| File: | build/source/clang/lib/StaticAnalyzer/Core/SValBuilder.cpp |
| Warning: | line 538, column 10 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines SValBuilder, the base class for all (complete) SValBuilder |
| 10 | // implementations. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" |
| 15 | #include "clang/AST/ASTContext.h" |
| 16 | #include "clang/AST/Decl.h" |
| 17 | #include "clang/AST/DeclCXX.h" |
| 18 | #include "clang/AST/ExprCXX.h" |
| 19 | #include "clang/AST/ExprObjC.h" |
| 20 | #include "clang/AST/Stmt.h" |
| 21 | #include "clang/AST/Type.h" |
| 22 | #include "clang/Analysis/AnalysisDeclContext.h" |
| 23 | #include "clang/Basic/LLVM.h" |
| 24 | #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" |
| 25 | #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" |
| 26 | #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h" |
| 27 | #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
| 28 | #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| 29 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| 30 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" |
| 31 | #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" |
| 32 | #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| 33 | #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" |
| 34 | #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h" |
| 35 | #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" |
| 36 | #include "llvm/ADT/APSInt.h" |
| 37 | #include "llvm/Support/Casting.h" |
| 38 | #include "llvm/Support/Compiler.h" |
| 39 | #include <cassert> |
| 40 | #include <optional> |
| 41 | #include <tuple> |
| 42 | |
| 43 | using namespace clang; |
| 44 | using namespace ento; |
| 45 | |
| 46 | //===----------------------------------------------------------------------===// |
| 47 | // Basic SVal creation. |
| 48 | //===----------------------------------------------------------------------===// |
| 49 | |
| 50 | void SValBuilder::anchor() {} |
| 51 | |
| 52 | SValBuilder::SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context, |
| 53 | ProgramStateManager &stateMgr) |
| 54 | : Context(context), BasicVals(context, alloc), |
| 55 | SymMgr(context, BasicVals, alloc), MemMgr(context, alloc), |
| 56 | StateMgr(stateMgr), |
| 57 | AnOpts( |
| 58 | stateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions()), |
| 59 | ArrayIndexTy(context.LongLongTy), |
| 60 | ArrayIndexWidth(context.getTypeSize(ArrayIndexTy)) {} |
| 61 | |
| 62 | DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) { |
| 63 | if (Loc::isLocType(type)) |
| 64 | return makeNullWithType(type); |
| 65 | |
| 66 | if (type->isIntegralOrEnumerationType()) |
| 67 | return makeIntVal(0, type); |
| 68 | |
| 69 | if (type->isArrayType() || type->isRecordType() || type->isVectorType() || |
| 70 | type->isAnyComplexType()) |
| 71 | return makeCompoundVal(type, BasicVals.getEmptySValList()); |
| 72 | |
| 73 | // FIXME: Handle floats. |
| 74 | return UnknownVal(); |
| 75 | } |
| 76 | |
| 77 | nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs, |
| 78 | BinaryOperator::Opcode op, |
| 79 | const llvm::APSInt &rhs, |
| 80 | QualType type) { |
| 81 | // The Environment ensures we always get a persistent APSInt in |
| 82 | // BasicValueFactory, so we don't need to get the APSInt from |
| 83 | // BasicValueFactory again. |
| 84 | assert(lhs)(static_cast <bool> (lhs) ? void (0) : __assert_fail ("lhs" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 84, __extension__ __PRETTY_FUNCTION__)); |
| 85 | assert(!Loc::isLocType(type))(static_cast <bool> (!Loc::isLocType(type)) ? void (0) : __assert_fail ("!Loc::isLocType(type)", "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp" , 85, __extension__ __PRETTY_FUNCTION__)); |
| 86 | return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type)); |
| 87 | } |
| 88 | |
| 89 | nonloc::SymbolVal SValBuilder::makeNonLoc(const llvm::APSInt &lhs, |
| 90 | BinaryOperator::Opcode op, |
| 91 | const SymExpr *rhs, QualType type) { |
| 92 | assert(rhs)(static_cast <bool> (rhs) ? void (0) : __assert_fail ("rhs" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 92, __extension__ __PRETTY_FUNCTION__)); |
| 93 | assert(!Loc::isLocType(type))(static_cast <bool> (!Loc::isLocType(type)) ? void (0) : __assert_fail ("!Loc::isLocType(type)", "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp" , 93, __extension__ __PRETTY_FUNCTION__)); |
| 94 | return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type)); |
| 95 | } |
| 96 | |
| 97 | nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs, |
| 98 | BinaryOperator::Opcode op, |
| 99 | const SymExpr *rhs, QualType type) { |
| 100 | assert(lhs && rhs)(static_cast <bool> (lhs && rhs) ? void (0) : __assert_fail ("lhs && rhs", "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp" , 100, __extension__ __PRETTY_FUNCTION__)); |
| 101 | assert(!Loc::isLocType(type))(static_cast <bool> (!Loc::isLocType(type)) ? void (0) : __assert_fail ("!Loc::isLocType(type)", "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp" , 101, __extension__ __PRETTY_FUNCTION__)); |
| 102 | return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type)); |
| 103 | } |
| 104 | |
| 105 | NonLoc SValBuilder::makeNonLoc(const SymExpr *operand, UnaryOperator::Opcode op, |
| 106 | QualType type) { |
| 107 | assert(operand)(static_cast <bool> (operand) ? void (0) : __assert_fail ("operand", "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 107, __extension__ __PRETTY_FUNCTION__)); |
| 108 | assert(!Loc::isLocType(type))(static_cast <bool> (!Loc::isLocType(type)) ? void (0) : __assert_fail ("!Loc::isLocType(type)", "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp" , 108, __extension__ __PRETTY_FUNCTION__)); |
| 109 | return nonloc::SymbolVal(SymMgr.getUnarySymExpr(operand, op, type)); |
| 110 | } |
| 111 | |
| 112 | nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *operand, |
| 113 | QualType fromTy, QualType toTy) { |
| 114 | assert(operand)(static_cast <bool> (operand) ? void (0) : __assert_fail ("operand", "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 114, __extension__ __PRETTY_FUNCTION__)); |
| 115 | assert(!Loc::isLocType(toTy))(static_cast <bool> (!Loc::isLocType(toTy)) ? void (0) : __assert_fail ("!Loc::isLocType(toTy)", "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp" , 115, __extension__ __PRETTY_FUNCTION__)); |
| 116 | if (fromTy == toTy) |
| 117 | return operand; |
| 118 | return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy)); |
| 119 | } |
| 120 | |
| 121 | SVal SValBuilder::convertToArrayIndex(SVal val) { |
| 122 | if (val.isUnknownOrUndef()) |
| 123 | return val; |
| 124 | |
| 125 | // Common case: we have an appropriately sized integer. |
| 126 | if (std::optional<nonloc::ConcreteInt> CI = |
| 127 | val.getAs<nonloc::ConcreteInt>()) { |
| 128 | const llvm::APSInt& I = CI->getValue(); |
| 129 | if (I.getBitWidth() == ArrayIndexWidth && I.isSigned()) |
| 130 | return val; |
| 131 | } |
| 132 | |
| 133 | return evalCast(val, ArrayIndexTy, QualType{}); |
| 134 | } |
| 135 | |
| 136 | nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){ |
| 137 | return makeTruthVal(boolean->getValue()); |
| 138 | } |
| 139 | |
| 140 | DefinedOrUnknownSVal |
| 141 | SValBuilder::getRegionValueSymbolVal(const TypedValueRegion *region) { |
| 142 | QualType T = region->getValueType(); |
| 143 | |
| 144 | if (T->isNullPtrType()) |
| 145 | return makeZeroVal(T); |
| 146 | |
| 147 | if (!SymbolManager::canSymbolicate(T)) |
| 148 | return UnknownVal(); |
| 149 | |
| 150 | SymbolRef sym = SymMgr.getRegionValueSymbol(region); |
| 151 | |
| 152 | if (Loc::isLocType(T)) |
| 153 | return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| 154 | |
| 155 | return nonloc::SymbolVal(sym); |
| 156 | } |
| 157 | |
| 158 | DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag, |
| 159 | const Expr *Ex, |
| 160 | const LocationContext *LCtx, |
| 161 | unsigned Count) { |
| 162 | QualType T = Ex->getType(); |
| 163 | |
| 164 | if (T->isNullPtrType()) |
| 165 | return makeZeroVal(T); |
| 166 | |
| 167 | // Compute the type of the result. If the expression is not an R-value, the |
| 168 | // result should be a location. |
| 169 | QualType ExType = Ex->getType(); |
| 170 | if (Ex->isGLValue()) |
| 171 | T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType); |
| 172 | |
| 173 | return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count); |
| 174 | } |
| 175 | |
| 176 | DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag, |
| 177 | const Expr *expr, |
| 178 | const LocationContext *LCtx, |
| 179 | QualType type, |
| 180 | unsigned count) { |
| 181 | if (type->isNullPtrType()) |
| 182 | return makeZeroVal(type); |
| 183 | |
| 184 | if (!SymbolManager::canSymbolicate(type)) |
| 185 | return UnknownVal(); |
| 186 | |
| 187 | SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag); |
| 188 | |
| 189 | if (Loc::isLocType(type)) |
| 190 | return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| 191 | |
| 192 | return nonloc::SymbolVal(sym); |
| 193 | } |
| 194 | |
| 195 | DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt, |
| 196 | const LocationContext *LCtx, |
| 197 | QualType type, |
| 198 | unsigned visitCount) { |
| 199 | if (type->isNullPtrType()) |
| 200 | return makeZeroVal(type); |
| 201 | |
| 202 | if (!SymbolManager::canSymbolicate(type)) |
| 203 | return UnknownVal(); |
| 204 | |
| 205 | SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount); |
| 206 | |
| 207 | if (Loc::isLocType(type)) |
| 208 | return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| 209 | |
| 210 | return nonloc::SymbolVal(sym); |
| 211 | } |
| 212 | |
| 213 | DefinedOrUnknownSVal |
| 214 | SValBuilder::getConjuredHeapSymbolVal(const Expr *E, |
| 215 | const LocationContext *LCtx, |
| 216 | unsigned VisitCount) { |
| 217 | QualType T = E->getType(); |
| 218 | return getConjuredHeapSymbolVal(E, LCtx, T, VisitCount); |
| 219 | } |
| 220 | |
| 221 | DefinedOrUnknownSVal |
| 222 | SValBuilder::getConjuredHeapSymbolVal(const Expr *E, |
| 223 | const LocationContext *LCtx, |
| 224 | QualType type, unsigned VisitCount) { |
| 225 | assert(Loc::isLocType(type))(static_cast <bool> (Loc::isLocType(type)) ? void (0) : __assert_fail ("Loc::isLocType(type)", "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp" , 225, __extension__ __PRETTY_FUNCTION__)); |
| 226 | assert(SymbolManager::canSymbolicate(type))(static_cast <bool> (SymbolManager::canSymbolicate(type )) ? void (0) : __assert_fail ("SymbolManager::canSymbolicate(type)" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 226, __extension__ __PRETTY_FUNCTION__)); |
| 227 | if (type->isNullPtrType()) |
| 228 | return makeZeroVal(type); |
| 229 | |
| 230 | SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, type, VisitCount); |
| 231 | return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym)); |
| 232 | } |
| 233 | |
| 234 | DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag, |
| 235 | const MemRegion *region, |
| 236 | const Expr *expr, QualType type, |
| 237 | const LocationContext *LCtx, |
| 238 | unsigned count) { |
| 239 | assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type")(static_cast <bool> (SymbolManager::canSymbolicate(type ) && "Invalid metadata symbol type") ? void (0) : __assert_fail ("SymbolManager::canSymbolicate(type) && \"Invalid metadata symbol type\"" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 239, __extension__ __PRETTY_FUNCTION__)); |
| 240 | |
| 241 | SymbolRef sym = |
| 242 | SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag); |
| 243 | |
| 244 | if (Loc::isLocType(type)) |
| 245 | return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| 246 | |
| 247 | return nonloc::SymbolVal(sym); |
| 248 | } |
| 249 | |
| 250 | DefinedOrUnknownSVal |
| 251 | SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol, |
| 252 | const TypedValueRegion *region) { |
| 253 | QualType T = region->getValueType(); |
| 254 | |
| 255 | if (T->isNullPtrType()) |
| 256 | return makeZeroVal(T); |
| 257 | |
| 258 | if (!SymbolManager::canSymbolicate(T)) |
| 259 | return UnknownVal(); |
| 260 | |
| 261 | SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region); |
| 262 | |
| 263 | if (Loc::isLocType(T)) |
| 264 | return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); |
| 265 | |
| 266 | return nonloc::SymbolVal(sym); |
| 267 | } |
| 268 | |
| 269 | DefinedSVal SValBuilder::getMemberPointer(const NamedDecl *ND) { |
| 270 | assert(!ND || (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(ND)))(static_cast <bool> (!ND || (isa<CXXMethodDecl, FieldDecl , IndirectFieldDecl>(ND))) ? void (0) : __assert_fail ("!ND || (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(ND))" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 270, __extension__ __PRETTY_FUNCTION__)); |
| 271 | |
| 272 | if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(ND)) { |
| 273 | // Sema treats pointers to static member functions as have function pointer |
| 274 | // type, so return a function pointer for the method. |
| 275 | // We don't need to play a similar trick for static member fields |
| 276 | // because these are represented as plain VarDecls and not FieldDecls |
| 277 | // in the AST. |
| 278 | if (MD->isStatic()) |
| 279 | return getFunctionPointer(MD); |
| 280 | } |
| 281 | |
| 282 | return nonloc::PointerToMember(ND); |
| 283 | } |
| 284 | |
| 285 | DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) { |
| 286 | return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func)); |
| 287 | } |
| 288 | |
| 289 | DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block, |
| 290 | CanQualType locTy, |
| 291 | const LocationContext *locContext, |
| 292 | unsigned blockCount) { |
| 293 | const BlockCodeRegion *BC = |
| 294 | MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext()); |
| 295 | const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext, |
| 296 | blockCount); |
| 297 | return loc::MemRegionVal(BD); |
| 298 | } |
| 299 | |
| 300 | std::optional<loc::MemRegionVal> |
| 301 | SValBuilder::getCastedMemRegionVal(const MemRegion *R, QualType Ty) { |
| 302 | if (auto OptR = StateMgr.getStoreManager().castRegion(R, Ty)) |
| 303 | return loc::MemRegionVal(*OptR); |
| 304 | return std::nullopt; |
| 305 | } |
| 306 | |
| 307 | /// Return a memory region for the 'this' object reference. |
| 308 | loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D, |
| 309 | const StackFrameContext *SFC) { |
| 310 | return loc::MemRegionVal( |
| 311 | getRegionManager().getCXXThisRegion(D->getThisType(), SFC)); |
| 312 | } |
| 313 | |
| 314 | /// Return a memory region for the 'this' object reference. |
| 315 | loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D, |
| 316 | const StackFrameContext *SFC) { |
| 317 | const Type *T = D->getTypeForDecl(); |
| 318 | QualType PT = getContext().getPointerType(QualType(T, 0)); |
| 319 | return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC)); |
| 320 | } |
| 321 | |
| 322 | std::optional<SVal> SValBuilder::getConstantVal(const Expr *E) { |
| 323 | E = E->IgnoreParens(); |
| 324 | |
| 325 | switch (E->getStmtClass()) { |
| 326 | // Handle expressions that we treat differently from the AST's constant |
| 327 | // evaluator. |
| 328 | case Stmt::AddrLabelExprClass: |
| 329 | return makeLoc(cast<AddrLabelExpr>(E)); |
| 330 | |
| 331 | case Stmt::CXXScalarValueInitExprClass: |
| 332 | case Stmt::ImplicitValueInitExprClass: |
| 333 | return makeZeroVal(E->getType()); |
| 334 | |
| 335 | case Stmt::ObjCStringLiteralClass: { |
| 336 | const auto *SL = cast<ObjCStringLiteral>(E); |
| 337 | return makeLoc(getRegionManager().getObjCStringRegion(SL)); |
| 338 | } |
| 339 | |
| 340 | case Stmt::StringLiteralClass: { |
| 341 | const auto *SL = cast<StringLiteral>(E); |
| 342 | return makeLoc(getRegionManager().getStringRegion(SL)); |
| 343 | } |
| 344 | |
| 345 | case Stmt::PredefinedExprClass: { |
| 346 | const auto *PE = cast<PredefinedExpr>(E); |
| 347 | assert(PE->getFunctionName() &&(static_cast <bool> (PE->getFunctionName() && "Since we analyze only instantiated functions, PredefinedExpr " "should have a function name.") ? void (0) : __assert_fail ( "PE->getFunctionName() && \"Since we analyze only instantiated functions, PredefinedExpr \" \"should have a function name.\"" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 349, __extension__ __PRETTY_FUNCTION__)) |
| 348 | "Since we analyze only instantiated functions, PredefinedExpr "(static_cast <bool> (PE->getFunctionName() && "Since we analyze only instantiated functions, PredefinedExpr " "should have a function name.") ? void (0) : __assert_fail ( "PE->getFunctionName() && \"Since we analyze only instantiated functions, PredefinedExpr \" \"should have a function name.\"" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 349, __extension__ __PRETTY_FUNCTION__)) |
| 349 | "should have a function name.")(static_cast <bool> (PE->getFunctionName() && "Since we analyze only instantiated functions, PredefinedExpr " "should have a function name.") ? void (0) : __assert_fail ( "PE->getFunctionName() && \"Since we analyze only instantiated functions, PredefinedExpr \" \"should have a function name.\"" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 349, __extension__ __PRETTY_FUNCTION__)); |
| 350 | return makeLoc(getRegionManager().getStringRegion(PE->getFunctionName())); |
| 351 | } |
| 352 | |
| 353 | // Fast-path some expressions to avoid the overhead of going through the AST's |
| 354 | // constant evaluator |
| 355 | case Stmt::CharacterLiteralClass: { |
| 356 | const auto *C = cast<CharacterLiteral>(E); |
| 357 | return makeIntVal(C->getValue(), C->getType()); |
| 358 | } |
| 359 | |
| 360 | case Stmt::CXXBoolLiteralExprClass: |
| 361 | return makeBoolVal(cast<CXXBoolLiteralExpr>(E)); |
| 362 | |
| 363 | case Stmt::TypeTraitExprClass: { |
| 364 | const auto *TE = cast<TypeTraitExpr>(E); |
| 365 | return makeTruthVal(TE->getValue(), TE->getType()); |
| 366 | } |
| 367 | |
| 368 | case Stmt::IntegerLiteralClass: |
| 369 | return makeIntVal(cast<IntegerLiteral>(E)); |
| 370 | |
| 371 | case Stmt::ObjCBoolLiteralExprClass: |
| 372 | return makeBoolVal(cast<ObjCBoolLiteralExpr>(E)); |
| 373 | |
| 374 | case Stmt::CXXNullPtrLiteralExprClass: |
| 375 | return makeNullWithType(E->getType()); |
| 376 | |
| 377 | case Stmt::CStyleCastExprClass: |
| 378 | case Stmt::CXXFunctionalCastExprClass: |
| 379 | case Stmt::CXXConstCastExprClass: |
| 380 | case Stmt::CXXReinterpretCastExprClass: |
| 381 | case Stmt::CXXStaticCastExprClass: |
| 382 | case Stmt::ImplicitCastExprClass: { |
| 383 | const auto *CE = cast<CastExpr>(E); |
| 384 | switch (CE->getCastKind()) { |
| 385 | default: |
| 386 | break; |
| 387 | case CK_ArrayToPointerDecay: |
| 388 | case CK_IntegralToPointer: |
| 389 | case CK_NoOp: |
| 390 | case CK_BitCast: { |
| 391 | const Expr *SE = CE->getSubExpr(); |
| 392 | std::optional<SVal> Val = getConstantVal(SE); |
| 393 | if (!Val) |
| 394 | return std::nullopt; |
| 395 | return evalCast(*Val, CE->getType(), SE->getType()); |
| 396 | } |
| 397 | } |
| 398 | // FALLTHROUGH |
| 399 | [[fallthrough]]; |
| 400 | } |
| 401 | |
| 402 | // If we don't have a special case, fall back to the AST's constant evaluator. |
| 403 | default: { |
| 404 | // Don't try to come up with a value for materialized temporaries. |
| 405 | if (E->isGLValue()) |
| 406 | return std::nullopt; |
| 407 | |
| 408 | ASTContext &Ctx = getContext(); |
| 409 | Expr::EvalResult Result; |
| 410 | if (E->EvaluateAsInt(Result, Ctx)) |
| 411 | return makeIntVal(Result.Val.getInt()); |
| 412 | |
| 413 | if (Loc::isLocType(E->getType())) |
| 414 | if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) |
| 415 | return makeNullWithType(E->getType()); |
| 416 | |
| 417 | return std::nullopt; |
| 418 | } |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | SVal SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op, |
| 423 | NonLoc LHS, NonLoc RHS, |
| 424 | QualType ResultTy) { |
| 425 | SymbolRef symLHS = LHS.getAsSymbol(); |
| 426 | SymbolRef symRHS = RHS.getAsSymbol(); |
| 427 | |
| 428 | // TODO: When the Max Complexity is reached, we should conjure a symbol |
| 429 | // instead of generating an Unknown value and propagate the taint info to it. |
| 430 | const unsigned MaxComp = AnOpts.MaxSymbolComplexity; |
| 431 | |
| 432 | if (symLHS && symRHS && |
| 433 | (symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp) |
| 434 | return makeNonLoc(symLHS, Op, symRHS, ResultTy); |
| 435 | |
| 436 | if (symLHS && symLHS->computeComplexity() < MaxComp) |
| 437 | if (std::optional<nonloc::ConcreteInt> rInt = |
| 438 | RHS.getAs<nonloc::ConcreteInt>()) |
| 439 | return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy); |
| 440 | |
| 441 | if (symRHS && symRHS->computeComplexity() < MaxComp) |
| 442 | if (std::optional<nonloc::ConcreteInt> lInt = |
| 443 | LHS.getAs<nonloc::ConcreteInt>()) |
| 444 | return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy); |
| 445 | |
| 446 | return UnknownVal(); |
| 447 | } |
| 448 | |
| 449 | SVal SValBuilder::evalMinus(NonLoc X) { |
| 450 | switch (X.getSubKind()) { |
| 451 | case nonloc::ConcreteIntKind: |
| 452 | return makeIntVal(-X.castAs<nonloc::ConcreteInt>().getValue()); |
| 453 | case nonloc::SymbolValKind: |
| 454 | return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Minus, |
| 455 | X.getType(Context)); |
| 456 | default: |
| 457 | return UnknownVal(); |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | SVal SValBuilder::evalComplement(NonLoc X) { |
| 462 | switch (X.getSubKind()) { |
| 463 | case nonloc::ConcreteIntKind: |
| 464 | return makeIntVal(~X.castAs<nonloc::ConcreteInt>().getValue()); |
| 465 | case nonloc::SymbolValKind: |
| 466 | return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Not, |
| 467 | X.getType(Context)); |
| 468 | default: |
| 469 | return UnknownVal(); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | SVal SValBuilder::evalUnaryOp(ProgramStateRef state, UnaryOperator::Opcode opc, |
| 474 | SVal operand, QualType type) { |
| 475 | auto OpN = operand.getAs<NonLoc>(); |
| 476 | if (!OpN) |
| 477 | return UnknownVal(); |
| 478 | |
| 479 | if (opc == UO_Minus) |
| 480 | return evalMinus(*OpN); |
| 481 | if (opc == UO_Not) |
| 482 | return evalComplement(*OpN); |
| 483 | llvm_unreachable("Unexpected unary operator")::llvm::llvm_unreachable_internal("Unexpected unary operator" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 483); |
| 484 | } |
| 485 | |
| 486 | SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op, |
| 487 | SVal lhs, SVal rhs, QualType type) { |
| 488 | if (lhs.isUndef() || rhs.isUndef()) |
| 489 | return UndefinedVal(); |
| 490 | |
| 491 | if (lhs.isUnknown() || rhs.isUnknown()) |
| 492 | return UnknownVal(); |
| 493 | |
| 494 | if (isa<nonloc::LazyCompoundVal>(lhs) || isa<nonloc::LazyCompoundVal>(rhs)) { |
| 495 | return UnknownVal(); |
| 496 | } |
| 497 | |
| 498 | if (op == BinaryOperatorKind::BO_Cmp) { |
| 499 | // We can't reason about C++20 spaceship operator yet. |
| 500 | // |
| 501 | // FIXME: Support C++20 spaceship operator. |
| 502 | // The main problem here is that the result is not integer. |
| 503 | return UnknownVal(); |
| 504 | } |
| 505 | |
| 506 | if (std::optional<Loc> LV = lhs.getAs<Loc>()) { |
| 507 | if (std::optional<Loc> RV = rhs.getAs<Loc>()) |
| 508 | return evalBinOpLL(state, op, *LV, *RV, type); |
| 509 | |
| 510 | return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type); |
| 511 | } |
| 512 | |
| 513 | if (const std::optional<Loc> RV = rhs.getAs<Loc>()) { |
| 514 | const auto IsCommutative = [](BinaryOperatorKind Op) { |
| 515 | return Op == BO_Mul || Op == BO_Add || Op == BO_And || Op == BO_Xor || |
| 516 | Op == BO_Or; |
| 517 | }; |
| 518 | |
| 519 | if (IsCommutative(op)) { |
| 520 | // Swap operands. |
| 521 | return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type); |
| 522 | } |
| 523 | |
| 524 | // If the right operand is a concrete int location then we have nothing |
| 525 | // better but to treat it as a simple nonloc. |
| 526 | if (auto RV = rhs.getAs<loc::ConcreteInt>()) { |
| 527 | const nonloc::ConcreteInt RhsAsLoc = makeIntVal(RV->getValue()); |
| 528 | return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), RhsAsLoc, type); |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(), |
| 533 | type); |
| 534 | } |
| 535 | |
| 536 | ConditionTruthVal SValBuilder::areEqual(ProgramStateRef state, SVal lhs, |
| 537 | SVal rhs) { |
| 538 | return state->isNonNull(evalEQ(state, lhs, rhs)); |
Called C++ object pointer is null | |
| 539 | } |
| 540 | |
| 541 | SVal SValBuilder::evalEQ(ProgramStateRef state, SVal lhs, SVal rhs) { |
| 542 | return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType()); |
| 543 | } |
| 544 | |
| 545 | DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state, |
| 546 | DefinedOrUnknownSVal lhs, |
| 547 | DefinedOrUnknownSVal rhs) { |
| 548 | return evalEQ(state, static_cast<SVal>(lhs), static_cast<SVal>(rhs)) |
| 549 | .castAs<DefinedOrUnknownSVal>(); |
| 550 | } |
| 551 | |
| 552 | /// Recursively check if the pointer types are equal modulo const, volatile, |
| 553 | /// and restrict qualifiers. Also, assume that all types are similar to 'void'. |
| 554 | /// Assumes the input types are canonical. |
| 555 | static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy, |
| 556 | QualType FromTy) { |
| 557 | while (Context.UnwrapSimilarTypes(ToTy, FromTy)) { |
| 558 | Qualifiers Quals1, Quals2; |
| 559 | ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1); |
| 560 | FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2); |
| 561 | |
| 562 | // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address |
| 563 | // spaces) are identical. |
| 564 | Quals1.removeCVRQualifiers(); |
| 565 | Quals2.removeCVRQualifiers(); |
| 566 | if (Quals1 != Quals2) |
| 567 | return false; |
| 568 | } |
| 569 | |
| 570 | // If we are casting to void, the 'From' value can be used to represent the |
| 571 | // 'To' value. |
| 572 | // |
| 573 | // FIXME: Doing this after unwrapping the types doesn't make any sense. A |
| 574 | // cast from 'int**' to 'void**' is not special in the way that a cast from |
| 575 | // 'int*' to 'void*' is. |
| 576 | if (ToTy->isVoidType()) |
| 577 | return true; |
| 578 | |
| 579 | if (ToTy != FromTy) |
| 580 | return false; |
| 581 | |
| 582 | return true; |
| 583 | } |
| 584 | |
| 585 | // Handles casts of type CK_IntegralCast. |
| 586 | // At the moment, this function will redirect to evalCast, except when the range |
| 587 | // of the original value is known to be greater than the max of the target type. |
| 588 | SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val, |
| 589 | QualType castTy, QualType originalTy) { |
| 590 | // No truncations if target type is big enough. |
| 591 | if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy)) |
| 592 | return evalCast(val, castTy, originalTy); |
| 593 | |
| 594 | SymbolRef se = val.getAsSymbol(); |
| 595 | if (!se) // Let evalCast handle non symbolic expressions. |
| 596 | return evalCast(val, castTy, originalTy); |
| 597 | |
| 598 | // Find the maximum value of the target type. |
| 599 | APSIntType ToType(getContext().getTypeSize(castTy), |
| 600 | castTy->isUnsignedIntegerType()); |
| 601 | llvm::APSInt ToTypeMax = ToType.getMaxValue(); |
| 602 | NonLoc ToTypeMaxVal = |
| 603 | makeIntVal(ToTypeMax.isUnsigned() ? ToTypeMax.getZExtValue() |
| 604 | : ToTypeMax.getSExtValue(), |
| 605 | castTy) |
| 606 | .castAs<NonLoc>(); |
| 607 | // Check the range of the symbol being casted against the maximum value of the |
| 608 | // target type. |
| 609 | NonLoc FromVal = val.castAs<NonLoc>(); |
| 610 | QualType CmpTy = getConditionType(); |
| 611 | NonLoc CompVal = |
| 612 | evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>(); |
| 613 | ProgramStateRef IsNotTruncated, IsTruncated; |
| 614 | std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal); |
| 615 | if (!IsNotTruncated && IsTruncated) { |
| 616 | // Symbol is truncated so we evaluate it as a cast. |
| 617 | return makeNonLoc(se, originalTy, castTy); |
| 618 | } |
| 619 | return evalCast(val, castTy, originalTy); |
| 620 | } |
| 621 | |
| 622 | //===----------------------------------------------------------------------===// |
| 623 | // Cast method. |
| 624 | // `evalCast` and its helper `EvalCastVisitor` |
| 625 | //===----------------------------------------------------------------------===// |
| 626 | |
| 627 | namespace { |
| 628 | class EvalCastVisitor : public SValVisitor<EvalCastVisitor, SVal> { |
| 629 | private: |
| 630 | SValBuilder &VB; |
| 631 | ASTContext &Context; |
| 632 | QualType CastTy, OriginalTy; |
| 633 | |
| 634 | public: |
| 635 | EvalCastVisitor(SValBuilder &VB, QualType CastTy, QualType OriginalTy) |
| 636 | : VB(VB), Context(VB.getContext()), CastTy(CastTy), |
| 637 | OriginalTy(OriginalTy) {} |
| 638 | |
| 639 | SVal Visit(SVal V) { |
| 640 | if (CastTy.isNull()) |
| 641 | return V; |
| 642 | |
| 643 | CastTy = Context.getCanonicalType(CastTy); |
| 644 | |
| 645 | const bool IsUnknownOriginalType = OriginalTy.isNull(); |
| 646 | if (!IsUnknownOriginalType) { |
| 647 | OriginalTy = Context.getCanonicalType(OriginalTy); |
| 648 | |
| 649 | if (CastTy == OriginalTy) |
| 650 | return V; |
| 651 | |
| 652 | // FIXME: Move this check to the most appropriate |
| 653 | // evalCastKind/evalCastSubKind function. For const casts, casts to void, |
| 654 | // just propagate the value. |
| 655 | if (!CastTy->isVariableArrayType() && !OriginalTy->isVariableArrayType()) |
| 656 | if (shouldBeModeledWithNoOp(Context, Context.getPointerType(CastTy), |
| 657 | Context.getPointerType(OriginalTy))) |
| 658 | return V; |
| 659 | } |
| 660 | return SValVisitor::Visit(V); |
| 661 | } |
| 662 | SVal VisitUndefinedVal(UndefinedVal V) { return V; } |
| 663 | SVal VisitUnknownVal(UnknownVal V) { return V; } |
| 664 | SVal VisitLocConcreteInt(loc::ConcreteInt V) { |
| 665 | // Pointer to bool. |
| 666 | if (CastTy->isBooleanType()) |
| 667 | return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy); |
| 668 | |
| 669 | // Pointer to integer. |
| 670 | if (CastTy->isIntegralOrEnumerationType()) { |
| 671 | llvm::APSInt Value = V.getValue(); |
| 672 | VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value); |
| 673 | return VB.makeIntVal(Value); |
| 674 | } |
| 675 | |
| 676 | // Pointer to any pointer. |
| 677 | if (Loc::isLocType(CastTy)) { |
| 678 | llvm::APSInt Value = V.getValue(); |
| 679 | VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value); |
| 680 | return loc::ConcreteInt(VB.getBasicValueFactory().getValue(Value)); |
| 681 | } |
| 682 | |
| 683 | // Pointer to whatever else. |
| 684 | return UnknownVal(); |
| 685 | } |
| 686 | SVal VisitLocGotoLabel(loc::GotoLabel V) { |
| 687 | // Pointer to bool. |
| 688 | if (CastTy->isBooleanType()) |
| 689 | // Labels are always true. |
| 690 | return VB.makeTruthVal(true, CastTy); |
| 691 | |
| 692 | // Pointer to integer. |
| 693 | if (CastTy->isIntegralOrEnumerationType()) { |
| 694 | const unsigned BitWidth = Context.getIntWidth(CastTy); |
| 695 | return VB.makeLocAsInteger(V, BitWidth); |
| 696 | } |
| 697 | |
| 698 | const bool IsUnknownOriginalType = OriginalTy.isNull(); |
| 699 | if (!IsUnknownOriginalType) { |
| 700 | // Array to pointer. |
| 701 | if (isa<ArrayType>(OriginalTy)) |
| 702 | if (CastTy->isPointerType() || CastTy->isReferenceType()) |
| 703 | return UnknownVal(); |
| 704 | } |
| 705 | |
| 706 | // Pointer to any pointer. |
| 707 | if (Loc::isLocType(CastTy)) |
| 708 | return V; |
| 709 | |
| 710 | // Pointer to whatever else. |
| 711 | return UnknownVal(); |
| 712 | } |
| 713 | SVal VisitLocMemRegionVal(loc::MemRegionVal V) { |
| 714 | // Pointer to bool. |
| 715 | if (CastTy->isBooleanType()) { |
| 716 | const MemRegion *R = V.getRegion(); |
| 717 | if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R)) |
| 718 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl())) |
| 719 | if (FD->isWeak()) |
| 720 | // FIXME: Currently we are using an extent symbol here, |
| 721 | // because there are no generic region address metadata |
| 722 | // symbols to use, only content metadata. |
| 723 | return nonloc::SymbolVal( |
| 724 | VB.getSymbolManager().getExtentSymbol(FTR)); |
| 725 | |
| 726 | if (const SymbolicRegion *SymR = R->getSymbolicBase()) { |
| 727 | SymbolRef Sym = SymR->getSymbol(); |
| 728 | QualType Ty = Sym->getType(); |
| 729 | // This change is needed for architectures with varying |
| 730 | // pointer widths. See the amdgcn opencl reproducer with |
| 731 | // this change as an example: solver-sym-simplification-ptr-bool.cl |
| 732 | if (!Ty->isReferenceType()) |
| 733 | return VB.makeNonLoc( |
| 734 | Sym, BO_NE, VB.getBasicValueFactory().getZeroWithTypeSize(Ty), |
| 735 | CastTy); |
| 736 | } |
| 737 | // Non-symbolic memory regions are always true. |
| 738 | return VB.makeTruthVal(true, CastTy); |
| 739 | } |
| 740 | |
| 741 | const bool IsUnknownOriginalType = OriginalTy.isNull(); |
| 742 | // Try to cast to array |
| 743 | const auto *ArrayTy = |
| 744 | IsUnknownOriginalType |
| 745 | ? nullptr |
| 746 | : dyn_cast<ArrayType>(OriginalTy.getCanonicalType()); |
| 747 | |
| 748 | // Pointer to integer. |
| 749 | if (CastTy->isIntegralOrEnumerationType()) { |
| 750 | SVal Val = V; |
| 751 | // Array to integer. |
| 752 | if (ArrayTy) { |
| 753 | // We will always decay to a pointer. |
| 754 | QualType ElemTy = ArrayTy->getElementType(); |
| 755 | Val = VB.getStateManager().ArrayToPointer(V, ElemTy); |
| 756 | // FIXME: Keep these here for now in case we decide soon that we |
| 757 | // need the original decayed type. |
| 758 | // QualType elemTy = cast<ArrayType>(originalTy)->getElementType(); |
| 759 | // QualType pointerTy = C.getPointerType(elemTy); |
| 760 | } |
| 761 | const unsigned BitWidth = Context.getIntWidth(CastTy); |
| 762 | return VB.makeLocAsInteger(Val.castAs<Loc>(), BitWidth); |
| 763 | } |
| 764 | |
| 765 | // Pointer to pointer. |
| 766 | if (Loc::isLocType(CastTy)) { |
| 767 | |
| 768 | if (IsUnknownOriginalType) { |
| 769 | // When retrieving symbolic pointer and expecting a non-void pointer, |
| 770 | // wrap them into element regions of the expected type if necessary. |
| 771 | // It is necessary to make sure that the retrieved value makes sense, |
| 772 | // because there's no other cast in the AST that would tell us to cast |
| 773 | // it to the correct pointer type. We might need to do that for non-void |
| 774 | // pointers as well. |
| 775 | // FIXME: We really need a single good function to perform casts for us |
| 776 | // correctly every time we need it. |
| 777 | const MemRegion *R = V.getRegion(); |
| 778 | if (CastTy->isPointerType() && !CastTy->isVoidPointerType()) { |
| 779 | if (const auto *SR = dyn_cast<SymbolicRegion>(R)) { |
| 780 | QualType SRTy = SR->getSymbol()->getType(); |
| 781 | |
| 782 | auto HasSameUnqualifiedPointeeType = [](QualType ty1, |
| 783 | QualType ty2) { |
| 784 | return ty1->getPointeeType().getCanonicalType().getTypePtr() == |
| 785 | ty2->getPointeeType().getCanonicalType().getTypePtr(); |
| 786 | }; |
| 787 | if (!HasSameUnqualifiedPointeeType(SRTy, CastTy)) { |
| 788 | if (auto OptMemRegV = VB.getCastedMemRegionVal(SR, CastTy)) |
| 789 | return *OptMemRegV; |
| 790 | } |
| 791 | } |
| 792 | } |
| 793 | // Next fixes pointer dereference using type different from its initial |
| 794 | // one. See PR37503 and PR49007 for details. |
| 795 | if (const auto *ER = dyn_cast<ElementRegion>(R)) { |
| 796 | if (auto OptMemRegV = VB.getCastedMemRegionVal(ER, CastTy)) |
| 797 | return *OptMemRegV; |
| 798 | } |
| 799 | |
| 800 | return V; |
| 801 | } |
| 802 | |
| 803 | if (OriginalTy->isIntegralOrEnumerationType() || |
| 804 | OriginalTy->isBlockPointerType() || |
| 805 | OriginalTy->isFunctionPointerType()) |
| 806 | return V; |
| 807 | |
| 808 | // Array to pointer. |
| 809 | if (ArrayTy) { |
| 810 | // Are we casting from an array to a pointer? If so just pass on |
| 811 | // the decayed value. |
| 812 | if (CastTy->isPointerType() || CastTy->isReferenceType()) { |
| 813 | // We will always decay to a pointer. |
| 814 | QualType ElemTy = ArrayTy->getElementType(); |
| 815 | return VB.getStateManager().ArrayToPointer(V, ElemTy); |
| 816 | } |
| 817 | // Are we casting from an array to an integer? If so, cast the decayed |
| 818 | // pointer value to an integer. |
| 819 | assert(CastTy->isIntegralOrEnumerationType())(static_cast <bool> (CastTy->isIntegralOrEnumerationType ()) ? void (0) : __assert_fail ("CastTy->isIntegralOrEnumerationType()" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 819, __extension__ __PRETTY_FUNCTION__)); |
| 820 | } |
| 821 | |
| 822 | // Other pointer to pointer. |
| 823 | assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||(static_cast <bool> (Loc::isLocType(OriginalTy) || OriginalTy ->isFunctionType() || CastTy->isReferenceType()) ? void (0) : __assert_fail ("Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() || CastTy->isReferenceType()" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 824, __extension__ __PRETTY_FUNCTION__)) |
| 824 | CastTy->isReferenceType())(static_cast <bool> (Loc::isLocType(OriginalTy) || OriginalTy ->isFunctionType() || CastTy->isReferenceType()) ? void (0) : __assert_fail ("Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() || CastTy->isReferenceType()" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 824, __extension__ __PRETTY_FUNCTION__)); |
| 825 | |
| 826 | // We get a symbolic function pointer for a dereference of a function |
| 827 | // pointer, but it is of function type. Example: |
| 828 | |
| 829 | // struct FPRec { |
| 830 | // void (*my_func)(int * x); |
| 831 | // }; |
| 832 | // |
| 833 | // int bar(int x); |
| 834 | // |
| 835 | // int f1_a(struct FPRec* foo) { |
| 836 | // int x; |
| 837 | // (*foo->my_func)(&x); |
| 838 | // return bar(x)+1; // no-warning |
| 839 | // } |
| 840 | |
| 841 | // Get the result of casting a region to a different type. |
| 842 | const MemRegion *R = V.getRegion(); |
| 843 | if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy)) |
| 844 | return *OptMemRegV; |
| 845 | } |
| 846 | |
| 847 | // Pointer to whatever else. |
| 848 | // FIXME: There can be gross cases where one casts the result of a |
| 849 | // function (that returns a pointer) to some other value that happens to |
| 850 | // fit within that pointer value. We currently have no good way to model |
| 851 | // such operations. When this happens, the underlying operation is that |
| 852 | // the caller is reasoning about bits. Conceptually we are layering a |
| 853 | // "view" of a location on top of those bits. Perhaps we need to be more |
| 854 | // lazy about mutual possible views, even on an SVal? This may be |
| 855 | // necessary for bit-level reasoning as well. |
| 856 | return UnknownVal(); |
| 857 | } |
| 858 | SVal VisitNonLocCompoundVal(nonloc::CompoundVal V) { |
| 859 | // Compound to whatever. |
| 860 | return UnknownVal(); |
| 861 | } |
| 862 | SVal VisitNonLocConcreteInt(nonloc::ConcreteInt V) { |
| 863 | auto CastedValue = [V, this]() { |
| 864 | llvm::APSInt Value = V.getValue(); |
| 865 | VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value); |
| 866 | return Value; |
| 867 | }; |
| 868 | |
| 869 | // Integer to bool. |
| 870 | if (CastTy->isBooleanType()) |
| 871 | return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy); |
| 872 | |
| 873 | // Integer to pointer. |
| 874 | if (CastTy->isIntegralOrEnumerationType()) |
| 875 | return VB.makeIntVal(CastedValue()); |
| 876 | |
| 877 | // Integer to pointer. |
| 878 | if (Loc::isLocType(CastTy)) |
| 879 | return VB.makeIntLocVal(CastedValue()); |
| 880 | |
| 881 | // Pointer to whatever else. |
| 882 | return UnknownVal(); |
| 883 | } |
| 884 | SVal VisitNonLocLazyCompoundVal(nonloc::LazyCompoundVal V) { |
| 885 | // LazyCompound to whatever. |
| 886 | return UnknownVal(); |
| 887 | } |
| 888 | SVal VisitNonLocLocAsInteger(nonloc::LocAsInteger V) { |
| 889 | Loc L = V.getLoc(); |
| 890 | |
| 891 | // Pointer as integer to bool. |
| 892 | if (CastTy->isBooleanType()) |
| 893 | // Pass to Loc function. |
| 894 | return Visit(L); |
| 895 | |
| 896 | const bool IsUnknownOriginalType = OriginalTy.isNull(); |
| 897 | // Pointer as integer to pointer. |
| 898 | if (!IsUnknownOriginalType && Loc::isLocType(CastTy) && |
| 899 | OriginalTy->isIntegralOrEnumerationType()) { |
| 900 | if (const MemRegion *R = L.getAsRegion()) |
| 901 | if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy)) |
| 902 | return *OptMemRegV; |
| 903 | return L; |
| 904 | } |
| 905 | |
| 906 | // Pointer as integer with region to integer/pointer. |
| 907 | const MemRegion *R = L.getAsRegion(); |
| 908 | if (!IsUnknownOriginalType && R) { |
| 909 | if (CastTy->isIntegralOrEnumerationType()) |
| 910 | return VisitLocMemRegionVal(loc::MemRegionVal(R)); |
| 911 | |
| 912 | if (Loc::isLocType(CastTy)) { |
| 913 | assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||(static_cast <bool> (Loc::isLocType(OriginalTy) || OriginalTy ->isFunctionType() || CastTy->isReferenceType()) ? void (0) : __assert_fail ("Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() || CastTy->isReferenceType()" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 914, __extension__ __PRETTY_FUNCTION__)) |
| 914 | CastTy->isReferenceType())(static_cast <bool> (Loc::isLocType(OriginalTy) || OriginalTy ->isFunctionType() || CastTy->isReferenceType()) ? void (0) : __assert_fail ("Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() || CastTy->isReferenceType()" , "clang/lib/StaticAnalyzer/Core/SValBuilder.cpp", 914, __extension__ __PRETTY_FUNCTION__)); |
| 915 | // Delegate to store manager to get the result of casting a region to a |
| 916 | // different type. If the MemRegion* returned is NULL, this expression |
| 917 | // Evaluates to UnknownVal. |
| 918 | if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy)) |
| 919 | return *OptMemRegV; |
| 920 | } |
| 921 | } else { |
| 922 | if (Loc::isLocType(CastTy)) { |
| 923 | if (IsUnknownOriginalType) |
| 924 | return VisitLocMemRegionVal(loc::MemRegionVal(R)); |
| 925 | return L; |
| 926 | } |
| 927 | |
| 928 | SymbolRef SE = nullptr; |
| 929 | if (R) { |
| 930 | if (const SymbolicRegion *SR = |
| 931 | dyn_cast<SymbolicRegion>(R->StripCasts())) { |
| 932 | SE = SR->getSymbol(); |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | if (!CastTy->isFloatingType() || !SE || SE->getType()->isFloatingType()) { |
| 937 | // FIXME: Correctly support promotions/truncations. |
| 938 | const unsigned CastSize = Context.getIntWidth(CastTy); |
| 939 | if (CastSize == V.getNumBits()) |
| 940 | return V; |
| 941 | |
| 942 | return VB.makeLocAsInteger(L, CastSize); |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | // Pointer as integer to whatever else. |
| 947 | return UnknownVal(); |
| 948 | } |
| 949 | SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) { |
| 950 | SymbolRef SE = V.getSymbol(); |
| 951 | |
| 952 | const bool IsUnknownOriginalType = OriginalTy.isNull(); |
| 953 | // Symbol to bool. |
| 954 | if (!IsUnknownOriginalType && CastTy->isBooleanType()) { |
| 955 | // Non-float to bool. |
| 956 | if (Loc::isLocType(OriginalTy) || |
| 957 | OriginalTy->isIntegralOrEnumerationType() || |
| 958 | OriginalTy->isMemberPointerType()) { |
| 959 | BasicValueFactory &BVF = VB.getBasicValueFactory(); |
| 960 | return VB.makeNonLoc(SE, BO_NE, BVF.getValue(0, SE->getType()), CastTy); |
| 961 | } |
| 962 | } else { |
| 963 | // Symbol to integer, float. |
| 964 | QualType T = Context.getCanonicalType(SE->getType()); |
| 965 | |
| 966 | // Produce SymbolCast if CastTy and T are different integers. |
| 967 | // NOTE: In the end the type of SymbolCast shall be equal to CastTy. |
| 968 | if (T->isIntegralOrUnscopedEnumerationType() && |
| 969 | CastTy->isIntegralOrUnscopedEnumerationType()) { |
| 970 | AnalyzerOptions &Opts = VB.getStateManager() |
| 971 | .getOwningEngine() |
| 972 | .getAnalysisManager() |
| 973 | .getAnalyzerOptions(); |
| 974 | // If appropriate option is disabled, ignore the cast. |
| 975 | // NOTE: ShouldSupportSymbolicIntegerCasts is `false` by default. |
| 976 | if (!Opts.ShouldSupportSymbolicIntegerCasts) |
| 977 | return V; |
| 978 | return simplifySymbolCast(V, CastTy); |
| 979 | } |
| 980 | if (!Loc::isLocType(CastTy)) |
| 981 | if (!IsUnknownOriginalType || !CastTy->isFloatingType() || |
| 982 | T->isFloatingType()) |
| 983 | return VB.makeNonLoc(SE, T, CastTy); |
| 984 | } |
| 985 | |
| 986 | // Symbol to pointer and whatever else. |
| 987 | return UnknownVal(); |
| 988 | } |
| 989 | SVal VisitNonLocPointerToMember(nonloc::PointerToMember V) { |
| 990 | // Member pointer to whatever. |
| 991 | return V; |
| 992 | } |
| 993 | |
| 994 | /// Reduce cast expression by removing redundant intermediate casts. |
| 995 | /// E.g. |
| 996 | /// - (char)(short)(int x) -> (char)(int x) |
| 997 | /// - (int)(int x) -> int x |
| 998 | /// |
| 999 | /// \param V -- SymbolVal, which pressumably contains SymbolCast or any symbol |
| 1000 | /// that is applicable for cast operation. |
| 1001 | /// \param CastTy -- QualType, which `V` shall be cast to. |
| 1002 | /// \return SVal with simplified cast expression. |
| 1003 | /// \note: Currently only support integral casts. |
| 1004 | nonloc::SymbolVal simplifySymbolCast(nonloc::SymbolVal V, QualType CastTy) { |
| 1005 | // We use seven conditions to recognize a simplification case. |
| 1006 | // For the clarity let `CastTy` be `C`, SE->getType() - `T`, root type - |
| 1007 | // `R`, prefix `u` for unsigned, `s` for signed, no prefix - any sign: E.g. |
| 1008 | // (char)(short)(uint x) |
| 1009 | // ( sC )( sT )( uR x) |
| 1010 | // |
| 1011 | // C === R (the same type) |
| 1012 | // (char)(char x) -> (char x) |
| 1013 | // (long)(long x) -> (long x) |
| 1014 | // Note: Comparisons operators below are for bit width. |
| 1015 | // C == T |
| 1016 | // (short)(short)(int x) -> (short)(int x) |
| 1017 | // (int)(long)(char x) -> (int)(char x) (sizeof(long) == sizeof(int)) |
| 1018 | // (long)(ullong)(char x) -> (long)(char x) (sizeof(long) == |
| 1019 | // sizeof(ullong)) |
| 1020 | // C < T |
| 1021 | // (short)(int)(char x) -> (short)(char x) |
| 1022 | // (char)(int)(short x) -> (char)(short x) |
| 1023 | // (short)(int)(short x) -> (short x) |
| 1024 | // C > T > uR |
| 1025 | // (int)(short)(uchar x) -> (int)(uchar x) |
| 1026 | // (uint)(short)(uchar x) -> (uint)(uchar x) |
| 1027 | // (int)(ushort)(uchar x) -> (int)(uchar x) |
| 1028 | // C > sT > sR |
| 1029 | // (int)(short)(char x) -> (int)(char x) |
| 1030 | // (uint)(short)(char x) -> (uint)(char x) |
| 1031 | // C > sT == sR |
| 1032 | // (int)(char)(char x) -> (int)(char x) |
| 1033 | // (uint)(short)(short x) -> (uint)(short x) |
| 1034 | // C > uT == uR |
| 1035 | // (int)(uchar)(uchar x) -> (int)(uchar x) |
| 1036 | // (uint)(ushort)(ushort x) -> (uint)(ushort x) |
| 1037 | // (llong)(ulong)(uint x) -> (llong)(uint x) (sizeof(ulong) == |
| 1038 | // sizeof(uint)) |
| 1039 | |
| 1040 | SymbolRef SE = V.getSymbol(); |
| 1041 | QualType T = Context.getCanonicalType(SE->getType()); |
| 1042 | |
| 1043 | if (T == CastTy) |
| 1044 | return V; |
| 1045 | |
| 1046 | if (!isa<SymbolCast>(SE)) |
| 1047 | return VB.makeNonLoc(SE, T, CastTy); |
| 1048 | |
| 1049 | SymbolRef RootSym = cast<SymbolCast>(SE)->getOperand(); |
| 1050 | QualType RT = RootSym->getType().getCanonicalType(); |
| 1051 | |
| 1052 | // FIXME support simplification from non-integers. |
| 1053 | if (!RT->isIntegralOrEnumerationType()) |
| 1054 | return VB.makeNonLoc(SE, T, CastTy); |
| 1055 | |
| 1056 | BasicValueFactory &BVF = VB.getBasicValueFactory(); |
| 1057 | APSIntType CTy = BVF.getAPSIntType(CastTy); |
| 1058 | APSIntType TTy = BVF.getAPSIntType(T); |
| 1059 | |
| 1060 | const auto WC = CTy.getBitWidth(); |
| 1061 | const auto WT = TTy.getBitWidth(); |
| 1062 | |
| 1063 | if (WC <= WT) { |
| 1064 | const bool isSameType = (RT == CastTy); |
| 1065 | if (isSameType) |
| 1066 | return nonloc::SymbolVal(RootSym); |
| 1067 | return VB.makeNonLoc(RootSym, RT, CastTy); |
| 1068 | } |
| 1069 | |
| 1070 | APSIntType RTy = BVF.getAPSIntType(RT); |
| 1071 | const auto WR = RTy.getBitWidth(); |
| 1072 | const bool UT = TTy.isUnsigned(); |
| 1073 | const bool UR = RTy.isUnsigned(); |
| 1074 | |
| 1075 | if (((WT > WR) && (UR || !UT)) || ((WT == WR) && (UT == UR))) |
| 1076 | return VB.makeNonLoc(RootSym, RT, CastTy); |
| 1077 | |
| 1078 | return VB.makeNonLoc(SE, T, CastTy); |
| 1079 | } |
| 1080 | }; |
| 1081 | } // end anonymous namespace |
| 1082 | |
| 1083 | /// Cast a given SVal to another SVal using given QualType's. |
| 1084 | /// \param V -- SVal that should be casted. |
| 1085 | /// \param CastTy -- QualType that V should be casted according to. |
| 1086 | /// \param OriginalTy -- QualType which is associated to V. It provides |
| 1087 | /// additional information about what type the cast performs from. |
| 1088 | /// \returns the most appropriate casted SVal. |
| 1089 | /// Note: Many cases don't use an exact OriginalTy. It can be extracted |
| 1090 | /// from SVal or the cast can performs unconditionaly. Always pass OriginalTy! |
| 1091 | /// It can be crucial in certain cases and generates different results. |
| 1092 | /// FIXME: If `OriginalTy.isNull()` is true, then cast performs based on CastTy |
| 1093 | /// only. This behavior is uncertain and should be improved. |
| 1094 | SVal SValBuilder::evalCast(SVal V, QualType CastTy, QualType OriginalTy) { |
| 1095 | EvalCastVisitor TRV{*this, CastTy, OriginalTy}; |
| 1096 | return TRV.Visit(V); |
| 1097 | } |