Bug Summary

File:build/source/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
Warning:line 11931, column 9
Value stored to 'VectorizedTree' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SLPVectorizer.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/Vectorize -I /build/source/llvm/lib/Transforms/Vectorize -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1668078801 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-11-10-135928-647445-1 -x c++ /build/source/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/PriorityQueue.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SetOperations.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/SmallBitVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/iterator.h"
34#include "llvm/ADT/iterator_range.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AssumptionCache.h"
37#include "llvm/Analysis/CodeMetrics.h"
38#include "llvm/Analysis/DemandedBits.h"
39#include "llvm/Analysis/GlobalsModRef.h"
40#include "llvm/Analysis/IVDescriptors.h"
41#include "llvm/Analysis/LoopAccessAnalysis.h"
42#include "llvm/Analysis/LoopInfo.h"
43#include "llvm/Analysis/MemoryLocation.h"
44#include "llvm/Analysis/OptimizationRemarkEmitter.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Analysis/ScalarEvolutionExpressions.h"
47#include "llvm/Analysis/TargetLibraryInfo.h"
48#include "llvm/Analysis/TargetTransformInfo.h"
49#include "llvm/Analysis/ValueTracking.h"
50#include "llvm/Analysis/VectorUtils.h"
51#include "llvm/IR/Attributes.h"
52#include "llvm/IR/BasicBlock.h"
53#include "llvm/IR/Constant.h"
54#include "llvm/IR/Constants.h"
55#include "llvm/IR/DataLayout.h"
56#include "llvm/IR/DerivedTypes.h"
57#include "llvm/IR/Dominators.h"
58#include "llvm/IR/Function.h"
59#include "llvm/IR/IRBuilder.h"
60#include "llvm/IR/InstrTypes.h"
61#include "llvm/IR/Instruction.h"
62#include "llvm/IR/Instructions.h"
63#include "llvm/IR/IntrinsicInst.h"
64#include "llvm/IR/Intrinsics.h"
65#include "llvm/IR/Module.h"
66#include "llvm/IR/Operator.h"
67#include "llvm/IR/PatternMatch.h"
68#include "llvm/IR/Type.h"
69#include "llvm/IR/Use.h"
70#include "llvm/IR/User.h"
71#include "llvm/IR/Value.h"
72#include "llvm/IR/ValueHandle.h"
73#ifdef EXPENSIVE_CHECKS
74#include "llvm/IR/Verifier.h"
75#endif
76#include "llvm/Pass.h"
77#include "llvm/Support/Casting.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/Compiler.h"
80#include "llvm/Support/DOTGraphTraits.h"
81#include "llvm/Support/Debug.h"
82#include "llvm/Support/ErrorHandling.h"
83#include "llvm/Support/GraphWriter.h"
84#include "llvm/Support/InstructionCost.h"
85#include "llvm/Support/KnownBits.h"
86#include "llvm/Support/MathExtras.h"
87#include "llvm/Support/raw_ostream.h"
88#include "llvm/Transforms/Utils/InjectTLIMappings.h"
89#include "llvm/Transforms/Utils/Local.h"
90#include "llvm/Transforms/Utils/LoopUtils.h"
91#include "llvm/Transforms/Vectorize.h"
92#include <algorithm>
93#include <cassert>
94#include <cstdint>
95#include <iterator>
96#include <memory>
97#include <set>
98#include <string>
99#include <tuple>
100#include <utility>
101#include <vector>
102
103using namespace llvm;
104using namespace llvm::PatternMatch;
105using namespace slpvectorizer;
106
107#define SV_NAME"slp-vectorizer" "slp-vectorizer"
108#define DEBUG_TYPE"SLP" "SLP"
109
110STATISTIC(NumVectorInstructions, "Number of vector instructions generated")static llvm::Statistic NumVectorInstructions = {"SLP", "NumVectorInstructions"
, "Number of vector instructions generated"}
;
111
112cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
113 cl::desc("Run the SLP vectorization passes"));
114
115static cl::opt<int>
116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117 cl::desc("Only vectorize if you gain more than this "
118 "number "));
119
120static cl::opt<bool>
121ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122 cl::desc("Attempt to vectorize horizontal reductions"));
123
124static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126 cl::desc(
127 "Attempt to vectorize horizontal reductions feeding into a store"));
128
129static cl::opt<int>
130MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131 cl::desc("Attempt to vectorize for this register size in bits"));
132
133static cl::opt<unsigned>
134MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
135 cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
136
137static cl::opt<int>
138MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
139 cl::desc("Maximum depth of the lookup for consecutive stores."));
140
141/// Limits the size of scheduling regions in a block.
142/// It avoid long compile times for _very_ large blocks where vector
143/// instructions are spread over a wide range.
144/// This limit is way higher than needed by real-world functions.
145static cl::opt<int>
146ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
147 cl::desc("Limit the size of the SLP scheduling region per block"));
148
149static cl::opt<int> MinVectorRegSizeOption(
150 "slp-min-reg-size", cl::init(128), cl::Hidden,
151 cl::desc("Attempt to vectorize for this register size in bits"));
152
153static cl::opt<unsigned> RecursionMaxDepth(
154 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
155 cl::desc("Limit the recursion depth when building a vectorizable tree"));
156
157static cl::opt<unsigned> MinTreeSize(
158 "slp-min-tree-size", cl::init(3), cl::Hidden,
159 cl::desc("Only vectorize small trees if they are fully vectorizable"));
160
161// The maximum depth that the look-ahead score heuristic will explore.
162// The higher this value, the higher the compilation time overhead.
163static cl::opt<int> LookAheadMaxDepth(
164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
165 cl::desc("The maximum look-ahead depth for operand reordering scores"));
166
167// The maximum depth that the look-ahead score heuristic will explore
168// when it probing among candidates for vectorization tree roots.
169// The higher this value, the higher the compilation time overhead but unlike
170// similar limit for operands ordering this is less frequently used, hence
171// impact of higher value is less noticeable.
172static cl::opt<int> RootLookAheadMaxDepth(
173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden,
174 cl::desc("The maximum look-ahead depth for searching best rooting option"));
175
176static cl::opt<bool>
177 ViewSLPTree("view-slp-tree", cl::Hidden,
178 cl::desc("Display the SLP trees with Graphviz"));
179
180// Limit the number of alias checks. The limit is chosen so that
181// it has no negative effect on the llvm benchmarks.
182static const unsigned AliasedCheckLimit = 10;
183
184// Another limit for the alias checks: The maximum distance between load/store
185// instructions where alias checks are done.
186// This limit is useful for very large basic blocks.
187static const unsigned MaxMemDepDistance = 160;
188
189/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
190/// regions to be handled.
191static const int MinScheduleRegionSize = 16;
192
193/// Predicate for the element types that the SLP vectorizer supports.
194///
195/// The most important thing to filter here are types which are invalid in LLVM
196/// vectors. We also filter target specific types which have absolutely no
197/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
198/// avoids spending time checking the cost model and realizing that they will
199/// be inevitably scalarized.
200static bool isValidElementType(Type *Ty) {
201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
202 !Ty->isPPC_FP128Ty();
203}
204
205/// \returns True if the value is a constant (but not globals/constant
206/// expressions).
207static bool isConstant(Value *V) {
208 return isa<Constant>(V) && !isa<ConstantExpr, GlobalValue>(V);
209}
210
211/// Checks if \p V is one of vector-like instructions, i.e. undef,
212/// insertelement/extractelement with constant indices for fixed vector type or
213/// extractvalue instruction.
214static bool isVectorLikeInstWithConstOps(Value *V) {
215 if (!isa<InsertElementInst, ExtractElementInst>(V) &&
216 !isa<ExtractValueInst, UndefValue>(V))
217 return false;
218 auto *I = dyn_cast<Instruction>(V);
219 if (!I || isa<ExtractValueInst>(I))
220 return true;
221 if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
222 return false;
223 if (isa<ExtractElementInst>(I))
224 return isConstant(I->getOperand(1));
225 assert(isa<InsertElementInst>(V) && "Expected only insertelement.")(static_cast <bool> (isa<InsertElementInst>(V) &&
"Expected only insertelement.") ? void (0) : __assert_fail (
"isa<InsertElementInst>(V) && \"Expected only insertelement.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 225, __extension__
__PRETTY_FUNCTION__))
;
226 return isConstant(I->getOperand(2));
227}
228
229/// \returns true if all of the instructions in \p VL are in the same block or
230/// false otherwise.
231static bool allSameBlock(ArrayRef<Value *> VL) {
232 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
233 if (!I0)
234 return false;
235 if (all_of(VL, isVectorLikeInstWithConstOps))
236 return true;
237
238 BasicBlock *BB = I0->getParent();
239 for (int I = 1, E = VL.size(); I < E; I++) {
240 auto *II = dyn_cast<Instruction>(VL[I]);
241 if (!II)
242 return false;
243
244 if (BB != II->getParent())
245 return false;
246 }
247 return true;
248}
249
250/// \returns True if all of the values in \p VL are constants (but not
251/// globals/constant expressions).
252static bool allConstant(ArrayRef<Value *> VL) {
253 // Constant expressions and globals can't be vectorized like normal integer/FP
254 // constants.
255 return all_of(VL, isConstant);
256}
257
258/// \returns True if all of the values in \p VL are identical or some of them
259/// are UndefValue.
260static bool isSplat(ArrayRef<Value *> VL) {
261 Value *FirstNonUndef = nullptr;
262 for (Value *V : VL) {
263 if (isa<UndefValue>(V))
264 continue;
265 if (!FirstNonUndef) {
266 FirstNonUndef = V;
267 continue;
268 }
269 if (V != FirstNonUndef)
270 return false;
271 }
272 return FirstNonUndef != nullptr;
273}
274
275/// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
276static bool isCommutative(Instruction *I) {
277 if (auto *Cmp = dyn_cast<CmpInst>(I))
278 return Cmp->isCommutative();
279 if (auto *BO = dyn_cast<BinaryOperator>(I))
280 return BO->isCommutative();
281 // TODO: This should check for generic Instruction::isCommutative(), but
282 // we need to confirm that the caller code correctly handles Intrinsics
283 // for example (does not have 2 operands).
284 return false;
285}
286
287/// \returns inserting index of InsertElement or InsertValue instruction,
288/// using Offset as base offset for index.
289static Optional<unsigned> getInsertIndex(const Value *InsertInst,
290 unsigned Offset = 0) {
291 int Index = Offset;
292 if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
293 const auto *VT = dyn_cast<FixedVectorType>(IE->getType());
294 if (!VT)
295 return None;
296 const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
297 if (!CI)
298 return None;
299 if (CI->getValue().uge(VT->getNumElements()))
300 return None;
301 Index *= VT->getNumElements();
302 Index += CI->getZExtValue();
303 return Index;
304 }
305
306 const auto *IV = cast<InsertValueInst>(InsertInst);
307 Type *CurrentType = IV->getType();
308 for (unsigned I : IV->indices()) {
309 if (const auto *ST = dyn_cast<StructType>(CurrentType)) {
310 Index *= ST->getNumElements();
311 CurrentType = ST->getElementType(I);
312 } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) {
313 Index *= AT->getNumElements();
314 CurrentType = AT->getElementType();
315 } else {
316 return None;
317 }
318 Index += I;
319 }
320 return Index;
321}
322
323/// Checks if the given value is actually an undefined constant vector.
324/// Also, if the\p ShuffleMask is not empty, tries to check if the non-masked
325/// elements actually mask the insertelement buildvector, if any.
326template <bool IsPoisonOnly = false>
327static SmallBitVector isUndefVector(const Value *V,
328 ArrayRef<int> ShuffleMask = None) {
329 SmallBitVector Res(ShuffleMask.empty() ? 1 : ShuffleMask.size(), true);
330 using T = std::conditional_t<IsPoisonOnly, PoisonValue, UndefValue>;
331 if (isa<T>(V))
332 return Res;
333 auto *VecTy = dyn_cast<FixedVectorType>(V->getType());
334 if (!VecTy)
335 return Res.reset();
336 auto *C = dyn_cast<Constant>(V);
337 if (!C) {
338 if (!ShuffleMask.empty()) {
339 const Value *Base = V;
340 while (auto *II = dyn_cast<InsertElementInst>(Base)) {
341 if (isa<T>(II->getOperand(1)))
342 continue;
343 Base = II->getOperand(0);
344 Optional<unsigned> Idx = getInsertIndex(II);
345 if (!Idx)
346 continue;
347 if (*Idx < ShuffleMask.size() && ShuffleMask[*Idx] == UndefMaskElem)
348 Res.reset(*Idx);
349 }
350 // TODO: Add analysis for shuffles here too.
351 if (V == Base) {
352 Res.reset();
353 } else {
354 SmallVector<int> SubMask(ShuffleMask.size(), UndefMaskElem);
355 Res &= isUndefVector<IsPoisonOnly>(Base, SubMask);
356 }
357 } else {
358 Res.reset();
359 }
360 return Res;
361 }
362 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
363 if (Constant *Elem = C->getAggregateElement(I))
364 if (!isa<T>(Elem) &&
365 (ShuffleMask.empty() ||
366 (I < ShuffleMask.size() && ShuffleMask[I] == UndefMaskElem)))
367 Res.reset(I);
368 }
369 return Res;
370}
371
372/// Checks if the vector of instructions can be represented as a shuffle, like:
373/// %x0 = extractelement <4 x i8> %x, i32 0
374/// %x3 = extractelement <4 x i8> %x, i32 3
375/// %y1 = extractelement <4 x i8> %y, i32 1
376/// %y2 = extractelement <4 x i8> %y, i32 2
377/// %x0x0 = mul i8 %x0, %x0
378/// %x3x3 = mul i8 %x3, %x3
379/// %y1y1 = mul i8 %y1, %y1
380/// %y2y2 = mul i8 %y2, %y2
381/// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
382/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
383/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
384/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
385/// ret <4 x i8> %ins4
386/// can be transformed into:
387/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
388/// i32 6>
389/// %2 = mul <4 x i8> %1, %1
390/// ret <4 x i8> %2
391/// We convert this initially to something like:
392/// %x0 = extractelement <4 x i8> %x, i32 0
393/// %x3 = extractelement <4 x i8> %x, i32 3
394/// %y1 = extractelement <4 x i8> %y, i32 1
395/// %y2 = extractelement <4 x i8> %y, i32 2
396/// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
397/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
398/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
399/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
400/// %5 = mul <4 x i8> %4, %4
401/// %6 = extractelement <4 x i8> %5, i32 0
402/// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
403/// %7 = extractelement <4 x i8> %5, i32 1
404/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
405/// %8 = extractelement <4 x i8> %5, i32 2
406/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
407/// %9 = extractelement <4 x i8> %5, i32 3
408/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
409/// ret <4 x i8> %ins4
410/// InstCombiner transforms this into a shuffle and vector mul
411/// Mask will return the Shuffle Mask equivalent to the extracted elements.
412/// TODO: Can we split off and reuse the shuffle mask detection from
413/// ShuffleVectorInst/getShuffleCost?
414static Optional<TargetTransformInfo::ShuffleKind>
415isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
416 const auto *It =
417 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
418 if (It == VL.end())
419 return None;
420 auto *EI0 = cast<ExtractElementInst>(*It);
421 if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
422 return None;
423 unsigned Size =
424 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
425 Value *Vec1 = nullptr;
426 Value *Vec2 = nullptr;
427 enum ShuffleMode { Unknown, Select, Permute };
428 ShuffleMode CommonShuffleMode = Unknown;
429 Mask.assign(VL.size(), UndefMaskElem);
430 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
431 // Undef can be represented as an undef element in a vector.
432 if (isa<UndefValue>(VL[I]))
433 continue;
434 auto *EI = cast<ExtractElementInst>(VL[I]);
435 if (isa<ScalableVectorType>(EI->getVectorOperandType()))
436 return None;
437 auto *Vec = EI->getVectorOperand();
438 // We can extractelement from undef or poison vector.
439 if (isUndefVector(Vec).all())
440 continue;
441 // All vector operands must have the same number of vector elements.
442 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
443 return None;
444 if (isa<UndefValue>(EI->getIndexOperand()))
445 continue;
446 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
447 if (!Idx)
448 return None;
449 // Undefined behavior if Idx is negative or >= Size.
450 if (Idx->getValue().uge(Size))
451 continue;
452 unsigned IntIdx = Idx->getValue().getZExtValue();
453 Mask[I] = IntIdx;
454 // For correct shuffling we have to have at most 2 different vector operands
455 // in all extractelement instructions.
456 if (!Vec1 || Vec1 == Vec) {
457 Vec1 = Vec;
458 } else if (!Vec2 || Vec2 == Vec) {
459 Vec2 = Vec;
460 Mask[I] += Size;
461 } else {
462 return None;
463 }
464 if (CommonShuffleMode == Permute)
465 continue;
466 // If the extract index is not the same as the operation number, it is a
467 // permutation.
468 if (IntIdx != I) {
469 CommonShuffleMode = Permute;
470 continue;
471 }
472 CommonShuffleMode = Select;
473 }
474 // If we're not crossing lanes in different vectors, consider it as blending.
475 if (CommonShuffleMode == Select && Vec2)
476 return TargetTransformInfo::SK_Select;
477 // If Vec2 was never used, we have a permutation of a single vector, otherwise
478 // we have permutation of 2 vectors.
479 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
480 : TargetTransformInfo::SK_PermuteSingleSrc;
481}
482
483namespace {
484
485/// Main data required for vectorization of instructions.
486struct InstructionsState {
487 /// The very first instruction in the list with the main opcode.
488 Value *OpValue = nullptr;
489
490 /// The main/alternate instruction.
491 Instruction *MainOp = nullptr;
492 Instruction *AltOp = nullptr;
493
494 /// The main/alternate opcodes for the list of instructions.
495 unsigned getOpcode() const {
496 return MainOp ? MainOp->getOpcode() : 0;
497 }
498
499 unsigned getAltOpcode() const {
500 return AltOp ? AltOp->getOpcode() : 0;
501 }
502
503 /// Some of the instructions in the list have alternate opcodes.
504 bool isAltShuffle() const { return AltOp != MainOp; }
505
506 bool isOpcodeOrAlt(Instruction *I) const {
507 unsigned CheckedOpcode = I->getOpcode();
508 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
509 }
510
511 InstructionsState() = delete;
512 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
513 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
514};
515
516} // end anonymous namespace
517
518/// Chooses the correct key for scheduling data. If \p Op has the same (or
519/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
520/// OpValue.
521static Value *isOneOf(const InstructionsState &S, Value *Op) {
522 auto *I = dyn_cast<Instruction>(Op);
523 if (I && S.isOpcodeOrAlt(I))
524 return Op;
525 return S.OpValue;
526}
527
528/// \returns true if \p Opcode is allowed as part of of the main/alternate
529/// instruction for SLP vectorization.
530///
531/// Example of unsupported opcode is SDIV that can potentially cause UB if the
532/// "shuffled out" lane would result in division by zero.
533static bool isValidForAlternation(unsigned Opcode) {
534 if (Instruction::isIntDivRem(Opcode))
535 return false;
536
537 return true;
538}
539
540static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
541 const TargetLibraryInfo &TLI,
542 unsigned BaseIndex = 0);
543
544/// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
545/// compatible instructions or constants, or just some other regular values.
546static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
547 Value *Op1, const TargetLibraryInfo &TLI) {
548 return (isConstant(BaseOp0) && isConstant(Op0)) ||
549 (isConstant(BaseOp1) && isConstant(Op1)) ||
550 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
551 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
552 BaseOp0 == Op0 || BaseOp1 == Op1 ||
553 getSameOpcode({BaseOp0, Op0}, TLI).getOpcode() ||
554 getSameOpcode({BaseOp1, Op1}, TLI).getOpcode();
555}
556
557/// \returns true if a compare instruction \p CI has similar "look" and
558/// same predicate as \p BaseCI, "as is" or with its operands and predicate
559/// swapped, false otherwise.
560static bool isCmpSameOrSwapped(const CmpInst *BaseCI, const CmpInst *CI,
561 const TargetLibraryInfo &TLI) {
562 assert(BaseCI->getOperand(0)->getType() == CI->getOperand(0)->getType() &&(static_cast <bool> (BaseCI->getOperand(0)->getType
() == CI->getOperand(0)->getType() && "Assessing comparisons of different types?"
) ? void (0) : __assert_fail ("BaseCI->getOperand(0)->getType() == CI->getOperand(0)->getType() && \"Assessing comparisons of different types?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 563, __extension__
__PRETTY_FUNCTION__))
563 "Assessing comparisons of different types?")(static_cast <bool> (BaseCI->getOperand(0)->getType
() == CI->getOperand(0)->getType() && "Assessing comparisons of different types?"
) ? void (0) : __assert_fail ("BaseCI->getOperand(0)->getType() == CI->getOperand(0)->getType() && \"Assessing comparisons of different types?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 563, __extension__
__PRETTY_FUNCTION__))
;
564 CmpInst::Predicate BasePred = BaseCI->getPredicate();
565 CmpInst::Predicate Pred = CI->getPredicate();
566 CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(Pred);
567
568 Value *BaseOp0 = BaseCI->getOperand(0);
569 Value *BaseOp1 = BaseCI->getOperand(1);
570 Value *Op0 = CI->getOperand(0);
571 Value *Op1 = CI->getOperand(1);
572
573 return (BasePred == Pred &&
574 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1, TLI)) ||
575 (BasePred == SwappedPred &&
576 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0, TLI));
577}
578
579/// \returns analysis of the Instructions in \p VL described in
580/// InstructionsState, the Opcode that we suppose the whole list
581/// could be vectorized even if its structure is diverse.
582static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
583 const TargetLibraryInfo &TLI,
584 unsigned BaseIndex) {
585 // Make sure these are all Instructions.
586 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
587 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
588
589 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
590 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
591 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
592 CmpInst::Predicate BasePred =
593 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
594 : CmpInst::BAD_ICMP_PREDICATE;
595 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
596 unsigned AltOpcode = Opcode;
597 unsigned AltIndex = BaseIndex;
598
599 // Check for one alternate opcode from another BinaryOperator.
600 // TODO - generalize to support all operators (types, calls etc.).
601 auto *IBase = cast<Instruction>(VL[BaseIndex]);
602 Intrinsic::ID BaseID = 0;
603 SmallVector<VFInfo> BaseMappings;
604 if (auto *CallBase = dyn_cast<CallInst>(IBase)) {
605 BaseID = getVectorIntrinsicIDForCall(CallBase, &TLI);
606 BaseMappings = VFDatabase(*CallBase).getMappings(*CallBase);
607 if (!isTriviallyVectorizable(BaseID) && BaseMappings.empty())
608 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
609 }
610 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
611 auto *I = cast<Instruction>(VL[Cnt]);
612 unsigned InstOpcode = I->getOpcode();
613 if (IsBinOp && isa<BinaryOperator>(I)) {
614 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
615 continue;
616 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
617 isValidForAlternation(Opcode)) {
618 AltOpcode = InstOpcode;
619 AltIndex = Cnt;
620 continue;
621 }
622 } else if (IsCastOp && isa<CastInst>(I)) {
623 Value *Op0 = IBase->getOperand(0);
624 Type *Ty0 = Op0->getType();
625 Value *Op1 = I->getOperand(0);
626 Type *Ty1 = Op1->getType();
627 if (Ty0 == Ty1) {
628 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
629 continue;
630 if (Opcode == AltOpcode) {
631 assert(isValidForAlternation(Opcode) &&(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 633, __extension__
__PRETTY_FUNCTION__))
632 isValidForAlternation(InstOpcode) &&(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 633, __extension__
__PRETTY_FUNCTION__))
633 "Cast isn't safe for alternation, logic needs to be updated!")(static_cast <bool> (isValidForAlternation(Opcode) &&
isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && \"Cast isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 633, __extension__
__PRETTY_FUNCTION__))
;
634 AltOpcode = InstOpcode;
635 AltIndex = Cnt;
636 continue;
637 }
638 }
639 } else if (auto *Inst = dyn_cast<CmpInst>(VL[Cnt]); Inst && IsCmpOp) {
640 auto *BaseInst = cast<CmpInst>(VL[BaseIndex]);
641 Type *Ty0 = BaseInst->getOperand(0)->getType();
642 Type *Ty1 = Inst->getOperand(0)->getType();
643 if (Ty0 == Ty1) {
644 assert(InstOpcode == Opcode && "Expected same CmpInst opcode.")(static_cast <bool> (InstOpcode == Opcode && "Expected same CmpInst opcode."
) ? void (0) : __assert_fail ("InstOpcode == Opcode && \"Expected same CmpInst opcode.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 644, __extension__
__PRETTY_FUNCTION__))
;
645 // Check for compatible operands. If the corresponding operands are not
646 // compatible - need to perform alternate vectorization.
647 CmpInst::Predicate CurrentPred = Inst->getPredicate();
648 CmpInst::Predicate SwappedCurrentPred =
649 CmpInst::getSwappedPredicate(CurrentPred);
650
651 if (E == 2 &&
652 (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
653 continue;
654
655 if (isCmpSameOrSwapped(BaseInst, Inst, TLI))
656 continue;
657 auto *AltInst = cast<CmpInst>(VL[AltIndex]);
658 if (AltIndex != BaseIndex) {
659 if (isCmpSameOrSwapped(AltInst, Inst, TLI))
660 continue;
661 } else if (BasePred != CurrentPred) {
662 assert((static_cast <bool> (isValidForAlternation(InstOpcode) &&
"CmpInst isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(InstOpcode) && \"CmpInst isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 664, __extension__
__PRETTY_FUNCTION__))
663 isValidForAlternation(InstOpcode) &&(static_cast <bool> (isValidForAlternation(InstOpcode) &&
"CmpInst isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(InstOpcode) && \"CmpInst isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 664, __extension__
__PRETTY_FUNCTION__))
664 "CmpInst isn't safe for alternation, logic needs to be updated!")(static_cast <bool> (isValidForAlternation(InstOpcode) &&
"CmpInst isn't safe for alternation, logic needs to be updated!"
) ? void (0) : __assert_fail ("isValidForAlternation(InstOpcode) && \"CmpInst isn't safe for alternation, logic needs to be updated!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 664, __extension__
__PRETTY_FUNCTION__))
;
665 AltIndex = Cnt;
666 continue;
667 }
668 CmpInst::Predicate AltPred = AltInst->getPredicate();
669 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
670 AltPred == CurrentPred || AltPred == SwappedCurrentPred)
671 continue;
672 }
673 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) {
674 if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
675 if (Gep->getNumOperands() != 2 ||
676 Gep->getOperand(0)->getType() != IBase->getOperand(0)->getType())
677 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
678 } else if (auto *EI = dyn_cast<ExtractElementInst>(I)) {
679 if (!isVectorLikeInstWithConstOps(EI))
680 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
681 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
682 auto *BaseLI = cast<LoadInst>(IBase);
683 if (!LI->isSimple() || !BaseLI->isSimple())
684 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
685 } else if (auto *Call = dyn_cast<CallInst>(I)) {
686 auto *CallBase = cast<CallInst>(IBase);
687 if (Call->getCalledFunction() != CallBase->getCalledFunction())
688 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
689 if (Call->hasOperandBundles() &&
690 !std::equal(Call->op_begin() + Call->getBundleOperandsStartIndex(),
691 Call->op_begin() + Call->getBundleOperandsEndIndex(),
692 CallBase->op_begin() +
693 CallBase->getBundleOperandsStartIndex()))
694 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
695 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, &TLI);
696 if (ID != BaseID)
697 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
698 if (!ID) {
699 SmallVector<VFInfo> Mappings = VFDatabase(*Call).getMappings(*Call);
700 if (Mappings.size() != BaseMappings.size() ||
701 Mappings.front().ISA != BaseMappings.front().ISA ||
702 Mappings.front().ScalarName != BaseMappings.front().ScalarName ||
703 Mappings.front().VectorName != BaseMappings.front().VectorName ||
704 Mappings.front().Shape.VF != BaseMappings.front().Shape.VF ||
705 Mappings.front().Shape.Parameters !=
706 BaseMappings.front().Shape.Parameters)
707 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
708 }
709 }
710 continue;
711 }
712 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
713 }
714
715 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
716 cast<Instruction>(VL[AltIndex]));
717}
718
719/// \returns true if all of the values in \p VL have the same type or false
720/// otherwise.
721static bool allSameType(ArrayRef<Value *> VL) {
722 Type *Ty = VL[0]->getType();
723 for (int i = 1, e = VL.size(); i < e; i++)
724 if (VL[i]->getType() != Ty)
725 return false;
726
727 return true;
728}
729
730/// \returns True if Extract{Value,Element} instruction extracts element Idx.
731static Optional<unsigned> getExtractIndex(Instruction *E) {
732 unsigned Opcode = E->getOpcode();
733 assert((Opcode == Instruction::ExtractElement ||(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 735, __extension__
__PRETTY_FUNCTION__))
734 Opcode == Instruction::ExtractValue) &&(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 735, __extension__
__PRETTY_FUNCTION__))
735 "Expected extractelement or extractvalue instruction.")(static_cast <bool> ((Opcode == Instruction::ExtractElement
|| Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? void (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 735, __extension__
__PRETTY_FUNCTION__))
;
736 if (Opcode == Instruction::ExtractElement) {
737 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
738 if (!CI)
739 return None;
740 return CI->getZExtValue();
741 }
742 ExtractValueInst *EI = cast<ExtractValueInst>(E);
743 if (EI->getNumIndices() != 1)
744 return None;
745 return *EI->idx_begin();
746}
747
748/// \returns True if in-tree use also needs extract. This refers to
749/// possible scalar operand in vectorized instruction.
750static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
751 TargetLibraryInfo *TLI) {
752 unsigned Opcode = UserInst->getOpcode();
753 switch (Opcode) {
754 case Instruction::Load: {
755 LoadInst *LI = cast<LoadInst>(UserInst);
756 return (LI->getPointerOperand() == Scalar);
757 }
758 case Instruction::Store: {
759 StoreInst *SI = cast<StoreInst>(UserInst);
760 return (SI->getPointerOperand() == Scalar);
761 }
762 case Instruction::Call: {
763 CallInst *CI = cast<CallInst>(UserInst);
764 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
765 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
766 if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
767 return (CI->getArgOperand(i) == Scalar);
768 }
769 [[fallthrough]];
770 }
771 default:
772 return false;
773 }
774}
775
776/// \returns the AA location that is being access by the instruction.
777static MemoryLocation getLocation(Instruction *I) {
778 if (StoreInst *SI = dyn_cast<StoreInst>(I))
779 return MemoryLocation::get(SI);
780 if (LoadInst *LI = dyn_cast<LoadInst>(I))
781 return MemoryLocation::get(LI);
782 return MemoryLocation();
783}
784
785/// \returns True if the instruction is not a volatile or atomic load/store.
786static bool isSimple(Instruction *I) {
787 if (LoadInst *LI = dyn_cast<LoadInst>(I))
788 return LI->isSimple();
789 if (StoreInst *SI = dyn_cast<StoreInst>(I))
790 return SI->isSimple();
791 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
792 return !MI->isVolatile();
793 return true;
794}
795
796/// Shuffles \p Mask in accordance with the given \p SubMask.
797static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
798 if (SubMask.empty())
799 return;
800 if (Mask.empty()) {
801 Mask.append(SubMask.begin(), SubMask.end());
802 return;
803 }
804 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem);
805 int TermValue = std::min(Mask.size(), SubMask.size());
806 for (int I = 0, E = SubMask.size(); I < E; ++I) {
807 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
808 Mask[SubMask[I]] >= TermValue)
809 continue;
810 NewMask[I] = Mask[SubMask[I]];
811 }
812 Mask.swap(NewMask);
813}
814
815/// Order may have elements assigned special value (size) which is out of
816/// bounds. Such indices only appear on places which correspond to undef values
817/// (see canReuseExtract for details) and used in order to avoid undef values
818/// have effect on operands ordering.
819/// The first loop below simply finds all unused indices and then the next loop
820/// nest assigns these indices for undef values positions.
821/// As an example below Order has two undef positions and they have assigned
822/// values 3 and 7 respectively:
823/// before: 6 9 5 4 9 2 1 0
824/// after: 6 3 5 4 7 2 1 0
825static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
826 const unsigned Sz = Order.size();
827 SmallBitVector UnusedIndices(Sz, /*t=*/true);
828 SmallBitVector MaskedIndices(Sz);
829 for (unsigned I = 0; I < Sz; ++I) {
830 if (Order[I] < Sz)
831 UnusedIndices.reset(Order[I]);
832 else
833 MaskedIndices.set(I);
834 }
835 if (MaskedIndices.none())
836 return;
837 assert(UnusedIndices.count() == MaskedIndices.count() &&(static_cast <bool> (UnusedIndices.count() == MaskedIndices
.count() && "Non-synced masked/available indices.") ?
void (0) : __assert_fail ("UnusedIndices.count() == MaskedIndices.count() && \"Non-synced masked/available indices.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 838, __extension__
__PRETTY_FUNCTION__))
838 "Non-synced masked/available indices.")(static_cast <bool> (UnusedIndices.count() == MaskedIndices
.count() && "Non-synced masked/available indices.") ?
void (0) : __assert_fail ("UnusedIndices.count() == MaskedIndices.count() && \"Non-synced masked/available indices.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 838, __extension__
__PRETTY_FUNCTION__))
;
839 int Idx = UnusedIndices.find_first();
840 int MIdx = MaskedIndices.find_first();
841 while (MIdx >= 0) {
842 assert(Idx >= 0 && "Indices must be synced.")(static_cast <bool> (Idx >= 0 && "Indices must be synced."
) ? void (0) : __assert_fail ("Idx >= 0 && \"Indices must be synced.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 842, __extension__
__PRETTY_FUNCTION__))
;
843 Order[MIdx] = Idx;
844 Idx = UnusedIndices.find_next(Idx);
845 MIdx = MaskedIndices.find_next(MIdx);
846 }
847}
848
849namespace llvm {
850
851static void inversePermutation(ArrayRef<unsigned> Indices,
852 SmallVectorImpl<int> &Mask) {
853 Mask.clear();
854 const unsigned E = Indices.size();
855 Mask.resize(E, UndefMaskElem);
856 for (unsigned I = 0; I < E; ++I)
857 Mask[Indices[I]] = I;
858}
859
860/// Reorders the list of scalars in accordance with the given \p Mask.
861static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
862 ArrayRef<int> Mask) {
863 assert(!Mask.empty() && "Expected non-empty mask.")(static_cast <bool> (!Mask.empty() && "Expected non-empty mask."
) ? void (0) : __assert_fail ("!Mask.empty() && \"Expected non-empty mask.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 863, __extension__
__PRETTY_FUNCTION__))
;
864 SmallVector<Value *> Prev(Scalars.size(),
865 UndefValue::get(Scalars.front()->getType()));
866 Prev.swap(Scalars);
867 for (unsigned I = 0, E = Prev.size(); I < E; ++I)
868 if (Mask[I] != UndefMaskElem)
869 Scalars[Mask[I]] = Prev[I];
870}
871
872/// Checks if the provided value does not require scheduling. It does not
873/// require scheduling if this is not an instruction or it is an instruction
874/// that does not read/write memory and all operands are either not instructions
875/// or phi nodes or instructions from different blocks.
876static bool areAllOperandsNonInsts(Value *V) {
877 auto *I = dyn_cast<Instruction>(V);
878 if (!I)
879 return true;
880 return !mayHaveNonDefUseDependency(*I) &&
881 all_of(I->operands(), [I](Value *V) {
882 auto *IO = dyn_cast<Instruction>(V);
883 if (!IO)
884 return true;
885 return isa<PHINode>(IO) || IO->getParent() != I->getParent();
886 });
887}
888
889/// Checks if the provided value does not require scheduling. It does not
890/// require scheduling if this is not an instruction or it is an instruction
891/// that does not read/write memory and all users are phi nodes or instructions
892/// from the different blocks.
893static bool isUsedOutsideBlock(Value *V) {
894 auto *I = dyn_cast<Instruction>(V);
895 if (!I)
896 return true;
897 // Limits the number of uses to save compile time.
898 constexpr int UsesLimit = 8;
899 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) &&
900 all_of(I->users(), [I](User *U) {
901 auto *IU = dyn_cast<Instruction>(U);
902 if (!IU)
903 return true;
904 return IU->getParent() != I->getParent() || isa<PHINode>(IU);
905 });
906}
907
908/// Checks if the specified value does not require scheduling. It does not
909/// require scheduling if all operands and all users do not need to be scheduled
910/// in the current basic block.
911static bool doesNotNeedToBeScheduled(Value *V) {
912 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V);
913}
914
915/// Checks if the specified array of instructions does not require scheduling.
916/// It is so if all either instructions have operands that do not require
917/// scheduling or their users do not require scheduling since they are phis or
918/// in other basic blocks.
919static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) {
920 return !VL.empty() &&
921 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts));
922}
923
924namespace slpvectorizer {
925
926/// Bottom Up SLP Vectorizer.
927class BoUpSLP {
928 struct TreeEntry;
929 struct ScheduleData;
930
931public:
932 using ValueList = SmallVector<Value *, 8>;
933 using InstrList = SmallVector<Instruction *, 16>;
934 using ValueSet = SmallPtrSet<Value *, 16>;
935 using StoreList = SmallVector<StoreInst *, 8>;
936 using ExtraValueToDebugLocsMap =
937 MapVector<Value *, SmallVector<Instruction *, 2>>;
938 using OrdersType = SmallVector<unsigned, 4>;
939
940 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
941 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
942 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
943 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
944 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li),
945 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
946 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
947 // Use the vector register size specified by the target unless overridden
948 // by a command-line option.
949 // TODO: It would be better to limit the vectorization factor based on
950 // data type rather than just register size. For example, x86 AVX has
951 // 256-bit registers, but it does not support integer operations
952 // at that width (that requires AVX2).
953 if (MaxVectorRegSizeOption.getNumOccurrences())
954 MaxVecRegSize = MaxVectorRegSizeOption;
955 else
956 MaxVecRegSize =
957 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
958 .getFixedSize();
959
960 if (MinVectorRegSizeOption.getNumOccurrences())
961 MinVecRegSize = MinVectorRegSizeOption;
962 else
963 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
964 }
965
966 /// Vectorize the tree that starts with the elements in \p VL.
967 /// Returns the vectorized root.
968 Value *vectorizeTree();
969
970 /// Vectorize the tree but with the list of externally used values \p
971 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
972 /// generated extractvalue instructions.
973 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
974
975 /// \returns the cost incurred by unwanted spills and fills, caused by
976 /// holding live values over call sites.
977 InstructionCost getSpillCost() const;
978
979 /// \returns the vectorization cost of the subtree that starts at \p VL.
980 /// A negative number means that this is profitable.
981 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
982
983 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
984 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
985 void buildTree(ArrayRef<Value *> Roots,
986 const SmallDenseSet<Value *> &UserIgnoreLst);
987
988 /// Construct a vectorizable tree that starts at \p Roots.
989 void buildTree(ArrayRef<Value *> Roots);
990
991 /// Checks if the very first tree node is going to be vectorized.
992 bool isVectorizedFirstNode() const {
993 return !VectorizableTree.empty() &&
994 VectorizableTree.front()->State == TreeEntry::Vectorize;
995 }
996
997 /// Returns the main instruction for the very first node.
998 Instruction *getFirstNodeMainOp() const {
999 assert(!VectorizableTree.empty() && "No tree to get the first node from")(static_cast <bool> (!VectorizableTree.empty() &&
"No tree to get the first node from") ? void (0) : __assert_fail
("!VectorizableTree.empty() && \"No tree to get the first node from\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 999, __extension__
__PRETTY_FUNCTION__))
;
1000 return VectorizableTree.front()->getMainOp();
1001 }
1002
1003 /// Builds external uses of the vectorized scalars, i.e. the list of
1004 /// vectorized scalars to be extracted, their lanes and their scalar users. \p
1005 /// ExternallyUsedValues contains additional list of external uses to handle
1006 /// vectorization of reductions.
1007 void
1008 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
1009
1010 /// Clear the internal data structures that are created by 'buildTree'.
1011 void deleteTree() {
1012 VectorizableTree.clear();
1013 ScalarToTreeEntry.clear();
1014 MustGather.clear();
1015 ExternalUses.clear();
1016 for (auto &Iter : BlocksSchedules) {
1017 BlockScheduling *BS = Iter.second.get();
1018 BS->clear();
1019 }
1020 MinBWs.clear();
1021 InstrElementSize.clear();
1022 UserIgnoreList = nullptr;
1023 }
1024
1025 unsigned getTreeSize() const { return VectorizableTree.size(); }
1026
1027 /// Perform LICM and CSE on the newly generated gather sequences.
1028 void optimizeGatherSequence();
1029
1030 /// Checks if the specified gather tree entry \p TE can be represented as a
1031 /// shuffled vector entry + (possibly) permutation with other gathers. It
1032 /// implements the checks only for possibly ordered scalars (Loads,
1033 /// ExtractElement, ExtractValue), which can be part of the graph.
1034 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
1035
1036 /// Sort loads into increasing pointers offsets to allow greater clustering.
1037 Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE);
1038
1039 /// Gets reordering data for the given tree entry. If the entry is vectorized
1040 /// - just return ReorderIndices, otherwise check if the scalars can be
1041 /// reordered and return the most optimal order.
1042 /// \param TopToBottom If true, include the order of vectorized stores and
1043 /// insertelement nodes, otherwise skip them.
1044 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom);
1045
1046 /// Reorders the current graph to the most profitable order starting from the
1047 /// root node to the leaf nodes. The best order is chosen only from the nodes
1048 /// of the same size (vectorization factor). Smaller nodes are considered
1049 /// parts of subgraph with smaller VF and they are reordered independently. We
1050 /// can make it because we still need to extend smaller nodes to the wider VF
1051 /// and we can merge reordering shuffles with the widening shuffles.
1052 void reorderTopToBottom();
1053
1054 /// Reorders the current graph to the most profitable order starting from
1055 /// leaves to the root. It allows to rotate small subgraphs and reduce the
1056 /// number of reshuffles if the leaf nodes use the same order. In this case we
1057 /// can merge the orders and just shuffle user node instead of shuffling its
1058 /// operands. Plus, even the leaf nodes have different orders, it allows to
1059 /// sink reordering in the graph closer to the root node and merge it later
1060 /// during analysis.
1061 void reorderBottomToTop(bool IgnoreReorder = false);
1062
1063 /// \return The vector element size in bits to use when vectorizing the
1064 /// expression tree ending at \p V. If V is a store, the size is the width of
1065 /// the stored value. Otherwise, the size is the width of the largest loaded
1066 /// value reaching V. This method is used by the vectorizer to calculate
1067 /// vectorization factors.
1068 unsigned getVectorElementSize(Value *V);
1069
1070 /// Compute the minimum type sizes required to represent the entries in a
1071 /// vectorizable tree.
1072 void computeMinimumValueSizes();
1073
1074 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
1075 unsigned getMaxVecRegSize() const {
1076 return MaxVecRegSize;
1077 }
1078
1079 // \returns minimum vector register size as set by cl::opt.
1080 unsigned getMinVecRegSize() const {
1081 return MinVecRegSize;
1082 }
1083
1084 unsigned getMinVF(unsigned Sz) const {
1085 return std::max(2U, getMinVecRegSize() / Sz);
1086 }
1087
1088 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
1089 unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
1090 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
1091 return MaxVF ? MaxVF : UINT_MAX(2147483647 *2U +1U);
1092 }
1093
1094 /// Check if homogeneous aggregate is isomorphic to some VectorType.
1095 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
1096 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
1097 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
1098 ///
1099 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
1100 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
1101
1102 /// \returns True if the VectorizableTree is both tiny and not fully
1103 /// vectorizable. We do not vectorize such trees.
1104 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
1105
1106 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
1107 /// can be load combined in the backend. Load combining may not be allowed in
1108 /// the IR optimizer, so we do not want to alter the pattern. For example,
1109 /// partially transforming a scalar bswap() pattern into vector code is
1110 /// effectively impossible for the backend to undo.
1111 /// TODO: If load combining is allowed in the IR optimizer, this analysis
1112 /// may not be necessary.
1113 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
1114
1115 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
1116 /// can be load combined in the backend. Load combining may not be allowed in
1117 /// the IR optimizer, so we do not want to alter the pattern. For example,
1118 /// partially transforming a scalar bswap() pattern into vector code is
1119 /// effectively impossible for the backend to undo.
1120 /// TODO: If load combining is allowed in the IR optimizer, this analysis
1121 /// may not be necessary.
1122 bool isLoadCombineCandidate() const;
1123
1124 OptimizationRemarkEmitter *getORE() { return ORE; }
1125
1126 /// This structure holds any data we need about the edges being traversed
1127 /// during buildTree_rec(). We keep track of:
1128 /// (i) the user TreeEntry index, and
1129 /// (ii) the index of the edge.
1130 struct EdgeInfo {
1131 EdgeInfo() = default;
1132 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
1133 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
1134 /// The user TreeEntry.
1135 TreeEntry *UserTE = nullptr;
1136 /// The operand index of the use.
1137 unsigned EdgeIdx = UINT_MAX(2147483647 *2U +1U);
1138#ifndef NDEBUG
1139 friend inline raw_ostream &operator<<(raw_ostream &OS,
1140 const BoUpSLP::EdgeInfo &EI) {
1141 EI.dump(OS);
1142 return OS;
1143 }
1144 /// Debug print.
1145 void dump(raw_ostream &OS) const {
1146 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
1147 << " EdgeIdx:" << EdgeIdx << "}";
1148 }
1149 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { dump(dbgs()); }
1150#endif
1151 };
1152
1153 /// A helper class used for scoring candidates for two consecutive lanes.
1154 class LookAheadHeuristics {
1155 const TargetLibraryInfo &TLI;
1156 const DataLayout &DL;
1157 ScalarEvolution &SE;
1158 const BoUpSLP &R;
1159 int NumLanes; // Total number of lanes (aka vectorization factor).
1160 int MaxLevel; // The maximum recursion depth for accumulating score.
1161
1162 public:
1163 LookAheadHeuristics(const TargetLibraryInfo &TLI, const DataLayout &DL,
1164 ScalarEvolution &SE, const BoUpSLP &R, int NumLanes,
1165 int MaxLevel)
1166 : TLI(TLI), DL(DL), SE(SE), R(R), NumLanes(NumLanes),
1167 MaxLevel(MaxLevel) {}
1168
1169 // The hard-coded scores listed here are not very important, though it shall
1170 // be higher for better matches to improve the resulting cost. When
1171 // computing the scores of matching one sub-tree with another, we are
1172 // basically counting the number of values that are matching. So even if all
1173 // scores are set to 1, we would still get a decent matching result.
1174 // However, sometimes we have to break ties. For example we may have to
1175 // choose between matching loads vs matching opcodes. This is what these
1176 // scores are helping us with: they provide the order of preference. Also,
1177 // this is important if the scalar is externally used or used in another
1178 // tree entry node in the different lane.
1179
1180 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1181 static const int ScoreConsecutiveLoads = 4;
1182 /// The same load multiple times. This should have a better score than
1183 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it
1184 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for
1185 /// a vector load and 1.0 for a broadcast.
1186 static const int ScoreSplatLoads = 3;
1187 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1188 static const int ScoreReversedLoads = 3;
1189 /// A load candidate for masked gather.
1190 static const int ScoreMaskedGatherCandidate = 1;
1191 /// ExtractElementInst from same vector and consecutive indexes.
1192 static const int ScoreConsecutiveExtracts = 4;
1193 /// ExtractElementInst from same vector and reversed indices.
1194 static const int ScoreReversedExtracts = 3;
1195 /// Constants.
1196 static const int ScoreConstants = 2;
1197 /// Instructions with the same opcode.
1198 static const int ScoreSameOpcode = 2;
1199 /// Instructions with alt opcodes (e.g, add + sub).
1200 static const int ScoreAltOpcodes = 1;
1201 /// Identical instructions (a.k.a. splat or broadcast).
1202 static const int ScoreSplat = 1;
1203 /// Matching with an undef is preferable to failing.
1204 static const int ScoreUndef = 1;
1205 /// Score for failing to find a decent match.
1206 static const int ScoreFail = 0;
1207 /// Score if all users are vectorized.
1208 static const int ScoreAllUserVectorized = 1;
1209
1210 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1211 /// \p U1 and \p U2 are the users of \p V1 and \p V2.
1212 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1213 /// MainAltOps.
1214 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2,
1215 ArrayRef<Value *> MainAltOps) const {
1216 if (!isValidElementType(V1->getType()) ||
1217 !isValidElementType(V2->getType()))
1218 return LookAheadHeuristics::ScoreFail;
1219
1220 if (V1 == V2) {
1221 if (isa<LoadInst>(V1)) {
1222 // Retruns true if the users of V1 and V2 won't need to be extracted.
1223 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) {
1224 // Bail out if we have too many uses to save compilation time.
1225 static constexpr unsigned Limit = 8;
1226 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit))
1227 return false;
1228
1229 auto AllUsersVectorized = [U1, U2, this](Value *V) {
1230 return llvm::all_of(V->users(), [U1, U2, this](Value *U) {
1231 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr;
1232 });
1233 };
1234 return AllUsersVectorized(V1) && AllUsersVectorized(V2);
1235 };
1236 // A broadcast of a load can be cheaper on some targets.
1237 if (R.TTI->isLegalBroadcastLoad(V1->getType(),
1238 ElementCount::getFixed(NumLanes)) &&
1239 ((int)V1->getNumUses() == NumLanes ||
1240 AllUsersAreInternal(V1, V2)))
1241 return LookAheadHeuristics::ScoreSplatLoads;
1242 }
1243 return LookAheadHeuristics::ScoreSplat;
1244 }
1245
1246 auto *LI1 = dyn_cast<LoadInst>(V1);
1247 auto *LI2 = dyn_cast<LoadInst>(V2);
1248 if (LI1 && LI2) {
1249 if (LI1->getParent() != LI2->getParent() || !LI1->isSimple() ||
1250 !LI2->isSimple())
1251 return LookAheadHeuristics::ScoreFail;
1252
1253 Optional<int> Dist = getPointersDiff(
1254 LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1255 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1256 if (!Dist || *Dist == 0) {
1257 if (getUnderlyingObject(LI1->getPointerOperand()) ==
1258 getUnderlyingObject(LI2->getPointerOperand()) &&
1259 R.TTI->isLegalMaskedGather(
1260 FixedVectorType::get(LI1->getType(), NumLanes),
1261 LI1->getAlign()))
1262 return LookAheadHeuristics::ScoreMaskedGatherCandidate;
1263 return LookAheadHeuristics::ScoreFail;
1264 }
1265 // The distance is too large - still may be profitable to use masked
1266 // loads/gathers.
1267 if (std::abs(*Dist) > NumLanes / 2)
1268 return LookAheadHeuristics::ScoreMaskedGatherCandidate;
1269 // This still will detect consecutive loads, but we might have "holes"
1270 // in some cases. It is ok for non-power-2 vectorization and may produce
1271 // better results. It should not affect current vectorization.
1272 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads
1273 : LookAheadHeuristics::ScoreReversedLoads;
1274 }
1275
1276 auto *C1 = dyn_cast<Constant>(V1);
1277 auto *C2 = dyn_cast<Constant>(V2);
1278 if (C1 && C2)
1279 return LookAheadHeuristics::ScoreConstants;
1280
1281 // Extracts from consecutive indexes of the same vector better score as
1282 // the extracts could be optimized away.
1283 Value *EV1;
1284 ConstantInt *Ex1Idx;
1285 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1286 // Undefs are always profitable for extractelements.
1287 if (isa<UndefValue>(V2))
1288 return LookAheadHeuristics::ScoreConsecutiveExtracts;
1289 Value *EV2 = nullptr;
1290 ConstantInt *Ex2Idx = nullptr;
1291 if (match(V2,
1292 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1293 m_Undef())))) {
1294 // Undefs are always profitable for extractelements.
1295 if (!Ex2Idx)
1296 return LookAheadHeuristics::ScoreConsecutiveExtracts;
1297 if (isUndefVector(EV2).all() && EV2->getType() == EV1->getType())
1298 return LookAheadHeuristics::ScoreConsecutiveExtracts;
1299 if (EV2 == EV1) {
1300 int Idx1 = Ex1Idx->getZExtValue();
1301 int Idx2 = Ex2Idx->getZExtValue();
1302 int Dist = Idx2 - Idx1;
1303 // The distance is too large - still may be profitable to use
1304 // shuffles.
1305 if (std::abs(Dist) == 0)
1306 return LookAheadHeuristics::ScoreSplat;
1307 if (std::abs(Dist) > NumLanes / 2)
1308 return LookAheadHeuristics::ScoreSameOpcode;
1309 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts
1310 : LookAheadHeuristics::ScoreReversedExtracts;
1311 }
1312 return LookAheadHeuristics::ScoreAltOpcodes;
1313 }
1314 return LookAheadHeuristics::ScoreFail;
1315 }
1316
1317 auto *I1 = dyn_cast<Instruction>(V1);
1318 auto *I2 = dyn_cast<Instruction>(V2);
1319 if (I1 && I2) {
1320 if (I1->getParent() != I2->getParent())
1321 return LookAheadHeuristics::ScoreFail;
1322 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1323 Ops.push_back(I1);
1324 Ops.push_back(I2);
1325 InstructionsState S = getSameOpcode(Ops, TLI);
1326 // Note: Only consider instructions with <= 2 operands to avoid
1327 // complexity explosion.
1328 if (S.getOpcode() &&
1329 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1330 !S.isAltShuffle()) &&
1331 all_of(Ops, [&S](Value *V) {
1332 return cast<Instruction>(V)->getNumOperands() ==
1333 S.MainOp->getNumOperands();
1334 }))
1335 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes
1336 : LookAheadHeuristics::ScoreSameOpcode;
1337 }
1338
1339 if (isa<UndefValue>(V2))
1340 return LookAheadHeuristics::ScoreUndef;
1341
1342 return LookAheadHeuristics::ScoreFail;
1343 }
1344
1345 /// Go through the operands of \p LHS and \p RHS recursively until
1346 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are
1347 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands
1348 /// of \p U1 and \p U2), except at the beginning of the recursion where
1349 /// these are set to nullptr.
1350 ///
1351 /// For example:
1352 /// \verbatim
1353 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
1354 /// \ / \ / \ / \ /
1355 /// + + + +
1356 /// G1 G2 G3 G4
1357 /// \endverbatim
1358 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1359 /// each level recursively, accumulating the score. It starts from matching
1360 /// the additions at level 0, then moves on to the loads (level 1). The
1361 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1362 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while
1363 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail.
1364 /// Please note that the order of the operands does not matter, as we
1365 /// evaluate the score of all profitable combinations of operands. In
1366 /// other words the score of G1 and G4 is the same as G1 and G2. This
1367 /// heuristic is based on ideas described in:
1368 /// Look-ahead SLP: Auto-vectorization in the presence of commutative
1369 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1370 /// Luís F. W. Góes
1371 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1,
1372 Instruction *U2, int CurrLevel,
1373 ArrayRef<Value *> MainAltOps) const {
1374
1375 // Get the shallow score of V1 and V2.
1376 int ShallowScoreAtThisLevel =
1377 getShallowScore(LHS, RHS, U1, U2, MainAltOps);
1378
1379 // If reached MaxLevel,
1380 // or if V1 and V2 are not instructions,
1381 // or if they are SPLAT,
1382 // or if they are not consecutive,
1383 // or if profitable to vectorize loads or extractelements, early return
1384 // the current cost.
1385 auto *I1 = dyn_cast<Instruction>(LHS);
1386 auto *I2 = dyn_cast<Instruction>(RHS);
1387 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1388 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail ||
1389 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1390 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1391 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1392 ShallowScoreAtThisLevel))
1393 return ShallowScoreAtThisLevel;
1394 assert(I1 && I2 && "Should have early exited.")(static_cast <bool> (I1 && I2 && "Should have early exited."
) ? void (0) : __assert_fail ("I1 && I2 && \"Should have early exited.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1394, __extension__
__PRETTY_FUNCTION__))
;
1395
1396 // Contains the I2 operand indexes that got matched with I1 operands.
1397 SmallSet<unsigned, 4> Op2Used;
1398
1399 // Recursion towards the operands of I1 and I2. We are trying all possible
1400 // operand pairs, and keeping track of the best score.
1401 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1402 OpIdx1 != NumOperands1; ++OpIdx1) {
1403 // Try to pair op1I with the best operand of I2.
1404 int MaxTmpScore = 0;
1405 unsigned MaxOpIdx2 = 0;
1406 bool FoundBest = false;
1407 // If I2 is commutative try all combinations.
1408 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1409 unsigned ToIdx = isCommutative(I2)
1410 ? I2->getNumOperands()
1411 : std::min(I2->getNumOperands(), OpIdx1 + 1);
1412 assert(FromIdx <= ToIdx && "Bad index")(static_cast <bool> (FromIdx <= ToIdx && "Bad index"
) ? void (0) : __assert_fail ("FromIdx <= ToIdx && \"Bad index\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1412, __extension__
__PRETTY_FUNCTION__))
;
1413 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1414 // Skip operands already paired with OpIdx1.
1415 if (Op2Used.count(OpIdx2))
1416 continue;
1417 // Recursively calculate the cost at each level
1418 int TmpScore =
1419 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1420 I1, I2, CurrLevel + 1, None);
1421 // Look for the best score.
1422 if (TmpScore > LookAheadHeuristics::ScoreFail &&
1423 TmpScore > MaxTmpScore) {
1424 MaxTmpScore = TmpScore;
1425 MaxOpIdx2 = OpIdx2;
1426 FoundBest = true;
1427 }
1428 }
1429 if (FoundBest) {
1430 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1431 Op2Used.insert(MaxOpIdx2);
1432 ShallowScoreAtThisLevel += MaxTmpScore;
1433 }
1434 }
1435 return ShallowScoreAtThisLevel;
1436 }
1437 };
1438 /// A helper data structure to hold the operands of a vector of instructions.
1439 /// This supports a fixed vector length for all operand vectors.
1440 class VLOperands {
1441 /// For each operand we need (i) the value, and (ii) the opcode that it
1442 /// would be attached to if the expression was in a left-linearized form.
1443 /// This is required to avoid illegal operand reordering.
1444 /// For example:
1445 /// \verbatim
1446 /// 0 Op1
1447 /// |/
1448 /// Op1 Op2 Linearized + Op2
1449 /// \ / ----------> |/
1450 /// - -
1451 ///
1452 /// Op1 - Op2 (0 + Op1) - Op2
1453 /// \endverbatim
1454 ///
1455 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1456 ///
1457 /// Another way to think of this is to track all the operations across the
1458 /// path from the operand all the way to the root of the tree and to
1459 /// calculate the operation that corresponds to this path. For example, the
1460 /// path from Op2 to the root crosses the RHS of the '-', therefore the
1461 /// corresponding operation is a '-' (which matches the one in the
1462 /// linearized tree, as shown above).
1463 ///
1464 /// For lack of a better term, we refer to this operation as Accumulated
1465 /// Path Operation (APO).
1466 struct OperandData {
1467 OperandData() = default;
1468 OperandData(Value *V, bool APO, bool IsUsed)
1469 : V(V), APO(APO), IsUsed(IsUsed) {}
1470 /// The operand value.
1471 Value *V = nullptr;
1472 /// TreeEntries only allow a single opcode, or an alternate sequence of
1473 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1474 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1475 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1476 /// (e.g., Add/Mul)
1477 bool APO = false;
1478 /// Helper data for the reordering function.
1479 bool IsUsed = false;
1480 };
1481
1482 /// During operand reordering, we are trying to select the operand at lane
1483 /// that matches best with the operand at the neighboring lane. Our
1484 /// selection is based on the type of value we are looking for. For example,
1485 /// if the neighboring lane has a load, we need to look for a load that is
1486 /// accessing a consecutive address. These strategies are summarized in the
1487 /// 'ReorderingMode' enumerator.
1488 enum class ReorderingMode {
1489 Load, ///< Matching loads to consecutive memory addresses
1490 Opcode, ///< Matching instructions based on opcode (same or alternate)
1491 Constant, ///< Matching constants
1492 Splat, ///< Matching the same instruction multiple times (broadcast)
1493 Failed, ///< We failed to create a vectorizable group
1494 };
1495
1496 using OperandDataVec = SmallVector<OperandData, 2>;
1497
1498 /// A vector of operand vectors.
1499 SmallVector<OperandDataVec, 4> OpsVec;
1500
1501 const TargetLibraryInfo &TLI;
1502 const DataLayout &DL;
1503 ScalarEvolution &SE;
1504 const BoUpSLP &R;
1505
1506 /// \returns the operand data at \p OpIdx and \p Lane.
1507 OperandData &getData(unsigned OpIdx, unsigned Lane) {
1508 return OpsVec[OpIdx][Lane];
1509 }
1510
1511 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1512 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1513 return OpsVec[OpIdx][Lane];
1514 }
1515
1516 /// Clears the used flag for all entries.
1517 void clearUsed() {
1518 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1519 OpIdx != NumOperands; ++OpIdx)
1520 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1521 ++Lane)
1522 OpsVec[OpIdx][Lane].IsUsed = false;
1523 }
1524
1525 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1526 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1527 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1528 }
1529
1530 /// \param Lane lane of the operands under analysis.
1531 /// \param OpIdx operand index in \p Lane lane we're looking the best
1532 /// candidate for.
1533 /// \param Idx operand index of the current candidate value.
1534 /// \returns The additional score due to possible broadcasting of the
1535 /// elements in the lane. It is more profitable to have power-of-2 unique
1536 /// elements in the lane, it will be vectorized with higher probability
1537 /// after removing duplicates. Currently the SLP vectorizer supports only
1538 /// vectorization of the power-of-2 number of unique scalars.
1539 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1540 Value *IdxLaneV = getData(Idx, Lane).V;
1541 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1542 return 0;
1543 SmallPtrSet<Value *, 4> Uniques;
1544 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1545 if (Ln == Lane)
1546 continue;
1547 Value *OpIdxLnV = getData(OpIdx, Ln).V;
1548 if (!isa<Instruction>(OpIdxLnV))
1549 return 0;
1550 Uniques.insert(OpIdxLnV);
1551 }
1552 int UniquesCount = Uniques.size();
1553 int UniquesCntWithIdxLaneV =
1554 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1555 Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1556 int UniquesCntWithOpIdxLaneV =
1557 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1558 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1559 return 0;
1560 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1561 UniquesCntWithOpIdxLaneV) -
1562 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1563 }
1564
1565 /// \param Lane lane of the operands under analysis.
1566 /// \param OpIdx operand index in \p Lane lane we're looking the best
1567 /// candidate for.
1568 /// \param Idx operand index of the current candidate value.
1569 /// \returns The additional score for the scalar which users are all
1570 /// vectorized.
1571 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1572 Value *IdxLaneV = getData(Idx, Lane).V;
1573 Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1574 // Do not care about number of uses for vector-like instructions
1575 // (extractelement/extractvalue with constant indices), they are extracts
1576 // themselves and already externally used. Vectorization of such
1577 // instructions does not add extra extractelement instruction, just may
1578 // remove it.
1579 if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1580 isVectorLikeInstWithConstOps(OpIdxLaneV))
1581 return LookAheadHeuristics::ScoreAllUserVectorized;
1582 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1583 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1584 return 0;
1585 return R.areAllUsersVectorized(IdxLaneI, None)
1586 ? LookAheadHeuristics::ScoreAllUserVectorized
1587 : 0;
1588 }
1589
1590 /// Score scaling factor for fully compatible instructions but with
1591 /// different number of external uses. Allows better selection of the
1592 /// instructions with less external uses.
1593 static const int ScoreScaleFactor = 10;
1594
1595 /// \Returns the look-ahead score, which tells us how much the sub-trees
1596 /// rooted at \p LHS and \p RHS match, the more they match the higher the
1597 /// score. This helps break ties in an informed way when we cannot decide on
1598 /// the order of the operands by just considering the immediate
1599 /// predecessors.
1600 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1601 int Lane, unsigned OpIdx, unsigned Idx,
1602 bool &IsUsed) {
1603 LookAheadHeuristics LookAhead(TLI, DL, SE, R, getNumLanes(),
1604 LookAheadMaxDepth);
1605 // Keep track of the instruction stack as we recurse into the operands
1606 // during the look-ahead score exploration.
1607 int Score =
1608 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr,
1609 /*CurrLevel=*/1, MainAltOps);
1610 if (Score) {
1611 int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1612 if (Score <= -SplatScore) {
1613 // Set the minimum score for splat-like sequence to avoid setting
1614 // failed state.
1615 Score = 1;
1616 } else {
1617 Score += SplatScore;
1618 // Scale score to see the difference between different operands
1619 // and similar operands but all vectorized/not all vectorized
1620 // uses. It does not affect actual selection of the best
1621 // compatible operand in general, just allows to select the
1622 // operand with all vectorized uses.
1623 Score *= ScoreScaleFactor;
1624 Score += getExternalUseScore(Lane, OpIdx, Idx);
1625 IsUsed = true;
1626 }
1627 }
1628 return Score;
1629 }
1630
1631 /// Best defined scores per lanes between the passes. Used to choose the
1632 /// best operand (with the highest score) between the passes.
1633 /// The key - {Operand Index, Lane}.
1634 /// The value - the best score between the passes for the lane and the
1635 /// operand.
1636 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1637 BestScoresPerLanes;
1638
1639 // Search all operands in Ops[*][Lane] for the one that matches best
1640 // Ops[OpIdx][LastLane] and return its opreand index.
1641 // If no good match can be found, return None.
1642 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1643 ArrayRef<ReorderingMode> ReorderingModes,
1644 ArrayRef<Value *> MainAltOps) {
1645 unsigned NumOperands = getNumOperands();
1646
1647 // The operand of the previous lane at OpIdx.
1648 Value *OpLastLane = getData(OpIdx, LastLane).V;
1649
1650 // Our strategy mode for OpIdx.
1651 ReorderingMode RMode = ReorderingModes[OpIdx];
1652 if (RMode == ReorderingMode::Failed)
1653 return None;
1654
1655 // The linearized opcode of the operand at OpIdx, Lane.
1656 bool OpIdxAPO = getData(OpIdx, Lane).APO;
1657
1658 // The best operand index and its score.
1659 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1660 // are using the score to differentiate between the two.
1661 struct BestOpData {
1662 Optional<unsigned> Idx = None;
1663 unsigned Score = 0;
1664 } BestOp;
1665 BestOp.Score =
1666 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1667 .first->second;
1668
1669 // Track if the operand must be marked as used. If the operand is set to
1670 // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1671 // want to reestimate the operands again on the following iterations).
1672 bool IsUsed =
1673 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1674 // Iterate through all unused operands and look for the best.
1675 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1676 // Get the operand at Idx and Lane.
1677 OperandData &OpData = getData(Idx, Lane);
1678 Value *Op = OpData.V;
1679 bool OpAPO = OpData.APO;
1680
1681 // Skip already selected operands.
1682 if (OpData.IsUsed)
1683 continue;
1684
1685 // Skip if we are trying to move the operand to a position with a
1686 // different opcode in the linearized tree form. This would break the
1687 // semantics.
1688 if (OpAPO != OpIdxAPO)
1689 continue;
1690
1691 // Look for an operand that matches the current mode.
1692 switch (RMode) {
1693 case ReorderingMode::Load:
1694 case ReorderingMode::Constant:
1695 case ReorderingMode::Opcode: {
1696 bool LeftToRight = Lane > LastLane;
1697 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1698 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1699 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1700 OpIdx, Idx, IsUsed);
1701 if (Score > static_cast<int>(BestOp.Score)) {
1702 BestOp.Idx = Idx;
1703 BestOp.Score = Score;
1704 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1705 }
1706 break;
1707 }
1708 case ReorderingMode::Splat:
1709 if (Op == OpLastLane)
1710 BestOp.Idx = Idx;
1711 break;
1712 case ReorderingMode::Failed:
1713 llvm_unreachable("Not expected Failed reordering mode.")::llvm::llvm_unreachable_internal("Not expected Failed reordering mode."
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1713)
;
1714 }
1715 }
1716
1717 if (BestOp.Idx) {
1718 getData(*BestOp.Idx, Lane).IsUsed = IsUsed;
1719 return BestOp.Idx;
1720 }
1721 // If we could not find a good match return None.
1722 return None;
1723 }
1724
1725 /// Helper for reorderOperandVecs.
1726 /// \returns the lane that we should start reordering from. This is the one
1727 /// which has the least number of operands that can freely move about or
1728 /// less profitable because it already has the most optimal set of operands.
1729 unsigned getBestLaneToStartReordering() const {
1730 unsigned Min = UINT_MAX(2147483647 *2U +1U);
1731 unsigned SameOpNumber = 0;
1732 // std::pair<unsigned, unsigned> is used to implement a simple voting
1733 // algorithm and choose the lane with the least number of operands that
1734 // can freely move about or less profitable because it already has the
1735 // most optimal set of operands. The first unsigned is a counter for
1736 // voting, the second unsigned is the counter of lanes with instructions
1737 // with same/alternate opcodes and same parent basic block.
1738 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1739 // Try to be closer to the original results, if we have multiple lanes
1740 // with same cost. If 2 lanes have the same cost, use the one with the
1741 // lowest index.
1742 for (int I = getNumLanes(); I > 0; --I) {
1743 unsigned Lane = I - 1;
1744 OperandsOrderData NumFreeOpsHash =
1745 getMaxNumOperandsThatCanBeReordered(Lane);
1746 // Compare the number of operands that can move and choose the one with
1747 // the least number.
1748 if (NumFreeOpsHash.NumOfAPOs < Min) {
1749 Min = NumFreeOpsHash.NumOfAPOs;
1750 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1751 HashMap.clear();
1752 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1753 } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1754 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1755 // Select the most optimal lane in terms of number of operands that
1756 // should be moved around.
1757 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1758 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1759 } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1760 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1761 auto It = HashMap.find(NumFreeOpsHash.Hash);
1762 if (It == HashMap.end())
1763 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1764 else
1765 ++It->second.first;
1766 }
1767 }
1768 // Select the lane with the minimum counter.
1769 unsigned BestLane = 0;
1770 unsigned CntMin = UINT_MAX(2147483647 *2U +1U);
1771 for (const auto &Data : reverse(HashMap)) {
1772 if (Data.second.first < CntMin) {
1773 CntMin = Data.second.first;
1774 BestLane = Data.second.second;
1775 }
1776 }
1777 return BestLane;
1778 }
1779
1780 /// Data structure that helps to reorder operands.
1781 struct OperandsOrderData {
1782 /// The best number of operands with the same APOs, which can be
1783 /// reordered.
1784 unsigned NumOfAPOs = UINT_MAX(2147483647 *2U +1U);
1785 /// Number of operands with the same/alternate instruction opcode and
1786 /// parent.
1787 unsigned NumOpsWithSameOpcodeParent = 0;
1788 /// Hash for the actual operands ordering.
1789 /// Used to count operands, actually their position id and opcode
1790 /// value. It is used in the voting mechanism to find the lane with the
1791 /// least number of operands that can freely move about or less profitable
1792 /// because it already has the most optimal set of operands. Can be
1793 /// replaced with SmallVector<unsigned> instead but hash code is faster
1794 /// and requires less memory.
1795 unsigned Hash = 0;
1796 };
1797 /// \returns the maximum number of operands that are allowed to be reordered
1798 /// for \p Lane and the number of compatible instructions(with the same
1799 /// parent/opcode). This is used as a heuristic for selecting the first lane
1800 /// to start operand reordering.
1801 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1802 unsigned CntTrue = 0;
1803 unsigned NumOperands = getNumOperands();
1804 // Operands with the same APO can be reordered. We therefore need to count
1805 // how many of them we have for each APO, like this: Cnt[APO] = x.
1806 // Since we only have two APOs, namely true and false, we can avoid using
1807 // a map. Instead we can simply count the number of operands that
1808 // correspond to one of them (in this case the 'true' APO), and calculate
1809 // the other by subtracting it from the total number of operands.
1810 // Operands with the same instruction opcode and parent are more
1811 // profitable since we don't need to move them in many cases, with a high
1812 // probability such lane already can be vectorized effectively.
1813 bool AllUndefs = true;
1814 unsigned NumOpsWithSameOpcodeParent = 0;
1815 Instruction *OpcodeI = nullptr;
1816 BasicBlock *Parent = nullptr;
1817 unsigned Hash = 0;
1818 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1819 const OperandData &OpData = getData(OpIdx, Lane);
1820 if (OpData.APO)
1821 ++CntTrue;
1822 // Use Boyer-Moore majority voting for finding the majority opcode and
1823 // the number of times it occurs.
1824 if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1825 if (!OpcodeI || !getSameOpcode({OpcodeI, I}, TLI).getOpcode() ||
1826 I->getParent() != Parent) {
1827 if (NumOpsWithSameOpcodeParent == 0) {
1828 NumOpsWithSameOpcodeParent = 1;
1829 OpcodeI = I;
1830 Parent = I->getParent();
1831 } else {
1832 --NumOpsWithSameOpcodeParent;
1833 }
1834 } else {
1835 ++NumOpsWithSameOpcodeParent;
1836 }
1837 }
1838 Hash = hash_combine(
1839 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1840 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1841 }
1842 if (AllUndefs)
1843 return {};
1844 OperandsOrderData Data;
1845 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1846 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1847 Data.Hash = Hash;
1848 return Data;
1849 }
1850
1851 /// Go through the instructions in VL and append their operands.
1852 void appendOperandsOfVL(ArrayRef<Value *> VL) {
1853 assert(!VL.empty() && "Bad VL")(static_cast <bool> (!VL.empty() && "Bad VL") ?
void (0) : __assert_fail ("!VL.empty() && \"Bad VL\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1853, __extension__
__PRETTY_FUNCTION__))
;
1854 assert((empty() || VL.size() == getNumLanes()) &&(static_cast <bool> ((empty() || VL.size() == getNumLanes
()) && "Expected same number of lanes") ? void (0) : __assert_fail
("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1855, __extension__
__PRETTY_FUNCTION__))
1855 "Expected same number of lanes")(static_cast <bool> ((empty() || VL.size() == getNumLanes
()) && "Expected same number of lanes") ? void (0) : __assert_fail
("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1855, __extension__
__PRETTY_FUNCTION__))
;
1856 assert(isa<Instruction>(VL[0]) && "Expected instruction")(static_cast <bool> (isa<Instruction>(VL[0]) &&
"Expected instruction") ? void (0) : __assert_fail ("isa<Instruction>(VL[0]) && \"Expected instruction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1856, __extension__
__PRETTY_FUNCTION__))
;
1857 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1858 OpsVec.resize(NumOperands);
1859 unsigned NumLanes = VL.size();
1860 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1861 OpsVec[OpIdx].resize(NumLanes);
1862 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1863 assert(isa<Instruction>(VL[Lane]) && "Expected instruction")(static_cast <bool> (isa<Instruction>(VL[Lane]) &&
"Expected instruction") ? void (0) : __assert_fail ("isa<Instruction>(VL[Lane]) && \"Expected instruction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1863, __extension__
__PRETTY_FUNCTION__))
;
1864 // Our tree has just 3 nodes: the root and two operands.
1865 // It is therefore trivial to get the APO. We only need to check the
1866 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1867 // RHS operand. The LHS operand of both add and sub is never attached
1868 // to an inversese operation in the linearized form, therefore its APO
1869 // is false. The RHS is true only if VL[Lane] is an inverse operation.
1870
1871 // Since operand reordering is performed on groups of commutative
1872 // operations or alternating sequences (e.g., +, -), we can safely
1873 // tell the inverse operations by checking commutativity.
1874 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1875 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1876 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1877 APO, false};
1878 }
1879 }
1880 }
1881
1882 /// \returns the number of operands.
1883 unsigned getNumOperands() const { return OpsVec.size(); }
1884
1885 /// \returns the number of lanes.
1886 unsigned getNumLanes() const { return OpsVec[0].size(); }
1887
1888 /// \returns the operand value at \p OpIdx and \p Lane.
1889 Value *getValue(unsigned OpIdx, unsigned Lane) const {
1890 return getData(OpIdx, Lane).V;
1891 }
1892
1893 /// \returns true if the data structure is empty.
1894 bool empty() const { return OpsVec.empty(); }
1895
1896 /// Clears the data.
1897 void clear() { OpsVec.clear(); }
1898
1899 /// \Returns true if there are enough operands identical to \p Op to fill
1900 /// the whole vector.
1901 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1902 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1903 bool OpAPO = getData(OpIdx, Lane).APO;
1904 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1905 if (Ln == Lane)
1906 continue;
1907 // This is set to true if we found a candidate for broadcast at Lane.
1908 bool FoundCandidate = false;
1909 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1910 OperandData &Data = getData(OpI, Ln);
1911 if (Data.APO != OpAPO || Data.IsUsed)
1912 continue;
1913 if (Data.V == Op) {
1914 FoundCandidate = true;
1915 Data.IsUsed = true;
1916 break;
1917 }
1918 }
1919 if (!FoundCandidate)
1920 return false;
1921 }
1922 return true;
1923 }
1924
1925 public:
1926 /// Initialize with all the operands of the instruction vector \p RootVL.
1927 VLOperands(ArrayRef<Value *> RootVL, const TargetLibraryInfo &TLI,
1928 const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R)
1929 : TLI(TLI), DL(DL), SE(SE), R(R) {
1930 // Append all the operands of RootVL.
1931 appendOperandsOfVL(RootVL);
1932 }
1933
1934 /// \Returns a value vector with the operands across all lanes for the
1935 /// opearnd at \p OpIdx.
1936 ValueList getVL(unsigned OpIdx) const {
1937 ValueList OpVL(OpsVec[OpIdx].size());
1938 assert(OpsVec[OpIdx].size() == getNumLanes() &&(static_cast <bool> (OpsVec[OpIdx].size() == getNumLanes
() && "Expected same num of lanes across all operands"
) ? void (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1939, __extension__
__PRETTY_FUNCTION__))
1939 "Expected same num of lanes across all operands")(static_cast <bool> (OpsVec[OpIdx].size() == getNumLanes
() && "Expected same num of lanes across all operands"
) ? void (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 1939, __extension__
__PRETTY_FUNCTION__))
;
1940 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1941 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1942 return OpVL;
1943 }
1944
1945 // Performs operand reordering for 2 or more operands.
1946 // The original operands are in OrigOps[OpIdx][Lane].
1947 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1948 void reorder() {
1949 unsigned NumOperands = getNumOperands();
1950 unsigned NumLanes = getNumLanes();
1951 // Each operand has its own mode. We are using this mode to help us select
1952 // the instructions for each lane, so that they match best with the ones
1953 // we have selected so far.
1954 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1955
1956 // This is a greedy single-pass algorithm. We are going over each lane
1957 // once and deciding on the best order right away with no back-tracking.
1958 // However, in order to increase its effectiveness, we start with the lane
1959 // that has operands that can move the least. For example, given the
1960 // following lanes:
1961 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
1962 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
1963 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
1964 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
1965 // we will start at Lane 1, since the operands of the subtraction cannot
1966 // be reordered. Then we will visit the rest of the lanes in a circular
1967 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1968
1969 // Find the first lane that we will start our search from.
1970 unsigned FirstLane = getBestLaneToStartReordering();
1971
1972 // Initialize the modes.
1973 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1974 Value *OpLane0 = getValue(OpIdx, FirstLane);
1975 // Keep track if we have instructions with all the same opcode on one
1976 // side.
1977 if (isa<LoadInst>(OpLane0))
1978 ReorderingModes[OpIdx] = ReorderingMode::Load;
1979 else if (isa<Instruction>(OpLane0)) {
1980 // Check if OpLane0 should be broadcast.
1981 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1982 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1983 else
1984 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1985 }
1986 else if (isa<Constant>(OpLane0))
1987 ReorderingModes[OpIdx] = ReorderingMode::Constant;
1988 else if (isa<Argument>(OpLane0))
1989 // Our best hope is a Splat. It may save some cost in some cases.
1990 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1991 else
1992 // NOTE: This should be unreachable.
1993 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1994 }
1995
1996 // Check that we don't have same operands. No need to reorder if operands
1997 // are just perfect diamond or shuffled diamond match. Do not do it only
1998 // for possible broadcasts or non-power of 2 number of scalars (just for
1999 // now).
2000 auto &&SkipReordering = [this]() {
2001 SmallPtrSet<Value *, 4> UniqueValues;
2002 ArrayRef<OperandData> Op0 = OpsVec.front();
2003 for (const OperandData &Data : Op0)
2004 UniqueValues.insert(Data.V);
2005 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
2006 if (any_of(Op, [&UniqueValues](const OperandData &Data) {
2007 return !UniqueValues.contains(Data.V);
2008 }))
2009 return false;
2010 }
2011 // TODO: Check if we can remove a check for non-power-2 number of
2012 // scalars after full support of non-power-2 vectorization.
2013 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
2014 };
2015
2016 // If the initial strategy fails for any of the operand indexes, then we
2017 // perform reordering again in a second pass. This helps avoid assigning
2018 // high priority to the failed strategy, and should improve reordering for
2019 // the non-failed operand indexes.
2020 for (int Pass = 0; Pass != 2; ++Pass) {
2021 // Check if no need to reorder operands since they're are perfect or
2022 // shuffled diamond match.
2023 // Need to to do it to avoid extra external use cost counting for
2024 // shuffled matches, which may cause regressions.
2025 if (SkipReordering())
2026 break;
2027 // Skip the second pass if the first pass did not fail.
2028 bool StrategyFailed = false;
2029 // Mark all operand data as free to use.
2030 clearUsed();
2031 // We keep the original operand order for the FirstLane, so reorder the
2032 // rest of the lanes. We are visiting the nodes in a circular fashion,
2033 // using FirstLane as the center point and increasing the radius
2034 // distance.
2035 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
2036 for (unsigned I = 0; I < NumOperands; ++I)
2037 MainAltOps[I].push_back(getData(I, FirstLane).V);
2038
2039 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
2040 // Visit the lane on the right and then the lane on the left.
2041 for (int Direction : {+1, -1}) {
2042 int Lane = FirstLane + Direction * Distance;
2043 if (Lane < 0 || Lane >= (int)NumLanes)
2044 continue;
2045 int LastLane = Lane - Direction;
2046 assert(LastLane >= 0 && LastLane < (int)NumLanes &&(static_cast <bool> (LastLane >= 0 && LastLane
< (int)NumLanes && "Out of bounds") ? void (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2047, __extension__
__PRETTY_FUNCTION__))
2047 "Out of bounds")(static_cast <bool> (LastLane >= 0 && LastLane
< (int)NumLanes && "Out of bounds") ? void (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2047, __extension__
__PRETTY_FUNCTION__))
;
2048 // Look for a good match for each operand.
2049 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
2050 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
2051 Optional<unsigned> BestIdx = getBestOperand(
2052 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
2053 // By not selecting a value, we allow the operands that follow to
2054 // select a better matching value. We will get a non-null value in
2055 // the next run of getBestOperand().
2056 if (BestIdx) {
2057 // Swap the current operand with the one returned by
2058 // getBestOperand().
2059 swap(OpIdx, *BestIdx, Lane);
2060 } else {
2061 // We failed to find a best operand, set mode to 'Failed'.
2062 ReorderingModes[OpIdx] = ReorderingMode::Failed;
2063 // Enable the second pass.
2064 StrategyFailed = true;
2065 }
2066 // Try to get the alternate opcode and follow it during analysis.
2067 if (MainAltOps[OpIdx].size() != 2) {
2068 OperandData &AltOp = getData(OpIdx, Lane);
2069 InstructionsState OpS =
2070 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}, TLI);
2071 if (OpS.getOpcode() && OpS.isAltShuffle())
2072 MainAltOps[OpIdx].push_back(AltOp.V);
2073 }
2074 }
2075 }
2076 }
2077 // Skip second pass if the strategy did not fail.
2078 if (!StrategyFailed)
2079 break;
2080 }
2081 }
2082
2083#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2084 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static StringRef getModeStr(ReorderingMode RMode) {
2085 switch (RMode) {
2086 case ReorderingMode::Load:
2087 return "Load";
2088 case ReorderingMode::Opcode:
2089 return "Opcode";
2090 case ReorderingMode::Constant:
2091 return "Constant";
2092 case ReorderingMode::Splat:
2093 return "Splat";
2094 case ReorderingMode::Failed:
2095 return "Failed";
2096 }
2097 llvm_unreachable("Unimplemented Reordering Type")::llvm::llvm_unreachable_internal("Unimplemented Reordering Type"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2097)
;
2098 }
2099
2100 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static raw_ostream &printMode(ReorderingMode RMode,
2101 raw_ostream &OS) {
2102 return OS << getModeStr(RMode);
2103 }
2104
2105 /// Debug print.
2106 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static void dumpMode(ReorderingMode RMode) {
2107 printMode(RMode, dbgs());
2108 }
2109
2110 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
2111 return printMode(RMode, OS);
2112 }
2113
2114 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) raw_ostream &print(raw_ostream &OS) const {
2115 const unsigned Indent = 2;
2116 unsigned Cnt = 0;
2117 for (const OperandDataVec &OpDataVec : OpsVec) {
2118 OS << "Operand " << Cnt++ << "\n";
2119 for (const OperandData &OpData : OpDataVec) {
2120 OS.indent(Indent) << "{";
2121 if (Value *V = OpData.V)
2122 OS << *V;
2123 else
2124 OS << "null";
2125 OS << ", APO:" << OpData.APO << "}\n";
2126 }
2127 OS << "\n";
2128 }
2129 return OS;
2130 }
2131
2132 /// Debug print.
2133 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { print(dbgs()); }
2134#endif
2135 };
2136
2137 /// Evaluate each pair in \p Candidates and return index into \p Candidates
2138 /// for a pair which have highest score deemed to have best chance to form
2139 /// root of profitable tree to vectorize. Return None if no candidate scored
2140 /// above the LookAheadHeuristics::ScoreFail.
2141 /// \param Limit Lower limit of the cost, considered to be good enough score.
2142 Optional<int>
2143 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates,
2144 int Limit = LookAheadHeuristics::ScoreFail) {
2145 LookAheadHeuristics LookAhead(*TLI, *DL, *SE, *this, /*NumLanes=*/2,
2146 RootLookAheadMaxDepth);
2147 int BestScore = Limit;
2148 Optional<int> Index;
2149 for (int I : seq<int>(0, Candidates.size())) {
2150 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first,
2151 Candidates[I].second,
2152 /*U1=*/nullptr, /*U2=*/nullptr,
2153 /*Level=*/1, None);
2154 if (Score > BestScore) {
2155 BestScore = Score;
2156 Index = I;
2157 }
2158 }
2159 return Index;
2160 }
2161
2162 /// Checks if the instruction is marked for deletion.
2163 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
2164
2165 /// Removes an instruction from its block and eventually deletes it.
2166 /// It's like Instruction::eraseFromParent() except that the actual deletion
2167 /// is delayed until BoUpSLP is destructed.
2168 void eraseInstruction(Instruction *I) {
2169 DeletedInstructions.insert(I);
2170 }
2171
2172 /// Checks if the instruction was already analyzed for being possible
2173 /// reduction root.
2174 bool isAnalyzedReductionRoot(Instruction *I) const {
2175 return AnalyzedReductionsRoots.count(I);
2176 }
2177 /// Register given instruction as already analyzed for being possible
2178 /// reduction root.
2179 void analyzedReductionRoot(Instruction *I) {
2180 AnalyzedReductionsRoots.insert(I);
2181 }
2182 /// Checks if the provided list of reduced values was checked already for
2183 /// vectorization.
2184 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) const {
2185 return AnalyzedReductionVals.contains(hash_value(VL));
2186 }
2187 /// Adds the list of reduced values to list of already checked values for the
2188 /// vectorization.
2189 void analyzedReductionVals(ArrayRef<Value *> VL) {
2190 AnalyzedReductionVals.insert(hash_value(VL));
2191 }
2192 /// Clear the list of the analyzed reduction root instructions.
2193 void clearReductionData() {
2194 AnalyzedReductionsRoots.clear();
2195 AnalyzedReductionVals.clear();
2196 }
2197 /// Checks if the given value is gathered in one of the nodes.
2198 bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const {
2199 return any_of(MustGather, [&](Value *V) { return Vals.contains(V); });
2200 }
2201
2202 ~BoUpSLP();
2203
2204private:
2205 /// Check if the operands on the edges \p Edges of the \p UserTE allows
2206 /// reordering (i.e. the operands can be reordered because they have only one
2207 /// user and reordarable).
2208 /// \param ReorderableGathers List of all gather nodes that require reordering
2209 /// (e.g., gather of extractlements or partially vectorizable loads).
2210 /// \param GatherOps List of gather operand nodes for \p UserTE that require
2211 /// reordering, subset of \p NonVectorized.
2212 bool
2213 canReorderOperands(TreeEntry *UserTE,
2214 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
2215 ArrayRef<TreeEntry *> ReorderableGathers,
2216 SmallVectorImpl<TreeEntry *> &GatherOps);
2217
2218 /// Checks if the given \p TE is a gather node with clustered reused scalars
2219 /// and reorders it per given \p Mask.
2220 void reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const;
2221
2222 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2223 /// if any. If it is not vectorized (gather node), returns nullptr.
2224 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) {
2225 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx);
2226 TreeEntry *TE = nullptr;
2227 const auto *It = find_if(VL, [this, &TE](Value *V) {
2228 TE = getTreeEntry(V);
2229 return TE;
2230 });
2231 if (It != VL.end() && TE->isSame(VL))
2232 return TE;
2233 return nullptr;
2234 }
2235
2236 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2237 /// if any. If it is not vectorized (gather node), returns nullptr.
2238 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE,
2239 unsigned OpIdx) const {
2240 return const_cast<BoUpSLP *>(this)->getVectorizedOperand(
2241 const_cast<TreeEntry *>(UserTE), OpIdx);
2242 }
2243
2244 /// Checks if all users of \p I are the part of the vectorization tree.
2245 bool areAllUsersVectorized(Instruction *I,
2246 ArrayRef<Value *> VectorizedVals) const;
2247
2248 /// Return information about the vector formed for the specified index
2249 /// of a vector of (the same) instruction.
2250 TargetTransformInfo::OperandValueInfo getOperandInfo(ArrayRef<Value *> VL,
2251 unsigned OpIdx);
2252
2253 /// \returns the cost of the vectorizable entry.
2254 InstructionCost getEntryCost(const TreeEntry *E,
2255 ArrayRef<Value *> VectorizedVals);
2256
2257 /// This is the recursive part of buildTree.
2258 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
2259 const EdgeInfo &EI);
2260
2261 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
2262 /// be vectorized to use the original vector (or aggregate "bitcast" to a
2263 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
2264 /// returns false, setting \p CurrentOrder to either an empty vector or a
2265 /// non-identity permutation that allows to reuse extract instructions.
2266 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2267 SmallVectorImpl<unsigned> &CurrentOrder) const;
2268
2269 /// Vectorize a single entry in the tree.
2270 Value *vectorizeTree(TreeEntry *E);
2271
2272 /// Vectorize a single entry in the tree, starting in \p VL.
2273 Value *vectorizeTree(ArrayRef<Value *> VL);
2274
2275 /// Create a new vector from a list of scalar values. Produces a sequence
2276 /// which exploits values reused across lanes, and arranges the inserts
2277 /// for ease of later optimization.
2278 Value *createBuildVector(ArrayRef<Value *> VL);
2279
2280 /// \returns the scalarization cost for this type. Scalarization in this
2281 /// context means the creation of vectors from a group of scalars. If \p
2282 /// NeedToShuffle is true, need to add a cost of reshuffling some of the
2283 /// vector elements.
2284 InstructionCost getGatherCost(FixedVectorType *Ty,
2285 const APInt &ShuffledIndices,
2286 bool NeedToShuffle) const;
2287
2288 /// Returns the instruction in the bundle, which can be used as a base point
2289 /// for scheduling. Usually it is the last instruction in the bundle, except
2290 /// for the case when all operands are external (in this case, it is the first
2291 /// instruction in the list).
2292 Instruction &getLastInstructionInBundle(const TreeEntry *E);
2293
2294 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
2295 /// tree entries.
2296 /// \returns ShuffleKind, if gathered values can be represented as shuffles of
2297 /// previous tree entries. \p Mask is filled with the shuffle mask.
2298 Optional<TargetTransformInfo::ShuffleKind>
2299 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
2300 SmallVectorImpl<const TreeEntry *> &Entries);
2301
2302 /// \returns the scalarization cost for this list of values. Assuming that
2303 /// this subtree gets vectorized, we may need to extract the values from the
2304 /// roots. This method calculates the cost of extracting the values.
2305 InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
2306
2307 /// Set the Builder insert point to one after the last instruction in
2308 /// the bundle
2309 void setInsertPointAfterBundle(const TreeEntry *E);
2310
2311 /// \returns a vector from a collection of scalars in \p VL.
2312 Value *gather(ArrayRef<Value *> VL);
2313
2314 /// \returns whether the VectorizableTree is fully vectorizable and will
2315 /// be beneficial even the tree height is tiny.
2316 bool isFullyVectorizableTinyTree(bool ForReduction) const;
2317
2318 /// Reorder commutative or alt operands to get better probability of
2319 /// generating vectorized code.
2320 static void reorderInputsAccordingToOpcode(
2321 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
2322 SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI,
2323 const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R);
2324
2325 /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the
2326 /// users of \p TE and collects the stores. It returns the map from the store
2327 /// pointers to the collected stores.
2328 DenseMap<Value *, SmallVector<StoreInst *, 4>>
2329 collectUserStores(const BoUpSLP::TreeEntry *TE) const;
2330
2331 /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the
2332 /// stores in \p StoresVec can form a vector instruction. If so it returns true
2333 /// and populates \p ReorderIndices with the shuffle indices of the the stores
2334 /// when compared to the sorted vector.
2335 bool canFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
2336 OrdersType &ReorderIndices) const;
2337
2338 /// Iterates through the users of \p TE, looking for scalar stores that can be
2339 /// potentially vectorized in a future SLP-tree. If found, it keeps track of
2340 /// their order and builds an order index vector for each store bundle. It
2341 /// returns all these order vectors found.
2342 /// We run this after the tree has formed, otherwise we may come across user
2343 /// instructions that are not yet in the tree.
2344 SmallVector<OrdersType, 1>
2345 findExternalStoreUsersReorderIndices(TreeEntry *TE) const;
2346
2347 struct TreeEntry {
2348 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
2349 TreeEntry(VecTreeTy &Container) : Container(Container) {}
2350
2351 /// \returns true if the scalars in VL are equal to this entry.
2352 bool isSame(ArrayRef<Value *> VL) const {
2353 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
2354 if (Mask.size() != VL.size() && VL.size() == Scalars.size())
2355 return std::equal(VL.begin(), VL.end(), Scalars.begin());
2356 return VL.size() == Mask.size() &&
2357 std::equal(VL.begin(), VL.end(), Mask.begin(),
2358 [Scalars](Value *V, int Idx) {
2359 return (isa<UndefValue>(V) &&
2360 Idx == UndefMaskElem) ||
2361 (Idx != UndefMaskElem && V == Scalars[Idx]);
2362 });
2363 };
2364 if (!ReorderIndices.empty()) {
2365 // TODO: implement matching if the nodes are just reordered, still can
2366 // treat the vector as the same if the list of scalars matches VL
2367 // directly, without reordering.
2368 SmallVector<int> Mask;
2369 inversePermutation(ReorderIndices, Mask);
2370 if (VL.size() == Scalars.size())
2371 return IsSame(Scalars, Mask);
2372 if (VL.size() == ReuseShuffleIndices.size()) {
2373 ::addMask(Mask, ReuseShuffleIndices);
2374 return IsSame(Scalars, Mask);
2375 }
2376 return false;
2377 }
2378 return IsSame(Scalars, ReuseShuffleIndices);
2379 }
2380
2381 /// \returns true if current entry has same operands as \p TE.
2382 bool hasEqualOperands(const TreeEntry &TE) const {
2383 if (TE.getNumOperands() != getNumOperands())
2384 return false;
2385 SmallBitVector Used(getNumOperands());
2386 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2387 unsigned PrevCount = Used.count();
2388 for (unsigned K = 0; K < E; ++K) {
2389 if (Used.test(K))
2390 continue;
2391 if (getOperand(K) == TE.getOperand(I)) {
2392 Used.set(K);
2393 break;
2394 }
2395 }
2396 // Check if we actually found the matching operand.
2397 if (PrevCount == Used.count())
2398 return false;
2399 }
2400 return true;
2401 }
2402
2403 /// \return Final vectorization factor for the node. Defined by the total
2404 /// number of vectorized scalars, including those, used several times in the
2405 /// entry and counted in the \a ReuseShuffleIndices, if any.
2406 unsigned getVectorFactor() const {
2407 if (!ReuseShuffleIndices.empty())
2408 return ReuseShuffleIndices.size();
2409 return Scalars.size();
2410 };
2411
2412 /// A vector of scalars.
2413 ValueList Scalars;
2414
2415 /// The Scalars are vectorized into this value. It is initialized to Null.
2416 Value *VectorizedValue = nullptr;
2417
2418 /// Do we need to gather this sequence or vectorize it
2419 /// (either with vector instruction or with scatter/gather
2420 /// intrinsics for store/load)?
2421 enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
2422 EntryState State;
2423
2424 /// Does this sequence require some shuffling?
2425 SmallVector<int, 4> ReuseShuffleIndices;
2426
2427 /// Does this entry require reordering?
2428 SmallVector<unsigned, 4> ReorderIndices;
2429
2430 /// Points back to the VectorizableTree.
2431 ///
2432 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
2433 /// to be a pointer and needs to be able to initialize the child iterator.
2434 /// Thus we need a reference back to the container to translate the indices
2435 /// to entries.
2436 VecTreeTy &Container;
2437
2438 /// The TreeEntry index containing the user of this entry. We can actually
2439 /// have multiple users so the data structure is not truly a tree.
2440 SmallVector<EdgeInfo, 1> UserTreeIndices;
2441
2442 /// The index of this treeEntry in VectorizableTree.
2443 int Idx = -1;
2444
2445 private:
2446 /// The operands of each instruction in each lane Operands[op_index][lane].
2447 /// Note: This helps avoid the replication of the code that performs the
2448 /// reordering of operands during buildTree_rec() and vectorizeTree().
2449 SmallVector<ValueList, 2> Operands;
2450
2451 /// The main/alternate instruction.
2452 Instruction *MainOp = nullptr;
2453 Instruction *AltOp = nullptr;
2454
2455 public:
2456 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2457 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2458 if (Operands.size() < OpIdx + 1)
2459 Operands.resize(OpIdx + 1);
2460 assert(Operands[OpIdx].empty() && "Already resized?")(static_cast <bool> (Operands[OpIdx].empty() &&
"Already resized?") ? void (0) : __assert_fail ("Operands[OpIdx].empty() && \"Already resized?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2460, __extension__
__PRETTY_FUNCTION__))
;
2461 assert(OpVL.size() <= Scalars.size() &&(static_cast <bool> (OpVL.size() <= Scalars.size() &&
"Number of operands is greater than the number of scalars.")
? void (0) : __assert_fail ("OpVL.size() <= Scalars.size() && \"Number of operands is greater than the number of scalars.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2462, __extension__
__PRETTY_FUNCTION__))
2462 "Number of operands is greater than the number of scalars.")(static_cast <bool> (OpVL.size() <= Scalars.size() &&
"Number of operands is greater than the number of scalars.")
? void (0) : __assert_fail ("OpVL.size() <= Scalars.size() && \"Number of operands is greater than the number of scalars.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2462, __extension__
__PRETTY_FUNCTION__))
;
2463 Operands[OpIdx].resize(OpVL.size());
2464 copy(OpVL, Operands[OpIdx].begin());
2465 }
2466
2467 /// Set the operands of this bundle in their original order.
2468 void setOperandsInOrder() {
2469 assert(Operands.empty() && "Already initialized?")(static_cast <bool> (Operands.empty() && "Already initialized?"
) ? void (0) : __assert_fail ("Operands.empty() && \"Already initialized?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2469, __extension__
__PRETTY_FUNCTION__))
;
2470 auto *I0 = cast<Instruction>(Scalars[0]);
2471 Operands.resize(I0->getNumOperands());
2472 unsigned NumLanes = Scalars.size();
2473 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2474 OpIdx != NumOperands; ++OpIdx) {
2475 Operands[OpIdx].resize(NumLanes);
2476 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2477 auto *I = cast<Instruction>(Scalars[Lane]);
2478 assert(I->getNumOperands() == NumOperands &&(static_cast <bool> (I->getNumOperands() == NumOperands
&& "Expected same number of operands") ? void (0) : __assert_fail
("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2479, __extension__
__PRETTY_FUNCTION__))
2479 "Expected same number of operands")(static_cast <bool> (I->getNumOperands() == NumOperands
&& "Expected same number of operands") ? void (0) : __assert_fail
("I->getNumOperands() == NumOperands && \"Expected same number of operands\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2479, __extension__
__PRETTY_FUNCTION__))
;
2480 Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2481 }
2482 }
2483 }
2484
2485 /// Reorders operands of the node to the given mask \p Mask.
2486 void reorderOperands(ArrayRef<int> Mask) {
2487 for (ValueList &Operand : Operands)
2488 reorderScalars(Operand, Mask);
2489 }
2490
2491 /// \returns the \p OpIdx operand of this TreeEntry.
2492 ValueList &getOperand(unsigned OpIdx) {
2493 assert(OpIdx < Operands.size() && "Off bounds")(static_cast <bool> (OpIdx < Operands.size() &&
"Off bounds") ? void (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2493, __extension__
__PRETTY_FUNCTION__))
;
2494 return Operands[OpIdx];
2495 }
2496
2497 /// \returns the \p OpIdx operand of this TreeEntry.
2498 ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2499 assert(OpIdx < Operands.size() && "Off bounds")(static_cast <bool> (OpIdx < Operands.size() &&
"Off bounds") ? void (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2499, __extension__
__PRETTY_FUNCTION__))
;
2500 return Operands[OpIdx];
2501 }
2502
2503 /// \returns the number of operands.
2504 unsigned getNumOperands() const { return Operands.size(); }
2505
2506 /// \return the single \p OpIdx operand.
2507 Value *getSingleOperand(unsigned OpIdx) const {
2508 assert(OpIdx < Operands.size() && "Off bounds")(static_cast <bool> (OpIdx < Operands.size() &&
"Off bounds") ? void (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2508, __extension__
__PRETTY_FUNCTION__))
;
2509 assert(!Operands[OpIdx].empty() && "No operand available")(static_cast <bool> (!Operands[OpIdx].empty() &&
"No operand available") ? void (0) : __assert_fail ("!Operands[OpIdx].empty() && \"No operand available\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2509, __extension__
__PRETTY_FUNCTION__))
;
2510 return Operands[OpIdx][0];
2511 }
2512
2513 /// Some of the instructions in the list have alternate opcodes.
2514 bool isAltShuffle() const { return MainOp != AltOp; }
2515
2516 bool isOpcodeOrAlt(Instruction *I) const {
2517 unsigned CheckedOpcode = I->getOpcode();
2518 return (getOpcode() == CheckedOpcode ||
2519 getAltOpcode() == CheckedOpcode);
2520 }
2521
2522 /// Chooses the correct key for scheduling data. If \p Op has the same (or
2523 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2524 /// \p OpValue.
2525 Value *isOneOf(Value *Op) const {
2526 auto *I = dyn_cast<Instruction>(Op);
2527 if (I && isOpcodeOrAlt(I))
2528 return Op;
2529 return MainOp;
2530 }
2531
2532 void setOperations(const InstructionsState &S) {
2533 MainOp = S.MainOp;
2534 AltOp = S.AltOp;
2535 }
2536
2537 Instruction *getMainOp() const {
2538 return MainOp;
2539 }
2540
2541 Instruction *getAltOp() const {
2542 return AltOp;
2543 }
2544
2545 /// The main/alternate opcodes for the list of instructions.
2546 unsigned getOpcode() const {
2547 return MainOp ? MainOp->getOpcode() : 0;
2548 }
2549
2550 unsigned getAltOpcode() const {
2551 return AltOp ? AltOp->getOpcode() : 0;
2552 }
2553
2554 /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2555 /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2556 int findLaneForValue(Value *V) const {
2557 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2558 assert(FoundLane < Scalars.size() && "Couldn't find extract lane")(static_cast <bool> (FoundLane < Scalars.size() &&
"Couldn't find extract lane") ? void (0) : __assert_fail ("FoundLane < Scalars.size() && \"Couldn't find extract lane\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2558, __extension__
__PRETTY_FUNCTION__))
;
2559 if (!ReorderIndices.empty())
2560 FoundLane = ReorderIndices[FoundLane];
2561 assert(FoundLane < Scalars.size() && "Couldn't find extract lane")(static_cast <bool> (FoundLane < Scalars.size() &&
"Couldn't find extract lane") ? void (0) : __assert_fail ("FoundLane < Scalars.size() && \"Couldn't find extract lane\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2561, __extension__
__PRETTY_FUNCTION__))
;
2562 if (!ReuseShuffleIndices.empty()) {
2563 FoundLane = std::distance(ReuseShuffleIndices.begin(),
2564 find(ReuseShuffleIndices, FoundLane));
2565 }
2566 return FoundLane;
2567 }
2568
2569#ifndef NDEBUG
2570 /// Debug printer.
2571 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const {
2572 dbgs() << Idx << ".\n";
2573 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2574 dbgs() << "Operand " << OpI << ":\n";
2575 for (const Value *V : Operands[OpI])
2576 dbgs().indent(2) << *V << "\n";
2577 }
2578 dbgs() << "Scalars: \n";
2579 for (Value *V : Scalars)
2580 dbgs().indent(2) << *V << "\n";
2581 dbgs() << "State: ";
2582 switch (State) {
2583 case Vectorize:
2584 dbgs() << "Vectorize\n";
2585 break;
2586 case ScatterVectorize:
2587 dbgs() << "ScatterVectorize\n";
2588 break;
2589 case NeedToGather:
2590 dbgs() << "NeedToGather\n";
2591 break;
2592 }
2593 dbgs() << "MainOp: ";
2594 if (MainOp)
2595 dbgs() << *MainOp << "\n";
2596 else
2597 dbgs() << "NULL\n";
2598 dbgs() << "AltOp: ";
2599 if (AltOp)
2600 dbgs() << *AltOp << "\n";
2601 else
2602 dbgs() << "NULL\n";
2603 dbgs() << "VectorizedValue: ";
2604 if (VectorizedValue)
2605 dbgs() << *VectorizedValue << "\n";
2606 else
2607 dbgs() << "NULL\n";
2608 dbgs() << "ReuseShuffleIndices: ";
2609 if (ReuseShuffleIndices.empty())
2610 dbgs() << "Empty";
2611 else
2612 for (int ReuseIdx : ReuseShuffleIndices)
2613 dbgs() << ReuseIdx << ", ";
2614 dbgs() << "\n";
2615 dbgs() << "ReorderIndices: ";
2616 for (unsigned ReorderIdx : ReorderIndices)
2617 dbgs() << ReorderIdx << ", ";
2618 dbgs() << "\n";
2619 dbgs() << "UserTreeIndices: ";
2620 for (const auto &EInfo : UserTreeIndices)
2621 dbgs() << EInfo << ", ";
2622 dbgs() << "\n";
2623 }
2624#endif
2625 };
2626
2627#ifndef NDEBUG
2628 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2629 InstructionCost VecCost,
2630 InstructionCost ScalarCost) const {
2631 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
2632 dbgs() << "SLP: Costs:\n";
2633 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2634 dbgs() << "SLP: VectorCost = " << VecCost << "\n";
2635 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n";
2636 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " <<
2637 ReuseShuffleCost + VecCost - ScalarCost << "\n";
2638 }
2639#endif
2640
2641 /// Create a new VectorizableTree entry.
2642 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
2643 const InstructionsState &S,
2644 const EdgeInfo &UserTreeIdx,
2645 ArrayRef<int> ReuseShuffleIndices = None,
2646 ArrayRef<unsigned> ReorderIndices = None) {
2647 TreeEntry::EntryState EntryState =
2648 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2649 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2650 ReuseShuffleIndices, ReorderIndices);
2651 }
2652
2653 TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2654 TreeEntry::EntryState EntryState,
2655 Optional<ScheduleData *> Bundle,
2656 const InstructionsState &S,
2657 const EdgeInfo &UserTreeIdx,
2658 ArrayRef<int> ReuseShuffleIndices = None,
2659 ArrayRef<unsigned> ReorderIndices = None) {
2660 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2662, __extension__
__PRETTY_FUNCTION__))
2661 (Bundle && EntryState != TreeEntry::NeedToGather)) &&(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2662, __extension__
__PRETTY_FUNCTION__))
2662 "Need to vectorize gather entry?")(static_cast <bool> (((!Bundle && EntryState ==
TreeEntry::NeedToGather) || (Bundle && EntryState !=
TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"
) ? void (0) : __assert_fail ("((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && \"Need to vectorize gather entry?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2662, __extension__
__PRETTY_FUNCTION__))
;
2663 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2664 TreeEntry *Last = VectorizableTree.back().get();
2665 Last->Idx = VectorizableTree.size() - 1;
2666 Last->State = EntryState;
2667 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2668 ReuseShuffleIndices.end());
2669 if (ReorderIndices.empty()) {
2670 Last->Scalars.assign(VL.begin(), VL.end());
2671 Last->setOperations(S);
2672 } else {
2673 // Reorder scalars and build final mask.
2674 Last->Scalars.assign(VL.size(), nullptr);
2675 transform(ReorderIndices, Last->Scalars.begin(),
2676 [VL](unsigned Idx) -> Value * {
2677 if (Idx >= VL.size())
2678 return UndefValue::get(VL.front()->getType());
2679 return VL[Idx];
2680 });
2681 InstructionsState S = getSameOpcode(Last->Scalars, *TLI);
2682 Last->setOperations(S);
2683 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2684 }
2685 if (Last->State != TreeEntry::NeedToGather) {
2686 for (Value *V : VL) {
2687 assert(!getTreeEntry(V) && "Scalar already in tree!")(static_cast <bool> (!getTreeEntry(V) && "Scalar already in tree!"
) ? void (0) : __assert_fail ("!getTreeEntry(V) && \"Scalar already in tree!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2687, __extension__
__PRETTY_FUNCTION__))
;
2688 ScalarToTreeEntry[V] = Last;
2689 }
2690 // Update the scheduler bundle to point to this TreeEntry.
2691 ScheduleData *BundleMember = *Bundle;
2692 assert((BundleMember || isa<PHINode>(S.MainOp) ||(static_cast <bool> ((BundleMember || isa<PHINode>
(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule
(VL)) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(BundleMember || isa<PHINode>(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule(VL)) && \"Bundle and VL out of sync\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2695, __extension__
__PRETTY_FUNCTION__))
2693 isVectorLikeInstWithConstOps(S.MainOp) ||(static_cast <bool> ((BundleMember || isa<PHINode>
(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule
(VL)) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(BundleMember || isa<PHINode>(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule(VL)) && \"Bundle and VL out of sync\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2695, __extension__
__PRETTY_FUNCTION__))
2694 doesNotNeedToSchedule(VL)) &&(static_cast <bool> ((BundleMember || isa<PHINode>
(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule
(VL)) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(BundleMember || isa<PHINode>(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule(VL)) && \"Bundle and VL out of sync\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2695, __extension__
__PRETTY_FUNCTION__))
2695 "Bundle and VL out of sync")(static_cast <bool> ((BundleMember || isa<PHINode>
(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule
(VL)) && "Bundle and VL out of sync") ? void (0) : __assert_fail
("(BundleMember || isa<PHINode>(S.MainOp) || isVectorLikeInstWithConstOps(S.MainOp) || doesNotNeedToSchedule(VL)) && \"Bundle and VL out of sync\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2695, __extension__
__PRETTY_FUNCTION__))
;
2696 if (BundleMember) {
2697 for (Value *V : VL) {
2698 if (doesNotNeedToBeScheduled(V))
2699 continue;
2700 assert(BundleMember && "Unexpected end of bundle.")(static_cast <bool> (BundleMember && "Unexpected end of bundle."
) ? void (0) : __assert_fail ("BundleMember && \"Unexpected end of bundle.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2700, __extension__
__PRETTY_FUNCTION__))
;
2701 BundleMember->TE = Last;
2702 BundleMember = BundleMember->NextInBundle;
2703 }
2704 }
2705 assert(!BundleMember && "Bundle and VL out of sync")(static_cast <bool> (!BundleMember && "Bundle and VL out of sync"
) ? void (0) : __assert_fail ("!BundleMember && \"Bundle and VL out of sync\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2705, __extension__
__PRETTY_FUNCTION__))
;
2706 } else {
2707 MustGather.insert(VL.begin(), VL.end());
2708 }
2709
2710 if (UserTreeIdx.UserTE)
2711 Last->UserTreeIndices.push_back(UserTreeIdx);
2712
2713 return Last;
2714 }
2715
2716 /// -- Vectorization State --
2717 /// Holds all of the tree entries.
2718 TreeEntry::VecTreeTy VectorizableTree;
2719
2720#ifndef NDEBUG
2721 /// Debug printer.
2722 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dumpVectorizableTree() const {
2723 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2724 VectorizableTree[Id]->dump();
2725 dbgs() << "\n";
2726 }
2727 }
2728#endif
2729
2730 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2731
2732 const TreeEntry *getTreeEntry(Value *V) const {
2733 return ScalarToTreeEntry.lookup(V);
2734 }
2735
2736 /// Maps a specific scalar to its tree entry.
2737 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
2738
2739 /// Maps a value to the proposed vectorizable size.
2740 SmallDenseMap<Value *, unsigned> InstrElementSize;
2741
2742 /// A list of scalars that we found that we need to keep as scalars.
2743 ValueSet MustGather;
2744
2745 /// This POD struct describes one external user in the vectorized tree.
2746 struct ExternalUser {
2747 ExternalUser(Value *S, llvm::User *U, int L)
2748 : Scalar(S), User(U), Lane(L) {}
2749
2750 // Which scalar in our function.
2751 Value *Scalar;
2752
2753 // Which user that uses the scalar.
2754 llvm::User *User;
2755
2756 // Which lane does the scalar belong to.
2757 int Lane;
2758 };
2759 using UserList = SmallVector<ExternalUser, 16>;
2760
2761 /// Checks if two instructions may access the same memory.
2762 ///
2763 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2764 /// is invariant in the calling loop.
2765 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2766 Instruction *Inst2) {
2767 // First check if the result is already in the cache.
2768 AliasCacheKey key = std::make_pair(Inst1, Inst2);
2769 Optional<bool> &result = AliasCache[key];
2770 if (result) {
2771 return result.value();
2772 }
2773 bool aliased = true;
2774 if (Loc1.Ptr && isSimple(Inst1))
2775 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1));
2776 // Store the result in the cache.
2777 result = aliased;
2778 return aliased;
2779 }
2780
2781 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2782
2783 /// Cache for alias results.
2784 /// TODO: consider moving this to the AliasAnalysis itself.
2785 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
2786
2787 // Cache for pointerMayBeCaptured calls inside AA. This is preserved
2788 // globally through SLP because we don't perform any action which
2789 // invalidates capture results.
2790 BatchAAResults BatchAA;
2791
2792 /// Temporary store for deleted instructions. Instructions will be deleted
2793 /// eventually when the BoUpSLP is destructed. The deferral is required to
2794 /// ensure that there are no incorrect collisions in the AliasCache, which
2795 /// can happen if a new instruction is allocated at the same address as a
2796 /// previously deleted instruction.
2797 DenseSet<Instruction *> DeletedInstructions;
2798
2799 /// Set of the instruction, being analyzed already for reductions.
2800 SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots;
2801
2802 /// Set of hashes for the list of reduction values already being analyzed.
2803 DenseSet<size_t> AnalyzedReductionVals;
2804
2805 /// A list of values that need to extracted out of the tree.
2806 /// This list holds pairs of (Internal Scalar : External User). External User
2807 /// can be nullptr, it means that this Internal Scalar will be used later,
2808 /// after vectorization.
2809 UserList ExternalUses;
2810
2811 /// Values used only by @llvm.assume calls.
2812 SmallPtrSet<const Value *, 32> EphValues;
2813
2814 /// Holds all of the instructions that we gathered, shuffle instructions and
2815 /// extractelements.
2816 SetVector<Instruction *> GatherShuffleExtractSeq;
2817
2818 /// A list of blocks that we are going to CSE.
2819 SetVector<BasicBlock *> CSEBlocks;
2820
2821 /// Contains all scheduling relevant data for an instruction.
2822 /// A ScheduleData either represents a single instruction or a member of an
2823 /// instruction bundle (= a group of instructions which is combined into a
2824 /// vector instruction).
2825 struct ScheduleData {
2826 // The initial value for the dependency counters. It means that the
2827 // dependencies are not calculated yet.
2828 enum { InvalidDeps = -1 };
2829
2830 ScheduleData() = default;
2831
2832 void init(int BlockSchedulingRegionID, Value *OpVal) {
2833 FirstInBundle = this;
2834 NextInBundle = nullptr;
2835 NextLoadStore = nullptr;
2836 IsScheduled = false;
2837 SchedulingRegionID = BlockSchedulingRegionID;
2838 clearDependencies();
2839 OpValue = OpVal;
2840 TE = nullptr;
2841 }
2842
2843 /// Verify basic self consistency properties
2844 void verify() {
2845 if (hasValidDependencies()) {
2846 assert(UnscheduledDeps <= Dependencies && "invariant")(static_cast <bool> (UnscheduledDeps <= Dependencies
&& "invariant") ? void (0) : __assert_fail ("UnscheduledDeps <= Dependencies && \"invariant\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2846, __extension__
__PRETTY_FUNCTION__))
;
2847 } else {
2848 assert(UnscheduledDeps == Dependencies && "invariant")(static_cast <bool> (UnscheduledDeps == Dependencies &&
"invariant") ? void (0) : __assert_fail ("UnscheduledDeps == Dependencies && \"invariant\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2848, __extension__
__PRETTY_FUNCTION__))
;
2849 }
2850
2851 if (IsScheduled) {
2852 assert(isSchedulingEntity() &&(static_cast <bool> (isSchedulingEntity() && "unexpected scheduled state"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"unexpected scheduled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2853, __extension__
__PRETTY_FUNCTION__))
2853 "unexpected scheduled state")(static_cast <bool> (isSchedulingEntity() && "unexpected scheduled state"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"unexpected scheduled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2853, __extension__
__PRETTY_FUNCTION__))
;
2854 for (const ScheduleData *BundleMember = this; BundleMember;
2855 BundleMember = BundleMember->NextInBundle) {
2856 assert(BundleMember->hasValidDependencies() &&(static_cast <bool> (BundleMember->hasValidDependencies
() && BundleMember->UnscheduledDeps == 0 &&
"unexpected scheduled state") ? void (0) : __assert_fail ("BundleMember->hasValidDependencies() && BundleMember->UnscheduledDeps == 0 && \"unexpected scheduled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2858, __extension__
__PRETTY_FUNCTION__))
2857 BundleMember->UnscheduledDeps == 0 &&(static_cast <bool> (BundleMember->hasValidDependencies
() && BundleMember->UnscheduledDeps == 0 &&
"unexpected scheduled state") ? void (0) : __assert_fail ("BundleMember->hasValidDependencies() && BundleMember->UnscheduledDeps == 0 && \"unexpected scheduled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2858, __extension__
__PRETTY_FUNCTION__))
2858 "unexpected scheduled state")(static_cast <bool> (BundleMember->hasValidDependencies
() && BundleMember->UnscheduledDeps == 0 &&
"unexpected scheduled state") ? void (0) : __assert_fail ("BundleMember->hasValidDependencies() && BundleMember->UnscheduledDeps == 0 && \"unexpected scheduled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2858, __extension__
__PRETTY_FUNCTION__))
;
2859 assert((BundleMember == this || !BundleMember->IsScheduled) &&(static_cast <bool> ((BundleMember == this || !BundleMember
->IsScheduled) && "only bundle is marked scheduled"
) ? void (0) : __assert_fail ("(BundleMember == this || !BundleMember->IsScheduled) && \"only bundle is marked scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2860, __extension__
__PRETTY_FUNCTION__))
2860 "only bundle is marked scheduled")(static_cast <bool> ((BundleMember == this || !BundleMember
->IsScheduled) && "only bundle is marked scheduled"
) ? void (0) : __assert_fail ("(BundleMember == this || !BundleMember->IsScheduled) && \"only bundle is marked scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2860, __extension__
__PRETTY_FUNCTION__))
;
2861 }
2862 }
2863
2864 assert(Inst->getParent() == FirstInBundle->Inst->getParent() &&(static_cast <bool> (Inst->getParent() == FirstInBundle
->Inst->getParent() && "all bundle members must be in same basic block"
) ? void (0) : __assert_fail ("Inst->getParent() == FirstInBundle->Inst->getParent() && \"all bundle members must be in same basic block\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2865, __extension__
__PRETTY_FUNCTION__))
2865 "all bundle members must be in same basic block")(static_cast <bool> (Inst->getParent() == FirstInBundle
->Inst->getParent() && "all bundle members must be in same basic block"
) ? void (0) : __assert_fail ("Inst->getParent() == FirstInBundle->Inst->getParent() && \"all bundle members must be in same basic block\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2865, __extension__
__PRETTY_FUNCTION__))
;
2866 }
2867
2868 /// Returns true if the dependency information has been calculated.
2869 /// Note that depenendency validity can vary between instructions within
2870 /// a single bundle.
2871 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2872
2873 /// Returns true for single instructions and for bundle representatives
2874 /// (= the head of a bundle).
2875 bool isSchedulingEntity() const { return FirstInBundle == this; }
2876
2877 /// Returns true if it represents an instruction bundle and not only a
2878 /// single instruction.
2879 bool isPartOfBundle() const {
2880 return NextInBundle != nullptr || FirstInBundle != this || TE;
2881 }
2882
2883 /// Returns true if it is ready for scheduling, i.e. it has no more
2884 /// unscheduled depending instructions/bundles.
2885 bool isReady() const {
2886 assert(isSchedulingEntity() &&(static_cast <bool> (isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2887, __extension__
__PRETTY_FUNCTION__))
2887 "can't consider non-scheduling entity for ready list")(static_cast <bool> (isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2887, __extension__
__PRETTY_FUNCTION__))
;
2888 return unscheduledDepsInBundle() == 0 && !IsScheduled;
2889 }
2890
2891 /// Modifies the number of unscheduled dependencies for this instruction,
2892 /// and returns the number of remaining dependencies for the containing
2893 /// bundle.
2894 int incrementUnscheduledDeps(int Incr) {
2895 assert(hasValidDependencies() &&(static_cast <bool> (hasValidDependencies() && "increment of unscheduled deps would be meaningless"
) ? void (0) : __assert_fail ("hasValidDependencies() && \"increment of unscheduled deps would be meaningless\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2896, __extension__
__PRETTY_FUNCTION__))
2896 "increment of unscheduled deps would be meaningless")(static_cast <bool> (hasValidDependencies() && "increment of unscheduled deps would be meaningless"
) ? void (0) : __assert_fail ("hasValidDependencies() && \"increment of unscheduled deps would be meaningless\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2896, __extension__
__PRETTY_FUNCTION__))
;
2897 UnscheduledDeps += Incr;
2898 return FirstInBundle->unscheduledDepsInBundle();
2899 }
2900
2901 /// Sets the number of unscheduled dependencies to the number of
2902 /// dependencies.
2903 void resetUnscheduledDeps() {
2904 UnscheduledDeps = Dependencies;
2905 }
2906
2907 /// Clears all dependency information.
2908 void clearDependencies() {
2909 Dependencies = InvalidDeps;
2910 resetUnscheduledDeps();
2911 MemoryDependencies.clear();
2912 ControlDependencies.clear();
2913 }
2914
2915 int unscheduledDepsInBundle() const {
2916 assert(isSchedulingEntity() && "only meaningful on the bundle")(static_cast <bool> (isSchedulingEntity() && "only meaningful on the bundle"
) ? void (0) : __assert_fail ("isSchedulingEntity() && \"only meaningful on the bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 2916, __extension__
__PRETTY_FUNCTION__))
;
2917 int Sum = 0;
2918 for (const ScheduleData *BundleMember = this; BundleMember;
2919 BundleMember = BundleMember->NextInBundle) {
2920 if (BundleMember->UnscheduledDeps == InvalidDeps)
2921 return InvalidDeps;
2922 Sum += BundleMember->UnscheduledDeps;
2923 }
2924 return Sum;
2925 }
2926
2927 void dump(raw_ostream &os) const {
2928 if (!isSchedulingEntity()) {
2929 os << "/ " << *Inst;
2930 } else if (NextInBundle) {
2931 os << '[' << *Inst;
2932 ScheduleData *SD = NextInBundle;
2933 while (SD) {
2934 os << ';' << *SD->Inst;
2935 SD = SD->NextInBundle;
2936 }
2937 os << ']';
2938 } else {
2939 os << *Inst;
2940 }
2941 }
2942
2943 Instruction *Inst = nullptr;
2944
2945 /// Opcode of the current instruction in the schedule data.
2946 Value *OpValue = nullptr;
2947
2948 /// The TreeEntry that this instruction corresponds to.
2949 TreeEntry *TE = nullptr;
2950
2951 /// Points to the head in an instruction bundle (and always to this for
2952 /// single instructions).
2953 ScheduleData *FirstInBundle = nullptr;
2954
2955 /// Single linked list of all instructions in a bundle. Null if it is a
2956 /// single instruction.
2957 ScheduleData *NextInBundle = nullptr;
2958
2959 /// Single linked list of all memory instructions (e.g. load, store, call)
2960 /// in the block - until the end of the scheduling region.
2961 ScheduleData *NextLoadStore = nullptr;
2962
2963 /// The dependent memory instructions.
2964 /// This list is derived on demand in calculateDependencies().
2965 SmallVector<ScheduleData *, 4> MemoryDependencies;
2966
2967 /// List of instructions which this instruction could be control dependent
2968 /// on. Allowing such nodes to be scheduled below this one could introduce
2969 /// a runtime fault which didn't exist in the original program.
2970 /// ex: this is a load or udiv following a readonly call which inf loops
2971 SmallVector<ScheduleData *, 4> ControlDependencies;
2972
2973 /// This ScheduleData is in the current scheduling region if this matches
2974 /// the current SchedulingRegionID of BlockScheduling.
2975 int SchedulingRegionID = 0;
2976
2977 /// Used for getting a "good" final ordering of instructions.
2978 int SchedulingPriority = 0;
2979
2980 /// The number of dependencies. Constitutes of the number of users of the
2981 /// instruction plus the number of dependent memory instructions (if any).
2982 /// This value is calculated on demand.
2983 /// If InvalidDeps, the number of dependencies is not calculated yet.
2984 int Dependencies = InvalidDeps;
2985
2986 /// The number of dependencies minus the number of dependencies of scheduled
2987 /// instructions. As soon as this is zero, the instruction/bundle gets ready
2988 /// for scheduling.
2989 /// Note that this is negative as long as Dependencies is not calculated.
2990 int UnscheduledDeps = InvalidDeps;
2991
2992 /// True if this instruction is scheduled (or considered as scheduled in the
2993 /// dry-run).
2994 bool IsScheduled = false;
2995 };
2996
2997#ifndef NDEBUG
2998 friend inline raw_ostream &operator<<(raw_ostream &os,
2999 const BoUpSLP::ScheduleData &SD) {
3000 SD.dump(os);
3001 return os;
3002 }
3003#endif
3004
3005 friend struct GraphTraits<BoUpSLP *>;
3006 friend struct DOTGraphTraits<BoUpSLP *>;
3007
3008 /// Contains all scheduling data for a basic block.
3009 /// It does not schedules instructions, which are not memory read/write
3010 /// instructions and their operands are either constants, or arguments, or
3011 /// phis, or instructions from others blocks, or their users are phis or from
3012 /// the other blocks. The resulting vector instructions can be placed at the
3013 /// beginning of the basic block without scheduling (if operands does not need
3014 /// to be scheduled) or at the end of the block (if users are outside of the
3015 /// block). It allows to save some compile time and memory used by the
3016 /// compiler.
3017 /// ScheduleData is assigned for each instruction in between the boundaries of
3018 /// the tree entry, even for those, which are not part of the graph. It is
3019 /// required to correctly follow the dependencies between the instructions and
3020 /// their correct scheduling. The ScheduleData is not allocated for the
3021 /// instructions, which do not require scheduling, like phis, nodes with
3022 /// extractelements/insertelements only or nodes with instructions, with
3023 /// uses/operands outside of the block.
3024 struct BlockScheduling {
3025 BlockScheduling(BasicBlock *BB)
3026 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
3027
3028 void clear() {
3029 ReadyInsts.clear();
3030 ScheduleStart = nullptr;
3031 ScheduleEnd = nullptr;
3032 FirstLoadStoreInRegion = nullptr;
3033 LastLoadStoreInRegion = nullptr;
3034 RegionHasStackSave = false;
3035
3036 // Reduce the maximum schedule region size by the size of the
3037 // previous scheduling run.
3038 ScheduleRegionSizeLimit -= ScheduleRegionSize;
3039 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
3040 ScheduleRegionSizeLimit = MinScheduleRegionSize;
3041 ScheduleRegionSize = 0;
3042
3043 // Make a new scheduling region, i.e. all existing ScheduleData is not
3044 // in the new region yet.
3045 ++SchedulingRegionID;
3046 }
3047
3048 ScheduleData *getScheduleData(Instruction *I) {
3049 if (BB != I->getParent())
3050 // Avoid lookup if can't possibly be in map.
3051 return nullptr;
3052 ScheduleData *SD = ScheduleDataMap.lookup(I);
3053 if (SD && isInSchedulingRegion(SD))
3054 return SD;
3055 return nullptr;
3056 }
3057
3058 ScheduleData *getScheduleData(Value *V) {
3059 if (auto *I = dyn_cast<Instruction>(V))
3060 return getScheduleData(I);
3061 return nullptr;
3062 }
3063
3064 ScheduleData *getScheduleData(Value *V, Value *Key) {
3065 if (V == Key)
3066 return getScheduleData(V);
3067 auto I = ExtraScheduleDataMap.find(V);
3068 if (I != ExtraScheduleDataMap.end()) {
3069 ScheduleData *SD = I->second.lookup(Key);
3070 if (SD && isInSchedulingRegion(SD))
3071 return SD;
3072 }
3073 return nullptr;
3074 }
3075
3076 bool isInSchedulingRegion(ScheduleData *SD) const {
3077 return SD->SchedulingRegionID == SchedulingRegionID;
3078 }
3079
3080 /// Marks an instruction as scheduled and puts all dependent ready
3081 /// instructions into the ready-list.
3082 template <typename ReadyListType>
3083 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
3084 SD->IsScheduled = true;
3085 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule " << *SD <<
"\n"; } } while (false)
;
3086
3087 for (ScheduleData *BundleMember = SD; BundleMember;
3088 BundleMember = BundleMember->NextInBundle) {
3089 if (BundleMember->Inst != BundleMember->OpValue)
3090 continue;
3091
3092 // Handle the def-use chain dependencies.
3093
3094 // Decrement the unscheduled counter and insert to ready list if ready.
3095 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
3096 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
3097 if (OpDef && OpDef->hasValidDependencies() &&
3098 OpDef->incrementUnscheduledDeps(-1) == 0) {
3099 // There are no more unscheduled dependencies after
3100 // decrementing, so we can put the dependent instruction
3101 // into the ready list.
3102 ScheduleData *DepBundle = OpDef->FirstInBundle;
3103 assert(!DepBundle->IsScheduled &&(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3104, __extension__
__PRETTY_FUNCTION__))
3104 "already scheduled bundle gets ready")(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3104, __extension__
__PRETTY_FUNCTION__))
;
3105 ReadyList.insert(DepBundle);
3106 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
3107 << "SLP: gets ready (def): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
;
3108 }
3109 });
3110 };
3111
3112 // If BundleMember is a vector bundle, its operands may have been
3113 // reordered during buildTree(). We therefore need to get its operands
3114 // through the TreeEntry.
3115 if (TreeEntry *TE = BundleMember->TE) {
3116 // Need to search for the lane since the tree entry can be reordered.
3117 int Lane = std::distance(TE->Scalars.begin(),
3118 find(TE->Scalars, BundleMember->Inst));
3119 assert(Lane >= 0 && "Lane not set")(static_cast <bool> (Lane >= 0 && "Lane not set"
) ? void (0) : __assert_fail ("Lane >= 0 && \"Lane not set\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3119, __extension__
__PRETTY_FUNCTION__))
;
3120
3121 // Since vectorization tree is being built recursively this assertion
3122 // ensures that the tree entry has all operands set before reaching
3123 // this code. Couple of exceptions known at the moment are extracts
3124 // where their second (immediate) operand is not added. Since
3125 // immediates do not affect scheduler behavior this is considered
3126 // okay.
3127 auto *In = BundleMember->Inst;
3128 assert(In &&(static_cast <bool> (In && (isa<ExtractValueInst
, ExtractElementInst>(In) || In->getNumOperands() == TE
->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst, ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3131, __extension__
__PRETTY_FUNCTION__))
3129 (isa<ExtractValueInst, ExtractElementInst>(In) ||(static_cast <bool> (In && (isa<ExtractValueInst
, ExtractElementInst>(In) || In->getNumOperands() == TE
->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst, ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3131, __extension__
__PRETTY_FUNCTION__))
3130 In->getNumOperands() == TE->getNumOperands()) &&(static_cast <bool> (In && (isa<ExtractValueInst
, ExtractElementInst>(In) || In->getNumOperands() == TE
->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst, ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3131, __extension__
__PRETTY_FUNCTION__))
3131 "Missed TreeEntry operands?")(static_cast <bool> (In && (isa<ExtractValueInst
, ExtractElementInst>(In) || In->getNumOperands() == TE
->getNumOperands()) && "Missed TreeEntry operands?"
) ? void (0) : __assert_fail ("In && (isa<ExtractValueInst, ExtractElementInst>(In) || In->getNumOperands() == TE->getNumOperands()) && \"Missed TreeEntry operands?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3131, __extension__
__PRETTY_FUNCTION__))
;
3132 (void)In; // fake use to avoid build failure when assertions disabled
3133
3134 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
3135 OpIdx != NumOperands; ++OpIdx)
3136 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
3137 DecrUnsched(I);
3138 } else {
3139 // If BundleMember is a stand-alone instruction, no operand reordering
3140 // has taken place, so we directly access its operands.
3141 for (Use &U : BundleMember->Inst->operands())
3142 if (auto *I = dyn_cast<Instruction>(U.get()))
3143 DecrUnsched(I);
3144 }
3145 // Handle the memory dependencies.
3146 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
3147 if (MemoryDepSD->hasValidDependencies() &&
3148 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
3149 // There are no more unscheduled dependencies after decrementing,
3150 // so we can put the dependent instruction into the ready list.
3151 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
3152 assert(!DepBundle->IsScheduled &&(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3153, __extension__
__PRETTY_FUNCTION__))
3153 "already scheduled bundle gets ready")(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3153, __extension__
__PRETTY_FUNCTION__))
;
3154 ReadyList.insert(DepBundle);
3155 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
3156 << "SLP: gets ready (mem): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
;
3157 }
3158 }
3159 // Handle the control dependencies.
3160 for (ScheduleData *DepSD : BundleMember->ControlDependencies) {
3161 if (DepSD->incrementUnscheduledDeps(-1) == 0) {
3162 // There are no more unscheduled dependencies after decrementing,
3163 // so we can put the dependent instruction into the ready list.
3164 ScheduleData *DepBundle = DepSD->FirstInBundle;
3165 assert(!DepBundle->IsScheduled &&(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3166, __extension__
__PRETTY_FUNCTION__))
3166 "already scheduled bundle gets ready")(static_cast <bool> (!DepBundle->IsScheduled &&
"already scheduled bundle gets ready") ? void (0) : __assert_fail
("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3166, __extension__
__PRETTY_FUNCTION__))
;
3167 ReadyList.insert(DepBundle);
3168 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (ctl): " <<
*DepBundle << "\n"; } } while (false)
3169 << "SLP: gets ready (ctl): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (ctl): " <<
*DepBundle << "\n"; } } while (false)
;
3170 }
3171 }
3172
3173 }
3174 }
3175
3176 /// Verify basic self consistency properties of the data structure.
3177 void verify() {
3178 if (!ScheduleStart)
3179 return;
3180
3181 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&(static_cast <bool> (ScheduleStart->getParent() == ScheduleEnd
->getParent() && ScheduleStart->comesBefore(ScheduleEnd
) && "Not a valid scheduling region?") ? void (0) : __assert_fail
("ScheduleStart->getParent() == ScheduleEnd->getParent() && ScheduleStart->comesBefore(ScheduleEnd) && \"Not a valid scheduling region?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3183, __extension__
__PRETTY_FUNCTION__))
3182 ScheduleStart->comesBefore(ScheduleEnd) &&(static_cast <bool> (ScheduleStart->getParent() == ScheduleEnd
->getParent() && ScheduleStart->comesBefore(ScheduleEnd
) && "Not a valid scheduling region?") ? void (0) : __assert_fail
("ScheduleStart->getParent() == ScheduleEnd->getParent() && ScheduleStart->comesBefore(ScheduleEnd) && \"Not a valid scheduling region?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3183, __extension__
__PRETTY_FUNCTION__))
3183 "Not a valid scheduling region?")(static_cast <bool> (ScheduleStart->getParent() == ScheduleEnd
->getParent() && ScheduleStart->comesBefore(ScheduleEnd
) && "Not a valid scheduling region?") ? void (0) : __assert_fail
("ScheduleStart->getParent() == ScheduleEnd->getParent() && ScheduleStart->comesBefore(ScheduleEnd) && \"Not a valid scheduling region?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3183, __extension__
__PRETTY_FUNCTION__))
;
3184
3185 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3186 auto *SD = getScheduleData(I);
3187 if (!SD)
3188 continue;
3189 assert(isInSchedulingRegion(SD) &&(static_cast <bool> (isInSchedulingRegion(SD) &&
"primary schedule data not in window?") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"primary schedule data not in window?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3190, __extension__
__PRETTY_FUNCTION__))
3190 "primary schedule data not in window?")(static_cast <bool> (isInSchedulingRegion(SD) &&
"primary schedule data not in window?") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"primary schedule data not in window?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3190, __extension__
__PRETTY_FUNCTION__))
;
3191 assert(isInSchedulingRegion(SD->FirstInBundle) &&(static_cast <bool> (isInSchedulingRegion(SD->FirstInBundle
) && "entire bundle in window!") ? void (0) : __assert_fail
("isInSchedulingRegion(SD->FirstInBundle) && \"entire bundle in window!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3192, __extension__
__PRETTY_FUNCTION__))
3192 "entire bundle in window!")(static_cast <bool> (isInSchedulingRegion(SD->FirstInBundle
) && "entire bundle in window!") ? void (0) : __assert_fail
("isInSchedulingRegion(SD->FirstInBundle) && \"entire bundle in window!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3192, __extension__
__PRETTY_FUNCTION__))
;
3193 (void)SD;
3194 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
3195 }
3196
3197 for (auto *SD : ReadyInsts) {
3198 assert(SD->isSchedulingEntity() && SD->isReady() &&(static_cast <bool> (SD->isSchedulingEntity() &&
SD->isReady() && "item in ready list not ready?")
? void (0) : __assert_fail ("SD->isSchedulingEntity() && SD->isReady() && \"item in ready list not ready?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3199, __extension__
__PRETTY_FUNCTION__))
3199 "item in ready list not ready?")(static_cast <bool> (SD->isSchedulingEntity() &&
SD->isReady() && "item in ready list not ready?")
? void (0) : __assert_fail ("SD->isSchedulingEntity() && SD->isReady() && \"item in ready list not ready?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3199, __extension__
__PRETTY_FUNCTION__))
;
3200 (void)SD;
3201 }
3202 }
3203
3204 void doForAllOpcodes(Value *V,
3205 function_ref<void(ScheduleData *SD)> Action) {
3206 if (ScheduleData *SD = getScheduleData(V))
3207 Action(SD);
3208 auto I = ExtraScheduleDataMap.find(V);
3209 if (I != ExtraScheduleDataMap.end())
3210 for (auto &P : I->second)
3211 if (isInSchedulingRegion(P.second))
3212 Action(P.second);
3213 }
3214
3215 /// Put all instructions into the ReadyList which are ready for scheduling.
3216 template <typename ReadyListType>
3217 void initialFillReadyList(ReadyListType &ReadyList) {
3218 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3219 doForAllOpcodes(I, [&](ScheduleData *SD) {
3220 if (SD->isSchedulingEntity() && SD->hasValidDependencies() &&
3221 SD->isReady()) {
3222 ReadyList.insert(SD);
3223 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *SD << "\n"; } } while (false)
3224 << "SLP: initially in ready list: " << *SD << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *SD << "\n"; } } while (false)
;
3225 }
3226 });
3227 }
3228 }
3229
3230 /// Build a bundle from the ScheduleData nodes corresponding to the
3231 /// scalar instruction for each lane.
3232 ScheduleData *buildBundle(ArrayRef<Value *> VL);
3233
3234 /// Checks if a bundle of instructions can be scheduled, i.e. has no
3235 /// cyclic dependencies. This is only a dry-run, no instructions are
3236 /// actually moved at this stage.
3237 /// \returns the scheduling bundle. The returned Optional value is non-None
3238 /// if \p VL is allowed to be scheduled.
3239 Optional<ScheduleData *>
3240 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
3241 const InstructionsState &S);
3242
3243 /// Un-bundles a group of instructions.
3244 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
3245
3246 /// Allocates schedule data chunk.
3247 ScheduleData *allocateScheduleDataChunks();
3248
3249 /// Extends the scheduling region so that V is inside the region.
3250 /// \returns true if the region size is within the limit.
3251 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
3252
3253 /// Initialize the ScheduleData structures for new instructions in the
3254 /// scheduling region.
3255 void initScheduleData(Instruction *FromI, Instruction *ToI,
3256 ScheduleData *PrevLoadStore,
3257 ScheduleData *NextLoadStore);
3258
3259 /// Updates the dependency information of a bundle and of all instructions/
3260 /// bundles which depend on the original bundle.
3261 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
3262 BoUpSLP *SLP);
3263
3264 /// Sets all instruction in the scheduling region to un-scheduled.
3265 void resetSchedule();
3266
3267 BasicBlock *BB;
3268
3269 /// Simple memory allocation for ScheduleData.
3270 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
3271
3272 /// The size of a ScheduleData array in ScheduleDataChunks.
3273 int ChunkSize;
3274
3275 /// The allocator position in the current chunk, which is the last entry
3276 /// of ScheduleDataChunks.
3277 int ChunkPos;
3278
3279 /// Attaches ScheduleData to Instruction.
3280 /// Note that the mapping survives during all vectorization iterations, i.e.
3281 /// ScheduleData structures are recycled.
3282 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap;
3283
3284 /// Attaches ScheduleData to Instruction with the leading key.
3285 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
3286 ExtraScheduleDataMap;
3287
3288 /// The ready-list for scheduling (only used for the dry-run).
3289 SetVector<ScheduleData *> ReadyInsts;
3290
3291 /// The first instruction of the scheduling region.
3292 Instruction *ScheduleStart = nullptr;
3293
3294 /// The first instruction _after_ the scheduling region.
3295 Instruction *ScheduleEnd = nullptr;
3296
3297 /// The first memory accessing instruction in the scheduling region
3298 /// (can be null).
3299 ScheduleData *FirstLoadStoreInRegion = nullptr;
3300
3301 /// The last memory accessing instruction in the scheduling region
3302 /// (can be null).
3303 ScheduleData *LastLoadStoreInRegion = nullptr;
3304
3305 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling
3306 /// region? Used to optimize the dependence calculation for the
3307 /// common case where there isn't.
3308 bool RegionHasStackSave = false;
3309
3310 /// The current size of the scheduling region.
3311 int ScheduleRegionSize = 0;
3312
3313 /// The maximum size allowed for the scheduling region.
3314 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
3315
3316 /// The ID of the scheduling region. For a new vectorization iteration this
3317 /// is incremented which "removes" all ScheduleData from the region.
3318 /// Make sure that the initial SchedulingRegionID is greater than the
3319 /// initial SchedulingRegionID in ScheduleData (which is 0).
3320 int SchedulingRegionID = 1;
3321 };
3322
3323 /// Attaches the BlockScheduling structures to basic blocks.
3324 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
3325
3326 /// Performs the "real" scheduling. Done before vectorization is actually
3327 /// performed in a basic block.
3328 void scheduleBlock(BlockScheduling *BS);
3329
3330 /// List of users to ignore during scheduling and that don't need extracting.
3331 const SmallDenseSet<Value *> *UserIgnoreList = nullptr;
3332
3333 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
3334 /// sorted SmallVectors of unsigned.
3335 struct OrdersTypeDenseMapInfo {
3336 static OrdersType getEmptyKey() {
3337 OrdersType V;
3338 V.push_back(~1U);
3339 return V;
3340 }
3341
3342 static OrdersType getTombstoneKey() {
3343 OrdersType V;
3344 V.push_back(~2U);
3345 return V;
3346 }
3347
3348 static unsigned getHashValue(const OrdersType &V) {
3349 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
3350 }
3351
3352 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
3353 return LHS == RHS;
3354 }
3355 };
3356
3357 // Analysis and block reference.
3358 Function *F;
3359 ScalarEvolution *SE;
3360 TargetTransformInfo *TTI;
3361 TargetLibraryInfo *TLI;
3362 LoopInfo *LI;
3363 DominatorTree *DT;
3364 AssumptionCache *AC;
3365 DemandedBits *DB;
3366 const DataLayout *DL;
3367 OptimizationRemarkEmitter *ORE;
3368
3369 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3370 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
3371
3372 /// Instruction builder to construct the vectorized tree.
3373 IRBuilder<> Builder;
3374
3375 /// A map of scalar integer values to the smallest bit width with which they
3376 /// can legally be represented. The values map to (width, signed) pairs,
3377 /// where "width" indicates the minimum bit width and "signed" is True if the
3378 /// value must be signed-extended, rather than zero-extended, back to its
3379 /// original width.
3380 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
3381};
3382
3383} // end namespace slpvectorizer
3384
3385template <> struct GraphTraits<BoUpSLP *> {
3386 using TreeEntry = BoUpSLP::TreeEntry;
3387
3388 /// NodeRef has to be a pointer per the GraphWriter.
3389 using NodeRef = TreeEntry *;
3390
3391 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
3392
3393 /// Add the VectorizableTree to the index iterator to be able to return
3394 /// TreeEntry pointers.
3395 struct ChildIteratorType
3396 : public iterator_adaptor_base<
3397 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
3398 ContainerTy &VectorizableTree;
3399
3400 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
3401 ContainerTy &VT)
3402 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
3403
3404 NodeRef operator*() { return I->UserTE; }
3405 };
3406
3407 static NodeRef getEntryNode(BoUpSLP &R) {
3408 return R.VectorizableTree[0].get();
3409 }
3410
3411 static ChildIteratorType child_begin(NodeRef N) {
3412 return {N->UserTreeIndices.begin(), N->Container};
3413 }
3414
3415 static ChildIteratorType child_end(NodeRef N) {
3416 return {N->UserTreeIndices.end(), N->Container};
3417 }
3418
3419 /// For the node iterator we just need to turn the TreeEntry iterator into a
3420 /// TreeEntry* iterator so that it dereferences to NodeRef.
3421 class nodes_iterator {
3422 using ItTy = ContainerTy::iterator;
3423 ItTy It;
3424
3425 public:
3426 nodes_iterator(const ItTy &It2) : It(It2) {}
3427 NodeRef operator*() { return It->get(); }
3428 nodes_iterator operator++() {
3429 ++It;
3430 return *this;
3431 }
3432 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
3433 };
3434
3435 static nodes_iterator nodes_begin(BoUpSLP *R) {
3436 return nodes_iterator(R->VectorizableTree.begin());
3437 }
3438
3439 static nodes_iterator nodes_end(BoUpSLP *R) {
3440 return nodes_iterator(R->VectorizableTree.end());
3441 }
3442
3443 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3444};
3445
3446template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3447 using TreeEntry = BoUpSLP::TreeEntry;
3448
3449 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3450
3451 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3452 std::string Str;
3453 raw_string_ostream OS(Str);
3454 if (isSplat(Entry->Scalars))
3455 OS << "<splat> ";
3456 for (auto *V : Entry->Scalars) {
3457 OS << *V;
3458 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3459 return EU.Scalar == V;
3460 }))
3461 OS << " <extract>";
3462 OS << "\n";
3463 }
3464 return Str;
3465 }
3466
3467 static std::string getNodeAttributes(const TreeEntry *Entry,
3468 const BoUpSLP *) {
3469 if (Entry->State == TreeEntry::NeedToGather)
3470 return "color=red";
3471 return "";
3472 }
3473};
3474
3475} // end namespace llvm
3476
3477BoUpSLP::~BoUpSLP() {
3478 SmallVector<WeakTrackingVH> DeadInsts;
3479 for (auto *I : DeletedInstructions) {
3480 for (Use &U : I->operands()) {
3481 auto *Op = dyn_cast<Instruction>(U.get());
3482 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() &&
3483 wouldInstructionBeTriviallyDead(Op, TLI))
3484 DeadInsts.emplace_back(Op);
3485 }
3486 I->dropAllReferences();
3487 }
3488 for (auto *I : DeletedInstructions) {
3489 assert(I->use_empty() &&(static_cast <bool> (I->use_empty() && "trying to erase instruction with users."
) ? void (0) : __assert_fail ("I->use_empty() && \"trying to erase instruction with users.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3490, __extension__
__PRETTY_FUNCTION__))
3490 "trying to erase instruction with users.")(static_cast <bool> (I->use_empty() && "trying to erase instruction with users."
) ? void (0) : __assert_fail ("I->use_empty() && \"trying to erase instruction with users.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3490, __extension__
__PRETTY_FUNCTION__))
;
3491 I->eraseFromParent();
3492 }
3493
3494 // Cleanup any dead scalar code feeding the vectorized instructions
3495 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
3496
3497#ifdef EXPENSIVE_CHECKS
3498 // If we could guarantee that this call is not extremely slow, we could
3499 // remove the ifdef limitation (see PR47712).
3500 assert(!verifyFunction(*F, &dbgs()))(static_cast <bool> (!verifyFunction(*F, &dbgs())) ?
void (0) : __assert_fail ("!verifyFunction(*F, &dbgs())"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3500, __extension__
__PRETTY_FUNCTION__))
;
3501#endif
3502}
3503
3504/// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3505/// contains original mask for the scalars reused in the node. Procedure
3506/// transform this mask in accordance with the given \p Mask.
3507static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3508 assert(!Mask.empty() && Reuses.size() == Mask.size() &&(static_cast <bool> (!Mask.empty() && Reuses.size
() == Mask.size() && "Expected non-empty mask.") ? void
(0) : __assert_fail ("!Mask.empty() && Reuses.size() == Mask.size() && \"Expected non-empty mask.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3509, __extension__
__PRETTY_FUNCTION__))
3509 "Expected non-empty mask.")(static_cast <bool> (!Mask.empty() && Reuses.size
() == Mask.size() && "Expected non-empty mask.") ? void
(0) : __assert_fail ("!Mask.empty() && Reuses.size() == Mask.size() && \"Expected non-empty mask.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3509, __extension__
__PRETTY_FUNCTION__))
;
3510 SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3511 Prev.swap(Reuses);
3512 for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3513 if (Mask[I] != UndefMaskElem)
3514 Reuses[Mask[I]] = Prev[I];
3515}
3516
3517/// Reorders the given \p Order according to the given \p Mask. \p Order - is
3518/// the original order of the scalars. Procedure transforms the provided order
3519/// in accordance with the given \p Mask. If the resulting \p Order is just an
3520/// identity order, \p Order is cleared.
3521static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3522 assert(!Mask.empty() && "Expected non-empty mask.")(static_cast <bool> (!Mask.empty() && "Expected non-empty mask."
) ? void (0) : __assert_fail ("!Mask.empty() && \"Expected non-empty mask.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3522, __extension__
__PRETTY_FUNCTION__))
;
3523 SmallVector<int> MaskOrder;
3524 if (Order.empty()) {
3525 MaskOrder.resize(Mask.size());
3526 std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3527 } else {
3528 inversePermutation(Order, MaskOrder);
3529 }
3530 reorderReuses(MaskOrder, Mask);
3531 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) {
3532 Order.clear();
3533 return;
3534 }
3535 Order.assign(Mask.size(), Mask.size());
3536 for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3537 if (MaskOrder[I] != UndefMaskElem)
3538 Order[MaskOrder[I]] = I;
3539 fixupOrderingIndices(Order);
3540}
3541
3542Optional<BoUpSLP::OrdersType>
3543BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3544 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.")(static_cast <bool> (TE.State == TreeEntry::NeedToGather
&& "Expected gather node only.") ? void (0) : __assert_fail
("TE.State == TreeEntry::NeedToGather && \"Expected gather node only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3544, __extension__
__PRETTY_FUNCTION__))
;
3545 unsigned NumScalars = TE.Scalars.size();
3546 OrdersType CurrentOrder(NumScalars, NumScalars);
3547 SmallVector<int> Positions;
3548 SmallBitVector UsedPositions(NumScalars);
3549 const TreeEntry *STE = nullptr;
3550 // Try to find all gathered scalars that are gets vectorized in other
3551 // vectorize node. Here we can have only one single tree vector node to
3552 // correctly identify order of the gathered scalars.
3553 for (unsigned I = 0; I < NumScalars; ++I) {
3554 Value *V = TE.Scalars[I];
3555 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3556 continue;
3557 if (const auto *LocalSTE = getTreeEntry(V)) {
3558 if (!STE)
3559 STE = LocalSTE;
3560 else if (STE != LocalSTE)
3561 // Take the order only from the single vector node.
3562 return None;
3563 unsigned Lane =
3564 std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3565 if (Lane >= NumScalars)
3566 return None;
3567 if (CurrentOrder[Lane] != NumScalars) {
3568 if (Lane != I)
3569 continue;
3570 UsedPositions.reset(CurrentOrder[Lane]);
3571 }
3572 // The partial identity (where only some elements of the gather node are
3573 // in the identity order) is good.
3574 CurrentOrder[Lane] = I;
3575 UsedPositions.set(I);
3576 }
3577 }
3578 // Need to keep the order if we have a vector entry and at least 2 scalars or
3579 // the vectorized entry has just 2 scalars.
3580 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3581 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3582 for (unsigned I = 0; I < NumScalars; ++I)
3583 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3584 return false;
3585 return true;
3586 };
3587 if (IsIdentityOrder(CurrentOrder)) {
3588 CurrentOrder.clear();
3589 return CurrentOrder;
3590 }
3591 auto *It = CurrentOrder.begin();
3592 for (unsigned I = 0; I < NumScalars;) {
3593 if (UsedPositions.test(I)) {
3594 ++I;
3595 continue;
3596 }
3597 if (*It == NumScalars) {
3598 *It = I;
3599 ++I;
3600 }
3601 ++It;
3602 }
3603 return CurrentOrder;
3604 }
3605 return None;
3606}
3607
3608namespace {
3609/// Tracks the state we can represent the loads in the given sequence.
3610enum class LoadsState { Gather, Vectorize, ScatterVectorize };
3611} // anonymous namespace
3612
3613static bool arePointersCompatible(Value *Ptr1, Value *Ptr2,
3614 const TargetLibraryInfo &TLI,
3615 bool CompareOpcodes = true) {
3616 if (getUnderlyingObject(Ptr1) != getUnderlyingObject(Ptr2))
3617 return false;
3618 auto *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
3619 if (!GEP1)
3620 return false;
3621 auto *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
3622 if (!GEP2)
3623 return false;
3624 return GEP1->getNumOperands() == 2 && GEP2->getNumOperands() == 2 &&
3625 ((isConstant(GEP1->getOperand(1)) &&
3626 isConstant(GEP2->getOperand(1))) ||
3627 !CompareOpcodes ||
3628 getSameOpcode({GEP1->getOperand(1), GEP2->getOperand(1)}, TLI)
3629 .getOpcode());
3630}
3631
3632/// Checks if the given array of loads can be represented as a vectorized,
3633/// scatter or just simple gather.
3634static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
3635 const TargetTransformInfo &TTI,
3636 const DataLayout &DL, ScalarEvolution &SE,
3637 LoopInfo &LI, const TargetLibraryInfo &TLI,
3638 SmallVectorImpl<unsigned> &Order,
3639 SmallVectorImpl<Value *> &PointerOps) {
3640 // Check that a vectorized load would load the same memory as a scalar
3641 // load. For example, we don't want to vectorize loads that are smaller
3642 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
3643 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
3644 // from such a struct, we read/write packed bits disagreeing with the
3645 // unvectorized version.
3646 Type *ScalarTy = VL0->getType();
3647
3648 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
3649 return LoadsState::Gather;
3650
3651 // Make sure all loads in the bundle are simple - we can't vectorize
3652 // atomic or volatile loads.
3653 PointerOps.clear();
3654 PointerOps.resize(VL.size());
3655 auto *POIter = PointerOps.begin();
3656 for (Value *V : VL) {
3657 auto *L = cast<LoadInst>(V);
3658 if (!L->isSimple())
3659 return LoadsState::Gather;
3660 *POIter = L->getPointerOperand();
3661 ++POIter;
3662 }
3663
3664 Order.clear();
3665 // Check the order of pointer operands or that all pointers are the same.
3666 bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order);
3667 if (IsSorted || all_of(PointerOps, [&](Value *P) {
3668 return arePointersCompatible(P, PointerOps.front(), TLI);
3669 })) {
3670 if (IsSorted) {
3671 Value *Ptr0;
3672 Value *PtrN;
3673 if (Order.empty()) {
3674 Ptr0 = PointerOps.front();
3675 PtrN = PointerOps.back();
3676 } else {
3677 Ptr0 = PointerOps[Order.front()];
3678 PtrN = PointerOps[Order.back()];
3679 }
3680 Optional<int> Diff =
3681 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
3682 // Check that the sorted loads are consecutive.
3683 if (static_cast<unsigned>(*Diff) == VL.size() - 1)
3684 return LoadsState::Vectorize;
3685 }
3686 // TODO: need to improve analysis of the pointers, if not all of them are
3687 // GEPs or have > 2 operands, we end up with a gather node, which just
3688 // increases the cost.
3689 Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent());
3690 bool ProfitableGatherPointers =
3691 static_cast<unsigned>(count_if(PointerOps, [L](Value *V) {
3692 return L && L->isLoopInvariant(V);
3693 })) <= VL.size() / 2 && VL.size() > 2;
3694 if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) {
3695 auto *GEP = dyn_cast<GetElementPtrInst>(P);
3696 return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) ||
3697 (GEP && GEP->getNumOperands() == 2);
3698 })) {
3699 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3700 for (Value *V : VL)
3701 CommonAlignment =
3702 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
3703 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3704 if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) &&
3705 !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment))
3706 return LoadsState::ScatterVectorize;
3707 }
3708 }
3709
3710 return LoadsState::Gather;
3711}
3712
3713bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
3714 const DataLayout &DL, ScalarEvolution &SE,
3715 SmallVectorImpl<unsigned> &SortedIndices) {
3716 assert(llvm::all_of((static_cast <bool> (llvm::all_of( VL, [](const Value *
V) { return V->getType()->isPointerTy(); }) && "Expected list of pointer operands."
) ? void (0) : __assert_fail ("llvm::all_of( VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && \"Expected list of pointer operands.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3718, __extension__
__PRETTY_FUNCTION__))
3717 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&(static_cast <bool> (llvm::all_of( VL, [](const Value *
V) { return V->getType()->isPointerTy(); }) && "Expected list of pointer operands."
) ? void (0) : __assert_fail ("llvm::all_of( VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && \"Expected list of pointer operands.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3718, __extension__
__PRETTY_FUNCTION__))
3718 "Expected list of pointer operands.")(static_cast <bool> (llvm::all_of( VL, [](const Value *
V) { return V->getType()->isPointerTy(); }) && "Expected list of pointer operands."
) ? void (0) : __assert_fail ("llvm::all_of( VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && \"Expected list of pointer operands.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3718, __extension__
__PRETTY_FUNCTION__))
;
3719 // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each
3720 // Ptr into, sort and return the sorted indices with values next to one
3721 // another.
3722 MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases;
3723 Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U));
3724
3725 unsigned Cnt = 1;
3726 for (Value *Ptr : VL.drop_front()) {
3727 bool Found = any_of(Bases, [&](auto &Base) {
3728 Optional<int> Diff =
3729 getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE,
3730 /*StrictCheck=*/true);
3731 if (!Diff)
3732 return false;
3733
3734 Base.second.emplace_back(Ptr, *Diff, Cnt++);
3735 return true;
3736 });
3737
3738 if (!Found) {
3739 // If we haven't found enough to usefully cluster, return early.
3740 if (Bases.size() > VL.size() / 2 - 1)
3741 return false;
3742
3743 // Not found already - add a new Base
3744 Bases[Ptr].emplace_back(Ptr, 0, Cnt++);
3745 }
3746 }
3747
3748 // For each of the bases sort the pointers by Offset and check if any of the
3749 // base become consecutively allocated.
3750 bool AnyConsecutive = false;
3751 for (auto &Base : Bases) {
3752 auto &Vec = Base.second;
3753 if (Vec.size() > 1) {
3754 llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X,
3755 const std::tuple<Value *, int, unsigned> &Y) {
3756 return std::get<1>(X) < std::get<1>(Y);
3757 });
3758 int InitialOffset = std::get<1>(Vec[0]);
3759 AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) {
3760 return std::get<1>(P.value()) == int(P.index()) + InitialOffset;
3761 });
3762 }
3763 }
3764
3765 // Fill SortedIndices array only if it looks worth-while to sort the ptrs.
3766 SortedIndices.clear();
3767 if (!AnyConsecutive)
3768 return false;
3769
3770 for (auto &Base : Bases) {
3771 for (auto &T : Base.second)
3772 SortedIndices.push_back(std::get<2>(T));
3773 }
3774
3775 assert(SortedIndices.size() == VL.size() &&(static_cast <bool> (SortedIndices.size() == VL.size() &&
"Expected SortedIndices to be the size of VL") ? void (0) : __assert_fail
("SortedIndices.size() == VL.size() && \"Expected SortedIndices to be the size of VL\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3776, __extension__
__PRETTY_FUNCTION__))
3776 "Expected SortedIndices to be the size of VL")(static_cast <bool> (SortedIndices.size() == VL.size() &&
"Expected SortedIndices to be the size of VL") ? void (0) : __assert_fail
("SortedIndices.size() == VL.size() && \"Expected SortedIndices to be the size of VL\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3776, __extension__
__PRETTY_FUNCTION__))
;
3777 return true;
3778}
3779
3780Optional<BoUpSLP::OrdersType>
3781BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) {
3782 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.")(static_cast <bool> (TE.State == TreeEntry::NeedToGather
&& "Expected gather node only.") ? void (0) : __assert_fail
("TE.State == TreeEntry::NeedToGather && \"Expected gather node only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 3782, __extension__
__PRETTY_FUNCTION__))
;
3783 Type *ScalarTy = TE.Scalars[0]->getType();
3784
3785 SmallVector<Value *> Ptrs;
3786 Ptrs.reserve(TE.Scalars.size());
3787 for (Value *V : TE.Scalars) {
3788 auto *L = dyn_cast<LoadInst>(V);
3789 if (!L || !L->isSimple())
3790 return None;
3791 Ptrs.push_back(L->getPointerOperand());
3792 }
3793
3794 BoUpSLP::OrdersType Order;
3795 if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order))
3796 return Order;
3797 return None;
3798}
3799
3800/// Check if two insertelement instructions are from the same buildvector.
3801static bool areTwoInsertFromSameBuildVector(
3802 InsertElementInst *VU, InsertElementInst *V,
3803 function_ref<Value *(InsertElementInst *)> GetBaseOperand) {
3804 // Instructions must be from the same basic blocks.
3805 if (VU->getParent() != V->getParent())
3806 return false;
3807 // Checks if 2 insertelements are from the same buildvector.
3808 if (VU->getType() != V->getType())
3809 return false;
3810 // Multiple used inserts are separate nodes.
3811 if (!VU->hasOneUse() && !V->hasOneUse())
3812 return false;
3813 auto *IE1 = VU;
3814 auto *IE2 = V;
3815 Optional<unsigned> Idx1 = getInsertIndex(IE1);
3816 Optional<unsigned> Idx2 = getInsertIndex(IE2);
3817 if (Idx1 == None || Idx2 == None)
3818 return false;
3819 // Go through the vector operand of insertelement instructions trying to find
3820 // either VU as the original vector for IE2 or V as the original vector for
3821 // IE1.
3822 do {
3823 if (IE2 == VU)
3824 return VU->hasOneUse();
3825 if (IE1 == V)
3826 return V->hasOneUse();
3827 if (IE1) {
3828 if ((IE1 != VU && !IE1->hasOneUse()) ||
3829 getInsertIndex(IE1).value_or(*Idx2) == *Idx2)
3830 IE1 = nullptr;
3831 else
3832 IE1 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE1));
3833 }
3834 if (IE2) {
3835 if ((IE2 != V && !IE2->hasOneUse()) ||
3836 getInsertIndex(IE2).value_or(*Idx1) == *Idx1)
3837 IE2 = nullptr;
3838 else
3839 IE2 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE2));
3840 }
3841 } while (IE1 || IE2);
3842 return false;
3843}
3844
3845Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE,
3846 bool TopToBottom) {
3847 // No need to reorder if need to shuffle reuses, still need to shuffle the
3848 // node.
3849 if (!TE.ReuseShuffleIndices.empty()) {
3850 // Check if reuse shuffle indices can be improved by reordering.
3851 // For this, check that reuse mask is "clustered", i.e. each scalar values
3852 // is used once in each submask of size <number_of_scalars>.
3853 // Example: 4 scalar values.
3854 // ReuseShuffleIndices mask: 0, 1, 2, 3, 3, 2, 0, 1 - clustered.
3855 // 0, 1, 2, 3, 3, 3, 1, 0 - not clustered, because
3856 // element 3 is used twice in the second submask.
3857 unsigned Sz = TE.Scalars.size();
3858 if (!ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices,
3859 Sz))
3860 return None;
3861 unsigned VF = TE.getVectorFactor();
3862 // Try build correct order for extractelement instructions.
3863 SmallVector<int> ReusedMask(TE.ReuseShuffleIndices.begin(),
3864 TE.ReuseShuffleIndices.end());
3865 if (TE.getOpcode() == Instruction::ExtractElement && !TE.isAltShuffle() &&
3866 all_of(TE.Scalars, [Sz](Value *V) {
3867 Optional<unsigned> Idx = getExtractIndex(cast<Instruction>(V));
3868 return Idx && *Idx < Sz;
3869 })) {
3870 SmallVector<int> ReorderMask(Sz, UndefMaskElem);
3871 if (TE.ReorderIndices.empty())
3872 std::iota(ReorderMask.begin(), ReorderMask.end(), 0);
3873 else
3874 inversePermutation(TE.ReorderIndices, ReorderMask);
3875 for (unsigned I = 0; I < VF; ++I) {
3876 int &Idx = ReusedMask[I];
3877 if (Idx == UndefMaskElem)
3878 continue;
3879 Value *V = TE.Scalars[ReorderMask[Idx]];
3880 Optional<unsigned> EI = getExtractIndex(cast<Instruction>(V));
3881 Idx = std::distance(ReorderMask.begin(), find(ReorderMask, *EI));
3882 }
3883 }
3884 // Build the order of the VF size, need to reorder reuses shuffles, they are
3885 // always of VF size.
3886 OrdersType ResOrder(VF);
3887 std::iota(ResOrder.begin(), ResOrder.end(), 0);
3888 auto *It = ResOrder.begin();
3889 for (unsigned K = 0; K < VF; K += Sz) {
3890 OrdersType CurrentOrder(TE.ReorderIndices);
3891 SmallVector<int> SubMask(makeArrayRef(ReusedMask).slice(K, Sz));
3892 if (SubMask.front() == UndefMaskElem)
3893 std::iota(SubMask.begin(), SubMask.end(), 0);
3894 reorderOrder(CurrentOrder, SubMask);
3895 transform(CurrentOrder, It, [K](unsigned Pos) { return Pos + K; });
3896 std::advance(It, Sz);
3897 }
3898 if (all_of(enumerate(ResOrder),
3899 [](const auto &Data) { return Data.index() == Data.value(); }))
3900 return {}; // Use identity order.
3901 return ResOrder;
3902 }
3903 if (TE.State == TreeEntry::Vectorize &&
3904 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
3905 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
3906 !TE.isAltShuffle())
3907 return TE.ReorderIndices;
3908 if (TE.State == TreeEntry::Vectorize && TE.getOpcode() == Instruction::PHI) {
3909 auto PHICompare = [](llvm::Value *V1, llvm::Value *V2) {
3910 if (!V1->hasOneUse() || !V2->hasOneUse())
3911 return false;
3912 auto *FirstUserOfPhi1 = cast<Instruction>(*V1->user_begin());
3913 auto *FirstUserOfPhi2 = cast<Instruction>(*V2->user_begin());
3914 if (auto *IE1 = dyn_cast<InsertElementInst>(FirstUserOfPhi1))
3915 if (auto *IE2 = dyn_cast<InsertElementInst>(FirstUserOfPhi2)) {
3916 if (!areTwoInsertFromSameBuildVector(
3917 IE1, IE2,
3918 [](InsertElementInst *II) { return II->getOperand(0); }))
3919 return false;
3920 Optional<unsigned> Idx1 = getInsertIndex(IE1);
3921 Optional<unsigned> Idx2 = getInsertIndex(IE2);
3922 if (Idx1 == None || Idx2 == None)
3923 return false;
3924 return *Idx1 < *Idx2;
3925 }
3926 if (auto *EE1 = dyn_cast<ExtractElementInst>(FirstUserOfPhi1))
3927 if (auto *EE2 = dyn_cast<ExtractElementInst>(FirstUserOfPhi2)) {
3928 if (EE1->getOperand(0) != EE2->getOperand(0))
3929 return false;
3930 Optional<unsigned> Idx1 = getExtractIndex(EE1);
3931 Optional<unsigned> Idx2 = getExtractIndex(EE2);
3932 if (Idx1 == None || Idx2 == None)
3933 return false;
3934 return *Idx1 < *Idx2;
3935 }
3936 return false;
3937 };
3938 auto IsIdentityOrder = [](const OrdersType &Order) {
3939 for (unsigned Idx : seq<unsigned>(0, Order.size()))
3940 if (Idx != Order[Idx])
3941 return false;
3942 return true;
3943 };
3944 if (!TE.ReorderIndices.empty())
3945 return TE.ReorderIndices;
3946 DenseMap<Value *, unsigned> PhiToId;
3947 SmallVector<Value *, 4> Phis;
3948 OrdersType ResOrder(TE.Scalars.size());
3949 for (unsigned Id = 0, Sz = TE.Scalars.size(); Id < Sz; ++Id) {
3950 PhiToId[TE.Scalars[Id]] = Id;
3951 Phis.push_back(TE.Scalars[Id]);
3952 }
3953 llvm::stable_sort(Phis, PHICompare);
3954 for (unsigned Id = 0, Sz = Phis.size(); Id < Sz; ++Id)
3955 ResOrder[Id] = PhiToId[Phis[Id]];
3956 if (IsIdentityOrder(ResOrder))
3957 return {};
3958 return ResOrder;
3959 }
3960 if (TE.State == TreeEntry::NeedToGather) {
3961 // TODO: add analysis of other gather nodes with extractelement
3962 // instructions and other values/instructions, not only undefs.
3963 if (((TE.getOpcode() == Instruction::ExtractElement &&
3964 !TE.isAltShuffle()) ||
3965 (all_of(TE.Scalars,
3966 [](Value *V) {
3967 return isa<UndefValue, ExtractElementInst>(V);
3968 }) &&
3969 any_of(TE.Scalars,
3970 [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
3971 all_of(TE.Scalars,
3972 [](Value *V) {
3973 auto *EE = dyn_cast<ExtractElementInst>(V);
3974 return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
3975 }) &&
3976 allSameType(TE.Scalars)) {
3977 // Check that gather of extractelements can be represented as
3978 // just a shuffle of a single vector.
3979 OrdersType CurrentOrder;
3980 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder);
3981 if (Reuse || !CurrentOrder.empty()) {
3982 if (!CurrentOrder.empty())
3983 fixupOrderingIndices(CurrentOrder);
3984 return CurrentOrder;
3985 }
3986 }
3987 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
3988 return CurrentOrder;
3989 if (TE.Scalars.size() >= 4)
3990 if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE))
3991 return Order;
3992 }
3993 return None;
3994}
3995
3996/// Checks if the given mask is a "clustered" mask with the same clusters of
3997/// size \p Sz, which are not identity submasks.
3998static bool isRepeatedNonIdentityClusteredMask(ArrayRef<int> Mask,
3999 unsigned Sz) {
4000 ArrayRef<int> FirstCluster = Mask.slice(0, Sz);
4001 if (ShuffleVectorInst::isIdentityMask(FirstCluster))
4002 return false;
4003 for (unsigned I = Sz, E = Mask.size(); I < E; I += Sz) {
4004 ArrayRef<int> Cluster = Mask.slice(I, Sz);
4005 if (Cluster != FirstCluster)
4006 return false;
4007 }
4008 return true;
4009}
4010
4011void BoUpSLP::reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const {
4012 // For vectorized and non-clustered reused - just reorder reuses mask.
4013 const unsigned Sz = TE.Scalars.size();
4014 if (TE.State != TreeEntry::NeedToGather || !TE.ReorderIndices.empty() ||
4015 !ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices,
4016 Sz) ||
4017 !isRepeatedNonIdentityClusteredMask(TE.ReuseShuffleIndices, Sz)) {
4018 reorderReuses(TE.ReuseShuffleIndices, Mask);
4019 return;
4020 }
4021 // Try to improve gathered nodes with clustered reuses, if possible.
4022 reorderScalars(TE.Scalars, makeArrayRef(TE.ReuseShuffleIndices).slice(0, Sz));
4023 // Fill the reuses mask with the identity submasks.
4024 for (auto *It = TE.ReuseShuffleIndices.begin(),
4025 *End = TE.ReuseShuffleIndices.end();
4026 It != End; std::advance(It, Sz))
4027 std::iota(It, std::next(It, Sz), 0);
4028}
4029
4030void BoUpSLP::reorderTopToBottom() {
4031 // Maps VF to the graph nodes.
4032 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
4033 // ExtractElement gather nodes which can be vectorized and need to handle
4034 // their ordering.
4035 DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
4036
4037 // Phi nodes can have preferred ordering based on their result users
4038 DenseMap<const TreeEntry *, OrdersType> PhisToOrders;
4039
4040 // AltShuffles can also have a preferred ordering that leads to fewer
4041 // instructions, e.g., the addsub instruction in x86.
4042 DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders;
4043
4044 // Maps a TreeEntry to the reorder indices of external users.
4045 DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>>
4046 ExternalUserReorderMap;
4047 // FIXME: Workaround for syntax error reported by MSVC buildbots.
4048 TargetTransformInfo &TTIRef = *TTI;
4049 // Find all reorderable nodes with the given VF.
4050 // Currently the are vectorized stores,loads,extracts + some gathering of
4051 // extracts.
4052 for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries,
4053 &GathersToOrders, &ExternalUserReorderMap,
4054 &AltShufflesToOrders, &PhisToOrders](
4055 const std::unique_ptr<TreeEntry> &TE) {
4056 // Look for external users that will probably be vectorized.
4057 SmallVector<OrdersType, 1> ExternalUserReorderIndices =
4058 findExternalStoreUsersReorderIndices(TE.get());
4059 if (!ExternalUserReorderIndices.empty()) {
4060 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
4061 ExternalUserReorderMap.try_emplace(TE.get(),
4062 std::move(ExternalUserReorderIndices));
4063 }
4064
4065 // Patterns like [fadd,fsub] can be combined into a single instruction in
4066 // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need
4067 // to take into account their order when looking for the most used order.
4068 if (TE->isAltShuffle()) {
4069 VectorType *VecTy =
4070 FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size());
4071 unsigned Opcode0 = TE->getOpcode();
4072 unsigned Opcode1 = TE->getAltOpcode();
4073 // The opcode mask selects between the two opcodes.
4074 SmallBitVector OpcodeMask(TE->Scalars.size(), false);
4075 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size()))
4076 if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1)
4077 OpcodeMask.set(Lane);
4078 // If this pattern is supported by the target then we consider the order.
4079 if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) {
4080 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
4081 AltShufflesToOrders.try_emplace(TE.get(), OrdersType());
4082 }
4083 // TODO: Check the reverse order too.
4084 }
4085
4086 if (Optional<OrdersType> CurrentOrder =
4087 getReorderingData(*TE, /*TopToBottom=*/true)) {
4088 // Do not include ordering for nodes used in the alt opcode vectorization,
4089 // better to reorder them during bottom-to-top stage. If follow the order
4090 // here, it causes reordering of the whole graph though actually it is
4091 // profitable just to reorder the subgraph that starts from the alternate
4092 // opcode vectorization node. Such nodes already end-up with the shuffle
4093 // instruction and it is just enough to change this shuffle rather than
4094 // rotate the scalars for the whole graph.
4095 unsigned Cnt = 0;
4096 const TreeEntry *UserTE = TE.get();
4097 while (UserTE && Cnt < RecursionMaxDepth) {
4098 if (UserTE->UserTreeIndices.size() != 1)
4099 break;
4100 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
4101 return EI.UserTE->State == TreeEntry::Vectorize &&
4102 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
4103 }))
4104 return;
4105 UserTE = UserTE->UserTreeIndices.back().UserTE;
4106 ++Cnt;
4107 }
4108 VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get());
4109 if (TE->State != TreeEntry::Vectorize || !TE->ReuseShuffleIndices.empty())
4110 GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
4111 if (TE->State == TreeEntry::Vectorize &&
4112 TE->getOpcode() == Instruction::PHI)
4113 PhisToOrders.try_emplace(TE.get(), *CurrentOrder);
4114 }
4115 });
4116
4117 // Reorder the graph nodes according to their vectorization factor.
4118 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1;
4119 VF /= 2) {
4120 auto It = VFToOrderedEntries.find(VF);
4121 if (It == VFToOrderedEntries.end())
4122 continue;
4123 // Try to find the most profitable order. We just are looking for the most
4124 // used order and reorder scalar elements in the nodes according to this
4125 // mostly used order.
4126 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
4127 // All operands are reordered and used only in this node - propagate the
4128 // most used order to the user node.
4129 MapVector<OrdersType, unsigned,
4130 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
4131 OrdersUses;
4132 SmallPtrSet<const TreeEntry *, 4> VisitedOps;
4133 for (const TreeEntry *OpTE : OrderedEntries) {
4134 // No need to reorder this nodes, still need to extend and to use shuffle,
4135 // just need to merge reordering shuffle and the reuse shuffle.
4136 if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE))
4137 continue;
4138 // Count number of orders uses.
4139 const auto &Order = [OpTE, &GathersToOrders, &AltShufflesToOrders,
4140 &PhisToOrders]() -> const OrdersType & {
4141 if (OpTE->State == TreeEntry::NeedToGather ||
4142 !OpTE->ReuseShuffleIndices.empty()) {
4143 auto It = GathersToOrders.find(OpTE);
4144 if (It != GathersToOrders.end())
4145 return It->second;
4146 }
4147 if (OpTE->isAltShuffle()) {
4148 auto It = AltShufflesToOrders.find(OpTE);
4149 if (It != AltShufflesToOrders.end())
4150 return It->second;
4151 }
4152 if (OpTE->State == TreeEntry::Vectorize &&
4153 OpTE->getOpcode() == Instruction::PHI) {
4154 auto It = PhisToOrders.find(OpTE);
4155 if (It != PhisToOrders.end())
4156 return It->second;
4157 }
4158 return OpTE->ReorderIndices;
4159 }();
4160 // First consider the order of the external scalar users.
4161 auto It = ExternalUserReorderMap.find(OpTE);
4162 if (It != ExternalUserReorderMap.end()) {
4163 const auto &ExternalUserReorderIndices = It->second;
4164 // If the OpTE vector factor != number of scalars - use natural order,
4165 // it is an attempt to reorder node with reused scalars but with
4166 // external uses.
4167 if (OpTE->getVectorFactor() != OpTE->Scalars.size()) {
4168 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second +=
4169 ExternalUserReorderIndices.size();
4170 } else {
4171 for (const OrdersType &ExtOrder : ExternalUserReorderIndices)
4172 ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second;
4173 }
4174 // No other useful reorder data in this entry.
4175 if (Order.empty())
4176 continue;
4177 }
4178 // Stores actually store the mask, not the order, need to invert.
4179 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
4180 OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
4181 SmallVector<int> Mask;
4182 inversePermutation(Order, Mask);
4183 unsigned E = Order.size();
4184 OrdersType CurrentOrder(E, E);
4185 transform(Mask, CurrentOrder.begin(), [E](int Idx) {
4186 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
4187 });
4188 fixupOrderingIndices(CurrentOrder);
4189 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
4190 } else {
4191 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
4192 }
4193 }
4194 // Set order of the user node.
4195 if (OrdersUses.empty())
4196 continue;
4197 // Choose the most used order.
4198 ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
4199 unsigned Cnt = OrdersUses.front().second;
4200 for (const auto &Pair : drop_begin(OrdersUses)) {
4201 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
4202 BestOrder = Pair.first;
4203 Cnt = Pair.second;
4204 }
4205 }
4206 // Set order of the user node.
4207 if (BestOrder.empty())
4208 continue;
4209 SmallVector<int> Mask;
4210 inversePermutation(BestOrder, Mask);
4211 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
4212 unsigned E = BestOrder.size();
4213 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
4214 return I < E ? static_cast<int>(I) : UndefMaskElem;
4215 });
4216 // Do an actual reordering, if profitable.
4217 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
4218 // Just do the reordering for the nodes with the given VF.
4219 if (TE->Scalars.size() != VF) {
4220 if (TE->ReuseShuffleIndices.size() == VF) {
4221 // Need to reorder the reuses masks of the operands with smaller VF to
4222 // be able to find the match between the graph nodes and scalar
4223 // operands of the given node during vectorization/cost estimation.
4224 assert(all_of(TE->UserTreeIndices,(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4230, __extension__
__PRETTY_FUNCTION__))
4225 [VF, &TE](const EdgeInfo &EI) {(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4230, __extension__
__PRETTY_FUNCTION__))
4226 return EI.UserTE->Scalars.size() == VF ||(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4230, __extension__
__PRETTY_FUNCTION__))
4227 EI.UserTE->Scalars.size() ==(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4230, __extension__
__PRETTY_FUNCTION__))
4228 TE->Scalars.size();(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4230, __extension__
__PRETTY_FUNCTION__))
4229 }) &&(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4230, __extension__
__PRETTY_FUNCTION__))
4230 "All users must be of VF size.")(static_cast <bool> (all_of(TE->UserTreeIndices, [VF
, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars
.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars
.size(); }) && "All users must be of VF size.") ? void
(0) : __assert_fail ("all_of(TE->UserTreeIndices, [VF, &TE](const EdgeInfo &EI) { return EI.UserTE->Scalars.size() == VF || EI.UserTE->Scalars.size() == TE->Scalars.size(); }) && \"All users must be of VF size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4230, __extension__
__PRETTY_FUNCTION__))
;
4231 // Update ordering of the operands with the smaller VF than the given
4232 // one.
4233 reorderNodeWithReuses(*TE, Mask);
4234 }
4235 continue;
4236 }
4237 if (TE->State == TreeEntry::Vectorize &&
4238 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
4239 InsertElementInst>(TE->getMainOp()) &&
4240 !TE->isAltShuffle()) {
4241 // Build correct orders for extract{element,value}, loads and
4242 // stores.
4243 reorderOrder(TE->ReorderIndices, Mask);
4244 if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
4245 TE->reorderOperands(Mask);
4246 } else {
4247 // Reorder the node and its operands.
4248 TE->reorderOperands(Mask);
4249 assert(TE->ReorderIndices.empty() &&(static_cast <bool> (TE->ReorderIndices.empty() &&
"Expected empty reorder sequence.") ? void (0) : __assert_fail
("TE->ReorderIndices.empty() && \"Expected empty reorder sequence.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4250, __extension__
__PRETTY_FUNCTION__))
4250 "Expected empty reorder sequence.")(static_cast <bool> (TE->ReorderIndices.empty() &&
"Expected empty reorder sequence.") ? void (0) : __assert_fail
("TE->ReorderIndices.empty() && \"Expected empty reorder sequence.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4250, __extension__
__PRETTY_FUNCTION__))
;
4251 reorderScalars(TE->Scalars, Mask);
4252 }
4253 if (!TE->ReuseShuffleIndices.empty()) {
4254 // Apply reversed order to keep the original ordering of the reused
4255 // elements to avoid extra reorder indices shuffling.
4256 OrdersType CurrentOrder;
4257 reorderOrder(CurrentOrder, MaskOrder);
4258 SmallVector<int> NewReuses;
4259 inversePermutation(CurrentOrder, NewReuses);
4260 addMask(NewReuses, TE->ReuseShuffleIndices);
4261 TE->ReuseShuffleIndices.swap(NewReuses);
4262 }
4263 }
4264 }
4265}
4266
4267bool BoUpSLP::canReorderOperands(
4268 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
4269 ArrayRef<TreeEntry *> ReorderableGathers,
4270 SmallVectorImpl<TreeEntry *> &GatherOps) {
4271 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) {
4272 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) {
4273 return OpData.first == I &&
4274 OpData.second->State == TreeEntry::Vectorize;
4275 }))
4276 continue;
4277 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) {
4278 // Do not reorder if operand node is used by many user nodes.
4279 if (any_of(TE->UserTreeIndices,
4280 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; }))
4281 return false;
4282 // Add the node to the list of the ordered nodes with the identity
4283 // order.
4284 Edges.emplace_back(I, TE);
4285 // Add ScatterVectorize nodes to the list of operands, where just
4286 // reordering of the scalars is required. Similar to the gathers, so
4287 // simply add to the list of gathered ops.
4288 // If there are reused scalars, process this node as a regular vectorize
4289 // node, just reorder reuses mask.
4290 if (TE->State != TreeEntry::Vectorize && TE->ReuseShuffleIndices.empty())
4291 GatherOps.push_back(TE);
4292 continue;
4293 }
4294 TreeEntry *Gather = nullptr;
4295 if (count_if(ReorderableGathers,
4296 [&Gather, UserTE, I](TreeEntry *TE) {
4297 assert(TE->State != TreeEntry::Vectorize &&(static_cast <bool> (TE->State != TreeEntry::Vectorize
&& "Only non-vectorized nodes are expected.") ? void
(0) : __assert_fail ("TE->State != TreeEntry::Vectorize && \"Only non-vectorized nodes are expected.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4298, __extension__
__PRETTY_FUNCTION__))
4298 "Only non-vectorized nodes are expected.")(static_cast <bool> (TE->State != TreeEntry::Vectorize
&& "Only non-vectorized nodes are expected.") ? void
(0) : __assert_fail ("TE->State != TreeEntry::Vectorize && \"Only non-vectorized nodes are expected.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4298, __extension__
__PRETTY_FUNCTION__))
;
4299 if (any_of(TE->UserTreeIndices,
4300 [UserTE, I](const EdgeInfo &EI) {
4301 return EI.UserTE == UserTE && EI.EdgeIdx == I;
4302 })) {
4303 assert(TE->isSame(UserTE->getOperand(I)) &&(static_cast <bool> (TE->isSame(UserTE->getOperand
(I)) && "Operand entry does not match operands.") ? void
(0) : __assert_fail ("TE->isSame(UserTE->getOperand(I)) && \"Operand entry does not match operands.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4304, __extension__
__PRETTY_FUNCTION__))
4304 "Operand entry does not match operands.")(static_cast <bool> (TE->isSame(UserTE->getOperand
(I)) && "Operand entry does not match operands.") ? void
(0) : __assert_fail ("TE->isSame(UserTE->getOperand(I)) && \"Operand entry does not match operands.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4304, __extension__
__PRETTY_FUNCTION__))
;
4305 Gather = TE;
4306 return true;
4307 }
4308 return false;
4309 }) > 1 &&
4310 !all_of(UserTE->getOperand(I), isConstant))
4311 return false;
4312 if (Gather)
4313 GatherOps.push_back(Gather);
4314 }
4315 return true;
4316}
4317
4318void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
4319 SetVector<TreeEntry *> OrderedEntries;
4320 DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
4321 // Find all reorderable leaf nodes with the given VF.
4322 // Currently the are vectorized loads,extracts without alternate operands +
4323 // some gathering of extracts.
4324 SmallVector<TreeEntry *> NonVectorized;
4325 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
4326 &NonVectorized](
4327 const std::unique_ptr<TreeEntry> &TE) {
4328 if (TE->State != TreeEntry::Vectorize)
4329 NonVectorized.push_back(TE.get());
4330 if (Optional<OrdersType> CurrentOrder =
4331 getReorderingData(*TE, /*TopToBottom=*/false)) {
4332 OrderedEntries.insert(TE.get());
4333 if (TE->State != TreeEntry::Vectorize || !TE->ReuseShuffleIndices.empty())
4334 GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
4335 }
4336 });
4337
4338 // 1. Propagate order to the graph nodes, which use only reordered nodes.
4339 // I.e., if the node has operands, that are reordered, try to make at least
4340 // one operand order in the natural order and reorder others + reorder the
4341 // user node itself.
4342 SmallPtrSet<const TreeEntry *, 4> Visited;
4343 while (!OrderedEntries.empty()) {
4344 // 1. Filter out only reordered nodes.
4345 // 2. If the entry has multiple uses - skip it and jump to the next node.
4346 DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
4347 SmallVector<TreeEntry *> Filtered;
4348 for (TreeEntry *TE : OrderedEntries) {
4349 if (!(TE->State == TreeEntry::Vectorize ||
4350 (TE->State == TreeEntry::NeedToGather &&
4351 GathersToOrders.count(TE))) ||
4352 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4353 !all_of(drop_begin(TE->UserTreeIndices),
4354 [TE](const EdgeInfo &EI) {
4355 return EI.UserTE == TE->UserTreeIndices.front().UserTE;
4356 }) ||
4357 !Visited.insert(TE).second) {
4358 Filtered.push_back(TE);
4359 continue;
4360 }
4361 // Build a map between user nodes and their operands order to speedup
4362 // search. The graph currently does not provide this dependency directly.
4363 for (EdgeInfo &EI : TE->UserTreeIndices) {
4364 TreeEntry *UserTE = EI.UserTE;
4365 auto It = Users.find(UserTE);
4366 if (It == Users.end())
4367 It = Users.insert({UserTE, {}}).first;
4368 It->second.emplace_back(EI.EdgeIdx, TE);
4369 }
4370 }
4371 // Erase filtered entries.
4372 for_each(Filtered,
4373 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
4374 SmallVector<
4375 std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>>
4376 UsersVec(Users.begin(), Users.end());
4377 sort(UsersVec, [](const auto &Data1, const auto &Data2) {
4378 return Data1.first->Idx > Data2.first->Idx;
4379 });
4380 for (auto &Data : UsersVec) {
4381 // Check that operands are used only in the User node.
4382 SmallVector<TreeEntry *> GatherOps;
4383 if (!canReorderOperands(Data.first, Data.second, NonVectorized,
4384 GatherOps)) {
4385 for_each(Data.second,
4386 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4387 OrderedEntries.remove(Op.second);
4388 });
4389 continue;
4390 }
4391 // All operands are reordered and used only in this node - propagate the
4392 // most used order to the user node.
4393 MapVector<OrdersType, unsigned,
4394 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
4395 OrdersUses;
4396 // Do the analysis for each tree entry only once, otherwise the order of
4397 // the same node my be considered several times, though might be not
4398 // profitable.
4399 SmallPtrSet<const TreeEntry *, 4> VisitedOps;
4400 SmallPtrSet<const TreeEntry *, 4> VisitedUsers;
4401 for (const auto &Op : Data.second) {
4402 TreeEntry *OpTE = Op.second;
4403 if (!VisitedOps.insert(OpTE).second)
4404 continue;
4405 if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE))
4406 continue;
4407 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
4408 if (OpTE->State == TreeEntry::NeedToGather ||
4409 !OpTE->ReuseShuffleIndices.empty())
4410 return GathersToOrders.find(OpTE)->second;
4411 return OpTE->ReorderIndices;
4412 }();
4413 unsigned NumOps = count_if(
4414 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) {
4415 return P.second == OpTE;
4416 });
4417 // Stores actually store the mask, not the order, need to invert.
4418 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
4419 OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
4420 SmallVector<int> Mask;
4421 inversePermutation(Order, Mask);
4422 unsigned E = Order.size();
4423 OrdersType CurrentOrder(E, E);
4424 transform(Mask, CurrentOrder.begin(), [E](int Idx) {
4425 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
4426 });
4427 fixupOrderingIndices(CurrentOrder);
4428 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second +=
4429 NumOps;
4430 } else {
4431 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps;
4432 }
4433 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0));
4434 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders](
4435 const TreeEntry *TE) {
4436 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4437 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) ||
4438 (IgnoreReorder && TE->Idx == 0))
4439 return true;
4440 if (TE->State == TreeEntry::NeedToGather) {
4441 auto It = GathersToOrders.find(TE);
4442 if (It != GathersToOrders.end())
4443 return !It->second.empty();
4444 return true;
4445 }
4446 return false;
4447 };
4448 for (const EdgeInfo &EI : OpTE->UserTreeIndices) {
4449 TreeEntry *UserTE = EI.UserTE;
4450 if (!VisitedUsers.insert(UserTE).second)
4451 continue;
4452 // May reorder user node if it requires reordering, has reused
4453 // scalars, is an alternate op vectorize node or its op nodes require
4454 // reordering.
4455 if (AllowsReordering(UserTE))
4456 continue;
4457 // Check if users allow reordering.
4458 // Currently look up just 1 level of operands to avoid increase of
4459 // the compile time.
4460 // Profitable to reorder if definitely more operands allow
4461 // reordering rather than those with natural order.
4462 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE];
4463 if (static_cast<unsigned>(count_if(
4464 Ops, [UserTE, &AllowsReordering](
4465 const std::pair<unsigned, TreeEntry *> &Op) {
4466 return AllowsReordering(Op.second) &&
4467 all_of(Op.second->UserTreeIndices,
4468 [UserTE](const EdgeInfo &EI) {
4469 return EI.UserTE == UserTE;
4470 });
4471 })) <= Ops.size() / 2)
4472 ++Res.first->second;
4473 }
4474 }
4475 // If no orders - skip current nodes and jump to the next one, if any.
4476 if (OrdersUses.empty()) {
4477 for_each(Data.second,
4478 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4479 OrderedEntries.remove(Op.second);
4480 });
4481 continue;
4482 }
4483 // Choose the best order.
4484 ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
4485 unsigned Cnt = OrdersUses.front().second;
4486 for (const auto &Pair : drop_begin(OrdersUses)) {
4487 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
4488 BestOrder = Pair.first;
4489 Cnt = Pair.second;
4490 }
4491 }
4492 // Set order of the user node (reordering of operands and user nodes).
4493 if (BestOrder.empty()) {
4494 for_each(Data.second,
4495 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4496 OrderedEntries.remove(Op.second);
4497 });
4498 continue;
4499 }
4500 // Erase operands from OrderedEntries list and adjust their orders.
4501 VisitedOps.clear();
4502 SmallVector<int> Mask;
4503 inversePermutation(BestOrder, Mask);
4504 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
4505 unsigned E = BestOrder.size();
4506 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
4507 return I < E ? static_cast<int>(I) : UndefMaskElem;
4508 });
4509 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
4510 TreeEntry *TE = Op.second;
4511 OrderedEntries.remove(TE);
4512 if (!VisitedOps.insert(TE).second)
4513 continue;
4514 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) {
4515 reorderNodeWithReuses(*TE, Mask);
4516 continue;
4517 }
4518 // Gathers are processed separately.
4519 if (TE->State != TreeEntry::Vectorize)
4520 continue;
4521 assert((BestOrder.size() == TE->ReorderIndices.size() ||(static_cast <bool> ((BestOrder.size() == TE->ReorderIndices
.size() || TE->ReorderIndices.empty()) && "Non-matching sizes of user/operand entries."
) ? void (0) : __assert_fail ("(BestOrder.size() == TE->ReorderIndices.size() || TE->ReorderIndices.empty()) && \"Non-matching sizes of user/operand entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4523, __extension__
__PRETTY_FUNCTION__))
4522 TE->ReorderIndices.empty()) &&(static_cast <bool> ((BestOrder.size() == TE->ReorderIndices
.size() || TE->ReorderIndices.empty()) && "Non-matching sizes of user/operand entries."
) ? void (0) : __assert_fail ("(BestOrder.size() == TE->ReorderIndices.size() || TE->ReorderIndices.empty()) && \"Non-matching sizes of user/operand entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4523, __extension__
__PRETTY_FUNCTION__))
4523 "Non-matching sizes of user/operand entries.")(static_cast <bool> ((BestOrder.size() == TE->ReorderIndices
.size() || TE->ReorderIndices.empty()) && "Non-matching sizes of user/operand entries."
) ? void (0) : __assert_fail ("(BestOrder.size() == TE->ReorderIndices.size() || TE->ReorderIndices.empty()) && \"Non-matching sizes of user/operand entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4523, __extension__
__PRETTY_FUNCTION__))
;
4524 reorderOrder(TE->ReorderIndices, Mask);
4525 if (IgnoreReorder && TE == VectorizableTree.front().get())
4526 IgnoreReorder = false;
4527 }
4528 // For gathers just need to reorder its scalars.
4529 for (TreeEntry *Gather : GatherOps) {
4530 assert(Gather->ReorderIndices.empty() &&(static_cast <bool> (Gather->ReorderIndices.empty() &&
"Unexpected reordering of gathers.") ? void (0) : __assert_fail
("Gather->ReorderIndices.empty() && \"Unexpected reordering of gathers.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4531, __extension__
__PRETTY_FUNCTION__))
4531 "Unexpected reordering of gathers.")(static_cast <bool> (Gather->ReorderIndices.empty() &&
"Unexpected reordering of gathers.") ? void (0) : __assert_fail
("Gather->ReorderIndices.empty() && \"Unexpected reordering of gathers.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4531, __extension__
__PRETTY_FUNCTION__))
;
4532 if (!Gather->ReuseShuffleIndices.empty()) {
4533 // Just reorder reuses indices.
4534 reorderReuses(Gather->ReuseShuffleIndices, Mask);
4535 continue;
4536 }
4537 reorderScalars(Gather->Scalars, Mask);
4538 OrderedEntries.remove(Gather);
4539 }
4540 // Reorder operands of the user node and set the ordering for the user
4541 // node itself.
4542 if (Data.first->State != TreeEntry::Vectorize ||
4543 !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
4544 Data.first->getMainOp()) ||
4545 Data.first->isAltShuffle())
4546 Data.first->reorderOperands(Mask);
4547 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
4548 Data.first->isAltShuffle()) {
4549 reorderScalars(Data.first->Scalars, Mask);
4550 reorderOrder(Data.first->ReorderIndices, MaskOrder);
4551 if (Data.first->ReuseShuffleIndices.empty() &&
4552 !Data.first->ReorderIndices.empty() &&
4553 !Data.first->isAltShuffle()) {
4554 // Insert user node to the list to try to sink reordering deeper in
4555 // the graph.
4556 OrderedEntries.insert(Data.first);
4557 }
4558 } else {
4559 reorderOrder(Data.first->ReorderIndices, Mask);
4560 }
4561 }
4562 }
4563 // If the reordering is unnecessary, just remove the reorder.
4564 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
4565 VectorizableTree.front()->ReuseShuffleIndices.empty())
4566 VectorizableTree.front()->ReorderIndices.clear();
4567}
4568
4569void BoUpSLP::buildExternalUses(
4570 const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4571 // Collect the values that we need to extract from the tree.
4572 for (auto &TEPtr : VectorizableTree) {
4573 TreeEntry *Entry = TEPtr.get();
4574
4575 // No need to handle users of gathered values.
4576 if (Entry->State == TreeEntry::NeedToGather)
4577 continue;
4578
4579 // For each lane:
4580 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4581 Value *Scalar = Entry->Scalars[Lane];
4582 int FoundLane = Entry->findLaneForValue(Scalar);
4583
4584 // Check if the scalar is externally used as an extra arg.
4585 auto ExtI = ExternallyUsedValues.find(Scalar);
4586 if (ExtI != ExternallyUsedValues.end()) {
4587 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
4588 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
;
4589 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
4590 }
4591 for (User *U : Scalar->users()) {
4592 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Checking user:" << *U <<
".\n"; } } while (false)
;
4593
4594 Instruction *UserInst = dyn_cast<Instruction>(U);
4595 if (!UserInst)
4596 continue;
4597
4598 if (isDeleted(UserInst))
4599 continue;
4600
4601 // Skip in-tree scalars that become vectors
4602 if (TreeEntry *UseEntry = getTreeEntry(U)) {
4603 Value *UseScalar = UseEntry->Scalars[0];
4604 // Some in-tree scalars will remain as scalar in vectorized
4605 // instructions. If that is the case, the one in Lane 0 will
4606 // be used.
4607 if (UseScalar != U ||
4608 UseEntry->State == TreeEntry::ScatterVectorize ||
4609 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
4610 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *Udo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
4611 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
;
4612 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state")(static_cast <bool> (UseEntry->State != TreeEntry::NeedToGather
&& "Bad state") ? void (0) : __assert_fail ("UseEntry->State != TreeEntry::NeedToGather && \"Bad state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4612, __extension__
__PRETTY_FUNCTION__))
;
4613 continue;
4614 }
4615 }
4616
4617 // Ignore users in the user ignore list.
4618 if (UserIgnoreList && UserIgnoreList->contains(UserInst))
4619 continue;
4620
4621 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
4622 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
;
4623 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
4624 }
4625 }
4626 }
4627}
4628
4629DenseMap<Value *, SmallVector<StoreInst *, 4>>
4630BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const {
4631 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap;
4632 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) {
4633 Value *V = TE->Scalars[Lane];
4634 // To save compilation time we don't visit if we have too many users.
4635 static constexpr unsigned UsersLimit = 4;
4636 if (V->hasNUsesOrMore(UsersLimit))
4637 break;
4638
4639 // Collect stores per pointer object.
4640 for (User *U : V->users()) {
4641 auto *SI = dyn_cast<StoreInst>(U);
4642 if (SI == nullptr || !SI->isSimple() ||
4643 !isValidElementType(SI->getValueOperand()->getType()))
4644 continue;
4645 // Skip entry if already
4646 if (getTreeEntry(U))
4647 continue;
4648
4649 Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
4650 auto &StoresVec = PtrToStoresMap[Ptr];
4651 // For now just keep one store per pointer object per lane.
4652 // TODO: Extend this to support multiple stores per pointer per lane
4653 if (StoresVec.size() > Lane)
4654 continue;
4655 // Skip if in different BBs.
4656 if (!StoresVec.empty() &&
4657 SI->getParent() != StoresVec.back()->getParent())
4658 continue;
4659 // Make sure that the stores are of the same type.
4660 if (!StoresVec.empty() &&
4661 SI->getValueOperand()->getType() !=
4662 StoresVec.back()->getValueOperand()->getType())
4663 continue;
4664 StoresVec.push_back(SI);
4665 }
4666 }
4667 return PtrToStoresMap;
4668}
4669
4670bool BoUpSLP::canFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
4671 OrdersType &ReorderIndices) const {
4672 // We check whether the stores in StoreVec can form a vector by sorting them
4673 // and checking whether they are consecutive.
4674
4675 // To avoid calling getPointersDiff() while sorting we create a vector of
4676 // pairs {store, offset from first} and sort this instead.
4677 SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size());
4678 StoreInst *S0 = StoresVec[0];
4679 StoreOffsetVec[0] = {S0, 0};
4680 Type *S0Ty = S0->getValueOperand()->getType();
4681 Value *S0Ptr = S0->getPointerOperand();
4682 for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) {
4683 StoreInst *SI = StoresVec[Idx];
4684 Optional<int> Diff =
4685 getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(),
4686 SI->getPointerOperand(), *DL, *SE,
4687 /*StrictCheck=*/true);
4688 // We failed to compare the pointers so just abandon this StoresVec.
4689 if (!Diff)
4690 return false;
4691 StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff};
4692 }
4693
4694 // Sort the vector based on the pointers. We create a copy because we may
4695 // need the original later for calculating the reorder (shuffle) indices.
4696 stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1,
4697 const std::pair<StoreInst *, int> &Pair2) {
4698 int Offset1 = Pair1.second;
4699 int Offset2 = Pair2.second;
4700 return Offset1 < Offset2;
4701 });
4702
4703 // Check if the stores are consecutive by checking if their difference is 1.
4704 for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size()))
4705 if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1)
4706 return false;
4707
4708 // Calculate the shuffle indices according to their offset against the sorted
4709 // StoreOffsetVec.
4710 ReorderIndices.reserve(StoresVec.size());
4711 for (StoreInst *SI : StoresVec) {
4712 unsigned Idx = find_if(StoreOffsetVec,
4713 [SI](const std::pair<StoreInst *, int> &Pair) {
4714 return Pair.first == SI;
4715 }) -
4716 StoreOffsetVec.begin();
4717 ReorderIndices.push_back(Idx);
4718 }
4719 // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in
4720 // reorderTopToBottom() and reorderBottomToTop(), so we are following the
4721 // same convention here.
4722 auto IsIdentityOrder = [](const OrdersType &Order) {
4723 for (unsigned Idx : seq<unsigned>(0, Order.size()))
4724 if (Idx != Order[Idx])
4725 return false;
4726 return true;
4727 };
4728 if (IsIdentityOrder(ReorderIndices))
4729 ReorderIndices.clear();
4730
4731 return true;
4732}
4733
4734#ifndef NDEBUG
4735LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static void dumpOrder(const BoUpSLP::OrdersType &Order) {
4736 for (unsigned Idx : Order)
4737 dbgs() << Idx << ", ";
4738 dbgs() << "\n";
4739}
4740#endif
4741
4742SmallVector<BoUpSLP::OrdersType, 1>
4743BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const {
4744 unsigned NumLanes = TE->Scalars.size();
4745
4746 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap =
4747 collectUserStores(TE);
4748
4749 // Holds the reorder indices for each candidate store vector that is a user of
4750 // the current TreeEntry.
4751 SmallVector<OrdersType, 1> ExternalReorderIndices;
4752
4753 // Now inspect the stores collected per pointer and look for vectorization
4754 // candidates. For each candidate calculate the reorder index vector and push
4755 // it into `ExternalReorderIndices`
4756 for (const auto &Pair : PtrToStoresMap) {
4757 auto &StoresVec = Pair.second;
4758 // If we have fewer than NumLanes stores, then we can't form a vector.
4759 if (StoresVec.size() != NumLanes)
4760 continue;
4761
4762 // If the stores are not consecutive then abandon this StoresVec.
4763 OrdersType ReorderIndices;
4764 if (!canFormVector(StoresVec, ReorderIndices))
4765 continue;
4766
4767 // We now know that the scalars in StoresVec can form a vector instruction,
4768 // so set the reorder indices.
4769 ExternalReorderIndices.push_back(ReorderIndices);
4770 }
4771 return ExternalReorderIndices;
4772}
4773
4774void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
4775 const SmallDenseSet<Value *> &UserIgnoreLst) {
4776 deleteTree();
4777 UserIgnoreList = &UserIgnoreLst;
4778 if (!allSameType(Roots))
4779 return;
4780 buildTree_rec(Roots, 0, EdgeInfo());
4781}
4782
4783void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
4784 deleteTree();
4785 if (!allSameType(Roots))
4786 return;
4787 buildTree_rec(Roots, 0, EdgeInfo());
4788}
4789
4790/// \return true if the specified list of values has only one instruction that
4791/// requires scheduling, false otherwise.
4792#ifndef NDEBUG
4793static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) {
4794 Value *NeedsScheduling = nullptr;
4795 for (Value *V : VL) {
4796 if (doesNotNeedToBeScheduled(V))
4797 continue;
4798 if (!NeedsScheduling) {
4799 NeedsScheduling = V;
4800 continue;
4801 }
4802 return false;
4803 }
4804 return NeedsScheduling;
4805}
4806#endif
4807
4808/// Generates key/subkey pair for the given value to provide effective sorting
4809/// of the values and better detection of the vectorizable values sequences. The
4810/// keys/subkeys can be used for better sorting of the values themselves (keys)
4811/// and in values subgroups (subkeys).
4812static std::pair<size_t, size_t> generateKeySubkey(
4813 Value *V, const TargetLibraryInfo *TLI,
4814 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator,
4815 bool AllowAlternate) {
4816 hash_code Key = hash_value(V->getValueID() + 2);
4817 hash_code SubKey = hash_value(0);
4818 // Sort the loads by the distance between the pointers.
4819 if (auto *LI = dyn_cast<LoadInst>(V)) {
4820 Key = hash_combine(LI->getType(), hash_value(Instruction::Load), Key);
4821 if (LI->isSimple())
4822 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI));
4823 else
4824 Key = SubKey = hash_value(LI);
4825 } else if (isVectorLikeInstWithConstOps(V)) {
4826 // Sort extracts by the vector operands.
4827 if (isa<ExtractElementInst, UndefValue>(V))
4828 Key = hash_value(Value::UndefValueVal + 1);
4829 if (auto *EI = dyn_cast<ExtractElementInst>(V)) {
4830 if (!isUndefVector(EI->getVectorOperand()).all() &&
4831 !isa<UndefValue>(EI->getIndexOperand()))
4832 SubKey = hash_value(EI->getVectorOperand());
4833 }
4834 } else if (auto *I = dyn_cast<Instruction>(V)) {
4835 // Sort other instructions just by the opcodes except for CMPInst.
4836 // For CMP also sort by the predicate kind.
4837 if ((isa<BinaryOperator, CastInst>(I)) &&
4838 isValidForAlternation(I->getOpcode())) {
4839 if (AllowAlternate)
4840 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0);
4841 else
4842 Key = hash_combine(hash_value(I->getOpcode()), Key);
4843 SubKey = hash_combine(
4844 hash_value(I->getOpcode()), hash_value(I->getType()),
4845 hash_value(isa<BinaryOperator>(I)
4846 ? I->getType()
4847 : cast<CastInst>(I)->getOperand(0)->getType()));
4848 // For casts, look through the only operand to improve compile time.
4849 if (isa<CastInst>(I)) {
4850 std::pair<size_t, size_t> OpVals =
4851 generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator,
4852 /*AllowAlternate=*/true);
4853 Key = hash_combine(OpVals.first, Key);
4854 SubKey = hash_combine(OpVals.first, SubKey);
4855 }
4856 } else if (auto *CI = dyn_cast<CmpInst>(I)) {
4857 CmpInst::Predicate Pred = CI->getPredicate();
4858 if (CI->isCommutative())
4859 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred));
4860 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred);
4861 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred),
4862 hash_value(SwapPred),
4863 hash_value(CI->getOperand(0)->getType()));
4864 } else if (auto *Call = dyn_cast<CallInst>(I)) {
4865 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI);
4866 if (isTriviallyVectorizable(ID)) {
4867 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID));
4868 } else if (!VFDatabase(*Call).getMappings(*Call).empty()) {
4869 SubKey = hash_combine(hash_value(I->getOpcode()),
4870 hash_value(Call->getCalledFunction()));
4871 } else {
4872 Key = hash_combine(hash_value(Call), Key);
4873 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call));
4874 }
4875 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos())
4876 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End),
4877 hash_value(Op.Tag), SubKey);
4878 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
4879 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1)))
4880 SubKey = hash_value(Gep->getPointerOperand());
4881 else
4882 SubKey = hash_value(Gep);
4883 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) &&
4884 !isa<ConstantInt>(I->getOperand(1))) {
4885 // Do not try to vectorize instructions with potentially high cost.
4886 SubKey = hash_value(I);
4887 } else {
4888 SubKey = hash_value(I->getOpcode());
4889 }
4890 Key = hash_combine(hash_value(I->getParent()), Key);
4891 }
4892 return std::make_pair(Key, SubKey);
4893}
4894
4895/// Checks if the specified instruction \p I is an alternate operation for
4896/// the given \p MainOp and \p AltOp instructions.
4897static bool isAlternateInstruction(const Instruction *I,
4898 const Instruction *MainOp,
4899 const Instruction *AltOp,
4900 const TargetLibraryInfo &TLI);
4901
4902void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
4903 const EdgeInfo &UserTreeIdx) {
4904 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!")(static_cast <bool> ((allConstant(VL) || allSameType(VL
)) && "Invalid types!") ? void (0) : __assert_fail ("(allConstant(VL) || allSameType(VL)) && \"Invalid types!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 4904, __extension__
__PRETTY_FUNCTION__))
;
4905
4906 SmallVector<int> ReuseShuffleIndicies;
4907 SmallVector<Value *> UniqueValues;
4908 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues,
4909 &UserTreeIdx,
4910 this](const InstructionsState &S) {
4911 // Check that every instruction appears once in this bundle.
4912 DenseMap<Value *, unsigned> UniquePositions(VL.size());
4913 for (Value *V : VL) {
4914 if (isConstant(V)) {
4915 ReuseShuffleIndicies.emplace_back(
4916 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size());
4917 UniqueValues.emplace_back(V);
4918 continue;
4919 }
4920 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4921 ReuseShuffleIndicies.emplace_back(Res.first->second);
4922 if (Res.second)
4923 UniqueValues.emplace_back(V);
4924 }
4925 size_t NumUniqueScalarValues = UniqueValues.size();
4926 if (NumUniqueScalarValues == VL.size()) {
4927 ReuseShuffleIndicies.clear();
4928 } else {
4929 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Shuffle for reused scalars.\n"
; } } while (false)
;
4930 if (NumUniqueScalarValues <= 1 ||
4931 (UniquePositions.size() == 1 && all_of(UniqueValues,
4932 [](Value *V) {
4933 return isa<UndefValue>(V) ||
4934 !isConstant(V);
4935 })) ||
4936 !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
4937 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Scalar used twice in bundle.\n"
; } } while (false)
;
4938 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4939 return false;
4940 }
4941 VL = UniqueValues;
4942 }
4943 return true;
4944 };
4945
4946 InstructionsState S = getSameOpcode(VL, *TLI);
4947
4948 // Gather if we hit the RecursionMaxDepth, unless this is a load (or z/sext of
4949 // a load), in which case peek through to include it in the tree, without
4950 // ballooning over-budget.
4951 if (Depth >= RecursionMaxDepth &&
4952 !(S.MainOp && isa<Instruction>(S.MainOp) && S.MainOp == S.AltOp &&
4953 VL.size() >= 4 &&
4954 (match(S.MainOp, m_Load(m_Value())) || all_of(VL, [&S](const Value *I) {
4955 return match(I,
4956 m_OneUse(m_ZExtOrSExt(m_OneUse(m_Load(m_Value()))))) &&
4957 cast<Instruction>(I)->getOpcode() ==
4958 cast<Instruction>(S.MainOp)->getOpcode();
4959 })))) {
4960 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to max recursion depth.\n"
; } } while (false)
;
4961 if (TryToFindDuplicates(S))
4962 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4963 ReuseShuffleIndicies);
4964 return;
4965 }
4966
4967 // Don't handle scalable vectors
4968 if (S.getOpcode() == Instruction::ExtractElement &&
4969 isa<ScalableVectorType>(
4970 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
4971 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to scalable vector type.\n"
; } } while (false)
;
4972 if (TryToFindDuplicates(S))
4973 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4974 ReuseShuffleIndicies);
4975 return;
4976 }
4977
4978 // Don't handle vectors.
4979 if (S.OpValue->getType()->isVectorTy() &&
4980 !isa<InsertElementInst>(S.OpValue)) {
4981 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to vector type.\n"
; } } while (false)
;
4982 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4983 return;
4984 }
4985
4986 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
4987 if (SI->getValueOperand()->getType()->isVectorTy()) {
4988 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to store vector type.\n"
; } } while (false)
;
4989 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4990 return;
4991 }
4992
4993 // If all of the operands are identical or constant we have a simple solution.
4994 // If we deal with insert/extract instructions, they all must have constant
4995 // indices, otherwise we should gather them, not try to vectorize.
4996 // If alternate op node with 2 elements with gathered operands - do not
4997 // vectorize.
4998 auto &&NotProfitableForVectorization = [&S, this,
4999 Depth](ArrayRef<Value *> VL) {
5000 if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2)
5001 return false;
5002 if (VectorizableTree.size() < MinTreeSize)
5003 return false;
5004 if (Depth >= RecursionMaxDepth - 1)
5005 return true;
5006 // Check if all operands are extracts, part of vector node or can build a
5007 // regular vectorize node.
5008 SmallVector<unsigned, 2> InstsCount(VL.size(), 0);
5009 for (Value *V : VL) {
5010 auto *I = cast<Instruction>(V);
5011 InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) {
5012 return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op);
5013 }));
5014 }
5015 bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp);
5016 if ((IsCommutative &&
5017 std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) ||
5018 (!IsCommutative &&
5019 all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; })))
5020 return true;
5021 assert(VL.size() == 2 && "Expected only 2 alternate op instructions.")(static_cast <bool> (VL.size() == 2 && "Expected only 2 alternate op instructions."
) ? void (0) : __assert_fail ("VL.size() == 2 && \"Expected only 2 alternate op instructions.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5021, __extension__
__PRETTY_FUNCTION__))
;
5022 SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates;
5023 auto *I1 = cast<Instruction>(VL.front());
5024 auto *I2 = cast<Instruction>(VL.back());
5025 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
5026 Candidates.emplace_back().emplace_back(I1->getOperand(Op),
5027 I2->getOperand(Op));
5028 if (static_cast<unsigned>(count_if(
5029 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
5030 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
5031 })) >= S.MainOp->getNumOperands() / 2)
5032 return false;
5033 if (S.MainOp->getNumOperands() > 2)
5034 return true;
5035 if (IsCommutative) {
5036 // Check permuted operands.
5037 Candidates.clear();
5038 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
5039 Candidates.emplace_back().emplace_back(I1->getOperand(Op),
5040 I2->getOperand((Op + 1) % E));
5041 if (any_of(
5042 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
5043 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
5044 }))
5045 return false;
5046 }
5047 return true;
5048 };
5049 SmallVector<unsigned> SortedIndices;
5050 BasicBlock *BB = nullptr;
5051 bool IsScatterVectorizeUserTE =
5052 UserTreeIdx.UserTE &&
5053 UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize;
5054 bool AreAllSameInsts =
5055 (S.getOpcode() && allSameBlock(VL)) ||
5056 (S.OpValue->getType()->isPointerTy() && IsScatterVectorizeUserTE &&
5057 VL.size() > 2 &&
5058 all_of(VL,
5059 [&BB](Value *V) {
5060 auto *I = dyn_cast<GetElementPtrInst>(V);
5061 if (!I)
5062 return doesNotNeedToBeScheduled(V);
5063 if (!BB)
5064 BB = I->getParent();
5065 return BB == I->getParent() && I->getNumOperands() == 2;
5066 }) &&
5067 BB &&
5068 sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE,
5069 SortedIndices));
5070 if (!AreAllSameInsts || allConstant(VL) || isSplat(VL) ||
5071 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(
5072 S.OpValue) &&
5073 !all_of(VL, isVectorLikeInstWithConstOps)) ||
5074 NotProfitableForVectorization(VL)) {
5075 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n"
; } } while (false)
;
5076 if (TryToFindDuplicates(S))
5077 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5078 ReuseShuffleIndicies);
5079 return;
5080 }
5081
5082 // We now know that this is a vector of instructions of the same type from
5083 // the same block.
5084
5085 // Don't vectorize ephemeral values.
5086 if (!EphValues.empty()) {
5087 for (Value *V : VL) {
5088 if (EphValues.count(V)) {
5089 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
5090 << ") is ephemeral.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is ephemeral.\n"; } } while (false)
;
5091 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
5092 return;
5093 }
5094 }
5095 }
5096
5097 // Check if this is a duplicate of another entry.
5098 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
5099 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tChecking bundle: " <<
*S.OpValue << ".\n"; } } while (false)
;
5100 if (!E->isSame(VL)) {
5101 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to partial overlap.\n"
; } } while (false)
;
5102 if (TryToFindDuplicates(S))
5103 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5104 ReuseShuffleIndicies);
5105 return;
5106 }
5107 // Record the reuse of the tree node. FIXME, currently this is only used to
5108 // properly draw the graph rather than for the actual vectorization.
5109 E->UserTreeIndices.push_back(UserTreeIdx);
5110 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValuedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
5111 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
;
5112 return;
5113 }
5114
5115 // Check that none of the instructions in the bundle are already in the tree.
5116 for (Value *V : VL) {
5117 if (!IsScatterVectorizeUserTE && !isa<Instruction>(V))
5118 continue;
5119 if (getTreeEntry(V)) {
5120 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
5121 << ") is already in tree.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
V << ") is already in tree.\n"; } } while (false)
;
5122 if (TryToFindDuplicates(S))
5123 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5124 ReuseShuffleIndicies);
5125 return;
5126 }
5127 }
5128
5129 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
5130 if (UserIgnoreList && !UserIgnoreList->empty()) {
5131 for (Value *V : VL) {
5132 if (UserIgnoreList && UserIgnoreList->contains(V)) {
5133 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to gathered scalar.\n"
; } } while (false)
;
5134 if (TryToFindDuplicates(S))
5135 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5136 ReuseShuffleIndicies);
5137 return;
5138 }
5139 }
5140 }
5141
5142 // Special processing for sorted pointers for ScatterVectorize node with
5143 // constant indeces only.
5144 if (AreAllSameInsts && UserTreeIdx.UserTE &&
5145 UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize &&
5146 !(S.getOpcode() && allSameBlock(VL))) {
5147 assert(S.OpValue->getType()->isPointerTy() &&(static_cast <bool> (S.OpValue->getType()->isPointerTy
() && count_if(VL, [](Value *V) { return isa<GetElementPtrInst
>(V); }) >= 2 && "Expected pointers only.") ? void
(0) : __assert_fail ("S.OpValue->getType()->isPointerTy() && count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >= 2 && \"Expected pointers only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5150, __extension__
__PRETTY_FUNCTION__))
5148 count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >=(static_cast <bool> (S.OpValue->getType()->isPointerTy
() && count_if(VL, [](Value *V) { return isa<GetElementPtrInst
>(V); }) >= 2 && "Expected pointers only.") ? void
(0) : __assert_fail ("S.OpValue->getType()->isPointerTy() && count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >= 2 && \"Expected pointers only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5150, __extension__
__PRETTY_FUNCTION__))
5149 2 &&(static_cast <bool> (S.OpValue->getType()->isPointerTy
() && count_if(VL, [](Value *V) { return isa<GetElementPtrInst
>(V); }) >= 2 && "Expected pointers only.") ? void
(0) : __assert_fail ("S.OpValue->getType()->isPointerTy() && count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >= 2 && \"Expected pointers only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5150, __extension__
__PRETTY_FUNCTION__))
5150 "Expected pointers only.")(static_cast <bool> (S.OpValue->getType()->isPointerTy
() && count_if(VL, [](Value *V) { return isa<GetElementPtrInst
>(V); }) >= 2 && "Expected pointers only.") ? void
(0) : __assert_fail ("S.OpValue->getType()->isPointerTy() && count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >= 2 && \"Expected pointers only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5150, __extension__
__PRETTY_FUNCTION__))
;
5151 // Reset S to make it GetElementPtr kind of node.
5152 const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
5153 assert(It != VL.end() && "Expected at least one GEP.")(static_cast <bool> (It != VL.end() && "Expected at least one GEP."
) ? void (0) : __assert_fail ("It != VL.end() && \"Expected at least one GEP.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5153, __extension__
__PRETTY_FUNCTION__))
;
5154 S = getSameOpcode(*It, *TLI);
5155 }
5156
5157 // Check that all of the users of the scalars that we want to vectorize are
5158 // schedulable.
5159 auto *VL0 = cast<Instruction>(S.OpValue);
5160 BB = VL0->getParent();
5161
5162 if (!DT->isReachableFromEntry(BB)) {
5163 // Don't go into unreachable blocks. They may contain instructions with
5164 // dependency cycles which confuse the final scheduling.
5165 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle in unreachable block.\n"
; } } while (false)
;
5166 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
5167 return;
5168 }
5169
5170 // Don't go into catchswitch blocks, which can happen with PHIs.
5171 // Such blocks can only have PHIs and the catchswitch. There is no
5172 // place to insert a shuffle if we need to, so just avoid that issue.
5173 if (isa<CatchSwitchInst>(BB->getTerminator())) {
5174 LLVM_DEBUG(dbgs() << "SLP: bundle in catchswitch block.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle in catchswitch block.\n"
; } } while (false)
;
5175 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
5176 return;
5177 }
5178
5179 // Check that every instruction appears once in this bundle.
5180 if (!TryToFindDuplicates(S))
5181 return;
5182
5183 auto &BSRef = BlocksSchedules[BB];
5184 if (!BSRef)
5185 BSRef = std::make_unique<BlockScheduling>(BB);
5186
5187 BlockScheduling &BS = *BSRef;
5188
5189 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
5190#ifdef EXPENSIVE_CHECKS
5191 // Make sure we didn't break any internal invariants
5192 BS.verify();
5193#endif
5194 if (!Bundle) {
5195 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are not able to schedule this bundle!\n"
; } } while (false)
;
5196 assert((!BS.getScheduleData(VL0) ||(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5198, __extension__
__PRETTY_FUNCTION__))
5197 !BS.getScheduleData(VL0)->isPartOfBundle()) &&(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5198, __extension__
__PRETTY_FUNCTION__))
5198 "tryScheduleBundle should cancelScheduling on failure")(static_cast <bool> ((!BS.getScheduleData(VL0) || !BS.getScheduleData
(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? void (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5198, __extension__
__PRETTY_FUNCTION__))
;
5199 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5200 ReuseShuffleIndicies);
5201 return;
5202 }
5203 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are able to schedule this bundle.\n"
; } } while (false)
;
5204
5205 unsigned ShuffleOrOp = S.isAltShuffle() ?
5206 (unsigned) Instruction::ShuffleVector : S.getOpcode();
5207 switch (ShuffleOrOp) {
5208 case Instruction::PHI: {
5209 auto *PH = cast<PHINode>(VL0);
5210
5211 // Check for terminator values (e.g. invoke).
5212 for (Value *V : VL)
5213 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) {
5214 Instruction *Term = dyn_cast<Instruction>(Incoming);
5215 if (Term && Term->isTerminator()) {
5216 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
5217 << "SLP: Need to swizzle PHINodes (terminator use).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
;
5218 BS.cancelScheduling(VL, VL0);
5219 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5220 ReuseShuffleIndicies);
5221 return;
5222 }
5223 }
5224
5225 TreeEntry *TE =
5226 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
5227 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of PHINodes.\n"
; } } while (false)
;
5228
5229 // Keeps the reordered operands to avoid code duplication.
5230 SmallVector<ValueList, 2> OperandsVec;
5231 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
5232 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
5233 ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
5234 TE->setOperand(I, Operands);
5235 OperandsVec.push_back(Operands);
5236 continue;
5237 }
5238 ValueList Operands;
5239 // Prepare the operand vector.
5240 for (Value *V : VL)
5241 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
5242 PH->getIncomingBlock(I)));
5243 TE->setOperand(I, Operands);
5244 OperandsVec.push_back(Operands);
5245 }
5246 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
5247 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
5248 return;
5249 }
5250 case Instruction::ExtractValue:
5251 case Instruction::ExtractElement: {
5252 OrdersType CurrentOrder;
5253 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
5254 if (Reuse) {
5255 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Reusing or shuffling extract sequence.\n"
; } } while (false)
;
5256 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5257 ReuseShuffleIndicies);
5258 // This is a special case, as it does not gather, but at the same time
5259 // we are not extending buildTree_rec() towards the operands.
5260 ValueList Op0;
5261 Op0.assign(VL.size(), VL0->getOperand(0));
5262 VectorizableTree.back()->setOperand(0, Op0);
5263 return;
5264 }
5265 if (!CurrentOrder.empty()) {
5266 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
5267 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
5268 "with order";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
5269 for (unsigned Idx : CurrentOrder)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
5270 dbgs() << " " << Idx;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
5271 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
5272 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
;
5273 fixupOrderingIndices(CurrentOrder);
5274 // Insert new order with initial value 0, if it does not exist,
5275 // otherwise return the iterator to the existing one.
5276 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5277 ReuseShuffleIndicies, CurrentOrder);
5278 // This is a special case, as it does not gather, but at the same time
5279 // we are not extending buildTree_rec() towards the operands.
5280 ValueList Op0;
5281 Op0.assign(VL.size(), VL0->getOperand(0));
5282 VectorizableTree.back()->setOperand(0, Op0);
5283 return;
5284 }
5285 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather extract sequence.\n";
} } while (false)
;
5286 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5287 ReuseShuffleIndicies);
5288 BS.cancelScheduling(VL, VL0);
5289 return;
5290 }
5291 case Instruction::InsertElement: {
5292 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique")(static_cast <bool> (ReuseShuffleIndicies.empty() &&
"All inserts should be unique") ? void (0) : __assert_fail (
"ReuseShuffleIndicies.empty() && \"All inserts should be unique\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5292, __extension__
__PRETTY_FUNCTION__))
;
5293
5294 // Check that we have a buildvector and not a shuffle of 2 or more
5295 // different vectors.
5296 ValueSet SourceVectors;
5297 for (Value *V : VL) {
5298 SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
5299 assert(getInsertIndex(V) != None && "Non-constant or undef index?")(static_cast <bool> (getInsertIndex(V) != None &&
"Non-constant or undef index?") ? void (0) : __assert_fail (
"getInsertIndex(V) != None && \"Non-constant or undef index?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5299, __extension__
__PRETTY_FUNCTION__))
;
5300 }
5301
5302 if (count_if(VL, [&SourceVectors](Value *V) {
5303 return !SourceVectors.contains(V);
5304 }) >= 2) {
5305 // Found 2nd source vector - cancel.
5306 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather of insertelement vectors with "
"different source vectors.\n"; } } while (false)
5307 "different source vectors.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather of insertelement vectors with "
"different source vectors.\n"; } } while (false)
;
5308 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
5309 BS.cancelScheduling(VL, VL0);
5310 return;
5311 }
5312
5313 auto OrdCompare = [](const std::pair<int, int> &P1,
5314 const std::pair<int, int> &P2) {
5315 return P1.first > P2.first;
5316 };
5317 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
5318 decltype(OrdCompare)>
5319 Indices(OrdCompare);
5320 for (int I = 0, E = VL.size(); I < E; ++I) {
5321 unsigned Idx = *getInsertIndex(VL[I]);
5322 Indices.emplace(Idx, I);
5323 }
5324 OrdersType CurrentOrder(VL.size(), VL.size());
5325 bool IsIdentity = true;
5326 for (int I = 0, E = VL.size(); I < E; ++I) {
5327 CurrentOrder[Indices.top().second] = I;
5328 IsIdentity &= Indices.top().second == I;
5329 Indices.pop();
5330 }
5331 if (IsIdentity)
5332 CurrentOrder.clear();
5333 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5334 None, CurrentOrder);
5335 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added inserts bundle.\n"; } }
while (false)
;
5336
5337 constexpr int NumOps = 2;
5338 ValueList VectorOperands[NumOps];
5339 for (int I = 0; I < NumOps; ++I) {
5340 for (Value *V : VL)
5341 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
5342
5343 TE->setOperand(I, VectorOperands[I]);
5344 }
5345 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
5346 return;
5347 }
5348 case Instruction::Load: {
5349 // Check that a vectorized load would load the same memory as a scalar
5350 // load. For example, we don't want to vectorize loads that are smaller
5351 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
5352 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
5353 // from such a struct, we read/write packed bits disagreeing with the
5354 // unvectorized version.
5355 SmallVector<Value *> PointerOps;
5356 OrdersType CurrentOrder;
5357 TreeEntry *TE = nullptr;
5358 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, *TLI,
5359 CurrentOrder, PointerOps)) {
5360 case LoadsState::Vectorize:
5361 if (CurrentOrder.empty()) {
5362 // Original loads are consecutive and does not require reordering.
5363 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5364 ReuseShuffleIndicies);
5365 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of loads.\n";
} } while (false)
;
5366 } else {
5367 fixupOrderingIndices(CurrentOrder);
5368 // Need to reorder.
5369 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5370 ReuseShuffleIndicies, CurrentOrder);
5371 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled loads.\n"
; } } while (false)
;
5372 }
5373 TE->setOperandsInOrder();
5374 break;
5375 case LoadsState::ScatterVectorize:
5376 // Vectorizing non-consecutive loads with `llvm.masked.gather`.
5377 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
5378 UserTreeIdx, ReuseShuffleIndicies);
5379 TE->setOperandsInOrder();
5380 buildTree_rec(PointerOps, Depth + 1, {TE, 0});
5381 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of non-consecutive loads.\n"
; } } while (false)
;
5382 break;
5383 case LoadsState::Gather:
5384 BS.cancelScheduling(VL, VL0);
5385 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5386 ReuseShuffleIndicies);
5387#ifndef NDEBUG
5388 Type *ScalarTy = VL0->getType();
5389 if (DL->getTypeSizeInBits(ScalarTy) !=
5390 DL->getTypeAllocSizeInBits(ScalarTy))
5391 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering loads of non-packed type.\n"
; } } while (false)
;
5392 else if (any_of(VL, [](Value *V) {
5393 return !cast<LoadInst>(V)->isSimple();
5394 }))
5395 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple loads.\n"
; } } while (false)
;
5396 else
5397 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-consecutive loads.\n"
; } } while (false)
;
5398#endif // NDEBUG
5399 break;
5400 }
5401 return;
5402 }
5403 case Instruction::ZExt:
5404 case Instruction::SExt:
5405 case Instruction::FPToUI:
5406 case Instruction::FPToSI:
5407 case Instruction::FPExt:
5408 case Instruction::PtrToInt:
5409 case Instruction::IntToPtr:
5410 case Instruction::SIToFP:
5411 case Instruction::UIToFP:
5412 case Instruction::Trunc:
5413 case Instruction::FPTrunc:
5414 case Instruction::BitCast: {
5415 Type *SrcTy = VL0->getOperand(0)->getType();
5416 for (Value *V : VL) {
5417 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
5418 if (Ty != SrcTy || !isValidElementType(Ty)) {
5419 BS.cancelScheduling(VL, VL0);
5420 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5421 ReuseShuffleIndicies);
5422 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
5423 << "SLP: Gathering casts with different src types.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
;
5424 return;
5425 }
5426 }
5427 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5428 ReuseShuffleIndicies);
5429 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of casts.\n";
} } while (false)
;
5430
5431 TE->setOperandsInOrder();
5432 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5433 ValueList Operands;
5434 // Prepare the operand vector.
5435 for (Value *V : VL)
5436 Operands.push_back(cast<Instruction>(V)->getOperand(i));
5437
5438 buildTree_rec(Operands, Depth + 1, {TE, i});
5439 }
5440 return;
5441 }
5442 case Instruction::ICmp:
5443 case Instruction::FCmp: {
5444 // Check that all of the compares have the same predicate.
5445 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5446 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
5447 Type *ComparedTy = VL0->getOperand(0)->getType();
5448 for (Value *V : VL) {
5449 CmpInst *Cmp = cast<CmpInst>(V);
5450 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
5451 Cmp->getOperand(0)->getType() != ComparedTy) {
5452 BS.cancelScheduling(VL, VL0);
5453 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5454 ReuseShuffleIndicies);
5455 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
5456 << "SLP: Gathering cmp with different predicate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
;
5457 return;
5458 }
5459 }
5460
5461 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5462 ReuseShuffleIndicies);
5463 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of compares.\n"
; } } while (false)
;
5464
5465 ValueList Left, Right;
5466 if (cast<CmpInst>(VL0)->isCommutative()) {
5467 // Commutative predicate - collect + sort operands of the instructions
5468 // so that each side is more likely to have the same opcode.
5469 assert(P0 == SwapP0 && "Commutative Predicate mismatch")(static_cast <bool> (P0 == SwapP0 && "Commutative Predicate mismatch"
) ? void (0) : __assert_fail ("P0 == SwapP0 && \"Commutative Predicate mismatch\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5469, __extension__
__PRETTY_FUNCTION__))
;
5470 reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this);
5471 } else {
5472 // Collect operands - commute if it uses the swapped predicate.
5473 for (Value *V : VL) {
5474 auto *Cmp = cast<CmpInst>(V);
5475 Value *LHS = Cmp->getOperand(0);
5476 Value *RHS = Cmp->getOperand(1);
5477 if (Cmp->getPredicate() != P0)
5478 std::swap(LHS, RHS);
5479 Left.push_back(LHS);
5480 Right.push_back(RHS);
5481 }
5482 }
5483 TE->setOperand(0, Left);
5484 TE->setOperand(1, Right);
5485 buildTree_rec(Left, Depth + 1, {TE, 0});
5486 buildTree_rec(Right, Depth + 1, {TE, 1});
5487 return;
5488 }
5489 case Instruction::Select:
5490 case Instruction::FNeg:
5491 case Instruction::Add:
5492 case Instruction::FAdd:
5493 case Instruction::Sub:
5494 case Instruction::FSub:
5495 case Instruction::Mul:
5496 case Instruction::FMul:
5497 case Instruction::UDiv:
5498 case Instruction::SDiv:
5499 case Instruction::FDiv:
5500 case Instruction::URem:
5501 case Instruction::SRem:
5502 case Instruction::FRem:
5503 case Instruction::Shl:
5504 case Instruction::LShr:
5505 case Instruction::AShr:
5506 case Instruction::And:
5507 case Instruction::Or:
5508 case Instruction::Xor: {
5509 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5510 ReuseShuffleIndicies);
5511 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of un/bin op.\n"
; } } while (false)
;
5512
5513 // Sort operands of the instructions so that each side is more likely to
5514 // have the same opcode.
5515 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
5516 ValueList Left, Right;
5517 reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this);
5518 TE->setOperand(0, Left);
5519 TE->setOperand(1, Right);
5520 buildTree_rec(Left, Depth + 1, {TE, 0});
5521 buildTree_rec(Right, Depth + 1, {TE, 1});
5522 return;
5523 }
5524
5525 TE->setOperandsInOrder();
5526 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5527 ValueList Operands;
5528 // Prepare the operand vector.
5529 for (Value *V : VL)
5530 Operands.push_back(cast<Instruction>(V)->getOperand(i));
5531
5532 buildTree_rec(Operands, Depth + 1, {TE, i});
5533 }
5534 return;
5535 }
5536 case Instruction::GetElementPtr: {
5537 // We don't combine GEPs with complicated (nested) indexing.
5538 for (Value *V : VL) {
5539 auto *I = dyn_cast<GetElementPtrInst>(V);
5540 if (!I)
5541 continue;
5542 if (I->getNumOperands() != 2) {
5543 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"
; } } while (false)
;
5544 BS.cancelScheduling(VL, VL0);
5545 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5546 ReuseShuffleIndicies);
5547 return;
5548 }
5549 }
5550
5551 // We can't combine several GEPs into one vector if they operate on
5552 // different types.
5553 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
5554 for (Value *V : VL) {
5555 auto *GEP = dyn_cast<GEPOperator>(V);
5556 if (!GEP)
5557 continue;
5558 Type *CurTy = GEP->getSourceElementType();
5559 if (Ty0 != CurTy) {
5560 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
5561 << "SLP: not-vectorizable GEP (different types).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
;
5562 BS.cancelScheduling(VL, VL0);
5563 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5564 ReuseShuffleIndicies);
5565 return;
5566 }
5567 }
5568
5569 // We don't combine GEPs with non-constant indexes.
5570 Type *Ty1 = VL0->getOperand(1)->getType();
5571 for (Value *V : VL) {
5572 auto *I = dyn_cast<GetElementPtrInst>(V);
5573 if (!I)
5574 continue;
5575 auto *Op = I->getOperand(1);
5576 if ((!IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) ||
5577 (Op->getType() != Ty1 &&
5578 ((IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) ||
5579 Op->getType()->getScalarSizeInBits() >
5580 DL->getIndexSizeInBits(
5581 V->getType()->getPointerAddressSpace())))) {
5582 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
5583 << "SLP: not-vectorizable GEP (non-constant indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
;
5584 BS.cancelScheduling(VL, VL0);
5585 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5586 ReuseShuffleIndicies);
5587 return;
5588 }
5589 }
5590
5591 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5592 ReuseShuffleIndicies);
5593 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of GEPs.\n"; }
} while (false)
;
5594 SmallVector<ValueList, 2> Operands(2);
5595 // Prepare the operand vector for pointer operands.
5596 for (Value *V : VL) {
5597 auto *GEP = dyn_cast<GetElementPtrInst>(V);
5598 if (!GEP) {
5599 Operands.front().push_back(V);
5600 continue;
5601 }
5602 Operands.front().push_back(GEP->getPointerOperand());
5603 }
5604 TE->setOperand(0, Operands.front());
5605 // Need to cast all indices to the same type before vectorization to
5606 // avoid crash.
5607 // Required to be able to find correct matches between different gather
5608 // nodes and reuse the vectorized values rather than trying to gather them
5609 // again.
5610 int IndexIdx = 1;
5611 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
5612 Type *Ty = all_of(VL,
5613 [VL0Ty, IndexIdx](Value *V) {
5614 auto *GEP = dyn_cast<GetElementPtrInst>(V);
5615 if (!GEP)
5616 return true;
5617 return VL0Ty == GEP->getOperand(IndexIdx)->getType();
5618 })
5619 ? VL0Ty
5620 : DL->getIndexType(cast<GetElementPtrInst>(VL0)
5621 ->getPointerOperandType()
5622 ->getScalarType());
5623 // Prepare the operand vector.
5624 for (Value *V : VL) {
5625 auto *I = dyn_cast<GetElementPtrInst>(V);
5626 if (!I) {
5627 Operands.back().push_back(
5628 ConstantInt::get(Ty, 0, /*isSigned=*/false));
5629 continue;
5630 }
5631 auto *Op = I->getOperand(IndexIdx);
5632 auto *CI = dyn_cast<ConstantInt>(Op);
5633 if (!CI)
5634 Operands.back().push_back(Op);
5635 else
5636 Operands.back().push_back(ConstantExpr::getIntegerCast(
5637 CI, Ty, CI->getValue().isSignBitSet()));
5638 }
5639 TE->setOperand(IndexIdx, Operands.back());
5640
5641 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
5642 buildTree_rec(Operands[I], Depth + 1, {TE, I});
5643 return;
5644 }
5645 case Instruction::Store: {
5646 // Check if the stores are consecutive or if we need to swizzle them.
5647 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
5648 // Avoid types that are padded when being allocated as scalars, while
5649 // being packed together in a vector (such as i1).
5650 if (DL->getTypeSizeInBits(ScalarTy) !=
5651 DL->getTypeAllocSizeInBits(ScalarTy)) {
5652 BS.cancelScheduling(VL, VL0);
5653 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5654 ReuseShuffleIndicies);
5655 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering stores of non-packed type.\n"
; } } while (false)
;
5656 return;
5657 }
5658 // Make sure all stores in the bundle are simple - we can't vectorize
5659 // atomic or volatile stores.
5660 SmallVector<Value *, 4> PointerOps(VL.size());
5661 ValueList Operands(VL.size());
5662 auto POIter = PointerOps.begin();
5663 auto OIter = Operands.begin();
5664 for (Value *V : VL) {
5665 auto *SI = cast<StoreInst>(V);
5666 if (!SI->isSimple()) {
5667 BS.cancelScheduling(VL, VL0);
5668 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5669 ReuseShuffleIndicies);
5670 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple stores.\n"
; } } while (false)
;
5671 return;
5672 }
5673 *POIter = SI->getPointerOperand();
5674 *OIter = SI->getValueOperand();
5675 ++POIter;
5676 ++OIter;
5677 }
5678
5679 OrdersType CurrentOrder;
5680 // Check the order of pointer operands.
5681 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
5682 Value *Ptr0;
5683 Value *PtrN;
5684 if (CurrentOrder.empty()) {
5685 Ptr0 = PointerOps.front();
5686 PtrN = PointerOps.back();
5687 } else {
5688 Ptr0 = PointerOps[CurrentOrder.front()];
5689 PtrN = PointerOps[CurrentOrder.back()];
5690 }
5691 Optional<int> Dist =
5692 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
5693 // Check that the sorted pointer operands are consecutive.
5694 if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
5695 if (CurrentOrder.empty()) {
5696 // Original stores are consecutive and does not require reordering.
5697 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
5698 UserTreeIdx, ReuseShuffleIndicies);
5699 TE->setOperandsInOrder();
5700 buildTree_rec(Operands, Depth + 1, {TE, 0});
5701 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of stores.\n"
; } } while (false)
;
5702 } else {
5703 fixupOrderingIndices(CurrentOrder);
5704 TreeEntry *TE =
5705 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5706 ReuseShuffleIndicies, CurrentOrder);
5707 TE->setOperandsInOrder();
5708 buildTree_rec(Operands, Depth + 1, {TE, 0});
5709 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled stores.\n"
; } } while (false)
;
5710 }
5711 return;
5712 }
5713 }
5714
5715 BS.cancelScheduling(VL, VL0);
5716 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5717 ReuseShuffleIndicies);
5718 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-consecutive store.\n"; }
} while (false)
;
5719 return;
5720 }
5721 case Instruction::Call: {
5722 // Check if the calls are all to the same vectorizable intrinsic or
5723 // library function.
5724 CallInst *CI = cast<CallInst>(VL0);
5725 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5726
5727 VFShape Shape = VFShape::get(
5728 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
5729 false /*HasGlobalPred*/);
5730 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
5731
5732 if (!VecFunc && !isTriviallyVectorizable(ID)) {
5733 BS.cancelScheduling(VL, VL0);
5734 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5735 ReuseShuffleIndicies);
5736 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-vectorizable call.\n"; }
} while (false)
;
5737 return;
5738 }
5739 Function *F = CI->getCalledFunction();
5740 unsigned NumArgs = CI->arg_size();
5741 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
5742 for (unsigned j = 0; j != NumArgs; ++j)
5743 if (isVectorIntrinsicWithScalarOpAtArg(ID, j))
5744 ScalarArgs[j] = CI->getArgOperand(j);
5745 for (Value *V : VL) {
5746 CallInst *CI2 = dyn_cast<CallInst>(V);
5747 if (!CI2 || CI2->getCalledFunction() != F ||
5748 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
5749 (VecFunc &&
5750 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
5751 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
5752 BS.cancelScheduling(VL, VL0);
5753 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5754 ReuseShuffleIndicies);
5755 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *Vdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
5756 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *V << "\n"; } } while (false)
;
5757 return;
5758 }
5759 // Some intrinsics have scalar arguments and should be same in order for
5760 // them to be vectorized.
5761 for (unsigned j = 0; j != NumArgs; ++j) {
5762 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) {
5763 Value *A1J = CI2->getArgOperand(j);
5764 if (ScalarArgs[j] != A1J) {
5765 BS.cancelScheduling(VL, VL0);
5766 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5767 ReuseShuffleIndicies);
5768 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
5769 << " argument " << ScalarArgs[j] << "!=" << A1Jdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
5770 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
;
5771 return;
5772 }
5773 }
5774 }
5775 // Verify that the bundle operands are identical between the two calls.
5776 if (CI->hasOperandBundles() &&
5777 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
5778 CI->op_begin() + CI->getBundleOperandsEndIndex(),
5779 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
5780 BS.cancelScheduling(VL, VL0);
5781 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5782 ReuseShuffleIndicies);
5783 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
5784 << *CI << "!=" << *V << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *V << '\n'; } } while
(false)
;
5785 return;
5786 }
5787 }
5788
5789 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5790 ReuseShuffleIndicies);
5791 TE->setOperandsInOrder();
5792 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
5793 // For scalar operands no need to to create an entry since no need to
5794 // vectorize it.
5795 if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
5796 continue;
5797 ValueList Operands;
5798 // Prepare the operand vector.
5799 for (Value *V : VL) {
5800 auto *CI2 = cast<CallInst>(V);
5801 Operands.push_back(CI2->getArgOperand(i));
5802 }
5803 buildTree_rec(Operands, Depth + 1, {TE, i});
5804 }
5805 return;
5806 }
5807 case Instruction::ShuffleVector: {
5808 // If this is not an alternate sequence of opcode like add-sub
5809 // then do not vectorize this instruction.
5810 if (!S.isAltShuffle()) {
5811 BS.cancelScheduling(VL, VL0);
5812 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5813 ReuseShuffleIndicies);
5814 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: ShuffleVector are not vectorized.\n"
; } } while (false)
;
5815 return;
5816 }
5817 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5818 ReuseShuffleIndicies);
5819 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a ShuffleVector op.\n"
; } } while (false)
;
5820
5821 // Reorder operands if reordering would enable vectorization.
5822 auto *CI = dyn_cast<CmpInst>(VL0);
5823 if (isa<BinaryOperator>(VL0) || CI) {
5824 ValueList Left, Right;
5825 if (!CI || all_of(VL, [](Value *V) {
5826 return cast<CmpInst>(V)->isCommutative();
5827 })) {
5828 reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE,
5829 *this);
5830 } else {
5831 auto *MainCI = cast<CmpInst>(S.MainOp);
5832 auto *AltCI = cast<CmpInst>(S.AltOp);
5833 CmpInst::Predicate MainP = MainCI->getPredicate();
5834 CmpInst::Predicate AltP = AltCI->getPredicate();
5835 assert(MainP != AltP &&(static_cast <bool> (MainP != AltP && "Expected different main/alternate predicates."
) ? void (0) : __assert_fail ("MainP != AltP && \"Expected different main/alternate predicates.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5836, __extension__
__PRETTY_FUNCTION__))
5836 "Expected different main/alternate predicates.")(static_cast <bool> (MainP != AltP && "Expected different main/alternate predicates."
) ? void (0) : __assert_fail ("MainP != AltP && \"Expected different main/alternate predicates.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5836, __extension__
__PRETTY_FUNCTION__))
;
5837 // Collect operands - commute if it uses the swapped predicate or
5838 // alternate operation.
5839 for (Value *V : VL) {
5840 auto *Cmp = cast<CmpInst>(V);
5841 Value *LHS = Cmp->getOperand(0);
5842 Value *RHS = Cmp->getOperand(1);
5843
5844 if (isAlternateInstruction(Cmp, MainCI, AltCI, *TLI)) {
5845 if (AltP == CmpInst::getSwappedPredicate(Cmp->getPredicate()))
5846 std::swap(LHS, RHS);
5847 } else {
5848 if (MainP == CmpInst::getSwappedPredicate(Cmp->getPredicate()))
5849 std::swap(LHS, RHS);
5850 }
5851 Left.push_back(LHS);
5852 Right.push_back(RHS);
5853 }
5854 }
5855 TE->setOperand(0, Left);
5856 TE->setOperand(1, Right);
5857 buildTree_rec(Left, Depth + 1, {TE, 0});
5858 buildTree_rec(Right, Depth + 1, {TE, 1});
5859 return;
5860 }
5861
5862 TE->setOperandsInOrder();
5863 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5864 ValueList Operands;
5865 // Prepare the operand vector.
5866 for (Value *V : VL)
5867 Operands.push_back(cast<Instruction>(V)->getOperand(i));
5868
5869 buildTree_rec(Operands, Depth + 1, {TE, i});
5870 }
5871 return;
5872 }
5873 default:
5874 BS.cancelScheduling(VL, VL0);
5875 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5876 ReuseShuffleIndicies);
5877 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering unknown instruction.\n"
; } } while (false)
;
5878 return;
5879 }
5880}
5881
5882unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
5883 unsigned N = 1;
5884 Type *EltTy = T;
5885
5886 while (isa<StructType, ArrayType, VectorType>(EltTy)) {
5887 if (auto *ST = dyn_cast<StructType>(EltTy)) {
5888 // Check that struct is homogeneous.
5889 for (const auto *Ty : ST->elements())
5890 if (Ty != *ST->element_begin())
5891 return 0;
5892 N *= ST->getNumElements();
5893 EltTy = *ST->element_begin();
5894 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
5895 N *= AT->getNumElements();
5896 EltTy = AT->getElementType();
5897 } else {
5898 auto *VT = cast<FixedVectorType>(EltTy);
5899 N *= VT->getNumElements();
5900 EltTy = VT->getElementType();
5901 }
5902 }
5903
5904 if (!isValidElementType(EltTy))
5905 return 0;
5906 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
5907 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
5908 return 0;
5909 return N;
5910}
5911
5912bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
5913 SmallVectorImpl<unsigned> &CurrentOrder) const {
5914 const auto *It = find_if(VL, [](Value *V) {
5915 return isa<ExtractElementInst, ExtractValueInst>(V);
5916 });
5917 assert(It != VL.end() && "Expected at least one extract instruction.")(static_cast <bool> (It != VL.end() && "Expected at least one extract instruction."
) ? void (0) : __assert_fail ("It != VL.end() && \"Expected at least one extract instruction.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5917, __extension__
__PRETTY_FUNCTION__))
;
5918 auto *E0 = cast<Instruction>(*It);
5919 assert(all_of(VL,(static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5924, __extension__
__PRETTY_FUNCTION__))
5920 [](Value *V) {(static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5924, __extension__
__PRETTY_FUNCTION__))
5921 return isa<UndefValue, ExtractElementInst, ExtractValueInst>((static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5924, __extension__
__PRETTY_FUNCTION__))
5922 V);(static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5924, __extension__
__PRETTY_FUNCTION__))
5923 }) &&(static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5924, __extension__
__PRETTY_FUNCTION__))
5924 "Invalid opcode")(static_cast <bool> (all_of(VL, [](Value *V) { return isa
<UndefValue, ExtractElementInst, ExtractValueInst>( V);
}) && "Invalid opcode") ? void (0) : __assert_fail (
"all_of(VL, [](Value *V) { return isa<UndefValue, ExtractElementInst, ExtractValueInst>( V); }) && \"Invalid opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 5924, __extension__
__PRETTY_FUNCTION__))
;
5925 // Check if all of the extracts come from the same vector and from the
5926 // correct offset.
5927 Value *Vec = E0->getOperand(0);
5928
5929 CurrentOrder.clear();
5930
5931 // We have to extract from a vector/aggregate with the same number of elements.
5932 unsigned NElts;
5933 if (E0->getOpcode() == Instruction::ExtractValue) {
5934 const DataLayout &DL = E0->getModule()->getDataLayout();
5935 NElts = canMapToVector(Vec->getType(), DL);
5936 if (!NElts)
5937 return false;
5938 // Check if load can be rewritten as load of vector.
5939 LoadInst *LI = dyn_cast<LoadInst>(Vec);
5940 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
5941 return false;
5942 } else {
5943 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
5944 }
5945
5946 if (NElts != VL.size())
5947 return false;
5948
5949 // Check that all of the indices extract from the correct offset.
5950 bool ShouldKeepOrder = true;
5951 unsigned E = VL.size();
5952 // Assign to all items the initial value E + 1 so we can check if the extract
5953 // instruction index was used already.
5954 // Also, later we can check that all the indices are used and we have a
5955 // consecutive access in the extract instructions, by checking that no
5956 // element of CurrentOrder still has value E + 1.
5957 CurrentOrder.assign(E, E);
5958 unsigned I = 0;
5959 for (; I < E; ++I) {
5960 auto *Inst = dyn_cast<Instruction>(VL[I]);
5961 if (!Inst)
5962 continue;
5963 if (Inst->getOperand(0) != Vec)
5964 break;
5965 if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
5966 if (isa<UndefValue>(EE->getIndexOperand()))
5967 continue;
5968 Optional<unsigned> Idx = getExtractIndex(Inst);
5969 if (!Idx)
5970 break;
5971 const unsigned ExtIdx = *Idx;
5972 if (ExtIdx != I) {
5973 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E)
5974 break;
5975 ShouldKeepOrder = false;
5976 CurrentOrder[ExtIdx] = I;
5977 } else {
5978 if (CurrentOrder[I] != E)
5979 break;
5980 CurrentOrder[I] = I;
5981 }
5982 }
5983 if (I < E) {
5984 CurrentOrder.clear();
5985 return false;
5986 }
5987 if (ShouldKeepOrder)
5988 CurrentOrder.clear();
5989
5990 return ShouldKeepOrder;
5991}
5992
5993bool BoUpSLP::areAllUsersVectorized(Instruction *I,
5994 ArrayRef<Value *> VectorizedVals) const {
5995 return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
5996 all_of(I->users(), [this](User *U) {
5997 return ScalarToTreeEntry.count(U) > 0 ||
5998 isVectorLikeInstWithConstOps(U) ||
5999 (isa<ExtractElementInst>(U) && MustGather.contains(U));
6000 });
6001}
6002
6003static std::pair<InstructionCost, InstructionCost>
6004getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
6005 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
6006 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6007
6008 // Calculate the cost of the scalar and vector calls.
6009 SmallVector<Type *, 4> VecTys;
6010 for (Use &Arg : CI->args())
6011 VecTys.push_back(
6012 FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
6013 FastMathFlags FMF;
6014 if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
6015 FMF = FPCI->getFastMathFlags();
6016 SmallVector<const Value *> Arguments(CI->args());
6017 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
6018 dyn_cast<IntrinsicInst>(CI));
6019 auto IntrinsicCost =
6020 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
6021
6022 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
6023 VecTy->getNumElements())),
6024 false /*HasGlobalPred*/);
6025 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
6026 auto LibCost = IntrinsicCost;
6027 if (!CI->isNoBuiltin() && VecFunc) {
6028 // Calculate the cost of the vector library call.
6029 // If the corresponding vector call is cheaper, return its cost.
6030 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
6031 TTI::TCK_RecipThroughput);
6032 }
6033 return {IntrinsicCost, LibCost};
6034}
6035
6036/// Compute the cost of creating a vector of type \p VecTy containing the
6037/// extracted values from \p VL.
6038static InstructionCost
6039computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
6040 TargetTransformInfo::ShuffleKind ShuffleKind,
6041 ArrayRef<int> Mask, TargetTransformInfo &TTI) {
6042 unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
6043
6044 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
6045 VecTy->getNumElements() < NumOfParts)
6046 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
6047
6048 bool AllConsecutive = true;
6049 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
6050 unsigned Idx = -1;
6051 InstructionCost Cost = 0;
6052
6053 // Process extracts in blocks of EltsPerVector to check if the source vector
6054 // operand can be re-used directly. If not, add the cost of creating a shuffle
6055 // to extract the values into a vector register.
6056 SmallVector<int> RegMask(EltsPerVector, UndefMaskElem);
6057 for (auto *V : VL) {
6058 ++Idx;
6059
6060 // Reached the start of a new vector registers.
6061 if (Idx % EltsPerVector == 0) {
6062 RegMask.assign(EltsPerVector, UndefMaskElem);
6063 AllConsecutive = true;
6064 continue;
6065 }
6066
6067 // Need to exclude undefs from analysis.
6068 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem)
6069 continue;
6070
6071 // Check all extracts for a vector register on the target directly
6072 // extract values in order.
6073 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
6074 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) {
6075 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
6076 AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
6077 CurrentIdx % EltsPerVector == Idx % EltsPerVector;
6078 RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector;
6079 }
6080
6081 if (AllConsecutive)
6082 continue;
6083
6084 // Skip all indices, except for the last index per vector block.
6085 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
6086 continue;
6087
6088 // If we have a series of extracts which are not consecutive and hence
6089 // cannot re-use the source vector register directly, compute the shuffle
6090 // cost to extract the vector with EltsPerVector elements.
6091 Cost += TTI.getShuffleCost(
6092 TargetTransformInfo::SK_PermuteSingleSrc,
6093 FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask);
6094 }
6095 return Cost;
6096}
6097
6098/// Build shuffle mask for shuffle graph entries and lists of main and alternate
6099/// operations operands.
6100static void
6101buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices,
6102 ArrayRef<int> ReusesIndices,
6103 const function_ref<bool(Instruction *)> IsAltOp,
6104 SmallVectorImpl<int> &Mask,
6105 SmallVectorImpl<Value *> *OpScalars = nullptr,
6106 SmallVectorImpl<Value *> *AltScalars = nullptr) {
6107 unsigned Sz = VL.size();
6108 Mask.assign(Sz, UndefMaskElem);
6109 SmallVector<int> OrderMask;
6110 if (!ReorderIndices.empty())
6111 inversePermutation(ReorderIndices, OrderMask);
6112 for (unsigned I = 0; I < Sz; ++I) {
6113 unsigned Idx = I;
6114 if (!ReorderIndices.empty())
6115 Idx = OrderMask[I];
6116 auto *OpInst = cast<Instruction>(VL[Idx]);
6117 if (IsAltOp(OpInst)) {
6118 Mask[I] = Sz + Idx;
6119 if (AltScalars)
6120 AltScalars->push_back(OpInst);
6121 } else {
6122 Mask[I] = Idx;
6123 if (OpScalars)
6124 OpScalars->push_back(OpInst);
6125 }
6126 }
6127 if (!ReusesIndices.empty()) {
6128 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem);
6129 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) {
6130 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem;
6131 });
6132 Mask.swap(NewMask);
6133 }
6134}
6135
6136static bool isAlternateInstruction(const Instruction *I,
6137 const Instruction *MainOp,
6138 const Instruction *AltOp,
6139 const TargetLibraryInfo &TLI) {
6140 if (auto *MainCI = dyn_cast<CmpInst>(MainOp)) {
6141 auto *AltCI = cast<CmpInst>(AltOp);
6142 CmpInst::Predicate MainP = MainCI->getPredicate();
6143 CmpInst::Predicate AltP = AltCI->getPredicate();
6144 assert(MainP != AltP && "Expected different main/alternate predicates.")(static_cast <bool> (MainP != AltP && "Expected different main/alternate predicates."
) ? void (0) : __assert_fail ("MainP != AltP && \"Expected different main/alternate predicates.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6144, __extension__
__PRETTY_FUNCTION__))
;
6145 auto *CI = cast<CmpInst>(I);
6146 if (isCmpSameOrSwapped(MainCI, CI, TLI))
6147 return false;
6148 if (isCmpSameOrSwapped(AltCI, CI, TLI))
6149 return true;
6150 CmpInst::Predicate P = CI->getPredicate();
6151 CmpInst::Predicate SwappedP = CmpInst::getSwappedPredicate(P);
6152
6153 assert((MainP == P || AltP == P || MainP == SwappedP || AltP == SwappedP) &&(static_cast <bool> ((MainP == P || AltP == P || MainP ==
SwappedP || AltP == SwappedP) && "CmpInst expected to match either main or alternate predicate or "
"their swap.") ? void (0) : __assert_fail ("(MainP == P || AltP == P || MainP == SwappedP || AltP == SwappedP) && \"CmpInst expected to match either main or alternate predicate or \" \"their swap.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6155, __extension__
__PRETTY_FUNCTION__))
6154 "CmpInst expected to match either main or alternate predicate or "(static_cast <bool> ((MainP == P || AltP == P || MainP ==
SwappedP || AltP == SwappedP) && "CmpInst expected to match either main or alternate predicate or "
"their swap.") ? void (0) : __assert_fail ("(MainP == P || AltP == P || MainP == SwappedP || AltP == SwappedP) && \"CmpInst expected to match either main or alternate predicate or \" \"their swap.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6155, __extension__
__PRETTY_FUNCTION__))
6155 "their swap.")(static_cast <bool> ((MainP == P || AltP == P || MainP ==
SwappedP || AltP == SwappedP) && "CmpInst expected to match either main or alternate predicate or "
"their swap.") ? void (0) : __assert_fail ("(MainP == P || AltP == P || MainP == SwappedP || AltP == SwappedP) && \"CmpInst expected to match either main or alternate predicate or \" \"their swap.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6155, __extension__
__PRETTY_FUNCTION__))
;
6156 (void)AltP;
6157 return MainP != P && MainP != SwappedP;
6158 }
6159 return I->getOpcode() == AltOp->getOpcode();
6160}
6161
6162TTI::OperandValueInfo BoUpSLP::getOperandInfo(ArrayRef<Value *> VL,
6163 unsigned OpIdx) {
6164 assert(!VL.empty())(static_cast <bool> (!VL.empty()) ? void (0) : __assert_fail
("!VL.empty()", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6164, __extension__ __PRETTY_FUNCTION__))
;
6165 const auto *I0 = cast<Instruction>(*find_if(VL, Instruction::classof));
6166 const auto *Op0 = I0->getOperand(OpIdx);
6167
6168 const bool IsConstant = all_of(VL, [&](Value *V) {
6169 // TODO: We should allow undef elements here
6170 const auto *I = dyn_cast<Instruction>(V);
6171 if (!I)
6172 return true;
6173 auto *Op = I->getOperand(OpIdx);
6174 return isConstant(Op) && !isa<UndefValue>(Op);
6175 });
6176 const bool IsUniform = all_of(VL, [&](Value *V) {
6177 // TODO: We should allow undef elements here
6178 const auto *I = dyn_cast<Instruction>(V);
6179 if (!I)
6180 return false;
6181 return I->getOperand(OpIdx) == Op0;
6182 });
6183 const bool IsPowerOfTwo = all_of(VL, [&](Value *V) {
6184 // TODO: We should allow undef elements here
6185 const auto *I = dyn_cast<Instruction>(V);
6186 if (!I) {
6187 assert((isa<UndefValue>(V) ||(static_cast <bool> ((isa<UndefValue>(V) || I0->
getOpcode() == Instruction::GetElementPtr) && "Expected undef or GEP."
) ? void (0) : __assert_fail ("(isa<UndefValue>(V) || I0->getOpcode() == Instruction::GetElementPtr) && \"Expected undef or GEP.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6189, __extension__
__PRETTY_FUNCTION__))
6188 I0->getOpcode() == Instruction::GetElementPtr) &&(static_cast <bool> ((isa<UndefValue>(V) || I0->
getOpcode() == Instruction::GetElementPtr) && "Expected undef or GEP."
) ? void (0) : __assert_fail ("(isa<UndefValue>(V) || I0->getOpcode() == Instruction::GetElementPtr) && \"Expected undef or GEP.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6189, __extension__
__PRETTY_FUNCTION__))
6189 "Expected undef or GEP.")(static_cast <bool> ((isa<UndefValue>(V) || I0->
getOpcode() == Instruction::GetElementPtr) && "Expected undef or GEP."
) ? void (0) : __assert_fail ("(isa<UndefValue>(V) || I0->getOpcode() == Instruction::GetElementPtr) && \"Expected undef or GEP.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6189, __extension__
__PRETTY_FUNCTION__))
;
6190 return true;
6191 }
6192 auto *Op = I->getOperand(OpIdx);
6193 if (auto *CI = dyn_cast<ConstantInt>(Op))
6194 return CI->getValue().isPowerOf2();
6195 return false;
6196 });
6197 const bool IsNegatedPowerOfTwo = all_of(VL, [&](Value *V) {
6198 // TODO: We should allow undef elements here
6199 const auto *I = dyn_cast<Instruction>(V);
6200 if (!I) {
6201 assert((isa<UndefValue>(V) ||(static_cast <bool> ((isa<UndefValue>(V) || I0->
getOpcode() == Instruction::GetElementPtr) && "Expected undef or GEP."
) ? void (0) : __assert_fail ("(isa<UndefValue>(V) || I0->getOpcode() == Instruction::GetElementPtr) && \"Expected undef or GEP.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6203, __extension__
__PRETTY_FUNCTION__))
6202 I0->getOpcode() == Instruction::GetElementPtr) &&(static_cast <bool> ((isa<UndefValue>(V) || I0->
getOpcode() == Instruction::GetElementPtr) && "Expected undef or GEP."
) ? void (0) : __assert_fail ("(isa<UndefValue>(V) || I0->getOpcode() == Instruction::GetElementPtr) && \"Expected undef or GEP.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6203, __extension__
__PRETTY_FUNCTION__))
6203 "Expected undef or GEP.")(static_cast <bool> ((isa<UndefValue>(V) || I0->
getOpcode() == Instruction::GetElementPtr) && "Expected undef or GEP."
) ? void (0) : __assert_fail ("(isa<UndefValue>(V) || I0->getOpcode() == Instruction::GetElementPtr) && \"Expected undef or GEP.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6203, __extension__
__PRETTY_FUNCTION__))
;
6204 return true;
6205 }
6206 const auto *Op = I->getOperand(OpIdx);
6207 if (auto *CI = dyn_cast<ConstantInt>(Op))
6208 return CI->getValue().isNegatedPowerOf2();
6209 return false;
6210 });
6211
6212 TTI::OperandValueKind VK = TTI::OK_AnyValue;
6213 if (IsConstant && IsUniform)
6214 VK = TTI::OK_UniformConstantValue;
6215 else if (IsConstant)
6216 VK = TTI::OK_NonUniformConstantValue;
6217 else if (IsUniform)
6218 VK = TTI::OK_UniformValue;
6219
6220 TTI::OperandValueProperties VP = TTI::OP_None;
6221 VP = IsPowerOfTwo ? TTI::OP_PowerOf2 : VP;
6222 VP = IsNegatedPowerOfTwo ? TTI::OP_NegatedPowerOf2 : VP;
6223
6224 return {VK, VP};
6225}
6226
6227InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
6228 ArrayRef<Value *> VectorizedVals) {
6229 ArrayRef<Value *> VL = E->Scalars;
6230
6231 Type *ScalarTy = VL[0]->getType();
6232 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
6233 ScalarTy = SI->getValueOperand()->getType();
6234 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
6235 ScalarTy = CI->getOperand(0)->getType();
6236 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
6237 ScalarTy = IE->getOperand(1)->getType();
6238 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
6239 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6240
6241 // If we have computed a smaller type for the expression, update VecTy so
6242 // that the costs will be accurate.
6243 if (MinBWs.count(VL[0]))
6244 VecTy = FixedVectorType::get(
6245 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
6246 unsigned EntryVF = E->getVectorFactor();
6247 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF);
6248
6249 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
6250 // FIXME: it tries to fix a problem with MSVC buildbots.
6251 TargetTransformInfo *TTI = this->TTI;
6252 auto AdjustExtractsCost = [=](InstructionCost &Cost) {
6253 DenseMap<Value *, int> ExtractVectorsTys;
6254 SmallPtrSet<Value *, 4> CheckedExtracts;
6255 for (auto *V : VL) {
6256 if (isa<UndefValue>(V))
6257 continue;
6258 // If all users of instruction are going to be vectorized and this
6259 // instruction itself is not going to be vectorized, consider this
6260 // instruction as dead and remove its cost from the final cost of the
6261 // vectorized tree.
6262 // Also, avoid adjusting the cost for extractelements with multiple uses
6263 // in different graph entries.
6264 const TreeEntry *VE = getTreeEntry(V);
6265 if (!CheckedExtracts.insert(V).second ||
6266 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
6267 (VE && VE != E))
6268 continue;
6269 auto *EE = cast<ExtractElementInst>(V);
6270 Optional<unsigned> EEIdx = getExtractIndex(EE);
6271 if (!EEIdx)
6272 continue;
6273 unsigned Idx = *EEIdx;
6274 if (TTI->getNumberOfParts(VecTy) !=
6275 TTI->getNumberOfParts(EE->getVectorOperandType())) {
6276 auto It =
6277 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
6278 It->getSecond() = std::min<int>(It->second, Idx);
6279 }
6280 // Take credit for instruction that will become dead.
6281 if (EE->hasOneUse()) {
6282 Instruction *Ext = EE->user_back();
6283 if (isa<SExtInst, ZExtInst>(Ext) && all_of(Ext->users(), [](User *U) {
6284 return isa<GetElementPtrInst>(U);
6285 })) {
6286 // Use getExtractWithExtendCost() to calculate the cost of
6287 // extractelement/ext pair.
6288 Cost -=
6289 TTI->getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
6290 EE->getVectorOperandType(), Idx);
6291 // Add back the cost of s|zext which is subtracted separately.
6292 Cost += TTI->getCastInstrCost(
6293 Ext->getOpcode(), Ext->getType(), EE->getType(),
6294 TTI::getCastContextHint(Ext), CostKind, Ext);
6295 continue;
6296 }
6297 }
6298 Cost -= TTI->getVectorInstrCost(*EE, EE->getVectorOperandType(), Idx);
6299 }
6300 // Add a cost for subvector extracts/inserts if required.
6301 for (const auto &Data : ExtractVectorsTys) {
6302 auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
6303 unsigned NumElts = VecTy->getNumElements();
6304 if (Data.second % NumElts == 0)
6305 continue;
6306 if (TTI->getNumberOfParts(EEVTy) > TTI->getNumberOfParts(VecTy)) {
6307 unsigned Idx = (Data.second / NumElts) * NumElts;
6308 unsigned EENumElts = EEVTy->getNumElements();
6309 if (Idx + NumElts <= EENumElts) {
6310 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
6311 EEVTy, None, CostKind, Idx, VecTy);
6312 } else {
6313 // Need to round up the subvector type vectorization factor to avoid a
6314 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
6315 // <= EENumElts.
6316 auto *SubVT =
6317 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
6318 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
6319 EEVTy, None, CostKind, Idx, SubVT);
6320 }
6321 } else {
6322 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
6323 VecTy, None, CostKind, 0, EEVTy);
6324 }
6325 }
6326 };
6327 if (E->State == TreeEntry::NeedToGather) {
6328 if (allConstant(VL))
6329 return 0;
6330 if (isa<InsertElementInst>(VL[0]))
6331 return InstructionCost::getInvalid();
6332 SmallVector<int> Mask;
6333 SmallVector<const TreeEntry *> Entries;
6334 Optional<TargetTransformInfo::ShuffleKind> Shuffle =
6335 isGatherShuffledEntry(E, Mask, Entries);
6336 if (Shuffle) {
6337 InstructionCost GatherCost = 0;
6338 if (ShuffleVectorInst::isIdentityMask(Mask)) {
6339 // Perfect match in the graph, will reuse the previously vectorized
6340 // node. Cost is 0.
6341 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
6342 dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
6343 << "SLP: perfect diamond match for gather bundle that starts with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
6344 << *VL.front() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: perfect diamond match for gather bundle that starts with "
<< *VL.front() << ".\n"; } } while (false)
;
6345 if (NeedToShuffleReuses)
6346 GatherCost =
6347 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
6348 FinalVecTy, E->ReuseShuffleIndices);
6349 } else {
6350 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
6351 << " entries for bundle that starts with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
6352 << *VL.front() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: shuffled " << Entries.
size() << " entries for bundle that starts with " <<
*VL.front() << ".\n"; } } while (false)
;
6353 // Detected that instead of gather we can emit a shuffle of single/two
6354 // previously vectorized nodes. Add the cost of the permutation rather
6355 // than gather.
6356 ::addMask(Mask, E->ReuseShuffleIndices);
6357 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
6358 }
6359 return GatherCost;
6360 }
6361 if ((E->getOpcode() == Instruction::ExtractElement ||
6362 all_of(E->Scalars,
6363 [](Value *V) {
6364 return isa<ExtractElementInst, UndefValue>(V);
6365 })) &&
6366 allSameType(VL)) {
6367 // Check that gather of extractelements can be represented as just a
6368 // shuffle of a single/two vectors the scalars are extracted from.
6369 SmallVector<int> Mask;
6370 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
6371 isFixedVectorShuffle(VL, Mask);
6372 if (ShuffleKind) {
6373 // Found the bunch of extractelement instructions that must be gathered
6374 // into a vector and can be represented as a permutation elements in a
6375 // single input vector or of 2 input vectors.
6376 InstructionCost Cost =
6377 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
6378 AdjustExtractsCost(Cost);
6379 if (NeedToShuffleReuses)
6380 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
6381 FinalVecTy, E->ReuseShuffleIndices);
6382 return Cost;
6383 }
6384 }
6385 if (isSplat(VL)) {
6386 // Found the broadcasting of the single scalar, calculate the cost as the
6387 // broadcast.
6388 assert(VecTy == FinalVecTy &&(static_cast <bool> (VecTy == FinalVecTy && "No reused scalars expected for broadcast."
) ? void (0) : __assert_fail ("VecTy == FinalVecTy && \"No reused scalars expected for broadcast.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6389, __extension__
__PRETTY_FUNCTION__))
6389 "No reused scalars expected for broadcast.")(static_cast <bool> (VecTy == FinalVecTy && "No reused scalars expected for broadcast."
) ? void (0) : __assert_fail ("VecTy == FinalVecTy && \"No reused scalars expected for broadcast.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6389, __extension__
__PRETTY_FUNCTION__))
;
6390 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy,
6391 /*Mask=*/None, CostKind, /*Index=*/0,
6392 /*SubTp=*/nullptr, /*Args=*/VL[0]);
6393 }
6394 InstructionCost ReuseShuffleCost = 0;
6395 if (NeedToShuffleReuses)
6396 ReuseShuffleCost = TTI->getShuffleCost(
6397 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
6398 // Improve gather cost for gather of loads, if we can group some of the
6399 // loads into vector loads.
6400 if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
6401 !E->isAltShuffle()) {
6402 BoUpSLP::ValueSet VectorizedLoads;
6403 unsigned StartIdx = 0;
6404 unsigned VF = VL.size() / 2;
6405 unsigned VectorizedCnt = 0;
6406 unsigned ScatterVectorizeCnt = 0;
6407 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
6408 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
6409 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
6410 Cnt += VF) {
6411 ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
6412 if (!VectorizedLoads.count(Slice.front()) &&
6413 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
6414 SmallVector<Value *> PointerOps;
6415 OrdersType CurrentOrder;
6416 LoadsState LS =
6417 canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, *SE, *LI,
6418 *TLI, CurrentOrder, PointerOps);
6419 switch (LS) {
6420 case LoadsState::Vectorize:
6421 case LoadsState::ScatterVectorize:
6422 // Mark the vectorized loads so that we don't vectorize them
6423 // again.
6424 if (LS == LoadsState::Vectorize)
6425 ++VectorizedCnt;
6426 else
6427 ++ScatterVectorizeCnt;
6428 VectorizedLoads.insert(Slice.begin(), Slice.end());
6429 // If we vectorized initial block, no need to try to vectorize it
6430 // again.
6431 if (Cnt == StartIdx)
6432 StartIdx += VF;
6433 break;
6434 case LoadsState::Gather:
6435 break;
6436 }
6437 }
6438 }
6439 // Check if the whole array was vectorized already - exit.
6440 if (StartIdx >= VL.size())
6441 break;
6442 // Found vectorizable parts - exit.
6443 if (!VectorizedLoads.empty())
6444 break;
6445 }
6446 if (!VectorizedLoads.empty()) {
6447 InstructionCost GatherCost = 0;
6448 unsigned NumParts = TTI->getNumberOfParts(VecTy);
6449 bool NeedInsertSubvectorAnalysis =
6450 !NumParts || (VL.size() / VF) > NumParts;
6451 // Get the cost for gathered loads.
6452 for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
6453 if (VectorizedLoads.contains(VL[I]))
6454 continue;
6455 GatherCost += getGatherCost(VL.slice(I, VF));
6456 }
6457 // The cost for vectorized loads.
6458 InstructionCost ScalarsCost = 0;
6459 for (Value *V : VectorizedLoads) {
6460 auto *LI = cast<LoadInst>(V);
6461 ScalarsCost +=
6462 TTI->getMemoryOpCost(Instruction::Load, LI->getType(),
6463 LI->getAlign(), LI->getPointerAddressSpace(),
6464 CostKind, TTI::OperandValueInfo(), LI);
6465 }
6466 auto *LI = cast<LoadInst>(E->getMainOp());
6467 auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
6468 Align Alignment = LI->getAlign();
6469 GatherCost +=
6470 VectorizedCnt *
6471 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
6472 LI->getPointerAddressSpace(), CostKind,
6473 TTI::OperandValueInfo(), LI);
6474 GatherCost += ScatterVectorizeCnt *
6475 TTI->getGatherScatterOpCost(
6476 Instruction::Load, LoadTy, LI->getPointerOperand(),
6477 /*VariableMask=*/false, Alignment, CostKind, LI);
6478 if (NeedInsertSubvectorAnalysis) {
6479 // Add the cost for the subvectors insert.
6480 for (int I = VF, E = VL.size(); I < E; I += VF)
6481 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy,
6482 None, CostKind, I, LoadTy);
6483 }
6484 return ReuseShuffleCost + GatherCost - ScalarsCost;
6485 }
6486 }
6487 return ReuseShuffleCost + getGatherCost(VL);
6488 }
6489 InstructionCost CommonCost = 0;
6490 SmallVector<int> Mask;
6491 if (!E->ReorderIndices.empty()) {
6492 SmallVector<int> NewMask;
6493 if (E->getOpcode() == Instruction::Store) {
6494 // For stores the order is actually a mask.
6495 NewMask.resize(E->ReorderIndices.size());
6496 copy(E->ReorderIndices, NewMask.begin());
6497 } else {
6498 inversePermutation(E->ReorderIndices, NewMask);
6499 }
6500 ::addMask(Mask, NewMask);
6501 }
6502 if (NeedToShuffleReuses)
6503 ::addMask(Mask, E->ReuseShuffleIndices);
6504 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
6505 CommonCost =
6506 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
6507 assert((E->State == TreeEntry::Vectorize ||(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6509, __extension__
__PRETTY_FUNCTION__))
6508 E->State == TreeEntry::ScatterVectorize) &&(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6509, __extension__
__PRETTY_FUNCTION__))
6509 "Unhandled state")(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6509, __extension__
__PRETTY_FUNCTION__))
;
6510 assert(E->getOpcode() &&(static_cast <bool> (E->getOpcode() && ((allSameType
(VL) && allSameBlock(VL)) || (E->getOpcode() == Instruction
::GetElementPtr && E->getMainOp()->getType()->
isPointerTy())) && "Invalid VL") ? void (0) : __assert_fail
("E->getOpcode() && ((allSameType(VL) && allSameBlock(VL)) || (E->getOpcode() == Instruction::GetElementPtr && E->getMainOp()->getType()->isPointerTy())) && \"Invalid VL\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6514, __extension__
__PRETTY_FUNCTION__))
6511 ((allSameType(VL) && allSameBlock(VL)) ||(static_cast <bool> (E->getOpcode() && ((allSameType
(VL) && allSameBlock(VL)) || (E->getOpcode() == Instruction
::GetElementPtr && E->getMainOp()->getType()->
isPointerTy())) && "Invalid VL") ? void (0) : __assert_fail
("E->getOpcode() && ((allSameType(VL) && allSameBlock(VL)) || (E->getOpcode() == Instruction::GetElementPtr && E->getMainOp()->getType()->isPointerTy())) && \"Invalid VL\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6514, __extension__
__PRETTY_FUNCTION__))
6512 (E->getOpcode() == Instruction::GetElementPtr &&(static_cast <bool> (E->getOpcode() && ((allSameType
(VL) && allSameBlock(VL)) || (E->getOpcode() == Instruction
::GetElementPtr && E->getMainOp()->getType()->
isPointerTy())) && "Invalid VL") ? void (0) : __assert_fail
("E->getOpcode() && ((allSameType(VL) && allSameBlock(VL)) || (E->getOpcode() == Instruction::GetElementPtr && E->getMainOp()->getType()->isPointerTy())) && \"Invalid VL\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6514, __extension__
__PRETTY_FUNCTION__))
6513 E->getMainOp()->getType()->isPointerTy())) &&(static_cast <bool> (E->getOpcode() && ((allSameType
(VL) && allSameBlock(VL)) || (E->getOpcode() == Instruction
::GetElementPtr && E->getMainOp()->getType()->
isPointerTy())) && "Invalid VL") ? void (0) : __assert_fail
("E->getOpcode() && ((allSameType(VL) && allSameBlock(VL)) || (E->getOpcode() == Instruction::GetElementPtr && E->getMainOp()->getType()->isPointerTy())) && \"Invalid VL\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6514, __extension__
__PRETTY_FUNCTION__))
6514 "Invalid VL")(static_cast <bool> (E->getOpcode() && ((allSameType
(VL) && allSameBlock(VL)) || (E->getOpcode() == Instruction
::GetElementPtr && E->getMainOp()->getType()->
isPointerTy())) && "Invalid VL") ? void (0) : __assert_fail
("E->getOpcode() && ((allSameType(VL) && allSameBlock(VL)) || (E->getOpcode() == Instruction::GetElementPtr && E->getMainOp()->getType()->isPointerTy())) && \"Invalid VL\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6514, __extension__
__PRETTY_FUNCTION__))
;
6515 Instruction *VL0 = E->getMainOp();
6516 unsigned ShuffleOrOp =
6517 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
6518 const unsigned Sz = VL.size();
6519 auto GetCostDiff =
6520 [=](function_ref<InstructionCost(unsigned)> ScalarEltCost,
6521 function_ref<InstructionCost(InstructionCost)> VectorCost) {
6522 // Calculate the cost of this instruction.
6523 InstructionCost ScalarCost = 0;
6524 if (isa<CastInst, CmpInst, SelectInst, CallInst>(VL0)) {
6525 // For some of the instructions no need to calculate cost for each
6526 // particular instruction, we can use the cost of the single
6527 // instruction x total number of scalar instructions.
6528 ScalarCost = Sz * ScalarEltCost(0);
6529 } else {
6530 for (unsigned I = 0; I < Sz; ++I)
6531 ScalarCost += ScalarEltCost(I);
6532 }
6533
6534 InstructionCost VecCost = VectorCost(CommonCost);
6535 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, CommonCost, VecCost - CommonCost,
ScalarCost); } } while (false)
6536 dumpTreeCosts(E, CommonCost, VecCost - CommonCost, ScalarCost))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dumpTreeCosts(E, CommonCost, VecCost - CommonCost,
ScalarCost); } } while (false)
;
6537 // Disable warnings for `this` and `E` are unused. Required for
6538 // `dumpTreeCosts`.
6539 (void)this;
6540 (void)E;
6541 return VecCost - ScalarCost;
6542 };
6543 switch (ShuffleOrOp) {
6544 case Instruction::PHI: {
6545 // Count reused scalars.
6546 InstructionCost ScalarCost = 0;
6547 SmallPtrSet<const TreeEntry *, 4> CountedOps;
6548 for (Value *V : VL) {
6549 auto *PHI = dyn_cast<PHINode>(V);
6550 if (!PHI)
6551 continue;
6552
6553 ValueList Operands(PHI->getNumIncomingValues(), nullptr);
6554 for (unsigned I = 0, N = PHI->getNumIncomingValues(); I < N; ++I) {
6555 Value *Op = PHI->getIncomingValue(I);
6556 Operands[I] = Op;
6557 }
6558 if (const TreeEntry *OpTE = getTreeEntry(Operands.front()))
6559 if (OpTE->isSame(Operands) && CountedOps.insert(OpTE).second)
6560 if (!OpTE->ReuseShuffleIndices.empty())
6561 ScalarCost += TTI::TCC_Basic * (OpTE->ReuseShuffleIndices.size() -
6562 OpTE->Scalars.size());
6563 }
6564
6565 return CommonCost - ScalarCost;
6566 }
6567 case Instruction::ExtractValue:
6568 case Instruction::ExtractElement: {
6569 auto GetScalarCost = [=](unsigned Idx) {
6570 auto *I = cast<Instruction>(VL[Idx]);
6571 VectorType *SrcVecTy;
6572 if (ShuffleOrOp == Instruction::ExtractElement) {
6573 auto *EE = cast<ExtractElementInst>(I);
6574 SrcVecTy = EE->getVectorOperandType();
6575 } else {
6576 auto *EV = cast<ExtractValueInst>(I);
6577 Type *AggregateTy = EV->getAggregateOperand()->getType();
6578 unsigned NumElts;
6579 if (auto *ATy = dyn_cast<ArrayType>(AggregateTy))
6580 NumElts = ATy->getNumElements();
6581 else
6582 NumElts = AggregateTy->getStructNumElements();
6583 SrcVecTy = FixedVectorType::get(ScalarTy, NumElts);
6584 }
6585 if (I->hasOneUse()) {
6586 Instruction *Ext = I->user_back();
6587 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
6588 all_of(Ext->users(),
6589 [](User *U) { return isa<GetElementPtrInst>(U); })) {
6590 // Use getExtractWithExtendCost() to calculate the cost of
6591 // extractelement/ext pair.
6592 InstructionCost Cost = TTI->getExtractWithExtendCost(
6593 Ext->getOpcode(), Ext->getType(), SrcVecTy, *getExtractIndex(I));
6594 // Subtract the cost of s|zext which is subtracted separately.
6595 Cost -= TTI->getCastInstrCost(
6596 Ext->getOpcode(), Ext->getType(), I->getType(),
6597 TTI::getCastContextHint(Ext), CostKind, Ext);
6598 return Cost;
6599 }
6600 }
6601 return TTI->getVectorInstrCost(Instruction::ExtractElement, SrcVecTy,
6602 *getExtractIndex(I));
6603 };
6604 auto GetVectorCost = [](InstructionCost CommonCost) { return CommonCost; };
6605 return GetCostDiff(GetScalarCost, GetVectorCost);
6606 }
6607 case Instruction::InsertElement: {
6608 assert(E->ReuseShuffleIndices.empty() &&(static_cast <bool> (E->ReuseShuffleIndices.empty() &&
"Unique insertelements only are expected.") ? void (0) : __assert_fail
("E->ReuseShuffleIndices.empty() && \"Unique insertelements only are expected.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6609, __extension__
__PRETTY_FUNCTION__))
6609 "Unique insertelements only are expected.")(static_cast <bool> (E->ReuseShuffleIndices.empty() &&
"Unique insertelements only are expected.") ? void (0) : __assert_fail
("E->ReuseShuffleIndices.empty() && \"Unique insertelements only are expected.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6609, __extension__
__PRETTY_FUNCTION__))
;
6610 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
6611 unsigned const NumElts = SrcVecTy->getNumElements();
6612 unsigned const NumScalars = VL.size();
6613
6614 unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy);
6615
6616 SmallVector<int> InsertMask(NumElts, UndefMaskElem);
6617 unsigned OffsetBeg = *getInsertIndex(VL.front());
6618 unsigned OffsetEnd = OffsetBeg;
6619 InsertMask[OffsetBeg] = 0;
6620 for (auto [I, V] : enumerate(VL.drop_front())) {
6621 unsigned Idx = *getInsertIndex(V);
6622 if (OffsetBeg > Idx)
6623 OffsetBeg = Idx;
6624 else if (OffsetEnd < Idx)
6625 OffsetEnd = Idx;
6626 InsertMask[Idx] = I + 1;
6627 }
6628 unsigned VecScalarsSz = PowerOf2Ceil(NumElts);
6629 if (NumOfParts > 0)
6630 VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts);
6631 unsigned VecSz = (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) *
6632 VecScalarsSz;
6633 unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz);
6634 unsigned InsertVecSz = std::min<unsigned>(
6635 PowerOf2Ceil(OffsetEnd - OffsetBeg + 1),
6636 ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) * VecScalarsSz);
6637 bool IsWholeSubvector =
6638 OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0);
6639 // Check if we can safely insert a subvector. If it is not possible, just
6640 // generate a whole-sized vector and shuffle the source vector and the new
6641 // subvector.
6642 if (OffsetBeg + InsertVecSz > VecSz) {
6643 // Align OffsetBeg to generate correct mask.
6644 OffsetBeg = alignDown(OffsetBeg, VecSz, Offset);
6645 InsertVecSz = VecSz;
6646 }
6647
6648 APInt DemandedElts = APInt::getZero(NumElts);
6649 // TODO: Add support for Instruction::InsertValue.
6650 SmallVector<int> Mask;
6651 if (!E->ReorderIndices.empty()) {
6652 inversePermutation(E->ReorderIndices, Mask);
6653 Mask.append(InsertVecSz - Mask.size(), UndefMaskElem);
6654 } else {
6655 Mask.assign(VecSz, UndefMaskElem);
6656 std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0);
6657 }
6658 bool IsIdentity = true;
6659 SmallVector<int> PrevMask(InsertVecSz, UndefMaskElem);
6660 Mask.swap(PrevMask);
6661 for (unsigned I = 0; I < NumScalars; ++I) {
6662 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
6663 DemandedElts.setBit(InsertIdx);
6664 IsIdentity &= InsertIdx - OffsetBeg == I;
6665 Mask[InsertIdx - OffsetBeg] = I;
6666 }
6667 assert(Offset < NumElts && "Failed to find vector index offset")(static_cast <bool> (Offset < NumElts && "Failed to find vector index offset"
) ? void (0) : __assert_fail ("Offset < NumElts && \"Failed to find vector index offset\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6667, __extension__
__PRETTY_FUNCTION__))
;
6668
6669 InstructionCost Cost = 0;
6670 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
6671 /*Insert*/ true, /*Extract*/ false);
6672
6673 // First cost - resize to actual vector size if not identity shuffle or
6674 // need to shift the vector.
6675 // Do not calculate the cost if the actual size is the register size and
6676 // we can merge this shuffle with the following SK_Select.
6677 auto *InsertVecTy =
6678 FixedVectorType::get(SrcVecTy->getElementType(), InsertVecSz);
6679 if (!IsIdentity)
6680 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
6681 InsertVecTy, Mask);
6682 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
6683 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
6684 }));
6685 // Second cost - permutation with subvector, if some elements are from the
6686 // initial vector or inserting a subvector.
6687 // TODO: Implement the analysis of the FirstInsert->getOperand(0)
6688 // subvector of ActualVecTy.
6689 SmallBitVector InMask =
6690 isUndefVector(FirstInsert->getOperand(0), InsertMask);
6691 if (!InMask.all() && NumScalars != NumElts && !IsWholeSubvector) {
6692 if (InsertVecSz != VecSz) {
6693 auto *ActualVecTy =
6694 FixedVectorType::get(SrcVecTy->getElementType(), VecSz);
6695 Cost += TTI->getShuffleCost(TTI::SK_InsertSubvector, ActualVecTy, None,
6696 CostKind, OffsetBeg - Offset, InsertVecTy);
6697 } else {
6698 for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I)
6699 Mask[I] = InMask.test(I) ? UndefMaskElem : I;
6700 for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset;
6701 I <= End; ++I)
6702 if (Mask[I] != UndefMaskElem)
6703 Mask[I] = I + VecSz;
6704 for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I)
6705 Mask[I] =
6706 ((I >= InMask.size()) || InMask.test(I)) ? UndefMaskElem : I;
6707 Cost += TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, InsertVecTy, Mask);
6708 }
6709 }
6710 return Cost;
6711 }
6712 case Instruction::ZExt:
6713 case Instruction::SExt:
6714 case Instruction::FPToUI:
6715 case Instruction::FPToSI:
6716 case Instruction::FPExt:
6717 case Instruction::PtrToInt:
6718 case Instruction::IntToPtr:
6719 case Instruction::SIToFP:
6720 case Instruction::UIToFP:
6721 case Instruction::Trunc:
6722 case Instruction::FPTrunc:
6723 case Instruction::BitCast: {
6724 auto GetScalarCost = [=](unsigned Idx) {
6725 auto *VI = cast<Instruction>(VL[Idx]);
6726 return TTI->getCastInstrCost(E->getOpcode(), ScalarTy,
6727 VI->getOperand(0)->getType(),
6728 TTI::getCastContextHint(VI), CostKind, VI);
6729 };
6730 auto GetVectorCost = [=](InstructionCost CommonCost) {
6731 Type *SrcTy = VL0->getOperand(0)->getType();
6732 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
6733 InstructionCost VecCost = CommonCost;
6734 // Check if the values are candidates to demote.
6735 if (!MinBWs.count(VL0) || VecTy != SrcVecTy)
6736 VecCost +=
6737 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
6738 TTI::getCastContextHint(VL0), CostKind, VL0);
6739 return VecCost;
6740 };
6741 return GetCostDiff(GetScalarCost, GetVectorCost);
6742 }
6743 case Instruction::FCmp:
6744 case Instruction::ICmp:
6745 case Instruction::Select: {
6746 CmpInst::Predicate VecPred, SwappedVecPred;
6747 auto MatchCmp = m_Cmp(VecPred, m_Value(), m_Value());
6748 if (match(VL0, m_Select(MatchCmp, m_Value(), m_Value())) ||
6749 match(VL0, MatchCmp))
6750 SwappedVecPred = CmpInst::getSwappedPredicate(VecPred);
6751 else
6752 SwappedVecPred = VecPred = ScalarTy->isFloatingPointTy()
6753 ? CmpInst::BAD_FCMP_PREDICATE
6754 : CmpInst::BAD_ICMP_PREDICATE;
6755 auto GetScalarCost = [&](unsigned Idx) {
6756 auto *VI = cast<Instruction>(VL[Idx]);
6757 CmpInst::Predicate CurrentPred = ScalarTy->isFloatingPointTy()
6758 ? CmpInst::BAD_FCMP_PREDICATE
6759 : CmpInst::BAD_ICMP_PREDICATE;
6760 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
6761 if ((!match(VI, m_Select(MatchCmp, m_Value(), m_Value())) &&
6762 !match(VI, MatchCmp)) ||
6763 (CurrentPred != VecPred && CurrentPred != SwappedVecPred))
6764 VecPred = SwappedVecPred = ScalarTy->isFloatingPointTy()
6765 ? CmpInst::BAD_FCMP_PREDICATE
6766 : CmpInst::BAD_ICMP_PREDICATE;
6767
6768 return TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
6769 Builder.getInt1Ty(), CurrentPred, CostKind,
6770 VI);
6771 };
6772 auto GetVectorCost = [&](InstructionCost CommonCost) {
6773 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
6774
6775 InstructionCost VecCost = TTI->getCmpSelInstrCost(
6776 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
6777 // Check if it is possible and profitable to use min/max for selects
6778 // in VL.
6779 //
6780 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
6781 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
6782 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
6783 {VecTy, VecTy});
6784 InstructionCost IntrinsicCost =
6785 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
6786 // If the selects are the only uses of the compares, they will be
6787 // dead and we can adjust the cost by removing their cost.
6788 if (IntrinsicAndUse.second)
6789 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy,
6790 MaskTy, VecPred, CostKind);
6791 VecCost = std::min(VecCost, IntrinsicCost);
6792 }
6793 return VecCost + CommonCost;
6794 };
6795 return GetCostDiff(GetScalarCost, GetVectorCost);
6796 }
6797 case Instruction::FNeg:
6798 case Instruction::Add:
6799 case Instruction::FAdd:
6800 case Instruction::Sub:
6801 case Instruction::FSub:
6802 case Instruction::Mul:
6803 case Instruction::FMul:
6804 case Instruction::UDiv:
6805 case Instruction::SDiv:
6806 case Instruction::FDiv:
6807 case Instruction::URem:
6808 case Instruction::SRem:
6809 case Instruction::FRem:
6810 case Instruction::Shl:
6811 case Instruction::LShr:
6812 case Instruction::AShr:
6813 case Instruction::And:
6814 case Instruction::Or:
6815 case Instruction::Xor:
6816 case Instruction::GetElementPtr: {
6817 unsigned Opcode = ShuffleOrOp == Instruction::GetElementPtr
6818 ? static_cast<unsigned>(Instruction::Add)
6819 : ShuffleOrOp;
6820 auto GetScalarCost = [=](unsigned Idx) {
6821 auto *VI = dyn_cast<Instruction>(VL[Idx]);
6822 // GEPs may contain just addresses without instructions, consider
6823 // their cost 0.
6824 if (!VI)
6825 return InstructionCost();
6826 unsigned OpIdx = isa<UnaryOperator>(VI) ? 0 : 1;
6827 TTI::OperandValueInfo Op1Info = TTI::getOperandInfo(VI->getOperand(0));
6828 TTI::OperandValueInfo Op2Info =
6829 TTI::getOperandInfo(VI->getOperand(OpIdx));
6830 SmallVector<const Value *> Operands(VI->operand_values());
6831 return TTI->getArithmeticInstrCost(Opcode, ScalarTy, CostKind, Op1Info,
6832 Op2Info, Operands, VI);
6833 };
6834 auto GetVectorCost = [=](InstructionCost CommonCost) {
6835 unsigned OpIdx = isa<UnaryOperator>(VL0) ? 0 : 1;
6836 TTI::OperandValueInfo Op1Info = getOperandInfo(VL, 0);
6837 TTI::OperandValueInfo Op2Info = getOperandInfo(VL, OpIdx);
6838 return TTI->getArithmeticInstrCost(Opcode, VecTy, CostKind, Op1Info,
6839 Op2Info) +
6840 CommonCost;
6841 };
6842 return GetCostDiff(GetScalarCost, GetVectorCost);
6843 }
6844 case Instruction::Load: {
6845 auto GetScalarCost = [=](unsigned Idx) {
6846 auto *VI = cast<LoadInst>(VL[Idx]);
6847 InstructionCost GEPCost = 0;
6848 if (VI != VL0) {
6849 auto *Ptr = dyn_cast<GetElementPtrInst>(VI->getPointerOperand());
6850 if (Ptr && Ptr->hasOneUse() && !Ptr->hasAllConstantIndices())
6851 GEPCost = TTI->getArithmeticInstrCost(Instruction::Add,
6852 Ptr->getType(), CostKind);
6853 }
6854 return GEPCost +
6855 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, VI->getAlign(),
6856 VI->getPointerAddressSpace(), CostKind,
6857 TTI::OperandValueInfo(), VI);
6858 };
6859 auto GetVectorCost = [=](InstructionCost CommonCost) {
6860 auto *LI0 = cast<LoadInst>(VL0);
6861 InstructionCost VecLdCost;
6862 if (E->State == TreeEntry::Vectorize) {
6863 VecLdCost = TTI->getMemoryOpCost(
6864 Instruction::Load, VecTy, LI0->getAlign(),
6865 LI0->getPointerAddressSpace(), CostKind, TTI::OperandValueInfo());
6866 } else {
6867 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState")(static_cast <bool> (E->State == TreeEntry::ScatterVectorize
&& "Unknown EntryState") ? void (0) : __assert_fail (
"E->State == TreeEntry::ScatterVectorize && \"Unknown EntryState\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6867, __extension__
__PRETTY_FUNCTION__))
;
6868 Align CommonAlignment = LI0->getAlign();
6869 for (Value *V : VL)
6870 CommonAlignment =
6871 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
6872 VecLdCost = TTI->getGatherScatterOpCost(
6873 Instruction::Load, VecTy, LI0->getPointerOperand(),
6874 /*VariableMask=*/false, CommonAlignment, CostKind);
6875 }
6876 return VecLdCost + CommonCost;
6877 };
6878 return GetCostDiff(GetScalarCost, GetVectorCost);
6879 }
6880 case Instruction::Store: {
6881 bool IsReorder = !E->ReorderIndices.empty();
6882 auto *SI = cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
6883 auto GetScalarCost = [=](unsigned Idx) {
6884 auto *VI = cast<StoreInst>(VL[Idx]);
6885 InstructionCost GEPCost = 0;
6886 if (VI != SI) {
6887 auto *Ptr = dyn_cast<GetElementPtrInst>(VI->getPointerOperand());
6888 if (Ptr && Ptr->hasOneUse() && !Ptr->hasAllConstantIndices())
6889 GEPCost = TTI->getArithmeticInstrCost(Instruction::Add,
6890 Ptr->getType(), CostKind);
6891 }
6892 TTI::OperandValueInfo OpInfo = getOperandInfo(VI, 0);
6893 return GEPCost + TTI->getMemoryOpCost(
6894 Instruction::Store, ScalarTy, VI->getAlign(),
6895 VI->getPointerAddressSpace(), CostKind, OpInfo, VI);
6896 };
6897 auto GetVectorCost = [=](InstructionCost CommonCost) {
6898 // We know that we can merge the stores. Calculate the cost.
6899 TTI::OperandValueInfo OpInfo = getOperandInfo(VL, 0);
6900 return TTI->getMemoryOpCost(Instruction::Store, VecTy, SI->getAlign(),
6901 SI->getPointerAddressSpace(), CostKind,
6902 OpInfo) +
6903 CommonCost;
6904 };
6905 return GetCostDiff(GetScalarCost, GetVectorCost);
6906 }
6907 case Instruction::Call: {
6908 auto GetScalarCost = [=](unsigned Idx) {
6909 auto *CI = cast<CallInst>(VL[Idx]);
6910 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6911 if (ID != Intrinsic::not_intrinsic) {
6912 IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
6913 return TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
6914 }
6915 return TTI->getCallInstrCost(CI->getCalledFunction(),
6916 CI->getFunctionType()->getReturnType(),
6917 CI->getFunctionType()->params(), CostKind);
6918 };
6919 auto GetVectorCost = [=](InstructionCost CommonCost) {
6920 auto *CI = cast<CallInst>(VL0);
6921 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
6922 return std::min(VecCallCosts.first, VecCallCosts.second) + CommonCost;
6923 };
6924 return GetCostDiff(GetScalarCost, GetVectorCost);
6925 }
6926 case Instruction::ShuffleVector: {
6927 assert(E->isAltShuffle() &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6933, __extension__
__PRETTY_FUNCTION__))
6928 ((Instruction::isBinaryOp(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6933, __extension__
__PRETTY_FUNCTION__))
6929 Instruction::isBinaryOp(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6933, __extension__
__PRETTY_FUNCTION__))
6930 (Instruction::isCast(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6933, __extension__
__PRETTY_FUNCTION__))
6931 Instruction::isCast(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6933, __extension__
__PRETTY_FUNCTION__))
6932 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6933, __extension__
__PRETTY_FUNCTION__))
6933 "Invalid Shuffle Vector Operand")(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6933, __extension__
__PRETTY_FUNCTION__))
;
6934 // Try to find the previous shuffle node with the same operands and same
6935 // main/alternate ops.
6936 auto TryFindNodeWithEqualOperands = [=]() {
6937 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
6938 if (TE.get() == E)
6939 break;
6940 if (TE->isAltShuffle() &&
6941 ((TE->getOpcode() == E->getOpcode() &&
6942 TE->getAltOpcode() == E->getAltOpcode()) ||
6943 (TE->getOpcode() == E->getAltOpcode() &&
6944 TE->getAltOpcode() == E->getOpcode())) &&
6945 TE->hasEqualOperands(*E))
6946 return true;
6947 }
6948 return false;
6949 };
6950 auto GetScalarCost = [=](unsigned Idx) {
6951 auto *VI = cast<Instruction>(VL[Idx]);
6952 assert(E->isOpcodeOrAlt(VI) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(VI) &&
"Unexpected main/alternate opcode") ? void (0) : __assert_fail
("E->isOpcodeOrAlt(VI) && \"Unexpected main/alternate opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6952, __extension__
__PRETTY_FUNCTION__))
;
6953 (void)E;
6954 return TTI->getInstructionCost(VI, CostKind);
6955 };
6956 // Need to clear CommonCost since the final shuffle cost is included into
6957 // vector cost.
6958 auto GetVectorCost = [&](InstructionCost) {
6959 // VecCost is equal to sum of the cost of creating 2 vectors
6960 // and the cost of creating shuffle.
6961 InstructionCost VecCost = 0;
6962 if (TryFindNodeWithEqualOperands()) {
6963 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: diamond match for alternate node found.\n"
; E->dump(); }; } } while (false)
6964 dbgs() << "SLP: diamond match for alternate node found.\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: diamond match for alternate node found.\n"
; E->dump(); }; } } while (false)
6965 E->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: diamond match for alternate node found.\n"
; E->dump(); }; } } while (false)
6966 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: diamond match for alternate node found.\n"
; E->dump(); }; } } while (false)
;
6967 // No need to add new vector costs here since we're going to reuse
6968 // same main/alternate vector ops, just do different shuffling.
6969 } else if (Instruction::isBinaryOp(E->getOpcode())) {
6970 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
6971 VecCost +=
6972 TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, CostKind);
6973 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
6974 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
6975 Builder.getInt1Ty(),
6976 CI0->getPredicate(), CostKind, VL0);
6977 VecCost += TTI->getCmpSelInstrCost(
6978 E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
6979 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
6980 E->getAltOp());
6981 } else {
6982 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
6983 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
6984 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
6985 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
6986 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
6987 TTI::CastContextHint::None, CostKind);
6988 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
6989 TTI::CastContextHint::None, CostKind);
6990 }
6991 if (E->ReuseShuffleIndices.empty()) {
6992 VecCost +=
6993 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy);
6994 } else {
6995 SmallVector<int> Mask;
6996 buildShuffleEntryMask(
6997 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
6998 [E](Instruction *I) {
6999 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"
) ? void (0) : __assert_fail ("E->isOpcodeOrAlt(I) && \"Unexpected main/alternate opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 6999, __extension__
__PRETTY_FUNCTION__))
;
7000 return I->getOpcode() == E->getAltOpcode();
7001 },
7002 Mask);
7003 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
7004 FinalVecTy, Mask);
7005 }
7006 return VecCost;
7007 };
7008 return GetCostDiff(GetScalarCost, GetVectorCost);
7009 }
7010 default:
7011 llvm_unreachable("Unknown instruction")::llvm::llvm_unreachable_internal("Unknown instruction", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 7011)
;
7012 }
7013}
7014
7015bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
7016 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
7017 << VectorizableTree.size() << " is fully vectorizable .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
;
7018
7019 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
7020 SmallVector<int> Mask;
7021 return TE->State == TreeEntry::NeedToGather &&
7022 !any_of(TE->Scalars,
7023 [this](Value *V) { return EphValues.contains(V); }) &&
7024 (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
7025 TE->Scalars.size() < Limit ||
7026 ((TE->getOpcode() == Instruction::ExtractElement ||
7027 all_of(TE->Scalars,
7028 [](Value *V) {
7029 return isa<ExtractElementInst, UndefValue>(V);
7030 })) &&
7031 isFixedVectorShuffle(TE->Scalars, Mask)) ||
7032 (TE->State == TreeEntry::NeedToGather &&
7033 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
7034 };
7035
7036 // We only handle trees of heights 1 and 2.
7037 if (VectorizableTree.size() == 1 &&
7038 (VectorizableTree[0]->State == TreeEntry::Vectorize ||
7039 (ForReduction &&
7040 AreVectorizableGathers(VectorizableTree[0].get(),
7041 VectorizableTree[0]->Scalars.size()) &&
7042 VectorizableTree[0]->getVectorFactor() > 2)))
7043 return true;
7044
7045 if (VectorizableTree.size() != 2)
7046 return false;
7047
7048 // Handle splat and all-constants stores. Also try to vectorize tiny trees
7049 // with the second gather nodes if they have less scalar operands rather than
7050 // the initial tree element (may be profitable to shuffle the second gather)
7051 // or they are extractelements, which form shuffle.
7052 SmallVector<int> Mask;
7053 if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
7054 AreVectorizableGathers(VectorizableTree[1].get(),
7055 VectorizableTree[0]->Scalars.size()))
7056 return true;
7057
7058 // Gathering cost would be too much for tiny trees.
7059 if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
7060 (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
7061 VectorizableTree[0]->State != TreeEntry::ScatterVectorize))
7062 return false;
7063
7064 return true;
7065}
7066
7067static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
7068 TargetTransformInfo *TTI,
7069 bool MustMatchOrInst) {
7070 // Look past the root to find a source value. Arbitrarily follow the
7071 // path through operand 0 of any 'or'. Also, peek through optional
7072 // shift-left-by-multiple-of-8-bits.
7073 Value *ZextLoad = Root;
7074 const APInt *ShAmtC;
7075 bool FoundOr = false;
7076 while (!isa<ConstantExpr>(ZextLoad) &&
7077 (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
7078 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
7079 ShAmtC->urem(8) == 0))) {
7080 auto *BinOp = cast<BinaryOperator>(ZextLoad);
7081 ZextLoad = BinOp->getOperand(0);
7082 if (BinOp->getOpcode() == Instruction::Or)
7083 FoundOr = true;
7084 }
7085 // Check if the input is an extended load of the required or/shift expression.
7086 Value *Load;
7087 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
7088 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
7089 return false;
7090
7091 // Require that the total load bit width is a legal integer type.
7092 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
7093 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
7094 Type *SrcTy = Load->getType();
7095 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
7096 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
7097 return false;
7098
7099 // Everything matched - assume that we can fold the whole sequence using
7100 // load combining.
7101 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
7102 << *(cast<Instruction>(Root)) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Assume load combining for tree starting at "
<< *(cast<Instruction>(Root)) << "\n"; } }
while (false)
;
7103
7104 return true;
7105}
7106
7107bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
7108 if (RdxKind != RecurKind::Or)
7109 return false;
7110
7111 unsigned NumElts = VectorizableTree[0]->Scalars.size();
7112 Value *FirstReduced = VectorizableTree[0]->Scalars[0];
7113 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
7114 /* MatchOr */ false);
7115}
7116
7117bool BoUpSLP::isLoadCombineCandidate() const {
7118 // Peek through a final sequence of stores and check if all operations are
7119 // likely to be load-combined.
7120 unsigned NumElts = VectorizableTree[0]->Scalars.size();
7121 for (Value *Scalar : VectorizableTree[0]->Scalars) {
7122 Value *X;
7123 if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
7124 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
7125 return false;
7126 }
7127 return true;
7128}
7129
7130bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
7131 // No need to vectorize inserts of gathered values.
7132 if (VectorizableTree.size() == 2 &&
7133 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
7134 VectorizableTree[1]->State == TreeEntry::NeedToGather &&
7135 (VectorizableTree[1]->getVectorFactor() <= 2 ||
7136 !(isSplat(VectorizableTree[1]->Scalars) ||
7137 allConstant(VectorizableTree[1]->Scalars))))
7138 return true;
7139
7140 // We can vectorize the tree if its size is greater than or equal to the
7141 // minimum size specified by the MinTreeSize command line option.
7142 if (VectorizableTree.size() >= MinTreeSize)
7143 return false;
7144
7145 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
7146 // can vectorize it if we can prove it fully vectorizable.
7147 if (isFullyVectorizableTinyTree(ForReduction))
7148 return false;
7149
7150 assert(VectorizableTree.empty()(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7152, __extension__
__PRETTY_FUNCTION__))
7151 ? ExternalUses.empty()(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7152, __extension__
__PRETTY_FUNCTION__))
7152 : true && "We shouldn't have any external users")(static_cast <bool> (VectorizableTree.empty() ? ExternalUses
.empty() : true && "We shouldn't have any external users"
) ? void (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7152, __extension__
__PRETTY_FUNCTION__))
;
7153
7154 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
7155 // vectorizable.
7156 return true;
7157}
7158
7159InstructionCost BoUpSLP::getSpillCost() const {
7160 // Walk from the bottom of the tree to the top, tracking which values are
7161 // live. When we see a call instruction that is not part of our tree,
7162 // query TTI to see if there is a cost to keeping values live over it
7163 // (for example, if spills and fills are required).
7164 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
7165 InstructionCost Cost = 0;
7166
7167 SmallPtrSet<Instruction*, 4> LiveValues;
7168 Instruction *PrevInst = nullptr;
7169
7170 // The entries in VectorizableTree are not necessarily ordered by their
7171 // position in basic blocks. Collect them and order them by dominance so later
7172 // instructions are guaranteed to be visited first. For instructions in
7173 // different basic blocks, we only scan to the beginning of the block, so
7174 // their order does not matter, as long as all instructions in a basic block
7175 // are grouped together. Using dominance ensures a deterministic order.
7176 SmallVector<Instruction *, 16> OrderedScalars;
7177 for (const auto &TEPtr : VectorizableTree) {
7178 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
7179 if (!Inst)
7180 continue;
7181 OrderedScalars.push_back(Inst);
7182 }
7183 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
7184 auto *NodeA = DT->getNode(A->getParent());
7185 auto *NodeB = DT->getNode(B->getParent());
7186 assert(NodeA && "Should only process reachable instructions")(static_cast <bool> (NodeA && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeA && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7186, __extension__
__PRETTY_FUNCTION__))
;
7187 assert(NodeB && "Should only process reachable instructions")(static_cast <bool> (NodeB && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeB && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7187, __extension__
__PRETTY_FUNCTION__))
;
7188 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7189, __extension__
__PRETTY_FUNCTION__))
7189 "Different nodes should have different DFS numbers")(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7189, __extension__
__PRETTY_FUNCTION__))
;
7190 if (NodeA != NodeB)
7191 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
7192 return B->comesBefore(A);
7193 });
7194
7195 for (Instruction *Inst : OrderedScalars) {
7196 if (!PrevInst) {
7197 PrevInst = Inst;
7198 continue;
7199 }
7200
7201 // Update LiveValues.
7202 LiveValues.erase(PrevInst);
7203 for (auto &J : PrevInst->operands()) {
7204 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
7205 LiveValues.insert(cast<Instruction>(&*J));
7206 }
7207
7208 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
7209 dbgs() << "SLP: #LV: " << LiveValues.size();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
7210 for (auto *X : LiveValues)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
7211 dbgs() << " " << X->getName();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
7212 dbgs() << ", Looking at ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
7213 Inst->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
7214 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
;
7215
7216 // Now find the sequence of instructions between PrevInst and Inst.
7217 unsigned NumCalls = 0;
7218 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
7219 PrevInstIt =
7220 PrevInst->getIterator().getReverse();
7221 while (InstIt != PrevInstIt) {
7222 if (PrevInstIt == PrevInst->getParent()->rend()) {
7223 PrevInstIt = Inst->getParent()->rbegin();
7224 continue;
7225 }
7226
7227 // Debug information does not impact spill cost.
7228 if ((isa<CallInst>(&*PrevInstIt) &&
7229 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
7230 &*PrevInstIt != PrevInst)
7231 NumCalls++;
7232
7233 ++PrevInstIt;
7234 }
7235
7236 if (NumCalls) {
7237 SmallVector<Type*, 4> V;
7238 for (auto *II : LiveValues) {
7239 auto *ScalarTy = II->getType();
7240 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
7241 ScalarTy = VectorTy->getElementType();
7242 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
7243 }
7244 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
7245 }
7246
7247 PrevInst = Inst;
7248 }
7249
7250 return Cost;
7251}
7252
7253/// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the
7254/// buildvector sequence.
7255static bool isFirstInsertElement(const InsertElementInst *IE1,
7256 const InsertElementInst *IE2) {
7257 if (IE1 == IE2)
7258 return false;
7259 const auto *I1 = IE1;
7260 const auto *I2 = IE2;
7261 const InsertElementInst *PrevI1;
7262 const InsertElementInst *PrevI2;
7263 unsigned Idx1 = *getInsertIndex(IE1);
7264 unsigned Idx2 = *getInsertIndex(IE2);
7265 do {
7266 if (I2 == IE1)
7267 return true;
7268 if (I1 == IE2)
7269 return false;
7270 PrevI1 = I1;
7271 PrevI2 = I2;
7272 if (I1 && (I1 == IE1 || I1->hasOneUse()) &&
7273 getInsertIndex(I1).value_or(Idx2) != Idx2)
7274 I1 = dyn_cast<InsertElementInst>(I1->getOperand(0));
7275 if (I2 && ((I2 == IE2 || I2->hasOneUse())) &&
7276 getInsertIndex(I2).value_or(Idx1) != Idx1)
7277 I2 = dyn_cast<InsertElementInst>(I2->getOperand(0));
7278 } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2));
7279 llvm_unreachable("Two different buildvectors not expected.")::llvm::llvm_unreachable_internal("Two different buildvectors not expected."
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7279)
;
7280}
7281
7282namespace {
7283/// Returns incoming Value *, if the requested type is Value * too, or a default
7284/// value, otherwise.
7285struct ValueSelect {
7286 template <typename U>
7287 static std::enable_if_t<std::is_same_v<Value *, U>, Value *> get(Value *V) {
7288 return V;
7289 }
7290 template <typename U>
7291 static std::enable_if_t<!std::is_same_v<Value *, U>, U> get(Value *) {
7292 return U();
7293 }
7294};
7295} // namespace
7296
7297/// Does the analysis of the provided shuffle masks and performs the requested
7298/// actions on the vectors with the given shuffle masks. It tries to do it in
7299/// several steps.
7300/// 1. If the Base vector is not undef vector, resizing the very first mask to
7301/// have common VF and perform action for 2 input vectors (including non-undef
7302/// Base). Other shuffle masks are combined with the resulting after the 1 stage
7303/// and processed as a shuffle of 2 elements.
7304/// 2. If the Base is undef vector and have only 1 shuffle mask, perform the
7305/// action only for 1 vector with the given mask, if it is not the identity
7306/// mask.
7307/// 3. If > 2 masks are used, perform the remaining shuffle actions for 2
7308/// vectors, combing the masks properly between the steps.
7309template <typename T>
7310static T *performExtractsShuffleAction(
7311 MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base,
7312 function_ref<unsigned(T *)> GetVF,
7313 function_ref<std::pair<T *, bool>(T *, ArrayRef<int>, bool)> ResizeAction,
7314 function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) {
7315 assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts.")(static_cast <bool> (!ShuffleMask.empty() && "Empty list of shuffles for inserts."
) ? void (0) : __assert_fail ("!ShuffleMask.empty() && \"Empty list of shuffles for inserts.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7315, __extension__
__PRETTY_FUNCTION__))
;
7316 SmallVector<int> Mask(ShuffleMask.begin()->second);
7317 auto VMIt = std::next(ShuffleMask.begin());
7318 T *Prev = nullptr;
7319 SmallBitVector IsBaseUndef = isUndefVector(Base, Mask);
7320 if (!IsBaseUndef.all()) {
7321 // Base is not undef, need to combine it with the next subvectors.
7322 std::pair<T *, bool> Res =
7323 ResizeAction(ShuffleMask.begin()->first, Mask, /*ForSingleMask=*/false);
7324 SmallBitVector IsBasePoison = isUndefVector<true>(Base, Mask);
7325 for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
7326 if (Mask[Idx] == UndefMaskElem)
7327 Mask[Idx] = IsBasePoison.test(Idx) ? UndefMaskElem : Idx;
7328 else
7329 Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF;
7330 }
7331 auto *V = ValueSelect::get<T *>(Base);
7332 (void)V;
7333 assert((!V || GetVF(V) == Mask.size()) &&(static_cast <bool> ((!V || GetVF(V) == Mask.size()) &&
"Expected base vector of VF number of elements.") ? void (0)
: __assert_fail ("(!V || GetVF(V) == Mask.size()) && \"Expected base vector of VF number of elements.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7334, __extension__
__PRETTY_FUNCTION__))
7334 "Expected base vector of VF number of elements.")(static_cast <bool> ((!V || GetVF(V) == Mask.size()) &&
"Expected base vector of VF number of elements.") ? void (0)
: __assert_fail ("(!V || GetVF(V) == Mask.size()) && \"Expected base vector of VF number of elements.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7334, __extension__
__PRETTY_FUNCTION__))
;
7335 Prev = Action(Mask, {nullptr, Res.first});
7336 } else if (ShuffleMask.size() == 1) {
7337 // Base is undef and only 1 vector is shuffled - perform the action only for
7338 // single vector, if the mask is not the identity mask.
7339 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask,
7340 /*ForSingleMask=*/true);
7341 if (Res.second)
7342 // Identity mask is found.
7343 Prev = Res.first;
7344 else
7345 Prev = Action(Mask, {ShuffleMask.begin()->first});
7346 } else {
7347 // Base is undef and at least 2 input vectors shuffled - perform 2 vectors
7348 // shuffles step by step, combining shuffle between the steps.
7349 unsigned Vec1VF = GetVF(ShuffleMask.begin()->first);
7350 unsigned Vec2VF = GetVF(VMIt->first);
7351 if (Vec1VF == Vec2VF) {
7352 // No need to resize the input vectors since they are of the same size, we
7353 // can shuffle them directly.
7354 ArrayRef<int> SecMask = VMIt->second;
7355 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
7356 if (SecMask[I] != UndefMaskElem) {
7357 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.")(static_cast <bool> (Mask[I] == UndefMaskElem &&
"Multiple uses of scalars.") ? void (0) : __assert_fail ("Mask[I] == UndefMaskElem && \"Multiple uses of scalars.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7357, __extension__
__PRETTY_FUNCTION__))
;
7358 Mask[I] = SecMask[I] + Vec1VF;
7359 }
7360 }
7361 Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first});
7362 } else {
7363 // Vectors of different sizes - resize and reshuffle.
7364 std::pair<T *, bool> Res1 = ResizeAction(ShuffleMask.begin()->first, Mask,
7365 /*ForSingleMask=*/false);
7366 std::pair<T *, bool> Res2 =
7367 ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false);
7368 ArrayRef<int> SecMask = VMIt->second;
7369 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
7370 if (Mask[I] != UndefMaskElem) {
7371 assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars.")(static_cast <bool> (SecMask[I] == UndefMaskElem &&
"Multiple uses of scalars.") ? void (0) : __assert_fail ("SecMask[I] == UndefMaskElem && \"Multiple uses of scalars.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7371, __extension__
__PRETTY_FUNCTION__))
;
7372 if (Res1.second)
7373 Mask[I] = I;
7374 } else if (SecMask[I] != UndefMaskElem) {
7375 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.")(static_cast <bool> (Mask[I] == UndefMaskElem &&
"Multiple uses of scalars.") ? void (0) : __assert_fail ("Mask[I] == UndefMaskElem && \"Multiple uses of scalars.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7375, __extension__
__PRETTY_FUNCTION__))
;
7376 Mask[I] = (Res2.second ? I : SecMask[I]) + VF;
7377 }
7378 }
7379 Prev = Action(Mask, {Res1.first, Res2.first});
7380 }
7381 VMIt = std::next(VMIt);
7382 }
7383 bool IsBaseNotUndef = !IsBaseUndef.all();
7384 (void)IsBaseNotUndef;
7385 // Perform requested actions for the remaining masks/vectors.
7386 for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) {
7387 // Shuffle other input vectors, if any.
7388 std::pair<T *, bool> Res =
7389 ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false);
7390 ArrayRef<int> SecMask = VMIt->second;
7391 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
7392 if (SecMask[I] != UndefMaskElem) {
7393 assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) &&(static_cast <bool> ((Mask[I] == UndefMaskElem || IsBaseNotUndef
) && "Multiple uses of scalars.") ? void (0) : __assert_fail
("(Mask[I] == UndefMaskElem || IsBaseNotUndef) && \"Multiple uses of scalars.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7394, __extension__
__PRETTY_FUNCTION__))
7394 "Multiple uses of scalars.")(static_cast <bool> ((Mask[I] == UndefMaskElem || IsBaseNotUndef
) && "Multiple uses of scalars.") ? void (0) : __assert_fail
("(Mask[I] == UndefMaskElem || IsBaseNotUndef) && \"Multiple uses of scalars.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7394, __extension__
__PRETTY_FUNCTION__))
;
7395 Mask[I] = (Res.second ? I : SecMask[I]) + VF;
7396 } else if (Mask[I] != UndefMaskElem) {
7397 Mask[I] = I;
7398 }
7399 }
7400 Prev = Action(Mask, {Prev, Res.first});
7401 }
7402 return Prev;
7403}
7404
7405InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
7406 InstructionCost Cost = 0;
7407 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
7408 << VectorizableTree.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
;
7409
7410 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
7411
7412 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
7413 TreeEntry &TE = *VectorizableTree[I];
7414 if (TE.State == TreeEntry::NeedToGather) {
7415 if (const TreeEntry *E = getTreeEntry(TE.getMainOp());
7416 E && E->getVectorFactor() == TE.getVectorFactor() &&
7417 E->isSame(TE.Scalars)) {
7418 // Some gather nodes might be absolutely the same as some vectorizable
7419 // nodes after reordering, need to handle it.
7420 LLVM_DEBUG(dbgs() << "SLP: Adding cost 0 for bundle that starts with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost 0 for bundle that starts with "
<< *TE.Scalars[0] << ".\n" << "SLP: Current total cost = "
<< Cost << "\n"; } } while (false)
7421 << *TE.Scalars[0] << ".\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost 0 for bundle that starts with "
<< *TE.Scalars[0] << ".\n" << "SLP: Current total cost = "
<< Cost << "\n"; } } while (false)
7422 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost 0 for bundle that starts with "
<< *TE.Scalars[0] << ".\n" << "SLP: Current total cost = "
<< Cost << "\n"; } } while (false)
;
7423 continue;
7424 }
7425 }
7426
7427 InstructionCost C = getEntryCost(&TE, VectorizedVals);
7428 Cost += C;
7429 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
7430 << " for bundle that starts with " << *TE.Scalars[0]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
7431 << ".\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
7432 << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n" << "SLP: Current total cost = " << Cost <<
"\n"; } } while (false)
;
7433 }
7434
7435 SmallPtrSet<Value *, 16> ExtractCostCalculated;
7436 InstructionCost ExtractCost = 0;
7437 SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks;
7438 SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers;
7439 SmallVector<APInt> DemandedElts;
7440 for (ExternalUser &EU : ExternalUses) {
7441 // We only add extract cost once for the same scalar.
7442 if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
7443 !ExtractCostCalculated.insert(EU.Scalar).second)
7444 continue;
7445
7446 // Uses by ephemeral values are free (because the ephemeral value will be
7447 // removed prior to code generation, and so the extraction will be
7448 // removed as well).
7449 if (EphValues.count(EU.User))
7450 continue;
7451
7452 // No extract cost for vector "scalar"
7453 if (isa<FixedVectorType>(EU.Scalar->getType()))
7454 continue;
7455
7456 // If found user is an insertelement, do not calculate extract cost but try
7457 // to detect it as a final shuffled/identity match.
7458 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
7459 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
7460 Optional<unsigned> InsertIdx = getInsertIndex(VU);
7461 if (InsertIdx) {
7462 const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar);
7463 auto *It = find_if(
7464 FirstUsers,
7465 [this, VU](const std::pair<Value *, const TreeEntry *> &Pair) {
7466 return areTwoInsertFromSameBuildVector(
7467 VU, cast<InsertElementInst>(Pair.first),
7468 [this](InsertElementInst *II) -> Value * {
7469 Value *Op0 = II->getOperand(0);
7470 if (getTreeEntry(II) && !getTreeEntry(Op0))
7471 return nullptr;
7472 return Op0;
7473 });
7474 });
7475 int VecId = -1;
7476 if (It == FirstUsers.end()) {
7477 (void)ShuffleMasks.emplace_back();
7478 SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE];
7479 if (Mask.empty())
7480 Mask.assign(FTy->getNumElements(), UndefMaskElem);
7481 // Find the insertvector, vectorized in tree, if any.
7482 Value *Base = VU;
7483 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
7484 if (IEBase != EU.User &&
7485 (!IEBase->hasOneUse() ||
7486 getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx))
7487 break;
7488 // Build the mask for the vectorized insertelement instructions.
7489 if (const TreeEntry *E = getTreeEntry(IEBase)) {
7490 VU = IEBase;
7491 do {
7492 IEBase = cast<InsertElementInst>(Base);
7493 int Idx = *getInsertIndex(IEBase);
7494 assert(Mask[Idx] == UndefMaskElem &&(static_cast <bool> (Mask[Idx] == UndefMaskElem &&
"InsertElementInstruction used already.") ? void (0) : __assert_fail
("Mask[Idx] == UndefMaskElem && \"InsertElementInstruction used already.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7495, __extension__
__PRETTY_FUNCTION__))
7495 "InsertElementInstruction used already.")(static_cast <bool> (Mask[Idx] == UndefMaskElem &&
"InsertElementInstruction used already.") ? void (0) : __assert_fail
("Mask[Idx] == UndefMaskElem && \"InsertElementInstruction used already.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7495, __extension__
__PRETTY_FUNCTION__))
;
7496 Mask[Idx] = Idx;
7497 Base = IEBase->getOperand(0);
7498 } while (E == getTreeEntry(Base));
7499 break;
7500 }
7501 Base = cast<InsertElementInst>(Base)->getOperand(0);
7502 }
7503 FirstUsers.emplace_back(VU, ScalarTE);
7504 DemandedElts.push_back(APInt::getZero(FTy->getNumElements()));
7505 VecId = FirstUsers.size() - 1;
7506 } else {
7507 if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first)))
7508 It->first = VU;
7509 VecId = std::distance(FirstUsers.begin(), It);
7510 }
7511 int InIdx = *InsertIdx;
7512 SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE];
7513 if (Mask.empty())
7514 Mask.assign(FTy->getNumElements(), UndefMaskElem);
7515 Mask[InIdx] = EU.Lane;
7516 DemandedElts[VecId].setBit(InIdx);
7517 continue;
7518 }
7519 }
7520 }
7521
7522 // If we plan to rewrite the tree in a smaller type, we will need to sign
7523 // extend the extracted value back to the original type. Here, we account
7524 // for the extract and the added cost of the sign extend if needed.
7525 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
7526 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
7527 if (MinBWs.count(ScalarRoot)) {
7528 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
7529 auto Extend =
7530 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
7531 VecTy = FixedVectorType::get(MinTy, BundleWidth);
7532 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
7533 VecTy, EU.Lane);
7534 } else {
7535 ExtractCost +=
7536 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
7537 }
7538 }
7539
7540 InstructionCost SpillCost = getSpillCost();
7541 Cost += SpillCost + ExtractCost;
7542 auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask,
7543 bool) {
7544 InstructionCost C = 0;
7545 unsigned VF = Mask.size();
7546 unsigned VecVF = TE->getVectorFactor();
7547 if (VF != VecVF &&
7548 (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) ||
7549 (all_of(Mask,
7550 [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) &&
7551 !ShuffleVectorInst::isIdentityMask(Mask)))) {
7552 SmallVector<int> OrigMask(VecVF, UndefMaskElem);
7553 std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)),
7554 OrigMask.begin());
7555 C = TTI->getShuffleCost(
7556 TTI::SK_PermuteSingleSrc,
7557 FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask);
7558 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users.\n"; TE->
dump(); dbgs() << "SLP: Current total cost = " <<
Cost << "\n"; } } while (false)
7559 dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users.\n"; TE->
dump(); dbgs() << "SLP: Current total cost = " <<
Cost << "\n"; } } while (false)
7560 << " for final shuffle of insertelement external users.\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users.\n"; TE->
dump(); dbgs() << "SLP: Current total cost = " <<
Cost << "\n"; } } while (false)
7561 TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement external users.\n"; TE->
dump(); dbgs() << "SLP: Current total cost = " <<
Cost << "\n"; } } while (false)
;
7562 Cost += C;
7563 return std::make_pair(TE, true);
7564 }
7565 return std::make_pair(TE, false);
7566 };
7567 // Calculate the cost of the reshuffled vectors, if any.
7568 for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
7569 Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0);
7570 unsigned VF = ShuffleMasks[I].begin()->second.size();
7571 auto *FTy = FixedVectorType::get(
7572 cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF);
7573 auto Vector = ShuffleMasks[I].takeVector();
7574 auto &&EstimateShufflesCost = [this, FTy,
7575 &Cost](ArrayRef<int> Mask,
7576 ArrayRef<const TreeEntry *> TEs) {
7577 assert((TEs.size() == 1 || TEs.size() == 2) &&(static_cast <bool> ((TEs.size() == 1 || TEs.size() == 2
) && "Expected exactly 1 or 2 tree entries.") ? void (
0) : __assert_fail ("(TEs.size() == 1 || TEs.size() == 2) && \"Expected exactly 1 or 2 tree entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7578, __extension__
__PRETTY_FUNCTION__))
7578 "Expected exactly 1 or 2 tree entries.")(static_cast <bool> ((TEs.size() == 1 || TEs.size() == 2
) && "Expected exactly 1 or 2 tree entries.") ? void (
0) : __assert_fail ("(TEs.size() == 1 || TEs.size() == 2) && \"Expected exactly 1 or 2 tree entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7578, __extension__
__PRETTY_FUNCTION__))
;
7579 if (TEs.size() == 1) {
7580 int Limit = 2 * Mask.size();
7581 if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) ||
7582 !ShuffleVectorInst::isIdentityMask(Mask)) {
7583 InstructionCost C =
7584 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask);
7585 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement " "external users.\n"; TEs
.front()->dump(); dbgs() << "SLP: Current total cost = "
<< Cost << "\n"; } } while (false)
7586 << " for final shuffle of insertelement "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement " "external users.\n"; TEs
.front()->dump(); dbgs() << "SLP: Current total cost = "
<< Cost << "\n"; } } while (false)
7587 "external users.\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement " "external users.\n"; TEs
.front()->dump(); dbgs() << "SLP: Current total cost = "
<< Cost << "\n"; } } while (false)
7588 TEs.front()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement " "external users.\n"; TEs
.front()->dump(); dbgs() << "SLP: Current total cost = "
<< Cost << "\n"; } } while (false)
7589 dbgs() << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of insertelement " "external users.\n"; TEs
.front()->dump(); dbgs() << "SLP: Current total cost = "
<< Cost << "\n"; } } while (false)
;
7590 Cost += C;
7591 }
7592 } else {
7593 InstructionCost C =
7594 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask);
7595 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users.\n"
; if (TEs.front()) { TEs.front()->dump(); } TEs.back()->
dump(); dbgs() << "SLP: Current total cost = " <<
Cost << "\n"; } } while (false)
7596 << " for final shuffle of vector node and external "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users.\n"
; if (TEs.front()) { TEs.front()->dump(); } TEs.back()->
dump(); dbgs() << "SLP: Current total cost = " <<
Cost << "\n"; } } while (false)
7597 "insertelement users.\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users.\n"
; if (TEs.front()) { TEs.front()->dump(); } TEs.back()->
dump(); dbgs() << "SLP: Current total cost = " <<
Cost << "\n"; } } while (false)
7598 if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users.\n"
; if (TEs.front()) { TEs.front()->dump(); } TEs.back()->
dump(); dbgs() << "SLP: Current total cost = " <<
Cost << "\n"; } } while (false)
7599 dbgs() << "SLP: Current total cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for final shuffle of vector node and external " "insertelement users.\n"
; if (TEs.front()) { TEs.front()->dump(); } TEs.back()->
dump(); dbgs() << "SLP: Current total cost = " <<
Cost << "\n"; } } while (false)
;
7600 Cost += C;
7601 }
7602 return TEs.back();
7603 };
7604 (void)performExtractsShuffleAction<const TreeEntry>(
7605 makeMutableArrayRef(Vector.data(), Vector.size()), Base,
7606 [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF,
7607 EstimateShufflesCost);
7608 InstructionCost InsertCost = TTI->getScalarizationOverhead(
7609 cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I],
7610 /*Insert*/ true, /*Extract*/ false);
7611 Cost -= InsertCost;
7612 }
7613
7614#ifndef NDEBUG
7615 SmallString<256> Str;
7616 {
7617 raw_svector_ostream OS(Str);
7618 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
7619 << "SLP: Extract Cost = " << ExtractCost << ".\n"
7620 << "SLP: Total Cost = " << Cost << ".\n";
7621 }
7622 LLVM_DEBUG(dbgs() << Str)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << Str; } } while (false)
;
7623 if (ViewSLPTree)
7624 ViewGraph(this, "SLP" + F->getName(), false, Str);
7625#endif
7626
7627 return Cost;
7628}
7629
7630Optional<TargetTransformInfo::ShuffleKind>
7631BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
7632 SmallVectorImpl<const TreeEntry *> &Entries) {
7633 // TODO: currently checking only for Scalars in the tree entry, need to count
7634 // reused elements too for better cost estimation.
7635 Mask.assign(TE->Scalars.size(), UndefMaskElem);
7636 Entries.clear();
7637 // Build a lists of values to tree entries.
7638 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
7639 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
7640 if (EntryPtr.get() == TE)
7641 break;
7642 if (EntryPtr->State != TreeEntry::NeedToGather)
7643 continue;
7644 for (Value *V : EntryPtr->Scalars)
7645 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
7646 }
7647 // Find all tree entries used by the gathered values. If no common entries
7648 // found - not a shuffle.
7649 // Here we build a set of tree nodes for each gathered value and trying to
7650 // find the intersection between these sets. If we have at least one common
7651 // tree node for each gathered value - we have just a permutation of the
7652 // single vector. If we have 2 different sets, we're in situation where we
7653 // have a permutation of 2 input vectors.
7654 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
7655 DenseMap<Value *, int> UsedValuesEntry;
7656 for (Value *V : TE->Scalars) {
7657 if (isa<UndefValue>(V))
7658 continue;
7659 // Build a list of tree entries where V is used.
7660 SmallPtrSet<const TreeEntry *, 4> VToTEs;
7661 auto It = ValueToTEs.find(V);
7662 if (It != ValueToTEs.end())
7663 VToTEs = It->second;
7664 if (const TreeEntry *VTE = getTreeEntry(V))
7665 VToTEs.insert(VTE);
7666 if (VToTEs.empty())
7667 return None;
7668 if (UsedTEs.empty()) {
7669 // The first iteration, just insert the list of nodes to vector.
7670 UsedTEs.push_back(VToTEs);
7671 } else {
7672 // Need to check if there are any previously used tree nodes which use V.
7673 // If there are no such nodes, consider that we have another one input
7674 // vector.
7675 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
7676 unsigned Idx = 0;
7677 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
7678 // Do we have a non-empty intersection of previously listed tree entries
7679 // and tree entries using current V?
7680 set_intersect(VToTEs, Set);
7681 if (!VToTEs.empty()) {
7682 // Yes, write the new subset and continue analysis for the next
7683 // scalar.
7684 Set.swap(VToTEs);
7685 break;
7686 }
7687 VToTEs = SavedVToTEs;
7688 ++Idx;
7689 }
7690 // No non-empty intersection found - need to add a second set of possible
7691 // source vectors.
7692 if (Idx == UsedTEs.size()) {
7693 // If the number of input vectors is greater than 2 - not a permutation,
7694 // fallback to the regular gather.
7695 if (UsedTEs.size() == 2)
7696 return None;
7697 UsedTEs.push_back(SavedVToTEs);
7698 Idx = UsedTEs.size() - 1;
7699 }
7700 UsedValuesEntry.try_emplace(V, Idx);
7701 }
7702 }
7703
7704 if (UsedTEs.empty()) {
7705 assert(all_of(TE->Scalars, UndefValue::classof) &&(static_cast <bool> (all_of(TE->Scalars, UndefValue::
classof) && "Expected vector of undefs only.") ? void
(0) : __assert_fail ("all_of(TE->Scalars, UndefValue::classof) && \"Expected vector of undefs only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7706, __extension__
__PRETTY_FUNCTION__))
7706 "Expected vector of undefs only.")(static_cast <bool> (all_of(TE->Scalars, UndefValue::
classof) && "Expected vector of undefs only.") ? void
(0) : __assert_fail ("all_of(TE->Scalars, UndefValue::classof) && \"Expected vector of undefs only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7706, __extension__
__PRETTY_FUNCTION__))
;
7707 return None;
7708 }
7709
7710 unsigned VF = 0;
7711 if (UsedTEs.size() == 1) {
7712 // Try to find the perfect match in another gather node at first.
7713 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
7714 return EntryPtr->isSame(TE->Scalars);
7715 });
7716 if (It != UsedTEs.front().end()) {
7717 Entries.push_back(*It);
7718 std::iota(Mask.begin(), Mask.end(), 0);
7719 return TargetTransformInfo::SK_PermuteSingleSrc;
7720 }
7721 // No perfect match, just shuffle, so choose the first tree node.
7722 Entries.push_back(*UsedTEs.front().begin());
7723 } else {
7724 // Try to find nodes with the same vector factor.
7725 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.")(static_cast <bool> (UsedTEs.size() == 2 && "Expected at max 2 permuted entries."
) ? void (0) : __assert_fail ("UsedTEs.size() == 2 && \"Expected at max 2 permuted entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7725, __extension__
__PRETTY_FUNCTION__))
;
7726 DenseMap<int, const TreeEntry *> VFToTE;
7727 for (const TreeEntry *TE : UsedTEs.front())
7728 VFToTE.try_emplace(TE->getVectorFactor(), TE);
7729 for (const TreeEntry *TE : UsedTEs.back()) {
7730 auto It = VFToTE.find(TE->getVectorFactor());
7731 if (It != VFToTE.end()) {
7732 VF = It->first;
7733 Entries.push_back(It->second);
7734 Entries.push_back(TE);
7735 break;
7736 }
7737 }
7738 // No 2 source vectors with the same vector factor - give up and do regular
7739 // gather.
7740 if (Entries.empty())
7741 return None;
7742 }
7743
7744 // Build a shuffle mask for better cost estimation and vector emission.
7745 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
7746 Value *V = TE->Scalars[I];
7747 if (isa<UndefValue>(V))
7748 continue;
7749 unsigned Idx = UsedValuesEntry.lookup(V);
7750 const TreeEntry *VTE = Entries[Idx];
7751 int FoundLane = VTE->findLaneForValue(V);
7752 Mask[I] = Idx * VF + FoundLane;
7753 // Extra check required by isSingleSourceMaskImpl function (called by
7754 // ShuffleVectorInst::isSingleSourceMask).
7755 if (Mask[I] >= 2 * E)
7756 return None;
7757 }
7758 switch (Entries.size()) {
7759 case 1:
7760 return TargetTransformInfo::SK_PermuteSingleSrc;
7761 case 2:
7762 return TargetTransformInfo::SK_PermuteTwoSrc;
7763 default:
7764 break;
7765 }
7766 return None;
7767}
7768
7769InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty,
7770 const APInt &ShuffledIndices,
7771 bool NeedToShuffle) const {
7772 InstructionCost Cost =
7773 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true,
7774 /*Extract*/ false);
7775 if (NeedToShuffle)
7776 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
7777 return Cost;
7778}
7779
7780InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
7781 // Find the type of the operands in VL.
7782 Type *ScalarTy = VL[0]->getType();
7783 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
7784 ScalarTy = SI->getValueOperand()->getType();
7785 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
7786 bool DuplicateNonConst = false;
7787 // Find the cost of inserting/extracting values from the vector.
7788 // Check if the same elements are inserted several times and count them as
7789 // shuffle candidates.
7790 APInt ShuffledElements = APInt::getZero(VL.size());
7791 DenseSet<Value *> UniqueElements;
7792 // Iterate in reverse order to consider insert elements with the high cost.
7793 for (unsigned I = VL.size(); I > 0; --I) {
7794 unsigned Idx = I - 1;
7795 // No need to shuffle duplicates for constants.
7796 if (isConstant(VL[Idx])) {
7797 ShuffledElements.setBit(Idx);
7798 continue;
7799 }
7800 if (!UniqueElements.insert(VL[Idx]).second) {
7801 DuplicateNonConst = true;
7802 ShuffledElements.setBit(Idx);
7803 }
7804 }
7805 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst);
7806}
7807
7808// Perform operand reordering on the instructions in VL and return the reordered
7809// operands in Left and Right.
7810void BoUpSLP::reorderInputsAccordingToOpcode(
7811 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
7812 SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI,
7813 const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) {
7814 if (VL.empty())
7815 return;
7816 VLOperands Ops(VL, TLI, DL, SE, R);
7817 // Reorder the operands in place.
7818 Ops.reorder();
7819 Left = Ops.getVL(0);
7820 Right = Ops.getVL(1);
7821}
7822
7823Instruction &BoUpSLP::getLastInstructionInBundle(const TreeEntry *E) {
7824 // Get the basic block this bundle is in. All instructions in the bundle
7825 // should be in this block (except for extractelement-like instructions with
7826 // constant indeces).
7827 auto *Front = E->getMainOp();
7828 auto *BB = Front->getParent();
7829 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr
&& !isa<GetElementPtrInst>(V)) return true; auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB || isVectorLikeInstWithConstOps
(I); })) ? void (0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr && !isa<GetElementPtrInst>(V)) return true; auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB || isVectorLikeInstWithConstOps(I); })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7836, __extension__
__PRETTY_FUNCTION__))
7830 if (E->getOpcode() == Instruction::GetElementPtr &&(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr
&& !isa<GetElementPtrInst>(V)) return true; auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB || isVectorLikeInstWithConstOps
(I); })) ? void (0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr && !isa<GetElementPtrInst>(V)) return true; auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB || isVectorLikeInstWithConstOps(I); })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7836, __extension__
__PRETTY_FUNCTION__))
7831 !isa<GetElementPtrInst>(V))(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr
&& !isa<GetElementPtrInst>(V)) return true; auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB || isVectorLikeInstWithConstOps
(I); })) ? void (0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr && !isa<GetElementPtrInst>(V)) return true; auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB || isVectorLikeInstWithConstOps(I); })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7836, __extension__
__PRETTY_FUNCTION__))
7832 return true;(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr
&& !isa<GetElementPtrInst>(V)) return true; auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB || isVectorLikeInstWithConstOps
(I); })) ? void (0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr && !isa<GetElementPtrInst>(V)) return true; auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB || isVectorLikeInstWithConstOps(I); })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7836, __extension__
__PRETTY_FUNCTION__))
7833 auto *I = cast<Instruction>(V);(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr
&& !isa<GetElementPtrInst>(V)) return true; auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB || isVectorLikeInstWithConstOps
(I); })) ? void (0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr && !isa<GetElementPtrInst>(V)) return true; auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB || isVectorLikeInstWithConstOps(I); })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7836, __extension__
__PRETTY_FUNCTION__))
7834 return !E->isOpcodeOrAlt(I) || I->getParent() == BB ||(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr
&& !isa<GetElementPtrInst>(V)) return true; auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB || isVectorLikeInstWithConstOps
(I); })) ? void (0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr && !isa<GetElementPtrInst>(V)) return true; auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB || isVectorLikeInstWithConstOps(I); })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7836, __extension__
__PRETTY_FUNCTION__))
7835 isVectorLikeInstWithConstOps(I);(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr
&& !isa<GetElementPtrInst>(V)) return true; auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB || isVectorLikeInstWithConstOps
(I); })) ? void (0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr && !isa<GetElementPtrInst>(V)) return true; auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB || isVectorLikeInstWithConstOps(I); })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7836, __extension__
__PRETTY_FUNCTION__))
7836 }))(static_cast <bool> (llvm::all_of(E->Scalars, [=](Value
*V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr
&& !isa<GetElementPtrInst>(V)) return true; auto
*I = cast<Instruction>(V); return !E->isOpcodeOrAlt
(I) || I->getParent() == BB || isVectorLikeInstWithConstOps
(I); })) ? void (0) : __assert_fail ("llvm::all_of(E->Scalars, [=](Value *V) -> bool { if (E->getOpcode() == Instruction::GetElementPtr && !isa<GetElementPtrInst>(V)) return true; auto *I = cast<Instruction>(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB || isVectorLikeInstWithConstOps(I); })"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7836, __extension__
__PRETTY_FUNCTION__))
;
7837
7838 auto &&FindLastInst = [E, Front, this, &BB]() {
7839 Instruction *LastInst = Front;
7840 for (Value *V : E->Scalars) {
7841 auto *I = dyn_cast<Instruction>(V);
7842 if (!I)
7843 continue;
7844 if (LastInst->getParent() == I->getParent()) {
7845 if (LastInst->comesBefore(I))
7846 LastInst = I;
7847 continue;
7848 }
7849 assert(isVectorLikeInstWithConstOps(LastInst) &&(static_cast <bool> (isVectorLikeInstWithConstOps(LastInst
) && isVectorLikeInstWithConstOps(I) && "Expected vector-like insts only."
) ? void (0) : __assert_fail ("isVectorLikeInstWithConstOps(LastInst) && isVectorLikeInstWithConstOps(I) && \"Expected vector-like insts only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7851, __extension__
__PRETTY_FUNCTION__))
7850 isVectorLikeInstWithConstOps(I) &&(static_cast <bool> (isVectorLikeInstWithConstOps(LastInst
) && isVectorLikeInstWithConstOps(I) && "Expected vector-like insts only."
) ? void (0) : __assert_fail ("isVectorLikeInstWithConstOps(LastInst) && isVectorLikeInstWithConstOps(I) && \"Expected vector-like insts only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7851, __extension__
__PRETTY_FUNCTION__))
7851 "Expected vector-like insts only.")(static_cast <bool> (isVectorLikeInstWithConstOps(LastInst
) && isVectorLikeInstWithConstOps(I) && "Expected vector-like insts only."
) ? void (0) : __assert_fail ("isVectorLikeInstWithConstOps(LastInst) && isVectorLikeInstWithConstOps(I) && \"Expected vector-like insts only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7851, __extension__
__PRETTY_FUNCTION__))
;
7852 if (!DT->isReachableFromEntry(LastInst->getParent())) {
7853 LastInst = I;
7854 continue;
7855 }
7856 if (!DT->isReachableFromEntry(I->getParent()))
7857 continue;
7858 auto *NodeA = DT->getNode(LastInst->getParent());
7859 auto *NodeB = DT->getNode(I->getParent());
7860 assert(NodeA && "Should only process reachable instructions")(static_cast <bool> (NodeA && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeA && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7860, __extension__
__PRETTY_FUNCTION__))
;
7861 assert(NodeB && "Should only process reachable instructions")(static_cast <bool> (NodeB && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeB && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7861, __extension__
__PRETTY_FUNCTION__))
;
7862 assert((NodeA == NodeB) ==(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7864, __extension__
__PRETTY_FUNCTION__))
7863 (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7864, __extension__
__PRETTY_FUNCTION__))
7864 "Different nodes should have different DFS numbers")(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7864, __extension__
__PRETTY_FUNCTION__))
;
7865 if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn())
7866 LastInst = I;
7867 }
7868 BB = LastInst->getParent();
7869 return LastInst;
7870 };
7871
7872 auto &&FindFirstInst = [E, Front, this]() {
7873 Instruction *FirstInst = Front;
7874 for (Value *V : E->Scalars) {
7875 auto *I = dyn_cast<Instruction>(V);
7876 if (!I)
7877 continue;
7878 if (FirstInst->getParent() == I->getParent()) {
7879 if (I->comesBefore(FirstInst))
7880 FirstInst = I;
7881 continue;
7882 }
7883 assert(isVectorLikeInstWithConstOps(FirstInst) &&(static_cast <bool> (isVectorLikeInstWithConstOps(FirstInst
) && isVectorLikeInstWithConstOps(I) && "Expected vector-like insts only."
) ? void (0) : __assert_fail ("isVectorLikeInstWithConstOps(FirstInst) && isVectorLikeInstWithConstOps(I) && \"Expected vector-like insts only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7885, __extension__
__PRETTY_FUNCTION__))
7884 isVectorLikeInstWithConstOps(I) &&(static_cast <bool> (isVectorLikeInstWithConstOps(FirstInst
) && isVectorLikeInstWithConstOps(I) && "Expected vector-like insts only."
) ? void (0) : __assert_fail ("isVectorLikeInstWithConstOps(FirstInst) && isVectorLikeInstWithConstOps(I) && \"Expected vector-like insts only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7885, __extension__
__PRETTY_FUNCTION__))
7885 "Expected vector-like insts only.")(static_cast <bool> (isVectorLikeInstWithConstOps(FirstInst
) && isVectorLikeInstWithConstOps(I) && "Expected vector-like insts only."
) ? void (0) : __assert_fail ("isVectorLikeInstWithConstOps(FirstInst) && isVectorLikeInstWithConstOps(I) && \"Expected vector-like insts only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7885, __extension__
__PRETTY_FUNCTION__))
;
7886 if (!DT->isReachableFromEntry(FirstInst->getParent())) {
7887 FirstInst = I;
7888 continue;
7889 }
7890 if (!DT->isReachableFromEntry(I->getParent()))
7891 continue;
7892 auto *NodeA = DT->getNode(FirstInst->getParent());
7893 auto *NodeB = DT->getNode(I->getParent());
7894 assert(NodeA && "Should only process reachable instructions")(static_cast <bool> (NodeA && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeA && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7894, __extension__
__PRETTY_FUNCTION__))
;
7895 assert(NodeB && "Should only process reachable instructions")(static_cast <bool> (NodeB && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeB && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7895, __extension__
__PRETTY_FUNCTION__))
;
7896 assert((NodeA == NodeB) ==(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7898, __extension__
__PRETTY_FUNCTION__))
7897 (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7898, __extension__
__PRETTY_FUNCTION__))
7898 "Different nodes should have different DFS numbers")(static_cast <bool> ((NodeA == NodeB) == (NodeA->getDFSNumIn
() == NodeB->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7898, __extension__
__PRETTY_FUNCTION__))
;
7899 if (NodeA->getDFSNumIn() > NodeB->getDFSNumIn())
7900 FirstInst = I;
7901 }
7902 return FirstInst;
7903 };
7904
7905 // Set the insert point to the beginning of the basic block if the entry
7906 // should not be scheduled.
7907 if (E->State != TreeEntry::NeedToGather &&
7908 (doesNotNeedToSchedule(E->Scalars) ||
7909 all_of(E->Scalars, isVectorLikeInstWithConstOps))) {
7910 Instruction *InsertInst;
7911 if (all_of(E->Scalars, [](Value *V) {
7912 return !isVectorLikeInstWithConstOps(V) && isUsedOutsideBlock(V);
7913 }))
7914 InsertInst = FindLastInst();
7915 else
7916 InsertInst = FindFirstInst();
7917 return *InsertInst;
7918 }
7919
7920 // The last instruction in the bundle in program order.
7921 Instruction *LastInst = nullptr;
7922
7923 // Find the last instruction. The common case should be that BB has been
7924 // scheduled, and the last instruction is VL.back(). So we start with
7925 // VL.back() and iterate over schedule data until we reach the end of the
7926 // bundle. The end of the bundle is marked by null ScheduleData.
7927 if (BlocksSchedules.count(BB)) {
7928 Value *V = E->isOneOf(E->Scalars.back());
7929 if (doesNotNeedToBeScheduled(V))
7930 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled);
7931 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V);
7932 if (Bundle && Bundle->isPartOfBundle())
7933 for (; Bundle; Bundle = Bundle->NextInBundle)
7934 if (Bundle->OpValue == Bundle->Inst)
7935 LastInst = Bundle->Inst;
7936 }
7937
7938 // LastInst can still be null at this point if there's either not an entry
7939 // for BB in BlocksSchedules or there's no ScheduleData available for
7940 // VL.back(). This can be the case if buildTree_rec aborts for various
7941 // reasons (e.g., the maximum recursion depth is reached, the maximum region
7942 // size is reached, etc.). ScheduleData is initialized in the scheduling
7943 // "dry-run".
7944 //
7945 // If this happens, we can still find the last instruction by brute force. We
7946 // iterate forwards from Front (inclusive) until we either see all
7947 // instructions in the bundle or reach the end of the block. If Front is the
7948 // last instruction in program order, LastInst will be set to Front, and we
7949 // will visit all the remaining instructions in the block.
7950 //
7951 // One of the reasons we exit early from buildTree_rec is to place an upper
7952 // bound on compile-time. Thus, taking an additional compile-time hit here is
7953 // not ideal. However, this should be exceedingly rare since it requires that
7954 // we both exit early from buildTree_rec and that the bundle be out-of-order
7955 // (causing us to iterate all the way to the end of the block).
7956 if (!LastInst)
7957 LastInst = FindLastInst();
7958 assert(LastInst && "Failed to find last instruction in bundle")(static_cast <bool> (LastInst && "Failed to find last instruction in bundle"
) ? void (0) : __assert_fail ("LastInst && \"Failed to find last instruction in bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7958, __extension__
__PRETTY_FUNCTION__))
;
7959 return *LastInst;
7960}
7961
7962void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
7963 auto *Front = E->getMainOp();
7964 Instruction *LastInst = &getLastInstructionInBundle(E);
7965 assert(LastInst && "Failed to find last instruction in bundle")(static_cast <bool> (LastInst && "Failed to find last instruction in bundle"
) ? void (0) : __assert_fail ("LastInst && \"Failed to find last instruction in bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 7965, __extension__
__PRETTY_FUNCTION__))
;
7966 // If the instruction is PHI, set the insert point after all the PHIs.
7967 bool IsPHI = isa<PHINode>(LastInst);
7968 if (IsPHI)
7969 LastInst = LastInst->getParent()->getFirstNonPHI();
7970 if (IsPHI || (E->State != TreeEntry::NeedToGather &&
7971 doesNotNeedToSchedule(E->Scalars))) {
7972 Builder.SetInsertPoint(LastInst);
7973 } else {
7974 // Set the insertion point after the last instruction in the bundle. Set the
7975 // debug location to Front.
7976 Builder.SetInsertPoint(LastInst->getParent(),
7977 std::next(LastInst->getIterator()));
7978 }
7979 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
7980}
7981
7982Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
7983 // List of instructions/lanes from current block and/or the blocks which are
7984 // part of the current loop. These instructions will be inserted at the end to
7985 // make it possible to optimize loops and hoist invariant instructions out of
7986 // the loops body with better chances for success.
7987 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
7988 SmallSet<int, 4> PostponedIndices;
7989 Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
7990 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
7991 SmallPtrSet<BasicBlock *, 4> Visited;
7992 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
7993 InsertBB = InsertBB->getSinglePredecessor();
7994 return InsertBB && InsertBB == InstBB;
7995 };
7996 for (int I = 0, E = VL.size(); I < E; ++I) {
7997 if (auto *Inst = dyn_cast<Instruction>(VL[I]))
7998 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
7999 getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
8000 PostponedIndices.insert(I).second)
8001 PostponedInsts.emplace_back(Inst, I);
8002 }
8003
8004 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
8005 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
8006 auto *InsElt = dyn_cast<InsertElementInst>(Vec);
8007 if (!InsElt)
8008 return Vec;
8009 GatherShuffleExtractSeq.insert(InsElt);
8010 CSEBlocks.insert(InsElt->getParent());
8011 // Add to our 'need-to-extract' list.
8012 if (TreeEntry *Entry = getTreeEntry(V)) {
8013 // Find which lane we need to extract.
8014 unsigned FoundLane = Entry->findLaneForValue(V);
8015 ExternalUses.emplace_back(V, InsElt, FoundLane);
8016 }
8017 return Vec;
8018 };
8019 Value *Val0 =
8020 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
8021 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
8022 Value *Vec = PoisonValue::get(VecTy);
8023 SmallVector<int> NonConsts;
8024 // Insert constant values at first.
8025 for (int I = 0, E = VL.size(); I < E; ++I) {
8026 if (PostponedIndices.contains(I))
8027 continue;
8028 if (!isConstant(VL[I])) {
8029 NonConsts.push_back(I);
8030 continue;
8031 }
8032 Vec = CreateInsertElement(Vec, VL[I], I);
8033 }
8034 // Insert non-constant values.
8035 for (int I : NonConsts)
8036 Vec = CreateInsertElement(Vec, VL[I], I);
8037 // Append instructions, which are/may be part of the loop, in the end to make
8038 // it possible to hoist non-loop-based instructions.
8039 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
8040 Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
8041
8042 return Vec;
8043}
8044
8045namespace {
8046/// Merges shuffle masks and emits final shuffle instruction, if required.
8047class ShuffleInstructionBuilder {
8048 IRBuilderBase &Builder;
8049 const unsigned VF = 0;
8050 bool IsFinalized = false;
8051 SmallVector<int, 4> Mask;
8052 /// Holds all of the instructions that we gathered.
8053 SetVector<Instruction *> &GatherShuffleSeq;
8054 /// A list of blocks that we are going to CSE.
8055 SetVector<BasicBlock *> &CSEBlocks;
8056
8057public:
8058 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF,
8059 SetVector<Instruction *> &GatherShuffleSeq,
8060 SetVector<BasicBlock *> &CSEBlocks)
8061 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq),
8062 CSEBlocks(CSEBlocks) {}
8063
8064 /// Adds a mask, inverting it before applying.
8065 void addInversedMask(ArrayRef<unsigned> SubMask) {
8066 if (SubMask.empty())
8067 return;
8068 SmallVector<int, 4> NewMask;
8069 inversePermutation(SubMask, NewMask);
8070 addMask(NewMask);
8071 }
8072
8073 /// Functions adds masks, merging them into single one.
8074 void addMask(ArrayRef<unsigned> SubMask) {
8075 SmallVector<int, 4> NewMask(SubMask);
8076 addMask(NewMask);
8077 }
8078
8079 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
8080
8081 Value *finalize(Value *V) {
8082 IsFinalized = true;
8083 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
8084 if (VF == ValueVF && Mask.empty())
8085 return V;
8086 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
8087 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
8088 addMask(NormalizedMask);
8089
8090 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
8091 return V;
8092 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle");
8093 if (auto *I = dyn_cast<Instruction>(Vec)) {
8094 GatherShuffleSeq.insert(I);
8095 CSEBlocks.insert(I->getParent());
8096 }
8097 return Vec;
8098 }
8099
8100 ~ShuffleInstructionBuilder() {
8101 assert((IsFinalized || Mask.empty()) &&(static_cast <bool> ((IsFinalized || Mask.empty()) &&
"Shuffle construction must be finalized.") ? void (0) : __assert_fail
("(IsFinalized || Mask.empty()) && \"Shuffle construction must be finalized.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8102, __extension__
__PRETTY_FUNCTION__))
8102 "Shuffle construction must be finalized.")(static_cast <bool> ((IsFinalized || Mask.empty()) &&
"Shuffle construction must be finalized.") ? void (0) : __assert_fail
("(IsFinalized || Mask.empty()) && \"Shuffle construction must be finalized.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8102, __extension__
__PRETTY_FUNCTION__))
;
8103 }
8104};
8105} // namespace
8106
8107Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
8108 const unsigned VF = VL.size();
8109 InstructionsState S = getSameOpcode(VL, *TLI);
8110 // Special processing for GEPs bundle, which may include non-gep values.
8111 if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) {
8112 const auto *It =
8113 find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
8114 if (It != VL.end())
8115 S = getSameOpcode(*It, *TLI);
8116 }
8117 if (S.getOpcode()) {
8118 if (TreeEntry *E = getTreeEntry(S.OpValue))
8119 if (E->isSame(VL)) {
8120 Value *V = vectorizeTree(E);
8121 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
8122 if (!E->ReuseShuffleIndices.empty()) {
8123 // Reshuffle to get only unique values.
8124 // If some of the scalars are duplicated in the vectorization tree
8125 // entry, we do not vectorize them but instead generate a mask for
8126 // the reuses. But if there are several users of the same entry,
8127 // they may have different vectorization factors. This is especially
8128 // important for PHI nodes. In this case, we need to adapt the
8129 // resulting instruction for the user vectorization factor and have
8130 // to reshuffle it again to take only unique elements of the vector.
8131 // Without this code the function incorrectly returns reduced vector
8132 // instruction with the same elements, not with the unique ones.
8133
8134 // block:
8135 // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
8136 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
8137 // ... (use %2)
8138 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
8139 // br %block
8140 SmallVector<int> UniqueIdxs(VF, UndefMaskElem);
8141 SmallSet<int, 4> UsedIdxs;
8142 int Pos = 0;
8143 int Sz = VL.size();
8144 for (int Idx : E->ReuseShuffleIndices) {
8145 if (Idx != Sz && Idx != UndefMaskElem &&
8146 UsedIdxs.insert(Idx).second)
8147 UniqueIdxs[Idx] = Pos;
8148 ++Pos;
8149 }
8150 assert(VF >= UsedIdxs.size() && "Expected vectorization factor "(static_cast <bool> (VF >= UsedIdxs.size() &&
"Expected vectorization factor " "less than original vector size."
) ? void (0) : __assert_fail ("VF >= UsedIdxs.size() && \"Expected vectorization factor \" \"less than original vector size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8151, __extension__
__PRETTY_FUNCTION__))
8151 "less than original vector size.")(static_cast <bool> (VF >= UsedIdxs.size() &&
"Expected vectorization factor " "less than original vector size."
) ? void (0) : __assert_fail ("VF >= UsedIdxs.size() && \"Expected vectorization factor \" \"less than original vector size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8151, __extension__
__PRETTY_FUNCTION__))
;
8152 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
8153 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
8154 } else {
8155 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&(static_cast <bool> (VF < cast<FixedVectorType>
(V->getType())->getNumElements() && "Expected vectorization factor less "
"than original vector size.") ? void (0) : __assert_fail ("VF < cast<FixedVectorType>(V->getType())->getNumElements() && \"Expected vectorization factor less \" \"than original vector size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8157, __extension__
__PRETTY_FUNCTION__))
8156 "Expected vectorization factor less "(static_cast <bool> (VF < cast<FixedVectorType>
(V->getType())->getNumElements() && "Expected vectorization factor less "
"than original vector size.") ? void (0) : __assert_fail ("VF < cast<FixedVectorType>(V->getType())->getNumElements() && \"Expected vectorization factor less \" \"than original vector size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8157, __extension__
__PRETTY_FUNCTION__))
8157 "than original vector size.")(static_cast <bool> (VF < cast<FixedVectorType>
(V->getType())->getNumElements() && "Expected vectorization factor less "
"than original vector size.") ? void (0) : __assert_fail ("VF < cast<FixedVectorType>(V->getType())->getNumElements() && \"Expected vectorization factor less \" \"than original vector size.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8157, __extension__
__PRETTY_FUNCTION__))
;
8158 SmallVector<int> UniformMask(VF, 0);
8159 std::iota(UniformMask.begin(), UniformMask.end(), 0);
8160 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
8161 }
8162 if (auto *I = dyn_cast<Instruction>(V)) {
8163 GatherShuffleExtractSeq.insert(I);
8164 CSEBlocks.insert(I->getParent());
8165 }
8166 }
8167 return V;
8168 }
8169 }
8170
8171 // Can't vectorize this, so simply build a new vector with each lane
8172 // corresponding to the requested value.
8173 return createBuildVector(VL);
8174}
8175Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) {
8176 assert(any_of(VectorizableTree,(static_cast <bool> (any_of(VectorizableTree, [VL](const
std::unique_ptr<TreeEntry> &TE) { return TE->State
== TreeEntry::NeedToGather && TE->isSame(VL); }) &&
"Non-matching gather node.") ? void (0) : __assert_fail ("any_of(VectorizableTree, [VL](const std::unique_ptr<TreeEntry> &TE) { return TE->State == TreeEntry::NeedToGather && TE->isSame(VL); }) && \"Non-matching gather node.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8180, __extension__
__PRETTY_FUNCTION__))
8177 [VL](const std::unique_ptr<TreeEntry> &TE) {(static_cast <bool> (any_of(VectorizableTree, [VL](const
std::unique_ptr<TreeEntry> &TE) { return TE->State
== TreeEntry::NeedToGather && TE->isSame(VL); }) &&
"Non-matching gather node.") ? void (0) : __assert_fail ("any_of(VectorizableTree, [VL](const std::unique_ptr<TreeEntry> &TE) { return TE->State == TreeEntry::NeedToGather && TE->isSame(VL); }) && \"Non-matching gather node.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8180, __extension__
__PRETTY_FUNCTION__))
8178 return TE->State == TreeEntry::NeedToGather && TE->isSame(VL);(static_cast <bool> (any_of(VectorizableTree, [VL](const
std::unique_ptr<TreeEntry> &TE) { return TE->State
== TreeEntry::NeedToGather && TE->isSame(VL); }) &&
"Non-matching gather node.") ? void (0) : __assert_fail ("any_of(VectorizableTree, [VL](const std::unique_ptr<TreeEntry> &TE) { return TE->State == TreeEntry::NeedToGather && TE->isSame(VL); }) && \"Non-matching gather node.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8180, __extension__
__PRETTY_FUNCTION__))
8179 }) &&(static_cast <bool> (any_of(VectorizableTree, [VL](const
std::unique_ptr<TreeEntry> &TE) { return TE->State
== TreeEntry::NeedToGather && TE->isSame(VL); }) &&
"Non-matching gather node.") ? void (0) : __assert_fail ("any_of(VectorizableTree, [VL](const std::unique_ptr<TreeEntry> &TE) { return TE->State == TreeEntry::NeedToGather && TE->isSame(VL); }) && \"Non-matching gather node.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8180, __extension__
__PRETTY_FUNCTION__))
8180 "Non-matching gather node.")(static_cast <bool> (any_of(VectorizableTree, [VL](const
std::unique_ptr<TreeEntry> &TE) { return TE->State
== TreeEntry::NeedToGather && TE->isSame(VL); }) &&
"Non-matching gather node.") ? void (0) : __assert_fail ("any_of(VectorizableTree, [VL](const std::unique_ptr<TreeEntry> &TE) { return TE->State == TreeEntry::NeedToGather && TE->isSame(VL); }) && \"Non-matching gather node.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8180, __extension__
__PRETTY_FUNCTION__))
;
8181 unsigned VF = VL.size();
8182 // Exploit possible reuse of values across lanes.
8183 SmallVector<int> ReuseShuffleIndicies;
8184 SmallVector<Value *> UniqueValues;
8185 if (VL.size() > 2) {
8186 DenseMap<Value *, unsigned> UniquePositions;
8187 unsigned NumValues =
8188 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
8189 return !isa<UndefValue>(V);
8190 }).base());
8191 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
8192 int UniqueVals = 0;
8193 for (Value *V : VL.drop_back(VL.size() - VF)) {
8194 if (isa<UndefValue>(V)) {
8195 ReuseShuffleIndicies.emplace_back(UndefMaskElem);
8196 continue;
8197 }
8198 if (isConstant(V)) {
8199 ReuseShuffleIndicies.emplace_back(UniqueValues.size());
8200 UniqueValues.emplace_back(V);
8201 continue;
8202 }
8203 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
8204 ReuseShuffleIndicies.emplace_back(Res.first->second);
8205 if (Res.second) {
8206 UniqueValues.emplace_back(V);
8207 ++UniqueVals;
8208 }
8209 }
8210 if (UniqueVals == 1 && UniqueValues.size() == 1) {
8211 // Emit pure splat vector.
8212 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
8213 UndefMaskElem);
8214 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
8215 if (UniqueValues.empty()) {
8216 assert(all_of(VL, UndefValue::classof) && "Expected list of undefs.")(static_cast <bool> (all_of(VL, UndefValue::classof) &&
"Expected list of undefs.") ? void (0) : __assert_fail ("all_of(VL, UndefValue::classof) && \"Expected list of undefs.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8216, __extension__
__PRETTY_FUNCTION__))
;
8217 NumValues = VF;
8218 }
8219 ReuseShuffleIndicies.clear();
8220 UniqueValues.clear();
8221 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
8222 }
8223 UniqueValues.append(VF - UniqueValues.size(),
8224 PoisonValue::get(VL[0]->getType()));
8225 VL = UniqueValues;
8226 }
8227
8228 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleExtractSeq,
8229 CSEBlocks);
8230 Value *Vec = gather(VL);
8231 if (!ReuseShuffleIndicies.empty()) {
8232 ShuffleBuilder.addMask(ReuseShuffleIndicies);
8233 Vec = ShuffleBuilder.finalize(Vec);
8234 }
8235 return Vec;
8236}
8237
8238Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
8239 IRBuilder<>::InsertPointGuard Guard(Builder);
8240
8241 if (E->VectorizedValue) {
8242 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*E->Scalars[0] << ".\n"; } } while (false)
;
8243 return E->VectorizedValue;
8244 }
8245
8246 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
8247 unsigned VF = E->getVectorFactor();
8248 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleExtractSeq,
8249 CSEBlocks);
8250 if (E->State == TreeEntry::NeedToGather) {
8251 if (E->getMainOp())
8252 setInsertPointAfterBundle(E);
8253 Value *Vec;
8254 SmallVector<int> Mask;
8255 SmallVector<const TreeEntry *> Entries;
8256 Optional<TargetTransformInfo::ShuffleKind> Shuffle =
8257 isGatherShuffledEntry(E, Mask, Entries);
8258 if (Shuffle) {
8259 assert((Entries.size() == 1 || Entries.size() == 2) &&(static_cast <bool> ((Entries.size() == 1 || Entries.size
() == 2) && "Expected shuffle of 1 or 2 entries.") ? void
(0) : __assert_fail ("(Entries.size() == 1 || Entries.size() == 2) && \"Expected shuffle of 1 or 2 entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8260, __extension__
__PRETTY_FUNCTION__))
8260 "Expected shuffle of 1 or 2 entries.")(static_cast <bool> ((Entries.size() == 1 || Entries.size
() == 2) && "Expected shuffle of 1 or 2 entries.") ? void
(0) : __assert_fail ("(Entries.size() == 1 || Entries.size() == 2) && \"Expected shuffle of 1 or 2 entries.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8260, __extension__
__PRETTY_FUNCTION__))
;
8261 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
8262 Entries.back()->VectorizedValue, Mask);
8263 if (auto *I = dyn_cast<Instruction>(Vec)) {
8264 GatherShuffleExtractSeq.insert(I);
8265 CSEBlocks.insert(I->getParent());
8266 }
8267 } else {
8268 Vec = gather(E->Scalars);
8269 }
8270 if (NeedToShuffleReuses) {
8271 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8272 Vec = ShuffleBuilder.finalize(Vec);
8273 }
8274 E->VectorizedValue = Vec;
8275 return Vec;
8276 }
8277
8278 assert((E->State == TreeEntry::Vectorize ||(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8280, __extension__
__PRETTY_FUNCTION__))
8279 E->State == TreeEntry::ScatterVectorize) &&(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8280, __extension__
__PRETTY_FUNCTION__))
8280 "Unhandled state")(static_cast <bool> ((E->State == TreeEntry::Vectorize
|| E->State == TreeEntry::ScatterVectorize) && "Unhandled state"
) ? void (0) : __assert_fail ("(E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8280, __extension__
__PRETTY_FUNCTION__))
;
8281 unsigned ShuffleOrOp =
8282 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
8283 Instruction *VL0 = E->getMainOp();
8284 Type *ScalarTy = VL0->getType();
8285 if (auto *Store = dyn_cast<StoreInst>(VL0))
8286 ScalarTy = Store->getValueOperand()->getType();
8287 else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
8288 ScalarTy = IE->getOperand(1)->getType();
8289 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
8290 switch (ShuffleOrOp) {
8291 case Instruction::PHI: {
8292 assert((E->ReorderIndices.empty() ||(static_cast <bool> ((E->ReorderIndices.empty() || E
!= VectorizableTree.front().get() || !E->UserTreeIndices.
empty()) && "PHI reordering is free.") ? void (0) : __assert_fail
("(E->ReorderIndices.empty() || E != VectorizableTree.front().get() || !E->UserTreeIndices.empty()) && \"PHI reordering is free.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8295, __extension__
__PRETTY_FUNCTION__))
8293 E != VectorizableTree.front().get() ||(static_cast <bool> ((E->ReorderIndices.empty() || E
!= VectorizableTree.front().get() || !E->UserTreeIndices.
empty()) && "PHI reordering is free.") ? void (0) : __assert_fail
("(E->ReorderIndices.empty() || E != VectorizableTree.front().get() || !E->UserTreeIndices.empty()) && \"PHI reordering is free.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8295, __extension__
__PRETTY_FUNCTION__))
8294 !E->UserTreeIndices.empty()) &&(static_cast <bool> ((E->ReorderIndices.empty() || E
!= VectorizableTree.front().get() || !E->UserTreeIndices.
empty()) && "PHI reordering is free.") ? void (0) : __assert_fail
("(E->ReorderIndices.empty() || E != VectorizableTree.front().get() || !E->UserTreeIndices.empty()) && \"PHI reordering is free.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8295, __extension__
__PRETTY_FUNCTION__))
8295 "PHI reordering is free.")(static_cast <bool> ((E->ReorderIndices.empty() || E
!= VectorizableTree.front().get() || !E->UserTreeIndices.
empty()) && "PHI reordering is free.") ? void (0) : __assert_fail
("(E->ReorderIndices.empty() || E != VectorizableTree.front().get() || !E->UserTreeIndices.empty()) && \"PHI reordering is free.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8295, __extension__
__PRETTY_FUNCTION__))
;
8296 auto *PH = cast<PHINode>(VL0);
8297 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
8298 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
8299 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
8300 Value *V = NewPhi;
8301
8302 // Adjust insertion point once all PHI's have been generated.
8303 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt());
8304 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
8305
8306 ShuffleBuilder.addInversedMask(E->ReorderIndices);
8307 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8308 V = ShuffleBuilder.finalize(V);
8309
8310 E->VectorizedValue = V;
8311
8312 // PHINodes may have multiple entries from the same block. We want to
8313 // visit every block once.
8314 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
8315
8316 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
8317 ValueList Operands;
8318 BasicBlock *IBB = PH->getIncomingBlock(i);
8319
8320 if (!VisitedBBs.insert(IBB).second) {
8321 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
8322 continue;
8323 }
8324
8325 Builder.SetInsertPoint(IBB->getTerminator());
8326 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
8327 Value *Vec = vectorizeTree(E->getOperand(i));
8328 NewPhi->addIncoming(Vec, IBB);
8329 }
8330
8331 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&(static_cast <bool> (NewPhi->getNumIncomingValues() ==
PH->getNumIncomingValues() && "Invalid number of incoming values"
) ? void (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8332, __extension__
__PRETTY_FUNCTION__))
8332 "Invalid number of incoming values")(static_cast <bool> (NewPhi->getNumIncomingValues() ==
PH->getNumIncomingValues() && "Invalid number of incoming values"
) ? void (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8332, __extension__
__PRETTY_FUNCTION__))
;
8333 return V;
8334 }
8335
8336 case Instruction::ExtractElement: {
8337 Value *V = E->getSingleOperand(0);
8338 setInsertPointAfterBundle(E);
8339 ShuffleBuilder.addInversedMask(E->ReorderIndices);
8340 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8341 V = ShuffleBuilder.finalize(V);
8342 E->VectorizedValue = V;
8343 return V;
8344 }
8345 case Instruction::ExtractValue: {
8346 auto *LI = cast<LoadInst>(E->getSingleOperand(0));
8347 Builder.SetInsertPoint(LI);
8348 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
8349 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
8350 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
8351 Value *NewV = propagateMetadata(V, E->Scalars);
8352 ShuffleBuilder.addInversedMask(E->ReorderIndices);
8353 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8354 NewV = ShuffleBuilder.finalize(NewV);
8355 E->VectorizedValue = NewV;
8356 return NewV;
8357 }
8358 case Instruction::InsertElement: {
8359 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique")(static_cast <bool> (E->ReuseShuffleIndices.empty() &&
"All inserts should be unique") ? void (0) : __assert_fail (
"E->ReuseShuffleIndices.empty() && \"All inserts should be unique\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8359, __extension__
__PRETTY_FUNCTION__))
;
8360 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
8361 Value *V = vectorizeTree(E->getOperand(1));
8362
8363 // Create InsertVector shuffle if necessary
8364 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
8365 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
8366 }));
8367 const unsigned NumElts =
8368 cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
8369 const unsigned NumScalars = E->Scalars.size();
8370
8371 unsigned Offset = *getInsertIndex(VL0);
8372 assert(Offset < NumElts && "Failed to find vector index offset")(static_cast <bool> (Offset < NumElts && "Failed to find vector index offset"
) ? void (0) : __assert_fail ("Offset < NumElts && \"Failed to find vector index offset\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8372, __extension__
__PRETTY_FUNCTION__))
;
8373
8374 // Create shuffle to resize vector
8375 SmallVector<int> Mask;
8376 if (!E->ReorderIndices.empty()) {
8377 inversePermutation(E->ReorderIndices, Mask);
8378 Mask.append(NumElts - NumScalars, UndefMaskElem);
8379 } else {
8380 Mask.assign(NumElts, UndefMaskElem);
8381 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
8382 }
8383 // Create InsertVector shuffle if necessary
8384 bool IsIdentity = true;
8385 SmallVector<int> PrevMask(NumElts, UndefMaskElem);
8386 Mask.swap(PrevMask);
8387 for (unsigned I = 0; I < NumScalars; ++I) {
8388 Value *Scalar = E->Scalars[PrevMask[I]];
8389 unsigned InsertIdx = *getInsertIndex(Scalar);
8390 IsIdentity &= InsertIdx - Offset == I;
8391 Mask[InsertIdx - Offset] = I;
8392 }
8393 if (!IsIdentity || NumElts != NumScalars) {
8394 V = Builder.CreateShuffleVector(V, Mask);
8395 if (auto *I = dyn_cast<Instruction>(V)) {
8396 GatherShuffleExtractSeq.insert(I);
8397 CSEBlocks.insert(I->getParent());
8398 }
8399 }
8400
8401 SmallVector<int> InsertMask(NumElts, UndefMaskElem);
8402 for (unsigned I = 0; I < NumElts; I++) {
8403 if (Mask[I] != UndefMaskElem)
8404 InsertMask[Offset + I] = I;
8405 }
8406 SmallBitVector IsFirstUndef =
8407 isUndefVector(FirstInsert->getOperand(0), InsertMask);
8408 if ((!IsIdentity || Offset != 0 || !IsFirstUndef.all()) &&
8409 NumElts != NumScalars) {
8410 if (IsFirstUndef.all()) {
8411 if (!ShuffleVectorInst::isIdentityMask(InsertMask)) {
8412 SmallBitVector IsFirstPoison =
8413 isUndefVector<true>(FirstInsert->getOperand(0), InsertMask);
8414 if (!IsFirstPoison.all()) {
8415 for (unsigned I = 0; I < NumElts; I++) {
8416 if (InsertMask[I] == UndefMaskElem && !IsFirstPoison.test(I))
8417 InsertMask[I] = I + NumElts;
8418 }
8419 }
8420 V = Builder.CreateShuffleVector(
8421 V,
8422 IsFirstPoison.all() ? PoisonValue::get(V->getType())
8423 : FirstInsert->getOperand(0),
8424 InsertMask, cast<Instruction>(E->Scalars.back())->getName());
8425 if (auto *I = dyn_cast<Instruction>(V)) {
8426 GatherShuffleExtractSeq.insert(I);
8427 CSEBlocks.insert(I->getParent());
8428 }
8429 }
8430 } else {
8431 SmallBitVector IsFirstPoison =
8432 isUndefVector<true>(FirstInsert->getOperand(0), InsertMask);
8433 for (unsigned I = 0; I < NumElts; I++) {
8434 if (InsertMask[I] == UndefMaskElem)
8435 InsertMask[I] = IsFirstPoison.test(I) ? UndefMaskElem : I;
8436 else
8437 InsertMask[I] += NumElts;
8438 }
8439 V = Builder.CreateShuffleVector(
8440 FirstInsert->getOperand(0), V, InsertMask,
8441 cast<Instruction>(E->Scalars.back())->getName());
8442 if (auto *I = dyn_cast<Instruction>(V)) {
8443 GatherShuffleExtractSeq.insert(I);
8444 CSEBlocks.insert(I->getParent());
8445 }
8446 }
8447 }
8448
8449 ++NumVectorInstructions;
8450 E->VectorizedValue = V;
8451 return V;
8452 }
8453 case Instruction::ZExt:
8454 case Instruction::SExt:
8455 case Instruction::FPToUI:
8456 case Instruction::FPToSI:
8457 case Instruction::FPExt:
8458 case Instruction::PtrToInt:
8459 case Instruction::IntToPtr:
8460 case Instruction::SIToFP:
8461 case Instruction::UIToFP:
8462 case Instruction::Trunc:
8463 case Instruction::FPTrunc:
8464 case Instruction::BitCast: {
8465 setInsertPointAfterBundle(E);
8466
8467 Value *InVec = vectorizeTree(E->getOperand(0));
8468
8469 if (E->VectorizedValue) {
8470 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
8471 return E->VectorizedValue;
8472 }
8473
8474 auto *CI = cast<CastInst>(VL0);
8475 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
8476 ShuffleBuilder.addInversedMask(E->ReorderIndices);
8477 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8478 V = ShuffleBuilder.finalize(V);
8479
8480 E->VectorizedValue = V;
8481 ++NumVectorInstructions;
8482 return V;
8483 }
8484 case Instruction::FCmp:
8485 case Instruction::ICmp: {
8486 setInsertPointAfterBundle(E);
8487
8488 Value *L = vectorizeTree(E->getOperand(0));
8489 Value *R = vectorizeTree(E->getOperand(1));
8490
8491 if (E->VectorizedValue) {
8492 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
8493 return E->VectorizedValue;
8494 }
8495
8496 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
8497 Value *V = Builder.CreateCmp(P0, L, R);
8498 propagateIRFlags(V, E->Scalars, VL0);
8499 ShuffleBuilder.addInversedMask(E->ReorderIndices);
8500 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8501 V = ShuffleBuilder.finalize(V);
8502
8503 E->VectorizedValue = V;
8504 ++NumVectorInstructions;
8505 return V;
8506 }
8507 case Instruction::Select: {
8508 setInsertPointAfterBundle(E);
8509
8510 Value *Cond = vectorizeTree(E->getOperand(0));
8511 Value *True = vectorizeTree(E->getOperand(1));
8512 Value *False = vectorizeTree(E->getOperand(2));
8513
8514 if (E->VectorizedValue) {
8515 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
8516 return E->VectorizedValue;
8517 }
8518
8519 Value *V = Builder.CreateSelect(Cond, True, False);
8520 ShuffleBuilder.addInversedMask(E->ReorderIndices);
8521 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8522 V = ShuffleBuilder.finalize(V);
8523
8524 E->VectorizedValue = V;
8525 ++NumVectorInstructions;
8526 return V;
8527 }
8528 case Instruction::FNeg: {
8529 setInsertPointAfterBundle(E);
8530
8531 Value *Op = vectorizeTree(E->getOperand(0));
8532
8533 if (E->VectorizedValue) {
8534 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
8535 return E->VectorizedValue;
8536 }
8537
8538 Value *V = Builder.CreateUnOp(
8539 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
8540 propagateIRFlags(V, E->Scalars, VL0);
8541 if (auto *I = dyn_cast<Instruction>(V))
8542 V = propagateMetadata(I, E->Scalars);
8543
8544 ShuffleBuilder.addInversedMask(E->ReorderIndices);
8545 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8546 V = ShuffleBuilder.finalize(V);
8547
8548 E->VectorizedValue = V;
8549 ++NumVectorInstructions;
8550
8551 return V;
8552 }
8553 case Instruction::Add:
8554 case Instruction::FAdd:
8555 case Instruction::Sub:
8556 case Instruction::FSub:
8557 case Instruction::Mul:
8558 case Instruction::FMul:
8559 case Instruction::UDiv:
8560 case Instruction::SDiv:
8561 case Instruction::FDiv:
8562 case Instruction::URem:
8563 case Instruction::SRem:
8564 case Instruction::FRem:
8565 case Instruction::Shl:
8566 case Instruction::LShr:
8567 case Instruction::AShr:
8568 case Instruction::And:
8569 case Instruction::Or:
8570 case Instruction::Xor: {
8571 setInsertPointAfterBundle(E);
8572
8573 Value *LHS = vectorizeTree(E->getOperand(0));
8574 Value *RHS = vectorizeTree(E->getOperand(1));
8575
8576 if (E->VectorizedValue) {
8577 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
8578 return E->VectorizedValue;
8579 }
8580
8581 Value *V = Builder.CreateBinOp(
8582 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
8583 RHS);
8584 propagateIRFlags(V, E->Scalars, VL0);
8585 if (auto *I = dyn_cast<Instruction>(V))
8586 V = propagateMetadata(I, E->Scalars);
8587
8588 ShuffleBuilder.addInversedMask(E->ReorderIndices);
8589 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8590 V = ShuffleBuilder.finalize(V);
8591
8592 E->VectorizedValue = V;
8593 ++NumVectorInstructions;
8594
8595 return V;
8596 }
8597 case Instruction::Load: {
8598 // Loads are inserted at the head of the tree because we don't want to
8599 // sink them all the way down past store instructions.
8600 setInsertPointAfterBundle(E);
8601
8602 LoadInst *LI = cast<LoadInst>(VL0);
8603 Instruction *NewLI;
8604 unsigned AS = LI->getPointerAddressSpace();
8605 Value *PO = LI->getPointerOperand();
8606 if (E->State == TreeEntry::Vectorize) {
8607 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
8608 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
8609
8610 // The pointer operand uses an in-tree scalar so we add the new BitCast
8611 // or LoadInst to ExternalUses list to make sure that an extract will
8612 // be generated in the future.
8613 if (TreeEntry *Entry = getTreeEntry(PO)) {
8614 // Find which lane we need to extract.
8615 unsigned FoundLane = Entry->findLaneForValue(PO);
8616 ExternalUses.emplace_back(
8617 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane);
8618 }
8619 } else {
8620 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state")(static_cast <bool> (E->State == TreeEntry::ScatterVectorize
&& "Unhandled state") ? void (0) : __assert_fail ("E->State == TreeEntry::ScatterVectorize && \"Unhandled state\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8620, __extension__
__PRETTY_FUNCTION__))
;
8621 Value *VecPtr = vectorizeTree(E->getOperand(0));
8622 // Use the minimum alignment of the gathered loads.
8623 Align CommonAlignment = LI->getAlign();
8624 for (Value *V : E->Scalars)
8625 CommonAlignment =
8626 std::min(CommonAlignment, cast<LoadInst>(V)->getAlign());
8627 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
8628 }
8629 Value *V = propagateMetadata(NewLI, E->Scalars);
8630
8631 ShuffleBuilder.addInversedMask(E->ReorderIndices);
8632 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8633 V = ShuffleBuilder.finalize(V);
8634 E->VectorizedValue = V;
8635 ++NumVectorInstructions;
8636 return V;
8637 }
8638 case Instruction::Store: {
8639 auto *SI = cast<StoreInst>(VL0);
8640 unsigned AS = SI->getPointerAddressSpace();
8641
8642 setInsertPointAfterBundle(E);
8643
8644 Value *VecValue = vectorizeTree(E->getOperand(0));
8645 ShuffleBuilder.addMask(E->ReorderIndices);
8646 VecValue = ShuffleBuilder.finalize(VecValue);
8647
8648 Value *ScalarPtr = SI->getPointerOperand();
8649 Value *VecPtr = Builder.CreateBitCast(
8650 ScalarPtr, VecValue->getType()->getPointerTo(AS));
8651 StoreInst *ST =
8652 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign());
8653
8654 // The pointer operand uses an in-tree scalar, so add the new BitCast or
8655 // StoreInst to ExternalUses to make sure that an extract will be
8656 // generated in the future.
8657 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
8658 // Find which lane we need to extract.
8659 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
8660 ExternalUses.push_back(ExternalUser(
8661 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST,
8662 FoundLane));
8663 }
8664
8665 Value *V = propagateMetadata(ST, E->Scalars);
8666
8667 E->VectorizedValue = V;
8668 ++NumVectorInstructions;
8669 return V;
8670 }
8671 case Instruction::GetElementPtr: {
8672 auto *GEP0 = cast<GetElementPtrInst>(VL0);
8673 setInsertPointAfterBundle(E);
8674
8675 Value *Op0 = vectorizeTree(E->getOperand(0));
8676
8677 SmallVector<Value *> OpVecs;
8678 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
8679 Value *OpVec = vectorizeTree(E->getOperand(J));
8680 OpVecs.push_back(OpVec);
8681 }
8682
8683 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
8684 if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) {
8685 SmallVector<Value *> GEPs;
8686 for (Value *V : E->Scalars) {
8687 if (isa<GetElementPtrInst>(V))
8688 GEPs.push_back(V);
8689 }
8690 V = propagateMetadata(I, GEPs);
8691 }
8692
8693 ShuffleBuilder.addInversedMask(E->ReorderIndices);
8694 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8695 V = ShuffleBuilder.finalize(V);
8696
8697 E->VectorizedValue = V;
8698 ++NumVectorInstructions;
8699
8700 return V;
8701 }
8702 case Instruction::Call: {
8703 CallInst *CI = cast<CallInst>(VL0);
8704 setInsertPointAfterBundle(E);
8705
8706 Intrinsic::ID IID = Intrinsic::not_intrinsic;
8707 if (Function *FI = CI->getCalledFunction())
8708 IID = FI->getIntrinsicID();
8709
8710 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8711
8712 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
8713 bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
8714 VecCallCosts.first <= VecCallCosts.second;
8715
8716 Value *ScalarArg = nullptr;
8717 std::vector<Value *> OpVecs;
8718 SmallVector<Type *, 2> TysForDecl =
8719 {FixedVectorType::get(CI->getType(), E->Scalars.size())};
8720 for (int j = 0, e = CI->arg_size(); j < e; ++j) {
8721 ValueList OpVL;
8722 // Some intrinsics have scalar arguments. This argument should not be
8723 // vectorized.
8724 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) {
8725 CallInst *CEI = cast<CallInst>(VL0);
8726 ScalarArg = CEI->getArgOperand(j);
8727 OpVecs.push_back(CEI->getArgOperand(j));
8728 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
8729 TysForDecl.push_back(ScalarArg->getType());
8730 continue;
8731 }
8732
8733 Value *OpVec = vectorizeTree(E->getOperand(j));
8734 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: OpVec[" << j << "]: "
<< *OpVec << "\n"; } } while (false)
;
8735 OpVecs.push_back(OpVec);
8736 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
8737 TysForDecl.push_back(OpVec->getType());
8738 }
8739
8740 Function *CF;
8741 if (!UseIntrinsic) {
8742 VFShape Shape =
8743 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
8744 VecTy->getNumElements())),
8745 false /*HasGlobalPred*/);
8746 CF = VFDatabase(*CI).getVectorizedFunction(Shape);
8747 } else {
8748 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
8749 }
8750
8751 SmallVector<OperandBundleDef, 1> OpBundles;
8752 CI->getOperandBundlesAsDefs(OpBundles);
8753 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
8754
8755 // The scalar argument uses an in-tree scalar so we add the new vectorized
8756 // call to ExternalUses list to make sure that an extract will be
8757 // generated in the future.
8758 if (ScalarArg) {
8759 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
8760 // Find which lane we need to extract.
8761 unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
8762 ExternalUses.push_back(
8763 ExternalUser(ScalarArg, cast<User>(V), FoundLane));
8764 }
8765 }
8766
8767 propagateIRFlags(V, E->Scalars, VL0);
8768 ShuffleBuilder.addInversedMask(E->ReorderIndices);
8769 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8770 V = ShuffleBuilder.finalize(V);
8771
8772 E->VectorizedValue = V;
8773 ++NumVectorInstructions;
8774 return V;
8775 }
8776 case Instruction::ShuffleVector: {
8777 assert(E->isAltShuffle() &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8783, __extension__
__PRETTY_FUNCTION__))
8778 ((Instruction::isBinaryOp(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8783, __extension__
__PRETTY_FUNCTION__))
8779 Instruction::isBinaryOp(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8783, __extension__
__PRETTY_FUNCTION__))
8780 (Instruction::isCast(E->getOpcode()) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8783, __extension__
__PRETTY_FUNCTION__))
8781 Instruction::isCast(E->getAltOpcode())) ||(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8783, __extension__
__PRETTY_FUNCTION__))
8782 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8783, __extension__
__PRETTY_FUNCTION__))
8783 "Invalid Shuffle Vector Operand")(static_cast <bool> (E->isAltShuffle() && ((
Instruction::isBinaryOp(E->getOpcode()) && Instruction
::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E
->getOpcode()) && Instruction::isCast(E->getAltOpcode
())) || (isa<CmpInst>(VL0) && isa<CmpInst>
(E->getAltOp()))) && "Invalid Shuffle Vector Operand"
) ? void (0) : __assert_fail ("E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode())) || (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && \"Invalid Shuffle Vector Operand\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8783, __extension__
__PRETTY_FUNCTION__))
;
8784
8785 Value *LHS = nullptr, *RHS = nullptr;
8786 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
8787 setInsertPointAfterBundle(E);
8788 LHS = vectorizeTree(E->getOperand(0));
8789 RHS = vectorizeTree(E->getOperand(1));
8790 } else {
8791 setInsertPointAfterBundle(E);
8792 LHS = vectorizeTree(E->getOperand(0));
8793 }
8794
8795 if (E->VectorizedValue) {
8796 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
8797 return E->VectorizedValue;
8798 }
8799
8800 Value *V0, *V1;
8801 if (Instruction::isBinaryOp(E->getOpcode())) {
8802 V0 = Builder.CreateBinOp(
8803 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
8804 V1 = Builder.CreateBinOp(
8805 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
8806 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
8807 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
8808 auto *AltCI = cast<CmpInst>(E->getAltOp());
8809 CmpInst::Predicate AltPred = AltCI->getPredicate();
8810 V1 = Builder.CreateCmp(AltPred, LHS, RHS);
8811 } else {
8812 V0 = Builder.CreateCast(
8813 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
8814 V1 = Builder.CreateCast(
8815 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
8816 }
8817 // Add V0 and V1 to later analysis to try to find and remove matching
8818 // instruction, if any.
8819 for (Value *V : {V0, V1}) {
8820 if (auto *I = dyn_cast<Instruction>(V)) {
8821 GatherShuffleExtractSeq.insert(I);
8822 CSEBlocks.insert(I->getParent());
8823 }
8824 }
8825
8826 // Create shuffle to take alternate operations from the vector.
8827 // Also, gather up main and alt scalar ops to propagate IR flags to
8828 // each vector operation.
8829 ValueList OpScalars, AltScalars;
8830 SmallVector<int> Mask;
8831 buildShuffleEntryMask(
8832 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
8833 [E, this](Instruction *I) {
8834 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode")(static_cast <bool> (E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"
) ? void (0) : __assert_fail ("E->isOpcodeOrAlt(I) && \"Unexpected main/alternate opcode\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8834, __extension__
__PRETTY_FUNCTION__))
;
8835 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp(),
8836 *TLI);
8837 },
8838 Mask, &OpScalars, &AltScalars);
8839
8840 propagateIRFlags(V0, OpScalars);
8841 propagateIRFlags(V1, AltScalars);
8842
8843 Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
8844 if (auto *I = dyn_cast<Instruction>(V)) {
8845 V = propagateMetadata(I, E->Scalars);
8846 GatherShuffleExtractSeq.insert(I);
8847 CSEBlocks.insert(I->getParent());
8848 }
8849 V = ShuffleBuilder.finalize(V);
8850
8851 E->VectorizedValue = V;
8852 ++NumVectorInstructions;
8853
8854 return V;
8855 }
8856 default:
8857 llvm_unreachable("unknown inst")::llvm::llvm_unreachable_internal("unknown inst", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 8857)
;
8858 }
8859 return nullptr;
8860}
8861
8862Value *BoUpSLP::vectorizeTree() {
8863 ExtraValueToDebugLocsMap ExternallyUsedValues;
8864 return vectorizeTree(ExternallyUsedValues);
8865}
8866
8867namespace {
8868/// Data type for handling buildvector sequences with the reused scalars from
8869/// other tree entries.
8870struct ShuffledInsertData {
8871 /// List of insertelements to be replaced by shuffles.
8872 SmallVector<InsertElementInst *> InsertElements;
8873 /// The parent vectors and shuffle mask for the given list of inserts.
8874 MapVector<Value *, SmallVector<int>> ValueMasks;
8875};
8876} // namespace
8877
8878Value *
8879BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
8880 // All blocks must be scheduled before any instructions are inserted.
8881 for (auto &BSIter : BlocksSchedules) {
8882 scheduleBlock(BSIter.second.get());
8883 }
8884
8885 Builder.SetInsertPoint(&F->getEntryBlock().front());
8886 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
8887
8888 // If the vectorized tree can be rewritten in a smaller type, we truncate the
8889 // vectorized root. InstCombine will then rewrite the entire expression. We
8890 // sign extend the extracted values below.
8891 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
8892 if (MinBWs.count(ScalarRoot)) {
8893 if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
8894 // If current instr is a phi and not the last phi, insert it after the
8895 // last phi node.
8896 if (isa<PHINode>(I))
8897 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
8898 else
8899 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
8900 }
8901 auto BundleWidth = VectorizableTree[0]->Scalars.size();
8902 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
8903 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
8904 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
8905 VectorizableTree[0]->VectorizedValue = Trunc;
8906 }
8907
8908 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
8909 << " values .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
;
8910
8911 SmallVector<ShuffledInsertData> ShuffledInserts;
8912 // Maps vector instruction to original insertelement instruction
8913 DenseMap<Value *, InsertElementInst *> VectorToInsertElement;
8914 // Extract all of the elements with the external uses.
8915 for (const auto &ExternalUse : ExternalUses) {
8916 Value *Scalar = ExternalUse.Scalar;
8917 llvm::User *User = ExternalUse.User;
8918
8919 // Skip users that we already RAUW. This happens when one instruction
8920 // has multiple uses of the same value.
8921 if (User && !is_contained(Scalar->users(), User))
8922 continue;
8923 TreeEntry *E = getTreeEntry(Scalar);
8924 assert(E && "Invalid scalar")(static_cast <bool> (E && "Invalid scalar") ? void
(0) : __assert_fail ("E && \"Invalid scalar\"", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 8924, __extension__ __PRETTY_FUNCTION__))
;
8925 assert(E->State != TreeEntry::NeedToGather &&(static_cast <bool> (E->State != TreeEntry::NeedToGather
&& "Extracting from a gather list") ? void (0) : __assert_fail
("E->State != TreeEntry::NeedToGather && \"Extracting from a gather list\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8926, __extension__
__PRETTY_FUNCTION__))
8926 "Extracting from a gather list")(static_cast <bool> (E->State != TreeEntry::NeedToGather
&& "Extracting from a gather list") ? void (0) : __assert_fail
("E->State != TreeEntry::NeedToGather && \"Extracting from a gather list\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8926, __extension__
__PRETTY_FUNCTION__))
;
8927 // Non-instruction pointers are not deleted, just skip them.
8928 if (E->getOpcode() == Instruction::GetElementPtr &&
8929 !isa<GetElementPtrInst>(Scalar))
8930 continue;
8931
8932 Value *Vec = E->VectorizedValue;
8933 assert(Vec && "Can't find vectorizable value")(static_cast <bool> (Vec && "Can't find vectorizable value"
) ? void (0) : __assert_fail ("Vec && \"Can't find vectorizable value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8933, __extension__
__PRETTY_FUNCTION__))
;
8934
8935 Value *Lane = Builder.getInt32(ExternalUse.Lane);
8936 auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
8937 if (Scalar->getType() != Vec->getType()) {
8938 Value *Ex;
8939 // "Reuse" the existing extract to improve final codegen.
8940 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
8941 Ex = Builder.CreateExtractElement(ES->getOperand(0),
8942 ES->getOperand(1));
8943 } else {
8944 Ex = Builder.CreateExtractElement(Vec, Lane);
8945 }
8946 // The then branch of the previous if may produce constants, since 0
8947 // operand might be a constant.
8948 if (auto *ExI = dyn_cast<Instruction>(Ex)) {
8949 GatherShuffleExtractSeq.insert(ExI);
8950 CSEBlocks.insert(ExI->getParent());
8951 }
8952 // If necessary, sign-extend or zero-extend ScalarRoot
8953 // to the larger type.
8954 if (!MinBWs.count(ScalarRoot))
8955 return Ex;
8956 if (MinBWs[ScalarRoot].second)
8957 return Builder.CreateSExt(Ex, Scalar->getType());
8958 return Builder.CreateZExt(Ex, Scalar->getType());
8959 }
8960 assert(isa<FixedVectorType>(Scalar->getType()) &&(static_cast <bool> (isa<FixedVectorType>(Scalar->
getType()) && isa<InsertElementInst>(Scalar) &&
"In-tree scalar of vector type is not insertelement?") ? void
(0) : __assert_fail ("isa<FixedVectorType>(Scalar->getType()) && isa<InsertElementInst>(Scalar) && \"In-tree scalar of vector type is not insertelement?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8962, __extension__
__PRETTY_FUNCTION__))
8961 isa<InsertElementInst>(Scalar) &&(static_cast <bool> (isa<FixedVectorType>(Scalar->
getType()) && isa<InsertElementInst>(Scalar) &&
"In-tree scalar of vector type is not insertelement?") ? void
(0) : __assert_fail ("isa<FixedVectorType>(Scalar->getType()) && isa<InsertElementInst>(Scalar) && \"In-tree scalar of vector type is not insertelement?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8962, __extension__
__PRETTY_FUNCTION__))
8962 "In-tree scalar of vector type is not insertelement?")(static_cast <bool> (isa<FixedVectorType>(Scalar->
getType()) && isa<InsertElementInst>(Scalar) &&
"In-tree scalar of vector type is not insertelement?") ? void
(0) : __assert_fail ("isa<FixedVectorType>(Scalar->getType()) && isa<InsertElementInst>(Scalar) && \"In-tree scalar of vector type is not insertelement?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8962, __extension__
__PRETTY_FUNCTION__))
;
8963 auto *IE = cast<InsertElementInst>(Scalar);
8964 VectorToInsertElement.try_emplace(Vec, IE);
8965 return Vec;
8966 };
8967 // If User == nullptr, the Scalar is used as extra arg. Generate
8968 // ExtractElement instruction and update the record for this scalar in
8969 // ExternallyUsedValues.
8970 if (!User) {
8971 assert(ExternallyUsedValues.count(Scalar) &&(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8973, __extension__
__PRETTY_FUNCTION__))
8972 "Scalar with nullptr as an external user must be registered in "(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8973, __extension__
__PRETTY_FUNCTION__))
8973 "ExternallyUsedValues map")(static_cast <bool> (ExternallyUsedValues.count(Scalar)
&& "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? void (0) : __assert_fail ("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8973, __extension__
__PRETTY_FUNCTION__))
;
8974 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
8975 Builder.SetInsertPoint(VecI->getParent(),
8976 std::next(VecI->getIterator()));
8977 } else {
8978 Builder.SetInsertPoint(&F->getEntryBlock().front());
8979 }
8980 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8981 auto &NewInstLocs = ExternallyUsedValues[NewInst];
8982 auto It = ExternallyUsedValues.find(Scalar);
8983 assert(It != ExternallyUsedValues.end() &&(static_cast <bool> (It != ExternallyUsedValues.end() &&
"Externally used scalar is not found in ExternallyUsedValues"
) ? void (0) : __assert_fail ("It != ExternallyUsedValues.end() && \"Externally used scalar is not found in ExternallyUsedValues\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8984, __extension__
__PRETTY_FUNCTION__))
8984 "Externally used scalar is not found in ExternallyUsedValues")(static_cast <bool> (It != ExternallyUsedValues.end() &&
"Externally used scalar is not found in ExternallyUsedValues"
) ? void (0) : __assert_fail ("It != ExternallyUsedValues.end() && \"Externally used scalar is not found in ExternallyUsedValues\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 8984, __extension__
__PRETTY_FUNCTION__))
;
8985 NewInstLocs.append(It->second);
8986 ExternallyUsedValues.erase(Scalar);
8987 // Required to update internally referenced instructions.
8988 Scalar->replaceAllUsesWith(NewInst);
8989 continue;
8990 }
8991
8992 if (auto *VU = dyn_cast<InsertElementInst>(User)) {
8993 // Skip if the scalar is another vector op or Vec is not an instruction.
8994 if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) {
8995 if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) {
8996 Optional<unsigned> InsertIdx = getInsertIndex(VU);
8997 if (InsertIdx) {
8998 // Need to use original vector, if the root is truncated.
8999 if (MinBWs.count(Scalar) &&
9000 VectorizableTree[0]->VectorizedValue == Vec)
9001 Vec = VectorRoot;
9002 auto *It =
9003 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) {
9004 // Checks if 2 insertelements are from the same buildvector.
9005 InsertElementInst *VecInsert = Data.InsertElements.front();
9006 return areTwoInsertFromSameBuildVector(
9007 VU, VecInsert,
9008 [](InsertElementInst *II) { return II->getOperand(0); });
9009 });
9010 unsigned Idx = *InsertIdx;
9011 if (It == ShuffledInserts.end()) {
9012 (void)ShuffledInserts.emplace_back();
9013 It = std::next(ShuffledInserts.begin(),
9014 ShuffledInserts.size() - 1);
9015 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
9016 if (Mask.empty())
9017 Mask.assign(FTy->getNumElements(), UndefMaskElem);
9018 // Find the insertvector, vectorized in tree, if any.
9019 Value *Base = VU;
9020 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
9021 if (IEBase != User &&
9022 (!IEBase->hasOneUse() ||
9023 getInsertIndex(IEBase).value_or(Idx) == Idx))
9024 break;
9025 // Build the mask for the vectorized insertelement instructions.
9026 if (const TreeEntry *E = getTreeEntry(IEBase)) {
9027 do {
9028 IEBase = cast<InsertElementInst>(Base);
9029 int IEIdx = *getInsertIndex(IEBase);
9030 assert(Mask[Idx] == UndefMaskElem &&(static_cast <bool> (Mask[Idx] == UndefMaskElem &&
"InsertElementInstruction used already.") ? void (0) : __assert_fail
("Mask[Idx] == UndefMaskElem && \"InsertElementInstruction used already.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9031, __extension__
__PRETTY_FUNCTION__))
9031 "InsertElementInstruction used already.")(static_cast <bool> (Mask[Idx] == UndefMaskElem &&
"InsertElementInstruction used already.") ? void (0) : __assert_fail
("Mask[Idx] == UndefMaskElem && \"InsertElementInstruction used already.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9031, __extension__
__PRETTY_FUNCTION__))
;
9032 Mask[IEIdx] = IEIdx;
9033 Base = IEBase->getOperand(0);
9034 } while (E == getTreeEntry(Base));
9035 break;
9036 }
9037 Base = cast<InsertElementInst>(Base)->getOperand(0);
9038 // After the vectorization the def-use chain has changed, need
9039 // to look through original insertelement instructions, if they
9040 // get replaced by vector instructions.
9041 auto It = VectorToInsertElement.find(Base);
9042 if (It != VectorToInsertElement.end())
9043 Base = It->second;
9044 }
9045 }
9046 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
9047 if (Mask.empty())
9048 Mask.assign(FTy->getNumElements(), UndefMaskElem);
9049 Mask[Idx] = ExternalUse.Lane;
9050 It->InsertElements.push_back(cast<InsertElementInst>(User));
9051 continue;
9052 }
9053 }
9054 }
9055 }
9056
9057 // Generate extracts for out-of-tree users.
9058 // Find the insertion point for the extractelement lane.
9059 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
9060 if (PHINode *PH = dyn_cast<PHINode>(User)) {
9061 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
9062 if (PH->getIncomingValue(i) == Scalar) {
9063 Instruction *IncomingTerminator =
9064 PH->getIncomingBlock(i)->getTerminator();
9065 if (isa<CatchSwitchInst>(IncomingTerminator)) {
9066 Builder.SetInsertPoint(VecI->getParent(),
9067 std::next(VecI->getIterator()));
9068 } else {
9069 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
9070 }
9071 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
9072 PH->setOperand(i, NewInst);
9073 }
9074 }
9075 } else {
9076 Builder.SetInsertPoint(cast<Instruction>(User));
9077 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
9078 User->replaceUsesOfWith(Scalar, NewInst);
9079 }
9080 } else {
9081 Builder.SetInsertPoint(&F->getEntryBlock().front());
9082 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
9083 User->replaceUsesOfWith(Scalar, NewInst);
9084 }
9085
9086 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Replaced:" << *User <<
".\n"; } } while (false)
;
9087 }
9088
9089 // Checks if the mask is an identity mask.
9090 auto &&IsIdentityMask = [](ArrayRef<int> Mask, FixedVectorType *VecTy) {
9091 int Limit = Mask.size();
9092 return VecTy->getNumElements() == Mask.size() &&
9093 all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) &&
9094 ShuffleVectorInst::isIdentityMask(Mask);
9095 };
9096 // Tries to combine 2 different masks into single one.
9097 auto &&CombineMasks = [](SmallVectorImpl<int> &Mask, ArrayRef<int> ExtMask) {
9098 SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem);
9099 for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) {
9100 if (ExtMask[I] == UndefMaskElem)
9101 continue;
9102 NewMask[I] = Mask[ExtMask[I]];
9103 }
9104 Mask.swap(NewMask);
9105 };
9106 // Peek through shuffles, trying to simplify the final shuffle code.
9107 auto &&PeekThroughShuffles =
9108 [&IsIdentityMask, &CombineMasks](Value *&V, SmallVectorImpl<int> &Mask,
9109 bool CheckForLengthChange = false) {
9110 while (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
9111 // Exit if not a fixed vector type or changing size shuffle.
9112 if (!isa<FixedVectorType>(SV->getType()) ||
9113 (CheckForLengthChange && SV->changesLength()))
9114 break;
9115 // Exit if the identity or broadcast mask is found.
9116 if (IsIdentityMask(Mask, cast<FixedVectorType>(SV->getType())) ||
9117 SV->isZeroEltSplat())
9118 break;
9119 bool IsOp1Undef = isUndefVector(SV->getOperand(0), Mask).all();
9120 bool IsOp2Undef = isUndefVector(SV->getOperand(1), Mask).all();
9121 if (!IsOp1Undef && !IsOp2Undef)
9122 break;
9123 SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(),
9124 SV->getShuffleMask().end());
9125 CombineMasks(ShuffleMask, Mask);
9126 Mask.swap(ShuffleMask);
9127 if (IsOp2Undef)
9128 V = SV->getOperand(0);
9129 else
9130 V = SV->getOperand(1);
9131 }
9132 };
9133 // Smart shuffle instruction emission, walks through shuffles trees and
9134 // tries to find the best matching vector for the actual shuffle
9135 // instruction.
9136 auto &&CreateShuffle = [this, &IsIdentityMask, &PeekThroughShuffles,
9137 &CombineMasks](Value *V1, Value *V2,
9138 ArrayRef<int> Mask) -> Value * {
9139 assert(V1 && "Expected at least one vector value.")(static_cast <bool> (V1 && "Expected at least one vector value."
) ? void (0) : __assert_fail ("V1 && \"Expected at least one vector value.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9139, __extension__
__PRETTY_FUNCTION__))
;
9140 if (V2 && !isUndefVector(V2, Mask).all()) {
9141 // Peek through shuffles.
9142 Value *Op1 = V1;
9143 Value *Op2 = V2;
9144 int VF =
9145 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
9146 SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem);
9147 SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem);
9148 for (int I = 0, E = Mask.size(); I < E; ++I) {
9149 if (Mask[I] < VF)
9150 CombinedMask1[I] = Mask[I];
9151 else
9152 CombinedMask2[I] = Mask[I] - VF;
9153 }
9154 Value *PrevOp1;
9155 Value *PrevOp2;
9156 do {
9157 PrevOp1 = Op1;
9158 PrevOp2 = Op2;
9159 PeekThroughShuffles(Op1, CombinedMask1, /*CheckForLengthChange=*/true);
9160 PeekThroughShuffles(Op2, CombinedMask2, /*CheckForLengthChange=*/true);
9161 // Check if we have 2 resizing shuffles - need to peek through operands
9162 // again.
9163 if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1))
9164 if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2))
9165 if (SV1->getOperand(0)->getType() ==
9166 SV2->getOperand(0)->getType() &&
9167 SV1->getOperand(0)->getType() != SV1->getType() &&
9168 isUndefVector(SV1->getOperand(1), CombinedMask1).all() &&
9169 isUndefVector(SV2->getOperand(1), CombinedMask2).all()) {
9170 Op1 = SV1->getOperand(0);
9171 Op2 = SV2->getOperand(0);
9172 SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(),
9173 SV1->getShuffleMask().end());
9174 CombineMasks(ShuffleMask1, CombinedMask1);
9175 CombinedMask1.swap(ShuffleMask1);
9176 SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(),
9177 SV2->getShuffleMask().end());
9178 CombineMasks(ShuffleMask2, CombinedMask2);
9179 CombinedMask2.swap(ShuffleMask2);
9180 }
9181 } while (PrevOp1 != Op1 || PrevOp2 != Op2);
9182 VF = cast<VectorType>(Op1->getType())
9183 ->getElementCount()
9184 .getKnownMinValue();
9185 for (int I = 0, E = Mask.size(); I < E; ++I) {
9186 if (CombinedMask2[I] != UndefMaskElem) {
9187 assert(CombinedMask1[I] == UndefMaskElem &&(static_cast <bool> (CombinedMask1[I] == UndefMaskElem &&
"Expected undefined mask element") ? void (0) : __assert_fail
("CombinedMask1[I] == UndefMaskElem && \"Expected undefined mask element\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9188, __extension__
__PRETTY_FUNCTION__))
9188 "Expected undefined mask element")(static_cast <bool> (CombinedMask1[I] == UndefMaskElem &&
"Expected undefined mask element") ? void (0) : __assert_fail
("CombinedMask1[I] == UndefMaskElem && \"Expected undefined mask element\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9188, __extension__
__PRETTY_FUNCTION__))
;
9189 CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF);
9190 }
9191 }
9192 Value *Vec = Builder.CreateShuffleVector(
9193 Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2,
9194 CombinedMask1);
9195 if (auto *I = dyn_cast<Instruction>(Vec)) {
9196 GatherShuffleExtractSeq.insert(I);
9197 CSEBlocks.insert(I->getParent());
9198 }
9199 return Vec;
9200 }
9201 if (isa<PoisonValue>(V1))
9202 return PoisonValue::get(FixedVectorType::get(
9203 cast<VectorType>(V1->getType())->getElementType(), Mask.size()));
9204 Value *Op = V1;
9205 SmallVector<int> CombinedMask(Mask);
9206 PeekThroughShuffles(Op, CombinedMask);
9207 if (!isa<FixedVectorType>(Op->getType()) ||
9208 !IsIdentityMask(CombinedMask, cast<FixedVectorType>(Op->getType()))) {
9209 Value *Vec = Builder.CreateShuffleVector(Op, CombinedMask);
9210 if (auto *I = dyn_cast<Instruction>(Vec)) {
9211 GatherShuffleExtractSeq.insert(I);
9212 CSEBlocks.insert(I->getParent());
9213 }
9214 return Vec;
9215 }
9216 return Op;
9217 };
9218
9219 auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask,
9220 bool ForSingleMask) {
9221 unsigned VF = Mask.size();
9222 unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements();
9223 if (VF != VecVF) {
9224 if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) {
9225 Vec = CreateShuffle(Vec, nullptr, Mask);
9226 return std::make_pair(Vec, true);
9227 }
9228 if (!ForSingleMask) {
9229 SmallVector<int> ResizeMask(VF, UndefMaskElem);
9230 for (unsigned I = 0; I < VF; ++I) {
9231 if (Mask[I] != UndefMaskElem)
9232 ResizeMask[Mask[I]] = Mask[I];
9233 }
9234 Vec = CreateShuffle(Vec, nullptr, ResizeMask);
9235 }
9236 }
9237
9238 return std::make_pair(Vec, false);
9239 };
9240 // Perform shuffling of the vectorize tree entries for better handling of
9241 // external extracts.
9242 for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) {
9243 // Find the first and the last instruction in the list of insertelements.
9244 sort(ShuffledInserts[I].InsertElements, isFirstInsertElement);
9245 InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front();
9246 InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back();
9247 Builder.SetInsertPoint(LastInsert);
9248 auto Vector = ShuffledInserts[I].ValueMasks.takeVector();
9249 Value *NewInst = performExtractsShuffleAction<Value>(
9250 makeMutableArrayRef(Vector.data(), Vector.size()),
9251 FirstInsert->getOperand(0),
9252 [](Value *Vec) {
9253 return cast<VectorType>(Vec->getType())
9254 ->getElementCount()
9255 .getKnownMinValue();
9256 },
9257 ResizeToVF,
9258 [FirstInsert, &CreateShuffle](ArrayRef<int> Mask,
9259 ArrayRef<Value *> Vals) {
9260 assert((Vals.size() == 1 || Vals.size() == 2) &&(static_cast <bool> ((Vals.size() == 1 || Vals.size() ==
2) && "Expected exactly 1 or 2 input values.") ? void
(0) : __assert_fail ("(Vals.size() == 1 || Vals.size() == 2) && \"Expected exactly 1 or 2 input values.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9261, __extension__
__PRETTY_FUNCTION__))
9261 "Expected exactly 1 or 2 input values.")(static_cast <bool> ((Vals.size() == 1 || Vals.size() ==
2) && "Expected exactly 1 or 2 input values.") ? void
(0) : __assert_fail ("(Vals.size() == 1 || Vals.size() == 2) && \"Expected exactly 1 or 2 input values.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9261, __extension__
__PRETTY_FUNCTION__))
;
9262 if (Vals.size() == 1) {
9263 // Do not create shuffle if the mask is a simple identity
9264 // non-resizing mask.
9265 if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType())
9266 ->getNumElements() ||
9267 !ShuffleVectorInst::isIdentityMask(Mask))
9268 return CreateShuffle(Vals.front(), nullptr, Mask);
9269 return Vals.front();
9270 }
9271 return CreateShuffle(Vals.front() ? Vals.front()
9272 : FirstInsert->getOperand(0),
9273 Vals.back(), Mask);
9274 });
9275 auto It = ShuffledInserts[I].InsertElements.rbegin();
9276 // Rebuild buildvector chain.
9277 InsertElementInst *II = nullptr;
9278 if (It != ShuffledInserts[I].InsertElements.rend())
9279 II = *It;
9280 SmallVector<Instruction *> Inserts;
9281 while (It != ShuffledInserts[I].InsertElements.rend()) {
9282 assert(II && "Must be an insertelement instruction.")(static_cast <bool> (II && "Must be an insertelement instruction."
) ? void (0) : __assert_fail ("II && \"Must be an insertelement instruction.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9282, __extension__
__PRETTY_FUNCTION__))
;
9283 if (*It == II)
9284 ++It;
9285 else
9286 Inserts.push_back(cast<Instruction>(II));
9287 II = dyn_cast<InsertElementInst>(II->getOperand(0));
9288 }
9289 for (Instruction *II : reverse(Inserts)) {
9290 II->replaceUsesOfWith(II->getOperand(0), NewInst);
9291 if (auto *NewI = dyn_cast<Instruction>(NewInst))
9292 if (II->getParent() == NewI->getParent() && II->comesBefore(NewI))
9293 II->moveAfter(NewI);
9294 NewInst = II;
9295 }
9296 LastInsert->replaceAllUsesWith(NewInst);
9297 for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) {
9298 IE->replaceUsesOfWith(IE->getOperand(0),
9299 PoisonValue::get(IE->getOperand(0)->getType()));
9300 IE->replaceUsesOfWith(IE->getOperand(1),
9301 PoisonValue::get(IE->getOperand(1)->getType()));
9302 eraseInstruction(IE);
9303 }
9304 CSEBlocks.insert(LastInsert->getParent());
9305 }
9306
9307 // For each vectorized value:
9308 for (auto &TEPtr : VectorizableTree) {
9309 TreeEntry *Entry = TEPtr.get();
9310
9311 // No need to handle users of gathered values.
9312 if (Entry->State == TreeEntry::NeedToGather)
9313 continue;
9314
9315 assert(Entry->VectorizedValue && "Can't find vectorizable value")(static_cast <bool> (Entry->VectorizedValue &&
"Can't find vectorizable value") ? void (0) : __assert_fail (
"Entry->VectorizedValue && \"Can't find vectorizable value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9315, __extension__
__PRETTY_FUNCTION__))
;
9316
9317 // For each lane:
9318 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
9319 Value *Scalar = Entry->Scalars[Lane];
9320
9321 if (Entry->getOpcode() == Instruction::GetElementPtr &&
9322 !isa<GetElementPtrInst>(Scalar))
9323 continue;
9324#ifndef NDEBUG
9325 Type *Ty = Scalar->getType();
9326 if (!Ty->isVoidTy()) {
9327 for (User *U : Scalar->users()) {
9328 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tvalidating user:" <<
*U << ".\n"; } } while (false)
;
9329
9330 // It is legal to delete users in the ignorelist.
9331 assert((getTreeEntry(U) ||(static_cast <bool> ((getTreeEntry(U) || (UserIgnoreList
&& UserIgnoreList->contains(U)) || (isa_and_nonnull
<Instruction>(U) && isDeleted(cast<Instruction
>(U)))) && "Deleting out-of-tree value") ? void (0
) : __assert_fail ("(getTreeEntry(U) || (UserIgnoreList && UserIgnoreList->contains(U)) || (isa_and_nonnull<Instruction>(U) && isDeleted(cast<Instruction>(U)))) && \"Deleting out-of-tree value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9335, __extension__
__PRETTY_FUNCTION__))
9332 (UserIgnoreList && UserIgnoreList->contains(U)) ||(static_cast <bool> ((getTreeEntry(U) || (UserIgnoreList
&& UserIgnoreList->contains(U)) || (isa_and_nonnull
<Instruction>(U) && isDeleted(cast<Instruction
>(U)))) && "Deleting out-of-tree value") ? void (0
) : __assert_fail ("(getTreeEntry(U) || (UserIgnoreList && UserIgnoreList->contains(U)) || (isa_and_nonnull<Instruction>(U) && isDeleted(cast<Instruction>(U)))) && \"Deleting out-of-tree value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9335, __extension__
__PRETTY_FUNCTION__))
9333 (isa_and_nonnull<Instruction>(U) &&(static_cast <bool> ((getTreeEntry(U) || (UserIgnoreList
&& UserIgnoreList->contains(U)) || (isa_and_nonnull
<Instruction>(U) && isDeleted(cast<Instruction
>(U)))) && "Deleting out-of-tree value") ? void (0
) : __assert_fail ("(getTreeEntry(U) || (UserIgnoreList && UserIgnoreList->contains(U)) || (isa_and_nonnull<Instruction>(U) && isDeleted(cast<Instruction>(U)))) && \"Deleting out-of-tree value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9335, __extension__
__PRETTY_FUNCTION__))
9334 isDeleted(cast<Instruction>(U)))) &&(static_cast <bool> ((getTreeEntry(U) || (UserIgnoreList
&& UserIgnoreList->contains(U)) || (isa_and_nonnull
<Instruction>(U) && isDeleted(cast<Instruction
>(U)))) && "Deleting out-of-tree value") ? void (0
) : __assert_fail ("(getTreeEntry(U) || (UserIgnoreList && UserIgnoreList->contains(U)) || (isa_and_nonnull<Instruction>(U) && isDeleted(cast<Instruction>(U)))) && \"Deleting out-of-tree value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9335, __extension__
__PRETTY_FUNCTION__))
9335 "Deleting out-of-tree value")(static_cast <bool> ((getTreeEntry(U) || (UserIgnoreList
&& UserIgnoreList->contains(U)) || (isa_and_nonnull
<Instruction>(U) && isDeleted(cast<Instruction
>(U)))) && "Deleting out-of-tree value") ? void (0
) : __assert_fail ("(getTreeEntry(U) || (UserIgnoreList && UserIgnoreList->contains(U)) || (isa_and_nonnull<Instruction>(U) && isDeleted(cast<Instruction>(U)))) && \"Deleting out-of-tree value\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9335, __extension__
__PRETTY_FUNCTION__))
;
9336 }
9337 }
9338#endif
9339 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tErasing scalar:" << *
Scalar << ".\n"; } } while (false)
;
9340 eraseInstruction(cast<Instruction>(Scalar));
9341 }
9342 }
9343
9344 Builder.ClearInsertionPoint();
9345 InstrElementSize.clear();
9346
9347 return VectorizableTree[0]->VectorizedValue;
9348}
9349
9350void BoUpSLP::optimizeGatherSequence() {
9351 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleExtractSeq.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherShuffleExtractSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
9352 << " gather sequences instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherShuffleExtractSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
;
9353 // LICM InsertElementInst sequences.
9354 for (Instruction *I : GatherShuffleExtractSeq) {
9355 if (isDeleted(I))
9356 continue;
9357
9358 // Check if this block is inside a loop.
9359 Loop *L = LI->getLoopFor(I->getParent());
9360 if (!L)
9361 continue;
9362
9363 // Check if it has a preheader.
9364 BasicBlock *PreHeader = L->getLoopPreheader();
9365 if (!PreHeader)
9366 continue;
9367
9368 // If the vector or the element that we insert into it are
9369 // instructions that are defined in this basic block then we can't
9370 // hoist this instruction.
9371 if (any_of(I->operands(), [L](Value *V) {
9372 auto *OpI = dyn_cast<Instruction>(V);
9373 return OpI && L->contains(OpI);
9374 }))
9375 continue;
9376
9377 // We can hoist this instruction. Move it to the pre-header.
9378 I->moveBefore(PreHeader->getTerminator());
9379 CSEBlocks.insert(PreHeader);
9380 }
9381
9382 // Make a list of all reachable blocks in our CSE queue.
9383 SmallVector<const DomTreeNode *, 8> CSEWorkList;
9384 CSEWorkList.reserve(CSEBlocks.size());
9385 for (BasicBlock *BB : CSEBlocks)
9386 if (DomTreeNode *N = DT->getNode(BB)) {
9387 assert(DT->isReachableFromEntry(N))(static_cast <bool> (DT->isReachableFromEntry(N)) ? void
(0) : __assert_fail ("DT->isReachableFromEntry(N)", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 9387, __extension__ __PRETTY_FUNCTION__))
;
9388 CSEWorkList.push_back(N);
9389 }
9390
9391 // Sort blocks by domination. This ensures we visit a block after all blocks
9392 // dominating it are visited.
9393 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
9394 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&(static_cast <bool> ((A == B) == (A->getDFSNumIn() ==
B->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9395, __extension__
__PRETTY_FUNCTION__))
9395 "Different nodes should have different DFS numbers")(static_cast <bool> ((A == B) == (A->getDFSNumIn() ==
B->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9395, __extension__
__PRETTY_FUNCTION__))
;
9396 return A->getDFSNumIn() < B->getDFSNumIn();
9397 });
9398
9399 // Less defined shuffles can be replaced by the more defined copies.
9400 // Between two shuffles one is less defined if it has the same vector operands
9401 // and its mask indeces are the same as in the first one or undefs. E.g.
9402 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
9403 // poison, <0, 0, 0, 0>.
9404 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
9405 SmallVectorImpl<int> &NewMask) {
9406 if (I1->getType() != I2->getType())
9407 return false;
9408 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
9409 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
9410 if (!SI1 || !SI2)
9411 return I1->isIdenticalTo(I2);
9412 if (SI1->isIdenticalTo(SI2))
9413 return true;
9414 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
9415 if (SI1->getOperand(I) != SI2->getOperand(I))
9416 return false;
9417 // Check if the second instruction is more defined than the first one.
9418 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
9419 ArrayRef<int> SM1 = SI1->getShuffleMask();
9420 // Count trailing undefs in the mask to check the final number of used
9421 // registers.
9422 unsigned LastUndefsCnt = 0;
9423 for (int I = 0, E = NewMask.size(); I < E; ++I) {
9424 if (SM1[I] == UndefMaskElem)
9425 ++LastUndefsCnt;
9426 else
9427 LastUndefsCnt = 0;
9428 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem &&
9429 NewMask[I] != SM1[I])
9430 return false;
9431 if (NewMask[I] == UndefMaskElem)
9432 NewMask[I] = SM1[I];
9433 }
9434 // Check if the last undefs actually change the final number of used vector
9435 // registers.
9436 return SM1.size() - LastUndefsCnt > 1 &&
9437 TTI->getNumberOfParts(SI1->getType()) ==
9438 TTI->getNumberOfParts(
9439 FixedVectorType::get(SI1->getType()->getElementType(),
9440 SM1.size() - LastUndefsCnt));
9441 };
9442 // Perform O(N^2) search over the gather/shuffle sequences and merge identical
9443 // instructions. TODO: We can further optimize this scan if we split the
9444 // instructions into different buckets based on the insert lane.
9445 SmallVector<Instruction *, 16> Visited;
9446 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
9447 assert(*I &&(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9449, __extension__
__PRETTY_FUNCTION__))
9448 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9449, __extension__
__PRETTY_FUNCTION__))
9449 "Worklist not sorted properly!")(static_cast <bool> (*I && (I == CSEWorkList.begin
() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"
) ? void (0) : __assert_fail ("*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9449, __extension__
__PRETTY_FUNCTION__))
;
9450 BasicBlock *BB = (*I)->getBlock();
9451 // For all instructions in blocks containing gather sequences:
9452 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
9453 if (isDeleted(&In))
9454 continue;
9455 if (!isa<InsertElementInst, ExtractElementInst, ShuffleVectorInst>(&In) &&
9456 !GatherShuffleExtractSeq.contains(&In))
9457 continue;
9458
9459 // Check if we can replace this instruction with any of the
9460 // visited instructions.
9461 bool Replaced = false;
9462 for (Instruction *&V : Visited) {
9463 SmallVector<int> NewMask;
9464 if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
9465 DT->dominates(V->getParent(), In.getParent())) {
9466 In.replaceAllUsesWith(V);
9467 eraseInstruction(&In);
9468 if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
9469 if (!NewMask.empty())
9470 SI->setShuffleMask(NewMask);
9471 Replaced = true;
9472 break;
9473 }
9474 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
9475 GatherShuffleExtractSeq.contains(V) &&
9476 IsIdenticalOrLessDefined(V, &In, NewMask) &&
9477 DT->dominates(In.getParent(), V->getParent())) {
9478 In.moveAfter(V);
9479 V->replaceAllUsesWith(&In);
9480 eraseInstruction(V);
9481 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
9482 if (!NewMask.empty())
9483 SI->setShuffleMask(NewMask);
9484 V = &In;
9485 Replaced = true;
9486 break;
9487 }
9488 }
9489 if (!Replaced) {
9490 assert(!is_contained(Visited, &In))(static_cast <bool> (!is_contained(Visited, &In)) ?
void (0) : __assert_fail ("!is_contained(Visited, &In)",
"llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9490, __extension__
__PRETTY_FUNCTION__))
;
9491 Visited.push_back(&In);
9492 }
9493 }
9494 }
9495 CSEBlocks.clear();
9496 GatherShuffleExtractSeq.clear();
9497}
9498
9499BoUpSLP::ScheduleData *
9500BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
9501 ScheduleData *Bundle = nullptr;
9502 ScheduleData *PrevInBundle = nullptr;
9503 for (Value *V : VL) {
9504 if (doesNotNeedToBeScheduled(V))
9505 continue;
9506 ScheduleData *BundleMember = getScheduleData(V);
9507 assert(BundleMember &&(static_cast <bool> (BundleMember && "no ScheduleData for bundle member "
"(maybe not in same basic block)") ? void (0) : __assert_fail
("BundleMember && \"no ScheduleData for bundle member \" \"(maybe not in same basic block)\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9509, __extension__
__PRETTY_FUNCTION__))
9508 "no ScheduleData for bundle member "(static_cast <bool> (BundleMember && "no ScheduleData for bundle member "
"(maybe not in same basic block)") ? void (0) : __assert_fail
("BundleMember && \"no ScheduleData for bundle member \" \"(maybe not in same basic block)\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9509, __extension__
__PRETTY_FUNCTION__))
9509 "(maybe not in same basic block)")(static_cast <bool> (BundleMember && "no ScheduleData for bundle member "
"(maybe not in same basic block)") ? void (0) : __assert_fail
("BundleMember && \"no ScheduleData for bundle member \" \"(maybe not in same basic block)\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9509, __extension__
__PRETTY_FUNCTION__))
;
9510 assert(BundleMember->isSchedulingEntity() &&(static_cast <bool> (BundleMember->isSchedulingEntity
() && "bundle member already part of other bundle") ?
void (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9511, __extension__
__PRETTY_FUNCTION__))
9511 "bundle member already part of other bundle")(static_cast <bool> (BundleMember->isSchedulingEntity
() && "bundle member already part of other bundle") ?
void (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9511, __extension__
__PRETTY_FUNCTION__))
;
9512 if (PrevInBundle) {
9513 PrevInBundle->NextInBundle = BundleMember;
9514 } else {
9515 Bundle = BundleMember;
9516 }
9517
9518 // Group the instructions to a bundle.
9519 BundleMember->FirstInBundle = Bundle;
9520 PrevInBundle = BundleMember;
9521 }
9522 assert(Bundle && "Failed to find schedule bundle")(static_cast <bool> (Bundle && "Failed to find schedule bundle"
) ? void (0) : __assert_fail ("Bundle && \"Failed to find schedule bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9522, __extension__
__PRETTY_FUNCTION__))
;
9523 return Bundle;
9524}
9525
9526// Groups the instructions to a bundle (which is then a single scheduling entity)
9527// and schedules instructions until the bundle gets ready.
9528Optional<BoUpSLP::ScheduleData *>
9529BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
9530 const InstructionsState &S) {
9531 // No need to schedule PHIs, insertelement, extractelement and extractvalue
9532 // instructions.
9533 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) ||
9534 doesNotNeedToSchedule(VL))
9535 return nullptr;
9536
9537 // Initialize the instruction bundle.
9538 Instruction *OldScheduleEnd = ScheduleEnd;
9539 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle: " << *S.OpValue
<< "\n"; } } while (false)
;
9540
9541 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
9542 ScheduleData *Bundle) {
9543 // The scheduling region got new instructions at the lower end (or it is a
9544 // new region for the first bundle). This makes it necessary to
9545 // recalculate all dependencies.
9546 // It is seldom that this needs to be done a second time after adding the
9547 // initial bundle to the region.
9548 if (ScheduleEnd != OldScheduleEnd) {
9549 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
9550 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
9551 ReSchedule = true;
9552 }
9553 if (Bundle) {
9554 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundledo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
9555 << " in block " << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
;
9556 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
9557 }
9558
9559 if (ReSchedule) {
9560 resetSchedule();
9561 initialFillReadyList(ReadyInsts);
9562 }
9563
9564 // Now try to schedule the new bundle or (if no bundle) just calculate
9565 // dependencies. As soon as the bundle is "ready" it means that there are no
9566 // cyclic dependencies and we can schedule it. Note that's important that we
9567 // don't "schedule" the bundle yet (see cancelScheduling).
9568 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
9569 !ReadyInsts.empty()) {
9570 ScheduleData *Picked = ReadyInsts.pop_back_val();
9571 assert(Picked->isSchedulingEntity() && Picked->isReady() &&(static_cast <bool> (Picked->isSchedulingEntity() &&
Picked->isReady() && "must be ready to schedule")
? void (0) : __assert_fail ("Picked->isSchedulingEntity() && Picked->isReady() && \"must be ready to schedule\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9572, __extension__
__PRETTY_FUNCTION__))
9572 "must be ready to schedule")(static_cast <bool> (Picked->isSchedulingEntity() &&
Picked->isReady() && "must be ready to schedule")
? void (0) : __assert_fail ("Picked->isSchedulingEntity() && Picked->isReady() && \"must be ready to schedule\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9572, __extension__
__PRETTY_FUNCTION__))
;
9573 schedule(Picked, ReadyInsts);
9574 }
9575 };
9576
9577 // Make sure that the scheduling region contains all
9578 // instructions of the bundle.
9579 for (Value *V : VL) {
9580 if (doesNotNeedToBeScheduled(V))
9581 continue;
9582 if (!extendSchedulingRegion(V, S)) {
9583 // If the scheduling region got new instructions at the lower end (or it
9584 // is a new region for the first bundle). This makes it necessary to
9585 // recalculate all dependencies.
9586 // Otherwise the compiler may crash trying to incorrectly calculate
9587 // dependencies and emit instruction in the wrong order at the actual
9588 // scheduling.
9589 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
9590 return None;
9591 }
9592 }
9593
9594 bool ReSchedule = false;
9595 for (Value *V : VL) {
9596 if (doesNotNeedToBeScheduled(V))
9597 continue;
9598 ScheduleData *BundleMember = getScheduleData(V);
9599 assert(BundleMember &&(static_cast <bool> (BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? void (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9600, __extension__
__PRETTY_FUNCTION__))
9600 "no ScheduleData for bundle member (maybe not in same basic block)")(static_cast <bool> (BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? void (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9600, __extension__
__PRETTY_FUNCTION__))
;
9601
9602 // Make sure we don't leave the pieces of the bundle in the ready list when
9603 // whole bundle might not be ready.
9604 ReadyInsts.remove(BundleMember);
9605
9606 if (!BundleMember->IsScheduled)
9607 continue;
9608 // A bundle member was scheduled as single instruction before and now
9609 // needs to be scheduled as part of the bundle. We just get rid of the
9610 // existing schedule.
9611 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
9612 << " was already scheduled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
;
9613 ReSchedule = true;
9614 }
9615
9616 auto *Bundle = buildBundle(VL);
9617 TryScheduleBundleImpl(ReSchedule, Bundle);
9618 if (!Bundle->isReady()) {
9619 cancelScheduling(VL, S.OpValue);
9620 return None;
9621 }
9622 return Bundle;
9623}
9624
9625void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
9626 Value *OpValue) {
9627 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) ||
9628 doesNotNeedToSchedule(VL))
9629 return;
9630
9631 if (doesNotNeedToBeScheduled(OpValue))
9632 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled);
9633 ScheduleData *Bundle = getScheduleData(OpValue);
9634 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: cancel scheduling of " <<
*Bundle << "\n"; } } while (false)
;
9635 assert(!Bundle->IsScheduled &&(static_cast <bool> (!Bundle->IsScheduled &&
"Can't cancel bundle which is already scheduled") ? void (0)
: __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9636, __extension__
__PRETTY_FUNCTION__))
9636 "Can't cancel bundle which is already scheduled")(static_cast <bool> (!Bundle->IsScheduled &&
"Can't cancel bundle which is already scheduled") ? void (0)
: __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9636, __extension__
__PRETTY_FUNCTION__))
;
9637 assert(Bundle->isSchedulingEntity() &&(static_cast <bool> (Bundle->isSchedulingEntity() &&
(Bundle->isPartOfBundle() || needToScheduleSingleInstruction
(VL)) && "tried to unbundle something which is not a bundle"
) ? void (0) : __assert_fail ("Bundle->isSchedulingEntity() && (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && \"tried to unbundle something which is not a bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9639, __extension__
__PRETTY_FUNCTION__))
9638 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) &&(static_cast <bool> (Bundle->isSchedulingEntity() &&
(Bundle->isPartOfBundle() || needToScheduleSingleInstruction
(VL)) && "tried to unbundle something which is not a bundle"
) ? void (0) : __assert_fail ("Bundle->isSchedulingEntity() && (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && \"tried to unbundle something which is not a bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9639, __extension__
__PRETTY_FUNCTION__))
9639 "tried to unbundle something which is not a bundle")(static_cast <bool> (Bundle->isSchedulingEntity() &&
(Bundle->isPartOfBundle() || needToScheduleSingleInstruction
(VL)) && "tried to unbundle something which is not a bundle"
) ? void (0) : __assert_fail ("Bundle->isSchedulingEntity() && (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && \"tried to unbundle something which is not a bundle\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9639, __extension__
__PRETTY_FUNCTION__))
;
9640
9641 // Remove the bundle from the ready list.
9642 if (Bundle->isReady())
9643 ReadyInsts.remove(Bundle);
9644
9645 // Un-bundle: make single instructions out of the bundle.
9646 ScheduleData *BundleMember = Bundle;
9647 while (BundleMember) {
9648 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links")(static_cast <bool> (BundleMember->FirstInBundle == Bundle
&& "corrupt bundle links") ? void (0) : __assert_fail
("BundleMember->FirstInBundle == Bundle && \"corrupt bundle links\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9648, __extension__
__PRETTY_FUNCTION__))
;
9649 BundleMember->FirstInBundle = BundleMember;
9650 ScheduleData *Next = BundleMember->NextInBundle;
9651 BundleMember->NextInBundle = nullptr;
9652 BundleMember->TE = nullptr;
9653 if (BundleMember->unscheduledDepsInBundle() == 0) {
9654 ReadyInsts.insert(BundleMember);
9655 }
9656 BundleMember = Next;
9657 }
9658}
9659
9660BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
9661 // Allocate a new ScheduleData for the instruction.
9662 if (ChunkPos >= ChunkSize) {
9663 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
9664 ChunkPos = 0;
9665 }
9666 return &(ScheduleDataChunks.back()[ChunkPos++]);
9667}
9668
9669bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
9670 const InstructionsState &S) {
9671 if (getScheduleData(V, isOneOf(S, V)))
9672 return true;
9673 Instruction *I = dyn_cast<Instruction>(V);
9674 assert(I && "bundle member must be an instruction")(static_cast <bool> (I && "bundle member must be an instruction"
) ? void (0) : __assert_fail ("I && \"bundle member must be an instruction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9674, __extension__
__PRETTY_FUNCTION__))
;
9675 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&(static_cast <bool> (!isa<PHINode>(I) && !
isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled
(I) && "phi nodes/insertelements/extractelements/extractvalues don't need to "
"be scheduled") ? void (0) : __assert_fail ("!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled(I) && \"phi nodes/insertelements/extractelements/extractvalues don't need to \" \"be scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9678, __extension__
__PRETTY_FUNCTION__))
9676 !doesNotNeedToBeScheduled(I) &&(static_cast <bool> (!isa<PHINode>(I) && !
isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled
(I) && "phi nodes/insertelements/extractelements/extractvalues don't need to "
"be scheduled") ? void (0) : __assert_fail ("!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled(I) && \"phi nodes/insertelements/extractelements/extractvalues don't need to \" \"be scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9678, __extension__
__PRETTY_FUNCTION__))
9677 "phi nodes/insertelements/extractelements/extractvalues don't need to "(static_cast <bool> (!isa<PHINode>(I) && !
isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled
(I) && "phi nodes/insertelements/extractelements/extractvalues don't need to "
"be scheduled") ? void (0) : __assert_fail ("!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled(I) && \"phi nodes/insertelements/extractelements/extractvalues don't need to \" \"be scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9678, __extension__
__PRETTY_FUNCTION__))
9678 "be scheduled")(static_cast <bool> (!isa<PHINode>(I) && !
isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled
(I) && "phi nodes/insertelements/extractelements/extractvalues don't need to "
"be scheduled") ? void (0) : __assert_fail ("!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && !doesNotNeedToBeScheduled(I) && \"phi nodes/insertelements/extractelements/extractvalues don't need to \" \"be scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9678, __extension__
__PRETTY_FUNCTION__))
;
9679 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool {
9680 ScheduleData *ISD = getScheduleData(I);
9681 if (!ISD)
9682 return false;
9683 assert(isInSchedulingRegion(ISD) &&(static_cast <bool> (isInSchedulingRegion(ISD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9684, __extension__
__PRETTY_FUNCTION__))
9684 "ScheduleData not in scheduling region")(static_cast <bool> (isInSchedulingRegion(ISD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9684, __extension__
__PRETTY_FUNCTION__))
;
9685 ScheduleData *SD = allocateScheduleDataChunks();
9686 SD->Inst = I;
9687 SD->init(SchedulingRegionID, S.OpValue);
9688 ExtraScheduleDataMap[I][S.OpValue] = SD;
9689 return true;
9690 };
9691 if (CheckScheduleForI(I))
9692 return true;
9693 if (!ScheduleStart) {
9694 // It's the first instruction in the new region.
9695 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
9696 ScheduleStart = I;
9697 ScheduleEnd = I->getNextNode();
9698 if (isOneOf(S, I) != I)
9699 CheckScheduleForI(I);
9700 assert(ScheduleEnd && "tried to vectorize a terminator?")(static_cast <bool> (ScheduleEnd && "tried to vectorize a terminator?"
) ? void (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9700, __extension__
__PRETTY_FUNCTION__))
;
9701 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initialize schedule region to "
<< *I << "\n"; } } while (false)
;
9702 return true;
9703 }
9704 // Search up and down at the same time, because we don't know if the new
9705 // instruction is above or below the existing scheduling region.
9706 BasicBlock::reverse_iterator UpIter =
9707 ++ScheduleStart->getIterator().getReverse();
9708 BasicBlock::reverse_iterator UpperEnd = BB->rend();
9709 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
9710 BasicBlock::iterator LowerEnd = BB->end();
9711 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
9712 &*DownIter != I) {
9713 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
9714 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: exceeded schedule region size limit\n"
; } } while (false)
;
9715 return false;
9716 }
9717
9718 ++UpIter;
9719 ++DownIter;
9720 }
9721 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
9722 assert(I->getParent() == ScheduleStart->getParent() &&(static_cast <bool> (I->getParent() == ScheduleStart
->getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleStart->getParent() && \"Instruction is in wrong basic block.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9723, __extension__
__PRETTY_FUNCTION__))
9723 "Instruction is in wrong basic block.")(static_cast <bool> (I->getParent() == ScheduleStart
->getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleStart->getParent() && \"Instruction is in wrong basic block.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9723, __extension__
__PRETTY_FUNCTION__))
;
9724 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
9725 ScheduleStart = I;
9726 if (isOneOf(S, I) != I)
9727 CheckScheduleForI(I);
9728 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
9729 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
;
9730 return true;
9731 }
9732 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9734, __extension__
__PRETTY_FUNCTION__))
9733 "Expected to reach top of the basic block or instruction down the "(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9734, __extension__
__PRETTY_FUNCTION__))
9734 "lower end.")(static_cast <bool> ((UpIter == UpperEnd || (DownIter !=
LowerEnd && &*DownIter == I)) && "Expected to reach top of the basic block or instruction down the "
"lower end.") ? void (0) : __assert_fail ("(UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && \"Expected to reach top of the basic block or instruction down the \" \"lower end.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9734, __extension__
__PRETTY_FUNCTION__))
;
9735 assert(I->getParent() == ScheduleEnd->getParent() &&(static_cast <bool> (I->getParent() == ScheduleEnd->
getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleEnd->getParent() && \"Instruction is in wrong basic block.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9736, __extension__
__PRETTY_FUNCTION__))
9736 "Instruction is in wrong basic block.")(static_cast <bool> (I->getParent() == ScheduleEnd->
getParent() && "Instruction is in wrong basic block."
) ? void (0) : __assert_fail ("I->getParent() == ScheduleEnd->getParent() && \"Instruction is in wrong basic block.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9736, __extension__
__PRETTY_FUNCTION__))
;
9737 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
9738 nullptr);
9739 ScheduleEnd = I->getNextNode();
9740 if (isOneOf(S, I) != I)
9741 CheckScheduleForI(I);
9742 assert(ScheduleEnd && "tried to vectorize a terminator?")(static_cast <bool> (ScheduleEnd && "tried to vectorize a terminator?"
) ? void (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9742, __extension__
__PRETTY_FUNCTION__))
;
9743 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region end to "
<< *I << "\n"; } } while (false)
;
9744 return true;
9745}
9746
9747void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
9748 Instruction *ToI,
9749 ScheduleData *PrevLoadStore,
9750 ScheduleData *NextLoadStore) {
9751 ScheduleData *CurrentLoadStore = PrevLoadStore;
9752 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
9753 // No need to allocate data for non-schedulable instructions.
9754 if (doesNotNeedToBeScheduled(I))
9755 continue;
9756 ScheduleData *SD = ScheduleDataMap.lookup(I);
9757 if (!SD) {
9758 SD = allocateScheduleDataChunks();
9759 ScheduleDataMap[I] = SD;
9760 SD->Inst = I;
9761 }
9762 assert(!isInSchedulingRegion(SD) &&(static_cast <bool> (!isInSchedulingRegion(SD) &&
"new ScheduleData already in scheduling region") ? void (0) :
__assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9763, __extension__
__PRETTY_FUNCTION__))
9763 "new ScheduleData already in scheduling region")(static_cast <bool> (!isInSchedulingRegion(SD) &&
"new ScheduleData already in scheduling region") ? void (0) :
__assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9763, __extension__
__PRETTY_FUNCTION__))
;
9764 SD->init(SchedulingRegionID, I);
9765
9766 if (I->mayReadOrWriteMemory() &&
9767 (!isa<IntrinsicInst>(I) ||
9768 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
9769 cast<IntrinsicInst>(I)->getIntrinsicID() !=
9770 Intrinsic::pseudoprobe))) {
9771 // Update the linked list of memory accessing instructions.
9772 if (CurrentLoadStore) {
9773 CurrentLoadStore->NextLoadStore = SD;
9774 } else {
9775 FirstLoadStoreInRegion = SD;
9776 }
9777 CurrentLoadStore = SD;
9778 }
9779
9780 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
9781 match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9782 RegionHasStackSave = true;
9783 }
9784 if (NextLoadStore) {
9785 if (CurrentLoadStore)
9786 CurrentLoadStore->NextLoadStore = NextLoadStore;
9787 } else {
9788 LastLoadStoreInRegion = CurrentLoadStore;
9789 }
9790}
9791
9792void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
9793 bool InsertInReadyList,
9794 BoUpSLP *SLP) {
9795 assert(SD->isSchedulingEntity())(static_cast <bool> (SD->isSchedulingEntity()) ? void
(0) : __assert_fail ("SD->isSchedulingEntity()", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 9795, __extension__ __PRETTY_FUNCTION__))
;
9796
9797 SmallVector<ScheduleData *, 10> WorkList;
9798 WorkList.push_back(SD);
9799
9800 while (!WorkList.empty()) {
9801 ScheduleData *SD = WorkList.pop_back_val();
9802 for (ScheduleData *BundleMember = SD; BundleMember;
9803 BundleMember = BundleMember->NextInBundle) {
9804 assert(isInSchedulingRegion(BundleMember))(static_cast <bool> (isInSchedulingRegion(BundleMember)
) ? void (0) : __assert_fail ("isInSchedulingRegion(BundleMember)"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9804, __extension__
__PRETTY_FUNCTION__))
;
9805 if (BundleMember->hasValidDependencies())
9806 continue;
9807
9808 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
9809 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
;
9810 BundleMember->Dependencies = 0;
9811 BundleMember->resetUnscheduledDeps();
9812
9813 // Handle def-use chain dependencies.
9814 if (BundleMember->OpValue != BundleMember->Inst) {
9815 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) {
9816 BundleMember->Dependencies++;
9817 ScheduleData *DestBundle = UseSD->FirstInBundle;
9818 if (!DestBundle->IsScheduled)
9819 BundleMember->incrementUnscheduledDeps(1);
9820 if (!DestBundle->hasValidDependencies())
9821 WorkList.push_back(DestBundle);
9822 }
9823 } else {
9824 for (User *U : BundleMember->Inst->users()) {
9825 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) {
9826 BundleMember->Dependencies++;
9827 ScheduleData *DestBundle = UseSD->FirstInBundle;
9828 if (!DestBundle->IsScheduled)
9829 BundleMember->incrementUnscheduledDeps(1);
9830 if (!DestBundle->hasValidDependencies())
9831 WorkList.push_back(DestBundle);
9832 }
9833 }
9834 }
9835
9836 auto makeControlDependent = [&](Instruction *I) {
9837 auto *DepDest = getScheduleData(I);
9838 assert(DepDest && "must be in schedule window")(static_cast <bool> (DepDest && "must be in schedule window"
) ? void (0) : __assert_fail ("DepDest && \"must be in schedule window\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9838, __extension__
__PRETTY_FUNCTION__))
;
9839 DepDest->ControlDependencies.push_back(BundleMember);
9840 BundleMember->Dependencies++;
9841 ScheduleData *DestBundle = DepDest->FirstInBundle;
9842 if (!DestBundle->IsScheduled)
9843 BundleMember->incrementUnscheduledDeps(1);
9844 if (!DestBundle->hasValidDependencies())
9845 WorkList.push_back(DestBundle);
9846 };
9847
9848 // Any instruction which isn't safe to speculate at the beginning of the
9849 // block is control dependend on any early exit or non-willreturn call
9850 // which proceeds it.
9851 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) {
9852 for (Instruction *I = BundleMember->Inst->getNextNode();
9853 I != ScheduleEnd; I = I->getNextNode()) {
9854 if (isSafeToSpeculativelyExecute(I, &*BB->begin(), SLP->AC))
9855 continue;
9856
9857 // Add the dependency
9858 makeControlDependent(I);
9859
9860 if (!isGuaranteedToTransferExecutionToSuccessor(I))
9861 // Everything past here must be control dependent on I.
9862 break;
9863 }
9864 }
9865
9866 if (RegionHasStackSave) {
9867 // If we have an inalloc alloca instruction, it needs to be scheduled
9868 // after any preceeding stacksave. We also need to prevent any alloca
9869 // from reordering above a preceeding stackrestore.
9870 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) ||
9871 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) {
9872 for (Instruction *I = BundleMember->Inst->getNextNode();
9873 I != ScheduleEnd; I = I->getNextNode()) {
9874 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
9875 match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9876 // Any allocas past here must be control dependent on I, and I
9877 // must be memory dependend on BundleMember->Inst.
9878 break;
9879
9880 if (!isa<AllocaInst>(I))
9881 continue;
9882
9883 // Add the dependency
9884 makeControlDependent(I);
9885 }
9886 }
9887
9888 // In addition to the cases handle just above, we need to prevent
9889 // allocas from moving below a stacksave. The stackrestore case
9890 // is currently thought to be conservatism.
9891 if (isa<AllocaInst>(BundleMember->Inst)) {
9892 for (Instruction *I = BundleMember->Inst->getNextNode();
9893 I != ScheduleEnd; I = I->getNextNode()) {
9894 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) &&
9895 !match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9896 continue;
9897
9898 // Add the dependency
9899 makeControlDependent(I);
9900 break;
9901 }
9902 }
9903 }
9904
9905 // Handle the memory dependencies (if any).
9906 ScheduleData *DepDest = BundleMember->NextLoadStore;
9907 if (!DepDest)
9908 continue;
9909 Instruction *SrcInst = BundleMember->Inst;
9910 assert(SrcInst->mayReadOrWriteMemory() &&(static_cast <bool> (SrcInst->mayReadOrWriteMemory()
&& "NextLoadStore list for non memory effecting bundle?"
) ? void (0) : __assert_fail ("SrcInst->mayReadOrWriteMemory() && \"NextLoadStore list for non memory effecting bundle?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9911, __extension__
__PRETTY_FUNCTION__))
9911 "NextLoadStore list for non memory effecting bundle?")(static_cast <bool> (SrcInst->mayReadOrWriteMemory()
&& "NextLoadStore list for non memory effecting bundle?"
) ? void (0) : __assert_fail ("SrcInst->mayReadOrWriteMemory() && \"NextLoadStore list for non memory effecting bundle?\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9911, __extension__
__PRETTY_FUNCTION__))
;
9912 MemoryLocation SrcLoc = getLocation(SrcInst);
9913 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
9914 unsigned numAliased = 0;
9915 unsigned DistToSrc = 1;
9916
9917 for ( ; DepDest; DepDest = DepDest->NextLoadStore) {
9918 assert(isInSchedulingRegion(DepDest))(static_cast <bool> (isInSchedulingRegion(DepDest)) ? void
(0) : __assert_fail ("isInSchedulingRegion(DepDest)", "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 9918, __extension__ __PRETTY_FUNCTION__))
;
9919
9920 // We have two limits to reduce the complexity:
9921 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
9922 // SLP->isAliased (which is the expensive part in this loop).
9923 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
9924 // the whole loop (even if the loop is fast, it's quadratic).
9925 // It's important for the loop break condition (see below) to
9926 // check this limit even between two read-only instructions.
9927 if (DistToSrc >= MaxMemDepDistance ||
9928 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
9929 (numAliased >= AliasedCheckLimit ||
9930 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
9931
9932 // We increment the counter only if the locations are aliased
9933 // (instead of counting all alias checks). This gives a better
9934 // balance between reduced runtime and accurate dependencies.
9935 numAliased++;
9936
9937 DepDest->MemoryDependencies.push_back(BundleMember);
9938 BundleMember->Dependencies++;
9939 ScheduleData *DestBundle = DepDest->FirstInBundle;
9940 if (!DestBundle->IsScheduled) {
9941 BundleMember->incrementUnscheduledDeps(1);
9942 }
9943 if (!DestBundle->hasValidDependencies()) {
9944 WorkList.push_back(DestBundle);
9945 }
9946 }
9947
9948 // Example, explaining the loop break condition: Let's assume our
9949 // starting instruction is i0 and MaxMemDepDistance = 3.
9950 //
9951 // +--------v--v--v
9952 // i0,i1,i2,i3,i4,i5,i6,i7,i8
9953 // +--------^--^--^
9954 //
9955 // MaxMemDepDistance let us stop alias-checking at i3 and we add
9956 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
9957 // Previously we already added dependencies from i3 to i6,i7,i8
9958 // (because of MaxMemDepDistance). As we added a dependency from
9959 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
9960 // and we can abort this loop at i6.
9961 if (DistToSrc >= 2 * MaxMemDepDistance)
9962 break;
9963 DistToSrc++;
9964 }
9965 }
9966 if (InsertInReadyList && SD->isReady()) {
9967 ReadyInsts.insert(SD);
9968 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Instdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
9969 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
;
9970 }
9971 }
9972}
9973
9974void BoUpSLP::BlockScheduling::resetSchedule() {
9975 assert(ScheduleStart &&(static_cast <bool> (ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? void (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9976, __extension__
__PRETTY_FUNCTION__))
9976 "tried to reset schedule on block which has not been scheduled")(static_cast <bool> (ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? void (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9976, __extension__
__PRETTY_FUNCTION__))
;
9977 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
9978 doForAllOpcodes(I, [&](ScheduleData *SD) {
9979 assert(isInSchedulingRegion(SD) &&(static_cast <bool> (isInSchedulingRegion(SD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9980, __extension__
__PRETTY_FUNCTION__))
9980 "ScheduleData not in scheduling region")(static_cast <bool> (isInSchedulingRegion(SD) &&
"ScheduleData not in scheduling region") ? void (0) : __assert_fail
("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 9980, __extension__
__PRETTY_FUNCTION__))
;
9981 SD->IsScheduled = false;
9982 SD->resetUnscheduledDeps();
9983 });
9984 }
9985 ReadyInsts.clear();
9986}
9987
9988void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
9989 if (!BS->ScheduleStart)
9990 return;
9991
9992 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule block " << BS
->BB->getName() << "\n"; } } while (false)
;
9993
9994 // A key point - if we got here, pre-scheduling was able to find a valid
9995 // scheduling of the sub-graph of the scheduling window which consists
9996 // of all vector bundles and their transitive users. As such, we do not
9997 // need to reschedule anything *outside of* that subgraph.
9998
9999 BS->resetSchedule();
10000
10001 // For the real scheduling we use a more sophisticated ready-list: it is
10002 // sorted by the original instruction location. This lets the final schedule
10003 // be as close as possible to the original instruction order.
10004 // WARNING: If changing this order causes a correctness issue, that means
10005 // there is some missing dependence edge in the schedule data graph.
10006 struct ScheduleDataCompare {
10007 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
10008 return SD2->SchedulingPriority < SD1->SchedulingPriority;
10009 }
10010 };
10011 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
10012
10013 // Ensure that all dependency data is updated (for nodes in the sub-graph)
10014 // and fill the ready-list with initial instructions.
10015 int Idx = 0;
10016 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
10017 I = I->getNextNode()) {
10018 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) {
10019 TreeEntry *SDTE = getTreeEntry(SD->Inst);
10020 (void)SDTE;
10021 assert((isVectorLikeInstWithConstOps(SD->Inst) ||(static_cast <bool> ((isVectorLikeInstWithConstOps(SD->
Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule
(SDTE->Scalars))) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("(isVectorLikeInstWithConstOps(SD->Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && \"scheduler and vectorizer bundle mismatch\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10024, __extension__
__PRETTY_FUNCTION__))
10022 SD->isPartOfBundle() ==(static_cast <bool> ((isVectorLikeInstWithConstOps(SD->
Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule
(SDTE->Scalars))) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("(isVectorLikeInstWithConstOps(SD->Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && \"scheduler and vectorizer bundle mismatch\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10024, __extension__
__PRETTY_FUNCTION__))
10023 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) &&(static_cast <bool> ((isVectorLikeInstWithConstOps(SD->
Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule
(SDTE->Scalars))) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("(isVectorLikeInstWithConstOps(SD->Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && \"scheduler and vectorizer bundle mismatch\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10024, __extension__
__PRETTY_FUNCTION__))
10024 "scheduler and vectorizer bundle mismatch")(static_cast <bool> ((isVectorLikeInstWithConstOps(SD->
Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule
(SDTE->Scalars))) && "scheduler and vectorizer bundle mismatch"
) ? void (0) : __assert_fail ("(isVectorLikeInstWithConstOps(SD->Inst) || SD->isPartOfBundle() == (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && \"scheduler and vectorizer bundle mismatch\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10024, __extension__
__PRETTY_FUNCTION__))
;
10025 SD->FirstInBundle->SchedulingPriority = Idx++;
10026
10027 if (SD->isSchedulingEntity() && SD->isPartOfBundle())
10028 BS->calculateDependencies(SD, false, this);
10029 });
10030 }
10031 BS->initialFillReadyList(ReadyInsts);
10032
10033 Instruction *LastScheduledInst = BS->ScheduleEnd;
10034
10035 // Do the "real" scheduling.
10036 while (!ReadyInsts.empty()) {
10037 ScheduleData *picked = *ReadyInsts.begin();
10038 ReadyInsts.erase(ReadyInsts.begin());
10039
10040 // Move the scheduled instruction(s) to their dedicated places, if not
10041 // there yet.
10042 for (ScheduleData *BundleMember = picked; BundleMember;
10043 BundleMember = BundleMember->NextInBundle) {
10044 Instruction *pickedInst = BundleMember->Inst;
10045 if (pickedInst->getNextNode() != LastScheduledInst)
10046 pickedInst->moveBefore(LastScheduledInst);
10047 LastScheduledInst = pickedInst;
10048 }
10049
10050 BS->schedule(picked, ReadyInsts);
10051 }
10052
10053 // Check that we didn't break any of our invariants.
10054#ifdef EXPENSIVE_CHECKS
10055 BS->verify();
10056#endif
10057
10058#if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
10059 // Check that all schedulable entities got scheduled
10060 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
10061 BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
10062 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
10063 assert(SD->IsScheduled && "must be scheduled at this point")(static_cast <bool> (SD->IsScheduled && "must be scheduled at this point"
) ? void (0) : __assert_fail ("SD->IsScheduled && \"must be scheduled at this point\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10063, __extension__
__PRETTY_FUNCTION__))
;
10064 }
10065 });
10066 }
10067#endif
10068
10069 // Avoid duplicate scheduling of the block.
10070 BS->ScheduleStart = nullptr;
10071}
10072
10073unsigned BoUpSLP::getVectorElementSize(Value *V) {
10074 // If V is a store, just return the width of the stored value (or value
10075 // truncated just before storing) without traversing the expression tree.
10076 // This is the common case.
10077 if (auto *Store = dyn_cast<StoreInst>(V))
10078 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
10079
10080 if (auto *IEI = dyn_cast<InsertElementInst>(V))
10081 return getVectorElementSize(IEI->getOperand(1));
10082
10083 auto E = InstrElementSize.find(V);
10084 if (E != InstrElementSize.end())
10085 return E->second;
10086
10087 // If V is not a store, we can traverse the expression tree to find loads
10088 // that feed it. The type of the loaded value may indicate a more suitable
10089 // width than V's type. We want to base the vector element size on the width
10090 // of memory operations where possible.
10091 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
10092 SmallPtrSet<Instruction *, 16> Visited;
10093 if (auto *I = dyn_cast<Instruction>(V)) {
10094 Worklist.emplace_back(I, I->getParent());
10095 Visited.insert(I);
10096 }
10097
10098 // Traverse the expression tree in bottom-up order looking for loads. If we
10099 // encounter an instruction we don't yet handle, we give up.
10100 auto Width = 0u;
10101 while (!Worklist.empty()) {
10102 Instruction *I;
10103 BasicBlock *Parent;
10104 std::tie(I, Parent) = Worklist.pop_back_val();
10105
10106 // We should only be looking at scalar instructions here. If the current
10107 // instruction has a vector type, skip.
10108 auto *Ty = I->getType();
10109 if (isa<VectorType>(Ty))
10110 continue;
10111
10112 // If the current instruction is a load, update MaxWidth to reflect the
10113 // width of the loaded value.
10114 if (isa<LoadInst, ExtractElementInst, ExtractValueInst>(I))
10115 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
10116
10117 // Otherwise, we need to visit the operands of the instruction. We only
10118 // handle the interesting cases from buildTree here. If an operand is an
10119 // instruction we haven't yet visited and from the same basic block as the
10120 // user or the use is a PHI node, we add it to the worklist.
10121 else if (isa<PHINode, CastInst, GetElementPtrInst, CmpInst, SelectInst,
10122 BinaryOperator, UnaryOperator>(I)) {
10123 for (Use &U : I->operands())
10124 if (auto *J = dyn_cast<Instruction>(U.get()))
10125 if (Visited.insert(J).second &&
10126 (isa<PHINode>(I) || J->getParent() == Parent))
10127 Worklist.emplace_back(J, J->getParent());
10128 } else {
10129 break;
10130 }
10131 }
10132
10133 // If we didn't encounter a memory access in the expression tree, or if we
10134 // gave up for some reason, just return the width of V. Otherwise, return the
10135 // maximum width we found.
10136 if (!Width) {
10137 if (auto *CI = dyn_cast<CmpInst>(V))
10138 V = CI->getOperand(0);
10139 Width = DL->getTypeSizeInBits(V->getType());
10140 }
10141
10142 for (Instruction *I : Visited)
10143 InstrElementSize[I] = Width;
10144
10145 return Width;
10146}
10147
10148// Determine if a value V in a vectorizable expression Expr can be demoted to a
10149// smaller type with a truncation. We collect the values that will be demoted
10150// in ToDemote and additional roots that require investigating in Roots.
10151static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
10152 SmallVectorImpl<Value *> &ToDemote,
10153 SmallVectorImpl<Value *> &Roots) {
10154 // We can always demote constants.
10155 if (isa<Constant>(V)) {
10156 ToDemote.push_back(V);
10157 return true;
10158 }
10159
10160 // If the value is not an instruction in the expression with only one use, it
10161 // cannot be demoted.
10162 auto *I = dyn_cast<Instruction>(V);
10163 if (!I || !I->hasOneUse() || !Expr.count(I))
10164 return false;
10165
10166 switch (I->getOpcode()) {
10167
10168 // We can always demote truncations and extensions. Since truncations can
10169 // seed additional demotion, we save the truncated value.
10170 case Instruction::Trunc:
10171 Roots.push_back(I->getOperand(0));
10172 break;
10173 case Instruction::ZExt:
10174 case Instruction::SExt:
10175 if (isa<ExtractElementInst, InsertElementInst>(I->getOperand(0)))
10176 return false;
10177 break;
10178
10179 // We can demote certain binary operations if we can demote both of their
10180 // operands.
10181 case Instruction::Add:
10182 case Instruction::Sub:
10183 case Instruction::Mul:
10184 case Instruction::And:
10185 case Instruction::Or:
10186 case Instruction::Xor:
10187 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
10188 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
10189 return false;
10190 break;
10191
10192 // We can demote selects if we can demote their true and false values.
10193 case Instruction::Select: {
10194 SelectInst *SI = cast<SelectInst>(I);
10195 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
10196 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
10197 return false;
10198 break;
10199 }
10200
10201 // We can demote phis if we can demote all their incoming operands. Note that
10202 // we don't need to worry about cycles since we ensure single use above.
10203 case Instruction::PHI: {
10204 PHINode *PN = cast<PHINode>(I);
10205 for (Value *IncValue : PN->incoming_values())
10206 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
10207 return false;
10208 break;
10209 }
10210
10211 // Otherwise, conservatively give up.
10212 default:
10213 return false;
10214 }
10215
10216 // Record the value that we can demote.
10217 ToDemote.push_back(V);
10218 return true;
10219}
10220
10221void BoUpSLP::computeMinimumValueSizes() {
10222 // If there are no external uses, the expression tree must be rooted by a
10223 // store. We can't demote in-memory values, so there is nothing to do here.
10224 if (ExternalUses.empty())
10225 return;
10226
10227 // We only attempt to truncate integer expressions.
10228 auto &TreeRoot = VectorizableTree[0]->Scalars;
10229 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
10230 if (!TreeRootIT)
10231 return;
10232
10233 // If the expression is not rooted by a store, these roots should have
10234 // external uses. We will rely on InstCombine to rewrite the expression in
10235 // the narrower type. However, InstCombine only rewrites single-use values.
10236 // This means that if a tree entry other than a root is used externally, it
10237 // must have multiple uses and InstCombine will not rewrite it. The code
10238 // below ensures that only the roots are used externally.
10239 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
10240 for (auto &EU : ExternalUses)
10241 if (!Expr.erase(EU.Scalar))
10242 return;
10243 if (!Expr.empty())
10244 return;
10245
10246 // Collect the scalar values of the vectorizable expression. We will use this
10247 // context to determine which values can be demoted. If we see a truncation,
10248 // we mark it as seeding another demotion.
10249 for (auto &EntryPtr : VectorizableTree)
10250 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
10251
10252 // Ensure the roots of the vectorizable tree don't form a cycle. They must
10253 // have a single external user that is not in the vectorizable tree.
10254 for (auto *Root : TreeRoot)
10255 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
10256 return;
10257
10258 // Conservatively determine if we can actually truncate the roots of the
10259 // expression. Collect the values that can be demoted in ToDemote and
10260 // additional roots that require investigating in Roots.
10261 SmallVector<Value *, 32> ToDemote;
10262 SmallVector<Value *, 4> Roots;
10263 for (auto *Root : TreeRoot)
10264 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
10265 return;
10266
10267 // The maximum bit width required to represent all the values that can be
10268 // demoted without loss of precision. It would be safe to truncate the roots
10269 // of the expression to this width.
10270 auto MaxBitWidth = 8u;
10271
10272 // We first check if all the bits of the roots are demanded. If they're not,
10273 // we can truncate the roots to this narrower type.
10274 for (auto *Root : TreeRoot) {
10275 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
10276 MaxBitWidth = std::max<unsigned>(
10277 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
10278 }
10279
10280 // True if the roots can be zero-extended back to their original type, rather
10281 // than sign-extended. We know that if the leading bits are not demanded, we
10282 // can safely zero-extend. So we initialize IsKnownPositive to True.
10283 bool IsKnownPositive = true;
10284
10285 // If all the bits of the roots are demanded, we can try a little harder to
10286 // compute a narrower type. This can happen, for example, if the roots are
10287 // getelementptr indices. InstCombine promotes these indices to the pointer
10288 // width. Thus, all their bits are technically demanded even though the
10289 // address computation might be vectorized in a smaller type.
10290 //
10291 // We start by looking at each entry that can be demoted. We compute the
10292 // maximum bit width required to store the scalar by using ValueTracking to
10293 // compute the number of high-order bits we can truncate.
10294 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
10295 llvm::all_of(TreeRoot, [](Value *R) {
10296 assert(R->hasOneUse() && "Root should have only one use!")(static_cast <bool> (R->hasOneUse() && "Root should have only one use!"
) ? void (0) : __assert_fail ("R->hasOneUse() && \"Root should have only one use!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10296, __extension__
__PRETTY_FUNCTION__))
;
10297 return isa<GetElementPtrInst>(R->user_back());
10298 })) {
10299 MaxBitWidth = 8u;
10300
10301 // Determine if the sign bit of all the roots is known to be zero. If not,
10302 // IsKnownPositive is set to False.
10303 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
10304 KnownBits Known = computeKnownBits(R, *DL);
10305 return Known.isNonNegative();
10306 });
10307
10308 // Determine the maximum number of bits required to store the scalar
10309 // values.
10310 for (auto *Scalar : ToDemote) {
10311 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
10312 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
10313 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
10314 }
10315
10316 // If we can't prove that the sign bit is zero, we must add one to the
10317 // maximum bit width to account for the unknown sign bit. This preserves
10318 // the existing sign bit so we can safely sign-extend the root back to the
10319 // original type. Otherwise, if we know the sign bit is zero, we will
10320 // zero-extend the root instead.
10321 //
10322 // FIXME: This is somewhat suboptimal, as there will be cases where adding
10323 // one to the maximum bit width will yield a larger-than-necessary
10324 // type. In general, we need to add an extra bit only if we can't
10325 // prove that the upper bit of the original type is equal to the
10326 // upper bit of the proposed smaller type. If these two bits are the
10327 // same (either zero or one) we know that sign-extending from the
10328 // smaller type will result in the same value. Here, since we can't
10329 // yet prove this, we are just making the proposed smaller type
10330 // larger to ensure correctness.
10331 if (!IsKnownPositive)
10332 ++MaxBitWidth;
10333 }
10334
10335 // Round MaxBitWidth up to the next power-of-two.
10336 if (!isPowerOf2_64(MaxBitWidth))
10337 MaxBitWidth = NextPowerOf2(MaxBitWidth);
10338
10339 // If the maximum bit width we compute is less than the with of the roots'
10340 // type, we can proceed with the narrowing. Otherwise, do nothing.
10341 if (MaxBitWidth >= TreeRootIT->getBitWidth())
10342 return;
10343
10344 // If we can truncate the root, we must collect additional values that might
10345 // be demoted as a result. That is, those seeded by truncations we will
10346 // modify.
10347 while (!Roots.empty())
10348 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
10349
10350 // Finally, map the values we can demote to the maximum bit with we computed.
10351 for (auto *Scalar : ToDemote)
10352 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
10353}
10354
10355namespace {
10356
10357/// The SLPVectorizer Pass.
10358struct SLPVectorizer : public FunctionPass {
10359 SLPVectorizerPass Impl;
10360
10361 /// Pass identification, replacement for typeid
10362 static char ID;
10363
10364 explicit SLPVectorizer() : FunctionPass(ID) {
10365 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
10366 }
10367
10368 bool doInitialization(Module &M) override { return false; }
10369
10370 bool runOnFunction(Function &F) override {
10371 if (skipFunction(F))
10372 return false;
10373
10374 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
10375 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
10376 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
10377 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
10378 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
10379 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
10380 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
10381 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
10382 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
10383 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
10384
10385 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
10386 }
10387
10388 void getAnalysisUsage(AnalysisUsage &AU) const override {
10389 FunctionPass::getAnalysisUsage(AU);
10390 AU.addRequired<AssumptionCacheTracker>();
10391 AU.addRequired<ScalarEvolutionWrapperPass>();
10392 AU.addRequired<AAResultsWrapperPass>();
10393 AU.addRequired<TargetTransformInfoWrapperPass>();
10394 AU.addRequired<LoopInfoWrapperPass>();
10395 AU.addRequired<DominatorTreeWrapperPass>();
10396 AU.addRequired<DemandedBitsWrapperPass>();
10397 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
10398 AU.addRequired<InjectTLIMappingsLegacy>();
10399 AU.addPreserved<LoopInfoWrapperPass>();
10400 AU.addPreserved<DominatorTreeWrapperPass>();
10401 AU.addPreserved<AAResultsWrapperPass>();
10402 AU.addPreserved<GlobalsAAWrapperPass>();
10403 AU.setPreservesCFG();
10404 }
10405};
10406
10407} // end anonymous namespace
10408
10409PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
10410 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
10411 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
10412 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
10413 auto *AA = &AM.getResult<AAManager>(F);
10414 auto *LI = &AM.getResult<LoopAnalysis>(F);
10415 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
10416 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
10417 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
10418 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10419
10420 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
10421 if (!Changed)
10422 return PreservedAnalyses::all();
10423
10424 PreservedAnalyses PA;
10425 PA.preserveSet<CFGAnalyses>();
10426 return PA;
10427}
10428
10429bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
10430 TargetTransformInfo *TTI_,
10431 TargetLibraryInfo *TLI_, AAResults *AA_,
10432 LoopInfo *LI_, DominatorTree *DT_,
10433 AssumptionCache *AC_, DemandedBits *DB_,
10434 OptimizationRemarkEmitter *ORE_) {
10435 if (!RunSLPVectorization)
10436 return false;
10437 SE = SE_;
10438 TTI = TTI_;
10439 TLI = TLI_;
10440 AA = AA_;
10441 LI = LI_;
10442 DT = DT_;
10443 AC = AC_;
10444 DB = DB_;
10445 DL = &F.getParent()->getDataLayout();
10446
10447 Stores.clear();
10448 GEPs.clear();
10449 bool Changed = false;
10450
10451 // If the target claims to have no vector registers don't attempt
10452 // vectorization.
10453 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
10454 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"
; } } while (false)
10455 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"
; } } while (false)
;
10456 return false;
10457 }
10458
10459 // Don't vectorize when the attribute NoImplicitFloat is used.
10460 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
10461 return false;
10462
10463 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing blocks in " <<
F.getName() << ".\n"; } } while (false)
;
10464
10465 // Use the bottom up slp vectorizer to construct chains that start with
10466 // store instructions.
10467 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
10468
10469 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
10470 // delete instructions.
10471
10472 // Update DFS numbers now so that we can use them for ordering.
10473 DT->updateDFSNumbers();
10474
10475 // Scan the blocks in the function in post order.
10476 for (auto *BB : post_order(&F.getEntryBlock())) {
10477 // Start new block - clear the list of reduction roots.
10478 R.clearReductionData();
10479 collectSeedInstructions(BB);
10480
10481 // Vectorize trees that end at stores.
10482 if (!Stores.empty()) {
10483 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
10484 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
;
10485 Changed |= vectorizeStoreChains(R);
10486 }
10487
10488 // Vectorize trees that end at reductions.
10489 Changed |= vectorizeChainsInBlock(BB, R);
10490
10491 // Vectorize the index computations of getelementptr instructions. This
10492 // is primarily intended to catch gather-like idioms ending at
10493 // non-consecutive loads.
10494 if (!GEPs.empty()) {
10495 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
10496 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
;
10497 Changed |= vectorizeGEPIndices(BB, R);
10498 }
10499 }
10500
10501 if (Changed) {
10502 R.optimizeGatherSequence();
10503 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: vectorized \"" << F.getName
() << "\"\n"; } } while (false)
;
10504 }
10505 return Changed;
10506}
10507
10508bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
10509 unsigned Idx, unsigned MinVF) {
10510 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
10511 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Chain.size() << "\n"; } } while (false)
;
10512 const unsigned Sz = R.getVectorElementSize(Chain[0]);
10513 unsigned VF = Chain.size();
10514
10515 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
10516 return false;
10517
10518 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idxdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
10519 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << Idx << "\n"; } } while (
false)
;
10520
10521 R.buildTree(Chain);
10522 if (R.isTreeTinyAndNotFullyVectorizable())
10523 return false;
10524 if (R.isLoadCombineCandidate())
10525 return false;
10526 R.reorderTopToBottom();
10527 R.reorderBottomToTop();
10528 R.buildExternalUses();
10529
10530 R.computeMinimumValueSizes();
10531
10532 InstructionCost Cost = R.getTreeCost();
10533
10534 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF=" << VF << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost = " << Cost
<< " for VF=" << VF << "\n"; } } while (false
)
;
10535 if (Cost < -SLPCostThreshold) {
10536 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Decided to vectorize cost = "
<< Cost << "\n"; } } while (false)
;
10537
10538 using namespace ore;
10539
10540 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "StoresVectorized",
10541 cast<StoreInst>(Chain[0]))
10542 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
10543 << " and with tree size "
10544 << NV("TreeSize", R.getTreeSize()));
10545
10546 R.vectorizeTree();
10547 return true;
10548 }
10549
10550 return false;
10551}
10552
10553bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
10554 BoUpSLP &R) {
10555 // We may run into multiple chains that merge into a single chain. We mark the
10556 // stores that we vectorized so that we don't visit the same store twice.
10557 BoUpSLP::ValueSet VectorizedStores;
10558 bool Changed = false;
10559
10560 int E = Stores.size();
10561 SmallBitVector Tails(E, false);
10562 int MaxIter = MaxStoreLookup.getValue();
10563 SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
10564 E, std::make_pair(E, INT_MAX2147483647));
10565 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
10566 int IterCnt;
10567 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
10568 &CheckedPairs,
10569 &ConsecutiveChain](int K, int Idx) {
10570 if (IterCnt >= MaxIter)
10571 return true;
10572 if (CheckedPairs[Idx].test(K))
10573 return ConsecutiveChain[K].second == 1 &&
10574 ConsecutiveChain[K].first == Idx;
10575 ++IterCnt;
10576 CheckedPairs[Idx].set(K);
10577 CheckedPairs[K].set(Idx);
10578 Optional<int> Diff = getPointersDiff(
10579 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
10580 Stores[Idx]->getValueOperand()->getType(),
10581 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
10582 if (!Diff || *Diff == 0)
10583 return false;
10584 int Val = *Diff;
10585 if (Val < 0) {
10586 if (ConsecutiveChain[Idx].second > -Val) {
10587 Tails.set(K);
10588 ConsecutiveChain[Idx] = std::make_pair(K, -Val);
10589 }
10590 return false;
10591 }
10592 if (ConsecutiveChain[K].second <= Val)
10593 return false;
10594
10595 Tails.set(Idx);
10596 ConsecutiveChain[K] = std::make_pair(Idx, Val);
10597 return Val == 1;
10598 };
10599 // Do a quadratic search on all of the given stores in reverse order and find
10600 // all of the pairs of stores that follow each other.
10601 for (int Idx = E - 1; Idx >= 0; --Idx) {
10602 // If a store has multiple consecutive store candidates, search according
10603 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
10604 // This is because usually pairing with immediate succeeding or preceding
10605 // candidate create the best chance to find slp vectorization opportunity.
10606 const int MaxLookDepth = std::max(E - Idx, Idx + 1);
10607 IterCnt = 0;
10608 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
10609 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
10610 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
10611 break;
10612 }
10613
10614 // Tracks if we tried to vectorize stores starting from the given tail
10615 // already.
10616 SmallBitVector TriedTails(E, false);
10617 // For stores that start but don't end a link in the chain:
10618 for (int Cnt = E; Cnt > 0; --Cnt) {
10619 int I = Cnt - 1;
10620 if (ConsecutiveChain[I].first == E || Tails.test(I))
10621 continue;
10622 // We found a store instr that starts a chain. Now follow the chain and try
10623 // to vectorize it.
10624 BoUpSLP::ValueList Operands;
10625 // Collect the chain into a list.
10626 while (I != E && !VectorizedStores.count(Stores[I])) {
10627 Operands.push_back(Stores[I]);
10628 Tails.set(I);
10629 if (ConsecutiveChain[I].second != 1) {
10630 // Mark the new end in the chain and go back, if required. It might be
10631 // required if the original stores come in reversed order, for example.
10632 if (ConsecutiveChain[I].first != E &&
10633 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
10634 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
10635 TriedTails.set(I);
10636 Tails.reset(ConsecutiveChain[I].first);
10637 if (Cnt < ConsecutiveChain[I].first + 2)
10638 Cnt = ConsecutiveChain[I].first + 2;
10639 }
10640 break;
10641 }
10642 // Move to the next value in the chain.
10643 I = ConsecutiveChain[I].first;
10644 }
10645 assert(!Operands.empty() && "Expected non-empty list of stores.")(static_cast <bool> (!Operands.empty() && "Expected non-empty list of stores."
) ? void (0) : __assert_fail ("!Operands.empty() && \"Expected non-empty list of stores.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 10645, __extension__
__PRETTY_FUNCTION__))
;
10646
10647 unsigned MaxVecRegSize = R.getMaxVecRegSize();
10648 unsigned EltSize = R.getVectorElementSize(Operands[0]);
10649 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
10650
10651 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
10652 MaxElts);
10653 auto *Store = cast<StoreInst>(Operands[0]);
10654 Type *StoreTy = Store->getValueOperand()->getType();
10655 Type *ValueTy = StoreTy;
10656 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
10657 ValueTy = Trunc->getSrcTy();
10658 unsigned MinVF = TTI->getStoreMinimumVF(
10659 R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy);
10660
10661 if (MaxVF <= MinVF) {
10662 LLVM_DEBUG(dbgs() << "SLP: Vectorization infeasible as MaxVF (" << MaxVF << ") <= "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorization infeasible as MaxVF ("
<< MaxVF << ") <= " << "MinVF (" <<
MinVF << ")\n"; } } while (false)
10663 << "MinVF (" << MinVF << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorization infeasible as MaxVF ("
<< MaxVF << ") <= " << "MinVF (" <<
MinVF << ")\n"; } } while (false)
;
10664 }
10665
10666 // FIXME: Is division-by-2 the correct step? Should we assert that the
10667 // register size is a power-of-2?
10668 unsigned StartIdx = 0;
10669 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
10670 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
10671 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
10672 if (!VectorizedStores.count(Slice.front()) &&
10673 !VectorizedStores.count(Slice.back()) &&
10674 vectorizeStoreChain(Slice, R, Cnt, MinVF)) {
10675 // Mark the vectorized stores so that we don't vectorize them again.
10676 VectorizedStores.insert(Slice.begin(), Slice.end());
10677 Changed = true;
10678 // If we vectorized initial block, no need to try to vectorize it
10679 // again.
10680 if (Cnt == StartIdx)
10681 StartIdx += Size;
10682 Cnt += Size;
10683 continue;
10684 }
10685 ++Cnt;
10686 }
10687 // Check if the whole array was vectorized already - exit.
10688 if (StartIdx >= Operands.size())
10689 break;
10690 }
10691 }
10692
10693 return Changed;
10694}
10695
10696void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
10697 // Initialize the collections. We will make a single pass over the block.
10698 Stores.clear();
10699 GEPs.clear();
10700
10701 // Visit the store and getelementptr instructions in BB and organize them in
10702 // Stores and GEPs according to the underlying objects of their pointer
10703 // operands.
10704 for (Instruction &I : *BB) {
10705 // Ignore store instructions that are volatile or have a pointer operand
10706 // that doesn't point to a scalar type.
10707 if (auto *SI = dyn_cast<StoreInst>(&I)) {
10708 if (!SI->isSimple())
10709 continue;
10710 if (!isValidElementType(SI->getValueOperand()->getType()))
10711 continue;
10712 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
10713 }
10714
10715 // Ignore getelementptr instructions that have more than one index, a
10716 // constant index, or a pointer operand that doesn't point to a scalar
10717 // type.
10718 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
10719 auto Idx = GEP->idx_begin()->get();
10720 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
10721 continue;
10722 if (!isValidElementType(Idx->getType()))
10723 continue;
10724 if (GEP->getType()->isVectorTy())
10725 continue;
10726 GEPs[GEP->getPointerOperand()].push_back(GEP);
10727 }
10728 }
10729}
10730
10731bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
10732 if (!A || !B)
10733 return false;
10734 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B))
10735 return false;
10736 Value *VL[] = {A, B};
10737 return tryToVectorizeList(VL, R);
10738}
10739
10740bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
10741 bool LimitForRegisterSize) {
10742 if (VL.size() < 2)
10743 return false;
10744
10745 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
10746 << VL.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
;
10747
10748 // Check that all of the parts are instructions of the same type,
10749 // we permit an alternate opcode via InstructionsState.
10750 InstructionsState S = getSameOpcode(VL, *TLI);
10751 if (!S.getOpcode())
10752 return false;
10753
10754 Instruction *I0 = cast<Instruction>(S.OpValue);
10755 // Make sure invalid types (including vector type) are rejected before
10756 // determining vectorization factor for scalar instructions.
10757 for (Value *V : VL) {
10758 Type *Ty = V->getType();
10759 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
10760 // NOTE: the following will give user internal llvm type name, which may
10761 // not be useful.
10762 R.getORE()->emit([&]() {
10763 std::string type_str;
10764 llvm::raw_string_ostream rso(type_str);
10765 Ty->print(rso);
10766 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "UnsupportedType", I0)
10767 << "Cannot SLP vectorize list: type "
10768 << rso.str() + " is unsupported by vectorizer";
10769 });
10770 return false;
10771 }
10772 }
10773
10774 unsigned Sz = R.getVectorElementSize(I0);
10775 unsigned MinVF = R.getMinVF(Sz);
10776 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
10777 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
10778 if (MaxVF < 2) {
10779 R.getORE()->emit([&]() {
10780 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "SmallVF", I0)
10781 << "Cannot SLP vectorize list: vectorization factor "
10782 << "less than 2 is not supported";
10783 });
10784 return false;
10785 }
10786
10787 bool Changed = false;
10788 bool CandidateFound = false;
10789 InstructionCost MinCost = SLPCostThreshold.getValue();
10790 Type *ScalarTy = VL[0]->getType();
10791 if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
10792 ScalarTy = IE->getOperand(1)->getType();
10793
10794 unsigned NextInst = 0, MaxInst = VL.size();
10795 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
10796 // No actual vectorization should happen, if number of parts is the same as
10797 // provided vectorization factor (i.e. the scalar type is used for vector
10798 // code during codegen).
10799 auto *VecTy = FixedVectorType::get(ScalarTy, VF);
10800 if (TTI->getNumberOfParts(VecTy) == VF)
10801 continue;
10802 for (unsigned I = NextInst; I < MaxInst; ++I) {
10803 unsigned OpsWidth = 0;
10804
10805 if (I + VF > MaxInst)
10806 OpsWidth = MaxInst - I;
10807 else
10808 OpsWidth = VF;
10809
10810 if (!isPowerOf2_32(OpsWidth))
10811 continue;
10812
10813 if ((LimitForRegisterSize && OpsWidth < MaxVF) ||
10814 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
10815 break;
10816
10817 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
10818 // Check that a previous iteration of this loop did not delete the Value.
10819 if (llvm::any_of(Ops, [&R](Value *V) {
10820 auto *I = dyn_cast<Instruction>(V);
10821 return I && R.isDeleted(I);
10822 }))
10823 continue;
10824
10825 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
10826 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
;
10827
10828 R.buildTree(Ops);
10829 if (R.isTreeTinyAndNotFullyVectorizable())
10830 continue;
10831 R.reorderTopToBottom();
10832 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front()));
10833 R.buildExternalUses();
10834
10835 R.computeMinimumValueSizes();
10836 InstructionCost Cost = R.getTreeCost();
10837 CandidateFound = true;
10838 MinCost = std::min(MinCost, Cost);
10839
10840 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF=" << VF << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost = " << Cost
<< " for VF=" << VF << "\n"; } } while (false
)
;
10841 if (Cost < -SLPCostThreshold) {
10842 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing list at cost:" <<
Cost << ".\n"; } } while (false)
;
10843 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedList",
10844 cast<Instruction>(Ops[0]))
10845 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
10846 << " and with tree size "
10847 << ore::NV("TreeSize", R.getTreeSize()));
10848
10849 R.vectorizeTree();
10850 // Move to the next bundle.
10851 I += VF - 1;
10852 NextInst = I + 1;
10853 Changed = true;
10854 }
10855 }
10856 }
10857
10858 if (!Changed && CandidateFound) {
10859 R.getORE()->emit([&]() {
10860 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotBeneficial", I0)
10861 << "List vectorization was possible but not beneficial with cost "
10862 << ore::NV("Cost", MinCost) << " >= "
10863 << ore::NV("Treshold", -SLPCostThreshold);
10864 });
10865 } else if (!Changed) {
10866 R.getORE()->emit([&]() {
10867 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotPossible", I0)
10868 << "Cannot SLP vectorize list: vectorization was impossible"
10869 << " with available vectorization factors";
10870 });
10871 }
10872 return Changed;
10873}
10874
10875bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
10876 if (!I)
10877 return false;
10878
10879 if (!isa<BinaryOperator, CmpInst>(I) || isa<VectorType>(I->getType()))
10880 return false;
10881
10882 Value *P = I->getParent();
10883
10884 // Vectorize in current basic block only.
10885 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
10886 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
10887 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
10888 return false;
10889
10890 // First collect all possible candidates
10891 SmallVector<std::pair<Value *, Value *>, 4> Candidates;
10892 Candidates.emplace_back(Op0, Op1);
10893
10894 auto *A = dyn_cast<BinaryOperator>(Op0);
10895 auto *B = dyn_cast<BinaryOperator>(Op1);
10896 // Try to skip B.
10897 if (A && B && B->hasOneUse()) {
10898 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
10899 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
10900 if (B0 && B0->getParent() == P)
10901 Candidates.emplace_back(A, B0);
10902 if (B1 && B1->getParent() == P)
10903 Candidates.emplace_back(A, B1);
10904 }
10905 // Try to skip A.
10906 if (B && A && A->hasOneUse()) {
10907 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
10908 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
10909 if (A0 && A0->getParent() == P)
10910 Candidates.emplace_back(A0, B);
10911 if (A1 && A1->getParent() == P)
10912 Candidates.emplace_back(A1, B);
10913 }
10914
10915 if (Candidates.size() == 1)
10916 return tryToVectorizePair(Op0, Op1, R);
10917
10918 // We have multiple options. Try to pick the single best.
10919 Optional<int> BestCandidate = R.findBestRootPair(Candidates);
10920 if (!BestCandidate)
10921 return false;
10922 return tryToVectorizePair(Candidates[*BestCandidate].first,
10923 Candidates[*BestCandidate].second, R);
10924}
10925
10926namespace {
10927
10928/// Model horizontal reductions.
10929///
10930/// A horizontal reduction is a tree of reduction instructions that has values
10931/// that can be put into a vector as its leaves. For example:
10932///
10933/// mul mul mul mul
10934/// \ / \ /
10935/// + +
10936/// \ /
10937/// +
10938/// This tree has "mul" as its leaf values and "+" as its reduction
10939/// instructions. A reduction can feed into a store or a binary operation
10940/// feeding a phi.
10941/// ...
10942/// \ /
10943/// +
10944/// |
10945/// phi +=
10946///
10947/// Or:
10948/// ...
10949/// \ /
10950/// +
10951/// |
10952/// *p =
10953///
10954class HorizontalReduction {
10955 using ReductionOpsType = SmallVector<Value *, 16>;
10956 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
10957 ReductionOpsListType ReductionOps;
10958 /// List of possibly reduced values.
10959 SmallVector<SmallVector<Value *>> ReducedVals;
10960 /// Maps reduced value to the corresponding reduction operation.
10961 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps;
10962 // Use map vector to make stable output.
10963 MapVector<Instruction *, Value *> ExtraArgs;
10964 WeakTrackingVH ReductionRoot;
10965 /// The type of reduction operation.
10966 RecurKind RdxKind;
10967
10968 static bool isCmpSelMinMax(Instruction *I) {
10969 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
10970 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
10971 }
10972
10973 // And/or are potentially poison-safe logical patterns like:
10974 // select x, y, false
10975 // select x, true, y
10976 static bool isBoolLogicOp(Instruction *I) {
10977 return isa<SelectInst>(I) &&
10978 (match(I, m_LogicalAnd()) || match(I, m_LogicalOr()));
10979 }
10980
10981 /// Checks if instruction is associative and can be vectorized.
10982 static bool isVectorizable(RecurKind Kind, Instruction *I) {
10983 if (Kind == RecurKind::None)
10984 return false;
10985
10986 // Integer ops that map to select instructions or intrinsics are fine.
10987 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
10988 isBoolLogicOp(I))
10989 return true;
10990
10991 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
10992 // FP min/max are associative except for NaN and -0.0. We do not
10993 // have to rule out -0.0 here because the intrinsic semantics do not
10994 // specify a fixed result for it.
10995 return I->getFastMathFlags().noNaNs();
10996 }
10997
10998 return I->isAssociative();
10999 }
11000
11001 static Value *getRdxOperand(Instruction *I, unsigned Index) {
11002 // Poison-safe 'or' takes the form: select X, true, Y
11003 // To make that work with the normal operand processing, we skip the
11004 // true value operand.
11005 // TODO: Change the code and data structures to handle this without a hack.
11006 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
11007 return I->getOperand(2);
11008 return I->getOperand(Index);
11009 }
11010
11011 /// Creates reduction operation with the current opcode.
11012 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
11013 Value *RHS, const Twine &Name, bool UseSelect) {
11014 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
11015 switch (Kind) {
11016 case RecurKind::Or:
11017 if (UseSelect &&
11018 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
11019 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
11020 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
11021 Name);
11022 case RecurKind::And:
11023 if (UseSelect &&
11024 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
11025 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
11026 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
11027 Name);
11028 case RecurKind::Add:
11029 case RecurKind::Mul:
11030 case RecurKind::Xor:
11031 case RecurKind::FAdd:
11032 case RecurKind::FMul:
11033 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
11034 Name);
11035 case RecurKind::FMax:
11036 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
11037 case RecurKind::FMin:
11038 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
11039 case RecurKind::SMax:
11040 if (UseSelect) {
11041 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
11042 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
11043 }
11044 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
11045 case RecurKind::SMin:
11046 if (UseSelect) {
11047 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
11048 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
11049 }
11050 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
11051 case RecurKind::UMax:
11052 if (UseSelect) {
11053 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
11054 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
11055 }
11056 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
11057 case RecurKind::UMin:
11058 if (UseSelect) {
11059 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
11060 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
11061 }
11062 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
11063 default:
11064 llvm_unreachable("Unknown reduction operation.")::llvm::llvm_unreachable_internal("Unknown reduction operation."
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11064)
;
11065 }
11066 }
11067
11068 /// Creates reduction operation with the current opcode with the IR flags
11069 /// from \p ReductionOps, dropping nuw/nsw flags.
11070 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
11071 Value *RHS, const Twine &Name,
11072 const ReductionOpsListType &ReductionOps) {
11073 bool UseSelect = ReductionOps.size() == 2 ||
11074 // Logical or/and.
11075 (ReductionOps.size() == 1 &&
11076 isa<SelectInst>(ReductionOps.front().front()));
11077 assert((!UseSelect || ReductionOps.size() != 2 ||(static_cast <bool> ((!UseSelect || ReductionOps.size()
!= 2 || isa<SelectInst>(ReductionOps[1][0])) &&
"Expected cmp + select pairs for reduction") ? void (0) : __assert_fail
("(!UseSelect || ReductionOps.size() != 2 || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11079, __extension__
__PRETTY_FUNCTION__))
11078 isa<SelectInst>(ReductionOps[1][0])) &&(static_cast <bool> ((!UseSelect || ReductionOps.size()
!= 2 || isa<SelectInst>(ReductionOps[1][0])) &&
"Expected cmp + select pairs for reduction") ? void (0) : __assert_fail
("(!UseSelect || ReductionOps.size() != 2 || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11079, __extension__
__PRETTY_FUNCTION__))
11079 "Expected cmp + select pairs for reduction")(static_cast <bool> ((!UseSelect || ReductionOps.size()
!= 2 || isa<SelectInst>(ReductionOps[1][0])) &&
"Expected cmp + select pairs for reduction") ? void (0) : __assert_fail
("(!UseSelect || ReductionOps.size() != 2 || isa<SelectInst>(ReductionOps[1][0])) && \"Expected cmp + select pairs for reduction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11079, __extension__
__PRETTY_FUNCTION__))
;
11080 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
11081 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
11082 if (auto *Sel = dyn_cast<SelectInst>(Op)) {
11083 propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr,
11084 /*IncludeWrapFlags=*/false);
11085 propagateIRFlags(Op, ReductionOps[1], nullptr,
11086 /*IncludeWrapFlags=*/false);
11087 return Op;
11088 }
11089 }
11090 propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false);
11091 return Op;
11092 }
11093
11094 static RecurKind getRdxKind(Value *V) {
11095 auto *I = dyn_cast<Instruction>(V);
11096 if (!I)
11097 return RecurKind::None;
11098 if (match(I, m_Add(m_Value(), m_Value())))
11099 return RecurKind::Add;
11100 if (match(I, m_Mul(m_Value(), m_Value())))
11101 return RecurKind::Mul;
11102 if (match(I, m_And(m_Value(), m_Value())) ||
11103 match(I, m_LogicalAnd(m_Value(), m_Value())))
11104 return RecurKind::And;
11105 if (match(I, m_Or(m_Value(), m_Value())) ||
11106 match(I, m_LogicalOr(m_Value(), m_Value())))
11107 return RecurKind::Or;
11108 if (match(I, m_Xor(m_Value(), m_Value())))
11109 return RecurKind::Xor;
11110 if (match(I, m_FAdd(m_Value(), m_Value())))
11111 return RecurKind::FAdd;
11112 if (match(I, m_FMul(m_Value(), m_Value())))
11113 return RecurKind::FMul;
11114
11115 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
11116 return RecurKind::FMax;
11117 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
11118 return RecurKind::FMin;
11119
11120 // This matches either cmp+select or intrinsics. SLP is expected to handle
11121 // either form.
11122 // TODO: If we are canonicalizing to intrinsics, we can remove several
11123 // special-case paths that deal with selects.
11124 if (match(I, m_SMax(m_Value(), m_Value())))
11125 return RecurKind::SMax;
11126 if (match(I, m_SMin(m_Value(), m_Value())))
11127 return RecurKind::SMin;
11128 if (match(I, m_UMax(m_Value(), m_Value())))
11129 return RecurKind::UMax;
11130 if (match(I, m_UMin(m_Value(), m_Value())))
11131 return RecurKind::UMin;
11132
11133 if (auto *Select = dyn_cast<SelectInst>(I)) {
11134 // Try harder: look for min/max pattern based on instructions producing
11135 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
11136 // During the intermediate stages of SLP, it's very common to have
11137 // pattern like this (since optimizeGatherSequence is run only once
11138 // at the end):
11139 // %1 = extractelement <2 x i32> %a, i32 0
11140 // %2 = extractelement <2 x i32> %a, i32 1
11141 // %cond = icmp sgt i32 %1, %2
11142 // %3 = extractelement <2 x i32> %a, i32 0
11143 // %4 = extractelement <2 x i32> %a, i32 1
11144 // %select = select i1 %cond, i32 %3, i32 %4
11145 CmpInst::Predicate Pred;
11146 Instruction *L1;
11147 Instruction *L2;
11148
11149 Value *LHS = Select->getTrueValue();
11150 Value *RHS = Select->getFalseValue();
11151 Value *Cond = Select->getCondition();
11152
11153 // TODO: Support inverse predicates.
11154 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
11155 if (!isa<ExtractElementInst>(RHS) ||
11156 !L2->isIdenticalTo(cast<Instruction>(RHS)))
11157 return RecurKind::None;
11158 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
11159 if (!isa<ExtractElementInst>(LHS) ||
11160 !L1->isIdenticalTo(cast<Instruction>(LHS)))
11161 return RecurKind::None;
11162 } else {
11163 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
11164 return RecurKind::None;
11165 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
11166 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
11167 !L2->isIdenticalTo(cast<Instruction>(RHS)))
11168 return RecurKind::None;
11169 }
11170
11171 switch (Pred) {
11172 default:
11173 return RecurKind::None;
11174 case CmpInst::ICMP_SGT:
11175 case CmpInst::ICMP_SGE:
11176 return RecurKind::SMax;
11177 case CmpInst::ICMP_SLT:
11178 case CmpInst::ICMP_SLE:
11179 return RecurKind::SMin;
11180 case CmpInst::ICMP_UGT:
11181 case CmpInst::ICMP_UGE:
11182 return RecurKind::UMax;
11183 case CmpInst::ICMP_ULT:
11184 case CmpInst::ICMP_ULE:
11185 return RecurKind::UMin;
11186 }
11187 }
11188 return RecurKind::None;
11189 }
11190
11191 /// Get the index of the first operand.
11192 static unsigned getFirstOperandIndex(Instruction *I) {
11193 return isCmpSelMinMax(I) ? 1 : 0;
11194 }
11195
11196 /// Total number of operands in the reduction operation.
11197 static unsigned getNumberOfOperands(Instruction *I) {
11198 return isCmpSelMinMax(I) ? 3 : 2;
11199 }
11200
11201 /// Checks if the instruction is in basic block \p BB.
11202 /// For a cmp+sel min/max reduction check that both ops are in \p BB.
11203 static bool hasSameParent(Instruction *I, BasicBlock *BB) {
11204 if (isCmpSelMinMax(I) || isBoolLogicOp(I)) {
11205 auto *Sel = cast<SelectInst>(I);
11206 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
11207 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
11208 }
11209 return I->getParent() == BB;
11210 }
11211
11212 /// Expected number of uses for reduction operations/reduced values.
11213 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
11214 if (IsCmpSelMinMax) {
11215 // SelectInst must be used twice while the condition op must have single
11216 // use only.
11217 if (auto *Sel = dyn_cast<SelectInst>(I))
11218 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
11219 return I->hasNUses(2);
11220 }
11221
11222 // Arithmetic reduction operation must be used once only.
11223 return I->hasOneUse();
11224 }
11225
11226 /// Initializes the list of reduction operations.
11227 void initReductionOps(Instruction *I) {
11228 if (isCmpSelMinMax(I))
11229 ReductionOps.assign(2, ReductionOpsType());
11230 else
11231 ReductionOps.assign(1, ReductionOpsType());
11232 }
11233
11234 /// Add all reduction operations for the reduction instruction \p I.
11235 void addReductionOps(Instruction *I) {
11236 if (isCmpSelMinMax(I)) {
11237 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
11238 ReductionOps[1].emplace_back(I);
11239 } else {
11240 ReductionOps[0].emplace_back(I);
11241 }
11242 }
11243
11244 static Value *getLHS(RecurKind Kind, Instruction *I) {
11245 if (Kind == RecurKind::None)
11246 return nullptr;
11247 return I->getOperand(getFirstOperandIndex(I));
11248 }
11249 static Value *getRHS(RecurKind Kind, Instruction *I) {
11250 if (Kind == RecurKind::None)
11251 return nullptr;
11252 return I->getOperand(getFirstOperandIndex(I) + 1);
11253 }
11254
11255 static bool isGoodForReduction(ArrayRef<Value *> Data) {
11256 int Sz = Data.size();
11257 auto *I = dyn_cast<Instruction>(Data.front());
11258 return Sz > 1 || isConstant(Data.front()) ||
11259 (I && !isa<LoadInst>(I) && isValidForAlternation(I->getOpcode()));
11260 }
11261
11262public:
11263 HorizontalReduction() = default;
11264
11265 /// Try to find a reduction tree.
11266 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst,
11267 ScalarEvolution &SE, const DataLayout &DL,
11268 const TargetLibraryInfo &TLI) {
11269 assert((!Phi || is_contained(Phi->operands(), Inst)) &&(static_cast <bool> ((!Phi || is_contained(Phi->operands
(), Inst)) && "Phi needs to use the binary operator")
? void (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), Inst)) && \"Phi needs to use the binary operator\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11270, __extension__
__PRETTY_FUNCTION__))
11270 "Phi needs to use the binary operator")(static_cast <bool> ((!Phi || is_contained(Phi->operands
(), Inst)) && "Phi needs to use the binary operator")
? void (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), Inst)) && \"Phi needs to use the binary operator\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11270, __extension__
__PRETTY_FUNCTION__))
;
11271 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||(static_cast <bool> ((isa<BinaryOperator>(Inst) ||
isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst
)) && "Expected binop, select, or intrinsic for reduction matching"
) ? void (0) : __assert_fail ("(isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst)) && \"Expected binop, select, or intrinsic for reduction matching\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11273, __extension__
__PRETTY_FUNCTION__))
11272 isa<IntrinsicInst>(Inst)) &&(static_cast <bool> ((isa<BinaryOperator>(Inst) ||
isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst
)) && "Expected binop, select, or intrinsic for reduction matching"
) ? void (0) : __assert_fail ("(isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst)) && \"Expected binop, select, or intrinsic for reduction matching\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11273, __extension__
__PRETTY_FUNCTION__))
11273 "Expected binop, select, or intrinsic for reduction matching")(static_cast <bool> ((isa<BinaryOperator>(Inst) ||
isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst
)) && "Expected binop, select, or intrinsic for reduction matching"
) ? void (0) : __assert_fail ("(isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || isa<IntrinsicInst>(Inst)) && \"Expected binop, select, or intrinsic for reduction matching\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11273, __extension__
__PRETTY_FUNCTION__))
;
11274 RdxKind = getRdxKind(Inst);
11275
11276 // We could have a initial reductions that is not an add.
11277 // r *= v1 + v2 + v3 + v4
11278 // In such a case start looking for a tree rooted in the first '+'.
11279 if (Phi) {
11280 if (getLHS(RdxKind, Inst) == Phi) {
11281 Phi = nullptr;
11282 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
11283 if (!Inst)
11284 return false;
11285 RdxKind = getRdxKind(Inst);
11286 } else if (getRHS(RdxKind, Inst) == Phi) {
11287 Phi = nullptr;
11288 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
11289 if (!Inst)
11290 return false;
11291 RdxKind = getRdxKind(Inst);
11292 }
11293 }
11294
11295 if (!isVectorizable(RdxKind, Inst))
11296 return false;
11297
11298 // Analyze "regular" integer/FP types for reductions - no target-specific
11299 // types or pointers.
11300 Type *Ty = Inst->getType();
11301 if (!isValidElementType(Ty) || Ty->isPointerTy())
11302 return false;
11303
11304 // Though the ultimate reduction may have multiple uses, its condition must
11305 // have only single use.
11306 if (auto *Sel = dyn_cast<SelectInst>(Inst))
11307 if (!Sel->getCondition()->hasOneUse())
11308 return false;
11309
11310 ReductionRoot = Inst;
11311
11312 // Iterate through all the operands of the possible reduction tree and
11313 // gather all the reduced values, sorting them by their value id.
11314 BasicBlock *BB = Inst->getParent();
11315 bool IsCmpSelMinMax = isCmpSelMinMax(Inst);
11316 SmallVector<Instruction *> Worklist(1, Inst);
11317 // Checks if the operands of the \p TreeN instruction are also reduction
11318 // operations or should be treated as reduced values or an extra argument,
11319 // which is not part of the reduction.
11320 auto &&CheckOperands = [this, IsCmpSelMinMax,
11321 BB](Instruction *TreeN,
11322 SmallVectorImpl<Value *> &ExtraArgs,
11323 SmallVectorImpl<Value *> &PossibleReducedVals,
11324 SmallVectorImpl<Instruction *> &ReductionOps) {
11325 for (int I = getFirstOperandIndex(TreeN),
11326 End = getNumberOfOperands(TreeN);
11327 I < End; ++I) {
11328 Value *EdgeVal = getRdxOperand(TreeN, I);
11329 ReducedValsToOps[EdgeVal].push_back(TreeN);
11330 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
11331 // Edge has wrong parent - mark as an extra argument.
11332 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) &&
11333 !hasSameParent(EdgeInst, BB)) {
11334 ExtraArgs.push_back(EdgeVal);
11335 continue;
11336 }
11337 // If the edge is not an instruction, or it is different from the main
11338 // reduction opcode or has too many uses - possible reduced value.
11339 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind ||
11340 IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) ||
11341 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) ||
11342 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) {
11343 PossibleReducedVals.push_back(EdgeVal);
11344 continue;
11345 }
11346 ReductionOps.push_back(EdgeInst);
11347 }
11348 };
11349 // Try to regroup reduced values so that it gets more profitable to try to
11350 // reduce them. Values are grouped by their value ids, instructions - by
11351 // instruction op id and/or alternate op id, plus do extra analysis for
11352 // loads (grouping them by the distabce between pointers) and cmp
11353 // instructions (grouping them by the predicate).
11354 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>>
11355 PossibleReducedVals;
11356 initReductionOps(Inst);
11357 DenseMap<Value *, SmallVector<LoadInst *>> LoadsMap;
11358 SmallSet<size_t, 2> LoadKeyUsed;
11359 SmallPtrSet<Value *, 4> DoNotReverseVals;
11360 while (!Worklist.empty()) {
11361 Instruction *TreeN = Worklist.pop_back_val();
11362 SmallVector<Value *> Args;
11363 SmallVector<Value *> PossibleRedVals;
11364 SmallVector<Instruction *> PossibleReductionOps;
11365 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps);
11366 // If too many extra args - mark the instruction itself as a reduction
11367 // value, not a reduction operation.
11368 if (Args.size() < 2) {
11369 addReductionOps(TreeN);
11370 // Add extra args.
11371 if (!Args.empty()) {
11372 assert(Args.size() == 1 && "Expected only single argument.")(static_cast <bool> (Args.size() == 1 && "Expected only single argument."
) ? void (0) : __assert_fail ("Args.size() == 1 && \"Expected only single argument.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11372, __extension__
__PRETTY_FUNCTION__))
;
11373 ExtraArgs[TreeN] = Args.front();
11374 }
11375 // Add reduction values. The values are sorted for better vectorization
11376 // results.
11377 for (Value *V : PossibleRedVals) {
11378 size_t Key, Idx;
11379 std::tie(Key, Idx) = generateKeySubkey(
11380 V, &TLI,
11381 [&](size_t Key, LoadInst *LI) {
11382 Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
11383 if (LoadKeyUsed.contains(Key)) {
11384 auto LIt = LoadsMap.find(Ptr);
11385 if (LIt != LoadsMap.end()) {
11386 for (LoadInst *RLI: LIt->second) {
11387 if (getPointersDiff(
11388 RLI->getType(), RLI->getPointerOperand(),
11389 LI->getType(), LI->getPointerOperand(), DL, SE,
11390 /*StrictCheck=*/true))
11391 return hash_value(RLI->getPointerOperand());
11392 }
11393 for (LoadInst *RLI : LIt->second) {
11394 if (arePointersCompatible(RLI->getPointerOperand(),
11395 LI->getPointerOperand(), TLI)) {
11396 hash_code SubKey = hash_value(RLI->getPointerOperand());
11397 DoNotReverseVals.insert(RLI);
11398 return SubKey;
11399 }
11400 }
11401 if (LIt->second.size() > 2) {
11402 hash_code SubKey =
11403 hash_value(LIt->second.back()->getPointerOperand());
11404 DoNotReverseVals.insert(LIt->second.back());
11405 return SubKey;
11406 }
11407 }
11408 }
11409 LoadKeyUsed.insert(Key);
11410 LoadsMap.try_emplace(Ptr).first->second.push_back(LI);
11411 return hash_value(LI->getPointerOperand());
11412 },
11413 /*AllowAlternate=*/false);
11414 ++PossibleReducedVals[Key][Idx]
11415 .insert(std::make_pair(V, 0))
11416 .first->second;
11417 }
11418 Worklist.append(PossibleReductionOps.rbegin(),
11419 PossibleReductionOps.rend());
11420 } else {
11421 size_t Key, Idx;
11422 std::tie(Key, Idx) = generateKeySubkey(
11423 TreeN, &TLI,
11424 [&](size_t Key, LoadInst *LI) {
11425 Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
11426 if (LoadKeyUsed.contains(Key)) {
11427 auto LIt = LoadsMap.find(Ptr);
11428 if (LIt != LoadsMap.end()) {
11429 for (LoadInst *RLI: LIt->second) {
11430 if (getPointersDiff(RLI->getType(),
11431 RLI->getPointerOperand(), LI->getType(),
11432 LI->getPointerOperand(), DL, SE,
11433 /*StrictCheck=*/true))
11434 return hash_value(RLI->getPointerOperand());
11435 }
11436 for (LoadInst *RLI : LIt->second) {
11437 if (arePointersCompatible(RLI->getPointerOperand(),
11438 LI->getPointerOperand(), TLI)) {
11439 hash_code SubKey = hash_value(RLI->getPointerOperand());
11440 DoNotReverseVals.insert(RLI);
11441 return SubKey;
11442 }
11443 }
11444 if (LIt->second.size() > 2) {
11445 hash_code SubKey = hash_value(LIt->second.back()->getPointerOperand());
11446 DoNotReverseVals.insert(LIt->second.back());
11447 return SubKey;
11448 }
11449 }
11450 }
11451 LoadKeyUsed.insert(Key);
11452 LoadsMap.try_emplace(Ptr).first->second.push_back(LI);
11453 return hash_value(LI->getPointerOperand());
11454 },
11455 /*AllowAlternate=*/false);
11456 ++PossibleReducedVals[Key][Idx]
11457 .insert(std::make_pair(TreeN, 0))
11458 .first->second;
11459 }
11460 }
11461 auto PossibleReducedValsVect = PossibleReducedVals.takeVector();
11462 // Sort values by the total number of values kinds to start the reduction
11463 // from the longest possible reduced values sequences.
11464 for (auto &PossibleReducedVals : PossibleReducedValsVect) {
11465 auto PossibleRedVals = PossibleReducedVals.second.takeVector();
11466 SmallVector<SmallVector<Value *>> PossibleRedValsVect;
11467 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end();
11468 It != E; ++It) {
11469 PossibleRedValsVect.emplace_back();
11470 auto RedValsVect = It->second.takeVector();
11471 stable_sort(RedValsVect, llvm::less_second());
11472 for (const std::pair<Value *, unsigned> &Data : RedValsVect)
11473 PossibleRedValsVect.back().append(Data.second, Data.first);
11474 }
11475 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) {
11476 return P1.size() > P2.size();
11477 });
11478 int NewIdx = -1;
11479 for (ArrayRef<Value *> Data : PossibleRedValsVect) {
11480 if (isGoodForReduction(Data) ||
11481 (isa<LoadInst>(Data.front()) && NewIdx >= 0 &&
11482 isa<LoadInst>(ReducedVals[NewIdx].front()) &&
11483 getUnderlyingObject(
11484 cast<LoadInst>(Data.front())->getPointerOperand()) ==
11485 getUnderlyingObject(cast<LoadInst>(ReducedVals[NewIdx].front())
11486 ->getPointerOperand()))) {
11487 if (NewIdx < 0) {
11488 NewIdx = ReducedVals.size();
11489 ReducedVals.emplace_back();
11490 }
11491 if (DoNotReverseVals.contains(Data.front()))
11492 ReducedVals[NewIdx].append(Data.begin(), Data.end());
11493 else
11494 ReducedVals[NewIdx].append(Data.rbegin(), Data.rend());
11495 } else {
11496 ReducedVals.emplace_back().append(Data.rbegin(), Data.rend());
11497 }
11498 }
11499 }
11500 // Sort the reduced values by number of same/alternate opcode and/or pointer
11501 // operand.
11502 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) {
11503 return P1.size() > P2.size();
11504 });
11505 return true;
11506 }
11507
11508 /// Attempt to vectorize the tree found by matchAssociativeReduction.
11509 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI,
11510 const TargetLibraryInfo &TLI) {
11511 constexpr int ReductionLimit = 4;
11512 constexpr unsigned RegMaxNumber = 4;
11513 constexpr unsigned RedValsMaxNumber = 128;
11514 // If there are a sufficient number of reduction values, reduce
11515 // to a nearby power-of-2. We can safely generate oversized
11516 // vectors and rely on the backend to split them to legal sizes.
11517 size_t NumReducedVals =
11518 std::accumulate(ReducedVals.begin(), ReducedVals.end(), 0,
11519 [](size_t Num, ArrayRef<Value *> Vals) {
11520 if (!isGoodForReduction(Vals))
11521 return Num;
11522 return Num + Vals.size();
11523 });
11524 if (NumReducedVals < ReductionLimit) {
11525 for (ReductionOpsType &RdxOps : ReductionOps)
11526 for (Value *RdxOp : RdxOps)
11527 V.analyzedReductionRoot(cast<Instruction>(RdxOp));
11528 return nullptr;
11529 }
11530
11531 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
11532
11533 // Track the reduced values in case if they are replaced by extractelement
11534 // because of the vectorization.
11535 DenseMap<Value *, WeakTrackingVH> TrackedVals(
11536 ReducedVals.size() * ReducedVals.front().size() + ExtraArgs.size());
11537 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
11538 ExternallyUsedValues.reserve(ExtraArgs.size() + 1);
11539 // The same extra argument may be used several times, so log each attempt
11540 // to use it.
11541 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
11542 assert(Pair.first && "DebugLoc must be set.")(static_cast <bool> (Pair.first && "DebugLoc must be set."
) ? void (0) : __assert_fail ("Pair.first && \"DebugLoc must be set.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11542, __extension__
__PRETTY_FUNCTION__))
;
11543 ExternallyUsedValues[Pair.second].push_back(Pair.first);
11544 TrackedVals.try_emplace(Pair.second, Pair.second);
11545 }
11546
11547 // The compare instruction of a min/max is the insertion point for new
11548 // instructions and may be replaced with a new compare instruction.
11549 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
11550 assert(isa<SelectInst>(RdxRootInst) &&(static_cast <bool> (isa<SelectInst>(RdxRootInst)
&& "Expected min/max reduction to have select root instruction"
) ? void (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11551, __extension__
__PRETTY_FUNCTION__))
11551 "Expected min/max reduction to have select root instruction")(static_cast <bool> (isa<SelectInst>(RdxRootInst)
&& "Expected min/max reduction to have select root instruction"
) ? void (0) : __assert_fail ("isa<SelectInst>(RdxRootInst) && \"Expected min/max reduction to have select root instruction\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11551, __extension__
__PRETTY_FUNCTION__))
;
11552 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
11553 assert(isa<Instruction>(ScalarCond) &&(static_cast <bool> (isa<Instruction>(ScalarCond)
&& "Expected min/max reduction to have compare condition"
) ? void (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11554, __extension__
__PRETTY_FUNCTION__))
11554 "Expected min/max reduction to have compare condition")(static_cast <bool> (isa<Instruction>(ScalarCond)
&& "Expected min/max reduction to have compare condition"
) ? void (0) : __assert_fail ("isa<Instruction>(ScalarCond) && \"Expected min/max reduction to have compare condition\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11554, __extension__
__PRETTY_FUNCTION__))
;
11555 return cast<Instruction>(ScalarCond);
11556 };
11557
11558 // The reduction root is used as the insertion point for new instructions,
11559 // so set it as externally used to prevent it from being deleted.
11560 ExternallyUsedValues[ReductionRoot];
11561 SmallDenseSet<Value *> IgnoreList(ReductionOps.size() *
11562 ReductionOps.front().size());
11563 for (ReductionOpsType &RdxOps : ReductionOps)
11564 for (Value *RdxOp : RdxOps) {
11565 if (!RdxOp)
11566 continue;
11567 IgnoreList.insert(RdxOp);
11568 }
11569 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot));
11570
11571 // Need to track reduced vals, they may be changed during vectorization of
11572 // subvectors.
11573 for (ArrayRef<Value *> Candidates : ReducedVals)
11574 for (Value *V : Candidates)
11575 TrackedVals.try_emplace(V, V);
11576
11577 DenseMap<Value *, unsigned> VectorizedVals(ReducedVals.size());
11578 Value *VectorizedTree = nullptr;
11579 bool CheckForReusedReductionOps = false;
11580 // Try to vectorize elements based on their type.
11581 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) {
11582 ArrayRef<Value *> OrigReducedVals = ReducedVals[I];
11583 InstructionsState S = getSameOpcode(OrigReducedVals, TLI);
11584 SmallVector<Value *> Candidates;
11585 Candidates.reserve(2 * OrigReducedVals.size());
11586 DenseMap<Value *, Value *> TrackedToOrig(2 * OrigReducedVals.size());
11587 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) {
11588 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second;
11589 // Check if the reduction value was not overriden by the extractelement
11590 // instruction because of the vectorization and exclude it, if it is not
11591 // compatible with other values.
11592 if (auto *Inst = dyn_cast<Instruction>(RdxVal))
11593 if (isVectorLikeInstWithConstOps(Inst) &&
11594 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst)))
11595 continue;
11596 Candidates.push_back(RdxVal);
11597 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]);
11598 }
11599 bool ShuffledExtracts = false;
11600 // Try to handle shuffled extractelements.
11601 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() &&
11602 I + 1 < E) {
11603 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1], TLI);
11604 if (NextS.getOpcode() == Instruction::ExtractElement &&
11605 !NextS.isAltShuffle()) {
11606 SmallVector<Value *> CommonCandidates(Candidates);
11607 for (Value *RV : ReducedVals[I + 1]) {
11608 Value *RdxVal = TrackedVals.find(RV)->second;
11609 // Check if the reduction value was not overriden by the
11610 // extractelement instruction because of the vectorization and
11611 // exclude it, if it is not compatible with other values.
11612 if (auto *Inst = dyn_cast<Instruction>(RdxVal))
11613 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst))
11614 continue;
11615 CommonCandidates.push_back(RdxVal);
11616 TrackedToOrig.try_emplace(RdxVal, RV);
11617 }
11618 SmallVector<int> Mask;
11619 if (isFixedVectorShuffle(CommonCandidates, Mask)) {
11620 ++I;
11621 Candidates.swap(CommonCandidates);
11622 ShuffledExtracts = true;
11623 }
11624 }
11625 }
11626 unsigned NumReducedVals = Candidates.size();
11627 if (NumReducedVals < ReductionLimit)
11628 continue;
11629
11630 unsigned MaxVecRegSize = V.getMaxVecRegSize();
11631 unsigned EltSize = V.getVectorElementSize(Candidates[0]);
11632 unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize);
11633
11634 unsigned ReduxWidth = std::min<unsigned>(
11635 PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts));
11636 unsigned Start = 0;
11637 unsigned Pos = Start;
11638 // Restarts vectorization attempt with lower vector factor.
11639 unsigned PrevReduxWidth = ReduxWidth;
11640 bool CheckForReusedReductionOpsLocal = false;
11641 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals,
11642 &CheckForReusedReductionOpsLocal,
11643 &PrevReduxWidth, &V,
11644 &IgnoreList](bool IgnoreVL = false) {
11645 bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList);
11646 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) {
11647 // Check if any of the reduction ops are gathered. If so, worth
11648 // trying again with less number of reduction ops.
11649 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered;
11650 }
11651 ++Pos;
11652 if (Pos < NumReducedVals - ReduxWidth + 1)
11653 return IsAnyRedOpGathered;
11654 Pos = Start;
11655 ReduxWidth /= 2;
11656 return IsAnyRedOpGathered;
11657 };
11658 while (Pos < NumReducedVals - ReduxWidth + 1 &&
11659 ReduxWidth >= ReductionLimit) {
11660 // Dependency in tree of the reduction ops - drop this attempt, try
11661 // later.
11662 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth &&
11663 Start == 0) {
11664 CheckForReusedReductionOps = true;
11665 break;
11666 }
11667 PrevReduxWidth = ReduxWidth;
11668 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth);
11669 // Beeing analyzed already - skip.
11670 if (V.areAnalyzedReductionVals(VL)) {
11671 (void)AdjustReducedVals(/*IgnoreVL=*/true);
11672 continue;
11673 }
11674 // Early exit if any of the reduction values were deleted during
11675 // previous vectorization attempts.
11676 if (any_of(VL, [&V](Value *RedVal) {
11677 auto *RedValI = dyn_cast<Instruction>(RedVal);
11678 if (!RedValI)
11679 return false;
11680 return V.isDeleted(RedValI);
11681 }))
11682 break;
11683 V.buildTree(VL, IgnoreList);
11684 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) {
11685 if (!AdjustReducedVals())
11686 V.analyzedReductionVals(VL);
11687 continue;
11688 }
11689 if (V.isLoadCombineReductionCandidate(RdxKind)) {
11690 if (!AdjustReducedVals())
11691 V.analyzedReductionVals(VL);
11692 continue;
11693 }
11694 V.reorderTopToBottom();
11695 // No need to reorder the root node at all.
11696 V.reorderBottomToTop(/*IgnoreReorder=*/true);
11697 // Keep extracted other reduction values, if they are used in the
11698 // vectorization trees.
11699 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues(
11700 ExternallyUsedValues);
11701 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) {
11702 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1))
11703 continue;
11704 for_each(ReducedVals[Cnt],
11705 [&LocalExternallyUsedValues, &TrackedVals](Value *V) {
11706 if (isa<Instruction>(V))
11707 LocalExternallyUsedValues[TrackedVals[V]];
11708 });
11709 }
11710 // Number of uses of the candidates in the vector of values.
11711 SmallDenseMap<Value *, unsigned> NumUses(Candidates.size());
11712 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
11713 Value *V = Candidates[Cnt];
11714 ++NumUses.try_emplace(V, 0).first->getSecond();
11715 }
11716 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
11717 Value *V = Candidates[Cnt];
11718 ++NumUses.try_emplace(V, 0).first->getSecond();
11719 }
11720 // Gather externally used values.
11721 SmallPtrSet<Value *, 4> Visited;
11722 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
11723 Value *V = Candidates[Cnt];
11724 if (!Visited.insert(V).second)
11725 continue;
11726 unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V];
11727 if (NumOps != ReducedValsToOps.find(V)->second.size())
11728 LocalExternallyUsedValues[V];
11729 }
11730 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
11731 Value *V = Candidates[Cnt];
11732 if (!Visited.insert(V).second)
11733 continue;
11734 unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V];
11735 if (NumOps != ReducedValsToOps.find(V)->second.size())
11736 LocalExternallyUsedValues[V];
11737 }
11738 V.buildExternalUses(LocalExternallyUsedValues);
11739
11740 V.computeMinimumValueSizes();
11741
11742 // Intersect the fast-math-flags from all reduction operations.
11743 FastMathFlags RdxFMF;
11744 RdxFMF.set();
11745 for (Value *U : IgnoreList)
11746 if (auto *FPMO = dyn_cast<FPMathOperator>(U))
11747 RdxFMF &= FPMO->getFastMathFlags();
11748 // Estimate cost.
11749 InstructionCost TreeCost = V.getTreeCost(VL);
11750 InstructionCost ReductionCost =
11751 getReductionCost(TTI, VL, ReduxWidth, RdxFMF);
11752 if (V.isVectorizedFirstNode() && isa<LoadInst>(VL.front())) {
11753 Instruction *MainOp = V.getFirstNodeMainOp();
11754 for (Value *V : VL) {
11755 auto *VI = dyn_cast<LoadInst>(V);
11756 // Add the costs of scalar GEP pointers, to be removed from the
11757 // code.
11758 if (!VI || VI == MainOp)
11759 continue;
11760 auto *Ptr = dyn_cast<GetElementPtrInst>(VI->getPointerOperand());
11761 if (!Ptr || !Ptr->hasOneUse() || Ptr->hasAllConstantIndices())
11762 continue;
11763 TreeCost -= TTI->getArithmeticInstrCost(
11764 Instruction::Add, Ptr->getType(), TTI::TCK_RecipThroughput);
11765 }
11766 }
11767 InstructionCost Cost = TreeCost + ReductionCost;
11768 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for reduction\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost = " << Cost
<< " for reduction\n"; } } while (false)
;
11769 if (!Cost.isValid())
11770 return nullptr;
11771 if (Cost >= -SLPCostThreshold) {
11772 V.getORE()->emit([&]() {
11773 return OptimizationRemarkMissed(
11774 SV_NAME"slp-vectorizer", "HorSLPNotBeneficial",
11775 ReducedValsToOps.find(VL[0])->second.front())
11776 << "Vectorizing horizontal reduction is possible "
11777 << "but not beneficial with cost " << ore::NV("Cost", Cost)
11778 << " and threshold "
11779 << ore::NV("Threshold", -SLPCostThreshold);
11780 });
11781 if (!AdjustReducedVals())
11782 V.analyzedReductionVals(VL);
11783 continue;
11784 }
11785
11786 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
11787 << Cost << ". (HorRdx)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
;
11788 V.getORE()->emit([&]() {
11789 return OptimizationRemark(
11790 SV_NAME"slp-vectorizer", "VectorizedHorizontalReduction",
11791 ReducedValsToOps.find(VL[0])->second.front())
11792 << "Vectorized horizontal reduction with cost "
11793 << ore::NV("Cost", Cost) << " and with tree size "
11794 << ore::NV("TreeSize", V.getTreeSize());
11795 });
11796
11797 Builder.setFastMathFlags(RdxFMF);
11798
11799 // Vectorize a tree.
11800 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues);
11801
11802 // Emit a reduction. If the root is a select (min/max idiom), the insert
11803 // point is the compare condition of that select.
11804 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
11805 if (IsCmpSelMinMax)
11806 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst));
11807 else
11808 Builder.SetInsertPoint(RdxRootInst);
11809
11810 // To prevent poison from leaking across what used to be sequential,
11811 // safe, scalar boolean logic operations, the reduction operand must be
11812 // frozen.
11813 if (isBoolLogicOp(RdxRootInst))
11814 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
11815
11816 Value *ReducedSubTree =
11817 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
11818
11819 if (!VectorizedTree) {
11820 // Initialize the final value in the reduction.
11821 VectorizedTree = ReducedSubTree;
11822 } else {
11823 // Update the final value in the reduction.
11824 Builder.SetCurrentDebugLocation(
11825 cast<Instruction>(ReductionOps.front().front())->getDebugLoc());
11826 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
11827 ReducedSubTree, "op.rdx", ReductionOps);
11828 }
11829 // Count vectorized reduced values to exclude them from final reduction.
11830 for (Value *V : VL)
11831 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0)
11832 .first->getSecond();
11833 Pos += ReduxWidth;
11834 Start = Pos;
11835 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos);
11836 }
11837 }
11838 if (VectorizedTree) {
11839 // Reorder operands of bool logical op in the natural order to avoid
11840 // possible problem with poison propagation. If not possible to reorder
11841 // (both operands are originally RHS), emit an extra freeze instruction
11842 // for the LHS operand.
11843 //I.e., if we have original code like this:
11844 // RedOp1 = select i1 ?, i1 LHS, i1 false
11845 // RedOp2 = select i1 RHS, i1 ?, i1 false
11846
11847 // Then, we swap LHS/RHS to create a new op that matches the poison
11848 // semantics of the original code.
11849
11850 // If we have original code like this and both values could be poison:
11851 // RedOp1 = select i1 ?, i1 LHS, i1 false
11852 // RedOp2 = select i1 ?, i1 RHS, i1 false
11853
11854 // Then, we must freeze LHS in the new op.
11855 auto &&FixBoolLogicalOps =
11856 [&Builder, VectorizedTree](Value *&LHS, Value *&RHS,
11857 Instruction *RedOp1, Instruction *RedOp2) {
11858 if (!isBoolLogicOp(RedOp1))
11859 return;
11860 if (LHS == VectorizedTree || getRdxOperand(RedOp1, 0) == LHS ||
11861 isGuaranteedNotToBePoison(LHS))
11862 return;
11863 if (!isBoolLogicOp(RedOp2))
11864 return;
11865 if (RHS == VectorizedTree || getRdxOperand(RedOp2, 0) == RHS ||
11866 isGuaranteedNotToBePoison(RHS)) {
11867 std::swap(LHS, RHS);
11868 return;
11869 }
11870 LHS = Builder.CreateFreeze(LHS);
11871 };
11872 // Finish the reduction.
11873 // Need to add extra arguments and not vectorized possible reduction
11874 // values.
11875 // Try to avoid dependencies between the scalar remainders after
11876 // reductions.
11877 auto &&FinalGen =
11878 [this, &Builder, &TrackedVals, &FixBoolLogicalOps](
11879 ArrayRef<std::pair<Instruction *, Value *>> InstVals) {
11880 unsigned Sz = InstVals.size();
11881 SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 +
11882 Sz % 2);
11883 for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) {
11884 Instruction *RedOp = InstVals[I + 1].first;
11885 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
11886 Value *RdxVal1 = InstVals[I].second;
11887 Value *StableRdxVal1 = RdxVal1;
11888 auto It1 = TrackedVals.find(RdxVal1);
11889 if (It1 != TrackedVals.end())
11890 StableRdxVal1 = It1->second;
11891 Value *RdxVal2 = InstVals[I + 1].second;
11892 Value *StableRdxVal2 = RdxVal2;
11893 auto It2 = TrackedVals.find(RdxVal2);
11894 if (It2 != TrackedVals.end())
11895 StableRdxVal2 = It2->second;
11896 // To prevent poison from leaking across what used to be
11897 // sequential, safe, scalar boolean logic operations, the
11898 // reduction operand must be frozen.
11899 FixBoolLogicalOps(StableRdxVal1, StableRdxVal2, InstVals[I].first,
11900 RedOp);
11901 Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1,
11902 StableRdxVal2, "op.rdx", ReductionOps);
11903 ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed);
11904 }
11905 if (Sz % 2 == 1)
11906 ExtraReds[Sz / 2] = InstVals.back();
11907 return ExtraReds;
11908 };
11909 SmallVector<std::pair<Instruction *, Value *>> ExtraReductions;
11910 ExtraReductions.emplace_back(cast<Instruction>(ReductionRoot),
11911 VectorizedTree);
11912 SmallPtrSet<Value *, 8> Visited;
11913 for (ArrayRef<Value *> Candidates : ReducedVals) {
11914 for (Value *RdxVal : Candidates) {
11915 if (!Visited.insert(RdxVal).second)
11916 continue;
11917 unsigned NumOps = VectorizedVals.lookup(RdxVal);
11918 for (Instruction *RedOp :
11919 makeArrayRef(ReducedValsToOps.find(RdxVal)->second)
11920 .drop_back(NumOps))
11921 ExtraReductions.emplace_back(RedOp, RdxVal);
11922 }
11923 }
11924 for (auto &Pair : ExternallyUsedValues) {
11925 // Add each externally used value to the final reduction.
11926 for (auto *I : Pair.second)
11927 ExtraReductions.emplace_back(I, Pair.first);
11928 }
11929 // Iterate through all not-vectorized reduction values/extra arguments.
11930 while (ExtraReductions.size() > 1) {
11931 VectorizedTree = ExtraReductions.front().second;
Value stored to 'VectorizedTree' is never read
11932 SmallVector<std::pair<Instruction *, Value *>> NewReds =
11933 FinalGen(ExtraReductions);
11934 ExtraReductions.swap(NewReds);
11935 }
11936 VectorizedTree = ExtraReductions.front().second;
11937
11938 ReductionRoot->replaceAllUsesWith(VectorizedTree);
11939
11940 // The original scalar reduction is expected to have no remaining
11941 // uses outside the reduction tree itself. Assert that we got this
11942 // correct, replace internal uses with undef, and mark for eventual
11943 // deletion.
11944#ifndef NDEBUG
11945 SmallSet<Value *, 4> IgnoreSet;
11946 for (ArrayRef<Value *> RdxOps : ReductionOps)
11947 IgnoreSet.insert(RdxOps.begin(), RdxOps.end());
11948#endif
11949 for (ArrayRef<Value *> RdxOps : ReductionOps) {
11950 for (Value *Ignore : RdxOps) {
11951 if (!Ignore)
11952 continue;
11953#ifndef NDEBUG
11954 for (auto *U : Ignore->users()) {
11955 assert(IgnoreSet.count(U) &&(static_cast <bool> (IgnoreSet.count(U) && "All users must be either in the reduction ops list."
) ? void (0) : __assert_fail ("IgnoreSet.count(U) && \"All users must be either in the reduction ops list.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11956, __extension__
__PRETTY_FUNCTION__))
11956 "All users must be either in the reduction ops list.")(static_cast <bool> (IgnoreSet.count(U) && "All users must be either in the reduction ops list."
) ? void (0) : __assert_fail ("IgnoreSet.count(U) && \"All users must be either in the reduction ops list.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 11956, __extension__
__PRETTY_FUNCTION__))
;
11957 }
11958#endif
11959 if (!Ignore->use_empty()) {
11960 Value *Undef = UndefValue::get(Ignore->getType());
11961 Ignore->replaceAllUsesWith(Undef);
11962 }
11963 V.eraseInstruction(cast<Instruction>(Ignore));
11964 }
11965 }
11966 } else if (!CheckForReusedReductionOps) {
11967 for (ReductionOpsType &RdxOps : ReductionOps)
11968 for (Value *RdxOp : RdxOps)
11969 V.analyzedReductionRoot(cast<Instruction>(RdxOp));
11970 }
11971 return VectorizedTree;
11972 }
11973
11974private:
11975 /// Calculate the cost of a reduction.
11976 InstructionCost getReductionCost(TargetTransformInfo *TTI,
11977 ArrayRef<Value *> ReducedVals,
11978 unsigned ReduxWidth, FastMathFlags FMF) {
11979 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
11980 Value *FirstReducedVal = ReducedVals.front();
11981 Type *ScalarTy = FirstReducedVal->getType();
11982 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
11983 InstructionCost VectorCost = 0, ScalarCost;
11984 // If all of the reduced values are constant, the vector cost is 0, since
11985 // the reduction value can be calculated at the compile time.
11986 bool AllConsts = all_of(ReducedVals, isConstant);
11987 switch (RdxKind) {
11988 case RecurKind::Add:
11989 case RecurKind::Mul:
11990 case RecurKind::Or:
11991 case RecurKind::And:
11992 case RecurKind::Xor:
11993 case RecurKind::FAdd:
11994 case RecurKind::FMul: {
11995 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
11996 if (!AllConsts)
11997 VectorCost =
11998 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
11999 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
12000 break;
12001 }
12002 case RecurKind::FMax:
12003 case RecurKind::FMin: {
12004 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
12005 if (!AllConsts) {
12006 auto *VecCondTy =
12007 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
12008 VectorCost =
12009 TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
12010 /*IsUnsigned=*/false, CostKind);
12011 }
12012 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
12013 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy,
12014 SclCondTy, RdxPred, CostKind) +
12015 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
12016 SclCondTy, RdxPred, CostKind);
12017 break;
12018 }
12019 case RecurKind::SMax:
12020 case RecurKind::SMin:
12021 case RecurKind::UMax:
12022 case RecurKind::UMin: {
12023 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
12024 if (!AllConsts) {
12025 auto *VecCondTy =
12026 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
12027 bool IsUnsigned =
12028 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
12029 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
12030 IsUnsigned, CostKind);
12031 }
12032 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
12033 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
12034 SclCondTy, RdxPred, CostKind) +
12035 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
12036 SclCondTy, RdxPred, CostKind);
12037 break;
12038 }
12039 default:
12040 llvm_unreachable("Expected arithmetic or min/max reduction operation")::llvm::llvm_unreachable_internal("Expected arithmetic or min/max reduction operation"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12040)
;
12041 }
12042
12043 // Scalar cost is repeated for N-1 elements.
12044 ScalarCost *= (ReduxWidth - 1);
12045 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
12046 << " for reduction that starts with " << *FirstReducedValdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
12047 << " (It is a splitting reduction)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost << " for reduction that starts with " <<
*FirstReducedVal << " (It is a splitting reduction)\n"
; } } while (false)
;
12048 return VectorCost - ScalarCost;
12049 }
12050
12051 /// Emit a horizontal reduction of the vectorized value.
12052 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
12053 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
12054 assert(VectorizedValue && "Need to have a vectorized tree node")(static_cast <bool> (VectorizedValue && "Need to have a vectorized tree node"
) ? void (0) : __assert_fail ("VectorizedValue && \"Need to have a vectorized tree node\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12054, __extension__
__PRETTY_FUNCTION__))
;
12055 assert(isPowerOf2_32(ReduxWidth) &&(static_cast <bool> (isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now") ? void (0)
: __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12056, __extension__
__PRETTY_FUNCTION__))
12056 "We only handle power-of-two reductions for now")(static_cast <bool> (isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now") ? void (0)
: __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12056, __extension__
__PRETTY_FUNCTION__))
;
12057 assert(RdxKind != RecurKind::FMulAdd &&(static_cast <bool> (RdxKind != RecurKind::FMulAdd &&
"A call to the llvm.fmuladd intrinsic is not handled yet") ?
void (0) : __assert_fail ("RdxKind != RecurKind::FMulAdd && \"A call to the llvm.fmuladd intrinsic is not handled yet\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12058, __extension__
__PRETTY_FUNCTION__))
12058 "A call to the llvm.fmuladd intrinsic is not handled yet")(static_cast <bool> (RdxKind != RecurKind::FMulAdd &&
"A call to the llvm.fmuladd intrinsic is not handled yet") ?
void (0) : __assert_fail ("RdxKind != RecurKind::FMulAdd && \"A call to the llvm.fmuladd intrinsic is not handled yet\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12058, __extension__
__PRETTY_FUNCTION__))
;
12059
12060 ++NumVectorInstructions;
12061 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind);
12062 }
12063};
12064
12065} // end anonymous namespace
12066
12067static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
12068 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
12069 return cast<FixedVectorType>(IE->getType())->getNumElements();
12070
12071 unsigned AggregateSize = 1;
12072 auto *IV = cast<InsertValueInst>(InsertInst);
12073 Type *CurrentType = IV->getType();
12074 do {
12075 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
12076 for (auto *Elt : ST->elements())
12077 if (Elt != ST->getElementType(0)) // check homogeneity
12078 return None;
12079 AggregateSize *= ST->getNumElements();
12080 CurrentType = ST->getElementType(0);
12081 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
12082 AggregateSize *= AT->getNumElements();
12083 CurrentType = AT->getElementType();
12084 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
12085 AggregateSize *= VT->getNumElements();
12086 return AggregateSize;
12087 } else if (CurrentType->isSingleValueType()) {
12088 return AggregateSize;
12089 } else {
12090 return None;
12091 }
12092 } while (true);
12093}
12094
12095static void findBuildAggregate_rec(Instruction *LastInsertInst,
12096 TargetTransformInfo *TTI,
12097 SmallVectorImpl<Value *> &BuildVectorOpds,
12098 SmallVectorImpl<Value *> &InsertElts,
12099 unsigned OperandOffset) {
12100 do {
12101 Value *InsertedOperand = LastInsertInst->getOperand(1);
12102 Optional<unsigned> OperandIndex =
12103 getInsertIndex(LastInsertInst, OperandOffset);
12104 if (!OperandIndex)
12105 return;
12106 if (isa<InsertElementInst, InsertValueInst>(InsertedOperand)) {
12107 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
12108 BuildVectorOpds, InsertElts, *OperandIndex);
12109
12110 } else {
12111 BuildVectorOpds[*OperandIndex] = InsertedOperand;
12112 InsertElts[*OperandIndex] = LastInsertInst;
12113 }
12114 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
12115 } while (LastInsertInst != nullptr &&
12116 isa<InsertValueInst, InsertElementInst>(LastInsertInst) &&
12117 LastInsertInst->hasOneUse());
12118}
12119
12120/// Recognize construction of vectors like
12121/// %ra = insertelement <4 x float> poison, float %s0, i32 0
12122/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
12123/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
12124/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
12125/// starting from the last insertelement or insertvalue instruction.
12126///
12127/// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
12128/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
12129/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
12130///
12131/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
12132///
12133/// \return true if it matches.
12134static bool findBuildAggregate(Instruction *LastInsertInst,
12135 TargetTransformInfo *TTI,
12136 SmallVectorImpl<Value *> &BuildVectorOpds,
12137 SmallVectorImpl<Value *> &InsertElts) {
12138
12139 assert((isa<InsertElementInst>(LastInsertInst) ||(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12141, __extension__
__PRETTY_FUNCTION__))
12140 isa<InsertValueInst>(LastInsertInst)) &&(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12141, __extension__
__PRETTY_FUNCTION__))
12141 "Expected insertelement or insertvalue instruction!")(static_cast <bool> ((isa<InsertElementInst>(LastInsertInst
) || isa<InsertValueInst>(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"
) ? void (0) : __assert_fail ("(isa<InsertElementInst>(LastInsertInst) || isa<InsertValueInst>(LastInsertInst)) && \"Expected insertelement or insertvalue instruction!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12141, __extension__
__PRETTY_FUNCTION__))
;
12142
12143 assert((BuildVectorOpds.empty() && InsertElts.empty()) &&(static_cast <bool> ((BuildVectorOpds.empty() &&
InsertElts.empty()) && "Expected empty result vectors!"
) ? void (0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12144, __extension__
__PRETTY_FUNCTION__))
12144 "Expected empty result vectors!")(static_cast <bool> ((BuildVectorOpds.empty() &&
InsertElts.empty()) && "Expected empty result vectors!"
) ? void (0) : __assert_fail ("(BuildVectorOpds.empty() && InsertElts.empty()) && \"Expected empty result vectors!\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12144, __extension__
__PRETTY_FUNCTION__))
;
12145
12146 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
12147 if (!AggregateSize)
12148 return false;
12149 BuildVectorOpds.resize(*AggregateSize);
12150 InsertElts.resize(*AggregateSize);
12151
12152 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
12153 llvm::erase_value(BuildVectorOpds, nullptr);
12154 llvm::erase_value(InsertElts, nullptr);
12155 if (BuildVectorOpds.size() >= 2)
12156 return true;
12157
12158 return false;
12159}
12160
12161/// Try and get a reduction value from a phi node.
12162///
12163/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
12164/// if they come from either \p ParentBB or a containing loop latch.
12165///
12166/// \returns A candidate reduction value if possible, or \code nullptr \endcode
12167/// if not possible.
12168static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
12169 BasicBlock *ParentBB, LoopInfo *LI) {
12170 // There are situations where the reduction value is not dominated by the
12171 // reduction phi. Vectorizing such cases has been reported to cause
12172 // miscompiles. See PR25787.
12173 auto DominatedReduxValue = [&](Value *R) {
12174 return isa<Instruction>(R) &&
12175 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
12176 };
12177
12178 Value *Rdx = nullptr;
12179
12180 // Return the incoming value if it comes from the same BB as the phi node.
12181 if (P->getIncomingBlock(0) == ParentBB) {
12182 Rdx = P->getIncomingValue(0);
12183 } else if (P->getIncomingBlock(1) == ParentBB) {
12184 Rdx = P->getIncomingValue(1);
12185 }
12186
12187 if (Rdx && DominatedReduxValue(Rdx))
12188 return Rdx;
12189
12190 // Otherwise, check whether we have a loop latch to look at.
12191 Loop *BBL = LI->getLoopFor(ParentBB);
12192 if (!BBL)
12193 return nullptr;
12194 BasicBlock *BBLatch = BBL->getLoopLatch();
12195 if (!BBLatch)
12196 return nullptr;
12197
12198 // There is a loop latch, return the incoming value if it comes from
12199 // that. This reduction pattern occasionally turns up.
12200 if (P->getIncomingBlock(0) == BBLatch) {
12201 Rdx = P->getIncomingValue(0);
12202 } else if (P->getIncomingBlock(1) == BBLatch) {
12203 Rdx = P->getIncomingValue(1);
12204 }
12205
12206 if (Rdx && DominatedReduxValue(Rdx))
12207 return Rdx;
12208
12209 return nullptr;
12210}
12211
12212static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
12213 if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
12214 return true;
12215 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
12216 return true;
12217 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
12218 return true;
12219 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
12220 return true;
12221 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
12222 return true;
12223 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
12224 return true;
12225 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
12226 return true;
12227 return false;
12228}
12229
12230bool SLPVectorizerPass::vectorizeHorReduction(
12231 PHINode *P, Value *V, BasicBlock *BB, BoUpSLP &R, TargetTransformInfo *TTI,
12232 SmallVectorImpl<WeakTrackingVH> &PostponedInsts) {
12233 if (!ShouldVectorizeHor)
12234 return false;
12235
12236 auto *Root = dyn_cast_or_null<Instruction>(V);
12237 if (!Root)
12238 return false;
12239
12240 if (!isa<BinaryOperator>(Root))
12241 P = nullptr;
12242
12243 if (Root->getParent() != BB || isa<PHINode>(Root))
12244 return false;
12245 // Start analysis starting from Root instruction. If horizontal reduction is
12246 // found, try to vectorize it. If it is not a horizontal reduction or
12247 // vectorization is not possible or not effective, and currently analyzed
12248 // instruction is a binary operation, try to vectorize the operands, using
12249 // pre-order DFS traversal order. If the operands were not vectorized, repeat
12250 // the same procedure considering each operand as a possible root of the
12251 // horizontal reduction.
12252 // Interrupt the process if the Root instruction itself was vectorized or all
12253 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
12254 // If a horizintal reduction was not matched or vectorized we collect
12255 // instructions for possible later attempts for vectorization.
12256 std::queue<std::pair<Instruction *, unsigned>> Stack;
12257 Stack.emplace(Root, 0);
12258 SmallPtrSet<Value *, 8> VisitedInstrs;
12259 bool Res = false;
12260 auto &&TryToReduce = [this, TTI, &P, &R](Instruction *Inst, Value *&B0,
12261 Value *&B1) -> Value * {
12262 if (R.isAnalyzedReductionRoot(Inst))
12263 return nullptr;
12264 bool IsBinop = matchRdxBop(Inst, B0, B1);
12265 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
12266 if (IsBinop || IsSelect) {
12267 HorizontalReduction HorRdx;
12268 if (HorRdx.matchAssociativeReduction(P, Inst, *SE, *DL, *TLI))
12269 return HorRdx.tryToReduce(R, TTI, *TLI);
12270 }
12271 return nullptr;
12272 };
12273 while (!Stack.empty()) {
12274 Instruction *Inst;
12275 unsigned Level;
12276 std::tie(Inst, Level) = Stack.front();
12277 Stack.pop();
12278 // Do not try to analyze instruction that has already been vectorized.
12279 // This may happen when we vectorize instruction operands on a previous
12280 // iteration while stack was populated before that happened.
12281 if (R.isDeleted(Inst))
12282 continue;
12283 Value *B0 = nullptr, *B1 = nullptr;
12284 if (Value *V = TryToReduce(Inst, B0, B1)) {
12285 Res = true;
12286 // Set P to nullptr to avoid re-analysis of phi node in
12287 // matchAssociativeReduction function unless this is the root node.
12288 P = nullptr;
12289 if (auto *I = dyn_cast<Instruction>(V)) {
12290 // Try to find another reduction.
12291 Stack.emplace(I, Level);
12292 continue;
12293 }
12294 } else {
12295 bool IsBinop = B0 && B1;
12296 if (P && IsBinop) {
12297 Inst = dyn_cast<Instruction>(B0);
12298 if (Inst == P)
12299 Inst = dyn_cast<Instruction>(B1);
12300 if (!Inst) {
12301 // Set P to nullptr to avoid re-analysis of phi node in
12302 // matchAssociativeReduction function unless this is the root node.
12303 P = nullptr;
12304 continue;
12305 }
12306 }
12307 // Set P to nullptr to avoid re-analysis of phi node in
12308 // matchAssociativeReduction function unless this is the root node.
12309 P = nullptr;
12310 // Do not collect CmpInst or InsertElementInst/InsertValueInst as their
12311 // analysis is done separately.
12312 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst))
12313 PostponedInsts.push_back(Inst);
12314 }
12315
12316 // Try to vectorize operands.
12317 // Continue analysis for the instruction from the same basic block only to
12318 // save compile time.
12319 if (++Level < RecursionMaxDepth)
12320 for (auto *Op : Inst->operand_values())
12321 if (VisitedInstrs.insert(Op).second)
12322 if (auto *I = dyn_cast<Instruction>(Op))
12323 // Do not try to vectorize CmpInst operands, this is done
12324 // separately.
12325 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) &&
12326 !R.isDeleted(I) && I->getParent() == BB)
12327 Stack.emplace(I, Level);
12328 }
12329 return Res;
12330}
12331
12332bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
12333 BasicBlock *BB, BoUpSLP &R,
12334 TargetTransformInfo *TTI) {
12335 SmallVector<WeakTrackingVH> PostponedInsts;
12336 bool Res = vectorizeHorReduction(P, V, BB, R, TTI, PostponedInsts);
12337 Res |= tryToVectorize(PostponedInsts, R);
12338 return Res;
12339}
12340
12341bool SLPVectorizerPass::tryToVectorize(ArrayRef<WeakTrackingVH> Insts,
12342 BoUpSLP &R) {
12343 bool Res = false;
12344 for (Value *V : Insts)
12345 if (auto *Inst = dyn_cast<Instruction>(V); Inst && !R.isDeleted(Inst))
12346 Res |= tryToVectorize(Inst, R);
12347 return Res;
12348}
12349
12350bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
12351 BasicBlock *BB, BoUpSLP &R) {
12352 const DataLayout &DL = BB->getModule()->getDataLayout();
12353 if (!R.canMapToVector(IVI->getType(), DL))
12354 return false;
12355
12356 SmallVector<Value *, 16> BuildVectorOpds;
12357 SmallVector<Value *, 16> BuildVectorInsts;
12358 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
12359 return false;
12360
12361 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: array mappable to vector: " <<
*IVI << "\n"; } } while (false)
;
12362 // Aggregate value is unlikely to be processed in vector register.
12363 return tryToVectorizeList(BuildVectorOpds, R);
12364}
12365
12366bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
12367 BasicBlock *BB, BoUpSLP &R) {
12368 SmallVector<Value *, 16> BuildVectorInsts;
12369 SmallVector<Value *, 16> BuildVectorOpds;
12370 SmallVector<int> Mask;
12371 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
12372 (llvm::all_of(
12373 BuildVectorOpds,
12374 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
12375 isFixedVectorShuffle(BuildVectorOpds, Mask)))
12376 return false;
12377
12378 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: array mappable to vector: " <<
*IEI << "\n"; } } while (false)
;
12379 return tryToVectorizeList(BuildVectorInsts, R);
12380}
12381
12382template <typename T>
12383static bool
12384tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming,
12385 function_ref<unsigned(T *)> Limit,
12386 function_ref<bool(T *, T *)> Comparator,
12387 function_ref<bool(T *, T *)> AreCompatible,
12388 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
12389 bool LimitForRegisterSize) {
12390 bool Changed = false;
12391 // Sort by type, parent, operands.
12392 stable_sort(Incoming, Comparator);
12393
12394 // Try to vectorize elements base on their type.
12395 SmallVector<T *> Candidates;
12396 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
12397 // Look for the next elements with the same type, parent and operand
12398 // kinds.
12399 auto *SameTypeIt = IncIt;
12400 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
12401 ++SameTypeIt;
12402
12403 // Try to vectorize them.
12404 unsigned NumElts = (SameTypeIt - IncIt);
12405 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at nodes ("
<< NumElts << ")\n"; } } while (false)
12406 << NumElts << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at nodes ("
<< NumElts << ")\n"; } } while (false)
;
12407 // The vectorization is a 3-state attempt:
12408 // 1. Try to vectorize instructions with the same/alternate opcodes with the
12409 // size of maximal register at first.
12410 // 2. Try to vectorize remaining instructions with the same type, if
12411 // possible. This may result in the better vectorization results rather than
12412 // if we try just to vectorize instructions with the same/alternate opcodes.
12413 // 3. Final attempt to try to vectorize all instructions with the
12414 // same/alternate ops only, this may result in some extra final
12415 // vectorization.
12416 if (NumElts > 1 &&
12417 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) {
12418 // Success start over because instructions might have been changed.
12419 Changed = true;
12420 } else if (NumElts < Limit(*IncIt) &&
12421 (Candidates.empty() ||
12422 Candidates.front()->getType() == (*IncIt)->getType())) {
12423 Candidates.append(IncIt, std::next(IncIt, NumElts));
12424 }
12425 // Final attempt to vectorize instructions with the same types.
12426 if (Candidates.size() > 1 &&
12427 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
12428 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) {
12429 // Success start over because instructions might have been changed.
12430 Changed = true;
12431 } else if (LimitForRegisterSize) {
12432 // Try to vectorize using small vectors.
12433 for (auto *It = Candidates.begin(), *End = Candidates.end();
12434 It != End;) {
12435 auto *SameTypeIt = It;
12436 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
12437 ++SameTypeIt;
12438 unsigned NumElts = (SameTypeIt - It);
12439 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts),
12440 /*LimitForRegisterSize=*/false))
12441 Changed = true;
12442 It = SameTypeIt;
12443 }
12444 }
12445 Candidates.clear();
12446 }
12447
12448 // Start over at the next instruction of a different type (or the end).
12449 IncIt = SameTypeIt;
12450 }
12451 return Changed;
12452}
12453
12454/// Compare two cmp instructions. If IsCompatibility is true, function returns
12455/// true if 2 cmps have same/swapped predicates and mos compatible corresponding
12456/// operands. If IsCompatibility is false, function implements strict weak
12457/// ordering relation between two cmp instructions, returning true if the first
12458/// instruction is "less" than the second, i.e. its predicate is less than the
12459/// predicate of the second or the operands IDs are less than the operands IDs
12460/// of the second cmp instruction.
12461template <bool IsCompatibility>
12462static bool compareCmp(Value *V, Value *V2, TargetLibraryInfo &TLI,
12463 function_ref<bool(Instruction *)> IsDeleted) {
12464 auto *CI1 = cast<CmpInst>(V);
12465 auto *CI2 = cast<CmpInst>(V2);
12466 if (IsDeleted(CI2) || !isValidElementType(CI2->getType()))
12467 return false;
12468 if (CI1->getOperand(0)->getType()->getTypeID() <
12469 CI2->getOperand(0)->getType()->getTypeID())
12470 return !IsCompatibility;
12471 if (CI1->getOperand(0)->getType()->getTypeID() >
12472 CI2->getOperand(0)->getType()->getTypeID())
12473 return false;
12474 CmpInst::Predicate Pred1 = CI1->getPredicate();
12475 CmpInst::Predicate Pred2 = CI2->getPredicate();
12476 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
12477 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
12478 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
12479 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
12480 if (BasePred1 < BasePred2)
12481 return !IsCompatibility;
12482 if (BasePred1 > BasePred2)
12483 return false;
12484 // Compare operands.
12485 bool LEPreds = Pred1 <= Pred2;
12486 bool GEPreds = Pred1 >= Pred2;
12487 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
12488 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1);
12489 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1);
12490 if (Op1->getValueID() < Op2->getValueID())
12491 return !IsCompatibility;
12492 if (Op1->getValueID() > Op2->getValueID())
12493 return false;
12494 if (auto *I1 = dyn_cast<Instruction>(Op1))
12495 if (auto *I2 = dyn_cast<Instruction>(Op2)) {
12496 if (I1->getParent() != I2->getParent())
12497 return false;
12498 InstructionsState S = getSameOpcode({I1, I2}, TLI);
12499 if (S.getOpcode())
12500 continue;
12501 return false;
12502 }
12503 }
12504 return IsCompatibility;
12505}
12506
12507bool SLPVectorizerPass::vectorizeSimpleInstructions(InstSetVector &Instructions,
12508 BasicBlock *BB, BoUpSLP &R,
12509 bool AtTerminator) {
12510 bool OpsChanged = false;
12511 SmallVector<Instruction *, 4> PostponedCmps;
12512 SmallVector<WeakTrackingVH> PostponedInsts;
12513 // pass1 - try to vectorize reductions only
12514 for (auto *I : reverse(Instructions)) {
12515 if (R.isDeleted(I))
12516 continue;
12517 if (isa<CmpInst>(I)) {
12518 PostponedCmps.push_back(I);
12519 continue;
12520 }
12521 OpsChanged |= vectorizeHorReduction(nullptr, I, BB, R, TTI, PostponedInsts);
12522 }
12523 // pass2 - try to match and vectorize a buildvector sequence.
12524 for (auto *I : reverse(Instructions)) {
12525 if (R.isDeleted(I) || isa<CmpInst>(I))
12526 continue;
12527 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) {
12528 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
12529 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) {
12530 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
12531 }
12532 }
12533 // Now try to vectorize postponed instructions.
12534 OpsChanged |= tryToVectorize(PostponedInsts, R);
12535
12536 if (AtTerminator) {
12537 // Try to find reductions first.
12538 for (Instruction *I : PostponedCmps) {
12539 if (R.isDeleted(I))
12540 continue;
12541 for (Value *Op : I->operands())
12542 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
12543 }
12544 // Try to vectorize operands as vector bundles.
12545 for (Instruction *I : PostponedCmps) {
12546 if (R.isDeleted(I))
12547 continue;
12548 OpsChanged |= tryToVectorize(I, R);
12549 }
12550 // Try to vectorize list of compares.
12551 // Sort by type, compare predicate, etc.
12552 auto CompareSorter = [&](Value *V, Value *V2) {
12553 return compareCmp<false>(V, V2, *TLI,
12554 [&R](Instruction *I) { return R.isDeleted(I); });
12555 };
12556
12557 auto AreCompatibleCompares = [&](Value *V1, Value *V2) {
12558 if (V1 == V2)
12559 return true;
12560 return compareCmp<true>(V1, V2, *TLI,
12561 [&R](Instruction *I) { return R.isDeleted(I); });
12562 };
12563 auto Limit = [&R](Value *V) {
12564 unsigned EltSize = R.getVectorElementSize(V);
12565 return std::max(2U, R.getMaxVecRegSize() / EltSize);
12566 };
12567
12568 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end());
12569 OpsChanged |= tryToVectorizeSequence<Value>(
12570 Vals, Limit, CompareSorter, AreCompatibleCompares,
12571 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
12572 // Exclude possible reductions from other blocks.
12573 bool ArePossiblyReducedInOtherBlock =
12574 any_of(Candidates, [](Value *V) {
12575 return any_of(V->users(), [V](User *U) {
12576 return isa<SelectInst>(U) &&
12577 cast<SelectInst>(U)->getParent() !=
12578 cast<Instruction>(V)->getParent();
12579 });
12580 });
12581 if (ArePossiblyReducedInOtherBlock)
12582 return false;
12583 return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
12584 },
12585 /*LimitForRegisterSize=*/true);
12586 Instructions.clear();
12587 } else {
12588 Instructions.clear();
12589 // Insert in reverse order since the PostponedCmps vector was filled in
12590 // reverse order.
12591 Instructions.insert(PostponedCmps.rbegin(), PostponedCmps.rend());
12592 }
12593 return OpsChanged;
12594}
12595
12596bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
12597 bool Changed = false;
12598 SmallVector<Value *, 4> Incoming;
12599 SmallPtrSet<Value *, 16> VisitedInstrs;
12600 // Maps phi nodes to the non-phi nodes found in the use tree for each phi
12601 // node. Allows better to identify the chains that can be vectorized in the
12602 // better way.
12603 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
12604 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
12605 assert(isValidElementType(V1->getType()) &&(static_cast <bool> (isValidElementType(V1->getType(
)) && isValidElementType(V2->getType()) &&
"Expected vectorizable types only.") ? void (0) : __assert_fail
("isValidElementType(V1->getType()) && isValidElementType(V2->getType()) && \"Expected vectorizable types only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12607, __extension__
__PRETTY_FUNCTION__))
12606 isValidElementType(V2->getType()) &&(static_cast <bool> (isValidElementType(V1->getType(
)) && isValidElementType(V2->getType()) &&
"Expected vectorizable types only.") ? void (0) : __assert_fail
("isValidElementType(V1->getType()) && isValidElementType(V2->getType()) && \"Expected vectorizable types only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12607, __extension__
__PRETTY_FUNCTION__))
12607 "Expected vectorizable types only.")(static_cast <bool> (isValidElementType(V1->getType(
)) && isValidElementType(V2->getType()) &&
"Expected vectorizable types only.") ? void (0) : __assert_fail
("isValidElementType(V1->getType()) && isValidElementType(V2->getType()) && \"Expected vectorizable types only.\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12607, __extension__
__PRETTY_FUNCTION__))
;
12608 // It is fine to compare type IDs here, since we expect only vectorizable
12609 // types, like ints, floats and pointers, we don't care about other type.
12610 if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
12611 return true;
12612 if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
12613 return false;
12614 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
12615 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
12616 if (Opcodes1.size() < Opcodes2.size())
12617 return true;
12618 if (Opcodes1.size() > Opcodes2.size())
12619 return false;
12620 Optional<bool> ConstOrder;
12621 for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
12622 // Undefs are compatible with any other value.
12623 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
12624 if (!ConstOrder)
12625 ConstOrder =
12626 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]);
12627 continue;
12628 }
12629 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
12630 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
12631 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
12632 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
12633 if (!NodeI1)
12634 return NodeI2 != nullptr;
12635 if (!NodeI2)
12636 return false;
12637 assert((NodeI1 == NodeI2) ==(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12639, __extension__
__PRETTY_FUNCTION__))
12638 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12639, __extension__
__PRETTY_FUNCTION__))
12639 "Different nodes should have different DFS numbers")(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12639, __extension__
__PRETTY_FUNCTION__))
;
12640 if (NodeI1 != NodeI2)
12641 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
12642 InstructionsState S = getSameOpcode({I1, I2}, *TLI);
12643 if (S.getOpcode())
12644 continue;
12645 return I1->getOpcode() < I2->getOpcode();
12646 }
12647 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) {
12648 if (!ConstOrder)
12649 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
12650 continue;
12651 }
12652 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
12653 return true;
12654 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
12655 return false;
12656 }
12657 return ConstOrder && *ConstOrder;
12658 };
12659 auto AreCompatiblePHIs = [&PHIToOpcodes, this](Value *V1, Value *V2) {
12660 if (V1 == V2)
12661 return true;
12662 if (V1->getType() != V2->getType())
12663 return false;
12664 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
12665 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
12666 if (Opcodes1.size() != Opcodes2.size())
12667 return false;
12668 for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
12669 // Undefs are compatible with any other value.
12670 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
12671 continue;
12672 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
12673 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
12674 if (I1->getParent() != I2->getParent())
12675 return false;
12676 InstructionsState S = getSameOpcode({I1, I2}, *TLI);
12677 if (S.getOpcode())
12678 continue;
12679 return false;
12680 }
12681 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
12682 continue;
12683 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
12684 return false;
12685 }
12686 return true;
12687 };
12688 auto Limit = [&R](Value *V) {
12689 unsigned EltSize = R.getVectorElementSize(V);
12690 return std::max(2U, R.getMaxVecRegSize() / EltSize);
12691 };
12692
12693 bool HaveVectorizedPhiNodes = false;
12694 do {
12695 // Collect the incoming values from the PHIs.
12696 Incoming.clear();
12697 for (Instruction &I : *BB) {
12698 PHINode *P = dyn_cast<PHINode>(&I);
12699 if (!P)
12700 break;
12701
12702 // No need to analyze deleted, vectorized and non-vectorizable
12703 // instructions.
12704 if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
12705 isValidElementType(P->getType()))
12706 Incoming.push_back(P);
12707 }
12708
12709 // Find the corresponding non-phi nodes for better matching when trying to
12710 // build the tree.
12711 for (Value *V : Incoming) {
12712 SmallVectorImpl<Value *> &Opcodes =
12713 PHIToOpcodes.try_emplace(V).first->getSecond();
12714 if (!Opcodes.empty())
12715 continue;
12716 SmallVector<Value *, 4> Nodes(1, V);
12717 SmallPtrSet<Value *, 4> Visited;
12718 while (!Nodes.empty()) {
12719 auto *PHI = cast<PHINode>(Nodes.pop_back_val());
12720 if (!Visited.insert(PHI).second)
12721 continue;
12722 for (Value *V : PHI->incoming_values()) {
12723 if (auto *PHI1 = dyn_cast<PHINode>((V))) {
12724 Nodes.push_back(PHI1);
12725 continue;
12726 }
12727 Opcodes.emplace_back(V);
12728 }
12729 }
12730 }
12731
12732 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
12733 Incoming, Limit, PHICompare, AreCompatiblePHIs,
12734 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
12735 return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
12736 },
12737 /*LimitForRegisterSize=*/true);
12738 Changed |= HaveVectorizedPhiNodes;
12739 VisitedInstrs.insert(Incoming.begin(), Incoming.end());
12740 } while (HaveVectorizedPhiNodes);
12741
12742 VisitedInstrs.clear();
12743
12744 InstSetVector PostProcessInstructions;
12745 SmallDenseSet<Instruction *, 4> KeyNodes;
12746 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
12747 // Skip instructions with scalable type. The num of elements is unknown at
12748 // compile-time for scalable type.
12749 if (isa<ScalableVectorType>(it->getType()))
12750 continue;
12751
12752 // Skip instructions marked for the deletion.
12753 if (R.isDeleted(&*it))
12754 continue;
12755 // We may go through BB multiple times so skip the one we have checked.
12756 if (!VisitedInstrs.insert(&*it).second) {
12757 if (it->use_empty() && KeyNodes.contains(&*it) &&
12758 vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
12759 it->isTerminator())) {
12760 // We would like to start over since some instructions are deleted
12761 // and the iterator may become invalid value.
12762 Changed = true;
12763 it = BB->begin();
12764 e = BB->end();
12765 }
12766 continue;
12767 }
12768
12769 if (isa<DbgInfoIntrinsic>(it))
12770 continue;
12771
12772 // Try to vectorize reductions that use PHINodes.
12773 if (PHINode *P = dyn_cast<PHINode>(it)) {
12774 // Check that the PHI is a reduction PHI.
12775 if (P->getNumIncomingValues() == 2) {
12776 // Try to match and vectorize a horizontal reduction.
12777 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
12778 TTI)) {
12779 Changed = true;
12780 it = BB->begin();
12781 e = BB->end();
12782 continue;
12783 }
12784 }
12785 // Try to vectorize the incoming values of the PHI, to catch reductions
12786 // that feed into PHIs.
12787 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
12788 // Skip if the incoming block is the current BB for now. Also, bypass
12789 // unreachable IR for efficiency and to avoid crashing.
12790 // TODO: Collect the skipped incoming values and try to vectorize them
12791 // after processing BB.
12792 if (BB == P->getIncomingBlock(I) ||
12793 !DT->isReachableFromEntry(P->getIncomingBlock(I)))
12794 continue;
12795
12796 // Postponed instructions should not be vectorized here, delay their
12797 // vectorization.
12798 if (auto *PI = dyn_cast<Instruction>(P->getIncomingValue(I));
12799 PI && !PostProcessInstructions.contains(PI))
12800 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
12801 P->getIncomingBlock(I), R, TTI);
12802 }
12803 continue;
12804 }
12805
12806 // Ran into an instruction without users, like terminator, or function call
12807 // with ignored return value, store. Ignore unused instructions (basing on
12808 // instruction type, except for CallInst and InvokeInst).
12809 if (it->use_empty() &&
12810 (it->getType()->isVoidTy() || isa<CallInst, InvokeInst>(it))) {
12811 KeyNodes.insert(&*it);
12812 bool OpsChanged = false;
12813 auto *SI = dyn_cast<StoreInst>(it);
12814 bool TryToVectorizeRoot = ShouldStartVectorizeHorAtStore || !SI;
12815 if (SI) {
12816 auto I = Stores.find(getUnderlyingObject(SI->getPointerOperand()));
12817 // Try to vectorize chain in store, if this is the only store to the
12818 // address in the block.
12819 // TODO: This is just a temporarily solution to save compile time. Need
12820 // to investigate if we can safely turn on slp-vectorize-hor-store
12821 // instead to allow lookup for reduction chains in all non-vectorized
12822 // stores (need to check side effects and compile time).
12823 TryToVectorizeRoot = (I == Stores.end() || I->second.size() == 1) &&
12824 SI->getValueOperand()->hasOneUse();
12825 }
12826 if (TryToVectorizeRoot) {
12827 for (auto *V : it->operand_values()) {
12828 // Postponed instructions should not be vectorized here, delay their
12829 // vectorization.
12830 if (auto *VI = dyn_cast<Instruction>(V);
12831 VI && !PostProcessInstructions.contains(VI))
12832 // Try to match and vectorize a horizontal reduction.
12833 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
12834 }
12835 }
12836 // Start vectorization of post-process list of instructions from the
12837 // top-tree instructions to try to vectorize as many instructions as
12838 // possible.
12839 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
12840 it->isTerminator());
12841 if (OpsChanged) {
12842 // We would like to start over since some instructions are deleted
12843 // and the iterator may become invalid value.
12844 Changed = true;
12845 it = BB->begin();
12846 e = BB->end();
12847 continue;
12848 }
12849 }
12850
12851 if (isa<CmpInst, InsertElementInst, InsertValueInst>(it))
12852 PostProcessInstructions.insert(&*it);
12853 }
12854
12855 return Changed;
12856}
12857
12858bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
12859 auto Changed = false;
12860 for (auto &Entry : GEPs) {
12861 // If the getelementptr list has fewer than two elements, there's nothing
12862 // to do.
12863 if (Entry.second.size() < 2)
12864 continue;
12865
12866 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
12867 << Entry.second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
;
12868
12869 // Process the GEP list in chunks suitable for the target's supported
12870 // vector size. If a vector register can't hold 1 element, we are done. We
12871 // are trying to vectorize the index computations, so the maximum number of
12872 // elements is based on the size of the index expression, rather than the
12873 // size of the GEP itself (the target's pointer size).
12874 unsigned MaxVecRegSize = R.getMaxVecRegSize();
12875 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
12876 if (MaxVecRegSize < EltSize)
12877 continue;
12878
12879 unsigned MaxElts = MaxVecRegSize / EltSize;
12880 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
12881 auto Len = std::min<unsigned>(BE - BI, MaxElts);
12882 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
12883
12884 // Initialize a set a candidate getelementptrs. Note that we use a
12885 // SetVector here to preserve program order. If the index computations
12886 // are vectorizable and begin with loads, we want to minimize the chance
12887 // of having to reorder them later.
12888 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
12889
12890 // Some of the candidates may have already been vectorized after we
12891 // initially collected them. If so, they are marked as deleted, so remove
12892 // them from the set of candidates.
12893 Candidates.remove_if(
12894 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
12895
12896 // Remove from the set of candidates all pairs of getelementptrs with
12897 // constant differences. Such getelementptrs are likely not good
12898 // candidates for vectorization in a bottom-up phase since one can be
12899 // computed from the other. We also ensure all candidate getelementptr
12900 // indices are unique.
12901 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
12902 auto *GEPI = GEPList[I];
12903 if (!Candidates.count(GEPI))
12904 continue;
12905 auto *SCEVI = SE->getSCEV(GEPList[I]);
12906 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
12907 auto *GEPJ = GEPList[J];
12908 auto *SCEVJ = SE->getSCEV(GEPList[J]);
12909 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
12910 Candidates.remove(GEPI);
12911 Candidates.remove(GEPJ);
12912 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
12913 Candidates.remove(GEPJ);
12914 }
12915 }
12916 }
12917
12918 // We break out of the above computation as soon as we know there are
12919 // fewer than two candidates remaining.
12920 if (Candidates.size() < 2)
12921 continue;
12922
12923 // Add the single, non-constant index of each candidate to the bundle. We
12924 // ensured the indices met these constraints when we originally collected
12925 // the getelementptrs.
12926 SmallVector<Value *, 16> Bundle(Candidates.size());
12927 auto BundleIndex = 0u;
12928 for (auto *V : Candidates) {
12929 auto *GEP = cast<GetElementPtrInst>(V);
12930 auto *GEPIdx = GEP->idx_begin()->get();
12931 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx))(static_cast <bool> (GEP->getNumIndices() == 1 || !isa
<Constant>(GEPIdx)) ? void (0) : __assert_fail ("GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)"
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12931, __extension__
__PRETTY_FUNCTION__))
;
12932 Bundle[BundleIndex++] = GEPIdx;
12933 }
12934
12935 // Try and vectorize the indices. We are currently only interested in
12936 // gather-like cases of the form:
12937 //
12938 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
12939 //
12940 // where the loads of "a", the loads of "b", and the subtractions can be
12941 // performed in parallel. It's likely that detecting this pattern in a
12942 // bottom-up phase will be simpler and less costly than building a
12943 // full-blown top-down phase beginning at the consecutive loads.
12944 Changed |= tryToVectorizeList(Bundle, R);
12945 }
12946 }
12947 return Changed;
12948}
12949
12950bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
12951 bool Changed = false;
12952 // Sort by type, base pointers and values operand. Value operands must be
12953 // compatible (have the same opcode, same parent), otherwise it is
12954 // definitely not profitable to try to vectorize them.
12955 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
12956 if (V->getPointerOperandType()->getTypeID() <
12957 V2->getPointerOperandType()->getTypeID())
12958 return true;
12959 if (V->getPointerOperandType()->getTypeID() >
12960 V2->getPointerOperandType()->getTypeID())
12961 return false;
12962 // UndefValues are compatible with all other values.
12963 if (isa<UndefValue>(V->getValueOperand()) ||
12964 isa<UndefValue>(V2->getValueOperand()))
12965 return false;
12966 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
12967 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
12968 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
12969 DT->getNode(I1->getParent());
12970 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
12971 DT->getNode(I2->getParent());
12972 assert(NodeI1 && "Should only process reachable instructions")(static_cast <bool> (NodeI1 && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeI1 && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12972, __extension__
__PRETTY_FUNCTION__))
;
12973 assert(NodeI2 && "Should only process reachable instructions")(static_cast <bool> (NodeI2 && "Should only process reachable instructions"
) ? void (0) : __assert_fail ("NodeI2 && \"Should only process reachable instructions\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12973, __extension__
__PRETTY_FUNCTION__))
;
12974 assert((NodeI1 == NodeI2) ==(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12976, __extension__
__PRETTY_FUNCTION__))
12975 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12976, __extension__
__PRETTY_FUNCTION__))
12976 "Different nodes should have different DFS numbers")(static_cast <bool> ((NodeI1 == NodeI2) == (NodeI1->
getDFSNumIn() == NodeI2->getDFSNumIn()) && "Different nodes should have different DFS numbers"
) ? void (0) : __assert_fail ("(NodeI1 == NodeI2) == (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && \"Different nodes should have different DFS numbers\""
, "llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp", 12976, __extension__
__PRETTY_FUNCTION__))
;
12977 if (NodeI1 != NodeI2)
12978 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
12979 InstructionsState S = getSameOpcode({I1, I2}, *TLI);
12980 if (S.getOpcode())
12981 return false;
12982 return I1->getOpcode() < I2->getOpcode();
12983 }
12984 if (isa<Constant>(V->getValueOperand()) &&
12985 isa<Constant>(V2->getValueOperand()))
12986 return false;
12987 return V->getValueOperand()->getValueID() <
12988 V2->getValueOperand()->getValueID();
12989 };
12990
12991 auto &&AreCompatibleStores = [this](StoreInst *V1, StoreInst *V2) {
12992 if (V1 == V2)
12993 return true;
12994 if (V1->getPointerOperandType() != V2->getPointerOperandType())
12995 return false;
12996 // Undefs are compatible with any other value.
12997 if (isa<UndefValue>(V1->getValueOperand()) ||
12998 isa<UndefValue>(V2->getValueOperand()))
12999 return true;
13000 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
13001 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
13002 if (I1->getParent() != I2->getParent())
13003 return false;
13004 InstructionsState S = getSameOpcode({I1, I2}, *TLI);
13005 return S.getOpcode() > 0;
13006 }
13007 if (isa<Constant>(V1->getValueOperand()) &&
13008 isa<Constant>(V2->getValueOperand()))
13009 return true;
13010 return V1->getValueOperand()->getValueID() ==
13011 V2->getValueOperand()->getValueID();
13012 };
13013 auto Limit = [&R, this](StoreInst *SI) {
13014 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
13015 return R.getMinVF(EltSize);
13016 };
13017
13018 // Attempt to sort and vectorize each of the store-groups.
13019 for (auto &Pair : Stores) {
13020 if (Pair.second.size() < 2)
13021 continue;
13022
13023 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Pair.second.size() << ".\n"; } } while (false
)
13024 << Pair.second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< Pair.second.size() << ".\n"; } } while (false
)
;
13025
13026 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
13027 continue;
13028
13029 Changed |= tryToVectorizeSequence<StoreInst>(
13030 Pair.second, Limit, StoreSorter, AreCompatibleStores,
13031 [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
13032 return vectorizeStores(Candidates, R);
13033 },
13034 /*LimitForRegisterSize=*/false);
13035 }
13036 return Changed;
13037}
13038
13039char SLPVectorizer::ID = 0;
13040
13041static const char lv_name[] = "SLP Vectorizer";
13042
13043INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)static void *initializeSLPVectorizerPassOnce(PassRegistry &
Registry) {
13044INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
13045INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
13046INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
13047INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
13048INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
13049INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)initializeDemandedBitsWrapperPassPass(Registry);
13050INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
13051INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)initializeInjectTLIMappingsLegacyPass(Registry);
13052INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo( lv_name, "slp-vectorizer", &
SLPVectorizer::ID, PassInfo::NormalCtor_t(callDefaultCtor<
SLPVectorizer>), false, false); Registry.registerPass(*PI,
true); return PI; } static llvm::once_flag InitializeSLPVectorizerPassFlag
; void llvm::initializeSLPVectorizerPass(PassRegistry &Registry
) { llvm::call_once(InitializeSLPVectorizerPassFlag, initializeSLPVectorizerPassOnce
, std::ref(Registry)); }
13053
13054Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }