Bug Summary

File:tools/lldb/source/Utility/Scalar.cpp
Warning:line 172, column 5
Use of memory after it is freed

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Scalar.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D HAVE_ROUND -D LLDB_CONFIGURATION_RELEASE -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/source/Utility -I /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Utility -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/include -I /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -I /usr/include/python2.7 -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/../clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/. -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -Wno-deprecated-declarations -Wno-unknown-pragmas -Wno-strict-aliasing -Wno-deprecated-register -Wno-vla-extension -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/lldb/source/Utility -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Utility/Scalar.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn345461/tools/lldb/source/Utility/Scalar.cpp

1//===-- Scalar.cpp ----------------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "lldb/Utility/Scalar.h"
11
12#include "lldb/Utility/DataExtractor.h"
13#include "lldb/Utility/Endian.h"
14#include "lldb/Utility/Status.h"
15#include "lldb/Utility/Stream.h"
16#include "lldb/lldb-types.h" // for offset_t
17
18#include "llvm/ADT/SmallString.h"
19
20#include <cinttypes>
21#include <cstdio>
22
23using namespace lldb;
24using namespace lldb_private;
25
26//----------------------------------------------------------------------
27// Promote to max type currently follows the ANSI C rule for type promotion in
28// expressions.
29//----------------------------------------------------------------------
30static Scalar::Type PromoteToMaxType(
31 const Scalar &lhs, // The const left hand side object
32 const Scalar &rhs, // The const right hand side object
33 Scalar &temp_value, // A modifiable temp value than can be used to hold
34 // either the promoted lhs or rhs object
35 const Scalar *&promoted_lhs_ptr, // Pointer to the resulting possibly
36 // promoted value of lhs (at most one of
37 // lhs/rhs will get promoted)
38 const Scalar *&promoted_rhs_ptr // Pointer to the resulting possibly
39 // promoted value of rhs (at most one of
40 // lhs/rhs will get promoted)
41) {
42 Scalar result;
43 // Initialize the promoted values for both the right and left hand side
44 // values to be the objects themselves. If no promotion is needed (both right
45 // and left have the same type), then the temp_value will not get used.
46 promoted_lhs_ptr = &lhs;
47 promoted_rhs_ptr = &rhs;
48 // Extract the types of both the right and left hand side values
49 Scalar::Type lhs_type = lhs.GetType();
50 Scalar::Type rhs_type = rhs.GetType();
51
52 if (lhs_type > rhs_type) {
53 // Right hand side need to be promoted
54 temp_value = rhs; // Copy right hand side into the temp value
55 if (temp_value.Promote(lhs_type)) // Promote it
56 promoted_rhs_ptr =
57 &temp_value; // Update the pointer for the promoted right hand side
58 } else if (lhs_type < rhs_type) {
59 // Left hand side need to be promoted
60 temp_value = lhs; // Copy left hand side value into the temp value
61 if (temp_value.Promote(rhs_type)) // Promote it
62 promoted_lhs_ptr =
63 &temp_value; // Update the pointer for the promoted left hand side
64 }
65
66 // Make sure our type promotion worked as expected
67 if (promoted_lhs_ptr->GetType() == promoted_rhs_ptr->GetType())
68 return promoted_lhs_ptr->GetType(); // Return the resulting max type
69
70 // Return the void type (zero) if we fail to promote either of the values.
71 return Scalar::e_void;
72}
73
74Scalar::Scalar() : m_type(e_void), m_float((float)0) {}
75
76Scalar::Scalar(const Scalar &rhs)
77 : m_type(rhs.m_type), m_integer(rhs.m_integer), m_float(rhs.m_float) {}
78
79bool Scalar::GetData(DataExtractor &data, size_t limit_byte_size) const {
80 size_t byte_size = GetByteSize();
81 if (byte_size > 0) {
2
Taking true branch
82 const uint8_t *bytes = reinterpret_cast<const uint8_t *>(GetBytes());
3
Calling 'Scalar::GetBytes'
83
84 if (limit_byte_size < byte_size) {
85 if (endian::InlHostByteOrder() == eByteOrderLittle) {
86 // On little endian systems if we want fewer bytes from the current
87 // type we just specify fewer bytes since the LSByte is first...
88 byte_size = limit_byte_size;
89 } else if (endian::InlHostByteOrder() == eByteOrderBig) {
90 // On big endian systems if we want fewer bytes from the current type
91 // have to advance our initial byte pointer and trim down the number of
92 // bytes since the MSByte is first
93 bytes += byte_size - limit_byte_size;
94 byte_size = limit_byte_size;
95 }
96 }
97
98 data.SetData(bytes, byte_size, endian::InlHostByteOrder());
99 return true;
100 }
101 data.Clear();
102 return false;
103}
104
105const void *Scalar::GetBytes() const {
106 const uint64_t *apint_words;
107 const uint8_t *bytes;
108 static float_t flt_val;
109 static double_t dbl_val;
110 static uint64_t swapped_words[4];
111 switch (m_type) {
4
Control jumps to 'case e_long_double:' at line 161
112 case e_void:
113 break;
114 case e_sint:
115 case e_uint:
116 case e_slong:
117 case e_ulong:
118 case e_slonglong:
119 case e_ulonglong:
120 bytes = reinterpret_cast<const uint8_t *>(m_integer.getRawData());
121 // getRawData always returns a pointer to an uint64_t. If we have a
122 // smaller type, we need to update the pointer on big-endian systems.
123 if (endian::InlHostByteOrder() == eByteOrderBig) {
124 size_t byte_size = m_integer.getBitWidth() / 8;
125 if (byte_size < 8)
126 bytes += 8 - byte_size;
127 }
128 return bytes;
129 case e_sint128:
130 case e_uint128:
131 apint_words = m_integer.getRawData();
132 // getRawData always returns a pointer to an array of two uint64_t values,
133 // where the least-significant word always comes first. On big-endian
134 // systems we need to swap the two words.
135 if (endian::InlHostByteOrder() == eByteOrderBig) {
136 swapped_words[0] = apint_words[1];
137 swapped_words[1] = apint_words[0];
138 apint_words = swapped_words;
139 }
140 return reinterpret_cast<const void *>(apint_words);
141 case e_sint256:
142 case e_uint256:
143 apint_words = m_integer.getRawData();
144 // getRawData always returns a pointer to an array of four uint64_t values,
145 // where the least-significant word always comes first. On big-endian
146 // systems we need to swap the four words.
147 if (endian::InlHostByteOrder() == eByteOrderBig) {
148 swapped_words[0] = apint_words[3];
149 swapped_words[1] = apint_words[2];
150 swapped_words[2] = apint_words[1];
151 swapped_words[3] = apint_words[0];
152 apint_words = swapped_words;
153 }
154 return reinterpret_cast<const void *>(apint_words);
155 case e_float:
156 flt_val = m_float.convertToFloat();
157 return reinterpret_cast<const void *>(&flt_val);
158 case e_double:
159 dbl_val = m_float.convertToDouble();
160 return reinterpret_cast<const void *>(&dbl_val);
161 case e_long_double:
162 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
163 apint_words = ldbl_val.getRawData();
164 // getRawData always returns a pointer to an array of two uint64_t values,
165 // where the least-significant word always comes first. On big-endian
166 // systems we need to swap the two words.
167 if (endian::InlHostByteOrder() == eByteOrderBig) {
5
Assuming the condition is false
6
Taking false branch
168 swapped_words[0] = apint_words[1];
169 swapped_words[1] = apint_words[0];
170 apint_words = swapped_words;
171 }
172 return reinterpret_cast<const void *>(apint_words);
7
Calling '~APInt'
10
Returning from '~APInt'
11
Use of memory after it is freed
173 }
174 return nullptr;
175}
176
177size_t Scalar::GetByteSize() const {
178 switch (m_type) {
179 case e_void:
180 break;
181 case e_sint:
182 case e_uint:
183 case e_slong:
184 case e_ulong:
185 case e_slonglong:
186 case e_ulonglong:
187 case e_sint128:
188 case e_uint128:
189 case e_sint256:
190 case e_uint256:
191 return (m_integer.getBitWidth() / 8);
192 case e_float:
193 return sizeof(float_t);
194 case e_double:
195 return sizeof(double_t);
196 case e_long_double:
197 return sizeof(long_double_t);
198 }
199 return 0;
200}
201
202bool Scalar::IsZero() const {
203 llvm::APInt zero_int = llvm::APInt::getNullValue(m_integer.getBitWidth() / 8);
204 switch (m_type) {
205 case e_void:
206 break;
207 case e_sint:
208 case e_uint:
209 case e_slong:
210 case e_ulong:
211 case e_slonglong:
212 case e_ulonglong:
213 case e_sint128:
214 case e_uint128:
215 case e_sint256:
216 case e_uint256:
217 return llvm::APInt::isSameValue(zero_int, m_integer);
218 case e_float:
219 case e_double:
220 case e_long_double:
221 return m_float.isZero();
222 }
223 return false;
224}
225
226void Scalar::GetValue(Stream *s, bool show_type) const {
227 if (show_type)
228 s->Printf("(%s) ", GetTypeAsCString());
229
230 switch (m_type) {
231 case e_void:
232 break;
233 case e_sint:
234 case e_slong:
235 case e_slonglong:
236 case e_sint128:
237 case e_sint256:
238 s->PutCString(m_integer.toString(10, true));
239 break;
240 case e_uint:
241 case e_ulong:
242 case e_ulonglong:
243 case e_uint128:
244 case e_uint256:
245 s->PutCString(m_integer.toString(10, false));
246 break;
247 case e_float:
248 case e_double:
249 case e_long_double:
250 llvm::SmallString<24> string;
251 m_float.toString(string);
252 s->Printf("%s", string.c_str());
253 break;
254 }
255}
256
257const char *Scalar::GetTypeAsCString() const {
258 switch (m_type) {
259 case e_void:
260 return "void";
261 case e_sint:
262 return "int";
263 case e_uint:
264 return "unsigned int";
265 case e_slong:
266 return "long";
267 case e_ulong:
268 return "unsigned long";
269 case e_slonglong:
270 return "long long";
271 case e_ulonglong:
272 return "unsigned long long";
273 case e_sint128:
274 return "int128_t";
275 case e_uint128:
276 return "unsigned int128_t";
277 case e_sint256:
278 return "int256_t";
279 case e_uint256:
280 return "unsigned int256_t";
281 case e_float:
282 return "float";
283 case e_double:
284 return "double";
285 case e_long_double:
286 return "long double";
287 }
288 return "<invalid Scalar type>";
289}
290
291Scalar &Scalar::operator=(const Scalar &rhs) {
292 if (this != &rhs) {
293 m_type = rhs.m_type;
294 m_integer = llvm::APInt(rhs.m_integer);
295 m_float = rhs.m_float;
296 }
297 return *this;
298}
299
300Scalar &Scalar::operator=(const int v) {
301 m_type = e_sint;
302 m_integer = llvm::APInt(sizeof(int) * 8, v, true);
303 return *this;
304}
305
306Scalar &Scalar::operator=(unsigned int v) {
307 m_type = e_uint;
308 m_integer = llvm::APInt(sizeof(int) * 8, v);
309 return *this;
310}
311
312Scalar &Scalar::operator=(long v) {
313 m_type = e_slong;
314 m_integer = llvm::APInt(sizeof(long) * 8, v, true);
315 return *this;
316}
317
318Scalar &Scalar::operator=(unsigned long v) {
319 m_type = e_ulong;
320 m_integer = llvm::APInt(sizeof(long) * 8, v);
321 return *this;
322}
323
324Scalar &Scalar::operator=(long long v) {
325 m_type = e_slonglong;
326 m_integer = llvm::APInt(sizeof(long) * 8, v, true);
327 return *this;
328}
329
330Scalar &Scalar::operator=(unsigned long long v) {
331 m_type = e_ulonglong;
332 m_integer = llvm::APInt(sizeof(long long) * 8, v);
333 return *this;
334}
335
336Scalar &Scalar::operator=(float v) {
337 m_type = e_float;
338 m_float = llvm::APFloat(v);
339 return *this;
340}
341
342Scalar &Scalar::operator=(double v) {
343 m_type = e_double;
344 m_float = llvm::APFloat(v);
345 return *this;
346}
347
348Scalar &Scalar::operator=(long double v) {
349 m_type = e_long_double;
350 if (m_ieee_quad)
351 m_float = llvm::APFloat(
352 llvm::APFloat::IEEEquad(),
353 llvm::APInt(BITWIDTH_INT128128, NUM_OF_WORDS_INT1282, ((type128 *)&v)->x));
354 else
355 m_float = llvm::APFloat(
356 llvm::APFloat::x87DoubleExtended(),
357 llvm::APInt(BITWIDTH_INT128128, NUM_OF_WORDS_INT1282, ((type128 *)&v)->x));
358 return *this;
359}
360
361Scalar &Scalar::operator=(llvm::APInt rhs) {
362 m_integer = llvm::APInt(rhs);
363 switch (m_integer.getBitWidth()) {
364 case 8:
365 case 16:
366 case 32:
367 if (m_integer.isSignedIntN(sizeof(sint_t) * 8))
368 m_type = e_sint;
369 else
370 m_type = e_uint;
371 break;
372 case 64:
373 if (m_integer.isSignedIntN(sizeof(slonglong_t) * 8))
374 m_type = e_slonglong;
375 else
376 m_type = e_ulonglong;
377 break;
378 case 128:
379 if (m_integer.isSignedIntN(BITWIDTH_INT128128))
380 m_type = e_sint128;
381 else
382 m_type = e_uint128;
383 break;
384 case 256:
385 if (m_integer.isSignedIntN(BITWIDTH_INT256256))
386 m_type = e_sint256;
387 else
388 m_type = e_uint256;
389 break;
390 }
391 return *this;
392}
393
394Scalar::~Scalar() = default;
395
396bool Scalar::Promote(Scalar::Type type) {
397 bool success = false;
398 switch (m_type) {
399 case e_void:
400 break;
401
402 case e_sint:
403 switch (type) {
404 case e_void:
405 break;
406 case e_sint:
407 success = true;
408 break;
409 case e_uint:
410 m_integer = m_integer.sextOrTrunc(sizeof(uint_t) * 8);
411 success = true;
412 break;
413
414 case e_slong:
415 m_integer = m_integer.sextOrTrunc(sizeof(slong_t) * 8);
416 success = true;
417 break;
418
419 case e_ulong:
420 m_integer = m_integer.sextOrTrunc(sizeof(ulong_t) * 8);
421 success = true;
422 break;
423
424 case e_slonglong:
425 m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8);
426 success = true;
427 break;
428
429 case e_ulonglong:
430 m_integer = m_integer.sextOrTrunc(sizeof(ulonglong_t) * 8);
431 success = true;
432 break;
433
434 case e_sint128:
435 case e_uint128:
436 m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128128);
437 success = true;
438 break;
439
440 case e_sint256:
441 case e_uint256:
442 m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256256);
443 success = true;
444 break;
445
446 case e_float:
447 m_float = llvm::APFloat(llvm::APFloat::IEEEsingle());
448 m_float.convertFromAPInt(m_integer, true,
449 llvm::APFloat::rmNearestTiesToEven);
450 success = true;
451 break;
452
453 case e_double:
454 m_float = llvm::APFloat(llvm::APFloat::IEEEdouble());
455 m_float.convertFromAPInt(m_integer, true,
456 llvm::APFloat::rmNearestTiesToEven);
457 success = true;
458 break;
459
460 case e_long_double:
461 m_float = llvm::APFloat(m_ieee_quad ? llvm::APFloat::IEEEquad()
462 : llvm::APFloat::x87DoubleExtended());
463 m_float.convertFromAPInt(m_integer, true,
464 llvm::APFloat::rmNearestTiesToEven);
465 success = true;
466 break;
467 }
468 break;
469
470 case e_uint:
471 switch (type) {
472 case e_void:
473 case e_sint:
474 break;
475 case e_uint:
476 success = true;
477 break;
478 case e_slong:
479 m_integer = m_integer.zextOrTrunc(sizeof(slong_t) * 8);
480 success = true;
481 break;
482
483 case e_ulong:
484 m_integer = m_integer.zextOrTrunc(sizeof(ulong_t) * 8);
485 success = true;
486 break;
487
488 case e_slonglong:
489 m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8);
490 success = true;
491 break;
492
493 case e_ulonglong:
494 m_integer = m_integer.zextOrTrunc(sizeof(ulonglong_t) * 8);
495 success = true;
496 break;
497
498 case e_sint128:
499 case e_uint128:
500 m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128128);
501 success = true;
502 break;
503
504 case e_sint256:
505 case e_uint256:
506 m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256256);
507 success = true;
508 break;
509
510 case e_float:
511 m_float = llvm::APFloat(llvm::APFloat::IEEEsingle());
512 m_float.convertFromAPInt(m_integer, false,
513 llvm::APFloat::rmNearestTiesToEven);
514 success = true;
515 break;
516
517 case e_double:
518 m_float = llvm::APFloat(llvm::APFloat::IEEEdouble());
519 m_float.convertFromAPInt(m_integer, false,
520 llvm::APFloat::rmNearestTiesToEven);
521 success = true;
522 break;
523
524 case e_long_double:
525 m_float = llvm::APFloat(m_ieee_quad ? llvm::APFloat::IEEEquad()
526 : llvm::APFloat::x87DoubleExtended());
527 m_float.convertFromAPInt(m_integer, false,
528 llvm::APFloat::rmNearestTiesToEven);
529 success = true;
530 break;
531 }
532 break;
533
534 case e_slong:
535 switch (type) {
536 case e_void:
537 case e_sint:
538 case e_uint:
539 break;
540 case e_slong:
541 success = true;
542 break;
543 case e_ulong:
544 m_integer = m_integer.sextOrTrunc(sizeof(ulong_t) * 8);
545 success = true;
546 break;
547
548 case e_slonglong:
549 m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8);
550 success = true;
551 break;
552
553 case e_ulonglong:
554 m_integer = m_integer.sextOrTrunc(sizeof(ulonglong_t) * 8);
555 success = true;
556 break;
557
558 case e_sint128:
559 case e_uint128:
560 m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128128);
561 success = true;
562 break;
563
564 case e_sint256:
565 case e_uint256:
566 m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256256);
567 success = true;
568 break;
569
570 case e_float:
571 m_float = llvm::APFloat(llvm::APFloat::IEEEsingle());
572 m_float.convertFromAPInt(m_integer, true,
573 llvm::APFloat::rmNearestTiesToEven);
574 success = true;
575 break;
576
577 case e_double:
578 m_float = llvm::APFloat(llvm::APFloat::IEEEdouble());
579 m_float.convertFromAPInt(m_integer, true,
580 llvm::APFloat::rmNearestTiesToEven);
581 success = true;
582 break;
583
584 case e_long_double:
585 m_float = llvm::APFloat(m_ieee_quad ? llvm::APFloat::IEEEquad()
586 : llvm::APFloat::x87DoubleExtended());
587 m_float.convertFromAPInt(m_integer, true,
588 llvm::APFloat::rmNearestTiesToEven);
589 success = true;
590 break;
591 }
592 break;
593
594 case e_ulong:
595 switch (type) {
596 case e_void:
597 case e_sint:
598 case e_uint:
599 case e_slong:
600 break;
601 case e_ulong:
602 success = true;
603 break;
604 case e_slonglong:
605 m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8);
606 success = true;
607 break;
608
609 case e_ulonglong:
610 m_integer = m_integer.zextOrTrunc(sizeof(ulonglong_t) * 8);
611 success = true;
612 break;
613
614 case e_sint128:
615 case e_uint128:
616 m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128128);
617 success = true;
618 break;
619
620 case e_sint256:
621 case e_uint256:
622 m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256256);
623 success = true;
624 break;
625
626 case e_float:
627 m_float = llvm::APFloat(llvm::APFloat::IEEEsingle());
628 m_float.convertFromAPInt(m_integer, false,
629 llvm::APFloat::rmNearestTiesToEven);
630 success = true;
631 break;
632
633 case e_double:
634 m_float = llvm::APFloat(llvm::APFloat::IEEEdouble());
635 m_float.convertFromAPInt(m_integer, false,
636 llvm::APFloat::rmNearestTiesToEven);
637 success = true;
638 break;
639
640 case e_long_double:
641 m_float = llvm::APFloat(m_ieee_quad ? llvm::APFloat::IEEEquad()
642 : llvm::APFloat::x87DoubleExtended());
643 m_float.convertFromAPInt(m_integer, false,
644 llvm::APFloat::rmNearestTiesToEven);
645 success = true;
646 break;
647 }
648 break;
649
650 case e_slonglong:
651 switch (type) {
652 case e_void:
653 case e_sint:
654 case e_uint:
655 case e_slong:
656 case e_ulong:
657 break;
658 case e_slonglong:
659 success = true;
660 break;
661 case e_ulonglong:
662 m_integer = m_integer.sextOrTrunc(sizeof(ulonglong_t) * 8);
663 success = true;
664 break;
665
666 case e_sint128:
667 case e_uint128:
668 m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128128);
669 success = true;
670 break;
671
672 case e_sint256:
673 case e_uint256:
674 m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256256);
675 success = true;
676 break;
677
678 case e_float:
679 m_float = llvm::APFloat(llvm::APFloat::IEEEsingle());
680 m_float.convertFromAPInt(m_integer, true,
681 llvm::APFloat::rmNearestTiesToEven);
682 success = true;
683 break;
684
685 case e_double:
686 m_float = llvm::APFloat(llvm::APFloat::IEEEdouble());
687 m_float.convertFromAPInt(m_integer, true,
688 llvm::APFloat::rmNearestTiesToEven);
689 success = true;
690 break;
691
692 case e_long_double:
693 m_float = llvm::APFloat(m_ieee_quad ? llvm::APFloat::IEEEquad()
694 : llvm::APFloat::x87DoubleExtended());
695 m_float.convertFromAPInt(m_integer, true,
696 llvm::APFloat::rmNearestTiesToEven);
697 success = true;
698 break;
699 }
700 break;
701
702 case e_ulonglong:
703 switch (type) {
704 case e_void:
705 case e_sint:
706 case e_uint:
707 case e_slong:
708 case e_ulong:
709 case e_slonglong:
710 break;
711 case e_ulonglong:
712 success = true;
713 break;
714 case e_sint128:
715 case e_uint128:
716 m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128128);
717 success = true;
718 break;
719
720 case e_sint256:
721 case e_uint256:
722 m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256256);
723 success = true;
724 break;
725
726 case e_float:
727 m_float = llvm::APFloat(llvm::APFloat::IEEEsingle());
728 m_float.convertFromAPInt(m_integer, false,
729 llvm::APFloat::rmNearestTiesToEven);
730 success = true;
731 break;
732
733 case e_double:
734 m_float = llvm::APFloat(llvm::APFloat::IEEEdouble());
735 m_float.convertFromAPInt(m_integer, false,
736 llvm::APFloat::rmNearestTiesToEven);
737 success = true;
738 break;
739
740 case e_long_double:
741 m_float = llvm::APFloat(m_ieee_quad ? llvm::APFloat::IEEEquad()
742 : llvm::APFloat::x87DoubleExtended());
743 m_float.convertFromAPInt(m_integer, false,
744 llvm::APFloat::rmNearestTiesToEven);
745 success = true;
746 break;
747 }
748 break;
749
750 case e_sint128:
751 switch (type) {
752 case e_void:
753 case e_sint:
754 case e_uint:
755 case e_slong:
756 case e_ulong:
757 case e_slonglong:
758 case e_ulonglong:
759 break;
760 case e_sint128:
761 success = true;
762 break;
763 case e_uint128:
764 m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128128);
765 success = true;
766 break;
767
768 case e_sint256:
769 case e_uint256:
770 m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256256);
771 success = true;
772 break;
773
774 case e_float:
775 m_float = llvm::APFloat(llvm::APFloat::IEEEsingle());
776 m_float.convertFromAPInt(m_integer, true,
777 llvm::APFloat::rmNearestTiesToEven);
778 success = true;
779 break;
780
781 case e_double:
782 m_float = llvm::APFloat(llvm::APFloat::IEEEdouble());
783 m_float.convertFromAPInt(m_integer, true,
784 llvm::APFloat::rmNearestTiesToEven);
785 success = true;
786 break;
787
788 case e_long_double:
789 m_float = llvm::APFloat(m_ieee_quad ? llvm::APFloat::IEEEquad()
790 : llvm::APFloat::x87DoubleExtended());
791 m_float.convertFromAPInt(m_integer, true,
792 llvm::APFloat::rmNearestTiesToEven);
793 success = true;
794 break;
795 }
796 break;
797
798 case e_uint128:
799 switch (type) {
800 case e_void:
801 case e_sint:
802 case e_uint:
803 case e_slong:
804 case e_ulong:
805 case e_slonglong:
806 case e_ulonglong:
807 case e_sint128:
808 break;
809 case e_uint128:
810 success = true;
811 break;
812 case e_sint256:
813 case e_uint256:
814 m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256256);
815 success = true;
816 break;
817
818 case e_float:
819 m_float = llvm::APFloat(llvm::APFloat::IEEEsingle());
820 m_float.convertFromAPInt(m_integer, false,
821 llvm::APFloat::rmNearestTiesToEven);
822 success = true;
823 break;
824
825 case e_double:
826 m_float = llvm::APFloat(llvm::APFloat::IEEEdouble());
827 m_float.convertFromAPInt(m_integer, false,
828 llvm::APFloat::rmNearestTiesToEven);
829 success = true;
830 break;
831
832 case e_long_double:
833 m_float = llvm::APFloat(m_ieee_quad ? llvm::APFloat::IEEEquad()
834 : llvm::APFloat::x87DoubleExtended());
835 m_float.convertFromAPInt(m_integer, false,
836 llvm::APFloat::rmNearestTiesToEven);
837 success = true;
838 break;
839 }
840 break;
841
842 case e_sint256:
843 switch (type) {
844 case e_void:
845 case e_sint:
846 case e_uint:
847 case e_slong:
848 case e_ulong:
849 case e_slonglong:
850 case e_ulonglong:
851 case e_sint128:
852 case e_uint128:
853 break;
854 case e_sint256:
855 success = true;
856 break;
857 case e_uint256:
858 m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256256);
859 success = true;
860 break;
861
862 case e_float:
863 m_float = llvm::APFloat(llvm::APFloat::IEEEsingle());
864 m_float.convertFromAPInt(m_integer, true,
865 llvm::APFloat::rmNearestTiesToEven);
866 success = true;
867 break;
868
869 case e_double:
870 m_float = llvm::APFloat(llvm::APFloat::IEEEdouble());
871 m_float.convertFromAPInt(m_integer, true,
872 llvm::APFloat::rmNearestTiesToEven);
873 success = true;
874 break;
875
876 case e_long_double:
877 m_float = llvm::APFloat(m_ieee_quad ? llvm::APFloat::IEEEquad()
878 : llvm::APFloat::x87DoubleExtended());
879 m_float.convertFromAPInt(m_integer, true,
880 llvm::APFloat::rmNearestTiesToEven);
881 success = true;
882 break;
883 }
884 break;
885
886 case e_uint256:
887 switch (type) {
888 case e_void:
889 case e_sint:
890 case e_uint:
891 case e_slong:
892 case e_ulong:
893 case e_slonglong:
894 case e_ulonglong:
895 case e_sint128:
896 case e_uint128:
897 case e_sint256:
898 break;
899 case e_uint256:
900 success = true;
901 break;
902 case e_float:
903 m_float = llvm::APFloat(llvm::APFloat::IEEEsingle());
904 m_float.convertFromAPInt(m_integer, false,
905 llvm::APFloat::rmNearestTiesToEven);
906 success = true;
907 break;
908
909 case e_double:
910 m_float = llvm::APFloat(llvm::APFloat::IEEEdouble());
911 m_float.convertFromAPInt(m_integer, false,
912 llvm::APFloat::rmNearestTiesToEven);
913 success = true;
914 break;
915
916 case e_long_double:
917 m_float = llvm::APFloat(m_ieee_quad ? llvm::APFloat::IEEEquad()
918 : llvm::APFloat::x87DoubleExtended());
919 m_float.convertFromAPInt(m_integer, false,
920 llvm::APFloat::rmNearestTiesToEven);
921 success = true;
922 break;
923 }
924 break;
925
926 case e_float:
927 switch (type) {
928 case e_void:
929 case e_sint:
930 case e_uint:
931 case e_slong:
932 case e_ulong:
933 case e_slonglong:
934 case e_ulonglong:
935 case e_sint128:
936 case e_uint128:
937 case e_sint256:
938 case e_uint256:
939 break;
940 case e_float:
941 success = true;
942 break;
943 case e_double:
944 m_float = llvm::APFloat((double_t)m_float.convertToFloat());
945 success = true;
946 break;
947
948 case e_long_double: {
949 bool ignore;
950 m_float.convert(m_ieee_quad ? llvm::APFloat::IEEEquad()
951 : llvm::APFloat::x87DoubleExtended(),
952 llvm::APFloat::rmNearestTiesToEven, &ignore);
953 success = true;
954 break;
955 }
956 }
957 break;
958
959 case e_double:
960 switch (type) {
961 case e_void:
962 case e_sint:
963 case e_uint:
964 case e_slong:
965 case e_ulong:
966 case e_slonglong:
967 case e_ulonglong:
968 case e_sint128:
969 case e_uint128:
970 case e_sint256:
971 case e_uint256:
972 case e_float:
973 break;
974 case e_double:
975 success = true;
976 break;
977 case e_long_double: {
978 bool ignore;
979 m_float.convert(m_ieee_quad ? llvm::APFloat::IEEEquad()
980 : llvm::APFloat::x87DoubleExtended(),
981 llvm::APFloat::rmNearestTiesToEven, &ignore);
982 success = true;
983 break;
984 }
985 }
986 break;
987
988 case e_long_double:
989 switch (type) {
990 case e_void:
991 case e_sint:
992 case e_uint:
993 case e_slong:
994 case e_ulong:
995 case e_slonglong:
996 case e_ulonglong:
997 case e_sint128:
998 case e_uint128:
999 case e_sint256:
1000 case e_uint256:
1001 case e_float:
1002 case e_double:
1003 break;
1004 case e_long_double:
1005 success = true;
1006 break;
1007 }
1008 break;
1009 }
1010
1011 if (success)
1012 m_type = type;
1013 return success;
1014}
1015
1016const char *Scalar::GetValueTypeAsCString(Scalar::Type type) {
1017 switch (type) {
1018 case e_void:
1019 return "void";
1020 case e_sint:
1021 return "int";
1022 case e_uint:
1023 return "unsigned int";
1024 case e_slong:
1025 return "long";
1026 case e_ulong:
1027 return "unsigned long";
1028 case e_slonglong:
1029 return "long long";
1030 case e_ulonglong:
1031 return "unsigned long long";
1032 case e_float:
1033 return "float";
1034 case e_double:
1035 return "double";
1036 case e_long_double:
1037 return "long double";
1038 case e_sint128:
1039 return "int128_t";
1040 case e_uint128:
1041 return "uint128_t";
1042 case e_sint256:
1043 return "int256_t";
1044 case e_uint256:
1045 return "uint256_t";
1046 }
1047 return "???";
1048}
1049
1050Scalar::Type
1051Scalar::GetValueTypeForSignedIntegerWithByteSize(size_t byte_size) {
1052 if (byte_size <= sizeof(sint_t))
1053 return e_sint;
1054 if (byte_size <= sizeof(slong_t))
1055 return e_slong;
1056 if (byte_size <= sizeof(slonglong_t))
1057 return e_slonglong;
1058 return e_void;
1059}
1060
1061Scalar::Type
1062Scalar::GetValueTypeForUnsignedIntegerWithByteSize(size_t byte_size) {
1063 if (byte_size <= sizeof(uint_t))
1064 return e_uint;
1065 if (byte_size <= sizeof(ulong_t))
1066 return e_ulong;
1067 if (byte_size <= sizeof(ulonglong_t))
1068 return e_ulonglong;
1069 return e_void;
1070}
1071
1072Scalar::Type Scalar::GetValueTypeForFloatWithByteSize(size_t byte_size) {
1073 if (byte_size == sizeof(float_t))
1074 return e_float;
1075 if (byte_size == sizeof(double_t))
1076 return e_double;
1077 if (byte_size == sizeof(long_double_t))
1078 return e_long_double;
1079 return e_void;
1080}
1081
1082bool Scalar::MakeSigned() {
1083 bool success = false;
1084
1085 switch (m_type) {
1086 case e_void:
1087 break;
1088 case e_sint:
1089 success = true;
1090 break;
1091 case e_uint:
1092 m_type = e_sint;
1093 success = true;
1094 break;
1095 case e_slong:
1096 success = true;
1097 break;
1098 case e_ulong:
1099 m_type = e_slong;
1100 success = true;
1101 break;
1102 case e_slonglong:
1103 success = true;
1104 break;
1105 case e_ulonglong:
1106 m_type = e_slonglong;
1107 success = true;
1108 break;
1109 case e_sint128:
1110 success = true;
1111 break;
1112 case e_uint128:
1113 m_type = e_sint128;
1114 success = true;
1115 break;
1116 case e_sint256:
1117 success = true;
1118 break;
1119 case e_uint256:
1120 m_type = e_sint256;
1121 success = true;
1122 break;
1123 case e_float:
1124 success = true;
1125 break;
1126 case e_double:
1127 success = true;
1128 break;
1129 case e_long_double:
1130 success = true;
1131 break;
1132 }
1133
1134 return success;
1135}
1136
1137bool Scalar::MakeUnsigned() {
1138 bool success = false;
1139
1140 switch (m_type) {
1141 case e_void:
1142 break;
1143 case e_sint:
1144 m_type = e_uint;
1145 success = true;
1146 break;
1147 case e_uint:
1148 success = true;
1149 break;
1150 case e_slong:
1151 m_type = e_ulong;
1152 success = true;
1153 break;
1154 case e_ulong:
1155 success = true;
1156 break;
1157 case e_slonglong:
1158 m_type = e_ulonglong;
1159 success = true;
1160 break;
1161 case e_ulonglong:
1162 success = true;
1163 break;
1164 case e_sint128:
1165 m_type = e_uint128;
1166 success = true;
1167 break;
1168 case e_uint128:
1169 success = true;
1170 break;
1171 case e_sint256:
1172 m_type = e_uint256;
1173 success = true;
1174 break;
1175 case e_uint256:
1176 success = true;
1177 break;
1178 case e_float:
1179 success = true;
1180 break;
1181 case e_double:
1182 success = true;
1183 break;
1184 case e_long_double:
1185 success = true;
1186 break;
1187 }
1188
1189 return success;
1190}
1191
1192signed char Scalar::SChar(char fail_value) const {
1193 switch (m_type) {
1194 case e_void:
1195 break;
1196 case e_sint:
1197 case e_uint:
1198 case e_slong:
1199 case e_ulong:
1200 case e_slonglong:
1201 case e_ulonglong:
1202 case e_sint128:
1203 case e_uint128:
1204 case e_sint256:
1205 case e_uint256:
1206 return (schar_t)(m_integer.sextOrTrunc(sizeof(schar_t) * 8)).getSExtValue();
1207 case e_float:
1208 return (schar_t)m_float.convertToFloat();
1209 case e_double:
1210 return (schar_t)m_float.convertToDouble();
1211 case e_long_double:
1212 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1213 return (schar_t)(ldbl_val.sextOrTrunc(sizeof(schar_t) * 8)).getSExtValue();
1214 }
1215 return fail_value;
1216}
1217
1218unsigned char Scalar::UChar(unsigned char fail_value) const {
1219 switch (m_type) {
1220 case e_void:
1221 break;
1222 case e_sint:
1223 case e_uint:
1224 case e_slong:
1225 case e_ulong:
1226 case e_slonglong:
1227 case e_ulonglong:
1228 case e_sint128:
1229 case e_uint128:
1230 case e_sint256:
1231 case e_uint256:
1232 return (uchar_t)(m_integer.zextOrTrunc(sizeof(uchar_t) * 8)).getZExtValue();
1233 case e_float:
1234 return (uchar_t)m_float.convertToFloat();
1235 case e_double:
1236 return (uchar_t)m_float.convertToDouble();
1237 case e_long_double:
1238 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1239 return (uchar_t)(ldbl_val.zextOrTrunc(sizeof(uchar_t) * 8)).getZExtValue();
1240 }
1241 return fail_value;
1242}
1243
1244short Scalar::SShort(short fail_value) const {
1245 switch (m_type) {
1246 case e_void:
1247 break;
1248 case e_sint:
1249 case e_uint:
1250 case e_slong:
1251 case e_ulong:
1252 case e_slonglong:
1253 case e_ulonglong:
1254 case e_sint128:
1255 case e_uint128:
1256 case e_sint256:
1257 case e_uint256:
1258 return (sshort_t)(m_integer.sextOrTrunc(sizeof(sshort_t) * 8))
1259 .getSExtValue();
1260 case e_float:
1261 return (sshort_t)m_float.convertToFloat();
1262 case e_double:
1263 return (sshort_t)m_float.convertToDouble();
1264 case e_long_double:
1265 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1266 return (sshort_t)(ldbl_val.sextOrTrunc(sizeof(sshort_t) * 8))
1267 .getSExtValue();
1268 }
1269 return fail_value;
1270}
1271
1272unsigned short Scalar::UShort(unsigned short fail_value) const {
1273 switch (m_type) {
1274 case e_void:
1275 break;
1276 case e_sint:
1277 case e_uint:
1278 case e_slong:
1279 case e_ulong:
1280 case e_slonglong:
1281 case e_ulonglong:
1282 case e_sint128:
1283 case e_uint128:
1284 case e_sint256:
1285 case e_uint256:
1286 return (ushort_t)(m_integer.zextOrTrunc(sizeof(ushort_t) * 8))
1287 .getZExtValue();
1288 case e_float:
1289 return (ushort_t)m_float.convertToFloat();
1290 case e_double:
1291 return (ushort_t)m_float.convertToDouble();
1292 case e_long_double:
1293 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1294 return (ushort_t)(ldbl_val.zextOrTrunc(sizeof(ushort_t) * 8))
1295 .getZExtValue();
1296 }
1297 return fail_value;
1298}
1299
1300int Scalar::SInt(int fail_value) const {
1301 switch (m_type) {
1302 case e_void:
1303 break;
1304 case e_sint:
1305 case e_uint:
1306 case e_slong:
1307 case e_ulong:
1308 case e_slonglong:
1309 case e_ulonglong:
1310 case e_sint128:
1311 case e_uint128:
1312 case e_sint256:
1313 case e_uint256:
1314 return (sint_t)(m_integer.sextOrTrunc(sizeof(sint_t) * 8)).getSExtValue();
1315 case e_float:
1316 return (sint_t)m_float.convertToFloat();
1317 case e_double:
1318 return (sint_t)m_float.convertToDouble();
1319 case e_long_double:
1320 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1321 return (sint_t)(ldbl_val.sextOrTrunc(sizeof(sint_t) * 8)).getSExtValue();
1322 }
1323 return fail_value;
1324}
1325
1326unsigned int Scalar::UInt(unsigned int fail_value) const {
1327 switch (m_type) {
1328 case e_void:
1329 break;
1330 case e_sint:
1331 case e_uint:
1332 case e_slong:
1333 case e_ulong:
1334 case e_slonglong:
1335 case e_ulonglong:
1336 case e_sint128:
1337 case e_uint128:
1338 case e_sint256:
1339 case e_uint256:
1340 return (uint_t)(m_integer.zextOrTrunc(sizeof(uint_t) * 8)).getZExtValue();
1341 case e_float:
1342 return (uint_t)m_float.convertToFloat();
1343 case e_double:
1344 return (uint_t)m_float.convertToDouble();
1345 case e_long_double:
1346 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1347 return (uint_t)(ldbl_val.zextOrTrunc(sizeof(uint_t) * 8)).getZExtValue();
1348 }
1349 return fail_value;
1350}
1351
1352long Scalar::SLong(long fail_value) const {
1353 switch (m_type) {
1354 case e_void:
1355 break;
1356 case e_sint:
1357 case e_uint:
1358 case e_slong:
1359 case e_ulong:
1360 case e_slonglong:
1361 case e_ulonglong:
1362 case e_sint128:
1363 case e_uint128:
1364 case e_sint256:
1365 case e_uint256:
1366 return (slong_t)(m_integer.sextOrTrunc(sizeof(slong_t) * 8)).getSExtValue();
1367 case e_float:
1368 return (slong_t)m_float.convertToFloat();
1369 case e_double:
1370 return (slong_t)m_float.convertToDouble();
1371 case e_long_double:
1372 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1373 return (slong_t)(ldbl_val.sextOrTrunc(sizeof(slong_t) * 8)).getSExtValue();
1374 }
1375 return fail_value;
1376}
1377
1378unsigned long Scalar::ULong(unsigned long fail_value) const {
1379 switch (m_type) {
1380 case e_void:
1381 break;
1382 case e_sint:
1383 case e_uint:
1384 case e_slong:
1385 case e_ulong:
1386 case e_slonglong:
1387 case e_ulonglong:
1388 case e_sint128:
1389 case e_uint128:
1390 case e_sint256:
1391 case e_uint256:
1392 return (ulong_t)(m_integer.zextOrTrunc(sizeof(ulong_t) * 8)).getZExtValue();
1393 case e_float:
1394 return (ulong_t)m_float.convertToFloat();
1395 case e_double:
1396 return (ulong_t)m_float.convertToDouble();
1397 case e_long_double:
1398 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1399 return (ulong_t)(ldbl_val.zextOrTrunc(sizeof(ulong_t) * 8)).getZExtValue();
1400 }
1401 return fail_value;
1402}
1403
1404long long Scalar::SLongLong(long long fail_value) const {
1405 switch (m_type) {
1406 case e_void:
1407 break;
1408 case e_sint:
1409 case e_uint:
1410 case e_slong:
1411 case e_ulong:
1412 case e_slonglong:
1413 case e_ulonglong:
1414 case e_sint128:
1415 case e_uint128:
1416 case e_sint256:
1417 case e_uint256:
1418 return (slonglong_t)(m_integer.sextOrTrunc(sizeof(slonglong_t) * 8))
1419 .getSExtValue();
1420 case e_float:
1421 return (slonglong_t)m_float.convertToFloat();
1422 case e_double:
1423 return (slonglong_t)m_float.convertToDouble();
1424 case e_long_double:
1425 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1426 return (slonglong_t)(ldbl_val.sextOrTrunc(sizeof(slonglong_t) * 8))
1427 .getSExtValue();
1428 }
1429 return fail_value;
1430}
1431
1432unsigned long long Scalar::ULongLong(unsigned long long fail_value) const {
1433 switch (m_type) {
1434 case e_void:
1435 break;
1436 case e_sint:
1437 case e_uint:
1438 case e_slong:
1439 case e_ulong:
1440 case e_slonglong:
1441 case e_ulonglong:
1442 case e_sint128:
1443 case e_uint128:
1444 case e_sint256:
1445 case e_uint256:
1446 return (ulonglong_t)(m_integer.zextOrTrunc(sizeof(ulonglong_t) * 8))
1447 .getZExtValue();
1448 case e_float:
1449 return (ulonglong_t)m_float.convertToFloat();
1450 case e_double: {
1451 double d_val = m_float.convertToDouble();
1452 llvm::APInt rounded_double =
1453 llvm::APIntOps::RoundDoubleToAPInt(d_val, sizeof(ulonglong_t) * 8);
1454 return (ulonglong_t)(rounded_double.zextOrTrunc(sizeof(ulonglong_t) * 8))
1455 .getZExtValue();
1456 }
1457 case e_long_double:
1458 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1459 return (ulonglong_t)(ldbl_val.zextOrTrunc(sizeof(ulonglong_t) * 8))
1460 .getZExtValue();
1461 }
1462 return fail_value;
1463}
1464
1465llvm::APInt Scalar::SInt128(llvm::APInt &fail_value) const {
1466 switch (m_type) {
1467 case e_void:
1468 break;
1469 case e_sint:
1470 case e_uint:
1471 case e_slong:
1472 case e_ulong:
1473 case e_slonglong:
1474 case e_ulonglong:
1475 case e_sint128:
1476 case e_uint128:
1477 case e_sint256:
1478 case e_uint256:
1479 return m_integer;
1480 case e_float:
1481 case e_double:
1482 case e_long_double:
1483 return m_float.bitcastToAPInt();
1484 }
1485 return fail_value;
1486}
1487
1488llvm::APInt Scalar::UInt128(const llvm::APInt &fail_value) const {
1489 switch (m_type) {
1490 case e_void:
1491 break;
1492 case e_sint:
1493 case e_uint:
1494 case e_slong:
1495 case e_ulong:
1496 case e_slonglong:
1497 case e_ulonglong:
1498 case e_sint128:
1499 case e_uint128:
1500 case e_sint256:
1501 case e_uint256:
1502 return m_integer;
1503 case e_float:
1504 case e_double:
1505 case e_long_double:
1506 return m_float.bitcastToAPInt();
1507 }
1508 return fail_value;
1509}
1510
1511llvm::APInt Scalar::SInt256(llvm::APInt &fail_value) const {
1512 switch (m_type) {
1513 case e_void:
1514 break;
1515 case e_sint:
1516 case e_uint:
1517 case e_slong:
1518 case e_ulong:
1519 case e_slonglong:
1520 case e_ulonglong:
1521 case e_sint128:
1522 case e_uint128:
1523 case e_sint256:
1524 case e_uint256:
1525 return m_integer;
1526 case e_float:
1527 case e_double:
1528 case e_long_double:
1529 return m_float.bitcastToAPInt();
1530 }
1531 return fail_value;
1532}
1533
1534llvm::APInt Scalar::UInt256(const llvm::APInt &fail_value) const {
1535 switch (m_type) {
1536 case e_void:
1537 break;
1538 case e_sint:
1539 case e_uint:
1540 case e_slong:
1541 case e_ulong:
1542 case e_slonglong:
1543 case e_ulonglong:
1544 case e_sint128:
1545 case e_uint128:
1546 case e_sint256:
1547 case e_uint256:
1548 return m_integer;
1549 case e_float:
1550 case e_double:
1551 case e_long_double:
1552 return m_float.bitcastToAPInt();
1553 }
1554 return fail_value;
1555}
1556
1557float Scalar::Float(float fail_value) const {
1558 switch (m_type) {
1559 case e_void:
1560 break;
1561 case e_sint:
1562 case e_uint:
1563 case e_slong:
1564 case e_ulong:
1565 case e_slonglong:
1566 case e_ulonglong:
1567 case e_sint128:
1568 case e_uint128:
1569 case e_sint256:
1570 case e_uint256:
1571 return llvm::APIntOps::RoundAPIntToFloat(m_integer);
1572 case e_float:
1573 return m_float.convertToFloat();
1574 case e_double:
1575 return (float_t)m_float.convertToDouble();
1576 case e_long_double:
1577 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1578 return ldbl_val.bitsToFloat();
1579 }
1580 return fail_value;
1581}
1582
1583double Scalar::Double(double fail_value) const {
1584 switch (m_type) {
1585 case e_void:
1586 break;
1587 case e_sint:
1588 case e_uint:
1589 case e_slong:
1590 case e_ulong:
1591 case e_slonglong:
1592 case e_ulonglong:
1593 case e_sint128:
1594 case e_uint128:
1595 case e_sint256:
1596 case e_uint256:
1597 return llvm::APIntOps::RoundAPIntToDouble(m_integer);
1598 case e_float:
1599 return (double_t)m_float.convertToFloat();
1600 case e_double:
1601 return m_float.convertToDouble();
1602 case e_long_double:
1603 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1604 return ldbl_val.bitsToFloat();
1605 }
1606 return fail_value;
1607}
1608
1609long double Scalar::LongDouble(long double fail_value) const {
1610 switch (m_type) {
1611 case e_void:
1612 break;
1613 case e_sint:
1614 case e_uint:
1615 case e_slong:
1616 case e_ulong:
1617 case e_slonglong:
1618 case e_ulonglong:
1619 case e_sint128:
1620 case e_uint128:
1621 case e_sint256:
1622 case e_uint256:
1623 return (long_double_t)llvm::APIntOps::RoundAPIntToDouble(m_integer);
1624 case e_float:
1625 return (long_double_t)m_float.convertToFloat();
1626 case e_double:
1627 return (long_double_t)m_float.convertToDouble();
1628 case e_long_double:
1629 llvm::APInt ldbl_val = m_float.bitcastToAPInt();
1630 return (long_double_t)ldbl_val.bitsToDouble();
1631 }
1632 return fail_value;
1633}
1634
1635Scalar &Scalar::operator+=(const Scalar &rhs) {
1636 Scalar temp_value;
1637 const Scalar *a;
1638 const Scalar *b;
1639 if ((m_type = PromoteToMaxType(*this, rhs, temp_value, a, b)) !=
1640 Scalar::e_void) {
1641 switch (m_type) {
1642 case e_void:
1643 break;
1644 case e_sint:
1645 case e_uint:
1646 case e_slong:
1647 case e_ulong:
1648 case e_slonglong:
1649 case e_ulonglong:
1650 case e_sint128:
1651 case e_uint128:
1652 case e_sint256:
1653 case e_uint256:
1654 m_integer = a->m_integer + b->m_integer;
1655 break;
1656
1657 case e_float:
1658 case e_double:
1659 case e_long_double:
1660 m_float = a->m_float + b->m_float;
1661 break;
1662 }
1663 }
1664 return *this;
1665}
1666
1667Scalar &Scalar::operator<<=(const Scalar &rhs) {
1668 switch (m_type) {
1669 case e_void:
1670 case e_float:
1671 case e_double:
1672 case e_long_double:
1673 m_type = e_void;
1674 break;
1675
1676 case e_sint:
1677 case e_uint:
1678 case e_slong:
1679 case e_ulong:
1680 case e_slonglong:
1681 case e_ulonglong:
1682 case e_sint128:
1683 case e_uint128:
1684 case e_sint256:
1685 case e_uint256:
1686 switch (rhs.m_type) {
1687 case e_void:
1688 case e_float:
1689 case e_double:
1690 case e_long_double:
1691 m_type = e_void;
1692 break;
1693 case e_sint:
1694 case e_uint:
1695 case e_slong:
1696 case e_ulong:
1697 case e_slonglong:
1698 case e_ulonglong:
1699 case e_sint128:
1700 case e_uint128:
1701 case e_sint256:
1702 case e_uint256:
1703 m_integer = m_integer << rhs.m_integer;
1704 break;
1705 }
1706 break;
1707 }
1708 return *this;
1709}
1710
1711bool Scalar::ShiftRightLogical(const Scalar &rhs) {
1712 switch (m_type) {
1713 case e_void:
1714 case e_float:
1715 case e_double:
1716 case e_long_double:
1717 m_type = e_void;
1718 break;
1719
1720 case e_sint:
1721 case e_uint:
1722 case e_slong:
1723 case e_ulong:
1724 case e_slonglong:
1725 case e_ulonglong:
1726 case e_sint128:
1727 case e_uint128:
1728 case e_sint256:
1729 case e_uint256:
1730 switch (rhs.m_type) {
1731 case e_void:
1732 case e_float:
1733 case e_double:
1734 case e_long_double:
1735 m_type = e_void;
1736 break;
1737 case e_sint:
1738 case e_uint:
1739 case e_slong:
1740 case e_ulong:
1741 case e_slonglong:
1742 case e_ulonglong:
1743 case e_sint128:
1744 case e_uint128:
1745 case e_sint256:
1746 case e_uint256:
1747 m_integer = m_integer.lshr(rhs.m_integer);
1748 break;
1749 }
1750 break;
1751 }
1752 return m_type != e_void;
1753}
1754
1755Scalar &Scalar::operator>>=(const Scalar &rhs) {
1756 switch (m_type) {
1757 case e_void:
1758 case e_float:
1759 case e_double:
1760 case e_long_double:
1761 m_type = e_void;
1762 break;
1763
1764 case e_sint:
1765 case e_uint:
1766 case e_slong:
1767 case e_ulong:
1768 case e_slonglong:
1769 case e_ulonglong:
1770 case e_sint128:
1771 case e_uint128:
1772 case e_sint256:
1773 case e_uint256:
1774 switch (rhs.m_type) {
1775 case e_void:
1776 case e_float:
1777 case e_double:
1778 case e_long_double:
1779 m_type = e_void;
1780 break;
1781 case e_sint:
1782 case e_uint:
1783 case e_slong:
1784 case e_ulong:
1785 case e_slonglong:
1786 case e_ulonglong:
1787 case e_sint128:
1788 case e_uint128:
1789 case e_sint256:
1790 case e_uint256:
1791 m_integer = m_integer.ashr(rhs.m_integer);
1792 break;
1793 }
1794 break;
1795 }
1796 return *this;
1797}
1798
1799Scalar &Scalar::operator&=(const Scalar &rhs) {
1800 switch (m_type) {
1801 case e_void:
1802 case e_float:
1803 case e_double:
1804 case e_long_double:
1805 m_type = e_void;
1806 break;
1807
1808 case e_sint:
1809 case e_uint:
1810 case e_slong:
1811 case e_ulong:
1812 case e_slonglong:
1813 case e_ulonglong:
1814 case e_sint128:
1815 case e_uint128:
1816 case e_sint256:
1817 case e_uint256:
1818 switch (rhs.m_type) {
1819 case e_void:
1820 case e_float:
1821 case e_double:
1822 case e_long_double:
1823 m_type = e_void;
1824 break;
1825 case e_sint:
1826 case e_uint:
1827 case e_slong:
1828 case e_ulong:
1829 case e_slonglong:
1830 case e_ulonglong:
1831 case e_sint128:
1832 case e_uint128:
1833 case e_sint256:
1834 case e_uint256:
1835 m_integer &= rhs.m_integer;
1836 break;
1837 }
1838 break;
1839 }
1840 return *this;
1841}
1842
1843bool Scalar::AbsoluteValue() {
1844 switch (m_type) {
1845 case e_void:
1846 break;
1847
1848 case e_sint:
1849 case e_slong:
1850 case e_slonglong:
1851 case e_sint128:
1852 case e_sint256:
1853 if (m_integer.isNegative())
1854 m_integer = -m_integer;
1855 return true;
1856
1857 case e_uint:
1858 case e_ulong:
1859 case e_ulonglong:
1860 return true;
1861 case e_uint128:
1862 case e_uint256:
1863 case e_float:
1864 case e_double:
1865 case e_long_double:
1866 m_float.clearSign();
1867 return true;
1868 }
1869 return false;
1870}
1871
1872bool Scalar::UnaryNegate() {
1873 switch (m_type) {
1874 case e_void:
1875 break;
1876 case e_sint:
1877 case e_uint:
1878 case e_slong:
1879 case e_ulong:
1880 case e_slonglong:
1881 case e_ulonglong:
1882 case e_sint128:
1883 case e_uint128:
1884 case e_sint256:
1885 case e_uint256:
1886 m_integer = -m_integer;
1887 return true;
1888 case e_float:
1889 case e_double:
1890 case e_long_double:
1891 m_float.changeSign();
1892 return true;
1893 }
1894 return false;
1895}
1896
1897bool Scalar::OnesComplement() {
1898 switch (m_type) {
1899 case e_sint:
1900 case e_uint:
1901 case e_slong:
1902 case e_ulong:
1903 case e_slonglong:
1904 case e_ulonglong:
1905 case e_sint128:
1906 case e_uint128:
1907 case e_sint256:
1908 case e_uint256:
1909 m_integer = ~m_integer;
1910 return true;
1911
1912 case e_void:
1913 case e_float:
1914 case e_double:
1915 case e_long_double:
1916 break;
1917 }
1918 return false;
1919}
1920
1921const Scalar lldb_private::operator+(const Scalar &lhs, const Scalar &rhs) {
1922 Scalar result;
1923 Scalar temp_value;
1924 const Scalar *a;
1925 const Scalar *b;
1926 if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
1927 Scalar::e_void) {
1928 switch (result.m_type) {
1929 case Scalar::e_void:
1930 break;
1931 case Scalar::e_sint:
1932 case Scalar::e_uint:
1933 case Scalar::e_slong:
1934 case Scalar::e_ulong:
1935 case Scalar::e_slonglong:
1936 case Scalar::e_ulonglong:
1937 case Scalar::e_sint128:
1938 case Scalar::e_uint128:
1939 case Scalar::e_sint256:
1940 case Scalar::e_uint256:
1941 result.m_integer = a->m_integer + b->m_integer;
1942 break;
1943 case Scalar::e_float:
1944 case Scalar::e_double:
1945 case Scalar::e_long_double:
1946 result.m_float = a->m_float + b->m_float;
1947 break;
1948 }
1949 }
1950 return result;
1951}
1952
1953const Scalar lldb_private::operator-(const Scalar &lhs, const Scalar &rhs) {
1954 Scalar result;
1955 Scalar temp_value;
1956 const Scalar *a;
1957 const Scalar *b;
1958 if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
1959 Scalar::e_void) {
1960 switch (result.m_type) {
1961 case Scalar::e_void:
1962 break;
1963 case Scalar::e_sint:
1964 case Scalar::e_uint:
1965 case Scalar::e_slong:
1966 case Scalar::e_ulong:
1967 case Scalar::e_slonglong:
1968 case Scalar::e_ulonglong:
1969 case Scalar::e_sint128:
1970 case Scalar::e_uint128:
1971 case Scalar::e_sint256:
1972 case Scalar::e_uint256:
1973 result.m_integer = a->m_integer - b->m_integer;
1974 break;
1975 case Scalar::e_float:
1976 case Scalar::e_double:
1977 case Scalar::e_long_double:
1978 result.m_float = a->m_float - b->m_float;
1979 break;
1980 }
1981 }
1982 return result;
1983}
1984
1985const Scalar lldb_private::operator/(const Scalar &lhs, const Scalar &rhs) {
1986 Scalar result;
1987 Scalar temp_value;
1988 const Scalar *a;
1989 const Scalar *b;
1990 if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
1991 Scalar::e_void) {
1992 switch (result.m_type) {
1993 case Scalar::e_void:
1994 break;
1995 case Scalar::e_sint:
1996 case Scalar::e_slong:
1997 case Scalar::e_slonglong:
1998 case Scalar::e_sint128:
1999 case Scalar::e_sint256:
2000 if (b->m_integer != 0) {
2001 result.m_integer = a->m_integer.sdiv(b->m_integer);
2002 return result;
2003 }
2004 break;
2005 case Scalar::e_uint:
2006 case Scalar::e_ulong:
2007 case Scalar::e_ulonglong:
2008 case Scalar::e_uint128:
2009 case Scalar::e_uint256:
2010 if (b->m_integer != 0) {
2011 result.m_integer = a->m_integer.udiv(b->m_integer);
2012 return result;
2013 }
2014 break;
2015 case Scalar::e_float:
2016 case Scalar::e_double:
2017 case Scalar::e_long_double:
2018 if (!b->m_float.isZero()) {
2019 result.m_float = a->m_float / b->m_float;
2020 return result;
2021 }
2022 break;
2023 }
2024 }
2025 // For division only, the only way it should make it here is if a promotion
2026 // failed, or if we are trying to do a divide by zero.
2027 result.m_type = Scalar::e_void;
2028 return result;
2029}
2030
2031const Scalar lldb_private::operator*(const Scalar &lhs, const Scalar &rhs) {
2032 Scalar result;
2033 Scalar temp_value;
2034 const Scalar *a;
2035 const Scalar *b;
2036 if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
2037 Scalar::e_void) {
2038 switch (result.m_type) {
2039 case Scalar::e_void:
2040 break;
2041 case Scalar::e_sint:
2042 case Scalar::e_uint:
2043 case Scalar::e_slong:
2044 case Scalar::e_ulong:
2045 case Scalar::e_slonglong:
2046 case Scalar::e_ulonglong:
2047 case Scalar::e_sint128:
2048 case Scalar::e_uint128:
2049 case Scalar::e_sint256:
2050 case Scalar::e_uint256:
2051 result.m_integer = a->m_integer * b->m_integer;
2052 break;
2053 case Scalar::e_float:
2054 case Scalar::e_double:
2055 case Scalar::e_long_double:
2056 result.m_float = a->m_float * b->m_float;
2057 break;
2058 }
2059 }
2060 return result;
2061}
2062
2063const Scalar lldb_private::operator&(const Scalar &lhs, const Scalar &rhs) {
2064 Scalar result;
2065 Scalar temp_value;
2066 const Scalar *a;
2067 const Scalar *b;
2068 if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
2069 Scalar::e_void) {
2070 switch (result.m_type) {
2071 case Scalar::e_sint:
2072 case Scalar::e_uint:
2073 case Scalar::e_slong:
2074 case Scalar::e_ulong:
2075 case Scalar::e_slonglong:
2076 case Scalar::e_ulonglong:
2077 case Scalar::e_sint128:
2078 case Scalar::e_uint128:
2079 case Scalar::e_sint256:
2080 case Scalar::e_uint256:
2081 result.m_integer = a->m_integer & b->m_integer;
2082 break;
2083 case Scalar::e_void:
2084 case Scalar::e_float:
2085 case Scalar::e_double:
2086 case Scalar::e_long_double:
2087 // No bitwise AND on floats, doubles of long doubles
2088 result.m_type = Scalar::e_void;
2089 break;
2090 }
2091 }
2092 return result;
2093}
2094
2095const Scalar lldb_private::operator|(const Scalar &lhs, const Scalar &rhs) {
2096 Scalar result;
2097 Scalar temp_value;
2098 const Scalar *a;
2099 const Scalar *b;
2100 if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
2101 Scalar::e_void) {
2102 switch (result.m_type) {
2103 case Scalar::e_sint:
2104 case Scalar::e_uint:
2105 case Scalar::e_slong:
2106 case Scalar::e_ulong:
2107 case Scalar::e_slonglong:
2108 case Scalar::e_ulonglong:
2109 case Scalar::e_sint128:
2110 case Scalar::e_uint128:
2111 case Scalar::e_sint256:
2112 case Scalar::e_uint256:
2113 result.m_integer = a->m_integer | b->m_integer;
2114 break;
2115
2116 case Scalar::e_void:
2117 case Scalar::e_float:
2118 case Scalar::e_double:
2119 case Scalar::e_long_double:
2120 // No bitwise AND on floats, doubles of long doubles
2121 result.m_type = Scalar::e_void;
2122 break;
2123 }
2124 }
2125 return result;
2126}
2127
2128const Scalar lldb_private::operator%(const Scalar &lhs, const Scalar &rhs) {
2129 Scalar result;
2130 Scalar temp_value;
2131 const Scalar *a;
2132 const Scalar *b;
2133 if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
2134 Scalar::e_void) {
2135 switch (result.m_type) {
2136 default:
2137 break;
2138 case Scalar::e_void:
2139 break;
2140 case Scalar::e_sint:
2141 case Scalar::e_slong:
2142 case Scalar::e_slonglong:
2143 case Scalar::e_sint128:
2144 case Scalar::e_sint256:
2145 if (b->m_integer != 0) {
2146 result.m_integer = a->m_integer.srem(b->m_integer);
2147 return result;
2148 }
2149 break;
2150 case Scalar::e_uint:
2151 case Scalar::e_ulong:
2152 case Scalar::e_ulonglong:
2153 case Scalar::e_uint128:
2154 case Scalar::e_uint256:
2155 if (b->m_integer != 0) {
2156 result.m_integer = a->m_integer.urem(b->m_integer);
2157 return result;
2158 }
2159 break;
2160 }
2161 }
2162 result.m_type = Scalar::e_void;
2163 return result;
2164}
2165
2166const Scalar lldb_private::operator^(const Scalar &lhs, const Scalar &rhs) {
2167 Scalar result;
2168 Scalar temp_value;
2169 const Scalar *a;
2170 const Scalar *b;
2171 if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) !=
2172 Scalar::e_void) {
2173 switch (result.m_type) {
2174 case Scalar::e_sint:
2175 case Scalar::e_uint:
2176 case Scalar::e_slong:
2177 case Scalar::e_ulong:
2178 case Scalar::e_slonglong:
2179 case Scalar::e_ulonglong:
2180 case Scalar::e_sint128:
2181 case Scalar::e_uint128:
2182 case Scalar::e_sint256:
2183 case Scalar::e_uint256:
2184 result.m_integer = a->m_integer ^ b->m_integer;
2185 break;
2186
2187 case Scalar::e_void:
2188 case Scalar::e_float:
2189 case Scalar::e_double:
2190 case Scalar::e_long_double:
2191 // No bitwise AND on floats, doubles of long doubles
2192 result.m_type = Scalar::e_void;
2193 break;
2194 }
2195 }
2196 return result;
2197}
2198
2199const Scalar lldb_private::operator<<(const Scalar &lhs, const Scalar &rhs) {
2200 Scalar result = lhs;
2201 result <<= rhs;
2202 return result;
2203}
2204
2205const Scalar lldb_private::operator>>(const Scalar &lhs, const Scalar &rhs) {
2206 Scalar result = lhs;
2207 result >>= rhs;
2208 return result;
2209}
2210
2211Status Scalar::SetValueFromCString(const char *value_str, Encoding encoding,
2212 size_t byte_size) {
2213 Status error;
2214 if (value_str == nullptr || value_str[0] == '\0') {
2215 error.SetErrorString("Invalid c-string value string.");
2216 return error;
2217 }
2218 switch (encoding) {
2219 case eEncodingInvalid:
2220 error.SetErrorString("Invalid encoding.");
2221 break;
2222
2223 case eEncodingUint:
2224 if (byte_size <= sizeof(uint64_t)) {
2225 uint64_t uval64;
2226 if (!llvm::to_integer(value_str, uval64))
2227 error.SetErrorStringWithFormat(
2228 "'%s' is not a valid unsigned integer string value", value_str);
2229 else if (!UIntValueIsValidForSize(uval64, byte_size))
2230 error.SetErrorStringWithFormat("value 0x%" PRIx64"l" "x"
2231 " is too large to fit in a %" PRIu64"l" "u"
2232 " byte unsigned integer value",
2233 uval64, (uint64_t)byte_size);
2234 else {
2235 m_type = Scalar::GetValueTypeForUnsignedIntegerWithByteSize(byte_size);
2236 switch (m_type) {
2237 case e_uint:
2238 m_integer = llvm::APInt(sizeof(uint_t) * 8, uval64, false);
2239 break;
2240 case e_ulong:
2241 m_integer = llvm::APInt(sizeof(ulong_t) * 8, uval64, false);
2242 break;
2243 case e_ulonglong:
2244 m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, uval64, false);
2245 break;
2246 default:
2247 error.SetErrorStringWithFormat(
2248 "unsupported unsigned integer byte size: %" PRIu64"l" "u" "",
2249 (uint64_t)byte_size);
2250 break;
2251 }
2252 }
2253 } else {
2254 error.SetErrorStringWithFormat(
2255 "unsupported unsigned integer byte size: %" PRIu64"l" "u" "",
2256 (uint64_t)byte_size);
2257 return error;
2258 }
2259 break;
2260
2261 case eEncodingSint:
2262 if (byte_size <= sizeof(int64_t)) {
2263 int64_t sval64;
2264 if (!llvm::to_integer(value_str, sval64))
2265 error.SetErrorStringWithFormat(
2266 "'%s' is not a valid signed integer string value", value_str);
2267 else if (!SIntValueIsValidForSize(sval64, byte_size))
2268 error.SetErrorStringWithFormat("value 0x%" PRIx64"l" "x"
2269 " is too large to fit in a %" PRIu64"l" "u"
2270 " byte signed integer value",
2271 sval64, (uint64_t)byte_size);
2272 else {
2273 m_type = Scalar::GetValueTypeForSignedIntegerWithByteSize(byte_size);
2274 switch (m_type) {
2275 case e_sint:
2276 m_integer = llvm::APInt(sizeof(sint_t) * 8, sval64, true);
2277 break;
2278 case e_slong:
2279 m_integer = llvm::APInt(sizeof(slong_t) * 8, sval64, true);
2280 break;
2281 case e_slonglong:
2282 m_integer = llvm::APInt(sizeof(slonglong_t) * 8, sval64, true);
2283 break;
2284 default:
2285 error.SetErrorStringWithFormat(
2286 "unsupported signed integer byte size: %" PRIu64"l" "u" "",
2287 (uint64_t)byte_size);
2288 break;
2289 }
2290 }
2291 } else {
2292 error.SetErrorStringWithFormat(
2293 "unsupported signed integer byte size: %" PRIu64"l" "u" "",
2294 (uint64_t)byte_size);
2295 return error;
2296 }
2297 break;
2298
2299 case eEncodingIEEE754:
2300 static float f_val;
2301 static double d_val;
2302 static long double l_val;
2303 if (byte_size == sizeof(float)) {
2304 if (::sscanf(value_str, "%f", &f_val) == 1) {
2305 m_float = llvm::APFloat(f_val);
2306 m_type = e_float;
2307 } else
2308 error.SetErrorStringWithFormat("'%s' is not a valid float string value",
2309 value_str);
2310 } else if (byte_size == sizeof(double)) {
2311 if (::sscanf(value_str, "%lf", &d_val) == 1) {
2312 m_float = llvm::APFloat(d_val);
2313 m_type = e_double;
2314 } else
2315 error.SetErrorStringWithFormat("'%s' is not a valid float string value",
2316 value_str);
2317 } else if (byte_size == sizeof(long double)) {
2318 if (::sscanf(value_str, "%Lf", &l_val) == 1) {
2319 m_float =
2320 llvm::APFloat(llvm::APFloat::x87DoubleExtended(),
2321 llvm::APInt(BITWIDTH_INT128128, NUM_OF_WORDS_INT1282,
2322 ((type128 *)&l_val)->x));
2323 m_type = e_long_double;
2324 } else
2325 error.SetErrorStringWithFormat("'%s' is not a valid float string value",
2326 value_str);
2327 } else {
2328 error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64"l" "u" "",
2329 (uint64_t)byte_size);
2330 return error;
2331 }
2332 break;
2333
2334 case eEncodingVector:
2335 error.SetErrorString("vector encoding unsupported.");
2336 break;
2337 }
2338 if (error.Fail())
2339 m_type = e_void;
2340
2341 return error;
2342}
2343
2344Status Scalar::SetValueFromData(DataExtractor &data, lldb::Encoding encoding,
2345 size_t byte_size) {
2346 Status error;
2347
2348 type128 int128;
2349 type256 int256;
2350 switch (encoding) {
2351 case lldb::eEncodingInvalid:
2352 error.SetErrorString("invalid encoding");
2353 break;
2354 case lldb::eEncodingVector:
2355 error.SetErrorString("vector encoding unsupported");
2356 break;
2357 case lldb::eEncodingUint: {
2358 lldb::offset_t offset = 0;
2359
2360 switch (byte_size) {
2361 case 1:
2362 operator=((uint8_t)data.GetU8(&offset));
2363 break;
2364 case 2:
2365 operator=((uint16_t)data.GetU16(&offset));
2366 break;
2367 case 4:
2368 operator=((uint32_t)data.GetU32(&offset));
2369 break;
2370 case 8:
2371 operator=((uint64_t)data.GetU64(&offset));
2372 break;
2373 case 16:
2374 if (data.GetByteOrder() == eByteOrderBig) {
2375 int128.x[1] = (uint64_t)data.GetU64(&offset);
2376 int128.x[0] = (uint64_t)data.GetU64(&offset);
2377 } else {
2378 int128.x[0] = (uint64_t)data.GetU64(&offset);
2379 int128.x[1] = (uint64_t)data.GetU64(&offset);
2380 }
2381 operator=(llvm::APInt(BITWIDTH_INT128128, NUM_OF_WORDS_INT1282, int128.x));
2382 break;
2383 case 32:
2384 if (data.GetByteOrder() == eByteOrderBig) {
2385 int256.x[3] = (uint64_t)data.GetU64(&offset);
2386 int256.x[2] = (uint64_t)data.GetU64(&offset);
2387 int256.x[1] = (uint64_t)data.GetU64(&offset);
2388 int256.x[0] = (uint64_t)data.GetU64(&offset);
2389 } else {
2390 int256.x[0] = (uint64_t)data.GetU64(&offset);
2391 int256.x[1] = (uint64_t)data.GetU64(&offset);
2392 int256.x[2] = (uint64_t)data.GetU64(&offset);
2393 int256.x[3] = (uint64_t)data.GetU64(&offset);
2394 }
2395 operator=(llvm::APInt(BITWIDTH_INT256256, NUM_OF_WORDS_INT2564, int256.x));
2396 break;
2397 default:
2398 error.SetErrorStringWithFormat(
2399 "unsupported unsigned integer byte size: %" PRIu64"l" "u" "",
2400 (uint64_t)byte_size);
2401 break;
2402 }
2403 } break;
2404 case lldb::eEncodingSint: {
2405 lldb::offset_t offset = 0;
2406
2407 switch (byte_size) {
2408 case 1:
2409 operator=((int8_t)data.GetU8(&offset));
2410 break;
2411 case 2:
2412 operator=((int16_t)data.GetU16(&offset));
2413 break;
2414 case 4:
2415 operator=((int32_t)data.GetU32(&offset));
2416 break;
2417 case 8:
2418 operator=((int64_t)data.GetU64(&offset));
2419 break;
2420 case 16:
2421 if (data.GetByteOrder() == eByteOrderBig) {
2422 int128.x[1] = (uint64_t)data.GetU64(&offset);
2423 int128.x[0] = (uint64_t)data.GetU64(&offset);
2424 } else {
2425 int128.x[0] = (uint64_t)data.GetU64(&offset);
2426 int128.x[1] = (uint64_t)data.GetU64(&offset);
2427 }
2428 operator=(llvm::APInt(BITWIDTH_INT128128, NUM_OF_WORDS_INT1282, int128.x));
2429 break;
2430 case 32:
2431 if (data.GetByteOrder() == eByteOrderBig) {
2432 int256.x[3] = (uint64_t)data.GetU64(&offset);
2433 int256.x[2] = (uint64_t)data.GetU64(&offset);
2434 int256.x[1] = (uint64_t)data.GetU64(&offset);
2435 int256.x[0] = (uint64_t)data.GetU64(&offset);
2436 } else {
2437 int256.x[0] = (uint64_t)data.GetU64(&offset);
2438 int256.x[1] = (uint64_t)data.GetU64(&offset);
2439 int256.x[2] = (uint64_t)data.GetU64(&offset);
2440 int256.x[3] = (uint64_t)data.GetU64(&offset);
2441 }
2442 operator=(llvm::APInt(BITWIDTH_INT256256, NUM_OF_WORDS_INT2564, int256.x));
2443 break;
2444 default:
2445 error.SetErrorStringWithFormat(
2446 "unsupported signed integer byte size: %" PRIu64"l" "u" "",
2447 (uint64_t)byte_size);
2448 break;
2449 }
2450 } break;
2451 case lldb::eEncodingIEEE754: {
2452 lldb::offset_t offset = 0;
2453
2454 if (byte_size == sizeof(float))
2455 operator=((float)data.GetFloat(&offset));
2456 else if (byte_size == sizeof(double))
2457 operator=((double)data.GetDouble(&offset));
2458 else if (byte_size == sizeof(long double))
2459 operator=((long double)data.GetLongDouble(&offset));
2460 else
2461 error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64"l" "u" "",
2462 (uint64_t)byte_size);
2463 } break;
2464 }
2465
2466 return error;
2467}
2468
2469bool Scalar::SignExtend(uint32_t sign_bit_pos) {
2470 const uint32_t max_bit_pos = GetByteSize() * 8;
2471
2472 if (sign_bit_pos < max_bit_pos) {
2473 switch (m_type) {
2474 case Scalar::e_void:
2475 case Scalar::e_float:
2476 case Scalar::e_double:
2477 case Scalar::e_long_double:
2478 return false;
2479
2480 case Scalar::e_sint:
2481 case Scalar::e_uint:
2482 case Scalar::e_slong:
2483 case Scalar::e_ulong:
2484 case Scalar::e_slonglong:
2485 case Scalar::e_ulonglong:
2486 case Scalar::e_sint128:
2487 case Scalar::e_uint128:
2488 case Scalar::e_sint256:
2489 case Scalar::e_uint256:
2490 if (max_bit_pos == sign_bit_pos)
2491 return true;
2492 else if (sign_bit_pos < (max_bit_pos - 1)) {
2493 llvm::APInt sign_bit = llvm::APInt::getSignMask(sign_bit_pos + 1);
2494 llvm::APInt bitwize_and = m_integer & sign_bit;
2495 if (bitwize_and.getBoolValue()) {
2496 const llvm::APInt mask =
2497 ~(sign_bit) + llvm::APInt(m_integer.getBitWidth(), 1);
2498 m_integer |= mask;
2499 }
2500 return true;
2501 }
2502 break;
2503 }
2504 }
2505 return false;
2506}
2507
2508size_t Scalar::GetAsMemoryData(void *dst, size_t dst_len,
2509 lldb::ByteOrder dst_byte_order,
2510 Status &error) const {
2511 // Get a data extractor that points to the native scalar data
2512 DataExtractor data;
2513 if (!GetData(data)) {
1
Calling 'Scalar::GetData'
2514 error.SetErrorString("invalid scalar value");
2515 return 0;
2516 }
2517
2518 const size_t src_len = data.GetByteSize();
2519
2520 // Prepare a memory buffer that contains some or all of the register value
2521 const size_t bytes_copied =
2522 data.CopyByteOrderedData(0, // src offset
2523 src_len, // src length
2524 dst, // dst buffer
2525 dst_len, // dst length
2526 dst_byte_order); // dst byte order
2527 if (bytes_copied == 0)
2528 error.SetErrorString("failed to copy data");
2529
2530 return bytes_copied;
2531}
2532
2533bool Scalar::ExtractBitfield(uint32_t bit_size, uint32_t bit_offset) {
2534 if (bit_size == 0)
2535 return true;
2536
2537 switch (m_type) {
2538 case Scalar::e_void:
2539 case Scalar::e_float:
2540 case Scalar::e_double:
2541 case Scalar::e_long_double:
2542 break;
2543
2544 case Scalar::e_sint:
2545 case Scalar::e_slong:
2546 case Scalar::e_slonglong:
2547 case Scalar::e_sint128:
2548 case Scalar::e_sint256:
2549 m_integer = m_integer.ashr(bit_offset)
2550 .sextOrTrunc(bit_size)
2551 .sextOrSelf(8 * GetByteSize());
2552 return true;
2553
2554 case Scalar::e_uint:
2555 case Scalar::e_ulong:
2556 case Scalar::e_ulonglong:
2557 case Scalar::e_uint128:
2558 case Scalar::e_uint256:
2559 m_integer = m_integer.lshr(bit_offset)
2560 .zextOrTrunc(bit_size)
2561 .zextOrSelf(8 * GetByteSize());
2562 return true;
2563 }
2564 return false;
2565}
2566
2567bool lldb_private::operator==(const Scalar &lhs, const Scalar &rhs) {
2568 // If either entry is void then we can just compare the types
2569 if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
2570 return lhs.m_type == rhs.m_type;
2571
2572 Scalar temp_value;
2573 const Scalar *a;
2574 const Scalar *b;
2575 llvm::APFloat::cmpResult result;
2576 switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
2577 case Scalar::e_void:
2578 break;
2579 case Scalar::e_sint:
2580 case Scalar::e_uint:
2581 case Scalar::e_slong:
2582 case Scalar::e_ulong:
2583 case Scalar::e_slonglong:
2584 case Scalar::e_ulonglong:
2585 case Scalar::e_sint128:
2586 case Scalar::e_uint128:
2587 case Scalar::e_sint256:
2588 case Scalar::e_uint256:
2589 return a->m_integer == b->m_integer;
2590 case Scalar::e_float:
2591 case Scalar::e_double:
2592 case Scalar::e_long_double:
2593 result = a->m_float.compare(b->m_float);
2594 if (result == llvm::APFloat::cmpEqual)
2595 return true;
2596 }
2597 return false;
2598}
2599
2600bool lldb_private::operator!=(const Scalar &lhs, const Scalar &rhs) {
2601 // If either entry is void then we can just compare the types
2602 if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
2603 return lhs.m_type != rhs.m_type;
2604
2605 Scalar
2606 temp_value; // A temp value that might get a copy of either promoted value
2607 const Scalar *a;
2608 const Scalar *b;
2609 llvm::APFloat::cmpResult result;
2610 switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
2611 case Scalar::e_void:
2612 break;
2613 case Scalar::e_sint:
2614 case Scalar::e_uint:
2615 case Scalar::e_slong:
2616 case Scalar::e_ulong:
2617 case Scalar::e_slonglong:
2618 case Scalar::e_ulonglong:
2619 case Scalar::e_sint128:
2620 case Scalar::e_uint128:
2621 case Scalar::e_sint256:
2622 case Scalar::e_uint256:
2623 return a->m_integer != b->m_integer;
2624 case Scalar::e_float:
2625 case Scalar::e_double:
2626 case Scalar::e_long_double:
2627 result = a->m_float.compare(b->m_float);
2628 if (result != llvm::APFloat::cmpEqual)
2629 return true;
2630 }
2631 return true;
2632}
2633
2634bool lldb_private::operator<(const Scalar &lhs, const Scalar &rhs) {
2635 if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
2636 return false;
2637
2638 Scalar temp_value;
2639 const Scalar *a;
2640 const Scalar *b;
2641 llvm::APFloat::cmpResult result;
2642 switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
2643 case Scalar::e_void:
2644 break;
2645 case Scalar::e_sint:
2646 case Scalar::e_slong:
2647 case Scalar::e_slonglong:
2648 case Scalar::e_sint128:
2649 case Scalar::e_sint256:
2650 return a->m_integer.slt(b->m_integer);
2651 case Scalar::e_uint:
2652 case Scalar::e_ulong:
2653 case Scalar::e_ulonglong:
2654 case Scalar::e_uint128:
2655 case Scalar::e_uint256:
2656 return a->m_integer.ult(b->m_integer);
2657 case Scalar::e_float:
2658 case Scalar::e_double:
2659 case Scalar::e_long_double:
2660 result = a->m_float.compare(b->m_float);
2661 if (result == llvm::APFloat::cmpLessThan)
2662 return true;
2663 }
2664 return false;
2665}
2666
2667bool lldb_private::operator<=(const Scalar &lhs, const Scalar &rhs) {
2668 if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
2669 return false;
2670
2671 Scalar temp_value;
2672 const Scalar *a;
2673 const Scalar *b;
2674 llvm::APFloat::cmpResult result;
2675 switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
2676 case Scalar::e_void:
2677 break;
2678 case Scalar::e_sint:
2679 case Scalar::e_slong:
2680 case Scalar::e_slonglong:
2681 case Scalar::e_sint128:
2682 case Scalar::e_sint256:
2683 return a->m_integer.sle(b->m_integer);
2684 case Scalar::e_uint:
2685 case Scalar::e_ulong:
2686 case Scalar::e_ulonglong:
2687 case Scalar::e_uint128:
2688 case Scalar::e_uint256:
2689 return a->m_integer.ule(b->m_integer);
2690 case Scalar::e_float:
2691 case Scalar::e_double:
2692 case Scalar::e_long_double:
2693 result = a->m_float.compare(b->m_float);
2694 if (result == llvm::APFloat::cmpLessThan ||
2695 result == llvm::APFloat::cmpEqual)
2696 return true;
2697 }
2698 return false;
2699}
2700
2701bool lldb_private::operator>(const Scalar &lhs, const Scalar &rhs) {
2702 if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
2703 return false;
2704
2705 Scalar temp_value;
2706 const Scalar *a;
2707 const Scalar *b;
2708 llvm::APFloat::cmpResult result;
2709 switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
2710 case Scalar::e_void:
2711 break;
2712 case Scalar::e_sint:
2713 case Scalar::e_slong:
2714 case Scalar::e_slonglong:
2715 case Scalar::e_sint128:
2716 case Scalar::e_sint256:
2717 return a->m_integer.sgt(b->m_integer);
2718 case Scalar::e_uint:
2719 case Scalar::e_ulong:
2720 case Scalar::e_ulonglong:
2721 case Scalar::e_uint128:
2722 case Scalar::e_uint256:
2723 return a->m_integer.ugt(b->m_integer);
2724 case Scalar::e_float:
2725 case Scalar::e_double:
2726 case Scalar::e_long_double:
2727 result = a->m_float.compare(b->m_float);
2728 if (result == llvm::APFloat::cmpGreaterThan)
2729 return true;
2730 }
2731 return false;
2732}
2733
2734bool lldb_private::operator>=(const Scalar &lhs, const Scalar &rhs) {
2735 if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void)
2736 return false;
2737
2738 Scalar temp_value;
2739 const Scalar *a;
2740 const Scalar *b;
2741 llvm::APFloat::cmpResult result;
2742 switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) {
2743 case Scalar::e_void:
2744 break;
2745 case Scalar::e_sint:
2746 case Scalar::e_slong:
2747 case Scalar::e_slonglong:
2748 case Scalar::e_sint128:
2749 case Scalar::e_sint256:
2750 return a->m_integer.sge(b->m_integer);
2751 case Scalar::e_uint:
2752 case Scalar::e_ulong:
2753 case Scalar::e_ulonglong:
2754 case Scalar::e_uint128:
2755 case Scalar::e_uint256:
2756 return a->m_integer.uge(b->m_integer);
2757 case Scalar::e_float:
2758 case Scalar::e_double:
2759 case Scalar::e_long_double:
2760 result = a->m_float.compare(b->m_float);
2761 if (result == llvm::APFloat::cmpGreaterThan ||
2762 result == llvm::APFloat::cmpEqual)
2763 return true;
2764 }
2765 return false;
2766}
2767
2768bool Scalar::ClearBit(uint32_t bit) {
2769 switch (m_type) {
2770 case e_void:
2771 break;
2772 case e_sint:
2773 case e_uint:
2774 case e_slong:
2775 case e_ulong:
2776 case e_slonglong:
2777 case e_ulonglong:
2778 case e_sint128:
2779 case e_uint128:
2780 case e_sint256:
2781 case e_uint256:
2782 m_integer.clearBit(bit);
2783 return true;
2784 case e_float:
2785 case e_double:
2786 case e_long_double:
2787 break;
2788 }
2789 return false;
2790}
2791
2792bool Scalar::SetBit(uint32_t bit) {
2793 switch (m_type) {
2794 case e_void:
2795 break;
2796 case e_sint:
2797 case e_uint:
2798 case e_slong:
2799 case e_ulong:
2800 case e_slonglong:
2801 case e_ulonglong:
2802 case e_sint128:
2803 case e_uint128:
2804 case e_sint256:
2805 case e_uint256:
2806 m_integer.setBit(bit);
2807 return true;
2808 case e_float:
2809 case e_double:
2810 case e_long_double:
2811 break;
2812 }
2813 return false;
2814}

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file implements a class to represent arbitrary precision
12/// integral constant values and operations on them.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APINT_H
17#define LLVM_ADT_APINT_H
18
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <string>
25
26namespace llvm {
27class FoldingSetNodeID;
28class StringRef;
29class hash_code;
30class raw_ostream;
31
32template <typename T> class SmallVectorImpl;
33template <typename T> class ArrayRef;
34template <typename T> class Optional;
35
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
44/// Class for arbitrary precision integers.
45///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69///
70class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
71public:
72 typedef uint64_t WordType;
73
74 /// This enum is used to hold the constants we needed for APInt.
75 enum : unsigned {
76 /// Byte size of a word.
77 APINT_WORD_SIZE = sizeof(WordType),
78 /// Bits in a word.
79 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
80 };
81
82 enum class Rounding {
83 DOWN,
84 TOWARD_ZERO,
85 UP,
86 };
87
88 static const WordType WORDTYPE_MAX = ~WordType(0);
89
90private:
91 /// This union is used to store the integer value. When the
92 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
93 union {
94 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
95 uint64_t *pVal; ///< Used to store the >64 bits integer value.
96 } U;
97
98 unsigned BitWidth; ///< The number of bits in this APInt.
99
100 friend struct DenseMapAPIntKeyInfo;
101
102 friend class APSInt;
103
104 /// Fast internal constructor
105 ///
106 /// This constructor is used only internally for speed of construction of
107 /// temporaries. It is unsafe for general use so it is not public.
108 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
109 U.pVal = val;
110 }
111
112 /// Determine if this APInt just has one word to store value.
113 ///
114 /// \returns true if the number of bits <= 64, false otherwise.
115 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
116
117 /// Determine which word a bit is in.
118 ///
119 /// \returns the word position for the specified bit position.
120 static unsigned whichWord(unsigned bitPosition) {
121 return bitPosition / APINT_BITS_PER_WORD;
122 }
123
124 /// Determine which bit in a word a bit is in.
125 ///
126 /// \returns the bit position in a word for the specified bit position
127 /// in the APInt.
128 static unsigned whichBit(unsigned bitPosition) {
129 return bitPosition % APINT_BITS_PER_WORD;
130 }
131
132 /// Get a single bit mask.
133 ///
134 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
135 /// This method generates and returns a uint64_t (word) mask for a single
136 /// bit at a specific bit position. This is used to mask the bit in the
137 /// corresponding word.
138 static uint64_t maskBit(unsigned bitPosition) {
139 return 1ULL << whichBit(bitPosition);
140 }
141
142 /// Clear unused high order bits
143 ///
144 /// This method is used internally to clear the top "N" bits in the high order
145 /// word that are not used by the APInt. This is needed after the most
146 /// significant word is assigned a value to ensure that those bits are
147 /// zero'd out.
148 APInt &clearUnusedBits() {
149 // Compute how many bits are used in the final word
150 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
151
152 // Mask out the high bits.
153 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
154 if (isSingleWord())
155 U.VAL &= mask;
156 else
157 U.pVal[getNumWords() - 1] &= mask;
158 return *this;
159 }
160
161 /// Get the word corresponding to a bit position
162 /// \returns the corresponding word for the specified bit position.
163 uint64_t getWord(unsigned bitPosition) const {
164 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
165 }
166
167 /// Utility method to change the bit width of this APInt to new bit width,
168 /// allocating and/or deallocating as necessary. There is no guarantee on the
169 /// value of any bits upon return. Caller should populate the bits after.
170 void reallocate(unsigned NewBitWidth);
171
172 /// Convert a char array into an APInt
173 ///
174 /// \param radix 2, 8, 10, 16, or 36
175 /// Converts a string into a number. The string must be non-empty
176 /// and well-formed as a number of the given base. The bit-width
177 /// must be sufficient to hold the result.
178 ///
179 /// This is used by the constructors that take string arguments.
180 ///
181 /// StringRef::getAsInteger is superficially similar but (1) does
182 /// not assume that the string is well-formed and (2) grows the
183 /// result to hold the input.
184 void fromString(unsigned numBits, StringRef str, uint8_t radix);
185
186 /// An internal division function for dividing APInts.
187 ///
188 /// This is used by the toString method to divide by the radix. It simply
189 /// provides a more convenient form of divide for internal use since KnuthDiv
190 /// has specific constraints on its inputs. If those constraints are not met
191 /// then it provides a simpler form of divide.
192 static void divide(const WordType *LHS, unsigned lhsWords,
193 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
194 WordType *Remainder);
195
196 /// out-of-line slow case for inline constructor
197 void initSlowCase(uint64_t val, bool isSigned);
198
199 /// shared code between two array constructors
200 void initFromArray(ArrayRef<uint64_t> array);
201
202 /// out-of-line slow case for inline copy constructor
203 void initSlowCase(const APInt &that);
204
205 /// out-of-line slow case for shl
206 void shlSlowCase(unsigned ShiftAmt);
207
208 /// out-of-line slow case for lshr.
209 void lshrSlowCase(unsigned ShiftAmt);
210
211 /// out-of-line slow case for ashr.
212 void ashrSlowCase(unsigned ShiftAmt);
213
214 /// out-of-line slow case for operator=
215 void AssignSlowCase(const APInt &RHS);
216
217 /// out-of-line slow case for operator==
218 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
219
220 /// out-of-line slow case for countLeadingZeros
221 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
222
223 /// out-of-line slow case for countLeadingOnes.
224 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
225
226 /// out-of-line slow case for countTrailingZeros.
227 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
228
229 /// out-of-line slow case for countTrailingOnes
230 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
231
232 /// out-of-line slow case for countPopulation
233 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
234
235 /// out-of-line slow case for intersects.
236 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
237
238 /// out-of-line slow case for isSubsetOf.
239 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
240
241 /// out-of-line slow case for setBits.
242 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
243
244 /// out-of-line slow case for flipAllBits.
245 void flipAllBitsSlowCase();
246
247 /// out-of-line slow case for operator&=.
248 void AndAssignSlowCase(const APInt& RHS);
249
250 /// out-of-line slow case for operator|=.
251 void OrAssignSlowCase(const APInt& RHS);
252
253 /// out-of-line slow case for operator^=.
254 void XorAssignSlowCase(const APInt& RHS);
255
256 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
257 /// to, or greater than RHS.
258 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
259
260 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
261 /// to, or greater than RHS.
262 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
263
264public:
265 /// \name Constructors
266 /// @{
267
268 /// Create a new APInt of numBits width, initialized as val.
269 ///
270 /// If isSigned is true then val is treated as if it were a signed value
271 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
272 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
273 /// the range of val are zero filled).
274 ///
275 /// \param numBits the bit width of the constructed APInt
276 /// \param val the initial value of the APInt
277 /// \param isSigned how to treat signedness of val
278 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
279 : BitWidth(numBits) {
280 assert(BitWidth && "bitwidth too small")((BitWidth && "bitwidth too small") ? static_cast<
void> (0) : __assert_fail ("BitWidth && \"bitwidth too small\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 280, __PRETTY_FUNCTION__))
;
281 if (isSingleWord()) {
282 U.VAL = val;
283 clearUnusedBits();
284 } else {
285 initSlowCase(val, isSigned);
286 }
287 }
288
289 /// Construct an APInt of numBits width, initialized as bigVal[].
290 ///
291 /// Note that bigVal.size() can be smaller or larger than the corresponding
292 /// bit width but any extraneous bits will be dropped.
293 ///
294 /// \param numBits the bit width of the constructed APInt
295 /// \param bigVal a sequence of words to form the initial value of the APInt
296 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
297
298 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
299 /// deprecated because this constructor is prone to ambiguity with the
300 /// APInt(unsigned, uint64_t, bool) constructor.
301 ///
302 /// If this overload is ever deleted, care should be taken to prevent calls
303 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
304 /// constructor.
305 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
306
307 /// Construct an APInt from a string representation.
308 ///
309 /// This constructor interprets the string \p str in the given radix. The
310 /// interpretation stops when the first character that is not suitable for the
311 /// radix is encountered, or the end of the string. Acceptable radix values
312 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
313 /// string to require more bits than numBits.
314 ///
315 /// \param numBits the bit width of the constructed APInt
316 /// \param str the string to be interpreted
317 /// \param radix the radix to use for the conversion
318 APInt(unsigned numBits, StringRef str, uint8_t radix);
319
320 /// Simply makes *this a copy of that.
321 /// Copy Constructor.
322 APInt(const APInt &that) : BitWidth(that.BitWidth) {
323 if (isSingleWord())
324 U.VAL = that.U.VAL;
325 else
326 initSlowCase(that);
327 }
328
329 /// Move Constructor.
330 APInt(APInt &&that) : BitWidth(that.BitWidth) {
331 memcpy(&U, &that.U, sizeof(U));
332 that.BitWidth = 0;
333 }
334
335 /// Destructor.
336 ~APInt() {
337 if (needsCleanup())
8
Taking true branch
338 delete[] U.pVal;
9
Memory is released
339 }
340
341 /// Default constructor that creates an uninteresting APInt
342 /// representing a 1-bit zero value.
343 ///
344 /// This is useful for object deserialization (pair this with the static
345 /// method Read).
346 explicit APInt() : BitWidth(1) { U.VAL = 0; }
347
348 /// Returns whether this instance allocated memory.
349 bool needsCleanup() const { return !isSingleWord(); }
350
351 /// Used to insert APInt objects, or objects that contain APInt objects, into
352 /// FoldingSets.
353 void Profile(FoldingSetNodeID &id) const;
354
355 /// @}
356 /// \name Value Tests
357 /// @{
358
359 /// Determine sign of this APInt.
360 ///
361 /// This tests the high bit of this APInt to determine if it is set.
362 ///
363 /// \returns true if this APInt is negative, false otherwise
364 bool isNegative() const { return (*this)[BitWidth - 1]; }
365
366 /// Determine if this APInt Value is non-negative (>= 0)
367 ///
368 /// This tests the high bit of the APInt to determine if it is unset.
369 bool isNonNegative() const { return !isNegative(); }
370
371 /// Determine if sign bit of this APInt is set.
372 ///
373 /// This tests the high bit of this APInt to determine if it is set.
374 ///
375 /// \returns true if this APInt has its sign bit set, false otherwise.
376 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
377
378 /// Determine if sign bit of this APInt is clear.
379 ///
380 /// This tests the high bit of this APInt to determine if it is clear.
381 ///
382 /// \returns true if this APInt has its sign bit clear, false otherwise.
383 bool isSignBitClear() const { return !isSignBitSet(); }
384
385 /// Determine if this APInt Value is positive.
386 ///
387 /// This tests if the value of this APInt is positive (> 0). Note
388 /// that 0 is not a positive value.
389 ///
390 /// \returns true if this APInt is positive.
391 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
392
393 /// Determine if all bits are set
394 ///
395 /// This checks to see if the value has all bits of the APInt are set or not.
396 bool isAllOnesValue() const {
397 if (isSingleWord())
398 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
399 return countTrailingOnesSlowCase() == BitWidth;
400 }
401
402 /// Determine if all bits are clear
403 ///
404 /// This checks to see if the value has all bits of the APInt are clear or
405 /// not.
406 bool isNullValue() const { return !*this; }
407
408 /// Determine if this is a value of 1.
409 ///
410 /// This checks to see if the value of this APInt is one.
411 bool isOneValue() const {
412 if (isSingleWord())
413 return U.VAL == 1;
414 return countLeadingZerosSlowCase() == BitWidth - 1;
415 }
416
417 /// Determine if this is the largest unsigned value.
418 ///
419 /// This checks to see if the value of this APInt is the maximum unsigned
420 /// value for the APInt's bit width.
421 bool isMaxValue() const { return isAllOnesValue(); }
422
423 /// Determine if this is the largest signed value.
424 ///
425 /// This checks to see if the value of this APInt is the maximum signed
426 /// value for the APInt's bit width.
427 bool isMaxSignedValue() const {
428 if (isSingleWord())
429 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
430 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
431 }
432
433 /// Determine if this is the smallest unsigned value.
434 ///
435 /// This checks to see if the value of this APInt is the minimum unsigned
436 /// value for the APInt's bit width.
437 bool isMinValue() const { return isNullValue(); }
438
439 /// Determine if this is the smallest signed value.
440 ///
441 /// This checks to see if the value of this APInt is the minimum signed
442 /// value for the APInt's bit width.
443 bool isMinSignedValue() const {
444 if (isSingleWord())
445 return U.VAL == (WordType(1) << (BitWidth - 1));
446 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
447 }
448
449 /// Check if this APInt has an N-bits unsigned integer value.
450 bool isIntN(unsigned N) const {
451 assert(N && "N == 0 ???")((N && "N == 0 ???") ? static_cast<void> (0) : __assert_fail
("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 451, __PRETTY_FUNCTION__))
;
452 return getActiveBits() <= N;
453 }
454
455 /// Check if this APInt has an N-bits signed integer value.
456 bool isSignedIntN(unsigned N) const {
457 assert(N && "N == 0 ???")((N && "N == 0 ???") ? static_cast<void> (0) : __assert_fail
("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 457, __PRETTY_FUNCTION__))
;
458 return getMinSignedBits() <= N;
459 }
460
461 /// Check if this APInt's value is a power of two greater than zero.
462 ///
463 /// \returns true if the argument APInt value is a power of two > 0.
464 bool isPowerOf2() const {
465 if (isSingleWord())
466 return isPowerOf2_64(U.VAL);
467 return countPopulationSlowCase() == 1;
468 }
469
470 /// Check if the APInt's value is returned by getSignMask.
471 ///
472 /// \returns true if this is the value returned by getSignMask.
473 bool isSignMask() const { return isMinSignedValue(); }
474
475 /// Convert APInt to a boolean value.
476 ///
477 /// This converts the APInt to a boolean value as a test against zero.
478 bool getBoolValue() const { return !!*this; }
479
480 /// If this value is smaller than the specified limit, return it, otherwise
481 /// return the limit value. This causes the value to saturate to the limit.
482 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
483 return ugt(Limit) ? Limit : getZExtValue();
484 }
485
486 /// Check if the APInt consists of a repeated bit pattern.
487 ///
488 /// e.g. 0x01010101 satisfies isSplat(8).
489 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
490 /// width without remainder.
491 bool isSplat(unsigned SplatSizeInBits) const;
492
493 /// \returns true if this APInt value is a sequence of \param numBits ones
494 /// starting at the least significant bit with the remainder zero.
495 bool isMask(unsigned numBits) const {
496 assert(numBits != 0 && "numBits must be non-zero")((numBits != 0 && "numBits must be non-zero") ? static_cast
<void> (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 496, __PRETTY_FUNCTION__))
;
497 assert(numBits <= BitWidth && "numBits out of range")((numBits <= BitWidth && "numBits out of range") ?
static_cast<void> (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 497, __PRETTY_FUNCTION__))
;
498 if (isSingleWord())
499 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
500 unsigned Ones = countTrailingOnesSlowCase();
501 return (numBits == Ones) &&
502 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
503 }
504
505 /// \returns true if this APInt is a non-empty sequence of ones starting at
506 /// the least significant bit with the remainder zero.
507 /// Ex. isMask(0x0000FFFFU) == true.
508 bool isMask() const {
509 if (isSingleWord())
510 return isMask_64(U.VAL);
511 unsigned Ones = countTrailingOnesSlowCase();
512 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
513 }
514
515 /// Return true if this APInt value contains a sequence of ones with
516 /// the remainder zero.
517 bool isShiftedMask() const {
518 if (isSingleWord())
519 return isShiftedMask_64(U.VAL);
520 unsigned Ones = countPopulationSlowCase();
521 unsigned LeadZ = countLeadingZerosSlowCase();
522 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
523 }
524
525 /// @}
526 /// \name Value Generators
527 /// @{
528
529 /// Gets maximum unsigned value of APInt for specific bit width.
530 static APInt getMaxValue(unsigned numBits) {
531 return getAllOnesValue(numBits);
532 }
533
534 /// Gets maximum signed value of APInt for a specific bit width.
535 static APInt getSignedMaxValue(unsigned numBits) {
536 APInt API = getAllOnesValue(numBits);
537 API.clearBit(numBits - 1);
538 return API;
539 }
540
541 /// Gets minimum unsigned value of APInt for a specific bit width.
542 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
543
544 /// Gets minimum signed value of APInt for a specific bit width.
545 static APInt getSignedMinValue(unsigned numBits) {
546 APInt API(numBits, 0);
547 API.setBit(numBits - 1);
548 return API;
549 }
550
551 /// Get the SignMask for a specific bit width.
552 ///
553 /// This is just a wrapper function of getSignedMinValue(), and it helps code
554 /// readability when we want to get a SignMask.
555 static APInt getSignMask(unsigned BitWidth) {
556 return getSignedMinValue(BitWidth);
557 }
558
559 /// Get the all-ones value.
560 ///
561 /// \returns the all-ones value for an APInt of the specified bit-width.
562 static APInt getAllOnesValue(unsigned numBits) {
563 return APInt(numBits, WORDTYPE_MAX, true);
564 }
565
566 /// Get the '0' value.
567 ///
568 /// \returns the '0' value for an APInt of the specified bit-width.
569 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
570
571 /// Compute an APInt containing numBits highbits from this APInt.
572 ///
573 /// Get an APInt with the same BitWidth as this APInt, just zero mask
574 /// the low bits and right shift to the least significant bit.
575 ///
576 /// \returns the high "numBits" bits of this APInt.
577 APInt getHiBits(unsigned numBits) const;
578
579 /// Compute an APInt containing numBits lowbits from this APInt.
580 ///
581 /// Get an APInt with the same BitWidth as this APInt, just zero mask
582 /// the high bits.
583 ///
584 /// \returns the low "numBits" bits of this APInt.
585 APInt getLoBits(unsigned numBits) const;
586
587 /// Return an APInt with exactly one bit set in the result.
588 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
589 APInt Res(numBits, 0);
590 Res.setBit(BitNo);
591 return Res;
592 }
593
594 /// Get a value with a block of bits set.
595 ///
596 /// Constructs an APInt value that has a contiguous range of bits set. The
597 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
598 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
599 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
600 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
601 ///
602 /// \param numBits the intended bit width of the result
603 /// \param loBit the index of the lowest bit set.
604 /// \param hiBit the index of the highest bit set.
605 ///
606 /// \returns An APInt value with the requested bits set.
607 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
608 APInt Res(numBits, 0);
609 Res.setBits(loBit, hiBit);
610 return Res;
611 }
612
613 /// Get a value with upper bits starting at loBit set.
614 ///
615 /// Constructs an APInt value that has a contiguous range of bits set. The
616 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
617 /// bits will be zero. For example, with parameters(32, 12) you would get
618 /// 0xFFFFF000.
619 ///
620 /// \param numBits the intended bit width of the result
621 /// \param loBit the index of the lowest bit to set.
622 ///
623 /// \returns An APInt value with the requested bits set.
624 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
625 APInt Res(numBits, 0);
626 Res.setBitsFrom(loBit);
627 return Res;
628 }
629
630 /// Get a value with high bits set
631 ///
632 /// Constructs an APInt value that has the top hiBitsSet bits set.
633 ///
634 /// \param numBits the bitwidth of the result
635 /// \param hiBitsSet the number of high-order bits set in the result.
636 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
637 APInt Res(numBits, 0);
638 Res.setHighBits(hiBitsSet);
639 return Res;
640 }
641
642 /// Get a value with low bits set
643 ///
644 /// Constructs an APInt value that has the bottom loBitsSet bits set.
645 ///
646 /// \param numBits the bitwidth of the result
647 /// \param loBitsSet the number of low-order bits set in the result.
648 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
649 APInt Res(numBits, 0);
650 Res.setLowBits(loBitsSet);
651 return Res;
652 }
653
654 /// Return a value containing V broadcasted over NewLen bits.
655 static APInt getSplat(unsigned NewLen, const APInt &V);
656
657 /// Determine if two APInts have the same value, after zero-extending
658 /// one of them (if needed!) to ensure that the bit-widths match.
659 static bool isSameValue(const APInt &I1, const APInt &I2) {
660 if (I1.getBitWidth() == I2.getBitWidth())
661 return I1 == I2;
662
663 if (I1.getBitWidth() > I2.getBitWidth())
664 return I1 == I2.zext(I1.getBitWidth());
665
666 return I1.zext(I2.getBitWidth()) == I2;
667 }
668
669 /// Overload to compute a hash_code for an APInt value.
670 friend hash_code hash_value(const APInt &Arg);
671
672 /// This function returns a pointer to the internal storage of the APInt.
673 /// This is useful for writing out the APInt in binary form without any
674 /// conversions.
675 const uint64_t *getRawData() const {
676 if (isSingleWord())
677 return &U.VAL;
678 return &U.pVal[0];
679 }
680
681 /// @}
682 /// \name Unary Operators
683 /// @{
684
685 /// Postfix increment operator.
686 ///
687 /// Increments *this by 1.
688 ///
689 /// \returns a new APInt value representing the original value of *this.
690 const APInt operator++(int) {
691 APInt API(*this);
692 ++(*this);
693 return API;
694 }
695
696 /// Prefix increment operator.
697 ///
698 /// \returns *this incremented by one
699 APInt &operator++();
700
701 /// Postfix decrement operator.
702 ///
703 /// Decrements *this by 1.
704 ///
705 /// \returns a new APInt value representing the original value of *this.
706 const APInt operator--(int) {
707 APInt API(*this);
708 --(*this);
709 return API;
710 }
711
712 /// Prefix decrement operator.
713 ///
714 /// \returns *this decremented by one.
715 APInt &operator--();
716
717 /// Logical negation operator.
718 ///
719 /// Performs logical negation operation on this APInt.
720 ///
721 /// \returns true if *this is zero, false otherwise.
722 bool operator!() const {
723 if (isSingleWord())
724 return U.VAL == 0;
725 return countLeadingZerosSlowCase() == BitWidth;
726 }
727
728 /// @}
729 /// \name Assignment Operators
730 /// @{
731
732 /// Copy assignment operator.
733 ///
734 /// \returns *this after assignment of RHS.
735 APInt &operator=(const APInt &RHS) {
736 // If the bitwidths are the same, we can avoid mucking with memory
737 if (isSingleWord() && RHS.isSingleWord()) {
738 U.VAL = RHS.U.VAL;
739 BitWidth = RHS.BitWidth;
740 return clearUnusedBits();
741 }
742
743 AssignSlowCase(RHS);
744 return *this;
745 }
746
747 /// Move assignment operator.
748 APInt &operator=(APInt &&that) {
749#ifdef _MSC_VER
750 // The MSVC std::shuffle implementation still does self-assignment.
751 if (this == &that)
752 return *this;
753#endif
754 assert(this != &that && "Self-move not supported")((this != &that && "Self-move not supported") ? static_cast
<void> (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 754, __PRETTY_FUNCTION__))
;
755 if (!isSingleWord())
756 delete[] U.pVal;
757
758 // Use memcpy so that type based alias analysis sees both VAL and pVal
759 // as modified.
760 memcpy(&U, &that.U, sizeof(U));
761
762 BitWidth = that.BitWidth;
763 that.BitWidth = 0;
764
765 return *this;
766 }
767
768 /// Assignment operator.
769 ///
770 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
771 /// the bit width, the excess bits are truncated. If the bit width is larger
772 /// than 64, the value is zero filled in the unspecified high order bits.
773 ///
774 /// \returns *this after assignment of RHS value.
775 APInt &operator=(uint64_t RHS) {
776 if (isSingleWord()) {
777 U.VAL = RHS;
778 clearUnusedBits();
779 } else {
780 U.pVal[0] = RHS;
781 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
782 }
783 return *this;
784 }
785
786 /// Bitwise AND assignment operator.
787 ///
788 /// Performs a bitwise AND operation on this APInt and RHS. The result is
789 /// assigned to *this.
790 ///
791 /// \returns *this after ANDing with RHS.
792 APInt &operator&=(const APInt &RHS) {
793 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 793, __PRETTY_FUNCTION__))
;
794 if (isSingleWord())
795 U.VAL &= RHS.U.VAL;
796 else
797 AndAssignSlowCase(RHS);
798 return *this;
799 }
800
801 /// Bitwise AND assignment operator.
802 ///
803 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
804 /// logically zero-extended or truncated to match the bit-width of
805 /// the LHS.
806 APInt &operator&=(uint64_t RHS) {
807 if (isSingleWord()) {
808 U.VAL &= RHS;
809 return *this;
810 }
811 U.pVal[0] &= RHS;
812 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
813 return *this;
814 }
815
816 /// Bitwise OR assignment operator.
817 ///
818 /// Performs a bitwise OR operation on this APInt and RHS. The result is
819 /// assigned *this;
820 ///
821 /// \returns *this after ORing with RHS.
822 APInt &operator|=(const APInt &RHS) {
823 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 823, __PRETTY_FUNCTION__))
;
824 if (isSingleWord())
825 U.VAL |= RHS.U.VAL;
826 else
827 OrAssignSlowCase(RHS);
828 return *this;
829 }
830
831 /// Bitwise OR assignment operator.
832 ///
833 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
834 /// logically zero-extended or truncated to match the bit-width of
835 /// the LHS.
836 APInt &operator|=(uint64_t RHS) {
837 if (isSingleWord()) {
838 U.VAL |= RHS;
839 clearUnusedBits();
840 } else {
841 U.pVal[0] |= RHS;
842 }
843 return *this;
844 }
845
846 /// Bitwise XOR assignment operator.
847 ///
848 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
849 /// assigned to *this.
850 ///
851 /// \returns *this after XORing with RHS.
852 APInt &operator^=(const APInt &RHS) {
853 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 853, __PRETTY_FUNCTION__))
;
854 if (isSingleWord())
855 U.VAL ^= RHS.U.VAL;
856 else
857 XorAssignSlowCase(RHS);
858 return *this;
859 }
860
861 /// Bitwise XOR assignment operator.
862 ///
863 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
864 /// logically zero-extended or truncated to match the bit-width of
865 /// the LHS.
866 APInt &operator^=(uint64_t RHS) {
867 if (isSingleWord()) {
868 U.VAL ^= RHS;
869 clearUnusedBits();
870 } else {
871 U.pVal[0] ^= RHS;
872 }
873 return *this;
874 }
875
876 /// Multiplication assignment operator.
877 ///
878 /// Multiplies this APInt by RHS and assigns the result to *this.
879 ///
880 /// \returns *this
881 APInt &operator*=(const APInt &RHS);
882 APInt &operator*=(uint64_t RHS);
883
884 /// Addition assignment operator.
885 ///
886 /// Adds RHS to *this and assigns the result to *this.
887 ///
888 /// \returns *this
889 APInt &operator+=(const APInt &RHS);
890 APInt &operator+=(uint64_t RHS);
891
892 /// Subtraction assignment operator.
893 ///
894 /// Subtracts RHS from *this and assigns the result to *this.
895 ///
896 /// \returns *this
897 APInt &operator-=(const APInt &RHS);
898 APInt &operator-=(uint64_t RHS);
899
900 /// Left-shift assignment function.
901 ///
902 /// Shifts *this left by shiftAmt and assigns the result to *this.
903 ///
904 /// \returns *this after shifting left by ShiftAmt
905 APInt &operator<<=(unsigned ShiftAmt) {
906 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 906, __PRETTY_FUNCTION__))
;
907 if (isSingleWord()) {
908 if (ShiftAmt == BitWidth)
909 U.VAL = 0;
910 else
911 U.VAL <<= ShiftAmt;
912 return clearUnusedBits();
913 }
914 shlSlowCase(ShiftAmt);
915 return *this;
916 }
917
918 /// Left-shift assignment function.
919 ///
920 /// Shifts *this left by shiftAmt and assigns the result to *this.
921 ///
922 /// \returns *this after shifting left by ShiftAmt
923 APInt &operator<<=(const APInt &ShiftAmt);
924
925 /// @}
926 /// \name Binary Operators
927 /// @{
928
929 /// Multiplication operator.
930 ///
931 /// Multiplies this APInt by RHS and returns the result.
932 APInt operator*(const APInt &RHS) const;
933
934 /// Left logical shift operator.
935 ///
936 /// Shifts this APInt left by \p Bits and returns the result.
937 APInt operator<<(unsigned Bits) const { return shl(Bits); }
938
939 /// Left logical shift operator.
940 ///
941 /// Shifts this APInt left by \p Bits and returns the result.
942 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
943
944 /// Arithmetic right-shift function.
945 ///
946 /// Arithmetic right-shift this APInt by shiftAmt.
947 APInt ashr(unsigned ShiftAmt) const {
948 APInt R(*this);
949 R.ashrInPlace(ShiftAmt);
950 return R;
951 }
952
953 /// Arithmetic right-shift this APInt by ShiftAmt in place.
954 void ashrInPlace(unsigned ShiftAmt) {
955 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 955, __PRETTY_FUNCTION__))
;
956 if (isSingleWord()) {
957 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
958 if (ShiftAmt == BitWidth)
959 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
960 else
961 U.VAL = SExtVAL >> ShiftAmt;
962 clearUnusedBits();
963 return;
964 }
965 ashrSlowCase(ShiftAmt);
966 }
967
968 /// Logical right-shift function.
969 ///
970 /// Logical right-shift this APInt by shiftAmt.
971 APInt lshr(unsigned shiftAmt) const {
972 APInt R(*this);
973 R.lshrInPlace(shiftAmt);
974 return R;
975 }
976
977 /// Logical right-shift this APInt by ShiftAmt in place.
978 void lshrInPlace(unsigned ShiftAmt) {
979 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 979, __PRETTY_FUNCTION__))
;
980 if (isSingleWord()) {
981 if (ShiftAmt == BitWidth)
982 U.VAL = 0;
983 else
984 U.VAL >>= ShiftAmt;
985 return;
986 }
987 lshrSlowCase(ShiftAmt);
988 }
989
990 /// Left-shift function.
991 ///
992 /// Left-shift this APInt by shiftAmt.
993 APInt shl(unsigned shiftAmt) const {
994 APInt R(*this);
995 R <<= shiftAmt;
996 return R;
997 }
998
999 /// Rotate left by rotateAmt.
1000 APInt rotl(unsigned rotateAmt) const;
1001
1002 /// Rotate right by rotateAmt.
1003 APInt rotr(unsigned rotateAmt) const;
1004
1005 /// Arithmetic right-shift function.
1006 ///
1007 /// Arithmetic right-shift this APInt by shiftAmt.
1008 APInt ashr(const APInt &ShiftAmt) const {
1009 APInt R(*this);
1010 R.ashrInPlace(ShiftAmt);
1011 return R;
1012 }
1013
1014 /// Arithmetic right-shift this APInt by shiftAmt in place.
1015 void ashrInPlace(const APInt &shiftAmt);
1016
1017 /// Logical right-shift function.
1018 ///
1019 /// Logical right-shift this APInt by shiftAmt.
1020 APInt lshr(const APInt &ShiftAmt) const {
1021 APInt R(*this);
1022 R.lshrInPlace(ShiftAmt);
1023 return R;
1024 }
1025
1026 /// Logical right-shift this APInt by ShiftAmt in place.
1027 void lshrInPlace(const APInt &ShiftAmt);
1028
1029 /// Left-shift function.
1030 ///
1031 /// Left-shift this APInt by shiftAmt.
1032 APInt shl(const APInt &ShiftAmt) const {
1033 APInt R(*this);
1034 R <<= ShiftAmt;
1035 return R;
1036 }
1037
1038 /// Rotate left by rotateAmt.
1039 APInt rotl(const APInt &rotateAmt) const;
1040
1041 /// Rotate right by rotateAmt.
1042 APInt rotr(const APInt &rotateAmt) const;
1043
1044 /// Unsigned division operation.
1045 ///
1046 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1047 /// RHS are treated as unsigned quantities for purposes of this division.
1048 ///
1049 /// \returns a new APInt value containing the division result, rounded towards
1050 /// zero.
1051 APInt udiv(const APInt &RHS) const;
1052 APInt udiv(uint64_t RHS) const;
1053
1054 /// Signed division function for APInt.
1055 ///
1056 /// Signed divide this APInt by APInt RHS.
1057 ///
1058 /// The result is rounded towards zero.
1059 APInt sdiv(const APInt &RHS) const;
1060 APInt sdiv(int64_t RHS) const;
1061
1062 /// Unsigned remainder operation.
1063 ///
1064 /// Perform an unsigned remainder operation on this APInt with RHS being the
1065 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1066 /// of this operation. Note that this is a true remainder operation and not a
1067 /// modulo operation because the sign follows the sign of the dividend which
1068 /// is *this.
1069 ///
1070 /// \returns a new APInt value containing the remainder result
1071 APInt urem(const APInt &RHS) const;
1072 uint64_t urem(uint64_t RHS) const;
1073
1074 /// Function for signed remainder operation.
1075 ///
1076 /// Signed remainder operation on APInt.
1077 APInt srem(const APInt &RHS) const;
1078 int64_t srem(int64_t RHS) const;
1079
1080 /// Dual division/remainder interface.
1081 ///
1082 /// Sometimes it is convenient to divide two APInt values and obtain both the
1083 /// quotient and remainder. This function does both operations in the same
1084 /// computation making it a little more efficient. The pair of input arguments
1085 /// may overlap with the pair of output arguments. It is safe to call
1086 /// udivrem(X, Y, X, Y), for example.
1087 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1088 APInt &Remainder);
1089 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1090 uint64_t &Remainder);
1091
1092 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1093 APInt &Remainder);
1094 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1095 int64_t &Remainder);
1096
1097 // Operations that return overflow indicators.
1098 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1099 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1100 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1101 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1102 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1103 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1104 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1105 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1106 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1107
1108 /// Array-indexing support.
1109 ///
1110 /// \returns the bit value at bitPosition
1111 bool operator[](unsigned bitPosition) const {
1112 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")((bitPosition < getBitWidth() && "Bit position out of bounds!"
) ? static_cast<void> (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 1112, __PRETTY_FUNCTION__))
;
1113 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1114 }
1115
1116 /// @}
1117 /// \name Comparison Operators
1118 /// @{
1119
1120 /// Equality operator.
1121 ///
1122 /// Compares this APInt with RHS for the validity of the equality
1123 /// relationship.
1124 bool operator==(const APInt &RHS) const {
1125 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")((BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 1125, __PRETTY_FUNCTION__))
;
1126 if (isSingleWord())
1127 return U.VAL == RHS.U.VAL;
1128 return EqualSlowCase(RHS);
1129 }
1130
1131 /// Equality operator.
1132 ///
1133 /// Compares this APInt with a uint64_t for the validity of the equality
1134 /// relationship.
1135 ///
1136 /// \returns true if *this == Val
1137 bool operator==(uint64_t Val) const {
1138 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1139 }
1140
1141 /// Equality comparison.
1142 ///
1143 /// Compares this APInt with RHS for the validity of the equality
1144 /// relationship.
1145 ///
1146 /// \returns true if *this == Val
1147 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1148
1149 /// Inequality operator.
1150 ///
1151 /// Compares this APInt with RHS for the validity of the inequality
1152 /// relationship.
1153 ///
1154 /// \returns true if *this != Val
1155 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1156
1157 /// Inequality operator.
1158 ///
1159 /// Compares this APInt with a uint64_t for the validity of the inequality
1160 /// relationship.
1161 ///
1162 /// \returns true if *this != Val
1163 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1164
1165 /// Inequality comparison
1166 ///
1167 /// Compares this APInt with RHS for the validity of the inequality
1168 /// relationship.
1169 ///
1170 /// \returns true if *this != Val
1171 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1172
1173 /// Unsigned less than comparison
1174 ///
1175 /// Regards both *this and RHS as unsigned quantities and compares them for
1176 /// the validity of the less-than relationship.
1177 ///
1178 /// \returns true if *this < RHS when both are considered unsigned.
1179 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1180
1181 /// Unsigned less than comparison
1182 ///
1183 /// Regards both *this as an unsigned quantity and compares it with RHS for
1184 /// the validity of the less-than relationship.
1185 ///
1186 /// \returns true if *this < RHS when considered unsigned.
1187 bool ult(uint64_t RHS) const {
1188 // Only need to check active bits if not a single word.
1189 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1190 }
1191
1192 /// Signed less than comparison
1193 ///
1194 /// Regards both *this and RHS as signed quantities and compares them for
1195 /// validity of the less-than relationship.
1196 ///
1197 /// \returns true if *this < RHS when both are considered signed.
1198 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1199
1200 /// Signed less than comparison
1201 ///
1202 /// Regards both *this as a signed quantity and compares it with RHS for
1203 /// the validity of the less-than relationship.
1204 ///
1205 /// \returns true if *this < RHS when considered signed.
1206 bool slt(int64_t RHS) const {
1207 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1208 : getSExtValue() < RHS;
1209 }
1210
1211 /// Unsigned less or equal comparison
1212 ///
1213 /// Regards both *this and RHS as unsigned quantities and compares them for
1214 /// validity of the less-or-equal relationship.
1215 ///
1216 /// \returns true if *this <= RHS when both are considered unsigned.
1217 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1218
1219 /// Unsigned less or equal comparison
1220 ///
1221 /// Regards both *this as an unsigned quantity and compares it with RHS for
1222 /// the validity of the less-or-equal relationship.
1223 ///
1224 /// \returns true if *this <= RHS when considered unsigned.
1225 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1226
1227 /// Signed less or equal comparison
1228 ///
1229 /// Regards both *this and RHS as signed quantities and compares them for
1230 /// validity of the less-or-equal relationship.
1231 ///
1232 /// \returns true if *this <= RHS when both are considered signed.
1233 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1234
1235 /// Signed less or equal comparison
1236 ///
1237 /// Regards both *this as a signed quantity and compares it with RHS for the
1238 /// validity of the less-or-equal relationship.
1239 ///
1240 /// \returns true if *this <= RHS when considered signed.
1241 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1242
1243 /// Unsigned greather than comparison
1244 ///
1245 /// Regards both *this and RHS as unsigned quantities and compares them for
1246 /// the validity of the greater-than relationship.
1247 ///
1248 /// \returns true if *this > RHS when both are considered unsigned.
1249 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1250
1251 /// Unsigned greater than comparison
1252 ///
1253 /// Regards both *this as an unsigned quantity and compares it with RHS for
1254 /// the validity of the greater-than relationship.
1255 ///
1256 /// \returns true if *this > RHS when considered unsigned.
1257 bool ugt(uint64_t RHS) const {
1258 // Only need to check active bits if not a single word.
1259 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1260 }
1261
1262 /// Signed greather than comparison
1263 ///
1264 /// Regards both *this and RHS as signed quantities and compares them for the
1265 /// validity of the greater-than relationship.
1266 ///
1267 /// \returns true if *this > RHS when both are considered signed.
1268 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1269
1270 /// Signed greater than comparison
1271 ///
1272 /// Regards both *this as a signed quantity and compares it with RHS for
1273 /// the validity of the greater-than relationship.
1274 ///
1275 /// \returns true if *this > RHS when considered signed.
1276 bool sgt(int64_t RHS) const {
1277 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1278 : getSExtValue() > RHS;
1279 }
1280
1281 /// Unsigned greater or equal comparison
1282 ///
1283 /// Regards both *this and RHS as unsigned quantities and compares them for
1284 /// validity of the greater-or-equal relationship.
1285 ///
1286 /// \returns true if *this >= RHS when both are considered unsigned.
1287 bool uge(const APInt &RHS) const { return !ult(RHS); }
1288
1289 /// Unsigned greater or equal comparison
1290 ///
1291 /// Regards both *this as an unsigned quantity and compares it with RHS for
1292 /// the validity of the greater-or-equal relationship.
1293 ///
1294 /// \returns true if *this >= RHS when considered unsigned.
1295 bool uge(uint64_t RHS) const { return !ult(RHS); }
1296
1297 /// Signed greater or equal comparison
1298 ///
1299 /// Regards both *this and RHS as signed quantities and compares them for
1300 /// validity of the greater-or-equal relationship.
1301 ///
1302 /// \returns true if *this >= RHS when both are considered signed.
1303 bool sge(const APInt &RHS) const { return !slt(RHS); }
1304
1305 /// Signed greater or equal comparison
1306 ///
1307 /// Regards both *this as a signed quantity and compares it with RHS for
1308 /// the validity of the greater-or-equal relationship.
1309 ///
1310 /// \returns true if *this >= RHS when considered signed.
1311 bool sge(int64_t RHS) const { return !slt(RHS); }
1312
1313 /// This operation tests if there are any pairs of corresponding bits
1314 /// between this APInt and RHS that are both set.
1315 bool intersects(const APInt &RHS) const {
1316 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 1316, __PRETTY_FUNCTION__))
;
1317 if (isSingleWord())
1318 return (U.VAL & RHS.U.VAL) != 0;
1319 return intersectsSlowCase(RHS);
1320 }
1321
1322 /// This operation checks that all bits set in this APInt are also set in RHS.
1323 bool isSubsetOf(const APInt &RHS) const {
1324 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 1324, __PRETTY_FUNCTION__))
;
1325 if (isSingleWord())
1326 return (U.VAL & ~RHS.U.VAL) == 0;
1327 return isSubsetOfSlowCase(RHS);
1328 }
1329
1330 /// @}
1331 /// \name Resizing Operators
1332 /// @{
1333
1334 /// Truncate to new width.
1335 ///
1336 /// Truncate the APInt to a specified width. It is an error to specify a width
1337 /// that is greater than or equal to the current width.
1338 APInt trunc(unsigned width) const;
1339
1340 /// Sign extend to a new width.
1341 ///
1342 /// This operation sign extends the APInt to a new width. If the high order
1343 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1344 /// It is an error to specify a width that is less than or equal to the
1345 /// current width.
1346 APInt sext(unsigned width) const;
1347
1348 /// Zero extend to a new width.
1349 ///
1350 /// This operation zero extends the APInt to a new width. The high order bits
1351 /// are filled with 0 bits. It is an error to specify a width that is less
1352 /// than or equal to the current width.
1353 APInt zext(unsigned width) const;
1354
1355 /// Sign extend or truncate to width
1356 ///
1357 /// Make this APInt have the bit width given by \p width. The value is sign
1358 /// extended, truncated, or left alone to make it that width.
1359 APInt sextOrTrunc(unsigned width) const;
1360
1361 /// Zero extend or truncate to width
1362 ///
1363 /// Make this APInt have the bit width given by \p width. The value is zero
1364 /// extended, truncated, or left alone to make it that width.
1365 APInt zextOrTrunc(unsigned width) const;
1366
1367 /// Sign extend or truncate to width
1368 ///
1369 /// Make this APInt have the bit width given by \p width. The value is sign
1370 /// extended, or left alone to make it that width.
1371 APInt sextOrSelf(unsigned width) const;
1372
1373 /// Zero extend or truncate to width
1374 ///
1375 /// Make this APInt have the bit width given by \p width. The value is zero
1376 /// extended, or left alone to make it that width.
1377 APInt zextOrSelf(unsigned width) const;
1378
1379 /// @}
1380 /// \name Bit Manipulation Operators
1381 /// @{
1382
1383 /// Set every bit to 1.
1384 void setAllBits() {
1385 if (isSingleWord())
1386 U.VAL = WORDTYPE_MAX;
1387 else
1388 // Set all the bits in all the words.
1389 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1390 // Clear the unused ones
1391 clearUnusedBits();
1392 }
1393
1394 /// Set a given bit to 1.
1395 ///
1396 /// Set the given bit to 1 whose position is given as "bitPosition".
1397 void setBit(unsigned BitPosition) {
1398 assert(BitPosition <= BitWidth && "BitPosition out of range")((BitPosition <= BitWidth && "BitPosition out of range"
) ? static_cast<void> (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 1398, __PRETTY_FUNCTION__))
;
1399 WordType Mask = maskBit(BitPosition);
1400 if (isSingleWord())
1401 U.VAL |= Mask;
1402 else
1403 U.pVal[whichWord(BitPosition)] |= Mask;
1404 }
1405
1406 /// Set the sign bit to 1.
1407 void setSignBit() {
1408 setBit(BitWidth - 1);
1409 }
1410
1411 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1412 void setBits(unsigned loBit, unsigned hiBit) {
1413 assert(hiBit <= BitWidth && "hiBit out of range")((hiBit <= BitWidth && "hiBit out of range") ? static_cast
<void> (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 1413, __PRETTY_FUNCTION__))
;
1414 assert(loBit <= BitWidth && "loBit out of range")((loBit <= BitWidth && "loBit out of range") ? static_cast
<void> (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 1414, __PRETTY_FUNCTION__))
;
1415 assert(loBit <= hiBit && "loBit greater than hiBit")((loBit <= hiBit && "loBit greater than hiBit") ? static_cast
<void> (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 1415, __PRETTY_FUNCTION__))
;
1416 if (loBit == hiBit)
1417 return;
1418 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1419 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1420 mask <<= loBit;
1421 if (isSingleWord())
1422 U.VAL |= mask;
1423 else
1424 U.pVal[0] |= mask;
1425 } else {
1426 setBitsSlowCase(loBit, hiBit);
1427 }
1428 }
1429
1430 /// Set the top bits starting from loBit.
1431 void setBitsFrom(unsigned loBit) {
1432 return setBits(loBit, BitWidth);
1433 }
1434
1435 /// Set the bottom loBits bits.
1436 void setLowBits(unsigned loBits) {
1437 return setBits(0, loBits);
1438 }
1439
1440 /// Set the top hiBits bits.
1441 void setHighBits(unsigned hiBits) {
1442 return setBits(BitWidth - hiBits, BitWidth);
1443 }
1444
1445 /// Set every bit to 0.
1446 void clearAllBits() {
1447 if (isSingleWord())
1448 U.VAL = 0;
1449 else
1450 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1451 }
1452
1453 /// Set a given bit to 0.
1454 ///
1455 /// Set the given bit to 0 whose position is given as "bitPosition".
1456 void clearBit(unsigned BitPosition) {
1457 assert(BitPosition <= BitWidth && "BitPosition out of range")((BitPosition <= BitWidth && "BitPosition out of range"
) ? static_cast<void> (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 1457, __PRETTY_FUNCTION__))
;
1458 WordType Mask = ~maskBit(BitPosition);
1459 if (isSingleWord())
1460 U.VAL &= Mask;
1461 else
1462 U.pVal[whichWord(BitPosition)] &= Mask;
1463 }
1464
1465 /// Set the sign bit to 0.
1466 void clearSignBit() {
1467 clearBit(BitWidth - 1);
1468 }
1469
1470 /// Toggle every bit to its opposite value.
1471 void flipAllBits() {
1472 if (isSingleWord()) {
1473 U.VAL ^= WORDTYPE_MAX;
1474 clearUnusedBits();
1475 } else {
1476 flipAllBitsSlowCase();
1477 }
1478 }
1479
1480 /// Toggles a given bit to its opposite value.
1481 ///
1482 /// Toggle a given bit to its opposite value whose position is given
1483 /// as "bitPosition".
1484 void flipBit(unsigned bitPosition);
1485
1486 /// Negate this APInt in place.
1487 void negate() {
1488 flipAllBits();
1489 ++(*this);
1490 }
1491
1492 /// Insert the bits from a smaller APInt starting at bitPosition.
1493 void insertBits(const APInt &SubBits, unsigned bitPosition);
1494
1495 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1496 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1497
1498 /// @}
1499 /// \name Value Characterization Functions
1500 /// @{
1501
1502 /// Return the number of bits in the APInt.
1503 unsigned getBitWidth() const { return BitWidth; }
1504
1505 /// Get the number of words.
1506 ///
1507 /// Here one word's bitwidth equals to that of uint64_t.
1508 ///
1509 /// \returns the number of words to hold the integer value of this APInt.
1510 unsigned getNumWords() const { return getNumWords(BitWidth); }
1511
1512 /// Get the number of words.
1513 ///
1514 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1515 ///
1516 /// \returns the number of words to hold the integer value with a given bit
1517 /// width.
1518 static unsigned getNumWords(unsigned BitWidth) {
1519 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1520 }
1521
1522 /// Compute the number of active bits in the value
1523 ///
1524 /// This function returns the number of active bits which is defined as the
1525 /// bit width minus the number of leading zeros. This is used in several
1526 /// computations to see how "wide" the value is.
1527 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1528
1529 /// Compute the number of active words in the value of this APInt.
1530 ///
1531 /// This is used in conjunction with getActiveData to extract the raw value of
1532 /// the APInt.
1533 unsigned getActiveWords() const {
1534 unsigned numActiveBits = getActiveBits();
1535 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1536 }
1537
1538 /// Get the minimum bit size for this signed APInt
1539 ///
1540 /// Computes the minimum bit width for this APInt while considering it to be a
1541 /// signed (and probably negative) value. If the value is not negative, this
1542 /// function returns the same value as getActiveBits()+1. Otherwise, it
1543 /// returns the smallest bit width that will retain the negative value. For
1544 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1545 /// for -1, this function will always return 1.
1546 unsigned getMinSignedBits() const {
1547 if (isNegative())
1548 return BitWidth - countLeadingOnes() + 1;
1549 return getActiveBits() + 1;
1550 }
1551
1552 /// Get zero extended value
1553 ///
1554 /// This method attempts to return the value of this APInt as a zero extended
1555 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1556 /// uint64_t. Otherwise an assertion will result.
1557 uint64_t getZExtValue() const {
1558 if (isSingleWord())
1559 return U.VAL;
1560 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")((getActiveBits() <= 64 && "Too many bits for uint64_t"
) ? static_cast<void> (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 1560, __PRETTY_FUNCTION__))
;
1561 return U.pVal[0];
1562 }
1563
1564 /// Get sign extended value
1565 ///
1566 /// This method attempts to return the value of this APInt as a sign extended
1567 /// int64_t. The bit width must be <= 64 or the value must fit within an
1568 /// int64_t. Otherwise an assertion will result.
1569 int64_t getSExtValue() const {
1570 if (isSingleWord())
1571 return SignExtend64(U.VAL, BitWidth);
1572 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")((getMinSignedBits() <= 64 && "Too many bits for int64_t"
) ? static_cast<void> (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/APInt.h"
, 1572, __PRETTY_FUNCTION__))
;
1573 return int64_t(U.pVal[0]);
1574 }
1575
1576 /// Get bits required for string value.
1577 ///
1578 /// This method determines how many bits are required to hold the APInt
1579 /// equivalent of the string given by \p str.
1580 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1581
1582 /// The APInt version of the countLeadingZeros functions in
1583 /// MathExtras.h.
1584 ///
1585 /// It counts the number of zeros from the most significant bit to the first
1586 /// one bit.
1587 ///
1588 /// \returns BitWidth if the value is zero, otherwise returns the number of
1589 /// zeros from the most significant bit to the first one bits.
1590 unsigned countLeadingZeros() const {
1591 if (isSingleWord()) {
1592 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1593 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1594 }
1595 return countLeadingZerosSlowCase();
1596 }
1597
1598 /// Count the number of leading one bits.
1599 ///
1600 /// This function is an APInt version of the countLeadingOnes
1601 /// functions in MathExtras.h. It counts the number of ones from the most
1602 /// significant bit to the first zero bit.
1603 ///
1604 /// \returns 0 if the high order bit is not set, otherwise returns the number
1605 /// of 1 bits from the most significant to the least
1606 unsigned countLeadingOnes() const {
1607 if (isSingleWord())
1608 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1609 return countLeadingOnesSlowCase();
1610 }
1611
1612 /// Computes the number of leading bits of this APInt that are equal to its
1613 /// sign bit.
1614 unsigned getNumSignBits() const {
1615 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1616 }
1617
1618 /// Count the number of trailing zero bits.
1619 ///
1620 /// This function is an APInt version of the countTrailingZeros
1621 /// functions in MathExtras.h. It counts the number of zeros from the least
1622 /// significant bit to the first set bit.
1623 ///
1624 /// \returns BitWidth if the value is zero, otherwise returns the number of
1625 /// zeros from the least significant bit to the first one bit.
1626 unsigned countTrailingZeros() const {
1627 if (isSingleWord())
1628 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1629 return countTrailingZerosSlowCase();
1630 }
1631
1632 /// Count the number of trailing one bits.
1633 ///
1634 /// This function is an APInt version of the countTrailingOnes
1635 /// functions in MathExtras.h. It counts the number of ones from the least
1636 /// significant bit to the first zero bit.
1637 ///
1638 /// \returns BitWidth if the value is all ones, otherwise returns the number
1639 /// of ones from the least significant bit to the first zero bit.
1640 unsigned countTrailingOnes() const {
1641 if (isSingleWord())
1642 return llvm::countTrailingOnes(U.VAL);
1643 return countTrailingOnesSlowCase();
1644 }
1645
1646 /// Count the number of bits set.
1647 ///
1648 /// This function is an APInt version of the countPopulation functions
1649 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1650 ///
1651 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1652 unsigned countPopulation() const {
1653 if (isSingleWord())
1654 return llvm::countPopulation(U.VAL);
1655 return countPopulationSlowCase();
1656 }
1657
1658 /// @}
1659 /// \name Conversion Functions
1660 /// @{
1661 void print(raw_ostream &OS, bool isSigned) const;
1662
1663 /// Converts an APInt to a string and append it to Str. Str is commonly a
1664 /// SmallString.
1665 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1666 bool formatAsCLiteral = false) const;
1667
1668 /// Considers the APInt to be unsigned and converts it into a string in the
1669 /// radix given. The radix can be 2, 8, 10 16, or 36.
1670 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1671 toString(Str, Radix, false, false);
1672 }
1673
1674 /// Considers the APInt to be signed and converts it into a string in the
1675 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1676 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1677 toString(Str, Radix, true, false);
1678 }
1679
1680 /// Return the APInt as a std::string.
1681 ///
1682 /// Note that this is an inefficient method. It is better to pass in a
1683 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1684 /// for the string.
1685 std::string toString(unsigned Radix, bool Signed) const;
1686
1687 /// \returns a byte-swapped representation of this APInt Value.
1688 APInt byteSwap() const;
1689
1690 /// \returns the value with the bit representation reversed of this APInt
1691 /// Value.
1692 APInt reverseBits() const;
1693
1694 /// Converts this APInt to a double value.
1695 double roundToDouble(bool isSigned) const;
1696
1697 /// Converts this unsigned APInt to a double value.
1698 double roundToDouble() const { return roundToDouble(false); }
1699
1700 /// Converts this signed APInt to a double value.
1701 double signedRoundToDouble() const { return roundToDouble(true); }
1702
1703 /// Converts APInt bits to a double
1704 ///
1705 /// The conversion does not do a translation from integer to double, it just
1706 /// re-interprets the bits as a double. Note that it is valid to do this on
1707 /// any bit width. Exactly 64 bits will be translated.
1708 double bitsToDouble() const {
1709 return BitsToDouble(getWord(0));
1710 }
1711
1712 /// Converts APInt bits to a double
1713 ///
1714 /// The conversion does not do a translation from integer to float, it just
1715 /// re-interprets the bits as a float. Note that it is valid to do this on
1716 /// any bit width. Exactly 32 bits will be translated.
1717 float bitsToFloat() const {
1718 return BitsToFloat(getWord(0));
1719 }
1720
1721 /// Converts a double to APInt bits.
1722 ///
1723 /// The conversion does not do a translation from double to integer, it just
1724 /// re-interprets the bits of the double.
1725 static APInt doubleToBits(double V) {
1726 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1727 }
1728
1729 /// Converts a float to APInt bits.
1730 ///
1731 /// The conversion does not do a translation from float to integer, it just
1732 /// re-interprets the bits of the float.
1733 static APInt floatToBits(float V) {
1734 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1735 }
1736
1737 /// @}
1738 /// \name Mathematics Operations
1739 /// @{
1740
1741 /// \returns the floor log base 2 of this APInt.
1742 unsigned logBase2() const { return getActiveBits() - 1; }
1743
1744 /// \returns the ceil log base 2 of this APInt.
1745 unsigned ceilLogBase2() const {
1746 APInt temp(*this);
1747 --temp;
1748 return temp.getActiveBits();
1749 }
1750
1751 /// \returns the nearest log base 2 of this APInt. Ties round up.
1752 ///
1753 /// NOTE: When we have a BitWidth of 1, we define:
1754 ///
1755 /// log2(0) = UINT32_MAX
1756 /// log2(1) = 0
1757 ///
1758 /// to get around any mathematical concerns resulting from
1759 /// referencing 2 in a space where 2 does no exist.
1760 unsigned nearestLogBase2() const {
1761 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1762 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1763 // UINT32_MAX.
1764 if (BitWidth == 1)
1765 return U.VAL - 1;
1766
1767 // Handle the zero case.
1768 if (isNullValue())
1769 return UINT32_MAX(4294967295U);
1770
1771 // The non-zero case is handled by computing:
1772 //
1773 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1774 //
1775 // where x[i] is referring to the value of the ith bit of x.
1776 unsigned lg = logBase2();
1777 return lg + unsigned((*this)[lg - 1]);
1778 }
1779
1780 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1781 /// otherwise
1782 int32_t exactLogBase2() const {
1783 if (!isPowerOf2())
1784 return -1;
1785 return logBase2();
1786 }
1787
1788 /// Compute the square root
1789 APInt sqrt() const;
1790
1791 /// Get the absolute value;
1792 ///
1793 /// If *this is < 0 then return -(*this), otherwise *this;
1794 APInt abs() const {
1795 if (isNegative())
1796 return -(*this);
1797 return *this;
1798 }
1799
1800 /// \returns the multiplicative inverse for a given modulo.
1801 APInt multiplicativeInverse(const APInt &modulo) const;
1802
1803 /// @}
1804 /// \name Support for division by constant
1805 /// @{
1806
1807 /// Calculate the magic number for signed division by a constant.
1808 struct ms;
1809 ms magic() const;
1810
1811 /// Calculate the magic number for unsigned division by a constant.
1812 struct mu;
1813 mu magicu(unsigned LeadingZeros = 0) const;
1814
1815 /// @}
1816 /// \name Building-block Operations for APInt and APFloat
1817 /// @{
1818
1819 // These building block operations operate on a representation of arbitrary
1820 // precision, two's-complement, bignum integer values. They should be
1821 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1822 // generally a pointer to the base of an array of integer parts, representing
1823 // an unsigned bignum, and a count of how many parts there are.
1824
1825 /// Sets the least significant part of a bignum to the input value, and zeroes
1826 /// out higher parts.
1827 static void tcSet(WordType *, WordType, unsigned);
1828
1829 /// Assign one bignum to another.
1830 static void tcAssign(WordType *, const WordType *, unsigned);
1831
1832 /// Returns true if a bignum is zero, false otherwise.
1833 static bool tcIsZero(const WordType *, unsigned);
1834
1835 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1836 static int tcExtractBit(const WordType *, unsigned bit);
1837
1838 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1839 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1840 /// significant bit of DST. All high bits above srcBITS in DST are
1841 /// zero-filled.
1842 static void tcExtract(WordType *, unsigned dstCount,
1843 const WordType *, unsigned srcBits,
1844 unsigned srcLSB);
1845
1846 /// Set the given bit of a bignum. Zero-based.
1847 static void tcSetBit(WordType *, unsigned bit);
1848
1849 /// Clear the given bit of a bignum. Zero-based.
1850 static void tcClearBit(WordType *, unsigned bit);
1851
1852 /// Returns the bit number of the least or most significant set bit of a
1853 /// number. If the input number has no bits set -1U is returned.
1854 static unsigned tcLSB(const WordType *, unsigned n);
1855 static unsigned tcMSB(const WordType *parts, unsigned n);
1856
1857 /// Negate a bignum in-place.
1858 static void tcNegate(WordType *, unsigned);
1859
1860 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1861 static WordType tcAdd(WordType *, const WordType *,
1862 WordType carry, unsigned);
1863 /// DST += RHS. Returns the carry flag.
1864 static WordType tcAddPart(WordType *, WordType, unsigned);
1865
1866 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1867 static WordType tcSubtract(WordType *, const WordType *,
1868 WordType carry, unsigned);
1869 /// DST -= RHS. Returns the carry flag.
1870 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1871
1872 /// DST += SRC * MULTIPLIER + PART if add is true
1873 /// DST = SRC * MULTIPLIER + PART if add is false
1874 ///
1875 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1876 /// start at the same point, i.e. DST == SRC.
1877 ///
1878 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1879 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1880 /// result, and if all of the omitted higher parts were zero return zero,
1881 /// otherwise overflow occurred and return one.
1882 static int tcMultiplyPart(WordType *dst, const WordType *src,
1883 WordType multiplier, WordType carry,
1884 unsigned srcParts, unsigned dstParts,
1885 bool add);
1886
1887 /// DST = LHS * RHS, where DST has the same width as the operands and is
1888 /// filled with the least significant parts of the result. Returns one if
1889 /// overflow occurred, otherwise zero. DST must be disjoint from both
1890 /// operands.
1891 static int tcMultiply(WordType *, const WordType *, const WordType *,
1892 unsigned);
1893
1894 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1895 /// operands. No overflow occurs. DST must be disjoint from both operands.
1896 static void tcFullMultiply(WordType *, const WordType *,
1897 const WordType *, unsigned, unsigned);
1898
1899 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1900 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1901 /// REMAINDER to the remainder, return zero. i.e.
1902 ///
1903 /// OLD_LHS = RHS * LHS + REMAINDER
1904 ///
1905 /// SCRATCH is a bignum of the same size as the operands and result for use by
1906 /// the routine; its contents need not be initialized and are destroyed. LHS,
1907 /// REMAINDER and SCRATCH must be distinct.
1908 static int tcDivide(WordType *lhs, const WordType *rhs,
1909 WordType *remainder, WordType *scratch,
1910 unsigned parts);
1911
1912 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1913 /// restrictions on Count.
1914 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1915
1916 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1917 /// restrictions on Count.
1918 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1919
1920 /// The obvious AND, OR and XOR and complement operations.
1921 static void tcAnd(WordType *, const WordType *, unsigned);
1922 static void tcOr(WordType *, const WordType *, unsigned);
1923 static void tcXor(WordType *, const WordType *, unsigned);
1924 static void tcComplement(WordType *, unsigned);
1925
1926 /// Comparison (unsigned) of two bignums.
1927 static int tcCompare(const WordType *, const WordType *, unsigned);
1928
1929 /// Increment a bignum in-place. Return the carry flag.
1930 static WordType tcIncrement(WordType *dst, unsigned parts) {
1931 return tcAddPart(dst, 1, parts);
1932 }
1933
1934 /// Decrement a bignum in-place. Return the borrow flag.
1935 static WordType tcDecrement(WordType *dst, unsigned parts) {
1936 return tcSubtractPart(dst, 1, parts);
1937 }
1938
1939 /// Set the least significant BITS and clear the rest.
1940 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1941
1942 /// debug method
1943 void dump() const;
1944
1945 /// @}
1946};
1947
1948/// Magic data for optimising signed division by a constant.
1949struct APInt::ms {
1950 APInt m; ///< magic number
1951 unsigned s; ///< shift amount
1952};
1953
1954/// Magic data for optimising unsigned division by a constant.
1955struct APInt::mu {
1956 APInt m; ///< magic number
1957 bool a; ///< add indicator
1958 unsigned s; ///< shift amount
1959};
1960
1961inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1962
1963inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1964
1965/// Unary bitwise complement operator.
1966///
1967/// \returns an APInt that is the bitwise complement of \p v.
1968inline APInt operator~(APInt v) {
1969 v.flipAllBits();
1970 return v;
1971}
1972
1973inline APInt operator&(APInt a, const APInt &b) {
1974 a &= b;
1975 return a;
1976}
1977
1978inline APInt operator&(const APInt &a, APInt &&b) {
1979 b &= a;
1980 return std::move(b);
1981}
1982
1983inline APInt operator&(APInt a, uint64_t RHS) {
1984 a &= RHS;
1985 return a;
1986}
1987
1988inline APInt operator&(uint64_t LHS, APInt b) {
1989 b &= LHS;
1990 return b;
1991}
1992
1993inline APInt operator|(APInt a, const APInt &b) {
1994 a |= b;
1995 return a;
1996}
1997
1998inline APInt operator|(const APInt &a, APInt &&b) {
1999 b |= a;
2000 return std::move(b);
2001}
2002
2003inline APInt operator|(APInt a, uint64_t RHS) {
2004 a |= RHS;
2005 return a;
2006}
2007
2008inline APInt operator|(uint64_t LHS, APInt b) {
2009 b |= LHS;
2010 return b;
2011}
2012
2013inline APInt operator^(APInt a, const APInt &b) {
2014 a ^= b;
2015 return a;
2016}
2017
2018inline APInt operator^(const APInt &a, APInt &&b) {
2019 b ^= a;
2020 return std::move(b);
2021}
2022
2023inline APInt operator^(APInt a, uint64_t RHS) {
2024 a ^= RHS;
2025 return a;
2026}
2027
2028inline APInt operator^(uint64_t LHS, APInt b) {
2029 b ^= LHS;
2030 return b;
2031}
2032
2033inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2034 I.print(OS, true);
2035 return OS;
2036}
2037
2038inline APInt operator-(APInt v) {
2039 v.negate();
2040 return v;
2041}
2042
2043inline APInt operator+(APInt a, const APInt &b) {
2044 a += b;
2045 return a;
2046}
2047
2048inline APInt operator+(const APInt &a, APInt &&b) {
2049 b += a;
2050 return std::move(b);
2051}
2052
2053inline APInt operator+(APInt a, uint64_t RHS) {
2054 a += RHS;
2055 return a;
2056}
2057
2058inline APInt operator+(uint64_t LHS, APInt b) {
2059 b += LHS;
2060 return b;
2061}
2062
2063inline APInt operator-(APInt a, const APInt &b) {
2064 a -= b;
2065 return a;
2066}
2067
2068inline APInt operator-(const APInt &a, APInt &&b) {
2069 b.negate();
2070 b += a;
2071 return std::move(b);
2072}
2073
2074inline APInt operator-(APInt a, uint64_t RHS) {
2075 a -= RHS;
2076 return a;
2077}
2078
2079inline APInt operator-(uint64_t LHS, APInt b) {
2080 b.negate();
2081 b += LHS;
2082 return b;
2083}
2084
2085inline APInt operator*(APInt a, uint64_t RHS) {
2086 a *= RHS;
2087 return a;
2088}
2089
2090inline APInt operator*(uint64_t LHS, APInt b) {
2091 b *= LHS;
2092 return b;
2093}
2094
2095
2096namespace APIntOps {
2097
2098/// Determine the smaller of two APInts considered to be signed.
2099inline const APInt &smin(const APInt &A, const APInt &B) {
2100 return A.slt(B) ? A : B;
2101}
2102
2103/// Determine the larger of two APInts considered to be signed.
2104inline const APInt &smax(const APInt &A, const APInt &B) {
2105 return A.sgt(B) ? A : B;
2106}
2107
2108/// Determine the smaller of two APInts considered to be signed.
2109inline const APInt &umin(const APInt &A, const APInt &B) {
2110 return A.ult(B) ? A : B;
2111}
2112
2113/// Determine the larger of two APInts considered to be unsigned.
2114inline const APInt &umax(const APInt &A, const APInt &B) {
2115 return A.ugt(B) ? A : B;
2116}
2117
2118/// Compute GCD of two unsigned APInt values.
2119///
2120/// This function returns the greatest common divisor of the two APInt values
2121/// using Stein's algorithm.
2122///
2123/// \returns the greatest common divisor of A and B.
2124APInt GreatestCommonDivisor(APInt A, APInt B);
2125
2126/// Converts the given APInt to a double value.
2127///
2128/// Treats the APInt as an unsigned value for conversion purposes.
2129inline double RoundAPIntToDouble(const APInt &APIVal) {
2130 return APIVal.roundToDouble();
2131}
2132
2133/// Converts the given APInt to a double value.
2134///
2135/// Treats the APInt as a signed value for conversion purposes.
2136inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2137 return APIVal.signedRoundToDouble();
2138}
2139
2140/// Converts the given APInt to a float vlalue.
2141inline float RoundAPIntToFloat(const APInt &APIVal) {
2142 return float(RoundAPIntToDouble(APIVal));
2143}
2144
2145/// Converts the given APInt to a float value.
2146///
2147/// Treast the APInt as a signed value for conversion purposes.
2148inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2149 return float(APIVal.signedRoundToDouble());
2150}
2151
2152/// Converts the given double value into a APInt.
2153///
2154/// This function convert a double value to an APInt value.
2155APInt RoundDoubleToAPInt(double Double, unsigned width);
2156
2157/// Converts a float value into a APInt.
2158///
2159/// Converts a float value into an APInt value.
2160inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2161 return RoundDoubleToAPInt(double(Float), width);
2162}
2163
2164/// Return A unsign-divided by B, rounded by the given rounding mode.
2165APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2166
2167/// Return A sign-divided by B, rounded by the given rounding mode.
2168APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2169
2170/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2171/// (e.g. 32 for i32).
2172/// This function finds the smallest number n, such that
2173/// (a) n >= 0 and q(n) = 0, or
2174/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2175/// integers, belong to two different intervals [Rk, Rk+R),
2176/// where R = 2^BW, and k is an integer.
2177/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2178/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2179/// subtraction (treated as addition of negated numbers) would always
2180/// count as an overflow, but here we want to allow values to decrease
2181/// and increase as long as they are within the same interval.
2182/// Specifically, adding of two negative numbers should not cause an
2183/// overflow (as long as the magnitude does not exceed the bith width).
2184/// On the other hand, given a positive number, adding a negative
2185/// number to it can give a negative result, which would cause the
2186/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2187/// treated as a special case of an overflow.
2188///
2189/// This function returns None if after finding k that minimizes the
2190/// positive solution to q(n) = kR, both solutions are contained between
2191/// two consecutive integers.
2192///
2193/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2194/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2195/// virtue of *signed* overflow. This function will *not* find such an n,
2196/// however it may find a value of n satisfying the inequalities due to
2197/// an *unsigned* overflow (if the values are treated as unsigned).
2198/// To find a solution for a signed overflow, treat it as a problem of
2199/// finding an unsigned overflow with a range with of BW-1.
2200///
2201/// The returned value may have a different bit width from the input
2202/// coefficients.
2203Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2204 unsigned RangeWidth);
2205} // End of APIntOps namespace
2206
2207// See friend declaration above. This additional declaration is required in
2208// order to compile LLVM with IBM xlC compiler.
2209hash_code hash_value(const APInt &Arg);
2210} // End of llvm namespace
2211
2212#endif