Bug Summary

File:llvm/lib/Analysis/ScalarEvolution.cpp
Warning:line 10785, column 32
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ScalarEvolution.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220128100846+e1a12767ee62/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Analysis -I /build/llvm-toolchain-snapshot-14~++20220128100846+e1a12767ee62/llvm/lib/Analysis -I include -I /build/llvm-toolchain-snapshot-14~++20220128100846+e1a12767ee62/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220128100846+e1a12767ee62/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220128100846+e1a12767ee62/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220128100846+e1a12767ee62/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220128100846+e1a12767ee62/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220128100846+e1a12767ee62/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220128100846+e1a12767ee62/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220128100846+e1a12767ee62/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-01-28-233020-220964-1 -x c++ /build/llvm-toolchain-snapshot-14~++20220128100846+e1a12767ee62/llvm/lib/Analysis/ScalarEvolution.cpp
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the implementation of the scalar evolution analysis
10// engine, which is used primarily to analyze expressions involving induction
11// variables in loops.
12//
13// There are several aspects to this library. First is the representation of
14// scalar expressions, which are represented as subclasses of the SCEV class.
15// These classes are used to represent certain types of subexpressions that we
16// can handle. We only create one SCEV of a particular shape, so
17// pointer-comparisons for equality are legal.
18//
19// One important aspect of the SCEV objects is that they are never cyclic, even
20// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21// the PHI node is one of the idioms that we can represent (e.g., a polynomial
22// recurrence) then we represent it directly as a recurrence node, otherwise we
23// represent it as a SCEVUnknown node.
24//
25// In addition to being able to represent expressions of various types, we also
26// have folders that are used to build the *canonical* representation for a
27// particular expression. These folders are capable of using a variety of
28// rewrite rules to simplify the expressions.
29//
30// Once the folders are defined, we can implement the more interesting
31// higher-level code, such as the code that recognizes PHI nodes of various
32// types, computes the execution count of a loop, etc.
33//
34// TODO: We should use these routines and value representations to implement
35// dependence analysis!
36//
37//===----------------------------------------------------------------------===//
38//
39// There are several good references for the techniques used in this analysis.
40//
41// Chains of recurrences -- a method to expedite the evaluation
42// of closed-form functions
43// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44//
45// On computational properties of chains of recurrences
46// Eugene V. Zima
47//
48// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49// Robert A. van Engelen
50//
51// Efficient Symbolic Analysis for Optimizing Compilers
52// Robert A. van Engelen
53//
54// Using the chains of recurrences algebra for data dependence testing and
55// induction variable substitution
56// MS Thesis, Johnie Birch
57//
58//===----------------------------------------------------------------------===//
59
60#include "llvm/Analysis/ScalarEvolution.h"
61#include "llvm/ADT/APInt.h"
62#include "llvm/ADT/ArrayRef.h"
63#include "llvm/ADT/DenseMap.h"
64#include "llvm/ADT/DepthFirstIterator.h"
65#include "llvm/ADT/EquivalenceClasses.h"
66#include "llvm/ADT/FoldingSet.h"
67#include "llvm/ADT/None.h"
68#include "llvm/ADT/Optional.h"
69#include "llvm/ADT/STLExtras.h"
70#include "llvm/ADT/ScopeExit.h"
71#include "llvm/ADT/Sequence.h"
72#include "llvm/ADT/SetVector.h"
73#include "llvm/ADT/SmallPtrSet.h"
74#include "llvm/ADT/SmallSet.h"
75#include "llvm/ADT/SmallVector.h"
76#include "llvm/ADT/Statistic.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/Analysis/AssumptionCache.h"
79#include "llvm/Analysis/ConstantFolding.h"
80#include "llvm/Analysis/InstructionSimplify.h"
81#include "llvm/Analysis/LoopInfo.h"
82#include "llvm/Analysis/ScalarEvolutionDivision.h"
83#include "llvm/Analysis/ScalarEvolutionExpressions.h"
84#include "llvm/Analysis/TargetLibraryInfo.h"
85#include "llvm/Analysis/ValueTracking.h"
86#include "llvm/Config/llvm-config.h"
87#include "llvm/IR/Argument.h"
88#include "llvm/IR/BasicBlock.h"
89#include "llvm/IR/CFG.h"
90#include "llvm/IR/Constant.h"
91#include "llvm/IR/ConstantRange.h"
92#include "llvm/IR/Constants.h"
93#include "llvm/IR/DataLayout.h"
94#include "llvm/IR/DerivedTypes.h"
95#include "llvm/IR/Dominators.h"
96#include "llvm/IR/Function.h"
97#include "llvm/IR/GlobalAlias.h"
98#include "llvm/IR/GlobalValue.h"
99#include "llvm/IR/GlobalVariable.h"
100#include "llvm/IR/InstIterator.h"
101#include "llvm/IR/InstrTypes.h"
102#include "llvm/IR/Instruction.h"
103#include "llvm/IR/Instructions.h"
104#include "llvm/IR/IntrinsicInst.h"
105#include "llvm/IR/Intrinsics.h"
106#include "llvm/IR/LLVMContext.h"
107#include "llvm/IR/Metadata.h"
108#include "llvm/IR/Operator.h"
109#include "llvm/IR/PatternMatch.h"
110#include "llvm/IR/Type.h"
111#include "llvm/IR/Use.h"
112#include "llvm/IR/User.h"
113#include "llvm/IR/Value.h"
114#include "llvm/IR/Verifier.h"
115#include "llvm/InitializePasses.h"
116#include "llvm/Pass.h"
117#include "llvm/Support/Casting.h"
118#include "llvm/Support/CommandLine.h"
119#include "llvm/Support/Compiler.h"
120#include "llvm/Support/Debug.h"
121#include "llvm/Support/ErrorHandling.h"
122#include "llvm/Support/KnownBits.h"
123#include "llvm/Support/SaveAndRestore.h"
124#include "llvm/Support/raw_ostream.h"
125#include <algorithm>
126#include <cassert>
127#include <climits>
128#include <cstddef>
129#include <cstdint>
130#include <cstdlib>
131#include <map>
132#include <memory>
133#include <tuple>
134#include <utility>
135#include <vector>
136
137using namespace llvm;
138using namespace PatternMatch;
139
140#define DEBUG_TYPE"scalar-evolution" "scalar-evolution"
141
142STATISTIC(NumTripCountsComputed,static llvm::Statistic NumTripCountsComputed = {"scalar-evolution"
, "NumTripCountsComputed", "Number of loops with predictable loop counts"
}
143 "Number of loops with predictable loop counts")static llvm::Statistic NumTripCountsComputed = {"scalar-evolution"
, "NumTripCountsComputed", "Number of loops with predictable loop counts"
}
;
144STATISTIC(NumTripCountsNotComputed,static llvm::Statistic NumTripCountsNotComputed = {"scalar-evolution"
, "NumTripCountsNotComputed", "Number of loops without predictable loop counts"
}
145 "Number of loops without predictable loop counts")static llvm::Statistic NumTripCountsNotComputed = {"scalar-evolution"
, "NumTripCountsNotComputed", "Number of loops without predictable loop counts"
}
;
146STATISTIC(NumBruteForceTripCountsComputed,static llvm::Statistic NumBruteForceTripCountsComputed = {"scalar-evolution"
, "NumBruteForceTripCountsComputed", "Number of loops with trip counts computed by force"
}
147 "Number of loops with trip counts computed by force")static llvm::Statistic NumBruteForceTripCountsComputed = {"scalar-evolution"
, "NumBruteForceTripCountsComputed", "Number of loops with trip counts computed by force"
}
;
148
149static cl::opt<unsigned>
150MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151 cl::ZeroOrMore,
152 cl::desc("Maximum number of iterations SCEV will "
153 "symbolically execute a constant "
154 "derived loop"),
155 cl::init(100));
156
157// FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
158static cl::opt<bool> VerifySCEV(
159 "verify-scev", cl::Hidden,
160 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
161static cl::opt<bool> VerifySCEVStrict(
162 "verify-scev-strict", cl::Hidden,
163 cl::desc("Enable stricter verification with -verify-scev is passed"));
164static cl::opt<bool>
165 VerifySCEVMap("verify-scev-maps", cl::Hidden,
166 cl::desc("Verify no dangling value in ScalarEvolution's "
167 "ExprValueMap (slow)"));
168
169static cl::opt<bool> VerifyIR(
170 "scev-verify-ir", cl::Hidden,
171 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
172 cl::init(false));
173
174static cl::opt<unsigned> MulOpsInlineThreshold(
175 "scev-mulops-inline-threshold", cl::Hidden,
176 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
177 cl::init(32));
178
179static cl::opt<unsigned> AddOpsInlineThreshold(
180 "scev-addops-inline-threshold", cl::Hidden,
181 cl::desc("Threshold for inlining addition operands into a SCEV"),
182 cl::init(500));
183
184static cl::opt<unsigned> MaxSCEVCompareDepth(
185 "scalar-evolution-max-scev-compare-depth", cl::Hidden,
186 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
187 cl::init(32));
188
189static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
190 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
191 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
192 cl::init(2));
193
194static cl::opt<unsigned> MaxValueCompareDepth(
195 "scalar-evolution-max-value-compare-depth", cl::Hidden,
196 cl::desc("Maximum depth of recursive value complexity comparisons"),
197 cl::init(2));
198
199static cl::opt<unsigned>
200 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
201 cl::desc("Maximum depth of recursive arithmetics"),
202 cl::init(32));
203
204static cl::opt<unsigned> MaxConstantEvolvingDepth(
205 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
206 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
207
208static cl::opt<unsigned>
209 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
210 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
211 cl::init(8));
212
213static cl::opt<unsigned>
214 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
215 cl::desc("Max coefficients in AddRec during evolving"),
216 cl::init(8));
217
218static cl::opt<unsigned>
219 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
220 cl::desc("Size of the expression which is considered huge"),
221 cl::init(4096));
222
223static cl::opt<bool>
224ClassifyExpressions("scalar-evolution-classify-expressions",
225 cl::Hidden, cl::init(true),
226 cl::desc("When printing analysis, include information on every instruction"));
227
228static cl::opt<bool> UseExpensiveRangeSharpening(
229 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
230 cl::init(false),
231 cl::desc("Use more powerful methods of sharpening expression ranges. May "
232 "be costly in terms of compile time"));
233
234//===----------------------------------------------------------------------===//
235// SCEV class definitions
236//===----------------------------------------------------------------------===//
237
238//===----------------------------------------------------------------------===//
239// Implementation of the SCEV class.
240//
241
242#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
243LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void SCEV::dump() const {
244 print(dbgs());
245 dbgs() << '\n';
246}
247#endif
248
249void SCEV::print(raw_ostream &OS) const {
250 switch (getSCEVType()) {
251 case scConstant:
252 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
253 return;
254 case scPtrToInt: {
255 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
256 const SCEV *Op = PtrToInt->getOperand();
257 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
258 << *PtrToInt->getType() << ")";
259 return;
260 }
261 case scTruncate: {
262 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
263 const SCEV *Op = Trunc->getOperand();
264 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
265 << *Trunc->getType() << ")";
266 return;
267 }
268 case scZeroExtend: {
269 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
270 const SCEV *Op = ZExt->getOperand();
271 OS << "(zext " << *Op->getType() << " " << *Op << " to "
272 << *ZExt->getType() << ")";
273 return;
274 }
275 case scSignExtend: {
276 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
277 const SCEV *Op = SExt->getOperand();
278 OS << "(sext " << *Op->getType() << " " << *Op << " to "
279 << *SExt->getType() << ")";
280 return;
281 }
282 case scAddRecExpr: {
283 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
284 OS << "{" << *AR->getOperand(0);
285 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
286 OS << ",+," << *AR->getOperand(i);
287 OS << "}<";
288 if (AR->hasNoUnsignedWrap())
289 OS << "nuw><";
290 if (AR->hasNoSignedWrap())
291 OS << "nsw><";
292 if (AR->hasNoSelfWrap() &&
293 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
294 OS << "nw><";
295 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
296 OS << ">";
297 return;
298 }
299 case scAddExpr:
300 case scMulExpr:
301 case scUMaxExpr:
302 case scSMaxExpr:
303 case scUMinExpr:
304 case scSMinExpr:
305 case scSequentialUMinExpr: {
306 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
307 const char *OpStr = nullptr;
308 switch (NAry->getSCEVType()) {
309 case scAddExpr: OpStr = " + "; break;
310 case scMulExpr: OpStr = " * "; break;
311 case scUMaxExpr: OpStr = " umax "; break;
312 case scSMaxExpr: OpStr = " smax "; break;
313 case scUMinExpr:
314 OpStr = " umin ";
315 break;
316 case scSMinExpr:
317 OpStr = " smin ";
318 break;
319 case scSequentialUMinExpr:
320 OpStr = " umin_seq ";
321 break;
322 default:
323 llvm_unreachable("There are no other nary expression types.")::llvm::llvm_unreachable_internal("There are no other nary expression types."
, "llvm/lib/Analysis/ScalarEvolution.cpp", 323)
;
324 }
325 OS << "(";
326 ListSeparator LS(OpStr);
327 for (const SCEV *Op : NAry->operands())
328 OS << LS << *Op;
329 OS << ")";
330 switch (NAry->getSCEVType()) {
331 case scAddExpr:
332 case scMulExpr:
333 if (NAry->hasNoUnsignedWrap())
334 OS << "<nuw>";
335 if (NAry->hasNoSignedWrap())
336 OS << "<nsw>";
337 break;
338 default:
339 // Nothing to print for other nary expressions.
340 break;
341 }
342 return;
343 }
344 case scUDivExpr: {
345 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
346 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
347 return;
348 }
349 case scUnknown: {
350 const SCEVUnknown *U = cast<SCEVUnknown>(this);
351 Type *AllocTy;
352 if (U->isSizeOf(AllocTy)) {
353 OS << "sizeof(" << *AllocTy << ")";
354 return;
355 }
356 if (U->isAlignOf(AllocTy)) {
357 OS << "alignof(" << *AllocTy << ")";
358 return;
359 }
360
361 Type *CTy;
362 Constant *FieldNo;
363 if (U->isOffsetOf(CTy, FieldNo)) {
364 OS << "offsetof(" << *CTy << ", ";
365 FieldNo->printAsOperand(OS, false);
366 OS << ")";
367 return;
368 }
369
370 // Otherwise just print it normally.
371 U->getValue()->printAsOperand(OS, false);
372 return;
373 }
374 case scCouldNotCompute:
375 OS << "***COULDNOTCOMPUTE***";
376 return;
377 }
378 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 378)
;
379}
380
381Type *SCEV::getType() const {
382 switch (getSCEVType()) {
383 case scConstant:
384 return cast<SCEVConstant>(this)->getType();
385 case scPtrToInt:
386 case scTruncate:
387 case scZeroExtend:
388 case scSignExtend:
389 return cast<SCEVCastExpr>(this)->getType();
390 case scAddRecExpr:
391 return cast<SCEVAddRecExpr>(this)->getType();
392 case scMulExpr:
393 return cast<SCEVMulExpr>(this)->getType();
394 case scUMaxExpr:
395 case scSMaxExpr:
396 case scUMinExpr:
397 case scSMinExpr:
398 return cast<SCEVMinMaxExpr>(this)->getType();
399 case scSequentialUMinExpr:
400 return cast<SCEVSequentialMinMaxExpr>(this)->getType();
401 case scAddExpr:
402 return cast<SCEVAddExpr>(this)->getType();
403 case scUDivExpr:
404 return cast<SCEVUDivExpr>(this)->getType();
405 case scUnknown:
406 return cast<SCEVUnknown>(this)->getType();
407 case scCouldNotCompute:
408 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 408)
;
409 }
410 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 410)
;
411}
412
413bool SCEV::isZero() const {
414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
415 return SC->getValue()->isZero();
416 return false;
417}
418
419bool SCEV::isOne() const {
420 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
421 return SC->getValue()->isOne();
422 return false;
423}
424
425bool SCEV::isAllOnesValue() const {
426 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
427 return SC->getValue()->isMinusOne();
428 return false;
429}
430
431bool SCEV::isNonConstantNegative() const {
432 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
433 if (!Mul) return false;
434
435 // If there is a constant factor, it will be first.
436 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
437 if (!SC) return false;
438
439 // Return true if the value is negative, this matches things like (-42 * V).
440 return SC->getAPInt().isNegative();
441}
442
443SCEVCouldNotCompute::SCEVCouldNotCompute() :
444 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
445
446bool SCEVCouldNotCompute::classof(const SCEV *S) {
447 return S->getSCEVType() == scCouldNotCompute;
448}
449
450const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
451 FoldingSetNodeID ID;
452 ID.AddInteger(scConstant);
453 ID.AddPointer(V);
454 void *IP = nullptr;
455 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
456 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
457 UniqueSCEVs.InsertNode(S, IP);
458 return S;
459}
460
461const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
462 return getConstant(ConstantInt::get(getContext(), Val));
463}
464
465const SCEV *
466ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
467 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
468 return getConstant(ConstantInt::get(ITy, V, isSigned));
469}
470
471SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
472 const SCEV *op, Type *ty)
473 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
474 Operands[0] = op;
475}
476
477SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
478 Type *ITy)
479 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
480 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&(static_cast <bool> (getOperand()->getType()->isPointerTy
() && Ty->isIntegerTy() && "Must be a non-bit-width-changing pointer-to-integer cast!"
) ? void (0) : __assert_fail ("getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && \"Must be a non-bit-width-changing pointer-to-integer cast!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 481, __extension__
__PRETTY_FUNCTION__))
481 "Must be a non-bit-width-changing pointer-to-integer cast!")(static_cast <bool> (getOperand()->getType()->isPointerTy
() && Ty->isIntegerTy() && "Must be a non-bit-width-changing pointer-to-integer cast!"
) ? void (0) : __assert_fail ("getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && \"Must be a non-bit-width-changing pointer-to-integer cast!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 481, __extension__
__PRETTY_FUNCTION__))
;
482}
483
484SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
485 SCEVTypes SCEVTy, const SCEV *op,
486 Type *ty)
487 : SCEVCastExpr(ID, SCEVTy, op, ty) {}
488
489SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
490 Type *ty)
491 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
492 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy
() && Ty->isIntOrPtrTy() && "Cannot truncate non-integer value!"
) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate non-integer value!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 493, __extension__
__PRETTY_FUNCTION__))
493 "Cannot truncate non-integer value!")(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy
() && Ty->isIntOrPtrTy() && "Cannot truncate non-integer value!"
) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate non-integer value!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 493, __extension__
__PRETTY_FUNCTION__))
;
494}
495
496SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
497 const SCEV *op, Type *ty)
498 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
499 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy
() && Ty->isIntOrPtrTy() && "Cannot zero extend non-integer value!"
) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot zero extend non-integer value!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 500, __extension__
__PRETTY_FUNCTION__))
500 "Cannot zero extend non-integer value!")(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy
() && Ty->isIntOrPtrTy() && "Cannot zero extend non-integer value!"
) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot zero extend non-integer value!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 500, __extension__
__PRETTY_FUNCTION__))
;
501}
502
503SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
504 const SCEV *op, Type *ty)
505 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
506 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy
() && Ty->isIntOrPtrTy() && "Cannot sign extend non-integer value!"
) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot sign extend non-integer value!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 507, __extension__
__PRETTY_FUNCTION__))
507 "Cannot sign extend non-integer value!")(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy
() && Ty->isIntOrPtrTy() && "Cannot sign extend non-integer value!"
) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot sign extend non-integer value!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 507, __extension__
__PRETTY_FUNCTION__))
;
508}
509
510void SCEVUnknown::deleted() {
511 // Clear this SCEVUnknown from various maps.
512 SE->forgetMemoizedResults(this);
513
514 // Remove this SCEVUnknown from the uniquing map.
515 SE->UniqueSCEVs.RemoveNode(this);
516
517 // Release the value.
518 setValPtr(nullptr);
519}
520
521void SCEVUnknown::allUsesReplacedWith(Value *New) {
522 // Remove this SCEVUnknown from the uniquing map.
523 SE->UniqueSCEVs.RemoveNode(this);
524
525 // Update this SCEVUnknown to point to the new value. This is needed
526 // because there may still be outstanding SCEVs which still point to
527 // this SCEVUnknown.
528 setValPtr(New);
529}
530
531bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
532 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
533 if (VCE->getOpcode() == Instruction::PtrToInt)
534 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
535 if (CE->getOpcode() == Instruction::GetElementPtr &&
536 CE->getOperand(0)->isNullValue() &&
537 CE->getNumOperands() == 2)
538 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
539 if (CI->isOne()) {
540 AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
541 return true;
542 }
543
544 return false;
545}
546
547bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
548 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
549 if (VCE->getOpcode() == Instruction::PtrToInt)
550 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
551 if (CE->getOpcode() == Instruction::GetElementPtr &&
552 CE->getOperand(0)->isNullValue()) {
553 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
554 if (StructType *STy = dyn_cast<StructType>(Ty))
555 if (!STy->isPacked() &&
556 CE->getNumOperands() == 3 &&
557 CE->getOperand(1)->isNullValue()) {
558 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
559 if (CI->isOne() &&
560 STy->getNumElements() == 2 &&
561 STy->getElementType(0)->isIntegerTy(1)) {
562 AllocTy = STy->getElementType(1);
563 return true;
564 }
565 }
566 }
567
568 return false;
569}
570
571bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
572 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
573 if (VCE->getOpcode() == Instruction::PtrToInt)
574 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
575 if (CE->getOpcode() == Instruction::GetElementPtr &&
576 CE->getNumOperands() == 3 &&
577 CE->getOperand(0)->isNullValue() &&
578 CE->getOperand(1)->isNullValue()) {
579 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
580 // Ignore vector types here so that ScalarEvolutionExpander doesn't
581 // emit getelementptrs that index into vectors.
582 if (Ty->isStructTy() || Ty->isArrayTy()) {
583 CTy = Ty;
584 FieldNo = CE->getOperand(2);
585 return true;
586 }
587 }
588
589 return false;
590}
591
592//===----------------------------------------------------------------------===//
593// SCEV Utilities
594//===----------------------------------------------------------------------===//
595
596/// Compare the two values \p LV and \p RV in terms of their "complexity" where
597/// "complexity" is a partial (and somewhat ad-hoc) relation used to order
598/// operands in SCEV expressions. \p EqCache is a set of pairs of values that
599/// have been previously deemed to be "equally complex" by this routine. It is
600/// intended to avoid exponential time complexity in cases like:
601///
602/// %a = f(%x, %y)
603/// %b = f(%a, %a)
604/// %c = f(%b, %b)
605///
606/// %d = f(%x, %y)
607/// %e = f(%d, %d)
608/// %f = f(%e, %e)
609///
610/// CompareValueComplexity(%f, %c)
611///
612/// Since we do not continue running this routine on expression trees once we
613/// have seen unequal values, there is no need to track them in the cache.
614static int
615CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
616 const LoopInfo *const LI, Value *LV, Value *RV,
617 unsigned Depth) {
618 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
619 return 0;
620
621 // Order pointer values after integer values. This helps SCEVExpander form
622 // GEPs.
623 bool LIsPointer = LV->getType()->isPointerTy(),
624 RIsPointer = RV->getType()->isPointerTy();
625 if (LIsPointer != RIsPointer)
626 return (int)LIsPointer - (int)RIsPointer;
627
628 // Compare getValueID values.
629 unsigned LID = LV->getValueID(), RID = RV->getValueID();
630 if (LID != RID)
631 return (int)LID - (int)RID;
632
633 // Sort arguments by their position.
634 if (const auto *LA = dyn_cast<Argument>(LV)) {
635 const auto *RA = cast<Argument>(RV);
636 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
637 return (int)LArgNo - (int)RArgNo;
638 }
639
640 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
641 const auto *RGV = cast<GlobalValue>(RV);
642
643 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
644 auto LT = GV->getLinkage();
645 return !(GlobalValue::isPrivateLinkage(LT) ||
646 GlobalValue::isInternalLinkage(LT));
647 };
648
649 // Use the names to distinguish the two values, but only if the
650 // names are semantically important.
651 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
652 return LGV->getName().compare(RGV->getName());
653 }
654
655 // For instructions, compare their loop depth, and their operand count. This
656 // is pretty loose.
657 if (const auto *LInst = dyn_cast<Instruction>(LV)) {
658 const auto *RInst = cast<Instruction>(RV);
659
660 // Compare loop depths.
661 const BasicBlock *LParent = LInst->getParent(),
662 *RParent = RInst->getParent();
663 if (LParent != RParent) {
664 unsigned LDepth = LI->getLoopDepth(LParent),
665 RDepth = LI->getLoopDepth(RParent);
666 if (LDepth != RDepth)
667 return (int)LDepth - (int)RDepth;
668 }
669
670 // Compare the number of operands.
671 unsigned LNumOps = LInst->getNumOperands(),
672 RNumOps = RInst->getNumOperands();
673 if (LNumOps != RNumOps)
674 return (int)LNumOps - (int)RNumOps;
675
676 for (unsigned Idx : seq(0u, LNumOps)) {
677 int Result =
678 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
679 RInst->getOperand(Idx), Depth + 1);
680 if (Result != 0)
681 return Result;
682 }
683 }
684
685 EqCacheValue.unionSets(LV, RV);
686 return 0;
687}
688
689// Return negative, zero, or positive, if LHS is less than, equal to, or greater
690// than RHS, respectively. A three-way result allows recursive comparisons to be
691// more efficient.
692// If the max analysis depth was reached, return None, assuming we do not know
693// if they are equivalent for sure.
694static Optional<int>
695CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
696 EquivalenceClasses<const Value *> &EqCacheValue,
697 const LoopInfo *const LI, const SCEV *LHS,
698 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
699 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
700 if (LHS == RHS)
701 return 0;
702
703 // Primarily, sort the SCEVs by their getSCEVType().
704 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
705 if (LType != RType)
706 return (int)LType - (int)RType;
707
708 if (EqCacheSCEV.isEquivalent(LHS, RHS))
709 return 0;
710
711 if (Depth > MaxSCEVCompareDepth)
712 return None;
713
714 // Aside from the getSCEVType() ordering, the particular ordering
715 // isn't very important except that it's beneficial to be consistent,
716 // so that (a + b) and (b + a) don't end up as different expressions.
717 switch (LType) {
718 case scUnknown: {
719 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
720 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
721
722 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
723 RU->getValue(), Depth + 1);
724 if (X == 0)
725 EqCacheSCEV.unionSets(LHS, RHS);
726 return X;
727 }
728
729 case scConstant: {
730 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
731 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
732
733 // Compare constant values.
734 const APInt &LA = LC->getAPInt();
735 const APInt &RA = RC->getAPInt();
736 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
737 if (LBitWidth != RBitWidth)
738 return (int)LBitWidth - (int)RBitWidth;
739 return LA.ult(RA) ? -1 : 1;
740 }
741
742 case scAddRecExpr: {
743 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
744 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
745
746 // There is always a dominance between two recs that are used by one SCEV,
747 // so we can safely sort recs by loop header dominance. We require such
748 // order in getAddExpr.
749 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
750 if (LLoop != RLoop) {
751 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
752 assert(LHead != RHead && "Two loops share the same header?")(static_cast <bool> (LHead != RHead && "Two loops share the same header?"
) ? void (0) : __assert_fail ("LHead != RHead && \"Two loops share the same header?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 752, __extension__
__PRETTY_FUNCTION__))
;
753 if (DT.dominates(LHead, RHead))
754 return 1;
755 else
756 assert(DT.dominates(RHead, LHead) &&(static_cast <bool> (DT.dominates(RHead, LHead) &&
"No dominance between recurrences used by one SCEV?") ? void
(0) : __assert_fail ("DT.dominates(RHead, LHead) && \"No dominance between recurrences used by one SCEV?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 757, __extension__
__PRETTY_FUNCTION__))
757 "No dominance between recurrences used by one SCEV?")(static_cast <bool> (DT.dominates(RHead, LHead) &&
"No dominance between recurrences used by one SCEV?") ? void
(0) : __assert_fail ("DT.dominates(RHead, LHead) && \"No dominance between recurrences used by one SCEV?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 757, __extension__
__PRETTY_FUNCTION__))
;
758 return -1;
759 }
760
761 // Addrec complexity grows with operand count.
762 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
763 if (LNumOps != RNumOps)
764 return (int)LNumOps - (int)RNumOps;
765
766 // Lexicographically compare.
767 for (unsigned i = 0; i != LNumOps; ++i) {
768 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
769 LA->getOperand(i), RA->getOperand(i), DT,
770 Depth + 1);
771 if (X != 0)
772 return X;
773 }
774 EqCacheSCEV.unionSets(LHS, RHS);
775 return 0;
776 }
777
778 case scAddExpr:
779 case scMulExpr:
780 case scSMaxExpr:
781 case scUMaxExpr:
782 case scSMinExpr:
783 case scUMinExpr:
784 case scSequentialUMinExpr: {
785 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
786 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
787
788 // Lexicographically compare n-ary expressions.
789 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
790 if (LNumOps != RNumOps)
791 return (int)LNumOps - (int)RNumOps;
792
793 for (unsigned i = 0; i != LNumOps; ++i) {
794 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
795 LC->getOperand(i), RC->getOperand(i), DT,
796 Depth + 1);
797 if (X != 0)
798 return X;
799 }
800 EqCacheSCEV.unionSets(LHS, RHS);
801 return 0;
802 }
803
804 case scUDivExpr: {
805 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
806 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
807
808 // Lexicographically compare udiv expressions.
809 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
810 RC->getLHS(), DT, Depth + 1);
811 if (X != 0)
812 return X;
813 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
814 RC->getRHS(), DT, Depth + 1);
815 if (X == 0)
816 EqCacheSCEV.unionSets(LHS, RHS);
817 return X;
818 }
819
820 case scPtrToInt:
821 case scTruncate:
822 case scZeroExtend:
823 case scSignExtend: {
824 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
825 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
826
827 // Compare cast expressions by operand.
828 auto X =
829 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
830 RC->getOperand(), DT, Depth + 1);
831 if (X == 0)
832 EqCacheSCEV.unionSets(LHS, RHS);
833 return X;
834 }
835
836 case scCouldNotCompute:
837 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 837)
;
838 }
839 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 839)
;
840}
841
842/// Given a list of SCEV objects, order them by their complexity, and group
843/// objects of the same complexity together by value. When this routine is
844/// finished, we know that any duplicates in the vector are consecutive and that
845/// complexity is monotonically increasing.
846///
847/// Note that we go take special precautions to ensure that we get deterministic
848/// results from this routine. In other words, we don't want the results of
849/// this to depend on where the addresses of various SCEV objects happened to
850/// land in memory.
851static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
852 LoopInfo *LI, DominatorTree &DT) {
853 if (Ops.size() < 2) return; // Noop
854
855 EquivalenceClasses<const SCEV *> EqCacheSCEV;
856 EquivalenceClasses<const Value *> EqCacheValue;
857
858 // Whether LHS has provably less complexity than RHS.
859 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
860 auto Complexity =
861 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
862 return Complexity && *Complexity < 0;
863 };
864 if (Ops.size() == 2) {
865 // This is the common case, which also happens to be trivially simple.
866 // Special case it.
867 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
868 if (IsLessComplex(RHS, LHS))
869 std::swap(LHS, RHS);
870 return;
871 }
872
873 // Do the rough sort by complexity.
874 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
875 return IsLessComplex(LHS, RHS);
876 });
877
878 // Now that we are sorted by complexity, group elements of the same
879 // complexity. Note that this is, at worst, N^2, but the vector is likely to
880 // be extremely short in practice. Note that we take this approach because we
881 // do not want to depend on the addresses of the objects we are grouping.
882 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
883 const SCEV *S = Ops[i];
884 unsigned Complexity = S->getSCEVType();
885
886 // If there are any objects of the same complexity and same value as this
887 // one, group them.
888 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
889 if (Ops[j] == S) { // Found a duplicate.
890 // Move it to immediately after i'th element.
891 std::swap(Ops[i+1], Ops[j]);
892 ++i; // no need to rescan it.
893 if (i == e-2) return; // Done!
894 }
895 }
896 }
897}
898
899/// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
900/// least HugeExprThreshold nodes).
901static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
902 return any_of(Ops, [](const SCEV *S) {
903 return S->getExpressionSize() >= HugeExprThreshold;
904 });
905}
906
907//===----------------------------------------------------------------------===//
908// Simple SCEV method implementations
909//===----------------------------------------------------------------------===//
910
911/// Compute BC(It, K). The result has width W. Assume, K > 0.
912static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
913 ScalarEvolution &SE,
914 Type *ResultTy) {
915 // Handle the simplest case efficiently.
916 if (K == 1)
917 return SE.getTruncateOrZeroExtend(It, ResultTy);
918
919 // We are using the following formula for BC(It, K):
920 //
921 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
922 //
923 // Suppose, W is the bitwidth of the return value. We must be prepared for
924 // overflow. Hence, we must assure that the result of our computation is
925 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
926 // safe in modular arithmetic.
927 //
928 // However, this code doesn't use exactly that formula; the formula it uses
929 // is something like the following, where T is the number of factors of 2 in
930 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
931 // exponentiation:
932 //
933 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
934 //
935 // This formula is trivially equivalent to the previous formula. However,
936 // this formula can be implemented much more efficiently. The trick is that
937 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
938 // arithmetic. To do exact division in modular arithmetic, all we have
939 // to do is multiply by the inverse. Therefore, this step can be done at
940 // width W.
941 //
942 // The next issue is how to safely do the division by 2^T. The way this
943 // is done is by doing the multiplication step at a width of at least W + T
944 // bits. This way, the bottom W+T bits of the product are accurate. Then,
945 // when we perform the division by 2^T (which is equivalent to a right shift
946 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
947 // truncated out after the division by 2^T.
948 //
949 // In comparison to just directly using the first formula, this technique
950 // is much more efficient; using the first formula requires W * K bits,
951 // but this formula less than W + K bits. Also, the first formula requires
952 // a division step, whereas this formula only requires multiplies and shifts.
953 //
954 // It doesn't matter whether the subtraction step is done in the calculation
955 // width or the input iteration count's width; if the subtraction overflows,
956 // the result must be zero anyway. We prefer here to do it in the width of
957 // the induction variable because it helps a lot for certain cases; CodeGen
958 // isn't smart enough to ignore the overflow, which leads to much less
959 // efficient code if the width of the subtraction is wider than the native
960 // register width.
961 //
962 // (It's possible to not widen at all by pulling out factors of 2 before
963 // the multiplication; for example, K=2 can be calculated as
964 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
965 // extra arithmetic, so it's not an obvious win, and it gets
966 // much more complicated for K > 3.)
967
968 // Protection from insane SCEVs; this bound is conservative,
969 // but it probably doesn't matter.
970 if (K > 1000)
971 return SE.getCouldNotCompute();
972
973 unsigned W = SE.getTypeSizeInBits(ResultTy);
974
975 // Calculate K! / 2^T and T; we divide out the factors of two before
976 // multiplying for calculating K! / 2^T to avoid overflow.
977 // Other overflow doesn't matter because we only care about the bottom
978 // W bits of the result.
979 APInt OddFactorial(W, 1);
980 unsigned T = 1;
981 for (unsigned i = 3; i <= K; ++i) {
982 APInt Mult(W, i);
983 unsigned TwoFactors = Mult.countTrailingZeros();
984 T += TwoFactors;
985 Mult.lshrInPlace(TwoFactors);
986 OddFactorial *= Mult;
987 }
988
989 // We need at least W + T bits for the multiplication step
990 unsigned CalculationBits = W + T;
991
992 // Calculate 2^T, at width T+W.
993 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
994
995 // Calculate the multiplicative inverse of K! / 2^T;
996 // this multiplication factor will perform the exact division by
997 // K! / 2^T.
998 APInt Mod = APInt::getSignedMinValue(W+1);
999 APInt MultiplyFactor = OddFactorial.zext(W+1);
1000 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1001 MultiplyFactor = MultiplyFactor.trunc(W);
1002
1003 // Calculate the product, at width T+W
1004 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1005 CalculationBits);
1006 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1007 for (unsigned i = 1; i != K; ++i) {
1008 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1009 Dividend = SE.getMulExpr(Dividend,
1010 SE.getTruncateOrZeroExtend(S, CalculationTy));
1011 }
1012
1013 // Divide by 2^T
1014 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1015
1016 // Truncate the result, and divide by K! / 2^T.
1017
1018 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1019 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1020}
1021
1022/// Return the value of this chain of recurrences at the specified iteration
1023/// number. We can evaluate this recurrence by multiplying each element in the
1024/// chain by the binomial coefficient corresponding to it. In other words, we
1025/// can evaluate {A,+,B,+,C,+,D} as:
1026///
1027/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1028///
1029/// where BC(It, k) stands for binomial coefficient.
1030const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1031 ScalarEvolution &SE) const {
1032 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1033}
1034
1035const SCEV *
1036SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1037 const SCEV *It, ScalarEvolution &SE) {
1038 assert(Operands.size() > 0)(static_cast <bool> (Operands.size() > 0) ? void (0)
: __assert_fail ("Operands.size() > 0", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 1038, __extension__ __PRETTY_FUNCTION__))
;
1039 const SCEV *Result = Operands[0];
1040 for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1041 // The computation is correct in the face of overflow provided that the
1042 // multiplication is performed _after_ the evaluation of the binomial
1043 // coefficient.
1044 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1045 if (isa<SCEVCouldNotCompute>(Coeff))
1046 return Coeff;
1047
1048 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1049 }
1050 return Result;
1051}
1052
1053//===----------------------------------------------------------------------===//
1054// SCEV Expression folder implementations
1055//===----------------------------------------------------------------------===//
1056
1057const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1058 unsigned Depth) {
1059 assert(Depth <= 1 &&(static_cast <bool> (Depth <= 1 && "getLosslessPtrToIntExpr() should self-recurse at most once."
) ? void (0) : __assert_fail ("Depth <= 1 && \"getLosslessPtrToIntExpr() should self-recurse at most once.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1060, __extension__
__PRETTY_FUNCTION__))
1060 "getLosslessPtrToIntExpr() should self-recurse at most once.")(static_cast <bool> (Depth <= 1 && "getLosslessPtrToIntExpr() should self-recurse at most once."
) ? void (0) : __assert_fail ("Depth <= 1 && \"getLosslessPtrToIntExpr() should self-recurse at most once.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1060, __extension__
__PRETTY_FUNCTION__))
;
1061
1062 // We could be called with an integer-typed operands during SCEV rewrites.
1063 // Since the operand is an integer already, just perform zext/trunc/self cast.
1064 if (!Op->getType()->isPointerTy())
1065 return Op;
1066
1067 // What would be an ID for such a SCEV cast expression?
1068 FoldingSetNodeID ID;
1069 ID.AddInteger(scPtrToInt);
1070 ID.AddPointer(Op);
1071
1072 void *IP = nullptr;
1073
1074 // Is there already an expression for such a cast?
1075 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1076 return S;
1077
1078 // It isn't legal for optimizations to construct new ptrtoint expressions
1079 // for non-integral pointers.
1080 if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1081 return getCouldNotCompute();
1082
1083 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1084
1085 // We can only trivially model ptrtoint if SCEV's effective (integer) type
1086 // is sufficiently wide to represent all possible pointer values.
1087 // We could theoretically teach SCEV to truncate wider pointers, but
1088 // that isn't implemented for now.
1089 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1090 getDataLayout().getTypeSizeInBits(IntPtrTy))
1091 return getCouldNotCompute();
1092
1093 // If not, is this expression something we can't reduce any further?
1094 if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1095 // Perform some basic constant folding. If the operand of the ptr2int cast
1096 // is a null pointer, don't create a ptr2int SCEV expression (that will be
1097 // left as-is), but produce a zero constant.
1098 // NOTE: We could handle a more general case, but lack motivational cases.
1099 if (isa<ConstantPointerNull>(U->getValue()))
1100 return getZero(IntPtrTy);
1101
1102 // Create an explicit cast node.
1103 // We can reuse the existing insert position since if we get here,
1104 // we won't have made any changes which would invalidate it.
1105 SCEV *S = new (SCEVAllocator)
1106 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1107 UniqueSCEVs.InsertNode(S, IP);
1108 registerUser(S, Op);
1109 return S;
1110 }
1111
1112 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "(static_cast <bool> (Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
"non-SCEVUnknown's.") ? void (0) : __assert_fail ("Depth == 0 && \"getLosslessPtrToIntExpr() should not self-recurse for \" \"non-SCEVUnknown's.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1113, __extension__
__PRETTY_FUNCTION__))
1113 "non-SCEVUnknown's.")(static_cast <bool> (Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
"non-SCEVUnknown's.") ? void (0) : __assert_fail ("Depth == 0 && \"getLosslessPtrToIntExpr() should not self-recurse for \" \"non-SCEVUnknown's.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1113, __extension__
__PRETTY_FUNCTION__))
;
1114
1115 // Otherwise, we've got some expression that is more complex than just a
1116 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1117 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1118 // only, and the expressions must otherwise be integer-typed.
1119 // So sink the cast down to the SCEVUnknown's.
1120
1121 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1122 /// which computes a pointer-typed value, and rewrites the whole expression
1123 /// tree so that *all* the computations are done on integers, and the only
1124 /// pointer-typed operands in the expression are SCEVUnknown.
1125 class SCEVPtrToIntSinkingRewriter
1126 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1127 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1128
1129 public:
1130 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1131
1132 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1133 SCEVPtrToIntSinkingRewriter Rewriter(SE);
1134 return Rewriter.visit(Scev);
1135 }
1136
1137 const SCEV *visit(const SCEV *S) {
1138 Type *STy = S->getType();
1139 // If the expression is not pointer-typed, just keep it as-is.
1140 if (!STy->isPointerTy())
1141 return S;
1142 // Else, recursively sink the cast down into it.
1143 return Base::visit(S);
1144 }
1145
1146 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1147 SmallVector<const SCEV *, 2> Operands;
1148 bool Changed = false;
1149 for (auto *Op : Expr->operands()) {
1150 Operands.push_back(visit(Op));
1151 Changed |= Op != Operands.back();
1152 }
1153 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1154 }
1155
1156 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1157 SmallVector<const SCEV *, 2> Operands;
1158 bool Changed = false;
1159 for (auto *Op : Expr->operands()) {
1160 Operands.push_back(visit(Op));
1161 Changed |= Op != Operands.back();
1162 }
1163 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1164 }
1165
1166 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1167 assert(Expr->getType()->isPointerTy() &&(static_cast <bool> (Expr->getType()->isPointerTy
() && "Should only reach pointer-typed SCEVUnknown's."
) ? void (0) : __assert_fail ("Expr->getType()->isPointerTy() && \"Should only reach pointer-typed SCEVUnknown's.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1168, __extension__
__PRETTY_FUNCTION__))
1168 "Should only reach pointer-typed SCEVUnknown's.")(static_cast <bool> (Expr->getType()->isPointerTy
() && "Should only reach pointer-typed SCEVUnknown's."
) ? void (0) : __assert_fail ("Expr->getType()->isPointerTy() && \"Should only reach pointer-typed SCEVUnknown's.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1168, __extension__
__PRETTY_FUNCTION__))
;
1169 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1170 }
1171 };
1172
1173 // And actually perform the cast sinking.
1174 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1175 assert(IntOp->getType()->isIntegerTy() &&(static_cast <bool> (IntOp->getType()->isIntegerTy
() && "We must have succeeded in sinking the cast, " "and ending up with an integer-typed expression!"
) ? void (0) : __assert_fail ("IntOp->getType()->isIntegerTy() && \"We must have succeeded in sinking the cast, \" \"and ending up with an integer-typed expression!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1177, __extension__
__PRETTY_FUNCTION__))
1176 "We must have succeeded in sinking the cast, "(static_cast <bool> (IntOp->getType()->isIntegerTy
() && "We must have succeeded in sinking the cast, " "and ending up with an integer-typed expression!"
) ? void (0) : __assert_fail ("IntOp->getType()->isIntegerTy() && \"We must have succeeded in sinking the cast, \" \"and ending up with an integer-typed expression!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1177, __extension__
__PRETTY_FUNCTION__))
1177 "and ending up with an integer-typed expression!")(static_cast <bool> (IntOp->getType()->isIntegerTy
() && "We must have succeeded in sinking the cast, " "and ending up with an integer-typed expression!"
) ? void (0) : __assert_fail ("IntOp->getType()->isIntegerTy() && \"We must have succeeded in sinking the cast, \" \"and ending up with an integer-typed expression!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1177, __extension__
__PRETTY_FUNCTION__))
;
1178 return IntOp;
1179}
1180
1181const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1182 assert(Ty->isIntegerTy() && "Target type must be an integer type!")(static_cast <bool> (Ty->isIntegerTy() && "Target type must be an integer type!"
) ? void (0) : __assert_fail ("Ty->isIntegerTy() && \"Target type must be an integer type!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1182, __extension__
__PRETTY_FUNCTION__))
;
1183
1184 const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1185 if (isa<SCEVCouldNotCompute>(IntOp))
1186 return IntOp;
1187
1188 return getTruncateOrZeroExtend(IntOp, Ty);
1189}
1190
1191const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1192 unsigned Depth) {
1193 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(Op->getType()
) > getTypeSizeInBits(Ty) && "This is not a truncating conversion!"
) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && \"This is not a truncating conversion!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1194, __extension__
__PRETTY_FUNCTION__))
1194 "This is not a truncating conversion!")(static_cast <bool> (getTypeSizeInBits(Op->getType()
) > getTypeSizeInBits(Ty) && "This is not a truncating conversion!"
) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && \"This is not a truncating conversion!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1194, __extension__
__PRETTY_FUNCTION__))
;
1195 assert(isSCEVable(Ty) &&(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1196, __extension__
__PRETTY_FUNCTION__))
1196 "This is not a conversion to a SCEVable type!")(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1196, __extension__
__PRETTY_FUNCTION__))
;
1197 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!")(static_cast <bool> (!Op->getType()->isPointerTy(
) && "Can't truncate pointer!") ? void (0) : __assert_fail
("!Op->getType()->isPointerTy() && \"Can't truncate pointer!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1197, __extension__
__PRETTY_FUNCTION__))
;
1198 Ty = getEffectiveSCEVType(Ty);
1199
1200 FoldingSetNodeID ID;
1201 ID.AddInteger(scTruncate);
1202 ID.AddPointer(Op);
1203 ID.AddPointer(Ty);
1204 void *IP = nullptr;
1205 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1206
1207 // Fold if the operand is constant.
1208 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1209 return getConstant(
1210 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1211
1212 // trunc(trunc(x)) --> trunc(x)
1213 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1214 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1215
1216 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1217 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1218 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1219
1220 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1221 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1222 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1223
1224 if (Depth > MaxCastDepth) {
1225 SCEV *S =
1226 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1227 UniqueSCEVs.InsertNode(S, IP);
1228 registerUser(S, Op);
1229 return S;
1230 }
1231
1232 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1233 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1234 // if after transforming we have at most one truncate, not counting truncates
1235 // that replace other casts.
1236 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1237 auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1238 SmallVector<const SCEV *, 4> Operands;
1239 unsigned numTruncs = 0;
1240 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1241 ++i) {
1242 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1243 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1244 isa<SCEVTruncateExpr>(S))
1245 numTruncs++;
1246 Operands.push_back(S);
1247 }
1248 if (numTruncs < 2) {
1249 if (isa<SCEVAddExpr>(Op))
1250 return getAddExpr(Operands);
1251 else if (isa<SCEVMulExpr>(Op))
1252 return getMulExpr(Operands);
1253 else
1254 llvm_unreachable("Unexpected SCEV type for Op.")::llvm::llvm_unreachable_internal("Unexpected SCEV type for Op."
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1254)
;
1255 }
1256 // Although we checked in the beginning that ID is not in the cache, it is
1257 // possible that during recursion and different modification ID was inserted
1258 // into the cache. So if we find it, just return it.
1259 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1260 return S;
1261 }
1262
1263 // If the input value is a chrec scev, truncate the chrec's operands.
1264 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1265 SmallVector<const SCEV *, 4> Operands;
1266 for (const SCEV *Op : AddRec->operands())
1267 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1268 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1269 }
1270
1271 // Return zero if truncating to known zeros.
1272 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1273 if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1274 return getZero(Ty);
1275
1276 // The cast wasn't folded; create an explicit cast node. We can reuse
1277 // the existing insert position since if we get here, we won't have
1278 // made any changes which would invalidate it.
1279 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1280 Op, Ty);
1281 UniqueSCEVs.InsertNode(S, IP);
1282 registerUser(S, Op);
1283 return S;
1284}
1285
1286// Get the limit of a recurrence such that incrementing by Step cannot cause
1287// signed overflow as long as the value of the recurrence within the
1288// loop does not exceed this limit before incrementing.
1289static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1290 ICmpInst::Predicate *Pred,
1291 ScalarEvolution *SE) {
1292 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1293 if (SE->isKnownPositive(Step)) {
1294 *Pred = ICmpInst::ICMP_SLT;
1295 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1296 SE->getSignedRangeMax(Step));
1297 }
1298 if (SE->isKnownNegative(Step)) {
1299 *Pred = ICmpInst::ICMP_SGT;
1300 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1301 SE->getSignedRangeMin(Step));
1302 }
1303 return nullptr;
1304}
1305
1306// Get the limit of a recurrence such that incrementing by Step cannot cause
1307// unsigned overflow as long as the value of the recurrence within the loop does
1308// not exceed this limit before incrementing.
1309static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1310 ICmpInst::Predicate *Pred,
1311 ScalarEvolution *SE) {
1312 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1313 *Pred = ICmpInst::ICMP_ULT;
1314
1315 return SE->getConstant(APInt::getMinValue(BitWidth) -
1316 SE->getUnsignedRangeMax(Step));
1317}
1318
1319namespace {
1320
1321struct ExtendOpTraitsBase {
1322 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1323 unsigned);
1324};
1325
1326// Used to make code generic over signed and unsigned overflow.
1327template <typename ExtendOp> struct ExtendOpTraits {
1328 // Members present:
1329 //
1330 // static const SCEV::NoWrapFlags WrapType;
1331 //
1332 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1333 //
1334 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1335 // ICmpInst::Predicate *Pred,
1336 // ScalarEvolution *SE);
1337};
1338
1339template <>
1340struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1341 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1342
1343 static const GetExtendExprTy GetExtendExpr;
1344
1345 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1346 ICmpInst::Predicate *Pred,
1347 ScalarEvolution *SE) {
1348 return getSignedOverflowLimitForStep(Step, Pred, SE);
1349 }
1350};
1351
1352const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1353 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1354
1355template <>
1356struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1357 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1358
1359 static const GetExtendExprTy GetExtendExpr;
1360
1361 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1362 ICmpInst::Predicate *Pred,
1363 ScalarEvolution *SE) {
1364 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1365 }
1366};
1367
1368const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1369 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1370
1371} // end anonymous namespace
1372
1373// The recurrence AR has been shown to have no signed/unsigned wrap or something
1374// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1375// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1376// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1377// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1378// expression "Step + sext/zext(PreIncAR)" is congruent with
1379// "sext/zext(PostIncAR)"
1380template <typename ExtendOpTy>
1381static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1382 ScalarEvolution *SE, unsigned Depth) {
1383 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1384 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1385
1386 const Loop *L = AR->getLoop();
1387 const SCEV *Start = AR->getStart();
1388 const SCEV *Step = AR->getStepRecurrence(*SE);
1389
1390 // Check for a simple looking step prior to loop entry.
1391 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1392 if (!SA)
1393 return nullptr;
1394
1395 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1396 // subtraction is expensive. For this purpose, perform a quick and dirty
1397 // difference, by checking for Step in the operand list.
1398 SmallVector<const SCEV *, 4> DiffOps;
1399 for (const SCEV *Op : SA->operands())
1400 if (Op != Step)
1401 DiffOps.push_back(Op);
1402
1403 if (DiffOps.size() == SA->getNumOperands())
1404 return nullptr;
1405
1406 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1407 // `Step`:
1408
1409 // 1. NSW/NUW flags on the step increment.
1410 auto PreStartFlags =
1411 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1412 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1413 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1414 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1415
1416 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1417 // "S+X does not sign/unsign-overflow".
1418 //
1419
1420 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1421 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1422 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1423 return PreStart;
1424
1425 // 2. Direct overflow check on the step operation's expression.
1426 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1427 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1428 const SCEV *OperandExtendedStart =
1429 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1430 (SE->*GetExtendExpr)(Step, WideTy, Depth));
1431 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1432 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1433 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1434 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1435 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1436 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1437 }
1438 return PreStart;
1439 }
1440
1441 // 3. Loop precondition.
1442 ICmpInst::Predicate Pred;
1443 const SCEV *OverflowLimit =
1444 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1445
1446 if (OverflowLimit &&
1447 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1448 return PreStart;
1449
1450 return nullptr;
1451}
1452
1453// Get the normalized zero or sign extended expression for this AddRec's Start.
1454template <typename ExtendOpTy>
1455static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1456 ScalarEvolution *SE,
1457 unsigned Depth) {
1458 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1459
1460 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1461 if (!PreStart)
1462 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1463
1464 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1465 Depth),
1466 (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1467}
1468
1469// Try to prove away overflow by looking at "nearby" add recurrences. A
1470// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1471// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1472//
1473// Formally:
1474//
1475// {S,+,X} == {S-T,+,X} + T
1476// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1477//
1478// If ({S-T,+,X} + T) does not overflow ... (1)
1479//
1480// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1481//
1482// If {S-T,+,X} does not overflow ... (2)
1483//
1484// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1485// == {Ext(S-T)+Ext(T),+,Ext(X)}
1486//
1487// If (S-T)+T does not overflow ... (3)
1488//
1489// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1490// == {Ext(S),+,Ext(X)} == LHS
1491//
1492// Thus, if (1), (2) and (3) are true for some T, then
1493// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1494//
1495// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1496// does not overflow" restricted to the 0th iteration. Therefore we only need
1497// to check for (1) and (2).
1498//
1499// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1500// is `Delta` (defined below).
1501template <typename ExtendOpTy>
1502bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1503 const SCEV *Step,
1504 const Loop *L) {
1505 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1506
1507 // We restrict `Start` to a constant to prevent SCEV from spending too much
1508 // time here. It is correct (but more expensive) to continue with a
1509 // non-constant `Start` and do a general SCEV subtraction to compute
1510 // `PreStart` below.
1511 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1512 if (!StartC)
1513 return false;
1514
1515 APInt StartAI = StartC->getAPInt();
1516
1517 for (unsigned Delta : {-2, -1, 1, 2}) {
1518 const SCEV *PreStart = getConstant(StartAI - Delta);
1519
1520 FoldingSetNodeID ID;
1521 ID.AddInteger(scAddRecExpr);
1522 ID.AddPointer(PreStart);
1523 ID.AddPointer(Step);
1524 ID.AddPointer(L);
1525 void *IP = nullptr;
1526 const auto *PreAR =
1527 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1528
1529 // Give up if we don't already have the add recurrence we need because
1530 // actually constructing an add recurrence is relatively expensive.
1531 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1532 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1533 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1534 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1535 DeltaS, &Pred, this);
1536 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1537 return true;
1538 }
1539 }
1540
1541 return false;
1542}
1543
1544// Finds an integer D for an expression (C + x + y + ...) such that the top
1545// level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1546// unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1547// maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1548// the (C + x + y + ...) expression is \p WholeAddExpr.
1549static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1550 const SCEVConstant *ConstantTerm,
1551 const SCEVAddExpr *WholeAddExpr) {
1552 const APInt &C = ConstantTerm->getAPInt();
1553 const unsigned BitWidth = C.getBitWidth();
1554 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1555 uint32_t TZ = BitWidth;
1556 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1557 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1558 if (TZ) {
1559 // Set D to be as many least significant bits of C as possible while still
1560 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1561 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1562 }
1563 return APInt(BitWidth, 0);
1564}
1565
1566// Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1567// level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1568// number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1569// ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1570static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1571 const APInt &ConstantStart,
1572 const SCEV *Step) {
1573 const unsigned BitWidth = ConstantStart.getBitWidth();
1574 const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1575 if (TZ)
1576 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1577 : ConstantStart;
1578 return APInt(BitWidth, 0);
1579}
1580
1581const SCEV *
1582ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1583 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(Op->getType()
) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"
) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1584, __extension__
__PRETTY_FUNCTION__))
1584 "This is not an extending conversion!")(static_cast <bool> (getTypeSizeInBits(Op->getType()
) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"
) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1584, __extension__
__PRETTY_FUNCTION__))
;
1585 assert(isSCEVable(Ty) &&(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1586, __extension__
__PRETTY_FUNCTION__))
1586 "This is not a conversion to a SCEVable type!")(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1586, __extension__
__PRETTY_FUNCTION__))
;
1587 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!")(static_cast <bool> (!Op->getType()->isPointerTy(
) && "Can't extend pointer!") ? void (0) : __assert_fail
("!Op->getType()->isPointerTy() && \"Can't extend pointer!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1587, __extension__
__PRETTY_FUNCTION__))
;
1588 Ty = getEffectiveSCEVType(Ty);
1589
1590 // Fold if the operand is constant.
1591 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1592 return getConstant(
1593 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1594
1595 // zext(zext(x)) --> zext(x)
1596 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1597 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1598
1599 // Before doing any expensive analysis, check to see if we've already
1600 // computed a SCEV for this Op and Ty.
1601 FoldingSetNodeID ID;
1602 ID.AddInteger(scZeroExtend);
1603 ID.AddPointer(Op);
1604 ID.AddPointer(Ty);
1605 void *IP = nullptr;
1606 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1607 if (Depth > MaxCastDepth) {
1608 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1609 Op, Ty);
1610 UniqueSCEVs.InsertNode(S, IP);
1611 registerUser(S, Op);
1612 return S;
1613 }
1614
1615 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1616 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1617 // It's possible the bits taken off by the truncate were all zero bits. If
1618 // so, we should be able to simplify this further.
1619 const SCEV *X = ST->getOperand();
1620 ConstantRange CR = getUnsignedRange(X);
1621 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1622 unsigned NewBits = getTypeSizeInBits(Ty);
1623 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1624 CR.zextOrTrunc(NewBits)))
1625 return getTruncateOrZeroExtend(X, Ty, Depth);
1626 }
1627
1628 // If the input value is a chrec scev, and we can prove that the value
1629 // did not overflow the old, smaller, value, we can zero extend all of the
1630 // operands (often constants). This allows analysis of something like
1631 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1632 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1633 if (AR->isAffine()) {
1634 const SCEV *Start = AR->getStart();
1635 const SCEV *Step = AR->getStepRecurrence(*this);
1636 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1637 const Loop *L = AR->getLoop();
1638
1639 if (!AR->hasNoUnsignedWrap()) {
1640 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1641 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1642 }
1643
1644 // If we have special knowledge that this addrec won't overflow,
1645 // we don't need to do any further analysis.
1646 if (AR->hasNoUnsignedWrap())
1647 return getAddRecExpr(
1648 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1649 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1650
1651 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1652 // Note that this serves two purposes: It filters out loops that are
1653 // simply not analyzable, and it covers the case where this code is
1654 // being called from within backedge-taken count analysis, such that
1655 // attempting to ask for the backedge-taken count would likely result
1656 // in infinite recursion. In the later case, the analysis code will
1657 // cope with a conservative value, and it will take care to purge
1658 // that value once it has finished.
1659 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1660 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1661 // Manually compute the final value for AR, checking for overflow.
1662
1663 // Check whether the backedge-taken count can be losslessly casted to
1664 // the addrec's type. The count is always unsigned.
1665 const SCEV *CastedMaxBECount =
1666 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1667 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1668 CastedMaxBECount, MaxBECount->getType(), Depth);
1669 if (MaxBECount == RecastedMaxBECount) {
1670 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1671 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1672 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1673 SCEV::FlagAnyWrap, Depth + 1);
1674 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1675 SCEV::FlagAnyWrap,
1676 Depth + 1),
1677 WideTy, Depth + 1);
1678 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1679 const SCEV *WideMaxBECount =
1680 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1681 const SCEV *OperandExtendedAdd =
1682 getAddExpr(WideStart,
1683 getMulExpr(WideMaxBECount,
1684 getZeroExtendExpr(Step, WideTy, Depth + 1),
1685 SCEV::FlagAnyWrap, Depth + 1),
1686 SCEV::FlagAnyWrap, Depth + 1);
1687 if (ZAdd == OperandExtendedAdd) {
1688 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1689 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1690 // Return the expression with the addrec on the outside.
1691 return getAddRecExpr(
1692 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1693 Depth + 1),
1694 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1695 AR->getNoWrapFlags());
1696 }
1697 // Similar to above, only this time treat the step value as signed.
1698 // This covers loops that count down.
1699 OperandExtendedAdd =
1700 getAddExpr(WideStart,
1701 getMulExpr(WideMaxBECount,
1702 getSignExtendExpr(Step, WideTy, Depth + 1),
1703 SCEV::FlagAnyWrap, Depth + 1),
1704 SCEV::FlagAnyWrap, Depth + 1);
1705 if (ZAdd == OperandExtendedAdd) {
1706 // Cache knowledge of AR NW, which is propagated to this AddRec.
1707 // Negative step causes unsigned wrap, but it still can't self-wrap.
1708 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1709 // Return the expression with the addrec on the outside.
1710 return getAddRecExpr(
1711 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1712 Depth + 1),
1713 getSignExtendExpr(Step, Ty, Depth + 1), L,
1714 AR->getNoWrapFlags());
1715 }
1716 }
1717 }
1718
1719 // Normally, in the cases we can prove no-overflow via a
1720 // backedge guarding condition, we can also compute a backedge
1721 // taken count for the loop. The exceptions are assumptions and
1722 // guards present in the loop -- SCEV is not great at exploiting
1723 // these to compute max backedge taken counts, but can still use
1724 // these to prove lack of overflow. Use this fact to avoid
1725 // doing extra work that may not pay off.
1726 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1727 !AC.assumptions().empty()) {
1728
1729 auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1730 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1731 if (AR->hasNoUnsignedWrap()) {
1732 // Same as nuw case above - duplicated here to avoid a compile time
1733 // issue. It's not clear that the order of checks does matter, but
1734 // it's one of two issue possible causes for a change which was
1735 // reverted. Be conservative for the moment.
1736 return getAddRecExpr(
1737 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1738 Depth + 1),
1739 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1740 AR->getNoWrapFlags());
1741 }
1742
1743 // For a negative step, we can extend the operands iff doing so only
1744 // traverses values in the range zext([0,UINT_MAX]).
1745 if (isKnownNegative(Step)) {
1746 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1747 getSignedRangeMin(Step));
1748 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1749 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1750 // Cache knowledge of AR NW, which is propagated to this
1751 // AddRec. Negative step causes unsigned wrap, but it
1752 // still can't self-wrap.
1753 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1754 // Return the expression with the addrec on the outside.
1755 return getAddRecExpr(
1756 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1757 Depth + 1),
1758 getSignExtendExpr(Step, Ty, Depth + 1), L,
1759 AR->getNoWrapFlags());
1760 }
1761 }
1762 }
1763
1764 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1765 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1766 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1767 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1768 const APInt &C = SC->getAPInt();
1769 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1770 if (D != 0) {
1771 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1772 const SCEV *SResidual =
1773 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1774 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1775 return getAddExpr(SZExtD, SZExtR,
1776 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1777 Depth + 1);
1778 }
1779 }
1780
1781 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1782 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1783 return getAddRecExpr(
1784 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1785 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1786 }
1787 }
1788
1789 // zext(A % B) --> zext(A) % zext(B)
1790 {
1791 const SCEV *LHS;
1792 const SCEV *RHS;
1793 if (matchURem(Op, LHS, RHS))
1794 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1795 getZeroExtendExpr(RHS, Ty, Depth + 1));
1796 }
1797
1798 // zext(A / B) --> zext(A) / zext(B).
1799 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1800 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1801 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1802
1803 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1804 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1805 if (SA->hasNoUnsignedWrap()) {
1806 // If the addition does not unsign overflow then we can, by definition,
1807 // commute the zero extension with the addition operation.
1808 SmallVector<const SCEV *, 4> Ops;
1809 for (const auto *Op : SA->operands())
1810 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1811 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1812 }
1813
1814 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1815 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1816 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1817 //
1818 // Often address arithmetics contain expressions like
1819 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1820 // This transformation is useful while proving that such expressions are
1821 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1822 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1823 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1824 if (D != 0) {
1825 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1826 const SCEV *SResidual =
1827 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1828 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1829 return getAddExpr(SZExtD, SZExtR,
1830 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1831 Depth + 1);
1832 }
1833 }
1834 }
1835
1836 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1837 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1838 if (SM->hasNoUnsignedWrap()) {
1839 // If the multiply does not unsign overflow then we can, by definition,
1840 // commute the zero extension with the multiply operation.
1841 SmallVector<const SCEV *, 4> Ops;
1842 for (const auto *Op : SM->operands())
1843 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1844 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1845 }
1846
1847 // zext(2^K * (trunc X to iN)) to iM ->
1848 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1849 //
1850 // Proof:
1851 //
1852 // zext(2^K * (trunc X to iN)) to iM
1853 // = zext((trunc X to iN) << K) to iM
1854 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1855 // (because shl removes the top K bits)
1856 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1857 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1858 //
1859 if (SM->getNumOperands() == 2)
1860 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1861 if (MulLHS->getAPInt().isPowerOf2())
1862 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1863 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1864 MulLHS->getAPInt().logBase2();
1865 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1866 return getMulExpr(
1867 getZeroExtendExpr(MulLHS, Ty),
1868 getZeroExtendExpr(
1869 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1870 SCEV::FlagNUW, Depth + 1);
1871 }
1872 }
1873
1874 // The cast wasn't folded; create an explicit cast node.
1875 // Recompute the insert position, as it may have been invalidated.
1876 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1877 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1878 Op, Ty);
1879 UniqueSCEVs.InsertNode(S, IP);
1880 registerUser(S, Op);
1881 return S;
1882}
1883
1884const SCEV *
1885ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1886 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(Op->getType()
) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"
) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1887, __extension__
__PRETTY_FUNCTION__))
1887 "This is not an extending conversion!")(static_cast <bool> (getTypeSizeInBits(Op->getType()
) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"
) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1887, __extension__
__PRETTY_FUNCTION__))
;
1888 assert(isSCEVable(Ty) &&(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1889, __extension__
__PRETTY_FUNCTION__))
1889 "This is not a conversion to a SCEVable type!")(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1889, __extension__
__PRETTY_FUNCTION__))
;
1890 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!")(static_cast <bool> (!Op->getType()->isPointerTy(
) && "Can't extend pointer!") ? void (0) : __assert_fail
("!Op->getType()->isPointerTy() && \"Can't extend pointer!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 1890, __extension__
__PRETTY_FUNCTION__))
;
1891 Ty = getEffectiveSCEVType(Ty);
1892
1893 // Fold if the operand is constant.
1894 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1895 return getConstant(
1896 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1897
1898 // sext(sext(x)) --> sext(x)
1899 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1900 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1901
1902 // sext(zext(x)) --> zext(x)
1903 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1904 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1905
1906 // Before doing any expensive analysis, check to see if we've already
1907 // computed a SCEV for this Op and Ty.
1908 FoldingSetNodeID ID;
1909 ID.AddInteger(scSignExtend);
1910 ID.AddPointer(Op);
1911 ID.AddPointer(Ty);
1912 void *IP = nullptr;
1913 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1914 // Limit recursion depth.
1915 if (Depth > MaxCastDepth) {
1916 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1917 Op, Ty);
1918 UniqueSCEVs.InsertNode(S, IP);
1919 registerUser(S, Op);
1920 return S;
1921 }
1922
1923 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1924 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1925 // It's possible the bits taken off by the truncate were all sign bits. If
1926 // so, we should be able to simplify this further.
1927 const SCEV *X = ST->getOperand();
1928 ConstantRange CR = getSignedRange(X);
1929 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1930 unsigned NewBits = getTypeSizeInBits(Ty);
1931 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1932 CR.sextOrTrunc(NewBits)))
1933 return getTruncateOrSignExtend(X, Ty, Depth);
1934 }
1935
1936 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1937 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1938 if (SA->hasNoSignedWrap()) {
1939 // If the addition does not sign overflow then we can, by definition,
1940 // commute the sign extension with the addition operation.
1941 SmallVector<const SCEV *, 4> Ops;
1942 for (const auto *Op : SA->operands())
1943 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1944 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1945 }
1946
1947 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1948 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1949 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1950 //
1951 // For instance, this will bring two seemingly different expressions:
1952 // 1 + sext(5 + 20 * %x + 24 * %y) and
1953 // sext(6 + 20 * %x + 24 * %y)
1954 // to the same form:
1955 // 2 + sext(4 + 20 * %x + 24 * %y)
1956 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1957 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1958 if (D != 0) {
1959 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1960 const SCEV *SResidual =
1961 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1962 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1963 return getAddExpr(SSExtD, SSExtR,
1964 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1965 Depth + 1);
1966 }
1967 }
1968 }
1969 // If the input value is a chrec scev, and we can prove that the value
1970 // did not overflow the old, smaller, value, we can sign extend all of the
1971 // operands (often constants). This allows analysis of something like
1972 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1973 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1974 if (AR->isAffine()) {
1975 const SCEV *Start = AR->getStart();
1976 const SCEV *Step = AR->getStepRecurrence(*this);
1977 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1978 const Loop *L = AR->getLoop();
1979
1980 if (!AR->hasNoSignedWrap()) {
1981 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1982 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1983 }
1984
1985 // If we have special knowledge that this addrec won't overflow,
1986 // we don't need to do any further analysis.
1987 if (AR->hasNoSignedWrap())
1988 return getAddRecExpr(
1989 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1990 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1991
1992 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1993 // Note that this serves two purposes: It filters out loops that are
1994 // simply not analyzable, and it covers the case where this code is
1995 // being called from within backedge-taken count analysis, such that
1996 // attempting to ask for the backedge-taken count would likely result
1997 // in infinite recursion. In the later case, the analysis code will
1998 // cope with a conservative value, and it will take care to purge
1999 // that value once it has finished.
2000 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2001 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2002 // Manually compute the final value for AR, checking for
2003 // overflow.
2004
2005 // Check whether the backedge-taken count can be losslessly casted to
2006 // the addrec's type. The count is always unsigned.
2007 const SCEV *CastedMaxBECount =
2008 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2009 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2010 CastedMaxBECount, MaxBECount->getType(), Depth);
2011 if (MaxBECount == RecastedMaxBECount) {
2012 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2013 // Check whether Start+Step*MaxBECount has no signed overflow.
2014 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2015 SCEV::FlagAnyWrap, Depth + 1);
2016 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2017 SCEV::FlagAnyWrap,
2018 Depth + 1),
2019 WideTy, Depth + 1);
2020 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2021 const SCEV *WideMaxBECount =
2022 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2023 const SCEV *OperandExtendedAdd =
2024 getAddExpr(WideStart,
2025 getMulExpr(WideMaxBECount,
2026 getSignExtendExpr(Step, WideTy, Depth + 1),
2027 SCEV::FlagAnyWrap, Depth + 1),
2028 SCEV::FlagAnyWrap, Depth + 1);
2029 if (SAdd == OperandExtendedAdd) {
2030 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2031 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2032 // Return the expression with the addrec on the outside.
2033 return getAddRecExpr(
2034 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2035 Depth + 1),
2036 getSignExtendExpr(Step, Ty, Depth + 1), L,
2037 AR->getNoWrapFlags());
2038 }
2039 // Similar to above, only this time treat the step value as unsigned.
2040 // This covers loops that count up with an unsigned step.
2041 OperandExtendedAdd =
2042 getAddExpr(WideStart,
2043 getMulExpr(WideMaxBECount,
2044 getZeroExtendExpr(Step, WideTy, Depth + 1),
2045 SCEV::FlagAnyWrap, Depth + 1),
2046 SCEV::FlagAnyWrap, Depth + 1);
2047 if (SAdd == OperandExtendedAdd) {
2048 // If AR wraps around then
2049 //
2050 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2051 // => SAdd != OperandExtendedAdd
2052 //
2053 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2054 // (SAdd == OperandExtendedAdd => AR is NW)
2055
2056 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2057
2058 // Return the expression with the addrec on the outside.
2059 return getAddRecExpr(
2060 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2061 Depth + 1),
2062 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2063 AR->getNoWrapFlags());
2064 }
2065 }
2066 }
2067
2068 auto NewFlags = proveNoSignedWrapViaInduction(AR);
2069 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2070 if (AR->hasNoSignedWrap()) {
2071 // Same as nsw case above - duplicated here to avoid a compile time
2072 // issue. It's not clear that the order of checks does matter, but
2073 // it's one of two issue possible causes for a change which was
2074 // reverted. Be conservative for the moment.
2075 return getAddRecExpr(
2076 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2077 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2078 }
2079
2080 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2081 // if D + (C - D + Step * n) could be proven to not signed wrap
2082 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2083 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2084 const APInt &C = SC->getAPInt();
2085 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2086 if (D != 0) {
2087 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2088 const SCEV *SResidual =
2089 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2090 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2091 return getAddExpr(SSExtD, SSExtR,
2092 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2093 Depth + 1);
2094 }
2095 }
2096
2097 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2098 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2099 return getAddRecExpr(
2100 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2101 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2102 }
2103 }
2104
2105 // If the input value is provably positive and we could not simplify
2106 // away the sext build a zext instead.
2107 if (isKnownNonNegative(Op))
2108 return getZeroExtendExpr(Op, Ty, Depth + 1);
2109
2110 // The cast wasn't folded; create an explicit cast node.
2111 // Recompute the insert position, as it may have been invalidated.
2112 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2113 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2114 Op, Ty);
2115 UniqueSCEVs.InsertNode(S, IP);
2116 registerUser(S, { Op });
2117 return S;
2118}
2119
2120const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2121 Type *Ty) {
2122 switch (Kind) {
2123 case scTruncate:
2124 return getTruncateExpr(Op, Ty);
2125 case scZeroExtend:
2126 return getZeroExtendExpr(Op, Ty);
2127 case scSignExtend:
2128 return getSignExtendExpr(Op, Ty);
2129 case scPtrToInt:
2130 return getPtrToIntExpr(Op, Ty);
2131 default:
2132 llvm_unreachable("Not a SCEV cast expression!")::llvm::llvm_unreachable_internal("Not a SCEV cast expression!"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2132)
;
2133 }
2134}
2135
2136/// getAnyExtendExpr - Return a SCEV for the given operand extended with
2137/// unspecified bits out to the given type.
2138const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2139 Type *Ty) {
2140 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(Op->getType()
) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"
) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2141, __extension__
__PRETTY_FUNCTION__))
2141 "This is not an extending conversion!")(static_cast <bool> (getTypeSizeInBits(Op->getType()
) < getTypeSizeInBits(Ty) && "This is not an extending conversion!"
) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2141, __extension__
__PRETTY_FUNCTION__))
;
2142 assert(isSCEVable(Ty) &&(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2143, __extension__
__PRETTY_FUNCTION__))
2143 "This is not a conversion to a SCEVable type!")(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2143, __extension__
__PRETTY_FUNCTION__))
;
2144 Ty = getEffectiveSCEVType(Ty);
2145
2146 // Sign-extend negative constants.
2147 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2148 if (SC->getAPInt().isNegative())
2149 return getSignExtendExpr(Op, Ty);
2150
2151 // Peel off a truncate cast.
2152 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2153 const SCEV *NewOp = T->getOperand();
2154 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2155 return getAnyExtendExpr(NewOp, Ty);
2156 return getTruncateOrNoop(NewOp, Ty);
2157 }
2158
2159 // Next try a zext cast. If the cast is folded, use it.
2160 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2161 if (!isa<SCEVZeroExtendExpr>(ZExt))
2162 return ZExt;
2163
2164 // Next try a sext cast. If the cast is folded, use it.
2165 const SCEV *SExt = getSignExtendExpr(Op, Ty);
2166 if (!isa<SCEVSignExtendExpr>(SExt))
2167 return SExt;
2168
2169 // Force the cast to be folded into the operands of an addrec.
2170 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2171 SmallVector<const SCEV *, 4> Ops;
2172 for (const SCEV *Op : AR->operands())
2173 Ops.push_back(getAnyExtendExpr(Op, Ty));
2174 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2175 }
2176
2177 // If the expression is obviously signed, use the sext cast value.
2178 if (isa<SCEVSMaxExpr>(Op))
2179 return SExt;
2180
2181 // Absent any other information, use the zext cast value.
2182 return ZExt;
2183}
2184
2185/// Process the given Ops list, which is a list of operands to be added under
2186/// the given scale, update the given map. This is a helper function for
2187/// getAddRecExpr. As an example of what it does, given a sequence of operands
2188/// that would form an add expression like this:
2189///
2190/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2191///
2192/// where A and B are constants, update the map with these values:
2193///
2194/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2195///
2196/// and add 13 + A*B*29 to AccumulatedConstant.
2197/// This will allow getAddRecExpr to produce this:
2198///
2199/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2200///
2201/// This form often exposes folding opportunities that are hidden in
2202/// the original operand list.
2203///
2204/// Return true iff it appears that any interesting folding opportunities
2205/// may be exposed. This helps getAddRecExpr short-circuit extra work in
2206/// the common case where no interesting opportunities are present, and
2207/// is also used as a check to avoid infinite recursion.
2208static bool
2209CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2210 SmallVectorImpl<const SCEV *> &NewOps,
2211 APInt &AccumulatedConstant,
2212 const SCEV *const *Ops, size_t NumOperands,
2213 const APInt &Scale,
2214 ScalarEvolution &SE) {
2215 bool Interesting = false;
2216
2217 // Iterate over the add operands. They are sorted, with constants first.
2218 unsigned i = 0;
2219 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2220 ++i;
2221 // Pull a buried constant out to the outside.
2222 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2223 Interesting = true;
2224 AccumulatedConstant += Scale * C->getAPInt();
2225 }
2226
2227 // Next comes everything else. We're especially interested in multiplies
2228 // here, but they're in the middle, so just visit the rest with one loop.
2229 for (; i != NumOperands; ++i) {
2230 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2231 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2232 APInt NewScale =
2233 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2234 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2235 // A multiplication of a constant with another add; recurse.
2236 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2237 Interesting |=
2238 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2239 Add->op_begin(), Add->getNumOperands(),
2240 NewScale, SE);
2241 } else {
2242 // A multiplication of a constant with some other value. Update
2243 // the map.
2244 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2245 const SCEV *Key = SE.getMulExpr(MulOps);
2246 auto Pair = M.insert({Key, NewScale});
2247 if (Pair.second) {
2248 NewOps.push_back(Pair.first->first);
2249 } else {
2250 Pair.first->second += NewScale;
2251 // The map already had an entry for this value, which may indicate
2252 // a folding opportunity.
2253 Interesting = true;
2254 }
2255 }
2256 } else {
2257 // An ordinary operand. Update the map.
2258 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2259 M.insert({Ops[i], Scale});
2260 if (Pair.second) {
2261 NewOps.push_back(Pair.first->first);
2262 } else {
2263 Pair.first->second += Scale;
2264 // The map already had an entry for this value, which may indicate
2265 // a folding opportunity.
2266 Interesting = true;
2267 }
2268 }
2269 }
2270
2271 return Interesting;
2272}
2273
2274bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2275 const SCEV *LHS, const SCEV *RHS) {
2276 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2277 SCEV::NoWrapFlags, unsigned);
2278 switch (BinOp) {
2279 default:
2280 llvm_unreachable("Unsupported binary op")::llvm::llvm_unreachable_internal("Unsupported binary op", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 2280)
;
2281 case Instruction::Add:
2282 Operation = &ScalarEvolution::getAddExpr;
2283 break;
2284 case Instruction::Sub:
2285 Operation = &ScalarEvolution::getMinusSCEV;
2286 break;
2287 case Instruction::Mul:
2288 Operation = &ScalarEvolution::getMulExpr;
2289 break;
2290 }
2291
2292 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2293 Signed ? &ScalarEvolution::getSignExtendExpr
2294 : &ScalarEvolution::getZeroExtendExpr;
2295
2296 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2297 auto *NarrowTy = cast<IntegerType>(LHS->getType());
2298 auto *WideTy =
2299 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2300
2301 const SCEV *A = (this->*Extension)(
2302 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2303 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2304 (this->*Extension)(RHS, WideTy, 0),
2305 SCEV::FlagAnyWrap, 0);
2306 return A == B;
2307}
2308
2309std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2310ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2311 const OverflowingBinaryOperator *OBO) {
2312 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2313
2314 if (OBO->hasNoUnsignedWrap())
2315 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2316 if (OBO->hasNoSignedWrap())
2317 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2318
2319 bool Deduced = false;
2320
2321 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2322 return {Flags, Deduced};
2323
2324 if (OBO->getOpcode() != Instruction::Add &&
2325 OBO->getOpcode() != Instruction::Sub &&
2326 OBO->getOpcode() != Instruction::Mul)
2327 return {Flags, Deduced};
2328
2329 const SCEV *LHS = getSCEV(OBO->getOperand(0));
2330 const SCEV *RHS = getSCEV(OBO->getOperand(1));
2331
2332 if (!OBO->hasNoUnsignedWrap() &&
2333 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2334 /* Signed */ false, LHS, RHS)) {
2335 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2336 Deduced = true;
2337 }
2338
2339 if (!OBO->hasNoSignedWrap() &&
2340 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2341 /* Signed */ true, LHS, RHS)) {
2342 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2343 Deduced = true;
2344 }
2345
2346 return {Flags, Deduced};
2347}
2348
2349// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2350// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2351// can't-overflow flags for the operation if possible.
2352static SCEV::NoWrapFlags
2353StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2354 const ArrayRef<const SCEV *> Ops,
2355 SCEV::NoWrapFlags Flags) {
2356 using namespace std::placeholders;
2357
2358 using OBO = OverflowingBinaryOperator;
2359
2360 bool CanAnalyze =
2361 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2362 (void)CanAnalyze;
2363 assert(CanAnalyze && "don't call from other places!")(static_cast <bool> (CanAnalyze && "don't call from other places!"
) ? void (0) : __assert_fail ("CanAnalyze && \"don't call from other places!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2363, __extension__
__PRETTY_FUNCTION__))
;
2364
2365 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2366 SCEV::NoWrapFlags SignOrUnsignWrap =
2367 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2368
2369 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2370 auto IsKnownNonNegative = [&](const SCEV *S) {
2371 return SE->isKnownNonNegative(S);
2372 };
2373
2374 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2375 Flags =
2376 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2377
2378 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2379
2380 if (SignOrUnsignWrap != SignOrUnsignMask &&
2381 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2382 isa<SCEVConstant>(Ops[0])) {
2383
2384 auto Opcode = [&] {
2385 switch (Type) {
2386 case scAddExpr:
2387 return Instruction::Add;
2388 case scMulExpr:
2389 return Instruction::Mul;
2390 default:
2391 llvm_unreachable("Unexpected SCEV op.")::llvm::llvm_unreachable_internal("Unexpected SCEV op.", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 2391)
;
2392 }
2393 }();
2394
2395 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2396
2397 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2398 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2399 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2400 Opcode, C, OBO::NoSignedWrap);
2401 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2402 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2403 }
2404
2405 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2406 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2407 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2408 Opcode, C, OBO::NoUnsignedWrap);
2409 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2410 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2411 }
2412 }
2413
2414 // <0,+,nonnegative><nw> is also nuw
2415 // TODO: Add corresponding nsw case
2416 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2417 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2418 Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2419 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2420
2421 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2422 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2423 Ops.size() == 2) {
2424 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2425 if (UDiv->getOperand(1) == Ops[1])
2426 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2427 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2428 if (UDiv->getOperand(1) == Ops[0])
2429 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2430 }
2431
2432 return Flags;
2433}
2434
2435bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2436 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2437}
2438
2439/// Get a canonical add expression, or something simpler if possible.
2440const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2441 SCEV::NoWrapFlags OrigFlags,
2442 unsigned Depth) {
2443 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&(static_cast <bool> (!(OrigFlags & ~(SCEV::FlagNUW |
SCEV::FlagNSW)) && "only nuw or nsw allowed") ? void
(0) : __assert_fail ("!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && \"only nuw or nsw allowed\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2444, __extension__
__PRETTY_FUNCTION__))
2444 "only nuw or nsw allowed")(static_cast <bool> (!(OrigFlags & ~(SCEV::FlagNUW |
SCEV::FlagNSW)) && "only nuw or nsw allowed") ? void
(0) : __assert_fail ("!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && \"only nuw or nsw allowed\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2444, __extension__
__PRETTY_FUNCTION__))
;
2445 assert(!Ops.empty() && "Cannot get empty add!")(static_cast <bool> (!Ops.empty() && "Cannot get empty add!"
) ? void (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty add!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2445, __extension__
__PRETTY_FUNCTION__))
;
2446 if (Ops.size() == 1) return Ops[0];
2447#ifndef NDEBUG
2448 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2449 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2450 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType
()) == ETy && "SCEVAddExpr operand types don't match!"
) ? void (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVAddExpr operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2451, __extension__
__PRETTY_FUNCTION__))
2451 "SCEVAddExpr operand types don't match!")(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType
()) == ETy && "SCEVAddExpr operand types don't match!"
) ? void (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVAddExpr operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2451, __extension__
__PRETTY_FUNCTION__))
;
2452 unsigned NumPtrs = count_if(
2453 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2454 assert(NumPtrs <= 1 && "add has at most one pointer operand")(static_cast <bool> (NumPtrs <= 1 && "add has at most one pointer operand"
) ? void (0) : __assert_fail ("NumPtrs <= 1 && \"add has at most one pointer operand\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2454, __extension__
__PRETTY_FUNCTION__))
;
2455#endif
2456
2457 // Sort by complexity, this groups all similar expression types together.
2458 GroupByComplexity(Ops, &LI, DT);
2459
2460 // If there are any constants, fold them together.
2461 unsigned Idx = 0;
2462 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2463 ++Idx;
2464 assert(Idx < Ops.size())(static_cast <bool> (Idx < Ops.size()) ? void (0) : __assert_fail
("Idx < Ops.size()", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 2464, __extension__ __PRETTY_FUNCTION__))
;
2465 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2466 // We found two constants, fold them together!
2467 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2468 if (Ops.size() == 2) return Ops[0];
2469 Ops.erase(Ops.begin()+1); // Erase the folded element
2470 LHSC = cast<SCEVConstant>(Ops[0]);
2471 }
2472
2473 // If we are left with a constant zero being added, strip it off.
2474 if (LHSC->getValue()->isZero()) {
2475 Ops.erase(Ops.begin());
2476 --Idx;
2477 }
2478
2479 if (Ops.size() == 1) return Ops[0];
2480 }
2481
2482 // Delay expensive flag strengthening until necessary.
2483 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2484 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2485 };
2486
2487 // Limit recursion calls depth.
2488 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2489 return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2490
2491 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2492 // Don't strengthen flags if we have no new information.
2493 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2494 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2495 Add->setNoWrapFlags(ComputeFlags(Ops));
2496 return S;
2497 }
2498
2499 // Okay, check to see if the same value occurs in the operand list more than
2500 // once. If so, merge them together into an multiply expression. Since we
2501 // sorted the list, these values are required to be adjacent.
2502 Type *Ty = Ops[0]->getType();
2503 bool FoundMatch = false;
2504 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2505 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2506 // Scan ahead to count how many equal operands there are.
2507 unsigned Count = 2;
2508 while (i+Count != e && Ops[i+Count] == Ops[i])
2509 ++Count;
2510 // Merge the values into a multiply.
2511 const SCEV *Scale = getConstant(Ty, Count);
2512 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2513 if (Ops.size() == Count)
2514 return Mul;
2515 Ops[i] = Mul;
2516 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2517 --i; e -= Count - 1;
2518 FoundMatch = true;
2519 }
2520 if (FoundMatch)
2521 return getAddExpr(Ops, OrigFlags, Depth + 1);
2522
2523 // Check for truncates. If all the operands are truncated from the same
2524 // type, see if factoring out the truncate would permit the result to be
2525 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2526 // if the contents of the resulting outer trunc fold to something simple.
2527 auto FindTruncSrcType = [&]() -> Type * {
2528 // We're ultimately looking to fold an addrec of truncs and muls of only
2529 // constants and truncs, so if we find any other types of SCEV
2530 // as operands of the addrec then we bail and return nullptr here.
2531 // Otherwise, we return the type of the operand of a trunc that we find.
2532 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2533 return T->getOperand()->getType();
2534 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2535 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2536 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2537 return T->getOperand()->getType();
2538 }
2539 return nullptr;
2540 };
2541 if (auto *SrcType = FindTruncSrcType()) {
2542 SmallVector<const SCEV *, 8> LargeOps;
2543 bool Ok = true;
2544 // Check all the operands to see if they can be represented in the
2545 // source type of the truncate.
2546 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2547 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2548 if (T->getOperand()->getType() != SrcType) {
2549 Ok = false;
2550 break;
2551 }
2552 LargeOps.push_back(T->getOperand());
2553 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2554 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2555 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2556 SmallVector<const SCEV *, 8> LargeMulOps;
2557 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2558 if (const SCEVTruncateExpr *T =
2559 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2560 if (T->getOperand()->getType() != SrcType) {
2561 Ok = false;
2562 break;
2563 }
2564 LargeMulOps.push_back(T->getOperand());
2565 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2566 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2567 } else {
2568 Ok = false;
2569 break;
2570 }
2571 }
2572 if (Ok)
2573 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2574 } else {
2575 Ok = false;
2576 break;
2577 }
2578 }
2579 if (Ok) {
2580 // Evaluate the expression in the larger type.
2581 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2582 // If it folds to something simple, use it. Otherwise, don't.
2583 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2584 return getTruncateExpr(Fold, Ty);
2585 }
2586 }
2587
2588 if (Ops.size() == 2) {
2589 // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2590 // C2 can be folded in a way that allows retaining wrapping flags of (X +
2591 // C1).
2592 const SCEV *A = Ops[0];
2593 const SCEV *B = Ops[1];
2594 auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2595 auto *C = dyn_cast<SCEVConstant>(A);
2596 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2597 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2598 auto C2 = C->getAPInt();
2599 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2600
2601 APInt ConstAdd = C1 + C2;
2602 auto AddFlags = AddExpr->getNoWrapFlags();
2603 // Adding a smaller constant is NUW if the original AddExpr was NUW.
2604 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2605 ConstAdd.ule(C1)) {
2606 PreservedFlags =
2607 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2608 }
2609
2610 // Adding a constant with the same sign and small magnitude is NSW, if the
2611 // original AddExpr was NSW.
2612 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2613 C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2614 ConstAdd.abs().ule(C1.abs())) {
2615 PreservedFlags =
2616 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2617 }
2618
2619 if (PreservedFlags != SCEV::FlagAnyWrap) {
2620 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2621 NewOps[0] = getConstant(ConstAdd);
2622 return getAddExpr(NewOps, PreservedFlags);
2623 }
2624 }
2625 }
2626
2627 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2628 if (Ops.size() == 2) {
2629 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2630 if (Mul && Mul->getNumOperands() == 2 &&
2631 Mul->getOperand(0)->isAllOnesValue()) {
2632 const SCEV *X;
2633 const SCEV *Y;
2634 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2635 return getMulExpr(Y, getUDivExpr(X, Y));
2636 }
2637 }
2638 }
2639
2640 // Skip past any other cast SCEVs.
2641 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2642 ++Idx;
2643
2644 // If there are add operands they would be next.
2645 if (Idx < Ops.size()) {
2646 bool DeletedAdd = false;
2647 // If the original flags and all inlined SCEVAddExprs are NUW, use the
2648 // common NUW flag for expression after inlining. Other flags cannot be
2649 // preserved, because they may depend on the original order of operations.
2650 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2651 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2652 if (Ops.size() > AddOpsInlineThreshold ||
2653 Add->getNumOperands() > AddOpsInlineThreshold)
2654 break;
2655 // If we have an add, expand the add operands onto the end of the operands
2656 // list.
2657 Ops.erase(Ops.begin()+Idx);
2658 Ops.append(Add->op_begin(), Add->op_end());
2659 DeletedAdd = true;
2660 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2661 }
2662
2663 // If we deleted at least one add, we added operands to the end of the list,
2664 // and they are not necessarily sorted. Recurse to resort and resimplify
2665 // any operands we just acquired.
2666 if (DeletedAdd)
2667 return getAddExpr(Ops, CommonFlags, Depth + 1);
2668 }
2669
2670 // Skip over the add expression until we get to a multiply.
2671 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2672 ++Idx;
2673
2674 // Check to see if there are any folding opportunities present with
2675 // operands multiplied by constant values.
2676 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2677 uint64_t BitWidth = getTypeSizeInBits(Ty);
2678 DenseMap<const SCEV *, APInt> M;
2679 SmallVector<const SCEV *, 8> NewOps;
2680 APInt AccumulatedConstant(BitWidth, 0);
2681 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2682 Ops.data(), Ops.size(),
2683 APInt(BitWidth, 1), *this)) {
2684 struct APIntCompare {
2685 bool operator()(const APInt &LHS, const APInt &RHS) const {
2686 return LHS.ult(RHS);
2687 }
2688 };
2689
2690 // Some interesting folding opportunity is present, so its worthwhile to
2691 // re-generate the operands list. Group the operands by constant scale,
2692 // to avoid multiplying by the same constant scale multiple times.
2693 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2694 for (const SCEV *NewOp : NewOps)
2695 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2696 // Re-generate the operands list.
2697 Ops.clear();
2698 if (AccumulatedConstant != 0)
2699 Ops.push_back(getConstant(AccumulatedConstant));
2700 for (auto &MulOp : MulOpLists) {
2701 if (MulOp.first == 1) {
2702 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2703 } else if (MulOp.first != 0) {
2704 Ops.push_back(getMulExpr(
2705 getConstant(MulOp.first),
2706 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2707 SCEV::FlagAnyWrap, Depth + 1));
2708 }
2709 }
2710 if (Ops.empty())
2711 return getZero(Ty);
2712 if (Ops.size() == 1)
2713 return Ops[0];
2714 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2715 }
2716 }
2717
2718 // If we are adding something to a multiply expression, make sure the
2719 // something is not already an operand of the multiply. If so, merge it into
2720 // the multiply.
2721 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2722 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2723 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2724 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2725 if (isa<SCEVConstant>(MulOpSCEV))
2726 continue;
2727 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2728 if (MulOpSCEV == Ops[AddOp]) {
2729 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2730 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2731 if (Mul->getNumOperands() != 2) {
2732 // If the multiply has more than two operands, we must get the
2733 // Y*Z term.
2734 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2735 Mul->op_begin()+MulOp);
2736 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2737 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2738 }
2739 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2740 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2741 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2742 SCEV::FlagAnyWrap, Depth + 1);
2743 if (Ops.size() == 2) return OuterMul;
2744 if (AddOp < Idx) {
2745 Ops.erase(Ops.begin()+AddOp);
2746 Ops.erase(Ops.begin()+Idx-1);
2747 } else {
2748 Ops.erase(Ops.begin()+Idx);
2749 Ops.erase(Ops.begin()+AddOp-1);
2750 }
2751 Ops.push_back(OuterMul);
2752 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2753 }
2754
2755 // Check this multiply against other multiplies being added together.
2756 for (unsigned OtherMulIdx = Idx+1;
2757 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2758 ++OtherMulIdx) {
2759 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2760 // If MulOp occurs in OtherMul, we can fold the two multiplies
2761 // together.
2762 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2763 OMulOp != e; ++OMulOp)
2764 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2765 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2766 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2767 if (Mul->getNumOperands() != 2) {
2768 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2769 Mul->op_begin()+MulOp);
2770 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2771 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2772 }
2773 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2774 if (OtherMul->getNumOperands() != 2) {
2775 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2776 OtherMul->op_begin()+OMulOp);
2777 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2778 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2779 }
2780 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2781 const SCEV *InnerMulSum =
2782 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2783 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2784 SCEV::FlagAnyWrap, Depth + 1);
2785 if (Ops.size() == 2) return OuterMul;
2786 Ops.erase(Ops.begin()+Idx);
2787 Ops.erase(Ops.begin()+OtherMulIdx-1);
2788 Ops.push_back(OuterMul);
2789 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2790 }
2791 }
2792 }
2793 }
2794
2795 // If there are any add recurrences in the operands list, see if any other
2796 // added values are loop invariant. If so, we can fold them into the
2797 // recurrence.
2798 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2799 ++Idx;
2800
2801 // Scan over all recurrences, trying to fold loop invariants into them.
2802 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2803 // Scan all of the other operands to this add and add them to the vector if
2804 // they are loop invariant w.r.t. the recurrence.
2805 SmallVector<const SCEV *, 8> LIOps;
2806 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2807 const Loop *AddRecLoop = AddRec->getLoop();
2808 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2809 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2810 LIOps.push_back(Ops[i]);
2811 Ops.erase(Ops.begin()+i);
2812 --i; --e;
2813 }
2814
2815 // If we found some loop invariants, fold them into the recurrence.
2816 if (!LIOps.empty()) {
2817 // Compute nowrap flags for the addition of the loop-invariant ops and
2818 // the addrec. Temporarily push it as an operand for that purpose. These
2819 // flags are valid in the scope of the addrec only.
2820 LIOps.push_back(AddRec);
2821 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2822 LIOps.pop_back();
2823
2824 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2825 LIOps.push_back(AddRec->getStart());
2826
2827 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2828
2829 // It is not in general safe to propagate flags valid on an add within
2830 // the addrec scope to one outside it. We must prove that the inner
2831 // scope is guaranteed to execute if the outer one does to be able to
2832 // safely propagate. We know the program is undefined if poison is
2833 // produced on the inner scoped addrec. We also know that *for this use*
2834 // the outer scoped add can't overflow (because of the flags we just
2835 // computed for the inner scoped add) without the program being undefined.
2836 // Proving that entry to the outer scope neccesitates entry to the inner
2837 // scope, thus proves the program undefined if the flags would be violated
2838 // in the outer scope.
2839 SCEV::NoWrapFlags AddFlags = Flags;
2840 if (AddFlags != SCEV::FlagAnyWrap) {
2841 auto *DefI = getDefiningScopeBound(LIOps);
2842 auto *ReachI = &*AddRecLoop->getHeader()->begin();
2843 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2844 AddFlags = SCEV::FlagAnyWrap;
2845 }
2846 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2847
2848 // Build the new addrec. Propagate the NUW and NSW flags if both the
2849 // outer add and the inner addrec are guaranteed to have no overflow.
2850 // Always propagate NW.
2851 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2852 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2853
2854 // If all of the other operands were loop invariant, we are done.
2855 if (Ops.size() == 1) return NewRec;
2856
2857 // Otherwise, add the folded AddRec by the non-invariant parts.
2858 for (unsigned i = 0;; ++i)
2859 if (Ops[i] == AddRec) {
2860 Ops[i] = NewRec;
2861 break;
2862 }
2863 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2864 }
2865
2866 // Okay, if there weren't any loop invariants to be folded, check to see if
2867 // there are multiple AddRec's with the same loop induction variable being
2868 // added together. If so, we can fold them.
2869 for (unsigned OtherIdx = Idx+1;
2870 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2871 ++OtherIdx) {
2872 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2873 // so that the 1st found AddRecExpr is dominated by all others.
2874 assert(DT.dominates((static_cast <bool> (DT.dominates( cast<SCEVAddRecExpr
>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->
getLoop()->getHeader()) && "AddRecExprs are not sorted in reverse dominance order?"
) ? void (0) : __assert_fail ("DT.dominates( cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->getLoop()->getHeader()) && \"AddRecExprs are not sorted in reverse dominance order?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2877, __extension__
__PRETTY_FUNCTION__))
2875 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),(static_cast <bool> (DT.dominates( cast<SCEVAddRecExpr
>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->
getLoop()->getHeader()) && "AddRecExprs are not sorted in reverse dominance order?"
) ? void (0) : __assert_fail ("DT.dominates( cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->getLoop()->getHeader()) && \"AddRecExprs are not sorted in reverse dominance order?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2877, __extension__
__PRETTY_FUNCTION__))
2876 AddRec->getLoop()->getHeader()) &&(static_cast <bool> (DT.dominates( cast<SCEVAddRecExpr
>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->
getLoop()->getHeader()) && "AddRecExprs are not sorted in reverse dominance order?"
) ? void (0) : __assert_fail ("DT.dominates( cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->getLoop()->getHeader()) && \"AddRecExprs are not sorted in reverse dominance order?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2877, __extension__
__PRETTY_FUNCTION__))
2877 "AddRecExprs are not sorted in reverse dominance order?")(static_cast <bool> (DT.dominates( cast<SCEVAddRecExpr
>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->
getLoop()->getHeader()) && "AddRecExprs are not sorted in reverse dominance order?"
) ? void (0) : __assert_fail ("DT.dominates( cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->getLoop()->getHeader()) && \"AddRecExprs are not sorted in reverse dominance order?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 2877, __extension__
__PRETTY_FUNCTION__))
;
2878 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2879 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2880 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2881 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2882 ++OtherIdx) {
2883 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2884 if (OtherAddRec->getLoop() == AddRecLoop) {
2885 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2886 i != e; ++i) {
2887 if (i >= AddRecOps.size()) {
2888 AddRecOps.append(OtherAddRec->op_begin()+i,
2889 OtherAddRec->op_end());
2890 break;
2891 }
2892 SmallVector<const SCEV *, 2> TwoOps = {
2893 AddRecOps[i], OtherAddRec->getOperand(i)};
2894 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2895 }
2896 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2897 }
2898 }
2899 // Step size has changed, so we cannot guarantee no self-wraparound.
2900 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2901 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2902 }
2903 }
2904
2905 // Otherwise couldn't fold anything into this recurrence. Move onto the
2906 // next one.
2907 }
2908
2909 // Okay, it looks like we really DO need an add expr. Check to see if we
2910 // already have one, otherwise create a new one.
2911 return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2912}
2913
2914const SCEV *
2915ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2916 SCEV::NoWrapFlags Flags) {
2917 FoldingSetNodeID ID;
2918 ID.AddInteger(scAddExpr);
2919 for (const SCEV *Op : Ops)
2920 ID.AddPointer(Op);
2921 void *IP = nullptr;
2922 SCEVAddExpr *S =
2923 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2924 if (!S) {
2925 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2926 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2927 S = new (SCEVAllocator)
2928 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2929 UniqueSCEVs.InsertNode(S, IP);
2930 registerUser(S, Ops);
2931 }
2932 S->setNoWrapFlags(Flags);
2933 return S;
2934}
2935
2936const SCEV *
2937ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2938 const Loop *L, SCEV::NoWrapFlags Flags) {
2939 FoldingSetNodeID ID;
2940 ID.AddInteger(scAddRecExpr);
2941 for (const SCEV *Op : Ops)
2942 ID.AddPointer(Op);
2943 ID.AddPointer(L);
2944 void *IP = nullptr;
2945 SCEVAddRecExpr *S =
2946 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2947 if (!S) {
2948 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2949 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2950 S = new (SCEVAllocator)
2951 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2952 UniqueSCEVs.InsertNode(S, IP);
2953 LoopUsers[L].push_back(S);
2954 registerUser(S, Ops);
2955 }
2956 setNoWrapFlags(S, Flags);
2957 return S;
2958}
2959
2960const SCEV *
2961ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2962 SCEV::NoWrapFlags Flags) {
2963 FoldingSetNodeID ID;
2964 ID.AddInteger(scMulExpr);
2965 for (const SCEV *Op : Ops)
2966 ID.AddPointer(Op);
2967 void *IP = nullptr;
2968 SCEVMulExpr *S =
2969 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2970 if (!S) {
2971 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2972 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2973 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2974 O, Ops.size());
2975 UniqueSCEVs.InsertNode(S, IP);
2976 registerUser(S, Ops);
2977 }
2978 S->setNoWrapFlags(Flags);
2979 return S;
2980}
2981
2982static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2983 uint64_t k = i*j;
2984 if (j > 1 && k / j != i) Overflow = true;
2985 return k;
2986}
2987
2988/// Compute the result of "n choose k", the binomial coefficient. If an
2989/// intermediate computation overflows, Overflow will be set and the return will
2990/// be garbage. Overflow is not cleared on absence of overflow.
2991static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2992 // We use the multiplicative formula:
2993 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2994 // At each iteration, we take the n-th term of the numeral and divide by the
2995 // (k-n)th term of the denominator. This division will always produce an
2996 // integral result, and helps reduce the chance of overflow in the
2997 // intermediate computations. However, we can still overflow even when the
2998 // final result would fit.
2999
3000 if (n == 0 || n == k) return 1;
3001 if (k > n) return 0;
3002
3003 if (k > n/2)
3004 k = n-k;
3005
3006 uint64_t r = 1;
3007 for (uint64_t i = 1; i <= k; ++i) {
3008 r = umul_ov(r, n-(i-1), Overflow);
3009 r /= i;
3010 }
3011 return r;
3012}
3013
3014/// Determine if any of the operands in this SCEV are a constant or if
3015/// any of the add or multiply expressions in this SCEV contain a constant.
3016static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3017 struct FindConstantInAddMulChain {
3018 bool FoundConstant = false;
3019
3020 bool follow(const SCEV *S) {
3021 FoundConstant |= isa<SCEVConstant>(S);
3022 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3023 }
3024
3025 bool isDone() const {
3026 return FoundConstant;
3027 }
3028 };
3029
3030 FindConstantInAddMulChain F;
3031 SCEVTraversal<FindConstantInAddMulChain> ST(F);
3032 ST.visitAll(StartExpr);
3033 return F.FoundConstant;
3034}
3035
3036/// Get a canonical multiply expression, or something simpler if possible.
3037const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3038 SCEV::NoWrapFlags OrigFlags,
3039 unsigned Depth) {
3040 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&(static_cast <bool> (OrigFlags == maskFlags(OrigFlags, SCEV
::FlagNUW | SCEV::FlagNSW) && "only nuw or nsw allowed"
) ? void (0) : __assert_fail ("OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && \"only nuw or nsw allowed\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3041, __extension__
__PRETTY_FUNCTION__))
3041 "only nuw or nsw allowed")(static_cast <bool> (OrigFlags == maskFlags(OrigFlags, SCEV
::FlagNUW | SCEV::FlagNSW) && "only nuw or nsw allowed"
) ? void (0) : __assert_fail ("OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && \"only nuw or nsw allowed\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3041, __extension__
__PRETTY_FUNCTION__))
;
3042 assert(!Ops.empty() && "Cannot get empty mul!")(static_cast <bool> (!Ops.empty() && "Cannot get empty mul!"
) ? void (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty mul!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3042, __extension__
__PRETTY_FUNCTION__))
;
3043 if (Ops.size() == 1) return Ops[0];
3044#ifndef NDEBUG
3045 Type *ETy = Ops[0]->getType();
3046 assert(!ETy->isPointerTy())(static_cast <bool> (!ETy->isPointerTy()) ? void (0)
: __assert_fail ("!ETy->isPointerTy()", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 3046, __extension__ __PRETTY_FUNCTION__))
;
3047 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3048 assert(Ops[i]->getType() == ETy &&(static_cast <bool> (Ops[i]->getType() == ETy &&
"SCEVMulExpr operand types don't match!") ? void (0) : __assert_fail
("Ops[i]->getType() == ETy && \"SCEVMulExpr operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3049, __extension__
__PRETTY_FUNCTION__))
3049 "SCEVMulExpr operand types don't match!")(static_cast <bool> (Ops[i]->getType() == ETy &&
"SCEVMulExpr operand types don't match!") ? void (0) : __assert_fail
("Ops[i]->getType() == ETy && \"SCEVMulExpr operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3049, __extension__
__PRETTY_FUNCTION__))
;
3050#endif
3051
3052 // Sort by complexity, this groups all similar expression types together.
3053 GroupByComplexity(Ops, &LI, DT);
3054
3055 // If there are any constants, fold them together.
3056 unsigned Idx = 0;
3057 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3058 ++Idx;
3059 assert(Idx < Ops.size())(static_cast <bool> (Idx < Ops.size()) ? void (0) : __assert_fail
("Idx < Ops.size()", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 3059, __extension__ __PRETTY_FUNCTION__))
;
3060 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3061 // We found two constants, fold them together!
3062 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3063 if (Ops.size() == 2) return Ops[0];
3064 Ops.erase(Ops.begin()+1); // Erase the folded element
3065 LHSC = cast<SCEVConstant>(Ops[0]);
3066 }
3067
3068 // If we have a multiply of zero, it will always be zero.
3069 if (LHSC->getValue()->isZero())
3070 return LHSC;
3071
3072 // If we are left with a constant one being multiplied, strip it off.
3073 if (LHSC->getValue()->isOne()) {
3074 Ops.erase(Ops.begin());
3075 --Idx;
3076 }
3077
3078 if (Ops.size() == 1)
3079 return Ops[0];
3080 }
3081
3082 // Delay expensive flag strengthening until necessary.
3083 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3084 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3085 };
3086
3087 // Limit recursion calls depth.
3088 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3089 return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3090
3091 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3092 // Don't strengthen flags if we have no new information.
3093 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3094 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3095 Mul->setNoWrapFlags(ComputeFlags(Ops));
3096 return S;
3097 }
3098
3099 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3100 if (Ops.size() == 2) {
3101 // C1*(C2+V) -> C1*C2 + C1*V
3102 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3103 // If any of Add's ops are Adds or Muls with a constant, apply this
3104 // transformation as well.
3105 //
3106 // TODO: There are some cases where this transformation is not
3107 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
3108 // this transformation should be narrowed down.
3109 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3110 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3111 SCEV::FlagAnyWrap, Depth + 1),
3112 getMulExpr(LHSC, Add->getOperand(1),
3113 SCEV::FlagAnyWrap, Depth + 1),
3114 SCEV::FlagAnyWrap, Depth + 1);
3115
3116 if (Ops[0]->isAllOnesValue()) {
3117 // If we have a mul by -1 of an add, try distributing the -1 among the
3118 // add operands.
3119 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3120 SmallVector<const SCEV *, 4> NewOps;
3121 bool AnyFolded = false;
3122 for (const SCEV *AddOp : Add->operands()) {
3123 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3124 Depth + 1);
3125 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3126 NewOps.push_back(Mul);
3127 }
3128 if (AnyFolded)
3129 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3130 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3131 // Negation preserves a recurrence's no self-wrap property.
3132 SmallVector<const SCEV *, 4> Operands;
3133 for (const SCEV *AddRecOp : AddRec->operands())
3134 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3135 Depth + 1));
3136
3137 return getAddRecExpr(Operands, AddRec->getLoop(),
3138 AddRec->getNoWrapFlags(SCEV::FlagNW));
3139 }
3140 }
3141 }
3142 }
3143
3144 // Skip over the add expression until we get to a multiply.
3145 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3146 ++Idx;
3147
3148 // If there are mul operands inline them all into this expression.
3149 if (Idx < Ops.size()) {
3150 bool DeletedMul = false;
3151 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3152 if (Ops.size() > MulOpsInlineThreshold)
3153 break;
3154 // If we have an mul, expand the mul operands onto the end of the
3155 // operands list.
3156 Ops.erase(Ops.begin()+Idx);
3157 Ops.append(Mul->op_begin(), Mul->op_end());
3158 DeletedMul = true;
3159 }
3160
3161 // If we deleted at least one mul, we added operands to the end of the
3162 // list, and they are not necessarily sorted. Recurse to resort and
3163 // resimplify any operands we just acquired.
3164 if (DeletedMul)
3165 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3166 }
3167
3168 // If there are any add recurrences in the operands list, see if any other
3169 // added values are loop invariant. If so, we can fold them into the
3170 // recurrence.
3171 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3172 ++Idx;
3173
3174 // Scan over all recurrences, trying to fold loop invariants into them.
3175 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3176 // Scan all of the other operands to this mul and add them to the vector
3177 // if they are loop invariant w.r.t. the recurrence.
3178 SmallVector<const SCEV *, 8> LIOps;
3179 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3180 const Loop *AddRecLoop = AddRec->getLoop();
3181 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3182 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3183 LIOps.push_back(Ops[i]);
3184 Ops.erase(Ops.begin()+i);
3185 --i; --e;
3186 }
3187
3188 // If we found some loop invariants, fold them into the recurrence.
3189 if (!LIOps.empty()) {
3190 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
3191 SmallVector<const SCEV *, 4> NewOps;
3192 NewOps.reserve(AddRec->getNumOperands());
3193 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3194 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3195 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3196 SCEV::FlagAnyWrap, Depth + 1));
3197
3198 // Build the new addrec. Propagate the NUW and NSW flags if both the
3199 // outer mul and the inner addrec are guaranteed to have no overflow.
3200 //
3201 // No self-wrap cannot be guaranteed after changing the step size, but
3202 // will be inferred if either NUW or NSW is true.
3203 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3204 const SCEV *NewRec = getAddRecExpr(
3205 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3206
3207 // If all of the other operands were loop invariant, we are done.
3208 if (Ops.size() == 1) return NewRec;
3209
3210 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3211 for (unsigned i = 0;; ++i)
3212 if (Ops[i] == AddRec) {
3213 Ops[i] = NewRec;
3214 break;
3215 }
3216 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3217 }
3218
3219 // Okay, if there weren't any loop invariants to be folded, check to see
3220 // if there are multiple AddRec's with the same loop induction variable
3221 // being multiplied together. If so, we can fold them.
3222
3223 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3224 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3225 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3226 // ]]],+,...up to x=2n}.
3227 // Note that the arguments to choose() are always integers with values
3228 // known at compile time, never SCEV objects.
3229 //
3230 // The implementation avoids pointless extra computations when the two
3231 // addrec's are of different length (mathematically, it's equivalent to
3232 // an infinite stream of zeros on the right).
3233 bool OpsModified = false;
3234 for (unsigned OtherIdx = Idx+1;
3235 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3236 ++OtherIdx) {
3237 const SCEVAddRecExpr *OtherAddRec =
3238 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3239 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3240 continue;
3241
3242 // Limit max number of arguments to avoid creation of unreasonably big
3243 // SCEVAddRecs with very complex operands.
3244 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3245 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3246 continue;
3247
3248 bool Overflow = false;
3249 Type *Ty = AddRec->getType();
3250 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3251 SmallVector<const SCEV*, 7> AddRecOps;
3252 for (int x = 0, xe = AddRec->getNumOperands() +
3253 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3254 SmallVector <const SCEV *, 7> SumOps;
3255 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3256 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3257 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3258 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3259 z < ze && !Overflow; ++z) {
3260 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3261 uint64_t Coeff;
3262 if (LargerThan64Bits)
3263 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3264 else
3265 Coeff = Coeff1*Coeff2;
3266 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3267 const SCEV *Term1 = AddRec->getOperand(y-z);
3268 const SCEV *Term2 = OtherAddRec->getOperand(z);
3269 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3270 SCEV::FlagAnyWrap, Depth + 1));
3271 }
3272 }
3273 if (SumOps.empty())
3274 SumOps.push_back(getZero(Ty));
3275 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3276 }
3277 if (!Overflow) {
3278 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3279 SCEV::FlagAnyWrap);
3280 if (Ops.size() == 2) return NewAddRec;
3281 Ops[Idx] = NewAddRec;
3282 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3283 OpsModified = true;
3284 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3285 if (!AddRec)
3286 break;
3287 }
3288 }
3289 if (OpsModified)
3290 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3291
3292 // Otherwise couldn't fold anything into this recurrence. Move onto the
3293 // next one.
3294 }
3295
3296 // Okay, it looks like we really DO need an mul expr. Check to see if we
3297 // already have one, otherwise create a new one.
3298 return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3299}
3300
3301/// Represents an unsigned remainder expression based on unsigned division.
3302const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3303 const SCEV *RHS) {
3304 assert(getEffectiveSCEVType(LHS->getType()) ==(static_cast <bool> (getEffectiveSCEVType(LHS->getType
()) == getEffectiveSCEVType(RHS->getType()) && "SCEVURemExpr operand types don't match!"
) ? void (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVURemExpr operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3306, __extension__
__PRETTY_FUNCTION__))
3305 getEffectiveSCEVType(RHS->getType()) &&(static_cast <bool> (getEffectiveSCEVType(LHS->getType
()) == getEffectiveSCEVType(RHS->getType()) && "SCEVURemExpr operand types don't match!"
) ? void (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVURemExpr operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3306, __extension__
__PRETTY_FUNCTION__))
3306 "SCEVURemExpr operand types don't match!")(static_cast <bool> (getEffectiveSCEVType(LHS->getType
()) == getEffectiveSCEVType(RHS->getType()) && "SCEVURemExpr operand types don't match!"
) ? void (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVURemExpr operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3306, __extension__
__PRETTY_FUNCTION__))
;
3307
3308 // Short-circuit easy cases
3309 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3310 // If constant is one, the result is trivial
3311 if (RHSC->getValue()->isOne())
3312 return getZero(LHS->getType()); // X urem 1 --> 0
3313
3314 // If constant is a power of two, fold into a zext(trunc(LHS)).
3315 if (RHSC->getAPInt().isPowerOf2()) {
3316 Type *FullTy = LHS->getType();
3317 Type *TruncTy =
3318 IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3319 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3320 }
3321 }
3322
3323 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3324 const SCEV *UDiv = getUDivExpr(LHS, RHS);
3325 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3326 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3327}
3328
3329/// Get a canonical unsigned division expression, or something simpler if
3330/// possible.
3331const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3332 const SCEV *RHS) {
3333 assert(!LHS->getType()->isPointerTy() &&(static_cast <bool> (!LHS->getType()->isPointerTy
() && "SCEVUDivExpr operand can't be pointer!") ? void
(0) : __assert_fail ("!LHS->getType()->isPointerTy() && \"SCEVUDivExpr operand can't be pointer!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3334, __extension__
__PRETTY_FUNCTION__))
3334 "SCEVUDivExpr operand can't be pointer!")(static_cast <bool> (!LHS->getType()->isPointerTy
() && "SCEVUDivExpr operand can't be pointer!") ? void
(0) : __assert_fail ("!LHS->getType()->isPointerTy() && \"SCEVUDivExpr operand can't be pointer!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3334, __extension__
__PRETTY_FUNCTION__))
;
3335 assert(LHS->getType() == RHS->getType() &&(static_cast <bool> (LHS->getType() == RHS->getType
() && "SCEVUDivExpr operand types don't match!") ? void
(0) : __assert_fail ("LHS->getType() == RHS->getType() && \"SCEVUDivExpr operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3336, __extension__
__PRETTY_FUNCTION__))
3336 "SCEVUDivExpr operand types don't match!")(static_cast <bool> (LHS->getType() == RHS->getType
() && "SCEVUDivExpr operand types don't match!") ? void
(0) : __assert_fail ("LHS->getType() == RHS->getType() && \"SCEVUDivExpr operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3336, __extension__
__PRETTY_FUNCTION__))
;
3337
3338 FoldingSetNodeID ID;
3339 ID.AddInteger(scUDivExpr);
3340 ID.AddPointer(LHS);
3341 ID.AddPointer(RHS);
3342 void *IP = nullptr;
3343 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3344 return S;
3345
3346 // 0 udiv Y == 0
3347 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3348 if (LHSC->getValue()->isZero())
3349 return LHS;
3350
3351 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3352 if (RHSC->getValue()->isOne())
3353 return LHS; // X udiv 1 --> x
3354 // If the denominator is zero, the result of the udiv is undefined. Don't
3355 // try to analyze it, because the resolution chosen here may differ from
3356 // the resolution chosen in other parts of the compiler.
3357 if (!RHSC->getValue()->isZero()) {
3358 // Determine if the division can be folded into the operands of
3359 // its operands.
3360 // TODO: Generalize this to non-constants by using known-bits information.
3361 Type *Ty = LHS->getType();
3362 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3363 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3364 // For non-power-of-two values, effectively round the value up to the
3365 // nearest power of two.
3366 if (!RHSC->getAPInt().isPowerOf2())
3367 ++MaxShiftAmt;
3368 IntegerType *ExtTy =
3369 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3370 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3371 if (const SCEVConstant *Step =
3372 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3373 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3374 const APInt &StepInt = Step->getAPInt();
3375 const APInt &DivInt = RHSC->getAPInt();
3376 if (!StepInt.urem(DivInt) &&
3377 getZeroExtendExpr(AR, ExtTy) ==
3378 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3379 getZeroExtendExpr(Step, ExtTy),
3380 AR->getLoop(), SCEV::FlagAnyWrap)) {
3381 SmallVector<const SCEV *, 4> Operands;
3382 for (const SCEV *Op : AR->operands())
3383 Operands.push_back(getUDivExpr(Op, RHS));
3384 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3385 }
3386 /// Get a canonical UDivExpr for a recurrence.
3387 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3388 // We can currently only fold X%N if X is constant.
3389 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3390 if (StartC && !DivInt.urem(StepInt) &&
3391 getZeroExtendExpr(AR, ExtTy) ==
3392 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3393 getZeroExtendExpr(Step, ExtTy),
3394 AR->getLoop(), SCEV::FlagAnyWrap)) {
3395 const APInt &StartInt = StartC->getAPInt();
3396 const APInt &StartRem = StartInt.urem(StepInt);
3397 if (StartRem != 0) {
3398 const SCEV *NewLHS =
3399 getAddRecExpr(getConstant(StartInt - StartRem), Step,
3400 AR->getLoop(), SCEV::FlagNW);
3401 if (LHS != NewLHS) {
3402 LHS = NewLHS;
3403
3404 // Reset the ID to include the new LHS, and check if it is
3405 // already cached.
3406 ID.clear();
3407 ID.AddInteger(scUDivExpr);
3408 ID.AddPointer(LHS);
3409 ID.AddPointer(RHS);
3410 IP = nullptr;
3411 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3412 return S;
3413 }
3414 }
3415 }
3416 }
3417 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3418 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3419 SmallVector<const SCEV *, 4> Operands;
3420 for (const SCEV *Op : M->operands())
3421 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3422 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3423 // Find an operand that's safely divisible.
3424 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3425 const SCEV *Op = M->getOperand(i);
3426 const SCEV *Div = getUDivExpr(Op, RHSC);
3427 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3428 Operands = SmallVector<const SCEV *, 4>(M->operands());
3429 Operands[i] = Div;
3430 return getMulExpr(Operands);
3431 }
3432 }
3433 }
3434
3435 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3436 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3437 if (auto *DivisorConstant =
3438 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3439 bool Overflow = false;
3440 APInt NewRHS =
3441 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3442 if (Overflow) {
3443 return getConstant(RHSC->getType(), 0, false);
3444 }
3445 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3446 }
3447 }
3448
3449 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3450 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3451 SmallVector<const SCEV *, 4> Operands;
3452 for (const SCEV *Op : A->operands())
3453 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3454 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3455 Operands.clear();
3456 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3457 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3458 if (isa<SCEVUDivExpr>(Op) ||
3459 getMulExpr(Op, RHS) != A->getOperand(i))
3460 break;
3461 Operands.push_back(Op);
3462 }
3463 if (Operands.size() == A->getNumOperands())
3464 return getAddExpr(Operands);
3465 }
3466 }
3467
3468 // Fold if both operands are constant.
3469 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3470 Constant *LHSCV = LHSC->getValue();
3471 Constant *RHSCV = RHSC->getValue();
3472 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3473 RHSCV)));
3474 }
3475 }
3476 }
3477
3478 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3479 // changes). Make sure we get a new one.
3480 IP = nullptr;
3481 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3482 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3483 LHS, RHS);
3484 UniqueSCEVs.InsertNode(S, IP);
3485 registerUser(S, {LHS, RHS});
3486 return S;
3487}
3488
3489const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3490 APInt A = C1->getAPInt().abs();
3491 APInt B = C2->getAPInt().abs();
3492 uint32_t ABW = A.getBitWidth();
3493 uint32_t BBW = B.getBitWidth();
3494
3495 if (ABW > BBW)
3496 B = B.zext(ABW);
3497 else if (ABW < BBW)
3498 A = A.zext(BBW);
3499
3500 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3501}
3502
3503/// Get a canonical unsigned division expression, or something simpler if
3504/// possible. There is no representation for an exact udiv in SCEV IR, but we
3505/// can attempt to remove factors from the LHS and RHS. We can't do this when
3506/// it's not exact because the udiv may be clearing bits.
3507const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3508 const SCEV *RHS) {
3509 // TODO: we could try to find factors in all sorts of things, but for now we
3510 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3511 // end of this file for inspiration.
3512
3513 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3514 if (!Mul || !Mul->hasNoUnsignedWrap())
3515 return getUDivExpr(LHS, RHS);
3516
3517 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3518 // If the mulexpr multiplies by a constant, then that constant must be the
3519 // first element of the mulexpr.
3520 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3521 if (LHSCst == RHSCst) {
3522 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3523 return getMulExpr(Operands);
3524 }
3525
3526 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3527 // that there's a factor provided by one of the other terms. We need to
3528 // check.
3529 APInt Factor = gcd(LHSCst, RHSCst);
3530 if (!Factor.isIntN(1)) {
3531 LHSCst =
3532 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3533 RHSCst =
3534 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3535 SmallVector<const SCEV *, 2> Operands;
3536 Operands.push_back(LHSCst);
3537 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3538 LHS = getMulExpr(Operands);
3539 RHS = RHSCst;
3540 Mul = dyn_cast<SCEVMulExpr>(LHS);
3541 if (!Mul)
3542 return getUDivExactExpr(LHS, RHS);
3543 }
3544 }
3545 }
3546
3547 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3548 if (Mul->getOperand(i) == RHS) {
3549 SmallVector<const SCEV *, 2> Operands;
3550 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3551 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3552 return getMulExpr(Operands);
3553 }
3554 }
3555
3556 return getUDivExpr(LHS, RHS);
3557}
3558
3559/// Get an add recurrence expression for the specified loop. Simplify the
3560/// expression as much as possible.
3561const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3562 const Loop *L,
3563 SCEV::NoWrapFlags Flags) {
3564 SmallVector<const SCEV *, 4> Operands;
3565 Operands.push_back(Start);
3566 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3567 if (StepChrec->getLoop() == L) {
3568 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3569 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3570 }
3571
3572 Operands.push_back(Step);
3573 return getAddRecExpr(Operands, L, Flags);
3574}
3575
3576/// Get an add recurrence expression for the specified loop. Simplify the
3577/// expression as much as possible.
3578const SCEV *
3579ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3580 const Loop *L, SCEV::NoWrapFlags Flags) {
3581 if (Operands.size() == 1) return Operands[0];
3582#ifndef NDEBUG
3583 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3584 for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3585 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&(static_cast <bool> (getEffectiveSCEVType(Operands[i]->
getType()) == ETy && "SCEVAddRecExpr operand types don't match!"
) ? void (0) : __assert_fail ("getEffectiveSCEVType(Operands[i]->getType()) == ETy && \"SCEVAddRecExpr operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3586, __extension__
__PRETTY_FUNCTION__))
3586 "SCEVAddRecExpr operand types don't match!")(static_cast <bool> (getEffectiveSCEVType(Operands[i]->
getType()) == ETy && "SCEVAddRecExpr operand types don't match!"
) ? void (0) : __assert_fail ("getEffectiveSCEVType(Operands[i]->getType()) == ETy && \"SCEVAddRecExpr operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3586, __extension__
__PRETTY_FUNCTION__))
;
3587 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer")(static_cast <bool> (!Operands[i]->getType()->isPointerTy
() && "Step must be integer") ? void (0) : __assert_fail
("!Operands[i]->getType()->isPointerTy() && \"Step must be integer\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3587, __extension__
__PRETTY_FUNCTION__))
;
3588 }
3589 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3590 assert(isLoopInvariant(Operands[i], L) &&(static_cast <bool> (isLoopInvariant(Operands[i], L) &&
"SCEVAddRecExpr operand is not loop-invariant!") ? void (0) :
__assert_fail ("isLoopInvariant(Operands[i], L) && \"SCEVAddRecExpr operand is not loop-invariant!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3591, __extension__
__PRETTY_FUNCTION__))
3591 "SCEVAddRecExpr operand is not loop-invariant!")(static_cast <bool> (isLoopInvariant(Operands[i], L) &&
"SCEVAddRecExpr operand is not loop-invariant!") ? void (0) :
__assert_fail ("isLoopInvariant(Operands[i], L) && \"SCEVAddRecExpr operand is not loop-invariant!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3591, __extension__
__PRETTY_FUNCTION__))
;
3592#endif
3593
3594 if (Operands.back()->isZero()) {
3595 Operands.pop_back();
3596 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
3597 }
3598
3599 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3600 // use that information to infer NUW and NSW flags. However, computing a
3601 // BE count requires calling getAddRecExpr, so we may not yet have a
3602 // meaningful BE count at this point (and if we don't, we'd be stuck
3603 // with a SCEVCouldNotCompute as the cached BE count).
3604
3605 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3606
3607 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3608 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3609 const Loop *NestedLoop = NestedAR->getLoop();
3610 if (L->contains(NestedLoop)
3611 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3612 : (!NestedLoop->contains(L) &&
3613 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3614 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3615 Operands[0] = NestedAR->getStart();
3616 // AddRecs require their operands be loop-invariant with respect to their
3617 // loops. Don't perform this transformation if it would break this
3618 // requirement.
3619 bool AllInvariant = all_of(
3620 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3621
3622 if (AllInvariant) {
3623 // Create a recurrence for the outer loop with the same step size.
3624 //
3625 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3626 // inner recurrence has the same property.
3627 SCEV::NoWrapFlags OuterFlags =
3628 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3629
3630 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3631 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3632 return isLoopInvariant(Op, NestedLoop);
3633 });
3634
3635 if (AllInvariant) {
3636 // Ok, both add recurrences are valid after the transformation.
3637 //
3638 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3639 // the outer recurrence has the same property.
3640 SCEV::NoWrapFlags InnerFlags =
3641 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3642 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3643 }
3644 }
3645 // Reset Operands to its original state.
3646 Operands[0] = NestedAR;
3647 }
3648 }
3649
3650 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3651 // already have one, otherwise create a new one.
3652 return getOrCreateAddRecExpr(Operands, L, Flags);
3653}
3654
3655const SCEV *
3656ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3657 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3658 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3659 // getSCEV(Base)->getType() has the same address space as Base->getType()
3660 // because SCEV::getType() preserves the address space.
3661 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3662 const bool AssumeInBoundsFlags = [&]() {
3663 if (!GEP->isInBounds())
3664 return false;
3665
3666 // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3667 // but to do that, we have to ensure that said flag is valid in the entire
3668 // defined scope of the SCEV.
3669 auto *GEPI = dyn_cast<Instruction>(GEP);
3670 // TODO: non-instructions have global scope. We might be able to prove
3671 // some global scope cases
3672 return GEPI && isSCEVExprNeverPoison(GEPI);
3673 }();
3674
3675 SCEV::NoWrapFlags OffsetWrap =
3676 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3677
3678 Type *CurTy = GEP->getType();
3679 bool FirstIter = true;
3680 SmallVector<const SCEV *, 4> Offsets;
3681 for (const SCEV *IndexExpr : IndexExprs) {
3682 // Compute the (potentially symbolic) offset in bytes for this index.
3683 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3684 // For a struct, add the member offset.
3685 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3686 unsigned FieldNo = Index->getZExtValue();
3687 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3688 Offsets.push_back(FieldOffset);
3689
3690 // Update CurTy to the type of the field at Index.
3691 CurTy = STy->getTypeAtIndex(Index);
3692 } else {
3693 // Update CurTy to its element type.
3694 if (FirstIter) {
3695 assert(isa<PointerType>(CurTy) &&(static_cast <bool> (isa<PointerType>(CurTy) &&
"The first index of a GEP indexes a pointer") ? void (0) : __assert_fail
("isa<PointerType>(CurTy) && \"The first index of a GEP indexes a pointer\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3696, __extension__
__PRETTY_FUNCTION__))
3696 "The first index of a GEP indexes a pointer")(static_cast <bool> (isa<PointerType>(CurTy) &&
"The first index of a GEP indexes a pointer") ? void (0) : __assert_fail
("isa<PointerType>(CurTy) && \"The first index of a GEP indexes a pointer\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3696, __extension__
__PRETTY_FUNCTION__))
;
3697 CurTy = GEP->getSourceElementType();
3698 FirstIter = false;
3699 } else {
3700 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3701 }
3702 // For an array, add the element offset, explicitly scaled.
3703 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3704 // Getelementptr indices are signed.
3705 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3706
3707 // Multiply the index by the element size to compute the element offset.
3708 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3709 Offsets.push_back(LocalOffset);
3710 }
3711 }
3712
3713 // Handle degenerate case of GEP without offsets.
3714 if (Offsets.empty())
3715 return BaseExpr;
3716
3717 // Add the offsets together, assuming nsw if inbounds.
3718 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3719 // Add the base address and the offset. We cannot use the nsw flag, as the
3720 // base address is unsigned. However, if we know that the offset is
3721 // non-negative, we can use nuw.
3722 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3723 ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3724 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3725 assert(BaseExpr->getType() == GEPExpr->getType() &&(static_cast <bool> (BaseExpr->getType() == GEPExpr->
getType() && "GEP should not change type mid-flight."
) ? void (0) : __assert_fail ("BaseExpr->getType() == GEPExpr->getType() && \"GEP should not change type mid-flight.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3726, __extension__
__PRETTY_FUNCTION__))
3726 "GEP should not change type mid-flight.")(static_cast <bool> (BaseExpr->getType() == GEPExpr->
getType() && "GEP should not change type mid-flight."
) ? void (0) : __assert_fail ("BaseExpr->getType() == GEPExpr->getType() && \"GEP should not change type mid-flight.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3726, __extension__
__PRETTY_FUNCTION__))
;
3727 return GEPExpr;
3728}
3729
3730SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3731 ArrayRef<const SCEV *> Ops) {
3732 FoldingSetNodeID ID;
3733 ID.AddInteger(SCEVType);
3734 for (const SCEV *Op : Ops)
3735 ID.AddPointer(Op);
3736 void *IP = nullptr;
3737 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3738}
3739
3740const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3741 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3742 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3743}
3744
3745const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3746 SmallVectorImpl<const SCEV *> &Ops) {
3747 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!")(static_cast <bool> (SCEVMinMaxExpr::isMinMaxType(Kind)
&& "Not a SCEVMinMaxExpr!") ? void (0) : __assert_fail
("SCEVMinMaxExpr::isMinMaxType(Kind) && \"Not a SCEVMinMaxExpr!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3747, __extension__
__PRETTY_FUNCTION__))
;
3748 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!")(static_cast <bool> (!Ops.empty() && "Cannot get empty (u|s)(min|max)!"
) ? void (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty (u|s)(min|max)!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3748, __extension__
__PRETTY_FUNCTION__))
;
3749 if (Ops.size() == 1) return Ops[0];
3750#ifndef NDEBUG
3751 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3752 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3753 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType
()) == ETy && "Operand types don't match!") ? void (0
) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"Operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3754, __extension__
__PRETTY_FUNCTION__))
3754 "Operand types don't match!")(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType
()) == ETy && "Operand types don't match!") ? void (0
) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"Operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3754, __extension__
__PRETTY_FUNCTION__))
;
3755 assert(Ops[0]->getType()->isPointerTy() ==(static_cast <bool> (Ops[0]->getType()->isPointerTy
() == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish"
) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3757, __extension__
__PRETTY_FUNCTION__))
3756 Ops[i]->getType()->isPointerTy() &&(static_cast <bool> (Ops[0]->getType()->isPointerTy
() == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish"
) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3757, __extension__
__PRETTY_FUNCTION__))
3757 "min/max should be consistently pointerish")(static_cast <bool> (Ops[0]->getType()->isPointerTy
() == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish"
) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3757, __extension__
__PRETTY_FUNCTION__))
;
3758 }
3759#endif
3760
3761 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3762 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3763
3764 // Sort by complexity, this groups all similar expression types together.
3765 GroupByComplexity(Ops, &LI, DT);
3766
3767 // Check if we have created the same expression before.
3768 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3769 return S;
3770 }
3771
3772 // If there are any constants, fold them together.
3773 unsigned Idx = 0;
3774 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3775 ++Idx;
3776 assert(Idx < Ops.size())(static_cast <bool> (Idx < Ops.size()) ? void (0) : __assert_fail
("Idx < Ops.size()", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 3776, __extension__ __PRETTY_FUNCTION__))
;
3777 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3778 if (Kind == scSMaxExpr)
3779 return APIntOps::smax(LHS, RHS);
3780 else if (Kind == scSMinExpr)
3781 return APIntOps::smin(LHS, RHS);
3782 else if (Kind == scUMaxExpr)
3783 return APIntOps::umax(LHS, RHS);
3784 else if (Kind == scUMinExpr)
3785 return APIntOps::umin(LHS, RHS);
3786 llvm_unreachable("Unknown SCEV min/max opcode")::llvm::llvm_unreachable_internal("Unknown SCEV min/max opcode"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3786)
;
3787 };
3788
3789 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3790 // We found two constants, fold them together!
3791 ConstantInt *Fold = ConstantInt::get(
3792 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3793 Ops[0] = getConstant(Fold);
3794 Ops.erase(Ops.begin()+1); // Erase the folded element
3795 if (Ops.size() == 1) return Ops[0];
3796 LHSC = cast<SCEVConstant>(Ops[0]);
3797 }
3798
3799 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3800 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3801
3802 if (IsMax ? IsMinV : IsMaxV) {
3803 // If we are left with a constant minimum(/maximum)-int, strip it off.
3804 Ops.erase(Ops.begin());
3805 --Idx;
3806 } else if (IsMax ? IsMaxV : IsMinV) {
3807 // If we have a max(/min) with a constant maximum(/minimum)-int,
3808 // it will always be the extremum.
3809 return LHSC;
3810 }
3811
3812 if (Ops.size() == 1) return Ops[0];
3813 }
3814
3815 // Find the first operation of the same kind
3816 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3817 ++Idx;
3818
3819 // Check to see if one of the operands is of the same kind. If so, expand its
3820 // operands onto our operand list, and recurse to simplify.
3821 if (Idx < Ops.size()) {
3822 bool DeletedAny = false;
3823 while (Ops[Idx]->getSCEVType() == Kind) {
3824 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3825 Ops.erase(Ops.begin()+Idx);
3826 Ops.append(SMME->op_begin(), SMME->op_end());
3827 DeletedAny = true;
3828 }
3829
3830 if (DeletedAny)
3831 return getMinMaxExpr(Kind, Ops);
3832 }
3833
3834 // Okay, check to see if the same value occurs in the operand list twice. If
3835 // so, delete one. Since we sorted the list, these values are required to
3836 // be adjacent.
3837 llvm::CmpInst::Predicate GEPred =
3838 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3839 llvm::CmpInst::Predicate LEPred =
3840 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3841 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3842 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3843 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3844 if (Ops[i] == Ops[i + 1] ||
3845 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3846 // X op Y op Y --> X op Y
3847 // X op Y --> X, if we know X, Y are ordered appropriately
3848 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3849 --i;
3850 --e;
3851 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3852 Ops[i + 1])) {
3853 // X op Y --> Y, if we know X, Y are ordered appropriately
3854 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3855 --i;
3856 --e;
3857 }
3858 }
3859
3860 if (Ops.size() == 1) return Ops[0];
3861
3862 assert(!Ops.empty() && "Reduced smax down to nothing!")(static_cast <bool> (!Ops.empty() && "Reduced smax down to nothing!"
) ? void (0) : __assert_fail ("!Ops.empty() && \"Reduced smax down to nothing!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3862, __extension__
__PRETTY_FUNCTION__))
;
3863
3864 // Okay, it looks like we really DO need an expr. Check to see if we
3865 // already have one, otherwise create a new one.
3866 FoldingSetNodeID ID;
3867 ID.AddInteger(Kind);
3868 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3869 ID.AddPointer(Ops[i]);
3870 void *IP = nullptr;
3871 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3872 if (ExistingSCEV)
3873 return ExistingSCEV;
3874 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3875 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3876 SCEV *S = new (SCEVAllocator)
3877 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3878
3879 UniqueSCEVs.InsertNode(S, IP);
3880 registerUser(S, Ops);
3881 return S;
3882}
3883
3884namespace {
3885
3886class SCEVSequentialMinMaxDeduplicatingVisitor final
3887 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3888 Optional<const SCEV *>> {
3889 using RetVal = Optional<const SCEV *>;
3890 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3891
3892 ScalarEvolution &SE;
3893 const SCEVTypes RootKind; // Must be a sequential min/max expression.
3894 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3895 SmallPtrSet<const SCEV *, 16> SeenOps;
3896
3897 bool canRecurseInto(SCEVTypes Kind) const {
3898 // We can only recurse into the SCEV expression of the same effective type
3899 // as the type of our root SCEV expression.
3900 return RootKind == Kind || NonSequentialRootKind == Kind;
3901 };
3902
3903 RetVal visitAnyMinMaxExpr(const SCEV *S) {
3904 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&(static_cast <bool> ((isa<SCEVMinMaxExpr>(S) || isa
<SCEVSequentialMinMaxExpr>(S)) && "Only for min/max expressions."
) ? void (0) : __assert_fail ("(isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && \"Only for min/max expressions.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3905, __extension__
__PRETTY_FUNCTION__))
3905 "Only for min/max expressions.")(static_cast <bool> ((isa<SCEVMinMaxExpr>(S) || isa
<SCEVSequentialMinMaxExpr>(S)) && "Only for min/max expressions."
) ? void (0) : __assert_fail ("(isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && \"Only for min/max expressions.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 3905, __extension__
__PRETTY_FUNCTION__))
;
3906 SCEVTypes Kind = S->getSCEVType();
3907
3908 if (!canRecurseInto(Kind))
3909 return S;
3910
3911 auto *NAry = cast<SCEVNAryExpr>(S);
3912 SmallVector<const SCEV *> NewOps;
3913 bool Changed =
3914 visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps);
3915
3916 if (!Changed)
3917 return S;
3918 if (NewOps.empty())
3919 return None;
3920
3921 return isa<SCEVSequentialMinMaxExpr>(S)
3922 ? SE.getSequentialMinMaxExpr(Kind, NewOps)
3923 : SE.getMinMaxExpr(Kind, NewOps);
3924 }
3925
3926 RetVal visit(const SCEV *S) {
3927 // Has the whole operand been seen already?
3928 if (!SeenOps.insert(S).second)
3929 return None;
3930 return Base::visit(S);
3931 }
3932
3933public:
3934 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
3935 SCEVTypes RootKind)
3936 : SE(SE), RootKind(RootKind),
3937 NonSequentialRootKind(
3938 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
3939 RootKind)) {}
3940
3941 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
3942 SmallVectorImpl<const SCEV *> &NewOps) {
3943 bool Changed = false;
3944 SmallVector<const SCEV *> Ops;
3945 Ops.reserve(OrigOps.size());
3946
3947 for (const SCEV *Op : OrigOps) {
3948 RetVal NewOp = visit(Op);
3949 if (NewOp != Op)
3950 Changed = true;
3951 if (NewOp)
3952 Ops.emplace_back(*NewOp);
3953 }
3954
3955 if (Changed)
3956 NewOps = std::move(Ops);
3957 return Changed;
3958 }
3959
3960 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
3961
3962 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
3963
3964 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
3965
3966 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
3967
3968 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
3969
3970 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
3971
3972 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
3973
3974 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
3975
3976 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
3977
3978 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
3979 return visitAnyMinMaxExpr(Expr);
3980 }
3981
3982 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
3983 return visitAnyMinMaxExpr(Expr);
3984 }
3985
3986 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
3987 return visitAnyMinMaxExpr(Expr);
3988 }
3989
3990 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
3991 return visitAnyMinMaxExpr(Expr);
3992 }
3993
3994 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
3995 return visitAnyMinMaxExpr(Expr);
3996 }
3997
3998 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
3999
4000 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4001};
4002
4003} // namespace
4004
4005const SCEV *
4006ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4007 SmallVectorImpl<const SCEV *> &Ops) {
4008 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&(static_cast <bool> (SCEVSequentialMinMaxExpr::isSequentialMinMaxType
(Kind) && "Not a SCEVSequentialMinMaxExpr!") ? void (
0) : __assert_fail ("SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && \"Not a SCEVSequentialMinMaxExpr!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4009, __extension__
__PRETTY_FUNCTION__))
4009 "Not a SCEVSequentialMinMaxExpr!")(static_cast <bool> (SCEVSequentialMinMaxExpr::isSequentialMinMaxType
(Kind) && "Not a SCEVSequentialMinMaxExpr!") ? void (
0) : __assert_fail ("SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && \"Not a SCEVSequentialMinMaxExpr!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4009, __extension__
__PRETTY_FUNCTION__))
;
4010 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!")(static_cast <bool> (!Ops.empty() && "Cannot get empty (u|s)(min|max)!"
) ? void (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty (u|s)(min|max)!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4010, __extension__
__PRETTY_FUNCTION__))
;
4011 if (Ops.size() == 1)
4012 return Ops[0];
4013 if (Ops.size() == 2 &&
4014 any_of(Ops, [](const SCEV *Op) { return isa<SCEVConstant>(Op); }))
4015 return getMinMaxExpr(
4016 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4017 Ops);
4018#ifndef NDEBUG
4019 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4020 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4021 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType
()) == ETy && "Operand types don't match!") ? void (0
) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"Operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4022, __extension__
__PRETTY_FUNCTION__))
4022 "Operand types don't match!")(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType
()) == ETy && "Operand types don't match!") ? void (0
) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"Operand types don't match!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4022, __extension__
__PRETTY_FUNCTION__))
;
4023 assert(Ops[0]->getType()->isPointerTy() ==(static_cast <bool> (Ops[0]->getType()->isPointerTy
() == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish"
) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4025, __extension__
__PRETTY_FUNCTION__))
4024 Ops[i]->getType()->isPointerTy() &&(static_cast <bool> (Ops[0]->getType()->isPointerTy
() == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish"
) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4025, __extension__
__PRETTY_FUNCTION__))
4025 "min/max should be consistently pointerish")(static_cast <bool> (Ops[0]->getType()->isPointerTy
() == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish"
) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4025, __extension__
__PRETTY_FUNCTION__))
;
4026 }
4027#endif
4028
4029 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4030 // so we can *NOT* do any kind of sorting of the expressions!
4031
4032 // Check if we have created the same expression before.
4033 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4034 return S;
4035
4036 // FIXME: there are *some* simplifications that we can do here.
4037
4038 // Keep only the first instance of an operand.
4039 {
4040 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4041 bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4042 if (Changed)
4043 return getSequentialMinMaxExpr(Kind, Ops);
4044 }
4045
4046 // Check to see if one of the operands is of the same kind. If so, expand its
4047 // operands onto our operand list, and recurse to simplify.
4048 {
4049 unsigned Idx = 0;
4050 bool DeletedAny = false;
4051 while (Idx < Ops.size()) {
4052 if (Ops[Idx]->getSCEVType() != Kind) {
4053 ++Idx;
4054 continue;
4055 }
4056 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4057 Ops.erase(Ops.begin() + Idx);
4058 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end());
4059 DeletedAny = true;
4060 }
4061
4062 if (DeletedAny)
4063 return getSequentialMinMaxExpr(Kind, Ops);
4064 }
4065
4066 // Okay, it looks like we really DO need an expr. Check to see if we
4067 // already have one, otherwise create a new one.
4068 FoldingSetNodeID ID;
4069 ID.AddInteger(Kind);
4070 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4071 ID.AddPointer(Ops[i]);
4072 void *IP = nullptr;
4073 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4074 if (ExistingSCEV)
4075 return ExistingSCEV;
4076
4077 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4078 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4079 SCEV *S = new (SCEVAllocator)
4080 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4081
4082 UniqueSCEVs.InsertNode(S, IP);
4083 registerUser(S, Ops);
4084 return S;
4085}
4086
4087const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4088 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4089 return getSMaxExpr(Ops);
4090}
4091
4092const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4093 return getMinMaxExpr(scSMaxExpr, Ops);
4094}
4095
4096const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4097 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4098 return getUMaxExpr(Ops);
4099}
4100
4101const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4102 return getMinMaxExpr(scUMaxExpr, Ops);
4103}
4104
4105const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4106 const SCEV *RHS) {
4107 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4108 return getSMinExpr(Ops);
4109}
4110
4111const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4112 return getMinMaxExpr(scSMinExpr, Ops);
4113}
4114
4115const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4116 bool Sequential) {
4117 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4118 return getUMinExpr(Ops, Sequential);
4119}
4120
4121const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4122 bool Sequential) {
4123 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4124 : getMinMaxExpr(scUMinExpr, Ops);
4125}
4126
4127const SCEV *
4128ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
4129 ScalableVectorType *ScalableTy) {
4130 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
4131 Constant *One = ConstantInt::get(IntTy, 1);
4132 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
4133 // Note that the expression we created is the final expression, we don't
4134 // want to simplify it any further Also, if we call a normal getSCEV(),
4135 // we'll end up in an endless recursion. So just create an SCEVUnknown.
4136 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
4137}
4138
4139const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4140 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
4141 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
4142 // We can bypass creating a target-independent constant expression and then
4143 // folding it back into a ConstantInt. This is just a compile-time
4144 // optimization.
4145 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4146}
4147
4148const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4149 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
4150 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
4151 // We can bypass creating a target-independent constant expression and then
4152 // folding it back into a ConstantInt. This is just a compile-time
4153 // optimization.
4154 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4155}
4156
4157const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4158 StructType *STy,
4159 unsigned FieldNo) {
4160 // We can bypass creating a target-independent constant expression and then
4161 // folding it back into a ConstantInt. This is just a compile-time
4162 // optimization.
4163 return getConstant(
4164 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
4165}
4166
4167const SCEV *ScalarEvolution::getUnknown(Value *V) {
4168 // Don't attempt to do anything other than create a SCEVUnknown object
4169 // here. createSCEV only calls getUnknown after checking for all other
4170 // interesting possibilities, and any other code that calls getUnknown
4171 // is doing so in order to hide a value from SCEV canonicalization.
4172
4173 FoldingSetNodeID ID;
4174 ID.AddInteger(scUnknown);
4175 ID.AddPointer(V);
4176 void *IP = nullptr;
4177 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4178 assert(cast<SCEVUnknown>(S)->getValue() == V &&(static_cast <bool> (cast<SCEVUnknown>(S)->getValue
() == V && "Stale SCEVUnknown in uniquing map!") ? void
(0) : __assert_fail ("cast<SCEVUnknown>(S)->getValue() == V && \"Stale SCEVUnknown in uniquing map!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4179, __extension__
__PRETTY_FUNCTION__))
4179 "Stale SCEVUnknown in uniquing map!")(static_cast <bool> (cast<SCEVUnknown>(S)->getValue
() == V && "Stale SCEVUnknown in uniquing map!") ? void
(0) : __assert_fail ("cast<SCEVUnknown>(S)->getValue() == V && \"Stale SCEVUnknown in uniquing map!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4179, __extension__
__PRETTY_FUNCTION__))
;
4180 return S;
4181 }
4182 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4183 FirstUnknown);
4184 FirstUnknown = cast<SCEVUnknown>(S);
4185 UniqueSCEVs.InsertNode(S, IP);
4186 return S;
4187}
4188
4189//===----------------------------------------------------------------------===//
4190// Basic SCEV Analysis and PHI Idiom Recognition Code
4191//
4192
4193/// Test if values of the given type are analyzable within the SCEV
4194/// framework. This primarily includes integer types, and it can optionally
4195/// include pointer types if the ScalarEvolution class has access to
4196/// target-specific information.
4197bool ScalarEvolution::isSCEVable(Type *Ty) const {
4198 // Integers and pointers are always SCEVable.
4199 return Ty->isIntOrPtrTy();
4200}
4201
4202/// Return the size in bits of the specified type, for which isSCEVable must
4203/// return true.
4204uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4205 assert(isSCEVable(Ty) && "Type is not SCEVable!")(static_cast <bool> (isSCEVable(Ty) && "Type is not SCEVable!"
) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"Type is not SCEVable!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4205, __extension__
__PRETTY_FUNCTION__))
;
4206 if (Ty->isPointerTy())
4207 return getDataLayout().getIndexTypeSizeInBits(Ty);
4208 return getDataLayout().getTypeSizeInBits(Ty);
4209}
4210
4211/// Return a type with the same bitwidth as the given type and which represents
4212/// how SCEV will treat the given type, for which isSCEVable must return
4213/// true. For pointer types, this is the pointer index sized integer type.
4214Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4215 assert(isSCEVable(Ty) && "Type is not SCEVable!")(static_cast <bool> (isSCEVable(Ty) && "Type is not SCEVable!"
) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"Type is not SCEVable!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4215, __extension__
__PRETTY_FUNCTION__))
;
4216
4217 if (Ty->isIntegerTy())
4218 return Ty;
4219
4220 // The only other support type is pointer.
4221 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!")(static_cast <bool> (Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"
) ? void (0) : __assert_fail ("Ty->isPointerTy() && \"Unexpected non-pointer non-integer type!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4221, __extension__
__PRETTY_FUNCTION__))
;
4222 return getDataLayout().getIndexType(Ty);
4223}
4224
4225Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4226 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4227}
4228
4229bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A,
4230 const SCEV *B) {
4231 /// For a valid use point to exist, the defining scope of one operand
4232 /// must dominate the other.
4233 bool PreciseA, PreciseB;
4234 auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4235 auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4236 if (!PreciseA || !PreciseB)
4237 // Can't tell.
4238 return false;
4239 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4240 DT.dominates(ScopeB, ScopeA);
4241}
4242
4243
4244const SCEV *ScalarEvolution::getCouldNotCompute() {
4245 return CouldNotCompute.get();
4246}
4247
4248bool ScalarEvolution::checkValidity(const SCEV *S) const {
4249 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4250 auto *SU = dyn_cast<SCEVUnknown>(S);
4251 return SU && SU->getValue() == nullptr;
4252 });
4253
4254 return !ContainsNulls;
4255}
4256
4257bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4258 HasRecMapType::iterator I = HasRecMap.find(S);
4259 if (I != HasRecMap.end())
4260 return I->second;
4261
4262 bool FoundAddRec =
4263 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4264 HasRecMap.insert({S, FoundAddRec});
4265 return FoundAddRec;
4266}
4267
4268/// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
4269/// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
4270/// offset I, then return {S', I}, else return {\p S, nullptr}.
4271static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
4272 const auto *Add = dyn_cast<SCEVAddExpr>(S);
4273 if (!Add)
4274 return {S, nullptr};
4275
4276 if (Add->getNumOperands() != 2)
4277 return {S, nullptr};
4278
4279 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
4280 if (!ConstOp)
4281 return {S, nullptr};
4282
4283 return {Add->getOperand(1), ConstOp->getValue()};
4284}
4285
4286/// Return the ValueOffsetPair set for \p S. \p S can be represented
4287/// by the value and offset from any ValueOffsetPair in the set.
4288ScalarEvolution::ValueOffsetPairSetVector *
4289ScalarEvolution::getSCEVValues(const SCEV *S) {
4290 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4291 if (SI == ExprValueMap.end())
4292 return nullptr;
4293#ifndef NDEBUG
4294 if (VerifySCEVMap) {
4295 // Check there is no dangling Value in the set returned.
4296 for (const auto &VE : SI->second)
4297 assert(ValueExprMap.count(VE.first))(static_cast <bool> (ValueExprMap.count(VE.first)) ? void
(0) : __assert_fail ("ValueExprMap.count(VE.first)", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 4297, __extension__ __PRETTY_FUNCTION__))
;
4298 }
4299#endif
4300 return &SI->second;
4301}
4302
4303/// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4304/// cannot be used separately. eraseValueFromMap should be used to remove
4305/// V from ValueExprMap and ExprValueMap at the same time.
4306void ScalarEvolution::eraseValueFromMap(Value *V) {
4307 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4308 if (I != ValueExprMap.end()) {
4309 const SCEV *S = I->second;
4310 // Remove {V, 0} from the set of ExprValueMap[S]
4311 if (auto *SV = getSCEVValues(S))
4312 SV->remove({V, nullptr});
4313
4314 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4315 const SCEV *Stripped;
4316 ConstantInt *Offset;
4317 std::tie(Stripped, Offset) = splitAddExpr(S);
4318 if (Offset != nullptr) {
4319 if (auto *SV = getSCEVValues(Stripped))
4320 SV->remove({V, Offset});
4321 }
4322 ValueExprMap.erase(V);
4323 }
4324}
4325
4326void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4327 // A recursive query may have already computed the SCEV. It should be
4328 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4329 // inferred nowrap flags.
4330 auto It = ValueExprMap.find_as(V);
4331 if (It == ValueExprMap.end()) {
4332 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4333 ExprValueMap[S].insert({V, nullptr});
4334 }
4335}
4336
4337/// Return an existing SCEV if it exists, otherwise analyze the expression and
4338/// create a new one.
4339const SCEV *ScalarEvolution::getSCEV(Value *V) {
4340 assert(isSCEVable(V->getType()) && "Value is not SCEVable!")(static_cast <bool> (isSCEVable(V->getType()) &&
"Value is not SCEVable!") ? void (0) : __assert_fail ("isSCEVable(V->getType()) && \"Value is not SCEVable!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4340, __extension__
__PRETTY_FUNCTION__))
;
4341
4342 const SCEV *S = getExistingSCEV(V);
4343 if (S == nullptr) {
4344 S = createSCEV(V);
4345 // During PHI resolution, it is possible to create two SCEVs for the same
4346 // V, so it is needed to double check whether V->S is inserted into
4347 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4348 std::pair<ValueExprMapType::iterator, bool> Pair =
4349 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4350 if (Pair.second) {
4351 ExprValueMap[S].insert({V, nullptr});
4352
4353 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4354 // ExprValueMap.
4355 const SCEV *Stripped = S;
4356 ConstantInt *Offset = nullptr;
4357 std::tie(Stripped, Offset) = splitAddExpr(S);
4358 // If stripped is SCEVUnknown, don't bother to save
4359 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4360 // increase the complexity of the expansion code.
4361 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4362 // because it may generate add/sub instead of GEP in SCEV expansion.
4363 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4364 !isa<GetElementPtrInst>(V))
4365 ExprValueMap[Stripped].insert({V, Offset});
4366 }
4367 }
4368 return S;
4369}
4370
4371const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4372 assert(isSCEVable(V->getType()) && "Value is not SCEVable!")(static_cast <bool> (isSCEVable(V->getType()) &&
"Value is not SCEVable!") ? void (0) : __assert_fail ("isSCEVable(V->getType()) && \"Value is not SCEVable!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4372, __extension__
__PRETTY_FUNCTION__))
;
4373
4374 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4375 if (I != ValueExprMap.end()) {
4376 const SCEV *S = I->second;
4377 assert(checkValidity(S) &&(static_cast <bool> (checkValidity(S) && "existing SCEV has not been properly invalidated"
) ? void (0) : __assert_fail ("checkValidity(S) && \"existing SCEV has not been properly invalidated\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4378, __extension__
__PRETTY_FUNCTION__))
4378 "existing SCEV has not been properly invalidated")(static_cast <bool> (checkValidity(S) && "existing SCEV has not been properly invalidated"
) ? void (0) : __assert_fail ("checkValidity(S) && \"existing SCEV has not been properly invalidated\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4378, __extension__
__PRETTY_FUNCTION__))
;
4379 return S;
4380 }
4381 return nullptr;
4382}
4383
4384/// Return a SCEV corresponding to -V = -1*V
4385const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4386 SCEV::NoWrapFlags Flags) {
4387 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4388 return getConstant(
4389 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4390
4391 Type *Ty = V->getType();
4392 Ty = getEffectiveSCEVType(Ty);
4393 return getMulExpr(V, getMinusOne(Ty), Flags);
4394}
4395
4396/// If Expr computes ~A, return A else return nullptr
4397static const SCEV *MatchNotExpr(const SCEV *Expr) {
4398 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4399 if (!Add || Add->getNumOperands() != 2 ||
4400 !Add->getOperand(0)->isAllOnesValue())
4401 return nullptr;
4402
4403 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4404 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4405 !AddRHS->getOperand(0)->isAllOnesValue())
4406 return nullptr;
4407
4408 return AddRHS->getOperand(1);
4409}
4410
4411/// Return a SCEV corresponding to ~V = -1-V
4412const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4413 assert(!V->getType()->isPointerTy() && "Can't negate pointer")(static_cast <bool> (!V->getType()->isPointerTy()
&& "Can't negate pointer") ? void (0) : __assert_fail
("!V->getType()->isPointerTy() && \"Can't negate pointer\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4413, __extension__
__PRETTY_FUNCTION__))
;
4414
4415 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4416 return getConstant(
4417 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4418
4419 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4420 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4421 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4422 SmallVector<const SCEV *, 2> MatchedOperands;
4423 for (const SCEV *Operand : MME->operands()) {
4424 const SCEV *Matched = MatchNotExpr(Operand);
4425 if (!Matched)
4426 return (const SCEV *)nullptr;
4427 MatchedOperands.push_back(Matched);
4428 }
4429 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4430 MatchedOperands);
4431 };
4432 if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4433 return Replaced;
4434 }
4435
4436 Type *Ty = V->getType();
4437 Ty = getEffectiveSCEVType(Ty);
4438 return getMinusSCEV(getMinusOne(Ty), V);
4439}
4440
4441const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4442 assert(P->getType()->isPointerTy())(static_cast <bool> (P->getType()->isPointerTy())
? void (0) : __assert_fail ("P->getType()->isPointerTy()"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4442, __extension__
__PRETTY_FUNCTION__))
;
4443
4444 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4445 // The base of an AddRec is the first operand.
4446 SmallVector<const SCEV *> Ops{AddRec->operands()};
4447 Ops[0] = removePointerBase(Ops[0]);
4448 // Don't try to transfer nowrap flags for now. We could in some cases
4449 // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4450 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4451 }
4452 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4453 // The base of an Add is the pointer operand.
4454 SmallVector<const SCEV *> Ops{Add->operands()};
4455 const SCEV **PtrOp = nullptr;
4456 for (const SCEV *&AddOp : Ops) {
4457 if (AddOp->getType()->isPointerTy()) {
4458 assert(!PtrOp && "Cannot have multiple pointer ops")(static_cast <bool> (!PtrOp && "Cannot have multiple pointer ops"
) ? void (0) : __assert_fail ("!PtrOp && \"Cannot have multiple pointer ops\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4458, __extension__
__PRETTY_FUNCTION__))
;
4459 PtrOp = &AddOp;
4460 }
4461 }
4462 *PtrOp = removePointerBase(*PtrOp);
4463 // Don't try to transfer nowrap flags for now. We could in some cases
4464 // (for example, if the pointer operand of the Add is a SCEVUnknown).
4465 return getAddExpr(Ops);
4466 }
4467 // Any other expression must be a pointer base.
4468 return getZero(P->getType());
4469}
4470
4471const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4472 SCEV::NoWrapFlags Flags,
4473 unsigned Depth) {
4474 // Fast path: X - X --> 0.
4475 if (LHS == RHS)
4476 return getZero(LHS->getType());
4477
4478 // If we subtract two pointers with different pointer bases, bail.
4479 // Eventually, we're going to add an assertion to getMulExpr that we
4480 // can't multiply by a pointer.
4481 if (RHS->getType()->isPointerTy()) {
4482 if (!LHS->getType()->isPointerTy() ||
4483 getPointerBase(LHS) != getPointerBase(RHS))
4484 return getCouldNotCompute();
4485 LHS = removePointerBase(LHS);
4486 RHS = removePointerBase(RHS);
4487 }
4488
4489 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4490 // makes it so that we cannot make much use of NUW.
4491 auto AddFlags = SCEV::FlagAnyWrap;
4492 const bool RHSIsNotMinSigned =
4493 !getSignedRangeMin(RHS).isMinSignedValue();
4494 if (hasFlags(Flags, SCEV::FlagNSW)) {
4495 // Let M be the minimum representable signed value. Then (-1)*RHS
4496 // signed-wraps if and only if RHS is M. That can happen even for
4497 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4498 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4499 // (-1)*RHS, we need to prove that RHS != M.
4500 //
4501 // If LHS is non-negative and we know that LHS - RHS does not
4502 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4503 // either by proving that RHS > M or that LHS >= 0.
4504 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4505 AddFlags = SCEV::FlagNSW;
4506 }
4507 }
4508
4509 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4510 // RHS is NSW and LHS >= 0.
4511 //
4512 // The difficulty here is that the NSW flag may have been proven
4513 // relative to a loop that is to be found in a recurrence in LHS and
4514 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4515 // larger scope than intended.
4516 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4517
4518 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4519}
4520
4521const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4522 unsigned Depth) {
4523 Type *SrcTy = V->getType();
4524 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot truncate or zero extend with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or zero extend with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4525, __extension__
__PRETTY_FUNCTION__))
4525 "Cannot truncate or zero extend with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot truncate or zero extend with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or zero extend with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4525, __extension__
__PRETTY_FUNCTION__))
;
4526 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4527 return V; // No conversion
4528 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4529 return getTruncateExpr(V, Ty, Depth);
4530 return getZeroExtendExpr(V, Ty, Depth);
4531}
4532
4533const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4534 unsigned Depth) {
4535 Type *SrcTy = V->getType();
4536 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot truncate or zero extend with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or zero extend with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4537, __extension__
__PRETTY_FUNCTION__))
4537 "Cannot truncate or zero extend with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot truncate or zero extend with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or zero extend with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4537, __extension__
__PRETTY_FUNCTION__))
;
4538 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4539 return V; // No conversion
4540 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4541 return getTruncateExpr(V, Ty, Depth);
4542 return getSignExtendExpr(V, Ty, Depth);
4543}
4544
4545const SCEV *
4546ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4547 Type *SrcTy = V->getType();
4548 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot noop or zero extend with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or zero extend with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4549, __extension__
__PRETTY_FUNCTION__))
4549 "Cannot noop or zero extend with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot noop or zero extend with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or zero extend with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4549, __extension__
__PRETTY_FUNCTION__))
;
4550 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits
(Ty) && "getNoopOrZeroExtend cannot truncate!") ? void
(0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrZeroExtend cannot truncate!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4551, __extension__
__PRETTY_FUNCTION__))
4551 "getNoopOrZeroExtend cannot truncate!")(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits
(Ty) && "getNoopOrZeroExtend cannot truncate!") ? void
(0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrZeroExtend cannot truncate!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4551, __extension__
__PRETTY_FUNCTION__))
;
4552 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4553 return V; // No conversion
4554 return getZeroExtendExpr(V, Ty);
4555}
4556
4557const SCEV *
4558ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4559 Type *SrcTy = V->getType();
4560 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot noop or sign extend with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or sign extend with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4561, __extension__
__PRETTY_FUNCTION__))
4561 "Cannot noop or sign extend with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot noop or sign extend with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or sign extend with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4561, __extension__
__PRETTY_FUNCTION__))
;
4562 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits
(Ty) && "getNoopOrSignExtend cannot truncate!") ? void
(0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrSignExtend cannot truncate!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4563, __extension__
__PRETTY_FUNCTION__))
4563 "getNoopOrSignExtend cannot truncate!")(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits
(Ty) && "getNoopOrSignExtend cannot truncate!") ? void
(0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrSignExtend cannot truncate!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4563, __extension__
__PRETTY_FUNCTION__))
;
4564 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4565 return V; // No conversion
4566 return getSignExtendExpr(V, Ty);
4567}
4568
4569const SCEV *
4570ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4571 Type *SrcTy = V->getType();
4572 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot noop or any extend with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or any extend with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4573, __extension__
__PRETTY_FUNCTION__))
4573 "Cannot noop or any extend with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot noop or any extend with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or any extend with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4573, __extension__
__PRETTY_FUNCTION__))
;
4574 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits
(Ty) && "getNoopOrAnyExtend cannot truncate!") ? void
(0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrAnyExtend cannot truncate!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4575, __extension__
__PRETTY_FUNCTION__))
4575 "getNoopOrAnyExtend cannot truncate!")(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits
(Ty) && "getNoopOrAnyExtend cannot truncate!") ? void
(0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrAnyExtend cannot truncate!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4575, __extension__
__PRETTY_FUNCTION__))
;
4576 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4577 return V; // No conversion
4578 return getAnyExtendExpr(V, Ty);
4579}
4580
4581const SCEV *
4582ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4583 Type *SrcTy = V->getType();
4584 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot truncate or noop with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or noop with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4585, __extension__
__PRETTY_FUNCTION__))
4585 "Cannot truncate or noop with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() &&
Ty->isIntOrPtrTy() && "Cannot truncate or noop with non-integer arguments!"
) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or noop with non-integer arguments!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4585, __extension__
__PRETTY_FUNCTION__))
;
4586 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(SrcTy) >= getTypeSizeInBits
(Ty) && "getTruncateOrNoop cannot extend!") ? void (0
) : __assert_fail ("getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && \"getTruncateOrNoop cannot extend!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4587, __extension__
__PRETTY_FUNCTION__))
4587 "getTruncateOrNoop cannot extend!")(static_cast <bool> (getTypeSizeInBits(SrcTy) >= getTypeSizeInBits
(Ty) && "getTruncateOrNoop cannot extend!") ? void (0
) : __assert_fail ("getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && \"getTruncateOrNoop cannot extend!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4587, __extension__
__PRETTY_FUNCTION__))
;
4588 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4589 return V; // No conversion
4590 return getTruncateExpr(V, Ty);
4591}
4592
4593const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4594 const SCEV *RHS) {
4595 const SCEV *PromotedLHS = LHS;
4596 const SCEV *PromotedRHS = RHS;
4597
4598 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4599 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4600 else
4601 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4602
4603 return getUMaxExpr(PromotedLHS, PromotedRHS);
4604}
4605
4606const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4607 const SCEV *RHS,
4608 bool Sequential) {
4609 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4610 return getUMinFromMismatchedTypes(Ops, Sequential);
4611}
4612
4613const SCEV *
4614ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4615 bool Sequential) {
4616 assert(!Ops.empty() && "At least one operand must be!")(static_cast <bool> (!Ops.empty() && "At least one operand must be!"
) ? void (0) : __assert_fail ("!Ops.empty() && \"At least one operand must be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4616, __extension__
__PRETTY_FUNCTION__))
;
4617 // Trivial case.
4618 if (Ops.size() == 1)
4619 return Ops[0];
4620
4621 // Find the max type first.
4622 Type *MaxType = nullptr;
4623 for (auto *S : Ops)
4624 if (MaxType)
4625 MaxType = getWiderType(MaxType, S->getType());
4626 else
4627 MaxType = S->getType();
4628 assert(MaxType && "Failed to find maximum type!")(static_cast <bool> (MaxType && "Failed to find maximum type!"
) ? void (0) : __assert_fail ("MaxType && \"Failed to find maximum type!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4628, __extension__
__PRETTY_FUNCTION__))
;
4629
4630 // Extend all ops to max type.
4631 SmallVector<const SCEV *, 2> PromotedOps;
4632 for (auto *S : Ops)
4633 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4634
4635 // Generate umin.
4636 return getUMinExpr(PromotedOps, Sequential);
4637}
4638
4639const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4640 // A pointer operand may evaluate to a nonpointer expression, such as null.
4641 if (!V->getType()->isPointerTy())
4642 return V;
4643
4644 while (true) {
4645 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4646 V = AddRec->getStart();
4647 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4648 const SCEV *PtrOp = nullptr;
4649 for (const SCEV *AddOp : Add->operands()) {
4650 if (AddOp->getType()->isPointerTy()) {
4651 assert(!PtrOp && "Cannot have multiple pointer ops")(static_cast <bool> (!PtrOp && "Cannot have multiple pointer ops"
) ? void (0) : __assert_fail ("!PtrOp && \"Cannot have multiple pointer ops\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4651, __extension__
__PRETTY_FUNCTION__))
;
4652 PtrOp = AddOp;
4653 }
4654 }
4655 assert(PtrOp && "Must have pointer op")(static_cast <bool> (PtrOp && "Must have pointer op"
) ? void (0) : __assert_fail ("PtrOp && \"Must have pointer op\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4655, __extension__
__PRETTY_FUNCTION__))
;
4656 V = PtrOp;
4657 } else // Not something we can look further into.
4658 return V;
4659 }
4660}
4661
4662/// Push users of the given Instruction onto the given Worklist.
4663static void PushDefUseChildren(Instruction *I,
4664 SmallVectorImpl<Instruction *> &Worklist,
4665 SmallPtrSetImpl<Instruction *> &Visited) {
4666 // Push the def-use children onto the Worklist stack.
4667 for (User *U : I->users()) {
4668 auto *UserInsn = cast<Instruction>(U);
4669 if (Visited.insert(UserInsn).second)
4670 Worklist.push_back(UserInsn);
4671 }
4672}
4673
4674namespace {
4675
4676/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4677/// expression in case its Loop is L. If it is not L then
4678/// if IgnoreOtherLoops is true then use AddRec itself
4679/// otherwise rewrite cannot be done.
4680/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4681class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4682public:
4683 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4684 bool IgnoreOtherLoops = true) {
4685 SCEVInitRewriter Rewriter(L, SE);
4686 const SCEV *Result = Rewriter.visit(S);
4687 if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4688 return SE.getCouldNotCompute();
4689 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4690 ? SE.getCouldNotCompute()
4691 : Result;
4692 }
4693
4694 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4695 if (!SE.isLoopInvariant(Expr, L))
4696 SeenLoopVariantSCEVUnknown = true;
4697 return Expr;
4698 }
4699
4700 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4701 // Only re-write AddRecExprs for this loop.
4702 if (Expr->getLoop() == L)
4703 return Expr->getStart();
4704 SeenOtherLoops = true;
4705 return Expr;
4706 }
4707
4708 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4709
4710 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4711
4712private:
4713 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4714 : SCEVRewriteVisitor(SE), L(L) {}
4715
4716 const Loop *L;
4717 bool SeenLoopVariantSCEVUnknown = false;
4718 bool SeenOtherLoops = false;
4719};
4720
4721/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4722/// increment expression in case its Loop is L. If it is not L then
4723/// use AddRec itself.
4724/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4725class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4726public:
4727 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4728 SCEVPostIncRewriter Rewriter(L, SE);
4729 const SCEV *Result = Rewriter.visit(S);
4730 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4731 ? SE.getCouldNotCompute()
4732 : Result;
4733 }
4734
4735 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4736 if (!SE.isLoopInvariant(Expr, L))
4737 SeenLoopVariantSCEVUnknown = true;
4738 return Expr;
4739 }
4740
4741 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4742 // Only re-write AddRecExprs for this loop.
4743 if (Expr->getLoop() == L)
4744 return Expr->getPostIncExpr(SE);
4745 SeenOtherLoops = true;
4746 return Expr;
4747 }
4748
4749 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4750
4751 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4752
4753private:
4754 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4755 : SCEVRewriteVisitor(SE), L(L) {}
4756
4757 const Loop *L;
4758 bool SeenLoopVariantSCEVUnknown = false;
4759 bool SeenOtherLoops = false;
4760};
4761
4762/// This class evaluates the compare condition by matching it against the
4763/// condition of loop latch. If there is a match we assume a true value
4764/// for the condition while building SCEV nodes.
4765class SCEVBackedgeConditionFolder
4766 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4767public:
4768 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4769 ScalarEvolution &SE) {
4770 bool IsPosBECond = false;
4771 Value *BECond = nullptr;
4772 if (BasicBlock *Latch = L->getLoopLatch()) {
4773 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4774 if (BI && BI->isConditional()) {
4775 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&(static_cast <bool> (BI->getSuccessor(0) != BI->getSuccessor
(1) && "Both outgoing branches should not target same header!"
) ? void (0) : __assert_fail ("BI->getSuccessor(0) != BI->getSuccessor(1) && \"Both outgoing branches should not target same header!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4776, __extension__
__PRETTY_FUNCTION__))
4776 "Both outgoing branches should not target same header!")(static_cast <bool> (BI->getSuccessor(0) != BI->getSuccessor
(1) && "Both outgoing branches should not target same header!"
) ? void (0) : __assert_fail ("BI->getSuccessor(0) != BI->getSuccessor(1) && \"Both outgoing branches should not target same header!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 4776, __extension__
__PRETTY_FUNCTION__))
;
4777 BECond = BI->getCondition();
4778 IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4779 } else {
4780 return S;
4781 }
4782 }
4783 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4784 return Rewriter.visit(S);
4785 }
4786
4787 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4788 const SCEV *Result = Expr;
4789 bool InvariantF = SE.isLoopInvariant(Expr, L);
4790
4791 if (!InvariantF) {
4792 Instruction *I = cast<Instruction>(Expr->getValue());
4793 switch (I->getOpcode()) {
4794 case Instruction::Select: {
4795 SelectInst *SI = cast<SelectInst>(I);
4796 Optional<const SCEV *> Res =
4797 compareWithBackedgeCondition(SI->getCondition());
4798 if (Res.hasValue()) {
4799 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4800 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4801 }
4802 break;
4803 }
4804 default: {
4805 Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4806 if (Res.hasValue())
4807 Result = Res.getValue();
4808 break;
4809 }
4810 }
4811 }
4812 return Result;
4813 }
4814
4815private:
4816 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4817 bool IsPosBECond, ScalarEvolution &SE)
4818 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4819 IsPositiveBECond(IsPosBECond) {}
4820
4821 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4822
4823 const Loop *L;
4824 /// Loop back condition.
4825 Value *BackedgeCond = nullptr;
4826 /// Set to true if loop back is on positive branch condition.
4827 bool IsPositiveBECond;
4828};
4829
4830Optional<const SCEV *>
4831SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4832
4833 // If value matches the backedge condition for loop latch,
4834 // then return a constant evolution node based on loopback
4835 // branch taken.
4836 if (BackedgeCond == IC)
4837 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4838 : SE.getZero(Type::getInt1Ty(SE.getContext()));
4839 return None;
4840}
4841
4842class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4843public:
4844 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4845 ScalarEvolution &SE) {
4846 SCEVShiftRewriter Rewriter(L, SE);
4847 const SCEV *Result = Rewriter.visit(S);
4848 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4849 }
4850
4851 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4852 // Only allow AddRecExprs for this loop.
4853 if (!SE.isLoopInvariant(Expr, L))
4854 Valid = false;
4855 return Expr;
4856 }
4857
4858 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4859 if (Expr->getLoop() == L && Expr->isAffine())
4860 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4861 Valid = false;
4862 return Expr;
4863 }
4864
4865 bool isValid() { return Valid; }
4866
4867private:
4868 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4869 : SCEVRewriteVisitor(SE), L(L) {}
4870
4871 const Loop *L;
4872 bool Valid = true;
4873};
4874
4875} // end anonymous namespace
4876
4877SCEV::NoWrapFlags
4878ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4879 if (!AR->isAffine())
4880 return SCEV::FlagAnyWrap;
4881
4882 using OBO = OverflowingBinaryOperator;
4883
4884 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4885
4886 if (!AR->hasNoSignedWrap()) {
4887 ConstantRange AddRecRange = getSignedRange(AR);
4888 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4889
4890 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4891 Instruction::Add, IncRange, OBO::NoSignedWrap);
4892 if (NSWRegion.contains(AddRecRange))
4893 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4894 }
4895
4896 if (!AR->hasNoUnsignedWrap()) {
4897 ConstantRange AddRecRange = getUnsignedRange(AR);
4898 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4899
4900 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4901 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4902 if (NUWRegion.contains(AddRecRange))
4903 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4904 }
4905
4906 return Result;
4907}
4908
4909SCEV::NoWrapFlags
4910ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4911 SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4912
4913 if (AR->hasNoSignedWrap())
4914 return Result;
4915
4916 if (!AR->isAffine())
4917 return Result;
4918
4919 const SCEV *Step = AR->getStepRecurrence(*this);
4920 const Loop *L = AR->getLoop();
4921
4922 // Check whether the backedge-taken count is SCEVCouldNotCompute.
4923 // Note that this serves two purposes: It filters out loops that are
4924 // simply not analyzable, and it covers the case where this code is
4925 // being called from within backedge-taken count analysis, such that
4926 // attempting to ask for the backedge-taken count would likely result
4927 // in infinite recursion. In the later case, the analysis code will
4928 // cope with a conservative value, and it will take care to purge
4929 // that value once it has finished.
4930 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4931
4932 // Normally, in the cases we can prove no-overflow via a
4933 // backedge guarding condition, we can also compute a backedge
4934 // taken count for the loop. The exceptions are assumptions and
4935 // guards present in the loop -- SCEV is not great at exploiting
4936 // these to compute max backedge taken counts, but can still use
4937 // these to prove lack of overflow. Use this fact to avoid
4938 // doing extra work that may not pay off.
4939
4940 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4941 AC.assumptions().empty())
4942 return Result;
4943
4944 // If the backedge is guarded by a comparison with the pre-inc value the
4945 // addrec is safe. Also, if the entry is guarded by a comparison with the
4946 // start value and the backedge is guarded by a comparison with the post-inc
4947 // value, the addrec is safe.
4948 ICmpInst::Predicate Pred;
4949 const SCEV *OverflowLimit =
4950 getSignedOverflowLimitForStep(Step, &Pred, this);
4951 if (OverflowLimit &&
4952 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4953 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4954 Result = setFlags(Result, SCEV::FlagNSW);
4955 }
4956 return Result;
4957}
4958SCEV::NoWrapFlags
4959ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4960 SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4961
4962 if (AR->hasNoUnsignedWrap())
1
Taking false branch
4963 return Result;
4964
4965 if (!AR->isAffine())
2
Taking false branch
4966 return Result;
4967
4968 const SCEV *Step = AR->getStepRecurrence(*this);
4969 unsigned BitWidth = getTypeSizeInBits(AR->getType());
4970 const Loop *L = AR->getLoop();
4971
4972 // Check whether the backedge-taken count is SCEVCouldNotCompute.
4973 // Note that this serves two purposes: It filters out loops that are
4974 // simply not analyzable, and it covers the case where this code is
4975 // being called from within backedge-taken count analysis, such that
4976 // attempting to ask for the backedge-taken count would likely result
4977 // in infinite recursion. In the later case, the analysis code will
4978 // cope with a conservative value, and it will take care to purge
4979 // that value once it has finished.
4980 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4981
4982 // Normally, in the cases we can prove no-overflow via a
4983 // backedge guarding condition, we can also compute a backedge
4984 // taken count for the loop. The exceptions are assumptions and
4985 // guards present in the loop -- SCEV is not great at exploiting
4986 // these to compute max backedge taken counts, but can still use
4987 // these to prove lack of overflow. Use this fact to avoid
4988 // doing extra work that may not pay off.
4989
4990 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
3
Assuming 'MaxBECount' is not a 'SCEVCouldNotCompute'
4
Taking false branch
4991 AC.assumptions().empty())
4992 return Result;
4993
4994 // If the backedge is guarded by a comparison with the pre-inc value the
4995 // addrec is safe. Also, if the entry is guarded by a comparison with the
4996 // start value and the backedge is guarded by a comparison with the post-inc
4997 // value, the addrec is safe.
4998 if (isKnownPositive(Step)) {
5
Taking true branch
4999 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5000 getUnsignedRangeMax(Step));
5001 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
6
Calling 'ScalarEvolution::isLoopBackedgeGuardedByCond'
18
Returning from 'ScalarEvolution::isLoopBackedgeGuardedByCond'
5002 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
19
Calling 'ScalarEvolution::isKnownOnEveryIteration'
5003 Result = setFlags(Result, SCEV::FlagNUW);
5004 }
5005 }
5006
5007 return Result;
5008}
5009
5010namespace {
5011
5012/// Represents an abstract binary operation. This may exist as a
5013/// normal instruction or constant expression, or may have been
5014/// derived from an expression tree.
5015struct BinaryOp {
5016 unsigned Opcode;
5017 Value *LHS;
5018 Value *RHS;
5019 bool IsNSW = false;
5020 bool IsNUW = false;
5021
5022 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5023 /// constant expression.
5024 Operator *Op = nullptr;
5025
5026 explicit BinaryOp(Operator *Op)
5027 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5028 Op(Op) {
5029 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5030 IsNSW = OBO->hasNoSignedWrap();
5031 IsNUW = OBO->hasNoUnsignedWrap();
5032 }
5033 }
5034
5035 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5036 bool IsNUW = false)
5037 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5038};
5039
5040} // end anonymous namespace
5041
5042/// Try to map \p V into a BinaryOp, and return \c None on failure.
5043static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
5044 auto *Op = dyn_cast<Operator>(V);
5045 if (!Op)
5046 return None;
5047
5048 // Implementation detail: all the cleverness here should happen without
5049 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5050 // SCEV expressions when possible, and we should not break that.
5051
5052 switch (Op->getOpcode()) {
5053 case Instruction::Add:
5054 case Instruction::Sub:
5055 case Instruction::Mul:
5056 case Instruction::UDiv:
5057 case Instruction::URem:
5058 case Instruction::And:
5059 case Instruction::Or:
5060 case Instruction::AShr:
5061 case Instruction::Shl:
5062 return BinaryOp(Op);
5063
5064 case Instruction::Xor:
5065 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5066 // If the RHS of the xor is a signmask, then this is just an add.
5067 // Instcombine turns add of signmask into xor as a strength reduction step.
5068 if (RHSC->getValue().isSignMask())
5069 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5070 return BinaryOp(Op);
5071
5072 case Instruction::LShr:
5073 // Turn logical shift right of a constant into a unsigned divide.
5074 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5075 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5076
5077 // If the shift count is not less than the bitwidth, the result of
5078 // the shift is undefined. Don't try to analyze it, because the
5079 // resolution chosen here may differ from the resolution chosen in
5080 // other parts of the compiler.
5081 if (SA->getValue().ult(BitWidth)) {
5082 Constant *X =
5083 ConstantInt::get(SA->getContext(),
5084 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5085 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5086 }
5087 }
5088 return BinaryOp(Op);
5089
5090 case Instruction::ExtractValue: {
5091 auto *EVI = cast<ExtractValueInst>(Op);
5092 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5093 break;
5094
5095 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5096 if (!WO)
5097 break;
5098
5099 Instruction::BinaryOps BinOp = WO->getBinaryOp();
5100 bool Signed = WO->isSigned();
5101 // TODO: Should add nuw/nsw flags for mul as well.
5102 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5103 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5104
5105 // Now that we know that all uses of the arithmetic-result component of
5106 // CI are guarded by the overflow check, we can go ahead and pretend
5107 // that the arithmetic is non-overflowing.
5108 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5109 /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5110 }
5111
5112 default:
5113 break;
5114 }
5115
5116 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5117 // semantics as a Sub, return a binary sub expression.
5118 if (auto *II = dyn_cast<IntrinsicInst>(V))
5119 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5120 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5121
5122 return None;
5123}
5124
5125/// Helper function to createAddRecFromPHIWithCasts. We have a phi
5126/// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5127/// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5128/// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5129/// follows one of the following patterns:
5130/// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5131/// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5132/// If the SCEV expression of \p Op conforms with one of the expected patterns
5133/// we return the type of the truncation operation, and indicate whether the
5134/// truncated type should be treated as signed/unsigned by setting
5135/// \p Signed to true/false, respectively.
5136static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5137 bool &Signed, ScalarEvolution &SE) {
5138 // The case where Op == SymbolicPHI (that is, with no type conversions on
5139 // the way) is handled by the regular add recurrence creating logic and
5140 // would have already been triggered in createAddRecForPHI. Reaching it here
5141 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5142 // because one of the other operands of the SCEVAddExpr updating this PHI is
5143 // not invariant).
5144 //
5145 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5146 // this case predicates that allow us to prove that Op == SymbolicPHI will
5147 // be added.
5148 if (Op == SymbolicPHI)
5149 return nullptr;
5150
5151 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5152 unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5153 if (SourceBits != NewBits)
5154 return nullptr;
5155
5156 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5157 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5158 if (!SExt && !ZExt)
5159 return nullptr;
5160 const SCEVTruncateExpr *Trunc =
5161 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5162 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5163 if (!Trunc)
5164 return nullptr;
5165 const SCEV *X = Trunc->getOperand();
5166 if (X != SymbolicPHI)
5167 return nullptr;
5168 Signed = SExt != nullptr;
5169 return Trunc->getType();
5170}
5171
5172static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5173 if (!PN->getType()->isIntegerTy())
5174 return nullptr;
5175 const Loop *L = LI.getLoopFor(PN->getParent());
5176 if (!L || L->getHeader() != PN->getParent())
5177 return nullptr;
5178 return L;
5179}
5180
5181// Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5182// computation that updates the phi follows the following pattern:
5183// (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5184// which correspond to a phi->trunc->sext/zext->add->phi update chain.
5185// If so, try to see if it can be rewritten as an AddRecExpr under some
5186// Predicates. If successful, return them as a pair. Also cache the results
5187// of the analysis.
5188//
5189// Example usage scenario:
5190// Say the Rewriter is called for the following SCEV:
5191// 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5192// where:
5193// %X = phi i64 (%Start, %BEValue)
5194// It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5195// and call this function with %SymbolicPHI = %X.
5196//
5197// The analysis will find that the value coming around the backedge has
5198// the following SCEV:
5199// BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5200// Upon concluding that this matches the desired pattern, the function
5201// will return the pair {NewAddRec, SmallPredsVec} where:
5202// NewAddRec = {%Start,+,%Step}
5203// SmallPredsVec = {P1, P2, P3} as follows:
5204// P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5205// P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5206// P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5207// The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5208// under the predicates {P1,P2,P3}.
5209// This predicated rewrite will be cached in PredicatedSCEVRewrites:
5210// PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5211//
5212// TODO's:
5213//
5214// 1) Extend the Induction descriptor to also support inductions that involve
5215// casts: When needed (namely, when we are called in the context of the
5216// vectorizer induction analysis), a Set of cast instructions will be
5217// populated by this method, and provided back to isInductionPHI. This is
5218// needed to allow the vectorizer to properly record them to be ignored by
5219// the cost model and to avoid vectorizing them (otherwise these casts,
5220// which are redundant under the runtime overflow checks, will be
5221// vectorized, which can be costly).
5222//
5223// 2) Support additional induction/PHISCEV patterns: We also want to support
5224// inductions where the sext-trunc / zext-trunc operations (partly) occur
5225// after the induction update operation (the induction increment):
5226//
5227// (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5228// which correspond to a phi->add->trunc->sext/zext->phi update chain.
5229//
5230// (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5231// which correspond to a phi->trunc->add->sext/zext->phi update chain.
5232//
5233// 3) Outline common code with createAddRecFromPHI to avoid duplication.
5234Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5235ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5236 SmallVector<const SCEVPredicate *, 3> Predicates;
5237
5238 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5239 // return an AddRec expression under some predicate.
5240
5241 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5242 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5243 assert(L && "Expecting an integer loop header phi")(static_cast <bool> (L && "Expecting an integer loop header phi"
) ? void (0) : __assert_fail ("L && \"Expecting an integer loop header phi\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 5243, __extension__
__PRETTY_FUNCTION__))
;
5244
5245 // The loop may have multiple entrances or multiple exits; we can analyze
5246 // this phi as an addrec if it has a unique entry value and a unique
5247 // backedge value.
5248 Value *BEValueV = nullptr, *StartValueV = nullptr;
5249 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5250 Value *V = PN->getIncomingValue(i);
5251 if (L->contains(PN->getIncomingBlock(i))) {
5252 if (!BEValueV) {
5253 BEValueV = V;
5254 } else if (BEValueV != V) {
5255 BEValueV = nullptr;
5256 break;
5257 }
5258 } else if (!StartValueV) {
5259 StartValueV = V;
5260 } else if (StartValueV != V) {
5261 StartValueV = nullptr;
5262 break;
5263 }
5264 }
5265 if (!BEValueV || !StartValueV)
5266 return None;
5267
5268 const SCEV *BEValue = getSCEV(BEValueV);
5269
5270 // If the value coming around the backedge is an add with the symbolic
5271 // value we just inserted, possibly with casts that we can ignore under
5272 // an appropriate runtime guard, then we found a simple induction variable!
5273 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5274 if (!Add)
5275 return None;
5276
5277 // If there is a single occurrence of the symbolic value, possibly
5278 // casted, replace it with a recurrence.
5279 unsigned FoundIndex = Add->getNumOperands();
5280 Type *TruncTy = nullptr;
5281 bool Signed;
5282 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5283 if ((TruncTy =
5284 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5285 if (FoundIndex == e) {
5286 FoundIndex = i;
5287 break;
5288 }
5289
5290 if (FoundIndex == Add->getNumOperands())
5291 return None;
5292
5293 // Create an add with everything but the specified operand.
5294 SmallVector<const SCEV *, 8> Ops;
5295 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5296 if (i != FoundIndex)
5297 Ops.push_back(Add->getOperand(i));
5298 const SCEV *Accum = getAddExpr(Ops);
5299
5300 // The runtime checks will not be valid if the step amount is
5301 // varying inside the loop.
5302 if (!isLoopInvariant(Accum, L))
5303 return None;
5304
5305 // *** Part2: Create the predicates
5306
5307 // Analysis was successful: we have a phi-with-cast pattern for which we
5308 // can return an AddRec expression under the following predicates:
5309 //
5310 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5311 // fits within the truncated type (does not overflow) for i = 0 to n-1.
5312 // P2: An Equal predicate that guarantees that
5313 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5314 // P3: An Equal predicate that guarantees that
5315 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5316 //
5317 // As we next prove, the above predicates guarantee that:
5318 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5319 //
5320 //
5321 // More formally, we want to prove that:
5322 // Expr(i+1) = Start + (i+1) * Accum
5323 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5324 //
5325 // Given that:
5326 // 1) Expr(0) = Start
5327 // 2) Expr(1) = Start + Accum
5328 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5329 // 3) Induction hypothesis (step i):
5330 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5331 //
5332 // Proof:
5333 // Expr(i+1) =
5334 // = Start + (i+1)*Accum
5335 // = (Start + i*Accum) + Accum
5336 // = Expr(i) + Accum
5337 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5338 // :: from step i
5339 //
5340 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5341 //
5342 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5343 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
5344 // + Accum :: from P3
5345 //
5346 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5347 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5348 //
5349 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5350 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5351 //
5352 // By induction, the same applies to all iterations 1<=i<n:
5353 //
5354
5355 // Create a truncated addrec for which we will add a no overflow check (P1).
5356 const SCEV *StartVal = getSCEV(StartValueV);
5357 const SCEV *PHISCEV =
5358 getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5359 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5360
5361 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5362 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5363 // will be constant.
5364 //
5365 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5366 // add P1.
5367 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5368 SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5369 Signed ? SCEVWrapPredicate::IncrementNSSW
5370 : SCEVWrapPredicate::IncrementNUSW;
5371 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5372 Predicates.push_back(AddRecPred);
5373 }
5374
5375 // Create the Equal Predicates P2,P3:
5376
5377 // It is possible that the predicates P2 and/or P3 are computable at
5378 // compile time due to StartVal and/or Accum being constants.
5379 // If either one is, then we can check that now and escape if either P2
5380 // or P3 is false.
5381
5382 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5383 // for each of StartVal and Accum
5384 auto getExtendedExpr = [&](const SCEV *Expr,
5385 bool CreateSignExtend) -> const SCEV * {
5386 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant")(static_cast <bool> (isLoopInvariant(Expr, L) &&
"Expr is expected to be invariant") ? void (0) : __assert_fail
("isLoopInvariant(Expr, L) && \"Expr is expected to be invariant\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 5386, __extension__
__PRETTY_FUNCTION__))
;
5387 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5388 const SCEV *ExtendedExpr =
5389 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5390 : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5391 return ExtendedExpr;
5392 };
5393
5394 // Given:
5395 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5396 // = getExtendedExpr(Expr)
5397 // Determine whether the predicate P: Expr == ExtendedExpr
5398 // is known to be false at compile time
5399 auto PredIsKnownFalse = [&](const SCEV *Expr,
5400 const SCEV *ExtendedExpr) -> bool {
5401 return Expr != ExtendedExpr &&
5402 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5403 };
5404
5405 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5406 if (PredIsKnownFalse(StartVal, StartExtended)) {
5407 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << "P2 is compile-time false\n"
;; } } while (false)
;
5408 return None;
5409 }
5410
5411 // The Step is always Signed (because the overflow checks are either
5412 // NSSW or NUSW)
5413 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5414 if (PredIsKnownFalse(Accum, AccumExtended)) {
5415 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << "P3 is compile-time false\n"
;; } } while (false)
;
5416 return None;
5417 }
5418
5419 auto AppendPredicate = [&](const SCEV *Expr,
5420 const SCEV *ExtendedExpr) -> void {
5421 if (Expr != ExtendedExpr &&
5422 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5423 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5424 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << "Added Predicate: " <<
*Pred; } } while (false)
;
5425 Predicates.push_back(Pred);
5426 }
5427 };
5428
5429 AppendPredicate(StartVal, StartExtended);
5430 AppendPredicate(Accum, AccumExtended);
5431
5432 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5433 // which the casts had been folded away. The caller can rewrite SymbolicPHI
5434 // into NewAR if it will also add the runtime overflow checks specified in
5435 // Predicates.
5436 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5437
5438 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5439 std::make_pair(NewAR, Predicates);
5440 // Remember the result of the analysis for this SCEV at this locayyytion.
5441 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5442 return PredRewrite;
5443}
5444
5445Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5446ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5447 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5448 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5449 if (!L)
5450 return None;
5451
5452 // Check to see if we already analyzed this PHI.
5453 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5454 if (I != PredicatedSCEVRewrites.end()) {
5455 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5456 I->second;
5457 // Analysis was done before and failed to create an AddRec:
5458 if (Rewrite.first == SymbolicPHI)
5459 return None;
5460 // Analysis was done before and succeeded to create an AddRec under
5461 // a predicate:
5462 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec")(static_cast <bool> (isa<SCEVAddRecExpr>(Rewrite.
first) && "Expected an AddRec") ? void (0) : __assert_fail
("isa<SCEVAddRecExpr>(Rewrite.first) && \"Expected an AddRec\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 5462, __extension__
__PRETTY_FUNCTION__))
;
5463 assert(!(Rewrite.second).empty() && "Expected to find Predicates")(static_cast <bool> (!(Rewrite.second).empty() &&
"Expected to find Predicates") ? void (0) : __assert_fail ("!(Rewrite.second).empty() && \"Expected to find Predicates\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 5463, __extension__
__PRETTY_FUNCTION__))
;
5464 return Rewrite;
5465 }
5466
5467 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5468 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5469
5470 // Record in the cache that the analysis failed
5471 if (!Rewrite) {
5472 SmallVector<const SCEVPredicate *, 3> Predicates;
5473 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5474 return None;
5475 }
5476
5477 return Rewrite;
5478}
5479
5480// FIXME: This utility is currently required because the Rewriter currently
5481// does not rewrite this expression:
5482// {0, +, (sext ix (trunc iy to ix) to iy)}
5483// into {0, +, %step},
5484// even when the following Equal predicate exists:
5485// "%step == (sext ix (trunc iy to ix) to iy)".
5486bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5487 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5488 if (AR1 == AR2)
5489 return true;
5490
5491 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5492 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5493 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5494 return false;
5495 return true;
5496 };
5497
5498 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5499 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5500 return false;
5501 return true;
5502}
5503
5504/// A helper function for createAddRecFromPHI to handle simple cases.
5505///
5506/// This function tries to find an AddRec expression for the simplest (yet most
5507/// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5508/// If it fails, createAddRecFromPHI will use a more general, but slow,
5509/// technique for finding the AddRec expression.
5510const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5511 Value *BEValueV,
5512 Value *StartValueV) {
5513 const Loop *L = LI.getLoopFor(PN->getParent());
5514 assert(L && L->getHeader() == PN->getParent())(static_cast <bool> (L && L->getHeader() == PN
->getParent()) ? void (0) : __assert_fail ("L && L->getHeader() == PN->getParent()"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 5514, __extension__
__PRETTY_FUNCTION__))
;
5515 assert(BEValueV && StartValueV)(static_cast <bool> (BEValueV && StartValueV) ?
void (0) : __assert_fail ("BEValueV && StartValueV",
"llvm/lib/Analysis/ScalarEvolution.cpp", 5515, __extension__
__PRETTY_FUNCTION__))
;
5516
5517 auto BO = MatchBinaryOp(BEValueV, DT);
5518 if (!BO)
5519 return nullptr;
5520
5521 if (BO->Opcode != Instruction::Add)
5522 return nullptr;
5523
5524 const SCEV *Accum = nullptr;
5525 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5526 Accum = getSCEV(BO->RHS);
5527 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5528 Accum = getSCEV(BO->LHS);
5529
5530 if (!Accum)
5531 return nullptr;
5532
5533 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5534 if (BO->IsNUW)
5535 Flags = setFlags(Flags, SCEV::FlagNUW);
5536 if (BO->IsNSW)
5537 Flags = setFlags(Flags, SCEV::FlagNSW);
5538
5539 const SCEV *StartVal = getSCEV(StartValueV);
5540 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5541 insertValueToMap(PN, PHISCEV);
5542
5543 // We can add Flags to the post-inc expression only if we
5544 // know that it is *undefined behavior* for BEValueV to
5545 // overflow.
5546 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5547 assert(isLoopInvariant(Accum, L) &&(static_cast <bool> (isLoopInvariant(Accum, L) &&
"Accum is defined outside L, but is not invariant?") ? void (
0) : __assert_fail ("isLoopInvariant(Accum, L) && \"Accum is defined outside L, but is not invariant?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 5548, __extension__
__PRETTY_FUNCTION__))
5548 "Accum is defined outside L, but is not invariant?")(static_cast <bool> (isLoopInvariant(Accum, L) &&
"Accum is defined outside L, but is not invariant?") ? void (
0) : __assert_fail ("isLoopInvariant(Accum, L) && \"Accum is defined outside L, but is not invariant?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 5548, __extension__
__PRETTY_FUNCTION__))
;
5549 if (isAddRecNeverPoison(BEInst, L))
5550 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5551 }
5552
5553 return PHISCEV;
5554}
5555
5556const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5557 const Loop *L = LI.getLoopFor(PN->getParent());
5558 if (!L || L->getHeader() != PN->getParent())
5559 return nullptr;
5560
5561 // The loop may have multiple entrances or multiple exits; we can analyze
5562 // this phi as an addrec if it has a unique entry value and a unique
5563 // backedge value.
5564 Value *BEValueV = nullptr, *StartValueV = nullptr;
5565 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5566 Value *V = PN->getIncomingValue(i);
5567 if (L->contains(PN->getIncomingBlock(i))) {
5568 if (!BEValueV) {
5569 BEValueV = V;
5570 } else if (BEValueV != V) {
5571 BEValueV = nullptr;
5572 break;
5573 }
5574 } else if (!StartValueV) {
5575 StartValueV = V;
5576 } else if (StartValueV != V) {
5577 StartValueV = nullptr;
5578 break;
5579 }
5580 }
5581 if (!BEValueV || !StartValueV)
5582 return nullptr;
5583
5584 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&(static_cast <bool> (ValueExprMap.find_as(PN) == ValueExprMap
.end() && "PHI node already processed?") ? void (0) :
__assert_fail ("ValueExprMap.find_as(PN) == ValueExprMap.end() && \"PHI node already processed?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 5585, __extension__
__PRETTY_FUNCTION__))
5585 "PHI node already processed?")(static_cast <bool> (ValueExprMap.find_as(PN) == ValueExprMap
.end() && "PHI node already processed?") ? void (0) :
__assert_fail ("ValueExprMap.find_as(PN) == ValueExprMap.end() && \"PHI node already processed?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 5585, __extension__
__PRETTY_FUNCTION__))
;
5586
5587 // First, try to find AddRec expression without creating a fictituos symbolic
5588 // value for PN.
5589 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5590 return S;
5591
5592 // Handle PHI node value symbolically.
5593 const SCEV *SymbolicName = getUnknown(PN);
5594 insertValueToMap(PN, SymbolicName);
5595
5596 // Using this symbolic name for the PHI, analyze the value coming around
5597 // the back-edge.
5598 const SCEV *BEValue = getSCEV(BEValueV);
5599
5600 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5601 // has a special value for the first iteration of the loop.
5602
5603 // If the value coming around the backedge is an add with the symbolic
5604 // value we just inserted, then we found a simple induction variable!
5605 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5606 // If there is a single occurrence of the symbolic value, replace it
5607 // with a recurrence.
5608 unsigned FoundIndex = Add->getNumOperands();
5609 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5610 if (Add->getOperand(i) == SymbolicName)
5611 if (FoundIndex == e) {
5612 FoundIndex = i;
5613 break;
5614 }
5615
5616 if (FoundIndex != Add->getNumOperands()) {
5617 // Create an add with everything but the specified operand.
5618 SmallVector<const SCEV *, 8> Ops;
5619 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5620 if (i != FoundIndex)
5621 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5622 L, *this));
5623 const SCEV *Accum = getAddExpr(Ops);
5624
5625 // This is not a valid addrec if the step amount is varying each
5626 // loop iteration, but is not itself an addrec in this loop.
5627 if (isLoopInvariant(Accum, L) ||
5628 (isa<SCEVAddRecExpr>(Accum) &&
5629 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5630 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5631
5632 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5633 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5634 if (BO->IsNUW)
5635 Flags = setFlags(Flags, SCEV::FlagNUW);
5636 if (BO->IsNSW)
5637 Flags = setFlags(Flags, SCEV::FlagNSW);
5638 }
5639 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5640 // If the increment is an inbounds GEP, then we know the address
5641 // space cannot be wrapped around. We cannot make any guarantee
5642 // about signed or unsigned overflow because pointers are
5643 // unsigned but we may have a negative index from the base
5644 // pointer. We can guarantee that no unsigned wrap occurs if the
5645 // indices form a positive value.
5646 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5647 Flags = setFlags(Flags, SCEV::FlagNW);
5648
5649 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5650 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5651 Flags = setFlags(Flags, SCEV::FlagNUW);
5652 }
5653
5654 // We cannot transfer nuw and nsw flags from subtraction
5655 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5656 // for instance.
5657 }
5658
5659 const SCEV *StartVal = getSCEV(StartValueV);
5660 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5661
5662 // Okay, for the entire analysis of this edge we assumed the PHI
5663 // to be symbolic. We now need to go back and purge all of the
5664 // entries for the scalars that use the symbolic expression.
5665 forgetMemoizedResults(SymbolicName);
5666 insertValueToMap(PN, PHISCEV);
5667
5668 // We can add Flags to the post-inc expression only if we
5669 // know that it is *undefined behavior* for BEValueV to
5670 // overflow.
5671 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5672 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5673 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5674
5675 return PHISCEV;
5676 }
5677 }
5678 } else {
5679 // Otherwise, this could be a loop like this:
5680 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5681 // In this case, j = {1,+,1} and BEValue is j.
5682 // Because the other in-value of i (0) fits the evolution of BEValue
5683 // i really is an addrec evolution.
5684 //
5685 // We can generalize this saying that i is the shifted value of BEValue
5686 // by one iteration:
5687 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5688 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5689 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5690 if (Shifted != getCouldNotCompute() &&
5691 Start != getCouldNotCompute()) {
5692 const SCEV *StartVal = getSCEV(StartValueV);
5693 if (Start == StartVal) {
5694 // Okay, for the entire analysis of this edge we assumed the PHI
5695 // to be symbolic. We now need to go back and purge all of the
5696 // entries for the scalars that use the symbolic expression.
5697 forgetMemoizedResults(SymbolicName);
5698 insertValueToMap(PN, Shifted);
5699 return Shifted;
5700 }
5701 }
5702 }
5703
5704 // Remove the temporary PHI node SCEV that has been inserted while intending
5705 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5706 // as it will prevent later (possibly simpler) SCEV expressions to be added
5707 // to the ValueExprMap.
5708 eraseValueFromMap(PN);
5709
5710 return nullptr;
5711}
5712
5713// Checks if the SCEV S is available at BB. S is considered available at BB
5714// if S can be materialized at BB without introducing a fault.
5715static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5716 BasicBlock *BB) {
5717 struct CheckAvailable {
5718 bool TraversalDone = false;
5719 bool Available = true;
5720
5721 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
5722 BasicBlock *BB = nullptr;
5723 DominatorTree &DT;
5724
5725 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5726 : L(L), BB(BB), DT(DT) {}
5727
5728 bool setUnavailable() {
5729 TraversalDone = true;
5730 Available = false;
5731 return false;
5732 }
5733
5734 bool follow(const SCEV *S) {
5735 switch (S->getSCEVType()) {
5736 case scConstant:
5737 case scPtrToInt:
5738 case scTruncate:
5739 case scZeroExtend:
5740 case scSignExtend:
5741 case scAddExpr:
5742 case scMulExpr:
5743 case scUMaxExpr:
5744 case scSMaxExpr:
5745 case scUMinExpr:
5746 case scSMinExpr:
5747 case scSequentialUMinExpr:
5748 // These expressions are available if their operand(s) is/are.
5749 return true;
5750
5751 case scAddRecExpr: {
5752 // We allow add recurrences that are on the loop BB is in, or some
5753 // outer loop. This guarantees availability because the value of the
5754 // add recurrence at BB is simply the "current" value of the induction
5755 // variable. We can relax this in the future; for instance an add
5756 // recurrence on a sibling dominating loop is also available at BB.
5757 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5758 if (L && (ARLoop == L || ARLoop->contains(L)))
5759 return true;
5760
5761 return setUnavailable();
5762 }
5763
5764 case scUnknown: {
5765 // For SCEVUnknown, we check for simple dominance.
5766 const auto *SU = cast<SCEVUnknown>(S);
5767 Value *V = SU->getValue();
5768
5769 if (isa<Argument>(V))
5770 return false;
5771
5772 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5773 return false;
5774
5775 return setUnavailable();
5776 }
5777
5778 case scUDivExpr:
5779 case scCouldNotCompute:
5780 // We do not try to smart about these at all.
5781 return setUnavailable();
5782 }
5783 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 5783)
;
5784 }
5785
5786 bool isDone() { return TraversalDone; }
5787 };
5788
5789 CheckAvailable CA(L, BB, DT);
5790 SCEVTraversal<CheckAvailable> ST(CA);
5791
5792 ST.visitAll(S);
5793 return CA.Available;
5794}
5795
5796// Try to match a control flow sequence that branches out at BI and merges back
5797// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5798// match.
5799static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5800 Value *&C, Value *&LHS, Value *&RHS) {
5801 C = BI->getCondition();
5802
5803 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5804 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5805
5806 if (!LeftEdge.isSingleEdge())
5807 return false;
5808
5809 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()")(static_cast <bool> (RightEdge.isSingleEdge() &&
"Follows from LeftEdge.isSingleEdge()") ? void (0) : __assert_fail
("RightEdge.isSingleEdge() && \"Follows from LeftEdge.isSingleEdge()\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 5809, __extension__
__PRETTY_FUNCTION__))
;
5810
5811 Use &LeftUse = Merge->getOperandUse(0);
5812 Use &RightUse = Merge->getOperandUse(1);
5813
5814 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5815 LHS = LeftUse;
5816 RHS = RightUse;
5817 return true;
5818 }
5819
5820 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5821 LHS = RightUse;
5822 RHS = LeftUse;
5823 return true;
5824 }
5825
5826 return false;
5827}
5828
5829const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5830 auto IsReachable =
5831 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5832 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5833 const Loop *L = LI.getLoopFor(PN->getParent());
5834
5835 // We don't want to break LCSSA, even in a SCEV expression tree.
5836 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5837 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5838 return nullptr;
5839
5840 // Try to match
5841 //
5842 // br %cond, label %left, label %right
5843 // left:
5844 // br label %merge
5845 // right:
5846 // br label %merge
5847 // merge:
5848 // V = phi [ %x, %left ], [ %y, %right ]
5849 //
5850 // as "select %cond, %x, %y"
5851
5852 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5853 assert(IDom && "At least the entry block should dominate PN")(static_cast <bool> (IDom && "At least the entry block should dominate PN"
) ? void (0) : __assert_fail ("IDom && \"At least the entry block should dominate PN\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 5853, __extension__
__PRETTY_FUNCTION__))
;
5854
5855 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5856 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5857
5858 if (BI && BI->isConditional() &&
5859 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5860 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5861 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5862 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5863 }
5864
5865 return nullptr;
5866}
5867
5868const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5869 if (const SCEV *S = createAddRecFromPHI(PN))
5870 return S;
5871
5872 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5873 return S;
5874
5875 // If the PHI has a single incoming value, follow that value, unless the
5876 // PHI's incoming blocks are in a different loop, in which case doing so
5877 // risks breaking LCSSA form. Instcombine would normally zap these, but
5878 // it doesn't have DominatorTree information, so it may miss cases.
5879 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5880 if (LI.replacementPreservesLCSSAForm(PN, V))
5881 return getSCEV(V);
5882
5883 // If it's not a loop phi, we can't handle it yet.
5884 return getUnknown(PN);
5885}
5886
5887const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5888 Value *Cond,
5889 Value *TrueVal,
5890 Value *FalseVal) {
5891 // Handle "constant" branch or select. This can occur for instance when a
5892 // loop pass transforms an inner loop and moves on to process the outer loop.
5893 if (auto *CI = dyn_cast<ConstantInt>(Cond))
5894 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5895
5896 // Try to match some simple smax or umax patterns.
5897 auto *ICI = dyn_cast<ICmpInst>(Cond);
5898 if (!ICI)
5899 return getUnknown(I);
5900
5901 Value *LHS = ICI->getOperand(0);
5902 Value *RHS = ICI->getOperand(1);
5903
5904 switch (ICI->getPredicate()) {
5905 case ICmpInst::ICMP_SLT:
5906 case ICmpInst::ICMP_SLE:
5907 case ICmpInst::ICMP_ULT:
5908 case ICmpInst::ICMP_ULE:
5909 std::swap(LHS, RHS);
5910 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5911 case ICmpInst::ICMP_SGT:
5912 case ICmpInst::ICMP_SGE:
5913 case ICmpInst::ICMP_UGT:
5914 case ICmpInst::ICMP_UGE:
5915 // a > b ? a+x : b+x -> max(a, b)+x
5916 // a > b ? b+x : a+x -> min(a, b)+x
5917 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5918 bool Signed = ICI->isSigned();
5919 const SCEV *LA = getSCEV(TrueVal);
5920 const SCEV *RA = getSCEV(FalseVal);
5921 const SCEV *LS = getSCEV(LHS);
5922 const SCEV *RS = getSCEV(RHS);
5923 if (LA->getType()->isPointerTy()) {
5924 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5925 // Need to make sure we can't produce weird expressions involving
5926 // negated pointers.
5927 if (LA == LS && RA == RS)
5928 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5929 if (LA == RS && RA == LS)
5930 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5931 }
5932 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5933 if (Op->getType()->isPointerTy()) {
5934 Op = getLosslessPtrToIntExpr(Op);
5935 if (isa<SCEVCouldNotCompute>(Op))
5936 return Op;
5937 }
5938 if (Signed)
5939 Op = getNoopOrSignExtend(Op, I->getType());
5940 else
5941 Op = getNoopOrZeroExtend(Op, I->getType());
5942 return Op;
5943 };
5944 LS = CoerceOperand(LS);
5945 RS = CoerceOperand(RS);
5946 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5947 break;
5948 const SCEV *LDiff = getMinusSCEV(LA, LS);
5949 const SCEV *RDiff = getMinusSCEV(RA, RS);
5950 if (LDiff == RDiff)
5951 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5952 LDiff);
5953 LDiff = getMinusSCEV(LA, RS);
5954 RDiff = getMinusSCEV(RA, LS);
5955 if (LDiff == RDiff)
5956 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5957 LDiff);
5958 }
5959 break;
5960 case ICmpInst::ICMP_NE:
5961 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
5962 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5963 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5964 const SCEV *One = getOne(I->getType());
5965 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5966 const SCEV *LA = getSCEV(TrueVal);
5967 const SCEV *RA = getSCEV(FalseVal);
5968 const SCEV *LDiff = getMinusSCEV(LA, LS);
5969 const SCEV *RDiff = getMinusSCEV(RA, One);
5970 if (LDiff == RDiff)
5971 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5972 }
5973 break;
5974 case ICmpInst::ICMP_EQ:
5975 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
5976 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5977 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5978 const SCEV *One = getOne(I->getType());
5979 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5980 const SCEV *LA = getSCEV(TrueVal);
5981 const SCEV *RA = getSCEV(FalseVal);
5982 const SCEV *LDiff = getMinusSCEV(LA, One);
5983 const SCEV *RDiff = getMinusSCEV(RA, LS);
5984 if (LDiff == RDiff)
5985 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5986 }
5987 break;
5988 default:
5989 break;
5990 }
5991
5992 return getUnknown(I);
5993}
5994
5995/// Expand GEP instructions into add and multiply operations. This allows them
5996/// to be analyzed by regular SCEV code.
5997const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5998 // Don't attempt to analyze GEPs over unsized objects.
5999 if (!GEP->getSourceElementType()->isSized())
6000 return getUnknown(GEP);
6001
6002 SmallVector<const SCEV *, 4> IndexExprs;
6003 for (Value *Index : GEP->indices())
6004 IndexExprs.push_back(getSCEV(Index));
6005 return getGEPExpr(GEP, IndexExprs);
6006}
6007
6008uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
6009 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6010 return C->getAPInt().countTrailingZeros();
6011
6012 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
6013 return GetMinTrailingZeros(I->getOperand());
6014
6015 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
6016 return std::min(GetMinTrailingZeros(T->getOperand()),
6017 (uint32_t)getTypeSizeInBits(T->getType()));
6018
6019 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
6020 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6021 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6022 ? getTypeSizeInBits(E->getType())
6023 : OpRes;
6024 }
6025
6026 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
6027 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6028 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6029 ? getTypeSizeInBits(E->getType())
6030 : OpRes;
6031 }
6032
6033 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
6034 // The result is the min of all operands results.
6035 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
6036 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
6037 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
6038 return MinOpRes;
6039 }
6040
6041 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
6042 // The result is the sum of all operands results.
6043 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
6044 uint32_t BitWidth = getTypeSizeInBits(M->getType());
6045 for (unsigned i = 1, e = M->getNumOperands();
6046 SumOpRes != BitWidth && i != e; ++i)
6047 SumOpRes =
6048 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
6049 return SumOpRes;
6050 }
6051
6052 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
6053 // The result is the min of all operands results.
6054 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
6055 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
6056 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
6057 return MinOpRes;
6058 }
6059
6060 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
6061 // The result is the min of all operands results.
6062 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
6063 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
6064 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
6065 return MinOpRes;
6066 }
6067
6068 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
6069 // The result is the min of all operands results.
6070 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
6071 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
6072 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
6073 return MinOpRes;
6074 }
6075
6076 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6077 // For a SCEVUnknown, ask ValueTracking.
6078 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
6079 return Known.countMinTrailingZeros();
6080 }
6081
6082 // SCEVUDivExpr
6083 return 0;
6084}
6085
6086uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
6087 auto I = MinTrailingZerosCache.find(S);
6088 if (I != MinTrailingZerosCache.end())
6089 return I->second;
6090
6091 uint32_t Result = GetMinTrailingZerosImpl(S);
6092 auto InsertPair = MinTrailingZerosCache.insert({S, Result});
6093 assert(InsertPair.second && "Should insert a new key")(static_cast <bool> (InsertPair.second && "Should insert a new key"
) ? void (0) : __assert_fail ("InsertPair.second && \"Should insert a new key\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6093, __extension__
__PRETTY_FUNCTION__))
;
6094 return InsertPair.first->second;
6095}
6096
6097/// Helper method to assign a range to V from metadata present in the IR.
6098static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6099 if (Instruction *I = dyn_cast<Instruction>(V))
6100 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6101 return getConstantRangeFromMetadata(*MD);
6102
6103 return None;
6104}
6105
6106void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6107 SCEV::NoWrapFlags Flags) {
6108 if (AddRec->getNoWrapFlags(Flags) != Flags) {
6109 AddRec->setNoWrapFlags(Flags);
6110 UnsignedRanges.erase(AddRec);
6111 SignedRanges.erase(AddRec);
6112 }
6113}
6114
6115ConstantRange ScalarEvolution::
6116getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6117 const DataLayout &DL = getDataLayout();
6118
6119 unsigned BitWidth = getTypeSizeInBits(U->getType());
6120 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6121
6122 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6123 // use information about the trip count to improve our available range. Note
6124 // that the trip count independent cases are already handled by known bits.
6125 // WARNING: The definition of recurrence used here is subtly different than
6126 // the one used by AddRec (and thus most of this file). Step is allowed to
6127 // be arbitrarily loop varying here, where AddRec allows only loop invariant
6128 // and other addrecs in the same loop (for non-affine addrecs). The code
6129 // below intentionally handles the case where step is not loop invariant.
6130 auto *P = dyn_cast<PHINode>(U->getValue());
6131 if (!P)
6132 return FullSet;
6133
6134 // Make sure that no Phi input comes from an unreachable block. Otherwise,
6135 // even the values that are not available in these blocks may come from them,
6136 // and this leads to false-positive recurrence test.
6137 for (auto *Pred : predecessors(P->getParent()))
6138 if (!DT.isReachableFromEntry(Pred))
6139 return FullSet;
6140
6141 BinaryOperator *BO;
6142 Value *Start, *Step;
6143 if (!matchSimpleRecurrence(P, BO, Start, Step))
6144 return FullSet;
6145
6146 // If we found a recurrence in reachable code, we must be in a loop. Note
6147 // that BO might be in some subloop of L, and that's completely okay.
6148 auto *L = LI.getLoopFor(P->getParent());
6149 assert(L && L->getHeader() == P->getParent())(static_cast <bool> (L && L->getHeader() == P
->getParent()) ? void (0) : __assert_fail ("L && L->getHeader() == P->getParent()"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6149, __extension__
__PRETTY_FUNCTION__))
;
6150 if (!L->contains(BO->getParent()))
6151 // NOTE: This bailout should be an assert instead. However, asserting
6152 // the condition here exposes a case where LoopFusion is querying SCEV
6153 // with malformed loop information during the midst of the transform.
6154 // There doesn't appear to be an obvious fix, so for the moment bailout
6155 // until the caller issue can be fixed. PR49566 tracks the bug.
6156 return FullSet;
6157
6158 // TODO: Extend to other opcodes such as mul, and div
6159 switch (BO->getOpcode()) {
6160 default:
6161 return FullSet;
6162 case Instruction::AShr:
6163 case Instruction::LShr:
6164 case Instruction::Shl:
6165 break;
6166 };
6167
6168 if (BO->getOperand(0) != P)
6169 // TODO: Handle the power function forms some day.
6170 return FullSet;
6171
6172 unsigned TC = getSmallConstantMaxTripCount(L);
6173 if (!TC || TC >= BitWidth)
6174 return FullSet;
6175
6176 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6177 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6178 assert(KnownStart.getBitWidth() == BitWidth &&(static_cast <bool> (KnownStart.getBitWidth() == BitWidth
&& KnownStep.getBitWidth() == BitWidth) ? void (0) :
__assert_fail ("KnownStart.getBitWidth() == BitWidth && KnownStep.getBitWidth() == BitWidth"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6179, __extension__
__PRETTY_FUNCTION__))
6179 KnownStep.getBitWidth() == BitWidth)(static_cast <bool> (KnownStart.getBitWidth() == BitWidth
&& KnownStep.getBitWidth() == BitWidth) ? void (0) :
__assert_fail ("KnownStart.getBitWidth() == BitWidth && KnownStep.getBitWidth() == BitWidth"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6179, __extension__
__PRETTY_FUNCTION__))
;
6180
6181 // Compute total shift amount, being careful of overflow and bitwidths.
6182 auto MaxShiftAmt = KnownStep.getMaxValue();
6183 APInt TCAP(BitWidth, TC-1);
6184 bool Overflow = false;
6185 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6186 if (Overflow)
6187 return FullSet;
6188
6189 switch (BO->getOpcode()) {
6190 default:
6191 llvm_unreachable("filtered out above")::llvm::llvm_unreachable_internal("filtered out above", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 6191)
;
6192 case Instruction::AShr: {
6193 // For each ashr, three cases:
6194 // shift = 0 => unchanged value
6195 // saturation => 0 or -1
6196 // other => a value closer to zero (of the same sign)
6197 // Thus, the end value is closer to zero than the start.
6198 auto KnownEnd = KnownBits::ashr(KnownStart,
6199 KnownBits::makeConstant(TotalShift));
6200 if (KnownStart.isNonNegative())
6201 // Analogous to lshr (simply not yet canonicalized)
6202 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6203 KnownStart.getMaxValue() + 1);
6204 if (KnownStart.isNegative())
6205 // End >=u Start && End <=s Start
6206 return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6207 KnownEnd.getMaxValue() + 1);
6208 break;
6209 }
6210 case Instruction::LShr: {
6211 // For each lshr, three cases:
6212 // shift = 0 => unchanged value
6213 // saturation => 0
6214 // other => a smaller positive number
6215 // Thus, the low end of the unsigned range is the last value produced.
6216 auto KnownEnd = KnownBits::lshr(KnownStart,
6217 KnownBits::makeConstant(TotalShift));
6218 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6219 KnownStart.getMaxValue() + 1);
6220 }
6221 case Instruction::Shl: {
6222 // Iff no bits are shifted out, value increases on every shift.
6223 auto KnownEnd = KnownBits::shl(KnownStart,
6224 KnownBits::makeConstant(TotalShift));
6225 if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6226 return ConstantRange(KnownStart.getMinValue(),
6227 KnownEnd.getMaxValue() + 1);
6228 break;
6229 }
6230 };
6231 return FullSet;
6232}
6233
6234/// Determine the range for a particular SCEV. If SignHint is
6235/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6236/// with a "cleaner" unsigned (resp. signed) representation.
6237const ConstantRange &
6238ScalarEvolution::getRangeRef(const SCEV *S,
6239 ScalarEvolution::RangeSignHint SignHint) {
6240 DenseMap<const SCEV *, ConstantRange> &Cache =
6241 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6242 : SignedRanges;
6243 ConstantRange::PreferredRangeType RangeType =
6244 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6245 ? ConstantRange::Unsigned : ConstantRange::Signed;
6246
6247 // See if we've computed this range already.
6248 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6249 if (I != Cache.end())
6250 return I->second;
6251
6252 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6253 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6254
6255 unsigned BitWidth = getTypeSizeInBits(S->getType());
6256 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6257 using OBO = OverflowingBinaryOperator;
6258
6259 // If the value has known zeros, the maximum value will have those known zeros
6260 // as well.
6261 uint32_t TZ = GetMinTrailingZeros(S);
6262 if (TZ != 0) {
6263 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6264 ConservativeResult =
6265 ConstantRange(APInt::getMinValue(BitWidth),
6266 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6267 else
6268 ConservativeResult = ConstantRange(
6269 APInt::getSignedMinValue(BitWidth),
6270 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6271 }
6272
6273 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6274 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6275 unsigned WrapType = OBO::AnyWrap;
6276 if (Add->hasNoSignedWrap())
6277 WrapType |= OBO::NoSignedWrap;
6278 if (Add->hasNoUnsignedWrap())
6279 WrapType |= OBO::NoUnsignedWrap;
6280 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6281 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6282 WrapType, RangeType);
6283 return setRange(Add, SignHint,
6284 ConservativeResult.intersectWith(X, RangeType));
6285 }
6286
6287 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6288 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6289 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6290 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6291 return setRange(Mul, SignHint,
6292 ConservativeResult.intersectWith(X, RangeType));
6293 }
6294
6295 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) {
6296 Intrinsic::ID ID;
6297 switch (S->getSCEVType()) {
6298 case scUMaxExpr:
6299 ID = Intrinsic::umax;
6300 break;
6301 case scSMaxExpr:
6302 ID = Intrinsic::smax;
6303 break;
6304 case scUMinExpr:
6305 case scSequentialUMinExpr:
6306 ID = Intrinsic::umin;
6307 break;
6308 case scSMinExpr:
6309 ID = Intrinsic::smin;
6310 break;
6311 default:
6312 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.")::llvm::llvm_unreachable_internal("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6312)
;
6313 }
6314
6315 const auto *NAry = cast<SCEVNAryExpr>(S);
6316 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint);
6317 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6318 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)});
6319 return setRange(S, SignHint,
6320 ConservativeResult.intersectWith(X, RangeType));
6321 }
6322
6323 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6324 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6325 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6326 return setRange(UDiv, SignHint,
6327 ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6328 }
6329
6330 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6331 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6332 return setRange(ZExt, SignHint,
6333 ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6334 RangeType));
6335 }
6336
6337 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6338 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6339 return setRange(SExt, SignHint,
6340 ConservativeResult.intersectWith(X.signExtend(BitWidth),
6341 RangeType));
6342 }
6343
6344 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6345 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6346 return setRange(PtrToInt, SignHint, X);
6347 }
6348
6349 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6350 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6351 return setRange(Trunc, SignHint,
6352 ConservativeResult.intersectWith(X.truncate(BitWidth),
6353 RangeType));
6354 }
6355
6356 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6357 // If there's no unsigned wrap, the value will never be less than its
6358 // initial value.
6359 if (AddRec->hasNoUnsignedWrap()) {
6360 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6361 if (!UnsignedMinValue.isZero())
6362 ConservativeResult = ConservativeResult.intersectWith(
6363 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6364 }
6365
6366 // If there's no signed wrap, and all the operands except initial value have
6367 // the same sign or zero, the value won't ever be:
6368 // 1: smaller than initial value if operands are non negative,
6369 // 2: bigger than initial value if operands are non positive.
6370 // For both cases, value can not cross signed min/max boundary.
6371 if (AddRec->hasNoSignedWrap()) {
6372 bool AllNonNeg = true;
6373 bool AllNonPos = true;
6374 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6375 if (!isKnownNonNegative(AddRec->getOperand(i)))
6376 AllNonNeg = false;
6377 if (!isKnownNonPositive(AddRec->getOperand(i)))
6378 AllNonPos = false;
6379 }
6380 if (AllNonNeg)
6381 ConservativeResult = ConservativeResult.intersectWith(
6382 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6383 APInt::getSignedMinValue(BitWidth)),
6384 RangeType);
6385 else if (AllNonPos)
6386 ConservativeResult = ConservativeResult.intersectWith(
6387 ConstantRange::getNonEmpty(
6388 APInt::getSignedMinValue(BitWidth),
6389 getSignedRangeMax(AddRec->getStart()) + 1),
6390 RangeType);
6391 }
6392
6393 // TODO: non-affine addrec
6394 if (AddRec->isAffine()) {
6395 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6396 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6397 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6398 auto RangeFromAffine = getRangeForAffineAR(
6399 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6400 BitWidth);
6401 ConservativeResult =
6402 ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6403
6404 auto RangeFromFactoring = getRangeViaFactoring(
6405 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6406 BitWidth);
6407 ConservativeResult =
6408 ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6409 }
6410
6411 // Now try symbolic BE count and more powerful methods.
6412 if (UseExpensiveRangeSharpening) {
6413 const SCEV *SymbolicMaxBECount =
6414 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6415 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6416 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6417 AddRec->hasNoSelfWrap()) {
6418 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6419 AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6420 ConservativeResult =
6421 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6422 }
6423 }
6424 }
6425
6426 return setRange(AddRec, SignHint, std::move(ConservativeResult));
6427 }
6428
6429 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6430
6431 // Check if the IR explicitly contains !range metadata.
6432 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6433 if (MDRange.hasValue())
6434 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6435 RangeType);
6436
6437 // Use facts about recurrences in the underlying IR. Note that add
6438 // recurrences are AddRecExprs and thus don't hit this path. This
6439 // primarily handles shift recurrences.
6440 auto CR = getRangeForUnknownRecurrence(U);
6441 ConservativeResult = ConservativeResult.intersectWith(CR);
6442
6443 // See if ValueTracking can give us a useful range.
6444 const DataLayout &DL = getDataLayout();
6445 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6446 if (Known.getBitWidth() != BitWidth)
6447 Known = Known.zextOrTrunc(BitWidth);
6448
6449 // ValueTracking may be able to compute a tighter result for the number of
6450 // sign bits than for the value of those sign bits.
6451 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6452 if (U->getType()->isPointerTy()) {
6453 // If the pointer size is larger than the index size type, this can cause
6454 // NS to be larger than BitWidth. So compensate for this.
6455 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6456 int ptrIdxDiff = ptrSize - BitWidth;
6457 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6458 NS -= ptrIdxDiff;
6459 }
6460
6461 if (NS > 1) {
6462 // If we know any of the sign bits, we know all of the sign bits.
6463 if (!Known.Zero.getHiBits(NS).isZero())
6464 Known.Zero.setHighBits(NS);
6465 if (!Known.One.getHiBits(NS).isZero())
6466 Known.One.setHighBits(NS);
6467 }
6468
6469 if (Known.getMinValue() != Known.getMaxValue() + 1)
6470 ConservativeResult = ConservativeResult.intersectWith(
6471 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6472 RangeType);
6473 if (NS > 1)
6474 ConservativeResult = ConservativeResult.intersectWith(
6475 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6476 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6477 RangeType);
6478
6479 // A range of Phi is a subset of union of all ranges of its input.
6480 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6481 // Make sure that we do not run over cycled Phis.
6482 if (PendingPhiRanges.insert(Phi).second) {
6483 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6484 for (auto &Op : Phi->operands()) {
6485 auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6486 RangeFromOps = RangeFromOps.unionWith(OpRange);
6487 // No point to continue if we already have a full set.
6488 if (RangeFromOps.isFullSet())
6489 break;
6490 }
6491 ConservativeResult =
6492 ConservativeResult.intersectWith(RangeFromOps, RangeType);
6493 bool Erased = PendingPhiRanges.erase(Phi);
6494 assert(Erased && "Failed to erase Phi properly?")(static_cast <bool> (Erased && "Failed to erase Phi properly?"
) ? void (0) : __assert_fail ("Erased && \"Failed to erase Phi properly?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6494, __extension__
__PRETTY_FUNCTION__))
;
6495 (void) Erased;
6496 }
6497 }
6498
6499 return setRange(U, SignHint, std::move(ConservativeResult));
6500 }
6501
6502 return setRange(S, SignHint, std::move(ConservativeResult));
6503}
6504
6505// Given a StartRange, Step and MaxBECount for an expression compute a range of
6506// values that the expression can take. Initially, the expression has a value
6507// from StartRange and then is changed by Step up to MaxBECount times. Signed
6508// argument defines if we treat Step as signed or unsigned.
6509static ConstantRange getRangeForAffineARHelper(APInt Step,
6510 const ConstantRange &StartRange,
6511 const APInt &MaxBECount,
6512 unsigned BitWidth, bool Signed) {
6513 // If either Step or MaxBECount is 0, then the expression won't change, and we
6514 // just need to return the initial range.
6515 if (Step == 0 || MaxBECount == 0)
6516 return StartRange;
6517
6518 // If we don't know anything about the initial value (i.e. StartRange is
6519 // FullRange), then we don't know anything about the final range either.
6520 // Return FullRange.
6521 if (StartRange.isFullSet())
6522 return ConstantRange::getFull(BitWidth);
6523
6524 // If Step is signed and negative, then we use its absolute value, but we also
6525 // note that we're moving in the opposite direction.
6526 bool Descending = Signed && Step.isNegative();
6527
6528 if (Signed)
6529 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6530 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6531 // This equations hold true due to the well-defined wrap-around behavior of
6532 // APInt.
6533 Step = Step.abs();
6534
6535 // Check if Offset is more than full span of BitWidth. If it is, the
6536 // expression is guaranteed to overflow.
6537 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6538 return ConstantRange::getFull(BitWidth);
6539
6540 // Offset is by how much the expression can change. Checks above guarantee no
6541 // overflow here.
6542 APInt Offset = Step * MaxBECount;
6543
6544 // Minimum value of the final range will match the minimal value of StartRange
6545 // if the expression is increasing and will be decreased by Offset otherwise.
6546 // Maximum value of the final range will match the maximal value of StartRange
6547 // if the expression is decreasing and will be increased by Offset otherwise.
6548 APInt StartLower = StartRange.getLower();
6549 APInt StartUpper = StartRange.getUpper() - 1;
6550 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6551 : (StartUpper + std::move(Offset));
6552
6553 // It's possible that the new minimum/maximum value will fall into the initial
6554 // range (due to wrap around). This means that the expression can take any
6555 // value in this bitwidth, and we have to return full range.
6556 if (StartRange.contains(MovedBoundary))
6557 return ConstantRange::getFull(BitWidth);
6558
6559 APInt NewLower =
6560 Descending ? std::move(MovedBoundary) : std::move(StartLower);
6561 APInt NewUpper =
6562 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6563 NewUpper += 1;
6564
6565 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6566 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6567}
6568
6569ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6570 const SCEV *Step,
6571 const SCEV *MaxBECount,
6572 unsigned BitWidth) {
6573 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&(static_cast <bool> (!isa<SCEVCouldNotCompute>(MaxBECount
) && getTypeSizeInBits(MaxBECount->getType()) <=
BitWidth && "Precondition!") ? void (0) : __assert_fail
("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6575, __extension__
__PRETTY_FUNCTION__))
6574 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&(static_cast <bool> (!isa<SCEVCouldNotCompute>(MaxBECount
) && getTypeSizeInBits(MaxBECount->getType()) <=
BitWidth && "Precondition!") ? void (0) : __assert_fail
("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6575, __extension__
__PRETTY_FUNCTION__))
6575 "Precondition!")(static_cast <bool> (!isa<SCEVCouldNotCompute>(MaxBECount
) && getTypeSizeInBits(MaxBECount->getType()) <=
BitWidth && "Precondition!") ? void (0) : __assert_fail
("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6575, __extension__
__PRETTY_FUNCTION__))
;
6576
6577 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6578 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6579
6580 // First, consider step signed.
6581 ConstantRange StartSRange = getSignedRange(Start);
6582 ConstantRange StepSRange = getSignedRange(Step);
6583
6584 // If Step can be both positive and negative, we need to find ranges for the
6585 // maximum absolute step values in both directions and union them.
6586 ConstantRange SR =
6587 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6588 MaxBECountValue, BitWidth, /* Signed = */ true);
6589 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6590 StartSRange, MaxBECountValue,
6591 BitWidth, /* Signed = */ true));
6592
6593 // Next, consider step unsigned.
6594 ConstantRange UR = getRangeForAffineARHelper(
6595 getUnsignedRangeMax(Step), getUnsignedRange(Start),
6596 MaxBECountValue, BitWidth, /* Signed = */ false);
6597
6598 // Finally, intersect signed and unsigned ranges.
6599 return SR.intersectWith(UR, ConstantRange::Smallest);
6600}
6601
6602ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6603 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6604 ScalarEvolution::RangeSignHint SignHint) {
6605 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n")(static_cast <bool> (AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"
) ? void (0) : __assert_fail ("AddRec->isAffine() && \"Non-affine AddRecs are not suppored!\\n\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6605, __extension__
__PRETTY_FUNCTION__))
;
6606 assert(AddRec->hasNoSelfWrap() &&(static_cast <bool> (AddRec->hasNoSelfWrap() &&
"This only works for non-self-wrapping AddRecs!") ? void (0)
: __assert_fail ("AddRec->hasNoSelfWrap() && \"This only works for non-self-wrapping AddRecs!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6607, __extension__
__PRETTY_FUNCTION__))
6607 "This only works for non-self-wrapping AddRecs!")(static_cast <bool> (AddRec->hasNoSelfWrap() &&
"This only works for non-self-wrapping AddRecs!") ? void (0)
: __assert_fail ("AddRec->hasNoSelfWrap() && \"This only works for non-self-wrapping AddRecs!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6607, __extension__
__PRETTY_FUNCTION__))
;
6608 const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6609 const SCEV *Step = AddRec->getStepRecurrence(*this);
6610 // Only deal with constant step to save compile time.
6611 if (!isa<SCEVConstant>(Step))
6612 return ConstantRange::getFull(BitWidth);
6613 // Let's make sure that we can prove that we do not self-wrap during
6614 // MaxBECount iterations. We need this because MaxBECount is a maximum
6615 // iteration count estimate, and we might infer nw from some exit for which we
6616 // do not know max exit count (or any other side reasoning).
6617 // TODO: Turn into assert at some point.
6618 if (getTypeSizeInBits(MaxBECount->getType()) >
6619 getTypeSizeInBits(AddRec->getType()))
6620 return ConstantRange::getFull(BitWidth);
6621 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6622 const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6623 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6624 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6625 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6626 MaxItersWithoutWrap))
6627 return ConstantRange::getFull(BitWidth);
6628
6629 ICmpInst::Predicate LEPred =
6630 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6631 ICmpInst::Predicate GEPred =
6632 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6633 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6634
6635 // We know that there is no self-wrap. Let's take Start and End values and
6636 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6637 // the iteration. They either lie inside the range [Min(Start, End),
6638 // Max(Start, End)] or outside it:
6639 //
6640 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax;
6641 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax;
6642 //
6643 // No self wrap flag guarantees that the intermediate values cannot be BOTH
6644 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6645 // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6646 // Start <= End and step is positive, or Start >= End and step is negative.
6647 const SCEV *Start = AddRec->getStart();
6648 ConstantRange StartRange = getRangeRef(Start, SignHint);
6649 ConstantRange EndRange = getRangeRef(End, SignHint);
6650 ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6651 // If they already cover full iteration space, we will know nothing useful
6652 // even if we prove what we want to prove.
6653 if (RangeBetween.isFullSet())
6654 return RangeBetween;
6655 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6656 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6657 : RangeBetween.isWrappedSet();
6658 if (IsWrappedSet)
6659 return ConstantRange::getFull(BitWidth);
6660
6661 if (isKnownPositive(Step) &&
6662 isKnownPredicateViaConstantRanges(LEPred, Start, End))
6663 return RangeBetween;
6664 else if (isKnownNegative(Step) &&
6665 isKnownPredicateViaConstantRanges(GEPred, Start, End))
6666 return RangeBetween;
6667 return ConstantRange::getFull(BitWidth);
6668}
6669
6670ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6671 const SCEV *Step,
6672 const SCEV *MaxBECount,
6673 unsigned BitWidth) {
6674 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6675 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6676
6677 struct SelectPattern {
6678 Value *Condition = nullptr;
6679 APInt TrueValue;
6680 APInt FalseValue;
6681
6682 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6683 const SCEV *S) {
6684 Optional<unsigned> CastOp;
6685 APInt Offset(BitWidth, 0);
6686
6687 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&(static_cast <bool> (SE.getTypeSizeInBits(S->getType
()) == BitWidth && "Should be!") ? void (0) : __assert_fail
("SE.getTypeSizeInBits(S->getType()) == BitWidth && \"Should be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6688, __extension__
__PRETTY_FUNCTION__))
6688 "Should be!")(static_cast <bool> (SE.getTypeSizeInBits(S->getType
()) == BitWidth && "Should be!") ? void (0) : __assert_fail
("SE.getTypeSizeInBits(S->getType()) == BitWidth && \"Should be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6688, __extension__
__PRETTY_FUNCTION__))
;
6689
6690 // Peel off a constant offset:
6691 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6692 // In the future we could consider being smarter here and handle
6693 // {Start+Step,+,Step} too.
6694 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6695 return;
6696
6697 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6698 S = SA->getOperand(1);
6699 }
6700
6701 // Peel off a cast operation
6702 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6703 CastOp = SCast->getSCEVType();
6704 S = SCast->getOperand();
6705 }
6706
6707 using namespace llvm::PatternMatch;
6708
6709 auto *SU = dyn_cast<SCEVUnknown>(S);
6710 const APInt *TrueVal, *FalseVal;
6711 if (!SU ||
6712 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6713 m_APInt(FalseVal)))) {
6714 Condition = nullptr;
6715 return;
6716 }
6717
6718 TrueValue = *TrueVal;
6719 FalseValue = *FalseVal;
6720
6721 // Re-apply the cast we peeled off earlier
6722 if (CastOp.hasValue())
6723 switch (*CastOp) {
6724 default:
6725 llvm_unreachable("Unknown SCEV cast type!")::llvm::llvm_unreachable_internal("Unknown SCEV cast type!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 6725)
;
6726
6727 case scTruncate:
6728 TrueValue = TrueValue.trunc(BitWidth);
6729 FalseValue = FalseValue.trunc(BitWidth);
6730 break;
6731 case scZeroExtend:
6732 TrueValue = TrueValue.zext(BitWidth);
6733 FalseValue = FalseValue.zext(BitWidth);
6734 break;
6735 case scSignExtend:
6736 TrueValue = TrueValue.sext(BitWidth);
6737 FalseValue = FalseValue.sext(BitWidth);
6738 break;
6739 }
6740
6741 // Re-apply the constant offset we peeled off earlier
6742 TrueValue += Offset;
6743 FalseValue += Offset;
6744 }
6745
6746 bool isRecognized() { return Condition != nullptr; }
6747 };
6748
6749 SelectPattern StartPattern(*this, BitWidth, Start);
6750 if (!StartPattern.isRecognized())
6751 return ConstantRange::getFull(BitWidth);
6752
6753 SelectPattern StepPattern(*this, BitWidth, Step);
6754 if (!StepPattern.isRecognized())
6755 return ConstantRange::getFull(BitWidth);
6756
6757 if (StartPattern.Condition != StepPattern.Condition) {
6758 // We don't handle this case today; but we could, by considering four
6759 // possibilities below instead of two. I'm not sure if there are cases where
6760 // that will help over what getRange already does, though.
6761 return ConstantRange::getFull(BitWidth);
6762 }
6763
6764 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6765 // construct arbitrary general SCEV expressions here. This function is called
6766 // from deep in the call stack, and calling getSCEV (on a sext instruction,
6767 // say) can end up caching a suboptimal value.
6768
6769 // FIXME: without the explicit `this` receiver below, MSVC errors out with
6770 // C2352 and C2512 (otherwise it isn't needed).
6771
6772 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6773 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6774 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6775 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6776
6777 ConstantRange TrueRange =
6778 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6779 ConstantRange FalseRange =
6780 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6781
6782 return TrueRange.unionWith(FalseRange);
6783}
6784
6785SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6786 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6787 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6788
6789 // Return early if there are no flags to propagate to the SCEV.
6790 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6791 if (BinOp->hasNoUnsignedWrap())
6792 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6793 if (BinOp->hasNoSignedWrap())
6794 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6795 if (Flags == SCEV::FlagAnyWrap)
6796 return SCEV::FlagAnyWrap;
6797
6798 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6799}
6800
6801const Instruction *
6802ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
6803 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
6804 return &*AddRec->getLoop()->getHeader()->begin();
6805 if (auto *U = dyn_cast<SCEVUnknown>(S))
6806 if (auto *I = dyn_cast<Instruction>(U->getValue()))
6807 return I;
6808 return nullptr;
6809}
6810
6811/// Fills \p Ops with unique operands of \p S, if it has operands. If not,
6812/// \p Ops remains unmodified.
6813static void collectUniqueOps(const SCEV *S,
6814 SmallVectorImpl<const SCEV *> &Ops) {
6815 SmallPtrSet<const SCEV *, 4> Unique;
6816 auto InsertUnique = [&](const SCEV *S) {
6817 if (Unique.insert(S).second)
6818 Ops.push_back(S);
6819 };
6820 if (auto *S2 = dyn_cast<SCEVCastExpr>(S))
6821 for (auto *Op : S2->operands())
6822 InsertUnique(Op);
6823 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S))
6824 for (auto *Op : S2->operands())
6825 InsertUnique(Op);
6826 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S))
6827 for (auto *Op : S2->operands())
6828 InsertUnique(Op);
6829}
6830
6831const Instruction *
6832ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
6833 bool &Precise) {
6834 Precise = true;
6835 // Do a bounded search of the def relation of the requested SCEVs.
6836 SmallSet<const SCEV *, 16> Visited;
6837 SmallVector<const SCEV *> Worklist;
6838 auto pushOp = [&](const SCEV *S) {
6839 if (!Visited.insert(S).second)
6840 return;
6841 // Threshold of 30 here is arbitrary.
6842 if (Visited.size() > 30) {
6843 Precise = false;
6844 return;
6845 }
6846 Worklist.push_back(S);
6847 };
6848
6849 for (auto *S : Ops)
6850 pushOp(S);
6851
6852 const Instruction *Bound = nullptr;
6853 while (!Worklist.empty()) {
6854 auto *S = Worklist.pop_back_val();
6855 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
6856 if (!Bound || DT.dominates(Bound, DefI))
6857 Bound = DefI;
6858 } else {
6859 SmallVector<const SCEV *, 4> Ops;
6860 collectUniqueOps(S, Ops);
6861 for (auto *Op : Ops)
6862 pushOp(Op);
6863 }
6864 }
6865 return Bound ? Bound : &*F.getEntryBlock().begin();
6866}
6867
6868const Instruction *
6869ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
6870 bool Discard;
6871 return getDefiningScopeBound(Ops, Discard);
6872}
6873
6874bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
6875 const Instruction *B) {
6876 if (A->getParent() == B->getParent() &&
6877 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6878 B->getIterator()))
6879 return true;
6880
6881 auto *BLoop = LI.getLoopFor(B->getParent());
6882 if (BLoop && BLoop->getHeader() == B->getParent() &&
6883 BLoop->getLoopPreheader() == A->getParent() &&
6884 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6885 A->getParent()->end()) &&
6886 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
6887 B->getIterator()))
6888 return true;
6889 return false;
6890}
6891
6892
6893bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6894 // Only proceed if we can prove that I does not yield poison.
6895 if (!programUndefinedIfPoison(I))
6896 return false;
6897
6898 // At this point we know that if I is executed, then it does not wrap
6899 // according to at least one of NSW or NUW. If I is not executed, then we do
6900 // not know if the calculation that I represents would wrap. Multiple
6901 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6902 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6903 // derived from other instructions that map to the same SCEV. We cannot make
6904 // that guarantee for cases where I is not executed. So we need to find a
6905 // upper bound on the defining scope for the SCEV, and prove that I is
6906 // executed every time we enter that scope. When the bounding scope is a
6907 // loop (the common case), this is equivalent to proving I executes on every
6908 // iteration of that loop.
6909 SmallVector<const SCEV *> SCEVOps;
6910 for (const Use &Op : I->operands()) {
6911 // I could be an extractvalue from a call to an overflow intrinsic.
6912 // TODO: We can do better here in some cases.
6913 if (isSCEVable(Op->getType()))
6914 SCEVOps.push_back(getSCEV(Op));
6915 }
6916 auto *DefI = getDefiningScopeBound(SCEVOps);
6917 return isGuaranteedToTransferExecutionTo(DefI, I);
6918}
6919
6920bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6921 // If we know that \c I can never be poison period, then that's enough.
6922 if (isSCEVExprNeverPoison(I))
6923 return true;
6924
6925 // For an add recurrence specifically, we assume that infinite loops without
6926 // side effects are undefined behavior, and then reason as follows:
6927 //
6928 // If the add recurrence is poison in any iteration, it is poison on all
6929 // future iterations (since incrementing poison yields poison). If the result
6930 // of the add recurrence is fed into the loop latch condition and the loop
6931 // does not contain any throws or exiting blocks other than the latch, we now
6932 // have the ability to "choose" whether the backedge is taken or not (by
6933 // choosing a sufficiently evil value for the poison feeding into the branch)
6934 // for every iteration including and after the one in which \p I first became
6935 // poison. There are two possibilities (let's call the iteration in which \p
6936 // I first became poison as K):
6937 //
6938 // 1. In the set of iterations including and after K, the loop body executes
6939 // no side effects. In this case executing the backege an infinte number
6940 // of times will yield undefined behavior.
6941 //
6942 // 2. In the set of iterations including and after K, the loop body executes
6943 // at least one side effect. In this case, that specific instance of side
6944 // effect is control dependent on poison, which also yields undefined
6945 // behavior.
6946
6947 auto *ExitingBB = L->getExitingBlock();
6948 auto *LatchBB = L->getLoopLatch();
6949 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6950 return false;
6951
6952 SmallPtrSet<const Instruction *, 16> Pushed;
6953 SmallVector<const Instruction *, 8> PoisonStack;
6954
6955 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
6956 // things that are known to be poison under that assumption go on the
6957 // PoisonStack.
6958 Pushed.insert(I);
6959 PoisonStack.push_back(I);
6960
6961 bool LatchControlDependentOnPoison = false;
6962 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6963 const Instruction *Poison = PoisonStack.pop_back_val();
6964
6965 for (auto *PoisonUser : Poison->users()) {
6966 if (propagatesPoison(cast<Operator>(PoisonUser))) {
6967 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6968 PoisonStack.push_back(cast<Instruction>(PoisonUser));
6969 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6970 assert(BI->isConditional() && "Only possibility!")(static_cast <bool> (BI->isConditional() && "Only possibility!"
) ? void (0) : __assert_fail ("BI->isConditional() && \"Only possibility!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 6970, __extension__
__PRETTY_FUNCTION__))
;
6971 if (BI->getParent() == LatchBB) {
6972 LatchControlDependentOnPoison = true;
6973 break;
6974 }
6975 }
6976 }
6977 }
6978
6979 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6980}
6981
6982ScalarEvolution::LoopProperties
6983ScalarEvolution::getLoopProperties(const Loop *L) {
6984 using LoopProperties = ScalarEvolution::LoopProperties;
6985
6986 auto Itr = LoopPropertiesCache.find(L);
6987 if (Itr == LoopPropertiesCache.end()) {
6988 auto HasSideEffects = [](Instruction *I) {
6989 if (auto *SI = dyn_cast<StoreInst>(I))
6990 return !SI->isSimple();
6991
6992 return I->mayThrow() || I->mayWriteToMemory();
6993 };
6994
6995 LoopProperties LP = {/* HasNoAbnormalExits */ true,
6996 /*HasNoSideEffects*/ true};
6997
6998 for (auto *BB : L->getBlocks())
6999 for (auto &I : *BB) {
7000 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7001 LP.HasNoAbnormalExits = false;
7002 if (HasSideEffects(&I))
7003 LP.HasNoSideEffects = false;
7004 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7005 break; // We're already as pessimistic as we can get.
7006 }
7007
7008 auto InsertPair = LoopPropertiesCache.insert({L, LP});
7009 assert(InsertPair.second && "We just checked!")(static_cast <bool> (InsertPair.second && "We just checked!"
) ? void (0) : __assert_fail ("InsertPair.second && \"We just checked!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7009, __extension__
__PRETTY_FUNCTION__))
;
7010 Itr = InsertPair.first;
7011 }
7012
7013 return Itr->second;
7014}
7015
7016bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7017 // A mustprogress loop without side effects must be finite.
7018 // TODO: The check used here is very conservative. It's only *specific*
7019 // side effects which are well defined in infinite loops.
7020 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7021}
7022
7023const SCEV *ScalarEvolution::createSCEV(Value *V) {
7024 if (!isSCEVable(V->getType()))
7025 return getUnknown(V);
7026
7027 if (Instruction *I = dyn_cast<Instruction>(V)) {
7028 // Don't attempt to analyze instructions in blocks that aren't
7029 // reachable. Such instructions don't matter, and they aren't required
7030 // to obey basic rules for definitions dominating uses which this
7031 // analysis depends on.
7032 if (!DT.isReachableFromEntry(I->getParent()))
7033 return getUnknown(UndefValue::get(V->getType()));
7034 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7035 return getConstant(CI);
7036 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
7037 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
7038 else if (!isa<ConstantExpr>(V))
7039 return getUnknown(V);
7040
7041 Operator *U = cast<Operator>(V);
7042 if (auto BO = MatchBinaryOp(U, DT)) {
7043 switch (BO->Opcode) {
7044 case Instruction::Add: {
7045 // The simple thing to do would be to just call getSCEV on both operands
7046 // and call getAddExpr with the result. However if we're looking at a
7047 // bunch of things all added together, this can be quite inefficient,
7048 // because it leads to N-1 getAddExpr calls for N ultimate operands.
7049 // Instead, gather up all the operands and make a single getAddExpr call.
7050 // LLVM IR canonical form means we need only traverse the left operands.
7051 SmallVector<const SCEV *, 4> AddOps;
7052 do {
7053 if (BO->Op) {
7054 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7055 AddOps.push_back(OpSCEV);
7056 break;
7057 }
7058
7059 // If a NUW or NSW flag can be applied to the SCEV for this
7060 // addition, then compute the SCEV for this addition by itself
7061 // with a separate call to getAddExpr. We need to do that
7062 // instead of pushing the operands of the addition onto AddOps,
7063 // since the flags are only known to apply to this particular
7064 // addition - they may not apply to other additions that can be
7065 // formed with operands from AddOps.
7066 const SCEV *RHS = getSCEV(BO->RHS);
7067 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7068 if (Flags != SCEV::FlagAnyWrap) {
7069 const SCEV *LHS = getSCEV(BO->LHS);
7070 if (BO->Opcode == Instruction::Sub)
7071 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7072 else
7073 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7074 break;
7075 }
7076 }
7077
7078 if (BO->Opcode == Instruction::Sub)
7079 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7080 else
7081 AddOps.push_back(getSCEV(BO->RHS));
7082
7083 auto NewBO = MatchBinaryOp(BO->LHS, DT);
7084 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7085 NewBO->Opcode != Instruction::Sub)) {
7086 AddOps.push_back(getSCEV(BO->LHS));
7087 break;
7088 }
7089 BO = NewBO;
7090 } while (true);
7091
7092 return getAddExpr(AddOps);
7093 }
7094
7095 case Instruction::Mul: {
7096 SmallVector<const SCEV *, 4> MulOps;
7097 do {
7098 if (BO->Op) {
7099 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7100 MulOps.push_back(OpSCEV);
7101 break;
7102 }
7103
7104 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7105 if (Flags != SCEV::FlagAnyWrap) {
7106 MulOps.push_back(
7107 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
7108 break;
7109 }
7110 }
7111
7112 MulOps.push_back(getSCEV(BO->RHS));
7113 auto NewBO = MatchBinaryOp(BO->LHS, DT);
7114 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7115 MulOps.push_back(getSCEV(BO->LHS));
7116 break;
7117 }
7118 BO = NewBO;
7119 } while (true);
7120
7121 return getMulExpr(MulOps);
7122 }
7123 case Instruction::UDiv:
7124 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7125 case Instruction::URem:
7126 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7127 case Instruction::Sub: {
7128 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7129 if (BO->Op)
7130 Flags = getNoWrapFlagsFromUB(BO->Op);
7131 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
7132 }
7133 case Instruction::And:
7134 // For an expression like x&255 that merely masks off the high bits,
7135 // use zext(trunc(x)) as the SCEV expression.
7136 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7137 if (CI->isZero())
7138 return getSCEV(BO->RHS);
7139 if (CI->isMinusOne())
7140 return getSCEV(BO->LHS);
7141 const APInt &A = CI->getValue();
7142
7143 // Instcombine's ShrinkDemandedConstant may strip bits out of
7144 // constants, obscuring what would otherwise be a low-bits mask.
7145 // Use computeKnownBits to compute what ShrinkDemandedConstant
7146 // knew about to reconstruct a low-bits mask value.
7147 unsigned LZ = A.countLeadingZeros();
7148 unsigned TZ = A.countTrailingZeros();
7149 unsigned BitWidth = A.getBitWidth();
7150 KnownBits Known(BitWidth);
7151 computeKnownBits(BO->LHS, Known, getDataLayout(),
7152 0, &AC, nullptr, &DT);
7153
7154 APInt EffectiveMask =
7155 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7156 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7157 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7158 const SCEV *LHS = getSCEV(BO->LHS);
7159 const SCEV *ShiftedLHS = nullptr;
7160 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7161 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7162 // For an expression like (x * 8) & 8, simplify the multiply.
7163 unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
7164 unsigned GCD = std::min(MulZeros, TZ);
7165 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7166 SmallVector<const SCEV*, 4> MulOps;
7167 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7168 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
7169 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7170 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7171 }
7172 }
7173 if (!ShiftedLHS)
7174 ShiftedLHS = getUDivExpr(LHS, MulCount);
7175 return getMulExpr(
7176 getZeroExtendExpr(
7177 getTruncateExpr(ShiftedLHS,
7178 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7179 BO->LHS->getType()),
7180 MulCount);
7181 }
7182 }
7183 break;
7184
7185 case Instruction::Or:
7186 // If the RHS of the Or is a constant, we may have something like:
7187 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
7188 // optimizations will transparently handle this case.
7189 //
7190 // In order for this transformation to be safe, the LHS must be of the
7191 // form X*(2^n) and the Or constant must be less than 2^n.
7192 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7193 const SCEV *LHS = getSCEV(BO->LHS);
7194 const APInt &CIVal = CI->getValue();
7195 if (GetMinTrailingZeros(LHS) >=
7196 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
7197 // Build a plain add SCEV.
7198 return getAddExpr(LHS, getSCEV(CI),
7199 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
7200 }
7201 }
7202 break;
7203
7204 case Instruction::Xor:
7205 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7206 // If the RHS of xor is -1, then this is a not operation.
7207 if (CI->isMinusOne())
7208 return getNotSCEV(getSCEV(BO->LHS));
7209
7210 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7211 // This is a variant of the check for xor with -1, and it handles
7212 // the case where instcombine has trimmed non-demanded bits out
7213 // of an xor with -1.
7214 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7215 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7216 if (LBO->getOpcode() == Instruction::And &&
7217 LCI->getValue() == CI->getValue())
7218 if (const SCEVZeroExtendExpr *Z =
7219 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7220 Type *UTy = BO->LHS->getType();
7221 const SCEV *Z0 = Z->getOperand();
7222 Type *Z0Ty = Z0->getType();
7223 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7224
7225 // If C is a low-bits mask, the zero extend is serving to
7226 // mask off the high bits. Complement the operand and
7227 // re-apply the zext.
7228 if (CI->getValue().isMask(Z0TySize))
7229 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7230
7231 // If C is a single bit, it may be in the sign-bit position
7232 // before the zero-extend. In this case, represent the xor
7233 // using an add, which is equivalent, and re-apply the zext.
7234 APInt Trunc = CI->getValue().trunc(Z0TySize);
7235 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7236 Trunc.isSignMask())
7237 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7238 UTy);
7239 }
7240 }
7241 break;
7242
7243 case Instruction::Shl:
7244 // Turn shift left of a constant amount into a multiply.
7245 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7246 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7247
7248 // If the shift count is not less than the bitwidth, the result of
7249 // the shift is undefined. Don't try to analyze it, because the
7250 // resolution chosen here may differ from the resolution chosen in
7251 // other parts of the compiler.
7252 if (SA->getValue().uge(BitWidth))
7253 break;
7254
7255 // We can safely preserve the nuw flag in all cases. It's also safe to
7256 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7257 // requires special handling. It can be preserved as long as we're not
7258 // left shifting by bitwidth - 1.
7259 auto Flags = SCEV::FlagAnyWrap;
7260 if (BO->Op) {
7261 auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7262 if ((MulFlags & SCEV::FlagNSW) &&
7263 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7264 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7265 if (MulFlags & SCEV::FlagNUW)
7266 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7267 }
7268
7269 Constant *X = ConstantInt::get(
7270 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7271 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
7272 }
7273 break;
7274
7275 case Instruction::AShr: {
7276 // AShr X, C, where C is a constant.
7277 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7278 if (!CI)
7279 break;
7280
7281 Type *OuterTy = BO->LHS->getType();
7282 uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7283 // If the shift count is not less than the bitwidth, the result of
7284 // the shift is undefined. Don't try to analyze it, because the
7285 // resolution chosen here may differ from the resolution chosen in
7286 // other parts of the compiler.
7287 if (CI->getValue().uge(BitWidth))
7288 break;
7289
7290 if (CI->isZero())
7291 return getSCEV(BO->LHS); // shift by zero --> noop
7292
7293 uint64_t AShrAmt = CI->getZExtValue();
7294 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7295
7296 Operator *L = dyn_cast<Operator>(BO->LHS);
7297 if (L && L->getOpcode() == Instruction::Shl) {
7298 // X = Shl A, n
7299 // Y = AShr X, m
7300 // Both n and m are constant.
7301
7302 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7303 if (L->getOperand(1) == BO->RHS)
7304 // For a two-shift sext-inreg, i.e. n = m,
7305 // use sext(trunc(x)) as the SCEV expression.
7306 return getSignExtendExpr(
7307 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7308
7309 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7310 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7311 uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7312 if (ShlAmt > AShrAmt) {
7313 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7314 // expression. We already checked that ShlAmt < BitWidth, so
7315 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7316 // ShlAmt - AShrAmt < Amt.
7317 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7318 ShlAmt - AShrAmt);
7319 return getSignExtendExpr(
7320 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7321 getConstant(Mul)), OuterTy);
7322 }
7323 }
7324 }
7325 break;
7326 }
7327 }
7328 }
7329
7330 switch (U->getOpcode()) {
7331 case Instruction::Trunc:
7332 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7333
7334 case Instruction::ZExt:
7335 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7336
7337 case Instruction::SExt:
7338 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7339 // The NSW flag of a subtract does not always survive the conversion to
7340 // A + (-1)*B. By pushing sign extension onto its operands we are much
7341 // more likely to preserve NSW and allow later AddRec optimisations.
7342 //
7343 // NOTE: This is effectively duplicating this logic from getSignExtend:
7344 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7345 // but by that point the NSW information has potentially been lost.
7346 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7347 Type *Ty = U->getType();
7348 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7349 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7350 return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7351 }
7352 }
7353 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7354
7355 case Instruction::BitCast:
7356 // BitCasts are no-op casts so we just eliminate the cast.
7357 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7358 return getSCEV(U->getOperand(0));
7359 break;
7360
7361 case Instruction::PtrToInt: {
7362 // Pointer to integer cast is straight-forward, so do model it.
7363 const SCEV *Op = getSCEV(U->getOperand(0));
7364 Type *DstIntTy = U->getType();
7365 // But only if effective SCEV (integer) type is wide enough to represent
7366 // all possible pointer values.
7367 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7368 if (isa<SCEVCouldNotCompute>(IntOp))
7369 return getUnknown(V);
7370 return IntOp;
7371 }
7372 case Instruction::IntToPtr:
7373 // Just don't deal with inttoptr casts.
7374 return getUnknown(V);
7375
7376 case Instruction::SDiv:
7377 // If both operands are non-negative, this is just an udiv.
7378 if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7379 isKnownNonNegative(getSCEV(U->getOperand(1))))
7380 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7381 break;
7382
7383 case Instruction::SRem:
7384 // If both operands are non-negative, this is just an urem.
7385 if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7386 isKnownNonNegative(getSCEV(U->getOperand(1))))
7387 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7388 break;
7389
7390 case Instruction::GetElementPtr:
7391 return createNodeForGEP(cast<GEPOperator>(U));
7392
7393 case Instruction::PHI:
7394 return createNodeForPHI(cast<PHINode>(U));
7395
7396 case Instruction::Select:
7397 // U can also be a select constant expr, which let fall through. Since
7398 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7399 // constant expressions cannot have instructions as operands, we'd have
7400 // returned getUnknown for a select constant expressions anyway.
7401 if (isa<Instruction>(U))
7402 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7403 U->getOperand(1), U->getOperand(2));
7404 break;
7405
7406 case Instruction::Call:
7407 case Instruction::Invoke:
7408 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7409 return getSCEV(RV);
7410
7411 if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7412 switch (II->getIntrinsicID()) {
7413 case Intrinsic::abs:
7414 return getAbsExpr(
7415 getSCEV(II->getArgOperand(0)),
7416 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7417 case Intrinsic::umax:
7418 return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7419 getSCEV(II->getArgOperand(1)));
7420 case Intrinsic::umin:
7421 return getUMinExpr(getSCEV(II->getArgOperand(0)),
7422 getSCEV(II->getArgOperand(1)));
7423 case Intrinsic::smax:
7424 return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7425 getSCEV(II->getArgOperand(1)));
7426 case Intrinsic::smin:
7427 return getSMinExpr(getSCEV(II->getArgOperand(0)),
7428 getSCEV(II->getArgOperand(1)));
7429 case Intrinsic::usub_sat: {
7430 const SCEV *X = getSCEV(II->getArgOperand(0));
7431 const SCEV *Y = getSCEV(II->getArgOperand(1));
7432 const SCEV *ClampedY = getUMinExpr(X, Y);
7433 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7434 }
7435 case Intrinsic::uadd_sat: {
7436 const SCEV *X = getSCEV(II->getArgOperand(0));
7437 const SCEV *Y = getSCEV(II->getArgOperand(1));
7438 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7439 return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7440 }
7441 case Intrinsic::start_loop_iterations:
7442 // A start_loop_iterations is just equivalent to the first operand for
7443 // SCEV purposes.
7444 return getSCEV(II->getArgOperand(0));
7445 default:
7446 break;
7447 }
7448 }
7449 break;
7450 }
7451
7452 return getUnknown(V);
7453}
7454
7455//===----------------------------------------------------------------------===//
7456// Iteration Count Computation Code
7457//
7458
7459const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
7460 bool Extend) {
7461 if (isa<SCEVCouldNotCompute>(ExitCount))
7462 return getCouldNotCompute();
7463
7464 auto *ExitCountType = ExitCount->getType();
7465 assert(ExitCountType->isIntegerTy())(static_cast <bool> (ExitCountType->isIntegerTy()) ?
void (0) : __assert_fail ("ExitCountType->isIntegerTy()",
"llvm/lib/Analysis/ScalarEvolution.cpp", 7465, __extension__
__PRETTY_FUNCTION__))
;
7466
7467 if (!Extend)
7468 return getAddExpr(ExitCount, getOne(ExitCountType));
7469
7470 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(),
7471 1 + ExitCountType->getScalarSizeInBits());
7472 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType),
7473 getOne(WiderType));
7474}
7475
7476static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7477 if (!ExitCount)
7478 return 0;
7479
7480 ConstantInt *ExitConst = ExitCount->getValue();
7481
7482 // Guard against huge trip counts.
7483 if (ExitConst->getValue().getActiveBits() > 32)
7484 return 0;
7485
7486 // In case of integer overflow, this returns 0, which is correct.
7487 return ((unsigned)ExitConst->getZExtValue()) + 1;
7488}
7489
7490unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7491 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7492 return getConstantTripCount(ExitCount);
7493}
7494
7495unsigned
7496ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7497 const BasicBlock *ExitingBlock) {
7498 assert(ExitingBlock && "Must pass a non-null exiting block!")(static_cast <bool> (ExitingBlock && "Must pass a non-null exiting block!"
) ? void (0) : __assert_fail ("ExitingBlock && \"Must pass a non-null exiting block!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7498, __extension__
__PRETTY_FUNCTION__))
;
7499 assert(L->isLoopExiting(ExitingBlock) &&(static_cast <bool> (L->isLoopExiting(ExitingBlock) &&
"Exiting block must actually branch out of the loop!") ? void
(0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7500, __extension__
__PRETTY_FUNCTION__))
7500 "Exiting block must actually branch out of the loop!")(static_cast <bool> (L->isLoopExiting(ExitingBlock) &&
"Exiting block must actually branch out of the loop!") ? void
(0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7500, __extension__
__PRETTY_FUNCTION__))
;
7501 const SCEVConstant *ExitCount =
7502 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7503 return getConstantTripCount(ExitCount);
7504}
7505
7506unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7507 const auto *MaxExitCount =
7508 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7509 return getConstantTripCount(MaxExitCount);
7510}
7511
7512const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) {
7513 // We can't infer from Array in Irregular Loop.
7514 // FIXME: It's hard to infer loop bound from array operated in Nested Loop.
7515 if (!L->isLoopSimplifyForm() || !L->isInnermost())
7516 return getCouldNotCompute();
7517
7518 // FIXME: To make the scene more typical, we only analysis loops that have
7519 // one exiting block and that block must be the latch. To make it easier to
7520 // capture loops that have memory access and memory access will be executed
7521 // in each iteration.
7522 const BasicBlock *LoopLatch = L->getLoopLatch();
7523 assert(LoopLatch && "See defination of simplify form loop.")(static_cast <bool> (LoopLatch && "See defination of simplify form loop."
) ? void (0) : __assert_fail ("LoopLatch && \"See defination of simplify form loop.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7523, __extension__
__PRETTY_FUNCTION__))
;
7524 if (L->getExitingBlock() != LoopLatch)
7525 return getCouldNotCompute();
7526
7527 const DataLayout &DL = getDataLayout();
7528 SmallVector<const SCEV *> InferCountColl;
7529 for (auto *BB : L->getBlocks()) {
7530 // Go here, we can know that Loop is a single exiting and simplified form
7531 // loop. Make sure that infer from Memory Operation in those BBs must be
7532 // executed in loop. First step, we can make sure that max execution time
7533 // of MemAccessBB in loop represents latch max excution time.
7534 // If MemAccessBB does not dom Latch, skip.
7535 // Entry
7536 // │
7537 // ┌─────▼─────┐
7538 // │Loop Header◄─────┐
7539 // └──┬──────┬─┘ │
7540 // │ │ │
7541 // ┌────────▼──┐ ┌─▼─────┐ │
7542 // │MemAccessBB│ │OtherBB│ │
7543 // └────────┬──┘ └─┬─────┘ │
7544 // │ │ │
7545 // ┌─▼──────▼─┐ │
7546 // │Loop Latch├─────┘
7547 // └────┬─────┘
7548 // ▼
7549 // Exit
7550 if (!DT.dominates(BB, LoopLatch))
7551 continue;
7552
7553 for (Instruction &Inst : *BB) {
7554 // Find Memory Operation Instruction.
7555 auto *GEP = getLoadStorePointerOperand(&Inst);
7556 if (!GEP)
7557 continue;
7558
7559 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst));
7560 // Do not infer from scalar type, eg."ElemSize = sizeof()".
7561 if (!ElemSize)
7562 continue;
7563
7564 // Use a existing polynomial recurrence on the trip count.
7565 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP));
7566 if (!AddRec)
7567 continue;
7568 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec));
7569 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this));
7570 if (!ArrBase || !Step)
7571 continue;
7572 assert(isLoopInvariant(ArrBase, L) && "See addrec definition")(static_cast <bool> (isLoopInvariant(ArrBase, L) &&
"See addrec definition") ? void (0) : __assert_fail ("isLoopInvariant(ArrBase, L) && \"See addrec definition\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7572, __extension__
__PRETTY_FUNCTION__))
;
7573
7574 // Only handle { %array + step },
7575 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here.
7576 if (AddRec->getStart() != ArrBase)
7577 continue;
7578
7579 // Memory operation pattern which have gaps.
7580 // Or repeat memory opreation.
7581 // And index of GEP wraps arround.
7582 if (Step->getAPInt().getActiveBits() > 32 ||
7583 Step->getAPInt().getZExtValue() !=
7584 ElemSize->getAPInt().getZExtValue() ||
7585 Step->isZero() || Step->getAPInt().isNegative())
7586 continue;
7587
7588 // Only infer from stack array which has certain size.
7589 // Make sure alloca instruction is not excuted in loop.
7590 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue());
7591 if (!AllocateInst || L->contains(AllocateInst->getParent()))
7592 continue;
7593
7594 // Make sure only handle normal array.
7595 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType());
7596 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize());
7597 if (!Ty || !ArrSize || !ArrSize->isOne())
7598 continue;
7599
7600 // FIXME: Since gep indices are silently zext to the indexing type,
7601 // we will have a narrow gep index which wraps around rather than
7602 // increasing strictly, we shoule ensure that step is increasing
7603 // strictly by the loop iteration.
7604 // Now we can infer a max execution time by MemLength/StepLength.
7605 const SCEV *MemSize =
7606 getConstant(Step->getType(), DL.getTypeAllocSize(Ty));
7607 auto *MaxExeCount =
7608 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step));
7609 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32)
7610 continue;
7611
7612 // If the loop reaches the maximum number of executions, we can not
7613 // access bytes starting outside the statically allocated size without
7614 // being immediate UB. But it is allowed to enter loop header one more
7615 // time.
7616 auto *InferCount = dyn_cast<SCEVConstant>(
7617 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType())));
7618 // Discard the maximum number of execution times under 32bits.
7619 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32)
7620 continue;
7621
7622 InferCountColl.push_back(InferCount);
7623 }
7624 }
7625
7626 if (InferCountColl.size() == 0)
7627 return getCouldNotCompute();
7628
7629 return getUMinFromMismatchedTypes(InferCountColl);
7630}
7631
7632unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7633 SmallVector<BasicBlock *, 8> ExitingBlocks;
7634 L->getExitingBlocks(ExitingBlocks);
7635
7636 Optional<unsigned> Res = None;
7637 for (auto *ExitingBB : ExitingBlocks) {
7638 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7639 if (!Res)
7640 Res = Multiple;
7641 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7642 }
7643 return Res.getValueOr(1);
7644}
7645
7646unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7647 const SCEV *ExitCount) {
7648 if (ExitCount == getCouldNotCompute())
7649 return 1;
7650
7651 // Get the trip count
7652 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7653
7654 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7655 if (!TC)
7656 // Attempt to factor more general cases. Returns the greatest power of
7657 // two divisor. If overflow happens, the trip count expression is still
7658 // divisible by the greatest power of 2 divisor returned.
7659 return 1U << std::min((uint32_t)31,
7660 GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7661
7662 ConstantInt *Result = TC->getValue();
7663
7664 // Guard against huge trip counts (this requires checking
7665 // for zero to handle the case where the trip count == -1 and the
7666 // addition wraps).
7667 if (!Result || Result->getValue().getActiveBits() > 32 ||
7668 Result->getValue().getActiveBits() == 0)
7669 return 1;
7670
7671 return (unsigned)Result->getZExtValue();
7672}
7673
7674/// Returns the largest constant divisor of the trip count of this loop as a
7675/// normal unsigned value, if possible. This means that the actual trip count is
7676/// always a multiple of the returned value (don't forget the trip count could
7677/// very well be zero as well!).
7678///
7679/// Returns 1 if the trip count is unknown or not guaranteed to be the
7680/// multiple of a constant (which is also the case if the trip count is simply
7681/// constant, use getSmallConstantTripCount for that case), Will also return 1
7682/// if the trip count is very large (>= 2^32).
7683///
7684/// As explained in the comments for getSmallConstantTripCount, this assumes
7685/// that control exits the loop via ExitingBlock.
7686unsigned
7687ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7688 const BasicBlock *ExitingBlock) {
7689 assert(ExitingBlock && "Must pass a non-null exiting block!")(static_cast <bool> (ExitingBlock && "Must pass a non-null exiting block!"
) ? void (0) : __assert_fail ("ExitingBlock && \"Must pass a non-null exiting block!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7689, __extension__
__PRETTY_FUNCTION__))
;
7690 assert(L->isLoopExiting(ExitingBlock) &&(static_cast <bool> (L->isLoopExiting(ExitingBlock) &&
"Exiting block must actually branch out of the loop!") ? void
(0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7691, __extension__
__PRETTY_FUNCTION__))
7691 "Exiting block must actually branch out of the loop!")(static_cast <bool> (L->isLoopExiting(ExitingBlock) &&
"Exiting block must actually branch out of the loop!") ? void
(0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7691, __extension__
__PRETTY_FUNCTION__))
;
7692 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7693 return getSmallConstantTripMultiple(L, ExitCount);
7694}
7695
7696const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7697 const BasicBlock *ExitingBlock,
7698 ExitCountKind Kind) {
7699 switch (Kind) {
7700 case Exact:
7701 case SymbolicMaximum:
7702 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7703 case ConstantMaximum:
7704 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7705 };
7706 llvm_unreachable("Invalid ExitCountKind!")::llvm::llvm_unreachable_internal("Invalid ExitCountKind!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 7706)
;
7707}
7708
7709const SCEV *
7710ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7711 SCEVUnionPredicate &Preds) {
7712 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7713}
7714
7715const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7716 ExitCountKind Kind) {
7717 switch (Kind) {
7718 case Exact:
7719 return getBackedgeTakenInfo(L).getExact(L, this);
7720 case ConstantMaximum:
7721 return getBackedgeTakenInfo(L).getConstantMax(this);
7722 case SymbolicMaximum:
7723 return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7724 };
7725 llvm_unreachable("Invalid ExitCountKind!")::llvm::llvm_unreachable_internal("Invalid ExitCountKind!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 7725)
;
7726}
7727
7728bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7729 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7730}
7731
7732/// Push PHI nodes in the header of the given loop onto the given Worklist.
7733static void PushLoopPHIs(const Loop *L,
7734 SmallVectorImpl<Instruction *> &Worklist,
7735 SmallPtrSetImpl<Instruction *> &Visited) {
7736 BasicBlock *Header = L->getHeader();
7737
7738 // Push all Loop-header PHIs onto the Worklist stack.
7739 for (PHINode &PN : Header->phis())
7740 if (Visited.insert(&PN).second)
7741 Worklist.push_back(&PN);
7742}
7743
7744const ScalarEvolution::BackedgeTakenInfo &
7745ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7746 auto &BTI = getBackedgeTakenInfo(L);
7747 if (BTI.hasFullInfo())
7748 return BTI;
7749
7750 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7751
7752 if (!Pair.second)
7753 return Pair.first->second;
7754
7755 BackedgeTakenInfo Result =
7756 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7757
7758 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7759}
7760
7761ScalarEvolution::BackedgeTakenInfo &
7762ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7763 // Initially insert an invalid entry for this loop. If the insertion
7764 // succeeds, proceed to actually compute a backedge-taken count and
7765 // update the value. The temporary CouldNotCompute value tells SCEV
7766 // code elsewhere that it shouldn't attempt to request a new
7767 // backedge-taken count, which could result in infinite recursion.
7768 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7769 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7770 if (!Pair.second)
7771 return Pair.first->second;
7772
7773 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7774 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7775 // must be cleared in this scope.
7776 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7777
7778 // In product build, there are no usage of statistic.
7779 (void)NumTripCountsComputed;
7780 (void)NumTripCountsNotComputed;
7781#if LLVM_ENABLE_STATS1 || !defined(NDEBUG)
7782 const SCEV *BEExact = Result.getExact(L, this);
7783 if (BEExact != getCouldNotCompute()) {
7784 assert(isLoopInvariant(BEExact, L) &&(static_cast <bool> (isLoopInvariant(BEExact, L) &&
isLoopInvariant(Result.getConstantMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!"
) ? void (0) : __assert_fail ("isLoopInvariant(BEExact, L) && isLoopInvariant(Result.getConstantMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7786, __extension__
__PRETTY_FUNCTION__))
7785 isLoopInvariant(Result.getConstantMax(this), L) &&(static_cast <bool> (isLoopInvariant(BEExact, L) &&
isLoopInvariant(Result.getConstantMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!"
) ? void (0) : __assert_fail ("isLoopInvariant(BEExact, L) && isLoopInvariant(Result.getConstantMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7786, __extension__
__PRETTY_FUNCTION__))
7786 "Computed backedge-taken count isn't loop invariant for loop!")(static_cast <bool> (isLoopInvariant(BEExact, L) &&
isLoopInvariant(Result.getConstantMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!"
) ? void (0) : __assert_fail ("isLoopInvariant(BEExact, L) && isLoopInvariant(Result.getConstantMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7786, __extension__
__PRETTY_FUNCTION__))
;
7787 ++NumTripCountsComputed;
7788 } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7789 isa<PHINode>(L->getHeader()->begin())) {
7790 // Only count loops that have phi nodes as not being computable.
7791 ++NumTripCountsNotComputed;
7792 }
7793#endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7794
7795 // Now that we know more about the trip count for this loop, forget any
7796 // existing SCEV values for PHI nodes in this loop since they are only
7797 // conservative estimates made without the benefit of trip count
7798 // information. This invalidation is not necessary for correctness, and is
7799 // only done to produce more precise results.
7800 if (Result.hasAnyInfo()) {
7801 // Invalidate any expression using an addrec in this loop.
7802 SmallVector<const SCEV *, 8> ToForget;
7803 auto LoopUsersIt = LoopUsers.find(L);
7804 if (LoopUsersIt != LoopUsers.end())
7805 append_range(ToForget, LoopUsersIt->second);
7806 forgetMemoizedResults(ToForget);
7807
7808 // Invalidate constant-evolved loop header phis.
7809 for (PHINode &PN : L->getHeader()->phis())
7810 ConstantEvolutionLoopExitValue.erase(&PN);
7811 }
7812
7813 // Re-lookup the insert position, since the call to
7814 // computeBackedgeTakenCount above could result in a
7815 // recusive call to getBackedgeTakenInfo (on a different
7816 // loop), which would invalidate the iterator computed
7817 // earlier.
7818 return BackedgeTakenCounts.find(L)->second = std::move(Result);
7819}
7820
7821void ScalarEvolution::forgetAllLoops() {
7822 // This method is intended to forget all info about loops. It should
7823 // invalidate caches as if the following happened:
7824 // - The trip counts of all loops have changed arbitrarily
7825 // - Every llvm::Value has been updated in place to produce a different
7826 // result.
7827 BackedgeTakenCounts.clear();
7828 PredicatedBackedgeTakenCounts.clear();
7829 BECountUsers.clear();
7830 LoopPropertiesCache.clear();
7831 ConstantEvolutionLoopExitValue.clear();
7832 ValueExprMap.clear();
7833 ValuesAtScopes.clear();
7834 ValuesAtScopesUsers.clear();
7835 LoopDispositions.clear();
7836 BlockDispositions.clear();
7837 UnsignedRanges.clear();
7838 SignedRanges.clear();
7839 ExprValueMap.clear();
7840 HasRecMap.clear();
7841 MinTrailingZerosCache.clear();
7842 PredicatedSCEVRewrites.clear();
7843}
7844
7845void ScalarEvolution::forgetLoop(const Loop *L) {
7846 SmallVector<const Loop *, 16> LoopWorklist(1, L);
7847 SmallVector<Instruction *, 32> Worklist;
7848 SmallPtrSet<Instruction *, 16> Visited;
7849 SmallVector<const SCEV *, 16> ToForget;
7850
7851 // Iterate over all the loops and sub-loops to drop SCEV information.
7852 while (!LoopWorklist.empty()) {
7853 auto *CurrL = LoopWorklist.pop_back_val();
7854
7855 // Drop any stored trip count value.
7856 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
7857 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
7858
7859 // Drop information about predicated SCEV rewrites for this loop.
7860 for (auto I = PredicatedSCEVRewrites.begin();
7861 I != PredicatedSCEVRewrites.end();) {
7862 std::pair<const SCEV *, const Loop *> Entry = I->first;
7863 if (Entry.second == CurrL)
7864 PredicatedSCEVRewrites.erase(I++);
7865 else
7866 ++I;
7867 }
7868
7869 auto LoopUsersItr = LoopUsers.find(CurrL);
7870 if (LoopUsersItr != LoopUsers.end()) {
7871 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
7872 LoopUsersItr->second.end());
7873 LoopUsers.erase(LoopUsersItr);
7874 }
7875
7876 // Drop information about expressions based on loop-header PHIs.
7877 PushLoopPHIs(CurrL, Worklist, Visited);
7878
7879 while (!Worklist.empty()) {
7880 Instruction *I = Worklist.pop_back_val();
7881
7882 ValueExprMapType::iterator It =
7883 ValueExprMap.find_as(static_cast<Value *>(I));
7884 if (It != ValueExprMap.end()) {
7885 eraseValueFromMap(It->first);
7886 ToForget.push_back(It->second);
7887 if (PHINode *PN = dyn_cast<PHINode>(I))
7888 ConstantEvolutionLoopExitValue.erase(PN);
7889 }
7890
7891 PushDefUseChildren(I, Worklist, Visited);
7892 }
7893
7894 LoopPropertiesCache.erase(CurrL);
7895 // Forget all contained loops too, to avoid dangling entries in the
7896 // ValuesAtScopes map.
7897 LoopWorklist.append(CurrL->begin(), CurrL->end());
7898 }
7899 forgetMemoizedResults(ToForget);
7900}
7901
7902void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7903 while (Loop *Parent = L->getParentLoop())
7904 L = Parent;
7905 forgetLoop(L);
7906}
7907
7908void ScalarEvolution::forgetValue(Value *V) {
7909 Instruction *I = dyn_cast<Instruction>(V);
7910 if (!I) return;
7911
7912 // Drop information about expressions based on loop-header PHIs.
7913 SmallVector<Instruction *, 16> Worklist;
7914 SmallPtrSet<Instruction *, 8> Visited;
7915 SmallVector<const SCEV *, 8> ToForget;
7916 Worklist.push_back(I);
7917 Visited.insert(I);
7918
7919 while (!Worklist.empty()) {
7920 I = Worklist.pop_back_val();
7921 ValueExprMapType::iterator It =
7922 ValueExprMap.find_as(static_cast<Value *>(I));
7923 if (It != ValueExprMap.end()) {
7924 eraseValueFromMap(It->first);
7925 ToForget.push_back(It->second);
7926 if (PHINode *PN = dyn_cast<PHINode>(I))
7927 ConstantEvolutionLoopExitValue.erase(PN);
7928 }
7929
7930 PushDefUseChildren(I, Worklist, Visited);
7931 }
7932 forgetMemoizedResults(ToForget);
7933}
7934
7935void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7936 LoopDispositions.clear();
7937}
7938
7939/// Get the exact loop backedge taken count considering all loop exits. A
7940/// computable result can only be returned for loops with all exiting blocks
7941/// dominating the latch. howFarToZero assumes that the limit of each loop test
7942/// is never skipped. This is a valid assumption as long as the loop exits via
7943/// that test. For precise results, it is the caller's responsibility to specify
7944/// the relevant loop exiting block using getExact(ExitingBlock, SE).
7945const SCEV *
7946ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7947 SCEVUnionPredicate *Preds) const {
7948 // If any exits were not computable, the loop is not computable.
7949 if (!isComplete() || ExitNotTaken.empty())
7950 return SE->getCouldNotCompute();
7951
7952 const BasicBlock *Latch = L->getLoopLatch();
7953 // All exiting blocks we have collected must dominate the only backedge.
7954 if (!Latch)
7955 return SE->getCouldNotCompute();
7956
7957 // All exiting blocks we have gathered dominate loop's latch, so exact trip
7958 // count is simply a minimum out of all these calculated exit counts.
7959 SmallVector<const SCEV *, 2> Ops;
7960 for (auto &ENT : ExitNotTaken) {
7961 const SCEV *BECount = ENT.ExactNotTaken;
7962 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!")(static_cast <bool> (BECount != SE->getCouldNotCompute
() && "Bad exit SCEV!") ? void (0) : __assert_fail ("BECount != SE->getCouldNotCompute() && \"Bad exit SCEV!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7962, __extension__
__PRETTY_FUNCTION__))
;
7963 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&(static_cast <bool> (SE->DT.dominates(ENT.ExitingBlock
, Latch) && "We should only have known counts for exiting blocks that dominate "
"latch!") ? void (0) : __assert_fail ("SE->DT.dominates(ENT.ExitingBlock, Latch) && \"We should only have known counts for exiting blocks that dominate \" \"latch!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7965, __extension__
__PRETTY_FUNCTION__))
7964 "We should only have known counts for exiting blocks that dominate "(static_cast <bool> (SE->DT.dominates(ENT.ExitingBlock
, Latch) && "We should only have known counts for exiting blocks that dominate "
"latch!") ? void (0) : __assert_fail ("SE->DT.dominates(ENT.ExitingBlock, Latch) && \"We should only have known counts for exiting blocks that dominate \" \"latch!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7965, __extension__
__PRETTY_FUNCTION__))
7965 "latch!")(static_cast <bool> (SE->DT.dominates(ENT.ExitingBlock
, Latch) && "We should only have known counts for exiting blocks that dominate "
"latch!") ? void (0) : __assert_fail ("SE->DT.dominates(ENT.ExitingBlock, Latch) && \"We should only have known counts for exiting blocks that dominate \" \"latch!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7965, __extension__
__PRETTY_FUNCTION__))
;
7966
7967 Ops.push_back(BECount);
7968
7969 if (Preds && !ENT.hasAlwaysTruePredicate())
7970 Preds->add(ENT.Predicate.get());
7971
7972 assert((Preds || ENT.hasAlwaysTruePredicate()) &&(static_cast <bool> ((Preds || ENT.hasAlwaysTruePredicate
()) && "Predicate should be always true!") ? void (0)
: __assert_fail ("(Preds || ENT.hasAlwaysTruePredicate()) && \"Predicate should be always true!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7973, __extension__
__PRETTY_FUNCTION__))
7973 "Predicate should be always true!")(static_cast <bool> ((Preds || ENT.hasAlwaysTruePredicate
()) && "Predicate should be always true!") ? void (0)
: __assert_fail ("(Preds || ENT.hasAlwaysTruePredicate()) && \"Predicate should be always true!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 7973, __extension__
__PRETTY_FUNCTION__))
;
7974 }
7975
7976 return SE->getUMinFromMismatchedTypes(Ops);
7977}
7978
7979/// Get the exact not taken count for this loop exit.
7980const SCEV *
7981ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7982 ScalarEvolution *SE) const {
7983 for (auto &ENT : ExitNotTaken)
7984 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7985 return ENT.ExactNotTaken;
7986
7987 return SE->getCouldNotCompute();
7988}
7989
7990const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7991 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7992 for (auto &ENT : ExitNotTaken)
7993 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7994 return ENT.MaxNotTaken;
7995
7996 return SE->getCouldNotCompute();
7997}
7998
7999/// getConstantMax - Get the constant max backedge taken count for the loop.
8000const SCEV *
8001ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8002 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8003 return !ENT.hasAlwaysTruePredicate();
8004 };
8005
8006 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
8007 return SE->getCouldNotCompute();
8008
8009 assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||(static_cast <bool> ((isa<SCEVCouldNotCompute>(getConstantMax
()) || isa<SCEVConstant>(getConstantMax())) && "No point in having a non-constant max backedge taken count!"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(getConstantMax()) || isa<SCEVConstant>(getConstantMax())) && \"No point in having a non-constant max backedge taken count!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8011, __extension__
__PRETTY_FUNCTION__))
8010 isa<SCEVConstant>(getConstantMax())) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(getConstantMax
()) || isa<SCEVConstant>(getConstantMax())) && "No point in having a non-constant max backedge taken count!"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(getConstantMax()) || isa<SCEVConstant>(getConstantMax())) && \"No point in having a non-constant max backedge taken count!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8011, __extension__
__PRETTY_FUNCTION__))
8011 "No point in having a non-constant max backedge taken count!")(static_cast <bool> ((isa<SCEVCouldNotCompute>(getConstantMax
()) || isa<SCEVConstant>(getConstantMax())) && "No point in having a non-constant max backedge taken count!"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(getConstantMax()) || isa<SCEVConstant>(getConstantMax())) && \"No point in having a non-constant max backedge taken count!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8011, __extension__
__PRETTY_FUNCTION__))
;
8012 return getConstantMax();
8013}
8014
8015const SCEV *
8016ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
8017 ScalarEvolution *SE) {
8018 if (!SymbolicMax)
8019 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
8020 return SymbolicMax;
8021}
8022
8023bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8024 ScalarEvolution *SE) const {
8025 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8026 return !ENT.hasAlwaysTruePredicate();
8027 };
8028 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8029}
8030
8031ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8032 : ExitLimit(E, E, false, None) {
8033}
8034
8035ScalarEvolution::ExitLimit::ExitLimit(
8036 const SCEV *E, const SCEV *M, bool MaxOrZero,
8037 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8038 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
8039 // If we prove the max count is zero, so is the symbolic bound. This happens
8040 // in practice due to differences in a) how context sensitive we've chosen
8041 // to be and b) how we reason about bounds impied by UB.
8042 if (MaxNotTaken->isZero())
8043 ExactNotTaken = MaxNotTaken;
8044
8045 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||(static_cast <bool> ((isa<SCEVCouldNotCompute>(ExactNotTaken
) || !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
"Exact is not allowed to be less precise than Max") ? void (
0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ExactNotTaken) || !isa<SCEVCouldNotCompute>(MaxNotTaken)) && \"Exact is not allowed to be less precise than Max\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8047, __extension__
__PRETTY_FUNCTION__))
8046 !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(ExactNotTaken
) || !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
"Exact is not allowed to be less precise than Max") ? void (
0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ExactNotTaken) || !isa<SCEVCouldNotCompute>(MaxNotTaken)) && \"Exact is not allowed to be less precise than Max\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8047, __extension__
__PRETTY_FUNCTION__))
8047 "Exact is not allowed to be less precise than Max")(static_cast <bool> ((isa<SCEVCouldNotCompute>(ExactNotTaken
) || !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
"Exact is not allowed to be less precise than Max") ? void (
0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ExactNotTaken) || !isa<SCEVCouldNotCompute>(MaxNotTaken)) && \"Exact is not allowed to be less precise than Max\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8047, __extension__
__PRETTY_FUNCTION__))
;
8048 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||(static_cast <bool> ((isa<SCEVCouldNotCompute>(MaxNotTaken
) || isa<SCEVConstant>(MaxNotTaken)) && "No point in having a non-constant max backedge taken count!"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(MaxNotTaken) || isa<SCEVConstant>(MaxNotTaken)) && \"No point in having a non-constant max backedge taken count!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8050, __extension__
__PRETTY_FUNCTION__))
8049 isa<SCEVConstant>(MaxNotTaken)) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(MaxNotTaken
) || isa<SCEVConstant>(MaxNotTaken)) && "No point in having a non-constant max backedge taken count!"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(MaxNotTaken) || isa<SCEVConstant>(MaxNotTaken)) && \"No point in having a non-constant max backedge taken count!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8050, __extension__
__PRETTY_FUNCTION__))
8050 "No point in having a non-constant max backedge taken count!")(static_cast <bool> ((isa<SCEVCouldNotCompute>(MaxNotTaken
) || isa<SCEVConstant>(MaxNotTaken)) && "No point in having a non-constant max backedge taken count!"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(MaxNotTaken) || isa<SCEVConstant>(MaxNotTaken)) && \"No point in having a non-constant max backedge taken count!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8050, __extension__
__PRETTY_FUNCTION__))
;
8051 for (auto *PredSet : PredSetList)
8052 for (auto *P : *PredSet)
8053 addPredicate(P);
8054 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(E)
|| !E->getType()->isPointerTy()) && "Backedge count should be int"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && \"Backedge count should be int\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8055, __extension__
__PRETTY_FUNCTION__))
8055 "Backedge count should be int")(static_cast <bool> ((isa<SCEVCouldNotCompute>(E)
|| !E->getType()->isPointerTy()) && "Backedge count should be int"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && \"Backedge count should be int\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8055, __extension__
__PRETTY_FUNCTION__))
;
8056 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(M)
|| !M->getType()->isPointerTy()) && "Max backedge count should be int"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && \"Max backedge count should be int\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8057, __extension__
__PRETTY_FUNCTION__))
8057 "Max backedge count should be int")(static_cast <bool> ((isa<SCEVCouldNotCompute>(M)
|| !M->getType()->isPointerTy()) && "Max backedge count should be int"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && \"Max backedge count should be int\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8057, __extension__
__PRETTY_FUNCTION__))
;
8058}
8059
8060ScalarEvolution::ExitLimit::ExitLimit(
8061 const SCEV *E, const SCEV *M, bool MaxOrZero,
8062 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8063 : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
8064}
8065
8066ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
8067 bool MaxOrZero)
8068 : ExitLimit(E, M, MaxOrZero, None) {
8069}
8070
8071/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8072/// computable exit into a persistent ExitNotTakenInfo array.
8073ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8074 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8075 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8076 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8077 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8078
8079 ExitNotTaken.reserve(ExitCounts.size());
8080 std::transform(
8081 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
8082 [&](const EdgeExitInfo &EEI) {
8083 BasicBlock *ExitBB = EEI.first;
8084 const ExitLimit &EL = EEI.second;
8085 if (EL.Predicates.empty())
8086 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
8087 nullptr);
8088
8089 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
8090 for (auto *Pred : EL.Predicates)
8091 Predicate->add(Pred);
8092
8093 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
8094 std::move(Predicate));
8095 });
8096 assert((isa<SCEVCouldNotCompute>(ConstantMax) ||(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMax
) || isa<SCEVConstant>(ConstantMax)) && "No point in having a non-constant max backedge taken count!"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMax) || isa<SCEVConstant>(ConstantMax)) && \"No point in having a non-constant max backedge taken count!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8098, __extension__
__PRETTY_FUNCTION__))
8097 isa<SCEVConstant>(ConstantMax)) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMax
) || isa<SCEVConstant>(ConstantMax)) && "No point in having a non-constant max backedge taken count!"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMax) || isa<SCEVConstant>(ConstantMax)) && \"No point in having a non-constant max backedge taken count!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8098, __extension__
__PRETTY_FUNCTION__))
8098 "No point in having a non-constant max backedge taken count!")(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMax
) || isa<SCEVConstant>(ConstantMax)) && "No point in having a non-constant max backedge taken count!"
) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMax) || isa<SCEVConstant>(ConstantMax)) && \"No point in having a non-constant max backedge taken count!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8098, __extension__
__PRETTY_FUNCTION__))
;
8099}
8100
8101/// Compute the number of times the backedge of the specified loop will execute.
8102ScalarEvolution::BackedgeTakenInfo
8103ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8104 bool AllowPredicates) {
8105 SmallVector<BasicBlock *, 8> ExitingBlocks;
8106 L->getExitingBlocks(ExitingBlocks);
8107
8108 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8109
8110 SmallVector<EdgeExitInfo, 4> ExitCounts;
8111 bool CouldComputeBECount = true;
8112 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8113 const SCEV *MustExitMaxBECount = nullptr;
8114 const SCEV *MayExitMaxBECount = nullptr;
8115 bool MustExitMaxOrZero = false;
8116
8117 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8118 // and compute maxBECount.
8119 // Do a union of all the predicates here.
8120 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
8121 BasicBlock *ExitBB = ExitingBlocks[i];
8122
8123 // We canonicalize untaken exits to br (constant), ignore them so that
8124 // proving an exit untaken doesn't negatively impact our ability to reason
8125 // about the loop as whole.
8126 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8127 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8128 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8129 if (ExitIfTrue == CI->isZero())
8130 continue;
8131 }
8132
8133 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
8134
8135 assert((AllowPredicates || EL.Predicates.empty()) &&(static_cast <bool> ((AllowPredicates || EL.Predicates.
empty()) && "Predicated exit limit when predicates are not allowed!"
) ? void (0) : __assert_fail ("(AllowPredicates || EL.Predicates.empty()) && \"Predicated exit limit when predicates are not allowed!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8136, __extension__
__PRETTY_FUNCTION__))
8136 "Predicated exit limit when predicates are not allowed!")(static_cast <bool> ((AllowPredicates || EL.Predicates.
empty()) && "Predicated exit limit when predicates are not allowed!"
) ? void (0) : __assert_fail ("(AllowPredicates || EL.Predicates.empty()) && \"Predicated exit limit when predicates are not allowed!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8136, __extension__
__PRETTY_FUNCTION__))
;
8137
8138 // 1. For each exit that can be computed, add an entry to ExitCounts.
8139 // CouldComputeBECount is true only if all exits can be computed.
8140 if (EL.ExactNotTaken == getCouldNotCompute())
8141 // We couldn't compute an exact value for this exit, so
8142 // we won't be able to compute an exact value for the loop.
8143 CouldComputeBECount = false;
8144 else
8145 ExitCounts.emplace_back(ExitBB, EL);
8146
8147 // 2. Derive the loop's MaxBECount from each exit's max number of
8148 // non-exiting iterations. Partition the loop exits into two kinds:
8149 // LoopMustExits and LoopMayExits.
8150 //
8151 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8152 // is a LoopMayExit. If any computable LoopMustExit is found, then
8153 // MaxBECount is the minimum EL.MaxNotTaken of computable
8154 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8155 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
8156 // computable EL.MaxNotTaken.
8157 if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
8158 DT.dominates(ExitBB, Latch)) {
8159 if (!MustExitMaxBECount) {
8160 MustExitMaxBECount = EL.MaxNotTaken;
8161 MustExitMaxOrZero = EL.MaxOrZero;
8162 } else {
8163 MustExitMaxBECount =
8164 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
8165 }
8166 } else if (MayExitMaxBECount != getCouldNotCompute()) {
8167 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
8168 MayExitMaxBECount = EL.MaxNotTaken;
8169 else {
8170 MayExitMaxBECount =
8171 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
8172 }
8173 }
8174 }
8175 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8176 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8177 // The loop backedge will be taken the maximum or zero times if there's
8178 // a single exit that must be taken the maximum or zero times.
8179 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8180
8181 // Remember which SCEVs are used in exit limits for invalidation purposes.
8182 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken
8183 // and MaxBECount, which must be SCEVConstant.
8184 for (const auto &Pair : ExitCounts)
8185 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8186 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8187 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8188 MaxBECount, MaxOrZero);
8189}
8190
8191ScalarEvolution::ExitLimit
8192ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8193 bool AllowPredicates) {
8194 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?")(static_cast <bool> (L->contains(ExitingBlock) &&
"Exit count for non-loop block?") ? void (0) : __assert_fail
("L->contains(ExitingBlock) && \"Exit count for non-loop block?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8194, __extension__
__PRETTY_FUNCTION__))
;
8195 // If our exiting block does not dominate the latch, then its connection with
8196 // loop's exit limit may be far from trivial.
8197 const BasicBlock *Latch = L->getLoopLatch();
8198 if (!Latch || !DT.dominates(ExitingBlock, Latch))
8199 return getCouldNotCompute();
8200
8201 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
8202 Instruction *Term = ExitingBlock->getTerminator();
8203 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8204 assert(BI->isConditional() && "If unconditional, it can't be in loop!")(static_cast <bool> (BI->isConditional() && "If unconditional, it can't be in loop!"
) ? void (0) : __assert_fail ("BI->isConditional() && \"If unconditional, it can't be in loop!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8204, __extension__
__PRETTY_FUNCTION__))
;
8205 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8206 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&(static_cast <bool> (ExitIfTrue == L->contains(BI->
getSuccessor(1)) && "It should have one successor in loop and one exit block!"
) ? void (0) : __assert_fail ("ExitIfTrue == L->contains(BI->getSuccessor(1)) && \"It should have one successor in loop and one exit block!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8207, __extension__
__PRETTY_FUNCTION__))
8207 "It should have one successor in loop and one exit block!")(static_cast <bool> (ExitIfTrue == L->contains(BI->
getSuccessor(1)) && "It should have one successor in loop and one exit block!"
) ? void (0) : __assert_fail ("ExitIfTrue == L->contains(BI->getSuccessor(1)) && \"It should have one successor in loop and one exit block!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8207, __extension__
__PRETTY_FUNCTION__))
;
8208 // Proceed to the next level to examine the exit condition expression.
8209 return computeExitLimitFromCond(
8210 L, BI->getCondition(), ExitIfTrue,
8211 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
8212 }
8213
8214 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8215 // For switch, make sure that there is a single exit from the loop.
8216 BasicBlock *Exit = nullptr;
8217 for (auto *SBB : successors(ExitingBlock))
8218 if (!L->contains(SBB)) {
8219 if (Exit) // Multiple exit successors.
8220 return getCouldNotCompute();
8221 Exit = SBB;
8222 }
8223 assert(Exit && "Exiting block must have at least one exit")(static_cast <bool> (Exit && "Exiting block must have at least one exit"
) ? void (0) : __assert_fail ("Exit && \"Exiting block must have at least one exit\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8223, __extension__
__PRETTY_FUNCTION__))
;
8224 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
8225 /*ControlsExit=*/IsOnlyExit);
8226 }
8227
8228 return getCouldNotCompute();
8229}
8230
8231ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8232 const Loop *L, Value *ExitCond, bool ExitIfTrue,
8233 bool ControlsExit, bool AllowPredicates) {
8234 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8235 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8236 ControlsExit, AllowPredicates);
8237}
8238
8239Optional<ScalarEvolution::ExitLimit>
8240ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8241 bool ExitIfTrue, bool ControlsExit,
8242 bool AllowPredicates) {
8243 (void)this->L;
8244 (void)this->ExitIfTrue;
8245 (void)this->AllowPredicates;
8246
8247 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&(static_cast <bool> (this->L == L && this->
ExitIfTrue == ExitIfTrue && this->AllowPredicates ==
AllowPredicates && "Variance in assumed invariant key components!"
) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8249, __extension__
__PRETTY_FUNCTION__))
8248 this->AllowPredicates == AllowPredicates &&(static_cast <bool> (this->L == L && this->
ExitIfTrue == ExitIfTrue && this->AllowPredicates ==
AllowPredicates && "Variance in assumed invariant key components!"
) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8249, __extension__
__PRETTY_FUNCTION__))
8249 "Variance in assumed invariant key components!")(static_cast <bool> (this->L == L && this->
ExitIfTrue == ExitIfTrue && this->AllowPredicates ==
AllowPredicates && "Variance in assumed invariant key components!"
) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8249, __extension__
__PRETTY_FUNCTION__))
;
8250 auto Itr = TripCountMap.find({ExitCond, ControlsExit});
8251 if (Itr == TripCountMap.end())
8252 return None;
8253 return Itr->second;
8254}
8255
8256void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8257 bool ExitIfTrue,
8258 bool ControlsExit,
8259 bool AllowPredicates,
8260 const ExitLimit &EL) {
8261 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&(static_cast <bool> (this->L == L && this->
ExitIfTrue == ExitIfTrue && this->AllowPredicates ==
AllowPredicates && "Variance in assumed invariant key components!"
) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8263, __extension__
__PRETTY_FUNCTION__))
8262 this->AllowPredicates == AllowPredicates &&(static_cast <bool> (this->L == L && this->
ExitIfTrue == ExitIfTrue && this->AllowPredicates ==
AllowPredicates && "Variance in assumed invariant key components!"
) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8263, __extension__
__PRETTY_FUNCTION__))
8263 "Variance in assumed invariant key components!")(static_cast <bool> (this->L == L && this->
ExitIfTrue == ExitIfTrue && this->AllowPredicates ==
AllowPredicates && "Variance in assumed invariant key components!"
) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8263, __extension__
__PRETTY_FUNCTION__))
;
8264
8265 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
8266 assert(InsertResult.second && "Expected successful insertion!")(static_cast <bool> (InsertResult.second && "Expected successful insertion!"
) ? void (0) : __assert_fail ("InsertResult.second && \"Expected successful insertion!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8266, __extension__
__PRETTY_FUNCTION__))
;
8267 (void)InsertResult;
8268 (void)ExitIfTrue;
8269}
8270
8271ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8272 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8273 bool ControlsExit, bool AllowPredicates) {
8274
8275 if (auto MaybeEL =
8276 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8277 return *MaybeEL;
8278
8279 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
8280 ControlsExit, AllowPredicates);
8281 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
8282 return EL;
8283}
8284
8285ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8286 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8287 bool ControlsExit, bool AllowPredicates) {
8288 // Handle BinOp conditions (And, Or).
8289 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8290 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8291 return *LimitFromBinOp;
8292
8293 // With an icmp, it may be feasible to compute an exact backedge-taken count.
8294 // Proceed to the next level to examine the icmp.
8295 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8296 ExitLimit EL =
8297 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
8298 if (EL.hasFullInfo() || !AllowPredicates)
8299 return EL;
8300
8301 // Try again, but use SCEV predicates this time.
8302 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
8303 /*AllowPredicates=*/true);
8304 }
8305
8306 // Check for a constant condition. These are normally stripped out by
8307 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8308 // preserve the CFG and is temporarily leaving constant conditions
8309 // in place.
8310 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8311 if (ExitIfTrue == !CI->getZExtValue())
8312 // The backedge is always taken.
8313 return getCouldNotCompute();
8314 else
8315 // The backedge is never taken.
8316 return getZero(CI->getType());
8317 }
8318
8319 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
8320 // with a constant step, we can form an equivalent icmp predicate and figure
8321 // out how many iterations will be taken before we exit.
8322 const WithOverflowInst *WO;
8323 const APInt *C;
8324 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
8325 match(WO->getRHS(), m_APInt(C))) {
8326 ConstantRange NWR =
8327 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
8328 WO->getNoWrapKind());
8329 CmpInst::Predicate Pred;
8330 APInt NewRHSC, Offset;
8331 NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
8332 if (!ExitIfTrue)
8333 Pred = ICmpInst::getInversePredicate(Pred);
8334 auto *LHS = getSCEV(WO->getLHS());
8335 if (Offset != 0)
8336 LHS = getAddExpr(LHS, getConstant(Offset));
8337 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
8338 ControlsExit, AllowPredicates);
8339 if (EL.hasAnyInfo()) return EL;
8340 }
8341
8342 // If it's not an integer or pointer comparison then compute it the hard way.
8343 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8344}
8345
8346Optional<ScalarEvolution::ExitLimit>
8347ScalarEvolution::computeExitLimitFromCondFromBinOp(
8348 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8349 bool ControlsExit, bool AllowPredicates) {
8350 // Check if the controlling expression for this loop is an And or Or.
8351 Value *Op0, *Op1;
8352 bool IsAnd = false;
8353 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8354 IsAnd = true;
8355 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8356 IsAnd = false;
8357 else
8358 return None;
8359
8360 // EitherMayExit is true in these two cases:
8361 // br (and Op0 Op1), loop, exit
8362 // br (or Op0 Op1), exit, loop
8363 bool EitherMayExit = IsAnd ^ ExitIfTrue;
8364 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
8365 ControlsExit && !EitherMayExit,
8366 AllowPredicates);
8367 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
8368 ControlsExit && !EitherMayExit,
8369 AllowPredicates);
8370
8371 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8372 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
8373 if (isa<ConstantInt>(Op1))
8374 return Op1 == NeutralElement ? EL0 : EL1;
8375 if (isa<ConstantInt>(Op0))
8376 return Op0 == NeutralElement ? EL1 : EL0;
8377
8378 const SCEV *BECount = getCouldNotCompute();
8379 const SCEV *MaxBECount = getCouldNotCompute();
8380 if (EitherMayExit) {
8381 // Both conditions must be same for the loop to continue executing.
8382 // Choose the less conservative count.
8383 if (EL0.ExactNotTaken != getCouldNotCompute() &&
8384 EL1.ExactNotTaken != getCouldNotCompute()) {
8385 BECount = getUMinFromMismatchedTypes(
8386 EL0.ExactNotTaken, EL1.ExactNotTaken,
8387 /*Sequential=*/!isa<BinaryOperator>(ExitCond));
8388
8389 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
8390 // it should have been simplified to zero (see the condition (3) above)
8391 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||(static_cast <bool> (!isa<BinaryOperator>(ExitCond
) || !EL0.ExactNotTaken->isZero() || BECount->isZero())
? void (0) : __assert_fail ("!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || BECount->isZero()"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8392, __extension__
__PRETTY_FUNCTION__))
8392 BECount->isZero())(static_cast <bool> (!isa<BinaryOperator>(ExitCond
) || !EL0.ExactNotTaken->isZero() || BECount->isZero())
? void (0) : __assert_fail ("!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || BECount->isZero()"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8392, __extension__
__PRETTY_FUNCTION__))
;
8393 }
8394 if (EL0.MaxNotTaken == getCouldNotCompute())
8395 MaxBECount = EL1.MaxNotTaken;
8396 else if (EL1.MaxNotTaken == getCouldNotCompute())
8397 MaxBECount = EL0.MaxNotTaken;
8398 else
8399 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8400 } else {
8401 // Both conditions must be same at the same time for the loop to exit.
8402 // For now, be conservative.
8403 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8404 BECount = EL0.ExactNotTaken;
8405 }
8406
8407 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8408 // to be more aggressive when computing BECount than when computing
8409 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
8410 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8411 // to not.
8412 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8413 !isa<SCEVCouldNotCompute>(BECount))
8414 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8415
8416 return ExitLimit(BECount, MaxBECount, false,
8417 { &EL0.Predicates, &EL1.Predicates });
8418}
8419
8420ScalarEvolution::ExitLimit
8421ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8422 ICmpInst *ExitCond,
8423 bool ExitIfTrue,
8424 bool ControlsExit,
8425 bool AllowPredicates) {
8426 // If the condition was exit on true, convert the condition to exit on false
8427 ICmpInst::Predicate Pred;
8428 if (!ExitIfTrue)
8429 Pred = ExitCond->getPredicate();
8430 else
8431 Pred = ExitCond->getInversePredicate();
8432 const ICmpInst::Predicate OriginalPred = Pred;
8433
8434 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8435 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8436
8437 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit,
8438 AllowPredicates);
8439 if (EL.hasAnyInfo()) return EL;
8440
8441 auto *ExhaustiveCount =
8442 computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8443
8444 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8445 return ExhaustiveCount;
8446
8447 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8448 ExitCond->getOperand(1), L, OriginalPred);
8449}
8450ScalarEvolution::ExitLimit
8451ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8452 ICmpInst::Predicate Pred,
8453 const SCEV *LHS, const SCEV *RHS,
8454 bool ControlsExit,
8455 bool AllowPredicates) {
8456
8457 // Try to evaluate any dependencies out of the loop.
8458 LHS = getSCEVAtScope(LHS, L);
8459 RHS = getSCEVAtScope(RHS, L);
8460
8461 // At this point, we would like to compute how many iterations of the
8462 // loop the predicate will return true for these inputs.
8463 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8464 // If there is a loop-invariant, force it into the RHS.
8465 std::swap(LHS, RHS);
8466 Pred = ICmpInst::getSwappedPredicate(Pred);
8467 }
8468
8469 // Simplify the operands before analyzing them.
8470 (void)SimplifyICmpOperands(Pred, LHS, RHS);
8471
8472 // If we have a comparison of a chrec against a constant, try to use value
8473 // ranges to answer this query.
8474 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8475 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8476 if (AddRec->getLoop() == L) {
8477 // Form the constant range.
8478 ConstantRange CompRange =
8479 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8480
8481 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8482 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8483 }
8484
8485 // If this loop must exit based on this condition (or execute undefined
8486 // behaviour), and we can prove the test sequence produced must repeat
8487 // the same values on self-wrap of the IV, then we can infer that IV
8488 // doesn't self wrap because if it did, we'd have an infinite (undefined)
8489 // loop.
8490 if (ControlsExit && isLoopInvariant(RHS, L) && loopHasNoAbnormalExits(L) &&
8491 loopIsFiniteByAssumption(L)) {
8492
8493 // TODO: We can peel off any functions which are invertible *in L*. Loop
8494 // invariant terms are effectively constants for our purposes here.
8495 auto *InnerLHS = LHS;
8496 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
8497 InnerLHS = ZExt->getOperand();
8498 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
8499 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
8500 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
8501 StrideC && StrideC->getAPInt().isPowerOf2()) {
8502 auto Flags = AR->getNoWrapFlags();
8503 Flags = setFlags(Flags, SCEV::FlagNW);
8504 SmallVector<const SCEV*> Operands{AR->operands()};
8505 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
8506 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
8507 }
8508 }
8509 }
8510
8511 switch (Pred) {
8512 case ICmpInst::ICMP_NE: { // while (X != Y)
8513 // Convert to: while (X-Y != 0)
8514 if (LHS->getType()->isPointerTy()) {
8515 LHS = getLosslessPtrToIntExpr(LHS);
8516 if (isa<SCEVCouldNotCompute>(LHS))
8517 return LHS;
8518 }
8519 if (RHS->getType()->isPointerTy()) {
8520 RHS = getLosslessPtrToIntExpr(RHS);
8521 if (isa<SCEVCouldNotCompute>(RHS))
8522 return RHS;
8523 }
8524 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8525 AllowPredicates);
8526 if (EL.hasAnyInfo()) return EL;
8527 break;
8528 }
8529 case ICmpInst::ICMP_EQ: { // while (X == Y)
8530 // Convert to: while (X-Y == 0)
8531 if (LHS->getType()->isPointerTy()) {
8532 LHS = getLosslessPtrToIntExpr(LHS);
8533 if (isa<SCEVCouldNotCompute>(LHS))
8534 return LHS;
8535 }
8536 if (RHS->getType()->isPointerTy()) {
8537 RHS = getLosslessPtrToIntExpr(RHS);
8538 if (isa<SCEVCouldNotCompute>(RHS))
8539 return RHS;
8540 }
8541 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8542 if (EL.hasAnyInfo()) return EL;
8543 break;
8544 }
8545 case ICmpInst::ICMP_SLT:
8546 case ICmpInst::ICMP_ULT: { // while (X < Y)
8547 bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8548 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8549 AllowPredicates);
8550 if (EL.hasAnyInfo()) return EL;
8551 break;
8552 }
8553 case ICmpInst::ICMP_SGT:
8554 case ICmpInst::ICMP_UGT: { // while (X > Y)
8555 bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8556 ExitLimit EL =
8557 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8558 AllowPredicates);
8559 if (EL.hasAnyInfo()) return EL;
8560 break;
8561 }
8562 default:
8563 break;
8564 }
8565
8566 return getCouldNotCompute();
8567}
8568
8569ScalarEvolution::ExitLimit
8570ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8571 SwitchInst *Switch,
8572 BasicBlock *ExitingBlock,
8573 bool ControlsExit) {
8574 assert(!L->contains(ExitingBlock) && "Not an exiting block!")(static_cast <bool> (!L->contains(ExitingBlock) &&
"Not an exiting block!") ? void (0) : __assert_fail ("!L->contains(ExitingBlock) && \"Not an exiting block!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8574, __extension__
__PRETTY_FUNCTION__))
;
8575
8576 // Give up if the exit is the default dest of a switch.
8577 if (Switch->getDefaultDest() == ExitingBlock)
8578 return getCouldNotCompute();
8579
8580 assert(L->contains(Switch->getDefaultDest()) &&(static_cast <bool> (L->contains(Switch->getDefaultDest
()) && "Default case must not exit the loop!") ? void
(0) : __assert_fail ("L->contains(Switch->getDefaultDest()) && \"Default case must not exit the loop!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8581, __extension__
__PRETTY_FUNCTION__))
8581 "Default case must not exit the loop!")(static_cast <bool> (L->contains(Switch->getDefaultDest
()) && "Default case must not exit the loop!") ? void
(0) : __assert_fail ("L->contains(Switch->getDefaultDest()) && \"Default case must not exit the loop!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8581, __extension__
__PRETTY_FUNCTION__))
;
8582 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8583 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8584
8585 // while (X != Y) --> while (X-Y != 0)
8586 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8587 if (EL.hasAnyInfo())
8588 return EL;
8589
8590 return getCouldNotCompute();
8591}
8592
8593static ConstantInt *
8594EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8595 ScalarEvolution &SE) {
8596 const SCEV *InVal = SE.getConstant(C);
8597 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8598 assert(isa<SCEVConstant>(Val) &&(static_cast <bool> (isa<SCEVConstant>(Val) &&
"Evaluation of SCEV at constant didn't fold correctly?") ? void
(0) : __assert_fail ("isa<SCEVConstant>(Val) && \"Evaluation of SCEV at constant didn't fold correctly?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8599, __extension__
__PRETTY_FUNCTION__))
8599 "Evaluation of SCEV at constant didn't fold correctly?")(static_cast <bool> (isa<SCEVConstant>(Val) &&
"Evaluation of SCEV at constant didn't fold correctly?") ? void
(0) : __assert_fail ("isa<SCEVConstant>(Val) && \"Evaluation of SCEV at constant didn't fold correctly?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8599, __extension__
__PRETTY_FUNCTION__))
;
8600 return cast<SCEVConstant>(Val)->getValue();
8601}
8602
8603ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8604 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8605 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8606 if (!RHS)
8607 return getCouldNotCompute();
8608
8609 const BasicBlock *Latch = L->getLoopLatch();
8610 if (!Latch)
8611 return getCouldNotCompute();
8612
8613 const BasicBlock *Predecessor = L->getLoopPredecessor();
8614 if (!Predecessor)
8615 return getCouldNotCompute();
8616
8617 // Return true if V is of the form "LHS `shift_op` <positive constant>".
8618 // Return LHS in OutLHS and shift_opt in OutOpCode.
8619 auto MatchPositiveShift =
8620 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8621
8622 using namespace PatternMatch;
8623
8624 ConstantInt *ShiftAmt;
8625 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8626 OutOpCode = Instruction::LShr;
8627 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8628 OutOpCode = Instruction::AShr;
8629 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8630 OutOpCode = Instruction::Shl;
8631 else
8632 return false;
8633
8634 return ShiftAmt->getValue().isStrictlyPositive();
8635 };
8636
8637 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8638 //
8639 // loop:
8640 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8641 // %iv.shifted = lshr i32 %iv, <positive constant>
8642 //
8643 // Return true on a successful match. Return the corresponding PHI node (%iv
8644 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8645 auto MatchShiftRecurrence =
8646 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8647 Optional<Instruction::BinaryOps> PostShiftOpCode;
8648
8649 {
8650 Instruction::BinaryOps OpC;
8651 Value *V;
8652
8653 // If we encounter a shift instruction, "peel off" the shift operation,
8654 // and remember that we did so. Later when we inspect %iv's backedge
8655 // value, we will make sure that the backedge value uses the same
8656 // operation.
8657 //
8658 // Note: the peeled shift operation does not have to be the same
8659 // instruction as the one feeding into the PHI's backedge value. We only
8660 // really care about it being the same *kind* of shift instruction --
8661 // that's all that is required for our later inferences to hold.
8662 if (MatchPositiveShift(LHS, V, OpC)) {
8663 PostShiftOpCode = OpC;
8664 LHS = V;
8665 }
8666 }
8667
8668 PNOut = dyn_cast<PHINode>(LHS);
8669 if (!PNOut || PNOut->getParent() != L->getHeader())
8670 return false;
8671
8672 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8673 Value *OpLHS;
8674
8675 return
8676 // The backedge value for the PHI node must be a shift by a positive
8677 // amount
8678 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8679
8680 // of the PHI node itself
8681 OpLHS == PNOut &&
8682
8683 // and the kind of shift should be match the kind of shift we peeled
8684 // off, if any.
8685 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8686 };
8687
8688 PHINode *PN;
8689 Instruction::BinaryOps OpCode;
8690 if (!MatchShiftRecurrence(LHS, PN, OpCode))
8691 return getCouldNotCompute();
8692
8693 const DataLayout &DL = getDataLayout();
8694
8695 // The key rationale for this optimization is that for some kinds of shift
8696 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8697 // within a finite number of iterations. If the condition guarding the
8698 // backedge (in the sense that the backedge is taken if the condition is true)
8699 // is false for the value the shift recurrence stabilizes to, then we know
8700 // that the backedge is taken only a finite number of times.
8701
8702 ConstantInt *StableValue = nullptr;
8703 switch (OpCode) {
8704 default:
8705 llvm_unreachable("Impossible case!")::llvm::llvm_unreachable_internal("Impossible case!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 8705)
;
8706
8707 case Instruction::AShr: {
8708 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8709 // bitwidth(K) iterations.
8710 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8711 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8712 Predecessor->getTerminator(), &DT);
8713 auto *Ty = cast<IntegerType>(RHS->getType());
8714 if (Known.isNonNegative())
8715 StableValue = ConstantInt::get(Ty, 0);
8716 else if (Known.isNegative())
8717 StableValue = ConstantInt::get(Ty, -1, true);
8718 else
8719 return getCouldNotCompute();
8720
8721 break;
8722 }
8723 case Instruction::LShr:
8724 case Instruction::Shl:
8725 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8726 // stabilize to 0 in at most bitwidth(K) iterations.
8727 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8728 break;
8729 }
8730
8731 auto *Result =
8732 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8733 assert(Result->getType()->isIntegerTy(1) &&(static_cast <bool> (Result->getType()->isIntegerTy
(1) && "Otherwise cannot be an operand to a branch instruction"
) ? void (0) : __assert_fail ("Result->getType()->isIntegerTy(1) && \"Otherwise cannot be an operand to a branch instruction\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8734, __extension__
__PRETTY_FUNCTION__))
8734 "Otherwise cannot be an operand to a branch instruction")(static_cast <bool> (Result->getType()->isIntegerTy
(1) && "Otherwise cannot be an operand to a branch instruction"
) ? void (0) : __assert_fail ("Result->getType()->isIntegerTy(1) && \"Otherwise cannot be an operand to a branch instruction\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8734, __extension__
__PRETTY_FUNCTION__))
;
8735
8736 if (Result->isZeroValue()) {
8737 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8738 const SCEV *UpperBound =
8739 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8740 return ExitLimit(getCouldNotCompute(), UpperBound, false);
8741 }
8742
8743 return getCouldNotCompute();
8744}
8745
8746/// Return true if we can constant fold an instruction of the specified type,
8747/// assuming that all operands were constants.
8748static bool CanConstantFold(const Instruction *I) {
8749 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8750 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8751 isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8752 return true;
8753
8754 if (const CallInst *CI = dyn_cast<CallInst>(I))
8755 if (const Function *F = CI->getCalledFunction())
8756 return canConstantFoldCallTo(CI, F);
8757 return false;
8758}
8759
8760/// Determine whether this instruction can constant evolve within this loop
8761/// assuming its operands can all constant evolve.
8762static bool canConstantEvolve(Instruction *I, const Loop *L) {
8763 // An instruction outside of the loop can't be derived from a loop PHI.
8764 if (!L->contains(I)) return false;
8765
8766 if (isa<PHINode>(I)) {
8767 // We don't currently keep track of the control flow needed to evaluate
8768 // PHIs, so we cannot handle PHIs inside of loops.
8769 return L->getHeader() == I->getParent();
8770 }
8771
8772 // If we won't be able to constant fold this expression even if the operands
8773 // are constants, bail early.
8774 return CanConstantFold(I);
8775}
8776
8777/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8778/// recursing through each instruction operand until reaching a loop header phi.
8779static PHINode *
8780getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8781 DenseMap<Instruction *, PHINode *> &PHIMap,
8782 unsigned Depth) {
8783 if (Depth > MaxConstantEvolvingDepth)
8784 return nullptr;
8785
8786 // Otherwise, we can evaluate this instruction if all of its operands are
8787 // constant or derived from a PHI node themselves.
8788 PHINode *PHI = nullptr;
8789 for (Value *Op : UseInst->operands()) {
8790 if (isa<Constant>(Op)) continue;
8791
8792 Instruction *OpInst = dyn_cast<Instruction>(Op);
8793 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8794
8795 PHINode *P = dyn_cast<PHINode>(OpInst);
8796 if (!P)
8797 // If this operand is already visited, reuse the prior result.
8798 // We may have P != PHI if this is the deepest point at which the
8799 // inconsistent paths meet.
8800 P = PHIMap.lookup(OpInst);
8801 if (!P) {
8802 // Recurse and memoize the results, whether a phi is found or not.
8803 // This recursive call invalidates pointers into PHIMap.
8804 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8805 PHIMap[OpInst] = P;
8806 }
8807 if (!P)
8808 return nullptr; // Not evolving from PHI
8809 if (PHI && PHI != P)
8810 return nullptr; // Evolving from multiple different PHIs.
8811 PHI = P;
8812 }
8813 // This is a expression evolving from a constant PHI!
8814 return PHI;
8815}
8816
8817/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8818/// in the loop that V is derived from. We allow arbitrary operations along the
8819/// way, but the operands of an operation must either be constants or a value
8820/// derived from a constant PHI. If this expression does not fit with these
8821/// constraints, return null.
8822static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8823 Instruction *I = dyn_cast<Instruction>(V);
8824 if (!I || !canConstantEvolve(I, L)) return nullptr;
8825
8826 if (PHINode *PN = dyn_cast<PHINode>(I))
8827 return PN;
8828
8829 // Record non-constant instructions contained by the loop.
8830 DenseMap<Instruction *, PHINode *> PHIMap;
8831 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8832}
8833
8834/// EvaluateExpression - Given an expression that passes the
8835/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8836/// in the loop has the value PHIVal. If we can't fold this expression for some
8837/// reason, return null.
8838static Constant *EvaluateExpression(Value *V, const Loop *L,
8839 DenseMap<Instruction *, Constant *> &Vals,
8840 const DataLayout &DL,
8841 const TargetLibraryInfo *TLI) {
8842 // Convenient constant check, but redundant for recursive calls.
8843 if (Constant *C = dyn_cast<Constant>(V)) return C;
8844 Instruction *I = dyn_cast<Instruction>(V);
8845 if (!I) return nullptr;
8846
8847 if (Constant *C = Vals.lookup(I)) return C;
8848
8849 // An instruction inside the loop depends on a value outside the loop that we
8850 // weren't given a mapping for, or a value such as a call inside the loop.
8851 if (!canConstantEvolve(I, L)) return nullptr;
8852
8853 // An unmapped PHI can be due to a branch or another loop inside this loop,
8854 // or due to this not being the initial iteration through a loop where we
8855 // couldn't compute the evolution of this particular PHI last time.
8856 if (isa<PHINode>(I)) return nullptr;
8857
8858 std::vector<Constant*> Operands(I->getNumOperands());
8859
8860 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8861 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8862 if (!Operand) {
8863 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8864 if (!Operands[i]) return nullptr;
8865 continue;
8866 }
8867 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8868 Vals[Operand] = C;
8869 if (!C) return nullptr;
8870 Operands[i] = C;
8871 }
8872
8873 if (CmpInst *CI = dyn_cast<CmpInst>(I))
8874 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8875 Operands[1], DL, TLI);
8876 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8877 if (!LI->isVolatile())
8878 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8879 }
8880 return ConstantFoldInstOperands(I, Operands, DL, TLI);
8881}
8882
8883
8884// If every incoming value to PN except the one for BB is a specific Constant,
8885// return that, else return nullptr.
8886static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8887 Constant *IncomingVal = nullptr;
8888
8889 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8890 if (PN->getIncomingBlock(i) == BB)
8891 continue;
8892
8893 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8894 if (!CurrentVal)
8895 return nullptr;
8896
8897 if (IncomingVal != CurrentVal) {
8898 if (IncomingVal)
8899 return nullptr;
8900 IncomingVal = CurrentVal;
8901 }
8902 }
8903
8904 return IncomingVal;
8905}
8906
8907/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8908/// in the header of its containing loop, we know the loop executes a
8909/// constant number of times, and the PHI node is just a recurrence
8910/// involving constants, fold it.
8911Constant *
8912ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8913 const APInt &BEs,
8914 const Loop *L) {
8915 auto I = ConstantEvolutionLoopExitValue.find(PN);
8916 if (I != ConstantEvolutionLoopExitValue.end())
8917 return I->second;
8918
8919 if (BEs.ugt(MaxBruteForceIterations))
8920 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
8921
8922 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8923
8924 DenseMap<Instruction *, Constant *> CurrentIterVals;
8925 BasicBlock *Header = L->getHeader();
8926 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!")(static_cast <bool> (PN->getParent() == Header &&
"Can't evaluate PHI not in loop header!") ? void (0) : __assert_fail
("PN->getParent() == Header && \"Can't evaluate PHI not in loop header!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8926, __extension__
__PRETTY_FUNCTION__))
;
8927
8928 BasicBlock *Latch = L->getLoopLatch();
8929 if (!Latch)
8930 return nullptr;
8931
8932 for (PHINode &PHI : Header->phis()) {
8933 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8934 CurrentIterVals[&PHI] = StartCST;
8935 }
8936 if (!CurrentIterVals.count(PN))
8937 return RetVal = nullptr;
8938
8939 Value *BEValue = PN->getIncomingValueForBlock(Latch);
8940
8941 // Execute the loop symbolically to determine the exit value.
8942 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&(static_cast <bool> (BEs.getActiveBits() < 8 * sizeof
(unsigned) && "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"
) ? void (0) : __assert_fail ("BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && \"BEs is <= MaxBruteForceIterations which is an 'unsigned'!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8943, __extension__
__PRETTY_FUNCTION__))
8943 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!")(static_cast <bool> (BEs.getActiveBits() < 8 * sizeof
(unsigned) && "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"
) ? void (0) : __assert_fail ("BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && \"BEs is <= MaxBruteForceIterations which is an 'unsigned'!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 8943, __extension__
__PRETTY_FUNCTION__))
;
8944
8945 unsigned NumIterations = BEs.getZExtValue(); // must be in range
8946 unsigned IterationNum = 0;
8947 const DataLayout &DL = getDataLayout();
8948 for (; ; ++IterationNum) {
8949 if (IterationNum == NumIterations)
8950 return RetVal = CurrentIterVals[PN]; // Got exit value!
8951
8952 // Compute the value of the PHIs for the next iteration.
8953 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8954 DenseMap<Instruction *, Constant *> NextIterVals;
8955 Constant *NextPHI =
8956 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8957 if (!NextPHI)
8958 return nullptr; // Couldn't evaluate!
8959 NextIterVals[PN] = NextPHI;
8960
8961 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8962
8963 // Also evaluate the other PHI nodes. However, we don't get to stop if we
8964 // cease to be able to evaluate one of them or if they stop evolving,
8965 // because that doesn't necessarily prevent us from computing PN.
8966 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8967 for (const auto &I : CurrentIterVals) {
8968 PHINode *PHI = dyn_cast<PHINode>(I.first);
8969 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8970 PHIsToCompute.emplace_back(PHI, I.second);
8971 }
8972 // We use two distinct loops because EvaluateExpression may invalidate any
8973 // iterators into CurrentIterVals.
8974 for (const auto &I : PHIsToCompute) {
8975 PHINode *PHI = I.first;
8976 Constant *&NextPHI = NextIterVals[PHI];
8977 if (!NextPHI) { // Not already computed.
8978 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8979 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8980 }
8981 if (NextPHI != I.second)
8982 StoppedEvolving = false;
8983 }
8984
8985 // If all entries in CurrentIterVals == NextIterVals then we can stop
8986 // iterating, the loop can't continue to change.
8987 if (StoppedEvolving)
8988 return RetVal = CurrentIterVals[PN];
8989
8990 CurrentIterVals.swap(NextIterVals);
8991 }
8992}
8993
8994const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8995 Value *Cond,
8996 bool ExitWhen) {
8997 PHINode *PN = getConstantEvolvingPHI(Cond, L);
8998 if (!PN) return getCouldNotCompute();
8999
9000 // If the loop is canonicalized, the PHI will have exactly two entries.
9001 // That's the only form we support here.
9002 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9003
9004 DenseMap<Instruction *, Constant *> CurrentIterVals;
9005 BasicBlock *Header = L->getHeader();
9006 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!")(static_cast <bool> (PN->getParent() == Header &&
"Can't evaluate PHI not in loop header!") ? void (0) : __assert_fail
("PN->getParent() == Header && \"Can't evaluate PHI not in loop header!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 9006, __extension__
__PRETTY_FUNCTION__))
;
9007
9008 BasicBlock *Latch = L->getLoopLatch();
9009 assert(Latch && "Should follow from NumIncomingValues == 2!")(static_cast <bool> (Latch && "Should follow from NumIncomingValues == 2!"
) ? void (0) : __assert_fail ("Latch && \"Should follow from NumIncomingValues == 2!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 9009, __extension__
__PRETTY_FUNCTION__))
;
9010
9011 for (PHINode &PHI : Header->phis()) {
9012 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9013 CurrentIterVals[&PHI] = StartCST;
9014 }
9015 if (!CurrentIterVals.count(PN))
9016 return getCouldNotCompute();
9017
9018 // Okay, we find a PHI node that defines the trip count of this loop. Execute
9019 // the loop symbolically to determine when the condition gets a value of
9020 // "ExitWhen".
9021 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
9022 const DataLayout &DL = getDataLayout();
9023 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9024 auto *CondVal = dyn_cast_or_null<ConstantInt>(
9025 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9026
9027 // Couldn't symbolically evaluate.
9028 if (!CondVal) return getCouldNotCompute();
9029
9030 if (CondVal->getValue() == uint64_t(ExitWhen)) {
9031 ++NumBruteForceTripCountsComputed;
9032 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9033 }
9034
9035 // Update all the PHI nodes for the next iteration.
9036 DenseMap<Instruction *, Constant *> NextIterVals;
9037
9038 // Create a list of which PHIs we need to compute. We want to do this before
9039 // calling EvaluateExpression on them because that may invalidate iterators
9040 // into CurrentIterVals.
9041 SmallVector<PHINode *, 8> PHIsToCompute;
9042 for (const auto &I : CurrentIterVals) {
9043 PHINode *PHI = dyn_cast<PHINode>(I.first);
9044 if (!PHI || PHI->getParent() != Header) continue;
9045 PHIsToCompute.push_back(PHI);
9046 }
9047 for (PHINode *PHI : PHIsToCompute) {
9048 Constant *&NextPHI = NextIterVals[PHI];
9049 if (NextPHI) continue; // Already computed!
9050
9051 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9052 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9053 }
9054 CurrentIterVals.swap(NextIterVals);
9055 }
9056
9057 // Too many iterations were needed to evaluate.
9058 return getCouldNotCompute();
9059}
9060
9061const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9062 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9063 ValuesAtScopes[V];
9064 // Check to see if we've folded this expression at this loop before.
9065 for (auto &LS : Values)
9066 if (LS.first == L)
9067 return LS.second ? LS.second : V;
9068
9069 Values.emplace_back(L, nullptr);
9070
9071 // Otherwise compute it.
9072 const SCEV *C = computeSCEVAtScope(V, L);
9073 for (auto &LS : reverse(ValuesAtScopes[V]))
9074 if (LS.first == L) {
9075 LS.second = C;
9076 if (!isa<SCEVConstant>(C))
9077 ValuesAtScopesUsers[C].push_back({L, V});
9078 break;
9079 }
9080 return C;
9081}
9082
9083/// This builds up a Constant using the ConstantExpr interface. That way, we
9084/// will return Constants for objects which aren't represented by a
9085/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9086/// Returns NULL if the SCEV isn't representable as a Constant.
9087static Constant *BuildConstantFromSCEV(const SCEV *V) {
9088 switch (V->getSCEVType()) {
9089 case scCouldNotCompute:
9090 case scAddRecExpr:
9091 return nullptr;
9092 case scConstant:
9093 return cast<SCEVConstant>(V)->getValue();
9094 case scUnknown:
9095 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9096 case scSignExtend: {
9097 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
9098 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
9099 return ConstantExpr::getSExt(CastOp, SS->getType());
9100 return nullptr;
9101 }
9102 case scZeroExtend: {
9103 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
9104 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
9105 return ConstantExpr::getZExt(CastOp, SZ->getType());
9106 return nullptr;
9107 }
9108 case scPtrToInt: {
9109 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9110 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9111 return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9112
9113 return nullptr;
9114 }
9115 case scTruncate: {
9116 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9117 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9118 return ConstantExpr::getTrunc(CastOp, ST->getType());
9119 return nullptr;
9120 }
9121 case scAddExpr: {
9122 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9123 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
9124 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
9125 unsigned AS = PTy->getAddressSpace();
9126 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
9127 C = ConstantExpr::getBitCast(C, DestPtrTy);
9128 }
9129 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
9130 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
9131 if (!C2)
9132 return nullptr;
9133
9134 // First pointer!
9135 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
9136 unsigned AS = C2->getType()->getPointerAddressSpace();
9137 std::swap(C, C2);
9138 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
9139 // The offsets have been converted to bytes. We can add bytes to an
9140 // i8* by GEP with the byte count in the first index.
9141 C = ConstantExpr::getBitCast(C, DestPtrTy);
9142 }
9143
9144 // Don't bother trying to sum two pointers. We probably can't
9145 // statically compute a load that results from it anyway.
9146 if (C2->getType()->isPointerTy())
9147 return nullptr;
9148
9149 if (C->getType()->isPointerTy()) {
9150 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9151 C, C2);
9152 } else {
9153 C = ConstantExpr::getAdd(C, C2);
9154 }
9155 }
9156 return C;
9157 }
9158 return nullptr;
9159 }
9160 case scMulExpr: {
9161 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
9162 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
9163 // Don't bother with pointers at all.
9164 if (C->getType()->isPointerTy())
9165 return nullptr;
9166 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
9167 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
9168 if (!C2 || C2->getType()->isPointerTy())
9169 return nullptr;
9170 C = ConstantExpr::getMul(C, C2);
9171 }
9172 return C;
9173 }
9174 return nullptr;
9175 }
9176 case scUDivExpr: {
9177 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
9178 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
9179 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
9180 if (LHS->getType() == RHS->getType())
9181 return ConstantExpr::getUDiv(LHS, RHS);
9182 return nullptr;
9183 }
9184 case scSMaxExpr:
9185 case scUMaxExpr:
9186 case scSMinExpr:
9187 case scUMinExpr:
9188 case scSequentialUMinExpr:
9189 return nullptr; // TODO: smax, umax, smin, umax, umin_seq.
9190 }
9191 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 9191)
;
9192}
9193
9194const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9195 if (isa<SCEVConstant>(V)) return V;
9196
9197 // If this instruction is evolved from a constant-evolving PHI, compute the
9198 // exit value from the loop without using SCEVs.
9199 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
9200 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
9201 if (PHINode *PN = dyn_cast<PHINode>(I)) {
9202 const Loop *CurrLoop = this->LI[I->getParent()];
9203 // Looking for loop exit value.
9204 if (CurrLoop && CurrLoop->getParentLoop() == L &&
9205 PN->getParent() == CurrLoop->getHeader()) {
9206 // Okay, there is no closed form solution for the PHI node. Check
9207 // to see if the loop that contains it has a known backedge-taken
9208 // count. If so, we may be able to force computation of the exit
9209 // value.
9210 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
9211 // This trivial case can show up in some degenerate cases where
9212 // the incoming IR has not yet been fully simplified.
9213 if (BackedgeTakenCount->isZero()) {
9214 Value *InitValue = nullptr;
9215 bool MultipleInitValues = false;
9216 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
9217 if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
9218 if (!InitValue)
9219 InitValue = PN->getIncomingValue(i);
9220 else if (InitValue != PN->getIncomingValue(i)) {
9221 MultipleInitValues = true;
9222 break;
9223 }
9224 }
9225 }
9226 if (!MultipleInitValues && InitValue)
9227 return getSCEV(InitValue);
9228 }
9229 // Do we have a loop invariant value flowing around the backedge
9230 // for a loop which must execute the backedge?
9231 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
9232 isKnownPositive(BackedgeTakenCount) &&
9233 PN->getNumIncomingValues() == 2) {
9234
9235 unsigned InLoopPred =
9236 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
9237 Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
9238 if (CurrLoop->isLoopInvariant(BackedgeVal))
9239 return getSCEV(BackedgeVal);
9240 }
9241 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
9242 // Okay, we know how many times the containing loop executes. If
9243 // this is a constant evolving PHI node, get the final value at
9244 // the specified iteration number.
9245 Constant *RV = getConstantEvolutionLoopExitValue(
9246 PN, BTCC->getAPInt(), CurrLoop);
9247 if (RV) return getSCEV(RV);
9248 }
9249 }
9250
9251 // If there is a single-input Phi, evaluate it at our scope. If we can
9252 // prove that this replacement does not break LCSSA form, use new value.
9253 if (PN->getNumOperands() == 1) {
9254 const SCEV *Input = getSCEV(PN->getOperand(0));
9255 const SCEV *InputAtScope = getSCEVAtScope(Input, L);
9256 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
9257 // for the simplest case just support constants.
9258 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
9259 }
9260 }
9261
9262 // Okay, this is an expression that we cannot symbolically evaluate
9263 // into a SCEV. Check to see if it's possible to symbolically evaluate
9264 // the arguments into constants, and if so, try to constant propagate the
9265 // result. This is particularly useful for computing loop exit values.
9266 if (CanConstantFold(I)) {
9267 SmallVector<Constant *, 4> Operands;
9268 bool MadeImprovement = false;
9269 for (Value *Op : I->operands()) {
9270 if (Constant *C = dyn_cast<Constant>(Op)) {
9271 Operands.push_back(C);
9272 continue;
9273 }
9274
9275 // If any of the operands is non-constant and if they are
9276 // non-integer and non-pointer, don't even try to analyze them
9277 // with scev techniques.
9278 if (!isSCEVable(Op->getType()))
9279 return V;
9280
9281 const SCEV *OrigV = getSCEV(Op);
9282 const SCEV *OpV = getSCEVAtScope(OrigV, L);
9283 MadeImprovement |= OrigV != OpV;
9284
9285 Constant *C = BuildConstantFromSCEV(OpV);
9286 if (!C) return V;
9287 if (C->getType() != Op->getType())
9288 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
9289 Op->getType(),
9290 false),
9291 C, Op->getType());
9292 Operands.push_back(C);
9293 }
9294
9295 // Check to see if getSCEVAtScope actually made an improvement.
9296 if (MadeImprovement) {
9297 Constant *C = nullptr;
9298 const DataLayout &DL = getDataLayout();
9299 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
9300 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
9301 Operands[1], DL, &TLI);
9302 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
9303 if (!Load->isVolatile())
9304 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
9305 DL);
9306 } else
9307 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
9308 if (!C) return V;
9309 return getSCEV(C);
9310 }
9311 }
9312 }
9313
9314 // This is some other type of SCEVUnknown, just return it.
9315 return V;
9316 }
9317
9318 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) {
9319 const auto *Comm = cast<SCEVNAryExpr>(V);
9320 // Avoid performing the look-up in the common case where the specified
9321 // expression has no loop-variant portions.
9322 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
9323 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9324 if (OpAtScope != Comm->getOperand(i)) {
9325 // Okay, at least one of these operands is loop variant but might be
9326 // foldable. Build a new instance of the folded commutative expression.
9327 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
9328 Comm->op_begin()+i);
9329 NewOps.push_back(OpAtScope);
9330
9331 for (++i; i != e; ++i) {
9332 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9333 NewOps.push_back(OpAtScope);
9334 }
9335 if (isa<SCEVAddExpr>(Comm))
9336 return getAddExpr(NewOps, Comm->getNoWrapFlags());
9337 if (isa<SCEVMulExpr>(Comm))
9338 return getMulExpr(NewOps, Comm->getNoWrapFlags());
9339 if (isa<SCEVMinMaxExpr>(Comm))
9340 return getMinMaxExpr(Comm->getSCEVType(), NewOps);
9341 if (isa<SCEVSequentialMinMaxExpr>(Comm))
9342 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps);
9343 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!")::llvm::llvm_unreachable_internal("Unknown commutative / sequential min/max SCEV type!"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 9343)
;
9344 }
9345 }
9346 // If we got here, all operands are loop invariant.
9347 return Comm;
9348 }
9349
9350 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9351 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9352 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9353 if (LHS == Div->getLHS() && RHS == Div->getRHS())
9354 return Div; // must be loop invariant
9355 return getUDivExpr(LHS, RHS);
9356 }
9357
9358 // If this is a loop recurrence for a loop that does not contain L, then we
9359 // are dealing with the final value computed by the loop.
9360 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9361 // First, attempt to evaluate each operand.
9362 // Avoid performing the look-up in the common case where the specified
9363 // expression has no loop-variant portions.
9364 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9365 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9366 if (OpAtScope == AddRec->getOperand(i))
9367 continue;
9368
9369 // Okay, at least one of these operands is loop variant but might be
9370 // foldable. Build a new instance of the folded commutative expression.
9371 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9372 AddRec->op_begin()+i);
9373 NewOps.push_back(OpAtScope);
9374 for (++i; i != e; ++i)
9375 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9376
9377 const SCEV *FoldedRec =
9378 getAddRecExpr(NewOps, AddRec->getLoop(),
9379 AddRec->getNoWrapFlags(SCEV::FlagNW));
9380 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9381 // The addrec may be folded to a nonrecurrence, for example, if the
9382 // induction variable is multiplied by zero after constant folding. Go
9383 // ahead and return the folded value.
9384 if (!AddRec)
9385 return FoldedRec;
9386 break;
9387 }
9388
9389 // If the scope is outside the addrec's loop, evaluate it by using the
9390 // loop exit value of the addrec.
9391 if (!AddRec->getLoop()->contains(L)) {
9392 // To evaluate this recurrence, we need to know how many times the AddRec
9393 // loop iterates. Compute this now.
9394 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9395 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9396
9397 // Then, evaluate the AddRec.
9398 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9399 }
9400
9401 return AddRec;
9402 }
9403
9404 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
9405 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9406 if (Op == Cast->getOperand())
9407 return Cast; // must be loop invariant
9408 return getCastExpr(Cast->getSCEVType(), Op, Cast->getType());
9409 }
9410
9411 llvm_unreachable("Unknown SCEV type!")::llvm::llvm_unreachable_internal("Unknown SCEV type!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 9411)
;
9412}
9413
9414const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9415 return getSCEVAtScope(getSCEV(V), L);
9416}
9417
9418const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9419 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9420 return stripInjectiveFunctions(ZExt->getOperand());
9421 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9422 return stripInjectiveFunctions(SExt->getOperand());
9423 return S;
9424}
9425
9426/// Finds the minimum unsigned root of the following equation:
9427///
9428/// A * X = B (mod N)
9429///
9430/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9431/// A and B isn't important.
9432///
9433/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9434static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9435 ScalarEvolution &SE) {
9436 uint32_t BW = A.getBitWidth();
9437 assert(BW == SE.getTypeSizeInBits(B->getType()))(static_cast <bool> (BW == SE.getTypeSizeInBits(B->getType
())) ? void (0) : __assert_fail ("BW == SE.getTypeSizeInBits(B->getType())"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 9437, __extension__
__PRETTY_FUNCTION__))
;
9438 assert(A != 0 && "A must be non-zero.")(static_cast <bool> (A != 0 && "A must be non-zero."
) ? void (0) : __assert_fail ("A != 0 && \"A must be non-zero.\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 9438, __extension__
__PRETTY_FUNCTION__))
;
9439
9440 // 1. D = gcd(A, N)
9441 //
9442 // The gcd of A and N may have only one prime factor: 2. The number of
9443 // trailing zeros in A is its multiplicity
9444 uint32_t Mult2 = A.countTrailingZeros();
9445 // D = 2^Mult2
9446
9447 // 2. Check if B is divisible by D.
9448 //
9449 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9450 // is not less than multiplicity of this prime factor for D.
9451 if (SE.GetMinTrailingZeros(B) < Mult2)
9452 return SE.getCouldNotCompute();
9453
9454 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9455 // modulo (N / D).
9456 //
9457 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9458 // (N / D) in general. The inverse itself always fits into BW bits, though,
9459 // so we immediately truncate it.
9460 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
9461 APInt Mod(BW + 1, 0);
9462 Mod.setBit(BW - Mult2); // Mod = N / D
9463 APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9464
9465 // 4. Compute the minimum unsigned root of the equation:
9466 // I * (B / D) mod (N / D)
9467 // To simplify the computation, we factor out the divide by D:
9468 // (I * B mod N) / D
9469 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9470 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9471}
9472
9473/// For a given quadratic addrec, generate coefficients of the corresponding
9474/// quadratic equation, multiplied by a common value to ensure that they are
9475/// integers.
9476/// The returned value is a tuple { A, B, C, M, BitWidth }, where
9477/// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9478/// were multiplied by, and BitWidth is the bit width of the original addrec
9479/// coefficients.
9480/// This function returns None if the addrec coefficients are not compile-
9481/// time constants.
9482static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9483GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9484 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!")(static_cast <bool> (AddRec->getNumOperands() == 3 &&
"This is not a quadratic chrec!") ? void (0) : __assert_fail
("AddRec->getNumOperands() == 3 && \"This is not a quadratic chrec!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 9484, __extension__
__PRETTY_FUNCTION__))
;
9485 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9486 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9487 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9488 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << __func__ << ": analyzing quadratic addrec: "
<< *AddRec << '\n'; } } while (false)
9489 << *AddRec << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << __func__ << ": analyzing quadratic addrec: "
<< *AddRec << '\n'; } } while (false)
;
9490
9491 // We currently can only solve this if the coefficients are constants.
9492 if (!LC || !MC || !NC) {
9493 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << __func__ << ": coefficients are not constant\n"
; } } while (false)
;
9494 return None;
9495 }
9496
9497 APInt L = LC->getAPInt();
9498 APInt M = MC->getAPInt();
9499 APInt N = NC->getAPInt();
9500 assert(!N.isZero() && "This is not a quadratic addrec")(static_cast <bool> (!N.isZero() && "This is not a quadratic addrec"
) ? void (0) : __assert_fail ("!N.isZero() && \"This is not a quadratic addrec\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 9500, __extension__
__PRETTY_FUNCTION__))
;
9501
9502 unsigned BitWidth = LC->getAPInt().getBitWidth();
9503 unsigned NewWidth = BitWidth + 1;
9504 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << __func__ << ": addrec coeff bw: "
<< BitWidth << '\n'; } } while (false)
9505 << BitWidth << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << __func__ << ": addrec coeff bw: "
<< BitWidth << '\n'; } } while (false)
;
9506 // The sign-extension (as opposed to a zero-extension) here matches the
9507 // extension used in SolveQuadraticEquationWrap (with the same motivation).
9508 N = N.sext(NewWidth);
9509 M = M.sext(NewWidth);
9510 L = L.sext(NewWidth);
9511
9512 // The increments are M, M+N, M+2N, ..., so the accumulated values are
9513 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9514 // L+M, L+2M+N, L+3M+3N, ...
9515 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9516 //
9517 // The equation Acc = 0 is then
9518 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
9519 // In a quadratic form it becomes:
9520 // N n^2 + (2M-N) n + 2L = 0.
9521
9522 APInt A = N;
9523 APInt B = 2 * M - A;
9524 APInt C = 2 * L;
9525 APInt T = APInt(NewWidth, 2);
9526 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << Bdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << __func__ << ": equation "
<< A << "x^2 + " << B << "x + " <<
C << ", coeff bw: " << NewWidth << ", multiplied by "
<< T << '\n'; } } while (false)
9527 << "x + " << C << ", coeff bw: " << NewWidthdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << __func__ << ": equation "
<< A << "x^2 + " << B << "x + " <<
C << ", coeff bw: " << NewWidth << ", multiplied by "
<< T << '\n'; } } while (false)
9528 << ", multiplied by " << T << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << __func__ << ": equation "
<< A << "x^2 + " << B << "x + " <<
C << ", coeff bw: " << NewWidth << ", multiplied by "
<< T << '\n'; } } while (false)
;
9529 return std::make_tuple(A, B, C, T, BitWidth);
9530}
9531
9532/// Helper function to compare optional APInts:
9533/// (a) if X and Y both exist, return min(X, Y),
9534/// (b) if neither X nor Y exist, return None,
9535/// (c) if exactly one of X and Y exists, return that value.
9536static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9537 if (X.hasValue() && Y.hasValue()) {
9538 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9539 APInt XW = X->sextOrSelf(W);
9540 APInt YW = Y->sextOrSelf(W);
9541 return XW.slt(YW) ? *X : *Y;
9542 }
9543 if (!X.hasValue() && !Y.hasValue())
9544 return None;
9545 return X.hasValue() ? *X : *Y;
9546}
9547
9548/// Helper function to truncate an optional APInt to a given BitWidth.
9549/// When solving addrec-related equations, it is preferable to return a value
9550/// that has the same bit width as the original addrec's coefficients. If the
9551/// solution fits in the original bit width, truncate it (except for i1).
9552/// Returning a value of a different bit width may inhibit some optimizations.
9553///
9554/// In general, a solution to a quadratic equation generated from an addrec
9555/// may require BW+1 bits, where BW is the bit width of the addrec's
9556/// coefficients. The reason is that the coefficients of the quadratic
9557/// equation are BW+1 bits wide (to avoid truncation when converting from
9558/// the addrec to the equation).
9559static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9560 if (!X.hasValue())
9561 return None;
9562 unsigned W = X->getBitWidth();
9563 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9564 return X->trunc(BitWidth);
9565 return X;
9566}
9567
9568/// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9569/// iterations. The values L, M, N are assumed to be signed, and they
9570/// should all have the same bit widths.
9571/// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9572/// where BW is the bit width of the addrec's coefficients.
9573/// If the calculated value is a BW-bit integer (for BW > 1), it will be
9574/// returned as such, otherwise the bit width of the returned value may
9575/// be greater than BW.
9576///
9577/// This function returns None if
9578/// (a) the addrec coefficients are not constant, or
9579/// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9580/// like x^2 = 5, no integer solutions exist, in other cases an integer
9581/// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9582static Optional<APInt>
9583SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9584 APInt A, B, C, M;
9585 unsigned BitWidth;
9586 auto T = GetQuadraticEquation(AddRec);
9587 if (!T.hasValue())
9588 return None;
9589
9590 std::tie(A, B, C, M, BitWidth) = *T;
9591 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << __func__ << ": solving for unsigned overflow\n"
; } } while (false)
;
9592 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9593 if (!X.hasValue())
9594 return None;
9595
9596 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9597 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9598 if (!V->isZero())
9599 return None;
9600
9601 return TruncIfPossible(X, BitWidth);
9602}
9603
9604/// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9605/// iterations. The values M, N are assumed to be signed, and they
9606/// should all have the same bit widths.
9607/// Find the least n such that c(n) does not belong to the given range,
9608/// while c(n-1) does.
9609///
9610/// This function returns None if
9611/// (a) the addrec coefficients are not constant, or
9612/// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9613/// bounds of the range.
9614static Optional<APInt>
9615SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9616 const ConstantRange &Range, ScalarEvolution &SE) {
9617 assert(AddRec->getOperand(0)->isZero() &&(static_cast <bool> (AddRec->getOperand(0)->isZero
() && "Starting value of addrec should be 0") ? void (
0) : __assert_fail ("AddRec->getOperand(0)->isZero() && \"Starting value of addrec should be 0\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 9618, __extension__
__PRETTY_FUNCTION__))
9618 "Starting value of addrec should be 0")(static_cast <bool> (AddRec->getOperand(0)->isZero
() && "Starting value of addrec should be 0") ? void (
0) : __assert_fail ("AddRec->getOperand(0)->isZero() && \"Starting value of addrec should be 0\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 9618, __extension__
__PRETTY_FUNCTION__))
;
9619 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << __func__ << ": solving boundary crossing for range "
<< Range << ", addrec " << *AddRec <<
'\n'; } } while (false)
9620 << Range << ", addrec " << *AddRec << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << __func__ << ": solving boundary crossing for range "
<< Range << ", addrec " << *AddRec <<
'\n'; } } while (false)
;
9621 // This case is handled in getNumIterationsInRange. Here we can assume that
9622 // we start in the range.
9623 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&(static_cast <bool> (Range.contains(APInt(SE.getTypeSizeInBits
(AddRec->getType()), 0)) && "Addrec's initial value should be in range"
) ? void (0) : __assert_fail ("Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && \"Addrec's initial value should be in range\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 9624, __extension__
__PRETTY_FUNCTION__))
9624 "Addrec's initial value should be in range")(static_cast <bool> (Range.contains(APInt(SE.getTypeSizeInBits
(AddRec->getType()), 0)) && "Addrec's initial value should be in range"
) ? void (0) : __assert_fail ("Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && \"Addrec's initial value should be in range\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 9624, __extension__
__PRETTY_FUNCTION__))
;
9625
9626 APInt A, B, C, M;
9627 unsigned BitWidth;
9628 auto T = GetQuadraticEquation(AddRec);
9629 if (!T.hasValue())
9630 return None;
9631
9632 // Be careful about the return value: there can be two reasons for not
9633 // returning an actual number. First, if no solutions to the equations
9634 // were found, and second, if the solutions don't leave the given range.
9635 // The first case means that the actual solution is "unknown", the second
9636 // means that it's known, but not valid. If the solution is unknown, we
9637 // cannot make any conclusions.
9638 // Return a pair: the optional solution and a flag indicating if the
9639 // solution was found.
9640 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9641 // Solve for signed overflow and unsigned overflow, pick the lower
9642 // solution.
9643 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: checking boundary "
<< Bound << " (before multiplying by " << M
<< ")\n"; } } while (false)
9644 << Bound << " (before multiplying by " << M << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: checking boundary "
<< Bound << " (before multiplying by " << M
<< ")\n"; } } while (false)
;
9645 Bound *= M; // The quadratic equation multiplier.
9646
9647 Optional<APInt> SO = None;
9648 if (BitWidth > 1) {
9649 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: solving for "
"signed overflow\n"; } } while (false)
9650 "signed overflow\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: solving for "
"signed overflow\n"; } } while (false)
;
9651 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9652 }
9653 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: solving for "
"unsigned overflow\n"; } } while (false)
9654 "unsigned overflow\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: solving for "
"unsigned overflow\n"; } } while (false)
;
9655 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9656 BitWidth+1);
9657
9658 auto LeavesRange = [&] (const APInt &X) {
9659 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9660 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9661 if (Range.contains(V0->getValue()))
9662 return false;
9663 // X should be at least 1, so X-1 is non-negative.
9664 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9665 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9666 if (Range.contains(V1->getValue()))
9667 return true;
9668 return false;
9669 };
9670
9671 // If SolveQuadraticEquationWrap returns None, it means that there can
9672 // be a solution, but the function failed to find it. We cannot treat it
9673 // as "no solution".
9674 if (!SO.hasValue() || !UO.hasValue())
9675 return { None, false };
9676
9677 // Check the smaller value first to see if it leaves the range.
9678 // At this point, both SO and UO must have values.
9679 Optional<APInt> Min = MinOptional(SO, UO);
9680 if (LeavesRange(*Min))
9681 return { Min, true };
9682 Optional<APInt> Max = Min == SO ? UO : SO;
9683 if (LeavesRange(*Max))
9684 return { Max, true };
9685
9686 // Solutions were found, but were eliminated, hence the "true".
9687 return { None, true };
9688 };
9689
9690 std::tie(A, B, C, M, BitWidth) = *T;
9691 // Lower bound is inclusive, subtract 1 to represent the exiting value.
9692 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9693 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9694 auto SL = SolveForBoundary(Lower);
9695 auto SU = SolveForBoundary(Upper);
9696 // If any of the solutions was unknown, no meaninigful conclusions can
9697 // be made.
9698 if (!SL.second || !SU.second)
9699 return None;
9700
9701 // Claim: The correct solution is not some value between Min and Max.
9702 //
9703 // Justification: Assuming that Min and Max are different values, one of
9704 // them is when the first signed overflow happens, the other is when the
9705 // first unsigned overflow happens. Crossing the range boundary is only
9706 // possible via an overflow (treating 0 as a special case of it, modeling
9707 // an overflow as crossing k*2^W for some k).
9708 //
9709 // The interesting case here is when Min was eliminated as an invalid
9710 // solution, but Max was not. The argument is that if there was another
9711 // overflow between Min and Max, it would also have been eliminated if
9712 // it was considered.
9713 //
9714 // For a given boundary, it is possible to have two overflows of the same
9715 // type (signed/unsigned) without having the other type in between: this
9716 // can happen when the vertex of the parabola is between the iterations
9717 // corresponding to the overflows. This is only possible when the two
9718 // overflows cross k*2^W for the same k. In such case, if the second one
9719 // left the range (and was the first one to do so), the first overflow
9720 // would have to enter the range, which would mean that either we had left
9721 // the range before or that we started outside of it. Both of these cases
9722 // are contradictions.
9723 //
9724 // Claim: In the case where SolveForBoundary returns None, the correct
9725 // solution is not some value between the Max for this boundary and the
9726 // Min of the other boundary.
9727 //
9728 // Justification: Assume that we had such Max_A and Min_B corresponding
9729 // to range boundaries A and B and such that Max_A < Min_B. If there was
9730 // a solution between Max_A and Min_B, it would have to be caused by an
9731 // overflow corresponding to either A or B. It cannot correspond to B,
9732 // since Min_B is the first occurrence of such an overflow. If it
9733 // corresponded to A, it would have to be either a signed or an unsigned
9734 // overflow that is larger than both eliminated overflows for A. But
9735 // between the eliminated overflows and this overflow, the values would
9736 // cover the entire value space, thus crossing the other boundary, which
9737 // is a contradiction.
9738
9739 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9740}
9741
9742ScalarEvolution::ExitLimit
9743ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9744 bool AllowPredicates) {
9745
9746 // This is only used for loops with a "x != y" exit test. The exit condition
9747 // is now expressed as a single expression, V = x-y. So the exit test is
9748 // effectively V != 0. We know and take advantage of the fact that this
9749 // expression only being used in a comparison by zero context.
9750
9751 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9752 // If the value is a constant
9753 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9754 // If the value is already zero, the branch will execute zero times.
9755 if (C->getValue()->isZero()) return C;
9756 return getCouldNotCompute(); // Otherwise it will loop infinitely.
9757 }
9758
9759 const SCEVAddRecExpr *AddRec =
9760 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9761
9762 if (!AddRec && AllowPredicates)
9763 // Try to make this an AddRec using runtime tests, in the first X
9764 // iterations of this loop, where X is the SCEV expression found by the
9765 // algorithm below.
9766 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9767
9768 if (!AddRec || AddRec->getLoop() != L)
9769 return getCouldNotCompute();
9770
9771 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9772 // the quadratic equation to solve it.
9773 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9774 // We can only use this value if the chrec ends up with an exact zero
9775 // value at this index. When solving for "X*X != 5", for example, we
9776 // should not accept a root of 2.
9777 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9778 const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9779 return ExitLimit(R, R, false, Predicates);
9780 }
9781 return getCouldNotCompute();
9782 }
9783
9784 // Otherwise we can only handle this if it is affine.
9785 if (!AddRec->isAffine())
9786 return getCouldNotCompute();
9787
9788 // If this is an affine expression, the execution count of this branch is
9789 // the minimum unsigned root of the following equation:
9790 //
9791 // Start + Step*N = 0 (mod 2^BW)
9792 //
9793 // equivalent to:
9794 //
9795 // Step*N = -Start (mod 2^BW)
9796 //
9797 // where BW is the common bit width of Start and Step.
9798
9799 // Get the initial value for the loop.
9800 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9801 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9802
9803 // For now we handle only constant steps.
9804 //
9805 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9806 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9807 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9808 // We have not yet seen any such cases.
9809 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9810 if (!StepC || StepC->getValue()->isZero())
9811 return getCouldNotCompute();
9812
9813 // For positive steps (counting up until unsigned overflow):
9814 // N = -Start/Step (as unsigned)
9815 // For negative steps (counting down to zero):
9816 // N = Start/-Step
9817 // First compute the unsigned distance from zero in the direction of Step.
9818 bool CountDown = StepC->getAPInt().isNegative();
9819 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9820
9821 // Handle unitary steps, which cannot wraparound.
9822 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9823 // N = Distance (as unsigned)
9824 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9825 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9826 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
9827
9828 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9829 // we end up with a loop whose backedge-taken count is n - 1. Detect this
9830 // case, and see if we can improve the bound.
9831 //
9832 // Explicitly handling this here is necessary because getUnsignedRange
9833 // isn't context-sensitive; it doesn't know that we only care about the
9834 // range inside the loop.
9835 const SCEV *Zero = getZero(Distance->getType());
9836 const SCEV *One = getOne(Distance->getType());
9837 const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9838 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9839 // If Distance + 1 doesn't overflow, we can compute the maximum distance
9840 // as "unsigned_max(Distance + 1) - 1".
9841 ConstantRange CR = getUnsignedRange(DistancePlusOne);
9842 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9843 }
9844 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9845 }
9846
9847 // If the condition controls loop exit (the loop exits only if the expression
9848 // is true) and the addition is no-wrap we can use unsigned divide to
9849 // compute the backedge count. In this case, the step may not divide the
9850 // distance, but we don't care because if the condition is "missed" the loop
9851 // will have undefined behavior due to wrapping.
9852 if (ControlsExit && AddRec->hasNoSelfWrap() &&
9853 loopHasNoAbnormalExits(AddRec->getLoop())) {
9854 const SCEV *Exact =
9855 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9856 const SCEV *Max = getCouldNotCompute();
9857 if (Exact != getCouldNotCompute()) {
9858 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9859 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
9860 }
9861 return ExitLimit(Exact, Max, false, Predicates);
9862 }
9863
9864 // Solve the general equation.
9865 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9866 getNegativeSCEV(Start), *this);
9867
9868 const SCEV *M = E;
9869 if (E != getCouldNotCompute()) {
9870 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L));
9871 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
9872 }
9873 return ExitLimit(E, M, false, Predicates);
9874}
9875
9876ScalarEvolution::ExitLimit
9877ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9878 // Loops that look like: while (X == 0) are very strange indeed. We don't
9879 // handle them yet except for the trivial case. This could be expanded in the
9880 // future as needed.
9881
9882 // If the value is a constant, check to see if it is known to be non-zero
9883 // already. If so, the backedge will execute zero times.
9884 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9885 if (!C->getValue()->isZero())
9886 return getZero(C->getType());
9887 return getCouldNotCompute(); // Otherwise it will loop infinitely.
9888 }
9889
9890 // We could implement others, but I really doubt anyone writes loops like
9891 // this, and if they did, they would already be constant folded.
9892 return getCouldNotCompute();
9893}
9894
9895std::pair<const BasicBlock *, const BasicBlock *>
9896ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9897 const {
9898 // If the block has a unique predecessor, then there is no path from the
9899 // predecessor to the block that does not go through the direct edge
9900 // from the predecessor to the block.
9901 if (const BasicBlock *Pred = BB->getSinglePredecessor())
9902 return {Pred, BB};
9903
9904 // A loop's header is defined to be a block that dominates the loop.
9905 // If the header has a unique predecessor outside the loop, it must be
9906 // a block that has exactly one successor that can reach the loop.
9907 if (const Loop *L = LI.getLoopFor(BB))
9908 return {L->getLoopPredecessor(), L->getHeader()};
9909
9910 return {nullptr, nullptr};
9911}
9912
9913/// SCEV structural equivalence is usually sufficient for testing whether two
9914/// expressions are equal, however for the purposes of looking for a condition
9915/// guarding a loop, it can be useful to be a little more general, since a
9916/// front-end may have replicated the controlling expression.
9917static bool HasSameValue(const SCEV *A, const SCEV *B) {
9918 // Quick check to see if they are the same SCEV.
9919 if (A == B) return true;
9920
9921 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9922 // Not all instructions that are "identical" compute the same value. For
9923 // instance, two distinct alloca instructions allocating the same type are
9924 // identical and do not read memory; but compute distinct values.
9925 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9926 };
9927
9928 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9929 // two different instructions with the same value. Check for this case.
9930 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9931 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9932 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9933 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9934 if (ComputesEqualValues(AI, BI))
9935 return true;
9936
9937 // Otherwise assume they may have a different value.
9938 return false;
9939}
9940
9941bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9942 const SCEV *&LHS, const SCEV *&RHS,
9943 unsigned Depth) {
9944 bool Changed = false;
9945 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9946 // '0 != 0'.
9947 auto TrivialCase = [&](bool TriviallyTrue) {
9948 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9949 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9950 return true;
9951 };
9952 // If we hit the max recursion limit bail out.
9953 if (Depth >= 3)
9954 return false;
9955
9956 // Canonicalize a constant to the right side.
9957 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9958 // Check for both operands constant.
9959 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9960 if (ConstantExpr::getICmp(Pred,
9961 LHSC->getValue(),
9962 RHSC->getValue())->isNullValue())
9963 return TrivialCase(false);
9964 else
9965 return TrivialCase(true);
9966 }
9967 // Otherwise swap the operands to put the constant on the right.
9968 std::swap(LHS, RHS);
9969 Pred = ICmpInst::getSwappedPredicate(Pred);
9970 Changed = true;
9971 }
9972
9973 // If we're comparing an addrec with a value which is loop-invariant in the
9974 // addrec's loop, put the addrec on the left. Also make a dominance check,
9975 // as both operands could be addrecs loop-invariant in each other's loop.
9976 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9977 const Loop *L = AR->getLoop();
9978 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9979 std::swap(LHS, RHS);
9980 Pred = ICmpInst::getSwappedPredicate(Pred);
9981 Changed = true;
9982 }
9983 }
9984
9985 // If there's a constant operand, canonicalize comparisons with boundary
9986 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9987 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9988 const APInt &RA = RC->getAPInt();
9989
9990 bool SimplifiedByConstantRange = false;
9991
9992 if (!ICmpInst::isEquality(Pred)) {
9993 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9994 if (ExactCR.isFullSet())
9995 return TrivialCase(true);
9996 else if (ExactCR.isEmptySet())
9997 return TrivialCase(false);
9998
9999 APInt NewRHS;
10000 CmpInst::Predicate NewPred;
10001 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10002 ICmpInst::isEquality(NewPred)) {
10003 // We were able to convert an inequality to an equality.
10004 Pred = NewPred;
10005 RHS = getConstant(NewRHS);
10006 Changed = SimplifiedByConstantRange = true;
10007 }
10008 }
10009
10010 if (!SimplifiedByConstantRange) {
10011 switch (Pred) {
10012 default:
10013 break;
10014 case ICmpInst::ICMP_EQ:
10015 case ICmpInst::ICMP_NE:
10016 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10017 if (!RA)
10018 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
10019 if (const SCEVMulExpr *ME =
10020 dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
10021 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
10022 ME->getOperand(0)->isAllOnesValue()) {
10023 RHS = AE->getOperand(1);
10024 LHS = ME->getOperand(1);
10025 Changed = true;
10026 }
10027 break;
10028
10029
10030 // The "Should have been caught earlier!" messages refer to the fact
10031 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10032 // should have fired on the corresponding cases, and canonicalized the
10033 // check to trivial case.
10034
10035 case ICmpInst::ICMP_UGE:
10036 assert(!RA.isMinValue() && "Should have been caught earlier!")(static_cast <bool> (!RA.isMinValue() && "Should have been caught earlier!"
) ? void (0) : __assert_fail ("!RA.isMinValue() && \"Should have been caught earlier!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10036, __extension__
__PRETTY_FUNCTION__))
;
10037 Pred = ICmpInst::ICMP_UGT;
10038 RHS = getConstant(RA - 1);
10039 Changed = true;
10040 break;
10041 case ICmpInst::ICMP_ULE:
10042 assert(!RA.isMaxValue() && "Should have been caught earlier!")(static_cast <bool> (!RA.isMaxValue() && "Should have been caught earlier!"
) ? void (0) : __assert_fail ("!RA.isMaxValue() && \"Should have been caught earlier!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10042, __extension__
__PRETTY_FUNCTION__))
;
10043 Pred = ICmpInst::ICMP_ULT;
10044 RHS = getConstant(RA + 1);
10045 Changed = true;
10046 break;
10047 case ICmpInst::ICMP_SGE:
10048 assert(!RA.isMinSignedValue() && "Should have been caught earlier!")(static_cast <bool> (!RA.isMinSignedValue() && "Should have been caught earlier!"
) ? void (0) : __assert_fail ("!RA.isMinSignedValue() && \"Should have been caught earlier!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10048, __extension__
__PRETTY_FUNCTION__))
;
10049 Pred = ICmpInst::ICMP_SGT;
10050 RHS = getConstant(RA - 1);
10051 Changed = true;
10052 break;
10053 case ICmpInst::ICMP_SLE:
10054 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!")(static_cast <bool> (!RA.isMaxSignedValue() && "Should have been caught earlier!"
) ? void (0) : __assert_fail ("!RA.isMaxSignedValue() && \"Should have been caught earlier!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10054, __extension__
__PRETTY_FUNCTION__))
;
10055 Pred = ICmpInst::ICMP_SLT;
10056 RHS = getConstant(RA + 1);
10057 Changed = true;
10058 break;
10059 }
10060 }
10061 }
10062
10063 // Check for obvious equality.
10064 if (HasSameValue(LHS, RHS)) {
10065 if (ICmpInst::isTrueWhenEqual(Pred))
10066 return TrivialCase(true);
10067 if (ICmpInst::isFalseWhenEqual(Pred))
10068 return TrivialCase(false);
10069 }
10070
10071 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10072 // adding or subtracting 1 from one of the operands.
10073 switch (Pred) {
10074 case ICmpInst::ICMP_SLE:
10075 if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
10076 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10077 SCEV::FlagNSW);
10078 Pred = ICmpInst::ICMP_SLT;
10079 Changed = true;
10080 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10081 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10082 SCEV::FlagNSW);
10083 Pred = ICmpInst::ICMP_SLT;
10084 Changed = true;
10085 }
10086 break;
10087 case ICmpInst::ICMP_SGE:
10088 if (!getSignedRangeMin(RHS).isMinSignedValue()) {
10089 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10090 SCEV::FlagNSW);
10091 Pred = ICmpInst::ICMP_SGT;
10092 Changed = true;
10093 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10094 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10095 SCEV::FlagNSW);
10096 Pred = ICmpInst::ICMP_SGT;
10097 Changed = true;
10098 }
10099 break;
10100 case ICmpInst::ICMP_ULE:
10101 if (!getUnsignedRangeMax(RHS).isMaxValue()) {
10102 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10103 SCEV::FlagNUW);
10104 Pred = ICmpInst::ICMP_ULT;
10105 Changed = true;
10106 } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10107 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10108 Pred = ICmpInst::ICMP_ULT;
10109 Changed = true;
10110 }
10111 break;
10112 case ICmpInst::ICMP_UGE:
10113 if (!getUnsignedRangeMin(RHS).isMinValue()) {
10114 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10115 Pred = ICmpInst::ICMP_UGT;
10116 Changed = true;
10117 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10118 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10119 SCEV::FlagNUW);
10120 Pred = ICmpInst::ICMP_UGT;
10121 Changed = true;
10122 }
10123 break;
10124 default:
10125 break;
10126 }
10127
10128 // TODO: More simplifications are possible here.
10129
10130 // Recursively simplify until we either hit a recursion limit or nothing
10131 // changes.
10132 if (Changed)
10133 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
10134
10135 return Changed;
10136}
10137
10138bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10139 return getSignedRangeMax(S).isNegative();
10140}
10141
10142bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10143 return getSignedRangeMin(S).isStrictlyPositive();
10144}
10145
10146bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10147 return !getSignedRangeMin(S).isNegative();
10148}
10149
10150bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10151 return !getSignedRangeMax(S).isStrictlyPositive();
10152}
10153
10154bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10155 return getUnsignedRangeMin(S) != 0;
10156}
10157
10158std::pair<const SCEV *, const SCEV *>
10159ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10160 // Compute SCEV on entry of loop L.
10161 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10162 if (Start == getCouldNotCompute())
10163 return { Start, Start };
10164 // Compute post increment SCEV for loop L.
10165 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10166 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute")(static_cast <bool> (PostInc != getCouldNotCompute() &&
"Unexpected could not compute") ? void (0) : __assert_fail (
"PostInc != getCouldNotCompute() && \"Unexpected could not compute\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10166, __extension__
__PRETTY_FUNCTION__))
;
10167 return { Start, PostInc };
10168}
10169
10170bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10171 const SCEV *LHS, const SCEV *RHS) {
10172 // First collect all loops.
10173 SmallPtrSet<const Loop *, 8> LoopsUsed;
10174 getUsedLoops(LHS, LoopsUsed);
10175 getUsedLoops(RHS, LoopsUsed);
10176
10177 if (LoopsUsed.empty())
10178 return false;
10179
10180 // Domination relationship must be a linear order on collected loops.
10181#ifndef NDEBUG
10182 for (auto *L1 : LoopsUsed)
10183 for (auto *L2 : LoopsUsed)
10184 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||(static_cast <bool> ((DT.dominates(L1->getHeader(), L2
->getHeader()) || DT.dominates(L2->getHeader(), L1->
getHeader())) && "Domination relationship is not a linear order"
) ? void (0) : __assert_fail ("(DT.dominates(L1->getHeader(), L2->getHeader()) || DT.dominates(L2->getHeader(), L1->getHeader())) && \"Domination relationship is not a linear order\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10186, __extension__
__PRETTY_FUNCTION__))
10185 DT.dominates(L2->getHeader(), L1->getHeader())) &&(static_cast <bool> ((DT.dominates(L1->getHeader(), L2
->getHeader()) || DT.dominates(L2->getHeader(), L1->
getHeader())) && "Domination relationship is not a linear order"
) ? void (0) : __assert_fail ("(DT.dominates(L1->getHeader(), L2->getHeader()) || DT.dominates(L2->getHeader(), L1->getHeader())) && \"Domination relationship is not a linear order\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10186, __extension__
__PRETTY_FUNCTION__))
10186 "Domination relationship is not a linear order")(static_cast <bool> ((DT.dominates(L1->getHeader(), L2
->getHeader()) || DT.dominates(L2->getHeader(), L1->
getHeader())) && "Domination relationship is not a linear order"
) ? void (0) : __assert_fail ("(DT.dominates(L1->getHeader(), L2->getHeader()) || DT.dominates(L2->getHeader(), L1->getHeader())) && \"Domination relationship is not a linear order\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10186, __extension__
__PRETTY_FUNCTION__))
;
10187#endif
10188
10189 const Loop *MDL =
10190 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
10191 [&](const Loop *L1, const Loop *L2) {
10192 return DT.properlyDominates(L1->getHeader(), L2->getHeader());
10193 });
10194
10195 // Get init and post increment value for LHS.
10196 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
10197 // if LHS contains unknown non-invariant SCEV then bail out.
10198 if (SplitLHS.first == getCouldNotCompute())
10199 return false;
10200 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC")(static_cast <bool> (SplitLHS.second != getCouldNotCompute
() && "Unexpected CNC") ? void (0) : __assert_fail ("SplitLHS.second != getCouldNotCompute() && \"Unexpected CNC\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10200, __extension__
__PRETTY_FUNCTION__))
;
10201 // Get init and post increment value for RHS.
10202 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
10203 // if RHS contains unknown non-invariant SCEV then bail out.
10204 if (SplitRHS.first == getCouldNotCompute())
10205 return false;
10206 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC")(static_cast <bool> (SplitRHS.second != getCouldNotCompute
() && "Unexpected CNC") ? void (0) : __assert_fail ("SplitRHS.second != getCouldNotCompute() && \"Unexpected CNC\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10206, __extension__
__PRETTY_FUNCTION__))
;
10207 // It is possible that init SCEV contains an invariant load but it does
10208 // not dominate MDL and is not available at MDL loop entry, so we should
10209 // check it here.
10210 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10211 !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10212 return false;
10213
10214 // It seems backedge guard check is faster than entry one so in some cases
10215 // it can speed up whole estimation by short circuit
10216 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10217 SplitRHS.second) &&
10218 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10219}
10220
10221bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10222 const SCEV *LHS, const SCEV *RHS) {
10223 // Canonicalize the inputs first.
10224 (void)SimplifyICmpOperands(Pred, LHS, RHS);
10225
10226 if (isKnownViaInduction(Pred, LHS, RHS))
10227 return true;
10228
10229 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10230 return true;
10231
10232 // Otherwise see what can be done with some simple reasoning.
10233 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10234}
10235
10236Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10237 const SCEV *LHS,
10238 const SCEV *RHS) {
10239 if (isKnownPredicate(Pred, LHS, RHS))
10240 return true;
10241 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10242 return false;
10243 return None;
10244}
10245
10246bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10247 const SCEV *LHS, const SCEV *RHS,
10248 const Instruction *CtxI) {
10249 // TODO: Analyze guards and assumes from Context's block.
10250 return isKnownPredicate(Pred, LHS, RHS) ||
10251 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10252}
10253
10254Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
10255 const SCEV *LHS,
10256 const SCEV *RHS,
10257 const Instruction *CtxI) {
10258 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10259 if (KnownWithoutContext)
10260 return KnownWithoutContext;
10261
10262 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10263 return true;
10264 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10265 ICmpInst::getInversePredicate(Pred),
10266 LHS, RHS))
10267 return false;
10268 return None;
10269}
10270
10271bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10272 const SCEVAddRecExpr *LHS,
10273 const SCEV *RHS) {
10274 const Loop *L = LHS->getLoop();
10275 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
20
Calling 'ScalarEvolution::isLoopEntryGuardedByCond'
10276 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10277}
10278
10279Optional<ScalarEvolution::MonotonicPredicateType>
10280ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10281 ICmpInst::Predicate Pred) {
10282 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10283
10284#ifndef NDEBUG
10285 // Verify an invariant: inverting the predicate should turn a monotonically
10286 // increasing change to a monotonically decreasing one, and vice versa.
10287 if (Result) {
10288 auto ResultSwapped =
10289 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10290
10291 assert(ResultSwapped.hasValue() && "should be able to analyze both!")(static_cast <bool> (ResultSwapped.hasValue() &&
"should be able to analyze both!") ? void (0) : __assert_fail
("ResultSwapped.hasValue() && \"should be able to analyze both!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10291, __extension__
__PRETTY_FUNCTION__))
;
10292 assert(ResultSwapped.getValue() != Result.getValue() &&(static_cast <bool> (ResultSwapped.getValue() != Result
.getValue() && "monotonicity should flip as we flip the predicate"
) ? void (0) : __assert_fail ("ResultSwapped.getValue() != Result.getValue() && \"monotonicity should flip as we flip the predicate\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10293, __extension__
__PRETTY_FUNCTION__))
10293 "monotonicity should flip as we flip the predicate")(static_cast <bool> (ResultSwapped.getValue() != Result
.getValue() && "monotonicity should flip as we flip the predicate"
) ? void (0) : __assert_fail ("ResultSwapped.getValue() != Result.getValue() && \"monotonicity should flip as we flip the predicate\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10293, __extension__
__PRETTY_FUNCTION__))
;
10294 }
10295#endif
10296
10297 return Result;
10298}
10299
10300Optional<ScalarEvolution::MonotonicPredicateType>
10301ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10302 ICmpInst::Predicate Pred) {
10303 // A zero step value for LHS means the induction variable is essentially a
10304 // loop invariant value. We don't really depend on the predicate actually
10305 // flipping from false to true (for increasing predicates, and the other way
10306 // around for decreasing predicates), all we care about is that *if* the
10307 // predicate changes then it only changes from false to true.
10308 //
10309 // A zero step value in itself is not very useful, but there may be places
10310 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10311 // as general as possible.
10312
10313 // Only handle LE/LT/GE/GT predicates.
10314 if (!ICmpInst::isRelational(Pred))
10315 return None;
10316
10317 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10318 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&(static_cast <bool> ((IsGreater || ICmpInst::isLE(Pred)
|| ICmpInst::isLT(Pred)) && "Should be greater or less!"
) ? void (0) : __assert_fail ("(IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && \"Should be greater or less!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10319, __extension__
__PRETTY_FUNCTION__))
10319 "Should be greater or less!")(static_cast <bool> ((IsGreater || ICmpInst::isLE(Pred)
|| ICmpInst::isLT(Pred)) && "Should be greater or less!"
) ? void (0) : __assert_fail ("(IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && \"Should be greater or less!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10319, __extension__
__PRETTY_FUNCTION__))
;
10320
10321 // Check that AR does not wrap.
10322 if (ICmpInst::isUnsigned(Pred)) {
10323 if (!LHS->hasNoUnsignedWrap())
10324 return None;
10325 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10326 } else {
10327 assert(ICmpInst::isSigned(Pred) &&(static_cast <bool> (ICmpInst::isSigned(Pred) &&
"Relational predicate is either signed or unsigned!") ? void
(0) : __assert_fail ("ICmpInst::isSigned(Pred) && \"Relational predicate is either signed or unsigned!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10328, __extension__
__PRETTY_FUNCTION__))
10328 "Relational predicate is either signed or unsigned!")(static_cast <bool> (ICmpInst::isSigned(Pred) &&
"Relational predicate is either signed or unsigned!") ? void
(0) : __assert_fail ("ICmpInst::isSigned(Pred) && \"Relational predicate is either signed or unsigned!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10328, __extension__
__PRETTY_FUNCTION__))
;
10329 if (!LHS->hasNoSignedWrap())
10330 return None;
10331
10332 const SCEV *Step = LHS->getStepRecurrence(*this);
10333
10334 if (isKnownNonNegative(Step))
10335 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10336
10337 if (isKnownNonPositive(Step))
10338 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10339
10340 return None;
10341 }
10342}
10343
10344Optional<ScalarEvolution::LoopInvariantPredicate>
10345ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10346 const SCEV *LHS, const SCEV *RHS,
10347 const Loop *L) {
10348
10349 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10350 if (!isLoopInvariant(RHS, L)) {
10351 if (!isLoopInvariant(LHS, L))
10352 return None;
10353
10354 std::swap(LHS, RHS);
10355 Pred = ICmpInst::getSwappedPredicate(Pred);
10356 }
10357
10358 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10359 if (!ArLHS || ArLHS->getLoop() != L)
10360 return None;
10361
10362 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10363 if (!MonotonicType)
10364 return None;
10365 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10366 // true as the loop iterates, and the backedge is control dependent on
10367 // "ArLHS `Pred` RHS" == true then we can reason as follows:
10368 //
10369 // * if the predicate was false in the first iteration then the predicate
10370 // is never evaluated again, since the loop exits without taking the
10371 // backedge.
10372 // * if the predicate was true in the first iteration then it will
10373 // continue to be true for all future iterations since it is
10374 // monotonically increasing.
10375 //
10376 // For both the above possibilities, we can replace the loop varying
10377 // predicate with its value on the first iteration of the loop (which is
10378 // loop invariant).
10379 //
10380 // A similar reasoning applies for a monotonically decreasing predicate, by
10381 // replacing true with false and false with true in the above two bullets.
10382 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10383 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10384
10385 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10386 return None;
10387
10388 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10389}
10390
10391Optional<ScalarEvolution::LoopInvariantPredicate>
10392ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10393 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10394 const Instruction *CtxI, const SCEV *MaxIter) {
10395 // Try to prove the following set of facts:
10396 // - The predicate is monotonic in the iteration space.
10397 // - If the check does not fail on the 1st iteration:
10398 // - No overflow will happen during first MaxIter iterations;
10399 // - It will not fail on the MaxIter'th iteration.
10400 // If the check does fail on the 1st iteration, we leave the loop and no
10401 // other checks matter.
10402
10403 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10404 if (!isLoopInvariant(RHS, L)) {
10405 if (!isLoopInvariant(LHS, L))
10406 return None;
10407
10408 std::swap(LHS, RHS);
10409 Pred = ICmpInst::getSwappedPredicate(Pred);
10410 }
10411
10412 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10413 if (!AR || AR->getLoop() != L)
10414 return None;
10415
10416 // The predicate must be relational (i.e. <, <=, >=, >).
10417 if (!ICmpInst::isRelational(Pred))
10418 return None;
10419
10420 // TODO: Support steps other than +/- 1.
10421 const SCEV *Step = AR->getStepRecurrence(*this);
10422 auto *One = getOne(Step->getType());
10423 auto *MinusOne = getNegativeSCEV(One);
10424 if (Step != One && Step != MinusOne)
10425 return None;
10426
10427 // Type mismatch here means that MaxIter is potentially larger than max
10428 // unsigned value in start type, which mean we cannot prove no wrap for the
10429 // indvar.
10430 if (AR->getType() != MaxIter->getType())
10431 return None;
10432
10433 // Value of IV on suggested last iteration.
10434 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10435 // Does it still meet the requirement?
10436 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10437 return None;
10438 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10439 // not exceed max unsigned value of this type), this effectively proves
10440 // that there is no wrap during the iteration. To prove that there is no
10441 // signed/unsigned wrap, we need to check that
10442 // Start <= Last for step = 1 or Start >= Last for step = -1.
10443 ICmpInst::Predicate NoOverflowPred =
10444 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10445 if (Step == MinusOne)
10446 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10447 const SCEV *Start = AR->getStart();
10448 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10449 return None;
10450
10451 // Everything is fine.
10452 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10453}
10454
10455bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10456 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10457 if (HasSameValue(LHS, RHS))
10458 return ICmpInst::isTrueWhenEqual(Pred);
10459
10460 // This code is split out from isKnownPredicate because it is called from
10461 // within isLoopEntryGuardedByCond.
10462
10463 auto CheckRanges = [&](const ConstantRange &RangeLHS,
10464 const ConstantRange &RangeRHS) {
10465 return RangeLHS.icmp(Pred, RangeRHS);
10466 };
10467
10468 // The check at the top of the function catches the case where the values are
10469 // known to be equal.
10470 if (Pred == CmpInst::ICMP_EQ)
10471 return false;
10472
10473 if (Pred == CmpInst::ICMP_NE) {
10474 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10475 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10476 return true;
10477 auto *Diff = getMinusSCEV(LHS, RHS);
10478 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10479 }
10480
10481 if (CmpInst::isSigned(Pred))
10482 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10483
10484 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10485}
10486
10487bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10488 const SCEV *LHS,
10489 const SCEV *RHS) {
10490 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10491 // C1 and C2 are constant integers. If either X or Y are not add expressions,
10492 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10493 // OutC1 and OutC2.
10494 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10495 APInt &OutC1, APInt &OutC2,
10496 SCEV::NoWrapFlags ExpectedFlags) {
10497 const SCEV *XNonConstOp, *XConstOp;
10498 const SCEV *YNonConstOp, *YConstOp;
10499 SCEV::NoWrapFlags XFlagsPresent;
10500 SCEV::NoWrapFlags YFlagsPresent;
10501
10502 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10503 XConstOp = getZero(X->getType());
10504 XNonConstOp = X;
10505 XFlagsPresent = ExpectedFlags;
10506 }
10507 if (!isa<SCEVConstant>(XConstOp) ||
10508 (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10509 return false;
10510
10511 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10512 YConstOp = getZero(Y->getType());
10513 YNonConstOp = Y;
10514 YFlagsPresent = ExpectedFlags;
10515 }
10516
10517 if (!isa<SCEVConstant>(YConstOp) ||
10518 (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10519 return false;
10520
10521 if (YNonConstOp != XNonConstOp)
10522 return false;
10523
10524 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10525 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10526
10527 return true;
10528 };
10529
10530 APInt C1;
10531 APInt C2;
10532
10533 switch (Pred) {
10534 default:
10535 break;
10536
10537 case ICmpInst::ICMP_SGE:
10538 std::swap(LHS, RHS);
10539 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10540 case ICmpInst::ICMP_SLE:
10541 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10542 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10543 return true;
10544
10545 break;
10546
10547 case ICmpInst::ICMP_SGT:
10548 std::swap(LHS, RHS);
10549 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10550 case ICmpInst::ICMP_SLT:
10551 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10552 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10553 return true;
10554
10555 break;
10556
10557 case ICmpInst::ICMP_UGE:
10558 std::swap(LHS, RHS);
10559 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10560 case ICmpInst::ICMP_ULE:
10561 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10562 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10563 return true;
10564
10565 break;
10566
10567 case ICmpInst::ICMP_UGT:
10568 std::swap(LHS, RHS);
10569 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10570 case ICmpInst::ICMP_ULT:
10571 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10572 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10573 return true;
10574 break;
10575 }
10576
10577 return false;
10578}
10579
10580bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10581 const SCEV *LHS,
10582 const SCEV *RHS) {
10583 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10584 return false;
10585
10586 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10587 // the stack can result in exponential time complexity.
10588 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10589
10590 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10591 //
10592 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10593 // isKnownPredicate. isKnownPredicate is more powerful, but also more
10594 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10595 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
10596 // use isKnownPredicate later if needed.
10597 return isKnownNonNegative(RHS) &&
10598 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10599 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10600}
10601
10602bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10603 ICmpInst::Predicate Pred,
10604 const SCEV *LHS, const SCEV *RHS) {
10605 // No need to even try if we know the module has no guards.
10606 if (!HasGuards)
10607 return false;
10608
10609 return any_of(*BB, [&](const Instruction &I) {
10610 using namespace llvm::PatternMatch;
10611
10612 Value *Condition;
10613 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10614 m_Value(Condition))) &&
10615 isImpliedCond(Pred, LHS, RHS, Condition, false);
10616 });
10617}
10618
10619/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10620/// protected by a conditional between LHS and RHS. This is used to
10621/// to eliminate casts.
10622bool
10623ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10624 ICmpInst::Predicate Pred,
10625 const SCEV *LHS, const SCEV *RHS) {
10626 // Interpret a null as meaning no loop, where there is obviously no guard
10627 // (interprocedural conditions notwithstanding).
10628 if (!L) return true;
7
Assuming 'L' is non-null
8
Taking false branch
10629
10630 if (VerifyIR)
9
Assuming the condition is false
10
Taking false branch
10631 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&(static_cast <bool> (!verifyFunction(*L->getHeader()
->getParent(), &dbgs()) && "This cannot be done on broken IR!"
) ? void (0) : __assert_fail ("!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && \"This cannot be done on broken IR!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10632, __extension__
__PRETTY_FUNCTION__))
10632 "This cannot be done on broken IR!")(static_cast <bool> (!verifyFunction(*L->getHeader()
->getParent(), &dbgs()) && "This cannot be done on broken IR!"
) ? void (0) : __assert_fail ("!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && \"This cannot be done on broken IR!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10632, __extension__
__PRETTY_FUNCTION__))
;
10633
10634
10635 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11
Assuming the condition is false
12
Taking false branch
10636 return true;
10637
10638 BasicBlock *Latch = L->getLoopLatch();
10639 if (!Latch)
13
Assuming 'Latch' is non-null
14
Taking false branch
10640 return false;
10641
10642 BranchInst *LoopContinuePredicate =
10643 dyn_cast<BranchInst>(Latch->getTerminator());
15
Assuming the object is not a 'BranchInst'
10644 if (LoopContinuePredicate
15.1
'LoopContinuePredicate' is null
&& LoopContinuePredicate->isConditional() &&
10645 isImpliedCond(Pred, LHS, RHS,
10646 LoopContinuePredicate->getCondition(),
10647 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10648 return true;
10649
10650 // We don't want more than one activation of the following loops on the stack
10651 // -- that can lead to O(n!) time complexity.
10652 if (WalkingBEDominatingConds)
16
Assuming field 'WalkingBEDominatingConds' is true
17
Taking true branch
10653 return false;
10654
10655 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10656
10657 // See if we can exploit a trip count to prove the predicate.
10658 const auto &BETakenInfo = getBackedgeTakenInfo(L);
10659 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10660 if (LatchBECount != getCouldNotCompute()) {
10661 // We know that Latch branches back to the loop header exactly
10662 // LatchBECount times. This means the backdege condition at Latch is
10663 // equivalent to "{0,+,1} u< LatchBECount".
10664 Type *Ty = LatchBECount->getType();
10665 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10666 const SCEV *LoopCounter =
10667 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10668 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10669 LatchBECount))
10670 return true;
10671 }
10672
10673 // Check conditions due to any @llvm.assume intrinsics.
10674 for (auto &AssumeVH : AC.assumptions()) {
10675 if (!AssumeVH)
10676 continue;
10677 auto *CI = cast<CallInst>(AssumeVH);
10678 if (!DT.dominates(CI, Latch->getTerminator()))
10679 continue;
10680
10681 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10682 return true;
10683 }
10684
10685 // If the loop is not reachable from the entry block, we risk running into an
10686 // infinite loop as we walk up into the dom tree. These loops do not matter
10687 // anyway, so we just return a conservative answer when we see them.
10688 if (!DT.isReachableFromEntry(L->getHeader()))
10689 return false;
10690
10691 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10692 return true;
10693
10694 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10695 DTN != HeaderDTN; DTN = DTN->getIDom()) {
10696 assert(DTN && "should reach the loop header before reaching the root!")(static_cast <bool> (DTN && "should reach the loop header before reaching the root!"
) ? void (0) : __assert_fail ("DTN && \"should reach the loop header before reaching the root!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10696, __extension__
__PRETTY_FUNCTION__))
;
10697
10698 BasicBlock *BB = DTN->getBlock();
10699 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10700 return true;
10701
10702 BasicBlock *PBB = BB->getSinglePredecessor();
10703 if (!PBB)
10704 continue;
10705
10706 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10707 if (!ContinuePredicate || !ContinuePredicate->isConditional())
10708 continue;
10709
10710 Value *Condition = ContinuePredicate->getCondition();
10711
10712 // If we have an edge `E` within the loop body that dominates the only
10713 // latch, the condition guarding `E` also guards the backedge. This
10714 // reasoning works only for loops with a single latch.
10715
10716 BasicBlockEdge DominatingEdge(PBB, BB);
10717 if (DominatingEdge.isSingleEdge()) {
10718 // We're constructively (and conservatively) enumerating edges within the
10719 // loop body that dominate the latch. The dominator tree better agree
10720 // with us on this:
10721 assert(DT.dominates(DominatingEdge, Latch) && "should be!")(static_cast <bool> (DT.dominates(DominatingEdge, Latch
) && "should be!") ? void (0) : __assert_fail ("DT.dominates(DominatingEdge, Latch) && \"should be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10721, __extension__
__PRETTY_FUNCTION__))
;
10722
10723 if (isImpliedCond(Pred, LHS, RHS, Condition,
10724 BB != ContinuePredicate->getSuccessor(0)))
10725 return true;
10726 }
10727 }
10728
10729 return false;
10730}
10731
10732bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10733 ICmpInst::Predicate Pred,
10734 const SCEV *LHS,
10735 const SCEV *RHS) {
10736 if (VerifyIR)
34
Assuming the condition is false
35
Taking false branch
10737 assert(!verifyFunction(*BB->getParent(), &dbgs()) &&(static_cast <bool> (!verifyFunction(*BB->getParent(
), &dbgs()) && "This cannot be done on broken IR!"
) ? void (0) : __assert_fail ("!verifyFunction(*BB->getParent(), &dbgs()) && \"This cannot be done on broken IR!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10738, __extension__
__PRETTY_FUNCTION__))
10738 "This cannot be done on broken IR!")(static_cast <bool> (!verifyFunction(*BB->getParent(
), &dbgs()) && "This cannot be done on broken IR!"
) ? void (0) : __assert_fail ("!verifyFunction(*BB->getParent(), &dbgs()) && \"This cannot be done on broken IR!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10738, __extension__
__PRETTY_FUNCTION__))
;
10739
10740 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10741 // the facts (a >= b && a != b) separately. A typical situation is when the
10742 // non-strict comparison is known from ranges and non-equality is known from
10743 // dominating predicates. If we are proving strict comparison, we always try
10744 // to prove non-equality and non-strict comparison separately.
10745 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10746 const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
36
Assuming 'Pred' is equal to 'NonStrictPredicate'
10747 bool ProvedNonStrictComparison = false;
10748 bool ProvedNonEquality = false;
10749
10750 auto SplitAndProve =
10751 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10752 if (!ProvedNonStrictComparison)
10753 ProvedNonStrictComparison = Fn(NonStrictPredicate);
10754 if (!ProvedNonEquality)
10755 ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10756 if (ProvedNonStrictComparison && ProvedNonEquality)
10757 return true;
10758 return false;
10759 };
10760
10761 if (ProvingStrictComparison
36.1
'ProvingStrictComparison' is false
) {
37
Taking false branch
10762 auto ProofFn = [&](ICmpInst::Predicate P) {
10763 return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10764 };
10765 if (SplitAndProve(ProofFn))
10766 return true;
10767 }
10768
10769 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10770 auto ProveViaGuard = [&](const BasicBlock *Block) {
10771 if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10772 return true;
10773 if (ProvingStrictComparison) {
10774 auto ProofFn = [&](ICmpInst::Predicate P) {
10775 return isImpliedViaGuard(Block, P, LHS, RHS);
10776 };
10777 if (SplitAndProve(ProofFn))
10778 return true;
10779 }
10780 return false;
10781 };
10782
10783 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10784 auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10785 const Instruction *CtxI = &BB->front();
47
Called C++ object pointer is null
10786 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
10787 return true;
10788 if (ProvingStrictComparison) {
10789 auto ProofFn = [&](ICmpInst::Predicate P) {
10790 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
10791 };
10792 if (SplitAndProve(ProofFn))
10793 return true;
10794 }
10795 return false;
10796 };
10797
10798 // Starting at the block's predecessor, climb up the predecessor chain, as long
10799 // as there are predecessors that can be found that have unique successors
10800 // leading to the original block.
10801 const Loop *ContainingLoop = LI.getLoopFor(BB);
10802 const BasicBlock *PredBB;
10803 if (ContainingLoop && ContainingLoop->getHeader() == BB)
38
Assuming 'ContainingLoop' is non-null
39
Assuming the condition is true
40
Taking true branch
10804 PredBB = ContainingLoop->getLoopPredecessor();
10805 else
10806 PredBB = BB->getSinglePredecessor();
10807 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
41
Loop condition is true. Entering loop body
10808 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10809 if (ProveViaGuard(Pair.first))
42
Taking false branch
10810 return true;
10811
10812 const BranchInst *LoopEntryPredicate =
10813 dyn_cast<BranchInst>(Pair.first->getTerminator());
43
Assuming the object is a 'BranchInst'
10814 if (!LoopEntryPredicate
43.1
'LoopEntryPredicate' is non-null
||
44
Taking false branch
10815 LoopEntryPredicate->isUnconditional())
10816 continue;
10817
10818 if (ProveViaCond(LoopEntryPredicate->getCondition(),
46
Calling 'operator()'
10819 LoopEntryPredicate->getSuccessor(0) != Pair.second))
45
Assuming pointer value is null
10820 return true;
10821 }
10822
10823 // Check conditions due to any @llvm.assume intrinsics.
10824 for (auto &AssumeVH : AC.assumptions()) {
10825 if (!AssumeVH)
10826 continue;
10827 auto *CI = cast<CallInst>(AssumeVH);
10828 if (!DT.dominates(CI, BB))
10829 continue;
10830
10831 if (ProveViaCond(CI->getArgOperand(0), false))
10832 return true;
10833 }
10834
10835 return false;
10836}
10837
10838bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10839 ICmpInst::Predicate Pred,
10840 const SCEV *LHS,
10841 const SCEV *RHS) {
10842 // Interpret a null as meaning no loop, where there is obviously no guard
10843 // (interprocedural conditions notwithstanding).
10844 if (!L
20.1
'L' is non-null
)
10845 return false;
10846
10847 // Both LHS and RHS must be available at loop entry.
10848 assert(isAvailableAtLoopEntry(LHS, L) &&(static_cast <bool> (isAvailableAtLoopEntry(LHS, L) &&
"LHS is not available at Loop Entry") ? void (0) : __assert_fail
("isAvailableAtLoopEntry(LHS, L) && \"LHS is not available at Loop Entry\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10849, __extension__
__PRETTY_FUNCTION__))
21
Taking false branch
22
'?' condition is true
10849 "LHS is not available at Loop Entry")(static_cast <bool> (isAvailableAtLoopEntry(LHS, L) &&
"LHS is not available at Loop Entry") ? void (0) : __assert_fail
("isAvailableAtLoopEntry(LHS, L) && \"LHS is not available at Loop Entry\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10849, __extension__
__PRETTY_FUNCTION__))
;
10850 assert(isAvailableAtLoopEntry(RHS, L) &&(static_cast <bool> (isAvailableAtLoopEntry(RHS, L) &&
"RHS is not available at Loop Entry") ? void (0) : __assert_fail
("isAvailableAtLoopEntry(RHS, L) && \"RHS is not available at Loop Entry\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10851, __extension__
__PRETTY_FUNCTION__))
23
'?' condition is true
10851 "RHS is not available at Loop Entry")(static_cast <bool> (isAvailableAtLoopEntry(RHS, L) &&
"RHS is not available at Loop Entry") ? void (0) : __assert_fail
("isAvailableAtLoopEntry(RHS, L) && \"RHS is not available at Loop Entry\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10851, __extension__
__PRETTY_FUNCTION__))
;
10852
10853 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
24
Calling 'ScalarEvolution::isKnownViaNonRecursiveReasoning'
29
Returning from 'ScalarEvolution::isKnownViaNonRecursiveReasoning'
30
Assuming the condition is false
31
Taking false branch
10854 return true;
10855
10856 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
32
Passing value via 1st parameter 'BB'
33
Calling 'ScalarEvolution::isBasicBlockEntryGuardedByCond'
10857}
10858
10859bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10860 const SCEV *RHS,
10861 const Value *FoundCondValue, bool Inverse,
10862 const Instruction *CtxI) {
10863 // False conditions implies anything. Do not bother analyzing it further.
10864 if (FoundCondValue ==
10865 ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10866 return true;
10867
10868 if (!PendingLoopPredicates.insert(FoundCondValue).second)
10869 return false;
10870
10871 auto ClearOnExit =
10872 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10873
10874 // Recursively handle And and Or conditions.
10875 const Value *Op0, *Op1;
10876 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10877 if (!Inverse)
10878 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10879 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10880 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10881 if (Inverse)
10882 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10883 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10884 }
10885
10886 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10887 if (!ICI) return false;
10888
10889 // Now that we found a conditional branch that dominates the loop or controls
10890 // the loop latch. Check to see if it is the comparison we are looking for.
10891 ICmpInst::Predicate FoundPred;
10892 if (Inverse)
10893 FoundPred = ICI->getInversePredicate();
10894 else
10895 FoundPred = ICI->getPredicate();
10896
10897 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10898 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10899
10900 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
10901}
10902
10903bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10904 const SCEV *RHS,
10905 ICmpInst::Predicate FoundPred,
10906 const SCEV *FoundLHS, const SCEV *FoundRHS,
10907 const Instruction *CtxI) {
10908 // Balance the types.
10909 if (getTypeSizeInBits(LHS->getType()) <
10910 getTypeSizeInBits(FoundLHS->getType())) {
10911 // For unsigned and equality predicates, try to prove that both found
10912 // operands fit into narrow unsigned range. If so, try to prove facts in
10913 // narrow types.
10914 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10915 auto *NarrowType = LHS->getType();
10916 auto *WideType = FoundLHS->getType();
10917 auto BitWidth = getTypeSizeInBits(NarrowType);
10918 const SCEV *MaxValue = getZeroExtendExpr(
10919 getConstant(APInt::getMaxValue(BitWidth)), WideType);
10920 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
10921 MaxValue) &&
10922 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
10923 MaxValue)) {
10924 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10925 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10926 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10927 TruncFoundRHS, CtxI))
10928 return true;
10929 }
10930 }
10931
10932 if (LHS->getType()->isPointerTy())
10933 return false;
10934 if (CmpInst::isSigned(Pred)) {
10935 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10936 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10937 } else {
10938 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10939 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10940 }
10941 } else if (getTypeSizeInBits(LHS->getType()) >
10942 getTypeSizeInBits(FoundLHS->getType())) {
10943 if (FoundLHS->getType()->isPointerTy())
10944 return false;
10945 if (CmpInst::isSigned(FoundPred)) {
10946 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10947 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10948 } else {
10949 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10950 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10951 }
10952 }
10953 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10954 FoundRHS, CtxI);
10955}
10956
10957bool ScalarEvolution::isImpliedCondBalancedTypes(
10958 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10959 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10960 const Instruction *CtxI) {
10961 assert(getTypeSizeInBits(LHS->getType()) ==(static_cast <bool> (getTypeSizeInBits(LHS->getType(
)) == getTypeSizeInBits(FoundLHS->getType()) && "Types should be balanced!"
) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(FoundLHS->getType()) && \"Types should be balanced!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10963, __extension__
__PRETTY_FUNCTION__))
10962 getTypeSizeInBits(FoundLHS->getType()) &&(static_cast <bool> (getTypeSizeInBits(LHS->getType(
)) == getTypeSizeInBits(FoundLHS->getType()) && "Types should be balanced!"
) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(FoundLHS->getType()) && \"Types should be balanced!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10963, __extension__
__PRETTY_FUNCTION__))
10963 "Types should be balanced!")(static_cast <bool> (getTypeSizeInBits(LHS->getType(
)) == getTypeSizeInBits(FoundLHS->getType()) && "Types should be balanced!"
) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(FoundLHS->getType()) && \"Types should be balanced!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 10963, __extension__
__PRETTY_FUNCTION__))
;
10964 // Canonicalize the query to match the way instcombine will have
10965 // canonicalized the comparison.
10966 if (SimplifyICmpOperands(Pred, LHS, RHS))
10967 if (LHS == RHS)
10968 return CmpInst::isTrueWhenEqual(Pred);
10969 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10970 if (FoundLHS == FoundRHS)
10971 return CmpInst::isFalseWhenEqual(FoundPred);
10972
10973 // Check to see if we can make the LHS or RHS match.
10974 if (LHS == FoundRHS || RHS == FoundLHS) {
10975 if (isa<SCEVConstant>(RHS)) {
10976 std::swap(FoundLHS, FoundRHS);
10977 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10978 } else {
10979 std::swap(LHS, RHS);
10980 Pred = ICmpInst::getSwappedPredicate(Pred);
10981 }
10982 }
10983
10984 // Check whether the found predicate is the same as the desired predicate.
10985 if (FoundPred == Pred)
10986 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10987
10988 // Check whether swapping the found predicate makes it the same as the
10989 // desired predicate.
10990 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10991 // We can write the implication
10992 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS
10993 // using one of the following ways:
10994 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS
10995 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS
10996 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS
10997 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS
10998 // Forms 1. and 2. require swapping the operands of one condition. Don't
10999 // do this if it would break canonical constant/addrec ordering.
11000 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11001 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11002 CtxI);
11003 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11004 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11005
11006 // There's no clear preference between forms 3. and 4., try both. Avoid
11007 // forming getNotSCEV of pointer values as the resulting subtract is
11008 // not legal.
11009 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11010 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11011 FoundLHS, FoundRHS, CtxI))
11012 return true;
11013
11014 if (!FoundLHS->getType()->isPointerTy() &&
11015 !FoundRHS->getType()->isPointerTy() &&
11016 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11017 getNotSCEV(FoundRHS), CtxI))
11018 return true;
11019
11020 return false;
11021 }
11022
11023 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11024 CmpInst::Predicate P2) {
11025 assert(P1 != P2 && "Handled earlier!")(static_cast <bool> (P1 != P2 && "Handled earlier!"
) ? void (0) : __assert_fail ("P1 != P2 && \"Handled earlier!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11025, __extension__
__PRETTY_FUNCTION__))
;
11026 return CmpInst::isRelational(P2) &&
11027 P1 == CmpInst::getFlippedSignednessPredicate(P2);
11028 };
11029 if (IsSignFlippedPredicate(Pred, FoundPred)) {
11030 // Unsigned comparison is the same as signed comparison when both the
11031 // operands are non-negative or negative.
11032 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11033 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11034 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11035 // Create local copies that we can freely swap and canonicalize our
11036 // conditions to "le/lt".
11037 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11038 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11039 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11040 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11041 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
11042 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
11043 std::swap(CanonicalLHS, CanonicalRHS);
11044 std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11045 }
11046 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&(static_cast <bool> ((ICmpInst::isLT(CanonicalPred) || ICmpInst
::isLE(CanonicalPred)) && "Must be!") ? void (0) : __assert_fail
("(ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && \"Must be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11047, __extension__
__PRETTY_FUNCTION__))
11047 "Must be!")(static_cast <bool> ((ICmpInst::isLT(CanonicalPred) || ICmpInst
::isLE(CanonicalPred)) && "Must be!") ? void (0) : __assert_fail
("(ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && \"Must be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11047, __extension__
__PRETTY_FUNCTION__))
;
11048 assert((ICmpInst::isLT(CanonicalFoundPred) ||(static_cast <bool> ((ICmpInst::isLT(CanonicalFoundPred
) || ICmpInst::isLE(CanonicalFoundPred)) && "Must be!"
) ? void (0) : __assert_fail ("(ICmpInst::isLT(CanonicalFoundPred) || ICmpInst::isLE(CanonicalFoundPred)) && \"Must be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11050, __extension__
__PRETTY_FUNCTION__))
11049 ICmpInst::isLE(CanonicalFoundPred)) &&(static_cast <bool> ((ICmpInst::isLT(CanonicalFoundPred
) || ICmpInst::isLE(CanonicalFoundPred)) && "Must be!"
) ? void (0) : __assert_fail ("(ICmpInst::isLT(CanonicalFoundPred) || ICmpInst::isLE(CanonicalFoundPred)) && \"Must be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11050, __extension__
__PRETTY_FUNCTION__))
11050 "Must be!")(static_cast <bool> ((ICmpInst::isLT(CanonicalFoundPred
) || ICmpInst::isLE(CanonicalFoundPred)) && "Must be!"
) ? void (0) : __assert_fail ("(ICmpInst::isLT(CanonicalFoundPred) || ICmpInst::isLE(CanonicalFoundPred)) && \"Must be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11050, __extension__
__PRETTY_FUNCTION__))
;
11051 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11052 // Use implication:
11053 // x <u y && y >=s 0 --> x <s y.
11054 // If we can prove the left part, the right part is also proven.
11055 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11056 CanonicalRHS, CanonicalFoundLHS,
11057 CanonicalFoundRHS);
11058 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11059 // Use implication:
11060 // x <s y && y <s 0 --> x <u y.
11061 // If we can prove the left part, the right part is also proven.
11062 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11063 CanonicalRHS, CanonicalFoundLHS,
11064 CanonicalFoundRHS);
11065 }
11066
11067 // Check if we can make progress by sharpening ranges.
11068 if (FoundPred == ICmpInst::ICMP_NE &&
11069 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11070
11071 const SCEVConstant *C = nullptr;
11072 const SCEV *V = nullptr;
11073
11074 if (isa<SCEVConstant>(FoundLHS)) {
11075 C = cast<SCEVConstant>(FoundLHS);
11076 V = FoundRHS;
11077 } else {
11078 C = cast<SCEVConstant>(FoundRHS);
11079 V = FoundLHS;
11080 }
11081
11082 // The guarding predicate tells us that C != V. If the known range
11083 // of V is [C, t), we can sharpen the range to [C + 1, t). The
11084 // range we consider has to correspond to same signedness as the
11085 // predicate we're interested in folding.
11086
11087 APInt Min = ICmpInst::isSigned(Pred) ?
11088 getSignedRangeMin(V) : getUnsignedRangeMin(V);
11089
11090 if (Min == C->getAPInt()) {
11091 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11092 // This is true even if (Min + 1) wraps around -- in case of
11093 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11094
11095 APInt SharperMin = Min + 1;
11096
11097 switch (Pred) {
11098 case ICmpInst::ICMP_SGE:
11099 case ICmpInst::ICMP_UGE:
11100 // We know V `Pred` SharperMin. If this implies LHS `Pred`
11101 // RHS, we're done.
11102 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11103 CtxI))
11104 return true;
11105 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11106
11107 case ICmpInst::ICMP_SGT:
11108 case ICmpInst::ICMP_UGT:
11109 // We know from the range information that (V `Pred` Min ||
11110 // V == Min). We know from the guarding condition that !(V
11111 // == Min). This gives us
11112 //
11113 // V `Pred` Min || V == Min && !(V == Min)
11114 // => V `Pred` Min
11115 //
11116 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11117
11118 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
11119 return true;
11120 break;
11121
11122 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11123 case ICmpInst::ICMP_SLE:
11124 case ICmpInst::ICMP_ULE:
11125 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11126 LHS, V, getConstant(SharperMin), CtxI))
11127 return true;
11128 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11129
11130 case ICmpInst::ICMP_SLT:
11131 case ICmpInst::ICMP_ULT:
11132 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11133 LHS, V, getConstant(Min), CtxI))
11134 return true;
11135 break;
11136
11137 default:
11138 // No change
11139 break;
11140 }
11141 }
11142 }
11143
11144 // Check whether the actual condition is beyond sufficient.
11145 if (FoundPred == ICmpInst::ICMP_EQ)
11146 if (ICmpInst::isTrueWhenEqual(Pred))
11147 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11148 return true;
11149 if (Pred == ICmpInst::ICMP_NE)
11150 if (!ICmpInst::isTrueWhenEqual(FoundPred))
11151 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11152 return true;
11153
11154 // Otherwise assume the worst.
11155 return false;
11156}
11157
11158bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11159 const SCEV *&L, const SCEV *&R,
11160 SCEV::NoWrapFlags &Flags) {
11161 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
11162 if (!AE || AE->getNumOperands() != 2)
11163 return false;
11164
11165 L = AE->getOperand(0);
11166 R = AE->getOperand(1);
11167 Flags = AE->getNoWrapFlags();
11168 return true;
11169}
11170
11171Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
11172 const SCEV *Less) {
11173 // We avoid subtracting expressions here because this function is usually
11174 // fairly deep in the call stack (i.e. is called many times).
11175
11176 // X - X = 0.
11177 if (More == Less)
11178 return APInt(getTypeSizeInBits(More->getType()), 0);
11179
11180 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
11181 const auto *LAR = cast<SCEVAddRecExpr>(Less);
11182 const auto *MAR = cast<SCEVAddRecExpr>(More);
11183
11184 if (LAR->getLoop() != MAR->getLoop())
11185 return None;
11186
11187 // We look at affine expressions only; not for correctness but to keep
11188 // getStepRecurrence cheap.
11189 if (!LAR->isAffine() || !MAR->isAffine())
11190 return None;
11191
11192 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
11193 return None;
11194
11195 Less = LAR->getStart();
11196 More = MAR->getStart();
11197
11198 // fall through
11199 }
11200
11201 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
11202 const auto &M = cast<SCEVConstant>(More)->getAPInt();
11203 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
11204 return M - L;
11205 }
11206
11207 SCEV::NoWrapFlags Flags;
11208 const SCEV *LLess = nullptr, *RLess = nullptr;
11209 const SCEV *LMore = nullptr, *RMore = nullptr;
11210 const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11211 // Compare (X + C1) vs X.
11212 if (splitBinaryAdd(Less, LLess, RLess, Flags))
11213 if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11214 if (RLess == More)
11215 return -(C1->getAPInt());
11216
11217 // Compare X vs (X + C2).
11218 if (splitBinaryAdd(More, LMore, RMore, Flags))
11219 if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11220 if (RMore == Less)
11221 return C2->getAPInt();
11222
11223 // Compare (X + C1) vs (X + C2).
11224 if (C1 && C2 && RLess == RMore)
11225 return C2->getAPInt() - C1->getAPInt();
11226
11227 return None;
11228}
11229
11230bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11231 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11232 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11233 // Try to recognize the following pattern:
11234 //
11235 // FoundRHS = ...
11236 // ...
11237 // loop:
11238 // FoundLHS = {Start,+,W}
11239 // context_bb: // Basic block from the same loop
11240 // known(Pred, FoundLHS, FoundRHS)
11241 //
11242 // If some predicate is known in the context of a loop, it is also known on
11243 // each iteration of this loop, including the first iteration. Therefore, in
11244 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11245 // prove the original pred using this fact.
11246 if (!CtxI)
11247 return false;
11248 const BasicBlock *ContextBB = CtxI->getParent();
11249 // Make sure AR varies in the context block.
11250 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
11251 const Loop *L = AR->getLoop();
11252 // Make sure that context belongs to the loop and executes on 1st iteration
11253 // (if it ever executes at all).
11254 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11255 return false;
11256 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
11257 return false;
11258 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
11259 }
11260
11261 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
11262 const Loop *L = AR->getLoop();
11263 // Make sure that context belongs to the loop and executes on 1st iteration
11264 // (if it ever executes at all).
11265 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11266 return false;
11267 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
11268 return false;
11269 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
11270 }
11271
11272 return false;
11273}
11274
11275bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11276 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11277 const SCEV *FoundLHS, const SCEV *FoundRHS) {
11278 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11279 return false;
11280
11281 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11282 if (!AddRecLHS)
11283 return false;
11284
11285 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
11286 if (!AddRecFoundLHS)
11287 return false;
11288
11289 // We'd like to let SCEV reason about control dependencies, so we constrain
11290 // both the inequalities to be about add recurrences on the same loop. This
11291 // way we can use isLoopEntryGuardedByCond later.
11292
11293 const Loop *L = AddRecFoundLHS->getLoop();
11294 if (L != AddRecLHS->getLoop())
11295 return false;
11296
11297 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
11298 //
11299 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11300 // ... (2)
11301 //
11302 // Informal proof for (2), assuming (1) [*]:
11303 //
11304 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
11305 //
11306 // Then
11307 //
11308 // FoundLHS s< FoundRHS s< INT_MIN - C
11309 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
11310 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
11311 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
11312 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
11313 // <=> FoundLHS + C s< FoundRHS + C
11314 //
11315 // [*]: (1) can be proved by ruling out overflow.
11316 //
11317 // [**]: This can be proved by analyzing all the four possibilities:
11318 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
11319 // (A s>= 0, B s>= 0).
11320 //
11321 // Note:
11322 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
11323 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
11324 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
11325 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
11326 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
11327 // C)".
11328
11329 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
11330 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
11331 if (!LDiff || !RDiff || *LDiff != *RDiff)
11332 return false;
11333
11334 if (LDiff->isMinValue())
11335 return true;
11336
11337 APInt FoundRHSLimit;
11338
11339 if (Pred == CmpInst::ICMP_ULT) {
11340 FoundRHSLimit = -(*RDiff);
11341 } else {
11342 assert(Pred == CmpInst::ICMP_SLT && "Checked above!")(static_cast <bool> (Pred == CmpInst::ICMP_SLT &&
"Checked above!") ? void (0) : __assert_fail ("Pred == CmpInst::ICMP_SLT && \"Checked above!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11342, __extension__
__PRETTY_FUNCTION__))
;
11343 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11344 }
11345
11346 // Try to prove (1) or (2), as needed.
11347 return isAvailableAtLoopEntry(FoundRHS, L) &&
11348 isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11349 getConstant(FoundRHSLimit));
11350}
11351
11352bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11353 const SCEV *LHS, const SCEV *RHS,
11354 const SCEV *FoundLHS,
11355 const SCEV *FoundRHS, unsigned Depth) {
11356 const PHINode *LPhi = nullptr, *RPhi = nullptr;
11357
11358 auto ClearOnExit = make_scope_exit([&]() {
11359 if (LPhi) {
11360 bool Erased = PendingMerges.erase(LPhi);
11361 assert(Erased && "Failed to erase LPhi!")(static_cast <bool> (Erased && "Failed to erase LPhi!"
) ? void (0) : __assert_fail ("Erased && \"Failed to erase LPhi!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11361, __extension__
__PRETTY_FUNCTION__))
;
11362 (void)Erased;
11363 }
11364 if (RPhi) {
11365 bool Erased = PendingMerges.erase(RPhi);
11366 assert(Erased && "Failed to erase RPhi!")(static_cast <bool> (Erased && "Failed to erase RPhi!"
) ? void (0) : __assert_fail ("Erased && \"Failed to erase RPhi!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11366, __extension__
__PRETTY_FUNCTION__))
;
11367 (void)Erased;
11368 }
11369 });
11370
11371 // Find respective Phis and check that they are not being pending.
11372 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11373 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11374 if (!PendingMerges.insert(Phi).second)
11375 return false;
11376 LPhi = Phi;
11377 }
11378 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11379 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11380 // If we detect a loop of Phi nodes being processed by this method, for
11381 // example:
11382 //
11383 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11384 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11385 //
11386 // we don't want to deal with a case that complex, so return conservative
11387 // answer false.
11388 if (!PendingMerges.insert(Phi).second)
11389 return false;
11390 RPhi = Phi;
11391 }
11392
11393 // If none of LHS, RHS is a Phi, nothing to do here.
11394 if (!LPhi && !RPhi)
11395 return false;
11396
11397 // If there is a SCEVUnknown Phi we are interested in, make it left.
11398 if (!LPhi) {
11399 std::swap(LHS, RHS);
11400 std::swap(FoundLHS, FoundRHS);
11401 std::swap(LPhi, RPhi);
11402 Pred = ICmpInst::getSwappedPredicate(Pred);
11403 }
11404
11405 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!")(static_cast <bool> (LPhi && "LPhi should definitely be a SCEVUnknown Phi!"
) ? void (0) : __assert_fail ("LPhi && \"LPhi should definitely be a SCEVUnknown Phi!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11405, __extension__
__PRETTY_FUNCTION__))
;
11406 const BasicBlock *LBB = LPhi->getParent();
11407 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11408
11409 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11410 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11411 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11412 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11413 };
11414
11415 if (RPhi && RPhi->getParent() == LBB) {
11416 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11417 // If we compare two Phis from the same block, and for each entry block
11418 // the predicate is true for incoming values from this block, then the
11419 // predicate is also true for the Phis.
11420 for (const BasicBlock *IncBB : predecessors(LBB)) {
11421 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11422 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11423 if (!ProvedEasily(L, R))
11424 return false;
11425 }
11426 } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11427 // Case two: RHS is also a Phi from the same basic block, and it is an
11428 // AddRec. It means that there is a loop which has both AddRec and Unknown
11429 // PHIs, for it we can compare incoming values of AddRec from above the loop
11430 // and latch with their respective incoming values of LPhi.
11431 // TODO: Generalize to handle loops with many inputs in a header.
11432 if (LPhi->getNumIncomingValues() != 2) return false;
11433
11434 auto *RLoop = RAR->getLoop();
11435 auto *Predecessor = RLoop->getLoopPredecessor();
11436 assert(Predecessor && "Loop with AddRec with no predecessor?")(static_cast <bool> (Predecessor && "Loop with AddRec with no predecessor?"
) ? void (0) : __assert_fail ("Predecessor && \"Loop with AddRec with no predecessor?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11436, __extension__
__PRETTY_FUNCTION__))
;
11437 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11438 if (!ProvedEasily(L1, RAR->getStart()))
11439 return false;
11440 auto *Latch = RLoop->getLoopLatch();
11441 assert(Latch && "Loop with AddRec with no latch?")(static_cast <bool> (Latch && "Loop with AddRec with no latch?"
) ? void (0) : __assert_fail ("Latch && \"Loop with AddRec with no latch?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11441, __extension__
__PRETTY_FUNCTION__))
;
11442 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11443 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11444 return false;
11445 } else {
11446 // In all other cases go over inputs of LHS and compare each of them to RHS,
11447 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11448 // At this point RHS is either a non-Phi, or it is a Phi from some block
11449 // different from LBB.
11450 for (const BasicBlock *IncBB : predecessors(LBB)) {
11451 // Check that RHS is available in this block.
11452 if (!dominates(RHS, IncBB))
11453 return false;
11454 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11455 // Make sure L does not refer to a value from a potentially previous
11456 // iteration of a loop.
11457 if (!properlyDominates(L, IncBB))
11458 return false;
11459 if (!ProvedEasily(L, RHS))
11460 return false;
11461 }
11462 }
11463 return true;
11464}
11465
11466bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
11467 const SCEV *LHS,
11468 const SCEV *RHS,
11469 const SCEV *FoundLHS,
11470 const SCEV *FoundRHS) {
11471 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make
11472 // sure that we are dealing with same LHS.
11473 if (RHS == FoundRHS) {
11474 std::swap(LHS, RHS);
11475 std::swap(FoundLHS, FoundRHS);
11476 Pred = ICmpInst::getSwappedPredicate(Pred);
11477 }
11478 if (LHS != FoundLHS)
11479 return false;
11480
11481 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
11482 if (!SUFoundRHS)
11483 return false;
11484
11485 Value *Shiftee, *ShiftValue;
11486
11487 using namespace PatternMatch;
11488 if (match(SUFoundRHS->getValue(),
11489 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
11490 auto *ShifteeS = getSCEV(Shiftee);
11491 // Prove one of the following:
11492 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
11493 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
11494 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
11495 // ---> LHS <s RHS
11496 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
11497 // ---> LHS <=s RHS
11498 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
11499 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
11500 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
11501 if (isKnownNonNegative(ShifteeS))
11502 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
11503 }
11504
11505 return false;
11506}
11507
11508bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11509 const SCEV *LHS, const SCEV *RHS,
11510 const SCEV *FoundLHS,
11511 const SCEV *FoundRHS,
11512 const Instruction *CtxI) {
11513 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11514 return true;
11515
11516 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11517 return true;
11518
11519 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
11520 return true;
11521
11522 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11523 CtxI))
11524 return true;
11525
11526 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11527 FoundLHS, FoundRHS);
11528}
11529
11530/// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11531template <typename MinMaxExprType>
11532static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11533 const SCEV *Candidate) {
11534 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11535 if (!MinMaxExpr)
11536 return false;
11537
11538 return is_contained(MinMaxExpr->operands(), Candidate);
11539}
11540
11541static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11542 ICmpInst::Predicate Pred,
11543 const SCEV *LHS, const SCEV *RHS) {
11544 // If both sides are affine addrecs for the same loop, with equal
11545 // steps, and we know the recurrences don't wrap, then we only
11546 // need to check the predicate on the starting values.
11547
11548 if (!ICmpInst::isRelational(Pred))
11549 return false;
11550
11551 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11552 if (!LAR)
11553 return false;
11554 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11555 if (!RAR)
11556 return false;
11557 if (LAR->getLoop() != RAR->getLoop())
11558 return false;
11559 if (!LAR->isAffine() || !RAR->isAffine())
11560 return false;
11561
11562 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11563 return false;
11564
11565 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11566 SCEV::FlagNSW : SCEV::FlagNUW;
11567 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11568 return false;
11569
11570 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11571}
11572
11573/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11574/// expression?
11575static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11576 ICmpInst::Predicate Pred,
11577 const SCEV *LHS, const SCEV *RHS) {
11578 switch (Pred) {
11579 default:
11580 return false;
11581
11582 case ICmpInst::ICMP_SGE:
11583 std::swap(LHS, RHS);
11584 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11585 case ICmpInst::ICMP_SLE:
11586 return
11587 // min(A, ...) <= A
11588 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11589 // A <= max(A, ...)
11590 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11591
11592 case ICmpInst::ICMP_UGE:
11593 std::swap(LHS, RHS);
11594 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11595 case ICmpInst::ICMP_ULE:
11596 return
11597 // min(A, ...) <= A
11598 // FIXME: what about umin_seq?
11599 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11600 // A <= max(A, ...)
11601 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11602 }
11603
11604 llvm_unreachable("covered switch fell through?!")::llvm::llvm_unreachable_internal("covered switch fell through?!"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11604)
;
11605}
11606
11607bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11608 const SCEV *LHS, const SCEV *RHS,
11609 const SCEV *FoundLHS,
11610 const SCEV *FoundRHS,
11611 unsigned Depth) {
11612 assert(getTypeSizeInBits(LHS->getType()) ==(static_cast <bool> (getTypeSizeInBits(LHS->getType(
)) == getTypeSizeInBits(RHS->getType()) && "LHS and RHS have different sizes?"
) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(RHS->getType()) && \"LHS and RHS have different sizes?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11614, __extension__
__PRETTY_FUNCTION__))
11613 getTypeSizeInBits(RHS->getType()) &&(static_cast <bool> (getTypeSizeInBits(LHS->getType(
)) == getTypeSizeInBits(RHS->getType()) && "LHS and RHS have different sizes?"
) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(RHS->getType()) && \"LHS and RHS have different sizes?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11614, __extension__
__PRETTY_FUNCTION__))
11614 "LHS and RHS have different sizes?")(static_cast <bool> (getTypeSizeInBits(LHS->getType(
)) == getTypeSizeInBits(RHS->getType()) && "LHS and RHS have different sizes?"
) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(RHS->getType()) && \"LHS and RHS have different sizes?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11614, __extension__
__PRETTY_FUNCTION__))
;
11615 assert(getTypeSizeInBits(FoundLHS->getType()) ==(static_cast <bool> (getTypeSizeInBits(FoundLHS->getType
()) == getTypeSizeInBits(FoundRHS->getType()) && "FoundLHS and FoundRHS have different sizes?"
) ? void (0) : __assert_fail ("getTypeSizeInBits(FoundLHS->getType()) == getTypeSizeInBits(FoundRHS->getType()) && \"FoundLHS and FoundRHS have different sizes?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11617, __extension__
__PRETTY_FUNCTION__))
11616 getTypeSizeInBits(FoundRHS->getType()) &&(static_cast <bool> (getTypeSizeInBits(FoundLHS->getType
()) == getTypeSizeInBits(FoundRHS->getType()) && "FoundLHS and FoundRHS have different sizes?"
) ? void (0) : __assert_fail ("getTypeSizeInBits(FoundLHS->getType()) == getTypeSizeInBits(FoundRHS->getType()) && \"FoundLHS and FoundRHS have different sizes?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11617, __extension__
__PRETTY_FUNCTION__))
11617 "FoundLHS and FoundRHS have different sizes?")(static_cast <bool> (getTypeSizeInBits(FoundLHS->getType
()) == getTypeSizeInBits(FoundRHS->getType()) && "FoundLHS and FoundRHS have different sizes?"
) ? void (0) : __assert_fail ("getTypeSizeInBits(FoundLHS->getType()) == getTypeSizeInBits(FoundRHS->getType()) && \"FoundLHS and FoundRHS have different sizes?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11617, __extension__
__PRETTY_FUNCTION__))
;
11618 // We want to avoid hurting the compile time with analysis of too big trees.
11619 if (Depth > MaxSCEVOperationsImplicationDepth)
11620 return false;
11621
11622 // We only want to work with GT comparison so far.
11623 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11624 Pred = CmpInst::getSwappedPredicate(Pred);
11625 std::swap(LHS, RHS);
11626 std::swap(FoundLHS, FoundRHS);
11627 }
11628
11629 // For unsigned, try to reduce it to corresponding signed comparison.
11630 if (Pred == ICmpInst::ICMP_UGT)
11631 // We can replace unsigned predicate with its signed counterpart if all
11632 // involved values are non-negative.
11633 // TODO: We could have better support for unsigned.
11634 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11635 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11636 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11637 // use this fact to prove that LHS and RHS are non-negative.
11638 const SCEV *MinusOne = getMinusOne(LHS->getType());
11639 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11640 FoundRHS) &&
11641 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11642 FoundRHS))
11643 Pred = ICmpInst::ICMP_SGT;
11644 }
11645
11646 if (Pred != ICmpInst::ICMP_SGT)
11647 return false;
11648
11649 auto GetOpFromSExt = [&](const SCEV *S) {
11650 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11651 return Ext->getOperand();
11652 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11653 // the constant in some cases.
11654 return S;
11655 };
11656
11657 // Acquire values from extensions.
11658 auto *OrigLHS = LHS;
11659 auto *OrigFoundLHS = FoundLHS;
11660 LHS = GetOpFromSExt(LHS);
11661 FoundLHS = GetOpFromSExt(FoundLHS);
11662
11663 // Is the SGT predicate can be proved trivially or using the found context.
11664 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11665 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11666 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11667 FoundRHS, Depth + 1);
11668 };
11669
11670 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11671 // We want to avoid creation of any new non-constant SCEV. Since we are
11672 // going to compare the operands to RHS, we should be certain that we don't
11673 // need any size extensions for this. So let's decline all cases when the
11674 // sizes of types of LHS and RHS do not match.
11675 // TODO: Maybe try to get RHS from sext to catch more cases?
11676 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11677 return false;
11678
11679 // Should not overflow.
11680 if (!LHSAddExpr->hasNoSignedWrap())
11681 return false;
11682
11683 auto *LL = LHSAddExpr->getOperand(0);
11684 auto *LR = LHSAddExpr->getOperand(1);
11685 auto *MinusOne = getMinusOne(RHS->getType());
11686
11687 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11688 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11689 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11690 };
11691 // Try to prove the following rule:
11692 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11693 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11694 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11695 return true;
11696 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11697 Value *LL, *LR;
11698 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11699
11700 using namespace llvm::PatternMatch;
11701
11702 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11703 // Rules for division.
11704 // We are going to perform some comparisons with Denominator and its
11705 // derivative expressions. In general case, creating a SCEV for it may
11706 // lead to a complex analysis of the entire graph, and in particular it
11707 // can request trip count recalculation for the same loop. This would
11708 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11709 // this, we only want to create SCEVs that are constants in this section.
11710 // So we bail if Denominator is not a constant.
11711 if (!isa<ConstantInt>(LR))
11712 return false;
11713
11714 auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11715
11716 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11717 // then a SCEV for the numerator already exists and matches with FoundLHS.
11718 auto *Numerator = getExistingSCEV(LL);
11719 if (!Numerator || Numerator->getType() != FoundLHS->getType())
11720 return false;
11721
11722 // Make sure that the numerator matches with FoundLHS and the denominator
11723 // is positive.
11724 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11725 return false;
11726
11727 auto *DTy = Denominator->getType();
11728 auto *FRHSTy = FoundRHS->getType();
11729 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11730 // One of types is a pointer and another one is not. We cannot extend
11731 // them properly to a wider type, so let us just reject this case.
11732 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11733 // to avoid this check.
11734 return false;
11735
11736 // Given that:
11737 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11738 auto *WTy = getWiderType(DTy, FRHSTy);
11739 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11740 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11741
11742 // Try to prove the following rule:
11743 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11744 // For example, given that FoundLHS > 2. It means that FoundLHS is at
11745 // least 3. If we divide it by Denominator < 4, we will have at least 1.
11746 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11747 if (isKnownNonPositive(RHS) &&
11748 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11749 return true;
11750
11751 // Try to prove the following rule:
11752 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11753 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11754 // If we divide it by Denominator > 2, then:
11755 // 1. If FoundLHS is negative, then the result is 0.
11756 // 2. If FoundLHS is non-negative, then the result is non-negative.
11757 // Anyways, the result is non-negative.
11758 auto *MinusOne = getMinusOne(WTy);
11759 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11760 if (isKnownNegative(RHS) &&
11761 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11762 return true;
11763 }
11764 }
11765
11766 // If our expression contained SCEVUnknown Phis, and we split it down and now
11767 // need to prove something for them, try to prove the predicate for every
11768 // possible incoming values of those Phis.
11769 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11770 return true;
11771
11772 return false;
11773}
11774
11775static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11776 const SCEV *LHS, const SCEV *RHS) {
11777 // zext x u<= sext x, sext x s<= zext x
11778 switch (Pred) {
11779 case ICmpInst::ICMP_SGE:
11780 std::swap(LHS, RHS);
11781 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11782 case ICmpInst::ICMP_SLE: {
11783 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
11784 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11785 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11786 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11787 return true;
11788 break;
11789 }
11790 case ICmpInst::ICMP_UGE:
11791 std::swap(LHS, RHS);
11792 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11793 case ICmpInst::ICMP_ULE: {
11794 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt.
11795 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11796 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11797 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11798 return true;
11799 break;
11800 }
11801 default:
11802 break;
11803 };
11804 return false;
11805}
11806
11807bool
11808ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11809 const SCEV *LHS, const SCEV *RHS) {
11810 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
25
Assuming the condition is false
28
Returning value, which participates in a condition later
11811 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
26
Assuming the condition is false
11812 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11813 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
27
Assuming the condition is false
11814 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11815}
11816
11817bool
11818ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11819 const SCEV *LHS, const SCEV *RHS,
11820 const SCEV *FoundLHS,
11821 const SCEV *FoundRHS) {
11822 switch (Pred) {
11823 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!")::llvm::llvm_unreachable_internal("Unexpected ICmpInst::Predicate value!"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11823)
;
11824 case ICmpInst::ICMP_EQ:
11825 case ICmpInst::ICMP_NE:
11826 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11827 return true;
11828 break;
11829 case ICmpInst::ICMP_SLT:
11830 case ICmpInst::ICMP_SLE:
11831 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11832 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11833 return true;
11834 break;
11835 case ICmpInst::ICMP_SGT:
11836 case ICmpInst::ICMP_SGE:
11837 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11838 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11839 return true;
11840 break;
11841 case ICmpInst::ICMP_ULT:
11842 case ICmpInst::ICMP_ULE:
11843 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11844 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11845 return true;
11846 break;
11847 case ICmpInst::ICMP_UGT:
11848 case ICmpInst::ICMP_UGE:
11849 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11850 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11851 return true;
11852 break;
11853 }
11854
11855 // Maybe it can be proved via operations?
11856 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11857 return true;
11858
11859 return false;
11860}
11861
11862bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11863 const SCEV *LHS,
11864 const SCEV *RHS,
11865 const SCEV *FoundLHS,
11866 const SCEV *FoundRHS) {
11867 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11868 // The restriction on `FoundRHS` be lifted easily -- it exists only to
11869 // reduce the compile time impact of this optimization.
11870 return false;
11871
11872 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11873 if (!Addend)
11874 return false;
11875
11876 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11877
11878 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11879 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11880 ConstantRange FoundLHSRange =
11881 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11882
11883 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11884 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11885
11886 // We can also compute the range of values for `LHS` that satisfy the
11887 // consequent, "`LHS` `Pred` `RHS`":
11888 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11889 // The antecedent implies the consequent if every value of `LHS` that
11890 // satisfies the antecedent also satisfies the consequent.
11891 return LHSRange.icmp(Pred, ConstRHS);
11892}
11893
11894bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11895 bool IsSigned) {
11896 assert(isKnownPositive(Stride) && "Positive stride expected!")(static_cast <bool> (isKnownPositive(Stride) &&
"Positive stride expected!") ? void (0) : __assert_fail ("isKnownPositive(Stride) && \"Positive stride expected!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11896, __extension__
__PRETTY_FUNCTION__))
;
11897
11898 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11899 const SCEV *One = getOne(Stride->getType());
11900
11901 if (IsSigned) {
11902 APInt MaxRHS = getSignedRangeMax(RHS);
11903 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11904 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11905
11906 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11907 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11908 }
11909
11910 APInt MaxRHS = getUnsignedRangeMax(RHS);
11911 APInt MaxValue = APInt::getMaxValue(BitWidth);
11912 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11913
11914 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11915 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11916}
11917
11918bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11919 bool IsSigned) {
11920
11921 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11922 const SCEV *One = getOne(Stride->getType());
11923
11924 if (IsSigned) {
11925 APInt MinRHS = getSignedRangeMin(RHS);
11926 APInt MinValue = APInt::getSignedMinValue(BitWidth);
11927 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11928
11929 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11930 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11931 }
11932
11933 APInt MinRHS = getUnsignedRangeMin(RHS);
11934 APInt MinValue = APInt::getMinValue(BitWidth);
11935 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11936
11937 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11938 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11939}
11940
11941const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11942 // umin(N, 1) + floor((N - umin(N, 1)) / D)
11943 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11944 // expression fixes the case of N=0.
11945 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11946 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11947 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11948}
11949
11950const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11951 const SCEV *Stride,
11952 const SCEV *End,
11953 unsigned BitWidth,
11954 bool IsSigned) {
11955 // The logic in this function assumes we can represent a positive stride.
11956 // If we can't, the backedge-taken count must be zero.
11957 if (IsSigned && BitWidth == 1)
11958 return getZero(Stride->getType());
11959
11960 // This code has only been closely audited for negative strides in the
11961 // unsigned comparison case, it may be correct for signed comparison, but
11962 // that needs to be established.
11963 assert((!IsSigned || !isKnownNonPositive(Stride)) &&(static_cast <bool> ((!IsSigned || !isKnownNonPositive(
Stride)) && "Stride is expected strictly positive for signed case!"
) ? void (0) : __assert_fail ("(!IsSigned || !isKnownNonPositive(Stride)) && \"Stride is expected strictly positive for signed case!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11964, __extension__
__PRETTY_FUNCTION__))
11964 "Stride is expected strictly positive for signed case!")(static_cast <bool> ((!IsSigned || !isKnownNonPositive(
Stride)) && "Stride is expected strictly positive for signed case!"
) ? void (0) : __assert_fail ("(!IsSigned || !isKnownNonPositive(Stride)) && \"Stride is expected strictly positive for signed case!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 11964, __extension__
__PRETTY_FUNCTION__))
;
11965
11966 // Calculate the maximum backedge count based on the range of values
11967 // permitted by Start, End, and Stride.
11968 APInt MinStart =
11969 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11970
11971 APInt MinStride =
11972 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11973
11974 // We assume either the stride is positive, or the backedge-taken count
11975 // is zero. So force StrideForMaxBECount to be at least one.
11976 APInt One(BitWidth, 1);
11977 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11978 : APIntOps::umax(One, MinStride);
11979
11980 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11981 : APInt::getMaxValue(BitWidth);
11982 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11983
11984 // Although End can be a MAX expression we estimate MaxEnd considering only
11985 // the case End = RHS of the loop termination condition. This is safe because
11986 // in the other case (End - Start) is zero, leading to a zero maximum backedge
11987 // taken count.
11988 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11989 : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11990
11991 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11992 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11993 : APIntOps::umax(MaxEnd, MinStart);
11994
11995 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11996 getConstant(StrideForMaxBECount) /* Step */);
11997}
11998
11999ScalarEvolution::ExitLimit
12000ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12001 const Loop *L, bool IsSigned,
12002 bool ControlsExit, bool AllowPredicates) {
12003 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12004
12005 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12006 bool PredicatedIV = false;
12007
12008 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12009 // Can we prove this loop *must* be UB if overflow of IV occurs?
12010 // Reasoning goes as follows:
12011 // * Suppose the IV did self wrap.
12012 // * If Stride evenly divides the iteration space, then once wrap
12013 // occurs, the loop must revisit the same values.
12014 // * We know that RHS is invariant, and that none of those values
12015 // caused this exit to be taken previously. Thus, this exit is
12016 // dynamically dead.
12017 // * If this is the sole exit, then a dead exit implies the loop
12018 // must be infinite if there are no abnormal exits.
12019 // * If the loop were infinite, then it must either not be mustprogress
12020 // or have side effects. Otherwise, it must be UB.
12021 // * It can't (by assumption), be UB so we have contradicted our
12022 // premise and can conclude the IV did not in fact self-wrap.
12023 if (!isLoopInvariant(RHS, L))
12024 return false;
12025
12026 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
12027 if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12028 return false;
12029
12030 if (!ControlsExit || !loopHasNoAbnormalExits(L))
12031 return false;
12032
12033 return loopIsFiniteByAssumption(L);
12034 };
12035
12036 if (!IV) {
12037 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12038 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12039 if (AR && AR->getLoop() == L && AR->isAffine()) {
12040 auto canProveNUW = [&]() {
12041 if (!isLoopInvariant(RHS, L))
12042 return false;
12043
12044 if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12045 // We need the sequence defined by AR to strictly increase in the
12046 // unsigned integer domain for the logic below to hold.
12047 return false;
12048
12049 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12050 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12051 // If RHS <=u Limit, then there must exist a value V in the sequence
12052 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12053 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned
12054 // overflow occurs. This limit also implies that a signed comparison
12055 // (in the wide bitwidth) is equivalent to an unsigned comparison as
12056 // the high bits on both sides must be zero.
12057 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12058 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12059 Limit = Limit.zext(OuterBitWidth);
12060 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12061 };
12062 auto Flags = AR->getNoWrapFlags();
12063 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12064 Flags = setFlags(Flags, SCEV::FlagNUW);
12065
12066 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12067 if (AR->hasNoUnsignedWrap()) {
12068 // Emulate what getZeroExtendExpr would have done during construction
12069 // if we'd been able to infer the fact just above at that time.
12070 const SCEV *Step = AR->getStepRecurrence(*this);
12071 Type *Ty = ZExt->getType();
12072 auto *S = getAddRecExpr(
12073 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12074 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12075 IV = dyn_cast<SCEVAddRecExpr>(S);
12076 }
12077 }
12078 }
12079 }
12080
12081
12082 if (!IV && AllowPredicates) {
12083 // Try to make this an AddRec using runtime tests, in the first X
12084 // iterations of this loop, where X is the SCEV expression found by the
12085 // algorithm below.
12086 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12087 PredicatedIV = true;
12088 }
12089
12090 // Avoid weird loops
12091 if (!IV || IV->getLoop() != L || !IV->isAffine())
12092 return getCouldNotCompute();
12093
12094 // A precondition of this method is that the condition being analyzed
12095 // reaches an exiting branch which dominates the latch. Given that, we can
12096 // assume that an increment which violates the nowrap specification and
12097 // produces poison must cause undefined behavior when the resulting poison
12098 // value is branched upon and thus we can conclude that the backedge is
12099 // taken no more often than would be required to produce that poison value.
12100 // Note that a well defined loop can exit on the iteration which violates
12101 // the nowrap specification if there is another exit (either explicit or
12102 // implicit/exceptional) which causes the loop to execute before the
12103 // exiting instruction we're analyzing would trigger UB.
12104 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12105 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12106 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12107
12108 const SCEV *Stride = IV->getStepRecurrence(*this);
12109
12110 bool PositiveStride = isKnownPositive(Stride);
12111
12112 // Avoid negative or zero stride values.
12113 if (!PositiveStride) {
12114 // We can compute the correct backedge taken count for loops with unknown
12115 // strides if we can prove that the loop is not an infinite loop with side
12116 // effects. Here's the loop structure we are trying to handle -
12117 //
12118 // i = start
12119 // do {
12120 // A[i] = i;
12121 // i += s;
12122 // } while (i < end);
12123 //
12124 // The backedge taken count for such loops is evaluated as -
12125 // (max(end, start + stride) - start - 1) /u stride
12126 //
12127 // The additional preconditions that we need to check to prove correctness
12128 // of the above formula is as follows -
12129 //
12130 // a) IV is either nuw or nsw depending upon signedness (indicated by the
12131 // NoWrap flag).
12132 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12133 // no side effects within the loop)
12134 // c) loop has a single static exit (with no abnormal exits)
12135 //
12136 // Precondition a) implies that if the stride is negative, this is a single
12137 // trip loop. The backedge taken count formula reduces to zero in this case.
12138 //
12139 // Precondition b) and c) combine to imply that if rhs is invariant in L,
12140 // then a zero stride means the backedge can't be taken without executing
12141 // undefined behavior.
12142 //
12143 // The positive stride case is the same as isKnownPositive(Stride) returning
12144 // true (original behavior of the function).
12145 //
12146 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12147 !loopHasNoAbnormalExits(L))
12148 return getCouldNotCompute();
12149
12150 // This bailout is protecting the logic in computeMaxBECountForLT which
12151 // has not yet been sufficiently auditted or tested with negative strides.
12152 // We used to filter out all known-non-positive cases here, we're in the
12153 // process of being less restrictive bit by bit.
12154 if (IsSigned && isKnownNonPositive(Stride))
12155 return getCouldNotCompute();
12156
12157 if (!isKnownNonZero(Stride)) {
12158 // If we have a step of zero, and RHS isn't invariant in L, we don't know
12159 // if it might eventually be greater than start and if so, on which
12160 // iteration. We can't even produce a useful upper bound.
12161 if (!isLoopInvariant(RHS, L))
12162 return getCouldNotCompute();
12163
12164 // We allow a potentially zero stride, but we need to divide by stride
12165 // below. Since the loop can't be infinite and this check must control
12166 // the sole exit, we can infer the exit must be taken on the first
12167 // iteration (e.g. backedge count = 0) if the stride is zero. Given that,
12168 // we know the numerator in the divides below must be zero, so we can
12169 // pick an arbitrary non-zero value for the denominator (e.g. stride)
12170 // and produce the right result.
12171 // FIXME: Handle the case where Stride is poison?
12172 auto wouldZeroStrideBeUB = [&]() {
12173 // Proof by contradiction. Suppose the stride were zero. If we can
12174 // prove that the backedge *is* taken on the first iteration, then since
12175 // we know this condition controls the sole exit, we must have an
12176 // infinite loop. We can't have a (well defined) infinite loop per
12177 // check just above.
12178 // Note: The (Start - Stride) term is used to get the start' term from
12179 // (start' + stride,+,stride). Remember that we only care about the
12180 // result of this expression when stride == 0 at runtime.
12181 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
12182 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
12183 };
12184 if (!wouldZeroStrideBeUB()) {
12185 Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
12186 }
12187 }
12188 } else if (!Stride->isOne() && !NoWrap) {
12189 auto isUBOnWrap = [&]() {
12190 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This
12191 // follows trivially from the fact that every (un)signed-wrapped, but
12192 // not self-wrapped value must be LT than the last value before
12193 // (un)signed wrap. Since we know that last value didn't exit, nor
12194 // will any smaller one.
12195 return canAssumeNoSelfWrap(IV);
12196 };
12197
12198 // Avoid proven overflow cases: this will ensure that the backedge taken
12199 // count will not generate any unsigned overflow. Relaxed no-overflow
12200 // conditions exploit NoWrapFlags, allowing to optimize in presence of
12201 // undefined behaviors like the case of C language.
12202 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12203 return getCouldNotCompute();
12204 }
12205
12206 // On all paths just preceeding, we established the following invariant:
12207 // IV can be assumed not to overflow up to and including the exiting
12208 // iteration. We proved this in one of two ways:
12209 // 1) We can show overflow doesn't occur before the exiting iteration
12210 // 1a) canIVOverflowOnLT, and b) step of one
12211 // 2) We can show that if overflow occurs, the loop must execute UB
12212 // before any possible exit.
12213 // Note that we have not yet proved RHS invariant (in general).
12214
12215 const SCEV *Start = IV->getStart();
12216
12217 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12218 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12219 // Use integer-typed versions for actual computation; we can't subtract
12220 // pointers in general.
12221 const SCEV *OrigStart = Start;
12222 const SCEV *OrigRHS = RHS;
12223 if (Start->getType()->isPointerTy()) {
12224 Start = getLosslessPtrToIntExpr(Start);
12225 if (isa<SCEVCouldNotCompute>(Start))
12226 return Start;
12227 }
12228 if (RHS->getType()->isPointerTy()) {
12229 RHS = getLosslessPtrToIntExpr(RHS);
12230 if (isa<SCEVCouldNotCompute>(RHS))
12231 return RHS;
12232 }
12233
12234 // When the RHS is not invariant, we do not know the end bound of the loop and
12235 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
12236 // calculate the MaxBECount, given the start, stride and max value for the end
12237 // bound of the loop (RHS), and the fact that IV does not overflow (which is
12238 // checked above).
12239 if (!isLoopInvariant(RHS, L)) {
12240 const SCEV *MaxBECount = computeMaxBECountForLT(
12241 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12242 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
12243 false /*MaxOrZero*/, Predicates);
12244 }
12245
12246 // We use the expression (max(End,Start)-Start)/Stride to describe the
12247 // backedge count, as if the backedge is taken at least once max(End,Start)
12248 // is End and so the result is as above, and if not max(End,Start) is Start
12249 // so we get a backedge count of zero.
12250 const SCEV *BECount = nullptr;
12251 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
12252 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!")(static_cast <bool> (isAvailableAtLoopEntry(OrigStartMinusStride
, L) && "Must be!") ? void (0) : __assert_fail ("isAvailableAtLoopEntry(OrigStartMinusStride, L) && \"Must be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12252, __extension__
__PRETTY_FUNCTION__))
;
12253 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!")(static_cast <bool> (isAvailableAtLoopEntry(OrigStart, L
) && "Must be!") ? void (0) : __assert_fail ("isAvailableAtLoopEntry(OrigStart, L) && \"Must be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12253, __extension__
__PRETTY_FUNCTION__))
;
12254 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!")(static_cast <bool> (isAvailableAtLoopEntry(OrigRHS, L)
&& "Must be!") ? void (0) : __assert_fail ("isAvailableAtLoopEntry(OrigRHS, L) && \"Must be!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12254, __extension__
__PRETTY_FUNCTION__))
;
12255 // Can we prove (max(RHS,Start) > Start - Stride?
12256 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
12257 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
12258 // In this case, we can use a refined formula for computing backedge taken
12259 // count. The general formula remains:
12260 // "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12261 // We want to use the alternate formula:
12262 // "((End - 1) - (Start - Stride)) /u Stride"
12263 // Let's do a quick case analysis to show these are equivalent under
12264 // our precondition that max(RHS,Start) > Start - Stride.
12265 // * For RHS <= Start, the backedge-taken count must be zero.
12266 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
12267 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12268 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12269 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing
12270 // this to the stride of 1 case.
12271 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12272 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
12273 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12274 // "((RHS - (Start - Stride) - 1) /u Stride".
12275 // Our preconditions trivially imply no overflow in that form.
12276 const SCEV *MinusOne = getMinusOne(Stride->getType());
12277 const SCEV *Numerator =
12278 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
12279 BECount = getUDivExpr(Numerator, Stride);
12280 }
12281
12282 const SCEV *BECountIfBackedgeTaken = nullptr;
12283 if (!BECount) {
12284 auto canProveRHSGreaterThanEqualStart = [&]() {
12285 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12286 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
12287 return true;
12288
12289 // (RHS > Start - 1) implies RHS >= Start.
12290 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12291 // "Start - 1" doesn't overflow.
12292 // * For signed comparison, if Start - 1 does overflow, it's equal
12293 // to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12294 // * For unsigned comparison, if Start - 1 does overflow, it's equal
12295 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12296 //
12297 // FIXME: Should isLoopEntryGuardedByCond do this for us?
12298 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12299 auto *StartMinusOne = getAddExpr(OrigStart,
12300 getMinusOne(OrigStart->getType()));
12301 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
12302 };
12303
12304 // If we know that RHS >= Start in the context of loop, then we know that
12305 // max(RHS, Start) = RHS at this point.
12306 const SCEV *End;
12307 if (canProveRHSGreaterThanEqualStart()) {
12308 End = RHS;
12309 } else {
12310 // If RHS < Start, the backedge will be taken zero times. So in
12311 // general, we can write the backedge-taken count as:
12312 //
12313 // RHS >= Start ? ceil(RHS - Start) / Stride : 0
12314 //
12315 // We convert it to the following to make it more convenient for SCEV:
12316 //
12317 // ceil(max(RHS, Start) - Start) / Stride
12318 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
12319
12320 // See what would happen if we assume the backedge is taken. This is
12321 // used to compute MaxBECount.
12322 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
12323 }
12324
12325 // At this point, we know:
12326 //
12327 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
12328 // 2. The index variable doesn't overflow.
12329 //
12330 // Therefore, we know N exists such that
12331 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
12332 // doesn't overflow.
12333 //
12334 // Using this information, try to prove whether the addition in
12335 // "(Start - End) + (Stride - 1)" has unsigned overflow.
12336 const SCEV *One = getOne(Stride->getType());
12337 bool MayAddOverflow = [&] {
12338 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
12339 if (StrideC->getAPInt().isPowerOf2()) {
12340 // Suppose Stride is a power of two, and Start/End are unsigned
12341 // integers. Let UMAX be the largest representable unsigned
12342 // integer.
12343 //
12344 // By the preconditions of this function, we know
12345 // "(Start + Stride * N) >= End", and this doesn't overflow.
12346 // As a formula:
12347 //
12348 // End <= (Start + Stride * N) <= UMAX
12349 //
12350 // Subtracting Start from all the terms:
12351 //
12352 // End - Start <= Stride * N <= UMAX - Start
12353 //
12354 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore:
12355 //
12356 // End - Start <= Stride * N <= UMAX
12357 //
12358 // Stride * N is a multiple of Stride. Therefore,
12359 //
12360 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
12361 //
12362 // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
12363 // Therefore, UMAX mod Stride == Stride - 1. So we can write:
12364 //
12365 // End - Start <= Stride * N <= UMAX - Stride - 1
12366 //
12367 // Dropping the middle term:
12368 //
12369 // End - Start <= UMAX - Stride - 1
12370 //
12371 // Adding Stride - 1 to both sides:
12372 //
12373 // (End - Start) + (Stride - 1) <= UMAX
12374 //
12375 // In other words, the addition doesn't have unsigned overflow.
12376 //
12377 // A similar proof works if we treat Start/End as signed values.
12378 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
12379 // use signed max instead of unsigned max. Note that we're trying
12380 // to prove a lack of unsigned overflow in either case.
12381 return false;
12382 }
12383 }
12384 if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
12385 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
12386 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
12387 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
12388 //
12389 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
12390 return false;
12391 }
12392 return true;
12393 }();
12394
12395 const SCEV *Delta = getMinusSCEV(End, Start);
12396 if (!MayAddOverflow) {
12397 // floor((D + (S - 1)) / S)
12398 // We prefer this formulation if it's legal because it's fewer operations.
12399 BECount =
12400 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
12401 } else {
12402 BECount = getUDivCeilSCEV(Delta, Stride);
12403 }
12404 }
12405
12406 const SCEV *MaxBECount;
12407 bool MaxOrZero = false;
12408 if (isa<SCEVConstant>(BECount)) {
12409 MaxBECount = BECount;
12410 } else if (BECountIfBackedgeTaken &&
12411 isa<SCEVConstant>(BECountIfBackedgeTaken)) {
12412 // If we know exactly how many times the backedge will be taken if it's
12413 // taken at least once, then the backedge count will either be that or
12414 // zero.
12415 MaxBECount = BECountIfBackedgeTaken;
12416 MaxOrZero = true;
12417 } else {
12418 MaxBECount = computeMaxBECountForLT(
12419 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12420 }
12421
12422 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12423 !isa<SCEVCouldNotCompute>(BECount))
12424 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12425
12426 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12427}
12428
12429ScalarEvolution::ExitLimit
12430ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12431 const Loop *L, bool IsSigned,
12432 bool ControlsExit, bool AllowPredicates) {
12433 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12434 // We handle only IV > Invariant
12435 if (!isLoopInvariant(RHS, L))
12436 return getCouldNotCompute();
12437
12438 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12439 if (!IV && AllowPredicates)
12440 // Try to make this an AddRec using runtime tests, in the first X
12441 // iterations of this loop, where X is the SCEV expression found by the
12442 // algorithm below.
12443 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12444
12445 // Avoid weird loops
12446 if (!IV || IV->getLoop() != L || !IV->isAffine())
12447 return getCouldNotCompute();
12448
12449 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12450 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12451 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12452
12453 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12454
12455 // Avoid negative or zero stride values
12456 if (!isKnownPositive(Stride))
12457 return getCouldNotCompute();
12458
12459 // Avoid proven overflow cases: this will ensure that the backedge taken count
12460 // will not generate any unsigned overflow. Relaxed no-overflow conditions
12461 // exploit NoWrapFlags, allowing to optimize in presence of undefined
12462 // behaviors like the case of C language.
12463 if (!Stride->isOne() && !NoWrap)
12464 if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12465 return getCouldNotCompute();
12466
12467 const SCEV *Start = IV->getStart();
12468 const SCEV *End = RHS;
12469 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12470 // If we know that Start >= RHS in the context of loop, then we know that
12471 // min(RHS, Start) = RHS at this point.
12472 if (isLoopEntryGuardedByCond(
12473 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12474 End = RHS;
12475 else
12476 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12477 }
12478
12479 if (Start->getType()->isPointerTy()) {
12480 Start = getLosslessPtrToIntExpr(Start);
12481 if (isa<SCEVCouldNotCompute>(Start))
12482 return Start;
12483 }
12484 if (End->getType()->isPointerTy()) {
12485 End = getLosslessPtrToIntExpr(End);
12486 if (isa<SCEVCouldNotCompute>(End))
12487 return End;
12488 }
12489
12490 // Compute ((Start - End) + (Stride - 1)) / Stride.
12491 // FIXME: This can overflow. Holding off on fixing this for now;
12492 // howManyGreaterThans will hopefully be gone soon.
12493 const SCEV *One = getOne(Stride->getType());
12494 const SCEV *BECount = getUDivExpr(
12495 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12496
12497 APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12498 : getUnsignedRangeMax(Start);
12499
12500 APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12501 : getUnsignedRangeMin(Stride);
12502
12503 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12504 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12505 : APInt::getMinValue(BitWidth) + (MinStride - 1);
12506
12507 // Although End can be a MIN expression we estimate MinEnd considering only
12508 // the case End = RHS. This is safe because in the other case (Start - End)
12509 // is zero, leading to a zero maximum backedge taken count.
12510 APInt MinEnd =
12511 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12512 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12513
12514 const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12515 ? BECount
12516 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12517 getConstant(MinStride));
12518
12519 if (isa<SCEVCouldNotCompute>(MaxBECount))
12520 MaxBECount = BECount;
12521
12522 return ExitLimit(BECount, MaxBECount, false, Predicates);
12523}
12524
12525const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12526 ScalarEvolution &SE) const {
12527 if (Range.isFullSet()) // Infinite loop.
12528 return SE.getCouldNotCompute();
12529
12530 // If the start is a non-zero constant, shift the range to simplify things.
12531 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12532 if (!SC->getValue()->isZero()) {
12533 SmallVector<const SCEV *, 4> Operands(operands());
12534 Operands[0] = SE.getZero(SC->getType());
12535 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12536 getNoWrapFlags(FlagNW));
12537 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12538 return ShiftedAddRec->getNumIterationsInRange(
12539 Range.subtract(SC->getAPInt()), SE);
12540 // This is strange and shouldn't happen.
12541 return SE.getCouldNotCompute();
12542 }
12543
12544 // The only time we can solve this is when we have all constant indices.
12545 // Otherwise, we cannot determine the overflow conditions.
12546 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12547 return SE.getCouldNotCompute();
12548
12549 // Okay at this point we know that all elements of the chrec are constants and
12550 // that the start element is zero.
12551
12552 // First check to see if the range contains zero. If not, the first
12553 // iteration exits.
12554 unsigned BitWidth = SE.getTypeSizeInBits(getType());
12555 if (!Range.contains(APInt(BitWidth, 0)))
12556 return SE.getZero(getType());
12557
12558 if (isAffine()) {
12559 // If this is an affine expression then we have this situation:
12560 // Solve {0,+,A} in Range === Ax in Range
12561
12562 // We know that zero is in the range. If A is positive then we know that
12563 // the upper value of the range must be the first possible exit value.
12564 // If A is negative then the lower of the range is the last possible loop
12565 // value. Also note that we already checked for a full range.
12566 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12567 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12568
12569 // The exit value should be (End+A)/A.
12570 APInt ExitVal = (End + A).udiv(A);
12571 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12572
12573 // Evaluate at the exit value. If we really did fall out of the valid
12574 // range, then we computed our trip count, otherwise wrap around or other
12575 // things must have happened.
12576 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12577 if (Range.contains(Val->getValue()))
12578 return SE.getCouldNotCompute(); // Something strange happened
12579
12580 // Ensure that the previous value is in the range.
12581 assert(Range.contains((static_cast <bool> (Range.contains( EvaluateConstantChrecAtConstant
(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->
getValue()) && "Linear scev computation is off in a bad way!"
) ? void (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12584, __extension__
__PRETTY_FUNCTION__))
12582 EvaluateConstantChrecAtConstant(this,(static_cast <bool> (Range.contains( EvaluateConstantChrecAtConstant
(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->
getValue()) && "Linear scev computation is off in a bad way!"
) ? void (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12584, __extension__
__PRETTY_FUNCTION__))
12583 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&(static_cast <bool> (Range.contains( EvaluateConstantChrecAtConstant
(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->
getValue()) && "Linear scev computation is off in a bad way!"
) ? void (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12584, __extension__
__PRETTY_FUNCTION__))
12584 "Linear scev computation is off in a bad way!")(static_cast <bool> (Range.contains( EvaluateConstantChrecAtConstant
(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->
getValue()) && "Linear scev computation is off in a bad way!"
) ? void (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12584, __extension__
__PRETTY_FUNCTION__))
;
12585 return SE.getConstant(ExitValue);
12586 }
12587
12588 if (isQuadratic()) {
12589 if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12590 return SE.getConstant(S.getValue());
12591 }
12592
12593 return SE.getCouldNotCompute();
12594}
12595
12596const SCEVAddRecExpr *
12597SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12598 assert(getNumOperands() > 1 && "AddRec with zero step?")(static_cast <bool> (getNumOperands() > 1 &&
"AddRec with zero step?") ? void (0) : __assert_fail ("getNumOperands() > 1 && \"AddRec with zero step?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12598, __extension__
__PRETTY_FUNCTION__))
;
12599 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12600 // but in this case we cannot guarantee that the value returned will be an
12601 // AddRec because SCEV does not have a fixed point where it stops
12602 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12603 // may happen if we reach arithmetic depth limit while simplifying. So we
12604 // construct the returned value explicitly.
12605 SmallVector<const SCEV *, 3> Ops;
12606 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12607 // (this + Step) is {A+B,+,B+C,+...,+,N}.
12608 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12609 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12610 // We know that the last operand is not a constant zero (otherwise it would
12611 // have been popped out earlier). This guarantees us that if the result has
12612 // the same last operand, then it will also not be popped out, meaning that
12613 // the returned value will be an AddRec.
12614 const SCEV *Last = getOperand(getNumOperands() - 1);
12615 assert(!Last->isZero() && "Recurrency with zero step?")(static_cast <bool> (!Last->isZero() && "Recurrency with zero step?"
) ? void (0) : __assert_fail ("!Last->isZero() && \"Recurrency with zero step?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12615, __extension__
__PRETTY_FUNCTION__))
;
12616 Ops.push_back(Last);
12617 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12618 SCEV::FlagAnyWrap));
12619}
12620
12621// Return true when S contains at least an undef value.
12622bool ScalarEvolution::containsUndefs(const SCEV *S) const {
12623 return SCEVExprContains(S, [](const SCEV *S) {
12624 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12625 return isa<UndefValue>(SU->getValue());
12626 return false;
12627 });
12628}
12629
12630/// Return the size of an element read or written by Inst.
12631const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12632 Type *Ty;
12633 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12634 Ty = Store->getValueOperand()->getType();
12635 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12636 Ty = Load->getType();
12637 else
12638 return nullptr;
12639
12640 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12641 return getSizeOfExpr(ETy, Ty);
12642}
12643
12644//===----------------------------------------------------------------------===//
12645// SCEVCallbackVH Class Implementation
12646//===----------------------------------------------------------------------===//
12647
12648void ScalarEvolution::SCEVCallbackVH::deleted() {
12649 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!")(static_cast <bool> (SE && "SCEVCallbackVH called with a null ScalarEvolution!"
) ? void (0) : __assert_fail ("SE && \"SCEVCallbackVH called with a null ScalarEvolution!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12649, __extension__
__PRETTY_FUNCTION__))
;
12650 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12651 SE->ConstantEvolutionLoopExitValue.erase(PN);
12652 SE->eraseValueFromMap(getValPtr());
12653 // this now dangles!
12654}
12655
12656void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12657 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!")(static_cast <bool> (SE && "SCEVCallbackVH called with a null ScalarEvolution!"
) ? void (0) : __assert_fail ("SE && \"SCEVCallbackVH called with a null ScalarEvolution!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12657, __extension__
__PRETTY_FUNCTION__))
;
12658
12659 // Forget all the expressions associated with users of the old value,
12660 // so that future queries will recompute the expressions using the new
12661 // value.
12662 Value *Old = getValPtr();
12663 SmallVector<User *, 16> Worklist(Old->users());
12664 SmallPtrSet<User *, 8> Visited;
12665 while (!Worklist.empty()) {
12666 User *U = Worklist.pop_back_val();
12667 // Deleting the Old value will cause this to dangle. Postpone
12668 // that until everything else is done.
12669 if (U == Old)
12670 continue;
12671 if (!Visited.insert(U).second)
12672 continue;
12673 if (PHINode *PN = dyn_cast<PHINode>(U))
12674 SE->ConstantEvolutionLoopExitValue.erase(PN);
12675 SE->eraseValueFromMap(U);
12676 llvm::append_range(Worklist, U->users());
12677 }
12678 // Delete the Old value.
12679 if (PHINode *PN = dyn_cast<PHINode>(Old))
12680 SE->ConstantEvolutionLoopExitValue.erase(PN);
12681 SE->eraseValueFromMap(Old);
12682 // this now dangles!
12683}
12684
12685ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12686 : CallbackVH(V), SE(se) {}
12687
12688//===----------------------------------------------------------------------===//
12689// ScalarEvolution Class Implementation
12690//===----------------------------------------------------------------------===//
12691
12692ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12693 AssumptionCache &AC, DominatorTree &DT,
12694 LoopInfo &LI)
12695 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12696 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12697 LoopDispositions(64), BlockDispositions(64) {
12698 // To use guards for proving predicates, we need to scan every instruction in
12699 // relevant basic blocks, and not just terminators. Doing this is a waste of
12700 // time if the IR does not actually contain any calls to
12701 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12702 //
12703 // This pessimizes the case where a pass that preserves ScalarEvolution wants
12704 // to _add_ guards to the module when there weren't any before, and wants
12705 // ScalarEvolution to optimize based on those guards. For now we prefer to be
12706 // efficient in lieu of being smart in that rather obscure case.
12707
12708 auto *GuardDecl = F.getParent()->getFunction(
12709 Intrinsic::getName(Intrinsic::experimental_guard));
12710 HasGuards = GuardDecl && !GuardDecl->use_empty();
12711}
12712
12713ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12714 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12715 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12716 ValueExprMap(std::move(Arg.ValueExprMap)),
12717 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12718 PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12719 PendingMerges(std::move(Arg.PendingMerges)),
12720 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12721 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12722 PredicatedBackedgeTakenCounts(
12723 std::move(Arg.PredicatedBackedgeTakenCounts)),
12724 BECountUsers(std::move(Arg.BECountUsers)),
12725 ConstantEvolutionLoopExitValue(
12726 std::move(Arg.ConstantEvolutionLoopExitValue)),
12727 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12728 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
12729 LoopDispositions(std::move(Arg.LoopDispositions)),
12730 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12731 BlockDispositions(std::move(Arg.BlockDispositions)),
12732 SCEVUsers(std::move(Arg.SCEVUsers)),
12733 UnsignedRanges(std::move(Arg.UnsignedRanges)),
12734 SignedRanges(std::move(Arg.SignedRanges)),
12735 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12736 UniquePreds(std::move(Arg.UniquePreds)),
12737 SCEVAllocator(std::move(Arg.SCEVAllocator)),
12738 LoopUsers(std::move(Arg.LoopUsers)),
12739 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12740 FirstUnknown(Arg.FirstUnknown) {
12741 Arg.FirstUnknown = nullptr;
12742}
12743
12744ScalarEvolution::~ScalarEvolution() {
12745 // Iterate through all the SCEVUnknown instances and call their
12746 // destructors, so that they release their references to their values.
12747 for (SCEVUnknown *U = FirstUnknown; U;) {
12748 SCEVUnknown *Tmp = U;
12749 U = U->Next;
12750 Tmp->~SCEVUnknown();
12751 }
12752 FirstUnknown = nullptr;
12753
12754 ExprValueMap.clear();
12755 ValueExprMap.clear();
12756 HasRecMap.clear();
12757 BackedgeTakenCounts.clear();
12758 PredicatedBackedgeTakenCounts.clear();
12759
12760 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage")(static_cast <bool> (PendingLoopPredicates.empty() &&
"isImpliedCond garbage") ? void (0) : __assert_fail ("PendingLoopPredicates.empty() && \"isImpliedCond garbage\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12760, __extension__
__PRETTY_FUNCTION__))
;
12761 assert(PendingPhiRanges.empty() && "getRangeRef garbage")(static_cast <bool> (PendingPhiRanges.empty() &&
"getRangeRef garbage") ? void (0) : __assert_fail ("PendingPhiRanges.empty() && \"getRangeRef garbage\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12761, __extension__
__PRETTY_FUNCTION__))
;
12762 assert(PendingMerges.empty() && "isImpliedViaMerge garbage")(static_cast <bool> (PendingMerges.empty() && "isImpliedViaMerge garbage"
) ? void (0) : __assert_fail ("PendingMerges.empty() && \"isImpliedViaMerge garbage\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12762, __extension__
__PRETTY_FUNCTION__))
;
12763 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!")(static_cast <bool> (!WalkingBEDominatingConds &&
"isLoopBackedgeGuardedByCond garbage!") ? void (0) : __assert_fail
("!WalkingBEDominatingConds && \"isLoopBackedgeGuardedByCond garbage!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12763, __extension__
__PRETTY_FUNCTION__))
;
12764 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!")(static_cast <bool> (!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"
) ? void (0) : __assert_fail ("!ProvingSplitPredicate && \"ProvingSplitPredicate garbage!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12764, __extension__
__PRETTY_FUNCTION__))
;
12765}
12766
12767bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12768 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12769}
12770
12771static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12772 const Loop *L) {
12773 // Print all inner loops first
12774 for (Loop *I : *L)
12775 PrintLoopInfo(OS, SE, I);
12776
12777 OS << "Loop ";
12778 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12779 OS << ": ";
12780
12781 SmallVector<BasicBlock *, 8> ExitingBlocks;
12782 L->getExitingBlocks(ExitingBlocks);
12783 if (ExitingBlocks.size() != 1)
12784 OS << "<multiple exits> ";
12785
12786 if (SE->hasLoopInvariantBackedgeTakenCount(L))
12787 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12788 else
12789 OS << "Unpredictable backedge-taken count.\n";
12790
12791 if (ExitingBlocks.size() > 1)
12792 for (BasicBlock *ExitingBlock : ExitingBlocks) {
12793 OS << " exit count for " << ExitingBlock->getName() << ": "
12794 << *SE->getExitCount(L, ExitingBlock) << "\n";
12795 }
12796
12797 OS << "Loop ";
12798 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12799 OS << ": ";
12800
12801 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12802 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12803 if (SE->isBackedgeTakenCountMaxOrZero(L))
12804 OS << ", actual taken count either this or zero.";
12805 } else {
12806 OS << "Unpredictable max backedge-taken count. ";
12807 }
12808
12809 OS << "\n"
12810 "Loop ";
12811 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12812 OS << ": ";
12813
12814 SCEVUnionPredicate Pred;
12815 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12816 if (!isa<SCEVCouldNotCompute>(PBT)) {
12817 OS << "Predicated backedge-taken count is " << *PBT << "\n";
12818 OS << " Predicates:\n";
12819 Pred.print(OS, 4);
12820 } else {
12821 OS << "Unpredictable predicated backedge-taken count. ";
12822 }
12823 OS << "\n";
12824
12825 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12826 OS << "Loop ";
12827 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12828 OS << ": ";
12829 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12830 }
12831}
12832
12833static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12834 switch (LD) {
12835 case ScalarEvolution::LoopVariant:
12836 return "Variant";
12837 case ScalarEvolution::LoopInvariant:
12838 return "Invariant";
12839 case ScalarEvolution::LoopComputable:
12840 return "Computable";
12841 }
12842 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!")::llvm::llvm_unreachable_internal("Unknown ScalarEvolution::LoopDisposition kind!"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12842)
;
12843}
12844
12845void ScalarEvolution::print(raw_ostream &OS) const {
12846 // ScalarEvolution's implementation of the print method is to print
12847 // out SCEV values of all instructions that are interesting. Doing
12848 // this potentially causes it to create new SCEV objects though,
12849 // which technically conflicts with the const qualifier. This isn't
12850 // observable from outside the class though, so casting away the
12851 // const isn't dangerous.
12852 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12853
12854 if (ClassifyExpressions) {
12855 OS << "Classifying expressions for: ";
12856 F.printAsOperand(OS, /*PrintType=*/false);
12857 OS << "\n";
12858 for (Instruction &I : instructions(F))
12859 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12860 OS << I << '\n';
12861 OS << " --> ";
12862 const SCEV *SV = SE.getSCEV(&I);
12863 SV->print(OS);
12864 if (!isa<SCEVCouldNotCompute>(SV)) {
12865 OS << " U: ";
12866 SE.getUnsignedRange(SV).print(OS);
12867 OS << " S: ";
12868 SE.getSignedRange(SV).print(OS);
12869 }
12870
12871 const Loop *L = LI.getLoopFor(I.getParent());
12872
12873 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12874 if (AtUse != SV) {
12875 OS << " --> ";
12876 AtUse->print(OS);
12877 if (!isa<SCEVCouldNotCompute>(AtUse)) {
12878 OS << " U: ";
12879 SE.getUnsignedRange(AtUse).print(OS);
12880 OS << " S: ";
12881 SE.getSignedRange(AtUse).print(OS);
12882 }
12883 }
12884
12885 if (L) {
12886 OS << "\t\t" "Exits: ";
12887 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12888 if (!SE.isLoopInvariant(ExitValue, L)) {
12889 OS << "<<Unknown>>";
12890 } else {
12891 OS << *ExitValue;
12892 }
12893
12894 bool First = true;
12895 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12896 if (First) {
12897 OS << "\t\t" "LoopDispositions: { ";
12898 First = false;
12899 } else {
12900 OS << ", ";
12901 }
12902
12903 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12904 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12905 }
12906
12907 for (auto *InnerL : depth_first(L)) {
12908 if (InnerL == L)
12909 continue;
12910 if (First) {
12911 OS << "\t\t" "LoopDispositions: { ";
12912 First = false;
12913 } else {
12914 OS << ", ";
12915 }
12916
12917 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12918 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12919 }
12920
12921 OS << " }";
12922 }
12923
12924 OS << "\n";
12925 }
12926 }
12927
12928 OS << "Determining loop execution counts for: ";
12929 F.printAsOperand(OS, /*PrintType=*/false);
12930 OS << "\n";
12931 for (Loop *I : LI)
12932 PrintLoopInfo(OS, &SE, I);
12933}
12934
12935ScalarEvolution::LoopDisposition
12936ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12937 auto &Values = LoopDispositions[S];
12938 for (auto &V : Values) {
12939 if (V.getPointer() == L)
12940 return V.getInt();
12941 }
12942 Values.emplace_back(L, LoopVariant);
12943 LoopDisposition D = computeLoopDisposition(S, L);
12944 auto &Values2 = LoopDispositions[S];
12945 for (auto &V : llvm::reverse(Values2)) {
12946 if (V.getPointer() == L) {
12947 V.setInt(D);
12948 break;
12949 }
12950 }
12951 return D;
12952}
12953
12954ScalarEvolution::LoopDisposition
12955ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12956 switch (S->getSCEVType()) {
12957 case scConstant:
12958 return LoopInvariant;
12959 case scPtrToInt:
12960 case scTruncate:
12961 case scZeroExtend:
12962 case scSignExtend:
12963 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12964 case scAddRecExpr: {
12965 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12966
12967 // If L is the addrec's loop, it's computable.
12968 if (AR->getLoop() == L)
12969 return LoopComputable;
12970
12971 // Add recurrences are never invariant in the function-body (null loop).
12972 if (!L)
12973 return LoopVariant;
12974
12975 // Everything that is not defined at loop entry is variant.
12976 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12977 return LoopVariant;
12978 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"(static_cast <bool> (!L->contains(AR->getLoop()) &&
"Containing loop's header does not" " dominate the contained loop's header?"
) ? void (0) : __assert_fail ("!L->contains(AR->getLoop()) && \"Containing loop's header does not\" \" dominate the contained loop's header?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12979, __extension__
__PRETTY_FUNCTION__))
12979 " dominate the contained loop's header?")(static_cast <bool> (!L->contains(AR->getLoop()) &&
"Containing loop's header does not" " dominate the contained loop's header?"
) ? void (0) : __assert_fail ("!L->contains(AR->getLoop()) && \"Containing loop's header does not\" \" dominate the contained loop's header?\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 12979, __extension__
__PRETTY_FUNCTION__))
;
12980
12981 // This recurrence is invariant w.r.t. L if AR's loop contains L.
12982 if (AR->getLoop()->contains(L))
12983 return LoopInvariant;
12984
12985 // This recurrence is variant w.r.t. L if any of its operands
12986 // are variant.
12987 for (auto *Op : AR->operands())
12988 if (!isLoopInvariant(Op, L))
12989 return LoopVariant;
12990
12991 // Otherwise it's loop-invariant.
12992 return LoopInvariant;
12993 }
12994 case scAddExpr:
12995 case scMulExpr:
12996 case scUMaxExpr:
12997 case scSMaxExpr:
12998 case scUMinExpr:
12999 case scSMinExpr:
13000 case scSequentialUMinExpr: {
13001 bool HasVarying = false;
13002 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
13003 LoopDisposition D = getLoopDisposition(Op, L);
13004 if (D == LoopVariant)
13005 return LoopVariant;
13006 if (D == LoopComputable)
13007 HasVarying = true;
13008 }
13009 return HasVarying ? LoopComputable : LoopInvariant;
13010 }
13011 case scUDivExpr: {
13012 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13013 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
13014 if (LD == LoopVariant)
13015 return LoopVariant;
13016 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
13017 if (RD == LoopVariant)
13018 return LoopVariant;
13019 return (LD == LoopInvariant && RD == LoopInvariant) ?
13020 LoopInvariant : LoopComputable;
13021 }
13022 case scUnknown:
13023 // All non-instruction values are loop invariant. All instructions are loop
13024 // invariant if they are not contained in the specified loop.
13025 // Instructions are never considered invariant in the function body
13026 // (null loop) because they are defined within the "loop".
13027 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13028 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13029 return LoopInvariant;
13030 case scCouldNotCompute:
13031 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 13031)
;
13032 }
13033 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 13033)
;
13034}
13035
13036bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13037 return getLoopDisposition(S, L) == LoopInvariant;
13038}
13039
13040bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13041 return getLoopDisposition(S, L) == LoopComputable;
13042}
13043
13044ScalarEvolution::BlockDisposition
13045ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13046 auto &Values = BlockDispositions[S];
13047 for (auto &V : Values) {
13048 if (V.getPointer() == BB)
13049 return V.getInt();
13050 }
13051 Values.emplace_back(BB, DoesNotDominateBlock);
13052 BlockDisposition D = computeBlockDisposition(S, BB);
13053 auto &Values2 = BlockDispositions[S];
13054 for (auto &V : llvm::reverse(Values2)) {
13055 if (V.getPointer() == BB) {
13056 V.setInt(D);
13057 break;
13058 }
13059 }
13060 return D;
13061}
13062
13063ScalarEvolution::BlockDisposition
13064ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13065 switch (S->getSCEVType()) {
13066 case scConstant:
13067 return ProperlyDominatesBlock;
13068 case scPtrToInt:
13069 case scTruncate:
13070 case scZeroExtend:
13071 case scSignExtend:
13072 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
13073 case scAddRecExpr: {
13074 // This uses a "dominates" query instead of "properly dominates" query
13075 // to test for proper dominance too, because the instruction which
13076 // produces the addrec's value is a PHI, and a PHI effectively properly
13077 // dominates its entire containing block.
13078 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13079 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13080 return DoesNotDominateBlock;
13081
13082 // Fall through into SCEVNAryExpr handling.
13083 LLVM_FALLTHROUGH[[gnu::fallthrough]];
13084 }
13085 case scAddExpr:
13086 case scMulExpr:
13087 case scUMaxExpr:
13088 case scSMaxExpr:
13089 case scUMinExpr:
13090 case scSMinExpr:
13091 case scSequentialUMinExpr: {
13092 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
13093 bool Proper = true;
13094 for (const SCEV *NAryOp : NAry->operands()) {
13095 BlockDisposition D = getBlockDisposition(NAryOp, BB);
13096 if (D == DoesNotDominateBlock)
13097 return DoesNotDominateBlock;
13098 if (D == DominatesBlock)
13099 Proper = false;
13100 }
13101 return Proper ? ProperlyDominatesBlock : DominatesBlock;
13102 }
13103 case scUDivExpr: {
13104 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13105 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
13106 BlockDisposition LD = getBlockDisposition(LHS, BB);
13107 if (LD == DoesNotDominateBlock)
13108 return DoesNotDominateBlock;
13109 BlockDisposition RD = getBlockDisposition(RHS, BB);
13110 if (RD == DoesNotDominateBlock)
13111 return DoesNotDominateBlock;
13112 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
13113 ProperlyDominatesBlock : DominatesBlock;
13114 }
13115 case scUnknown:
13116 if (Instruction *I =
13117 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13118 if (I->getParent() == BB)
13119 return DominatesBlock;
13120 if (DT.properlyDominates(I->getParent(), BB))
13121 return ProperlyDominatesBlock;
13122 return DoesNotDominateBlock;
13123 }
13124 return ProperlyDominatesBlock;
13125 case scCouldNotCompute:
13126 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "llvm/lib/Analysis/ScalarEvolution.cpp", 13126)
;
13127 }
13128 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 13128)
;
13129}
13130
13131bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13132 return getBlockDisposition(S, BB) >= DominatesBlock;
13133}
13134
13135bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13136 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13137}
13138
13139bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13140 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13141}
13142
13143void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
13144 bool Predicated) {
13145 auto &BECounts =
13146 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13147 auto It = BECounts.find(L);
13148 if (It != BECounts.end()) {
13149 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
13150 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
13151 auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
13152 assert(UserIt != BECountUsers.end())(static_cast <bool> (UserIt != BECountUsers.end()) ? void
(0) : __assert_fail ("UserIt != BECountUsers.end()", "llvm/lib/Analysis/ScalarEvolution.cpp"
, 13152, __extension__ __PRETTY_FUNCTION__))
;
13153 UserIt->second.erase({L, Predicated});
13154 }
13155 }
13156 BECounts.erase(It);
13157 }
13158}
13159
13160void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
13161 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
13162 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
13163
13164 while (!Worklist.empty()) {
13165 const SCEV *Curr = Worklist.pop_back_val();
13166 auto Users = SCEVUsers.find(Curr);
13167 if (Users != SCEVUsers.end())
13168 for (auto *User : Users->second)
13169 if (ToForget.insert(User).second)
13170 Worklist.push_back(User);
13171 }
13172
13173 for (auto *S : ToForget)
13174 forgetMemoizedResultsImpl(S);
13175
13176 for (auto I = PredicatedSCEVRewrites.begin();
13177 I != PredicatedSCEVRewrites.end();) {
13178 std::pair<const SCEV *, const Loop *> Entry = I->first;
13179 if (ToForget.count(Entry.first))
13180 PredicatedSCEVRewrites.erase(I++);
13181 else
13182 ++I;
13183 }
13184}
13185
13186void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
13187 LoopDispositions.erase(S);
13188 BlockDispositions.erase(S);
13189 UnsignedRanges.erase(S);
13190 SignedRanges.erase(S);
13191 HasRecMap.erase(S);
13192 MinTrailingZerosCache.erase(S);
13193
13194 auto ExprIt = ExprValueMap.find(S);
13195 if (ExprIt != ExprValueMap.end()) {
13196 for (auto &ValueAndOffset : ExprIt->second) {
13197 if (ValueAndOffset.second == nullptr) {
13198 auto ValueIt = ValueExprMap.find_as(ValueAndOffset.first);
13199 if (ValueIt != ValueExprMap.end())
13200 ValueExprMap.erase(ValueIt);
13201 }
13202 }
13203 ExprValueMap.erase(ExprIt);
13204 }
13205
13206 auto ScopeIt = ValuesAtScopes.find(S);
13207 if (ScopeIt != ValuesAtScopes.end()) {
13208 for (const auto &Pair : ScopeIt->second)
13209 if (!isa_and_nonnull<SCEVConstant>(Pair.second))
13210 erase_value(ValuesAtScopesUsers[Pair.second],
13211 std::make_pair(Pair.first, S));
13212 ValuesAtScopes.erase(ScopeIt);
13213 }
13214
13215 auto ScopeUserIt = ValuesAtScopesUsers.find(S);
13216 if (ScopeUserIt != ValuesAtScopesUsers.end()) {
13217 for (const auto &Pair : ScopeUserIt->second)
13218 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
13219 ValuesAtScopesUsers.erase(ScopeUserIt);
13220 }
13221
13222 auto BEUsersIt = BECountUsers.find(S);
13223 if (BEUsersIt != BECountUsers.end()) {
13224 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
13225 auto Copy = BEUsersIt->second;
13226 for (const auto &Pair : Copy)
13227 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
13228 BECountUsers.erase(BEUsersIt);
13229 }
13230}
13231
13232void
13233ScalarEvolution::getUsedLoops(const SCEV *S,
13234 SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13235 struct FindUsedLoops {
13236 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13237 : LoopsUsed(LoopsUsed) {}
13238 SmallPtrSetImpl<const Loop *> &LoopsUsed;
13239 bool follow(const SCEV *S) {
13240 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13241 LoopsUsed.insert(AR->getLoop());
13242 return true;
13243 }
13244
13245 bool isDone() const { return false; }
13246 };
13247
13248 FindUsedLoops F(LoopsUsed);
13249 SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13250}
13251
13252void ScalarEvolution::verify() const {
13253 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13254 ScalarEvolution SE2(F, TLI, AC, DT, LI);
13255
13256 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
13257
13258 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13259 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
13260 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
13261
13262 const SCEV *visitConstant(const SCEVConstant *Constant) {
13263 return SE.getConstant(Constant->getAPInt());
13264 }
13265
13266 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13267 return SE.getUnknown(Expr->getValue());
13268 }
13269
13270 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
13271 return SE.getCouldNotCompute();
13272 }
13273 };
13274
13275 SCEVMapper SCM(SE2);
13276
13277 while (!LoopStack.empty()) {
13278 auto *L = LoopStack.pop_back_val();
13279 llvm::append_range(LoopStack, *L);
13280
13281 auto *CurBECount = SCM.visit(
13282 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
13283 auto *NewBECount = SE2.getBackedgeTakenCount(L);
13284
13285 if (CurBECount == SE2.getCouldNotCompute() ||
13286 NewBECount == SE2.getCouldNotCompute()) {
13287 // NB! This situation is legal, but is very suspicious -- whatever pass
13288 // change the loop to make a trip count go from could not compute to
13289 // computable or vice-versa *should have* invalidated SCEV. However, we
13290 // choose not to assert here (for now) since we don't want false
13291 // positives.
13292 continue;
13293 }
13294
13295 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
13296 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13297 // not propagate undef aggressively). This means we can (and do) fail
13298 // verification in cases where a transform makes the trip count of a loop
13299 // go from "undef" to "undef+1" (say). The transform is fine, since in
13300 // both cases the loop iterates "undef" times, but SCEV thinks we
13301 // increased the trip count of the loop by 1 incorrectly.
13302 continue;
13303 }
13304
13305 if (SE.getTypeSizeInBits(CurBECount->getType()) >
13306 SE.getTypeSizeInBits(NewBECount->getType()))
13307 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
13308 else if (SE.getTypeSizeInBits(CurBECount->getType()) <
13309 SE.getTypeSizeInBits(NewBECount->getType()))
13310 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
13311
13312 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
13313
13314 // Unless VerifySCEVStrict is set, we only compare constant deltas.
13315 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
13316 dbgs() << "Trip Count for " << *L << " Changed!\n";
13317 dbgs() << "Old: " << *CurBECount << "\n";
13318 dbgs() << "New: " << *NewBECount << "\n";
13319 dbgs() << "Delta: " << *Delta << "\n";
13320 std::abort();
13321 }
13322 }
13323
13324 // Collect all valid loops currently in LoopInfo.
13325 SmallPtrSet<Loop *, 32> ValidLoops;
13326 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
13327 while (!Worklist.empty()) {
13328 Loop *L = Worklist.pop_back_val();
13329 if (ValidLoops.contains(L))
13330 continue;
13331 ValidLoops.insert(L);
13332 Worklist.append(L->begin(), L->end());
13333 }
13334 for (auto &KV : ValueExprMap) {
13335#ifndef NDEBUG
13336 // Check for SCEV expressions referencing invalid/deleted loops.
13337 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
13338 assert(ValidLoops.contains(AR->getLoop()) &&(static_cast <bool> (ValidLoops.contains(AR->getLoop
()) && "AddRec references invalid loop") ? void (0) :
__assert_fail ("ValidLoops.contains(AR->getLoop()) && \"AddRec references invalid loop\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 13339, __extension__
__PRETTY_FUNCTION__))
13339 "AddRec references invalid loop")(static_cast <bool> (ValidLoops.contains(AR->getLoop
()) && "AddRec references invalid loop") ? void (0) :
__assert_fail ("ValidLoops.contains(AR->getLoop()) && \"AddRec references invalid loop\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 13339, __extension__
__PRETTY_FUNCTION__))
;
13340 }
13341#endif
13342
13343 // Check that the value is also part of the reverse map.
13344 auto It = ExprValueMap.find(KV.second);
13345 if (It == ExprValueMap.end() || !It->second.contains({KV.first, nullptr})) {
13346 dbgs() << "Value " << *KV.first
13347 << " is in ValueExprMap but not in ExprValueMap\n";
13348 std::abort();
13349 }
13350 }
13351
13352 for (const auto &KV : ExprValueMap) {
13353 for (const auto &ValueAndOffset : KV.second) {
13354 if (ValueAndOffset.second != nullptr)
13355 continue;
13356
13357 auto It = ValueExprMap.find_as(ValueAndOffset.first);
13358 if (It == ValueExprMap.end()) {
13359 dbgs() << "Value " << *ValueAndOffset.first
13360 << " is in ExprValueMap but not in ValueExprMap\n";
13361 std::abort();
13362 }
13363 if (It->second != KV.first) {
13364 dbgs() << "Value " << *ValueAndOffset.first
13365 << " mapped to " << *It->second
13366 << " rather than " << *KV.first << "\n";
13367 std::abort();
13368 }
13369 }
13370 }
13371
13372 // Verify integrity of SCEV users.
13373 for (const auto &S : UniqueSCEVs) {
13374 SmallVector<const SCEV *, 4> Ops;
13375 collectUniqueOps(&S, Ops);
13376 for (const auto *Op : Ops) {
13377 // We do not store dependencies of constants.
13378 if (isa<SCEVConstant>(Op))
13379 continue;
13380 auto It = SCEVUsers.find(Op);
13381 if (It != SCEVUsers.end() && It->second.count(&S))
13382 continue;
13383 dbgs() << "Use of operand " << *Op << " by user " << S
13384 << " is not being tracked!\n";
13385 std::abort();
13386 }
13387 }
13388
13389 // Verify integrity of ValuesAtScopes users.
13390 for (const auto &ValueAndVec : ValuesAtScopes) {
13391 const SCEV *Value = ValueAndVec.first;
13392 for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
13393 const Loop *L = LoopAndValueAtScope.first;
13394 const SCEV *ValueAtScope = LoopAndValueAtScope.second;
13395 if (!isa<SCEVConstant>(ValueAtScope)) {
13396 auto It = ValuesAtScopesUsers.find(ValueAtScope);
13397 if (It != ValuesAtScopesUsers.end() &&
13398 is_contained(It->second, std::make_pair(L, Value)))
13399 continue;
13400 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13401 << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
13402 std::abort();
13403 }
13404 }
13405 }
13406
13407 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
13408 const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
13409 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
13410 const Loop *L = LoopAndValue.first;
13411 const SCEV *Value = LoopAndValue.second;
13412 assert(!isa<SCEVConstant>(Value))(static_cast <bool> (!isa<SCEVConstant>(Value)) ?
void (0) : __assert_fail ("!isa<SCEVConstant>(Value)",
"llvm/lib/Analysis/ScalarEvolution.cpp", 13412, __extension__
__PRETTY_FUNCTION__))
;
13413 auto It = ValuesAtScopes.find(Value);
13414 if (It != ValuesAtScopes.end() &&
13415 is_contained(It->second, std::make_pair(L, ValueAtScope)))
13416 continue;
13417 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13418 << *ValueAtScope << " missing in ValuesAtScopes\n";
13419 std::abort();
13420 }
13421 }
13422
13423 // Verify integrity of BECountUsers.
13424 auto VerifyBECountUsers = [&](bool Predicated) {
13425 auto &BECounts =
13426 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13427 for (const auto &LoopAndBEInfo : BECounts) {
13428 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
13429 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
13430 auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
13431 if (UserIt != BECountUsers.end() &&
13432 UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
13433 continue;
13434 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop "
13435 << *LoopAndBEInfo.first << " missing from BECountUsers\n";
13436 std::abort();
13437 }
13438 }
13439 }
13440 };
13441 VerifyBECountUsers(/* Predicated */ false);
13442 VerifyBECountUsers(/* Predicated */ true);
13443}
13444
13445bool ScalarEvolution::invalidate(
13446 Function &F, const PreservedAnalyses &PA,
13447 FunctionAnalysisManager::Invalidator &Inv) {
13448 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
13449 // of its dependencies is invalidated.
13450 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
13451 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
13452 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
13453 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
13454 Inv.invalidate<LoopAnalysis>(F, PA);
13455}
13456
13457AnalysisKey ScalarEvolutionAnalysis::Key;
13458
13459ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
13460 FunctionAnalysisManager &AM) {
13461 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
13462 AM.getResult<AssumptionAnalysis>(F),
13463 AM.getResult<DominatorTreeAnalysis>(F),
13464 AM.getResult<LoopAnalysis>(F));
13465}
13466
13467PreservedAnalyses
13468ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
13469 AM.getResult<ScalarEvolutionAnalysis>(F).verify();
13470 return PreservedAnalyses::all();
13471}
13472
13473PreservedAnalyses
13474ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
13475 // For compatibility with opt's -analyze feature under legacy pass manager
13476 // which was not ported to NPM. This keeps tests using
13477 // update_analyze_test_checks.py working.
13478 OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
13479 << F.getName() << "':\n";
13480 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
13481 return PreservedAnalyses::all();
13482}
13483
13484INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",static void *initializeScalarEvolutionWrapperPassPassOnce(PassRegistry
&Registry) {
13485 "Scalar Evolution Analysis", false, true)static void *initializeScalarEvolutionWrapperPassPassOnce(PassRegistry
&Registry) {
13486INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
13487INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);
13488INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
13489INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
13490INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",PassInfo *PI = new PassInfo( "Scalar Evolution Analysis", "scalar-evolution"
, &ScalarEvolutionWrapperPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<ScalarEvolutionWrapperPass>), false, true
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeScalarEvolutionWrapperPassPassFlag; void
llvm::initializeScalarEvolutionWrapperPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeScalarEvolutionWrapperPassPassFlag
, initializeScalarEvolutionWrapperPassPassOnce, std::ref(Registry
)); }
13491 "Scalar Evolution Analysis", false, true)PassInfo *PI = new PassInfo( "Scalar Evolution Analysis", "scalar-evolution"
, &ScalarEvolutionWrapperPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<ScalarEvolutionWrapperPass>), false, true
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeScalarEvolutionWrapperPassPassFlag; void
llvm::initializeScalarEvolutionWrapperPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeScalarEvolutionWrapperPassPassFlag
, initializeScalarEvolutionWrapperPassPassOnce, std::ref(Registry
)); }
13492
13493char ScalarEvolutionWrapperPass::ID = 0;
13494
13495ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
13496 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13497}
13498
13499bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
13500 SE.reset(new ScalarEvolution(
13501 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
13502 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
13503 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
13504 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
13505 return false;
13506}
13507
13508void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
13509
13510void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
13511 SE->print(OS);
13512}
13513
13514void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13515 if (!VerifySCEV)
13516 return;
13517
13518 SE->verify();
13519}
13520
13521void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
13522 AU.setPreservesAll();
13523 AU.addRequiredTransitive<AssumptionCacheTracker>();
13524 AU.addRequiredTransitive<LoopInfoWrapperPass>();
13525 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
13526 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
13527}
13528
13529const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
13530 const SCEV *RHS) {
13531 FoldingSetNodeID ID;
13532 assert(LHS->getType() == RHS->getType() &&(static_cast <bool> (LHS->getType() == RHS->getType
() && "Type mismatch between LHS and RHS") ? void (0)
: __assert_fail ("LHS->getType() == RHS->getType() && \"Type mismatch between LHS and RHS\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 13533, __extension__
__PRETTY_FUNCTION__))
13533 "Type mismatch between LHS and RHS")(static_cast <bool> (LHS->getType() == RHS->getType
() && "Type mismatch between LHS and RHS") ? void (0)
: __assert_fail ("LHS->getType() == RHS->getType() && \"Type mismatch between LHS and RHS\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 13533, __extension__
__PRETTY_FUNCTION__))
;
13534 // Unique this node based on the arguments
13535 ID.AddInteger(SCEVPredicate::P_Equal);
13536 ID.AddPointer(LHS);
13537 ID.AddPointer(RHS);
13538 void *IP = nullptr;
13539 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13540 return S;
13541 SCEVEqualPredicate *Eq = new (SCEVAllocator)
13542 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
13543 UniquePreds.InsertNode(Eq, IP);
13544 return Eq;
13545}
13546
13547const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13548 const SCEVAddRecExpr *AR,
13549 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13550 FoldingSetNodeID ID;
13551 // Unique this node based on the arguments
13552 ID.AddInteger(SCEVPredicate::P_Wrap);
13553 ID.AddPointer(AR);
13554 ID.AddInteger(AddedFlags);
13555 void *IP = nullptr;
13556 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13557 return S;
13558 auto *OF = new (SCEVAllocator)
13559 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13560 UniquePreds.InsertNode(OF, IP);
13561 return OF;
13562}
13563
13564namespace {
13565
13566class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13567public:
13568
13569 /// Rewrites \p S in the context of a loop L and the SCEV predication
13570 /// infrastructure.
13571 ///
13572 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13573 /// equivalences present in \p Pred.
13574 ///
13575 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13576 /// \p NewPreds such that the result will be an AddRecExpr.
13577 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13578 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13579 SCEVUnionPredicate *Pred) {
13580 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13581 return Rewriter.visit(S);
13582 }
13583
13584 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13585 if (Pred) {
13586 auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13587 for (auto *Pred : ExprPreds)
13588 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13589 if (IPred->getLHS() == Expr)
13590 return IPred->getRHS();
13591 }
13592 return convertToAddRecWithPreds(Expr);
13593 }
13594
13595 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13596 const SCEV *Operand = visit(Expr->getOperand());
13597 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13598 if (AR && AR->getLoop() == L && AR->isAffine()) {
13599 // This couldn't be folded because the operand didn't have the nuw
13600 // flag. Add the nusw flag as an assumption that we could make.
13601 const SCEV *Step = AR->getStepRecurrence(SE);
13602 Type *Ty = Expr->getType();
13603 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13604 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13605 SE.getSignExtendExpr(Step, Ty), L,
13606 AR->getNoWrapFlags());
13607 }
13608 return SE.getZeroExtendExpr(Operand, Expr->getType());
13609 }
13610
13611 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13612 const SCEV *Operand = visit(Expr->getOperand());
13613 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13614 if (AR && AR->getLoop() == L && AR->isAffine()) {
13615 // This couldn't be folded because the operand didn't have the nsw
13616 // flag. Add the nssw flag as an assumption that we could make.
13617 const SCEV *Step = AR->getStepRecurrence(SE);
13618 Type *Ty = Expr->getType();
13619 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13620 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13621 SE.getSignExtendExpr(Step, Ty), L,
13622 AR->getNoWrapFlags());
13623 }
13624 return SE.getSignExtendExpr(Operand, Expr->getType());
13625 }
13626
13627private:
13628 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13629 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13630 SCEVUnionPredicate *Pred)
13631 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13632
13633 bool addOverflowAssumption(const SCEVPredicate *P) {
13634 if (!NewPreds) {
13635 // Check if we've already made this assumption.
13636 return Pred && Pred->implies(P);
13637 }
13638 NewPreds->insert(P);
13639 return true;
13640 }
13641
13642 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13643 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13644 auto *A = SE.getWrapPredicate(AR, AddedFlags);
13645 return addOverflowAssumption(A);
13646 }
13647
13648 // If \p Expr represents a PHINode, we try to see if it can be represented
13649 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13650 // to add this predicate as a runtime overflow check, we return the AddRec.
13651 // If \p Expr does not meet these conditions (is not a PHI node, or we
13652 // couldn't create an AddRec for it, or couldn't add the predicate), we just
13653 // return \p Expr.
13654 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13655 if (!isa<PHINode>(Expr->getValue()))
13656 return Expr;
13657 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13658 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13659 if (!PredicatedRewrite)
13660 return Expr;
13661 for (auto *P : PredicatedRewrite->second){
13662 // Wrap predicates from outer loops are not supported.
13663 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13664 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13665 if (L != AR->getLoop())
13666 return Expr;
13667 }
13668 if (!addOverflowAssumption(P))
13669 return Expr;
13670 }
13671 return PredicatedRewrite->first;
13672 }
13673
13674 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13675 SCEVUnionPredicate *Pred;
13676 const Loop *L;
13677};
13678
13679} // end anonymous namespace
13680
13681const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13682 SCEVUnionPredicate &Preds) {
13683 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13684}
13685
13686const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13687 const SCEV *S, const Loop *L,
13688 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13689 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13690 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13691 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13692
13693 if (!AddRec)
13694 return nullptr;
13695
13696 // Since the transformation was successful, we can now transfer the SCEV
13697 // predicates.
13698 for (auto *P : TransformPreds)
13699 Preds.insert(P);
13700
13701 return AddRec;
13702}
13703
13704/// SCEV predicates
13705SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13706 SCEVPredicateKind Kind)
13707 : FastID(ID), Kind(Kind) {}
13708
13709SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13710 const SCEV *LHS, const SCEV *RHS)
13711 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13712 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match")(static_cast <bool> (LHS->getType() == RHS->getType
() && "LHS and RHS types don't match") ? void (0) : __assert_fail
("LHS->getType() == RHS->getType() && \"LHS and RHS types don't match\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 13712, __extension__
__PRETTY_FUNCTION__))
;
13713 assert(LHS != RHS && "LHS and RHS are the same SCEV")(static_cast <bool> (LHS != RHS && "LHS and RHS are the same SCEV"
) ? void (0) : __assert_fail ("LHS != RHS && \"LHS and RHS are the same SCEV\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 13713, __extension__
__PRETTY_FUNCTION__))
;
13714}
13715
13716bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13717 const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13718
13719 if (!Op)
13720 return false;
13721
13722 return Op->LHS == LHS && Op->RHS == RHS;
13723}
13724
13725bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13726
13727const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13728
13729void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13730 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13731}
13732
13733SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13734 const SCEVAddRecExpr *AR,
13735 IncrementWrapFlags Flags)
13736 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13737
13738const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13739
13740bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13741 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13742
13743 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13744}
13745
13746bool SCEVWrapPredicate::isAlwaysTrue() const {
13747 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13748 IncrementWrapFlags IFlags = Flags;
13749
13750 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13751 IFlags = clearFlags(IFlags, IncrementNSSW);
13752
13753 return IFlags == IncrementAnyWrap;
13754}
13755
13756void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13757 OS.indent(Depth) << *getExpr() << " Added Flags: ";
13758 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13759 OS << "<nusw>";
13760 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13761 OS << "<nssw>";
13762 OS << "\n";
13763}
13764
13765SCEVWrapPredicate::IncrementWrapFlags
13766SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13767 ScalarEvolution &SE) {
13768 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13769 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13770
13771 // We can safely transfer the NSW flag as NSSW.
13772 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13773 ImpliedFlags = IncrementNSSW;
13774
13775 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13776 // If the increment is positive, the SCEV NUW flag will also imply the
13777 // WrapPredicate NUSW flag.
13778 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13779 if (Step->getValue()->getValue().isNonNegative())
13780 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13781 }
13782
13783 return ImpliedFlags;
13784}
13785
13786/// Union predicates don't get cached so create a dummy set ID for it.
13787SCEVUnionPredicate::SCEVUnionPredicate()
13788 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13789
13790bool SCEVUnionPredicate::isAlwaysTrue() const {
13791 return all_of(Preds,
13792 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13793}
13794
13795ArrayRef<const SCEVPredicate *>
13796SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13797 auto I = SCEVToPreds.find(Expr);
13798 if (I == SCEVToPreds.end())
13799 return ArrayRef<const SCEVPredicate *>();
13800 return I->second;
13801}
13802
13803bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13804 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13805 return all_of(Set->Preds,
13806 [this](const SCEVPredicate *I) { return this->implies(I); });
13807
13808 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13809 if (ScevPredsIt == SCEVToPreds.end())
13810 return false;
13811 auto &SCEVPreds = ScevPredsIt->second;
13812
13813 return any_of(SCEVPreds,
13814 [N](const SCEVPredicate *I) { return I->implies(N); });
13815}
13816
13817const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13818
13819void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13820 for (auto Pred : Preds)
13821 Pred->print(OS, Depth);
13822}
13823
13824void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13825 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13826 for (auto Pred : Set->Preds)
13827 add(Pred);
13828 return;
13829 }
13830
13831 if (implies(N))
13832 return;
13833
13834 const SCEV *Key = N->getExpr();
13835 assert(Key && "Only SCEVUnionPredicate doesn't have an "(static_cast <bool> (Key && "Only SCEVUnionPredicate doesn't have an "
" associated expression!") ? void (0) : __assert_fail ("Key && \"Only SCEVUnionPredicate doesn't have an \" \" associated expression!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 13836, __extension__
__PRETTY_FUNCTION__))
13836 " associated expression!")(static_cast <bool> (Key && "Only SCEVUnionPredicate doesn't have an "
" associated expression!") ? void (0) : __assert_fail ("Key && \"Only SCEVUnionPredicate doesn't have an \" \" associated expression!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 13836, __extension__
__PRETTY_FUNCTION__))
;
13837
13838 SCEVToPreds[Key].push_back(N);
13839 Preds.push_back(N);
13840}
13841
13842PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13843 Loop &L)
13844 : SE(SE), L(L) {}
13845
13846void ScalarEvolution::registerUser(const SCEV *User,
13847 ArrayRef<const SCEV *> Ops) {
13848 for (auto *Op : Ops)
13849 // We do not expect that forgetting cached data for SCEVConstants will ever
13850 // open any prospects for sharpening or introduce any correctness issues,
13851 // so we don't bother storing their dependencies.
13852 if (!isa<SCEVConstant>(Op))
13853 SCEVUsers[Op].insert(User);
13854}
13855
13856const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13857 const SCEV *Expr = SE.getSCEV(V);
13858 RewriteEntry &Entry = RewriteMap[Expr];
13859
13860 // If we already have an entry and the version matches, return it.
13861 if (Entry.second && Generation == Entry.first)
13862 return Entry.second;
13863
13864 // We found an entry but it's stale. Rewrite the stale entry
13865 // according to the current predicate.
13866 if (Entry.second)
13867 Expr = Entry.second;
13868
13869 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13870 Entry = {Generation, NewSCEV};
13871
13872 return NewSCEV;
13873}
13874
13875const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13876 if (!BackedgeCount) {
13877 SCEVUnionPredicate BackedgePred;
13878 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13879 addPredicate(BackedgePred);
13880 }
13881 return BackedgeCount;
13882}
13883
13884void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13885 if (Preds.implies(&Pred))
13886 return;
13887 Preds.add(&Pred);
13888 updateGeneration();
13889}
13890
13891const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13892 return Preds;
13893}
13894
13895void PredicatedScalarEvolution::updateGeneration() {
13896 // If the generation number wrapped recompute everything.
13897 if (++Generation == 0) {
13898 for (auto &II : RewriteMap) {
13899 const SCEV *Rewritten = II.second.second;
13900 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13901 }
13902 }
13903}
13904
13905void PredicatedScalarEvolution::setNoOverflow(
13906 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13907 const SCEV *Expr = getSCEV(V);
13908 const auto *AR = cast<SCEVAddRecExpr>(Expr);
13909
13910 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13911
13912 // Clear the statically implied flags.
13913 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13914 addPredicate(*SE.getWrapPredicate(AR, Flags));
13915
13916 auto II = FlagsMap.insert({V, Flags});
13917 if (!II.second)
13918 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13919}
13920
13921bool PredicatedScalarEvolution::hasNoOverflow(
13922 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13923 const SCEV *Expr = getSCEV(V);
13924 const auto *AR = cast<SCEVAddRecExpr>(Expr);
13925
13926 Flags = SCEVWrapPredicate::clearFlags(
13927 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13928
13929 auto II = FlagsMap.find(V);
13930
13931 if (II != FlagsMap.end())
13932 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13933
13934 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13935}
13936
13937const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13938 const SCEV *Expr = this->getSCEV(V);
13939 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13940 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13941
13942 if (!New)
13943 return nullptr;
13944
13945 for (auto *P : NewPreds)
13946 Preds.add(P);
13947
13948 updateGeneration();
13949 RewriteMap[SE.getSCEV(V)] = {Generation, New};
13950 return New;
13951}
13952
13953PredicatedScalarEvolution::PredicatedScalarEvolution(
13954 const PredicatedScalarEvolution &Init)
13955 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13956 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13957 for (auto I : Init.FlagsMap)
13958 FlagsMap.insert(I);
13959}
13960
13961void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13962 // For each block.
13963 for (auto *BB : L.getBlocks())
13964 for (auto &I : *BB) {
13965 if (!SE.isSCEVable(I.getType()))
13966 continue;
13967
13968 auto *Expr = SE.getSCEV(&I);
13969 auto II = RewriteMap.find(Expr);
13970
13971 if (II == RewriteMap.end())
13972 continue;
13973
13974 // Don't print things that are not interesting.
13975 if (II->second.second == Expr)
13976 continue;
13977
13978 OS.indent(Depth) << "[PSE]" << I << ":\n";
13979 OS.indent(Depth + 2) << *Expr << "\n";
13980 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13981 }
13982}
13983
13984// Match the mathematical pattern A - (A / B) * B, where A and B can be
13985// arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13986// for URem with constant power-of-2 second operands.
13987// It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13988// 4, A / B becomes X / 8).
13989bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13990 const SCEV *&RHS) {
13991 // Try to match 'zext (trunc A to iB) to iY', which is used
13992 // for URem with constant power-of-2 second operands. Make sure the size of
13993 // the operand A matches the size of the whole expressions.
13994 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13995 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13996 LHS = Trunc->getOperand();
13997 // Bail out if the type of the LHS is larger than the type of the
13998 // expression for now.
13999 if (getTypeSizeInBits(LHS->getType()) >
14000 getTypeSizeInBits(Expr->getType()))
14001 return false;
14002 if (LHS->getType() != Expr->getType())
14003 LHS = getZeroExtendExpr(LHS, Expr->getType());
14004 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
14005 << getTypeSizeInBits(Trunc->getType()));
14006 return true;
14007 }
14008 const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
14009 if (Add == nullptr || Add->getNumOperands() != 2)
14010 return false;
14011
14012 const SCEV *A = Add->getOperand(1);
14013 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
14014
14015 if (Mul == nullptr)
14016 return false;
14017
14018 const auto MatchURemWithDivisor = [&](const SCEV *B) {
14019 // (SomeExpr + (-(SomeExpr / B) * B)).
14020 if (Expr == getURemExpr(A, B)) {
14021 LHS = A;
14022 RHS = B;
14023 return true;
14024 }
14025 return false;
14026 };
14027
14028 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
14029 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
14030 return MatchURemWithDivisor(Mul->getOperand(1)) ||
14031 MatchURemWithDivisor(Mul->getOperand(2));
14032
14033 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
14034 if (Mul->getNumOperands() == 2)
14035 return MatchURemWithDivisor(Mul->getOperand(1)) ||
14036 MatchURemWithDivisor(Mul->getOperand(0)) ||
14037 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
14038 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
14039 return false;
14040}
14041
14042const SCEV *
14043ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
14044 SmallVector<BasicBlock*, 16> ExitingBlocks;
14045 L->getExitingBlocks(ExitingBlocks);
14046
14047 // Form an expression for the maximum exit count possible for this loop. We
14048 // merge the max and exact information to approximate a version of
14049 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
14050 SmallVector<const SCEV*, 4> ExitCounts;
14051 for (BasicBlock *ExitingBB : ExitingBlocks) {
14052 const SCEV *ExitCount = getExitCount(L, ExitingBB);
14053 if (isa<SCEVCouldNotCompute>(ExitCount))
14054 ExitCount = getExitCount(L, ExitingBB,
14055 ScalarEvolution::ConstantMaximum);
14056 if (!isa<SCEVCouldNotCompute>(ExitCount)) {
14057 assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&(static_cast <bool> (DT.dominates(ExitingBB, L->getLoopLatch
()) && "We should only have known counts for exiting blocks that "
"dominate latch!") ? void (0) : __assert_fail ("DT.dominates(ExitingBB, L->getLoopLatch()) && \"We should only have known counts for exiting blocks that \" \"dominate latch!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 14059, __extension__
__PRETTY_FUNCTION__))
14058 "We should only have known counts for exiting blocks that "(static_cast <bool> (DT.dominates(ExitingBB, L->getLoopLatch
()) && "We should only have known counts for exiting blocks that "
"dominate latch!") ? void (0) : __assert_fail ("DT.dominates(ExitingBB, L->getLoopLatch()) && \"We should only have known counts for exiting blocks that \" \"dominate latch!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 14059, __extension__
__PRETTY_FUNCTION__))
14059 "dominate latch!")(static_cast <bool> (DT.dominates(ExitingBB, L->getLoopLatch
()) && "We should only have known counts for exiting blocks that "
"dominate latch!") ? void (0) : __assert_fail ("DT.dominates(ExitingBB, L->getLoopLatch()) && \"We should only have known counts for exiting blocks that \" \"dominate latch!\""
, "llvm/lib/Analysis/ScalarEvolution.cpp", 14059, __extension__
__PRETTY_FUNCTION__))
;
14060 ExitCounts.push_back(ExitCount);
14061 }
14062 }
14063 if (ExitCounts.empty())
14064 return getCouldNotCompute();
14065 return getUMinFromMismatchedTypes(ExitCounts);
14066}
14067
14068/// A rewriter to replace SCEV expressions in Map with the corresponding entry
14069/// in the map. It skips AddRecExpr because we cannot guarantee that the
14070/// replacement is loop invariant in the loop of the AddRec.
14071///
14072/// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is
14073/// supported.
14074class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
14075 const DenseMap<const SCEV *, const SCEV *> &Map;
14076
14077public:
14078 SCEVLoopGuardRewriter(ScalarEvolution &SE,
14079 DenseMap<const SCEV *, const SCEV *> &M)
14080 : SCEVRewriteVisitor(SE), Map(M) {}
14081
14082 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
14083
14084 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14085 auto I = Map.find(Expr);
14086 if (I == Map.end())
14087 return Expr;
14088 return I->second;
14089 }
14090
14091 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14092 auto I = Map.find(Expr);
14093 if (I == Map.end())
14094 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
14095 Expr);
14096 return I->second;
14097 }
14098};
14099
14100const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
14101 SmallVector<const SCEV *> ExprsToRewrite;
14102 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
14103 const SCEV *RHS,
14104 DenseMap<const SCEV *, const SCEV *>
14105 &RewriteMap) {
14106 // WARNING: It is generally unsound to apply any wrap flags to the proposed
14107 // replacement SCEV which isn't directly implied by the structure of that
14108 // SCEV. In particular, using contextual facts to imply flags is *NOT*
14109 // legal. See the scoping rules for flags in the header to understand why.
14110
14111 // If LHS is a constant, apply information to the other expression.
14112 if (isa<SCEVConstant>(LHS)) {
14113 std::swap(LHS, RHS);
14114 Predicate = CmpInst::getSwappedPredicate(Predicate);
14115 }
14116
14117 // Check for a condition of the form (-C1 + X < C2). InstCombine will
14118 // create this form when combining two checks of the form (X u< C2 + C1) and
14119 // (X >=u C1).
14120 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap,
14121 &ExprsToRewrite]() {
14122 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
14123 if (!AddExpr || AddExpr->getNumOperands() != 2)
14124 return false;
14125
14126 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
14127 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
14128 auto *C2 = dyn_cast<SCEVConstant>(RHS);
14129 if (!C1 || !C2 || !LHSUnknown)
14130 return false;
14131
14132 auto ExactRegion =
14133 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
14134 .sub(C1->getAPInt());
14135
14136 // Bail out, unless we have a non-wrapping, monotonic range.
14137 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
14138 return false;
14139 auto I = RewriteMap.find(LHSUnknown);
14140 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
14141 RewriteMap[LHSUnknown] = getUMaxExpr(
14142 getConstant(ExactRegion.getUnsignedMin()),
14143 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
14144 ExprsToRewrite.push_back(LHSUnknown);
14145 return true;
14146 };
14147 if (MatchRangeCheckIdiom())
14148 return;
14149
14150 // If we have LHS == 0, check if LHS is computing a property of some unknown
14151 // SCEV %v which we can rewrite %v to express explicitly.
14152 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
14153 if (Predicate == CmpInst::ICMP_EQ && RHSC &&
14154 RHSC->getValue()->isNullValue()) {
14155 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
14156 // explicitly express that.
14157 const SCEV *URemLHS = nullptr;
14158 const SCEV *URemRHS = nullptr;
14159 if (matchURem(LHS, URemLHS, URemRHS)) {
14160 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
14161 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
14162 RewriteMap[LHSUnknown] = Multiple;
14163 ExprsToRewrite.push_back(LHSUnknown);
14164 return;
14165 }
14166 }
14167 }
14168
14169 // Do not apply information for constants or if RHS contains an AddRec.
14170 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS))
14171 return;
14172
14173 // If RHS is SCEVUnknown, make sure the information is applied to it.
14174 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
14175 std::swap(LHS, RHS);
14176 Predicate = CmpInst::getSwappedPredicate(Predicate);
14177 }
14178
14179 // Limit to expressions that can be rewritten.
14180 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS))
14181 return;
14182
14183 // Check whether LHS has already been rewritten. In that case we want to
14184 // chain further rewrites onto the already rewritten value.
14185 auto I = RewriteMap.find(LHS);
14186 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
14187
14188 const SCEV *RewrittenRHS = nullptr;
14189 switch (Predicate) {
14190 case CmpInst::ICMP_ULT:
14191 RewrittenRHS =
14192 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14193 break;
14194 case CmpInst::ICMP_SLT:
14195 RewrittenRHS =
14196 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14197 break;
14198 case CmpInst::ICMP_ULE:
14199 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
14200 break;
14201 case CmpInst::ICMP_SLE:
14202 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
14203 break;
14204 case CmpInst::ICMP_UGT:
14205 RewrittenRHS =
14206 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14207 break;
14208 case CmpInst::ICMP_SGT:
14209 RewrittenRHS =
14210 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14211 break;
14212 case CmpInst::ICMP_UGE:
14213 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
14214 break;
14215 case CmpInst::ICMP_SGE:
14216 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
14217 break;
14218 case CmpInst::ICMP_EQ:
14219 if (isa<SCEVConstant>(RHS))
14220 RewrittenRHS = RHS;
14221 break;
14222 case CmpInst::ICMP_NE:
14223 if (isa<SCEVConstant>(RHS) &&
14224 cast<SCEVConstant>(RHS)->getValue()->isNullValue())
14225 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
14226 break;
14227 default:
14228 break;
14229 }
14230
14231 if (RewrittenRHS) {
14232 RewriteMap[LHS] = RewrittenRHS;
14233 if (LHS == RewrittenLHS)
14234 ExprsToRewrite.push_back(LHS);
14235 }
14236 };
14237 // First, collect conditions from dominating branches. Starting at the loop
14238 // predecessor, climb up the predecessor chain, as long as there are
14239 // predecessors that can be found that have unique successors leading to the
14240 // original header.
14241 // TODO: share this logic with isLoopEntryGuardedByCond.
14242 SmallVector<std::pair<Value *, bool>> Terms;
14243 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
14244 L->getLoopPredecessor(), L->getHeader());
14245 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
14246
14247 const BranchInst *LoopEntryPredicate =
14248 dyn_cast<BranchInst>(Pair.first->getTerminator());
14249 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
14250 continue;
14251
14252 Terms.emplace_back(LoopEntryPredicate->getCondition(),
14253 LoopEntryPredicate->getSuccessor(0) == Pair.second);
14254 }
14255
14256 // Now apply the information from the collected conditions to RewriteMap.
14257 // Conditions are processed in reverse order, so the earliest conditions is
14258 // processed first. This ensures the SCEVs with the shortest dependency chains
14259 // are constructed first.
14260 DenseMap<const SCEV *, const SCEV *> RewriteMap;
14261 for (auto &E : reverse(Terms)) {
14262 bool EnterIfTrue = E.second;
14263 SmallVector<Value *, 8> Worklist;
14264 SmallPtrSet<Value *, 8> Visited;
14265 Worklist.push_back(E.first);
14266 while (!Worklist.empty()) {
14267 Value *Cond = Worklist.pop_back_val();
14268 if (!Visited.insert(Cond).second)
14269 continue;
14270
14271 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14272 auto Predicate =
14273 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
14274 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
14275 getSCEV(Cmp->getOperand(1)), RewriteMap);
14276 continue;
14277 }
14278
14279 Value *L, *R;
14280 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
14281 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
14282 Worklist.push_back(L);
14283 Worklist.push_back(R);
14284 }
14285 }
14286 }
14287
14288 // Also collect information from assumptions dominating the loop.
14289 for (auto &AssumeVH : AC.assumptions()) {
14290 if (!AssumeVH)
14291 continue;
14292 auto *AssumeI = cast<CallInst>(AssumeVH);
14293 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
14294 if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
14295 continue;
14296 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
14297 getSCEV(Cmp->getOperand(1)), RewriteMap);
14298 }
14299
14300 if (RewriteMap.empty())
14301 return Expr;
14302
14303 // Now that all rewrite information is collect, rewrite the collected
14304 // expressions with the information in the map. This applies information to
14305 // sub-expressions.
14306 if (ExprsToRewrite.size() > 1) {
14307 for (const SCEV *Expr : ExprsToRewrite) {
14308 const SCEV *RewriteTo = RewriteMap[Expr];
14309 RewriteMap.erase(Expr);
14310 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14311 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)});
14312 }
14313 }
14314
14315 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14316 return Rewriter.visit(Expr);
14317}