), we can safely
1722 // tell the inverse operations by checking commutativity.
1723 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1724 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1725 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1726 APO, false};
1727 }
1728 }
1729 }
1730
1731 /// \returns the number of operands.
1732 unsigned getNumOperands() const { return OpsVec.size(); }
1733
1734 /// \returns the number of lanes.
1735 unsigned getNumLanes() const { return OpsVec[0].size(); }
1736
1737 /// \returns the operand value at \p OpIdx and \p Lane.
1738 Value *getValue(unsigned OpIdx, unsigned Lane) const {
1739 return getData(OpIdx, Lane).V;
1740 }
1741
1742 /// \returns true if the data structure is empty.
1743 bool empty() const { return OpsVec.empty(); }
1744
1745 /// Clears the data.
1746 void clear() { OpsVec.clear(); }
1747
1748 /// \Returns true if there are enough operands identical to \p Op to fill
1749 /// the whole vector.
1750 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1751 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1752 bool OpAPO = getData(OpIdx, Lane).APO;
1753 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1754 if (Ln == Lane)
1755 continue;
1756 // This is set to true if we found a candidate for broadcast at Lane.
1757 bool FoundCandidate = false;
1758 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1759 OperandData &Data = getData(OpI, Ln);
1760 if (Data.APO != OpAPO || Data.IsUsed)
1761 continue;
1762 if (Data.V == Op) {
1763 FoundCandidate = true;
1764 Data.IsUsed = true;
1765 break;
1766 }
1767 }
1768 if (!FoundCandidate)
1769 return false;
1770 }
1771 return true;
1772 }
1773
1774 public:
1775 /// Initialize with all the operands of the instruction vector \p RootVL.
1776 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1777 ScalarEvolution &SE, const BoUpSLP &R)
1778 : DL(DL), SE(SE), R(R) {
1779 // Append all the operands of RootVL.
1780 appendOperandsOfVL(RootVL);
1781 }
1782
1783 /// \Returns a value vector with the operands across all lanes for the
1784 /// opearnd at \p OpIdx.
1785 ValueList getVL(unsigned OpIdx) const {
1786 ValueList OpVL(OpsVec[OpIdx].size());
1787 assert(OpsVec[OpIdx].size() == getNumLanes() &&(static_cast <bool> (OpsVec[OpIdx].size() == getNumLanes
() && "Expected same num of lanes across all operands"
) ? void (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1788, __extension__
__PRETTY_FUNCTION__))
1788 "Expected same num of lanes across all operands")(static_cast <bool> (OpsVec[OpIdx].size() == getNumLanes
() && "Expected same num of lanes across all operands"
) ? void (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1788, __extension__
__PRETTY_FUNCTION__))
;
1789 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1790 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1791 return OpVL;
1792 }
1793
1794 // Performs operand reordering for 2 or more operands.
1795 // The original operands are in OrigOps[OpIdx][Lane].
1796 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1797 void reorder() {
1798 unsigned NumOperands = getNumOperands();
1799 unsigned NumLanes = getNumLanes();
1800 // Each operand has its own mode. We are using this mode to help us select
1801 // the instructions for each lane, so that they match best with the ones
1802 // we have selected so far.
1803 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1804
1805 // This is a greedy single-pass algorithm. We are going over each lane
1806 // once and deciding on the best order right away with no back-tracking.
1807 // However, in order to increase its effectiveness, we start with the lane
1808 // that has operands that can move the least. For example, given the
1809 // following lanes:
1810 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
1811 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
1812 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
1813 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
1814 // we will start at Lane 1, since the operands of the subtraction cannot
1815 // be reordered. Then we will visit the rest of the lanes in a circular
1816 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1817
1818 // Find the first lane that we will start our search from.
1819 unsigned FirstLane = getBestLaneToStartReordering();
1820
1821 // Initialize the modes.
1822 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1823 Value *OpLane0 = getValue(OpIdx, FirstLane);
1824 // Keep track if we have instructions with all the same opcode on one
1825 // side.
1826 if (isa<LoadInst>(OpLane0))
1827 ReorderingModes[OpIdx] = ReorderingMode::Load;
1828 else if (isa<Instruction>(OpLane0)) {
1829 // Check if OpLane0 should be broadcast.
1830 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1831 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1832 else
1833 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1834 }
1835 else if (isa<Constant>(OpLane0))
1836 ReorderingModes[OpIdx] = ReorderingMode::Constant;
1837 else if (isa<Argument>(OpLane0))
1838 // Our best hope is a Splat. It may save some cost in some cases.
1839 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1840 else
1841 // NOTE: This should be unreachable.
1842 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1843 }
1844
1845 // Check that we don't have same operands. No need to reorder if operands
1846 // are just perfect diamond or shuffled diamond match. Do not do it only
1847 // for possible broadcasts or non-power of 2 number of scalars (just for
1848 // now).
1849 auto &&SkipReordering = [this]() {
1850 SmallPtrSet<Value *, 4> UniqueValues;
1851 ArrayRef<OperandData> Op0 = OpsVec.front();
1852 for (const OperandData &Data : Op0)
1853 UniqueValues.insert(Data.V);
1854 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
1855 if (any_of(Op, [&UniqueValues](const OperandData &Data) {
1856 return !UniqueValues.contains(Data.V);
1857 }))
1858 return false;
1859 }
1860 // TODO: Check if we can remove a check for non-power-2 number of
1861 // scalars after full support of non-power-2 vectorization.
1862 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
1863 };
1864
1865 // If the initial strategy fails for any of the operand indexes, then we
1866 // perform reordering again in a second pass. This helps avoid assigning
1867 // high priority to the failed strategy, and should improve reordering for
1868 // the non-failed operand indexes.
1869 for (int Pass = 0; Pass != 2; ++Pass) {
1870 // Check if no need to reorder operands since they're are perfect or
1871 // shuffled diamond match.
1872 // Need to to do it to avoid extra external use cost counting for
1873 // shuffled matches, which may cause regressions.
1874 if (SkipReordering())
1875 break;
1876 // Skip the second pass if the first pass did not fail.
1877 bool StrategyFailed = false;
1878 // Mark all operand data as free to use.
1879 clearUsed();
1880 // We keep the original operand order for the FirstLane, so reorder the
1881 // rest of the lanes. We are visiting the nodes in a circular fashion,
1882 // using FirstLane as the center point and increasing the radius
1883 // distance.
1884 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
1885 for (unsigned I = 0; I < NumOperands; ++I)
1886 MainAltOps[I].push_back(getData(I, FirstLane).V);
1887
1888 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1889 // Visit the lane on the right and then the lane on the left.
1890 for (int Direction : {+1, -1}) {
1891 int Lane = FirstLane + Direction * Distance;
1892 if (Lane < 0 || Lane >= (int)NumLanes)
1893 continue;
1894 int LastLane = Lane - Direction;
1895 assert(LastLane >= 0 && LastLane < (int)NumLanes &&(static_cast <bool> (LastLane >= 0 && LastLane
< (int)NumLanes && "Out of bounds") ? void (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1896, __extension__
__PRETTY_FUNCTION__))
1896 "Out of bounds")(static_cast <bool> (LastLane >= 0 && LastLane
< (int)NumLanes && "Out of bounds") ? void (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1896, __extension__
__PRETTY_FUNCTION__))
;
1897 // Look for a good match for each operand.
1898 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1899 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1900 Optional<unsigned> BestIdx = getBestOperand(
1901 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
1902 // By not selecting a value, we allow the operands that follow to
1903 // select a better matching value. We will get a non-null value in
1904 // the next run of getBestOperand().
1905 if (BestIdx) {
1906 // Swap the current operand with the one returned by
1907 // getBestOperand().
1908 swap(OpIdx, BestIdx.getValue(), Lane);
1909 } else {
1910 // We failed to find a best operand, set mode to 'Failed'.
1911 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1912 // Enable the second pass.
1913 StrategyFailed = true;
1914 }
1915 // Try to get the alternate opcode and follow it during analysis.
1916 if (MainAltOps[OpIdx].size() != 2) {
1917 OperandData &AltOp = getData(OpIdx, Lane);
1918 InstructionsState OpS =
1919 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V});
1920 if (OpS.getOpcode() && OpS.isAltShuffle())
1921 MainAltOps[OpIdx].push_back(AltOp.V);
1922 }
1923 }
1924 }
1925 }
1926 // Skip second pass if the strategy did not fail.
1927 if (!StrategyFailed)
1928 break;
1929 }
1930 }
1931
1932#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1933 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static StringRef getModeStr(ReorderingMode RMode) {
1934 switch (RMode) {
1935 case ReorderingMode::Load:
1936 return "Load";
1937 case ReorderingMode::Opcode:
1938 return "Opcode";
1939 case ReorderingMode::Constant:
1940 return "Constant";
1941 case ReorderingMode::Splat:
1942 return "Splat";
1943 case ReorderingMode::Failed:
1944 return "Failed";
1945 }
1946 llvm_unreachable("Unimplemented Reordering Type")::llvm::llvm_unreachable_internal("Unimplemented Reordering Type"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1946)
;
1947 }
1948
1949 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static raw_ostream &printMode(ReorderingMode RMode,
1950 raw_ostream &OS) {
1951 return OS << getModeStr(RMode);
1952 }
1953
1954 /// Debug print.
1955 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static void dumpMode(ReorderingMode RMode) {
1956 printMode(RMode, dbgs());
1957 }
1958
1959 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1960 return printMode(RMode, OS);
1961 }
1962
1963 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) raw_ostream &print(raw_ostream &OS) const {
1964 const unsigned Indent = 2;
1965 unsigned Cnt = 0;
1966 for (const OperandDataVec &OpDataVec : OpsVec) {
1967 OS << "Operand " << Cnt++ << "\n";
1968 for (const OperandData &OpData : OpDataVec) {
1969 OS.indent(Indent) << "{";
1970 if (Value *V = OpData.V)
1971 OS << *V;
1972 else
1973 OS << "null";
1974 OS << ", APO:" << OpData.APO << "}\n";
1975 }
1976 OS << "\n";
1977 }
1978 return OS;
1979 }
1980
1981 /// Debug print.
1982 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { print(dbgs()); }
1983#endif
1984 };
1985
1986 /// Checks if the instruction is marked for deletion.
1987 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1988
1989 /// Removes an instruction from its block and eventually deletes it.
1990 /// It's like Instruction::eraseFromParent() except that the actual deletion
1991 /// is delayed until BoUpSLP is destructed.
1992 void eraseInstruction(Instruction *I) {
1993 DeletedInstructions.insert(I);
1994 }
1995
1996 ~BoUpSLP();
1997
1998private:
1999 /// Check if the operands on the edges \p Edges of the \p UserTE allows
2000 /// reordering (i.e. the operands can be reordered because they have only one
2001 /// user and reordarable).
2002 /// \param ReorderableGathers List of all gather nodes that require reordering
2003 /// (e.g., gather of extractlements or partially vectorizable loads).
2004 /// \param GatherOps List of gather operand nodes for \p UserTE that require
2005 /// reordering, subset of \p NonVectorized.
2006 bool
2007 canReorderOperands(TreeEntry *UserTE,
2008 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
2009 ArrayRef<TreeEntry *> ReorderableGathers,
2010 SmallVectorImpl<TreeEntry *> &GatherOps);
2011
2012 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2013 /// if any. If it is not vectorized (gather node), returns nullptr.
2014 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) {
2015 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx);
2016 TreeEntry *TE = nullptr;
2017 const auto *It = find_if(VL, [this, &TE](Value *V) {
2018 TE = getTreeEntry(V);
2019 return TE;
2020 });
2021 if (It != VL.end() && TE->isSame(VL))
2022 return TE;
2023 return nullptr;
2024 }
2025
2026 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2027 /// if any. If it is not vectorized (gather node), returns nullptr.
2028 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE,
2029 unsigned OpIdx) const {
2030 return const_cast<BoUpSLP *>(this)->getVectorizedOperand(
2031 const_cast<TreeEntry *>(UserTE), OpIdx);
2032 }
2033
2034 /// Checks if all users of \p I are the part of the vectorization tree.
2035 bool areAllUsersVectorized(Instruction *I,
2036 ArrayRef<Value *> VectorizedVals) const;
2037
2038 /// \returns the cost of the vectorizable entry.
2039 InstructionCost getEntryCost(const TreeEntry *E,
2040 ArrayRef<Value *> VectorizedVals);
2041
2042 /// This is the recursive part of buildTree.
2043 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
2044 const EdgeInfo &EI);
2045
2046 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
2047 /// be vectorized to use the original vector (or aggregate "bitcast" to a
2048 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
2049 /// returns false, setting \p CurrentOrder to either an empty vector or a
2050 /// non-identity permutation that allows to reuse extract instructions.
2051 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2052 SmallVectorImpl<unsigned> &CurrentOrder) const;
2053
2054 /// Vectorize a single entry in the tree.
2055 Value *vectorizeTree(TreeEntry *E);
2056
2057 /// Vectorize a single entry in the tree, starting in \p VL.
2058 Value *vectorizeTree(ArrayRef<Value *> VL);
2059
2060 /// Create a new vector from a list of scalar values. Produces a sequence
2061 /// which exploits values reused across lanes, and arranges the inserts
2062 /// for ease of later optimization.
2063 Value *createBuildVector(ArrayRef<Value *> VL);
2064
2065 /// \returns the scalarization cost for this type. Scalarization in this
2066 /// context means the creation of vectors from a group of scalars. If \p
2067 /// NeedToShuffle is true, need to add a cost of reshuffling some of the
2068 /// vector elements.
2069 InstructionCost getGatherCost(FixedVectorType *Ty,
2070 const APInt &ShuffledIndices,
2071 bool NeedToShuffle) const;
2072
2073 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
2074 /// tree entries.
2075 /// \returns ShuffleKind, if gathered values can be represented as shuffles of
2076 /// previous tree entries. \p Mask is filled with the shuffle mask.
2077 Optional<TargetTransformInfo::ShuffleKind>
2078 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
2079 SmallVectorImpl<const TreeEntry *> &Entries);
2080
2081 /// \returns the scalarization cost for this list of values. Assuming that
2082 /// this subtree gets vectorized, we may need to extract the values from the
2083 /// roots. This method calculates the cost of extracting the values.
2084 InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
2085
2086 /// Set the Builder insert point to one after the last instruction in
2087 /// the bundle
2088 void setInsertPointAfterBundle(const TreeEntry *E);
2089
2090 /// \returns a vector from a collection of scalars in \p VL.
2091 Value *gather(ArrayRef<Value *> VL);
2092
2093 /// \returns whether the VectorizableTree is fully vectorizable and will
2094 /// be beneficial even the tree height is tiny.
2095 bool isFullyVectorizableTinyTree(bool ForReduction) const;
2096
2097 /// Reorder commutative or alt operands to get better probability of
2098 /// generating vectorized code.
2099 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
2100 SmallVectorImpl<Value *> &Left,
2101 SmallVectorImpl<Value *> &Right,
2102 const DataLayout &DL,
2103 ScalarEvolution &SE,
2104 const BoUpSLP &R);
2105 struct TreeEntry {
2106 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
2107 TreeEntry(VecTreeTy &Container) : Container(Container) {}
2108
2109 /// \returns true if the scalars in VL are equal to this entry.
2110 bool isSame(ArrayRef<Value *> VL) const {
2111 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
2112 if (Mask.size() != VL.size() && VL.size() == Scalars.size())
2113 return std::equal(VL.begin(), VL.end(), Scalars.begin());
2114 return VL.size() == Mask.size() &&
2115 std::equal(VL.begin(), VL.end(), Mask.begin(),
2116 [Scalars](Value *V, int Idx) {
2117 return (isa<UndefValue>(V) &&
2118 Idx == UndefMaskElem) ||
2119 (Idx != UndefMaskElem && V == Scalars[Idx]);
2120 });
2121 };
2122 if (!ReorderIndices.empty()) {
2123 // TODO: implement matching if the nodes are just reordered, still can
2124 // treat the vector as the same if the list of scalars matches VL
2125 // directly, without reordering.
2126 SmallVector<int> Mask;
2127 inversePermutation(ReorderIndices, Mask);
2128 if (VL.size() == Scalars.size())
2129 return IsSame(Scalars, Mask);
2130 if (VL.size() == ReuseShuffleIndices.size()) {
2131 ::addMask(Mask, ReuseShuffleIndices);
2132 return IsSame(Scalars, Mask);
2133 }
2134 return false;
2135 }
2136 return IsSame(Scalars, ReuseShuffleIndices);
2137 }
2138
2139 /// \returns true if current entry has same operands as \p TE.
2140 bool hasEqualOperands(const TreeEntry &TE) const {
2141 if (TE.getNumOperands() != getNumOperands())
2142 return false;
2143 SmallBitVector Used(getNumOperands());
2144 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2145 unsigned PrevCount = Used.count();
2146 for (unsigned K = 0; K < E; ++K) {
2147 if (Used.test(K))
2148 continue;
2149 if (getOperand(K) == TE.getOperand(I)) {
2150 Used.set(K);
2151 break;
2152 }
2153 }
2154 // Check if we actually found the matching operand.
2155 if (PrevCount == Used.count())
2156 return false;
2157 }
2158 return true;
2159 }
2160
2161 /// \return Final vectorization factor for the node. Defined by the total
2162 /// number of vectorized scalars, including those, used several times in the
2163 /// entry and counted in the \a ReuseShuffleIndices, if any.
2164 unsigned getVectorFactor() const {
2165 if (!ReuseShuffleIndices.empty())
2166 return ReuseShuffleIndices.size();
2167 return Scalars.size();
2168 };
2169
2170 /// A vector of scalars.
2171 ValueList Scalars;
2172
2173 /// The Scalars are vectorized into this value. It is initialized to Null.
2174 Value *VectorizedValue = nullptr;
2175
2176 /// Do we need to gather this sequence or vectorize it
2177 /// (either with vector instruction or with scatter/gather
2178 /// intrinsics for store/load)?
2179 enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
2180 EntryState State;
2181
2182 /// Does this sequence require some shuffling?
2183 SmallVector<int, 4> ReuseShuffleIndices;
2184
2185 /// Does this entry require reordering?
2186 SmallVector<unsigned, 4> ReorderIndices;
2187
2188 /// Points back to the VectorizableTree.
2189 ///
2190 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
2191 /// to be a pointer and needs to be able to initialize the child iterator.
2192 /// Thus we need a reference back to the container to translate the indices
2193 /// to entries.
2194 VecTreeTy &Container;
2195
2196 /// The TreeEntry index containing the user of this entry. We can actually
2197 /// have multiple users so the data structure is not truly a tree.
2198 SmallVector<EdgeInfo, 1> UserTreeIndices;
2199
2200 /// The index of this treeEntry in VectorizableTree.
2201 int Idx = -1;
2202
2203 private:
2204 /// The operands of each instruction in each lane Operands[op_index][lane].
2205 /// Note: This helps avoid the replication of the code that performs the
2206 /// reordering of operands during buildTree_rec() and vectorizeTree().
2207 SmallVector<ValueList, 2> Operands;
2208
2209 /// The main/alternate instruction.
2210 Instruction *MainOp = nullptr;
2211 Instruction *AltOp = nullptr;
2212
2213 public:
2214 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2215 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2216 if (Operands.size() < OpIdx + 1)
2217 Operands.resize(OpIdx + 1);
2218 assert(Operands[OpIdx].empty() && "Already resized?")(static_cast <bool> (Operands[OpIdx].empty() &&
"Already resized?") ? void (0) : __assert_fail ("Operands[OpIdx].empty() && \"Already resized?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2218, __extension__
__PRETTY_FUNCTION__))
;
2219 assert(OpVL.size() <= Scalars.size() &&(static_cast <bool> (OpVL.size() <= Scalars.size() &&
"Number of operands is greater than the number of scalars.")
? void (0) : __assert_fail ("OpVL.size() <= Scalars.size() && \"Number of operands is greater than the number of scalars.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2220, __extension__
__PRETTY_FUNCTION__))
2220 "Number of operands is greater than the number of scalars.")(static_cast <bool> (OpVL.size() <= Scalars.size() &&
"Number of operands is greater than the number of scalars.")
? void (0) : __assert_fail ("OpVL.size() <= Scalars.size() && \"Number of operands is greater than the number of scalars.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2220, __extension__
__PRETTY_FUNCTION__))
;
2221 Operands[OpIdx].resize(OpVL.size());
2222 copy(OpVL, Operands[OpIdx].begin());
2223 }
2224
2225 /// Set the operands of this bundle in their original order.
2226 void setOperandsInOrder() {
2227 assert(Operands.empty() && "Already initialized?")(static_cast <bool> (Operands.empty() && "Already initialized?"
) ? void (0) : __assert_fail ("Operands.empty() && \"Already initialized?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2227, __extension__
__PRETTY_FUNCTION__))
;
2228 auto *I0 = cast<Instruction>(Scalars[0]);
2229 Operands.resize(I0->getNumOperands());
2230 unsigned NumLanes = Scalars.size();
2231 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2232 OpIdx != NumOperands; ++OpIdx) {
2233 Operands[OpIdx].resize(NumLanes);
2234 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2235 auto *I = cast<Instruction>(Scalars[Lane]);
2236 assert(I->getNumOperands() == NumOperands &&(static_cast <bool> (I->getNumOperands() == NumOperands
&& "Expected same number of operands") ? void (0) : __assert_fail
("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2237, __extension__
__PRETTY_FUNCTION__))
2237 "Expected same number of operands")(static_cast <bool> (I->getNumOperands() == NumOperands
&& "Expected same number of operands") ? void (0) : __assert_fail
("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2237, __extension__
__PRETTY_FUNCTION__))
;
2238 Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2239 }
2240 }
2241 }
2242
2243 /// Reorders operands of the node to the given mask \p Mask.
2244 void reorderOperands(ArrayRef<int> Mask) {
2245 for (ValueList &Operand : Operands)
2246 reorderScalars(Operand, Mask);
2247 }
2248
2249 /// \returns the \p OpIdx operand of this TreeEntry.
2250 ValueList &getOperand(unsigned OpIdx) {
2251 assert(OpIdx < Operands.size() && "Off bounds")(static_cast <bool> (OpIdx < Operands.size() &&
"Off bounds") ? void (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2251, __extension__
__PRETTY_FUNCTION__))
;
2252 return Operands[OpIdx];
2253 }
2254
2255 /// \returns the \p OpIdx operand of this TreeEntry.
2256 ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2257 assert(OpIdx < Operands.size() && "Off bounds")(static_cast <bool> (OpIdx < Operands.size() &&
"Off bounds") ? void (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2257, __extension__
__PRETTY_FUNCTION__))
;
2258 return Operands[OpIdx];
2259 }
2260
2261 /// \returns the number of operands.
2262 unsigned getNumOperands() const { return Operands.size(); }
2263
2264 /// \return the single \p OpIdx operand.
2265 Value *getSingleOperand(unsigned OpIdx) const {
2266 assert(OpIdx < Operands.size() && "Off bounds")(static_cast <bool> (OpIdx < Operands.size() &&
"Off bounds") ? void (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2266, __extension__
__PRETTY_FUNCTION__))
;
2267 assert(!Operands[OpIdx].empty() && "No operand available")(static_cast <bool> (!Operands[OpIdx].empty() &&
"No operand available") ? void (0) : __assert_fail ("!Operands[OpIdx].empty() && \"No operand available\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2267, __extension__
__PRETTY_FUNCTION__))
;
2268 return Operands[OpIdx][0];
2269 }
2270
2271 /// Some of the instructions in the list have alternate opcodes.
2272 bool isAltShuffle() const { return MainOp != AltOp; }
2273
2274 bool isOpcodeOrAlt(Instruction *I) const {
2275 unsigned CheckedOpcode = I->getOpcode();
2276 return (getOpcode() == CheckedOpcode ||
2277 getAltOpcode() == CheckedOpcode);
2278 }
2279
2280 /// Chooses the correct key for scheduling data. If \p Op has the same (or
2281 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2282 /// \p OpValue.
2283 Value *isOneOf(Value *Op) const {
2284 auto *I = dyn_cast<Instruction>(Op);
2285 if (I && isOpcodeOrAlt(I))
2286 return Op;
2287 return MainOp;
2288 }
2289
2290 void setOperations(const InstructionsState &S) {
2291 MainOp = S.MainOp;
2292 AltOp = S.AltOp;
2293 }
2294
2295 Instruction *getMainOp() const {
2296 return MainOp;
2297 }
2298
2299 Instruction *getAltOp() const {
2300 return AltOp;
2301 }
2302
2303 /// The main/alternate opcodes for the list of instructions.
2304 unsigned getOpcode() const {
2305 return MainOp ? MainOp->getOpcode() : 0;
2306 }
2307
2308 unsigned getAltOpcode() const {
2309 return AltOp ? AltOp->getOpcode() : 0;
2310 }
2311
2312 /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2313 /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2314 int findLaneForValue(Value *V) const {
2315 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2316 assert(FoundLane < Scalars.size() && "Couldn't find extract lane")(static_cast <bool> (FoundLane < Scalars.size() &&
"Couldn't find extract lane") ? void (0) : __assert_fail ("FoundLane < Scalars.size() && \"Couldn't find extract lane\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2316, __extension__
__PRETTY_FUNCTION__))
;
2317 if (!ReorderIndices.empty())
2318 FoundLane = ReorderIndices[FoundLane];
2319 assert(FoundLane < Scalars.size() && "Couldn't find extract lane")(static_cast <bool> (FoundLane < Scalars.size() &&
"Couldn't find extract lane") ? void (0) : __assert_fail ("FoundLane < Scalars.size() && \"Couldn't find extract lane\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2319, __extension__
__PRETTY_FUNCTION__))
;
2320 if (!ReuseShuffleIndices.empty()) {
2321 FoundLane = std::distance(ReuseShuffleIndices.begin(),
2322 find(ReuseShuffleIndices, FoundLane));
2323 }
2324 return FoundLane;
2325 }
2326
2327#ifndef NDEBUG
2328 /// Debug printer.
2329 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const {
2330 dbgs() << Idx << ".\n";
2331 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2332 dbgs() << "Operand " << OpI << ":\n";
2333 for (const Value *V : Operands[OpI])
2334 dbgs().indent(2) << *V << "\n";
2335 }
2336 dbgs() << "Scalars: \n";
2337 for (Value *V : Scalars)
2338 dbgs().indent(2) << *V << "\n";
2339 dbgs() << "State: ";
2340 switch (State) {
2341 case Vectorize:
2342 dbgs() << "Vectorize\n";
2343 break;
2344 case ScatterVectorize:
2345 dbgs() << "ScatterVectorize\n";
2346 break;
2347 case NeedToGather:
2348 dbgs() << "NeedToGather\n";
2349 break;
2350 }
2351 dbgs() << "MainOp: ";
2352 if (MainOp)
2353 dbgs() << *MainOp << "\n";
2354 else
2355 dbgs() << "NULL\n";
2356 dbgs() << "AltOp: ";
2357 if (AltOp)
2358 dbgs() << *AltOp << "\n";
2359 else
2360 dbgs() << "NULL\n";
2361 dbgs() << "VectorizedValue: ";
2362 if (VectorizedValue)
2363 dbgs() << *VectorizedValue << "\n";
2364 else
2365 dbgs() << "NULL\n";
2366 dbgs() << "ReuseShuffleIndices: ";
2367 if (ReuseShuffleIndices.empty())
2368 dbgs() << "Empty";
2369 else
2370 for (int ReuseIdx : ReuseShuffleIndices)
2371 dbgs() << ReuseIdx << ", ";
2372 dbgs() << "\n";
2373 dbgs() << "ReorderIndices: ";
2374 for (unsigned ReorderIdx : ReorderIndices)
2375 dbgs() << ReorderIdx << ", ";
2376 dbgs() << "\n";
2377 dbgs() << "UserTreeIndices: ";
2378 for (const auto &EInfo : UserTreeIndices)
2379 dbgs() << EInfo << ", ";
2380 dbgs() << "\n";
2381 }
2382#endif
2383 };
2384
2385#ifndef NDEBUG
2386 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2387 InstructionCost VecCost,
2388 InstructionCost ScalarCost) const {
2389 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
2390 dbgs() << "SLP: Costs:\n";
2391 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2392 dbgs() << "SLP: VectorCost = " << VecCost << "\n";
2393 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n";
2394 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " <<
2395 ReuseShuffleCost + VecCost - ScalarCost << "\n";
2396 }
2397#endif
2398
2399 /// Create a new VectorizableTree entry.
2400 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
2401 const InstructionsState &S,
2402 const EdgeInfo &UserTreeIdx,
2403 ArrayRef<int> ReuseShuffleIndices = None,
2404 ArrayRef<unsigned> ReorderIndices = None) {
2405 TreeEntry::EntryState EntryState =
2406 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2407 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2408 ReuseShuffleIndices, ReorderIndices);
2409 }
2410
2411 TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2412 TreeEntry::EntryState EntryState,
2413 Optional<ScheduleData *> Bundle,
2414 const InstructionsState &S,
2415 const EdgeInfo &UserTreeIdx,
2416 ArrayRef<int> ReuseShuffleIndices = None,
2417 ArrayRef<unsigned> ReorderIndices = None) {
2418 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2420, __extension__
__PRETTY_FUNCTION__))
2419 (Bundle && EntryState != TreeEntry::NeedToGather)) &&(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2420, __extension__
__PRETTY_FUNCTION__))
2420 "Need to vectorize gather entry?")(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2420, __extension__
__PRETTY_FUNCTION__))
;
2421 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2422 TreeEntry *Last = VectorizableTree.back().get();
2423 Last->Idx = VectorizableTree.size() - 1;
2424 Last->State = EntryState;
2425 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2426 ReuseShuffleIndices.end());
2427 if (ReorderIndices.empty()) {
2428 Last->Scalars.assign(VL.begin(), VL.end());
2429 Last->setOperations(S);
2430 } else {
2431 // Reorder scalars and build final mask.
2432 Last->Scalars.assign(VL.size(), nullptr);
2433 transform(ReorderIndices, Last->Scalars.begin(),
2434 [VL](unsigned Idx) -> Value * {
2435 if (Idx >= VL.size())
2436 return UndefValue::get(VL.front()->getType());
2437 return VL[Idx];
2438 });
2439 InstructionsState S = getSameOpcode(Last->Scalars);
2440 Last->setOperations(S);
2441 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2442 }
2443 if (Last->State != TreeEntry::NeedToGather) {
2444 for (Value *V : VL) {
2445 assert(!getTreeEntry(V) && "Scalar already in tree!")(static_cast <bool> (!getTreeEntry(V) && "Scalar already in tree!"
) ? void (0) : __assert_fail ("!getTreeEntry(V) && \"Scalar already in tree!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2445, __extension__
__PRETTY_FUNCTION__))
;
2446 ScalarToTreeEntry[V] = Last;
2447 }
2448 // Update the scheduler bundle to point to this TreeEntry.
2449 ScheduleData *BundleMember = Bundle.getValue();
2450 assert((BundleMember || isa<PHINode>(S.MainOp) ||(static_cast <bool> ((BundleMember || isa<PHINode>
(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule
(VL)) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(BundleMember || isa<PHINode>(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule(VL)) && \"Bundle and VL out of sync\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2453, __extension__
__PRETTY_FUNCTION__))
2451 isVectorLikeInstWithConstOps(S.MainOp) ||(static_cast <bool> ((BundleMember || isa<PHINode>
(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule
(VL)) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(BundleMember || isa<PHINode>(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule(VL)) && \"Bundle and VL out of sync\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2453, __extension__
__PRETTY_FUNCTION__))
2452 doesNotNeedToSchedule(VL)) &&(static_cast <bool> ((BundleMember || isa<PHINode>
(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule
(VL)) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(BundleMember || isa<PHINode>(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule(VL)) && \"Bundle and VL out of sync\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2453, __extension__
__PRETTY_FUNCTION__))
2453 "Bundle and VL out of sync")(static_cast <bool> ((BundleMember || isa<PHINode>
(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule
(VL)) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(BundleMember || isa<PHINode>(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule(VL)) && \"Bundle and VL out of sync\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2453, __extension__
__PRETTY_FUNCTION__))
;
2454 if (BundleMember) {
2455 for (Value *V : VL) {
2456 if (doesNotNeedToBeScheduled(V))
2457 continue;
2458 assert(BundleMember && "Unexpected end of bundle.")(static_cast <bool> (BundleMember && "Unexpected end of bundle."
) ? void (0) : __assert_fail ("BundleMember && \"Unexpected end of bundle.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2458, __extension__
__PRETTY_FUNCTION__))
;
2459 BundleMember->TE = Last;
2460 BundleMember = BundleMember->NextInBundle;
2461 }
2462 }
2463 assert(!BundleMember && "Bundle and VL out of sync")(static_cast <bool> (!BundleMember && "Bundle and VL out of sync"
) ? void (0) : __assert_fail ("!BundleMember && \"Bundle and VL out of sync\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2463, __extension__
__PRETTY_FUNCTION__))
;
2464 } else {
2465 MustGather.insert(VL.begin(), VL.end());
2466 }
2467
2468 if (UserTreeIdx.UserTE)
2469 Last->UserTreeIndices.push_back(UserTreeIdx);
2470
2471 return Last;
2472 }
2473
2474 /// -- Vectorization State --
2475 /// Holds all of the tree entries.
2476 TreeEntry::VecTreeTy VectorizableTree;
2477
2478#ifndef NDEBUG
2479 /// Debug printer.
2480 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dumpVectorizableTree() const {
2481 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2482 VectorizableTree[Id]->dump();
2483 dbgs() << "\n";
2484 }
2485 }
2486#endif
2487
2488 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2489
2490 const TreeEntry *getTreeEntry(Value *V) const {
2491 return ScalarToTreeEntry.lookup(V);
2492 }
2493
2494 /// Maps a specific scalar to its tree entry.
2495 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
2496
2497 /// Maps a value to the proposed vectorizable size.
2498 SmallDenseMap<Value *, unsigned> InstrElementSize;
2499
2500 /// A list of scalars that we found that we need to keep as scalars.
2501 ValueSet MustGather;
2502
2503 /// This POD struct describes one external user in the vectorized tree.
2504 struct ExternalUser {
2505 ExternalUser(Value *S, llvm::User *U, int L)
2506 : Scalar(S), User(U), Lane(L) {}
2507
2508 // Which scalar in our function.
2509 Value *Scalar;
2510
2511 // Which user that uses the scalar.
2512 llvm::User *User;
2513
2514 // Which lane does the scalar belong to.
2515 int Lane;
2516 };
2517 using UserList = SmallVector<ExternalUser, 16>;
2518
2519 /// Checks if two instructions may access the same memory.
2520 ///
2521 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2522 /// is invariant in the calling loop.
2523 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2524 Instruction *Inst2) {
2525 // First check if the result is already in the cache.
2526 AliasCacheKey key = std::make_pair(Inst1, Inst2);
2527 Optional<bool> &result = AliasCache[key];
2528 if (result.hasValue()) {
2529 return result.getValue();
2530 }
2531 bool aliased = true;
2532 if (Loc1.Ptr && isSimple(Inst1))
2533 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1));
2534 // Store the result in the cache.
2535 result = aliased;
2536 return aliased;
2537 }
2538
2539 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2540
2541 /// Cache for alias results.
2542 /// TODO: consider moving this to the AliasAnalysis itself.
2543 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
2544
2545 // Cache for pointerMayBeCaptured calls inside AA. This is preserved
2546 // globally through SLP because we don't perform any action which
2547 // invalidates capture results.
2548 BatchAAResults BatchAA;
2549
2550 /// Temporary store for deleted instructions. Instructions will be deleted
2551 /// eventually when the BoUpSLP is destructed. The deferral is required to
2552 /// ensure that there are no incorrect collisions in the AliasCache, which
2553 /// can happen if a new instruction is allocated at the same address as a
2554 /// previously deleted instruction.
2555 DenseSet<Instruction *> DeletedInstructions;
2556
2557 /// A list of values that need to extracted out of the tree.
2558 /// This list holds pairs of (Internal Scalar : External User). External User
2559 /// can be nullptr, it means that this Internal Scalar will be used later,
2560 /// after vectorization.
2561 UserList ExternalUses;
2562
2563 /// Values used only by @llvm.assume calls.
2564 SmallPtrSet<const Value *, 32> EphValues;
2565
2566 /// Holds all of the instructions that we gathered.
2567 SetVector<Instruction *> GatherShuffleSeq;
2568
2569 /// A list of blocks that we are going to CSE.
2570 SetVector<BasicBlock *> CSEBlocks;
2571
2572 /// Contains all scheduling relevant data for an instruction.
2573 /// A ScheduleData either represents a single instruction or a member of an
2574 /// instruction bundle (= a group of instructions which is combined into a
2575 /// vector instruction).
2576 struct ScheduleData {
2577 // The initial value for the dependency counters. It means that the
2578 // dependencies are not calculated yet.
2579 enum { InvalidDeps = -1 };
2580
2581 ScheduleData() = default;
2582
2583 void init(int BlockSchedulingRegionID, Value *OpVal) {
2584 FirstInBundle = this;
2585 NextInBundle = nullptr;
2586 NextLoadStore = nullptr;
2587 IsScheduled = false;
2588 SchedulingRegionID = BlockSchedulingRegionID;
2589 clearDependencies();
2590 OpValue = OpVal;
2591 TE = nullptr;
2592 }
2593
2594 /// Verify basic self consistency properties
2595 void verify() {
2596 if (hasValidDependencies()) {
2597 assert(UnscheduledDeps <= Dependencies && "invariant")(static_cast <bool> (UnscheduledDeps <= Dependencies
&& "invariant") ? void (0) : __assert_fail ("UnscheduledDeps <= Dependencies && \"invariant\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2597, __extension__
__PRETTY_FUNCTION__))
;
2598 } else {
2599 assert(UnscheduledDeps == Dependencies && "invariant")(static_cast <bool> (UnscheduledDeps == Dependencies &&
"invariant") ? void (0) : __assert_fail ("UnscheduledDeps == Dependencies && \"invariant\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2599, __extension__
__PRETTY_FUNCTION__))
;
2600 }
2601
2602 if (IsScheduled) {
2603 assert(isSchedulingEntity() &&(static_cast <bool> (isSchedulingEntity() && "unexpected scheduled state"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"unexpected scheduled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2604, __extension__
__PRETTY_FUNCTION__))
2604 "unexpected scheduled state")(static_cast <bool> (isSchedulingEntity() && "unexpected scheduled state"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"unexpected scheduled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2604, __extension__
__PRETTY_FUNCTION__))
;
2605 for (const ScheduleData *BundleMember = this; BundleMember;
2606 BundleMember = BundleMember->NextInBundle) {
2607 assert(BundleMember->hasValidDependencies() &&(static_cast <bool> (BundleMember->hasValidDependencies
() && BundleMember->UnscheduledDeps == 0 &&
"unexpected scheduled state") ? void (0) : __assert_fail ("BundleMember->hasValidDependencies() && BundleMember->UnscheduledDeps == 0 && \"unexpected scheduled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2609, __extension__
__PRETTY_FUNCTION__))
2608 BundleMember->UnscheduledDeps == 0 &&(static_cast <bool> (BundleMember->hasValidDependencies
() && BundleMember->UnscheduledDeps == 0 &&
"unexpected scheduled state") ? void (0) : __assert_fail ("BundleMember->hasValidDependencies() && BundleMember->UnscheduledDeps == 0 && \"unexpected scheduled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2609, __extension__
__PRETTY_FUNCTION__))
2609 "unexpected scheduled state")(static_cast <bool> (BundleMember->hasValidDependencies
() && BundleMember->UnscheduledDeps == 0 &&
"unexpected scheduled state") ? void (0) : __assert_fail ("BundleMember->hasValidDependencies() && BundleMember->UnscheduledDeps == 0 && \"unexpected scheduled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2609, __extension__
__PRETTY_FUNCTION__))
;
2610 assert((BundleMember == this || !BundleMember->IsScheduled) &&(static_cast <bool> ((BundleMember == this || !BundleMember
->IsScheduled) && "only bundle is marked scheduled"
) ? void (0) : __assert_fail ("(BundleMember == this || !BundleMember->IsScheduled) && \"only bundle is marked scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2611, __extension__
__PRETTY_FUNCTION__))
2611 "only bundle is marked scheduled")(static_cast <bool> ((BundleMember == this || !BundleMember
->IsScheduled) && "only bundle is marked scheduled"
) ? void (0) : __assert_fail ("(BundleMember == this || !BundleMember->IsScheduled) && \"only bundle is marked scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2611, __extension__
__PRETTY_FUNCTION__))
;
2612 }
2613 }
2614
2615 assert(Inst->getParent() == FirstInBundle->Inst->getParent() &&(static_cast <bool> (Inst->getParent() == FirstInBundle
->Inst->getParent() && "all bundle members must be in same basic block"
) ? void (0) : __assert_fail ("Inst->getParent() == FirstInBundle->Inst->getParent() && \"all bundle members must be in same basic block\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2616, __extension__
__PRETTY_FUNCTION__))
2616 "all bundle members must be in same basic block")(static_cast <bool> (Inst->getParent() == FirstInBundle
->Inst->getParent() && "all bundle members must be in same basic block"
) ? void (0) : __assert_fail ("Inst->getParent() == FirstInBundle->Inst->getParent() && \"all bundle members must be in same basic block\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2616, __extension__
__PRETTY_FUNCTION__))
;
2617 }
2618
2619 /// Returns true if the dependency information has been calculated.
2620 /// Note that depenendency validity can vary between instructions within
2621 /// a single bundle.
2622 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2623
2624 /// Returns true for single instructions and for bundle representatives
2625 /// (= the head of a bundle).
2626 bool isSchedulingEntity() const { return FirstInBundle == this; }
2627
2628 /// Returns true if it represents an instruction bundle and not only a
2629 /// single instruction.
2630 bool isPartOfBundle() const {
2631 return NextInBundle != nullptr || FirstInBundle != this || TE;
2632 }
2633
2634 /// Returns true if it is ready for scheduling, i.e. it has no more
2635 /// unscheduled depending instructions/bundles.
2636 bool isReady() const {
2637 assert(isSchedulingEntity() &&(static_cast <bool> (isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2638, __extension__
__PRETTY_FUNCTION__))
2638 "can't consider non-scheduling entity for ready list")(static_cast <bool> (isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2638, __extension__
__PRETTY_FUNCTION__))
;
2639 return unscheduledDepsInBundle() == 0 && !IsScheduled;
2640 }
2641
2642 /// Modifies the number of unscheduled dependencies for this instruction,
2643 /// and returns the number of remaining dependencies for the containing
2644 /// bundle.
2645 int incrementUnscheduledDeps(int Incr) {
2646 assert(hasValidDependencies() &&(static_cast <bool> (hasValidDependencies() && "increment of unscheduled deps would be meaningless"
) ? void (0) : __assert_fail ("hasValidDependencies() && \"increment of unscheduled deps would be meaningless\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2647, __extension__
__PRETTY_FUNCTION__))
2647 "increment of unscheduled deps would be meaningless")(static_cast <bool> (hasValidDependencies() && "increment of unscheduled deps would be meaningless"
) ? void (0) : __assert_fail ("hasValidDependencies() && \"increment of unscheduled deps would be meaningless\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2647, __extension__
__PRETTY_FUNCTION__))
;
2648 UnscheduledDeps += Incr;
2649 return FirstInBundle->unscheduledDepsInBundle();
2650 }
2651
2652 /// Sets the number of unscheduled dependencies to the number of
2653 /// dependencies.
2654 void resetUnscheduledDeps() {
2655 UnscheduledDeps = Dependencies;
2656 }
2657
2658 /// Clears all dependency information.
2659 void clearDependencies() {
2660 Dependencies = InvalidDeps;
2661 resetUnscheduledDeps();
2662 MemoryDependencies.clear();
2663 ControlDependencies.clear();
2664 }
2665
2666 int unscheduledDepsInBundle() const {
2667 assert(isSchedulingEntity() && "only meaningful on the bundle")(static_cast <bool> (isSchedulingEntity() && "only meaningful on the bundle"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"only meaningful on the bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2667, __extension__
__PRETTY_FUNCTION__))
;
2668 int Sum = 0;
2669 for (const ScheduleData *BundleMember = this; BundleMember;
2670 BundleMember = BundleMember->NextInBundle) {
2671 if (BundleMember->UnscheduledDeps == InvalidDeps)
2672 return InvalidDeps;
2673 Sum += BundleMember->UnscheduledDeps;
2674 }
2675 return Sum;
2676 }
2677
2678 void dump(raw_ostream &os) const {
2679 if (!isSchedulingEntity()) {
2680 os << "/ " << *Inst;
2681 } else if (NextInBundle) {
2682 os << '[' << *Inst;
2683 ScheduleData *SD = NextInBundle;
2684 while (SD) {
2685 os << ';' << *SD->Inst;
2686 SD = SD->NextInBundle;
2687 }
2688 os << ']';
2689 } else {
2690 os << *Inst;
2691 }
2692 }
2693
2694 Instruction *Inst = nullptr;
2695
2696 /// Opcode of the current instruction in the schedule data.
2697 Value *OpValue = nullptr;
2698
2699 /// The TreeEntry that this instruction corresponds to.
2700 TreeEntry *TE = nullptr;
2701
2702 /// Points to the head in an instruction bundle (and always to this for
2703 /// single instructions).
2704 ScheduleData *FirstInBundle = nullptr;
2705
2706 /// Single linked list of all instructions in a bundle. Null if it is a
2707 /// single instruction.
2708 ScheduleData *NextInBundle = nullptr;
2709
2710 /// Single linked list of all memory instructions (e.g. load, store, call)
2711 /// in the block - until the end of the scheduling region.
2712 ScheduleData *NextLoadStore = nullptr;
2713
2714 /// The dependent memory instructions.
2715 /// This list is derived on demand in calculateDependencies().
2716 SmallVector<ScheduleData *, 4> MemoryDependencies;
2717
2718 /// List of instructions which this instruction could be control dependent
2719 /// on. Allowing such nodes to be scheduled below this one could introduce
2720 /// a runtime fault which didn't exist in the original program.
2721 /// ex: this is a load or udiv following a readonly call which inf loops
2722 SmallVector<ScheduleData *, 4> ControlDependencies;
2723
2724 /// This ScheduleData is in the current scheduling region if this matches
2725 /// the current SchedulingRegionID of BlockScheduling.
2726 int SchedulingRegionID = 0;
2727
2728 /// Used for getting a "good" final ordering of instructions.
2729 int SchedulingPriority = 0;
2730
2731 /// The number of dependencies. Constitutes of the number of users of the
2732 /// instruction plus the number of dependent memory instructions (if any).
2733 /// This value is calculated on demand.
2734 /// If InvalidDeps, the number of dependencies is not calculated yet.
2735 int Dependencies = InvalidDeps;
2736
2737 /// The number of dependencies minus the number of dependencies of scheduled
2738 /// instructions. As soon as this is zero, the instruction/bundle gets ready
2739 /// for scheduling.
2740 /// Note that this is negative as long as Dependencies is not calculated.
2741 int UnscheduledDeps = InvalidDeps;
2742
2743 /// True if this instruction is scheduled (or considered as scheduled in the
2744 /// dry-run).
2745 bool IsScheduled = false;
2746 };
2747
2748#ifndef NDEBUG
2749 friend inline raw_ostream &operator<<(raw_ostream &os,
2750 const BoUpSLP::ScheduleData &SD) {
2751 SD.dump(os);
2752 return os;
2753 }
2754#endif
2755
2756 friend struct GraphTraits<BoUpSLP *>;
2757 friend struct DOTGraphTraits<BoUpSLP *>;
2758
2759 /// Contains all scheduling data for a basic block.
2760 /// It does not schedules instructions, which are not memory read/write
2761 /// instructions and their operands are either constants, or arguments, or
2762 /// phis, or instructions from others blocks, or their users are phis or from
2763 /// the other blocks. The resulting vector instructions can be placed at the
2764 /// beginning of the basic block without scheduling (if operands does not need
2765 /// to be scheduled) or at the end of the block (if users are outside of the
2766 /// block). It allows to save some compile time and memory used by the
2767 /// compiler.
2768 /// ScheduleData is assigned for each instruction in between the boundaries of
2769 /// the tree entry, even for those, which are not part of the graph. It is
2770 /// required to correctly follow the dependencies between the instructions and
2771 /// their correct scheduling. The ScheduleData is not allocated for the
2772 /// instructions, which do not require scheduling, like phis, nodes with
2773 /// extractelements/insertelements only or nodes with instructions, with
2774 /// uses/operands outside of the block.
2775 struct BlockScheduling {
2776 BlockScheduling(BasicBlock *BB)
2777 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2778
2779 void clear() {
2780 ReadyInsts.clear();
2781 ScheduleStart = nullptr;
2782 ScheduleEnd = nullptr;
2783 FirstLoadStoreInRegion = nullptr;
2784 LastLoadStoreInRegion = nullptr;
2785 RegionHasStackSave = false;
2786
2787 // Reduce the maximum schedule region size by the size of the
2788 // previous scheduling run.
2789 ScheduleRegionSizeLimit -= ScheduleRegionSize;
2790 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2791 ScheduleRegionSizeLimit = MinScheduleRegionSize;
2792 ScheduleRegionSize = 0;
2793
2794 // Make a new scheduling region, i.e. all existing ScheduleData is not
2795 // in the new region yet.
2796 ++SchedulingRegionID;
2797 }
2798
2799 ScheduleData *getScheduleData(Instruction *I) {
2800 if (BB != I->getParent())
2801 // Avoid lookup if can't possibly be in map.
2802 return nullptr;
2803 ScheduleData *SD = ScheduleDataMap.lookup(I);
2804 if (SD && isInSchedulingRegion(SD))
2805 return SD;
2806 return nullptr;
2807 }
2808
2809 ScheduleData *getScheduleData(Value *V) {
2810 if (auto *I = dyn_cast<Instruction>(V))
2811 return getScheduleData(I);
2812 return nullptr;
2813 }
2814
2815 ScheduleData *getScheduleData(Value *V, Value *Key) {
2816 if (V == Key)
2817 return getScheduleData(V);
2818 auto I = ExtraScheduleDataMap.find(V);
2819 if (I != ExtraScheduleDataMap.end()) {
2820 ScheduleData *SD = I->second.lookup(Key);
2821 if (SD && isInSchedulingRegion(SD))
2822 return SD;
2823 }
2824 return nullptr;
2825 }
2826
2827 bool isInSchedulingRegion(ScheduleData *SD) const {
2828 return SD->SchedulingRegionID == SchedulingRegionID;
2829 }
2830
2831 /// Marks an instruction as scheduled and puts all dependent ready
2832 /// instructions into the ready-list.
2833 template <typename ReadyListType>
2834 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2835 SD->IsScheduled = true;
15
Access to field 'IsScheduled' results in a dereference of a null pointer (loaded from variable 'SD')
2836 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule " << *SD <<
"\n"; } } while (false)
;
2837
2838 for (ScheduleData *BundleMember = SD; BundleMember;
2839 BundleMember = BundleMember->NextInBundle) {
2840 if (BundleMember->Inst != BundleMember->OpValue)
2841 continue;
2842
2843 // Handle the def-use chain dependencies.
2844
2845 // Decrement the unscheduled counter and insert to ready list if ready.
2846 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2847 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2848 if (OpDef && OpDef->hasValidDependencies() &&
2849 OpDef->incrementUnscheduledDeps(-1) == 0) {
2850 // There are no more unscheduled dependencies after
2851 // decrementing, so we can put the dependent instruction
2852 // into the ready list.
2853 ScheduleData *DepBundle = OpDef->FirstInBundle;
2854 assert(!DepBundle->IsScheduled &&(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2855, __extension__
__PRETTY_FUNCTION__))
2855 "already scheduled bundle gets ready")(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2855, __extension__
__PRETTY_FUNCTION__))
;
2856 ReadyList.insert(DepBundle);
2857 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
2858 << "SLP: gets ready (def): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
;
2859 }
2860 });
2861 };
2862
2863 // If BundleMember is a vector bundle, its operands may have been
2864 // reordered during buildTree(). We therefore need to get its operands
2865 // through the TreeEntry.
2866 if (TreeEntry *TE = BundleMember->TE) {
2867 // Need to search for the lane since the tree entry can be reordered.
2868 int Lane = std::distance(TE->Scalars.begin(),
2869 find(TE->Scalars, BundleMember->Inst));
2870 assert(Lane >= 0 && "Lane not set")(static_cast <bool> (Lane >= 0 && "Lane not set"
) ? void (0) : __assert_fail ("Lane >= 0 && \"Lane not set\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2870, __extension__
__PRETTY_FUNCTION__))
;
2871
2872 // Since vectorization tree is being built recursively this assertion
2873 // ensures that the tree entry has all operands set before reaching
2874 // this code. Couple of exceptions known at the moment are extracts
2875 // where their second (immediate) operand is not added. Since
2876 // immediates do not affect scheduler behavior this is considered
2877 // okay.
2878 auto *In = BundleMember->Inst;
2879 assert(In &&(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || In->getNumOperands
() == TE->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2882, __extension__
__PRETTY_FUNCTION__))
2880 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || In->getNumOperands
() == TE->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2882, __extension__
__PRETTY_FUNCTION__))
2881 In->getNumOperands() == TE->getNumOperands()) &&(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || In->getNumOperands
() == TE->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2882, __extension__
__PRETTY_FUNCTION__))
2882 "Missed TreeEntry operands?")(static_cast <bool> (In && (isa<ExtractValueInst
>(In) || isa<ExtractElementInst>(In) || In->getNumOperands
() == TE->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2882, __extension__
__PRETTY_FUNCTION__))
;
2883 (void)In; // fake use to avoid build failure when assertions disabled
2884
2885 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2886 OpIdx != NumOperands; ++OpIdx)
2887 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2888 DecrUnsched(I);
2889 } else {
2890 // If BundleMember is a stand-alone instruction, no operand reordering
2891 // has taken place, so we directly access its operands.
2892 for (Use &U : BundleMember->Inst->operands())
2893 if (auto *I = dyn_cast<Instruction>(U.get()))
2894 DecrUnsched(I);
2895 }
2896 // Handle the memory dependencies.
2897 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2898 if (MemoryDepSD->hasValidDependencies() &&
2899 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2900 // There are no more unscheduled dependencies after decrementing,
2901 // so we can put the dependent instruction into the ready list.
2902 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2903 assert(!DepBundle->IsScheduled &&(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2904, __extension__
__PRETTY_FUNCTION__))
2904 "already scheduled bundle gets ready")(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2904, __extension__
__PRETTY_FUNCTION__))
;
2905 ReadyList.insert(DepBundle);
2906 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
2907 << "SLP: gets ready (mem): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
;
2908 }
2909 }
2910 // Handle the control dependencies.
2911 for (ScheduleData *DepSD : BundleMember->ControlDependencies) {
2912 if (DepSD->incrementUnscheduledDeps(-1) == 0) {
2913 // There are no more unscheduled dependencies after decrementing,
2914 // so we can put the dependent instruction into the ready list.
2915 ScheduleData *DepBundle = DepSD->FirstInBundle;
2916 assert(!DepBundle->IsScheduled &&(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2917, __extension__
__PRETTY_FUNCTION__))
2917 "already scheduled bundle gets ready")(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2917, __extension__
__PRETTY_FUNCTION__))
;
2918 ReadyList.insert(DepBundle);
2919 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (ctl): " <<
*DepBundle << "\n"; } } while (false)
2920 << "SLP: gets ready (ctl): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (ctl): " <<
*DepBundle << "\n"; } } while (false)
;
2921 }
2922 }
2923
2924 }
2925 }
2926
2927 /// Verify basic self consistency properties of the data structure.
2928 void verify() {
2929 if (!ScheduleStart)
2930 return;
2931
2932 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&(static_cast <bool> (ScheduleStart->getParent() == ScheduleEnd
->getParent() && ScheduleStart->comesBefore(ScheduleEnd
) && "Not a valid scheduling region?") ? void (0) : __assert_fail
("ScheduleStart->getParent() == ScheduleEnd->getParent() && ScheduleStart->comesBefore(ScheduleEnd) && \"Not a valid scheduling region?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2934, __extension__
__PRETTY_FUNCTION__))
2933 ScheduleStart->comesBefore(ScheduleEnd) &&(static_cast <bool> (ScheduleStart->getParent() == ScheduleEnd
->getParent() && ScheduleStart->comesBefore(ScheduleEnd
) && "Not a valid scheduling region?") ? void (0) : __assert_fail
("ScheduleStart->getParent() == ScheduleEnd->getParent() && ScheduleStart->comesBefore(ScheduleEnd) && \"Not a valid scheduling region?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2934, __extension__
__PRETTY_FUNCTION__))
2934 "Not a valid scheduling region?")(static_cast <bool> (ScheduleStart->getParent() == ScheduleEnd
->getParent() && ScheduleStart->comesBefore(ScheduleEnd
) && "Not a valid scheduling region?") ? void (0) : __assert_fail
("ScheduleStart->getParent() == ScheduleEnd->getParent() && ScheduleStart->comesBefore(ScheduleEnd) && \"Not a valid scheduling region?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2934, __extension__
__PRETTY_FUNCTION__))
;
2935
2936 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2937 auto *SD = getScheduleData(I);
2938 if (!SD)
2939 continue;
2940 assert(isInSchedulingRegion(SD) &&(static_cast <bool> (isInSchedulingRegion(SD) &&
"primary schedule data not in window?") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"primary schedule data not in window?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2941, __extension__
__PRETTY_FUNCTION__))
2941 "primary schedule data not in window?")(static_cast <bool> (isInSchedulingRegion(SD) &&
"primary schedule data not in window?") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"primary schedule data not in window?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2941, __extension__
__PRETTY_FUNCTION__))
;
2942 assert(isInSchedulingRegion(SD->FirstInBundle) &&(static_cast <bool> (isInSchedulingRegion(SD->FirstInBundle
) && "entire bundle in window!") ? void (0) : __assert_fail
("isInSchedulingRegion(SD->FirstInBundle) && \"entire bundle in window!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2943, __extension__
__PRETTY_FUNCTION__))
2943 "entire bundle in window!")(static_cast <bool> (isInSchedulingRegion(SD->FirstInBundle
) && "entire bundle in window!") ? void (0) : __assert_fail
("isInSchedulingRegion(SD->FirstInBundle) && \"entire bundle in window!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2943, __extension__
__PRETTY_FUNCTION__))
;
2944 (void)SD;
2945 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
2946 }
2947
2948 for (auto *SD : ReadyInsts) {
2949 assert(SD->isSchedulingEntity() && SD->isReady() &&(static_cast <bool> (SD->isSchedulingEntity() &&
SD->isReady() && "item in ready list not ready?")
? void (0) : __assert_fail ("SD->isSchedulingEntity() && SD->isReady() && \"item in ready list not ready?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2950, __extension__
__PRETTY_FUNCTION__))
2950 "item in ready list not ready?")(static_cast <bool> (SD->isSchedulingEntity() &&
SD->isReady() && "item in ready list not ready?")
? void (0) : __assert_fail ("SD->isSchedulingEntity() && SD->isReady() && \"item in ready list not ready?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2950, __extension__
__PRETTY_FUNCTION__))
;
2951 (void)SD;
2952 }
2953 }
2954
2955 void doForAllOpcodes(Value *V,
2956 function_ref<void(ScheduleData *SD)> Action) {
2957 if (ScheduleData *SD = getScheduleData(V))
2958 Action(SD);
2959 auto I = ExtraScheduleDataMap.find(V);
2960 if (I != ExtraScheduleDataMap.end())
2961 for (auto &P : I->second)
2962 if (isInSchedulingRegion(P.second))
2963 Action(P.second);
2964 }
2965
2966 /// Put all instructions into the ReadyList which are ready for scheduling.
2967 template <typename ReadyListType>
2968 void initialFillReadyList(ReadyListType &ReadyList) {
2969 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2970 doForAllOpcodes(I, [&](ScheduleData *SD) {
2971 if (SD->isSchedulingEntity() && SD->hasValidDependencies() &&
2972 SD->isReady()) {
2973 ReadyList.insert(SD);
2974 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *SD << "\n"; } } while (false)
2975 << "SLP: initially in ready list: " << *SD << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *SD << "\n"; } } while (false)
;
2976 }
2977 });
2978 }
2979 }
2980
2981 /// Build a bundle from the ScheduleData nodes corresponding to the
2982 /// scalar instruction for each lane.
2983 ScheduleData *buildBundle(ArrayRef<Value *> VL);
2984
2985 /// Checks if a bundle of instructions can be scheduled, i.e. has no
2986 /// cyclic dependencies. This is only a dry-run, no instructions are
2987 /// actually moved at this stage.
2988 /// \returns the scheduling bundle. The returned Optional value is non-None
2989 /// if \p VL is allowed to be scheduled.
2990 Optional<ScheduleData *>
2991 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2992 const InstructionsState &S);
2993
2994 /// Un-bundles a group of instructions.
2995 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2996
2997 /// Allocates schedule data chunk.
2998 ScheduleData *allocateScheduleDataChunks();
2999
3000 /// Extends the scheduling region so that V is inside the region.
3001 /// \returns true if the region size is within the limit.
3002 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
3003
3004 /// Initialize the ScheduleData structures for new instructions in the
3005 /// scheduling region.
3006 void initScheduleData(Instruction *FromI, Instruction *ToI,
3007 ScheduleData *PrevLoadStore,
3008 ScheduleData *NextLoadStore);
3009
3010 /// Updates the dependency information of a bundle and of all instructions/
3011 /// bundles which depend on the original bundle.
3012 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
3013 BoUpSLP *SLP);
3014
3015 /// Sets all instruction in the scheduling region to un-scheduled.
3016 void resetSchedule();
3017
3018 BasicBlock *BB;
3019
3020 /// Simple memory allocation for ScheduleData.
3021 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
3022
3023 /// The size of a ScheduleData array in ScheduleDataChunks.
3024 int ChunkSize;
3025
3026 /// The allocator position in the current chunk, which is the last entry
3027 /// of ScheduleDataChunks.
3028 int ChunkPos;
3029
3030 /// Attaches ScheduleData to Instruction.
3031 /// Note that the mapping survives during all vectorization iterations, i.e.
3032 /// ScheduleData structures are recycled.
3033 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap;
3034
3035 /// Attaches ScheduleData to Instruction with the leading key.
3036 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
3037 ExtraScheduleDataMap;
3038
3039 /// The ready-list for scheduling (only used for the dry-run).
3040 SetVector<ScheduleData *> ReadyInsts;
3041
3042 /// The first instruction of the scheduling region.
3043 Instruction *ScheduleStart = nullptr;
3044
3045 /// The first instruction _after_ the scheduling region.
3046 Instruction *ScheduleEnd = nullptr;
3047
3048 /// The first memory accessing instruction in the scheduling region
3049 /// (can be null).
3050 ScheduleData *FirstLoadStoreInRegion = nullptr;
3051
3052 /// The last memory accessing instruction in the scheduling region
3053 /// (can be null).
3054 ScheduleData *LastLoadStoreInRegion = nullptr;
3055
3056 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling
3057 /// region? Used to optimize the dependence calculation for the
3058 /// common case where there isn't.
3059 bool RegionHasStackSave = false;
3060
3061 /// The current size of the scheduling region.
3062 int ScheduleRegionSize = 0;
3063
3064 /// The maximum size allowed for the scheduling region.
3065 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
3066
3067 /// The ID of the scheduling region. For a new vectorization iteration this
3068 /// is incremented which "removes" all ScheduleData from the region.
3069 /// Make sure that the initial SchedulingRegionID is greater than the
3070 /// initial SchedulingRegionID in ScheduleData (which is 0).
3071 int SchedulingRegionID = 1;
3072 };
3073
3074 /// Attaches the BlockScheduling structures to basic blocks.
3075 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
3076
3077 /// Performs the "real" scheduling. Done before vectorization is actually
3078 /// performed in a basic block.
3079 void scheduleBlock(BlockScheduling *BS);
3080
3081 /// List of users to ignore during scheduling and that don't need extracting.
3082 ArrayRef<Value *> UserIgnoreList;
3083
3084 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
3085 /// sorted SmallVectors of unsigned.
3086 struct OrdersTypeDenseMapInfo {
3087 static OrdersType getEmptyKey() {
3088 OrdersType V;
3089 V.push_back(~1U);
3090 return V;
3091 }
3092
3093 static OrdersType getTombstoneKey() {
3094 OrdersType V;
3095 V.push_back(~2U);
3096 return V;
3097 }
3098
3099 static unsigned getHashValue(const OrdersType &V) {
3100 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
3101 }
3102
3103 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
3104 return LHS == RHS;
3105 }
3106 };
3107
3108 // Analysis and block reference.
3109 Function *F;
3110 ScalarEvolution *SE;
3111 TargetTransformInfo *TTI;
3112 TargetLibraryInfo *TLI;
3113 LoopInfo *LI;
3114 DominatorTree *DT;
3115 AssumptionCache *AC;
3116 DemandedBits *DB;
3117 const DataLayout *DL;
3118 OptimizationRemarkEmitter *ORE;
3119
3120 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3121 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
3122
3123 /// Instruction builder to construct the vectorized tree.
3124 IRBuilder<> Builder;
3125
3126 /// A map of scalar integer values to the smallest bit width with which they
3127 /// can legally be represented. The values map to (width, signed) pairs,
3128 /// where "width" indicates the minimum bit width and "signed" is True if the
3129 /// value must be signed-extended, rather than zero-extended, back to its
3130 /// original width.
3131 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
3132};
3133
3134} // end namespace slpvectorizer
3135
3136template <> struct GraphTraits<BoUpSLP *> {
3137 using TreeEntry = BoUpSLP::TreeEntry;
3138
3139 /// NodeRef has to be a pointer per the GraphWriter.
3140 using NodeRef = TreeEntry *;
3141
3142 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
3143
3144 /// Add the VectorizableTree to the index iterator to be able to return
3145 /// TreeEntry pointers.
3146 struct ChildIteratorType
3147 : public iterator_adaptor_base<
3148 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
3149 ContainerTy &VectorizableTree;
3150
3151 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
3152 ContainerTy &VT)
3153 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
3154
3155 NodeRef operator*() { return I->UserTE; }
3156 };
3157
3158 static NodeRef getEntryNode(BoUpSLP &R) {
3159 return R.VectorizableTree[0].get();
3160 }
3161
3162 static ChildIteratorType child_begin(NodeRef N) {
3163 return {N->UserTreeIndices.begin(), N->Container};
3164 }
3165
3166 static ChildIteratorType child_end(NodeRef N) {
3167 return {N->UserTreeIndices.end(), N->Container};
3168 }
3169
3170 /// For the node iterator we just need to turn the TreeEntry iterator into a
3171 /// TreeEntry* iterator so that it dereferences to NodeRef.
3172 class nodes_iterator {
3173 using ItTy = ContainerTy::iterator;
3174 ItTy It;
3175
3176 public:
3177 nodes_iterator(const ItTy &It2) : It(It2) {}
3178 NodeRef operator*() { return It->get(); }
3179 nodes_iterator operator++() {
3180 ++It;
3181 return *this;
3182 }
3183 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
3184 };
3185
3186 static nodes_iterator nodes_begin(BoUpSLP *R) {
3187 return nodes_iterator(R->VectorizableTree.begin());
3188 }
3189
3190 static nodes_iterator nodes_end(BoUpSLP *R) {
3191 return nodes_iterator(R->VectorizableTree.end());
3192 }
3193
3194 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3195};
3196
3197template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3198 using TreeEntry = BoUpSLP::TreeEntry;
3199
3200 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3201
3202 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3203 std::string Str;
3204 raw_string_ostream OS(Str);
3205 if (isSplat(Entry->Scalars))
3206 OS << "<splat> ";
3207 for (auto V : Entry->Scalars) {
3208 OS << *V;
3209 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3210 return EU.Scalar == V;
3211 }))
3212 OS << " <extract>";
3213 OS << "\n";
3214 }
3215 return Str;
3216 }
3217
3218 static std::string getNodeAttributes(const TreeEntry *Entry,
3219 const BoUpSLP *) {
3220 if (Entry->State == TreeEntry::NeedToGather)
3221 return "color=red";
3222 return "";
3223 }
3224};
3225
3226} // end namespace llvm
3227
3228BoUpSLP::~BoUpSLP() {
3229 SmallVector<WeakTrackingVH> DeadInsts;
3230 for (auto *I : DeletedInstructions) {
3231 for (Use &U : I->operands()) {
3232 auto *Op = dyn_cast<Instruction>(U.get());
3233 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() &&
3234 wouldInstructionBeTriviallyDead(Op, TLI))
3235 DeadInsts.emplace_back(Op);
3236 }
3237 I->dropAllReferences();
3238 }
3239 for (auto *I : DeletedInstructions) {
3240 assert(I->use_empty() &&(static_cast <bool> (I->use_empty() && "trying to erase instruction with users."
) ? void (0) : __assert_fail ("I->use_empty() && \"trying to erase instruction with users.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3241, __extension__
__PRETTY_FUNCTION__))
3241 "trying to erase instruction with users.")(static_cast <bool> (I->use_empty() && "trying to erase instruction with users."
) ? void (0) : __assert_fail ("I->use_empty() && \"trying to erase instruction with users.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3241, __extension__
__PRETTY_FUNCTION__))
;
3242 I->eraseFromParent();
3243 }
3244
3245 // Cleanup any dead scalar code feeding the vectorized instructions
3246 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
3247
3248#ifdef EXPENSIVE_CHECKS
3249 // If we could guarantee that this call is not extremely slow, we could
3250 // remove the ifdef limitation (see PR47712).
3251 assert(!verifyFunction(*F, &dbgs()))(static_cast <bool> (!verifyFunction(*F, &dbgs())) ?
void (0) : __assert_fail ("!verifyFunction(*F, &dbgs())"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3251, __extension__
__PRETTY_FUNCTION__))
;
3252#endif
3253}
3254
3255/// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3256/// contains original mask for the scalars reused in the node. Procedure
3257/// transform this mask in accordance with the given \p Mask.
3258static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3259 assert(!Mask.empty() && Reuses.size() == Mask.size() &&(static_cast <bool> (!Mask.empty() && Reuses.size
() == Mask.size() && "Expected non-empty mask.") ? void
(0) : __assert_fail ("!Mask.empty() && Reuses.size() == Mask.size() && \"Expected non-empty mask.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3260, __extension__
__PRETTY_FUNCTION__))
3260 "Expected non-empty mask.")(static_cast <bool> (!Mask.empty() && Reuses.size
() == Mask.size() && "Expected non-empty mask.") ? void
(0) : __assert_fail ("!Mask.empty() && Reuses.size() == Mask.size() && \"Expected non-empty mask.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3260, __extension__
__PRETTY_FUNCTION__))
;
3261 SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3262 Prev.swap(Reuses);
3263 for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3264 if (Mask[I] != UndefMaskElem)
3265 Reuses[Mask[I]] = Prev[I];
3266}
3267
3268/// Reorders the given \p Order according to the given \p Mask. \p Order - is
3269/// the original order of the scalars. Procedure transforms the provided order
3270/// in accordance with the given \p Mask. If the resulting \p Order is just an
3271/// identity order, \p Order is cleared.
3272static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3273 assert(!Mask.empty() && "Expected non-empty mask.")(static_cast <bool> (!Mask.empty() && "Expected non-empty mask."
) ? void (0) : __assert_fail ("!Mask.empty() && \"Expected non-empty mask.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3273, __extension__
__PRETTY_FUNCTION__))
;
3274 SmallVector<int> MaskOrder;
3275 if (Order.empty()) {
3276 MaskOrder.resize(Mask.size());
3277 std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3278 } else {
3279 inversePermutation(Order, MaskOrder);
3280 }
3281 reorderReuses(MaskOrder, Mask);
3282 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) {
3283 Order.clear();
3284 return;
3285 }
3286 Order.assign(Mask.size(), Mask.size());
3287 for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3288 if (MaskOrder[I] != UndefMaskElem)
3289 Order[MaskOrder[I]] = I;
3290 fixupOrderingIndices(Order);
3291}
3292
3293Optional<BoUpSLP::OrdersType>
3294BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3295 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.")(static_cast <bool> (TE.State == TreeEntry::NeedToGather
&& "Expected gather node only.") ? void (0) : __assert_fail
("TE.State == TreeEntry::NeedToGather && \"Expected gather node only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3295, __extension__
__PRETTY_FUNCTION__))
;
3296 unsigned NumScalars = TE.Scalars.size();
3297 OrdersType CurrentOrder(NumScalars, NumScalars);
3298 SmallVector<int> Positions;
3299 SmallBitVector UsedPositions(NumScalars);
3300 const TreeEntry *STE = nullptr;
3301 // Try to find all gathered scalars that are gets vectorized in other
3302 // vectorize node. Here we can have only one single tree vector node to
3303 // correctly identify order of the gathered scalars.
3304 for (unsigned I = 0; I < NumScalars; ++I) {
3305 Value *V = TE.Scalars[I];
3306 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3307 continue;
3308 if (const auto *LocalSTE = getTreeEntry(V)) {
3309 if (!STE)
3310 STE = LocalSTE;
3311 else if (STE != LocalSTE)
3312 // Take the order only from the single vector node.
3313 return None;
3314 unsigned Lane =
3315 std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3316 if (Lane >= NumScalars)
3317 return None;
3318 if (CurrentOrder[Lane] != NumScalars) {
3319 if (Lane != I)
3320 continue;
3321 UsedPositions.reset(CurrentOrder[Lane]);
3322 }
3323 // The partial identity (where only some elements of the gather node are
3324 // in the identity order) is good.
3325 CurrentOrder[Lane] = I;
3326 UsedPositions.set(I);
3327 }
3328 }
3329 // Need to keep the order if we have a vector entry and at least 2 scalars or
3330 // the vectorized entry has just 2 scalars.
3331 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3332 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3333 for (unsigned I = 0; I < NumScalars; ++I)
3334 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3335 return false;
3336 return true;
3337 };
3338 if (IsIdentityOrder(CurrentOrder)) {
3339 CurrentOrder.clear();
3340 return CurrentOrder;
3341 }
3342 auto *It = CurrentOrder.begin();
3343 for (unsigned I = 0; I < NumScalars;) {
3344 if (UsedPositions.test(I)) {
3345 ++I;
3346 continue;
3347 }
3348 if (*It == NumScalars) {
3349 *It = I;
3350 ++I;
3351 }
3352 ++It;
3353 }
3354 return CurrentOrder;
3355 }
3356 return None;
3357}
3358
3359Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE,
3360 bool TopToBottom) {
3361 // No need to reorder if need to shuffle reuses, still need to shuffle the
3362 // node.
3363 if (!TE.ReuseShuffleIndices.empty())
3364 return None;
3365 if (TE.State == TreeEntry::Vectorize &&
3366 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
3367 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
3368 !TE.isAltShuffle())
3369 return TE.ReorderIndices;
3370 if (TE.State == TreeEntry::NeedToGather) {
3371 // TODO: add analysis of other gather nodes with extractelement
3372 // instructions and other values/instructions, not only undefs.
3373 if (((TE.getOpcode() == Instruction::ExtractElement &&
3374 !TE.isAltShuffle()) ||
3375 (all_of(TE.Scalars,
3376 [](Value *V) {
3377 return isa<UndefValue, ExtractElementInst>(V);
3378 }) &&
3379 any_of(TE.Scalars,
3380 [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
3381 all_of(TE.Scalars,
3382 [](Value *V) {
3383 auto *EE = dyn_cast<ExtractElementInst>(V);
3384 return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
3385 }) &&
3386 allSameType(TE.Scalars)) {
3387 // Check that gather of extractelements can be represented as
3388 // just a shuffle of a single vector.
3389 OrdersType CurrentOrder;
3390 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder);
3391 if (Reuse || !CurrentOrder.empty()) {
3392 if (!CurrentOrder.empty())
3393 fixupOrderingIndices(CurrentOrder);
3394 return CurrentOrder;
3395 }
3396 }
3397 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
3398 return CurrentOrder;
3399 }
3400 return None;
3401}
3402
3403void BoUpSLP::reorderTopToBottom() {
3404 // Maps VF to the graph nodes.
3405 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
3406 // ExtractElement gather nodes which can be vectorized and need to handle
3407 // their ordering.
3408 DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3409 // Find all reorderable nodes with the given VF.
3410 // Currently the are vectorized stores,loads,extracts + some gathering of
3411 // extracts.
3412 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders](
3413 const std::unique_ptr<TreeEntry> &TE) {
3414 if (Optional<OrdersType> CurrentOrder =
3415 getReorderingData(*TE, /*TopToBottom=*/true)) {
3416 // Do not include ordering for nodes used in the alt opcode vectorization,
3417 // better to reorder them during bottom-to-top stage. If follow the order
3418 // here, it causes reordering of the whole graph though actually it is
3419 // profitable just to reorder the subgraph that starts from the alternate
3420 // opcode vectorization node. Such nodes already end-up with the shuffle
3421 // instruction and it is just enough to change this shuffle rather than
3422 // rotate the scalars for the whole graph.
3423 unsigned Cnt = 0;
3424 const TreeEntry *UserTE = TE.get();
3425 while (UserTE && Cnt < RecursionMaxDepth) {
3426 if (UserTE->UserTreeIndices.size() != 1)
3427 break;
3428 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
3429 return EI.UserTE->State == TreeEntry::Vectorize &&
3430 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
3431 }))
3432 return;
3433 if (UserTE->UserTreeIndices.empty())
3434 UserTE = nullptr;
3435 else
3436 UserTE = UserTE->UserTreeIndices.back().UserTE;
3437 ++Cnt;
3438 }
3439 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3440 if (TE->State != TreeEntry::Vectorize)
3441 GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3442 }
3443 });
3444
3445 // Reorder the graph nodes according to their vectorization factor.
3446 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1;
3447 VF /= 2) {
3448 auto It = VFToOrderedEntries.find(VF);
3449 if (It == VFToOrderedEntries.end())
3450 continue;
3451 // Try to find the most profitable order. We just are looking for the most
3452 // used order and reorder scalar elements in the nodes according to this
3453 // mostly used order.
3454 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
3455 // All operands are reordered and used only in this node - propagate the
3456 // most used order to the user node.
3457 MapVector<OrdersType, unsigned,
3458 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3459 OrdersUses;
3460 SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3461 for (const TreeEntry *OpTE : OrderedEntries) {
3462 // No need to reorder this nodes, still need to extend and to use shuffle,
3463 // just need to merge reordering shuffle and the reuse shuffle.
3464 if (!OpTE->ReuseShuffleIndices.empty())
3465 continue;
3466 // Count number of orders uses.
3467 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3468 if (OpTE->State == TreeEntry::NeedToGather)
3469 return GathersToOrders.find(OpTE)->second;
3470 return OpTE->ReorderIndices;
3471 }();
3472 // Stores actually store the mask, not the order, need to invert.
3473 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3474 OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3475 SmallVector<int> Mask;
3476 inversePermutation(Order, Mask);
3477 unsigned E = Order.size();
3478 OrdersType CurrentOrder(E, E);
3479 transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3480 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3481 });
3482 fixupOrderingIndices(CurrentOrder);
3483 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3484 } else {
3485 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3486 }
3487 }
3488 // Set order of the user node.
3489 if (OrdersUses.empty())
3490 continue;
3491 // Choose the most used order.
3492 ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3493 unsigned Cnt = OrdersUses.front().second;
3494 for (const auto &Pair : drop_begin(OrdersUses)) {
3495 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3496 BestOrder = Pair.first;
3497 Cnt = Pair.second;
3498 }
3499 }
3500 // Set order of the user node.
3501 if (BestOrder.empty())
3502 continue;
3503 SmallVector<int> Mask;
3504 inversePermutation(BestOrder, Mask);
3505 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3506 unsigned E = BestOrder.size();
3507 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3508 return I < E ? static_cast<int>(I) : UndefMaskElem;
3509 });
3510 // Do an actual reordering, if profitable.
3511 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
3512 // Just do the reordering for the nodes with the given VF.
3513 if (TE->Scalars.size() != VF) {
3514 if (TE->ReuseShuffleIndices.size() == VF) {
3515 // Need to reorder the reuses masks of the operands with smaller VF to
3516 // be able to find the match between the graph nodes and scalar
3517 // operands of the given node during vectorization/cost estimation.
3518 assert(all_of(TE->UserTreeIndices,(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3524, __extension__
__PRETTY_FUNCTION__))
3519 [VF, &TE](const EdgeInfo &EI) {(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3524, __extension__
__PRETTY_FUNCTION__))
3520 return EI.UserTE->Scalars.size() == VF ||(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3524, __extension__
__PRETTY_FUNCTION__))
3521 EI.UserTE->Scalars.size() ==(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3524, __extension__
__PRETTY_FUNCTION__))
3522 TE->Scalars.size();(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3524, __extension__
__PRETTY_FUNCTION__))
3523 }) &&(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3524, __extension__
__PRETTY_FUNCTION__))
3524 "All users must be of VF size.")(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3524, __extension__
__PRETTY_FUNCTION__))
;
3525 // Update ordering of the operands with the smaller VF than the given
3526 // one.
3527 reorderReuses(TE->ReuseShuffleIndices, Mask);
3528 }
3529 continue;
3530 }
3531 if (TE->State == TreeEntry::Vectorize &&
3532 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
3533 InsertElementInst>(TE->getMainOp()) &&
3534 !TE->isAltShuffle()) {
3535 // Build correct orders for extract{element,value}, loads and
3536 // stores.
3537 reorderOrder(TE->ReorderIndices, Mask);
3538 if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
3539 TE->reorderOperands(Mask);
3540 } else {
3541 // Reorder the node and its operands.
3542 TE->reorderOperands(Mask);
3543 assert(TE->ReorderIndices.empty() &&(static_cast <bool> (TE->ReorderIndices.empty() &&
"Expected empty reorder sequence.") ? void (0) : __assert_fail
("TE->ReorderIndices.empty() && \"Expected empty reorder sequence.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3544, __extension__
__PRETTY_FUNCTION__))
3544 "Expected empty reorder sequence.")(static_cast <bool> (TE->ReorderIndices.empty() &&
"Expected empty reorder sequence.") ? void (0) : __assert_fail
("TE->ReorderIndices.empty() && \"Expected empty reorder sequence.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3544, __extension__
__PRETTY_FUNCTION__))
;
3545 reorderScalars(TE->Scalars, Mask);
3546 }
3547 if (!TE->ReuseShuffleIndices.empty()) {
3548 // Apply reversed order to keep the original ordering of the reused
3549 // elements to avoid extra reorder indices shuffling.
3550 OrdersType CurrentOrder;
3551 reorderOrder(CurrentOrder, MaskOrder);
3552 SmallVector<int> NewReuses;
3553 inversePermutation(CurrentOrder, NewReuses);
3554 addMask(NewReuses, TE->ReuseShuffleIndices);
3555 TE->ReuseShuffleIndices.swap(NewReuses);
3556 }
3557 }
3558 }
3559}
3560
3561bool BoUpSLP::canReorderOperands(
3562 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
3563 ArrayRef<TreeEntry *> ReorderableGathers,
3564 SmallVectorImpl<TreeEntry *> &GatherOps) {
3565 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) {
3566 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) {
3567 return OpData.first == I &&
3568 OpData.second->State == TreeEntry::Vectorize;
3569 }))
3570 continue;
3571 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) {
3572 // Do not reorder if operand node is used by many user nodes.
3573 if (any_of(TE->UserTreeIndices,
3574 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; }))
3575 return false;
3576 // Add the node to the list of the ordered nodes with the identity
3577 // order.
3578 Edges.emplace_back(I, TE);
3579 continue;
3580 }
3581 ArrayRef<Value *> VL = UserTE->getOperand(I);
3582 TreeEntry *Gather = nullptr;
3583 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) {
3584 assert(TE->State != TreeEntry::Vectorize &&(static_cast <bool> (TE->State != TreeEntry::Vectorize
&& "Only non-vectorized nodes are expected.") ? void
(0) : __assert_fail ("TE->State != TreeEntry::Vectorize && \"Only non-vectorized nodes are expected.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3585, __extension__
__PRETTY_FUNCTION__))
3585 "Only non-vectorized nodes are expected.")(static_cast <bool> (TE->State != TreeEntry::Vectorize
&& "Only non-vectorized nodes are expected.") ? void
(0) : __assert_fail ("TE->State != TreeEntry::Vectorize && \"Only non-vectorized nodes are expected.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3585, __extension__
__PRETTY_FUNCTION__))
;
3586 if (TE->isSame(VL)) {
3587 Gather = TE;
3588 return true;
3589 }
3590 return false;
3591 }) > 1)
3592 return false;
3593 if (Gather)
3594 GatherOps.push_back(Gather);
3595 }
3596 return true;
3597}
3598
3599void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
3600 SetVector<TreeEntry *> OrderedEntries;
3601 DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3602 // Find all reorderable leaf nodes with the given VF.
3603 // Currently the are vectorized loads,extracts without alternate operands +
3604 // some gathering of extracts.
3605 SmallVector<TreeEntry *> NonVectorized;
3606 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
3607 &NonVectorized](
3608 const std::unique_ptr<TreeEntry> &TE) {
3609 if (TE->State != TreeEntry::Vectorize)
3610 NonVectorized.push_back(TE.get());
3611 if (Optional<OrdersType> CurrentOrder =
3612 getReorderingData(*TE, /*TopToBottom=*/false)) {
3613 OrderedEntries.insert(TE.get());
3614 if (TE->State != TreeEntry::Vectorize)
3615 GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3616 }
3617 });
3618
3619 // 1. Propagate order to the graph nodes, which use only reordered nodes.
3620 // I.e., if the node has operands, that are reordered, try to make at least
3621 // one operand order in the natural order and reorder others + reorder the
3622 // user node itself.
3623 SmallPtrSet<const TreeEntry *, 4> Visited;
3624 while (!OrderedEntries.empty()) {
3625 // 1. Filter out only reordered nodes.
3626 // 2. If the entry has multiple uses - skip it and jump to the next node.
3627 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
3628 SmallVector<TreeEntry *> Filtered;
3629 for (TreeEntry *TE : OrderedEntries) {
3630 if (!(TE->State == TreeEntry::Vectorize ||
3631 (TE->State == TreeEntry::NeedToGather &&
3632 GathersToOrders.count(TE))) ||
3633 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
3634 !all_of(drop_begin(TE->UserTreeIndices),
3635 [TE](const EdgeInfo &EI) {
3636 return EI.UserTE == TE->UserTreeIndices.front().UserTE;
3637 }) ||
3638 !Visited.insert(TE).second) {
3639 Filtered.push_back(TE);
3640 continue;
3641 }
3642 // Build a map between user nodes and their operands order to speedup
3643 // search. The graph currently does not provide this dependency directly.
3644 for (EdgeInfo &EI : TE->UserTreeIndices) {
3645 TreeEntry *UserTE = EI.UserTE;
3646 auto It = Users.find(UserTE);
3647 if (It == Users.end())
3648 It = Users.insert({UserTE, {}}).first;
3649 It->second.emplace_back(EI.EdgeIdx, TE);
3650 }
3651 }
3652 // Erase filtered entries.
3653 for_each(Filtered,
3654 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
3655 for (auto &Data : Users) {
3656 // Check that operands are used only in the User node.
3657 SmallVector<TreeEntry *> GatherOps;
3658 if (!canReorderOperands(Data.first, Data.second, NonVectorized,
3659 GatherOps)) {
3660 for_each(Data.second,
3661 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3662 OrderedEntries.remove(Op.second);
3663 });
3664 continue;
3665 }
3666 // All operands are reordered and used only in this node - propagate the
3667 // most used order to the user node.
3668 MapVector<OrdersType, unsigned,
3669 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3670 OrdersUses;
3671 // Do the analysis for each tree entry only once, otherwise the order of
3672 // the same node my be considered several times, though might be not
3673 // profitable.
3674 SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3675 SmallPtrSet<const TreeEntry *, 4> VisitedUsers;
3676 for (const auto &Op : Data.second) {
3677 TreeEntry *OpTE = Op.second;
3678 if (!VisitedOps.insert(OpTE).second)
3679 continue;
3680 if (!OpTE->ReuseShuffleIndices.empty() ||
3681 (IgnoreReorder && OpTE == VectorizableTree.front().get()))
3682 continue;
3683 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3684 if (OpTE->State == TreeEntry::NeedToGather)
3685 return GathersToOrders.find(OpTE)->second;
3686 return OpTE->ReorderIndices;
3687 }();
3688 unsigned NumOps = count_if(
3689 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) {
3690 return P.second == OpTE;
3691 });
3692 // Stores actually store the mask, not the order, need to invert.
3693 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3694 OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3695 SmallVector<int> Mask;
3696 inversePermutation(Order, Mask);
3697 unsigned E = Order.size();
3698 OrdersType CurrentOrder(E, E);
3699 transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3700 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3701 });
3702 fixupOrderingIndices(CurrentOrder);
3703 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second +=
3704 NumOps;
3705 } else {
3706 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps;
3707 }
3708 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0));
3709 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders](
3710 const TreeEntry *TE) {
3711 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
3712 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) ||
3713 (IgnoreReorder && TE->Idx == 0))
3714 return true;
3715 if (TE->State == TreeEntry::NeedToGather) {
3716 auto It = GathersToOrders.find(TE);
3717 if (It != GathersToOrders.end())
3718 return !It->second.empty();
3719 return true;
3720 }
3721 return false;
3722 };
3723 for (const EdgeInfo &EI : OpTE->UserTreeIndices) {
3724 TreeEntry *UserTE = EI.UserTE;
3725 if (!VisitedUsers.insert(UserTE).second)
3726 continue;
3727 // May reorder user node if it requires reordering, has reused
3728 // scalars, is an alternate op vectorize node or its op nodes require
3729 // reordering.
3730 if (AllowsReordering(UserTE))
3731 continue;
3732 // Check if users allow reordering.
3733 // Currently look up just 1 level of operands to avoid increase of
3734 // the compile time.
3735 // Profitable to reorder if definitely more operands allow
3736 // reordering rather than those with natural order.
3737 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE];
3738 if (static_cast<unsigned>(count_if(
3739 Ops, [UserTE, &AllowsReordering](
3740 const std::pair<unsigned, TreeEntry *> &Op) {
3741 return AllowsReordering(Op.second) &&
3742 all_of(Op.second->UserTreeIndices,
3743 [UserTE](const EdgeInfo &EI) {
3744 return EI.UserTE == UserTE;
3745 });
3746 })) <= Ops.size() / 2)
3747 ++Res.first->second;
3748 }
3749 }
3750 // If no orders - skip current nodes and jump to the next one, if any.
3751 if (OrdersUses.empty()) {
3752 for_each(Data.second,
3753 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3754 OrderedEntries.remove(Op.second);
3755 });
3756 continue;
3757 }
3758 // Choose the best order.
3759 ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3760 unsigned Cnt = OrdersUses.front().second;
3761 for (const auto &Pair : drop_begin(OrdersUses)) {
3762 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3763 BestOrder = Pair.first;
3764 Cnt = Pair.second;
3765 }
3766 }
3767 // Set order of the user node (reordering of operands and user nodes).
3768 if (BestOrder.empty()) {
3769 for_each(Data.second,
3770 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3771 OrderedEntries.remove(Op.second);
3772 });
3773 continue;
3774 }
3775 // Erase operands from OrderedEntries list and adjust their orders.
3776 VisitedOps.clear();
3777 SmallVector<int> Mask;
3778 inversePermutation(BestOrder, Mask);
3779 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3780 unsigned E = BestOrder.size();
3781 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3782 return I < E ? static_cast<int>(I) : UndefMaskElem;
3783 });
3784 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
3785 TreeEntry *TE = Op.second;
3786 OrderedEntries.remove(TE);
3787 if (!VisitedOps.insert(TE).second)
3788 continue;
3789 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) {
3790 // Just reorder reuses indices.
3791 reorderReuses(TE->ReuseShuffleIndices, Mask);
3792 continue;
3793 }
3794 // Gathers are processed separately.
3795 if (TE->State != TreeEntry::Vectorize)
3796 continue;
3797 assert((BestOrder.size() == TE->ReorderIndices.size() ||(static_cast <bool> ((BestOrder.size() == TE->ReorderIndices
.size() || TE->ReorderIndices.empty()) && "Non-matching sizes of user/operand entries."
) ? void (0) : __assert_fail ("(BestOrder.size() == TE->ReorderIndices.size() || TE->ReorderIndices.empty()) && \"Non-matching sizes of user/operand entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3799, __extension__
__PRETTY_FUNCTION__))
3798 TE->ReorderIndices.empty()) &&(static_cast <bool> ((BestOrder.size() == TE->ReorderIndices
.size() || TE->ReorderIndices.empty()) && "Non-matching sizes of user/operand entries."
) ? void (0) : __assert_fail ("(BestOrder.size() == TE->ReorderIndices.size() || TE->ReorderIndices.empty()) && \"Non-matching sizes of user/operand entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3799, __extension__
__PRETTY_FUNCTION__))
3799 "Non-matching sizes of user/operand entries.")(static_cast <bool> ((BestOrder.size() == TE->ReorderIndices
.size() || TE->ReorderIndices.empty()) && "Non-matching sizes of user/operand entries."
) ? void (0) : __assert_fail ("(BestOrder.size() == TE->ReorderIndices.size() || TE->ReorderIndices.empty()) && \"Non-matching sizes of user/operand entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3799, __extension__
__PRETTY_FUNCTION__))
;
3800 reorderOrder(TE->ReorderIndices, Mask);
3801 }
3802 // For gathers just need to reorder its scalars.
3803 for (TreeEntry *Gather : GatherOps) {
3804 assert(Gather->ReorderIndices.empty() &&(static_cast <bool> (Gather->ReorderIndices.empty() &&
"Unexpected reordering of gathers.") ? void (0) : __assert_fail
("Gather->ReorderIndices.empty() && \"Unexpected reordering of gathers.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3805, __extension__
__PRETTY_FUNCTION__))
3805 "Unexpected reordering of gathers.")(static_cast <bool> (Gather->ReorderIndices.empty() &&
"Unexpected reordering of gathers.") ? void (0) : __assert_fail
("Gather->ReorderIndices.empty() && \"Unexpected reordering of gathers.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3805, __extension__
__PRETTY_FUNCTION__))
;
3806 if (!Gather->ReuseShuffleIndices.empty()) {
3807 // Just reorder reuses indices.
3808 reorderReuses(Gather->ReuseShuffleIndices, Mask);
3809 continue;
3810 }
3811 reorderScalars(Gather->Scalars, Mask);
3812 OrderedEntries.remove(Gather);
3813 }
3814 // Reorder operands of the user node and set the ordering for the user
3815 // node itself.
3816 if (Data.first->State != TreeEntry::Vectorize ||
3817 !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
3818 Data.first->getMainOp()) ||
3819 Data.first->isAltShuffle())
3820 Data.first->reorderOperands(Mask);
3821 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
3822 Data.first->isAltShuffle()) {
3823 reorderScalars(Data.first->Scalars, Mask);
3824 reorderOrder(Data.first->ReorderIndices, MaskOrder);
3825 if (Data.first->ReuseShuffleIndices.empty() &&
3826 !Data.first->ReorderIndices.empty() &&
3827 !Data.first->isAltShuffle()) {
3828 // Insert user node to the list to try to sink reordering deeper in
3829 // the graph.
3830 OrderedEntries.insert(Data.first);
3831 }
3832 } else {
3833 reorderOrder(Data.first->ReorderIndices, Mask);
3834 }
3835 }
3836 }
3837 // If the reordering is unnecessary, just remove the reorder.
3838 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
3839 VectorizableTree.front()->ReuseShuffleIndices.empty())
3840 VectorizableTree.front()->ReorderIndices.clear();
3841}
3842
3843void BoUpSLP::buildExternalUses(
3844 const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
3845 // Collect the values that we need to extract from the tree.
3846 for (auto &TEPtr : VectorizableTree) {
3847 TreeEntry *Entry = TEPtr.get();
3848
3849 // No need to handle users of gathered values.
3850 if (Entry->State == TreeEntry::NeedToGather)
3851 continue;
3852
3853 // For each lane:
3854 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
3855 Value *Scalar = Entry->Scalars[Lane];
3856 int FoundLane = Entry->findLaneForValue(Scalar);
3857
3858 // Check if the scalar is externally used as an extra arg.
3859 auto ExtI = ExternallyUsedValues.find(Scalar);
3860 if (ExtI != ExternallyUsedValues.end()) {
3861 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
3862 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
;
3863 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
3864 }
3865 for (User *U : Scalar->users()) {
3866 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Checking user:" << *U <<
".\n"; } } while (false)
;
3867
3868 Instruction *UserInst = dyn_cast<Instruction>(U);
3869 if (!UserInst)
3870 continue;
3871
3872 if (isDeleted(UserInst))
3873 continue;
3874
3875 // Skip in-tree scalars that become vectors
3876 if (TreeEntry *UseEntry = getTreeEntry(U)) {
3877 Value *UseScalar = UseEntry->Scalars[0];
3878 // Some in-tree scalars will remain as scalar in vectorized
3879 // instructions. If that is the case, the one in Lane 0 will
3880 // be used.
3881 if (UseScalar != U ||
3882 UseEntry->State == TreeEntry::ScatterVectorize ||
3883 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
3884 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *Udo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
3885 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
;
3886 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state")(static_cast <bool> (UseEntry->State != TreeEntry::NeedToGather
&& "Bad state") ? void (0) : __assert_fail ("UseEntry->State != TreeEntry::NeedToGather && \"Bad state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3886, __extension__
__PRETTY_FUNCTION__))
;
3887 continue;
3888 }
3889 }
3890
3891 // Ignore users in the user ignore list.
3892 if (is_contained(UserIgnoreList, UserInst))
3893 continue;
3894
3895 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
3896 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
;
3897 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
3898 }
3899 }
3900 }
3901}
3902
3903void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
3904 ArrayRef<Value *> UserIgnoreLst) {
3905 deleteTree();
3906 UserIgnoreList = UserIgnoreLst;
3907 if (!allSameType(Roots))
3908 return;
3909 buildTree_rec(Roots, 0, EdgeInfo());
3910}
3911
3912namespace {
3913/// Tracks the state we can represent the loads in the given sequence.
3914enum class LoadsState { Gather, Vectorize, ScatterVectorize };
3915} // anonymous namespace
3916
3917/// Checks if the given array of loads can be represented as a vectorized,
3918/// scatter or just simple gather.
3919static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
3920 const TargetTransformInfo &TTI,
3921 const DataLayout &DL, ScalarEvolution &SE,
3922 SmallVectorImpl<unsigned> &Order,
3923 SmallVectorImpl<Value *> &PointerOps) {
3924 // Check that a vectorized load would load the same memory as a scalar
3925 // load. For example, we don't want to vectorize loads that are smaller
3926 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
3927 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
3928 // from such a struct, we read/write packed bits disagreeing with the
3929 // unvectorized version.
3930 Type *ScalarTy = VL0->getType();
3931
3932 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
3933 return LoadsState::Gather;
3934
3935 // Make sure all loads in the bundle are simple - we can't vectorize
3936 // atomic or volatile loads.
3937 PointerOps.clear();
3938 PointerOps.resize(VL.size());
3939 auto *POIter = PointerOps.begin();
3940 for (Value *V : VL) {
3941 auto *L = cast<LoadInst>(V);
3942 if (!L->isSimple())
3943 return LoadsState::Gather;
3944 *POIter = L->getPointerOperand();
3945 ++POIter;
3946 }
3947
3948 Order.clear();
3949 // Check the order of pointer operands.
3950 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) {
3951 Value *Ptr0;
3952 Value *PtrN;
3953 if (Order.empty()) {
3954 Ptr0 = PointerOps.front();
3955 PtrN = PointerOps.back();
3956 } else {
3957 Ptr0 = PointerOps[Order.front()];
3958 PtrN = PointerOps[Order.back()];
3959 }
3960 Optional<int> Diff =
3961 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
3962 // Check that the sorted loads are consecutive.
3963 if (static_cast<unsigned>(*Diff) == VL.size() - 1)
3964 return LoadsState::Vectorize;
3965 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3966 for (Value *V : VL)
3967 CommonAlignment =
3968 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
3969 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()),
3970 CommonAlignment))
3971 return LoadsState::ScatterVectorize;
3972 }
3973
3974 return LoadsState::Gather;
3975}
3976
3977/// \return true if the specified list of values has only one instruction that
3978/// requires scheduling, false otherwise.
3979#ifndef NDEBUG
3980static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) {
3981 Value *NeedsScheduling = nullptr;
3982 for (Value *V : VL) {
3983 if (doesNotNeedToBeScheduled(V))
3984 continue;
3985 if (!NeedsScheduling) {
3986 NeedsScheduling = V;
3987 continue;
3988 }
3989 return false;
3990 }
3991 return NeedsScheduling;
3992}
3993#endif
3994
3995void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
3996 const EdgeInfo &UserTreeIdx) {
3997 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!")(static_cast <bool> ((allConstant(VL) || allSameType(VL
)) && "Invalid types!") ? void (0) : __assert_fail ("(allConstant(VL) || allSameType(VL)) && \"Invalid types!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3997, __extension__
__PRETTY_FUNCTION__))
;
3998
3999 SmallVector<int> ReuseShuffleIndicies;
4000 SmallVector<Value *> UniqueValues;
4001 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues,
4002 &UserTreeIdx,
4003 this](const InstructionsState &S) {
4004 // Check that every instruction appears once in this bundle.
4005 DenseMap<Value *, unsigned> UniquePositions;
4006 for (Value *V : VL) {
4007 if (isConstant(V)) {
4008 ReuseShuffleIndicies.emplace_back(
4009 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size());
4010 UniqueValues.emplace_back(V);
4011 continue;
4012 }
4013 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4014 ReuseShuffleIndicies.emplace_back(Res.first->second);
4015 if (Res.second)
4016 UniqueValues.emplace_back(V);
4017 }
4018 size_t NumUniqueScalarValues = UniqueValues.size();
4019 if (NumUniqueScalarValues == VL.size()) {
4020 ReuseShuffleIndicies.clear();
4021 } else {
4022 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Shuffle for reused scalars.\n"
; } } while (false)
;
4023 if (NumUniqueScalarValues <= 1 ||
4024 (UniquePositions.size() == 1 && all_of(UniqueValues,
4025 [](Value *V) {
4026 return isa<UndefValue>(V) ||
4027 !isConstant(V);
4028 })) ||
4029 !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
4030 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Scalar used twice in bundle.\n"
; } } while (false)
;
4031 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4032 return false;
4033 }
4034 VL = UniqueValues;
4035 }
4036 return true;
4037 };
4038
4039 InstructionsState S = getSameOpcode(VL);
4040 if (Depth == RecursionMaxDepth) {
4041 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to max recursion depth.\n"
; } } while (false)
;
4042 if (TryToFindDuplicates(S))
4043 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4044 ReuseShuffleIndicies);
4045 return;
4046 }
4047
4048 // Don't handle scalable vectors
4049 if (S.getOpcode() == Instruction::ExtractElement &&
4050 isa<ScalableVectorType>(
4051 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
4052 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to scalable vector type.\n"
; } } while (false)
;
4053 if (TryToFindDuplicates(S))
4054 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4055 ReuseShuffleIndicies);
4056 return;
4057 }
4058
4059 // Don't handle vectors.
4060 if (S.OpValue->getType()->isVectorTy() &&
4061 !isa<InsertElementInst>(S.OpValue)) {
4062 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to vector type.\n"
; } } while (false)
;
4063 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4064 return;
4065 }
4066
4067 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
4068 if (SI->getValueOperand()->getType()->isVectorTy()) {
4069 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to store vector type.\n"
; } } while (false)
;
4070 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4071 return;
4072 }
4073
4074 // If all of the operands are identical or constant we have a simple solution.
4075 // If we deal with insert/extract instructions, they all must have constant
4076 // indices, otherwise we should gather them, not try to vectorize.
4077 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() ||
4078 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) &&
4079 !all_of(VL, isVectorLikeInstWithConstOps))) {
4080 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to C,S,B,O. \n"
; } } while (false)
;
4081 if (TryToFindDuplicates(S))
4082 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4083 ReuseShuffleIndicies);
4084 return;
4085 }
4086
4087 // We now know that this is a vector of instructions of the same type from
4088 // the same block.
4089
4090 // Don't vectorize ephemeral values.
4091 for (Value *V : VL) {
4092 if (EphValues.count(V)) {
4093 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
4094 << ") is ephemeral.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
;
4095 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4096 return;
4097 }
4098 }
4099
4100 // Check if this is a duplicate of another entry.
4101 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4102 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tChecking bundle: " <<
*S.OpValue << ".\n"; } } while (false)
;
4103 if (!E->isSame(VL)) {
4104 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to partial overlap.\n"
; } } while (false)
;
4105 if (TryToFindDuplicates(S))
4106 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4107 ReuseShuffleIndicies);
4108 return;
4109 }
4110 // Record the reuse of the tree node. FIXME, currently this is only used to
4111 // properly draw the graph rather than for the actual vectorization.
4112 E->UserTreeIndices.push_back(UserTreeIdx);
4113 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValuedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
4114 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
;
4115 return;
4116 }
4117
4118 // Check that none of the instructions in the bundle are already in the tree.
4119 for (Value *V : VL) {
4120 auto *I = dyn_cast<Instruction>(V);
4121 if (!I)
4122 continue;
4123 if (getTreeEntry(I)) {
4124 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
4125 << ") is already in tree.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
;
4126 if (TryToFindDuplicates(S))
4127 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4128 ReuseShuffleIndicies);
4129 return;
4130 }
4131 }
4132
4133 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
4134 for (Value *V : VL) {
4135 if (is_contained(UserIgnoreList, V)) {
4136 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to gathered scalar.\n"
; } } while (false)
;
4137 if (TryToFindDuplicates(S))
4138 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4139 ReuseShuffleIndicies);
4140 return;
4141 }
4142 }
4143
4144 // Check that all of the users of the scalars that we want to vectorize are
4145 // schedulable.
4146 auto *VL0 = cast<Instruction>(S.OpValue);
4147 BasicBlock *BB = VL0->getParent();
4148
4149 if (!DT->isReachableFromEntry(BB)) {
4150 // Don't go into unreachable blocks. They may contain instructions with
4151 // dependency cycles which confuse the final scheduling.
4152 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle in unreachable block.\n"
; } } while (false)
;
4153 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4154 return;
4155 }
4156
4157 // Check that every instruction appears once in this bundle.
4158 if (!TryToFindDuplicates(S))
4159 return;
4160
4161 auto &BSRef = BlocksSchedules[BB];
4162 if (!BSRef)
4163 BSRef = std::make_unique<BlockScheduling>(BB);
4164
4165 BlockScheduling &BS = *BSRef;
4166
4167 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
4168#ifdef EXPENSIVE_CHECKS
4169 // Make sure we didn't break any internal invariants
4170 BS.verify();
4171#endif
4172 if (!Bundle) {
4173 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are not able to schedule this bundle!\n"
; } } while (false)
;
4174 assert((!BS.getScheduleData(VL0) ||(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4176, __extension__
__PRETTY_FUNCTION__))
4175 !BS.getScheduleData(VL0)->isPartOfBundle()) &&(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4176, __extension__
__PRETTY_FUNCTION__))
4176 "tryScheduleBundle should cancelScheduling on failure")(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4176, __extension__
__PRETTY_FUNCTION__))
;
4177 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4178 ReuseShuffleIndicies);
4179 return;
4180 }
4181 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are able to schedule this bundle.\n"
; } } while (false)
;
4182
4183 unsigned ShuffleOrOp = S.isAltShuffle() ?
4184 (unsigned) Instruction::ShuffleVector : S.getOpcode();
4185 switch (ShuffleOrOp) {
4186 case Instruction::PHI: {
4187 auto *PH = cast<PHINode>(VL0);
4188
4189 // Check for terminator values (e.g. invoke).
4190 for (Value *V : VL)
4191 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) {
4192 Instruction *Term = dyn_cast<Instruction>(Incoming);
4193 if (Term && Term->isTerminator()) {
4194 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
4195 << "SLP: Need to swizzle PHINodes (terminator use).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
;
4196 BS.cancelScheduling(VL, VL0);
4197 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4198 ReuseShuffleIndicies);
4199 return;
4200 }
4201 }
4202
4203 TreeEntry *TE =
4204 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
4205 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of PHINodes.\n"
; } } while (false)
;
4206
4207 // Keeps the reordered operands to avoid code duplication.
4208 SmallVector<ValueList, 2> OperandsVec;
4209 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
4210 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
4211 ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
4212 TE->setOperand(I, Operands);
4213 OperandsVec.push_back(Operands);
4214 continue;
4215 }
4216 ValueList Operands;
4217 // Prepare the operand vector.
4218 for (Value *V : VL)
4219 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
4220 PH->getIncomingBlock(I)));
4221 TE->setOperand(I, Operands);
4222 OperandsVec.push_back(Operands);
4223 }
4224 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
4225 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
4226 return;
4227 }
4228 case Instruction::ExtractValue:
4229 case Instruction::ExtractElement: {
4230 OrdersType CurrentOrder;
4231 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
4232 if (Reuse) {
4233 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Reusing or shuffling extract sequence.\n"
; } } while (false)
;
4234 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4235 ReuseShuffleIndicies);
4236 // This is a special case, as it does not gather, but at the same time
4237 // we are not extending buildTree_rec() towards the operands.
4238 ValueList Op0;
4239 Op0.assign(VL.size(), VL0->getOperand(0));
4240 VectorizableTree.back()->setOperand(0, Op0);
4241 return;
4242 }
4243 if (!CurrentOrder.empty()) {
4244 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
4245 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
4246 "with order";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
4247 for (unsigned Idx : CurrentOrder)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
4248 dbgs() << " " << Idx;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
4249 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
4250 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
;
4251 fixupOrderingIndices(CurrentOrder);
4252 // Insert new order with initial value 0, if it does not exist,
4253 // otherwise return the iterator to the existing one.
4254 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4255 ReuseShuffleIndicies, CurrentOrder);
4256 // This is a special case, as it does not gather, but at the same time
4257 // we are not extending buildTree_rec() towards the operands.
4258 ValueList Op0;
4259 Op0.assign(VL.size(), VL0->getOperand(0));
4260 VectorizableTree.back()->setOperand(0, Op0);
4261 return;
4262 }
4263 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather extract sequence.\n";
} } while (false)
;
4264 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4265 ReuseShuffleIndicies);
4266 BS.cancelScheduling(VL, VL0);
4267 return;
4268 }
4269 case Instruction::InsertElement: {
4270 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique")(static_cast <bool> (ReuseShuffleIndicies.empty() &&
"All inserts should be unique") ? void (0) : __assert_fail (
"ReuseShuffleIndicies.empty() && \"All inserts should be unique\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4270, __extension__
__PRETTY_FUNCTION__))
;
4271
4272 // Check that we have a buildvector and not a shuffle of 2 or more
4273 // different vectors.
4274 ValueSet SourceVectors;
4275 for (Value *V : VL) {
4276 SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
4277 assert(getInsertIndex(V) != None && "Non-constant or undef index?")(static_cast <bool> (getInsertIndex(V) != None &&
"Non-constant or undef index?") ? void (0) : __assert_fail (
"getInsertIndex(V) != None && \"Non-constant or undef index?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4277, __extension__
__PRETTY_FUNCTION__))
;
4278 }
4279
4280 if (count_if(VL, [&SourceVectors](Value *V) {
4281 return !SourceVectors.contains(V);
4282 }) >= 2) {
4283 // Found 2nd source vector - cancel.
4284 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather of insertelement vectors with "
"different source vectors.\n"; } } while (false)
4285 "different source vectors.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather of insertelement vectors with "
"different source vectors.\n"; } } while (false)
;
4286 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4287 BS.cancelScheduling(VL, VL0);
4288 return;
4289 }
4290
4291 auto OrdCompare = [](const std::pair<int, int> &P1,
4292 const std::pair<int, int> &P2) {
4293 return P1.first > P2.first;
4294 };
4295 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
4296 decltype(OrdCompare)>
4297 Indices(OrdCompare);
4298 for (int I = 0, E = VL.size(); I < E; ++I) {
4299 unsigned Idx = *getInsertIndex(VL[I]);
4300 Indices.emplace(Idx, I);
4301 }
4302 OrdersType CurrentOrder(VL.size(), VL.size());
4303 bool IsIdentity = true;
4304 for (int I = 0, E = VL.size(); I < E; ++I) {
4305 CurrentOrder[Indices.top().second] = I;
4306 IsIdentity &= Indices.top().second == I;
4307 Indices.pop();
4308 }
4309 if (IsIdentity)
4310 CurrentOrder.clear();
4311 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4312 None, CurrentOrder);
4313 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added inserts bundle.\n"; } }
while (false)
;
4314
4315 constexpr int NumOps = 2;
4316 ValueList VectorOperands[NumOps];
4317 for (int I = 0; I < NumOps; ++I) {
4318 for (Value *V : VL)
4319 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
4320
4321 TE->setOperand(I, VectorOperands[I]);
4322 }
4323 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
4324 return;
4325 }
4326 case Instruction::Load: {
4327 // Check that a vectorized load would load the same memory as a scalar
4328 // load. For example, we don't want to vectorize loads that are smaller
4329 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
4330 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
4331 // from such a struct, we read/write packed bits disagreeing with the
4332 // unvectorized version.
4333 SmallVector<Value *> PointerOps;
4334 OrdersType CurrentOrder;
4335 TreeEntry *TE = nullptr;
4336 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder,
4337 PointerOps)) {
4338 case LoadsState::Vectorize:
4339 if (CurrentOrder.empty()) {
4340 // Original loads are consecutive and does not require reordering.
4341 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4342 ReuseShuffleIndicies);
4343 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of loads.\n";
} } while (false)
;
4344 } else {
4345 fixupOrderingIndices(CurrentOrder);
4346 // Need to reorder.
4347 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4348 ReuseShuffleIndicies, CurrentOrder);
4349 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled loads.\n"
; } } while (false)
;
4350 }
4351 TE->setOperandsInOrder();
4352 break;
4353 case LoadsState::ScatterVectorize:
4354 // Vectorizing non-consecutive loads with `llvm.masked.gather`.
4355 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
4356 UserTreeIdx, ReuseShuffleIndicies);
4357 TE->setOperandsInOrder();
4358 buildTree_rec(PointerOps, Depth + 1, {TE, 0});
4359 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of non-consecutive loads.\n"
; } } while (false)
;
4360 break;
4361 case LoadsState::Gather:
4362 BS.cancelScheduling(VL, VL0);
4363 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4364 ReuseShuffleIndicies);
4365#ifndef NDEBUG
4366 Type *ScalarTy = VL0->getType();
4367 if (DL->getTypeSizeInBits(ScalarTy) !=
4368 DL->getTypeAllocSizeInBits(ScalarTy))
4369 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering loads of non-packed type.\n"
; } } while (false)
;
4370 else if (any_of(VL, [](Value *V) {
4371 return !cast<LoadInst>(V)->isSimple();
4372 }))
4373 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple loads.\n"
; } } while (false)
;
4374 else
4375 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-consecutive loads.\n"
; } } while (false)
;
4376#endif // NDEBUG
4377 break;
4378 }
4379 return;
4380 }
4381 case Instruction::ZExt:
4382 case Instruction::SExt:
4383 case Instruction::FPToUI:
4384 case Instruction::FPToSI:
4385 case Instruction::FPExt:
4386 case Instruction::PtrToInt:
4387 case Instruction::IntToPtr:
4388 case Instruction::SIToFP:
4389 case Instruction::UIToFP:
4390 case Instruction::Trunc:
4391 case Instruction::FPTrunc:
4392 case Instruction::BitCast: {
4393 Type *SrcTy = VL0->getOperand(0)->getType();
4394 for (Value *V : VL) {
4395 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
4396 if (Ty != SrcTy || !isValidElementType(Ty)) {
4397 BS.cancelScheduling(VL, VL0);
4398 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4399 ReuseShuffleIndicies);
4400 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
4401 << "SLP: Gathering casts with different src types.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
;
4402 return;
4403 }
4404 }
4405 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4406 ReuseShuffleIndicies);
4407 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of casts.\n";
} } while (false)
;
4408
4409 TE->setOperandsInOrder();
4410 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4411 ValueList Operands;
4412 // Prepare the operand vector.
4413 for (Value *V : VL)
4414 Operands.push_back(cast<Instruction>(V)->getOperand(i));
4415
4416 buildTree_rec(Operands, Depth + 1, {TE, i});
4417 }
4418 return;
4419 }
4420 case Instruction::ICmp:
4421 case Instruction::FCmp: {
4422 // Check that all of the compares have the same predicate.
4423 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4424 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
4425 Type *ComparedTy = VL0->getOperand(0)->getType();
4426 for (Value *V : VL) {
4427 CmpInst *Cmp = cast<CmpInst>(V);
4428 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
4429 Cmp->getOperand(0)->getType() != ComparedTy) {
4430 BS.cancelScheduling(VL, VL0);
4431 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4432 ReuseShuffleIndicies);
4433 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
4434 << "SLP: Gathering cmp with different predicate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
;
4435 return;
4436 }
4437 }
4438
4439 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4440 ReuseShuffleIndicies);
4441 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of compares.\n"
; } } while (false)
;
4442
4443 ValueList Left, Right;
4444 if (cast<CmpInst>(VL0)->isCommutative()) {
4445 // Commutative predicate - collect + sort operands of the instructions
4446 // so that each side is more likely to have the same opcode.
4447 assert(P0 == SwapP0 && "Commutative Predicate mismatch")(static_cast <bool> (P0 == SwapP0 && "Commutative Predicate mismatch"
) ? void (0) : __assert_fail ("P0 == SwapP0 && \"Commutative Predicate mismatch\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4447, __extension__
__PRETTY_FUNCTION__))
;
4448 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4449 } else {
4450 // Collect operands - commute if it uses the swapped predicate.
4451 for (Value *V : VL) {
4452 auto *Cmp = cast<CmpInst>(V);
4453 Value *LHS = Cmp->getOperand(0);
4454 Value *RHS = Cmp->getOperand(1);
4455 if (Cmp->getPredicate() != P0)
4456 std::swap(LHS, RHS);
4457 Left.push_back(LHS);
4458 Right.push_back(RHS);
4459 }
4460 }
4461 TE->setOperand(0, Left);
4462 TE->setOperand(1, Right);
4463 buildTree_rec(Left, Depth + 1, {TE, 0});
4464 buildTree_rec(Right, Depth + 1, {TE, 1});
4465 return;
4466 }
4467 case Instruction::Select:
4468 case Instruction::FNeg:
4469 case Instruction::Add:
4470 case Instruction::FAdd:
4471 case Instruction::Sub:
4472 case Instruction::FSub:
4473 case Instruction::Mul:
4474 case Instruction::FMul:
4475 case Instruction::UDiv:
4476 case Instruction::SDiv:
4477 case Instruction::FDiv:
4478 case Instruction::URem:
4479 case Instruction::SRem:
4480 case Instruction::FRem:
4481 case Instruction::Shl:
4482 case Instruction::LShr:
4483 case Instruction::AShr:
4484 case Instruction::And:
4485 case Instruction::Or:
4486 case Instruction::Xor: {
4487 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4488 ReuseShuffleIndicies);
4489 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of un/bin op.\n"
; } } while (false)
;
4490
4491 // Sort operands of the instructions so that each side is more likely to
4492 // have the same opcode.
4493 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
4494 ValueList Left, Right;
4495 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4496 TE->setOperand(0, Left);
4497 TE->setOperand(1, Right);
4498 buildTree_rec(Left, Depth + 1, {TE, 0});
4499 buildTree_rec(Right, Depth + 1, {TE, 1});
4500 return;
4501 }
4502
4503 TE->setOperandsInOrder();
4504 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4505 ValueList Operands;
4506 // Prepare the operand vector.
4507 for (Value *V : VL)
4508 Operands.push_back(cast<Instruction>(V)->getOperand(i));
4509
4510 buildTree_rec(Operands, Depth + 1, {TE, i});
4511 }
4512 return;
4513 }
4514 case Instruction::GetElementPtr: {
4515 // We don't combine GEPs with complicated (nested) indexing.
4516 for (Value *V : VL) {
4517 if (cast<Instruction>(V)->getNumOperands() != 2) {
4518 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"
; } } while (false)
;
4519 BS.cancelScheduling(VL, VL0);
4520 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4521 ReuseShuffleIndicies);
4522 return;
4523 }
4524 }
4525
4526 // We can't combine several GEPs into one vector if they operate on
4527 // different types.
4528 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
4529 for (Value *V : VL) {
4530 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType();
4531 if (Ty0 != CurTy) {
4532 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
4533 << "SLP: not-vectorizable GEP (different types).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
;
4534 BS.cancelScheduling(VL, VL0);
4535 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4536 ReuseShuffleIndicies);
4537 return;
4538 }
4539 }
4540
4541 // We don't combine GEPs with non-constant indexes.
4542 Type *Ty1 = VL0->getOperand(1)->getType();
4543 for (Value *V : VL) {
4544 auto Op = cast<Instruction>(V)->getOperand(1);
4545 if (!isa<ConstantInt>(Op) ||
4546 (Op->getType() != Ty1 &&
4547 Op->getType()->getScalarSizeInBits() >
4548 DL->getIndexSizeInBits(
4549 V->getType()->getPointerAddressSpace()))) {
4550 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
4551 << "SLP: not-vectorizable GEP (non-constant indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
;
4552 BS.cancelScheduling(VL, VL0);
4553 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4554 ReuseShuffleIndicies);
4555 return;
4556 }
4557 }
4558
4559 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4560 ReuseShuffleIndicies);
4561 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of GEPs.\n"; }
} while (false)
;
4562 SmallVector<ValueList, 2> Operands(2);
4563 // Prepare the operand vector for pointer operands.
4564 for (Value *V : VL)
4565 Operands.front().push_back(
4566 cast<GetElementPtrInst>(V)->getPointerOperand());
4567 TE->setOperand(0, Operands.front());
4568 // Need to cast all indices to the same type before vectorization to
4569 // avoid crash.
4570 // Required to be able to find correct matches between different gather
4571 // nodes and reuse the vectorized values rather than trying to gather them
4572 // again.
4573 int IndexIdx = 1;
4574 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
4575 Type *Ty = all_of(VL,
4576 [VL0Ty, IndexIdx](Value *V) {
4577 return VL0Ty == cast<GetElementPtrInst>(V)
4578 ->getOperand(IndexIdx)
4579 ->getType();
4580 })
4581 ? VL0Ty
4582 : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4583 ->getPointerOperandType()
4584 ->getScalarType());
4585 // Prepare the operand vector.
4586 for (Value *V : VL) {
4587 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx);
4588 auto *CI = cast<ConstantInt>(Op);
4589 Operands.back().push_back(ConstantExpr::getIntegerCast(
4590 CI, Ty, CI->getValue().isSignBitSet()));
4591 }
4592 TE->setOperand(IndexIdx, Operands.back());
4593
4594 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
4595 buildTree_rec(Operands[I], Depth + 1, {TE, I});
4596 return;
4597 }
4598 case Instruction::Store: {
4599 // Check if the stores are consecutive or if we need to swizzle them.
4600 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
4601 // Avoid types that are padded when being allocated as scalars, while
4602 // being packed together in a vector (such as i1).
4603 if (DL->getTypeSizeInBits(ScalarTy) !=
4604 DL->getTypeAllocSizeInBits(ScalarTy)) {
4605 BS.cancelScheduling(VL, VL0);
4606 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4607 ReuseShuffleIndicies);
4608 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering stores of non-packed type.\n"
; } } while (false)
;
4609 return;
4610 }
4611 // Make sure all stores in the bundle are simple - we can't vectorize
4612 // atomic or volatile stores.
4613 SmallVector<Value *, 4> PointerOps(VL.size());
4614 ValueList Operands(VL.size());
4615 auto POIter = PointerOps.begin();
4616 auto OIter = Operands.begin();
4617 for (Value *V : VL) {
4618 auto *SI = cast<StoreInst>(V);
4619 if (!SI->isSimple()) {
4620 BS.cancelScheduling(VL, VL0);
4621 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4622 ReuseShuffleIndicies);
4623 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple stores.\n"
; } } while (false)
;
4624 return;
4625 }
4626 *POIter = SI->getPointerOperand();
4627 *OIter = SI->getValueOperand();
4628 ++POIter;
4629 ++OIter;
4630 }
4631
4632 OrdersType CurrentOrder;
4633 // Check the order of pointer operands.
4634 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
4635 Value *Ptr0;
4636 Value *PtrN;
4637 if (CurrentOrder.empty()) {
4638 Ptr0 = PointerOps.front();
4639 PtrN = PointerOps.back();
4640 } else {
4641 Ptr0 = PointerOps[CurrentOrder.front()];
4642 PtrN = PointerOps[CurrentOrder.back()];
4643 }
4644 Optional<int> Dist =
4645 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
4646 // Check that the sorted pointer operands are consecutive.
4647 if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
4648 if (CurrentOrder.empty()) {
4649 // Original stores are consecutive and does not require reordering.
4650 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
4651 UserTreeIdx, ReuseShuffleIndicies);
4652 TE->setOperandsInOrder();
4653 buildTree_rec(Operands, Depth + 1, {TE, 0});
4654 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of stores.\n"
; } } while (false)
;
4655 } else {
4656 fixupOrderingIndices(CurrentOrder);
4657 TreeEntry *TE =
4658 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4659 ReuseShuffleIndicies, CurrentOrder);
4660 TE->setOperandsInOrder();
4661 buildTree_rec(Operands, Depth + 1, {TE, 0});
4662 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled stores.\n"
; } } while (false)
;
4663 }
4664 return;
4665 }
4666 }
4667
4668 BS.cancelScheduling(VL, VL0);
4669 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4670 ReuseShuffleIndicies);
4671 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-consecutive store.\n"; }
} while (false)
;
4672 return;
4673 }
4674 case Instruction::Call: {
4675 // Check if the calls are all to the same vectorizable intrinsic or
4676 // library function.
4677 CallInst *CI = cast<CallInst>(VL0);
4678 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4679
4680 VFShape Shape = VFShape::get(
4681 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
4682 false /*HasGlobalPred*/);
4683 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4684
4685 if (!VecFunc && !isTriviallyVectorizable(ID)) {
4686 BS.cancelScheduling(VL, VL0);
4687 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4688 ReuseShuffleIndicies);
4689 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-vectorizable call.\n"; }
} while (false)
;
4690 return;
4691 }
4692 Function *F = CI->getCalledFunction();
4693 unsigned NumArgs = CI->arg_size();
4694 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
4695 for (unsigned j = 0; j != NumArgs; ++j)
4696 if (hasVectorInstrinsicScalarOpd(ID, j))
4697 ScalarArgs[j] = CI->getArgOperand(j);
4698 for (Value *V : VL) {
4699 CallInst *CI2 = dyn_cast<CallInst>(V);
4700 if (!CI2 || CI2->getCalledFunction() != F ||
4701 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
4702 (VecFunc &&
4703 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
4704 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
4705 BS.cancelScheduling(VL, VL0);
4706 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4707 ReuseShuffleIndicies);
4708 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
4709 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
;
4710 return;
4711 }
4712 // Some intrinsics have scalar arguments and should be same in order for
4713 // them to be vectorized.
4714 for (unsigned j = 0; j != NumArgs; ++j) {
4715 if (hasVectorInstrinsicScalarOpd(ID, j)) {
4716 Value *A1J = CI2->getArgOperand(j);
4717 if (ScalarArgs[j] != A1J) {
4718 BS.cancelScheduling(VL, VL0);
4719 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4720 ReuseShuffleIndicies);
4721 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
4722 << " argument " << ScalarArgs[j] << "!=" << A1Jdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
4723 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
;
4724 return;
4725 }
4726 }
4727 }
4728 // Verify that the bundle operands are identical between the two calls.
4729 if (CI->hasOperandBundles() &&
4730 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
4731 CI->op_begin() + CI->getBundleOperandsEndIndex(),
4732 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
4733 BS.cancelScheduling(VL, VL0);
4734 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4735 ReuseShuffleIndicies);
4736 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
4737 << *CI << "!=" << *V << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
;
4738 return;
4739 }
4740 }
4741
4742 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4743 ReuseShuffleIndicies);
4744 TE->setOperandsInOrder();
4745 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
4746 // For scalar operands no need to to create an entry since no need to
4747 // vectorize it.
4748 if (hasVectorInstrinsicScalarOpd(ID, i))
4749 continue;
4750 ValueList Operands;
4751 // Prepare the operand vector.
4752 for (Value *V : VL) {
4753 auto *CI2 = cast<CallInst>(V);
4754 Operands.push_back(CI2->getArgOperand(i));
4755 }
4756 buildTree_rec(Operands, Depth + 1, {TE, i});
4757 }
4758 return;
4759 }
4760 case Instruction::ShuffleVector: {
4761 // If this is not an alternate sequence of opcode like add-sub
4762 // then do not vectorize this instruction.
4763 if (!S.isAltShuffle()) {
4764 BS.cancelScheduling(VL, VL0);
4765 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4766 ReuseShuffleIndicies);
4767 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: ShuffleVector are not vectorized.\n"
; } } while (false)
;
4768 return;
4769 }
4770 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4771 ReuseShuffleIndicies);
4772 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a ShuffleVector op.\n"
; } } while (false)
;
4773
4774 // Reorder operands if reordering would enable vectorization.
4775 auto *CI = dyn_cast<CmpInst>(VL0);
4776 if (isa<BinaryOperator>(VL0) || CI) {
4777 ValueList Left, Right;
4778 if (!CI || all_of(VL, [](Value *V) {
4779 return cast<CmpInst>(V)->isCommutative();
4780 })) {
4781 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4782 } else {
4783 CmpInst::Predicate P0 = CI->getPredicate();
4784 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate();
4785 assert(P0 != AltP0 &&(static_cast <bool> (P0 != AltP0 && "Expected different main/alternate predicates."
) ? void (0) : __assert_fail ("P0 != AltP0 && \"Expected different main/alternate predicates.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4786, __extension__
__PRETTY_FUNCTION__))
4786 "Expected different main/alternate predicates.")(static_cast <bool> (P0 != AltP0 && "Expected different main/alternate predicates."
) ? void (0) : __assert_fail ("P0 != AltP0 && \"Expected different main/alternate predicates.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4786, __extension__
__PRETTY_FUNCTION__))
;
4787 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
4788 Value *BaseOp0 = VL0->getOperand(0);
4789 Value *BaseOp1 = VL0->getOperand(1);
4790 // Collect operands - commute if it uses the swapped predicate or
4791 // alternate operation.
4792 for (Value *V : VL) {
4793 auto *Cmp = cast<CmpInst>(V);
4794 Value *LHS = Cmp->getOperand(0);
4795 Value *RHS = Cmp->getOperand(1);
4796 CmpInst::Predicate CurrentPred = Cmp->getPredicate();
4797 if (P0 == AltP0Swapped) {
4798 if (CI != Cmp && S.AltOp != Cmp &&
4799 ((P0 == CurrentPred &&
4800 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) ||
4801 (AltP0 == CurrentPred &&
4802 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))))
4803 std::swap(LHS, RHS);
4804 } else if (P0 != CurrentPred && AltP0 != CurrentPred) {
4805 std::swap(LHS, RHS);
4806 }
4807 Left.push_back(LHS);
4808 Right.push_back(RHS);
4809 }
4810 }
4811 TE->setOperand(0, Left);
4812 TE->setOperand(1, Right);
4813 buildTree_rec(Left, Depth + 1, {TE, 0});
4814 buildTree_rec(Right, Depth + 1, {TE, 1});
4815 return;
4816 }
4817
4818 TE->setOperandsInOrder();
4819 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4820 ValueList Operands;
4821 // Prepare the operand vector.
4822 for (Value *V : VL)
4823 Operands.push_back(cast<Instruction>(V)->getOperand(i));
4824
4825 buildTree_rec(Operands, Depth + 1, {TE, i});
4826 }
4827 return;
4828 }
4829 default:
4830 BS.cancelScheduling(VL, VL0);
4831 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4832 ReuseShuffleIndicies);
4833 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering unknown instruction.\n"
; } } while (false)
;
4834 return;
4835 }
4836}
4837
4838unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
4839 unsigned N = 1;
4840 Type *EltTy = T;
4841
4842 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
4843 isa<VectorType>(EltTy)) {
4844 if (auto *ST = dyn_cast<StructType>(EltTy)) {
4845 // Check that struct is homogeneous.
4846 for (const auto *Ty : ST->elements())
4847 if (Ty != *ST->element_begin())
4848 return 0;
4849 N *= ST->getNumElements();
4850 EltTy = *ST->element_begin();
4851 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
4852 N *= AT->getNumElements();
4853 EltTy = AT->getElementType();
4854 } else {
4855 auto *VT = cast<FixedVectorType>(EltTy);
4856 N *= VT->getNumElements();
4857 EltTy = VT->getElementType();
4858 }
4859 }
4860
4861 if (!isValidElementType(EltTy))
4862 return 0;
4863 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
4864 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
4865 return 0;
4866 return N;
4867}
4868
4869bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
4870 SmallVectorImpl<unsigned> &CurrentOrder) const {
4871 const auto *It = find_if(VL, [](Value *V) {
4872 return isa<ExtractElementInst, ExtractValueInst>(V);
4873 });
4874 assert(It != VL.end() && "Expected at least one extract instruction.")(static_cast <bool> (It != VL.end() && "Expected at least one extract instruction."
) ? void (0) : __assert_fail ("It != VL.end() && \"Expected at least one extract instruction.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4874, __extension__
__PRETTY_FUNCTION__))
;
4875 auto *E0 = cast<Instruction>(*It);
4876 assert(all_of(VL,(static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4881, __extension__
__PRETTY_FUNCTION__))
4877 [](Value *V) {(static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4881, __extension__
__PRETTY_FUNCTION__))
4878 return isa<UndefValue, ExtractElementInst, ExtractValueInst>((static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4881, __extension__
__PRETTY_FUNCTION__))
4879 V);(static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4881, __extension__
__PRETTY_FUNCTION__))
4880 }) &&(static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4881, __extension__
__PRETTY_FUNCTION__))
4881 "Invalid opcode")(static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4881, __extension__
__PRETTY_FUNCTION__))
;
4882 // Check if all of the extracts come from the same vector and from the
4883 // correct offset.
4884 Value *Vec = E0->getOperand(0);
4885
4886 CurrentOrder.clear();
4887
4888 // We have to extract from a vector/aggregate with the same number of elements.
4889 unsigned NElts;
4890 if (E0->getOpcode() == Instruction::ExtractValue) {
4891 const DataLayout &DL = E0->getModule()->getDataLayout();
4892 NElts = canMapToVector(Vec->getType(), DL);
4893 if (!NElts)
4894 return false;
4895 // Check if load can be rewritten as load of vector.
4896 LoadInst *LI = dyn_cast<LoadInst>(Vec);
4897 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
4898 return false;
4899 } else {
4900 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
4901 }
4902
4903 if (NElts != VL.size())
4904 return false;
4905
4906 // Check that all of the indices extract from the correct offset.
4907 bool ShouldKeepOrder = true;
4908 unsigned E = VL.size();
4909 // Assign to all items the initial value E + 1 so we can check if the extract
4910 // instruction index was used already.
4911 // Also, later we can check that all the indices are used and we have a
4912 // consecutive access in the extract instructions, by checking that no
4913 // element of CurrentOrder still has value E + 1.
4914 CurrentOrder.assign(E, E);
4915 unsigned I = 0;
4916 for (; I < E; ++I) {
4917 auto *Inst = dyn_cast<Instruction>(VL[I]);
4918 if (!Inst)
4919 continue;
4920 if (Inst->getOperand(0) != Vec)
4921 break;
4922 if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
4923 if (isa<UndefValue>(EE->getIndexOperand()))
4924 continue;
4925 Optional<unsigned> Idx = getExtractIndex(Inst);
4926 if (!Idx)
4927 break;
4928 const unsigned ExtIdx = *Idx;
4929 if (ExtIdx != I) {
4930 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E)
4931 break;
4932 ShouldKeepOrder = false;
4933 CurrentOrder[ExtIdx] = I;
4934 } else {
4935 if (CurrentOrder[I] != E)
4936 break;
4937 CurrentOrder[I] = I;
4938 }
4939 }
4940 if (I < E) {
4941 CurrentOrder.clear();
4942 return false;
4943 }
4944 if (ShouldKeepOrder)
4945 CurrentOrder.clear();
4946
4947 return ShouldKeepOrder;
4948}
4949
4950bool BoUpSLP::areAllUsersVectorized(Instruction *I,
4951 ArrayRef<Value *> VectorizedVals) const {
4952 return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
4953 all_of(I->users(), [this](User *U) {
4954 return ScalarToTreeEntry.count(U) > 0 ||
4955 isVectorLikeInstWithConstOps(U) ||
4956 (isa<ExtractElementInst>(U) && MustGather.contains(U));
4957 });
4958}
4959
4960static std::pair<InstructionCost, InstructionCost>
4961getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
4962 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
4963 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4964
4965 // Calculate the cost of the scalar and vector calls.
4966 SmallVector<Type *, 4> VecTys;
4967 for (Use &Arg : CI->args())
4968 VecTys.push_back(
4969 FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
4970 FastMathFlags FMF;
4971 if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
4972 FMF = FPCI->getFastMathFlags();
4973 SmallVector<const Value *> Arguments(CI->args());
4974 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
4975 dyn_cast<IntrinsicInst>(CI));
4976 auto IntrinsicCost =
4977 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
4978
4979 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
4980 VecTy->getNumElements())),
4981 false /*HasGlobalPred*/);
4982 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4983 auto LibCost = IntrinsicCost;
4984 if (!CI->isNoBuiltin() && VecFunc) {
4985 // Calculate the cost of the vector library call.
4986 // If the corresponding vector call is cheaper, return its cost.
4987 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
4988 TTI::TCK_RecipThroughput);
4989 }
4990 return {IntrinsicCost, LibCost};
4991}
4992
4993/// Compute the cost of creating a vector of type \p VecTy containing the
4994/// extracted values from \p VL.
4995static InstructionCost
4996computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
4997 TargetTransformInfo::ShuffleKind ShuffleKind,
4998 ArrayRef<int> Mask, TargetTransformInfo &TTI) {
4999 unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
5000
5001 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
5002 VecTy->getNumElements() < NumOfParts)
5003 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
5004
5005 bool AllConsecutive = true;
5006 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
5007 unsigned Idx = -1;
5008 InstructionCost Cost = 0;
5009
5010 // Process extracts in blocks of EltsPerVector to check if the source vector
5011 // operand can be re-used directly. If not, add the cost of creating a shuffle
5012 // to extract the values into a vector register.
5013 for (auto *V : VL) {
5014 ++Idx;
5015
5016 // Need to exclude undefs from analysis.
5017 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem)
5018 continue;
5019
5020 // Reached the start of a new vector registers.
5021 if (Idx % EltsPerVector == 0) {
5022 AllConsecutive = true;
5023 continue;
5024 }
5025
5026 // Check all extracts for a vector register on the target directly
5027 // extract values in order.
5028 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
5029 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) {
5030 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
5031 AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
5032 CurrentIdx % EltsPerVector == Idx % EltsPerVector;
5033 }
5034
5035 if (AllConsecutive)
5036 continue;
5037
5038 // Skip all indices, except for the last index per vector block.
5039 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
5040 continue;
5041
5042 // If we have a series of extracts which are not consecutive and hence
5043 // cannot re-use the source vector register directly, compute the shuffle
5044 // cost to extract the a vector with EltsPerVector elements.
5045 Cost += TTI.getShuffleCost(
5046 TargetTransformInfo::SK_PermuteSingleSrc,
5047 FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
5048 }
5049 return Cost;
5050}
5051
5052/// Build shuffle mask for shuffle graph entries and lists of main and alternate
5053/// operations operands.
5054static void
5055buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices,
5056 ArrayRef<int> ReusesIndices,
5057 const function_ref<bool(Instruction *)> IsAltOp,
5058 SmallVectorImpl<int> &Mask,
5059 SmallVectorImpl<Value *> *OpScalars = nullptr,
5060 SmallVectorImpl<Value *> *AltScalars = nullptr) {
5061 unsigned Sz = VL.size();
5062 Mask.assign(Sz, UndefMaskElem);
5063 SmallVector<int> OrderMask;
5064 if (!ReorderIndices.empty())
5065 inversePermutation(ReorderIndices, OrderMask);
5066 for (unsigned I = 0; I < Sz; ++I) {
5067 unsigned Idx = I;
5068 if (!ReorderIndices.empty())
5069 Idx = OrderMask[I];
5070 auto *OpInst = cast<Instruction>(VL[Idx]);
5071 if (IsAltOp(OpInst)) {
5072 Mask[I] = Sz + Idx;
5073 if (AltScalars)
5074 AltScalars->push_back(OpInst);
5075 } else {
5076 Mask[I] = Idx;
5077 if (OpScalars)
5078 OpScalars->push_back(OpInst);
5079 }
5080 }
5081 if (!ReusesIndices.empty()) {
5082 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem);
5083 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) {
5084 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem;
5085 });
5086 Mask.swap(NewMask);
5087 }
5088}
5089
5090/// Checks if the specified instruction \p I is an alternate operation for the
5091/// given \p MainOp and \p AltOp instructions.
5092static bool isAlternateInstruction(const Instruction *I,
5093 const Instruction *MainOp,
5094 const Instruction *AltOp) {
5095 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) {
5096 auto *AltCI0 = cast<CmpInst>(AltOp);
5097 auto *CI = cast<CmpInst>(I);
5098 CmpInst::Predicate P0 = CI0->getPredicate();
5099 CmpInst::Predicate AltP0 = AltCI0->getPredicate();
5100 assert(P0 != AltP0 && "Expected different main/alternate predicates.")(static_cast <bool> (P0 != AltP0 && "Expected different main/alternate predicates."
) ? void (0) : __assert_fail ("P0 != AltP0 && \"Expected different main/alternate predicates.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5100, __extension__
__PRETTY_FUNCTION__))
;
5101 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
5102 CmpInst::Predicate CurrentPred = CI->getPredicate();
5103 if (P0 == AltP0Swapped)
5104 return I == AltCI0 ||
5105 (I != MainOp &&
5106 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1),
5107 CI->getOperand(0), CI->getOperand(1)));
5108 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred;
5109 }
5110 return I->getOpcode() == AltOp->getOpcode();
5111}
5112
5113InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
5114 ArrayRef<Value *> VectorizedVals) {
5115 ArrayRef<Value*> VL = E->Scalars;
5116
5117 Type *ScalarTy = VL[0]->getType();
5118 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
5119 ScalarTy = SI->getValueOperand()->getType();
5120 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
5121 ScalarTy = CI->getOperand(0)->getType();
5122 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
5123 ScalarTy = IE->getOperand(1)->getType();
5124 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
5125 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5126
5127 // If we have computed a smaller type for the expression, update VecTy so
5128 // that the costs will be accurate.
5129 if (MinBWs.count(VL[0]))
5130 VecTy = FixedVectorType::get(
5131 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
5132 unsigned EntryVF = E->getVectorFactor();
5133 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF);
5134
5135 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
5136 // FIXME: it tries to fix a problem with MSVC buildbots.
5137 TargetTransformInfo &TTIRef = *TTI;
5138 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
5139 VectorizedVals, E](InstructionCost &Cost) {
5140 DenseMap<Value *, int> ExtractVectorsTys;
5141 SmallPtrSet<Value *, 4> CheckedExtracts;
5142 for (auto *V : VL) {
5143 if (isa<UndefValue>(V))
5144 continue;
5145 // If all users of instruction are going to be vectorized and this
5146 // instruction itself is not going to be vectorized, consider this
5147 // instruction as dead and remove its cost from the final cost of the
5148 // vectorized tree.
5149 // Also, avoid adjusting the cost for extractelements with multiple uses
5150 // in different graph entries.
5151 const TreeEntry *VE = getTreeEntry(V);
5152 if (!CheckedExtracts.insert(V).second ||
5153 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
5154 (VE && VE != E))
5155 continue;
5156 auto *EE = cast<ExtractElementInst>(V);
5157 Optional<unsigned> EEIdx = getExtractIndex(EE);
5158 if (!EEIdx)
5159 continue;
5160 unsigned Idx = *EEIdx;
5161 if (TTIRef.getNumberOfParts(VecTy) !=
5162 TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
5163 auto It =
5164 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
5165 It->getSecond() = std::min<int>(It->second, Idx);
5166 }
5167 // Take credit for instruction that will become dead.
5168 if (EE->hasOneUse()) {
5169 Instruction *Ext = EE->user_back();
5170 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
5171 all_of(Ext->users(),
5172 [](User *U) { return isa<GetElementPtrInst>(U); })) {
5173 // Use getExtractWithExtendCost() to calculate the cost of
5174 // extractelement/ext pair.
5175 Cost -=
5176 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
5177 EE->getVectorOperandType(), Idx);
5178 // Add back the cost of s|zext which is subtracted separately.
5179 Cost += TTIRef.getCastInstrCost(
5180 Ext->getOpcode(), Ext->getType(), EE->getType(),
5181 TTI::getCastContextHint(Ext), CostKind, Ext);
5182 continue;
5183 }
5184 }
5185 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
5186 EE->getVectorOperandType(), Idx);
5187 }
5188 // Add a cost for subvector extracts/inserts if required.
5189 for (const auto &Data : ExtractVectorsTys) {
5190 auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
5191 unsigned NumElts = VecTy->getNumElements();
5192 if (Data.second % NumElts == 0)
5193 continue;
5194 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
5195 unsigned Idx = (Data.second / NumElts) * NumElts;
5196 unsigned EENumElts = EEVTy->getNumElements();
5197 if (Idx + NumElts <= EENumElts) {
5198 Cost +=
5199 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5200 EEVTy, None, Idx, VecTy);
5201 } else {
5202 // Need to round up the subvector type vectorization factor to avoid a
5203 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
5204 // <= EENumElts.
5205 auto *SubVT =
5206 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
5207 Cost +=
5208 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5209 EEVTy, None, Idx, SubVT);
5210 }
5211 } else {
5212 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
5213 VecTy, None, 0, EEVTy);
5214 }
5215 }
5216 };
5217 if (E->State == TreeEntry::NeedToGather) {
5218 if (allConstant(VL))
5219 return 0;
5220 if (isa<InsertElementInst>(VL[0]))
5221 return InstructionCost::getInvalid();
5222 SmallVector<int> Mask;
5223 SmallVector<const TreeEntry *> Entries;
5224 Optional<TargetTransformInfo::ShuffleKind> Shuffle =
5225 isGatherShuffledEntry(E, Mask, Entries);
5226 if (Shuffle.hasValue()) {
5227 InstructionCost GatherCost = 0;
5228 if (ShuffleVectorInst::isIdentityMask(Mask)) {
5229 // Perfect match in the graph, will reuse the previously vectorized
5230 // node. Cost is 0.
5231 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
5232 dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
5233 << "SLP: perfect diamond match for gather bundle that starts with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
5234 << *VL.front() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
;
5235 if (NeedToShuffleReuses)
5236 GatherCost =
5237 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5238 FinalVecTy, E->ReuseShuffleIndices);
5239 } else {
5240 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
5241 << " entries for bundle that starts with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
5242 << *VL.front() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
;
5243 // Detected that instead of gather we can emit a shuffle of single/two
5244 // previously vectorized nodes. Add the cost of the permutation rather
5245 // than gather.
5246 ::addMask(Mask, E->ReuseShuffleIndices);
5247 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
5248 }
5249 return GatherCost;
5250 }
5251 if ((E->getOpcode() == Instruction::ExtractElement ||
5252 all_of(E->Scalars,
5253 [](Value *V) {
5254 return isa<ExtractElementInst, UndefValue>(V);
5255 })) &&
5256 allSameType(VL)) {
5257 // Check that gather of extractelements can be represented as just a
5258 // shuffle of a single/two vectors the scalars are extracted from.
5259 SmallVector<int> Mask;
5260 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
5261 isFixedVectorShuffle(VL, Mask);
5262 if (ShuffleKind.hasValue()) {
5263 // Found the bunch of extractelement instructions that must be gathered
5264 // into a vector and can be represented as a permutation elements in a
5265 // single input vector or of 2 input vectors.
5266 InstructionCost Cost =
5267 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
5268 AdjustExtractsCost(Cost);
5269 if (NeedToShuffleReuses)
5270 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5271 FinalVecTy, E->ReuseShuffleIndices);
5272 return Cost;
5273 }
5274 }
5275 if (isSplat(VL)) {
5276 // Found the broadcasting of the single scalar, calculate the cost as the
5277 // broadcast.
5278 assert(VecTy == FinalVecTy &&(static_cast <bool> (VecTy == FinalVecTy && "No reused scalars expected for broadcast."
) ? void (0) : __assert_fail ("VecTy == FinalVecTy && \"No reused scalars expected for broadcast.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5279, __extension__
__PRETTY_FUNCTION__))
5279 "No reused scalars expected for broadcast.")(static_cast <bool> (VecTy == FinalVecTy && "No reused scalars expected for broadcast."
) ? void (0) : __assert_fail ("VecTy == FinalVecTy && \"No reused scalars expected for broadcast.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5279, __extension__
__PRETTY_FUNCTION__))
;
5280 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy,
5281 /*Mask=*/None, /*Index=*/0,
5282 /*SubTp=*/nullptr, /*Args=*/VL);
5283 }
5284 InstructionCost ReuseShuffleCost = 0;
5285 if (NeedToShuffleReuses)
5286 ReuseShuffleCost = TTI->getShuffleCost(
5287 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
5288 // Improve gather cost for gather of loads, if we can group some of the
5289 // loads into vector loads.
5290 if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
5291 !E->isAltShuffle()) {
5292 BoUpSLP::ValueSet VectorizedLoads;
5293 unsigned StartIdx = 0;
5294 unsigned VF = VL.size() / 2;
5295 unsigned VectorizedCnt = 0;
5296 unsigned ScatterVectorizeCnt = 0;
5297 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
5298 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
5299 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
5300 Cnt += VF) {
5301 ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
5302 if (!VectorizedLoads.count(Slice.front()) &&
5303 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
5304 SmallVector<Value *> PointerOps;
5305 OrdersType CurrentOrder;
5306 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL,
5307 *SE, CurrentOrder, PointerOps);
5308 switch (LS) {
5309 case LoadsState::Vectorize:
5310 case LoadsState::ScatterVectorize:
5311 // Mark the vectorized loads so that we don't vectorize them
5312 // again.
5313 if (LS == LoadsState::Vectorize)
5314 ++VectorizedCnt;
5315 else
5316 ++ScatterVectorizeCnt;
5317 VectorizedLoads.insert(Slice.begin(), Slice.end());
5318 // If we vectorized initial block, no need to try to vectorize it
5319 // again.
5320 if (Cnt == StartIdx)
5321 StartIdx += VF;
5322 break;
5323 case LoadsState::Gather:
5324 break;
5325 }
5326 }
5327 }
5328 // Check if the whole array was vectorized already - exit.
5329 if (StartIdx >= VL.size())
5330 break;
5331 // Found vectorizable parts - exit.
5332 if (!VectorizedLoads.empty())
5333 break;
5334 }
5335 if (!VectorizedLoads.empty()) {
5336 InstructionCost GatherCost = 0;
5337 unsigned NumParts = TTI->getNumberOfParts(VecTy);
5338 bool NeedInsertSubvectorAnalysis =
5339 !NumParts || (VL.size() / VF) > NumParts;
5340 // Get the cost for gathered loads.
5341 for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
5342 if (VectorizedLoads.contains(VL[I]))
5343 continue;
5344 GatherCost += getGatherCost(VL.slice(I, VF));
5345 }
5346 // The cost for vectorized loads.
5347 InstructionCost ScalarsCost = 0;
5348 for (Value *V : VectorizedLoads) {
5349 auto *LI = cast<LoadInst>(V);
5350 ScalarsCost += TTI->getMemoryOpCost(
5351 Instruction::Load, LI->getType(), LI->getAlign(),
5352 LI->getPointerAddressSpace(), CostKind, LI);
5353 }
5354 auto *LI = cast<LoadInst>(E->getMainOp());
5355 auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
5356 Align Alignment = LI->getAlign();
5357 GatherCost +=
5358 VectorizedCnt *
5359 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
5360 LI->getPointerAddressSpace(), CostKind, LI);
5361 GatherCost += ScatterVectorizeCnt *
5362 TTI->getGatherScatterOpCost(
5363 Instruction::Load, LoadTy, LI->getPointerOperand(),
5364 /*VariableMask=*/false, Alignment, CostKind, LI);
5365 if (NeedInsertSubvectorAnalysis) {
5366 // Add the cost for the subvectors insert.
5367 for (int I = VF, E = VL.size(); I < E; I += VF)
5368 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy,
5369 None, I, LoadTy);
5370 }
5371 return ReuseShuffleCost + GatherCost - ScalarsCost;
5372 }
5373 }
5374 return ReuseShuffleCost + getGatherCost(VL);
5375 }
5376 InstructionCost CommonCost = 0;
5377 SmallVector<int> Mask;
5378 if (!E->ReorderIndices.empty()) {
5379 SmallVector<int> NewMask;
5380 if (E->getOpcode() == Instruction::Store) {
5381 // For stores the order is actually a mask.
5382 NewMask.resize(E->ReorderIndices.size());
5383 copy(E->ReorderIndices, NewMask.begin());
5384 } else {
5385 inversePermutation(E->ReorderIndices, NewMask);
5386 }
5387 ::addMask(Mask, NewMask);
5388 }
5389 if (NeedToShuffleReuses)
5390 ::addMask(Mask, E->ReuseShuffleIndices);
5391 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
5392 CommonCost =
5393 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
5394 assert((E->State == TreeEntry::Vectorize ||(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5396, __extension__
__PRETTY_FUNCTION__))
5395 E->State == TreeEntry::ScatterVectorize) &&(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5396, __extension__
__PRETTY_FUNCTION__))
5396 "Unhandled state")(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5396, __extension__
__PRETTY_FUNCTION__))
;
5397 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL")(static_cast <bool> (E->getOpcode() && allSameType
(VL) && allSameBlock(VL) && "Invalid VL") ? void
(0) : __assert_fail ("E->getOpcode() && allSameType(VL) && allSameBlock(VL) && \"Invalid VL\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5397, __extension__
__PRETTY_FUNCTION__))
;
5398 Instruction *VL0 = E->getMainOp();
5399 unsigned ShuffleOrOp =
5400 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5401 switch (ShuffleOrOp) {
5402 case Instruction::PHI:
5403 return 0;
5404
5405 case Instruction::ExtractValue:
5406 case Instruction::ExtractElement: {
5407 // The common cost of removal ExtractElement/ExtractValue instructions +
5408 // the cost of shuffles, if required to resuffle the original vector.
5409 if (NeedToShuffleReuses) {
5410 unsigned Idx = 0;
5411 for (unsigned I : E->ReuseShuffleIndices) {
5412 if (ShuffleOrOp == Instruction::ExtractElement) {
5413 auto *EE = cast<ExtractElementInst>(VL[I]);
5414 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5415 EE->getVectorOperandType(),
5416 *getExtractIndex(EE));
5417 } else {
5418 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5419 VecTy, Idx);
5420 ++Idx;
5421 }
5422 }
5423 Idx = EntryVF;
5424 for (Value *V : VL) {
5425 if (ShuffleOrOp == Instruction::ExtractElement) {
5426 auto *EE = cast<ExtractElementInst>(V);
5427 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5428 EE->getVectorOperandType(),
5429 *getExtractIndex(EE));
5430 } else {
5431 --Idx;
5432 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5433 VecTy, Idx);
5434 }
5435 }
5436 }
5437 if (ShuffleOrOp == Instruction::ExtractValue) {
5438 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
5439 auto *EI = cast<Instruction>(VL[I]);
5440 // Take credit for instruction that will become dead.
5441 if (EI->hasOneUse()) {
5442 Instruction *Ext = EI->user_back();
5443 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
5444 all_of(Ext->users(),
5445 [](User *U) { return isa<GetElementPtrInst>(U); })) {
5446 // Use getExtractWithExtendCost() to calculate the cost of
5447 // extractelement/ext pair.
5448 CommonCost -= TTI->getExtractWithExtendCost(
5449 Ext->getOpcode(), Ext->getType(), VecTy, I);
5450 // Add back the cost of s|zext which is subtracted separately.
5451 CommonCost += TTI->getCastInstrCost(
5452 Ext->getOpcode(), Ext->getType(), EI->getType(),
5453 TTI::getCastContextHint(Ext), CostKind, Ext);
5454 continue;
5455 }
5456 }
5457 CommonCost -=
5458 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
5459 }
5460 } else {
5461 AdjustExtractsCost(CommonCost);
5462 }
5463 return CommonCost;
5464 }
5465 case Instruction::InsertElement: {
5466 assert(E->ReuseShuffleIndices.empty() &&(static_cast <bool> (E->ReuseShuffleIndices.empty() &&
"Unique insertelements only are expected.") ? void (0) : __assert_fail
("E->ReuseShuffleIndices.empty() && \"Unique insertelements only are expected.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5467, __extension__
__PRETTY_FUNCTION__))
5467 "Unique insertelements only are expected.")(static_cast <bool> (E->ReuseShuffleIndices.empty() &&
"Unique insertelements only are expected.") ? void (0) : __assert_fail
("E->ReuseShuffleIndices.empty() && \"Unique insertelements only are expected.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5467, __extension__
__PRETTY_FUNCTION__))
;
5468 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
5469
5470 unsigned const NumElts = SrcVecTy->getNumElements();
5471 unsigned const NumScalars = VL.size();
5472 APInt DemandedElts = APInt::getZero(NumElts);
5473 // TODO: Add support for Instruction::InsertValue.
5474 SmallVector<int> Mask;
5475 if (!E->ReorderIndices.empty()) {
5476 inversePermutation(E->ReorderIndices, Mask);
5477 Mask.append(NumElts - NumScalars, UndefMaskElem);
5478 } else {
5479 Mask.assign(NumElts, UndefMaskElem);
5480 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
5481 }
5482 unsigned Offset = *getInsertIndex(VL0);
5483 bool IsIdentity = true;
5484 SmallVector<int> PrevMask(NumElts, UndefMaskElem);
5485 Mask.swap(PrevMask);
5486 for (unsigned I = 0; I < NumScalars; ++I) {
5487 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
5488 DemandedElts.setBit(InsertIdx);
5489 IsIdentity &= InsertIdx - Offset == I;
5490 Mask[InsertIdx - Offset] = I;
5491 }
5492 assert(Offset < NumElts && "Failed to find vector index offset")(static_cast <bool> (Offset < NumElts && "Failed to find vector index offset"
) ? void (0) : __assert_fail ("Offset < NumElts && \"Failed to find vector index offset\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5492, __extension__
__PRETTY_FUNCTION__))
;
5493
5494 InstructionCost Cost = 0;
5495 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
5496 /*Insert*/ true, /*Extract*/ false);
5497
5498 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) {
5499 // FIXME: Replace with SK_InsertSubvector once it is properly supported.
5500 unsigned Sz = PowerOf2Ceil(Offset + NumScalars);
5501 Cost += TTI->getShuffleCost(
5502 TargetTransformInfo::SK_PermuteSingleSrc,
5503 FixedVectorType::get(SrcVecTy->getElementType(), Sz));
5504 } else if (!IsIdentity) {
5505 auto *FirstInsert =
5506 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
5507 return !is_contained(E->Scalars,
5508 cast<Instruction>(V)->getOperand(0));
5509 }));
5510 if (isUndefVector(FirstInsert->getOperand(0))) {
5511 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask);
5512 } else {
5513 SmallVector<int> InsertMask(NumElts);
5514 std::iota(InsertMask.begin(), InsertMask.end(), 0);
5515 for (unsigned I = 0; I < NumElts; I++) {
5516 if (Mask[I] != UndefMaskElem)
5517 InsertMask[Offset + I] = NumElts + I;
5518 }
5519 Cost +=
5520 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask);
5521 }
5522 }
5523
5524 return Cost;
5525 }
5526 case Instruction::ZExt:
5527 case Instruction::SExt:
5528 case Instruction::FPToUI:
5529 case Instruction::FPToSI:
5530 case Instruction::FPExt:
5531 case Instruction::PtrToInt:
5532 case Instruction::IntToPtr:
5533 case Instruction::SIToFP:
5534 case Instruction::UIToFP:
5535 case Instruction::Trunc:
5536 case Instruction::FPTrunc:
5537 case Instruction::BitCast: {
5538 Type *SrcTy = VL0->getOperand(0)->getType();
5539 InstructionCost ScalarEltCost =
5540 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
5541 TTI::getCastContextHint(VL0), CostKind, VL0);
5542 if (NeedToShuffleReuses) {
5543 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5544 }
5545
5546 // Calculate the cost of this instruction.
5547 InstructionCost ScalarCost = VL.size() * ScalarEltCost;
5548
5549 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
5550 InstructionCost VecCost = 0;
5551 // Check if the values are candidates to demote.
5552 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
5553 VecCost = CommonCost + TTI->getCastInstrCost(
5554 E->getOpcode(), VecTy, SrcVecTy,
5555 TTI::getCastContextHint(VL0), CostKind, VL0);
5556 }
5557 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, CommonCost, VecCost, ScalarCost);
} } while (false)
;
5558 return VecCost - ScalarCost;
5559 }
5560 case Instruction::FCmp:
5561 case Instruction::ICmp:
5562 case Instruction::Select: {
5563 // Calculate the cost of this instruction.
5564 InstructionCost ScalarEltCost =
5565 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
5566 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
5567 if (NeedToShuffleReuses) {
5568 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5569 }
5570 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
5571 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5572
5573 // Check if all entries in VL are either compares or selects with compares
5574 // as condition that have the same predicates.
5575 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
5576 bool First = true;
5577 for (auto *V : VL) {
5578 CmpInst::Predicate CurrentPred;
5579 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
5580 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
5581 !match(V, MatchCmp)) ||
5582 (!First && VecPred != CurrentPred)) {
5583 VecPred = CmpInst::BAD_ICMP_PREDICATE;
5584 break;
5585 }
5586 First = false;
5587 VecPred = CurrentPred;
5588 }
5589
5590 InstructionCost VecCost = TTI->getCmpSelInstrCost(
5591 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
5592 // Check if it is possible and profitable to use min/max for selects in
5593 // VL.
5594 //
5595 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
5596 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
5597 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
5598 {VecTy, VecTy});
5599 InstructionCost IntrinsicCost =
5600 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
5601 // If the selects are the only uses of the compares, they will be dead
5602 // and we can adjust the cost by removing their cost.
5603 if (IntrinsicAndUse.second)
5604 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy,
5605 MaskTy, VecPred, CostKind);
5606 VecCost = std::min(VecCost, IntrinsicCost);
5607 }
5608 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, CommonCost, VecCost, ScalarCost);
} } while (false)
;
5609 return CommonCost + VecCost - ScalarCost;
5610 }
5611 case Instruction::FNeg:
5612 case Instruction::Add:
5613 case Instruction::FAdd:
5614 case Instruction::Sub:
5615 case Instruction::FSub:
5616 case Instruction::Mul:
5617 case Instruction::FMul:
5618 case Instruction::UDiv:
5619 case Instruction::SDiv:
5620 case Instruction::FDiv:
5621 case Instruction::URem:
5622 case Instruction::SRem:
5623 case Instruction::FRem:
5624 case Instruction::Shl:
5625 case Instruction::LShr:
5626 case Instruction::AShr:
5627 case Instruction::And:
5628 case Instruction::Or:
5629 case Instruction::Xor: {
5630 // Certain instructions can be cheaper to vectorize if they have a
5631 // constant second vector operand.
5632 TargetTransformInfo::OperandValueKind Op1VK =
5633 TargetTransformInfo::OK_AnyValue;
5634 TargetTransformInfo::OperandValueKind Op2VK =
5635 TargetTransformInfo::OK_UniformConstantValue;
5636 TargetTransformInfo::OperandValueProperties Op1VP =
5637 TargetTransformInfo::OP_None;
5638 TargetTransformInfo::OperandValueProperties Op2VP =
5639 TargetTransformInfo::OP_PowerOf2;
5640
5641 // If all operands are exactly the same ConstantInt then set the
5642 // operand kind to OK_UniformConstantValue.
5643 // If instead not all operands are constants, then set the operand kind
5644 // to OK_AnyValue. If all operands are constants but not the same,
5645 // then set the operand kind to OK_NonUniformConstantValue.
5646 ConstantInt *CInt0 = nullptr;
5647 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
5648 const Instruction *I = cast<Instruction>(VL[i]);
5649 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
5650 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
5651 if (!CInt) {
5652 Op2VK = TargetTransformInfo::OK_AnyValue;
5653 Op2VP = TargetTransformInfo::OP_None;
5654 break;
5655 }
5656 if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
5657 !CInt->getValue().isPowerOf2())
5658 Op2VP = TargetTransformInfo::OP_None;
5659 if (i == 0) {
5660 CInt0 = CInt;
5661 continue;
5662 }
5663 if (CInt0 != CInt)
5664 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5665 }
5666
5667 SmallVector<const Value *, 4> Operands(VL0->operand_values());
5668 InstructionCost ScalarEltCost =
5669 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
5670 Op2VK, Op1VP, Op2VP, Operands, VL0);
5671 if (NeedToShuffleReuses) {
5672 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5673 }
5674 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5675 InstructionCost VecCost =
5676 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
5677 Op2VK, Op1VP, Op2VP, Operands, VL0);
5678 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, CommonCost, VecCost, ScalarCost);
} } while (false)
;
5679 return CommonCost + VecCost - ScalarCost;
5680 }
5681 case Instruction::GetElementPtr: {
5682 TargetTransformInfo::OperandValueKind Op1VK =
5683 TargetTransformInfo::OK_AnyValue;
5684 TargetTransformInfo::OperandValueKind Op2VK =
5685 TargetTransformInfo::OK_UniformConstantValue;
5686
5687 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
5688 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
5689 if (NeedToShuffleReuses) {
5690 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5691 }
5692 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5693 InstructionCost VecCost = TTI->getArithmeticInstrCost(
5694 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
5695 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, CommonCost, VecCost, ScalarCost);
} } while (false)
;
5696 return CommonCost + VecCost - ScalarCost;
5697 }
5698 case Instruction::Load: {
5699 // Cost of wide load - cost of scalar loads.
5700 Align Alignment = cast<LoadInst>(VL0)->getAlign();
5701 InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
5702 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
5703 if (NeedToShuffleReuses) {
5704 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5705 }
5706 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
5707 InstructionCost VecLdCost;
5708 if (E->State == TreeEntry::Vectorize) {
5709 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
5710 CostKind, VL0);
5711 } else {
5712 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState")(static_cast <bool> (E->State == TreeEntry::ScatterVectorize
&& "Unknown EntryState") ? void (0) : __assert_fail (
"E->State == TreeEntry::ScatterVectorize && \"Unknown EntryState\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5712, __extension__
__PRETTY_FUNCTION__))
;
5713 Align CommonAlignment = Alignment;
5714 for (Value *V : VL)
5715 CommonAlignment =
5716 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
5717 VecLdCost = TTI->getGatherScatterOpCost(
5718 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
5719 /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
5720 }
5721 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost
); } } while (false)
;
5722 return CommonCost + VecLdCost - ScalarLdCost;
5723 }
5724 case Instruction::Store: {
5725 // We know that we can merge the stores. Calculate the cost.
5726 bool IsReorder = !E->ReorderIndices.empty();
5727 auto *SI =
5728 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
5729 Align Alignment = SI->getAlign();
5730 InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
5731 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
5732 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
5733 InstructionCost VecStCost = TTI->getMemoryOpCost(
5734 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
5735 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost
); } } while (false)
;
5736 return CommonCost + VecStCost - ScalarStCost;
5737 }
5738 case Instruction::Call: {
5739 CallInst *CI = cast<CallInst>(VL0);
5740 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5741
5742 // Calculate the cost of the scalar and vector calls.
5743 IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
5744 InstructionCost ScalarEltCost =
5745 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
5746 if (NeedToShuffleReuses) {
5747 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5748 }
5749 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
5750
5751 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5752 InstructionCost VecCallCost =
5753 std::min(VecCallCosts.first, VecCallCosts.second);
5754
5755 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
5756 << " (" << VecCallCost << "-" << ScalarCallCost << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
5757 << " for " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
;
5758
5759 return CommonCost + VecCallCost - ScalarCallCost;
5760 }
5761 case Instruction::ShuffleVector: {
5762 assert(E->isAltShuffle() &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5768, __extension__
__PRETTY_FUNCTION__))
5763 ((Instruction::isBinaryOp(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5768, __extension__
__PRETTY_FUNCTION__))
5764 Instruction::isBinaryOp(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5768, __extension__
__PRETTY_FUNCTION__))
5765 (Instruction::isCast(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5768, __extension__
__PRETTY_FUNCTION__))
5766 Instruction::isCast(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5768, __extension__
__PRETTY_FUNCTION__))
5767 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5768, __extension__
__PRETTY_FUNCTION__))
5768 "Invalid Shuffle Vector Operand")(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5768, __extension__
__PRETTY_FUNCTION__))
;
5769 InstructionCost ScalarCost = 0;
5770 if (NeedToShuffleReuses) {
5771 for (unsigned Idx : E->ReuseShuffleIndices) {
5772 Instruction *I = cast<Instruction>(VL[Idx]);
5773 CommonCost -= TTI->getInstructionCost(I, CostKind);
5774 }
5775 for (Value *V : VL) {
5776 Instruction *I = cast<Instruction>(V);
5777 CommonCost += TTI->getInstructionCost(I, CostKind);
5778 }
5779 }
5780 for (Value *V : VL) {
5781 Instruction *I = cast<Instruction>(V);
5782 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"
) ? void (0) : __assert_fail ("E->isOpcodeOrAlt(I) && \"Unexpected main/alternate opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5782, __extension__
__PRETTY_FUNCTION__))
;
5783 ScalarCost += TTI->getInstructionCost(I, CostKind);
5784 }
5785 // VecCost is equal to sum of the cost of creating 2 vectors
5786 // and the cost of creating shuffle.
5787 InstructionCost VecCost = 0;
5788 // Try to find the previous shuffle node with the same operands and same
5789 // main/alternate ops.
5790 auto &&TryFindNodeWithEqualOperands = [this, E]() {
5791 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
5792 if (TE.get() == E)
5793 break;
5794 if (TE->isAltShuffle() &&
5795 ((TE->getOpcode() == E->getOpcode() &&
5796 TE->getAltOpcode() == E->getAltOpcode()) ||
5797 (TE->getOpcode() == E->getAltOpcode() &&
5798 TE->getAltOpcode() == E->getOpcode())) &&
5799 TE->hasEqualOperands(*E))
5800 return true;
5801 }
5802 return false;
5803 };
5804 if (TryFindNodeWithEqualOperands()) {
5805 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: diamond match for alternate node found.\n"
; E->dump(); }; } } while (false)
5806 dbgs() << "SLP: diamond match for alternate node found.\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: diamond match for alternate node found.\n"
; E->dump(); }; } } while (false)
5807 E->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: diamond match for alternate node found.\n"
; E->dump(); }; } } while (false)
5808 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: diamond match for alternate node found.\n"
; E->dump(); }; } } while (false)
;
5809 // No need to add new vector costs here since we're going to reuse
5810 // same main/alternate vector ops, just do different shuffling.
5811 } else if (Instruction::isBinaryOp(E->getOpcode())) {
5812 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
5813 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
5814 CostKind);
5815 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
5816 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
5817 Builder.getInt1Ty(),
5818 CI0->getPredicate(), CostKind, VL0);
5819 VecCost += TTI->getCmpSelInstrCost(
5820 E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
5821 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
5822 E->getAltOp());
5823 } else {
5824 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
5825 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
5826 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
5827 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
5828 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
5829 TTI::CastContextHint::None, CostKind);
5830 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
5831 TTI::CastContextHint::None, CostKind);
5832 }
5833
5834 SmallVector<int> Mask;
5835 buildShuffleEntryMask(
5836 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
5837 [E](Instruction *I) {
5838 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"
) ? void (0) : __assert_fail ("E->isOpcodeOrAlt(I) && \"Unexpected main/alternate opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5838, __extension__
__PRETTY_FUNCTION__))
;
5839 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
5840 },
5841 Mask);
5842 CommonCost =
5843 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask);
5844 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, CommonCost, VecCost, ScalarCost);
} } while (false)
;
5845 return CommonCost + VecCost - ScalarCost;
5846 }
5847 default:
5848 llvm_unreachable("Unknown instruction")::llvm::llvm_unreachable_internal("Unknown instruction", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5848)
;
5849 }
5850}
5851
5852bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
5853 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
5854 << VectorizableTree.size() << " is fully vectorizable .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
;
5855
5856 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
5857 SmallVector<int> Mask;
5858 return TE->State == TreeEntry::NeedToGather &&
5859 !any_of(TE->Scalars,
5860 [this](Value *V) { return EphValues.contains(V); }) &&
5861 (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
5862 TE->Scalars.size() < Limit ||
5863 ((TE->getOpcode() == Instruction::ExtractElement ||
5864 all_of(TE->Scalars,
5865 [](Value *V) {
5866 return isa<ExtractElementInst, UndefValue>(V);
5867 })) &&
5868 isFixedVectorShuffle(TE->Scalars, Mask)) ||
5869 (TE->State == TreeEntry::NeedToGather &&
5870 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
5871 };
5872
5873 // We only handle trees of heights 1 and 2.
5874 if (VectorizableTree.size() == 1 &&
5875 (VectorizableTree[0]->State == TreeEntry::Vectorize ||
5876 (ForReduction &&
5877 AreVectorizableGathers(VectorizableTree[0].get(),
5878 VectorizableTree[0]->Scalars.size()) &&
5879 VectorizableTree[0]->getVectorFactor() > 2)))
5880 return true;
5881
5882 if (VectorizableTree.size() != 2)
5883 return false;
5884
5885 // Handle splat and all-constants stores. Also try to vectorize tiny trees
5886 // with the second gather nodes if they have less scalar operands rather than
5887 // the initial tree element (may be profitable to shuffle the second gather)
5888 // or they are extractelements, which form shuffle.
5889 SmallVector<int> Mask;
5890 if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
5891 AreVectorizableGathers(VectorizableTree[1].get(),
5892 VectorizableTree[0]->Scalars.size()))
5893 return true;
5894
5895 // Gathering cost would be too much for tiny trees.
5896 if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
5897 (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
5898 VectorizableTree[0]->State != TreeEntry::ScatterVectorize))
5899 return false;
5900
5901 return true;
5902}
5903
5904static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
5905 TargetTransformInfo *TTI,
5906 bool MustMatchOrInst) {
5907 // Look past the root to find a source value. Arbitrarily follow the
5908 // path through operand 0 of any 'or'. Also, peek through optional
5909 // shift-left-by-multiple-of-8-bits.
5910 Value *ZextLoad = Root;
5911 const APInt *ShAmtC;
5912 bool FoundOr = false;
5913 while (!isa<ConstantExpr>(ZextLoad) &&
5914 (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
5915 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
5916 ShAmtC->urem(8) == 0))) {
5917 auto *BinOp = cast<BinaryOperator>(ZextLoad);
5918 ZextLoad = BinOp->getOperand(0);
5919 if (BinOp->getOpcode() == Instruction::Or)
5920 FoundOr = true;
5921 }
5922 // Check if the input is an extended load of the required or/shift expression.
5923 Value *Load;
5924 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
5925 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
5926 return false;
5927
5928 // Require that the total load bit width is a legal integer type.
5929 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
5930 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
5931 Type *SrcTy = Load->getType();
5932 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
5933 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
5934 return false;
5935
5936 // Everything matched - assume that we can fold the whole sequence using
5937 // load combining.
5938 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
5939 << *(cast<Instruction>(Root)) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
;
5940
5941 return true;
5942}
5943
5944bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
5945 if (RdxKind != RecurKind::Or)
5946 return false;
5947
5948 unsigned NumElts = VectorizableTree[0]->Scalars.size();
5949 Value *FirstReduced = VectorizableTree[0]->Scalars[0];
5950 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
5951 /* MatchOr */ false);
5952}
5953
5954bool BoUpSLP::isLoadCombineCandidate() const {
5955 // Peek through a final sequence of stores and check if all operations are
5956 // likely to be load-combined.
5957 unsigned NumElts = VectorizableTree[0]->Scalars.size();
5958 for (Value *Scalar : VectorizableTree[0]->Scalars) {
5959 Value *X;
5960 if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
5961 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
5962 return false;
5963 }
5964 return true;
5965}
5966
5967bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
5968 // No need to vectorize inserts of gathered values.
5969 if (VectorizableTree.size() == 2 &&
5970 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
5971 VectorizableTree[1]->State == TreeEntry::NeedToGather)
5972 return true;
5973
5974 // We can vectorize the tree if its size is greater than or equal to the
5975 // minimum size specified by the MinTreeSize command line option.
5976 if (VectorizableTree.size() >= MinTreeSize)
5977 return false;
5978
5979 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
5980 // can vectorize it if we can prove it fully vectorizable.
5981 if (isFullyVectorizableTinyTree(ForReduction))
5982 return false;
5983
5984 assert(VectorizableTree.empty()(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5986, __extension__
__PRETTY_FUNCTION__))
5985 ? ExternalUses.empty()(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5986, __extension__
__PRETTY_FUNCTION__))
5986 : true && "We shouldn't have any external users")(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5986, __extension__
__PRETTY_FUNCTION__))
;
5987
5988 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
5989 // vectorizable.
5990 return true;
5991}
5992
5993InstructionCost BoUpSLP::getSpillCost() const {
5994 // Walk from the bottom of the tree to the top, tracking which values are
5995 // live. When we see a call instruction that is not part of our tree,
5996 // query TTI to see if there is a cost to keeping values live over it
5997 // (for example, if spills and fills are required).
5998 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
5999 InstructionCost Cost = 0;
6000
6001 SmallPtrSet<Instruction*, 4> LiveValues;
6002 Instruction *PrevInst = nullptr;
6003
6004 // The entries in VectorizableTree are not necessarily ordered by their
6005 // position in basic blocks. Collect them and order them by dominance so later
6006 // instructions are guaranteed to be visited first. For instructions in
6007 // different basic blocks, we only scan to the beginning of the block, so
6008 // their order does not matter, as long as all instructions in a basic block
6009 // are grouped together. Using dominance ensures a deterministic order.
6010 SmallVector<Instruction *, 16> OrderedScalars;
6011 for (const auto &TEPtr : VectorizableTree) {
6012 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
6013 if (!Inst)
6014 continue;
6015 OrderedScalars.push_back(Inst);
6016 }
6017 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
6018 auto *NodeA = DT->getNode(A->getParent());
6019 auto *NodeB = DT->getNode(B->getParent());
6020 assert(NodeA && "Should only process reachable instructions")(static_cast <bool> (NodeA && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeA && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6020, __extension__
__PRETTY_FUNCTION__))
;
6021 assert(NodeB && "Should only process reachable instructions")(static_cast <bool> (NodeB && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeB && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6021, __extension__
__PRETTY_FUNCTION__))
;
6022 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6023, __extension__
__PRETTY_FUNCTION__))
6023 "Different nodes should have different DFS numbers")(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6023, __extension__
__PRETTY_FUNCTION__))
;
6024 if (NodeA != NodeB)
6025 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
6026 return B->comesBefore(A);
6027 });
6028
6029 for (Instruction *Inst : OrderedScalars) {
6030 if (!PrevInst) {
6031 PrevInst = Inst;
6032 continue;
6033 }
6034
6035 // Update LiveValues.
6036 LiveValues.erase(PrevInst);
6037 for (auto &J : PrevInst->operands()) {
6038 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
6039 LiveValues.insert(cast<Instruction>(&*J));
6040 }
6041
6042 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
6043 dbgs() << "SLP: #LV: " << LiveValues.size();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
6044 for (auto *X : LiveValues)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
6045 dbgs() << " " << X->getName();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
6046 dbgs() << ", Looking at ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
6047 Inst->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
6048 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
;
6049
6050 // Now find the sequence of instructions between PrevInst and Inst.
6051 unsigned NumCalls = 0;
6052 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
6053 PrevInstIt =
6054 PrevInst->getIterator().getReverse();
6055 while (InstIt != PrevInstIt) {
6056 if (PrevInstIt == PrevInst->getParent()->rend()) {
6057 PrevInstIt = Inst->getParent()->rbegin();
6058 continue;
6059 }
6060
6061 // Debug information does not impact spill cost.
6062 if ((isa<CallInst>(&*PrevInstIt) &&
6063 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
6064 &*PrevInstIt != PrevInst)
6065 NumCalls++;
6066
6067 ++PrevInstIt;
6068 }
6069
6070 if (NumCalls) {
6071 SmallVector<Type*, 4> V;
6072 for (auto *II : LiveValues) {
6073 auto *ScalarTy = II->getType();
6074 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
6075 ScalarTy = VectorTy->getElementType();
6076 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
6077 }
6078 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
6079 }
6080
6081 PrevInst = Inst;
6082 }
6083
6084 return Cost;
6085}
6086
6087/// Check if two insertelement instructions are from the same buildvector.
6088static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU,
6089 InsertElementInst *V) {
6090 // Instructions must be from the same basic blocks.
6091 if (VU->getParent() != V->getParent())
6092 return false;
6093 // Checks if 2 insertelements are from the same buildvector.
6094 if (VU->getType() != V->getType())
6095 return false;
6096 // Multiple used inserts are separate nodes.
6097 if (!VU->hasOneUse() && !V->hasOneUse())
6098 return false;
6099 auto *IE1 = VU;
6100 auto *IE2 = V;
6101 // Go through the vector operand of insertelement instructions trying to find
6102 // either VU as the original vector for IE2 or V as the original vector for
6103 // IE1.
6104 do {
6105 if (IE2 == VU || IE1 == V)
6106 return true;
6107 if (IE1) {
6108 if (IE1 != VU && !IE1->hasOneUse())
6109 IE1 = nullptr;
6110 else
6111 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
6112 }
6113 if (IE2) {
6114 if (IE2 != V && !IE2->hasOneUse())
6115 IE2 = nullptr;
6116 else
6117 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
6118 }
6119 } while (IE1 || IE2);
6120 return false;
6121}
6122
6123InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
6124 InstructionCost Cost = 0;
6125 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
6126 << VectorizableTree.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
;
6127
6128 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
6129
6130 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
6131 TreeEntry &TE = *VectorizableTree[I];
6132
6133 InstructionCost C = getEntryCost(&TE, VectorizedVals);
6134 Cost += C;
6135 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6136 << " for bundle that starts with " << *TE.Scalars[0]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6137 << ".\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6138 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
;
6139 }
6140
6141 SmallPtrSet<Value *, 16> ExtractCostCalculated;
6142 InstructionCost ExtractCost = 0;
6143 SmallVector<unsigned> VF;
6144 SmallVector<SmallVector<int>> ShuffleMask;
6145 SmallVector<Value *> FirstUsers;
6146 SmallVector<APInt> DemandedElts;
6147 for (ExternalUser &EU : ExternalUses) {
6148 // We only add extract cost once for the same scalar.
6149 if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
6150 !ExtractCostCalculated.insert(EU.Scalar).second)
6151 continue;
6152
6153 // Uses by ephemeral values are free (because the ephemeral value will be
6154 // removed prior to code generation, and so the extraction will be
6155 // removed as well).
6156 if (EphValues.count(EU.User))
6157 continue;
6158
6159 // No extract cost for vector "scalar"
6160 if (isa<FixedVectorType>(EU.Scalar->getType()))
6161 continue;
6162
6163 // Already counted the cost for external uses when tried to adjust the cost
6164 // for extractelements, no need to add it again.
6165 if (isa<ExtractElementInst>(EU.Scalar))
6166 continue;
6167
6168 // If found user is an insertelement, do not calculate extract cost but try
6169 // to detect it as a final shuffled/identity match.
6170 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
6171 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
6172 Optional<unsigned> InsertIdx = getInsertIndex(VU);
6173 if (InsertIdx) {
6174 auto *It = find_if(FirstUsers, [VU](Value *V) {
6175 return areTwoInsertFromSameBuildVector(VU,
6176 cast<InsertElementInst>(V));
6177 });
6178 int VecId = -1;
6179 if (It == FirstUsers.end()) {
6180 VF.push_back(FTy->getNumElements());
6181 ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
6182 // Find the insertvector, vectorized in tree, if any.
6183 Value *Base = VU;
6184 while (isa<InsertElementInst>(Base)) {
6185 // Build the mask for the vectorized insertelement instructions.
6186 if (const TreeEntry *E = getTreeEntry(Base)) {
6187 VU = cast<InsertElementInst>(Base);
6188 do {
6189 int Idx = E->findLaneForValue(Base);
6190 ShuffleMask.back()[Idx] = Idx;
6191 Base = cast<InsertElementInst>(Base)->getOperand(0);
6192 } while (E == getTreeEntry(Base));
6193 break;
6194 }
6195 Base = cast<InsertElementInst>(Base)->getOperand(0);
6196 }
6197 FirstUsers.push_back(VU);
6198 DemandedElts.push_back(APInt::getZero(VF.back()));
6199 VecId = FirstUsers.size() - 1;
6200 } else {
6201 VecId = std::distance(FirstUsers.begin(), It);
6202 }
6203 ShuffleMask[VecId][*InsertIdx] = EU.Lane;
6204 DemandedElts[VecId].setBit(*InsertIdx);
6205 continue;
6206 }
6207 }
6208 }
6209
6210 // If we plan to rewrite the tree in a smaller type, we will need to sign
6211 // extend the extracted value back to the original type. Here, we account
6212 // for the extract and the added cost of the sign extend if needed.
6213 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
6214 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
6215 if (MinBWs.count(ScalarRoot)) {
6216 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
6217 auto Extend =
6218 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
6219 VecTy = FixedVectorType::get(MinTy, BundleWidth);
6220 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
6221 VecTy, EU.Lane);
6222 } else {
6223 ExtractCost +=
6224 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
6225 }
6226 }
6227
6228 InstructionCost SpillCost = getSpillCost();
6229 Cost += SpillCost + ExtractCost;
6230 if (FirstUsers.size() == 1) {
6231 int Limit = ShuffleMask.front().size() * 2;
6232 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) &&
6233 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) {
6234 InstructionCost C = TTI->getShuffleCost(
6235 TTI::SK_PermuteSingleSrc,
6236 cast<FixedVectorType>(FirstUsers.front()->getType()),
6237 ShuffleMask.front());
6238 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users " <<
*VectorizableTree.front()->Scalars.front() << ".\n"
<< "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6239 << " for final shuffle of insertelement external users "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users " <<
*VectorizableTree.front()->Scalars.front() << ".\n"
<< "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6240 << *VectorizableTree.front()->Scalars.front() << ".\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users " <<
*VectorizableTree.front()->Scalars.front() << ".\n"
<< "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6241 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users " <<
*VectorizableTree.front()->Scalars.front() << ".\n"
<< "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
;
6242 Cost += C;
6243 }
6244 InstructionCost InsertCost = TTI->getScalarizationOverhead(
6245 cast<FixedVectorType>(FirstUsers.front()->getType()),
6246 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false);
6247 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
6248 << " for insertelements gather.\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
6249 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
;
6250 Cost -= InsertCost;
6251 } else if (FirstUsers.size() >= 2) {
6252 unsigned MaxVF = *std::max_element(VF.begin(), VF.end());
6253 // Combined masks of the first 2 vectors.
6254 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem);
6255 copy(ShuffleMask.front(), CombinedMask.begin());
6256 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF);
6257 auto *VecTy = FixedVectorType::get(
6258 cast<VectorType>(FirstUsers.front()->getType())->getElementType(),
6259 MaxVF);
6260 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) {
6261 if (ShuffleMask[1][I] != UndefMaskElem) {
6262 CombinedMask[I] = ShuffleMask[1][I] + MaxVF;
6263 CombinedDemandedElts.setBit(I);
6264 }
6265 }
6266 InstructionCost C =
6267 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask);
6268 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6269 << " for final shuffle of vector node and external "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6270 "insertelement users "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6271 << *VectorizableTree.front()->Scalars.front() << ".\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6272 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
;
6273 Cost += C;
6274 InstructionCost InsertCost = TTI->getScalarizationOverhead(
6275 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false);
6276 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
6277 << " for insertelements gather.\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
6278 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
;
6279 Cost -= InsertCost;
6280 for (int I = 2, E = FirstUsers.size(); I < E; ++I) {
6281 // Other elements - permutation of 2 vectors (the initial one and the
6282 // next Ith incoming vector).
6283 unsigned VF = ShuffleMask[I].size();
6284 for (unsigned Idx = 0; Idx < VF; ++Idx) {
6285 int Mask = ShuffleMask[I][Idx];
6286 if (Mask != UndefMaskElem)
6287 CombinedMask[Idx] = MaxVF + Mask;
6288 else if (CombinedMask[Idx] != UndefMaskElem)
6289 CombinedMask[Idx] = Idx;
6290 }
6291 for (unsigned Idx = VF; Idx < MaxVF; ++Idx)
6292 if (CombinedMask[Idx] != UndefMaskElem)
6293 CombinedMask[Idx] = Idx;
6294 InstructionCost C =
6295 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask);
6296 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6297 << " for final shuffle of vector node and external "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6298 "insertelement users "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6299 << *VectorizableTree.front()->Scalars.front() << ".\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
6300 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users "
<< *VectorizableTree.front()->Scalars.front() <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
;
6301 Cost += C;
6302 InstructionCost InsertCost = TTI->getScalarizationOverhead(
6303 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
6304 /*Insert*/ true, /*Extract*/ false);
6305 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
6306 << " for insertelements gather.\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
6307 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: subtracting the cost " <<
InsertCost << " for insertelements gather.\n" <<
"SLP: Current total cost = " << Cost << "\n"; } }
while (false)
;
6308 Cost -= InsertCost;
6309 }
6310 }
6311
6312#ifndef NDEBUG
6313 SmallString<256> Str;
6314 {
6315 raw_svector_ostream OS(Str);
6316 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
6317 << "SLP: Extract Cost = " << ExtractCost << ".\n"
6318 << "SLP: Total Cost = " << Cost << ".\n";
6319 }
6320 LLVM_DEBUG(dbgs() << Str)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << Str; } } while (false)
;
6321 if (ViewSLPTree)
6322 ViewGraph(this, "SLP" + F->getName(), false, Str);
6323#endif
6324
6325 return Cost;
6326}
6327
6328Optional<TargetTransformInfo::ShuffleKind>
6329BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
6330 SmallVectorImpl<const TreeEntry *> &Entries) {
6331 // TODO: currently checking only for Scalars in the tree entry, need to count
6332 // reused elements too for better cost estimation.
6333 Mask.assign(TE->Scalars.size(), UndefMaskElem);
6334 Entries.clear();
6335 // Build a lists of values to tree entries.
6336 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
6337 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
6338 if (EntryPtr.get() == TE)
6339 break;
6340 if (EntryPtr->State != TreeEntry::NeedToGather)
6341 continue;
6342 for (Value *V : EntryPtr->Scalars)
6343 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
6344 }
6345 // Find all tree entries used by the gathered values. If no common entries
6346 // found - not a shuffle.
6347 // Here we build a set of tree nodes for each gathered value and trying to
6348 // find the intersection between these sets. If we have at least one common
6349 // tree node for each gathered value - we have just a permutation of the
6350 // single vector. If we have 2 different sets, we're in situation where we
6351 // have a permutation of 2 input vectors.
6352 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
6353 DenseMap<Value *, int> UsedValuesEntry;
6354 for (Value *V : TE->Scalars) {
6355 if (isa<UndefValue>(V))
6356 continue;
6357 // Build a list of tree entries where V is used.
6358 SmallPtrSet<const TreeEntry *, 4> VToTEs;
6359 auto It = ValueToTEs.find(V);
6360 if (It != ValueToTEs.end())
6361 VToTEs = It->second;
6362 if (const TreeEntry *VTE = getTreeEntry(V))
6363 VToTEs.insert(VTE);
6364 if (VToTEs.empty())
6365 return None;
6366 if (UsedTEs.empty()) {
6367 // The first iteration, just insert the list of nodes to vector.
6368 UsedTEs.push_back(VToTEs);
6369 } else {
6370 // Need to check if there are any previously used tree nodes which use V.
6371 // If there are no such nodes, consider that we have another one input
6372 // vector.
6373 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
6374 unsigned Idx = 0;
6375 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
6376 // Do we have a non-empty intersection of previously listed tree entries
6377 // and tree entries using current V?
6378 set_intersect(VToTEs, Set);
6379 if (!VToTEs.empty()) {
6380 // Yes, write the new subset and continue analysis for the next
6381 // scalar.
6382 Set.swap(VToTEs);
6383 break;
6384 }
6385 VToTEs = SavedVToTEs;
6386 ++Idx;
6387 }
6388 // No non-empty intersection found - need to add a second set of possible
6389 // source vectors.
6390 if (Idx == UsedTEs.size()) {
6391 // If the number of input vectors is greater than 2 - not a permutation,
6392 // fallback to the regular gather.
6393 if (UsedTEs.size() == 2)
6394 return None;
6395 UsedTEs.push_back(SavedVToTEs);
6396 Idx = UsedTEs.size() - 1;
6397 }
6398 UsedValuesEntry.try_emplace(V, Idx);
6399 }
6400 }
6401
6402 unsigned VF = 0;
6403 if (UsedTEs.size() == 1) {
6404 // Try to find the perfect match in another gather node at first.
6405 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
6406 return EntryPtr->isSame(TE->Scalars);
6407 });
6408 if (It != UsedTEs.front().end()) {
6409 Entries.push_back(*It);
6410 std::iota(Mask.begin(), Mask.end(), 0);
6411 return TargetTransformInfo::SK_PermuteSingleSrc;
6412 }
6413 // No perfect match, just shuffle, so choose the first tree node.
6414 Entries.push_back(*UsedTEs.front().begin());
6415 } else {
6416 // Try to find nodes with the same vector factor.
6417 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.")(static_cast <bool> (UsedTEs.size() == 2 && "Expected at max 2 permuted entries."
) ? void (0) : __assert_fail ("UsedTEs.size() == 2 && \"Expected at max 2 permuted entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6417, __extension__
__PRETTY_FUNCTION__))
;
6418 DenseMap<int, const TreeEntry *> VFToTE;
6419 for (const TreeEntry *TE : UsedTEs.front())
6420 VFToTE.try_emplace(TE->getVectorFactor(), TE);
6421 for (const TreeEntry *TE : UsedTEs.back()) {
6422 auto It = VFToTE.find(TE->getVectorFactor());
6423 if (It != VFToTE.end()) {
6424 VF = It->first;
6425 Entries.push_back(It->second);
6426 Entries.push_back(TE);
6427 break;
6428 }
6429 }
6430 // No 2 source vectors with the same vector factor - give up and do regular
6431 // gather.
6432 if (Entries.empty())
6433 return None;
6434 }
6435
6436 // Build a shuffle mask for better cost estimation and vector emission.
6437 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
6438 Value *V = TE->Scalars[I];
6439 if (isa<UndefValue>(V))
6440 continue;
6441 unsigned Idx = UsedValuesEntry.lookup(V);
6442 const TreeEntry *VTE = Entries[Idx];
6443 int FoundLane = VTE->findLaneForValue(V);
6444 Mask[I] = Idx * VF + FoundLane;
6445 // Extra check required by isSingleSourceMaskImpl function (called by
6446 // ShuffleVectorInst::isSingleSourceMask).
6447 if (Mask[I] >= 2 * E)
6448 return None;
6449 }
6450 switch (Entries.size()) {
6451 case 1:
6452 return TargetTransformInfo::SK_PermuteSingleSrc;
6453 case 2:
6454 return TargetTransformInfo::SK_PermuteTwoSrc;
6455 default:
6456 break;
6457 }
6458 return None;
6459}
6460
6461InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty,
6462 const APInt &ShuffledIndices,
6463 bool NeedToShuffle) const {
6464 InstructionCost Cost =
6465 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true,
6466 /*Extract*/ false);
6467 if (NeedToShuffle)
6468 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
6469 return Cost;
6470}
6471
6472InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
6473 // Find the type of the operands in VL.
6474 Type *ScalarTy = VL[0]->getType();
6475 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
6476 ScalarTy = SI->getValueOperand()->getType();
6477 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
6478 bool DuplicateNonConst = false;
6479 // Find the cost of inserting/extracting values from the vector.
6480 // Check if the same elements are inserted several times and count them as
6481 // shuffle candidates.
6482 APInt ShuffledElements = APInt::getZero(VL.size());
6483 DenseSet<Value *> UniqueElements;
6484 // Iterate in reverse order to consider insert elements with the high cost.
6485 for (unsigned I = VL.size(); I > 0; --I) {
6486 unsigned Idx = I - 1;
6487 // No need to shuffle duplicates for constants.
6488 if (isConstant(VL[Idx])) {
6489 ShuffledElements.setBit(Idx);
6490 continue;
6491 }
6492 if (!UniqueElements.insert(VL[Idx]).second) {
6493 DuplicateNonConst = true;
6494 ShuffledElements.setBit(Idx);
6495 }
6496 }
6497 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst);
6498}
6499
6500// Perform operand reordering on the instructions in VL and return the reordered
6501// operands in Left and Right.
6502void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
6503 SmallVectorImpl<Value *> &Left,
6504 SmallVectorImpl<Value *> &Right,
6505 const DataLayout &DL,
6506 ScalarEvolution &SE,
6507 const BoUpSLP &R) {
6508 if (VL.empty())
6509 return;
6510 VLOperands Ops(VL, DL, SE, R);
6511 // Reorder the operands in place.
6512 Ops.reorder();
6513 Left = Ops.getVL(0);
6514 Right = Ops.getVL(1);
6515}
6516
6517void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
6518 // Get the basic block this bundle is in. All instructions in the bundle
6519 // should be in this block.
6520 auto *Front = E->getMainOp();
6521 auto *BB = Front->getParent();
6522 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6525, __extension__
__PRETTY_FUNCTION__))
6523 auto *I = cast<Instruction>(V);(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6525, __extension__
__PRETTY_FUNCTION__))
6524 return !E->isOpcodeOrAlt(I) || I->getParent() == BB;(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6525, __extension__
__PRETTY_FUNCTION__))
6525 }))(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { auto *I = cast<Instruction>(V); return
!E->isOpcodeOrAlt(I) || I->getParent() == BB; })) ? void
(0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6525, __extension__
__PRETTY_FUNCTION__))
;
6526
6527 auto &&FindLastInst = [E, Front]() {
6528 Instruction *LastInst = Front;
6529 for (Value *V : E->Scalars) {
6530 auto *I = dyn_cast<Instruction>(V);
6531 if (!I)
6532 continue;
6533 if (LastInst->comesBefore(I))
6534 LastInst = I;
6535 }
6536 return LastInst;
6537 };
6538
6539 auto &&FindFirstInst = [E, Front]() {
6540 Instruction *FirstInst = Front;
6541 for (Value *V : E->Scalars) {
6542 auto *I = dyn_cast<Instruction>(V);
6543 if (!I)
6544 continue;
6545 if (I->comesBefore(FirstInst))
6546 FirstInst = I;
6547 }
6548 return FirstInst;
6549 };
6550
6551 // Set the insert point to the beginning of the basic block if the entry
6552 // should not be scheduled.
6553 if (E->State != TreeEntry::NeedToGather &&
6554 doesNotNeedToSchedule(E->Scalars)) {
6555 BasicBlock::iterator InsertPt;
6556 if (all_of(E->Scalars, isUsedOutsideBlock))
6557 InsertPt = FindLastInst()->getIterator();
6558 else
6559 InsertPt = FindFirstInst()->getIterator();
6560 Builder.SetInsertPoint(BB, InsertPt);
6561 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
6562 return;
6563 }
6564
6565 // The last instruction in the bundle in program order.
6566 Instruction *LastInst = nullptr;
6567
6568 // Find the last instruction. The common case should be that BB has been
6569 // scheduled, and the last instruction is VL.back(). So we start with
6570 // VL.back() and iterate over schedule data until we reach the end of the
6571 // bundle. The end of the bundle is marked by null ScheduleData.
6572 if (BlocksSchedules.count(BB)) {
6573 Value *V = E->isOneOf(E->Scalars.back());
6574 if (doesNotNeedToBeScheduled(V))
6575 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled);
6576 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V);
6577 if (Bundle && Bundle->isPartOfBundle())
6578 for (; Bundle; Bundle = Bundle->NextInBundle)
6579 if (Bundle->OpValue == Bundle->Inst)
6580 LastInst = Bundle->Inst;
6581 }
6582
6583 // LastInst can still be null at this point if there's either not an entry
6584 // for BB in BlocksSchedules or there's no ScheduleData available for
6585 // VL.back(). This can be the case if buildTree_rec aborts for various
6586 // reasons (e.g., the maximum recursion depth is reached, the maximum region
6587 // size is reached, etc.). ScheduleData is initialized in the scheduling
6588 // "dry-run".
6589 //
6590 // If this happens, we can still find the last instruction by brute force. We
6591 // iterate forwards from Front (inclusive) until we either see all
6592 // instructions in the bundle or reach the end of the block. If Front is the
6593 // last instruction in program order, LastInst will be set to Front, and we
6594 // will visit all the remaining instructions in the block.
6595 //
6596 // One of the reasons we exit early from buildTree_rec is to place an upper
6597 // bound on compile-time. Thus, taking an additional compile-time hit here is
6598 // not ideal. However, this should be exceedingly rare since it requires that
6599 // we both exit early from buildTree_rec and that the bundle be out-of-order
6600 // (causing us to iterate all the way to the end of the block).
6601 if (!LastInst)
6602 LastInst = FindLastInst();
6603 assert(LastInst && "Failed to find last instruction in bundle")(static_cast <bool> (LastInst && "Failed to find last instruction in bundle"
) ? void (0) : __assert_fail ("LastInst && \"Failed to find last instruction in bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6603, __extension__
__PRETTY_FUNCTION__))
;
6604
6605 // Set the insertion point after the last instruction in the bundle. Set the
6606 // debug location to Front.
6607 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
6608 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
6609}
6610
6611Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
6612 // List of instructions/lanes from current block and/or the blocks which are
6613 // part of the current loop. These instructions will be inserted at the end to
6614 // make it possible to optimize loops and hoist invariant instructions out of
6615 // the loops body with better chances for success.
6616 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
6617 SmallSet<int, 4> PostponedIndices;
6618 Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
6619 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
6620 SmallPtrSet<BasicBlock *, 4> Visited;
6621 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
6622 InsertBB = InsertBB->getSinglePredecessor();
6623 return InsertBB && InsertBB == InstBB;
6624 };
6625 for (int I = 0, E = VL.size(); I < E; ++I) {
6626 if (auto *Inst = dyn_cast<Instruction>(VL[I]))
6627 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
6628 getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
6629 PostponedIndices.insert(I).second)
6630 PostponedInsts.emplace_back(Inst, I);
6631 }
6632
6633 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
6634 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
6635 auto *InsElt = dyn_cast<InsertElementInst>(Vec);
6636 if (!InsElt)
6637 return Vec;
6638 GatherShuffleSeq.insert(InsElt);
6639 CSEBlocks.insert(InsElt->getParent());
6640 // Add to our 'need-to-extract' list.
6641 if (TreeEntry *Entry = getTreeEntry(V)) {
6642 // Find which lane we need to extract.
6643 unsigned FoundLane = Entry->findLaneForValue(V);
6644 ExternalUses.emplace_back(V, InsElt, FoundLane);
6645 }
6646 return Vec;
6647 };
6648 Value *Val0 =
6649 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
6650 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
6651 Value *Vec = PoisonValue::get(VecTy);
6652 SmallVector<int> NonConsts;
6653 // Insert constant values at first.
6654 for (int I = 0, E = VL.size(); I < E; ++I) {
6655 if (PostponedIndices.contains(I))
6656 continue;
6657 if (!isConstant(VL[I])) {
6658 NonConsts.push_back(I);
6659 continue;
6660 }
6661 Vec = CreateInsertElement(Vec, VL[I], I);
6662 }
6663 // Insert non-constant values.
6664 for (int I : NonConsts)
6665 Vec = CreateInsertElement(Vec, VL[I], I);
6666 // Append instructions, which are/may be part of the loop, in the end to make
6667 // it possible to hoist non-loop-based instructions.
6668 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
6669 Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
6670
6671 return Vec;
6672}
6673
6674namespace {
6675/// Merges shuffle masks and emits final shuffle instruction, if required.
6676class ShuffleInstructionBuilder {
6677 IRBuilderBase &Builder;
6678 const unsigned VF = 0;
6679 bool IsFinalized = false;
6680 SmallVector<int, 4> Mask;
6681 /// Holds all of the instructions that we gathered.
6682 SetVector<Instruction *> &GatherShuffleSeq;
6683 /// A list of blocks that we are going to CSE.
6684 SetVector<BasicBlock *> &CSEBlocks;
6685
6686public:
6687 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF,
6688 SetVector<Instruction *> &GatherShuffleSeq,
6689 SetVector<BasicBlock *> &CSEBlocks)
6690 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq),
6691 CSEBlocks(CSEBlocks) {}
6692
6693 /// Adds a mask, inverting it before applying.
6694 void addInversedMask(ArrayRef<unsigned> SubMask) {
6695 if (SubMask.empty())
6696 return;
6697 SmallVector<int, 4> NewMask;
6698 inversePermutation(SubMask, NewMask);
6699 addMask(NewMask);
6700 }
6701
6702 /// Functions adds masks, merging them into single one.
6703 void addMask(ArrayRef<unsigned> SubMask) {
6704 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
6705 addMask(NewMask);
6706 }
6707
6708 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
6709
6710 Value *finalize(Value *V) {
6711 IsFinalized = true;
6712 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
6713 if (VF == ValueVF && Mask.empty())
6714 return V;
6715 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
6716 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
6717 addMask(NormalizedMask);
6718
6719 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
6720 return V;
6721 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle");
6722 if (auto *I = dyn_cast<Instruction>(Vec)) {
6723 GatherShuffleSeq.insert(I);
6724 CSEBlocks.insert(I->getParent());
6725 }
6726 return Vec;
6727 }
6728
6729 ~ShuffleInstructionBuilder() {
6730 assert((IsFinalized || Mask.empty()) &&(static_cast <bool> ((IsFinalized || Mask.empty()) &&
"Shuffle construction must be finalized.") ? void (0) : __assert_fail
("(IsFinalized || Mask.empty()) && \"Shuffle construction must be finalized.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6731, __extension__
__PRETTY_FUNCTION__))
6731 "Shuffle construction must be finalized.")(static_cast <bool> ((IsFinalized || Mask.empty()) &&
"Shuffle construction must be finalized.") ? void (0) : __assert_fail
("(IsFinalized || Mask.empty()) && \"Shuffle construction must be finalized.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6731, __extension__
__PRETTY_FUNCTION__))
;
6732 }
6733};
6734} // namespace
6735
6736Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
6737 const unsigned VF = VL.size();
6738 InstructionsState S = getSameOpcode(VL);
6739 if (S.getOpcode()) {
6740 if (TreeEntry *E = getTreeEntry(S.OpValue))
6741 if (E->isSame(VL)) {
6742 Value *V = vectorizeTree(E);
6743 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
6744 if (!E->ReuseShuffleIndices.empty()) {
6745 // Reshuffle to get only unique values.
6746 // If some of the scalars are duplicated in the vectorization tree
6747 // entry, we do not vectorize them but instead generate a mask for
6748 // the reuses. But if there are several users of the same entry,
6749 // they may have different vectorization factors. This is especially
6750 // important for PHI nodes. In this case, we need to adapt the
6751 // resulting instruction for the user vectorization factor and have
6752 // to reshuffle it again to take only unique elements of the vector.
6753 // Without this code the function incorrectly returns reduced vector
6754 // instruction with the same elements, not with the unique ones.
6755
6756 // block:
6757 // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
6758 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
6759 // ... (use %2)
6760 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
6761 // br %block
6762 SmallVector<int> UniqueIdxs(VF, UndefMaskElem);
6763 SmallSet<int, 4> UsedIdxs;
6764 int Pos = 0;
6765 int Sz = VL.size();
6766 for (int Idx : E->ReuseShuffleIndices) {
6767 if (Idx != Sz && Idx != UndefMaskElem &&
6768 UsedIdxs.insert(Idx).second)
6769 UniqueIdxs[Idx] = Pos;
6770 ++Pos;
6771 }
6772 assert(VF >= UsedIdxs.size() && "Expected vectorization factor "(static_cast <bool> (VF >= UsedIdxs.size() &&
"Expected vectorization factor " "less than original vector size."
) ? void (0) : __assert_fail ("VF >= UsedIdxs.size() && \"Expected vectorization factor \" \"less than original vector size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6773, __extension__
__PRETTY_FUNCTION__))
6773 "less than original vector size.")(static_cast <bool> (VF >= UsedIdxs.size() &&
"Expected vectorization factor " "less than original vector size."
) ? void (0) : __assert_fail ("VF >= UsedIdxs.size() && \"Expected vectorization factor \" \"less than original vector size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6773, __extension__
__PRETTY_FUNCTION__))
;
6774 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
6775 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
6776 } else {
6777 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&(static_cast <bool> (VF < cast<FixedVectorType>
(V->getType())->getNumElements() && "Expected vectorization factor less "
"than original vector size.") ? void (0) : __assert_fail ("VF < cast<FixedVectorType>(V->getType())->getNumElements() && \"Expected vectorization factor less \" \"than original vector size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6779, __extension__
__PRETTY_FUNCTION__))
6778 "Expected vectorization factor less "(static_cast <bool> (VF < cast<FixedVectorType>
(V->getType())->getNumElements() && "Expected vectorization factor less "
"than original vector size.") ? void (0) : __assert_fail ("VF < cast<FixedVectorType>(V->getType())->getNumElements() && \"Expected vectorization factor less \" \"than original vector size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6779, __extension__
__PRETTY_FUNCTION__))
6779 "than original vector size.")(static_cast <bool> (VF < cast<FixedVectorType>
(V->getType())->getNumElements() && "Expected vectorization factor less "
"than original vector size.") ? void (0) : __assert_fail ("VF < cast<FixedVectorType>(V->getType())->getNumElements() && \"Expected vectorization factor less \" \"than original vector size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6779, __extension__
__PRETTY_FUNCTION__))
;
6780 SmallVector<int> UniformMask(VF, 0);
6781 std::iota(UniformMask.begin(), UniformMask.end(), 0);
6782 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
6783 }
6784 if (auto *I = dyn_cast<Instruction>(V)) {
6785 GatherShuffleSeq.insert(I);
6786 CSEBlocks.insert(I->getParent());
6787 }
6788 }
6789 return V;
6790 }
6791 }
6792
6793 // Can't vectorize this, so simply build a new vector with each lane
6794 // corresponding to the requested value.
6795 return createBuildVector(VL);
6796}
6797Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) {
6798 unsigned VF = VL.size();
6799 // Exploit possible reuse of values across lanes.
6800 SmallVector<int> ReuseShuffleIndicies;
6801 SmallVector<Value *> UniqueValues;
6802 if (VL.size() > 2) {
6803 DenseMap<Value *, unsigned> UniquePositions;
6804 unsigned NumValues =
6805 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
6806 return !isa<UndefValue>(V);
6807 }).base());
6808 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
6809 int UniqueVals = 0;
6810 for (Value *V : VL.drop_back(VL.size() - VF)) {
6811 if (isa<UndefValue>(V)) {
6812 ReuseShuffleIndicies.emplace_back(UndefMaskElem);
6813 continue;
6814 }
6815 if (isConstant(V)) {
6816 ReuseShuffleIndicies.emplace_back(UniqueValues.size());
6817 UniqueValues.emplace_back(V);
6818 continue;
6819 }
6820 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
6821 ReuseShuffleIndicies.emplace_back(Res.first->second);
6822 if (Res.second) {
6823 UniqueValues.emplace_back(V);
6824 ++UniqueVals;
6825 }
6826 }
6827 if (UniqueVals == 1 && UniqueValues.size() == 1) {
6828 // Emit pure splat vector.
6829 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
6830 UndefMaskElem);
6831 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
6832 ReuseShuffleIndicies.clear();
6833 UniqueValues.clear();
6834 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
6835 }
6836 UniqueValues.append(VF - UniqueValues.size(),
6837 PoisonValue::get(VL[0]->getType()));
6838 VL = UniqueValues;
6839 }
6840
6841 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
6842 CSEBlocks);
6843 Value *Vec = gather(VL);
6844 if (!ReuseShuffleIndicies.empty()) {
6845 ShuffleBuilder.addMask(ReuseShuffleIndicies);
6846 Vec = ShuffleBuilder.finalize(Vec);
6847 }
6848 return Vec;
6849}
6850
6851Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
6852 IRBuilder<>::InsertPointGuard Guard(Builder);
6853
6854 if (E->VectorizedValue) {
6855 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*E->Scalars[0] << ".\n"; } } while (false)
;
6856 return E->VectorizedValue;
6857 }
6858
6859 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
6860 unsigned VF = E->getVectorFactor();
6861 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
6862 CSEBlocks);
6863 if (E->State == TreeEntry::NeedToGather) {
6864 if (E->getMainOp())
6865 setInsertPointAfterBundle(E);
6866 Value *Vec;
6867 SmallVector<int> Mask;
6868 SmallVector<const TreeEntry *> Entries;
6869 Optional<TargetTransformInfo::ShuffleKind> Shuffle =
6870 isGatherShuffledEntry(E, Mask, Entries);
6871 if (Shuffle.hasValue()) {
6872 assert((Entries.size() == 1 || Entries.size() == 2) &&(static_cast <bool> ((Entries.size() == 1 || Entries.size
() == 2) && "Expected shuffle of 1 or 2 entries.") ? void
(0) : __assert_fail ("(Entries.size() == 1 || Entries.size() == 2) && \"Expected shuffle of 1 or 2 entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6873, __extension__
__PRETTY_FUNCTION__))
6873 "Expected shuffle of 1 or 2 entries.")(static_cast <bool> ((Entries.size() == 1 || Entries.size
() == 2) && "Expected shuffle of 1 or 2 entries.") ? void
(0) : __assert_fail ("(Entries.size() == 1 || Entries.size() == 2) && \"Expected shuffle of 1 or 2 entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6873, __extension__
__PRETTY_FUNCTION__))
;
6874 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
6875 Entries.back()->VectorizedValue, Mask);
6876 if (auto *I = dyn_cast<Instruction>(Vec)) {
6877 GatherShuffleSeq.insert(I);
6878 CSEBlocks.insert(I->getParent());
6879 }
6880 } else {
6881 Vec = gather(E->Scalars);
6882 }
6883 if (NeedToShuffleReuses) {
6884 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6885 Vec = ShuffleBuilder.finalize(Vec);
6886 }
6887 E->VectorizedValue = Vec;
6888 return Vec;
6889 }
6890
6891 assert((E->State == TreeEntry::Vectorize ||(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6893, __extension__
__PRETTY_FUNCTION__))
6892 E->State == TreeEntry::ScatterVectorize) &&(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6893, __extension__
__PRETTY_FUNCTION__))
6893 "Unhandled state")(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6893, __extension__
__PRETTY_FUNCTION__))
;
6894 unsigned ShuffleOrOp =
6895 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
6896 Instruction *VL0 = E->getMainOp();
6897 Type *ScalarTy = VL0->getType();
6898 if (auto *Store = dyn_cast<StoreInst>(VL0))
6899 ScalarTy = Store->getValueOperand()->getType();
6900 else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
6901 ScalarTy = IE->getOperand(1)->getType();
6902 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
6903 switch (ShuffleOrOp) {
6904 case Instruction::PHI: {
6905 assert((static_cast <bool> ((E->ReorderIndices.empty() || E
!= VectorizableTree.front().get()) && "PHI reordering is free."
) ? void (0) : __assert_fail ("(E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && \"PHI reordering is free.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6907, __extension__
__PRETTY_FUNCTION__))
6906 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) &&(static_cast <bool> ((E->ReorderIndices.empty() || E
!= VectorizableTree.front().get()) && "PHI reordering is free."
) ? void (0) : __assert_fail ("(E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && \"PHI reordering is free.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6907, __extension__
__PRETTY_FUNCTION__))
6907 "PHI reordering is free.")(static_cast <bool> ((E->ReorderIndices.empty() || E
!= VectorizableTree.front().get()) && "PHI reordering is free."
) ? void (0) : __assert_fail ("(E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && \"PHI reordering is free.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6907, __extension__
__PRETTY_FUNCTION__))
;
6908 auto *PH = cast<PHINode>(VL0);
6909 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
6910 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
6911 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
6912 Value *V = NewPhi;
6913
6914 // Adjust insertion point once all PHI's have been generated.
6915 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt());
6916 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
6917
6918 ShuffleBuilder.addInversedMask(E->ReorderIndices);
6919 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6920 V = ShuffleBuilder.finalize(V);
6921
6922 E->VectorizedValue = V;
6923
6924 // PHINodes may have multiple entries from the same block. We want to
6925 // visit every block once.
6926 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
6927
6928 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
6929 ValueList Operands;
6930 BasicBlock *IBB = PH->getIncomingBlock(i);
6931
6932 if (!VisitedBBs.insert(IBB).second) {
6933 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
6934 continue;
6935 }
6936
6937 Builder.SetInsertPoint(IBB->getTerminator());
6938 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
6939 Value *Vec = vectorizeTree(E->getOperand(i));
6940 NewPhi->addIncoming(Vec, IBB);
6941 }
6942
6943 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&(static_cast <bool> (NewPhi->getNumIncomingValues() ==
PH->getNumIncomingValues() && "Invalid number of incoming values"
) ? void (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6944, __extension__
__PRETTY_FUNCTION__))
6944 "Invalid number of incoming values")(static_cast <bool> (NewPhi->getNumIncomingValues() ==
PH->getNumIncomingValues() && "Invalid number of incoming values"
) ? void (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6944, __extension__
__PRETTY_FUNCTION__))
;
6945 return V;
6946 }
6947
6948 case Instruction::ExtractElement: {
6949 Value *V = E->getSingleOperand(0);
6950 Builder.SetInsertPoint(VL0);
6951 ShuffleBuilder.addInversedMask(E->ReorderIndices);
6952 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6953 V = ShuffleBuilder.finalize(V);
6954 E->VectorizedValue = V;
6955 return V;
6956 }
6957 case Instruction::ExtractValue: {
6958 auto *LI = cast<LoadInst>(E->getSingleOperand(0));
6959 Builder.SetInsertPoint(LI);
6960 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
6961 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
6962 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
6963 Value *NewV = propagateMetadata(V, E->Scalars);
6964 ShuffleBuilder.addInversedMask(E->ReorderIndices);
6965 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6966 NewV = ShuffleBuilder.finalize(NewV);
6967 E->VectorizedValue = NewV;
6968 return NewV;
6969 }
6970 case Instruction::InsertElement: {
6971 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique")(static_cast <bool> (E->ReuseShuffleIndices.empty() &&
"All inserts should be unique") ? void (0) : __assert_fail (
"E->ReuseShuffleIndices.empty() && \"All inserts should be unique\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6971, __extension__
__PRETTY_FUNCTION__))
;
6972 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
6973 Value *V = vectorizeTree(E->getOperand(1));
6974
6975 // Create InsertVector shuffle if necessary
6976 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
6977 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
6978 }));
6979 const unsigned NumElts =
6980 cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
6981 const unsigned NumScalars = E->Scalars.size();
6982
6983 unsigned Offset = *getInsertIndex(VL0);
6984 assert(Offset < NumElts && "Failed to find vector index offset")(static_cast <bool> (Offset < NumElts && "Failed to find vector index offset"
) ? void (0) : __assert_fail ("Offset < NumElts && \"Failed to find vector index offset\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6984, __extension__
__PRETTY_FUNCTION__))
;
6985
6986 // Create shuffle to resize vector
6987 SmallVector<int> Mask;
6988 if (!E->ReorderIndices.empty()) {
6989 inversePermutation(E->ReorderIndices, Mask);
6990 Mask.append(NumElts - NumScalars, UndefMaskElem);
6991 } else {
6992 Mask.assign(NumElts, UndefMaskElem);
6993 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
6994 }
6995 // Create InsertVector shuffle if necessary
6996 bool IsIdentity = true;
6997 SmallVector<int> PrevMask(NumElts, UndefMaskElem);
6998 Mask.swap(PrevMask);
6999 for (unsigned I = 0; I < NumScalars; ++I) {
7000 Value *Scalar = E->Scalars[PrevMask[I]];
7001 unsigned InsertIdx = *getInsertIndex(Scalar);
7002 IsIdentity &= InsertIdx - Offset == I;
7003 Mask[InsertIdx - Offset] = I;
7004 }
7005 if (!IsIdentity || NumElts != NumScalars) {
7006 V = Builder.CreateShuffleVector(V, Mask);
7007 if (auto *I = dyn_cast<Instruction>(V)) {
7008 GatherShuffleSeq.insert(I);
7009 CSEBlocks.insert(I->getParent());
7010 }
7011 }
7012
7013 if ((!IsIdentity || Offset != 0 ||
7014 !isUndefVector(FirstInsert->getOperand(0))) &&
7015 NumElts != NumScalars) {
7016 SmallVector<int> InsertMask(NumElts);
7017 std::iota(InsertMask.begin(), InsertMask.end(), 0);
7018 for (unsigned I = 0; I < NumElts; I++) {
7019 if (Mask[I] != UndefMaskElem)
7020 InsertMask[Offset + I] = NumElts + I;
7021 }
7022
7023 V = Builder.CreateShuffleVector(
7024 FirstInsert->getOperand(0), V, InsertMask,
7025 cast<Instruction>(E->Scalars.back())->getName());
7026 if (auto *I = dyn_cast<Instruction>(V)) {
7027 GatherShuffleSeq.insert(I);
7028 CSEBlocks.insert(I->getParent());
7029 }
7030 }
7031
7032 ++NumVectorInstructions;
7033 E->VectorizedValue = V;
7034 return V;
7035 }
7036 case Instruction::ZExt:
7037 case Instruction::SExt:
7038 case Instruction::FPToUI:
7039 case Instruction::FPToSI:
7040 case Instruction::FPExt:
7041 case Instruction::PtrToInt:
7042 case Instruction::IntToPtr:
7043 case Instruction::SIToFP:
7044 case Instruction::UIToFP:
7045 case Instruction::Trunc:
7046 case Instruction::FPTrunc:
7047 case Instruction::BitCast: {
7048 setInsertPointAfterBundle(E);
7049
7050 Value *InVec = vectorizeTree(E->getOperand(0));
7051
7052 if (E->VectorizedValue) {
7053 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
7054 return E->VectorizedValue;
7055 }
7056
7057 auto *CI = cast<CastInst>(VL0);
7058 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
7059 ShuffleBuilder.addInversedMask(E->ReorderIndices);
7060 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7061 V = ShuffleBuilder.finalize(V);
7062
7063 E->VectorizedValue = V;
7064 ++NumVectorInstructions;
7065 return V;
7066 }
7067 case Instruction::FCmp:
7068 case Instruction::ICmp: {
7069 setInsertPointAfterBundle(E);
7070
7071 Value *L = vectorizeTree(E->getOperand(0));
7072 Value *R = vectorizeTree(E->getOperand(1));
7073
7074 if (E->VectorizedValue) {
7075 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
7076 return E->VectorizedValue;
7077 }
7078
7079 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
7080 Value *V = Builder.CreateCmp(P0, L, R);
7081 propagateIRFlags(V, E->Scalars, VL0);
7082 ShuffleBuilder.addInversedMask(E->ReorderIndices);
7083 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7084 V = ShuffleBuilder.finalize(V);
7085
7086 E->VectorizedValue = V;
7087 ++NumVectorInstructions;
7088 return V;
7089 }
7090 case Instruction::Select: {
7091 setInsertPointAfterBundle(E);
7092
7093 Value *Cond = vectorizeTree(E->getOperand(0));
7094 Value *True = vectorizeTree(E->getOperand(1));
7095 Value *False = vectorizeTree(E->getOperand(2));
7096
7097 if (E->VectorizedValue) {
7098 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
7099 return E->VectorizedValue;
7100 }
7101
7102 Value *V = Builder.CreateSelect(Cond, True, False);
7103 ShuffleBuilder.addInversedMask(E->ReorderIndices);
7104 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7105 V = ShuffleBuilder.finalize(V);
7106
7107 E->VectorizedValue = V;
7108 ++NumVectorInstructions;
7109 return V;
7110 }
7111 case Instruction::FNeg: {
7112 setInsertPointAfterBundle(E);
7113
7114 Value *Op = vectorizeTree(E->getOperand(0));
7115
7116 if (E->VectorizedValue) {
7117 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
7118 return E->VectorizedValue;
7119 }
7120
7121 Value *V = Builder.CreateUnOp(
7122 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
7123 propagateIRFlags(V, E->Scalars, VL0);
7124 if (auto *I = dyn_cast<Instruction>(V))
7125 V = propagateMetadata(I, E->Scalars);
7126
7127 ShuffleBuilder.addInversedMask(E->ReorderIndices);
7128 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7129 V = ShuffleBuilder.finalize(V);
7130
7131 E->VectorizedValue = V;
7132 ++NumVectorInstructions;
7133
7134 return V;
7135 }
7136 case Instruction::Add:
7137 case Instruction::FAdd:
7138 case Instruction::Sub:
7139 case Instruction::FSub:
7140 case Instruction::Mul:
7141 case Instruction::FMul:
7142 case Instruction::UDiv:
7143 case Instruction::SDiv:
7144 case Instruction::FDiv:
7145 case Instruction::URem:
7146 case Instruction::SRem:
7147 case Instruction::FRem:
7148 case Instruction::Shl:
7149 case Instruction::LShr:
7150 case Instruction::AShr:
7151 case Instruction::And:
7152 case Instruction::Or:
7153 case Instruction::Xor: {
7154 setInsertPointAfterBundle(E);
7155
7156 Value *LHS = vectorizeTree(E->getOperand(0));
7157 Value *RHS = vectorizeTree(E->getOperand(1));
7158
7159 if (E->VectorizedValue) {
7160 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
7161 return E->VectorizedValue;
7162 }
7163
7164 Value *V = Builder.CreateBinOp(
7165 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
7166 RHS);
7167 propagateIRFlags(V, E->Scalars, VL0);
7168 if (auto *I = dyn_cast<Instruction>(V))
7169 V = propagateMetadata(I, E->Scalars);
7170
7171 ShuffleBuilder.addInversedMask(E->ReorderIndices);
7172 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7173 V = ShuffleBuilder.finalize(V);
7174
7175 E->VectorizedValue = V;
7176 ++NumVectorInstructions;
7177
7178 return V;
7179 }
7180 case Instruction::Load: {
7181 // Loads are inserted at the head of the tree because we don't want to
7182 // sink them all the way down past store instructions.
7183 setInsertPointAfterBundle(E);
7184
7185 LoadInst *LI = cast<LoadInst>(VL0);
7186 Instruction *NewLI;
7187 unsigned AS = LI->getPointerAddressSpace();
7188 Value *PO = LI->getPointerOperand();
7189 if (E->State == TreeEntry::Vectorize) {
7190 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
7191 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
7192
7193 // The pointer operand uses an in-tree scalar so we add the new BitCast
7194 // or LoadInst to ExternalUses list to make sure that an extract will
7195 // be generated in the future.
7196 if (TreeEntry *Entry = getTreeEntry(PO)) {
7197 // Find which lane we need to extract.
7198 unsigned FoundLane = Entry->findLaneForValue(PO);
7199 ExternalUses.emplace_back(
7200 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane);
7201 }
7202 } else {
7203 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state")(static_cast <bool> (E->State == TreeEntry::ScatterVectorize
&& "Unhandled state") ? void (0) : __assert_fail ("E->State == TreeEntry::ScatterVectorize && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7203, __extension__
__PRETTY_FUNCTION__))
;
7204 Value *VecPtr = vectorizeTree(E->getOperand(0));
7205 // Use the minimum alignment of the gathered loads.
7206 Align CommonAlignment = LI->getAlign();
7207 for (Value *V : E->Scalars)
7208 CommonAlignment =
7209 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
7210 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
7211 }
7212 Value *V = propagateMetadata(NewLI, E->Scalars);
7213
7214 ShuffleBuilder.addInversedMask(E->ReorderIndices);
7215 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7216 V = ShuffleBuilder.finalize(V);
7217 E->VectorizedValue = V;
7218 ++NumVectorInstructions;
7219 return V;
7220 }
7221 case Instruction::Store: {
7222 auto *SI = cast<StoreInst>(VL0);
7223 unsigned AS = SI->getPointerAddressSpace();
7224
7225 setInsertPointAfterBundle(E);
7226
7227 Value *VecValue = vectorizeTree(E->getOperand(0));
7228 ShuffleBuilder.addMask(E->ReorderIndices);
7229 VecValue = ShuffleBuilder.finalize(VecValue);
7230
7231 Value *ScalarPtr = SI->getPointerOperand();
7232 Value *VecPtr = Builder.CreateBitCast(
7233 ScalarPtr, VecValue->getType()->getPointerTo(AS));
7234 StoreInst *ST =
7235 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign());
7236
7237 // The pointer operand uses an in-tree scalar, so add the new BitCast or
7238 // StoreInst to ExternalUses to make sure that an extract will be
7239 // generated in the future.
7240 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
7241 // Find which lane we need to extract.
7242 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
7243 ExternalUses.push_back(ExternalUser(
7244 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST,
7245 FoundLane));
7246 }
7247
7248 Value *V = propagateMetadata(ST, E->Scalars);
7249
7250 E->VectorizedValue = V;
7251 ++NumVectorInstructions;
7252 return V;
7253 }
7254 case Instruction::GetElementPtr: {
7255 auto *GEP0 = cast<GetElementPtrInst>(VL0);
7256 setInsertPointAfterBundle(E);
7257
7258 Value *Op0 = vectorizeTree(E->getOperand(0));
7259
7260 SmallVector<Value *> OpVecs;
7261 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
7262 Value *OpVec = vectorizeTree(E->getOperand(J));
7263 OpVecs.push_back(OpVec);
7264 }
7265
7266 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
7267 if (Instruction *I = dyn_cast<Instruction>(V))
7268 V = propagateMetadata(I, E->Scalars);
7269
7270 ShuffleBuilder.addInversedMask(E->ReorderIndices);
7271 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7272 V = ShuffleBuilder.finalize(V);
7273
7274 E->VectorizedValue = V;
7275 ++NumVectorInstructions;
7276
7277 return V;
7278 }
7279 case Instruction::Call: {
7280 CallInst *CI = cast<CallInst>(VL0);
7281 setInsertPointAfterBundle(E);
7282
7283 Intrinsic::ID IID = Intrinsic::not_intrinsic;
7284 if (Function *FI = CI->getCalledFunction())
7285 IID = FI->getIntrinsicID();
7286
7287 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7288
7289 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
7290 bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
7291 VecCallCosts.first <= VecCallCosts.second;
7292
7293 Value *ScalarArg = nullptr;
7294 std::vector<Value *> OpVecs;
7295 SmallVector<Type *, 2> TysForDecl =
7296 {FixedVectorType::get(CI->getType(), E->Scalars.size())};
7297 for (int j = 0, e = CI->arg_size(); j < e; ++j) {
7298 ValueList OpVL;
7299 // Some intrinsics have scalar arguments. This argument should not be
7300 // vectorized.
7301 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
7302 CallInst *CEI = cast<CallInst>(VL0);
7303 ScalarArg = CEI->getArgOperand(j);
7304 OpVecs.push_back(CEI->getArgOperand(j));
7305 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j))
7306 TysForDecl.push_back(ScalarArg->getType());
7307 continue;
7308 }
7309
7310 Value *OpVec = vectorizeTree(E->getOperand(j));
7311 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: OpVec[" << j << "]: "
<< *OpVec << "\n"; } } while (false)
;
7312 OpVecs.push_back(OpVec);
7313 }
7314
7315 Function *CF;
7316 if (!UseIntrinsic) {
7317 VFShape Shape =
7318 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
7319 VecTy->getNumElements())),
7320 false /*HasGlobalPred*/);
7321 CF = VFDatabase(*CI).getVectorizedFunction(Shape);
7322 } else {
7323 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
7324 }
7325
7326 SmallVector<OperandBundleDef, 1> OpBundles;
7327 CI->getOperandBundlesAsDefs(OpBundles);
7328 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
7329
7330 // The scalar argument uses an in-tree scalar so we add the new vectorized
7331 // call to ExternalUses list to make sure that an extract will be
7332 // generated in the future.
7333 if (ScalarArg) {
7334 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
7335 // Find which lane we need to extract.
7336 unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
7337 ExternalUses.push_back(
7338 ExternalUser(ScalarArg, cast<User>(V), FoundLane));
7339 }
7340 }
7341
7342 propagateIRFlags(V, E->Scalars, VL0);
7343 ShuffleBuilder.addInversedMask(E->ReorderIndices);
7344 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7345 V = ShuffleBuilder.finalize(V);
7346
7347 E->VectorizedValue = V;
7348 ++NumVectorInstructions;
7349 return V;
7350 }
7351 case Instruction::ShuffleVector: {
7352 assert(E->isAltShuffle() &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7358, __extension__
__PRETTY_FUNCTION__))
7353 ((Instruction::isBinaryOp(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7358, __extension__
__PRETTY_FUNCTION__))
7354 Instruction::isBinaryOp(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7358, __extension__
__PRETTY_FUNCTION__))
7355 (Instruction::isCast(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7358, __extension__
__PRETTY_FUNCTION__))
7356 Instruction::isCast(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7358, __extension__
__PRETTY_FUNCTION__))
7357 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7358, __extension__
__PRETTY_FUNCTION__))
7358 "Invalid Shuffle Vector Operand")(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7358, __extension__
__PRETTY_FUNCTION__))
;
7359
7360 Value *LHS = nullptr, *RHS = nullptr;
7361 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
7362 setInsertPointAfterBundle(E);
7363 LHS = vectorizeTree(E->getOperand(0));
7364 RHS = vectorizeTree(E->getOperand(1));
7365 } else {
7366 setInsertPointAfterBundle(E);
7367 LHS = vectorizeTree(E->getOperand(0));
7368 }
7369
7370 if (E->VectorizedValue) {
7371 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
7372 return E->VectorizedValue;
7373 }
7374
7375 Value *V0, *V1;
7376 if (Instruction::isBinaryOp(E->getOpcode())) {
7377 V0 = Builder.CreateBinOp(
7378 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
7379 V1 = Builder.CreateBinOp(
7380 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
7381 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
7382 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
7383 auto *AltCI = cast<CmpInst>(E->getAltOp());
7384 CmpInst::Predicate AltPred = AltCI->getPredicate();
7385 V1 = Builder.CreateCmp(AltPred, LHS, RHS);
7386 } else {
7387 V0 = Builder.CreateCast(
7388 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
7389 V1 = Builder.CreateCast(
7390 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
7391 }
7392 // Add V0 and V1 to later analysis to try to find and remove matching
7393 // instruction, if any.
7394 for (Value *V : {V0, V1}) {
7395 if (auto *I = dyn_cast<Instruction>(V)) {
7396 GatherShuffleSeq.insert(I);
7397 CSEBlocks.insert(I->getParent());
7398 }
7399 }
7400
7401 // Create shuffle to take alternate operations from the vector.
7402 // Also, gather up main and alt scalar ops to propagate IR flags to
7403 // each vector operation.
7404 ValueList OpScalars, AltScalars;
7405 SmallVector<int> Mask;
7406 buildShuffleEntryMask(
7407 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
7408 [E](Instruction *I) {
7409 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"
) ? void (0) : __assert_fail ("E->isOpcodeOrAlt(I) && \"Unexpected main/alternate opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7409, __extension__
__PRETTY_FUNCTION__))
;
7410 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
7411 },
7412 Mask, &OpScalars, &AltScalars);
7413
7414 propagateIRFlags(V0, OpScalars);
7415 propagateIRFlags(V1, AltScalars);
7416
7417 Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
7418 if (auto *I = dyn_cast<Instruction>(V)) {
7419 V = propagateMetadata(I, E->Scalars);
7420 GatherShuffleSeq.insert(I);
7421 CSEBlocks.insert(I->getParent());
7422 }
7423 V = ShuffleBuilder.finalize(V);
7424
7425 E->VectorizedValue = V;
7426 ++NumVectorInstructions;
7427
7428 return V;
7429 }
7430 default:
7431 llvm_unreachable("unknown inst")::llvm::llvm_unreachable_internal("unknown inst", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7431)
;
7432 }
7433 return nullptr;
7434}
7435
7436Value *BoUpSLP::vectorizeTree() {
7437 ExtraValueToDebugLocsMap ExternallyUsedValues;
7438 return vectorizeTree(ExternallyUsedValues);
7439}
7440
7441Value *
7442BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
7443 // All blocks must be scheduled before any instructions are inserted.
7444 for (auto &BSIter : BlocksSchedules) {
7445 scheduleBlock(BSIter.second.get());
1
Calling 'BoUpSLP::scheduleBlock'
7446 }
7447
7448 Builder.SetInsertPoint(&F->getEntryBlock().front());
7449 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
7450
7451 // If the vectorized tree can be rewritten in a smaller type, we truncate the
7452 // vectorized root. InstCombine will then rewrite the entire expression. We
7453 // sign extend the extracted values below.
7454 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
7455 if (MinBWs.count(ScalarRoot)) {
7456 if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
7457 // If current instr is a phi and not the last phi, insert it after the
7458 // last phi node.
7459 if (isa<PHINode>(I))
7460 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
7461 else
7462 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
7463 }
7464 auto BundleWidth = VectorizableTree[0]->Scalars.size();
7465 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
7466 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
7467 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
7468 VectorizableTree[0]->VectorizedValue = Trunc;
7469 }
7470
7471 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
7472 << " values .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
;
7473
7474 // Extract all of the elements with the external uses.
7475 for (const auto &ExternalUse : ExternalUses) {
7476 Value *Scalar = ExternalUse.Scalar;
7477 llvm::User *User = ExternalUse.User;
7478
7479 // Skip users that we already RAUW. This happens when one instruction
7480 // has multiple uses of the same value.
7481 if (User && !is_contained(Scalar->users(), User))
7482 continue;
7483 TreeEntry *E = getTreeEntry(Scalar);
7484 assert(E && "Invalid scalar")(static_cast <bool> (E && "Invalid scalar") ? void
(0) : __assert_fail ("E && \"Invalid scalar\"", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7484, __extension__ __PRETTY_FUNCTION__))
;
7485 assert(E->State != TreeEntry::NeedToGather &&(static_cast <bool> (E->State != TreeEntry::NeedToGather
&& "Extracting from a gather list") ? void (0) : __assert_fail
("E->State != TreeEntry::NeedToGather && \"Extracting from a gather list\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7486, __extension__
__PRETTY_FUNCTION__))
7486 "Extracting from a gather list")(static_cast <bool> (E->State != TreeEntry::NeedToGather
&& "Extracting from a gather list") ? void (0) : __assert_fail
("E->State != TreeEntry::NeedToGather && \"Extracting from a gather list\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7486, __extension__
__PRETTY_FUNCTION__))
;
7487
7488 Value *Vec = E->VectorizedValue;
7489 assert(Vec && "Can't find vectorizable value")(static_cast <bool> (Vec && "Can't find vectorizable value"
) ? void (0) : __assert_fail ("Vec && \"Can't find vectorizable value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7489, __extension__
__PRETTY_FUNCTION__))
;
7490
7491 Value *Lane = Builder.getInt32(ExternalUse.Lane);
7492 auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
7493 if (Scalar->getType() != Vec->getType()) {
7494 Value *Ex;
7495 // "Reuse" the existing extract to improve final codegen.
7496 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
7497 Ex = Builder.CreateExtractElement(ES->getOperand(0),
7498 ES->getOperand(1));
7499 } else {
7500 Ex = Builder.CreateExtractElement(Vec, Lane);
7501 }
7502 // If necessary, sign-extend or zero-extend ScalarRoot
7503 // to the larger type.
7504 if (!MinBWs.count(ScalarRoot))
7505 return Ex;
7506 if (MinBWs[ScalarRoot].second)
7507 return Builder.CreateSExt(Ex, Scalar->getType());
7508 return Builder.CreateZExt(Ex, Scalar->getType());
7509 }
7510 assert(isa<FixedVectorType>(Scalar->getType()) &&(static_cast <bool> (isa<FixedVectorType>(Scalar->
getType()) && isa<InsertElementInst>(Scalar) &&
"In-tree scalar of vector type is not insertelement?") ? void
(0) : __assert_fail ("isa<FixedVectorType>(Scalar->getType()) && isa<InsertElementInst>(Scalar) && \"In-tree scalar of vector type is not insertelement?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7512, __extension__
__PRETTY_FUNCTION__))
7511 isa<InsertElementInst>(Scalar) &&(static_cast <bool> (isa<FixedVectorType>(Scalar->
getType()) && isa<InsertElementInst>(Scalar) &&
"In-tree scalar of vector type is not insertelement?") ? void
(0) : __assert_fail ("isa<FixedVectorType>(Scalar->getType()) && isa<InsertElementInst>(Scalar) && \"In-tree scalar of vector type is not insertelement?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7512, __extension__
__PRETTY_FUNCTION__))
7512 "In-tree scalar of vector type is not insertelement?")(static_cast <bool> (isa<FixedVectorType>(Scalar->
getType()) && isa<InsertElementInst>(Scalar) &&
"In-tree scalar of vector type is not insertelement?") ? void
(0) : __assert_fail ("isa<FixedVectorType>(Scalar->getType()) && isa<InsertElementInst>(Scalar) && \"In-tree scalar of vector type is not insertelement?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7512, __extension__
__PRETTY_FUNCTION__))
;
7513 return Vec;
7514 };
7515 // If User == nullptr, the Scalar is used as extra arg. Generate
7516 // ExtractElement instruction and update the record for this scalar in
7517 // ExternallyUsedValues.
7518 if (!User) {
7519 assert(ExternallyUsedValues.count(Scalar) &&(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7521, __extension__
__PRETTY_FUNCTION__))
7520 "Scalar with nullptr as an external user must be registered in "(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7521, __extension__
__PRETTY_FUNCTION__))
7521 "ExternallyUsedValues map")(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7521, __extension__
__PRETTY_FUNCTION__))
;
7522 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
7523 Builder.SetInsertPoint(VecI->getParent(),
7524 std::next(VecI->getIterator()));
7525 } else {
7526 Builder.SetInsertPoint(&F->getEntryBlock().front());
7527 }
7528 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7529 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
7530 auto &NewInstLocs = ExternallyUsedValues[NewInst];
7531 auto It = ExternallyUsedValues.find(Scalar);
7532 assert(It != ExternallyUsedValues.end() &&(static_cast <bool> (It != ExternallyUsedValues.end() &&
"Externally used scalar is not found in ExternallyUsedValues"
) ? void (0) : __assert_fail ("It != ExternallyUsedValues.end() && \"Externally used scalar is not found in ExternallyUsedValues\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7533, __extension__
__PRETTY_FUNCTION__))
7533 "Externally used scalar is not found in ExternallyUsedValues")(static_cast <bool> (It != ExternallyUsedValues.end() &&
"Externally used scalar is not found in ExternallyUsedValues"
) ? void (0) : __assert_fail ("It != ExternallyUsedValues.end() && \"Externally used scalar is not found in ExternallyUsedValues\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7533, __extension__
__PRETTY_FUNCTION__))
;
7534 NewInstLocs.append(It->second);
7535 ExternallyUsedValues.erase(Scalar);
7536 // Required to update internally referenced instructions.
7537 Scalar->replaceAllUsesWith(NewInst);
7538 continue;
7539 }
7540
7541 // Generate extracts for out-of-tree users.
7542 // Find the insertion point for the extractelement lane.
7543 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
7544 if (PHINode *PH = dyn_cast<PHINode>(User)) {
7545 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
7546 if (PH->getIncomingValue(i) == Scalar) {
7547 Instruction *IncomingTerminator =
7548 PH->getIncomingBlock(i)->getTerminator();
7549 if (isa<CatchSwitchInst>(IncomingTerminator)) {
7550 Builder.SetInsertPoint(VecI->getParent(),
7551 std::next(VecI->getIterator()));
7552 } else {
7553 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
7554 }
7555 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7556 CSEBlocks.insert(PH->getIncomingBlock(i));
7557 PH->setOperand(i, NewInst);
7558 }
7559 }
7560 } else {
7561 Builder.SetInsertPoint(cast<Instruction>(User));
7562 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7563 CSEBlocks.insert(cast<Instruction>(User)->getParent());
7564 User->replaceUsesOfWith(Scalar, NewInst);
7565 }
7566 } else {
7567 Builder.SetInsertPoint(&F->getEntryBlock().front());
7568 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7569 CSEBlocks.insert(&F->getEntryBlock());
7570 User->replaceUsesOfWith(Scalar, NewInst);
7571 }
7572
7573 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Replaced:" << *User <<
".\n"; } } while (false)
;
7574 }
7575
7576 // For each vectorized value:
7577 for (auto &TEPtr : VectorizableTree) {
7578 TreeEntry *Entry = TEPtr.get();
7579
7580 // No need to handle users of gathered values.
7581 if (Entry->State == TreeEntry::NeedToGather)
7582 continue;
7583
7584 assert(Entry->VectorizedValue && "Can't find vectorizable value")(static_cast <bool> (Entry->VectorizedValue &&
"Can't find vectorizable value") ? void (0) : __assert_fail (
"Entry->VectorizedValue && \"Can't find vectorizable value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7584, __extension__
__PRETTY_FUNCTION__))
;
7585
7586 // For each lane:
7587 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
7588 Value *Scalar = Entry->Scalars[Lane];
7589
7590#ifndef NDEBUG
7591 Type *Ty = Scalar->getType();
7592 if (!Ty->isVoidTy()) {
7593 for (User *U : Scalar->users()) {
7594 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tvalidating user:" <<
*U << ".\n"; } } while (false)
;
7595
7596 // It is legal to delete users in the ignorelist.
7597 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) ||(static_cast <bool> ((getTreeEntry(U) || is_contained(UserIgnoreList
, U) || (isa_and_nonnull<Instruction>(U) && isDeleted
(cast<Instruction>(U)))) && "Deleting out-of-tree value"
) ? void (0) : __assert_fail ("(getTreeEntry(U) || is_contained(UserIgnoreList, U) || (isa_and_nonnull<Instruction>(U) && isDeleted(cast<Instruction>(U)))) && \"Deleting out-of-tree value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7600, __extension__
__PRETTY_FUNCTION__))
7598 (isa_and_nonnull<Instruction>(U) &&(static_cast <bool> ((getTreeEntry(U) || is_contained(UserIgnoreList
, U) || (isa_and_nonnull<Instruction>(U) && isDeleted
(cast<Instruction>(U)))) && "Deleting out-of-tree value"
) ? void (0) : __assert_fail ("(getTreeEntry(U) || is_contained(UserIgnoreList, U) || (isa_and_nonnull<Instruction>(U) && isDeleted(cast<Instruction>(U)))) && \"Deleting out-of-tree value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7600, __extension__
__PRETTY_FUNCTION__))
7599 isDeleted(cast<Instruction>(U)))) &&(static_cast <bool> ((getTreeEntry(U) || is_contained(UserIgnoreList
, U) || (isa_and_nonnull<Instruction>(U) && isDeleted
(cast<Instruction>(U)))) && "Deleting out-of-tree value"
) ? void (0) : __assert_fail ("(getTreeEntry(U) || is_contained(UserIgnoreList, U) || (isa_and_nonnull<Instruction>(U) && isDeleted(cast<Instruction>(U)))) && \"Deleting out-of-tree value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7600, __extension__
__PRETTY_FUNCTION__))
7600 "Deleting out-of-tree value")(static_cast <bool> ((getTreeEntry(U) || is_contained(UserIgnoreList
, U) || (isa_and_nonnull<Instruction>(U) && isDeleted
(cast<Instruction>(U)))) && "Deleting out-of-tree value"
) ? void (0) : __assert_fail ("(getTreeEntry(U) || is_contained(UserIgnoreList, U) || (isa_and_nonnull<Instruction>(U) && isDeleted(cast<Instruction>(U)))) && \"Deleting out-of-tree value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7600, __extension__
__PRETTY_FUNCTION__))
;
7601 }
7602 }
7603#endif
7604 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tErasing scalar:" << *
Scalar << ".\n"; } } while (false)
;
7605 eraseInstruction(cast<Instruction>(Scalar));
7606 }
7607 }
7608
7609 Builder.ClearInsertionPoint();
7610 InstrElementSize.clear();
7611
7612 return VectorizableTree[0]->VectorizedValue;
7613}
7614
7615void BoUpSLP::optimizeGatherSequence() {
7616 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherShuffleSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
7617 << " gather sequences instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherShuffleSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
;
7618 // LICM InsertElementInst sequences.
7619 for (Instruction *I : GatherShuffleSeq) {
7620 if (isDeleted(I))
7621 continue;
7622
7623 // Check if this block is inside a loop.
7624 Loop *L = LI->getLoopFor(I->getParent());
7625 if (!L)
7626 continue;
7627
7628 // Check if it has a preheader.
7629 BasicBlock *PreHeader = L->getLoopPreheader();
7630 if (!PreHeader)
7631 continue;
7632
7633 // If the vector or the element that we insert into it are
7634 // instructions that are defined in this basic block then we can't
7635 // hoist this instruction.
7636 if (any_of(I->operands(), [L](Value *V) {
7637 auto *OpI = dyn_cast<Instruction>(V);
7638 return OpI && L->contains(OpI);
7639 }))
7640 continue;
7641
7642 // We can hoist this instruction. Move it to the pre-header.
7643 I->moveBefore(PreHeader->getTerminator());
7644 }
7645
7646 // Make a list of all reachable blocks in our CSE queue.
7647 SmallVector<const DomTreeNode *, 8> CSEWorkList;
7648 CSEWorkList.reserve(CSEBlocks.size());
7649 for (BasicBlock *BB : CSEBlocks)
7650 if (DomTreeNode *N = DT->getNode(BB)) {
7651 assert(DT->isReachableFromEntry(N))(static_cast <bool> (DT->isReachableFromEntry(N)) ? void
(0) : __assert_fail ("DT->isReachableFromEntry(N)", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7651, __extension__ __PRETTY_FUNCTION__))
;
7652 CSEWorkList.push_back(N);
7653 }
7654
7655 // Sort blocks by domination. This ensures we visit a block after all blocks
7656 // dominating it are visited.
7657 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
7658 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&(static_cast <bool> ((A == B) == (A->getDFSNumIn() ==
B->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7659, __extension__
__PRETTY_FUNCTION__))
7659 "Different nodes should have different DFS numbers")(static_cast <bool> ((A == B) == (A->getDFSNumIn() ==
B->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7659, __extension__
__PRETTY_FUNCTION__))
;
7660 return A->getDFSNumIn() < B->getDFSNumIn();
7661 });
7662
7663 // Less defined shuffles can be replaced by the more defined copies.
7664 // Between two shuffles one is less defined if it has the same vector operands
7665 // and its mask indeces are the same as in the first one or undefs. E.g.
7666 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
7667 // poison, <0, 0, 0, 0>.
7668 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
7669 SmallVectorImpl<int> &NewMask) {
7670 if (I1->getType() != I2->getType())
7671 return false;
7672 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
7673 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
7674 if (!SI1 || !SI2)
7675 return I1->isIdenticalTo(I2);
7676 if (SI1->isIdenticalTo(SI2))
7677 return true;
7678 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
7679 if (SI1->getOperand(I) != SI2->getOperand(I))
7680 return false;
7681 // Check if the second instruction is more defined than the first one.
7682 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
7683 ArrayRef<int> SM1 = SI1->getShuffleMask();
7684 // Count trailing undefs in the mask to check the final number of used
7685 // registers.
7686 unsigned LastUndefsCnt = 0;
7687 for (int I = 0, E = NewMask.size(); I < E; ++I) {
7688 if (SM1[I] == UndefMaskElem)
7689 ++LastUndefsCnt;
7690 else
7691 LastUndefsCnt = 0;
7692 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem &&
7693 NewMask[I] != SM1[I])
7694 return false;
7695 if (NewMask[I] == UndefMaskElem)
7696 NewMask[I] = SM1[I];
7697 }
7698 // Check if the last undefs actually change the final number of used vector
7699 // registers.
7700 return SM1.size() - LastUndefsCnt > 1 &&
7701 TTI->getNumberOfParts(SI1->getType()) ==
7702 TTI->getNumberOfParts(
7703 FixedVectorType::get(SI1->getType()->getElementType(),
7704 SM1.size() - LastUndefsCnt));
7705 };
7706 // Perform O(N^2) search over the gather/shuffle sequences and merge identical
7707 // instructions. TODO: We can further optimize this scan if we split the
7708 // instructions into different buckets based on the insert lane.
7709 SmallVector<Instruction *, 16> Visited;
7710 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
7711 assert(*I &&(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7713, __extension__
__PRETTY_FUNCTION__))
7712 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7713, __extension__
__PRETTY_FUNCTION__))
7713 "Worklist not sorted properly!")(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7713, __extension__
__PRETTY_FUNCTION__))
;
7714 BasicBlock *BB = (*I)->getBlock();
7715 // For all instructions in blocks containing gather sequences:
7716 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
7717 if (isDeleted(&In))
7718 continue;
7719 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) &&
7720 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In))
7721 continue;
7722
7723 // Check if we can replace this instruction with any of the
7724 // visited instructions.
7725 bool Replaced = false;
7726 for (Instruction *&V : Visited) {
7727 SmallVector<int> NewMask;
7728 if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
7729 DT->dominates(V->getParent(), In.getParent())) {
7730 In.replaceAllUsesWith(V);
7731 eraseInstruction(&In);
7732 if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
7733 if (!NewMask.empty())
7734 SI->setShuffleMask(NewMask);
7735 Replaced = true;
7736 break;
7737 }
7738 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
7739 GatherShuffleSeq.contains(V) &&
7740 IsIdenticalOrLessDefined(V, &In, NewMask) &&
7741 DT->dominates(In.getParent(), V->getParent())) {
7742 In.moveAfter(V);
7743 V->replaceAllUsesWith(&In);
7744 eraseInstruction(V);
7745 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
7746 if (!NewMask.empty())
7747 SI->setShuffleMask(NewMask);
7748 V = &In;
7749 Replaced = true;
7750 break;
7751 }
7752 }
7753 if (!Replaced) {
7754 assert(!is_contained(Visited, &In))(static_cast <bool> (!is_contained(Visited, &In)) ?
void (0) : __assert_fail ("!is_contained(Visited, &In)",
"llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7754, __extension__
__PRETTY_FUNCTION__))
;
7755 Visited.push_back(&In);
7756 }
7757 }
7758 }
7759 CSEBlocks.clear();
7760 GatherShuffleSeq.clear();
7761}
7762
7763BoUpSLP::ScheduleData *
7764BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
7765 ScheduleData *Bundle = nullptr;
7766 ScheduleData *PrevInBundle = nullptr;
7767 for (Value *V : VL) {
7768 if (doesNotNeedToBeScheduled(V))
7769 continue;
7770 ScheduleData *BundleMember = getScheduleData(V);
7771 assert(BundleMember &&(static_cast <bool> (BundleMember && "no ScheduleData for bundle member "
"(maybe not in same basic block)") ? void (0) : __assert_fail
("BundleMember && \"no ScheduleData for bundle member \" \"(maybe not in same basic block)\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7773, __extension__
__PRETTY_FUNCTION__))
7772 "no ScheduleData for bundle member "(static_cast <bool> (BundleMember && "no ScheduleData for bundle member "
"(maybe not in same basic block)") ? void (0) : __assert_fail
("BundleMember && \"no ScheduleData for bundle member \" \"(maybe not in same basic block)\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7773, __extension__
__PRETTY_FUNCTION__))
7773 "(maybe not in same basic block)")(static_cast <bool> (BundleMember && "no ScheduleData for bundle member "
"(maybe not in same basic block)") ? void (0) : __assert_fail
("BundleMember && \"no ScheduleData for bundle member \" \"(maybe not in same basic block)\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7773, __extension__
__PRETTY_FUNCTION__))
;
7774 assert(BundleMember->isSchedulingEntity() &&(static_cast <bool> (BundleMember->isSchedulingEntity
() && "bundle member already part of other bundle") ?
void (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7775, __extension__
__PRETTY_FUNCTION__))
7775 "bundle member already part of other bundle")(static_cast <bool> (BundleMember->isSchedulingEntity
() && "bundle member already part of other bundle") ?
void (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7775, __extension__
__PRETTY_FUNCTION__))
;
7776 if (PrevInBundle) {
7777 PrevInBundle->NextInBundle = BundleMember;
7778 } else {
7779 Bundle = BundleMember;
7780 }
7781
7782 // Group the instructions to a bundle.
7783 BundleMember->FirstInBundle = Bundle;
7784 PrevInBundle = BundleMember;
7785 }
7786 assert(Bundle && "Failed to find schedule bundle")(static_cast <bool> (Bundle && "Failed to find schedule bundle"
) ? void (0) : __assert_fail ("Bundle && \"Failed to find schedule bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7786, __extension__
__PRETTY_FUNCTION__))
;
7787 return Bundle;
7788}
7789
7790// Groups the instructions to a bundle (which is then a single scheduling entity)
7791// and schedules instructions until the bundle gets ready.
7792Optional<BoUpSLP::ScheduleData *>
7793BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
7794 const InstructionsState &S) {
7795 // No need to schedule PHIs, insertelement, extractelement and extractvalue
7796 // instructions.
7797 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) ||
7798 doesNotNeedToSchedule(VL))
7799 return nullptr;
7800
7801 // Initialize the instruction bundle.
7802 Instruction *OldScheduleEnd = ScheduleEnd;
7803 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle: " << *S.OpValue
<< "\n"; } } while (false)
;
7804
7805 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
7806 ScheduleData *Bundle) {
7807 // The scheduling region got new instructions at the lower end (or it is a
7808 // new region for the first bundle). This makes it necessary to
7809 // recalculate all dependencies.
7810 // It is seldom that this needs to be done a second time after adding the
7811 // initial bundle to the region.
7812 if (ScheduleEnd != OldScheduleEnd) {
7813 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
7814 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
7815 ReSchedule = true;
7816 }
7817 if (Bundle) {
7818 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundledo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
7819 << " in block " << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
;
7820 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
7821 }
7822
7823 if (ReSchedule) {
7824 resetSchedule();
7825 initialFillReadyList(ReadyInsts);
7826 }
7827
7828 // Now try to schedule the new bundle or (if no bundle) just calculate
7829 // dependencies. As soon as the bundle is "ready" it means that there are no
7830 // cyclic dependencies and we can schedule it. Note that's important that we
7831 // don't "schedule" the bundle yet (see cancelScheduling).
7832 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
7833 !ReadyInsts.empty()) {
7834 ScheduleData *Picked = ReadyInsts.pop_back_val();
7835 assert(Picked->isSchedulingEntity() && Picked->isReady() &&(static_cast <bool> (Picked->isSchedulingEntity() &&
Picked->isReady() && "must be ready to schedule")
? void (0) : __assert_fail ("Picked->isSchedulingEntity() && Picked->isReady() && \"must be ready to schedule\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7836, __extension__
__PRETTY_FUNCTION__))
7836 "must be ready to schedule")(static_cast <bool> (Picked->isSchedulingEntity() &&
Picked->isReady() && "must be ready to schedule")
? void (0) : __assert_fail ("Picked->isSchedulingEntity() && Picked->isReady() && \"must be ready to schedule\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7836, __extension__
__PRETTY_FUNCTION__))
;
7837 schedule(Picked, ReadyInsts);
7838 }
7839 };
7840
7841 // Make sure that the scheduling region contains all
7842 // instructions of the bundle.
7843 for (Value *V : VL) {
7844 if (doesNotNeedToBeScheduled(V))
7845 continue;
7846 if (!extendSchedulingRegion(V, S)) {
7847 // If the scheduling region got new instructions at the lower end (or it
7848 // is a new region for the first bundle). This makes it necessary to
7849 // recalculate all dependencies.
7850 // Otherwise the compiler may crash trying to incorrectly calculate
7851 // dependencies and emit instruction in the wrong order at the actual
7852 // scheduling.
7853 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
7854 return None;
7855 }
7856 }
7857
7858 bool ReSchedule = false;
7859 for (Value *V : VL) {
7860 if (doesNotNeedToBeScheduled(V))
7861 continue;
7862 ScheduleData *BundleMember = getScheduleData(V);
7863 assert(BundleMember &&(static_cast <bool> (BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? void (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7864, __extension__
__PRETTY_FUNCTION__))
7864 "no ScheduleData for bundle member (maybe not in same basic block)")(static_cast <bool> (BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? void (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7864, __extension__
__PRETTY_FUNCTION__))
;
7865
7866 // Make sure we don't leave the pieces of the bundle in the ready list when
7867 // whole bundle might not be ready.
7868 ReadyInsts.remove(BundleMember);
7869
7870 if (!BundleMember->IsScheduled)
7871 continue;
7872 // A bundle member was scheduled as single instruction before and now
7873 // needs to be scheduled as part of the bundle. We just get rid of the
7874 // existing schedule.
7875 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
7876 << " was already scheduled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
;
7877 ReSchedule = true;
7878 }
7879
7880 auto *Bundle = buildBundle(VL);
7881 TryScheduleBundleImpl(ReSchedule, Bundle);
7882 if (!Bundle->isReady()) {
7883 cancelScheduling(VL, S.OpValue);
7884 return None;
7885 }
7886 return Bundle;
7887}
7888
7889void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
7890 Value *OpValue) {
7891 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) ||
7892 doesNotNeedToSchedule(VL))
7893 return;
7894
7895 if (doesNotNeedToBeScheduled(OpValue))
7896 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled);
7897 ScheduleData *Bundle = getScheduleData(OpValue);
7898 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: cancel scheduling of " <<
*Bundle << "\n"; } } while (false)
;
7899 assert(!Bundle->IsScheduled &&(static_cast <bool> (!Bundle->IsScheduled &&
"Can't cancel bundle which is already scheduled") ? void (0)
: __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7900, __extension__
__PRETTY_FUNCTION__))
7900 "Can't cancel bundle which is already scheduled")(static_cast <bool> (!Bundle->IsScheduled &&
"Can't cancel bundle which is already scheduled") ? void (0)
: __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7900, __extension__
__PRETTY_FUNCTION__))
;
7901 assert(Bundle->isSchedulingEntity() &&(static_cast <bool> (Bundle->isSchedulingEntity() &&
(Bundle->isPartOfBundle() || needToScheduleSingleInstruction
(VL)) && "tried to unbundle something which is not a bundle"
) ? void (0) : __assert_fail ("Bundle->isSchedulingEntity() && (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && \"tried to unbundle something which is not a bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7903, __extension__
__PRETTY_FUNCTION__))
7902 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) &&(static_cast <bool> (Bundle->isSchedulingEntity() &&
(Bundle->isPartOfBundle() || needToScheduleSingleInstruction
(VL)) && "tried to unbundle something which is not a bundle"
) ? void (0) : __assert_fail ("Bundle->isSchedulingEntity() && (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && \"tried to unbundle something which is not a bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7903, __extension__
__PRETTY_FUNCTION__))
7903 "tried to unbundle something which is not a bundle")(static_cast <bool> (Bundle->isSchedulingEntity() &&
(Bundle->isPartOfBundle() || needToScheduleSingleInstruction
(VL)) && "tried to unbundle something which is not a bundle"
) ? void (0) : __assert_fail ("Bundle->isSchedulingEntity() && (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && \"tried to unbundle something which is not a bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7903, __extension__
__PRETTY_FUNCTION__))
;
7904
7905 // Remove the bundle from the ready list.
7906 if (Bundle->isReady())
7907 ReadyInsts.remove(Bundle);
7908
7909 // Un-bundle: make single instructions out of the bundle.
7910 ScheduleData *BundleMember = Bundle;
7911 while (BundleMember) {
7912 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links")(static_cast <bool> (BundleMember->FirstInBundle == Bundle
&& "corrupt bundle links") ? void (0) : __assert_fail
("BundleMember->FirstInBundle == Bundle && \"corrupt bundle links\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7912, __extension__
__PRETTY_FUNCTION__))
;
7913 BundleMember->FirstInBundle = BundleMember;
7914 ScheduleData *Next = BundleMember->NextInBundle;
7915 BundleMember->NextInBundle = nullptr;
7916 BundleMember->TE = nullptr;
7917 if (BundleMember->unscheduledDepsInBundle() == 0) {
7918 ReadyInsts.insert(BundleMember);
7919 }
7920 BundleMember = Next;
7921 }
7922}
7923
7924BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
7925 // Allocate a new ScheduleData for the instruction.
7926 if (ChunkPos >= ChunkSize) {
7927 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
7928 ChunkPos = 0;
7929 }
7930 return &(ScheduleDataChunks.back()[ChunkPos++]);
7931}
7932
7933bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
7934 const InstructionsState &S) {
7935 if (getScheduleData(V, isOneOf(S, V)))
7936 return true;
7937 Instruction *I = dyn_cast<Instruction>(V);
7938 assert(I && "bundle member must be an instruction")(static_cast <bool> (I && "bundle member must be an instruction"
) ? void (0) : __assert_fail ("I && \"bundle member must be an instruction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7938, __extension__
__PRETTY_FUNCTION__))
;
7939 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&(static_cast <bool> (!isa<PHINode>(I) && !
isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled
(I) && "phi nodes/insertelements/extractelements/extractvalues don't need to "
"be scheduled") ? void (0) : __assert_fail ("!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled(I) && \"phi nodes/insertelements/extractelements/extractvalues don't need to \" \"be scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7942, __extension__
__PRETTY_FUNCTION__))
7940 !doesNotNeedToBeScheduled(I) &&(static_cast <bool> (!isa<PHINode>(I) && !
isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled
(I) && "phi nodes/insertelements/extractelements/extractvalues don't need to "
"be scheduled") ? void (0) : __assert_fail ("!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled(I) && \"phi nodes/insertelements/extractelements/extractvalues don't need to \" \"be scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7942, __extension__
__PRETTY_FUNCTION__))
7941 "phi nodes/insertelements/extractelements/extractvalues don't need to "(static_cast <bool> (!isa<PHINode>(I) && !
isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled
(I) && "phi nodes/insertelements/extractelements/extractvalues don't need to "
"be scheduled") ? void (0) : __assert_fail ("!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled(I) && \"phi nodes/insertelements/extractelements/extractvalues don't need to \" \"be scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7942, __extension__
__PRETTY_FUNCTION__))
7942 "be scheduled")(static_cast <bool> (!isa<PHINode>(I) && !
isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled
(I) && "phi nodes/insertelements/extractelements/extractvalues don't need to "
"be scheduled") ? void (0) : __assert_fail ("!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled(I) && \"phi nodes/insertelements/extractelements/extractvalues don't need to \" \"be scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7942, __extension__
__PRETTY_FUNCTION__))
;
7943 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool {
7944 ScheduleData *ISD = getScheduleData(I);
7945 if (!ISD)
7946 return false;
7947 assert(isInSchedulingRegion(ISD) &&(static_cast <bool> (isInSchedulingRegion(ISD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7948, __extension__
__PRETTY_FUNCTION__))
7948 "ScheduleData not in scheduling region")(static_cast <bool> (isInSchedulingRegion(ISD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7948, __extension__
__PRETTY_FUNCTION__))
;
7949 ScheduleData *SD = allocateScheduleDataChunks();
7950 SD->Inst = I;
7951 SD->init(SchedulingRegionID, S.OpValue);
7952 ExtraScheduleDataMap[I][S.OpValue] = SD;
7953 return true;
7954 };
7955 if (CheckScheduleForI(I))
7956 return true;
7957 if (!ScheduleStart) {
7958 // It's the first instruction in the new region.
7959 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
7960 ScheduleStart = I;
7961 ScheduleEnd = I->getNextNode();
7962 if (isOneOf(S, I) != I)
7963 CheckScheduleForI(I);
7964 assert(ScheduleEnd && "tried to vectorize a terminator?")(static_cast <bool> (ScheduleEnd && "tried to vectorize a terminator?"
) ? void (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7964, __extension__
__PRETTY_FUNCTION__))
;
7965 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initialize schedule region to "
<< *I << "\n"; } } while (false)
;
7966 return true;
7967 }
7968 // Search up and down at the same time, because we don't know if the new
7969 // instruction is above or below the existing scheduling region.
7970 BasicBlock::reverse_iterator UpIter =
7971 ++ScheduleStart->getIterator().getReverse();
7972 BasicBlock::reverse_iterator UpperEnd = BB->rend();
7973 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
7974 BasicBlock::iterator LowerEnd = BB->end();
7975 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
7976 &*DownIter != I) {
7977 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
7978 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: exceeded schedule region size limit\n"
; } } while (false)
;
7979 return false;
7980 }
7981
7982 ++UpIter;
7983 ++DownIter;
7984 }
7985 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
7986 assert(I->getParent() == ScheduleStart->getParent() &&(static_cast <bool> (I->getParent() == ScheduleStart
->getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleStart->getParent() && \"Instruction is in wrong basic block.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7987, __extension__
__PRETTY_FUNCTION__))
7987 "Instruction is in wrong basic block.")(static_cast <bool> (I->getParent() == ScheduleStart
->getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleStart->getParent() && \"Instruction is in wrong basic block.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7987, __extension__
__PRETTY_FUNCTION__))
;
7988 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
7989 ScheduleStart = I;
7990 if (isOneOf(S, I) != I)
7991 CheckScheduleForI(I);
7992 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
7993 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
;
7994 return true;
7995 }
7996 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7998, __extension__
__PRETTY_FUNCTION__))
7997 "Expected to reach top of the basic block or instruction down the "(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7998, __extension__
__PRETTY_FUNCTION__))
7998 "lower end.")(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7998, __extension__
__PRETTY_FUNCTION__))
;
7999 assert(I->getParent() == ScheduleEnd->getParent() &&(static_cast <bool> (I->getParent() == ScheduleEnd->
getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleEnd->getParent() && \"Instruction is in wrong basic block.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8000, __extension__
__PRETTY_FUNCTION__))
8000 "Instruction is in wrong basic block.")(static_cast <bool> (I->getParent() == ScheduleEnd->
getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleEnd->getParent() && \"Instruction is in wrong basic block.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8000, __extension__
__PRETTY_FUNCTION__))
;
8001 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
8002 nullptr);
8003 ScheduleEnd = I->getNextNode();
8004 if (isOneOf(S, I) != I)
8005 CheckScheduleForI(I);
8006 assert(ScheduleEnd && "tried to vectorize a terminator?")(static_cast <bool> (ScheduleEnd && "tried to vectorize a terminator?"
) ? void (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8006, __extension__
__PRETTY_FUNCTION__))
;
8007 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region end to "
<< *I << "\n"; } } while (false)
;
8008 return true;
8009}
8010
8011void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
8012 Instruction *ToI,
8013 ScheduleData *PrevLoadStore,
8014 ScheduleData *NextLoadStore) {
8015 ScheduleData *CurrentLoadStore = PrevLoadStore;
8016 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
8017 // No need to allocate data for non-schedulable instructions.
8018 if (doesNotNeedToBeScheduled(I))
8019 continue;
8020 ScheduleData *SD = ScheduleDataMap.lookup(I);
8021 if (!SD) {
8022 SD = allocateScheduleDataChunks();
8023 ScheduleDataMap[I] = SD;
8024 SD->Inst = I;
8025 }
8026 assert(!isInSchedulingRegion(SD) &&(static_cast <bool> (!isInSchedulingRegion(SD) &&
"new ScheduleData already in scheduling region") ? void (0) :
__assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8027, __extension__
__PRETTY_FUNCTION__))
8027 "new ScheduleData already in scheduling region")(static_cast <bool> (!isInSchedulingRegion(SD) &&
"new ScheduleData already in scheduling region") ? void (0) :
__assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8027, __extension__
__PRETTY_FUNCTION__))
;
8028 SD->init(SchedulingRegionID, I);
8029
8030 if (I->mayReadOrWriteMemory() &&
8031 (!isa<IntrinsicInst>(I) ||
8032 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
8033 cast<IntrinsicInst>(I)->getIntrinsicID() !=
8034 Intrinsic::pseudoprobe))) {
8035 // Update the linked list of memory accessing instructions.
8036 if (CurrentLoadStore) {
8037 CurrentLoadStore->NextLoadStore = SD;
8038 } else {
8039 FirstLoadStoreInRegion = SD;
8040 }
8041 CurrentLoadStore = SD;
8042 }
8043
8044 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
8045 match(I, m_Intrinsic<Intrinsic::stackrestore>()))
8046 RegionHasStackSave = true;
8047 }
8048 if (NextLoadStore) {
8049 if (CurrentLoadStore)
8050 CurrentLoadStore->NextLoadStore = NextLoadStore;
8051 } else {
8052 LastLoadStoreInRegion = CurrentLoadStore;
8053 }
8054}
8055
8056void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
8057 bool InsertInReadyList,
8058 BoUpSLP *SLP) {
8059 assert(SD->isSchedulingEntity())(static_cast <bool> (SD->isSchedulingEntity()) ? void
(0) : __assert_fail ("SD->isSchedulingEntity()", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 8059, __extension__ __PRETTY_FUNCTION__))
;
8060
8061 SmallVector<ScheduleData *, 10> WorkList;
8062 WorkList.push_back(SD);
8063
8064 while (!WorkList.empty()) {
8065 ScheduleData *SD = WorkList.pop_back_val();
8066 for (ScheduleData *BundleMember = SD; BundleMember;
8067 BundleMember = BundleMember->NextInBundle) {
8068 assert(isInSchedulingRegion(BundleMember))(static_cast <bool> (isInSchedulingRegion(BundleMember)
) ? void (0) : __assert_fail ("isInSchedulingRegion(BundleMember)"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8068, __extension__
__PRETTY_FUNCTION__))
;
8069 if (BundleMember->hasValidDependencies())
8070 continue;
8071
8072 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
8073 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
;
8074 BundleMember->Dependencies = 0;
8075 BundleMember->resetUnscheduledDeps();
8076
8077 // Handle def-use chain dependencies.
8078 if (BundleMember->OpValue != BundleMember->Inst) {
8079 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) {
8080 BundleMember->Dependencies++;
8081 ScheduleData *DestBundle = UseSD->FirstInBundle;
8082 if (!DestBundle->IsScheduled)
8083 BundleMember->incrementUnscheduledDeps(1);
8084 if (!DestBundle->hasValidDependencies())
8085 WorkList.push_back(DestBundle);
8086 }
8087 } else {
8088 for (User *U : BundleMember->Inst->users()) {
8089 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) {
8090 BundleMember->Dependencies++;
8091 ScheduleData *DestBundle = UseSD->FirstInBundle;
8092 if (!DestBundle->IsScheduled)
8093 BundleMember->incrementUnscheduledDeps(1);
8094 if (!DestBundle->hasValidDependencies())
8095 WorkList.push_back(DestBundle);
8096 }
8097 }
8098 }
8099
8100 auto makeControlDependent = [&](Instruction *I) {
8101 auto *DepDest = getScheduleData(I);
8102 assert(DepDest && "must be in schedule window")(static_cast <bool> (DepDest && "must be in schedule window"
) ? void (0) : __assert_fail ("DepDest && \"must be in schedule window\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8102, __extension__
__PRETTY_FUNCTION__))
;
8103 DepDest->ControlDependencies.push_back(BundleMember);
8104 BundleMember->Dependencies++;
8105 ScheduleData *DestBundle = DepDest->FirstInBundle;
8106 if (!DestBundle->IsScheduled)
8107 BundleMember->incrementUnscheduledDeps(1);
8108 if (!DestBundle->hasValidDependencies())
8109 WorkList.push_back(DestBundle);
8110 };
8111
8112 // Any instruction which isn't safe to speculate at the begining of the
8113 // block is control dependend on any early exit or non-willreturn call
8114 // which proceeds it.
8115 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) {
8116 for (Instruction *I = BundleMember->Inst->getNextNode();
8117 I != ScheduleEnd; I = I->getNextNode()) {
8118 if (isSafeToSpeculativelyExecute(I, &*BB->begin()))
8119 continue;
8120
8121 // Add the dependency
8122 makeControlDependent(I);
8123
8124 if (!isGuaranteedToTransferExecutionToSuccessor(I))
8125 // Everything past here must be control dependent on I.
8126 break;
8127 }
8128 }
8129
8130 if (RegionHasStackSave) {
8131 // If we have an inalloc alloca instruction, it needs to be scheduled
8132 // after any preceeding stacksave. We also need to prevent any alloca
8133 // from reordering above a preceeding stackrestore.
8134 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) ||
8135 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) {
8136 for (Instruction *I = BundleMember->Inst->getNextNode();
8137 I != ScheduleEnd; I = I->getNextNode()) {
8138 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
8139 match(I, m_Intrinsic<Intrinsic::stackrestore>()))
8140 // Any allocas past here must be control dependent on I, and I
8141 // must be memory dependend on BundleMember->Inst.
8142 break;
8143
8144 if (!isa<AllocaInst>(I))
8145 continue;
8146
8147 // Add the dependency
8148 makeControlDependent(I);
8149 }
8150 }
8151
8152 // In addition to the cases handle just above, we need to prevent
8153 // allocas from moving below a stacksave. The stackrestore case
8154 // is currently thought to be conservatism.
8155 if (isa<AllocaInst>(BundleMember->Inst)) {
8156 for (Instruction *I = BundleMember->Inst->getNextNode();
8157 I != ScheduleEnd; I = I->getNextNode()) {
8158 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) &&
8159 !match(I, m_Intrinsic<Intrinsic::stackrestore>()))
8160 continue;
8161
8162 // Add the dependency
8163 makeControlDependent(I);
8164 break;
8165 }
8166 }
8167 }
8168
8169 // Handle the memory dependencies (if any).
8170 ScheduleData *DepDest = BundleMember->NextLoadStore;
8171 if (!DepDest)
8172 continue;
8173 Instruction *SrcInst = BundleMember->Inst;
8174 assert(SrcInst->mayReadOrWriteMemory() &&(static_cast <bool> (SrcInst->mayReadOrWriteMemory()
&& "NextLoadStore list for non memory effecting bundle?"
) ? void (0) : __assert_fail ("SrcInst->mayReadOrWriteMemory() && \"NextLoadStore list for non memory effecting bundle?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8175, __extension__
__PRETTY_FUNCTION__))
8175 "NextLoadStore list for non memory effecting bundle?")(static_cast <bool> (SrcInst->mayReadOrWriteMemory()
&& "NextLoadStore list for non memory effecting bundle?"
) ? void (0) : __assert_fail ("SrcInst->mayReadOrWriteMemory() && \"NextLoadStore list for non memory effecting bundle?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8175, __extension__
__PRETTY_FUNCTION__))
;
8176 MemoryLocation SrcLoc = getLocation(SrcInst);
8177 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
8178 unsigned numAliased = 0;
8179 unsigned DistToSrc = 1;
8180
8181 for ( ; DepDest; DepDest = DepDest->NextLoadStore) {
8182 assert(isInSchedulingRegion(DepDest))(static_cast <bool> (isInSchedulingRegion(DepDest)) ? void
(0) : __assert_fail ("isInSchedulingRegion(DepDest)", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 8182, __extension__ __PRETTY_FUNCTION__))
;
8183
8184 // We have two limits to reduce the complexity:
8185 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
8186 // SLP->isAliased (which is the expensive part in this loop).
8187 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
8188 // the whole loop (even if the loop is fast, it's quadratic).
8189 // It's important for the loop break condition (see below) to
8190 // check this limit even between two read-only instructions.
8191 if (DistToSrc >= MaxMemDepDistance ||
8192 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
8193 (numAliased >= AliasedCheckLimit ||
8194 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
8195
8196 // We increment the counter only if the locations are aliased
8197 // (instead of counting all alias checks). This gives a better
8198 // balance between reduced runtime and accurate dependencies.
8199 numAliased++;
8200
8201 DepDest->MemoryDependencies.push_back(BundleMember);
8202 BundleMember->Dependencies++;
8203 ScheduleData *DestBundle = DepDest->FirstInBundle;
8204 if (!DestBundle->IsScheduled) {
8205 BundleMember->incrementUnscheduledDeps(1);
8206 }
8207 if (!DestBundle->hasValidDependencies()) {
8208 WorkList.push_back(DestBundle);
8209 }
8210 }
8211
8212 // Example, explaining the loop break condition: Let's assume our
8213 // starting instruction is i0 and MaxMemDepDistance = 3.
8214 //
8215 // +--------v--v--v
8216 // i0,i1,i2,i3,i4,i5,i6,i7,i8
8217 // +--------^--^--^
8218 //
8219 // MaxMemDepDistance let us stop alias-checking at i3 and we add
8220 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
8221 // Previously we already added dependencies from i3 to i6,i7,i8
8222 // (because of MaxMemDepDistance). As we added a dependency from
8223 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
8224 // and we can abort this loop at i6.
8225 if (DistToSrc >= 2 * MaxMemDepDistance)
8226 break;
8227 DistToSrc++;
8228 }
8229 }
8230 if (InsertInReadyList && SD->isReady()) {
8231 ReadyInsts.insert(SD);
8232 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Instdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
8233 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
;
8234 }
8235 }
8236}
8237
8238void BoUpSLP::BlockScheduling::resetSchedule() {
8239 assert(ScheduleStart &&(static_cast <bool> (ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? void (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8240, __extension__
__PRETTY_FUNCTION__))
8240 "tried to reset schedule on block which has not been scheduled")(static_cast <bool> (ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? void (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8240, __extension__
__PRETTY_FUNCTION__))
;
8241 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
8242 doForAllOpcodes(I, [&](ScheduleData *SD) {
8243 assert(isInSchedulingRegion(SD) &&(static_cast <bool> (isInSchedulingRegion(SD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8244, __extension__
__PRETTY_FUNCTION__))
8244 "ScheduleData not in scheduling region")(static_cast <bool> (isInSchedulingRegion(SD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8244, __extension__
__PRETTY_FUNCTION__))
;
8245 SD->IsScheduled = false;
8246 SD->resetUnscheduledDeps();
8247 });
8248 }
8249 ReadyInsts.clear();
8250}
8251
8252void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
8253 if (!BS->ScheduleStart)
2
Assuming field 'ScheduleStart' is non-null
8254 return;
8255
8256 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule block " << BS
->BB->getName() << "\n"; } } while (false)
;
3
Taking false branch
4
Assuming 'DebugFlag' is false
5
Loop condition is false. Exiting loop
8257
8258 // A key point - if we got here, pre-scheduling was able to find a valid
8259 // scheduling of the sub-graph of the scheduling window which consists
8260 // of all vector bundles and their transitive users. As such, we do not
8261 // need to reschedule anything *outside of* that subgraph.
8262
8263 BS->resetSchedule();
8264
8265 // For the real scheduling we use a more sophisticated ready-list: it is
8266 // sorted by the original instruction location. This lets the final schedule
8267 // be as close as possible to the original instruction order.
8268 // WARNING: If changing this order causes a correctness issue, that means
8269 // there is some missing dependence edge in the schedule data graph.
8270 struct ScheduleDataCompare {
8271 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
8272 return SD2->SchedulingPriority < SD1->SchedulingPriority;
8273 }
8274 };
8275 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
8276
8277 // Ensure that all dependency data is updated (for nodes in the sub-graph)
8278 // and fill the ready-list with initial instructions.
8279 int Idx = 0;
8280 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
6
Assuming 'I' is equal to field 'ScheduleEnd'
7
Loop condition is false. Execution continues on line 8295
8281 I = I->getNextNode()) {
8282 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) {
8283 TreeEntry *SDTE = getTreeEntry(SD->Inst);
8284 (void)SDTE;
8285 assert((isVectorLikeInstWithConstOps(SD->Inst) ||(static_cast <bool> ((isVectorLikeInstWithConstOps(SD->
Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule
(SDTE->Scalars))) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("(isVectorLikeInstWithConstOps(SD->Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && \"scheduler and vectorizer bundle mismatch\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8288, __extension__
__PRETTY_FUNCTION__))
8286 SD->isPartOfBundle() ==(static_cast <bool> ((isVectorLikeInstWithConstOps(SD->
Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule
(SDTE->Scalars))) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("(isVectorLikeInstWithConstOps(SD->Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && \"scheduler and vectorizer bundle mismatch\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8288, __extension__
__PRETTY_FUNCTION__))
8287 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) &&(static_cast <bool> ((isVectorLikeInstWithConstOps(SD->
Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule
(SDTE->Scalars))) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("(isVectorLikeInstWithConstOps(SD->Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && \"scheduler and vectorizer bundle mismatch\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8288, __extension__
__PRETTY_FUNCTION__))
8288 "scheduler and vectorizer bundle mismatch")(static_cast <bool> ((isVectorLikeInstWithConstOps(SD->
Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule
(SDTE->Scalars))) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("(isVectorLikeInstWithConstOps(SD->Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && \"scheduler and vectorizer bundle mismatch\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8288, __extension__
__PRETTY_FUNCTION__))
;
8289 SD->FirstInBundle->SchedulingPriority = Idx++;
8290
8291 if (SD->isSchedulingEntity() && SD->isPartOfBundle())
8292 BS->calculateDependencies(SD, false, this);
8293 });
8294 }
8295 BS->initialFillReadyList(ReadyInsts);
8296
8297 Instruction *LastScheduledInst = BS->ScheduleEnd;
8298
8299 // Do the "real" scheduling.
8300 while (!ReadyInsts.empty()) {
8
Assuming the condition is true
9
Loop condition is true. Entering loop body
8301 ScheduleData *picked = *ReadyInsts.begin();
10
'picked' initialized here
8302 ReadyInsts.erase(ReadyInsts.begin());
8303
8304 // Move the scheduled instruction(s) to their dedicated places, if not
8305 // there yet.
8306 for (ScheduleData *BundleMember = picked; BundleMember;
11
Assuming pointer value is null
12
Loop condition is false. Execution continues on line 8314
8307 BundleMember = BundleMember->NextInBundle) {
8308 Instruction *pickedInst = BundleMember->Inst;
8309 if (pickedInst->getNextNode() != LastScheduledInst)
8310 pickedInst->moveBefore(LastScheduledInst);
8311 LastScheduledInst = pickedInst;
8312 }
8313
8314 BS->schedule(picked, ReadyInsts);
13
Passing null pointer value via 1st parameter 'SD'
14
Calling 'BlockScheduling::schedule'
8315 }
8316
8317 // Check that we didn't break any of our invariants.
8318#ifdef EXPENSIVE_CHECKS
8319 BS->verify();
8320#endif
8321
8322#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
8323 // Check that all schedulable entities got scheduled
8324 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
8325 BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
8326 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
8327 assert(SD->IsScheduled && "must be scheduled at this point")(static_cast <bool> (SD->IsScheduled && "must be scheduled at this point"
) ? void (0) : __assert_fail ("SD->IsScheduled && \"must be scheduled at this point\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8327, __extension__
__PRETTY_FUNCTION__))
;
8328 }
8329 });
8330 }
8331#endif
8332
8333 // Avoid duplicate scheduling of the block.
8334 BS->ScheduleStart = nullptr;
8335}
8336
8337unsigned BoUpSLP::getVectorElementSize(Value *V) {
8338 // If V is a store, just return the width of the stored value (or value
8339 // truncated just before storing) without traversing the expression tree.
8340 // This is the common case.
8341 if (auto *Store = dyn_cast<StoreInst>(V)) {
8342 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
8343 return DL->getTypeSizeInBits(Trunc->getSrcTy());
8344 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
8345 }
8346
8347 if (auto *IEI = dyn_cast<InsertElementInst>(V))
8348 return getVectorElementSize(IEI->getOperand(1));
8349
8350 auto E = InstrElementSize.find(V);
8351 if (E != InstrElementSize.end())
8352 return E->second;
8353
8354 // If V is not a store, we can traverse the expression tree to find loads
8355 // that feed it. The type of the loaded value may indicate a more suitable
8356 // width than V's type. We want to base the vector element size on the width
8357 // of memory operations where possible.
8358 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
8359 SmallPtrSet<Instruction *, 16> Visited;
8360 if (auto *I = dyn_cast<Instruction>(V)) {
8361 Worklist.emplace_back(I, I->getParent());
8362 Visited.insert(I);
8363 }
8364
8365 // Traverse the expression tree in bottom-up order looking for loads. If we
8366 // encounter an instruction we don't yet handle, we give up.
8367 auto Width = 0u;
8368 while (!Worklist.empty()) {
8369 Instruction *I;
8370 BasicBlock *Parent;
8371 std::tie(I, Parent) = Worklist.pop_back_val();
8372
8373 // We should only be looking at scalar instructions here. If the current
8374 // instruction has a vector type, skip.
8375 auto *Ty = I->getType();
8376 if (isa<VectorType>(Ty))
8377 continue;
8378
8379 // If the current instruction is a load, update MaxWidth to reflect the
8380 // width of the loaded value.
8381 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
8382 isa<ExtractValueInst>(I))
8383 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
8384
8385 // Otherwise, we need to visit the operands of the instruction. We only
8386 // handle the interesting cases from buildTree here. If an operand is an
8387 // instruction we haven't yet visited and from the same basic block as the
8388 // user or the use is a PHI node, we add it to the worklist.
8389 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8390 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
8391 isa<UnaryOperator>(I)) {
8392 for (Use &U : I->operands())
8393 if (auto *J = dyn_cast<Instruction>(U.get()))
8394 if (Visited.insert(J).second &&
8395 (isa<PHINode>(I) || J->getParent() == Parent))
8396 Worklist.emplace_back(J, J->getParent());
8397 } else {
8398 break;
8399 }
8400 }
8401
8402 // If we didn't encounter a memory access in the expression tree, or if we
8403 // gave up for some reason, just return the width of V. Otherwise, return the
8404 // maximum width we found.
8405 if (!Width) {
8406 if (auto *CI = dyn_cast<CmpInst>(V))
8407 V = CI->getOperand(0);
8408 Width = DL->getTypeSizeInBits(V->getType());
8409 }
8410
8411 for (Instruction *I : Visited)
8412 InstrElementSize[I] = Width;
8413
8414 return Width;
8415}
8416
8417// Determine if a value V in a vectorizable expression Expr can be demoted to a
8418// smaller type with a truncation. We collect the values that will be demoted
8419// in ToDemote and additional roots that require investigating in Roots.
8420static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
8421 SmallVectorImpl<Value *> &ToDemote,
8422 SmallVectorImpl<Value *> &Roots) {
8423 // We can always demote constants.
8424 if (isa<Constant>(V)) {
8425 ToDemote.push_back(V);
8426 return true;
8427 }
8428
8429 // If the value is not an instruction in the expression with only one use, it
8430 // cannot be demoted.
8431 auto *I = dyn_cast<Instruction>(V);
8432 if (!I || !I->hasOneUse() || !Expr.count(I))
8433 return false;
8434
8435 switch (I->getOpcode()) {
8436
8437 // We can always demote truncations and extensions. Since truncations can
8438 // seed additional demotion, we save the truncated value.
8439 case Instruction::Trunc:
8440 Roots.push_back(I->getOperand(0));
8441 break;
8442 case Instruction::ZExt:
8443 case Instruction::SExt:
8444 if (isa<ExtractElementInst>(I->getOperand(0)) ||
8445 isa<InsertElementInst>(I->getOperand(0)))
8446 return false;
8447 break;
8448
8449 // We can demote certain binary operations if we can demote both of their
8450 // operands.
8451 case Instruction::Add:
8452 case Instruction::Sub:
8453 case Instruction::Mul:
8454 case Instruction::And:
8455 case Instruction::Or:
8456 case Instruction::Xor:
8457 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
8458 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
8459 return false;
8460 break;
8461
8462 // We can demote selects if we can demote their true and false values.
8463 case Instruction::Select: {
8464 SelectInst *SI = cast<SelectInst>(I);
8465 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
8466 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
8467 return false;
8468 break;
8469 }
8470
8471 // We can demote phis if we can demote all their incoming operands. Note that
8472 // we don't need to worry about cycles since we ensure single use above.
8473 case Instruction::PHI: {
8474 PHINode *PN = cast<PHINode>(I);
8475 for (Value *IncValue : PN->incoming_values())
8476 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
8477 return false;
8478 break;
8479 }
8480
8481 // Otherwise, conservatively give up.
8482 default:
8483 return false;
8484 }
8485
8486 // Record the value that we can demote.
8487 ToDemote.push_back(V);
8488 return true;
8489}
8490
8491void BoUpSLP::computeMinimumValueSizes() {
8492 // If there are no external uses, the expression tree must be rooted by a
8493 // store. We can't demote in-memory values, so there is nothing to do here.
8494 if (ExternalUses.empty())
8495 return;
8496
8497 // We only attempt to truncate integer expressions.
8498 auto &TreeRoot = VectorizableTree[0]->Scalars;
8499 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
8500 if (!TreeRootIT)
8501 return;
8502
8503 // If the expression is not rooted by a store, these roots should have
8504 // external uses. We will rely on InstCombine to rewrite the expression in
8505 // the narrower type. However, InstCombine only rewrites single-use values.
8506 // This means that if a tree entry other than a root is used externally, it
8507 // must have multiple uses and InstCombine will not rewrite it. The code
8508 // below ensures that only the roots are used externally.
8509 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
8510 for (auto &EU : ExternalUses)
8511 if (!Expr.erase(EU.Scalar))
8512 return;
8513 if (!Expr.empty())
8514 return;
8515
8516 // Collect the scalar values of the vectorizable expression. We will use this
8517 // context to determine which values can be demoted. If we see a truncation,
8518 // we mark it as seeding another demotion.
8519 for (auto &EntryPtr : VectorizableTree)
8520 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
8521
8522 // Ensure the roots of the vectorizable tree don't form a cycle. They must
8523 // have a single external user that is not in the vectorizable tree.
8524 for (auto *Root : TreeRoot)
8525 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
8526 return;
8527
8528 // Conservatively determine if we can actually truncate the roots of the
8529 // expression. Collect the values that can be demoted in ToDemote and
8530 // additional roots that require investigating in Roots.
8531 SmallVector<Value *, 32> ToDemote;
8532 SmallVector<Value *, 4> Roots;
8533 for (auto *Root : TreeRoot)
8534 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
8535 return;
8536
8537 // The maximum bit width required to represent all the values that can be
8538 // demoted without loss of precision. It would be safe to truncate the roots
8539 // of the expression to this width.
8540 auto MaxBitWidth = 8u;
8541
8542 // We first check if all the bits of the roots are demanded. If they're not,
8543 // we can truncate the roots to this narrower type.
8544 for (auto *Root : TreeRoot) {
8545 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
8546 MaxBitWidth = std::max<unsigned>(
8547 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
8548 }
8549
8550 // True if the roots can be zero-extended back to their original type, rather
8551 // than sign-extended. We know that if the leading bits are not demanded, we
8552 // can safely zero-extend. So we initialize IsKnownPositive to True.
8553 bool IsKnownPositive = true;
8554
8555 // If all the bits of the roots are demanded, we can try a little harder to
8556 // compute a narrower type. This can happen, for example, if the roots are
8557 // getelementptr indices. InstCombine promotes these indices to the pointer
8558 // width. Thus, all their bits are technically demanded even though the
8559 // address computation might be vectorized in a smaller type.
8560 //
8561 // We start by looking at each entry that can be demoted. We compute the
8562 // maximum bit width required to store the scalar by using ValueTracking to
8563 // compute the number of high-order bits we can truncate.
8564 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
8565 llvm::all_of(TreeRoot, [](Value *R) {
8566 assert(R->hasOneUse() && "Root should have only one use!")(static_cast <bool> (R->hasOneUse() && "Root should have only one use!"
) ? void (0) : __assert_fail ("R->hasOneUse() && \"Root should have only one use!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8566, __extension__
__PRETTY_FUNCTION__))
;
8567 return isa<GetElementPtrInst>(R->user_back());
8568 })) {
8569 MaxBitWidth = 8u;
8570
8571 // Determine if the sign bit of all the roots is known to be zero. If not,
8572 // IsKnownPositive is set to False.
8573 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
8574 KnownBits Known = computeKnownBits(R, *DL);
8575 return Known.isNonNegative();
8576 });
8577
8578 // Determine the maximum number of bits required to store the scalar
8579 // values.
8580 for (auto *Scalar : ToDemote) {
8581 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
8582 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
8583 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
8584 }
8585
8586 // If we can't prove that the sign bit is zero, we must add one to the
8587 // maximum bit width to account for the unknown sign bit. This preserves
8588 // the existing sign bit so we can safely sign-extend the root back to the
8589 // original type. Otherwise, if we know the sign bit is zero, we will
8590 // zero-extend the root instead.
8591 //
8592 // FIXME: This is somewhat suboptimal, as there will be cases where adding
8593 // one to the maximum bit width will yield a larger-than-necessary
8594 // type. In general, we need to add an extra bit only if we can't
8595 // prove that the upper bit of the original type is equal to the
8596 // upper bit of the proposed smaller type. If these two bits are the
8597 // same (either zero or one) we know that sign-extending from the
8598 // smaller type will result in the same value. Here, since we can't
8599 // yet prove this, we are just making the proposed smaller type
8600 // larger to ensure correctness.
8601 if (!IsKnownPositive)
8602 ++MaxBitWidth;
8603 }
8604
8605 // Round MaxBitWidth up to the next power-of-two.
8606 if (!isPowerOf2_64(MaxBitWidth))
8607 MaxBitWidth = NextPowerOf2(MaxBitWidth);
8608
8609 // If the maximum bit width we compute is less than the with of the roots'
8610 // type, we can proceed with the narrowing. Otherwise, do nothing.
8611 if (MaxBitWidth >= TreeRootIT->getBitWidth())
8612 return;
8613
8614 // If we can truncate the root, we must collect additional values that might
8615 // be demoted as a result. That is, those seeded by truncations we will
8616 // modify.
8617 while (!Roots.empty())
8618 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
8619
8620 // Finally, map the values we can demote to the maximum bit with we computed.
8621 for (auto *Scalar : ToDemote)
8622 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
8623}
8624
8625namespace {
8626
8627/// The SLPVectorizer Pass.
8628struct SLPVectorizer : public FunctionPass {
8629 SLPVectorizerPass Impl;
8630
8631 /// Pass identification, replacement for typeid
8632 static char ID;
8633
8634 explicit SLPVectorizer() : FunctionPass(ID) {
8635 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
8636 }
8637
8638 bool doInitialization(Module &M) override { return false; }
8639
8640 bool runOnFunction(Function &F) override {
8641 if (skipFunction(F))
8642 return false;
8643
8644 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
8645 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
8646 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
8647 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
8648 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
8649 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
8650 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
8651 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
8652 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
8653 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
8654
8655 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
8656 }
8657
8658 void getAnalysisUsage(AnalysisUsage &AU) const override {
8659 FunctionPass::getAnalysisUsage(AU);
8660 AU.addRequired<AssumptionCacheTracker>();
8661 AU.addRequired<ScalarEvolutionWrapperPass>();
8662 AU.addRequired<AAResultsWrapperPass>();
8663 AU.addRequired<TargetTransformInfoWrapperPass>();
8664 AU.addRequired<LoopInfoWrapperPass>();
8665 AU.addRequired<DominatorTreeWrapperPass>();
8666 AU.addRequired<DemandedBitsWrapperPass>();
8667 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
8668 AU.addRequired<InjectTLIMappingsLegacy>();
8669 AU.addPreserved<LoopInfoWrapperPass>();
8670 AU.addPreserved<DominatorTreeWrapperPass>();
8671 AU.addPreserved<AAResultsWrapperPass>();
8672 AU.addPreserved<GlobalsAAWrapperPass>();
8673 AU.setPreservesCFG();
8674 }
8675};
8676
8677} // end anonymous namespace
8678
8679PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
8680 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
8681 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
8682 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
8683 auto *AA = &AM.getResult<AAManager>(F);
8684 auto *LI = &AM.getResult<LoopAnalysis>(F);
8685 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
8686 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
8687 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
8688 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8689
8690 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
8691 if (!Changed)
8692 return PreservedAnalyses::all();
8693
8694 PreservedAnalyses PA;
8695 PA.preserveSet<CFGAnalyses>();
8696 return PA;
8697}
8698
8699bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
8700 TargetTransformInfo *TTI_,
8701 TargetLibraryInfo *TLI_, AAResults *AA_,
8702 LoopInfo *LI_, DominatorTree *DT_,
8703 AssumptionCache *AC_, DemandedBits *DB_,
8704 OptimizationRemarkEmitter *ORE_) {
8705 if (!RunSLPVectorization)
8706 return false;
8707 SE = SE_;
8708 TTI = TTI_;
8709 TLI = TLI_;
8710 AA = AA_;
8711 LI = LI_;
8712 DT = DT_;
8713 AC = AC_;
8714 DB = DB_;
8715 DL = &F.getParent()->getDataLayout();
8716
8717 Stores.clear();
8718 GEPs.clear();
8719 bool Changed = false;
8720
8721 // If the target claims to have no vector registers don't attempt
8722 // vectorization.
8723 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
8724 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"
; } } while (false)
8725 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"
; } } while (false)
;
8726 return false;
8727 }
8728
8729 // Don't vectorize when the attribute NoImplicitFloat is used.
8730 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
8731 return false;
8732
8733 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing blocks in " <<
F.getName() << ".\n"; } } while (false)
;
8734
8735 // Use the bottom up slp vectorizer to construct chains that start with
8736 // store instructions.
8737 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
8738
8739 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
8740 // delete instructions.
8741
8742 // Update DFS numbers now so that we can use them for ordering.
8743 DT->updateDFSNumbers();
8744
8745 // Scan the blocks in the function in post order.
8746 for (auto BB : post_order(&F.getEntryBlock())) {
8747 collectSeedInstructions(BB);
8748
8749 // Vectorize trees that end at stores.
8750 if (!Stores.empty()) {
8751 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
8752 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
;
8753 Changed |= vectorizeStoreChains(R);
8754 }
8755
8756 // Vectorize trees that end at reductions.
8757 Changed |= vectorizeChainsInBlock(BB, R);
8758
8759 // Vectorize the index computations of getelementptr instructions. This
8760 // is primarily intended to catch gather-like idioms ending at
8761 // non-consecutive loads.
8762 if (!GEPs.empty()) {
8763 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
8764 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
;
8765 Changed |= vectorizeGEPIndices(BB, R);
8766 }
8767 }
8768
8769 if (Changed) {
8770 R.optimizeGatherSequence();
8771 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: vectorized \"" << F.getName
() << "\"\n"; } } while (false)
;
8772 }
8773 return Changed;
8774}
8775
8776bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
8777 unsigned Idx) {
8778 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
8779 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
;
8780 const unsigned Sz = R.getVectorElementSize(Chain[0]);
8781 const unsigned MinVF = R.getMinVecRegSize() / Sz;
8782 unsigned VF = Chain.size();
8783
8784 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
8785 return false;
8786
8787 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
8788 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
;
8789
8790 R.buildTree(Chain);
8791 if (R.isTreeTinyAndNotFullyVectorizable())
8792 return false;
8793 if (R.isLoadCombineCandidate())
8794 return false;
8795 R.reorderTopToBottom();
8796 R.reorderBottomToTop();
8797 R.buildExternalUses();
8798
8799 R.computeMinimumValueSizes();
8800
8801 InstructionCost Cost = R.getTreeCost();
8802
8803 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost = " << Cost
<< " for VF =" << VF << "\n"; } } while (false
)
;
8804 if (Cost < -SLPCostThreshold) {
8805 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Decided to vectorize cost = "
<< Cost << "\n"; } } while (false)
;
8806
8807 using namespace ore;
8808
8809 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "StoresVectorized",
8810 cast<StoreInst>(Chain[0]))
8811 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
8812 << " and with tree size "
8813 << NV("TreeSize", R.getTreeSize()));
8814
8815 R.vectorizeTree();
8816 return true;
8817 }
8818
8819 return false;
8820}
8821
8822bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
8823 BoUpSLP &R) {
8824 // We may run into multiple chains that merge into a single chain. We mark the
8825 // stores that we vectorized so that we don't visit the same store twice.
8826 BoUpSLP::ValueSet VectorizedStores;
8827 bool Changed = false;
8828
8829 int E = Stores.size();
8830 SmallBitVector Tails(E, false);
8831 int MaxIter = MaxStoreLookup.getValue();
8832 SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
8833 E, std::make_pair(E, INT_MAX2147483647));
8834 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
8835 int IterCnt;
8836 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
8837 &CheckedPairs,
8838 &ConsecutiveChain](int K, int Idx) {
8839 if (IterCnt >= MaxIter)
8840 return true;
8841 if (CheckedPairs[Idx].test(K))
8842 return ConsecutiveChain[K].second == 1 &&
8843 ConsecutiveChain[K].first == Idx;
8844 ++IterCnt;
8845 CheckedPairs[Idx].set(K);
8846 CheckedPairs[K].set(Idx);
8847 Optional<int> Diff = getPointersDiff(
8848 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
8849 Stores[Idx]->getValueOperand()->getType(),
8850 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
8851 if (!Diff || *Diff == 0)
8852 return false;
8853 int Val = *Diff;
8854 if (Val < 0) {
8855 if (ConsecutiveChain[Idx].second > -Val) {
8856 Tails.set(K);
8857 ConsecutiveChain[Idx] = std::make_pair(K, -Val);
8858 }
8859 return false;
8860 }
8861 if (ConsecutiveChain[K].second <= Val)
8862 return false;
8863
8864 Tails.set(Idx);
8865 ConsecutiveChain[K] = std::make_pair(Idx, Val);
8866 return Val == 1;
8867 };
8868 // Do a quadratic search on all of the given stores in reverse order and find
8869 // all of the pairs of stores that follow each other.
8870 for (int Idx = E - 1; Idx >= 0; --Idx) {
8871 // If a store has multiple consecutive store candidates, search according
8872 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
8873 // This is because usually pairing with immediate succeeding or preceding
8874 // candidate create the best chance to find slp vectorization opportunity.
8875 const int MaxLookDepth = std::max(E - Idx, Idx + 1);
8876 IterCnt = 0;
8877 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
8878 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
8879 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
8880 break;
8881 }
8882
8883 // Tracks if we tried to vectorize stores starting from the given tail
8884 // already.
8885 SmallBitVector TriedTails(E, false);
8886 // For stores that start but don't end a link in the chain:
8887 for (int Cnt = E; Cnt > 0; --Cnt) {
8888 int I = Cnt - 1;
8889 if (ConsecutiveChain[I].first == E || Tails.test(I))
8890 continue;
8891 // We found a store instr that starts a chain. Now follow the chain and try
8892 // to vectorize it.
8893 BoUpSLP::ValueList Operands;
8894 // Collect the chain into a list.
8895 while (I != E && !VectorizedStores.count(Stores[I])) {
8896 Operands.push_back(Stores[I]);
8897 Tails.set(I);
8898 if (ConsecutiveChain[I].second != 1) {
8899 // Mark the new end in the chain and go back, if required. It might be
8900 // required if the original stores come in reversed order, for example.
8901 if (ConsecutiveChain[I].first != E &&
8902 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
8903 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
8904 TriedTails.set(I);
8905 Tails.reset(ConsecutiveChain[I].first);
8906 if (Cnt < ConsecutiveChain[I].first + 2)
8907 Cnt = ConsecutiveChain[I].first + 2;
8908 }
8909 break;
8910 }
8911 // Move to the next value in the chain.
8912 I = ConsecutiveChain[I].first;
8913 }
8914 assert(!Operands.empty() && "Expected non-empty list of stores.")(static_cast <bool> (!Operands.empty() && "Expected non-empty list of stores."
) ? void (0) : __assert_fail ("!Operands.empty() && \"Expected non-empty list of stores.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8914, __extension__
__PRETTY_FUNCTION__))
;
8915
8916 unsigned MaxVecRegSize = R.getMaxVecRegSize();
8917 unsigned EltSize = R.getVectorElementSize(Operands[0]);
8918 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
8919
8920 unsigned MinVF = R.getMinVF(EltSize);
8921 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
8922 MaxElts);
8923
8924 // FIXME: Is division-by-2 the correct step? Should we assert that the
8925 // register size is a power-of-2?
8926 unsigned StartIdx = 0;
8927 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
8928 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
8929 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
8930 if (!VectorizedStores.count(Slice.front()) &&
8931 !VectorizedStores.count(Slice.back()) &&
8932 vectorizeStoreChain(Slice, R, Cnt)) {
8933 // Mark the vectorized stores so that we don't vectorize them again.
8934 VectorizedStores.insert(Slice.begin(), Slice.end());
8935 Changed = true;
8936 // If we vectorized initial block, no need to try to vectorize it
8937 // again.
8938 if (Cnt == StartIdx)
8939 StartIdx += Size;
8940 Cnt += Size;
8941 continue;
8942 }
8943 ++Cnt;
8944 }
8945 // Check if the whole array was vectorized already - exit.
8946 if (StartIdx >= Operands.size())
8947 break;
8948 }
8949 }
8950
8951 return Changed;
8952}
8953
8954void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
8955 // Initialize the collections. We will make a single pass over the block.
8956 Stores.clear();
8957 GEPs.clear();
8958
8959 // Visit the store and getelementptr instructions in BB and organize them in
8960 // Stores and GEPs according to the underlying objects of their pointer
8961 // operands.
8962 for (Instruction &I : *BB) {
8963 // Ignore store instructions that are volatile or have a pointer operand
8964 // that doesn't point to a scalar type.
8965 if (auto *SI = dyn_cast<StoreInst>(&I)) {
8966 if (!SI->isSimple())
8967 continue;
8968 if (!isValidElementType(SI->getValueOperand()->getType()))
8969 continue;
8970 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
8971 }
8972
8973 // Ignore getelementptr instructions that have more than one index, a
8974 // constant index, or a pointer operand that doesn't point to a scalar
8975 // type.
8976 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
8977 auto Idx = GEP->idx_begin()->get();
8978 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
8979 continue;
8980 if (!isValidElementType(Idx->getType()))
8981 continue;
8982 if (GEP->getType()->isVectorTy())
8983 continue;
8984 GEPs[GEP->getPointerOperand()].push_back(GEP);
8985 }
8986 }
8987}
8988
8989bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
8990 if (!A || !B)
8991 return false;
8992 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B))
8993 return false;
8994 Value *VL[] = {A, B};
8995 return tryToVectorizeList(VL, R);
8996}
8997
8998bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
8999 bool LimitForRegisterSize) {
9000 if (VL.size() < 2)
9001 return false;
9002
9003 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
9004 << VL.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
;
9005
9006 // Check that all of the parts are instructions of the same type,
9007 // we permit an alternate opcode via InstructionsState.
9008 InstructionsState S = getSameOpcode(VL);
9009 if (!S.getOpcode())
9010 return false;
9011
9012 Instruction *I0 = cast<Instruction>(S.OpValue);
9013 // Make sure invalid types (including vector type) are rejected before
9014 // determining vectorization factor for scalar instructions.
9015 for (Value *V : VL) {
9016 Type *Ty = V->getType();
9017 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
9018 // NOTE: the following will give user internal llvm type name, which may
9019 // not be useful.
9020 R.getORE()->emit([&]() {
9021 std::string type_str;
9022 llvm::raw_string_ostream rso(type_str);
9023 Ty->print(rso);
9024 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "UnsupportedType", I0)
9025 << "Cannot SLP vectorize list: type "
9026 << rso.str() + " is unsupported by vectorizer";
9027 });
9028 return false;
9029 }
9030 }
9031
9032 unsigned Sz = R.getVectorElementSize(I0);
9033 unsigned MinVF = R.getMinVF(Sz);
9034 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
9035 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
9036 if (MaxVF < 2) {
9037 R.getORE()->emit([&]() {
9038 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "SmallVF", I0)
9039 << "Cannot SLP vectorize list: vectorization factor "
9040 << "less than 2 is not supported";
9041 });
9042 return false;
9043 }
9044
9045 bool Changed = false;
9046 bool CandidateFound = false;
9047 InstructionCost MinCost = SLPCostThreshold.getValue();
9048 Type *ScalarTy = VL[0]->getType();
9049 if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
9050 ScalarTy = IE->getOperand(1)->getType();
9051
9052 unsigned NextInst = 0, MaxInst = VL.size();
9053 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
9054 // No actual vectorization should happen, if number of parts is the same as
9055 // provided vectorization factor (i.e. the scalar type is used for vector
9056 // code during codegen).
9057 auto *VecTy = FixedVectorType::get(ScalarTy, VF);
9058 if (TTI->getNumberOfParts(VecTy) == VF)
9059 continue;
9060 for (unsigned I = NextInst; I < MaxInst; ++I) {
9061 unsigned OpsWidth = 0;
9062
9063 if (I + VF > MaxInst)
9064 OpsWidth = MaxInst - I;
9065 else
9066 OpsWidth = VF;
9067
9068 if (!isPowerOf2_32(OpsWidth))
9069 continue;
9070
9071 if ((LimitForRegisterSize && OpsWidth < MaxVF) ||
9072 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
9073 break;
9074
9075 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
9076 // Check that a previous iteration of this loop did not delete the Value.
9077 if (llvm::any_of(Ops, [&R](Value *V) {
9078 auto *I = dyn_cast<Instruction>(V);
9079 return I && R.isDeleted(I);
9080 }))
9081 continue;
9082
9083 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
9084 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
;
9085
9086 R.buildTree(Ops);
9087 if (R.isTreeTinyAndNotFullyVectorizable())
9088 continue;
9089 R.reorderTopToBottom();
9090 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front()));
9091 R.buildExternalUses();
9092
9093 R.computeMinimumValueSizes();
9094 InstructionCost Cost = R.getTreeCost();
9095 CandidateFound = true;
9096 MinCost = std::min(MinCost, Cost);
9097
9098 if (Cost < -SLPCostThreshold) {
9099 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing list at cost:" <<
Cost << ".\n"; } } while (false)
;
9100 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedList",
9101 cast<Instruction>(Ops[0]))
9102 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
9103 << " and with tree size "
9104 << ore::NV("TreeSize", R.getTreeSize()));
9105
9106 R.vectorizeTree();
9107 // Move to the next bundle.
9108 I += VF - 1;
9109 NextInst = I + 1;
9110 Changed = true;
9111 }
9112 }
9113 }
9114
9115 if (!Changed && CandidateFound) {
9116 R.getORE()->emit([&]() {
9117 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotBeneficial", I0)
9118 << "List vectorization was possible but not beneficial with cost "
9119 << ore::NV("Cost", MinCost) << " >= "
9120 << ore::NV("Treshold", -SLPCostThreshold);
9121 });
9122 } else if (!Changed) {
9123 R.getORE()->emit([&]() {
9124 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotPossible", I0)
9125 << "Cannot SLP vectorize list: vectorization was impossible"
9126 << " with available vectorization factors";
9127 });
9128 }
9129 return Changed;
9130}
9131
9132bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
9133 if (!I)
9134 return false;
9135
9136 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
9137 return false;
9138
9139 Value *P = I->getParent();
9140
9141 // Vectorize in current basic block only.
9142 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
9143 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
9144 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
9145 return false;
9146
9147 // Try to vectorize V.
9148 if (tryToVectorizePair(Op0, Op1, R))
9149 return true;
9150
9151 auto *A = dyn_cast<BinaryOperator>(Op0);
9152 auto *B = dyn_cast<BinaryOperator>(Op1);
9153 // Try to skip B.
9154 if (B && B->hasOneUse()) {
9155 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
9156 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
9157 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
9158 return true;
9159 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
9160 return true;
9161 }
9162
9163 // Try to skip A.
9164 if (A && A->hasOneUse()) {
9165 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
9166 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
9167 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
9168 return true;
9169 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
9170 return true;
9171 }
9172 return false;
9173}
9174
9175namespace {
9176
9177/// Model horizontal reductions.
9178///
9179/// A horizontal reduction is a tree of reduction instructions that has values
9180/// that can be put into a vector as its leaves. For example:
9181///
9182/// mul mul mul mul
9183/// \ / \ /
9184/// + +
9185/// \ /
9186/// +
9187/// This tree has "mul" as its leaf values and "+" as its reduction
9188/// instructions. A reduction can feed into a store or a binary operation
9189/// feeding a phi.
9190/// ...
9191/// \ /
9192/// +
9193/// |
9194/// phi +=
9195///
9196/// Or:
9197/// ...
9198/// \ /
9199/// +
9200/// |
9201/// *p =
9202///
9203class HorizontalReduction {
9204 using ReductionOpsType = SmallVector<Value *, 16>;
9205 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
9206 ReductionOpsListType ReductionOps;
9207 SmallVector<Value *, 32> ReducedVals;
9208 // Use map vector to make stable output.
9209 MapVector<Instruction *, Value *> ExtraArgs;
9210 WeakTrackingVH ReductionRoot;
9211 /// The type of reduction operation.
9212 RecurKind RdxKind;
9213
9214 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max();
9215
9216 static bool isCmpSelMinMax(Instruction *I) {
9217 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
9218 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
9219 }
9220
9221 // And/or are potentially poison-safe logical patterns like:
9222 // select x, y, false
9223 // select x, true, y
9224 static bool isBoolLogicOp(Instruction *I) {
9225 return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
9226 match(I, m_LogicalOr(m_Value(), m_Value()));
9227 }
9228
9229 /// Checks if instruction is associative and can be vectorized.
9230 static bool isVectorizable(RecurKind Kind, Instruction *I) {
9231 if (Kind == RecurKind::None)
9232 return false;
9233
9234 // Integer ops that map to select instructions or intrinsics are fine.
9235 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
9236 isBoolLogicOp(I))
9237 return true;
9238
9239 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
9240 // FP min/max are associative except for NaN and -0.0. We do not
9241 // have to rule out -0.0 here because the intrinsic semantics do not
9242 // specify a fixed result for it.
9243 return I->getFastMathFlags().noNaNs();
9244 }
9245
9246 return I->isAssociative();
9247 }
9248
9249 static Value *getRdxOperand(Instruction *I, unsigned Index) {
9250 // Poison-safe 'or' takes the form: select X, true, Y
9251 // To make that work with the normal operand processing, we skip the
9252 // true value operand.
9253 // TODO: Change the code and data structures to handle this without a hack.
9254 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
9255 return I->getOperand(2);
9256 return I->getOperand(Index);
9257 }
9258
9259 /// Checks if the ParentStackElem.first should be marked as a reduction
9260 /// operation with an extra argument or as extra argument itself.
9261 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
9262 Value *ExtraArg) {
9263 if (ExtraArgs.count(ParentStackElem.first)) {
9264 ExtraArgs[ParentStackElem.first] = nullptr;
9265 // We ran into something like:
9266 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
9267 // The whole ParentStackElem.first should be considered as an extra value
9268 // in this case.
9269 // Do not perform analysis of remaining operands of ParentStackElem.first
9270 // instruction, this whole instruction is an extra argument.
9271 ParentStackElem.second = INVALID_OPERAND_INDEX;
9272 } else {
9273 // We ran into something like:
9274 // ParentStackElem.first += ... + ExtraArg + ...
9275 ExtraArgs[ParentStackElem.first] = ExtraArg;
9276 }
9277 }
9278
9279 /// Creates reduction operation with the current opcode.
9280 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
9281 Value *RHS, const Twine &Name, bool UseSelect) {
9282 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
9283 switch (Kind) {
9284 case RecurKind::Or:
9285 if (UseSelect &&
9286 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
9287 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
9288 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
9289 Name);
9290 case RecurKind::And:
9291 if (UseSelect &&
9292 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
9293 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
9294 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
9295 Name);
9296 case RecurKind::Add:
9297 case RecurKind::Mul:
9298 case RecurKind::Xor:
9299 case RecurKind::FAdd:
9300 case RecurKind::FMul:
9301 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
9302 Name);
9303 case RecurKind::FMax:
9304 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
9305 case RecurKind::FMin:
9306 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
9307 case RecurKind::SMax:
9308 if (UseSelect) {
9309 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
9310 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
9311 }
9312 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
9313 case RecurKind::SMin:
9314 if (UseSelect) {
9315 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
9316 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
9317 }
9318 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
9319 case RecurKind::UMax:
9320 if (UseSelect) {
9321 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
9322 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
9323 }
9324 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
9325 case RecurKind::UMin:
9326 if (UseSelect) {
9327 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
9328 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
9329 }
9330 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
9331 default:
9332 llvm_unreachable("Unknown reduction operation.")::llvm::llvm_unreachable_internal("Unknown reduction operation."
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9332)
;
9333 }
9334 }
9335
9336 /// Creates reduction operation with the current opcode with the IR flags
9337 /// from \p ReductionOps.
9338 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
9339 Value *RHS, const Twine &Name,
9340 const ReductionOpsListType &ReductionOps) {
9341 bool UseSelect = ReductionOps.size() == 2 ||
9342 // Logical or/and.
9343 (ReductionOps.size() == 1 &&
9344 isa<SelectInst>(ReductionOps.front().front()));
9345 assert((!UseSelect || ReductionOps.size() != 2 ||(static_cast <bool> ((!UseSelect || ReductionOps.size()
!= 2 || isa<SelectInst>(ReductionOps[1][0])) &&
"Expected cmp + select pairs for reduction") ? void (0) : __assert_fail
("(!UseSelect || ReductionOps.size() != 2 || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9347, __extension__
__PRETTY_FUNCTION__))
9346 isa<SelectInst>(ReductionOps[1][0])) &&(static_cast <bool> ((!UseSelect || ReductionOps.size()
!= 2 || isa<SelectInst>(ReductionOps[1][0])) &&
"Expected cmp + select pairs for reduction") ? void (0) : __assert_fail
("(!UseSelect || ReductionOps.size() != 2 || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9347, __extension__
__PRETTY_FUNCTION__))
9347 "Expected cmp + select pairs for reduction")(static_cast <bool> ((!UseSelect || ReductionOps.size()
!= 2 || isa<SelectInst>(ReductionOps[1][0])) &&
"Expected cmp + select pairs for reduction") ? void (0) : __assert_fail
("(!UseSelect || ReductionOps.size() != 2 || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9347, __extension__
__PRETTY_FUNCTION__))
;
9348 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
9349 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
9350 if (auto *Sel = dyn_cast<SelectInst>(Op)) {
9351 propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
9352 propagateIRFlags(Op, ReductionOps[1]);
9353 return Op;
9354 }
9355 }
9356 propagateIRFlags(Op, ReductionOps[0]);
9357 return Op;
9358 }
9359
9360 /// Creates reduction operation with the current opcode with the IR flags
9361 /// from \p I.
9362 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
9363 Value *RHS, const Twine &Name, Instruction *I) {
9364 auto *SelI = dyn_cast<SelectInst>(I);
9365 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
9366 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
9367 if (auto *Sel = dyn_cast<SelectInst>(Op))
9368 propagateIRFlags(Sel->getCondition(), SelI->getCondition());
9369 }
9370 propagateIRFlags(Op, I);
9371 return Op;
9372 }
9373
9374 static RecurKind getRdxKind(Instruction *I) {
9375 assert(I && "Expected instruction for reduction matching")(static_cast <bool> (I && "Expected instruction for reduction matching"
) ? void (0) : __assert_fail ("I && \"Expected instruction for reduction matching\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9375, __extension__
__PRETTY_FUNCTION__))
;
9376 if (match(I, m_Add(m_Value(), m_Value())))
9377 return RecurKind::Add;
9378 if (match(I, m_Mul(m_Value(), m_Value())))
9379 return RecurKind::Mul;
9380 if (match(I, m_And(m_Value(), m_Value())) ||
9381 match(I, m_LogicalAnd(m_Value(), m_Value())))
9382 return RecurKind::And;
9383 if (match(I, m_Or(m_Value(), m_Value())) ||
9384 match(I, m_LogicalOr(m_Value(), m_Value())))
9385 return RecurKind::Or;
9386 if (match(I, m_Xor(m_Value(), m_Value())))
9387 return RecurKind::Xor;
9388 if (match(I, m_FAdd(m_Value(), m_Value())))
9389 return RecurKind::FAdd;
9390 if (match(I, m_FMul(m_Value(), m_Value())))
9391 return RecurKind::FMul;
9392
9393 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
9394 return RecurKind::FMax;
9395 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
9396 return RecurKind::FMin;
9397
9398 // This matches either cmp+select or intrinsics. SLP is expected to handle
9399 // either form.
9400 // TODO: If we are canonicalizing to intrinsics, we can remove several
9401 // special-case paths that deal with selects.
9402 if (match(I, m_SMax(m_Value(), m_Value())))
9403 return RecurKind::SMax;
9404 if (match(I, m_SMin(m_Value(), m_Value())))
9405 return RecurKind::SMin;
9406 if (match(I, m_UMax(m_Value(), m_Value())))
9407 return RecurKind::UMax;
9408 if (match(I, m_UMin(m_Value(), m_Value())))
9409 return RecurKind::UMin;
9410
9411 if (auto *Select = dyn_cast<SelectInst>(I)) {
9412 // Try harder: look for min/max pattern based on instructions producing
9413 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
9414 // During the intermediate stages of SLP, it's very common to have
9415 // pattern like this (since optimizeGatherSequence is run only once
9416 // at the end):
9417 // %1 = extractelement <2 x i32> %a, i32 0
9418 // %2 = extractelement <2 x i32> %a, i32 1
9419 // %cond = icmp sgt i32 %1, %2
9420 // %3 = extractelement <2 x i32> %a, i32 0
9421 // %4 = extractelement <2 x i32> %a, i32 1
9422 // %select = select i1 %cond, i32 %3, i32 %4
9423 CmpInst::Predicate Pred;
9424 Instruction *L1;
9425 Instruction *L2;
9426
9427 Value *LHS = Select->getTrueValue();
9428 Value *RHS = Select->getFalseValue();
9429 Value *Cond = Select->getCondition();
9430
9431 // TODO: Support inverse predicates.
9432 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
9433 if (!isa<ExtractElementInst>(RHS) ||
9434 !L2->isIdenticalTo(cast<Instruction>(RHS)))
9435 return RecurKind::None;
9436 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
9437 if (!isa<ExtractElementInst>(LHS) ||
9438 !L1->isIdenticalTo(cast<Instruction>(LHS)))
9439 return RecurKind::None;
9440 } else {
9441 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
9442 return RecurKind::None;
9443 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
9444 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
9445 !L2->isIdenticalTo(cast<Instruction>(RHS)))
9446 return RecurKind::None;
9447 }
9448
9449 switch (Pred) {
9450 default:
9451 return RecurKind::None;
9452 case CmpInst::ICMP_SGT:
9453 case CmpInst::ICMP_SGE:
9454 return RecurKind::SMax;
9455 case CmpInst::ICMP_SLT:
9456 case CmpInst::ICMP_SLE:
9457 return RecurKind::SMin;
9458 case CmpInst::ICMP_UGT:
9459 case CmpInst::ICMP_UGE:
9460 return RecurKind::UMax;
9461 case CmpInst::ICMP_ULT:
9462 case CmpInst::ICMP_ULE:
9463 return RecurKind::UMin;
9464 }
9465 }
9466 return RecurKind::None;
9467 }
9468
9469 /// Get the index of the first operand.
9470 static unsigned getFirstOperandIndex(Instruction *I) {
9471 return isCmpSelMinMax(I) ? 1 : 0;
9472 }
9473
9474 /// Total number of operands in the reduction operation.
9475 static unsigned getNumberOfOperands(Instruction *I) {
9476 return isCmpSelMinMax(I) ? 3 : 2;
9477 }
9478
9479 /// Checks if the instruction is in basic block \p BB.
9480 /// For a cmp+sel min/max reduction check that both ops are in \p BB.
9481 static bool hasSameParent(Instruction *I, BasicBlock *BB) {
9482 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) {
9483 auto *Sel = cast<SelectInst>(I);
9484 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
9485 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
9486 }
9487 return I->getParent() == BB;
9488 }
9489
9490 /// Expected number of uses for reduction operations/reduced values.
9491 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
9492 if (IsCmpSelMinMax) {
9493 // SelectInst must be used twice while the condition op must have single
9494 // use only.
9495 if (auto *Sel = dyn_cast<SelectInst>(I))
9496 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
9497 return I->hasNUses(2);
9498 }
9499
9500 // Arithmetic reduction operation must be used once only.
9501 return I->hasOneUse();
9502 }
9503
9504 /// Initializes the list of reduction operations.
9505 void initReductionOps(Instruction *I) {
9506 if (isCmpSelMinMax(I))
9507 ReductionOps.assign(2, ReductionOpsType());
9508 else
9509 ReductionOps.assign(1, ReductionOpsType());
9510 }
9511
9512 /// Add all reduction operations for the reduction instruction \p I.
9513 void addReductionOps(Instruction *I) {
9514 if (isCmpSelMinMax(I)) {
9515 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
9516 ReductionOps[1].emplace_back(I);
9517 } else {
9518 ReductionOps[0].emplace_back(I);
9519 }
9520 }
9521
9522 static Value *getLHS(RecurKind Kind, Instruction *I) {
9523 if (Kind == RecurKind::None)
9524 return nullptr;
9525 return I->getOperand(getFirstOperandIndex(I));
9526 }
9527 static Value *getRHS(RecurKind Kind, Instruction *I) {
9528 if (Kind == RecurKind::None)
9529 return nullptr;
9530 return I->getOperand(getFirstOperandIndex(I) + 1);
9531 }
9532
9533public:
9534 HorizontalReduction() = default;
9535
9536 /// Try to find a reduction tree.
9537 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) {
9538 assert((!Phi || is_contained(Phi->operands(), Inst)) &&(static_cast <bool> ((!Phi || is_contained(Phi->operands
(), Inst)) && "Phi needs to use the binary operator")
? void (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), Inst)) && \"Phi needs to use the binary operator\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9539, __extension__
__PRETTY_FUNCTION__))
9539 "Phi needs to use the binary operator")(static_cast <bool> ((!Phi || is_contained(Phi->operands
(), Inst)) && "Phi needs to use the binary operator")
? void (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), Inst)) && \"Phi needs to use the binary operator\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9539, __extension__
__PRETTY_FUNCTION__))
;
9540 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||(static_cast <bool> ((isa<BinaryOperator>(Inst) ||
isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst
)) && "Expected binop, select, or intrinsic for reduction matching"
) ? void (0) : __assert_fail ("(isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst)) && \"Expected binop, select, or intrinsic for reduction matching\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9542, __extension__
__PRETTY_FUNCTION__))
9541 isa<IntrinsicInst>(Inst)) &&(static_cast <bool> ((isa<BinaryOperator>(Inst) ||
isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst
)) && "Expected binop, select, or intrinsic for reduction matching"
) ? void (0) : __assert_fail ("(isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst)) && \"Expected binop, select, or intrinsic for reduction matching\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9542, __extension__
__PRETTY_FUNCTION__))
9542 "Expected binop, select, or intrinsic for reduction matching")(static_cast <bool> ((isa<BinaryOperator>(Inst) ||
isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst
)) && "Expected binop, select, or intrinsic for reduction matching"
) ? void (0) : __assert_fail ("(isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst)) && \"Expected binop, select, or intrinsic for reduction matching\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9542, __extension__
__PRETTY_FUNCTION__))
;
9543 RdxKind = getRdxKind(Inst);
9544
9545 // We could have a initial reductions that is not an add.
9546 // r *= v1 + v2 + v3 + v4
9547 // In such a case start looking for a tree rooted in the first '+'.
9548 if (Phi) {
9549 if (getLHS(RdxKind, Inst) == Phi) {
9550 Phi = nullptr;
9551 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
9552 if (!Inst)
9553 return false;
9554 RdxKind = getRdxKind(Inst);
9555 } else if (getRHS(RdxKind, Inst) == Phi) {
9556 Phi = nullptr;
9557 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
9558 if (!Inst)
9559 return false;
9560 RdxKind = getRdxKind(Inst);
9561 }
9562 }
9563
9564 if (!isVectorizable(RdxKind, Inst))
9565 return false;
9566
9567 // Analyze "regular" integer/FP types for reductions - no target-specific
9568 // types or pointers.
9569 Type *Ty = Inst->getType();
9570 if (!isValidElementType(Ty) || Ty->isPointerTy())
9571 return false;
9572
9573 // Though the ultimate reduction may have multiple uses, its condition must
9574 // have only single use.
9575 if (auto *Sel = dyn_cast<SelectInst>(Inst))
9576 if (!Sel->getCondition()->hasOneUse())
9577 return false;
9578
9579 ReductionRoot = Inst;
9580
9581 // The opcode for leaf values that we perform a reduction on.
9582 // For example: load(x) + load(y) + load(z) + fptoui(w)
9583 // The leaf opcode for 'w' does not match, so we don't include it as a
9584 // potential candidate for the reduction.
9585 unsigned LeafOpcode = 0;
9586
9587 // Post-order traverse the reduction tree starting at Inst. We only handle
9588 // true trees containing binary operators or selects.
9589 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
9590 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst)));
9591 initReductionOps(Inst);
9592 while (!Stack.empty()) {
9593 Instruction *TreeN = Stack.back().first;
9594 unsigned EdgeToVisit = Stack.back().second++;
9595 const RecurKind TreeRdxKind = getRdxKind(TreeN);
9596 bool IsReducedValue = TreeRdxKind != RdxKind;
9597
9598 // Postorder visit.
9599 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) {
9600 if (IsReducedValue)
9601 ReducedVals.push_back(TreeN);
9602 else {
9603 auto ExtraArgsIter = ExtraArgs.find(TreeN);
9604 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
9605 // Check if TreeN is an extra argument of its parent operation.
9606 if (Stack.size() <= 1) {
9607 // TreeN can't be an extra argument as it is a root reduction
9608 // operation.
9609 return false;
9610 }
9611 // Yes, TreeN is an extra argument, do not add it to a list of
9612 // reduction operations.
9613 // Stack[Stack.size() - 2] always points to the parent operation.
9614 markExtraArg(Stack[Stack.size() - 2], TreeN);
9615 ExtraArgs.erase(TreeN);
9616 } else
9617 addReductionOps(TreeN);
9618 }
9619 // Retract.
9620 Stack.pop_back();
9621 continue;
9622 }
9623
9624 // Visit operands.
9625 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit);
9626 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
9627 if (!EdgeInst) {
9628 // Edge value is not a reduction instruction or a leaf instruction.
9629 // (It may be a constant, function argument, or something else.)
9630 markExtraArg(Stack.back(), EdgeVal);
9631 continue;
9632 }
9633 RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
9634 // Continue analysis if the next operand is a reduction operation or
9635 // (possibly) a leaf value. If the leaf value opcode is not set,
9636 // the first met operation != reduction operation is considered as the
9637 // leaf opcode.
9638 // Only handle trees in the current basic block.
9639 // Each tree node needs to have minimal number of users except for the
9640 // ultimate reduction.
9641 const bool IsRdxInst = EdgeRdxKind == RdxKind;
9642 if (EdgeInst != Phi && EdgeInst != Inst &&
9643 hasSameParent(EdgeInst, Inst->getParent()) &&
9644 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) &&
9645 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
9646 if (IsRdxInst) {
9647 // We need to be able to reassociate the reduction operations.
9648 if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
9649 // I is an extra argument for TreeN (its parent operation).
9650 markExtraArg(Stack.back(), EdgeInst);
9651 continue;
9652 }
9653 } else if (!LeafOpcode) {
9654 LeafOpcode = EdgeInst->getOpcode();
9655 }
9656 Stack.push_back(
9657 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
9658 continue;
9659 }
9660 // I is an extra argument for TreeN (its parent operation).
9661 markExtraArg(Stack.back(), EdgeInst);
9662 }
9663 return true;
9664 }
9665
9666 /// Attempt to vectorize the tree found by matchAssociativeReduction.
9667 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
9668 // If there are a sufficient number of reduction values, reduce
9669 // to a nearby power-of-2. We can safely generate oversized
9670 // vectors and rely on the backend to split them to legal sizes.
9671 unsigned NumReducedVals = ReducedVals.size();
9672 if (NumReducedVals < 4)
9673 return nullptr;
9674
9675 // Intersect the fast-math-flags from all reduction operations.
9676 FastMathFlags RdxFMF;
9677 RdxFMF.set();
9678 for (ReductionOpsType &RdxOp : ReductionOps) {
9679 for (Value *RdxVal : RdxOp) {
9680 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
9681 RdxFMF &= FPMO->getFastMathFlags();
9682 }
9683 }
9684
9685 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
9686 Builder.setFastMathFlags(RdxFMF);
9687
9688 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
9689 // The same extra argument may be used several times, so log each attempt
9690 // to use it.
9691 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
9692 assert(Pair.first && "DebugLoc must be set.")(static_cast <bool> (Pair.first && "DebugLoc must be set."
) ? void (0) : __assert_fail ("Pair.first && \"DebugLoc must be set.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9692, __extension__
__PRETTY_FUNCTION__))
;
9693 ExternallyUsedValues[Pair.second].push_back(Pair.first);
9694 }
9695
9696 // The compare instruction of a min/max is the insertion point for new
9697 // instructions and may be replaced with a new compare instruction.
9698 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
9699 assert(isa<SelectInst>(RdxRootInst) &&(static_cast <bool> (isa<SelectInst>(RdxRootInst)
&& "Expected min/max reduction to have select root instruction"
) ? void (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9700, __extension__
__PRETTY_FUNCTION__))
9700 "Expected min/max reduction to have select root instruction")(static_cast <bool> (isa<SelectInst>(RdxRootInst)
&& "Expected min/max reduction to have select root instruction"
) ? void (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9700, __extension__
__PRETTY_FUNCTION__))
;
9701 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
9702 assert(isa<Instruction>(ScalarCond) &&(static_cast <bool> (isa<Instruction>(ScalarCond)
&& "Expected min/max reduction to have compare condition"
) ? void (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9703, __extension__
__PRETTY_FUNCTION__))
9703 "Expected min/max reduction to have compare condition")(static_cast <bool> (isa<Instruction>(ScalarCond)
&& "Expected min/max reduction to have compare condition"
) ? void (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9703, __extension__
__PRETTY_FUNCTION__))
;
9704 return cast<Instruction>(ScalarCond);
9705 };
9706
9707 // The reduction root is used as the insertion point for new instructions,
9708 // so set it as externally used to prevent it from being deleted.
9709 ExternallyUsedValues[ReductionRoot];
9710 SmallVector<Value *, 16> IgnoreList;
9711 for (ReductionOpsType &RdxOp : ReductionOps)
9712 IgnoreList.append(RdxOp.begin(), RdxOp.end());
9713
9714 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
9715 if (NumReducedVals > ReduxWidth) {
9716 // In the loop below, we are building a tree based on a window of
9717 // 'ReduxWidth' values.
9718 // If the operands of those values have common traits (compare predicate,
9719 // constant operand, etc), then we want to group those together to
9720 // minimize the cost of the reduction.
9721
9722 // TODO: This should be extended to count common operands for
9723 // compares and binops.
9724
9725 // Step 1: Count the number of times each compare predicate occurs.
9726 SmallDenseMap<unsigned, unsigned> PredCountMap;
9727 for (Value *RdxVal : ReducedVals) {
9728 CmpInst::Predicate Pred;
9729 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
9730 ++PredCountMap[Pred];
9731 }
9732 // Step 2: Sort the values so the most common predicates come first.
9733 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
9734 CmpInst::Predicate PredA, PredB;
9735 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
9736 match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
9737 return PredCountMap[PredA] > PredCountMap[PredB];
9738 }
9739 return false;
9740 });
9741 }
9742
9743 Value *VectorizedTree = nullptr;
9744 unsigned i = 0;
9745 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
9746 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
9747 V.buildTree(VL, IgnoreList);
9748 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true))
9749 break;
9750 if (V.isLoadCombineReductionCandidate(RdxKind))
9751 break;
9752 V.reorderTopToBottom();
9753 V.reorderBottomToTop(/*IgnoreReorder=*/true);
9754 V.buildExternalUses(ExternallyUsedValues);
9755
9756 // For a poison-safe boolean logic reduction, do not replace select
9757 // instructions with logic ops. All reduced values will be frozen (see
9758 // below) to prevent leaking poison.
9759 if (isa<SelectInst>(ReductionRoot) &&
9760 isBoolLogicOp(cast<Instruction>(ReductionRoot)) &&
9761 NumReducedVals != ReduxWidth)
9762 break;
9763
9764 V.computeMinimumValueSizes();
9765
9766 // Estimate cost.
9767 InstructionCost TreeCost =
9768 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
9769 InstructionCost ReductionCost =
9770 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF);
9771 InstructionCost Cost = TreeCost + ReductionCost;
9772 if (!Cost.isValid()) {
9773 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "Encountered invalid baseline cost.\n"
; } } while (false)
;
9774 return nullptr;
9775 }
9776 if (Cost >= -SLPCostThreshold) {
9777 V.getORE()->emit([&]() {
9778 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "HorSLPNotBeneficial",
9779 cast<Instruction>(VL[0]))
9780 << "Vectorizing horizontal reduction is possible"
9781 << "but not beneficial with cost " << ore::NV("Cost", Cost)
9782 << " and threshold "
9783 << ore::NV("Threshold", -SLPCostThreshold);
9784 });
9785 break;
9786 }
9787
9788 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
9789 << Cost << ". (HorRdx)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
;
9790 V.getORE()->emit([&]() {
9791 return OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedHorizontalReduction",
9792 cast<Instruction>(VL[0]))
9793 << "Vectorized horizontal reduction with cost "
9794 << ore::NV("Cost", Cost) << " and with tree size "
9795 << ore::NV("TreeSize", V.getTreeSize());
9796 });
9797
9798 // Vectorize a tree.
9799 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
9800 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
9801
9802 // Emit a reduction. If the root is a select (min/max idiom), the insert
9803 // point is the compare condition of that select.
9804 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
9805 if (isCmpSelMinMax(RdxRootInst))
9806 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
9807 else
9808 Builder.SetInsertPoint(RdxRootInst);
9809
9810 // To prevent poison from leaking across what used to be sequential, safe,
9811 // scalar boolean logic operations, the reduction operand must be frozen.
9812 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
9813 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
9814
9815 Value *ReducedSubTree =
9816 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
9817
9818 if (!VectorizedTree) {
9819 // Initialize the final value in the reduction.
9820 VectorizedTree = ReducedSubTree;
9821 } else {
9822 // Update the final value in the reduction.
9823 Builder.SetCurrentDebugLocation(Loc);
9824 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
9825 ReducedSubTree, "op.rdx", ReductionOps);
9826 }
9827 i += ReduxWidth;
9828 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
9829 }
9830
9831 if (VectorizedTree) {
9832 // Finish the reduction.
9833 for (; i < NumReducedVals; ++i) {
9834 auto *I = cast<Instruction>(ReducedVals[i]);
9835 Builder.SetCurrentDebugLocation(I->getDebugLoc());
9836 VectorizedTree =
9837 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
9838 }
9839 for (auto &Pair : ExternallyUsedValues) {
9840 // Add each externally used value to the final reduction.
9841 for (auto *I : Pair.second) {
9842 Builder.SetCurrentDebugLocation(I->getDebugLoc());
9843 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
9844 Pair.first, "op.extra", I);
9845 }
9846 }
9847
9848 ReductionRoot->replaceAllUsesWith(VectorizedTree);
9849
9850 // The original scalar reduction is expected to have no remaining
9851 // uses outside the reduction tree itself. Assert that we got this
9852 // correct, replace internal uses with undef, and mark for eventual
9853 // deletion.
9854#ifndef NDEBUG
9855 SmallSet<Value *, 4> IgnoreSet;
9856 IgnoreSet.insert(IgnoreList.begin(), IgnoreList.end());
9857#endif
9858 for (auto *Ignore : IgnoreList) {
9859#ifndef NDEBUG
9860 for (auto *U : Ignore->users()) {
9861 assert(IgnoreSet.count(U))(static_cast <bool> (IgnoreSet.count(U)) ? void (0) : __assert_fail
("IgnoreSet.count(U)", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 9861, __extension__ __PRETTY_FUNCTION__))
;
9862 }
9863#endif
9864 if (!Ignore->use_empty()) {
9865 Value *Undef = UndefValue::get(Ignore->getType());
9866 Ignore->replaceAllUsesWith(Undef);
9867 }
9868 V.eraseInstruction(cast<Instruction>(Ignore));
9869 }
9870 }
9871 return VectorizedTree;
9872 }
9873
9874 unsigned numReductionValues() const { return ReducedVals.size(); }
9875
9876private:
9877 /// Calculate the cost of a reduction.
9878 InstructionCost getReductionCost(TargetTransformInfo *TTI,
9879 Value *FirstReducedVal, unsigned ReduxWidth,
9880 FastMathFlags FMF) {
9881 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
9882 Type *ScalarTy = FirstReducedVal->getType();
9883 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
9884 InstructionCost VectorCost, ScalarCost;
9885 switch (RdxKind) {
9886 case RecurKind::Add:
9887 case RecurKind::Mul:
9888 case RecurKind::Or:
9889 case RecurKind::And:
9890 case RecurKind::Xor:
9891 case RecurKind::FAdd:
9892 case RecurKind::FMul: {
9893 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
9894 VectorCost =
9895 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
9896 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
9897 break;
9898 }
9899 case RecurKind::FMax:
9900 case RecurKind::FMin: {
9901 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
9902 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
9903 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
9904 /*IsUnsigned=*/false, CostKind);
9905 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
9906 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy,
9907 SclCondTy, RdxPred, CostKind) +
9908 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
9909 SclCondTy, RdxPred, CostKind);
9910 break;
9911 }
9912 case RecurKind::SMax:
9913 case RecurKind::SMin:
9914 case RecurKind::UMax:
9915 case RecurKind::UMin: {
9916 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
9917 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
9918 bool IsUnsigned =
9919 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
9920 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned,
9921 CostKind);
9922 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
9923 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
9924 SclCondTy, RdxPred, CostKind) +
9925 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
9926 SclCondTy, RdxPred, CostKind);
9927 break;
9928 }
9929 default:
9930 llvm_unreachable("Expected arithmetic or min/max reduction operation")::llvm::llvm_unreachable_internal("Expected arithmetic or min/max reduction operation"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9930)
;
9931 }
9932
9933 // Scalar cost is repeated for N-1 elements.
9934 ScalarCost *= (ReduxWidth - 1);
9935 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
9936 << " for reduction that starts with " << *FirstReducedValdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
9937 << " (It is a splitting reduction)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
;
9938 return VectorCost - ScalarCost;
9939 }
9940
9941 /// Emit a horizontal reduction of the vectorized value.
9942 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
9943 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
9944 assert(VectorizedValue && "Need to have a vectorized tree node")(static_cast <bool> (VectorizedValue && "Need to have a vectorized tree node"
) ? void (0) : __assert_fail ("VectorizedValue && \"Need to have a vectorized tree node\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9944, __extension__
__PRETTY_FUNCTION__))
;
9945 assert(isPowerOf2_32(ReduxWidth) &&(static_cast <bool> (isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now") ? void (0)
: __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9946, __extension__
__PRETTY_FUNCTION__))
9946 "We only handle power-of-two reductions for now")(static_cast <bool> (isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now") ? void (0)
: __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9946, __extension__
__PRETTY_FUNCTION__))
;
9947 assert(RdxKind != RecurKind::FMulAdd &&(static_cast <bool> (RdxKind != RecurKind::FMulAdd &&
"A call to the llvm.fmuladd intrinsic is not handled yet") ?
void (0) : __assert_fail ("RdxKind != RecurKind::FMulAdd && \"A call to the llvm.fmuladd intrinsic is not handled yet\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9948, __extension__
__PRETTY_FUNCTION__))
9948 "A call to the llvm.fmuladd intrinsic is not handled yet")(static_cast <bool> (RdxKind != RecurKind::FMulAdd &&
"A call to the llvm.fmuladd intrinsic is not handled yet") ?
void (0) : __assert_fail ("RdxKind != RecurKind::FMulAdd && \"A call to the llvm.fmuladd intrinsic is not handled yet\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9948, __extension__
__PRETTY_FUNCTION__))
;
9949
9950 ++NumVectorInstructions;
9951 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind);
9952 }
9953};
9954
9955} // end anonymous namespace
9956
9957static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
9958 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
9959 return cast<FixedVectorType>(IE->getType())->getNumElements();
9960
9961 unsigned AggregateSize = 1;
9962 auto *IV = cast<InsertValueInst>(InsertInst);
9963 Type *CurrentType = IV->getType();
9964 do {
9965 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
9966 for (auto *Elt : ST->elements())
9967 if (Elt != ST->getElementType(0)) // check homogeneity
9968 return None;
9969 AggregateSize *= ST->getNumElements();
9970 CurrentType = ST->getElementType(0);
9971 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
9972 AggregateSize *= AT->getNumElements();
9973 CurrentType = AT->getElementType();
9974 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
9975 AggregateSize *= VT->getNumElements();
9976 return AggregateSize;
9977 } else if (CurrentType->isSingleValueType()) {
9978 return AggregateSize;
9979 } else {
9980 return None;
9981 }
9982 } while (true);
9983}
9984
9985static void findBuildAggregate_rec(Instruction *LastInsertInst,
9986 TargetTransformInfo *TTI,
9987 SmallVectorImpl<Value *> &BuildVectorOpds,
9988 SmallVectorImpl<Value *> &InsertElts,
9989 unsigned OperandOffset) {
9990 do {
9991 Value *InsertedOperand = LastInsertInst->getOperand(1);
9992 Optional<unsigned> OperandIndex =
9993 getInsertIndex(LastInsertInst, OperandOffset);
9994 if (!OperandIndex)
9995 return;
9996 if (isa<InsertElementInst>(InsertedOperand) ||
9997 isa<InsertValueInst>(InsertedOperand)) {
9998 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
9999 BuildVectorOpds, InsertElts, *OperandIndex);
10000
10001 } else {
10002 BuildVectorOpds[*OperandIndex] = InsertedOperand;
10003 InsertElts[*OperandIndex] = LastInsertInst;
10004 }
10005 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
10006 } while (LastInsertInst != nullptr &&
10007 (isa<InsertValueInst>(LastInsertInst) ||
10008 isa<InsertElementInst>(LastInsertInst)) &&
10009 LastInsertInst->hasOneUse());
10010}
10011
10012/// Recognize construction of vectors like
10013/// %ra = insertelement <4 x float> poison, float %s0, i32 0
10014/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
10015/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
10016/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
10017/// starting from the last insertelement or insertvalue instruction.
10018///
10019/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
10020/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
10021/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
10022///
10023/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
10024///
10025/// \return true if it matches.
10026static bool findBuildAggregate(Instruction *LastInsertInst,
10027 TargetTransformInfo *TTI,
10028 SmallVectorImpl<Value *> &BuildVectorOpds,
10029 SmallVectorImpl<Value *> &InsertElts) {
10030
10031 assert((isa<InsertElementInst>(LastInsertInst) ||(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10033, __extension__
__PRETTY_FUNCTION__))
10032 isa<InsertValueInst>(LastInsertInst)) &&(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10033, __extension__
__PRETTY_FUNCTION__))
10033 "Expected insertelement or insertvalue instruction!")(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10033, __extension__
__PRETTY_FUNCTION__))
;
10034
10035 assert((BuildVectorOpds.empty() && InsertElts.empty()) &&(static_cast <bool> ((BuildVectorOpds.empty() &&
InsertElts.empty()) && "Expected empty result vectors!"
) ? void (0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10036, __extension__
__PRETTY_FUNCTION__))
10036 "Expected empty result vectors!")(static_cast <bool> ((BuildVectorOpds.empty() &&
InsertElts.empty()) && "Expected empty result vectors!"
) ? void (0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10036, __extension__
__PRETTY_FUNCTION__))
;
10037
10038 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
10039 if (!AggregateSize)
10040 return false;
10041 BuildVectorOpds.resize(*AggregateSize);
10042 InsertElts.resize(*AggregateSize);
10043
10044 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
10045 llvm::erase_value(BuildVectorOpds, nullptr);
10046 llvm::erase_value(InsertElts, nullptr);
10047 if (BuildVectorOpds.size() >= 2)
10048 return true;
10049
10050 return false;
10051}
10052
10053/// Try and get a reduction value from a phi node.
10054///
10055/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
10056/// if they come from either \p ParentBB or a containing loop latch.
10057///
10058/// \returns A candidate reduction value if possible, or \code nullptr \endcode
10059/// if not possible.
10060static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
10061 BasicBlock *ParentBB, LoopInfo *LI) {
10062 // There are situations where the reduction value is not dominated by the
10063 // reduction phi. Vectorizing such cases has been reported to cause
10064 // miscompiles. See PR25787.
10065 auto DominatedReduxValue = [&](Value *R) {
10066 return isa<Instruction>(R) &&
10067 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
10068 };
10069
10070 Value *Rdx = nullptr;
10071
10072 // Return the incoming value if it comes from the same BB as the phi node.
10073 if (P->getIncomingBlock(0) == ParentBB) {
10074 Rdx = P->getIncomingValue(0);
10075 } else if (P->getIncomingBlock(1) == ParentBB) {
10076 Rdx = P->getIncomingValue(1);
10077 }
10078
10079 if (Rdx && DominatedReduxValue(Rdx))
10080 return Rdx;
10081
10082 // Otherwise, check whether we have a loop latch to look at.
10083 Loop *BBL = LI->getLoopFor(ParentBB);
10084 if (!BBL)
10085 return nullptr;
10086 BasicBlock *BBLatch = BBL->getLoopLatch();
10087 if (!BBLatch)
10088 return nullptr;
10089
10090 // There is a loop latch, return the incoming value if it comes from
10091 // that. This reduction pattern occasionally turns up.
10092 if (P->getIncomingBlock(0) == BBLatch) {
10093 Rdx = P->getIncomingValue(0);
10094 } else if (P->getIncomingBlock(1) == BBLatch) {
10095 Rdx = P->getIncomingValue(1);
10096 }
10097
10098 if (Rdx && DominatedReduxValue(Rdx))
10099 return Rdx;
10100
10101 return nullptr;
10102}
10103
10104static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
10105 if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
10106 return true;
10107 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
10108 return true;
10109 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
10110 return true;
10111 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
10112 return true;
10113 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
10114 return true;
10115 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
10116 return true;
10117 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
10118 return true;
10119 return false;
10120}
10121
10122/// Attempt to reduce a horizontal reduction.
10123/// If it is legal to match a horizontal reduction feeding the phi node \a P
10124/// with reduction operators \a Root (or one of its operands) in a basic block
10125/// \a BB, then check if it can be done. If horizontal reduction is not found
10126/// and root instruction is a binary operation, vectorization of the operands is
10127/// attempted.
10128/// \returns true if a horizontal reduction was matched and reduced or operands
10129/// of one of the binary instruction were vectorized.
10130/// \returns false if a horizontal reduction was not matched (or not possible)
10131/// or no vectorization of any binary operation feeding \a Root instruction was
10132/// performed.
10133static bool tryToVectorizeHorReductionOrInstOperands(
10134 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
10135 TargetTransformInfo *TTI,
10136 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
10137 if (!ShouldVectorizeHor)
10138 return false;
10139
10140 if (!Root)
10141 return false;
10142
10143 if (Root->getParent() != BB || isa<PHINode>(Root))
10144 return false;
10145 // Start analysis starting from Root instruction. If horizontal reduction is
10146 // found, try to vectorize it. If it is not a horizontal reduction or
10147 // vectorization is not possible or not effective, and currently analyzed
10148 // instruction is a binary operation, try to vectorize the operands, using
10149 // pre-order DFS traversal order. If the operands were not vectorized, repeat
10150 // the same procedure considering each operand as a possible root of the
10151 // horizontal reduction.
10152 // Interrupt the process if the Root instruction itself was vectorized or all
10153 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
10154 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
10155 // CmpInsts so we can skip extra attempts in
10156 // tryToVectorizeHorReductionOrInstOperands and save compile time.
10157 std::queue<std::pair<Instruction *, unsigned>> Stack;
10158 Stack.emplace(Root, 0);
10159 SmallPtrSet<Value *, 8> VisitedInstrs;
10160 SmallVector<WeakTrackingVH> PostponedInsts;
10161 bool Res = false;
10162 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0,
10163 Value *&B1) -> Value * {
10164 bool IsBinop = matchRdxBop(Inst, B0, B1);
10165 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
10166 if (IsBinop || IsSelect) {
10167 HorizontalReduction HorRdx;
10168 if (HorRdx.matchAssociativeReduction(P, Inst))
10169 return HorRdx.tryToReduce(R, TTI);
10170 }
10171 return nullptr;
10172 };
10173 while (!Stack.empty()) {
10174 Instruction *Inst;
10175 unsigned Level;
10176 std::tie(Inst, Level) = Stack.front();
10177 Stack.pop();
10178 // Do not try to analyze instruction that has already been vectorized.
10179 // This may happen when we vectorize instruction operands on a previous
10180 // iteration while stack was populated before that happened.
10181 if (R.isDeleted(Inst))
10182 continue;
10183 Value *B0 = nullptr, *B1 = nullptr;
10184 if (Value *V = TryToReduce(Inst, B0, B1)) {
10185 Res = true;
10186 // Set P to nullptr to avoid re-analysis of phi node in
10187 // matchAssociativeReduction function unless this is the root node.
10188 P = nullptr;
10189 if (auto *I = dyn_cast<Instruction>(V)) {
10190 // Try to find another reduction.
10191 Stack.emplace(I, Level);
10192 continue;
10193 }
10194 } else {
10195 bool IsBinop = B0 && B1;
10196 if (P && IsBinop) {
10197 Inst = dyn_cast<Instruction>(B0);
10198 if (Inst == P)
10199 Inst = dyn_cast<Instruction>(B1);
10200 if (!Inst) {
10201 // Set P to nullptr to avoid re-analysis of phi node in
10202 // matchAssociativeReduction function unless this is the root node.
10203 P = nullptr;
10204 continue;
10205 }
10206 }
10207 // Set P to nullptr to avoid re-analysis of phi node in
10208 // matchAssociativeReduction function unless this is the root node.
10209 P = nullptr;
10210 // Do not try to vectorize CmpInst operands, this is done separately.
10211 // Final attempt for binop args vectorization should happen after the loop
10212 // to try to find reductions.
10213 if (!isa<CmpInst>(Inst))
10214 PostponedInsts.push_back(Inst);
10215 }
10216
10217 // Try to vectorize operands.
10218 // Continue analysis for the instruction from the same basic block only to
10219 // save compile time.
10220 if (++Level < RecursionMaxDepth)
10221 for (auto *Op : Inst->operand_values())
10222 if (VisitedInstrs.insert(Op).second)
10223 if (auto *I = dyn_cast<Instruction>(Op))
10224 // Do not try to vectorize CmpInst operands, this is done
10225 // separately.
10226 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
10227 I->getParent() == BB)
10228 Stack.emplace(I, Level);
10229 }
10230 // Try to vectorized binops where reductions were not found.
10231 for (Value *V : PostponedInsts)
10232 if (auto *Inst = dyn_cast<Instruction>(V))
10233 if (!R.isDeleted(Inst))
10234 Res |= Vectorize(Inst, R);
10235 return Res;
10236}
10237
10238bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
10239 BasicBlock *BB, BoUpSLP &R,
10240 TargetTransformInfo *TTI) {
10241 auto *I = dyn_cast_or_null<Instruction>(V);
10242 if (!I)
10243 return false;
10244
10245 if (!isa<BinaryOperator>(I))
10246 P = nullptr;
10247 // Try to match and vectorize a horizontal reduction.
10248 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
10249 return tryToVectorize(I, R);
10250 };
10251 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
10252 ExtraVectorization);
10253}
10254
10255bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
10256 BasicBlock *BB, BoUpSLP &R) {
10257 const DataLayout &DL = BB->getModule()->getDataLayout();
10258 if (!R.canMapToVector(IVI->getType(), DL))
10259 return false;
10260
10261 SmallVector<Value *, 16> BuildVectorOpds;
10262 SmallVector<Value *, 16> BuildVectorInsts;
10263 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
10264 return false;
10265
10266 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: array mappable to vector: " <<
*IVI << "\n"; } } while (false)
;
10267 // Aggregate value is unlikely to be processed in vector register.
10268 return tryToVectorizeList(BuildVectorOpds, R);
10269}
10270
10271bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
10272 BasicBlock *BB, BoUpSLP &R) {
10273 SmallVector<Value *, 16> BuildVectorInsts;
10274 SmallVector<Value *, 16> BuildVectorOpds;
10275 SmallVector<int> Mask;
10276 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
10277 (llvm::all_of(
10278 BuildVectorOpds,
10279 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
10280 isFixedVectorShuffle(BuildVectorOpds, Mask)))
10281 return false;
10282
10283 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: array mappable to vector: " <<
*IEI << "\n"; } } while (false)
;
10284 return tryToVectorizeList(BuildVectorInsts, R);
10285}
10286
10287template <typename T>
10288static bool
10289tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming,
10290 function_ref<unsigned(T *)> Limit,
10291 function_ref<bool(T *, T *)> Comparator,
10292 function_ref<bool(T *, T *)> AreCompatible,
10293 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
10294 bool LimitForRegisterSize) {
10295 bool Changed = false;
10296 // Sort by type, parent, operands.
10297 stable_sort(Incoming, Comparator);
10298
10299 // Try to vectorize elements base on their type.
10300 SmallVector<T *> Candidates;
10301 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
10302 // Look for the next elements with the same type, parent and operand
10303 // kinds.
10304 auto *SameTypeIt = IncIt;
10305 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
10306 ++SameTypeIt;
10307
10308 // Try to vectorize them.
10309 unsigned NumElts = (SameTypeIt - IncIt);
10310 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at nodes ("
<< NumElts << ")\n"; } } while (false)
10311 << NumElts << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at nodes ("
<< NumElts << ")\n"; } } while (false)
;
10312 // The vectorization is a 3-state attempt:
10313 // 1. Try to vectorize instructions with the same/alternate opcodes with the
10314 // size of maximal register at first.
10315 // 2. Try to vectorize remaining instructions with the same type, if
10316 // possible. This may result in the better vectorization results rather than
10317 // if we try just to vectorize instructions with the same/alternate opcodes.
10318 // 3. Final attempt to try to vectorize all instructions with the
10319 // same/alternate ops only, this may result in some extra final
10320 // vectorization.
10321 if (NumElts > 1 &&
10322 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) {
10323 // Success start over because instructions might have been changed.
10324 Changed = true;
10325 } else if (NumElts < Limit(*IncIt) &&
10326 (Candidates.empty() ||
10327 Candidates.front()->getType() == (*IncIt)->getType())) {
10328 Candidates.append(IncIt, std::next(IncIt, NumElts));
10329 }
10330 // Final attempt to vectorize instructions with the same types.
10331 if (Candidates.size() > 1 &&
10332 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
10333 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) {
10334 // Success start over because instructions might have been changed.
10335 Changed = true;
10336 } else if (LimitForRegisterSize) {
10337 // Try to vectorize using small vectors.
10338 for (auto *It = Candidates.begin(), *End = Candidates.end();
10339 It != End;) {
10340 auto *SameTypeIt = It;
10341 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
10342 ++SameTypeIt;
10343 unsigned NumElts = (SameTypeIt - It);
10344 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts),
10345 /*LimitForRegisterSize=*/false))
10346 Changed = true;
10347 It = SameTypeIt;
10348 }
10349 }
10350 Candidates.clear();
10351 }
10352
10353 // Start over at the next instruction of a different type (or the end).
10354 IncIt = SameTypeIt;
10355 }
10356 return Changed;
10357}
10358
10359/// Compare two cmp instructions. If IsCompatibility is true, function returns
10360/// true if 2 cmps have same/swapped predicates and mos compatible corresponding
10361/// operands. If IsCompatibility is false, function implements strict weak
10362/// ordering relation between two cmp instructions, returning true if the first
10363/// instruction is "less" than the second, i.e. its predicate is less than the
10364/// predicate of the second or the operands IDs are less than the operands IDs
10365/// of the second cmp instruction.
10366template <bool IsCompatibility>
10367static bool compareCmp(Value *V, Value *V2,
10368 function_ref<bool(Instruction *)> IsDeleted) {
10369 auto *CI1 = cast<CmpInst>(V);
10370 auto *CI2 = cast<CmpInst>(V2);
10371 if (IsDeleted(CI2) || !isValidElementType(CI2->getType()))
10372 return false;
10373 if (CI1->getOperand(0)->getType()->getTypeID() <
10374 CI2->getOperand(0)->getType()->getTypeID())
10375 return !IsCompatibility;
10376 if (CI1->getOperand(0)->getType()->getTypeID() >
10377 CI2->getOperand(0)->getType()->getTypeID())
10378 return false;
10379 CmpInst::Predicate Pred1 = CI1->getPredicate();
10380 CmpInst::Predicate Pred2 = CI2->getPredicate();
10381 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
10382 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
10383 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
10384 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
10385 if (BasePred1 < BasePred2)
10386 return !IsCompatibility;
10387 if (BasePred1 > BasePred2)
10388 return false;
10389 // Compare operands.
10390 bool LEPreds = Pred1 <= Pred2;
10391 bool GEPreds = Pred1 >= Pred2;
10392 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
10393 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1);
10394 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1);
10395 if (Op1->getValueID() < Op2->getValueID())
10396 return !IsCompatibility;
10397 if (Op1->getValueID() > Op2->getValueID())
10398 return false;
10399 if (auto *I1 = dyn_cast<Instruction>(Op1))
10400 if (auto *I2 = dyn_cast<Instruction>(Op2)) {
10401 if (I1->getParent() != I2->getParent())
10402 return false;
10403 InstructionsState S = getSameOpcode({I1, I2});
10404 if (S.getOpcode())
10405 continue;
10406 return false;
10407 }
10408 }
10409 return IsCompatibility;
10410}
10411
10412bool SLPVectorizerPass::vectorizeSimpleInstructions(
10413 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
10414 bool AtTerminator) {
10415 bool OpsChanged = false;
10416 SmallVector<Instruction *, 4> PostponedCmps;
10417 for (auto *I : reverse(Instructions)) {
10418 if (R.isDeleted(I))
10419 continue;
10420 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
10421 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
10422 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
10423 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
10424 else if (isa<CmpInst>(I))
10425 PostponedCmps.push_back(I);
10426 }
10427 if (AtTerminator) {
10428 // Try to find reductions first.
10429 for (Instruction *I : PostponedCmps) {
10430 if (R.isDeleted(I))
10431 continue;
10432 for (Value *Op : I->operands())
10433 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
10434 }
10435 // Try to vectorize operands as vector bundles.
10436 for (Instruction *I : PostponedCmps) {
10437 if (R.isDeleted(I))
10438 continue;
10439 OpsChanged |= tryToVectorize(I, R);
10440 }
10441 // Try to vectorize list of compares.
10442 // Sort by type, compare predicate, etc.
10443 auto &&CompareSorter = [&R](Value *V, Value *V2) {
10444 return compareCmp<false>(V, V2,
10445 [&R](Instruction *I) { return R.isDeleted(I); });
10446 };
10447
10448 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) {
10449 if (V1 == V2)
10450 return true;
10451 return compareCmp<true>(V1, V2,
10452 [&R](Instruction *I) { return R.isDeleted(I); });
10453 };
10454 auto Limit = [&R](Value *V) {
10455 unsigned EltSize = R.getVectorElementSize(V);
10456 return std::max(2U, R.getMaxVecRegSize() / EltSize);
10457 };
10458
10459 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end());
10460 OpsChanged |= tryToVectorizeSequence<Value>(
10461 Vals, Limit, CompareSorter, AreCompatibleCompares,
10462 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
10463 // Exclude possible reductions from other blocks.
10464 bool ArePossiblyReducedInOtherBlock =
10465 any_of(Candidates, [](Value *V) {
10466 return any_of(V->users(), [V](User *U) {
10467 return isa<SelectInst>(U) &&
10468 cast<SelectInst>(U)->getParent() !=
10469 cast<Instruction>(V)->getParent();
10470 });
10471 });
10472 if (ArePossiblyReducedInOtherBlock)
10473 return false;
10474 return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
10475 },
10476 /*LimitForRegisterSize=*/true);
10477 Instructions.clear();
10478 } else {
10479 // Insert in reverse order since the PostponedCmps vector was filled in
10480 // reverse order.
10481 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
10482 }
10483 return OpsChanged;
10484}
10485
10486bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
10487 bool Changed = false;
10488 SmallVector<Value *, 4> Incoming;
10489 SmallPtrSet<Value *, 16> VisitedInstrs;
10490 // Maps phi nodes to the non-phi nodes found in the use tree for each phi
10491 // node. Allows better to identify the chains that can be vectorized in the
10492 // better way.
10493 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
10494 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
10495 assert(isValidElementType(V1->getType()) &&(static_cast <bool> (isValidElementType(V1->getType(
)) && isValidElementType(V2->getType()) &&
"Expected vectorizable types only.") ? void (0) : __assert_fail
("isValidElementType(V1->getType()) && isValidElementType(V2->getType()) && \"Expected vectorizable types only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10497, __extension__
__PRETTY_FUNCTION__))
10496 isValidElementType(V2->getType()) &&(static_cast <bool> (isValidElementType(V1->getType(
)) && isValidElementType(V2->getType()) &&
"Expected vectorizable types only.") ? void (0) : __assert_fail
("isValidElementType(V1->getType()) && isValidElementType(V2->getType()) && \"Expected vectorizable types only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10497, __extension__
__PRETTY_FUNCTION__))
10497 "Expected vectorizable types only.")(static_cast <bool> (isValidElementType(V1->getType(
)) && isValidElementType(V2->getType()) &&
"Expected vectorizable types only.") ? void (0) : __assert_fail
("isValidElementType(V1->getType()) && isValidElementType(V2->getType()) && \"Expected vectorizable types only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10497, __extension__
__PRETTY_FUNCTION__))
;
10498 // It is fine to compare type IDs here, since we expect only vectorizable
10499 // types, like ints, floats and pointers, we don't care about other type.
10500 if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
10501 return true;
10502 if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
10503 return false;
10504 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
10505 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
10506 if (Opcodes1.size() < Opcodes2.size())
10507 return true;
10508 if (Opcodes1.size() > Opcodes2.size())
10509 return false;
10510 Optional<bool> ConstOrder;
10511 for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
10512 // Undefs are compatible with any other value.
10513 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
10514 if (!ConstOrder)
10515 ConstOrder =
10516 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]);
10517 continue;
10518 }
10519 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
10520 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
10521 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
10522 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
10523 if (!NodeI1)
10524 return NodeI2 != nullptr;
10525 if (!NodeI2)
10526 return false;
10527 assert((NodeI1 == NodeI2) ==(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10529, __extension__
__PRETTY_FUNCTION__))
10528 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10529, __extension__
__PRETTY_FUNCTION__))
10529 "Different nodes should have different DFS numbers")(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10529, __extension__
__PRETTY_FUNCTION__))
;
10530 if (NodeI1 != NodeI2)
10531 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
10532 InstructionsState S = getSameOpcode({I1, I2});
10533 if (S.getOpcode())
10534 continue;
10535 return I1->getOpcode() < I2->getOpcode();
10536 }
10537 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) {
10538 if (!ConstOrder)
10539 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
10540 continue;
10541 }
10542 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
10543 return true;
10544 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
10545 return false;
10546 }
10547 return ConstOrder && *ConstOrder;
10548 };
10549 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
10550 if (V1 == V2)
10551 return true;
10552 if (V1->getType() != V2->getType())
10553 return false;
10554 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
10555 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
10556 if (Opcodes1.size() != Opcodes2.size())
10557 return false;
10558 for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
10559 // Undefs are compatible with any other value.
10560 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
10561 continue;
10562 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
10563 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
10564 if (I1->getParent() != I2->getParent())
10565 return false;
10566 InstructionsState S = getSameOpcode({I1, I2});
10567 if (S.getOpcode())
10568 continue;
10569 return false;
10570 }
10571 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
10572 continue;
10573 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
10574 return false;
10575 }
10576 return true;
10577 };
10578 auto Limit = [&R](Value *V) {
10579 unsigned EltSize = R.getVectorElementSize(V);
10580 return std::max(2U, R.getMaxVecRegSize() / EltSize);
10581 };
10582
10583 bool HaveVectorizedPhiNodes = false;
10584 do {
10585 // Collect the incoming values from the PHIs.
10586 Incoming.clear();
10587 for (Instruction &I : *BB) {
10588 PHINode *P = dyn_cast<PHINode>(&I);
10589 if (!P)
10590 break;
10591
10592 // No need to analyze deleted, vectorized and non-vectorizable
10593 // instructions.
10594 if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
10595 isValidElementType(P->getType()))
10596 Incoming.push_back(P);
10597 }
10598
10599 // Find the corresponding non-phi nodes for better matching when trying to
10600 // build the tree.
10601 for (Value *V : Incoming) {
10602 SmallVectorImpl<Value *> &Opcodes =
10603 PHIToOpcodes.try_emplace(V).first->getSecond();
10604 if (!Opcodes.empty())
10605 continue;
10606 SmallVector<Value *, 4> Nodes(1, V);
10607 SmallPtrSet<Value *, 4> Visited;
10608 while (!Nodes.empty()) {
10609 auto *PHI = cast<PHINode>(Nodes.pop_back_val());
10610 if (!Visited.insert(PHI).second)
10611 continue;
10612 for (Value *V : PHI->incoming_values()) {
10613 if (auto *PHI1 = dyn_cast<PHINode>((V))) {
10614 Nodes.push_back(PHI1);
10615 continue;
10616 }
10617 Opcodes.emplace_back(V);
10618 }
10619 }
10620 }
10621
10622 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
10623 Incoming, Limit, PHICompare, AreCompatiblePHIs,
10624 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
10625 return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
10626 },
10627 /*LimitForRegisterSize=*/true);
10628 Changed |= HaveVectorizedPhiNodes;
10629 VisitedInstrs.insert(Incoming.begin(), Incoming.end());
10630 } while (HaveVectorizedPhiNodes);
10631
10632 VisitedInstrs.clear();
10633
10634 SmallVector<Instruction *, 8> PostProcessInstructions;
10635 SmallDenseSet<Instruction *, 4> KeyNodes;
10636 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
10637 // Skip instructions with scalable type. The num of elements is unknown at
10638 // compile-time for scalable type.
10639 if (isa<ScalableVectorType>(it->getType()))
10640 continue;
10641
10642 // Skip instructions marked for the deletion.
10643 if (R.isDeleted(&*it))
10644 continue;
10645 // We may go through BB multiple times so skip the one we have checked.
10646 if (!VisitedInstrs.insert(&*it).second) {
10647 if (it->use_empty() && KeyNodes.contains(&*it) &&
10648 vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
10649 it->isTerminator())) {
10650 // We would like to start over since some instructions are deleted
10651 // and the iterator may become invalid value.
10652 Changed = true;
10653 it = BB->begin();
10654 e = BB->end();
10655 }
10656 continue;
10657 }
10658
10659 if (isa<DbgInfoIntrinsic>(it))
10660 continue;
10661
10662 // Try to vectorize reductions that use PHINodes.
10663 if (PHINode *P = dyn_cast<PHINode>(it)) {
10664 // Check that the PHI is a reduction PHI.
10665 if (P->getNumIncomingValues() == 2) {
10666 // Try to match and vectorize a horizontal reduction.
10667 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
10668 TTI)) {
10669 Changed = true;
10670 it = BB->begin();
10671 e = BB->end();
10672 continue;
10673 }
10674 }
10675 // Try to vectorize the incoming values of the PHI, to catch reductions
10676 // that feed into PHIs.
10677 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
10678 // Skip if the incoming block is the current BB for now. Also, bypass
10679 // unreachable IR for efficiency and to avoid crashing.
10680 // TODO: Collect the skipped incoming values and try to vectorize them
10681 // after processing BB.
10682 if (BB == P->getIncomingBlock(I) ||
10683 !DT->isReachableFromEntry(P->getIncomingBlock(I)))
10684 continue;
10685
10686 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
10687 P->getIncomingBlock(I), R, TTI);
10688 }
10689 continue;
10690 }
10691
10692 // Ran into an instruction without users, like terminator, or function call
10693 // with ignored return value, store. Ignore unused instructions (basing on
10694 // instruction type, except for CallInst and InvokeInst).
10695 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
10696 isa<InvokeInst>(it))) {
10697 KeyNodes.insert(&*it);
10698 bool OpsChanged = false;
10699 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
10700 for (auto *V : it->operand_values()) {
10701 // Try to match and vectorize a horizontal reduction.
10702 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
10703 }
10704 }
10705 // Start vectorization of post-process list of instructions from the
10706 // top-tree instructions to try to vectorize as many instructions as
10707 // possible.
10708 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
10709 it->isTerminator());
10710 if (OpsChanged) {
10711 // We would like to start over since some instructions are deleted
10712 // and the iterator may become invalid value.
10713 Changed = true;
10714 it = BB->begin();
10715 e = BB->end();
10716 continue;
10717 }
10718 }
10719
10720 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
10721 isa<InsertValueInst>(it))
10722 PostProcessInstructions.push_back(&*it);
10723 }
10724
10725 return Changed;
10726}
10727
10728bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
10729 auto Changed = false;
10730 for (auto &Entry : GEPs) {
10731 // If the getelementptr list has fewer than two elements, there's nothing
10732 // to do.
10733 if (Entry.second.size() < 2)
10734 continue;
10735
10736 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
10737 << Entry.second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
;
10738
10739 // Process the GEP list in chunks suitable for the target's supported
10740 // vector size. If a vector register can't hold 1 element, we are done. We
10741 // are trying to vectorize the index computations, so the maximum number of
10742 // elements is based on the size of the index expression, rather than the
10743 // size of the GEP itself (the target's pointer size).
10744 unsigned MaxVecRegSize = R.getMaxVecRegSize();
10745 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
10746 if (MaxVecRegSize < EltSize)
10747 continue;
10748
10749 unsigned MaxElts = MaxVecRegSize / EltSize;
10750 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
10751 auto Len = std::min<unsigned>(BE - BI, MaxElts);
10752 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
10753
10754 // Initialize a set a candidate getelementptrs. Note that we use a
10755 // SetVector here to preserve program order. If the index computations
10756 // are vectorizable and begin with loads, we want to minimize the chance
10757 // of having to reorder them later.
10758 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
10759
10760 // Some of the candidates may have already been vectorized after we
10761 // initially collected them. If so, they are marked as deleted, so remove
10762 // them from the set of candidates.
10763 Candidates.remove_if(
10764 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
10765
10766 // Remove from the set of candidates all pairs of getelementptrs with
10767 // constant differences. Such getelementptrs are likely not good
10768 // candidates for vectorization in a bottom-up phase since one can be
10769 // computed from the other. We also ensure all candidate getelementptr
10770 // indices are unique.
10771 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
10772 auto *GEPI = GEPList[I];
10773 if (!Candidates.count(GEPI))
10774 continue;
10775 auto *SCEVI = SE->getSCEV(GEPList[I]);
10776 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
10777 auto *GEPJ = GEPList[J];
10778 auto *SCEVJ = SE->getSCEV(GEPList[J]);
10779 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
10780 Candidates.remove(GEPI);
10781 Candidates.remove(GEPJ);
10782 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
10783 Candidates.remove(GEPJ);
10784 }
10785 }
10786 }
10787
10788 // We break out of the above computation as soon as we know there are
10789 // fewer than two candidates remaining.
10790 if (Candidates.size() < 2)
10791 continue;
10792
10793 // Add the single, non-constant index of each candidate to the bundle. We
10794 // ensured the indices met these constraints when we originally collected
10795 // the getelementptrs.
10796 SmallVector<Value *, 16> Bundle(Candidates.size());
10797 auto BundleIndex = 0u;
10798 for (auto *V : Candidates) {
10799 auto *GEP = cast<GetElementPtrInst>(V);
10800 auto *GEPIdx = GEP->idx_begin()->get();
10801 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx))(static_cast <bool> (GEP->getNumIndices() == 1 || !isa
<Constant>(GEPIdx)) ? void (0) : __assert_fail ("GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10801, __extension__
__PRETTY_FUNCTION__))
;
10802 Bundle[BundleIndex++] = GEPIdx;
10803 }
10804
10805 // Try and vectorize the indices. We are currently only interested in
10806 // gather-like cases of the form:
10807 //
10808 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
10809 //
10810 // where the loads of "a", the loads of "b", and the subtractions can be
10811 // performed in parallel. It's likely that detecting this pattern in a
10812 // bottom-up phase will be simpler and less costly than building a
10813 // full-blown top-down phase beginning at the consecutive loads.
10814 Changed |= tryToVectorizeList(Bundle, R);
10815 }
10816 }
10817 return Changed;
10818}
10819
10820bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
10821 bool Changed = false;
10822 // Sort by type, base pointers and values operand. Value operands must be
10823 // compatible (have the same opcode, same parent), otherwise it is
10824 // definitely not profitable to try to vectorize them.
10825 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
10826 if (V->getPointerOperandType()->getTypeID() <
10827 V2->getPointerOperandType()->getTypeID())
10828 return true;
10829 if (V->getPointerOperandType()->getTypeID() >
10830 V2->getPointerOperandType()->getTypeID())
10831 return false;
10832 // UndefValues are compatible with all other values.
10833 if (isa<UndefValue>(V->getValueOperand()) ||
10834 isa<UndefValue>(V2->getValueOperand()))
10835 return false;
10836 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
10837 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
10838 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
10839 DT->getNode(I1->getParent());
10840 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
10841 DT->getNode(I2->getParent());
10842 assert(NodeI1 && "Should only process reachable instructions")(static_cast <bool> (NodeI1 && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeI1 && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10842, __extension__
__PRETTY_FUNCTION__))
;
10843 assert(NodeI1 && "Should only process reachable instructions")(static_cast <bool> (NodeI1 && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeI1 && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10843, __extension__
__PRETTY_FUNCTION__))
;
10844 assert((NodeI1 == NodeI2) ==(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10846, __extension__
__PRETTY_FUNCTION__))
10845 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10846, __extension__
__PRETTY_FUNCTION__))
10846 "Different nodes should have different DFS numbers")(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10846, __extension__
__PRETTY_FUNCTION__))
;
10847 if (NodeI1 != NodeI2)
10848 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
10849 InstructionsState S = getSameOpcode({I1, I2});
10850 if (S.getOpcode())
10851 return false;
10852 return I1->getOpcode() < I2->getOpcode();
10853 }
10854 if (isa<Constant>(V->getValueOperand()) &&
10855 isa<Constant>(V2->getValueOperand()))
10856 return false;
10857 return V->getValueOperand()->getValueID() <
10858 V2->getValueOperand()->getValueID();
10859 };
10860
10861 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
10862 if (V1 == V2)
10863 return true;
10864 if (V1->getPointerOperandType() != V2->getPointerOperandType())
10865 return false;
10866 // Undefs are compatible with any other value.
10867 if (isa<UndefValue>(V1->getValueOperand()) ||
10868 isa<UndefValue>(V2->getValueOperand()))
10869 return true;
10870 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
10871 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
10872 if (I1->getParent() != I2->getParent())
10873 return false;
10874 InstructionsState S = getSameOpcode({I1, I2});
10875 return S.getOpcode() > 0;
10876 }
10877 if (isa<Constant>(V1->getValueOperand()) &&
10878 isa<Constant>(V2->getValueOperand()))
10879 return true;
10880 return V1->getValueOperand()->getValueID() ==
10881 V2->getValueOperand()->getValueID();
10882 };
10883 auto Limit = [&R, this](StoreInst *SI) {
10884 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
10885 return R.getMinVF(EltSize);
10886 };
10887
10888 // Attempt to sort and vectorize each of the store-groups.
10889 for (auto &Pair : Stores) {
10890 if (Pair.second.size() < 2)
10891 continue;
10892
10893 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Pair.second.size() << ".\n"; } } while (false
)
10894 << Pair.second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Pair.second.size() << ".\n"; } } while (false
)
;
10895
10896 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
10897 continue;
10898
10899 Changed |= tryToVectorizeSequence<StoreInst>(
10900 Pair.second, Limit, StoreSorter, AreCompatibleStores,
10901 [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
10902 return vectorizeStores(Candidates, R);
10903 },
10904 /*LimitForRegisterSize=*/false);
10905 }
10906 return Changed;
10907}
10908
10909char SLPVectorizer::ID = 0;
10910
10911static const char lv_name[] = "SLP Vectorizer";
10912
10913INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)static void *initializeSLPVectorizerPassOnce(PassRegistry &
Registry) {
10914INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
10915INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
10916INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
10917INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
10918INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
10919INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)initializeDemandedBitsWrapperPassPass(Registry);
10920INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
10921INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)initializeInjectTLIMappingsLegacyPass(Registry);
10922INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo( lv_name, "slp-vectorizer", &
SLPVectorizer::ID, PassInfo::NormalCtor_t(callDefaultCtor<
SLPVectorizer>), false, false); Registry.registerPass(*PI,
true); return PI; } static llvm::once_flag InitializeSLPVectorizerPassFlag
; void llvm::initializeSLPVectorizerPass(PassRegistry &Registry
) { llvm::call_once(InitializeSLPVectorizerPassFlag, initializeSLPVectorizerPassOnce
, std::ref(Registry)); }
10923
10924Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }