| File: | build/source/llvm/lib/Analysis/ScalarEvolution.cpp |
| Warning: | line 11512, column 32 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file contains the implementation of the scalar evolution analysis | |||
| 10 | // engine, which is used primarily to analyze expressions involving induction | |||
| 11 | // variables in loops. | |||
| 12 | // | |||
| 13 | // There are several aspects to this library. First is the representation of | |||
| 14 | // scalar expressions, which are represented as subclasses of the SCEV class. | |||
| 15 | // These classes are used to represent certain types of subexpressions that we | |||
| 16 | // can handle. We only create one SCEV of a particular shape, so | |||
| 17 | // pointer-comparisons for equality are legal. | |||
| 18 | // | |||
| 19 | // One important aspect of the SCEV objects is that they are never cyclic, even | |||
| 20 | // if there is a cycle in the dataflow for an expression (ie, a PHI node). If | |||
| 21 | // the PHI node is one of the idioms that we can represent (e.g., a polynomial | |||
| 22 | // recurrence) then we represent it directly as a recurrence node, otherwise we | |||
| 23 | // represent it as a SCEVUnknown node. | |||
| 24 | // | |||
| 25 | // In addition to being able to represent expressions of various types, we also | |||
| 26 | // have folders that are used to build the *canonical* representation for a | |||
| 27 | // particular expression. These folders are capable of using a variety of | |||
| 28 | // rewrite rules to simplify the expressions. | |||
| 29 | // | |||
| 30 | // Once the folders are defined, we can implement the more interesting | |||
| 31 | // higher-level code, such as the code that recognizes PHI nodes of various | |||
| 32 | // types, computes the execution count of a loop, etc. | |||
| 33 | // | |||
| 34 | // TODO: We should use these routines and value representations to implement | |||
| 35 | // dependence analysis! | |||
| 36 | // | |||
| 37 | //===----------------------------------------------------------------------===// | |||
| 38 | // | |||
| 39 | // There are several good references for the techniques used in this analysis. | |||
| 40 | // | |||
| 41 | // Chains of recurrences -- a method to expedite the evaluation | |||
| 42 | // of closed-form functions | |||
| 43 | // Olaf Bachmann, Paul S. Wang, Eugene V. Zima | |||
| 44 | // | |||
| 45 | // On computational properties of chains of recurrences | |||
| 46 | // Eugene V. Zima | |||
| 47 | // | |||
| 48 | // Symbolic Evaluation of Chains of Recurrences for Loop Optimization | |||
| 49 | // Robert A. van Engelen | |||
| 50 | // | |||
| 51 | // Efficient Symbolic Analysis for Optimizing Compilers | |||
| 52 | // Robert A. van Engelen | |||
| 53 | // | |||
| 54 | // Using the chains of recurrences algebra for data dependence testing and | |||
| 55 | // induction variable substitution | |||
| 56 | // MS Thesis, Johnie Birch | |||
| 57 | // | |||
| 58 | //===----------------------------------------------------------------------===// | |||
| 59 | ||||
| 60 | #include "llvm/Analysis/ScalarEvolution.h" | |||
| 61 | #include "llvm/ADT/APInt.h" | |||
| 62 | #include "llvm/ADT/ArrayRef.h" | |||
| 63 | #include "llvm/ADT/DenseMap.h" | |||
| 64 | #include "llvm/ADT/DepthFirstIterator.h" | |||
| 65 | #include "llvm/ADT/EquivalenceClasses.h" | |||
| 66 | #include "llvm/ADT/FoldingSet.h" | |||
| 67 | #include "llvm/ADT/STLExtras.h" | |||
| 68 | #include "llvm/ADT/ScopeExit.h" | |||
| 69 | #include "llvm/ADT/Sequence.h" | |||
| 70 | #include "llvm/ADT/SmallPtrSet.h" | |||
| 71 | #include "llvm/ADT/SmallSet.h" | |||
| 72 | #include "llvm/ADT/SmallVector.h" | |||
| 73 | #include "llvm/ADT/Statistic.h" | |||
| 74 | #include "llvm/ADT/StringRef.h" | |||
| 75 | #include "llvm/Analysis/AssumptionCache.h" | |||
| 76 | #include "llvm/Analysis/ConstantFolding.h" | |||
| 77 | #include "llvm/Analysis/InstructionSimplify.h" | |||
| 78 | #include "llvm/Analysis/LoopInfo.h" | |||
| 79 | #include "llvm/Analysis/MemoryBuiltins.h" | |||
| 80 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | |||
| 81 | #include "llvm/Analysis/TargetLibraryInfo.h" | |||
| 82 | #include "llvm/Analysis/ValueTracking.h" | |||
| 83 | #include "llvm/Config/llvm-config.h" | |||
| 84 | #include "llvm/IR/Argument.h" | |||
| 85 | #include "llvm/IR/BasicBlock.h" | |||
| 86 | #include "llvm/IR/CFG.h" | |||
| 87 | #include "llvm/IR/Constant.h" | |||
| 88 | #include "llvm/IR/ConstantRange.h" | |||
| 89 | #include "llvm/IR/Constants.h" | |||
| 90 | #include "llvm/IR/DataLayout.h" | |||
| 91 | #include "llvm/IR/DerivedTypes.h" | |||
| 92 | #include "llvm/IR/Dominators.h" | |||
| 93 | #include "llvm/IR/Function.h" | |||
| 94 | #include "llvm/IR/GlobalAlias.h" | |||
| 95 | #include "llvm/IR/GlobalValue.h" | |||
| 96 | #include "llvm/IR/InstIterator.h" | |||
| 97 | #include "llvm/IR/InstrTypes.h" | |||
| 98 | #include "llvm/IR/Instruction.h" | |||
| 99 | #include "llvm/IR/Instructions.h" | |||
| 100 | #include "llvm/IR/IntrinsicInst.h" | |||
| 101 | #include "llvm/IR/Intrinsics.h" | |||
| 102 | #include "llvm/IR/LLVMContext.h" | |||
| 103 | #include "llvm/IR/Operator.h" | |||
| 104 | #include "llvm/IR/PatternMatch.h" | |||
| 105 | #include "llvm/IR/Type.h" | |||
| 106 | #include "llvm/IR/Use.h" | |||
| 107 | #include "llvm/IR/User.h" | |||
| 108 | #include "llvm/IR/Value.h" | |||
| 109 | #include "llvm/IR/Verifier.h" | |||
| 110 | #include "llvm/InitializePasses.h" | |||
| 111 | #include "llvm/Pass.h" | |||
| 112 | #include "llvm/Support/Casting.h" | |||
| 113 | #include "llvm/Support/CommandLine.h" | |||
| 114 | #include "llvm/Support/Compiler.h" | |||
| 115 | #include "llvm/Support/Debug.h" | |||
| 116 | #include "llvm/Support/ErrorHandling.h" | |||
| 117 | #include "llvm/Support/KnownBits.h" | |||
| 118 | #include "llvm/Support/SaveAndRestore.h" | |||
| 119 | #include "llvm/Support/raw_ostream.h" | |||
| 120 | #include <algorithm> | |||
| 121 | #include <cassert> | |||
| 122 | #include <climits> | |||
| 123 | #include <cstdint> | |||
| 124 | #include <cstdlib> | |||
| 125 | #include <map> | |||
| 126 | #include <memory> | |||
| 127 | #include <numeric> | |||
| 128 | #include <optional> | |||
| 129 | #include <tuple> | |||
| 130 | #include <utility> | |||
| 131 | #include <vector> | |||
| 132 | ||||
| 133 | using namespace llvm; | |||
| 134 | using namespace PatternMatch; | |||
| 135 | ||||
| 136 | #define DEBUG_TYPE"scalar-evolution" "scalar-evolution" | |||
| 137 | ||||
| 138 | STATISTIC(NumTripCountsComputed,static llvm::Statistic NumTripCountsComputed = {"scalar-evolution" , "NumTripCountsComputed", "Number of loops with predictable loop counts" } | |||
| 139 | "Number of loops with predictable loop counts")static llvm::Statistic NumTripCountsComputed = {"scalar-evolution" , "NumTripCountsComputed", "Number of loops with predictable loop counts" }; | |||
| 140 | STATISTIC(NumTripCountsNotComputed,static llvm::Statistic NumTripCountsNotComputed = {"scalar-evolution" , "NumTripCountsNotComputed", "Number of loops without predictable loop counts" } | |||
| 141 | "Number of loops without predictable loop counts")static llvm::Statistic NumTripCountsNotComputed = {"scalar-evolution" , "NumTripCountsNotComputed", "Number of loops without predictable loop counts" }; | |||
| 142 | STATISTIC(NumBruteForceTripCountsComputed,static llvm::Statistic NumBruteForceTripCountsComputed = {"scalar-evolution" , "NumBruteForceTripCountsComputed", "Number of loops with trip counts computed by force" } | |||
| 143 | "Number of loops with trip counts computed by force")static llvm::Statistic NumBruteForceTripCountsComputed = {"scalar-evolution" , "NumBruteForceTripCountsComputed", "Number of loops with trip counts computed by force" }; | |||
| 144 | ||||
| 145 | #ifdef EXPENSIVE_CHECKS | |||
| 146 | bool llvm::VerifySCEV = true; | |||
| 147 | #else | |||
| 148 | bool llvm::VerifySCEV = false; | |||
| 149 | #endif | |||
| 150 | ||||
| 151 | static cl::opt<unsigned> | |||
| 152 | MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, | |||
| 153 | cl::desc("Maximum number of iterations SCEV will " | |||
| 154 | "symbolically execute a constant " | |||
| 155 | "derived loop"), | |||
| 156 | cl::init(100)); | |||
| 157 | ||||
| 158 | static cl::opt<bool, true> VerifySCEVOpt( | |||
| 159 | "verify-scev", cl::Hidden, cl::location(VerifySCEV), | |||
| 160 | cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); | |||
| 161 | static cl::opt<bool> VerifySCEVStrict( | |||
| 162 | "verify-scev-strict", cl::Hidden, | |||
| 163 | cl::desc("Enable stricter verification with -verify-scev is passed")); | |||
| 164 | static cl::opt<bool> | |||
| 165 | VerifySCEVMap("verify-scev-maps", cl::Hidden, | |||
| 166 | cl::desc("Verify no dangling value in ScalarEvolution's " | |||
| 167 | "ExprValueMap (slow)")); | |||
| 168 | ||||
| 169 | static cl::opt<bool> VerifyIR( | |||
| 170 | "scev-verify-ir", cl::Hidden, | |||
| 171 | cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), | |||
| 172 | cl::init(false)); | |||
| 173 | ||||
| 174 | static cl::opt<unsigned> MulOpsInlineThreshold( | |||
| 175 | "scev-mulops-inline-threshold", cl::Hidden, | |||
| 176 | cl::desc("Threshold for inlining multiplication operands into a SCEV"), | |||
| 177 | cl::init(32)); | |||
| 178 | ||||
| 179 | static cl::opt<unsigned> AddOpsInlineThreshold( | |||
| 180 | "scev-addops-inline-threshold", cl::Hidden, | |||
| 181 | cl::desc("Threshold for inlining addition operands into a SCEV"), | |||
| 182 | cl::init(500)); | |||
| 183 | ||||
| 184 | static cl::opt<unsigned> MaxSCEVCompareDepth( | |||
| 185 | "scalar-evolution-max-scev-compare-depth", cl::Hidden, | |||
| 186 | cl::desc("Maximum depth of recursive SCEV complexity comparisons"), | |||
| 187 | cl::init(32)); | |||
| 188 | ||||
| 189 | static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( | |||
| 190 | "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, | |||
| 191 | cl::desc("Maximum depth of recursive SCEV operations implication analysis"), | |||
| 192 | cl::init(2)); | |||
| 193 | ||||
| 194 | static cl::opt<unsigned> MaxValueCompareDepth( | |||
| 195 | "scalar-evolution-max-value-compare-depth", cl::Hidden, | |||
| 196 | cl::desc("Maximum depth of recursive value complexity comparisons"), | |||
| 197 | cl::init(2)); | |||
| 198 | ||||
| 199 | static cl::opt<unsigned> | |||
| 200 | MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, | |||
| 201 | cl::desc("Maximum depth of recursive arithmetics"), | |||
| 202 | cl::init(32)); | |||
| 203 | ||||
| 204 | static cl::opt<unsigned> MaxConstantEvolvingDepth( | |||
| 205 | "scalar-evolution-max-constant-evolving-depth", cl::Hidden, | |||
| 206 | cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); | |||
| 207 | ||||
| 208 | static cl::opt<unsigned> | |||
| 209 | MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, | |||
| 210 | cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), | |||
| 211 | cl::init(8)); | |||
| 212 | ||||
| 213 | static cl::opt<unsigned> | |||
| 214 | MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, | |||
| 215 | cl::desc("Max coefficients in AddRec during evolving"), | |||
| 216 | cl::init(8)); | |||
| 217 | ||||
| 218 | static cl::opt<unsigned> | |||
| 219 | HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, | |||
| 220 | cl::desc("Size of the expression which is considered huge"), | |||
| 221 | cl::init(4096)); | |||
| 222 | ||||
| 223 | static cl::opt<unsigned> RangeIterThreshold( | |||
| 224 | "scev-range-iter-threshold", cl::Hidden, | |||
| 225 | cl::desc("Threshold for switching to iteratively computing SCEV ranges"), | |||
| 226 | cl::init(32)); | |||
| 227 | ||||
| 228 | static cl::opt<bool> | |||
| 229 | ClassifyExpressions("scalar-evolution-classify-expressions", | |||
| 230 | cl::Hidden, cl::init(true), | |||
| 231 | cl::desc("When printing analysis, include information on every instruction")); | |||
| 232 | ||||
| 233 | static cl::opt<bool> UseExpensiveRangeSharpening( | |||
| 234 | "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, | |||
| 235 | cl::init(false), | |||
| 236 | cl::desc("Use more powerful methods of sharpening expression ranges. May " | |||
| 237 | "be costly in terms of compile time")); | |||
| 238 | ||||
| 239 | static cl::opt<unsigned> MaxPhiSCCAnalysisSize( | |||
| 240 | "scalar-evolution-max-scc-analysis-depth", cl::Hidden, | |||
| 241 | cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " | |||
| 242 | "Phi strongly connected components"), | |||
| 243 | cl::init(8)); | |||
| 244 | ||||
| 245 | static cl::opt<bool> | |||
| 246 | EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, | |||
| 247 | cl::desc("Handle <= and >= in finite loops"), | |||
| 248 | cl::init(true)); | |||
| 249 | ||||
| 250 | static cl::opt<bool> UseContextForNoWrapFlagInference( | |||
| 251 | "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden, | |||
| 252 | cl::desc("Infer nuw/nsw flags using context where suitable"), | |||
| 253 | cl::init(true)); | |||
| 254 | ||||
| 255 | //===----------------------------------------------------------------------===// | |||
| 256 | // SCEV class definitions | |||
| 257 | //===----------------------------------------------------------------------===// | |||
| 258 | ||||
| 259 | //===----------------------------------------------------------------------===// | |||
| 260 | // Implementation of the SCEV class. | |||
| 261 | // | |||
| 262 | ||||
| 263 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | |||
| 264 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void SCEV::dump() const { | |||
| 265 | print(dbgs()); | |||
| 266 | dbgs() << '\n'; | |||
| 267 | } | |||
| 268 | #endif | |||
| 269 | ||||
| 270 | void SCEV::print(raw_ostream &OS) const { | |||
| 271 | switch (getSCEVType()) { | |||
| 272 | case scConstant: | |||
| 273 | cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); | |||
| 274 | return; | |||
| 275 | case scVScale: | |||
| 276 | OS << "vscale"; | |||
| 277 | return; | |||
| 278 | case scPtrToInt: { | |||
| 279 | const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); | |||
| 280 | const SCEV *Op = PtrToInt->getOperand(); | |||
| 281 | OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " | |||
| 282 | << *PtrToInt->getType() << ")"; | |||
| 283 | return; | |||
| 284 | } | |||
| 285 | case scTruncate: { | |||
| 286 | const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); | |||
| 287 | const SCEV *Op = Trunc->getOperand(); | |||
| 288 | OS << "(trunc " << *Op->getType() << " " << *Op << " to " | |||
| 289 | << *Trunc->getType() << ")"; | |||
| 290 | return; | |||
| 291 | } | |||
| 292 | case scZeroExtend: { | |||
| 293 | const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); | |||
| 294 | const SCEV *Op = ZExt->getOperand(); | |||
| 295 | OS << "(zext " << *Op->getType() << " " << *Op << " to " | |||
| 296 | << *ZExt->getType() << ")"; | |||
| 297 | return; | |||
| 298 | } | |||
| 299 | case scSignExtend: { | |||
| 300 | const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); | |||
| 301 | const SCEV *Op = SExt->getOperand(); | |||
| 302 | OS << "(sext " << *Op->getType() << " " << *Op << " to " | |||
| 303 | << *SExt->getType() << ")"; | |||
| 304 | return; | |||
| 305 | } | |||
| 306 | case scAddRecExpr: { | |||
| 307 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); | |||
| 308 | OS << "{" << *AR->getOperand(0); | |||
| 309 | for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) | |||
| 310 | OS << ",+," << *AR->getOperand(i); | |||
| 311 | OS << "}<"; | |||
| 312 | if (AR->hasNoUnsignedWrap()) | |||
| 313 | OS << "nuw><"; | |||
| 314 | if (AR->hasNoSignedWrap()) | |||
| 315 | OS << "nsw><"; | |||
| 316 | if (AR->hasNoSelfWrap() && | |||
| 317 | !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) | |||
| 318 | OS << "nw><"; | |||
| 319 | AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); | |||
| 320 | OS << ">"; | |||
| 321 | return; | |||
| 322 | } | |||
| 323 | case scAddExpr: | |||
| 324 | case scMulExpr: | |||
| 325 | case scUMaxExpr: | |||
| 326 | case scSMaxExpr: | |||
| 327 | case scUMinExpr: | |||
| 328 | case scSMinExpr: | |||
| 329 | case scSequentialUMinExpr: { | |||
| 330 | const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); | |||
| 331 | const char *OpStr = nullptr; | |||
| 332 | switch (NAry->getSCEVType()) { | |||
| 333 | case scAddExpr: OpStr = " + "; break; | |||
| 334 | case scMulExpr: OpStr = " * "; break; | |||
| 335 | case scUMaxExpr: OpStr = " umax "; break; | |||
| 336 | case scSMaxExpr: OpStr = " smax "; break; | |||
| 337 | case scUMinExpr: | |||
| 338 | OpStr = " umin "; | |||
| 339 | break; | |||
| 340 | case scSMinExpr: | |||
| 341 | OpStr = " smin "; | |||
| 342 | break; | |||
| 343 | case scSequentialUMinExpr: | |||
| 344 | OpStr = " umin_seq "; | |||
| 345 | break; | |||
| 346 | default: | |||
| 347 | llvm_unreachable("There are no other nary expression types.")::llvm::llvm_unreachable_internal("There are no other nary expression types." , "llvm/lib/Analysis/ScalarEvolution.cpp", 347); | |||
| 348 | } | |||
| 349 | OS << "("; | |||
| 350 | ListSeparator LS(OpStr); | |||
| 351 | for (const SCEV *Op : NAry->operands()) | |||
| 352 | OS << LS << *Op; | |||
| 353 | OS << ")"; | |||
| 354 | switch (NAry->getSCEVType()) { | |||
| 355 | case scAddExpr: | |||
| 356 | case scMulExpr: | |||
| 357 | if (NAry->hasNoUnsignedWrap()) | |||
| 358 | OS << "<nuw>"; | |||
| 359 | if (NAry->hasNoSignedWrap()) | |||
| 360 | OS << "<nsw>"; | |||
| 361 | break; | |||
| 362 | default: | |||
| 363 | // Nothing to print for other nary expressions. | |||
| 364 | break; | |||
| 365 | } | |||
| 366 | return; | |||
| 367 | } | |||
| 368 | case scUDivExpr: { | |||
| 369 | const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); | |||
| 370 | OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; | |||
| 371 | return; | |||
| 372 | } | |||
| 373 | case scUnknown: | |||
| 374 | cast<SCEVUnknown>(this)->getValue()->printAsOperand(OS, false); | |||
| 375 | return; | |||
| 376 | case scCouldNotCompute: | |||
| 377 | OS << "***COULDNOTCOMPUTE***"; | |||
| 378 | return; | |||
| 379 | } | |||
| 380 | llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 380); | |||
| 381 | } | |||
| 382 | ||||
| 383 | Type *SCEV::getType() const { | |||
| 384 | switch (getSCEVType()) { | |||
| 385 | case scConstant: | |||
| 386 | return cast<SCEVConstant>(this)->getType(); | |||
| 387 | case scVScale: | |||
| 388 | return cast<SCEVVScale>(this)->getType(); | |||
| 389 | case scPtrToInt: | |||
| 390 | case scTruncate: | |||
| 391 | case scZeroExtend: | |||
| 392 | case scSignExtend: | |||
| 393 | return cast<SCEVCastExpr>(this)->getType(); | |||
| 394 | case scAddRecExpr: | |||
| 395 | return cast<SCEVAddRecExpr>(this)->getType(); | |||
| 396 | case scMulExpr: | |||
| 397 | return cast<SCEVMulExpr>(this)->getType(); | |||
| 398 | case scUMaxExpr: | |||
| 399 | case scSMaxExpr: | |||
| 400 | case scUMinExpr: | |||
| 401 | case scSMinExpr: | |||
| 402 | return cast<SCEVMinMaxExpr>(this)->getType(); | |||
| 403 | case scSequentialUMinExpr: | |||
| 404 | return cast<SCEVSequentialMinMaxExpr>(this)->getType(); | |||
| 405 | case scAddExpr: | |||
| 406 | return cast<SCEVAddExpr>(this)->getType(); | |||
| 407 | case scUDivExpr: | |||
| 408 | return cast<SCEVUDivExpr>(this)->getType(); | |||
| 409 | case scUnknown: | |||
| 410 | return cast<SCEVUnknown>(this)->getType(); | |||
| 411 | case scCouldNotCompute: | |||
| 412 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 412); | |||
| 413 | } | |||
| 414 | llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 414); | |||
| 415 | } | |||
| 416 | ||||
| 417 | ArrayRef<const SCEV *> SCEV::operands() const { | |||
| 418 | switch (getSCEVType()) { | |||
| 419 | case scConstant: | |||
| 420 | case scVScale: | |||
| 421 | case scUnknown: | |||
| 422 | return {}; | |||
| 423 | case scPtrToInt: | |||
| 424 | case scTruncate: | |||
| 425 | case scZeroExtend: | |||
| 426 | case scSignExtend: | |||
| 427 | return cast<SCEVCastExpr>(this)->operands(); | |||
| 428 | case scAddRecExpr: | |||
| 429 | case scAddExpr: | |||
| 430 | case scMulExpr: | |||
| 431 | case scUMaxExpr: | |||
| 432 | case scSMaxExpr: | |||
| 433 | case scUMinExpr: | |||
| 434 | case scSMinExpr: | |||
| 435 | case scSequentialUMinExpr: | |||
| 436 | return cast<SCEVNAryExpr>(this)->operands(); | |||
| 437 | case scUDivExpr: | |||
| 438 | return cast<SCEVUDivExpr>(this)->operands(); | |||
| 439 | case scCouldNotCompute: | |||
| 440 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 440); | |||
| 441 | } | |||
| 442 | llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 442); | |||
| 443 | } | |||
| 444 | ||||
| 445 | bool SCEV::isZero() const { | |||
| 446 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) | |||
| 447 | return SC->getValue()->isZero(); | |||
| 448 | return false; | |||
| 449 | } | |||
| 450 | ||||
| 451 | bool SCEV::isOne() const { | |||
| 452 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) | |||
| 453 | return SC->getValue()->isOne(); | |||
| 454 | return false; | |||
| 455 | } | |||
| 456 | ||||
| 457 | bool SCEV::isAllOnesValue() const { | |||
| 458 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) | |||
| 459 | return SC->getValue()->isMinusOne(); | |||
| 460 | return false; | |||
| 461 | } | |||
| 462 | ||||
| 463 | bool SCEV::isNonConstantNegative() const { | |||
| 464 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); | |||
| 465 | if (!Mul) return false; | |||
| 466 | ||||
| 467 | // If there is a constant factor, it will be first. | |||
| 468 | const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); | |||
| 469 | if (!SC) return false; | |||
| 470 | ||||
| 471 | // Return true if the value is negative, this matches things like (-42 * V). | |||
| 472 | return SC->getAPInt().isNegative(); | |||
| 473 | } | |||
| 474 | ||||
| 475 | SCEVCouldNotCompute::SCEVCouldNotCompute() : | |||
| 476 | SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} | |||
| 477 | ||||
| 478 | bool SCEVCouldNotCompute::classof(const SCEV *S) { | |||
| 479 | return S->getSCEVType() == scCouldNotCompute; | |||
| 480 | } | |||
| 481 | ||||
| 482 | const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { | |||
| 483 | FoldingSetNodeID ID; | |||
| 484 | ID.AddInteger(scConstant); | |||
| 485 | ID.AddPointer(V); | |||
| 486 | void *IP = nullptr; | |||
| 487 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | |||
| 488 | SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); | |||
| 489 | UniqueSCEVs.InsertNode(S, IP); | |||
| 490 | return S; | |||
| 491 | } | |||
| 492 | ||||
| 493 | const SCEV *ScalarEvolution::getConstant(const APInt &Val) { | |||
| 494 | return getConstant(ConstantInt::get(getContext(), Val)); | |||
| 495 | } | |||
| 496 | ||||
| 497 | const SCEV * | |||
| 498 | ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { | |||
| 499 | IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); | |||
| 500 | return getConstant(ConstantInt::get(ITy, V, isSigned)); | |||
| 501 | } | |||
| 502 | ||||
| 503 | const SCEV *ScalarEvolution::getVScale(Type *Ty) { | |||
| 504 | FoldingSetNodeID ID; | |||
| 505 | ID.AddInteger(scVScale); | |||
| 506 | ID.AddPointer(Ty); | |||
| 507 | void *IP = nullptr; | |||
| 508 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) | |||
| 509 | return S; | |||
| 510 | SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(SCEVAllocator), Ty); | |||
| 511 | UniqueSCEVs.InsertNode(S, IP); | |||
| 512 | return S; | |||
| 513 | } | |||
| 514 | ||||
| 515 | SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, | |||
| 516 | const SCEV *op, Type *ty) | |||
| 517 | : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} | |||
| 518 | ||||
| 519 | SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, | |||
| 520 | Type *ITy) | |||
| 521 | : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { | |||
| 522 | assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&(static_cast <bool> (getOperand()->getType()->isPointerTy () && Ty->isIntegerTy() && "Must be a non-bit-width-changing pointer-to-integer cast!" ) ? void (0) : __assert_fail ("getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && \"Must be a non-bit-width-changing pointer-to-integer cast!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 523, __extension__ __PRETTY_FUNCTION__)) | |||
| 523 | "Must be a non-bit-width-changing pointer-to-integer cast!")(static_cast <bool> (getOperand()->getType()->isPointerTy () && Ty->isIntegerTy() && "Must be a non-bit-width-changing pointer-to-integer cast!" ) ? void (0) : __assert_fail ("getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && \"Must be a non-bit-width-changing pointer-to-integer cast!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 523, __extension__ __PRETTY_FUNCTION__)); | |||
| 524 | } | |||
| 525 | ||||
| 526 | SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, | |||
| 527 | SCEVTypes SCEVTy, const SCEV *op, | |||
| 528 | Type *ty) | |||
| 529 | : SCEVCastExpr(ID, SCEVTy, op, ty) {} | |||
| 530 | ||||
| 531 | SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, | |||
| 532 | Type *ty) | |||
| 533 | : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { | |||
| 534 | assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy () && Ty->isIntOrPtrTy() && "Cannot truncate non-integer value!" ) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate non-integer value!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 535, __extension__ __PRETTY_FUNCTION__)) | |||
| 535 | "Cannot truncate non-integer value!")(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy () && Ty->isIntOrPtrTy() && "Cannot truncate non-integer value!" ) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate non-integer value!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 535, __extension__ __PRETTY_FUNCTION__)); | |||
| 536 | } | |||
| 537 | ||||
| 538 | SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, | |||
| 539 | const SCEV *op, Type *ty) | |||
| 540 | : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { | |||
| 541 | assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy () && Ty->isIntOrPtrTy() && "Cannot zero extend non-integer value!" ) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot zero extend non-integer value!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 542, __extension__ __PRETTY_FUNCTION__)) | |||
| 542 | "Cannot zero extend non-integer value!")(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy () && Ty->isIntOrPtrTy() && "Cannot zero extend non-integer value!" ) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot zero extend non-integer value!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 542, __extension__ __PRETTY_FUNCTION__)); | |||
| 543 | } | |||
| 544 | ||||
| 545 | SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, | |||
| 546 | const SCEV *op, Type *ty) | |||
| 547 | : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { | |||
| 548 | assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy () && Ty->isIntOrPtrTy() && "Cannot sign extend non-integer value!" ) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot sign extend non-integer value!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 549, __extension__ __PRETTY_FUNCTION__)) | |||
| 549 | "Cannot sign extend non-integer value!")(static_cast <bool> (getOperand()->getType()->isIntOrPtrTy () && Ty->isIntOrPtrTy() && "Cannot sign extend non-integer value!" ) ? void (0) : __assert_fail ("getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot sign extend non-integer value!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 549, __extension__ __PRETTY_FUNCTION__)); | |||
| 550 | } | |||
| 551 | ||||
| 552 | void SCEVUnknown::deleted() { | |||
| 553 | // Clear this SCEVUnknown from various maps. | |||
| 554 | SE->forgetMemoizedResults(this); | |||
| 555 | ||||
| 556 | // Remove this SCEVUnknown from the uniquing map. | |||
| 557 | SE->UniqueSCEVs.RemoveNode(this); | |||
| 558 | ||||
| 559 | // Release the value. | |||
| 560 | setValPtr(nullptr); | |||
| 561 | } | |||
| 562 | ||||
| 563 | void SCEVUnknown::allUsesReplacedWith(Value *New) { | |||
| 564 | // Clear this SCEVUnknown from various maps. | |||
| 565 | SE->forgetMemoizedResults(this); | |||
| 566 | ||||
| 567 | // Remove this SCEVUnknown from the uniquing map. | |||
| 568 | SE->UniqueSCEVs.RemoveNode(this); | |||
| 569 | ||||
| 570 | // Replace the value pointer in case someone is still using this SCEVUnknown. | |||
| 571 | setValPtr(New); | |||
| 572 | } | |||
| 573 | ||||
| 574 | //===----------------------------------------------------------------------===// | |||
| 575 | // SCEV Utilities | |||
| 576 | //===----------------------------------------------------------------------===// | |||
| 577 | ||||
| 578 | /// Compare the two values \p LV and \p RV in terms of their "complexity" where | |||
| 579 | /// "complexity" is a partial (and somewhat ad-hoc) relation used to order | |||
| 580 | /// operands in SCEV expressions. \p EqCache is a set of pairs of values that | |||
| 581 | /// have been previously deemed to be "equally complex" by this routine. It is | |||
| 582 | /// intended to avoid exponential time complexity in cases like: | |||
| 583 | /// | |||
| 584 | /// %a = f(%x, %y) | |||
| 585 | /// %b = f(%a, %a) | |||
| 586 | /// %c = f(%b, %b) | |||
| 587 | /// | |||
| 588 | /// %d = f(%x, %y) | |||
| 589 | /// %e = f(%d, %d) | |||
| 590 | /// %f = f(%e, %e) | |||
| 591 | /// | |||
| 592 | /// CompareValueComplexity(%f, %c) | |||
| 593 | /// | |||
| 594 | /// Since we do not continue running this routine on expression trees once we | |||
| 595 | /// have seen unequal values, there is no need to track them in the cache. | |||
| 596 | static int | |||
| 597 | CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, | |||
| 598 | const LoopInfo *const LI, Value *LV, Value *RV, | |||
| 599 | unsigned Depth) { | |||
| 600 | if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) | |||
| 601 | return 0; | |||
| 602 | ||||
| 603 | // Order pointer values after integer values. This helps SCEVExpander form | |||
| 604 | // GEPs. | |||
| 605 | bool LIsPointer = LV->getType()->isPointerTy(), | |||
| 606 | RIsPointer = RV->getType()->isPointerTy(); | |||
| 607 | if (LIsPointer != RIsPointer) | |||
| 608 | return (int)LIsPointer - (int)RIsPointer; | |||
| 609 | ||||
| 610 | // Compare getValueID values. | |||
| 611 | unsigned LID = LV->getValueID(), RID = RV->getValueID(); | |||
| 612 | if (LID != RID) | |||
| 613 | return (int)LID - (int)RID; | |||
| 614 | ||||
| 615 | // Sort arguments by their position. | |||
| 616 | if (const auto *LA = dyn_cast<Argument>(LV)) { | |||
| 617 | const auto *RA = cast<Argument>(RV); | |||
| 618 | unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); | |||
| 619 | return (int)LArgNo - (int)RArgNo; | |||
| 620 | } | |||
| 621 | ||||
| 622 | if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { | |||
| 623 | const auto *RGV = cast<GlobalValue>(RV); | |||
| 624 | ||||
| 625 | const auto IsGVNameSemantic = [&](const GlobalValue *GV) { | |||
| 626 | auto LT = GV->getLinkage(); | |||
| 627 | return !(GlobalValue::isPrivateLinkage(LT) || | |||
| 628 | GlobalValue::isInternalLinkage(LT)); | |||
| 629 | }; | |||
| 630 | ||||
| 631 | // Use the names to distinguish the two values, but only if the | |||
| 632 | // names are semantically important. | |||
| 633 | if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) | |||
| 634 | return LGV->getName().compare(RGV->getName()); | |||
| 635 | } | |||
| 636 | ||||
| 637 | // For instructions, compare their loop depth, and their operand count. This | |||
| 638 | // is pretty loose. | |||
| 639 | if (const auto *LInst = dyn_cast<Instruction>(LV)) { | |||
| 640 | const auto *RInst = cast<Instruction>(RV); | |||
| 641 | ||||
| 642 | // Compare loop depths. | |||
| 643 | const BasicBlock *LParent = LInst->getParent(), | |||
| 644 | *RParent = RInst->getParent(); | |||
| 645 | if (LParent != RParent) { | |||
| 646 | unsigned LDepth = LI->getLoopDepth(LParent), | |||
| 647 | RDepth = LI->getLoopDepth(RParent); | |||
| 648 | if (LDepth != RDepth) | |||
| 649 | return (int)LDepth - (int)RDepth; | |||
| 650 | } | |||
| 651 | ||||
| 652 | // Compare the number of operands. | |||
| 653 | unsigned LNumOps = LInst->getNumOperands(), | |||
| 654 | RNumOps = RInst->getNumOperands(); | |||
| 655 | if (LNumOps != RNumOps) | |||
| 656 | return (int)LNumOps - (int)RNumOps; | |||
| 657 | ||||
| 658 | for (unsigned Idx : seq(0u, LNumOps)) { | |||
| 659 | int Result = | |||
| 660 | CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), | |||
| 661 | RInst->getOperand(Idx), Depth + 1); | |||
| 662 | if (Result != 0) | |||
| 663 | return Result; | |||
| 664 | } | |||
| 665 | } | |||
| 666 | ||||
| 667 | EqCacheValue.unionSets(LV, RV); | |||
| 668 | return 0; | |||
| 669 | } | |||
| 670 | ||||
| 671 | // Return negative, zero, or positive, if LHS is less than, equal to, or greater | |||
| 672 | // than RHS, respectively. A three-way result allows recursive comparisons to be | |||
| 673 | // more efficient. | |||
| 674 | // If the max analysis depth was reached, return std::nullopt, assuming we do | |||
| 675 | // not know if they are equivalent for sure. | |||
| 676 | static std::optional<int> | |||
| 677 | CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, | |||
| 678 | EquivalenceClasses<const Value *> &EqCacheValue, | |||
| 679 | const LoopInfo *const LI, const SCEV *LHS, | |||
| 680 | const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { | |||
| 681 | // Fast-path: SCEVs are uniqued so we can do a quick equality check. | |||
| 682 | if (LHS == RHS) | |||
| 683 | return 0; | |||
| 684 | ||||
| 685 | // Primarily, sort the SCEVs by their getSCEVType(). | |||
| 686 | SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); | |||
| 687 | if (LType != RType) | |||
| 688 | return (int)LType - (int)RType; | |||
| 689 | ||||
| 690 | if (EqCacheSCEV.isEquivalent(LHS, RHS)) | |||
| 691 | return 0; | |||
| 692 | ||||
| 693 | if (Depth > MaxSCEVCompareDepth) | |||
| 694 | return std::nullopt; | |||
| 695 | ||||
| 696 | // Aside from the getSCEVType() ordering, the particular ordering | |||
| 697 | // isn't very important except that it's beneficial to be consistent, | |||
| 698 | // so that (a + b) and (b + a) don't end up as different expressions. | |||
| 699 | switch (LType) { | |||
| 700 | case scUnknown: { | |||
| 701 | const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); | |||
| 702 | const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); | |||
| 703 | ||||
| 704 | int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), | |||
| 705 | RU->getValue(), Depth + 1); | |||
| 706 | if (X == 0) | |||
| 707 | EqCacheSCEV.unionSets(LHS, RHS); | |||
| 708 | return X; | |||
| 709 | } | |||
| 710 | ||||
| 711 | case scConstant: { | |||
| 712 | const SCEVConstant *LC = cast<SCEVConstant>(LHS); | |||
| 713 | const SCEVConstant *RC = cast<SCEVConstant>(RHS); | |||
| 714 | ||||
| 715 | // Compare constant values. | |||
| 716 | const APInt &LA = LC->getAPInt(); | |||
| 717 | const APInt &RA = RC->getAPInt(); | |||
| 718 | unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); | |||
| 719 | if (LBitWidth != RBitWidth) | |||
| 720 | return (int)LBitWidth - (int)RBitWidth; | |||
| 721 | return LA.ult(RA) ? -1 : 1; | |||
| 722 | } | |||
| 723 | ||||
| 724 | case scVScale: { | |||
| 725 | const auto *LTy = cast<IntegerType>(cast<SCEVVScale>(LHS)->getType()); | |||
| 726 | const auto *RTy = cast<IntegerType>(cast<SCEVVScale>(RHS)->getType()); | |||
| 727 | return LTy->getBitWidth() - RTy->getBitWidth(); | |||
| 728 | } | |||
| 729 | ||||
| 730 | case scAddRecExpr: { | |||
| 731 | const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); | |||
| 732 | const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); | |||
| 733 | ||||
| 734 | // There is always a dominance between two recs that are used by one SCEV, | |||
| 735 | // so we can safely sort recs by loop header dominance. We require such | |||
| 736 | // order in getAddExpr. | |||
| 737 | const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); | |||
| 738 | if (LLoop != RLoop) { | |||
| 739 | const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); | |||
| 740 | assert(LHead != RHead && "Two loops share the same header?")(static_cast <bool> (LHead != RHead && "Two loops share the same header?" ) ? void (0) : __assert_fail ("LHead != RHead && \"Two loops share the same header?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 740, __extension__ __PRETTY_FUNCTION__)); | |||
| 741 | if (DT.dominates(LHead, RHead)) | |||
| 742 | return 1; | |||
| 743 | assert(DT.dominates(RHead, LHead) &&(static_cast <bool> (DT.dominates(RHead, LHead) && "No dominance between recurrences used by one SCEV?") ? void (0) : __assert_fail ("DT.dominates(RHead, LHead) && \"No dominance between recurrences used by one SCEV?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 744, __extension__ __PRETTY_FUNCTION__)) | |||
| 744 | "No dominance between recurrences used by one SCEV?")(static_cast <bool> (DT.dominates(RHead, LHead) && "No dominance between recurrences used by one SCEV?") ? void (0) : __assert_fail ("DT.dominates(RHead, LHead) && \"No dominance between recurrences used by one SCEV?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 744, __extension__ __PRETTY_FUNCTION__)); | |||
| 745 | return -1; | |||
| 746 | } | |||
| 747 | ||||
| 748 | [[fallthrough]]; | |||
| 749 | } | |||
| 750 | ||||
| 751 | case scTruncate: | |||
| 752 | case scZeroExtend: | |||
| 753 | case scSignExtend: | |||
| 754 | case scPtrToInt: | |||
| 755 | case scAddExpr: | |||
| 756 | case scMulExpr: | |||
| 757 | case scUDivExpr: | |||
| 758 | case scSMaxExpr: | |||
| 759 | case scUMaxExpr: | |||
| 760 | case scSMinExpr: | |||
| 761 | case scUMinExpr: | |||
| 762 | case scSequentialUMinExpr: { | |||
| 763 | ArrayRef<const SCEV *> LOps = LHS->operands(); | |||
| 764 | ArrayRef<const SCEV *> ROps = RHS->operands(); | |||
| 765 | ||||
| 766 | // Lexicographically compare n-ary-like expressions. | |||
| 767 | unsigned LNumOps = LOps.size(), RNumOps = ROps.size(); | |||
| 768 | if (LNumOps != RNumOps) | |||
| 769 | return (int)LNumOps - (int)RNumOps; | |||
| 770 | ||||
| 771 | for (unsigned i = 0; i != LNumOps; ++i) { | |||
| 772 | auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LOps[i], | |||
| 773 | ROps[i], DT, Depth + 1); | |||
| 774 | if (X != 0) | |||
| 775 | return X; | |||
| 776 | } | |||
| 777 | EqCacheSCEV.unionSets(LHS, RHS); | |||
| 778 | return 0; | |||
| 779 | } | |||
| 780 | ||||
| 781 | case scCouldNotCompute: | |||
| 782 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 782); | |||
| 783 | } | |||
| 784 | llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 784); | |||
| 785 | } | |||
| 786 | ||||
| 787 | /// Given a list of SCEV objects, order them by their complexity, and group | |||
| 788 | /// objects of the same complexity together by value. When this routine is | |||
| 789 | /// finished, we know that any duplicates in the vector are consecutive and that | |||
| 790 | /// complexity is monotonically increasing. | |||
| 791 | /// | |||
| 792 | /// Note that we go take special precautions to ensure that we get deterministic | |||
| 793 | /// results from this routine. In other words, we don't want the results of | |||
| 794 | /// this to depend on where the addresses of various SCEV objects happened to | |||
| 795 | /// land in memory. | |||
| 796 | static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, | |||
| 797 | LoopInfo *LI, DominatorTree &DT) { | |||
| 798 | if (Ops.size() < 2) return; // Noop | |||
| 799 | ||||
| 800 | EquivalenceClasses<const SCEV *> EqCacheSCEV; | |||
| 801 | EquivalenceClasses<const Value *> EqCacheValue; | |||
| 802 | ||||
| 803 | // Whether LHS has provably less complexity than RHS. | |||
| 804 | auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { | |||
| 805 | auto Complexity = | |||
| 806 | CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); | |||
| 807 | return Complexity && *Complexity < 0; | |||
| 808 | }; | |||
| 809 | if (Ops.size() == 2) { | |||
| 810 | // This is the common case, which also happens to be trivially simple. | |||
| 811 | // Special case it. | |||
| 812 | const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; | |||
| 813 | if (IsLessComplex(RHS, LHS)) | |||
| 814 | std::swap(LHS, RHS); | |||
| 815 | return; | |||
| 816 | } | |||
| 817 | ||||
| 818 | // Do the rough sort by complexity. | |||
| 819 | llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { | |||
| 820 | return IsLessComplex(LHS, RHS); | |||
| 821 | }); | |||
| 822 | ||||
| 823 | // Now that we are sorted by complexity, group elements of the same | |||
| 824 | // complexity. Note that this is, at worst, N^2, but the vector is likely to | |||
| 825 | // be extremely short in practice. Note that we take this approach because we | |||
| 826 | // do not want to depend on the addresses of the objects we are grouping. | |||
| 827 | for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { | |||
| 828 | const SCEV *S = Ops[i]; | |||
| 829 | unsigned Complexity = S->getSCEVType(); | |||
| 830 | ||||
| 831 | // If there are any objects of the same complexity and same value as this | |||
| 832 | // one, group them. | |||
| 833 | for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { | |||
| 834 | if (Ops[j] == S) { // Found a duplicate. | |||
| 835 | // Move it to immediately after i'th element. | |||
| 836 | std::swap(Ops[i+1], Ops[j]); | |||
| 837 | ++i; // no need to rescan it. | |||
| 838 | if (i == e-2) return; // Done! | |||
| 839 | } | |||
| 840 | } | |||
| 841 | } | |||
| 842 | } | |||
| 843 | ||||
| 844 | /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at | |||
| 845 | /// least HugeExprThreshold nodes). | |||
| 846 | static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { | |||
| 847 | return any_of(Ops, [](const SCEV *S) { | |||
| 848 | return S->getExpressionSize() >= HugeExprThreshold; | |||
| 849 | }); | |||
| 850 | } | |||
| 851 | ||||
| 852 | //===----------------------------------------------------------------------===// | |||
| 853 | // Simple SCEV method implementations | |||
| 854 | //===----------------------------------------------------------------------===// | |||
| 855 | ||||
| 856 | /// Compute BC(It, K). The result has width W. Assume, K > 0. | |||
| 857 | static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, | |||
| 858 | ScalarEvolution &SE, | |||
| 859 | Type *ResultTy) { | |||
| 860 | // Handle the simplest case efficiently. | |||
| 861 | if (K == 1) | |||
| 862 | return SE.getTruncateOrZeroExtend(It, ResultTy); | |||
| 863 | ||||
| 864 | // We are using the following formula for BC(It, K): | |||
| 865 | // | |||
| 866 | // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! | |||
| 867 | // | |||
| 868 | // Suppose, W is the bitwidth of the return value. We must be prepared for | |||
| 869 | // overflow. Hence, we must assure that the result of our computation is | |||
| 870 | // equal to the accurate one modulo 2^W. Unfortunately, division isn't | |||
| 871 | // safe in modular arithmetic. | |||
| 872 | // | |||
| 873 | // However, this code doesn't use exactly that formula; the formula it uses | |||
| 874 | // is something like the following, where T is the number of factors of 2 in | |||
| 875 | // K! (i.e. trailing zeros in the binary representation of K!), and ^ is | |||
| 876 | // exponentiation: | |||
| 877 | // | |||
| 878 | // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) | |||
| 879 | // | |||
| 880 | // This formula is trivially equivalent to the previous formula. However, | |||
| 881 | // this formula can be implemented much more efficiently. The trick is that | |||
| 882 | // K! / 2^T is odd, and exact division by an odd number *is* safe in modular | |||
| 883 | // arithmetic. To do exact division in modular arithmetic, all we have | |||
| 884 | // to do is multiply by the inverse. Therefore, this step can be done at | |||
| 885 | // width W. | |||
| 886 | // | |||
| 887 | // The next issue is how to safely do the division by 2^T. The way this | |||
| 888 | // is done is by doing the multiplication step at a width of at least W + T | |||
| 889 | // bits. This way, the bottom W+T bits of the product are accurate. Then, | |||
| 890 | // when we perform the division by 2^T (which is equivalent to a right shift | |||
| 891 | // by T), the bottom W bits are accurate. Extra bits are okay; they'll get | |||
| 892 | // truncated out after the division by 2^T. | |||
| 893 | // | |||
| 894 | // In comparison to just directly using the first formula, this technique | |||
| 895 | // is much more efficient; using the first formula requires W * K bits, | |||
| 896 | // but this formula less than W + K bits. Also, the first formula requires | |||
| 897 | // a division step, whereas this formula only requires multiplies and shifts. | |||
| 898 | // | |||
| 899 | // It doesn't matter whether the subtraction step is done in the calculation | |||
| 900 | // width or the input iteration count's width; if the subtraction overflows, | |||
| 901 | // the result must be zero anyway. We prefer here to do it in the width of | |||
| 902 | // the induction variable because it helps a lot for certain cases; CodeGen | |||
| 903 | // isn't smart enough to ignore the overflow, which leads to much less | |||
| 904 | // efficient code if the width of the subtraction is wider than the native | |||
| 905 | // register width. | |||
| 906 | // | |||
| 907 | // (It's possible to not widen at all by pulling out factors of 2 before | |||
| 908 | // the multiplication; for example, K=2 can be calculated as | |||
| 909 | // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires | |||
| 910 | // extra arithmetic, so it's not an obvious win, and it gets | |||
| 911 | // much more complicated for K > 3.) | |||
| 912 | ||||
| 913 | // Protection from insane SCEVs; this bound is conservative, | |||
| 914 | // but it probably doesn't matter. | |||
| 915 | if (K > 1000) | |||
| 916 | return SE.getCouldNotCompute(); | |||
| 917 | ||||
| 918 | unsigned W = SE.getTypeSizeInBits(ResultTy); | |||
| 919 | ||||
| 920 | // Calculate K! / 2^T and T; we divide out the factors of two before | |||
| 921 | // multiplying for calculating K! / 2^T to avoid overflow. | |||
| 922 | // Other overflow doesn't matter because we only care about the bottom | |||
| 923 | // W bits of the result. | |||
| 924 | APInt OddFactorial(W, 1); | |||
| 925 | unsigned T = 1; | |||
| 926 | for (unsigned i = 3; i <= K; ++i) { | |||
| 927 | APInt Mult(W, i); | |||
| 928 | unsigned TwoFactors = Mult.countr_zero(); | |||
| 929 | T += TwoFactors; | |||
| 930 | Mult.lshrInPlace(TwoFactors); | |||
| 931 | OddFactorial *= Mult; | |||
| 932 | } | |||
| 933 | ||||
| 934 | // We need at least W + T bits for the multiplication step | |||
| 935 | unsigned CalculationBits = W + T; | |||
| 936 | ||||
| 937 | // Calculate 2^T, at width T+W. | |||
| 938 | APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); | |||
| 939 | ||||
| 940 | // Calculate the multiplicative inverse of K! / 2^T; | |||
| 941 | // this multiplication factor will perform the exact division by | |||
| 942 | // K! / 2^T. | |||
| 943 | APInt Mod = APInt::getSignedMinValue(W+1); | |||
| 944 | APInt MultiplyFactor = OddFactorial.zext(W+1); | |||
| 945 | MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); | |||
| 946 | MultiplyFactor = MultiplyFactor.trunc(W); | |||
| 947 | ||||
| 948 | // Calculate the product, at width T+W | |||
| 949 | IntegerType *CalculationTy = IntegerType::get(SE.getContext(), | |||
| 950 | CalculationBits); | |||
| 951 | const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); | |||
| 952 | for (unsigned i = 1; i != K; ++i) { | |||
| 953 | const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); | |||
| 954 | Dividend = SE.getMulExpr(Dividend, | |||
| 955 | SE.getTruncateOrZeroExtend(S, CalculationTy)); | |||
| 956 | } | |||
| 957 | ||||
| 958 | // Divide by 2^T | |||
| 959 | const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); | |||
| 960 | ||||
| 961 | // Truncate the result, and divide by K! / 2^T. | |||
| 962 | ||||
| 963 | return SE.getMulExpr(SE.getConstant(MultiplyFactor), | |||
| 964 | SE.getTruncateOrZeroExtend(DivResult, ResultTy)); | |||
| 965 | } | |||
| 966 | ||||
| 967 | /// Return the value of this chain of recurrences at the specified iteration | |||
| 968 | /// number. We can evaluate this recurrence by multiplying each element in the | |||
| 969 | /// chain by the binomial coefficient corresponding to it. In other words, we | |||
| 970 | /// can evaluate {A,+,B,+,C,+,D} as: | |||
| 971 | /// | |||
| 972 | /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) | |||
| 973 | /// | |||
| 974 | /// where BC(It, k) stands for binomial coefficient. | |||
| 975 | const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, | |||
| 976 | ScalarEvolution &SE) const { | |||
| 977 | return evaluateAtIteration(operands(), It, SE); | |||
| 978 | } | |||
| 979 | ||||
| 980 | const SCEV * | |||
| 981 | SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, | |||
| 982 | const SCEV *It, ScalarEvolution &SE) { | |||
| 983 | assert(Operands.size() > 0)(static_cast <bool> (Operands.size() > 0) ? void (0) : __assert_fail ("Operands.size() > 0", "llvm/lib/Analysis/ScalarEvolution.cpp" , 983, __extension__ __PRETTY_FUNCTION__)); | |||
| 984 | const SCEV *Result = Operands[0]; | |||
| 985 | for (unsigned i = 1, e = Operands.size(); i != e; ++i) { | |||
| 986 | // The computation is correct in the face of overflow provided that the | |||
| 987 | // multiplication is performed _after_ the evaluation of the binomial | |||
| 988 | // coefficient. | |||
| 989 | const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); | |||
| 990 | if (isa<SCEVCouldNotCompute>(Coeff)) | |||
| 991 | return Coeff; | |||
| 992 | ||||
| 993 | Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); | |||
| 994 | } | |||
| 995 | return Result; | |||
| 996 | } | |||
| 997 | ||||
| 998 | //===----------------------------------------------------------------------===// | |||
| 999 | // SCEV Expression folder implementations | |||
| 1000 | //===----------------------------------------------------------------------===// | |||
| 1001 | ||||
| 1002 | const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, | |||
| 1003 | unsigned Depth) { | |||
| 1004 | assert(Depth <= 1 &&(static_cast <bool> (Depth <= 1 && "getLosslessPtrToIntExpr() should self-recurse at most once." ) ? void (0) : __assert_fail ("Depth <= 1 && \"getLosslessPtrToIntExpr() should self-recurse at most once.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1005, __extension__ __PRETTY_FUNCTION__)) | |||
| 1005 | "getLosslessPtrToIntExpr() should self-recurse at most once.")(static_cast <bool> (Depth <= 1 && "getLosslessPtrToIntExpr() should self-recurse at most once." ) ? void (0) : __assert_fail ("Depth <= 1 && \"getLosslessPtrToIntExpr() should self-recurse at most once.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1005, __extension__ __PRETTY_FUNCTION__)); | |||
| 1006 | ||||
| 1007 | // We could be called with an integer-typed operands during SCEV rewrites. | |||
| 1008 | // Since the operand is an integer already, just perform zext/trunc/self cast. | |||
| 1009 | if (!Op->getType()->isPointerTy()) | |||
| 1010 | return Op; | |||
| 1011 | ||||
| 1012 | // What would be an ID for such a SCEV cast expression? | |||
| 1013 | FoldingSetNodeID ID; | |||
| 1014 | ID.AddInteger(scPtrToInt); | |||
| 1015 | ID.AddPointer(Op); | |||
| 1016 | ||||
| 1017 | void *IP = nullptr; | |||
| 1018 | ||||
| 1019 | // Is there already an expression for such a cast? | |||
| 1020 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) | |||
| 1021 | return S; | |||
| 1022 | ||||
| 1023 | // It isn't legal for optimizations to construct new ptrtoint expressions | |||
| 1024 | // for non-integral pointers. | |||
| 1025 | if (getDataLayout().isNonIntegralPointerType(Op->getType())) | |||
| 1026 | return getCouldNotCompute(); | |||
| 1027 | ||||
| 1028 | Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); | |||
| 1029 | ||||
| 1030 | // We can only trivially model ptrtoint if SCEV's effective (integer) type | |||
| 1031 | // is sufficiently wide to represent all possible pointer values. | |||
| 1032 | // We could theoretically teach SCEV to truncate wider pointers, but | |||
| 1033 | // that isn't implemented for now. | |||
| 1034 | if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != | |||
| 1035 | getDataLayout().getTypeSizeInBits(IntPtrTy)) | |||
| 1036 | return getCouldNotCompute(); | |||
| 1037 | ||||
| 1038 | // If not, is this expression something we can't reduce any further? | |||
| 1039 | if (auto *U = dyn_cast<SCEVUnknown>(Op)) { | |||
| 1040 | // Perform some basic constant folding. If the operand of the ptr2int cast | |||
| 1041 | // is a null pointer, don't create a ptr2int SCEV expression (that will be | |||
| 1042 | // left as-is), but produce a zero constant. | |||
| 1043 | // NOTE: We could handle a more general case, but lack motivational cases. | |||
| 1044 | if (isa<ConstantPointerNull>(U->getValue())) | |||
| 1045 | return getZero(IntPtrTy); | |||
| 1046 | ||||
| 1047 | // Create an explicit cast node. | |||
| 1048 | // We can reuse the existing insert position since if we get here, | |||
| 1049 | // we won't have made any changes which would invalidate it. | |||
| 1050 | SCEV *S = new (SCEVAllocator) | |||
| 1051 | SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); | |||
| 1052 | UniqueSCEVs.InsertNode(S, IP); | |||
| 1053 | registerUser(S, Op); | |||
| 1054 | return S; | |||
| 1055 | } | |||
| 1056 | ||||
| 1057 | assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "(static_cast <bool> (Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " "non-SCEVUnknown's.") ? void (0) : __assert_fail ("Depth == 0 && \"getLosslessPtrToIntExpr() should not self-recurse for \" \"non-SCEVUnknown's.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1058, __extension__ __PRETTY_FUNCTION__)) | |||
| 1058 | "non-SCEVUnknown's.")(static_cast <bool> (Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " "non-SCEVUnknown's.") ? void (0) : __assert_fail ("Depth == 0 && \"getLosslessPtrToIntExpr() should not self-recurse for \" \"non-SCEVUnknown's.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1058, __extension__ __PRETTY_FUNCTION__)); | |||
| 1059 | ||||
| 1060 | // Otherwise, we've got some expression that is more complex than just a | |||
| 1061 | // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an | |||
| 1062 | // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown | |||
| 1063 | // only, and the expressions must otherwise be integer-typed. | |||
| 1064 | // So sink the cast down to the SCEVUnknown's. | |||
| 1065 | ||||
| 1066 | /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, | |||
| 1067 | /// which computes a pointer-typed value, and rewrites the whole expression | |||
| 1068 | /// tree so that *all* the computations are done on integers, and the only | |||
| 1069 | /// pointer-typed operands in the expression are SCEVUnknown. | |||
| 1070 | class SCEVPtrToIntSinkingRewriter | |||
| 1071 | : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { | |||
| 1072 | using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; | |||
| 1073 | ||||
| 1074 | public: | |||
| 1075 | SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} | |||
| 1076 | ||||
| 1077 | static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { | |||
| 1078 | SCEVPtrToIntSinkingRewriter Rewriter(SE); | |||
| 1079 | return Rewriter.visit(Scev); | |||
| 1080 | } | |||
| 1081 | ||||
| 1082 | const SCEV *visit(const SCEV *S) { | |||
| 1083 | Type *STy = S->getType(); | |||
| 1084 | // If the expression is not pointer-typed, just keep it as-is. | |||
| 1085 | if (!STy->isPointerTy()) | |||
| 1086 | return S; | |||
| 1087 | // Else, recursively sink the cast down into it. | |||
| 1088 | return Base::visit(S); | |||
| 1089 | } | |||
| 1090 | ||||
| 1091 | const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { | |||
| 1092 | SmallVector<const SCEV *, 2> Operands; | |||
| 1093 | bool Changed = false; | |||
| 1094 | for (const auto *Op : Expr->operands()) { | |||
| 1095 | Operands.push_back(visit(Op)); | |||
| 1096 | Changed |= Op != Operands.back(); | |||
| 1097 | } | |||
| 1098 | return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); | |||
| 1099 | } | |||
| 1100 | ||||
| 1101 | const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { | |||
| 1102 | SmallVector<const SCEV *, 2> Operands; | |||
| 1103 | bool Changed = false; | |||
| 1104 | for (const auto *Op : Expr->operands()) { | |||
| 1105 | Operands.push_back(visit(Op)); | |||
| 1106 | Changed |= Op != Operands.back(); | |||
| 1107 | } | |||
| 1108 | return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); | |||
| 1109 | } | |||
| 1110 | ||||
| 1111 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | |||
| 1112 | assert(Expr->getType()->isPointerTy() &&(static_cast <bool> (Expr->getType()->isPointerTy () && "Should only reach pointer-typed SCEVUnknown's." ) ? void (0) : __assert_fail ("Expr->getType()->isPointerTy() && \"Should only reach pointer-typed SCEVUnknown's.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1113, __extension__ __PRETTY_FUNCTION__)) | |||
| 1113 | "Should only reach pointer-typed SCEVUnknown's.")(static_cast <bool> (Expr->getType()->isPointerTy () && "Should only reach pointer-typed SCEVUnknown's." ) ? void (0) : __assert_fail ("Expr->getType()->isPointerTy() && \"Should only reach pointer-typed SCEVUnknown's.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1113, __extension__ __PRETTY_FUNCTION__)); | |||
| 1114 | return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); | |||
| 1115 | } | |||
| 1116 | }; | |||
| 1117 | ||||
| 1118 | // And actually perform the cast sinking. | |||
| 1119 | const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); | |||
| 1120 | assert(IntOp->getType()->isIntegerTy() &&(static_cast <bool> (IntOp->getType()->isIntegerTy () && "We must have succeeded in sinking the cast, " "and ending up with an integer-typed expression!" ) ? void (0) : __assert_fail ("IntOp->getType()->isIntegerTy() && \"We must have succeeded in sinking the cast, \" \"and ending up with an integer-typed expression!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1122, __extension__ __PRETTY_FUNCTION__)) | |||
| 1121 | "We must have succeeded in sinking the cast, "(static_cast <bool> (IntOp->getType()->isIntegerTy () && "We must have succeeded in sinking the cast, " "and ending up with an integer-typed expression!" ) ? void (0) : __assert_fail ("IntOp->getType()->isIntegerTy() && \"We must have succeeded in sinking the cast, \" \"and ending up with an integer-typed expression!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1122, __extension__ __PRETTY_FUNCTION__)) | |||
| 1122 | "and ending up with an integer-typed expression!")(static_cast <bool> (IntOp->getType()->isIntegerTy () && "We must have succeeded in sinking the cast, " "and ending up with an integer-typed expression!" ) ? void (0) : __assert_fail ("IntOp->getType()->isIntegerTy() && \"We must have succeeded in sinking the cast, \" \"and ending up with an integer-typed expression!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1122, __extension__ __PRETTY_FUNCTION__)); | |||
| 1123 | return IntOp; | |||
| 1124 | } | |||
| 1125 | ||||
| 1126 | const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { | |||
| 1127 | assert(Ty->isIntegerTy() && "Target type must be an integer type!")(static_cast <bool> (Ty->isIntegerTy() && "Target type must be an integer type!" ) ? void (0) : __assert_fail ("Ty->isIntegerTy() && \"Target type must be an integer type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1127, __extension__ __PRETTY_FUNCTION__)); | |||
| 1128 | ||||
| 1129 | const SCEV *IntOp = getLosslessPtrToIntExpr(Op); | |||
| 1130 | if (isa<SCEVCouldNotCompute>(IntOp)) | |||
| 1131 | return IntOp; | |||
| 1132 | ||||
| 1133 | return getTruncateOrZeroExtend(IntOp, Ty); | |||
| 1134 | } | |||
| 1135 | ||||
| 1136 | const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, | |||
| 1137 | unsigned Depth) { | |||
| 1138 | assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(Op->getType() ) > getTypeSizeInBits(Ty) && "This is not a truncating conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && \"This is not a truncating conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1139, __extension__ __PRETTY_FUNCTION__)) | |||
| 1139 | "This is not a truncating conversion!")(static_cast <bool> (getTypeSizeInBits(Op->getType() ) > getTypeSizeInBits(Ty) && "This is not a truncating conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && \"This is not a truncating conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1139, __extension__ __PRETTY_FUNCTION__)); | |||
| 1140 | assert(isSCEVable(Ty) &&(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1141, __extension__ __PRETTY_FUNCTION__)) | |||
| 1141 | "This is not a conversion to a SCEVable type!")(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1141, __extension__ __PRETTY_FUNCTION__)); | |||
| 1142 | assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!")(static_cast <bool> (!Op->getType()->isPointerTy( ) && "Can't truncate pointer!") ? void (0) : __assert_fail ("!Op->getType()->isPointerTy() && \"Can't truncate pointer!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1142, __extension__ __PRETTY_FUNCTION__)); | |||
| 1143 | Ty = getEffectiveSCEVType(Ty); | |||
| 1144 | ||||
| 1145 | FoldingSetNodeID ID; | |||
| 1146 | ID.AddInteger(scTruncate); | |||
| 1147 | ID.AddPointer(Op); | |||
| 1148 | ID.AddPointer(Ty); | |||
| 1149 | void *IP = nullptr; | |||
| 1150 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | |||
| 1151 | ||||
| 1152 | // Fold if the operand is constant. | |||
| 1153 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) | |||
| 1154 | return getConstant( | |||
| 1155 | cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); | |||
| 1156 | ||||
| 1157 | // trunc(trunc(x)) --> trunc(x) | |||
| 1158 | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) | |||
| 1159 | return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); | |||
| 1160 | ||||
| 1161 | // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing | |||
| 1162 | if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) | |||
| 1163 | return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); | |||
| 1164 | ||||
| 1165 | // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing | |||
| 1166 | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) | |||
| 1167 | return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); | |||
| 1168 | ||||
| 1169 | if (Depth > MaxCastDepth) { | |||
| 1170 | SCEV *S = | |||
| 1171 | new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); | |||
| 1172 | UniqueSCEVs.InsertNode(S, IP); | |||
| 1173 | registerUser(S, Op); | |||
| 1174 | return S; | |||
| 1175 | } | |||
| 1176 | ||||
| 1177 | // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and | |||
| 1178 | // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), | |||
| 1179 | // if after transforming we have at most one truncate, not counting truncates | |||
| 1180 | // that replace other casts. | |||
| 1181 | if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { | |||
| 1182 | auto *CommOp = cast<SCEVCommutativeExpr>(Op); | |||
| 1183 | SmallVector<const SCEV *, 4> Operands; | |||
| 1184 | unsigned numTruncs = 0; | |||
| 1185 | for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; | |||
| 1186 | ++i) { | |||
| 1187 | const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); | |||
| 1188 | if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && | |||
| 1189 | isa<SCEVTruncateExpr>(S)) | |||
| 1190 | numTruncs++; | |||
| 1191 | Operands.push_back(S); | |||
| 1192 | } | |||
| 1193 | if (numTruncs < 2) { | |||
| 1194 | if (isa<SCEVAddExpr>(Op)) | |||
| 1195 | return getAddExpr(Operands); | |||
| 1196 | if (isa<SCEVMulExpr>(Op)) | |||
| 1197 | return getMulExpr(Operands); | |||
| 1198 | llvm_unreachable("Unexpected SCEV type for Op.")::llvm::llvm_unreachable_internal("Unexpected SCEV type for Op." , "llvm/lib/Analysis/ScalarEvolution.cpp", 1198); | |||
| 1199 | } | |||
| 1200 | // Although we checked in the beginning that ID is not in the cache, it is | |||
| 1201 | // possible that during recursion and different modification ID was inserted | |||
| 1202 | // into the cache. So if we find it, just return it. | |||
| 1203 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) | |||
| 1204 | return S; | |||
| 1205 | } | |||
| 1206 | ||||
| 1207 | // If the input value is a chrec scev, truncate the chrec's operands. | |||
| 1208 | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { | |||
| 1209 | SmallVector<const SCEV *, 4> Operands; | |||
| 1210 | for (const SCEV *Op : AddRec->operands()) | |||
| 1211 | Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); | |||
| 1212 | return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); | |||
| 1213 | } | |||
| 1214 | ||||
| 1215 | // Return zero if truncating to known zeros. | |||
| 1216 | uint32_t MinTrailingZeros = getMinTrailingZeros(Op); | |||
| 1217 | if (MinTrailingZeros >= getTypeSizeInBits(Ty)) | |||
| 1218 | return getZero(Ty); | |||
| 1219 | ||||
| 1220 | // The cast wasn't folded; create an explicit cast node. We can reuse | |||
| 1221 | // the existing insert position since if we get here, we won't have | |||
| 1222 | // made any changes which would invalidate it. | |||
| 1223 | SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), | |||
| 1224 | Op, Ty); | |||
| 1225 | UniqueSCEVs.InsertNode(S, IP); | |||
| 1226 | registerUser(S, Op); | |||
| 1227 | return S; | |||
| 1228 | } | |||
| 1229 | ||||
| 1230 | // Get the limit of a recurrence such that incrementing by Step cannot cause | |||
| 1231 | // signed overflow as long as the value of the recurrence within the | |||
| 1232 | // loop does not exceed this limit before incrementing. | |||
| 1233 | static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, | |||
| 1234 | ICmpInst::Predicate *Pred, | |||
| 1235 | ScalarEvolution *SE) { | |||
| 1236 | unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); | |||
| 1237 | if (SE->isKnownPositive(Step)) { | |||
| 1238 | *Pred = ICmpInst::ICMP_SLT; | |||
| 1239 | return SE->getConstant(APInt::getSignedMinValue(BitWidth) - | |||
| 1240 | SE->getSignedRangeMax(Step)); | |||
| 1241 | } | |||
| 1242 | if (SE->isKnownNegative(Step)) { | |||
| 1243 | *Pred = ICmpInst::ICMP_SGT; | |||
| 1244 | return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - | |||
| 1245 | SE->getSignedRangeMin(Step)); | |||
| 1246 | } | |||
| 1247 | return nullptr; | |||
| 1248 | } | |||
| 1249 | ||||
| 1250 | // Get the limit of a recurrence such that incrementing by Step cannot cause | |||
| 1251 | // unsigned overflow as long as the value of the recurrence within the loop does | |||
| 1252 | // not exceed this limit before incrementing. | |||
| 1253 | static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, | |||
| 1254 | ICmpInst::Predicate *Pred, | |||
| 1255 | ScalarEvolution *SE) { | |||
| 1256 | unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); | |||
| 1257 | *Pred = ICmpInst::ICMP_ULT; | |||
| 1258 | ||||
| 1259 | return SE->getConstant(APInt::getMinValue(BitWidth) - | |||
| 1260 | SE->getUnsignedRangeMax(Step)); | |||
| 1261 | } | |||
| 1262 | ||||
| 1263 | namespace { | |||
| 1264 | ||||
| 1265 | struct ExtendOpTraitsBase { | |||
| 1266 | typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, | |||
| 1267 | unsigned); | |||
| 1268 | }; | |||
| 1269 | ||||
| 1270 | // Used to make code generic over signed and unsigned overflow. | |||
| 1271 | template <typename ExtendOp> struct ExtendOpTraits { | |||
| 1272 | // Members present: | |||
| 1273 | // | |||
| 1274 | // static const SCEV::NoWrapFlags WrapType; | |||
| 1275 | // | |||
| 1276 | // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; | |||
| 1277 | // | |||
| 1278 | // static const SCEV *getOverflowLimitForStep(const SCEV *Step, | |||
| 1279 | // ICmpInst::Predicate *Pred, | |||
| 1280 | // ScalarEvolution *SE); | |||
| 1281 | }; | |||
| 1282 | ||||
| 1283 | template <> | |||
| 1284 | struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { | |||
| 1285 | static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; | |||
| 1286 | ||||
| 1287 | static const GetExtendExprTy GetExtendExpr; | |||
| 1288 | ||||
| 1289 | static const SCEV *getOverflowLimitForStep(const SCEV *Step, | |||
| 1290 | ICmpInst::Predicate *Pred, | |||
| 1291 | ScalarEvolution *SE) { | |||
| 1292 | return getSignedOverflowLimitForStep(Step, Pred, SE); | |||
| 1293 | } | |||
| 1294 | }; | |||
| 1295 | ||||
| 1296 | const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< | |||
| 1297 | SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; | |||
| 1298 | ||||
| 1299 | template <> | |||
| 1300 | struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { | |||
| 1301 | static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; | |||
| 1302 | ||||
| 1303 | static const GetExtendExprTy GetExtendExpr; | |||
| 1304 | ||||
| 1305 | static const SCEV *getOverflowLimitForStep(const SCEV *Step, | |||
| 1306 | ICmpInst::Predicate *Pred, | |||
| 1307 | ScalarEvolution *SE) { | |||
| 1308 | return getUnsignedOverflowLimitForStep(Step, Pred, SE); | |||
| 1309 | } | |||
| 1310 | }; | |||
| 1311 | ||||
| 1312 | const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< | |||
| 1313 | SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; | |||
| 1314 | ||||
| 1315 | } // end anonymous namespace | |||
| 1316 | ||||
| 1317 | // The recurrence AR has been shown to have no signed/unsigned wrap or something | |||
| 1318 | // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as | |||
| 1319 | // easily prove NSW/NUW for its preincrement or postincrement sibling. This | |||
| 1320 | // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + | |||
| 1321 | // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the | |||
| 1322 | // expression "Step + sext/zext(PreIncAR)" is congruent with | |||
| 1323 | // "sext/zext(PostIncAR)" | |||
| 1324 | template <typename ExtendOpTy> | |||
| 1325 | static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, | |||
| 1326 | ScalarEvolution *SE, unsigned Depth) { | |||
| 1327 | auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; | |||
| 1328 | auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; | |||
| 1329 | ||||
| 1330 | const Loop *L = AR->getLoop(); | |||
| 1331 | const SCEV *Start = AR->getStart(); | |||
| 1332 | const SCEV *Step = AR->getStepRecurrence(*SE); | |||
| 1333 | ||||
| 1334 | // Check for a simple looking step prior to loop entry. | |||
| 1335 | const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); | |||
| 1336 | if (!SA) | |||
| 1337 | return nullptr; | |||
| 1338 | ||||
| 1339 | // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV | |||
| 1340 | // subtraction is expensive. For this purpose, perform a quick and dirty | |||
| 1341 | // difference, by checking for Step in the operand list. | |||
| 1342 | SmallVector<const SCEV *, 4> DiffOps; | |||
| 1343 | for (const SCEV *Op : SA->operands()) | |||
| 1344 | if (Op != Step) | |||
| 1345 | DiffOps.push_back(Op); | |||
| 1346 | ||||
| 1347 | if (DiffOps.size() == SA->getNumOperands()) | |||
| 1348 | return nullptr; | |||
| 1349 | ||||
| 1350 | // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + | |||
| 1351 | // `Step`: | |||
| 1352 | ||||
| 1353 | // 1. NSW/NUW flags on the step increment. | |||
| 1354 | auto PreStartFlags = | |||
| 1355 | ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); | |||
| 1356 | const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); | |||
| 1357 | const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( | |||
| 1358 | SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); | |||
| 1359 | ||||
| 1360 | // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies | |||
| 1361 | // "S+X does not sign/unsign-overflow". | |||
| 1362 | // | |||
| 1363 | ||||
| 1364 | const SCEV *BECount = SE->getBackedgeTakenCount(L); | |||
| 1365 | if (PreAR && PreAR->getNoWrapFlags(WrapType) && | |||
| 1366 | !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) | |||
| 1367 | return PreStart; | |||
| 1368 | ||||
| 1369 | // 2. Direct overflow check on the step operation's expression. | |||
| 1370 | unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); | |||
| 1371 | Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); | |||
| 1372 | const SCEV *OperandExtendedStart = | |||
| 1373 | SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), | |||
| 1374 | (SE->*GetExtendExpr)(Step, WideTy, Depth)); | |||
| 1375 | if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { | |||
| 1376 | if (PreAR && AR->getNoWrapFlags(WrapType)) { | |||
| 1377 | // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW | |||
| 1378 | // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then | |||
| 1379 | // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. | |||
| 1380 | SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); | |||
| 1381 | } | |||
| 1382 | return PreStart; | |||
| 1383 | } | |||
| 1384 | ||||
| 1385 | // 3. Loop precondition. | |||
| 1386 | ICmpInst::Predicate Pred; | |||
| 1387 | const SCEV *OverflowLimit = | |||
| 1388 | ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); | |||
| 1389 | ||||
| 1390 | if (OverflowLimit && | |||
| 1391 | SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) | |||
| 1392 | return PreStart; | |||
| 1393 | ||||
| 1394 | return nullptr; | |||
| 1395 | } | |||
| 1396 | ||||
| 1397 | // Get the normalized zero or sign extended expression for this AddRec's Start. | |||
| 1398 | template <typename ExtendOpTy> | |||
| 1399 | static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, | |||
| 1400 | ScalarEvolution *SE, | |||
| 1401 | unsigned Depth) { | |||
| 1402 | auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; | |||
| 1403 | ||||
| 1404 | const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); | |||
| 1405 | if (!PreStart) | |||
| 1406 | return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); | |||
| 1407 | ||||
| 1408 | return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, | |||
| 1409 | Depth), | |||
| 1410 | (SE->*GetExtendExpr)(PreStart, Ty, Depth)); | |||
| 1411 | } | |||
| 1412 | ||||
| 1413 | // Try to prove away overflow by looking at "nearby" add recurrences. A | |||
| 1414 | // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it | |||
| 1415 | // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. | |||
| 1416 | // | |||
| 1417 | // Formally: | |||
| 1418 | // | |||
| 1419 | // {S,+,X} == {S-T,+,X} + T | |||
| 1420 | // => Ext({S,+,X}) == Ext({S-T,+,X} + T) | |||
| 1421 | // | |||
| 1422 | // If ({S-T,+,X} + T) does not overflow ... (1) | |||
| 1423 | // | |||
| 1424 | // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) | |||
| 1425 | // | |||
| 1426 | // If {S-T,+,X} does not overflow ... (2) | |||
| 1427 | // | |||
| 1428 | // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) | |||
| 1429 | // == {Ext(S-T)+Ext(T),+,Ext(X)} | |||
| 1430 | // | |||
| 1431 | // If (S-T)+T does not overflow ... (3) | |||
| 1432 | // | |||
| 1433 | // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} | |||
| 1434 | // == {Ext(S),+,Ext(X)} == LHS | |||
| 1435 | // | |||
| 1436 | // Thus, if (1), (2) and (3) are true for some T, then | |||
| 1437 | // Ext({S,+,X}) == {Ext(S),+,Ext(X)} | |||
| 1438 | // | |||
| 1439 | // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) | |||
| 1440 | // does not overflow" restricted to the 0th iteration. Therefore we only need | |||
| 1441 | // to check for (1) and (2). | |||
| 1442 | // | |||
| 1443 | // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T | |||
| 1444 | // is `Delta` (defined below). | |||
| 1445 | template <typename ExtendOpTy> | |||
| 1446 | bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, | |||
| 1447 | const SCEV *Step, | |||
| 1448 | const Loop *L) { | |||
| 1449 | auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; | |||
| 1450 | ||||
| 1451 | // We restrict `Start` to a constant to prevent SCEV from spending too much | |||
| 1452 | // time here. It is correct (but more expensive) to continue with a | |||
| 1453 | // non-constant `Start` and do a general SCEV subtraction to compute | |||
| 1454 | // `PreStart` below. | |||
| 1455 | const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); | |||
| 1456 | if (!StartC) | |||
| 1457 | return false; | |||
| 1458 | ||||
| 1459 | APInt StartAI = StartC->getAPInt(); | |||
| 1460 | ||||
| 1461 | for (unsigned Delta : {-2, -1, 1, 2}) { | |||
| 1462 | const SCEV *PreStart = getConstant(StartAI - Delta); | |||
| 1463 | ||||
| 1464 | FoldingSetNodeID ID; | |||
| 1465 | ID.AddInteger(scAddRecExpr); | |||
| 1466 | ID.AddPointer(PreStart); | |||
| 1467 | ID.AddPointer(Step); | |||
| 1468 | ID.AddPointer(L); | |||
| 1469 | void *IP = nullptr; | |||
| 1470 | const auto *PreAR = | |||
| 1471 | static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); | |||
| 1472 | ||||
| 1473 | // Give up if we don't already have the add recurrence we need because | |||
| 1474 | // actually constructing an add recurrence is relatively expensive. | |||
| 1475 | if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) | |||
| 1476 | const SCEV *DeltaS = getConstant(StartC->getType(), Delta); | |||
| 1477 | ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; | |||
| 1478 | const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( | |||
| 1479 | DeltaS, &Pred, this); | |||
| 1480 | if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) | |||
| 1481 | return true; | |||
| 1482 | } | |||
| 1483 | } | |||
| 1484 | ||||
| 1485 | return false; | |||
| 1486 | } | |||
| 1487 | ||||
| 1488 | // Finds an integer D for an expression (C + x + y + ...) such that the top | |||
| 1489 | // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or | |||
| 1490 | // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is | |||
| 1491 | // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and | |||
| 1492 | // the (C + x + y + ...) expression is \p WholeAddExpr. | |||
| 1493 | static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, | |||
| 1494 | const SCEVConstant *ConstantTerm, | |||
| 1495 | const SCEVAddExpr *WholeAddExpr) { | |||
| 1496 | const APInt &C = ConstantTerm->getAPInt(); | |||
| 1497 | const unsigned BitWidth = C.getBitWidth(); | |||
| 1498 | // Find number of trailing zeros of (x + y + ...) w/o the C first: | |||
| 1499 | uint32_t TZ = BitWidth; | |||
| 1500 | for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) | |||
| 1501 | TZ = std::min(TZ, SE.getMinTrailingZeros(WholeAddExpr->getOperand(I))); | |||
| 1502 | if (TZ) { | |||
| 1503 | // Set D to be as many least significant bits of C as possible while still | |||
| 1504 | // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: | |||
| 1505 | return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; | |||
| 1506 | } | |||
| 1507 | return APInt(BitWidth, 0); | |||
| 1508 | } | |||
| 1509 | ||||
| 1510 | // Finds an integer D for an affine AddRec expression {C,+,x} such that the top | |||
| 1511 | // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the | |||
| 1512 | // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p | |||
| 1513 | // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. | |||
| 1514 | static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, | |||
| 1515 | const APInt &ConstantStart, | |||
| 1516 | const SCEV *Step) { | |||
| 1517 | const unsigned BitWidth = ConstantStart.getBitWidth(); | |||
| 1518 | const uint32_t TZ = SE.getMinTrailingZeros(Step); | |||
| 1519 | if (TZ) | |||
| 1520 | return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) | |||
| 1521 | : ConstantStart; | |||
| 1522 | return APInt(BitWidth, 0); | |||
| 1523 | } | |||
| 1524 | ||||
| 1525 | static void insertFoldCacheEntry( | |||
| 1526 | const ScalarEvolution::FoldID &ID, const SCEV *S, | |||
| 1527 | DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache, | |||
| 1528 | DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>> | |||
| 1529 | &FoldCacheUser) { | |||
| 1530 | auto I = FoldCache.insert({ID, S}); | |||
| 1531 | if (!I.second) { | |||
| 1532 | // Remove FoldCacheUser entry for ID when replacing an existing FoldCache | |||
| 1533 | // entry. | |||
| 1534 | auto &UserIDs = FoldCacheUser[I.first->second]; | |||
| 1535 | assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs")(static_cast <bool> (count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs") ? void (0) : __assert_fail ("count(UserIDs, ID) == 1 && \"unexpected duplicates in UserIDs\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1535, __extension__ __PRETTY_FUNCTION__)); | |||
| 1536 | for (unsigned I = 0; I != UserIDs.size(); ++I) | |||
| 1537 | if (UserIDs[I] == ID) { | |||
| 1538 | std::swap(UserIDs[I], UserIDs.back()); | |||
| 1539 | break; | |||
| 1540 | } | |||
| 1541 | UserIDs.pop_back(); | |||
| 1542 | I.first->second = S; | |||
| 1543 | } | |||
| 1544 | auto R = FoldCacheUser.insert({S, {}}); | |||
| 1545 | R.first->second.push_back(ID); | |||
| 1546 | } | |||
| 1547 | ||||
| 1548 | const SCEV * | |||
| 1549 | ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { | |||
| 1550 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(Op->getType() ) < getTypeSizeInBits(Ty) && "This is not an extending conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1551, __extension__ __PRETTY_FUNCTION__)) | |||
| 1551 | "This is not an extending conversion!")(static_cast <bool> (getTypeSizeInBits(Op->getType() ) < getTypeSizeInBits(Ty) && "This is not an extending conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1551, __extension__ __PRETTY_FUNCTION__)); | |||
| 1552 | assert(isSCEVable(Ty) &&(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1553, __extension__ __PRETTY_FUNCTION__)) | |||
| 1553 | "This is not a conversion to a SCEVable type!")(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1553, __extension__ __PRETTY_FUNCTION__)); | |||
| 1554 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!")(static_cast <bool> (!Op->getType()->isPointerTy( ) && "Can't extend pointer!") ? void (0) : __assert_fail ("!Op->getType()->isPointerTy() && \"Can't extend pointer!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1554, __extension__ __PRETTY_FUNCTION__)); | |||
| 1555 | Ty = getEffectiveSCEVType(Ty); | |||
| 1556 | ||||
| 1557 | FoldID ID; | |||
| 1558 | ID.addInteger(scZeroExtend); | |||
| 1559 | ID.addPointer(Op); | |||
| 1560 | ID.addPointer(Ty); | |||
| 1561 | auto Iter = FoldCache.find(ID); | |||
| 1562 | if (Iter != FoldCache.end()) | |||
| 1563 | return Iter->second; | |||
| 1564 | ||||
| 1565 | const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth); | |||
| 1566 | if (!isa<SCEVZeroExtendExpr>(S)) | |||
| 1567 | insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); | |||
| 1568 | return S; | |||
| 1569 | } | |||
| 1570 | ||||
| 1571 | const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty, | |||
| 1572 | unsigned Depth) { | |||
| 1573 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(Op->getType() ) < getTypeSizeInBits(Ty) && "This is not an extending conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1574, __extension__ __PRETTY_FUNCTION__)) | |||
| 1574 | "This is not an extending conversion!")(static_cast <bool> (getTypeSizeInBits(Op->getType() ) < getTypeSizeInBits(Ty) && "This is not an extending conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1574, __extension__ __PRETTY_FUNCTION__)); | |||
| 1575 | assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!")(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1575, __extension__ __PRETTY_FUNCTION__)); | |||
| 1576 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!")(static_cast <bool> (!Op->getType()->isPointerTy( ) && "Can't extend pointer!") ? void (0) : __assert_fail ("!Op->getType()->isPointerTy() && \"Can't extend pointer!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1576, __extension__ __PRETTY_FUNCTION__)); | |||
| 1577 | ||||
| 1578 | // Fold if the operand is constant. | |||
| 1579 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) | |||
| 1580 | return getConstant( | |||
| 1581 | cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); | |||
| 1582 | ||||
| 1583 | // zext(zext(x)) --> zext(x) | |||
| 1584 | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) | |||
| 1585 | return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); | |||
| 1586 | ||||
| 1587 | // Before doing any expensive analysis, check to see if we've already | |||
| 1588 | // computed a SCEV for this Op and Ty. | |||
| 1589 | FoldingSetNodeID ID; | |||
| 1590 | ID.AddInteger(scZeroExtend); | |||
| 1591 | ID.AddPointer(Op); | |||
| 1592 | ID.AddPointer(Ty); | |||
| 1593 | void *IP = nullptr; | |||
| 1594 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | |||
| 1595 | if (Depth > MaxCastDepth) { | |||
| 1596 | SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), | |||
| 1597 | Op, Ty); | |||
| 1598 | UniqueSCEVs.InsertNode(S, IP); | |||
| 1599 | registerUser(S, Op); | |||
| 1600 | return S; | |||
| 1601 | } | |||
| 1602 | ||||
| 1603 | // zext(trunc(x)) --> zext(x) or x or trunc(x) | |||
| 1604 | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { | |||
| 1605 | // It's possible the bits taken off by the truncate were all zero bits. If | |||
| 1606 | // so, we should be able to simplify this further. | |||
| 1607 | const SCEV *X = ST->getOperand(); | |||
| 1608 | ConstantRange CR = getUnsignedRange(X); | |||
| 1609 | unsigned TruncBits = getTypeSizeInBits(ST->getType()); | |||
| 1610 | unsigned NewBits = getTypeSizeInBits(Ty); | |||
| 1611 | if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( | |||
| 1612 | CR.zextOrTrunc(NewBits))) | |||
| 1613 | return getTruncateOrZeroExtend(X, Ty, Depth); | |||
| 1614 | } | |||
| 1615 | ||||
| 1616 | // If the input value is a chrec scev, and we can prove that the value | |||
| 1617 | // did not overflow the old, smaller, value, we can zero extend all of the | |||
| 1618 | // operands (often constants). This allows analysis of something like | |||
| 1619 | // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } | |||
| 1620 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) | |||
| 1621 | if (AR->isAffine()) { | |||
| 1622 | const SCEV *Start = AR->getStart(); | |||
| 1623 | const SCEV *Step = AR->getStepRecurrence(*this); | |||
| 1624 | unsigned BitWidth = getTypeSizeInBits(AR->getType()); | |||
| 1625 | const Loop *L = AR->getLoop(); | |||
| 1626 | ||||
| 1627 | // If we have special knowledge that this addrec won't overflow, | |||
| 1628 | // we don't need to do any further analysis. | |||
| 1629 | if (AR->hasNoUnsignedWrap()) { | |||
| 1630 | Start = | |||
| 1631 | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); | |||
| 1632 | Step = getZeroExtendExpr(Step, Ty, Depth + 1); | |||
| 1633 | return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); | |||
| 1634 | } | |||
| 1635 | ||||
| 1636 | // Check whether the backedge-taken count is SCEVCouldNotCompute. | |||
| 1637 | // Note that this serves two purposes: It filters out loops that are | |||
| 1638 | // simply not analyzable, and it covers the case where this code is | |||
| 1639 | // being called from within backedge-taken count analysis, such that | |||
| 1640 | // attempting to ask for the backedge-taken count would likely result | |||
| 1641 | // in infinite recursion. In the later case, the analysis code will | |||
| 1642 | // cope with a conservative value, and it will take care to purge | |||
| 1643 | // that value once it has finished. | |||
| 1644 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); | |||
| 1645 | if (!isa<SCEVCouldNotCompute>(MaxBECount)) { | |||
| 1646 | // Manually compute the final value for AR, checking for overflow. | |||
| 1647 | ||||
| 1648 | // Check whether the backedge-taken count can be losslessly casted to | |||
| 1649 | // the addrec's type. The count is always unsigned. | |||
| 1650 | const SCEV *CastedMaxBECount = | |||
| 1651 | getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); | |||
| 1652 | const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( | |||
| 1653 | CastedMaxBECount, MaxBECount->getType(), Depth); | |||
| 1654 | if (MaxBECount == RecastedMaxBECount) { | |||
| 1655 | Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); | |||
| 1656 | // Check whether Start+Step*MaxBECount has no unsigned overflow. | |||
| 1657 | const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, | |||
| 1658 | SCEV::FlagAnyWrap, Depth + 1); | |||
| 1659 | const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, | |||
| 1660 | SCEV::FlagAnyWrap, | |||
| 1661 | Depth + 1), | |||
| 1662 | WideTy, Depth + 1); | |||
| 1663 | const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); | |||
| 1664 | const SCEV *WideMaxBECount = | |||
| 1665 | getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); | |||
| 1666 | const SCEV *OperandExtendedAdd = | |||
| 1667 | getAddExpr(WideStart, | |||
| 1668 | getMulExpr(WideMaxBECount, | |||
| 1669 | getZeroExtendExpr(Step, WideTy, Depth + 1), | |||
| 1670 | SCEV::FlagAnyWrap, Depth + 1), | |||
| 1671 | SCEV::FlagAnyWrap, Depth + 1); | |||
| 1672 | if (ZAdd == OperandExtendedAdd) { | |||
| 1673 | // Cache knowledge of AR NUW, which is propagated to this AddRec. | |||
| 1674 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); | |||
| 1675 | // Return the expression with the addrec on the outside. | |||
| 1676 | Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, | |||
| 1677 | Depth + 1); | |||
| 1678 | Step = getZeroExtendExpr(Step, Ty, Depth + 1); | |||
| 1679 | return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); | |||
| 1680 | } | |||
| 1681 | // Similar to above, only this time treat the step value as signed. | |||
| 1682 | // This covers loops that count down. | |||
| 1683 | OperandExtendedAdd = | |||
| 1684 | getAddExpr(WideStart, | |||
| 1685 | getMulExpr(WideMaxBECount, | |||
| 1686 | getSignExtendExpr(Step, WideTy, Depth + 1), | |||
| 1687 | SCEV::FlagAnyWrap, Depth + 1), | |||
| 1688 | SCEV::FlagAnyWrap, Depth + 1); | |||
| 1689 | if (ZAdd == OperandExtendedAdd) { | |||
| 1690 | // Cache knowledge of AR NW, which is propagated to this AddRec. | |||
| 1691 | // Negative step causes unsigned wrap, but it still can't self-wrap. | |||
| 1692 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); | |||
| 1693 | // Return the expression with the addrec on the outside. | |||
| 1694 | Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, | |||
| 1695 | Depth + 1); | |||
| 1696 | Step = getSignExtendExpr(Step, Ty, Depth + 1); | |||
| 1697 | return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); | |||
| 1698 | } | |||
| 1699 | } | |||
| 1700 | } | |||
| 1701 | ||||
| 1702 | // Normally, in the cases we can prove no-overflow via a | |||
| 1703 | // backedge guarding condition, we can also compute a backedge | |||
| 1704 | // taken count for the loop. The exceptions are assumptions and | |||
| 1705 | // guards present in the loop -- SCEV is not great at exploiting | |||
| 1706 | // these to compute max backedge taken counts, but can still use | |||
| 1707 | // these to prove lack of overflow. Use this fact to avoid | |||
| 1708 | // doing extra work that may not pay off. | |||
| 1709 | if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || | |||
| 1710 | !AC.assumptions().empty()) { | |||
| 1711 | ||||
| 1712 | auto NewFlags = proveNoUnsignedWrapViaInduction(AR); | |||
| 1713 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); | |||
| 1714 | if (AR->hasNoUnsignedWrap()) { | |||
| 1715 | // Same as nuw case above - duplicated here to avoid a compile time | |||
| 1716 | // issue. It's not clear that the order of checks does matter, but | |||
| 1717 | // it's one of two issue possible causes for a change which was | |||
| 1718 | // reverted. Be conservative for the moment. | |||
| 1719 | Start = | |||
| 1720 | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); | |||
| 1721 | Step = getZeroExtendExpr(Step, Ty, Depth + 1); | |||
| 1722 | return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); | |||
| 1723 | } | |||
| 1724 | ||||
| 1725 | // For a negative step, we can extend the operands iff doing so only | |||
| 1726 | // traverses values in the range zext([0,UINT_MAX]). | |||
| 1727 | if (isKnownNegative(Step)) { | |||
| 1728 | const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - | |||
| 1729 | getSignedRangeMin(Step)); | |||
| 1730 | if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || | |||
| 1731 | isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { | |||
| 1732 | // Cache knowledge of AR NW, which is propagated to this | |||
| 1733 | // AddRec. Negative step causes unsigned wrap, but it | |||
| 1734 | // still can't self-wrap. | |||
| 1735 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); | |||
| 1736 | // Return the expression with the addrec on the outside. | |||
| 1737 | Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, | |||
| 1738 | Depth + 1); | |||
| 1739 | Step = getSignExtendExpr(Step, Ty, Depth + 1); | |||
| 1740 | return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); | |||
| 1741 | } | |||
| 1742 | } | |||
| 1743 | } | |||
| 1744 | ||||
| 1745 | // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> | |||
| 1746 | // if D + (C - D + Step * n) could be proven to not unsigned wrap | |||
| 1747 | // where D maximizes the number of trailing zeros of (C - D + Step * n) | |||
| 1748 | if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { | |||
| 1749 | const APInt &C = SC->getAPInt(); | |||
| 1750 | const APInt &D = extractConstantWithoutWrapping(*this, C, Step); | |||
| 1751 | if (D != 0) { | |||
| 1752 | const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); | |||
| 1753 | const SCEV *SResidual = | |||
| 1754 | getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); | |||
| 1755 | const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); | |||
| 1756 | return getAddExpr(SZExtD, SZExtR, | |||
| 1757 | (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), | |||
| 1758 | Depth + 1); | |||
| 1759 | } | |||
| 1760 | } | |||
| 1761 | ||||
| 1762 | if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { | |||
| 1763 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); | |||
| 1764 | Start = | |||
| 1765 | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); | |||
| 1766 | Step = getZeroExtendExpr(Step, Ty, Depth + 1); | |||
| 1767 | return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); | |||
| 1768 | } | |||
| 1769 | } | |||
| 1770 | ||||
| 1771 | // zext(A % B) --> zext(A) % zext(B) | |||
| 1772 | { | |||
| 1773 | const SCEV *LHS; | |||
| 1774 | const SCEV *RHS; | |||
| 1775 | if (matchURem(Op, LHS, RHS)) | |||
| 1776 | return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), | |||
| 1777 | getZeroExtendExpr(RHS, Ty, Depth + 1)); | |||
| 1778 | } | |||
| 1779 | ||||
| 1780 | // zext(A / B) --> zext(A) / zext(B). | |||
| 1781 | if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) | |||
| 1782 | return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), | |||
| 1783 | getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); | |||
| 1784 | ||||
| 1785 | if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { | |||
| 1786 | // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> | |||
| 1787 | if (SA->hasNoUnsignedWrap()) { | |||
| 1788 | // If the addition does not unsign overflow then we can, by definition, | |||
| 1789 | // commute the zero extension with the addition operation. | |||
| 1790 | SmallVector<const SCEV *, 4> Ops; | |||
| 1791 | for (const auto *Op : SA->operands()) | |||
| 1792 | Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); | |||
| 1793 | return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); | |||
| 1794 | } | |||
| 1795 | ||||
| 1796 | // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) | |||
| 1797 | // if D + (C - D + x + y + ...) could be proven to not unsigned wrap | |||
| 1798 | // where D maximizes the number of trailing zeros of (C - D + x + y + ...) | |||
| 1799 | // | |||
| 1800 | // Often address arithmetics contain expressions like | |||
| 1801 | // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). | |||
| 1802 | // This transformation is useful while proving that such expressions are | |||
| 1803 | // equal or differ by a small constant amount, see LoadStoreVectorizer pass. | |||
| 1804 | if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { | |||
| 1805 | const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); | |||
| 1806 | if (D != 0) { | |||
| 1807 | const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); | |||
| 1808 | const SCEV *SResidual = | |||
| 1809 | getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); | |||
| 1810 | const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); | |||
| 1811 | return getAddExpr(SZExtD, SZExtR, | |||
| 1812 | (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), | |||
| 1813 | Depth + 1); | |||
| 1814 | } | |||
| 1815 | } | |||
| 1816 | } | |||
| 1817 | ||||
| 1818 | if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { | |||
| 1819 | // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> | |||
| 1820 | if (SM->hasNoUnsignedWrap()) { | |||
| 1821 | // If the multiply does not unsign overflow then we can, by definition, | |||
| 1822 | // commute the zero extension with the multiply operation. | |||
| 1823 | SmallVector<const SCEV *, 4> Ops; | |||
| 1824 | for (const auto *Op : SM->operands()) | |||
| 1825 | Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); | |||
| 1826 | return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); | |||
| 1827 | } | |||
| 1828 | ||||
| 1829 | // zext(2^K * (trunc X to iN)) to iM -> | |||
| 1830 | // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> | |||
| 1831 | // | |||
| 1832 | // Proof: | |||
| 1833 | // | |||
| 1834 | // zext(2^K * (trunc X to iN)) to iM | |||
| 1835 | // = zext((trunc X to iN) << K) to iM | |||
| 1836 | // = zext((trunc X to i{N-K}) << K)<nuw> to iM | |||
| 1837 | // (because shl removes the top K bits) | |||
| 1838 | // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM | |||
| 1839 | // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. | |||
| 1840 | // | |||
| 1841 | if (SM->getNumOperands() == 2) | |||
| 1842 | if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) | |||
| 1843 | if (MulLHS->getAPInt().isPowerOf2()) | |||
| 1844 | if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { | |||
| 1845 | int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - | |||
| 1846 | MulLHS->getAPInt().logBase2(); | |||
| 1847 | Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); | |||
| 1848 | return getMulExpr( | |||
| 1849 | getZeroExtendExpr(MulLHS, Ty), | |||
| 1850 | getZeroExtendExpr( | |||
| 1851 | getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), | |||
| 1852 | SCEV::FlagNUW, Depth + 1); | |||
| 1853 | } | |||
| 1854 | } | |||
| 1855 | ||||
| 1856 | // zext(umin(x, y)) -> umin(zext(x), zext(y)) | |||
| 1857 | // zext(umax(x, y)) -> umax(zext(x), zext(y)) | |||
| 1858 | if (isa<SCEVUMinExpr>(Op) || isa<SCEVUMaxExpr>(Op)) { | |||
| 1859 | auto *MinMax = cast<SCEVMinMaxExpr>(Op); | |||
| 1860 | SmallVector<const SCEV *, 4> Operands; | |||
| 1861 | for (auto *Operand : MinMax->operands()) | |||
| 1862 | Operands.push_back(getZeroExtendExpr(Operand, Ty)); | |||
| 1863 | if (isa<SCEVUMinExpr>(MinMax)) | |||
| 1864 | return getUMinExpr(Operands); | |||
| 1865 | return getUMaxExpr(Operands); | |||
| 1866 | } | |||
| 1867 | ||||
| 1868 | // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y)) | |||
| 1869 | if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Op)) { | |||
| 1870 | assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!")(static_cast <bool> (isa<SCEVSequentialUMinExpr>( MinMax) && "Not supported!") ? void (0) : __assert_fail ("isa<SCEVSequentialUMinExpr>(MinMax) && \"Not supported!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1870, __extension__ __PRETTY_FUNCTION__)); | |||
| 1871 | SmallVector<const SCEV *, 4> Operands; | |||
| 1872 | for (auto *Operand : MinMax->operands()) | |||
| 1873 | Operands.push_back(getZeroExtendExpr(Operand, Ty)); | |||
| 1874 | return getUMinExpr(Operands, /*Sequential*/ true); | |||
| 1875 | } | |||
| 1876 | ||||
| 1877 | // The cast wasn't folded; create an explicit cast node. | |||
| 1878 | // Recompute the insert position, as it may have been invalidated. | |||
| 1879 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | |||
| 1880 | SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), | |||
| 1881 | Op, Ty); | |||
| 1882 | UniqueSCEVs.InsertNode(S, IP); | |||
| 1883 | registerUser(S, Op); | |||
| 1884 | return S; | |||
| 1885 | } | |||
| 1886 | ||||
| 1887 | const SCEV * | |||
| 1888 | ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { | |||
| 1889 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(Op->getType() ) < getTypeSizeInBits(Ty) && "This is not an extending conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1890, __extension__ __PRETTY_FUNCTION__)) | |||
| 1890 | "This is not an extending conversion!")(static_cast <bool> (getTypeSizeInBits(Op->getType() ) < getTypeSizeInBits(Ty) && "This is not an extending conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1890, __extension__ __PRETTY_FUNCTION__)); | |||
| 1891 | assert(isSCEVable(Ty) &&(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1892, __extension__ __PRETTY_FUNCTION__)) | |||
| 1892 | "This is not a conversion to a SCEVable type!")(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1892, __extension__ __PRETTY_FUNCTION__)); | |||
| 1893 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!")(static_cast <bool> (!Op->getType()->isPointerTy( ) && "Can't extend pointer!") ? void (0) : __assert_fail ("!Op->getType()->isPointerTy() && \"Can't extend pointer!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1893, __extension__ __PRETTY_FUNCTION__)); | |||
| 1894 | Ty = getEffectiveSCEVType(Ty); | |||
| 1895 | ||||
| 1896 | FoldID ID; | |||
| 1897 | ID.addInteger(scSignExtend); | |||
| 1898 | ID.addPointer(Op); | |||
| 1899 | ID.addPointer(Ty); | |||
| 1900 | auto Iter = FoldCache.find(ID); | |||
| 1901 | if (Iter != FoldCache.end()) | |||
| 1902 | return Iter->second; | |||
| 1903 | ||||
| 1904 | const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth); | |||
| 1905 | if (!isa<SCEVSignExtendExpr>(S)) | |||
| 1906 | insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser); | |||
| 1907 | return S; | |||
| 1908 | } | |||
| 1909 | ||||
| 1910 | const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty, | |||
| 1911 | unsigned Depth) { | |||
| 1912 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(Op->getType() ) < getTypeSizeInBits(Ty) && "This is not an extending conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1913, __extension__ __PRETTY_FUNCTION__)) | |||
| 1913 | "This is not an extending conversion!")(static_cast <bool> (getTypeSizeInBits(Op->getType() ) < getTypeSizeInBits(Ty) && "This is not an extending conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1913, __extension__ __PRETTY_FUNCTION__)); | |||
| 1914 | assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!")(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1914, __extension__ __PRETTY_FUNCTION__)); | |||
| 1915 | assert(!Op->getType()->isPointerTy() && "Can't extend pointer!")(static_cast <bool> (!Op->getType()->isPointerTy( ) && "Can't extend pointer!") ? void (0) : __assert_fail ("!Op->getType()->isPointerTy() && \"Can't extend pointer!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 1915, __extension__ __PRETTY_FUNCTION__)); | |||
| 1916 | Ty = getEffectiveSCEVType(Ty); | |||
| 1917 | ||||
| 1918 | // Fold if the operand is constant. | |||
| 1919 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) | |||
| 1920 | return getConstant( | |||
| 1921 | cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); | |||
| 1922 | ||||
| 1923 | // sext(sext(x)) --> sext(x) | |||
| 1924 | if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) | |||
| 1925 | return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); | |||
| 1926 | ||||
| 1927 | // sext(zext(x)) --> zext(x) | |||
| 1928 | if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) | |||
| 1929 | return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); | |||
| 1930 | ||||
| 1931 | // Before doing any expensive analysis, check to see if we've already | |||
| 1932 | // computed a SCEV for this Op and Ty. | |||
| 1933 | FoldingSetNodeID ID; | |||
| 1934 | ID.AddInteger(scSignExtend); | |||
| 1935 | ID.AddPointer(Op); | |||
| 1936 | ID.AddPointer(Ty); | |||
| 1937 | void *IP = nullptr; | |||
| 1938 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | |||
| 1939 | // Limit recursion depth. | |||
| 1940 | if (Depth > MaxCastDepth) { | |||
| 1941 | SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), | |||
| 1942 | Op, Ty); | |||
| 1943 | UniqueSCEVs.InsertNode(S, IP); | |||
| 1944 | registerUser(S, Op); | |||
| 1945 | return S; | |||
| 1946 | } | |||
| 1947 | ||||
| 1948 | // sext(trunc(x)) --> sext(x) or x or trunc(x) | |||
| 1949 | if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { | |||
| 1950 | // It's possible the bits taken off by the truncate were all sign bits. If | |||
| 1951 | // so, we should be able to simplify this further. | |||
| 1952 | const SCEV *X = ST->getOperand(); | |||
| 1953 | ConstantRange CR = getSignedRange(X); | |||
| 1954 | unsigned TruncBits = getTypeSizeInBits(ST->getType()); | |||
| 1955 | unsigned NewBits = getTypeSizeInBits(Ty); | |||
| 1956 | if (CR.truncate(TruncBits).signExtend(NewBits).contains( | |||
| 1957 | CR.sextOrTrunc(NewBits))) | |||
| 1958 | return getTruncateOrSignExtend(X, Ty, Depth); | |||
| 1959 | } | |||
| 1960 | ||||
| 1961 | if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { | |||
| 1962 | // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> | |||
| 1963 | if (SA->hasNoSignedWrap()) { | |||
| 1964 | // If the addition does not sign overflow then we can, by definition, | |||
| 1965 | // commute the sign extension with the addition operation. | |||
| 1966 | SmallVector<const SCEV *, 4> Ops; | |||
| 1967 | for (const auto *Op : SA->operands()) | |||
| 1968 | Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); | |||
| 1969 | return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); | |||
| 1970 | } | |||
| 1971 | ||||
| 1972 | // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) | |||
| 1973 | // if D + (C - D + x + y + ...) could be proven to not signed wrap | |||
| 1974 | // where D maximizes the number of trailing zeros of (C - D + x + y + ...) | |||
| 1975 | // | |||
| 1976 | // For instance, this will bring two seemingly different expressions: | |||
| 1977 | // 1 + sext(5 + 20 * %x + 24 * %y) and | |||
| 1978 | // sext(6 + 20 * %x + 24 * %y) | |||
| 1979 | // to the same form: | |||
| 1980 | // 2 + sext(4 + 20 * %x + 24 * %y) | |||
| 1981 | if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { | |||
| 1982 | const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); | |||
| 1983 | if (D != 0) { | |||
| 1984 | const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); | |||
| 1985 | const SCEV *SResidual = | |||
| 1986 | getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); | |||
| 1987 | const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); | |||
| 1988 | return getAddExpr(SSExtD, SSExtR, | |||
| 1989 | (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), | |||
| 1990 | Depth + 1); | |||
| 1991 | } | |||
| 1992 | } | |||
| 1993 | } | |||
| 1994 | // If the input value is a chrec scev, and we can prove that the value | |||
| 1995 | // did not overflow the old, smaller, value, we can sign extend all of the | |||
| 1996 | // operands (often constants). This allows analysis of something like | |||
| 1997 | // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } | |||
| 1998 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) | |||
| 1999 | if (AR->isAffine()) { | |||
| 2000 | const SCEV *Start = AR->getStart(); | |||
| 2001 | const SCEV *Step = AR->getStepRecurrence(*this); | |||
| 2002 | unsigned BitWidth = getTypeSizeInBits(AR->getType()); | |||
| 2003 | const Loop *L = AR->getLoop(); | |||
| 2004 | ||||
| 2005 | // If we have special knowledge that this addrec won't overflow, | |||
| 2006 | // we don't need to do any further analysis. | |||
| 2007 | if (AR->hasNoSignedWrap()) { | |||
| 2008 | Start = | |||
| 2009 | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); | |||
| 2010 | Step = getSignExtendExpr(Step, Ty, Depth + 1); | |||
| 2011 | return getAddRecExpr(Start, Step, L, SCEV::FlagNSW); | |||
| 2012 | } | |||
| 2013 | ||||
| 2014 | // Check whether the backedge-taken count is SCEVCouldNotCompute. | |||
| 2015 | // Note that this serves two purposes: It filters out loops that are | |||
| 2016 | // simply not analyzable, and it covers the case where this code is | |||
| 2017 | // being called from within backedge-taken count analysis, such that | |||
| 2018 | // attempting to ask for the backedge-taken count would likely result | |||
| 2019 | // in infinite recursion. In the later case, the analysis code will | |||
| 2020 | // cope with a conservative value, and it will take care to purge | |||
| 2021 | // that value once it has finished. | |||
| 2022 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); | |||
| 2023 | if (!isa<SCEVCouldNotCompute>(MaxBECount)) { | |||
| 2024 | // Manually compute the final value for AR, checking for | |||
| 2025 | // overflow. | |||
| 2026 | ||||
| 2027 | // Check whether the backedge-taken count can be losslessly casted to | |||
| 2028 | // the addrec's type. The count is always unsigned. | |||
| 2029 | const SCEV *CastedMaxBECount = | |||
| 2030 | getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); | |||
| 2031 | const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( | |||
| 2032 | CastedMaxBECount, MaxBECount->getType(), Depth); | |||
| 2033 | if (MaxBECount == RecastedMaxBECount) { | |||
| 2034 | Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); | |||
| 2035 | // Check whether Start+Step*MaxBECount has no signed overflow. | |||
| 2036 | const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, | |||
| 2037 | SCEV::FlagAnyWrap, Depth + 1); | |||
| 2038 | const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, | |||
| 2039 | SCEV::FlagAnyWrap, | |||
| 2040 | Depth + 1), | |||
| 2041 | WideTy, Depth + 1); | |||
| 2042 | const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); | |||
| 2043 | const SCEV *WideMaxBECount = | |||
| 2044 | getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); | |||
| 2045 | const SCEV *OperandExtendedAdd = | |||
| 2046 | getAddExpr(WideStart, | |||
| 2047 | getMulExpr(WideMaxBECount, | |||
| 2048 | getSignExtendExpr(Step, WideTy, Depth + 1), | |||
| 2049 | SCEV::FlagAnyWrap, Depth + 1), | |||
| 2050 | SCEV::FlagAnyWrap, Depth + 1); | |||
| 2051 | if (SAdd == OperandExtendedAdd) { | |||
| 2052 | // Cache knowledge of AR NSW, which is propagated to this AddRec. | |||
| 2053 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); | |||
| 2054 | // Return the expression with the addrec on the outside. | |||
| 2055 | Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, | |||
| 2056 | Depth + 1); | |||
| 2057 | Step = getSignExtendExpr(Step, Ty, Depth + 1); | |||
| 2058 | return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); | |||
| 2059 | } | |||
| 2060 | // Similar to above, only this time treat the step value as unsigned. | |||
| 2061 | // This covers loops that count up with an unsigned step. | |||
| 2062 | OperandExtendedAdd = | |||
| 2063 | getAddExpr(WideStart, | |||
| 2064 | getMulExpr(WideMaxBECount, | |||
| 2065 | getZeroExtendExpr(Step, WideTy, Depth + 1), | |||
| 2066 | SCEV::FlagAnyWrap, Depth + 1), | |||
| 2067 | SCEV::FlagAnyWrap, Depth + 1); | |||
| 2068 | if (SAdd == OperandExtendedAdd) { | |||
| 2069 | // If AR wraps around then | |||
| 2070 | // | |||
| 2071 | // abs(Step) * MaxBECount > unsigned-max(AR->getType()) | |||
| 2072 | // => SAdd != OperandExtendedAdd | |||
| 2073 | // | |||
| 2074 | // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> | |||
| 2075 | // (SAdd == OperandExtendedAdd => AR is NW) | |||
| 2076 | ||||
| 2077 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); | |||
| 2078 | ||||
| 2079 | // Return the expression with the addrec on the outside. | |||
| 2080 | Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, | |||
| 2081 | Depth + 1); | |||
| 2082 | Step = getZeroExtendExpr(Step, Ty, Depth + 1); | |||
| 2083 | return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); | |||
| 2084 | } | |||
| 2085 | } | |||
| 2086 | } | |||
| 2087 | ||||
| 2088 | auto NewFlags = proveNoSignedWrapViaInduction(AR); | |||
| 2089 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); | |||
| 2090 | if (AR->hasNoSignedWrap()) { | |||
| 2091 | // Same as nsw case above - duplicated here to avoid a compile time | |||
| 2092 | // issue. It's not clear that the order of checks does matter, but | |||
| 2093 | // it's one of two issue possible causes for a change which was | |||
| 2094 | // reverted. Be conservative for the moment. | |||
| 2095 | Start = | |||
| 2096 | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); | |||
| 2097 | Step = getSignExtendExpr(Step, Ty, Depth + 1); | |||
| 2098 | return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); | |||
| 2099 | } | |||
| 2100 | ||||
| 2101 | // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> | |||
| 2102 | // if D + (C - D + Step * n) could be proven to not signed wrap | |||
| 2103 | // where D maximizes the number of trailing zeros of (C - D + Step * n) | |||
| 2104 | if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { | |||
| 2105 | const APInt &C = SC->getAPInt(); | |||
| 2106 | const APInt &D = extractConstantWithoutWrapping(*this, C, Step); | |||
| 2107 | if (D != 0) { | |||
| 2108 | const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); | |||
| 2109 | const SCEV *SResidual = | |||
| 2110 | getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); | |||
| 2111 | const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); | |||
| 2112 | return getAddExpr(SSExtD, SSExtR, | |||
| 2113 | (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), | |||
| 2114 | Depth + 1); | |||
| 2115 | } | |||
| 2116 | } | |||
| 2117 | ||||
| 2118 | if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { | |||
| 2119 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); | |||
| 2120 | Start = | |||
| 2121 | getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); | |||
| 2122 | Step = getSignExtendExpr(Step, Ty, Depth + 1); | |||
| 2123 | return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); | |||
| 2124 | } | |||
| 2125 | } | |||
| 2126 | ||||
| 2127 | // If the input value is provably positive and we could not simplify | |||
| 2128 | // away the sext build a zext instead. | |||
| 2129 | if (isKnownNonNegative(Op)) | |||
| 2130 | return getZeroExtendExpr(Op, Ty, Depth + 1); | |||
| 2131 | ||||
| 2132 | // sext(smin(x, y)) -> smin(sext(x), sext(y)) | |||
| 2133 | // sext(smax(x, y)) -> smax(sext(x), sext(y)) | |||
| 2134 | if (isa<SCEVSMinExpr>(Op) || isa<SCEVSMaxExpr>(Op)) { | |||
| 2135 | auto *MinMax = cast<SCEVMinMaxExpr>(Op); | |||
| 2136 | SmallVector<const SCEV *, 4> Operands; | |||
| 2137 | for (auto *Operand : MinMax->operands()) | |||
| 2138 | Operands.push_back(getSignExtendExpr(Operand, Ty)); | |||
| 2139 | if (isa<SCEVSMinExpr>(MinMax)) | |||
| 2140 | return getSMinExpr(Operands); | |||
| 2141 | return getSMaxExpr(Operands); | |||
| 2142 | } | |||
| 2143 | ||||
| 2144 | // The cast wasn't folded; create an explicit cast node. | |||
| 2145 | // Recompute the insert position, as it may have been invalidated. | |||
| 2146 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | |||
| 2147 | SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), | |||
| 2148 | Op, Ty); | |||
| 2149 | UniqueSCEVs.InsertNode(S, IP); | |||
| 2150 | registerUser(S, { Op }); | |||
| 2151 | return S; | |||
| 2152 | } | |||
| 2153 | ||||
| 2154 | const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, | |||
| 2155 | Type *Ty) { | |||
| 2156 | switch (Kind) { | |||
| 2157 | case scTruncate: | |||
| 2158 | return getTruncateExpr(Op, Ty); | |||
| 2159 | case scZeroExtend: | |||
| 2160 | return getZeroExtendExpr(Op, Ty); | |||
| 2161 | case scSignExtend: | |||
| 2162 | return getSignExtendExpr(Op, Ty); | |||
| 2163 | case scPtrToInt: | |||
| 2164 | return getPtrToIntExpr(Op, Ty); | |||
| 2165 | default: | |||
| 2166 | llvm_unreachable("Not a SCEV cast expression!")::llvm::llvm_unreachable_internal("Not a SCEV cast expression!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2166); | |||
| 2167 | } | |||
| 2168 | } | |||
| 2169 | ||||
| 2170 | /// getAnyExtendExpr - Return a SCEV for the given operand extended with | |||
| 2171 | /// unspecified bits out to the given type. | |||
| 2172 | const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, | |||
| 2173 | Type *Ty) { | |||
| 2174 | assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(Op->getType() ) < getTypeSizeInBits(Ty) && "This is not an extending conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2175, __extension__ __PRETTY_FUNCTION__)) | |||
| 2175 | "This is not an extending conversion!")(static_cast <bool> (getTypeSizeInBits(Op->getType() ) < getTypeSizeInBits(Ty) && "This is not an extending conversion!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2175, __extension__ __PRETTY_FUNCTION__)); | |||
| 2176 | assert(isSCEVable(Ty) &&(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2177, __extension__ __PRETTY_FUNCTION__)) | |||
| 2177 | "This is not a conversion to a SCEVable type!")(static_cast <bool> (isSCEVable(Ty) && "This is not a conversion to a SCEVable type!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2177, __extension__ __PRETTY_FUNCTION__)); | |||
| 2178 | Ty = getEffectiveSCEVType(Ty); | |||
| 2179 | ||||
| 2180 | // Sign-extend negative constants. | |||
| 2181 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) | |||
| 2182 | if (SC->getAPInt().isNegative()) | |||
| 2183 | return getSignExtendExpr(Op, Ty); | |||
| 2184 | ||||
| 2185 | // Peel off a truncate cast. | |||
| 2186 | if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { | |||
| 2187 | const SCEV *NewOp = T->getOperand(); | |||
| 2188 | if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) | |||
| 2189 | return getAnyExtendExpr(NewOp, Ty); | |||
| 2190 | return getTruncateOrNoop(NewOp, Ty); | |||
| 2191 | } | |||
| 2192 | ||||
| 2193 | // Next try a zext cast. If the cast is folded, use it. | |||
| 2194 | const SCEV *ZExt = getZeroExtendExpr(Op, Ty); | |||
| 2195 | if (!isa<SCEVZeroExtendExpr>(ZExt)) | |||
| 2196 | return ZExt; | |||
| 2197 | ||||
| 2198 | // Next try a sext cast. If the cast is folded, use it. | |||
| 2199 | const SCEV *SExt = getSignExtendExpr(Op, Ty); | |||
| 2200 | if (!isa<SCEVSignExtendExpr>(SExt)) | |||
| 2201 | return SExt; | |||
| 2202 | ||||
| 2203 | // Force the cast to be folded into the operands of an addrec. | |||
| 2204 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { | |||
| 2205 | SmallVector<const SCEV *, 4> Ops; | |||
| 2206 | for (const SCEV *Op : AR->operands()) | |||
| 2207 | Ops.push_back(getAnyExtendExpr(Op, Ty)); | |||
| 2208 | return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); | |||
| 2209 | } | |||
| 2210 | ||||
| 2211 | // If the expression is obviously signed, use the sext cast value. | |||
| 2212 | if (isa<SCEVSMaxExpr>(Op)) | |||
| 2213 | return SExt; | |||
| 2214 | ||||
| 2215 | // Absent any other information, use the zext cast value. | |||
| 2216 | return ZExt; | |||
| 2217 | } | |||
| 2218 | ||||
| 2219 | /// Process the given Ops list, which is a list of operands to be added under | |||
| 2220 | /// the given scale, update the given map. This is a helper function for | |||
| 2221 | /// getAddRecExpr. As an example of what it does, given a sequence of operands | |||
| 2222 | /// that would form an add expression like this: | |||
| 2223 | /// | |||
| 2224 | /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) | |||
| 2225 | /// | |||
| 2226 | /// where A and B are constants, update the map with these values: | |||
| 2227 | /// | |||
| 2228 | /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) | |||
| 2229 | /// | |||
| 2230 | /// and add 13 + A*B*29 to AccumulatedConstant. | |||
| 2231 | /// This will allow getAddRecExpr to produce this: | |||
| 2232 | /// | |||
| 2233 | /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) | |||
| 2234 | /// | |||
| 2235 | /// This form often exposes folding opportunities that are hidden in | |||
| 2236 | /// the original operand list. | |||
| 2237 | /// | |||
| 2238 | /// Return true iff it appears that any interesting folding opportunities | |||
| 2239 | /// may be exposed. This helps getAddRecExpr short-circuit extra work in | |||
| 2240 | /// the common case where no interesting opportunities are present, and | |||
| 2241 | /// is also used as a check to avoid infinite recursion. | |||
| 2242 | static bool | |||
| 2243 | CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, | |||
| 2244 | SmallVectorImpl<const SCEV *> &NewOps, | |||
| 2245 | APInt &AccumulatedConstant, | |||
| 2246 | ArrayRef<const SCEV *> Ops, const APInt &Scale, | |||
| 2247 | ScalarEvolution &SE) { | |||
| 2248 | bool Interesting = false; | |||
| 2249 | ||||
| 2250 | // Iterate over the add operands. They are sorted, with constants first. | |||
| 2251 | unsigned i = 0; | |||
| 2252 | while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { | |||
| 2253 | ++i; | |||
| 2254 | // Pull a buried constant out to the outside. | |||
| 2255 | if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) | |||
| 2256 | Interesting = true; | |||
| 2257 | AccumulatedConstant += Scale * C->getAPInt(); | |||
| 2258 | } | |||
| 2259 | ||||
| 2260 | // Next comes everything else. We're especially interested in multiplies | |||
| 2261 | // here, but they're in the middle, so just visit the rest with one loop. | |||
| 2262 | for (; i != Ops.size(); ++i) { | |||
| 2263 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); | |||
| 2264 | if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { | |||
| 2265 | APInt NewScale = | |||
| 2266 | Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); | |||
| 2267 | if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { | |||
| 2268 | // A multiplication of a constant with another add; recurse. | |||
| 2269 | const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); | |||
| 2270 | Interesting |= | |||
| 2271 | CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, | |||
| 2272 | Add->operands(), NewScale, SE); | |||
| 2273 | } else { | |||
| 2274 | // A multiplication of a constant with some other value. Update | |||
| 2275 | // the map. | |||
| 2276 | SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); | |||
| 2277 | const SCEV *Key = SE.getMulExpr(MulOps); | |||
| 2278 | auto Pair = M.insert({Key, NewScale}); | |||
| 2279 | if (Pair.second) { | |||
| 2280 | NewOps.push_back(Pair.first->first); | |||
| 2281 | } else { | |||
| 2282 | Pair.first->second += NewScale; | |||
| 2283 | // The map already had an entry for this value, which may indicate | |||
| 2284 | // a folding opportunity. | |||
| 2285 | Interesting = true; | |||
| 2286 | } | |||
| 2287 | } | |||
| 2288 | } else { | |||
| 2289 | // An ordinary operand. Update the map. | |||
| 2290 | std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = | |||
| 2291 | M.insert({Ops[i], Scale}); | |||
| 2292 | if (Pair.second) { | |||
| 2293 | NewOps.push_back(Pair.first->first); | |||
| 2294 | } else { | |||
| 2295 | Pair.first->second += Scale; | |||
| 2296 | // The map already had an entry for this value, which may indicate | |||
| 2297 | // a folding opportunity. | |||
| 2298 | Interesting = true; | |||
| 2299 | } | |||
| 2300 | } | |||
| 2301 | } | |||
| 2302 | ||||
| 2303 | return Interesting; | |||
| 2304 | } | |||
| 2305 | ||||
| 2306 | bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, | |||
| 2307 | const SCEV *LHS, const SCEV *RHS, | |||
| 2308 | const Instruction *CtxI) { | |||
| 2309 | const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, | |||
| 2310 | SCEV::NoWrapFlags, unsigned); | |||
| 2311 | switch (BinOp) { | |||
| 2312 | default: | |||
| 2313 | llvm_unreachable("Unsupported binary op")::llvm::llvm_unreachable_internal("Unsupported binary op", "llvm/lib/Analysis/ScalarEvolution.cpp" , 2313); | |||
| 2314 | case Instruction::Add: | |||
| 2315 | Operation = &ScalarEvolution::getAddExpr; | |||
| 2316 | break; | |||
| 2317 | case Instruction::Sub: | |||
| 2318 | Operation = &ScalarEvolution::getMinusSCEV; | |||
| 2319 | break; | |||
| 2320 | case Instruction::Mul: | |||
| 2321 | Operation = &ScalarEvolution::getMulExpr; | |||
| 2322 | break; | |||
| 2323 | } | |||
| 2324 | ||||
| 2325 | const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = | |||
| 2326 | Signed ? &ScalarEvolution::getSignExtendExpr | |||
| 2327 | : &ScalarEvolution::getZeroExtendExpr; | |||
| 2328 | ||||
| 2329 | // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) | |||
| 2330 | auto *NarrowTy = cast<IntegerType>(LHS->getType()); | |||
| 2331 | auto *WideTy = | |||
| 2332 | IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); | |||
| 2333 | ||||
| 2334 | const SCEV *A = (this->*Extension)( | |||
| 2335 | (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); | |||
| 2336 | const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0); | |||
| 2337 | const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0); | |||
| 2338 | const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0); | |||
| 2339 | if (A == B) | |||
| 2340 | return true; | |||
| 2341 | // Can we use context to prove the fact we need? | |||
| 2342 | if (!CtxI) | |||
| 2343 | return false; | |||
| 2344 | // TODO: Support mul. | |||
| 2345 | if (BinOp == Instruction::Mul) | |||
| 2346 | return false; | |||
| 2347 | auto *RHSC = dyn_cast<SCEVConstant>(RHS); | |||
| 2348 | // TODO: Lift this limitation. | |||
| 2349 | if (!RHSC) | |||
| 2350 | return false; | |||
| 2351 | APInt C = RHSC->getAPInt(); | |||
| 2352 | unsigned NumBits = C.getBitWidth(); | |||
| 2353 | bool IsSub = (BinOp == Instruction::Sub); | |||
| 2354 | bool IsNegativeConst = (Signed && C.isNegative()); | |||
| 2355 | // Compute the direction and magnitude by which we need to check overflow. | |||
| 2356 | bool OverflowDown = IsSub ^ IsNegativeConst; | |||
| 2357 | APInt Magnitude = C; | |||
| 2358 | if (IsNegativeConst) { | |||
| 2359 | if (C == APInt::getSignedMinValue(NumBits)) | |||
| 2360 | // TODO: SINT_MIN on inversion gives the same negative value, we don't | |||
| 2361 | // want to deal with that. | |||
| 2362 | return false; | |||
| 2363 | Magnitude = -C; | |||
| 2364 | } | |||
| 2365 | ||||
| 2366 | ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; | |||
| 2367 | if (OverflowDown) { | |||
| 2368 | // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS. | |||
| 2369 | APInt Min = Signed ? APInt::getSignedMinValue(NumBits) | |||
| 2370 | : APInt::getMinValue(NumBits); | |||
| 2371 | APInt Limit = Min + Magnitude; | |||
| 2372 | return isKnownPredicateAt(Pred, getConstant(Limit), LHS, CtxI); | |||
| 2373 | } else { | |||
| 2374 | // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude. | |||
| 2375 | APInt Max = Signed ? APInt::getSignedMaxValue(NumBits) | |||
| 2376 | : APInt::getMaxValue(NumBits); | |||
| 2377 | APInt Limit = Max - Magnitude; | |||
| 2378 | return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI); | |||
| 2379 | } | |||
| 2380 | } | |||
| 2381 | ||||
| 2382 | std::optional<SCEV::NoWrapFlags> | |||
| 2383 | ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( | |||
| 2384 | const OverflowingBinaryOperator *OBO) { | |||
| 2385 | // It cannot be done any better. | |||
| 2386 | if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) | |||
| 2387 | return std::nullopt; | |||
| 2388 | ||||
| 2389 | SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; | |||
| 2390 | ||||
| 2391 | if (OBO->hasNoUnsignedWrap()) | |||
| 2392 | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); | |||
| 2393 | if (OBO->hasNoSignedWrap()) | |||
| 2394 | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); | |||
| 2395 | ||||
| 2396 | bool Deduced = false; | |||
| 2397 | ||||
| 2398 | if (OBO->getOpcode() != Instruction::Add && | |||
| 2399 | OBO->getOpcode() != Instruction::Sub && | |||
| 2400 | OBO->getOpcode() != Instruction::Mul) | |||
| 2401 | return std::nullopt; | |||
| 2402 | ||||
| 2403 | const SCEV *LHS = getSCEV(OBO->getOperand(0)); | |||
| 2404 | const SCEV *RHS = getSCEV(OBO->getOperand(1)); | |||
| 2405 | ||||
| 2406 | const Instruction *CtxI = | |||
| 2407 | UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr; | |||
| 2408 | if (!OBO->hasNoUnsignedWrap() && | |||
| 2409 | willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), | |||
| 2410 | /* Signed */ false, LHS, RHS, CtxI)) { | |||
| 2411 | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); | |||
| 2412 | Deduced = true; | |||
| 2413 | } | |||
| 2414 | ||||
| 2415 | if (!OBO->hasNoSignedWrap() && | |||
| 2416 | willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), | |||
| 2417 | /* Signed */ true, LHS, RHS, CtxI)) { | |||
| 2418 | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); | |||
| 2419 | Deduced = true; | |||
| 2420 | } | |||
| 2421 | ||||
| 2422 | if (Deduced) | |||
| 2423 | return Flags; | |||
| 2424 | return std::nullopt; | |||
| 2425 | } | |||
| 2426 | ||||
| 2427 | // We're trying to construct a SCEV of type `Type' with `Ops' as operands and | |||
| 2428 | // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of | |||
| 2429 | // can't-overflow flags for the operation if possible. | |||
| 2430 | static SCEV::NoWrapFlags | |||
| 2431 | StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, | |||
| 2432 | const ArrayRef<const SCEV *> Ops, | |||
| 2433 | SCEV::NoWrapFlags Flags) { | |||
| 2434 | using namespace std::placeholders; | |||
| 2435 | ||||
| 2436 | using OBO = OverflowingBinaryOperator; | |||
| 2437 | ||||
| 2438 | bool CanAnalyze = | |||
| 2439 | Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; | |||
| 2440 | (void)CanAnalyze; | |||
| 2441 | assert(CanAnalyze && "don't call from other places!")(static_cast <bool> (CanAnalyze && "don't call from other places!" ) ? void (0) : __assert_fail ("CanAnalyze && \"don't call from other places!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2441, __extension__ __PRETTY_FUNCTION__)); | |||
| 2442 | ||||
| 2443 | int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; | |||
| 2444 | SCEV::NoWrapFlags SignOrUnsignWrap = | |||
| 2445 | ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); | |||
| 2446 | ||||
| 2447 | // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. | |||
| 2448 | auto IsKnownNonNegative = [&](const SCEV *S) { | |||
| 2449 | return SE->isKnownNonNegative(S); | |||
| 2450 | }; | |||
| 2451 | ||||
| 2452 | if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) | |||
| 2453 | Flags = | |||
| 2454 | ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); | |||
| 2455 | ||||
| 2456 | SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); | |||
| 2457 | ||||
| 2458 | if (SignOrUnsignWrap != SignOrUnsignMask && | |||
| 2459 | (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && | |||
| 2460 | isa<SCEVConstant>(Ops[0])) { | |||
| 2461 | ||||
| 2462 | auto Opcode = [&] { | |||
| 2463 | switch (Type) { | |||
| 2464 | case scAddExpr: | |||
| 2465 | return Instruction::Add; | |||
| 2466 | case scMulExpr: | |||
| 2467 | return Instruction::Mul; | |||
| 2468 | default: | |||
| 2469 | llvm_unreachable("Unexpected SCEV op.")::llvm::llvm_unreachable_internal("Unexpected SCEV op.", "llvm/lib/Analysis/ScalarEvolution.cpp" , 2469); | |||
| 2470 | } | |||
| 2471 | }(); | |||
| 2472 | ||||
| 2473 | const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); | |||
| 2474 | ||||
| 2475 | // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. | |||
| 2476 | if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { | |||
| 2477 | auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( | |||
| 2478 | Opcode, C, OBO::NoSignedWrap); | |||
| 2479 | if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) | |||
| 2480 | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); | |||
| 2481 | } | |||
| 2482 | ||||
| 2483 | // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. | |||
| 2484 | if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { | |||
| 2485 | auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( | |||
| 2486 | Opcode, C, OBO::NoUnsignedWrap); | |||
| 2487 | if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) | |||
| 2488 | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); | |||
| 2489 | } | |||
| 2490 | } | |||
| 2491 | ||||
| 2492 | // <0,+,nonnegative><nw> is also nuw | |||
| 2493 | // TODO: Add corresponding nsw case | |||
| 2494 | if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && | |||
| 2495 | !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && | |||
| 2496 | Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) | |||
| 2497 | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); | |||
| 2498 | ||||
| 2499 | // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW | |||
| 2500 | if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && | |||
| 2501 | Ops.size() == 2) { | |||
| 2502 | if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) | |||
| 2503 | if (UDiv->getOperand(1) == Ops[1]) | |||
| 2504 | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); | |||
| 2505 | if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) | |||
| 2506 | if (UDiv->getOperand(1) == Ops[0]) | |||
| 2507 | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); | |||
| 2508 | } | |||
| 2509 | ||||
| 2510 | return Flags; | |||
| 2511 | } | |||
| 2512 | ||||
| 2513 | bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { | |||
| 2514 | return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); | |||
| 2515 | } | |||
| 2516 | ||||
| 2517 | /// Get a canonical add expression, or something simpler if possible. | |||
| 2518 | const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, | |||
| 2519 | SCEV::NoWrapFlags OrigFlags, | |||
| 2520 | unsigned Depth) { | |||
| 2521 | assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&(static_cast <bool> (!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && "only nuw or nsw allowed") ? void (0) : __assert_fail ("!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && \"only nuw or nsw allowed\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2522, __extension__ __PRETTY_FUNCTION__)) | |||
| 2522 | "only nuw or nsw allowed")(static_cast <bool> (!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && "only nuw or nsw allowed") ? void (0) : __assert_fail ("!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && \"only nuw or nsw allowed\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2522, __extension__ __PRETTY_FUNCTION__)); | |||
| 2523 | assert(!Ops.empty() && "Cannot get empty add!")(static_cast <bool> (!Ops.empty() && "Cannot get empty add!" ) ? void (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty add!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2523, __extension__ __PRETTY_FUNCTION__)); | |||
| 2524 | if (Ops.size() == 1) return Ops[0]; | |||
| 2525 | #ifndef NDEBUG | |||
| 2526 | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); | |||
| 2527 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) | |||
| 2528 | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType ()) == ETy && "SCEVAddExpr operand types don't match!" ) ? void (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVAddExpr operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2529, __extension__ __PRETTY_FUNCTION__)) | |||
| 2529 | "SCEVAddExpr operand types don't match!")(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType ()) == ETy && "SCEVAddExpr operand types don't match!" ) ? void (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVAddExpr operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2529, __extension__ __PRETTY_FUNCTION__)); | |||
| 2530 | unsigned NumPtrs = count_if( | |||
| 2531 | Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); | |||
| 2532 | assert(NumPtrs <= 1 && "add has at most one pointer operand")(static_cast <bool> (NumPtrs <= 1 && "add has at most one pointer operand" ) ? void (0) : __assert_fail ("NumPtrs <= 1 && \"add has at most one pointer operand\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2532, __extension__ __PRETTY_FUNCTION__)); | |||
| 2533 | #endif | |||
| 2534 | ||||
| 2535 | // Sort by complexity, this groups all similar expression types together. | |||
| 2536 | GroupByComplexity(Ops, &LI, DT); | |||
| 2537 | ||||
| 2538 | // If there are any constants, fold them together. | |||
| 2539 | unsigned Idx = 0; | |||
| 2540 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | |||
| 2541 | ++Idx; | |||
| 2542 | assert(Idx < Ops.size())(static_cast <bool> (Idx < Ops.size()) ? void (0) : __assert_fail ("Idx < Ops.size()", "llvm/lib/Analysis/ScalarEvolution.cpp" , 2542, __extension__ __PRETTY_FUNCTION__)); | |||
| 2543 | while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { | |||
| 2544 | // We found two constants, fold them together! | |||
| 2545 | Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); | |||
| 2546 | if (Ops.size() == 2) return Ops[0]; | |||
| 2547 | Ops.erase(Ops.begin()+1); // Erase the folded element | |||
| 2548 | LHSC = cast<SCEVConstant>(Ops[0]); | |||
| 2549 | } | |||
| 2550 | ||||
| 2551 | // If we are left with a constant zero being added, strip it off. | |||
| 2552 | if (LHSC->getValue()->isZero()) { | |||
| 2553 | Ops.erase(Ops.begin()); | |||
| 2554 | --Idx; | |||
| 2555 | } | |||
| 2556 | ||||
| 2557 | if (Ops.size() == 1) return Ops[0]; | |||
| 2558 | } | |||
| 2559 | ||||
| 2560 | // Delay expensive flag strengthening until necessary. | |||
| 2561 | auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { | |||
| 2562 | return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); | |||
| 2563 | }; | |||
| 2564 | ||||
| 2565 | // Limit recursion calls depth. | |||
| 2566 | if (Depth > MaxArithDepth || hasHugeExpression(Ops)) | |||
| 2567 | return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); | |||
| 2568 | ||||
| 2569 | if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { | |||
| 2570 | // Don't strengthen flags if we have no new information. | |||
| 2571 | SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); | |||
| 2572 | if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) | |||
| 2573 | Add->setNoWrapFlags(ComputeFlags(Ops)); | |||
| 2574 | return S; | |||
| 2575 | } | |||
| 2576 | ||||
| 2577 | // Okay, check to see if the same value occurs in the operand list more than | |||
| 2578 | // once. If so, merge them together into an multiply expression. Since we | |||
| 2579 | // sorted the list, these values are required to be adjacent. | |||
| 2580 | Type *Ty = Ops[0]->getType(); | |||
| 2581 | bool FoundMatch = false; | |||
| 2582 | for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) | |||
| 2583 | if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 | |||
| 2584 | // Scan ahead to count how many equal operands there are. | |||
| 2585 | unsigned Count = 2; | |||
| 2586 | while (i+Count != e && Ops[i+Count] == Ops[i]) | |||
| 2587 | ++Count; | |||
| 2588 | // Merge the values into a multiply. | |||
| 2589 | const SCEV *Scale = getConstant(Ty, Count); | |||
| 2590 | const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); | |||
| 2591 | if (Ops.size() == Count) | |||
| 2592 | return Mul; | |||
| 2593 | Ops[i] = Mul; | |||
| 2594 | Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); | |||
| 2595 | --i; e -= Count - 1; | |||
| 2596 | FoundMatch = true; | |||
| 2597 | } | |||
| 2598 | if (FoundMatch) | |||
| 2599 | return getAddExpr(Ops, OrigFlags, Depth + 1); | |||
| 2600 | ||||
| 2601 | // Check for truncates. If all the operands are truncated from the same | |||
| 2602 | // type, see if factoring out the truncate would permit the result to be | |||
| 2603 | // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) | |||
| 2604 | // if the contents of the resulting outer trunc fold to something simple. | |||
| 2605 | auto FindTruncSrcType = [&]() -> Type * { | |||
| 2606 | // We're ultimately looking to fold an addrec of truncs and muls of only | |||
| 2607 | // constants and truncs, so if we find any other types of SCEV | |||
| 2608 | // as operands of the addrec then we bail and return nullptr here. | |||
| 2609 | // Otherwise, we return the type of the operand of a trunc that we find. | |||
| 2610 | if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) | |||
| 2611 | return T->getOperand()->getType(); | |||
| 2612 | if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { | |||
| 2613 | const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); | |||
| 2614 | if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) | |||
| 2615 | return T->getOperand()->getType(); | |||
| 2616 | } | |||
| 2617 | return nullptr; | |||
| 2618 | }; | |||
| 2619 | if (auto *SrcType = FindTruncSrcType()) { | |||
| 2620 | SmallVector<const SCEV *, 8> LargeOps; | |||
| 2621 | bool Ok = true; | |||
| 2622 | // Check all the operands to see if they can be represented in the | |||
| 2623 | // source type of the truncate. | |||
| 2624 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | |||
| 2625 | if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { | |||
| 2626 | if (T->getOperand()->getType() != SrcType) { | |||
| 2627 | Ok = false; | |||
| 2628 | break; | |||
| 2629 | } | |||
| 2630 | LargeOps.push_back(T->getOperand()); | |||
| 2631 | } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { | |||
| 2632 | LargeOps.push_back(getAnyExtendExpr(C, SrcType)); | |||
| 2633 | } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { | |||
| 2634 | SmallVector<const SCEV *, 8> LargeMulOps; | |||
| 2635 | for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { | |||
| 2636 | if (const SCEVTruncateExpr *T = | |||
| 2637 | dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { | |||
| 2638 | if (T->getOperand()->getType() != SrcType) { | |||
| 2639 | Ok = false; | |||
| 2640 | break; | |||
| 2641 | } | |||
| 2642 | LargeMulOps.push_back(T->getOperand()); | |||
| 2643 | } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { | |||
| 2644 | LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); | |||
| 2645 | } else { | |||
| 2646 | Ok = false; | |||
| 2647 | break; | |||
| 2648 | } | |||
| 2649 | } | |||
| 2650 | if (Ok) | |||
| 2651 | LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); | |||
| 2652 | } else { | |||
| 2653 | Ok = false; | |||
| 2654 | break; | |||
| 2655 | } | |||
| 2656 | } | |||
| 2657 | if (Ok) { | |||
| 2658 | // Evaluate the expression in the larger type. | |||
| 2659 | const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2660 | // If it folds to something simple, use it. Otherwise, don't. | |||
| 2661 | if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) | |||
| 2662 | return getTruncateExpr(Fold, Ty); | |||
| 2663 | } | |||
| 2664 | } | |||
| 2665 | ||||
| 2666 | if (Ops.size() == 2) { | |||
| 2667 | // Check if we have an expression of the form ((X + C1) - C2), where C1 and | |||
| 2668 | // C2 can be folded in a way that allows retaining wrapping flags of (X + | |||
| 2669 | // C1). | |||
| 2670 | const SCEV *A = Ops[0]; | |||
| 2671 | const SCEV *B = Ops[1]; | |||
| 2672 | auto *AddExpr = dyn_cast<SCEVAddExpr>(B); | |||
| 2673 | auto *C = dyn_cast<SCEVConstant>(A); | |||
| 2674 | if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { | |||
| 2675 | auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); | |||
| 2676 | auto C2 = C->getAPInt(); | |||
| 2677 | SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; | |||
| 2678 | ||||
| 2679 | APInt ConstAdd = C1 + C2; | |||
| 2680 | auto AddFlags = AddExpr->getNoWrapFlags(); | |||
| 2681 | // Adding a smaller constant is NUW if the original AddExpr was NUW. | |||
| 2682 | if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && | |||
| 2683 | ConstAdd.ule(C1)) { | |||
| 2684 | PreservedFlags = | |||
| 2685 | ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); | |||
| 2686 | } | |||
| 2687 | ||||
| 2688 | // Adding a constant with the same sign and small magnitude is NSW, if the | |||
| 2689 | // original AddExpr was NSW. | |||
| 2690 | if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && | |||
| 2691 | C1.isSignBitSet() == ConstAdd.isSignBitSet() && | |||
| 2692 | ConstAdd.abs().ule(C1.abs())) { | |||
| 2693 | PreservedFlags = | |||
| 2694 | ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); | |||
| 2695 | } | |||
| 2696 | ||||
| 2697 | if (PreservedFlags != SCEV::FlagAnyWrap) { | |||
| 2698 | SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); | |||
| 2699 | NewOps[0] = getConstant(ConstAdd); | |||
| 2700 | return getAddExpr(NewOps, PreservedFlags); | |||
| 2701 | } | |||
| 2702 | } | |||
| 2703 | } | |||
| 2704 | ||||
| 2705 | // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) | |||
| 2706 | if (Ops.size() == 2) { | |||
| 2707 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); | |||
| 2708 | if (Mul && Mul->getNumOperands() == 2 && | |||
| 2709 | Mul->getOperand(0)->isAllOnesValue()) { | |||
| 2710 | const SCEV *X; | |||
| 2711 | const SCEV *Y; | |||
| 2712 | if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { | |||
| 2713 | return getMulExpr(Y, getUDivExpr(X, Y)); | |||
| 2714 | } | |||
| 2715 | } | |||
| 2716 | } | |||
| 2717 | ||||
| 2718 | // Skip past any other cast SCEVs. | |||
| 2719 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) | |||
| 2720 | ++Idx; | |||
| 2721 | ||||
| 2722 | // If there are add operands they would be next. | |||
| 2723 | if (Idx < Ops.size()) { | |||
| 2724 | bool DeletedAdd = false; | |||
| 2725 | // If the original flags and all inlined SCEVAddExprs are NUW, use the | |||
| 2726 | // common NUW flag for expression after inlining. Other flags cannot be | |||
| 2727 | // preserved, because they may depend on the original order of operations. | |||
| 2728 | SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); | |||
| 2729 | while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { | |||
| 2730 | if (Ops.size() > AddOpsInlineThreshold || | |||
| 2731 | Add->getNumOperands() > AddOpsInlineThreshold) | |||
| 2732 | break; | |||
| 2733 | // If we have an add, expand the add operands onto the end of the operands | |||
| 2734 | // list. | |||
| 2735 | Ops.erase(Ops.begin()+Idx); | |||
| 2736 | append_range(Ops, Add->operands()); | |||
| 2737 | DeletedAdd = true; | |||
| 2738 | CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); | |||
| 2739 | } | |||
| 2740 | ||||
| 2741 | // If we deleted at least one add, we added operands to the end of the list, | |||
| 2742 | // and they are not necessarily sorted. Recurse to resort and resimplify | |||
| 2743 | // any operands we just acquired. | |||
| 2744 | if (DeletedAdd) | |||
| 2745 | return getAddExpr(Ops, CommonFlags, Depth + 1); | |||
| 2746 | } | |||
| 2747 | ||||
| 2748 | // Skip over the add expression until we get to a multiply. | |||
| 2749 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) | |||
| 2750 | ++Idx; | |||
| 2751 | ||||
| 2752 | // Check to see if there are any folding opportunities present with | |||
| 2753 | // operands multiplied by constant values. | |||
| 2754 | if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { | |||
| 2755 | uint64_t BitWidth = getTypeSizeInBits(Ty); | |||
| 2756 | DenseMap<const SCEV *, APInt> M; | |||
| 2757 | SmallVector<const SCEV *, 8> NewOps; | |||
| 2758 | APInt AccumulatedConstant(BitWidth, 0); | |||
| 2759 | if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, | |||
| 2760 | Ops, APInt(BitWidth, 1), *this)) { | |||
| 2761 | struct APIntCompare { | |||
| 2762 | bool operator()(const APInt &LHS, const APInt &RHS) const { | |||
| 2763 | return LHS.ult(RHS); | |||
| 2764 | } | |||
| 2765 | }; | |||
| 2766 | ||||
| 2767 | // Some interesting folding opportunity is present, so its worthwhile to | |||
| 2768 | // re-generate the operands list. Group the operands by constant scale, | |||
| 2769 | // to avoid multiplying by the same constant scale multiple times. | |||
| 2770 | std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; | |||
| 2771 | for (const SCEV *NewOp : NewOps) | |||
| 2772 | MulOpLists[M.find(NewOp)->second].push_back(NewOp); | |||
| 2773 | // Re-generate the operands list. | |||
| 2774 | Ops.clear(); | |||
| 2775 | if (AccumulatedConstant != 0) | |||
| 2776 | Ops.push_back(getConstant(AccumulatedConstant)); | |||
| 2777 | for (auto &MulOp : MulOpLists) { | |||
| 2778 | if (MulOp.first == 1) { | |||
| 2779 | Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); | |||
| 2780 | } else if (MulOp.first != 0) { | |||
| 2781 | Ops.push_back(getMulExpr( | |||
| 2782 | getConstant(MulOp.first), | |||
| 2783 | getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), | |||
| 2784 | SCEV::FlagAnyWrap, Depth + 1)); | |||
| 2785 | } | |||
| 2786 | } | |||
| 2787 | if (Ops.empty()) | |||
| 2788 | return getZero(Ty); | |||
| 2789 | if (Ops.size() == 1) | |||
| 2790 | return Ops[0]; | |||
| 2791 | return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2792 | } | |||
| 2793 | } | |||
| 2794 | ||||
| 2795 | // If we are adding something to a multiply expression, make sure the | |||
| 2796 | // something is not already an operand of the multiply. If so, merge it into | |||
| 2797 | // the multiply. | |||
| 2798 | for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { | |||
| 2799 | const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); | |||
| 2800 | for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { | |||
| 2801 | const SCEV *MulOpSCEV = Mul->getOperand(MulOp); | |||
| 2802 | if (isa<SCEVConstant>(MulOpSCEV)) | |||
| 2803 | continue; | |||
| 2804 | for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) | |||
| 2805 | if (MulOpSCEV == Ops[AddOp]) { | |||
| 2806 | // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) | |||
| 2807 | const SCEV *InnerMul = Mul->getOperand(MulOp == 0); | |||
| 2808 | if (Mul->getNumOperands() != 2) { | |||
| 2809 | // If the multiply has more than two operands, we must get the | |||
| 2810 | // Y*Z term. | |||
| 2811 | SmallVector<const SCEV *, 4> MulOps( | |||
| 2812 | Mul->operands().take_front(MulOp)); | |||
| 2813 | append_range(MulOps, Mul->operands().drop_front(MulOp + 1)); | |||
| 2814 | InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2815 | } | |||
| 2816 | SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; | |||
| 2817 | const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2818 | const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, | |||
| 2819 | SCEV::FlagAnyWrap, Depth + 1); | |||
| 2820 | if (Ops.size() == 2) return OuterMul; | |||
| 2821 | if (AddOp < Idx) { | |||
| 2822 | Ops.erase(Ops.begin()+AddOp); | |||
| 2823 | Ops.erase(Ops.begin()+Idx-1); | |||
| 2824 | } else { | |||
| 2825 | Ops.erase(Ops.begin()+Idx); | |||
| 2826 | Ops.erase(Ops.begin()+AddOp-1); | |||
| 2827 | } | |||
| 2828 | Ops.push_back(OuterMul); | |||
| 2829 | return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2830 | } | |||
| 2831 | ||||
| 2832 | // Check this multiply against other multiplies being added together. | |||
| 2833 | for (unsigned OtherMulIdx = Idx+1; | |||
| 2834 | OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); | |||
| 2835 | ++OtherMulIdx) { | |||
| 2836 | const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); | |||
| 2837 | // If MulOp occurs in OtherMul, we can fold the two multiplies | |||
| 2838 | // together. | |||
| 2839 | for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); | |||
| 2840 | OMulOp != e; ++OMulOp) | |||
| 2841 | if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { | |||
| 2842 | // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) | |||
| 2843 | const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); | |||
| 2844 | if (Mul->getNumOperands() != 2) { | |||
| 2845 | SmallVector<const SCEV *, 4> MulOps( | |||
| 2846 | Mul->operands().take_front(MulOp)); | |||
| 2847 | append_range(MulOps, Mul->operands().drop_front(MulOp+1)); | |||
| 2848 | InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2849 | } | |||
| 2850 | const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); | |||
| 2851 | if (OtherMul->getNumOperands() != 2) { | |||
| 2852 | SmallVector<const SCEV *, 4> MulOps( | |||
| 2853 | OtherMul->operands().take_front(OMulOp)); | |||
| 2854 | append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1)); | |||
| 2855 | InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2856 | } | |||
| 2857 | SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; | |||
| 2858 | const SCEV *InnerMulSum = | |||
| 2859 | getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2860 | const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, | |||
| 2861 | SCEV::FlagAnyWrap, Depth + 1); | |||
| 2862 | if (Ops.size() == 2) return OuterMul; | |||
| 2863 | Ops.erase(Ops.begin()+Idx); | |||
| 2864 | Ops.erase(Ops.begin()+OtherMulIdx-1); | |||
| 2865 | Ops.push_back(OuterMul); | |||
| 2866 | return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2867 | } | |||
| 2868 | } | |||
| 2869 | } | |||
| 2870 | } | |||
| 2871 | ||||
| 2872 | // If there are any add recurrences in the operands list, see if any other | |||
| 2873 | // added values are loop invariant. If so, we can fold them into the | |||
| 2874 | // recurrence. | |||
| 2875 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) | |||
| 2876 | ++Idx; | |||
| 2877 | ||||
| 2878 | // Scan over all recurrences, trying to fold loop invariants into them. | |||
| 2879 | for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { | |||
| 2880 | // Scan all of the other operands to this add and add them to the vector if | |||
| 2881 | // they are loop invariant w.r.t. the recurrence. | |||
| 2882 | SmallVector<const SCEV *, 8> LIOps; | |||
| 2883 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); | |||
| 2884 | const Loop *AddRecLoop = AddRec->getLoop(); | |||
| 2885 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | |||
| 2886 | if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { | |||
| 2887 | LIOps.push_back(Ops[i]); | |||
| 2888 | Ops.erase(Ops.begin()+i); | |||
| 2889 | --i; --e; | |||
| 2890 | } | |||
| 2891 | ||||
| 2892 | // If we found some loop invariants, fold them into the recurrence. | |||
| 2893 | if (!LIOps.empty()) { | |||
| 2894 | // Compute nowrap flags for the addition of the loop-invariant ops and | |||
| 2895 | // the addrec. Temporarily push it as an operand for that purpose. These | |||
| 2896 | // flags are valid in the scope of the addrec only. | |||
| 2897 | LIOps.push_back(AddRec); | |||
| 2898 | SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); | |||
| 2899 | LIOps.pop_back(); | |||
| 2900 | ||||
| 2901 | // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} | |||
| 2902 | LIOps.push_back(AddRec->getStart()); | |||
| 2903 | ||||
| 2904 | SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); | |||
| 2905 | ||||
| 2906 | // It is not in general safe to propagate flags valid on an add within | |||
| 2907 | // the addrec scope to one outside it. We must prove that the inner | |||
| 2908 | // scope is guaranteed to execute if the outer one does to be able to | |||
| 2909 | // safely propagate. We know the program is undefined if poison is | |||
| 2910 | // produced on the inner scoped addrec. We also know that *for this use* | |||
| 2911 | // the outer scoped add can't overflow (because of the flags we just | |||
| 2912 | // computed for the inner scoped add) without the program being undefined. | |||
| 2913 | // Proving that entry to the outer scope neccesitates entry to the inner | |||
| 2914 | // scope, thus proves the program undefined if the flags would be violated | |||
| 2915 | // in the outer scope. | |||
| 2916 | SCEV::NoWrapFlags AddFlags = Flags; | |||
| 2917 | if (AddFlags != SCEV::FlagAnyWrap) { | |||
| 2918 | auto *DefI = getDefiningScopeBound(LIOps); | |||
| 2919 | auto *ReachI = &*AddRecLoop->getHeader()->begin(); | |||
| 2920 | if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) | |||
| 2921 | AddFlags = SCEV::FlagAnyWrap; | |||
| 2922 | } | |||
| 2923 | AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); | |||
| 2924 | ||||
| 2925 | // Build the new addrec. Propagate the NUW and NSW flags if both the | |||
| 2926 | // outer add and the inner addrec are guaranteed to have no overflow. | |||
| 2927 | // Always propagate NW. | |||
| 2928 | Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); | |||
| 2929 | const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); | |||
| 2930 | ||||
| 2931 | // If all of the other operands were loop invariant, we are done. | |||
| 2932 | if (Ops.size() == 1) return NewRec; | |||
| 2933 | ||||
| 2934 | // Otherwise, add the folded AddRec by the non-invariant parts. | |||
| 2935 | for (unsigned i = 0;; ++i) | |||
| 2936 | if (Ops[i] == AddRec) { | |||
| 2937 | Ops[i] = NewRec; | |||
| 2938 | break; | |||
| 2939 | } | |||
| 2940 | return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2941 | } | |||
| 2942 | ||||
| 2943 | // Okay, if there weren't any loop invariants to be folded, check to see if | |||
| 2944 | // there are multiple AddRec's with the same loop induction variable being | |||
| 2945 | // added together. If so, we can fold them. | |||
| 2946 | for (unsigned OtherIdx = Idx+1; | |||
| 2947 | OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); | |||
| 2948 | ++OtherIdx) { | |||
| 2949 | // We expect the AddRecExpr's to be sorted in reverse dominance order, | |||
| 2950 | // so that the 1st found AddRecExpr is dominated by all others. | |||
| 2951 | assert(DT.dominates((static_cast <bool> (DT.dominates( cast<SCEVAddRecExpr >(Ops[OtherIdx])->getLoop()->getHeader(), AddRec-> getLoop()->getHeader()) && "AddRecExprs are not sorted in reverse dominance order?" ) ? void (0) : __assert_fail ("DT.dominates( cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->getLoop()->getHeader()) && \"AddRecExprs are not sorted in reverse dominance order?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2954, __extension__ __PRETTY_FUNCTION__)) | |||
| 2952 | cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),(static_cast <bool> (DT.dominates( cast<SCEVAddRecExpr >(Ops[OtherIdx])->getLoop()->getHeader(), AddRec-> getLoop()->getHeader()) && "AddRecExprs are not sorted in reverse dominance order?" ) ? void (0) : __assert_fail ("DT.dominates( cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->getLoop()->getHeader()) && \"AddRecExprs are not sorted in reverse dominance order?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2954, __extension__ __PRETTY_FUNCTION__)) | |||
| 2953 | AddRec->getLoop()->getHeader()) &&(static_cast <bool> (DT.dominates( cast<SCEVAddRecExpr >(Ops[OtherIdx])->getLoop()->getHeader(), AddRec-> getLoop()->getHeader()) && "AddRecExprs are not sorted in reverse dominance order?" ) ? void (0) : __assert_fail ("DT.dominates( cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->getLoop()->getHeader()) && \"AddRecExprs are not sorted in reverse dominance order?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2954, __extension__ __PRETTY_FUNCTION__)) | |||
| 2954 | "AddRecExprs are not sorted in reverse dominance order?")(static_cast <bool> (DT.dominates( cast<SCEVAddRecExpr >(Ops[OtherIdx])->getLoop()->getHeader(), AddRec-> getLoop()->getHeader()) && "AddRecExprs are not sorted in reverse dominance order?" ) ? void (0) : __assert_fail ("DT.dominates( cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), AddRec->getLoop()->getHeader()) && \"AddRecExprs are not sorted in reverse dominance order?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 2954, __extension__ __PRETTY_FUNCTION__)); | |||
| 2955 | if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { | |||
| 2956 | // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> | |||
| 2957 | SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); | |||
| 2958 | for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); | |||
| 2959 | ++OtherIdx) { | |||
| 2960 | const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); | |||
| 2961 | if (OtherAddRec->getLoop() == AddRecLoop) { | |||
| 2962 | for (unsigned i = 0, e = OtherAddRec->getNumOperands(); | |||
| 2963 | i != e; ++i) { | |||
| 2964 | if (i >= AddRecOps.size()) { | |||
| 2965 | append_range(AddRecOps, OtherAddRec->operands().drop_front(i)); | |||
| 2966 | break; | |||
| 2967 | } | |||
| 2968 | SmallVector<const SCEV *, 2> TwoOps = { | |||
| 2969 | AddRecOps[i], OtherAddRec->getOperand(i)}; | |||
| 2970 | AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2971 | } | |||
| 2972 | Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; | |||
| 2973 | } | |||
| 2974 | } | |||
| 2975 | // Step size has changed, so we cannot guarantee no self-wraparound. | |||
| 2976 | Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); | |||
| 2977 | return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | |||
| 2978 | } | |||
| 2979 | } | |||
| 2980 | ||||
| 2981 | // Otherwise couldn't fold anything into this recurrence. Move onto the | |||
| 2982 | // next one. | |||
| 2983 | } | |||
| 2984 | ||||
| 2985 | // Okay, it looks like we really DO need an add expr. Check to see if we | |||
| 2986 | // already have one, otherwise create a new one. | |||
| 2987 | return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); | |||
| 2988 | } | |||
| 2989 | ||||
| 2990 | const SCEV * | |||
| 2991 | ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, | |||
| 2992 | SCEV::NoWrapFlags Flags) { | |||
| 2993 | FoldingSetNodeID ID; | |||
| 2994 | ID.AddInteger(scAddExpr); | |||
| 2995 | for (const SCEV *Op : Ops) | |||
| 2996 | ID.AddPointer(Op); | |||
| 2997 | void *IP = nullptr; | |||
| 2998 | SCEVAddExpr *S = | |||
| 2999 | static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); | |||
| 3000 | if (!S) { | |||
| 3001 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); | |||
| 3002 | std::uninitialized_copy(Ops.begin(), Ops.end(), O); | |||
| 3003 | S = new (SCEVAllocator) | |||
| 3004 | SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); | |||
| 3005 | UniqueSCEVs.InsertNode(S, IP); | |||
| 3006 | registerUser(S, Ops); | |||
| 3007 | } | |||
| 3008 | S->setNoWrapFlags(Flags); | |||
| 3009 | return S; | |||
| 3010 | } | |||
| 3011 | ||||
| 3012 | const SCEV * | |||
| 3013 | ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, | |||
| 3014 | const Loop *L, SCEV::NoWrapFlags Flags) { | |||
| 3015 | FoldingSetNodeID ID; | |||
| 3016 | ID.AddInteger(scAddRecExpr); | |||
| 3017 | for (const SCEV *Op : Ops) | |||
| 3018 | ID.AddPointer(Op); | |||
| 3019 | ID.AddPointer(L); | |||
| 3020 | void *IP = nullptr; | |||
| 3021 | SCEVAddRecExpr *S = | |||
| 3022 | static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); | |||
| 3023 | if (!S) { | |||
| 3024 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); | |||
| 3025 | std::uninitialized_copy(Ops.begin(), Ops.end(), O); | |||
| 3026 | S = new (SCEVAllocator) | |||
| 3027 | SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); | |||
| 3028 | UniqueSCEVs.InsertNode(S, IP); | |||
| 3029 | LoopUsers[L].push_back(S); | |||
| 3030 | registerUser(S, Ops); | |||
| 3031 | } | |||
| 3032 | setNoWrapFlags(S, Flags); | |||
| 3033 | return S; | |||
| 3034 | } | |||
| 3035 | ||||
| 3036 | const SCEV * | |||
| 3037 | ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, | |||
| 3038 | SCEV::NoWrapFlags Flags) { | |||
| 3039 | FoldingSetNodeID ID; | |||
| 3040 | ID.AddInteger(scMulExpr); | |||
| 3041 | for (const SCEV *Op : Ops) | |||
| 3042 | ID.AddPointer(Op); | |||
| 3043 | void *IP = nullptr; | |||
| 3044 | SCEVMulExpr *S = | |||
| 3045 | static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); | |||
| 3046 | if (!S) { | |||
| 3047 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); | |||
| 3048 | std::uninitialized_copy(Ops.begin(), Ops.end(), O); | |||
| 3049 | S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), | |||
| 3050 | O, Ops.size()); | |||
| 3051 | UniqueSCEVs.InsertNode(S, IP); | |||
| 3052 | registerUser(S, Ops); | |||
| 3053 | } | |||
| 3054 | S->setNoWrapFlags(Flags); | |||
| 3055 | return S; | |||
| 3056 | } | |||
| 3057 | ||||
| 3058 | static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { | |||
| 3059 | uint64_t k = i*j; | |||
| 3060 | if (j > 1 && k / j != i) Overflow = true; | |||
| 3061 | return k; | |||
| 3062 | } | |||
| 3063 | ||||
| 3064 | /// Compute the result of "n choose k", the binomial coefficient. If an | |||
| 3065 | /// intermediate computation overflows, Overflow will be set and the return will | |||
| 3066 | /// be garbage. Overflow is not cleared on absence of overflow. | |||
| 3067 | static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { | |||
| 3068 | // We use the multiplicative formula: | |||
| 3069 | // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . | |||
| 3070 | // At each iteration, we take the n-th term of the numeral and divide by the | |||
| 3071 | // (k-n)th term of the denominator. This division will always produce an | |||
| 3072 | // integral result, and helps reduce the chance of overflow in the | |||
| 3073 | // intermediate computations. However, we can still overflow even when the | |||
| 3074 | // final result would fit. | |||
| 3075 | ||||
| 3076 | if (n == 0 || n == k) return 1; | |||
| 3077 | if (k > n) return 0; | |||
| 3078 | ||||
| 3079 | if (k > n/2) | |||
| 3080 | k = n-k; | |||
| 3081 | ||||
| 3082 | uint64_t r = 1; | |||
| 3083 | for (uint64_t i = 1; i <= k; ++i) { | |||
| 3084 | r = umul_ov(r, n-(i-1), Overflow); | |||
| 3085 | r /= i; | |||
| 3086 | } | |||
| 3087 | return r; | |||
| 3088 | } | |||
| 3089 | ||||
| 3090 | /// Determine if any of the operands in this SCEV are a constant or if | |||
| 3091 | /// any of the add or multiply expressions in this SCEV contain a constant. | |||
| 3092 | static bool containsConstantInAddMulChain(const SCEV *StartExpr) { | |||
| 3093 | struct FindConstantInAddMulChain { | |||
| 3094 | bool FoundConstant = false; | |||
| 3095 | ||||
| 3096 | bool follow(const SCEV *S) { | |||
| 3097 | FoundConstant |= isa<SCEVConstant>(S); | |||
| 3098 | return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); | |||
| 3099 | } | |||
| 3100 | ||||
| 3101 | bool isDone() const { | |||
| 3102 | return FoundConstant; | |||
| 3103 | } | |||
| 3104 | }; | |||
| 3105 | ||||
| 3106 | FindConstantInAddMulChain F; | |||
| 3107 | SCEVTraversal<FindConstantInAddMulChain> ST(F); | |||
| 3108 | ST.visitAll(StartExpr); | |||
| 3109 | return F.FoundConstant; | |||
| 3110 | } | |||
| 3111 | ||||
| 3112 | /// Get a canonical multiply expression, or something simpler if possible. | |||
| 3113 | const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, | |||
| 3114 | SCEV::NoWrapFlags OrigFlags, | |||
| 3115 | unsigned Depth) { | |||
| 3116 | assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&(static_cast <bool> (OrigFlags == maskFlags(OrigFlags, SCEV ::FlagNUW | SCEV::FlagNSW) && "only nuw or nsw allowed" ) ? void (0) : __assert_fail ("OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && \"only nuw or nsw allowed\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3117, __extension__ __PRETTY_FUNCTION__)) | |||
| 3117 | "only nuw or nsw allowed")(static_cast <bool> (OrigFlags == maskFlags(OrigFlags, SCEV ::FlagNUW | SCEV::FlagNSW) && "only nuw or nsw allowed" ) ? void (0) : __assert_fail ("OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && \"only nuw or nsw allowed\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3117, __extension__ __PRETTY_FUNCTION__)); | |||
| 3118 | assert(!Ops.empty() && "Cannot get empty mul!")(static_cast <bool> (!Ops.empty() && "Cannot get empty mul!" ) ? void (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty mul!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3118, __extension__ __PRETTY_FUNCTION__)); | |||
| 3119 | if (Ops.size() == 1) return Ops[0]; | |||
| 3120 | #ifndef NDEBUG | |||
| 3121 | Type *ETy = Ops[0]->getType(); | |||
| 3122 | assert(!ETy->isPointerTy())(static_cast <bool> (!ETy->isPointerTy()) ? void (0) : __assert_fail ("!ETy->isPointerTy()", "llvm/lib/Analysis/ScalarEvolution.cpp" , 3122, __extension__ __PRETTY_FUNCTION__)); | |||
| 3123 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) | |||
| 3124 | assert(Ops[i]->getType() == ETy &&(static_cast <bool> (Ops[i]->getType() == ETy && "SCEVMulExpr operand types don't match!") ? void (0) : __assert_fail ("Ops[i]->getType() == ETy && \"SCEVMulExpr operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3125, __extension__ __PRETTY_FUNCTION__)) | |||
| 3125 | "SCEVMulExpr operand types don't match!")(static_cast <bool> (Ops[i]->getType() == ETy && "SCEVMulExpr operand types don't match!") ? void (0) : __assert_fail ("Ops[i]->getType() == ETy && \"SCEVMulExpr operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3125, __extension__ __PRETTY_FUNCTION__)); | |||
| 3126 | #endif | |||
| 3127 | ||||
| 3128 | // Sort by complexity, this groups all similar expression types together. | |||
| 3129 | GroupByComplexity(Ops, &LI, DT); | |||
| 3130 | ||||
| 3131 | // If there are any constants, fold them together. | |||
| 3132 | unsigned Idx = 0; | |||
| 3133 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | |||
| 3134 | ++Idx; | |||
| 3135 | assert(Idx < Ops.size())(static_cast <bool> (Idx < Ops.size()) ? void (0) : __assert_fail ("Idx < Ops.size()", "llvm/lib/Analysis/ScalarEvolution.cpp" , 3135, __extension__ __PRETTY_FUNCTION__)); | |||
| 3136 | while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { | |||
| 3137 | // We found two constants, fold them together! | |||
| 3138 | Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); | |||
| 3139 | if (Ops.size() == 2) return Ops[0]; | |||
| 3140 | Ops.erase(Ops.begin()+1); // Erase the folded element | |||
| 3141 | LHSC = cast<SCEVConstant>(Ops[0]); | |||
| 3142 | } | |||
| 3143 | ||||
| 3144 | // If we have a multiply of zero, it will always be zero. | |||
| 3145 | if (LHSC->getValue()->isZero()) | |||
| 3146 | return LHSC; | |||
| 3147 | ||||
| 3148 | // If we are left with a constant one being multiplied, strip it off. | |||
| 3149 | if (LHSC->getValue()->isOne()) { | |||
| 3150 | Ops.erase(Ops.begin()); | |||
| 3151 | --Idx; | |||
| 3152 | } | |||
| 3153 | ||||
| 3154 | if (Ops.size() == 1) | |||
| 3155 | return Ops[0]; | |||
| 3156 | } | |||
| 3157 | ||||
| 3158 | // Delay expensive flag strengthening until necessary. | |||
| 3159 | auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { | |||
| 3160 | return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); | |||
| 3161 | }; | |||
| 3162 | ||||
| 3163 | // Limit recursion calls depth. | |||
| 3164 | if (Depth > MaxArithDepth || hasHugeExpression(Ops)) | |||
| 3165 | return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); | |||
| 3166 | ||||
| 3167 | if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { | |||
| 3168 | // Don't strengthen flags if we have no new information. | |||
| 3169 | SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); | |||
| 3170 | if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) | |||
| 3171 | Mul->setNoWrapFlags(ComputeFlags(Ops)); | |||
| 3172 | return S; | |||
| 3173 | } | |||
| 3174 | ||||
| 3175 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | |||
| 3176 | if (Ops.size() == 2) { | |||
| 3177 | // C1*(C2+V) -> C1*C2 + C1*V | |||
| 3178 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) | |||
| 3179 | // If any of Add's ops are Adds or Muls with a constant, apply this | |||
| 3180 | // transformation as well. | |||
| 3181 | // | |||
| 3182 | // TODO: There are some cases where this transformation is not | |||
| 3183 | // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of | |||
| 3184 | // this transformation should be narrowed down. | |||
| 3185 | if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) { | |||
| 3186 | const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0), | |||
| 3187 | SCEV::FlagAnyWrap, Depth + 1); | |||
| 3188 | const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1), | |||
| 3189 | SCEV::FlagAnyWrap, Depth + 1); | |||
| 3190 | return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1); | |||
| 3191 | } | |||
| 3192 | ||||
| 3193 | if (Ops[0]->isAllOnesValue()) { | |||
| 3194 | // If we have a mul by -1 of an add, try distributing the -1 among the | |||
| 3195 | // add operands. | |||
| 3196 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { | |||
| 3197 | SmallVector<const SCEV *, 4> NewOps; | |||
| 3198 | bool AnyFolded = false; | |||
| 3199 | for (const SCEV *AddOp : Add->operands()) { | |||
| 3200 | const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, | |||
| 3201 | Depth + 1); | |||
| 3202 | if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; | |||
| 3203 | NewOps.push_back(Mul); | |||
| 3204 | } | |||
| 3205 | if (AnyFolded) | |||
| 3206 | return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); | |||
| 3207 | } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { | |||
| 3208 | // Negation preserves a recurrence's no self-wrap property. | |||
| 3209 | SmallVector<const SCEV *, 4> Operands; | |||
| 3210 | for (const SCEV *AddRecOp : AddRec->operands()) | |||
| 3211 | Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, | |||
| 3212 | Depth + 1)); | |||
| 3213 | // Let M be the minimum representable signed value. AddRec with nsw | |||
| 3214 | // multiplied by -1 can have signed overflow if and only if it takes a | |||
| 3215 | // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the | |||
| 3216 | // maximum signed value. In all other cases signed overflow is | |||
| 3217 | // impossible. | |||
| 3218 | auto FlagsMask = SCEV::FlagNW; | |||
| 3219 | if (hasFlags(AddRec->getNoWrapFlags(), SCEV::FlagNSW)) { | |||
| 3220 | auto MinInt = | |||
| 3221 | APInt::getSignedMinValue(getTypeSizeInBits(AddRec->getType())); | |||
| 3222 | if (getSignedRangeMin(AddRec) != MinInt) | |||
| 3223 | FlagsMask = setFlags(FlagsMask, SCEV::FlagNSW); | |||
| 3224 | } | |||
| 3225 | return getAddRecExpr(Operands, AddRec->getLoop(), | |||
| 3226 | AddRec->getNoWrapFlags(FlagsMask)); | |||
| 3227 | } | |||
| 3228 | } | |||
| 3229 | } | |||
| 3230 | } | |||
| 3231 | ||||
| 3232 | // Skip over the add expression until we get to a multiply. | |||
| 3233 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) | |||
| 3234 | ++Idx; | |||
| 3235 | ||||
| 3236 | // If there are mul operands inline them all into this expression. | |||
| 3237 | if (Idx < Ops.size()) { | |||
| 3238 | bool DeletedMul = false; | |||
| 3239 | while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { | |||
| 3240 | if (Ops.size() > MulOpsInlineThreshold) | |||
| 3241 | break; | |||
| 3242 | // If we have an mul, expand the mul operands onto the end of the | |||
| 3243 | // operands list. | |||
| 3244 | Ops.erase(Ops.begin()+Idx); | |||
| 3245 | append_range(Ops, Mul->operands()); | |||
| 3246 | DeletedMul = true; | |||
| 3247 | } | |||
| 3248 | ||||
| 3249 | // If we deleted at least one mul, we added operands to the end of the | |||
| 3250 | // list, and they are not necessarily sorted. Recurse to resort and | |||
| 3251 | // resimplify any operands we just acquired. | |||
| 3252 | if (DeletedMul) | |||
| 3253 | return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | |||
| 3254 | } | |||
| 3255 | ||||
| 3256 | // If there are any add recurrences in the operands list, see if any other | |||
| 3257 | // added values are loop invariant. If so, we can fold them into the | |||
| 3258 | // recurrence. | |||
| 3259 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) | |||
| 3260 | ++Idx; | |||
| 3261 | ||||
| 3262 | // Scan over all recurrences, trying to fold loop invariants into them. | |||
| 3263 | for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { | |||
| 3264 | // Scan all of the other operands to this mul and add them to the vector | |||
| 3265 | // if they are loop invariant w.r.t. the recurrence. | |||
| 3266 | SmallVector<const SCEV *, 8> LIOps; | |||
| 3267 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); | |||
| 3268 | const Loop *AddRecLoop = AddRec->getLoop(); | |||
| 3269 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | |||
| 3270 | if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { | |||
| 3271 | LIOps.push_back(Ops[i]); | |||
| 3272 | Ops.erase(Ops.begin()+i); | |||
| 3273 | --i; --e; | |||
| 3274 | } | |||
| 3275 | ||||
| 3276 | // If we found some loop invariants, fold them into the recurrence. | |||
| 3277 | if (!LIOps.empty()) { | |||
| 3278 | // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} | |||
| 3279 | SmallVector<const SCEV *, 4> NewOps; | |||
| 3280 | NewOps.reserve(AddRec->getNumOperands()); | |||
| 3281 | const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); | |||
| 3282 | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) | |||
| 3283 | NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), | |||
| 3284 | SCEV::FlagAnyWrap, Depth + 1)); | |||
| 3285 | ||||
| 3286 | // Build the new addrec. Propagate the NUW and NSW flags if both the | |||
| 3287 | // outer mul and the inner addrec are guaranteed to have no overflow. | |||
| 3288 | // | |||
| 3289 | // No self-wrap cannot be guaranteed after changing the step size, but | |||
| 3290 | // will be inferred if either NUW or NSW is true. | |||
| 3291 | SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); | |||
| 3292 | const SCEV *NewRec = getAddRecExpr( | |||
| 3293 | NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); | |||
| 3294 | ||||
| 3295 | // If all of the other operands were loop invariant, we are done. | |||
| 3296 | if (Ops.size() == 1) return NewRec; | |||
| 3297 | ||||
| 3298 | // Otherwise, multiply the folded AddRec by the non-invariant parts. | |||
| 3299 | for (unsigned i = 0;; ++i) | |||
| 3300 | if (Ops[i] == AddRec) { | |||
| 3301 | Ops[i] = NewRec; | |||
| 3302 | break; | |||
| 3303 | } | |||
| 3304 | return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | |||
| 3305 | } | |||
| 3306 | ||||
| 3307 | // Okay, if there weren't any loop invariants to be folded, check to see | |||
| 3308 | // if there are multiple AddRec's with the same loop induction variable | |||
| 3309 | // being multiplied together. If so, we can fold them. | |||
| 3310 | ||||
| 3311 | // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> | |||
| 3312 | // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ | |||
| 3313 | // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z | |||
| 3314 | // ]]],+,...up to x=2n}. | |||
| 3315 | // Note that the arguments to choose() are always integers with values | |||
| 3316 | // known at compile time, never SCEV objects. | |||
| 3317 | // | |||
| 3318 | // The implementation avoids pointless extra computations when the two | |||
| 3319 | // addrec's are of different length (mathematically, it's equivalent to | |||
| 3320 | // an infinite stream of zeros on the right). | |||
| 3321 | bool OpsModified = false; | |||
| 3322 | for (unsigned OtherIdx = Idx+1; | |||
| 3323 | OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); | |||
| 3324 | ++OtherIdx) { | |||
| 3325 | const SCEVAddRecExpr *OtherAddRec = | |||
| 3326 | dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); | |||
| 3327 | if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) | |||
| 3328 | continue; | |||
| 3329 | ||||
| 3330 | // Limit max number of arguments to avoid creation of unreasonably big | |||
| 3331 | // SCEVAddRecs with very complex operands. | |||
| 3332 | if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > | |||
| 3333 | MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) | |||
| 3334 | continue; | |||
| 3335 | ||||
| 3336 | bool Overflow = false; | |||
| 3337 | Type *Ty = AddRec->getType(); | |||
| 3338 | bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; | |||
| 3339 | SmallVector<const SCEV*, 7> AddRecOps; | |||
| 3340 | for (int x = 0, xe = AddRec->getNumOperands() + | |||
| 3341 | OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { | |||
| 3342 | SmallVector <const SCEV *, 7> SumOps; | |||
| 3343 | for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { | |||
| 3344 | uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); | |||
| 3345 | for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), | |||
| 3346 | ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); | |||
| 3347 | z < ze && !Overflow; ++z) { | |||
| 3348 | uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); | |||
| 3349 | uint64_t Coeff; | |||
| 3350 | if (LargerThan64Bits) | |||
| 3351 | Coeff = umul_ov(Coeff1, Coeff2, Overflow); | |||
| 3352 | else | |||
| 3353 | Coeff = Coeff1*Coeff2; | |||
| 3354 | const SCEV *CoeffTerm = getConstant(Ty, Coeff); | |||
| 3355 | const SCEV *Term1 = AddRec->getOperand(y-z); | |||
| 3356 | const SCEV *Term2 = OtherAddRec->getOperand(z); | |||
| 3357 | SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, | |||
| 3358 | SCEV::FlagAnyWrap, Depth + 1)); | |||
| 3359 | } | |||
| 3360 | } | |||
| 3361 | if (SumOps.empty()) | |||
| 3362 | SumOps.push_back(getZero(Ty)); | |||
| 3363 | AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); | |||
| 3364 | } | |||
| 3365 | if (!Overflow) { | |||
| 3366 | const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, | |||
| 3367 | SCEV::FlagAnyWrap); | |||
| 3368 | if (Ops.size() == 2) return NewAddRec; | |||
| 3369 | Ops[Idx] = NewAddRec; | |||
| 3370 | Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; | |||
| 3371 | OpsModified = true; | |||
| 3372 | AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); | |||
| 3373 | if (!AddRec) | |||
| 3374 | break; | |||
| 3375 | } | |||
| 3376 | } | |||
| 3377 | if (OpsModified) | |||
| 3378 | return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); | |||
| 3379 | ||||
| 3380 | // Otherwise couldn't fold anything into this recurrence. Move onto the | |||
| 3381 | // next one. | |||
| 3382 | } | |||
| 3383 | ||||
| 3384 | // Okay, it looks like we really DO need an mul expr. Check to see if we | |||
| 3385 | // already have one, otherwise create a new one. | |||
| 3386 | return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); | |||
| 3387 | } | |||
| 3388 | ||||
| 3389 | /// Represents an unsigned remainder expression based on unsigned division. | |||
| 3390 | const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, | |||
| 3391 | const SCEV *RHS) { | |||
| 3392 | assert(getEffectiveSCEVType(LHS->getType()) ==(static_cast <bool> (getEffectiveSCEVType(LHS->getType ()) == getEffectiveSCEVType(RHS->getType()) && "SCEVURemExpr operand types don't match!" ) ? void (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVURemExpr operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3394, __extension__ __PRETTY_FUNCTION__)) | |||
| 3393 | getEffectiveSCEVType(RHS->getType()) &&(static_cast <bool> (getEffectiveSCEVType(LHS->getType ()) == getEffectiveSCEVType(RHS->getType()) && "SCEVURemExpr operand types don't match!" ) ? void (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVURemExpr operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3394, __extension__ __PRETTY_FUNCTION__)) | |||
| 3394 | "SCEVURemExpr operand types don't match!")(static_cast <bool> (getEffectiveSCEVType(LHS->getType ()) == getEffectiveSCEVType(RHS->getType()) && "SCEVURemExpr operand types don't match!" ) ? void (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVURemExpr operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3394, __extension__ __PRETTY_FUNCTION__)); | |||
| 3395 | ||||
| 3396 | // Short-circuit easy cases | |||
| 3397 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { | |||
| 3398 | // If constant is one, the result is trivial | |||
| 3399 | if (RHSC->getValue()->isOne()) | |||
| 3400 | return getZero(LHS->getType()); // X urem 1 --> 0 | |||
| 3401 | ||||
| 3402 | // If constant is a power of two, fold into a zext(trunc(LHS)). | |||
| 3403 | if (RHSC->getAPInt().isPowerOf2()) { | |||
| 3404 | Type *FullTy = LHS->getType(); | |||
| 3405 | Type *TruncTy = | |||
| 3406 | IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); | |||
| 3407 | return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); | |||
| 3408 | } | |||
| 3409 | } | |||
| 3410 | ||||
| 3411 | // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) | |||
| 3412 | const SCEV *UDiv = getUDivExpr(LHS, RHS); | |||
| 3413 | const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); | |||
| 3414 | return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); | |||
| 3415 | } | |||
| 3416 | ||||
| 3417 | /// Get a canonical unsigned division expression, or something simpler if | |||
| 3418 | /// possible. | |||
| 3419 | const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, | |||
| 3420 | const SCEV *RHS) { | |||
| 3421 | assert(!LHS->getType()->isPointerTy() &&(static_cast <bool> (!LHS->getType()->isPointerTy () && "SCEVUDivExpr operand can't be pointer!") ? void (0) : __assert_fail ("!LHS->getType()->isPointerTy() && \"SCEVUDivExpr operand can't be pointer!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3422, __extension__ __PRETTY_FUNCTION__)) | |||
| 3422 | "SCEVUDivExpr operand can't be pointer!")(static_cast <bool> (!LHS->getType()->isPointerTy () && "SCEVUDivExpr operand can't be pointer!") ? void (0) : __assert_fail ("!LHS->getType()->isPointerTy() && \"SCEVUDivExpr operand can't be pointer!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3422, __extension__ __PRETTY_FUNCTION__)); | |||
| 3423 | assert(LHS->getType() == RHS->getType() &&(static_cast <bool> (LHS->getType() == RHS->getType () && "SCEVUDivExpr operand types don't match!") ? void (0) : __assert_fail ("LHS->getType() == RHS->getType() && \"SCEVUDivExpr operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3424, __extension__ __PRETTY_FUNCTION__)) | |||
| 3424 | "SCEVUDivExpr operand types don't match!")(static_cast <bool> (LHS->getType() == RHS->getType () && "SCEVUDivExpr operand types don't match!") ? void (0) : __assert_fail ("LHS->getType() == RHS->getType() && \"SCEVUDivExpr operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3424, __extension__ __PRETTY_FUNCTION__)); | |||
| 3425 | ||||
| 3426 | FoldingSetNodeID ID; | |||
| 3427 | ID.AddInteger(scUDivExpr); | |||
| 3428 | ID.AddPointer(LHS); | |||
| 3429 | ID.AddPointer(RHS); | |||
| 3430 | void *IP = nullptr; | |||
| 3431 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) | |||
| 3432 | return S; | |||
| 3433 | ||||
| 3434 | // 0 udiv Y == 0 | |||
| 3435 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) | |||
| 3436 | if (LHSC->getValue()->isZero()) | |||
| 3437 | return LHS; | |||
| 3438 | ||||
| 3439 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { | |||
| 3440 | if (RHSC->getValue()->isOne()) | |||
| 3441 | return LHS; // X udiv 1 --> x | |||
| 3442 | // If the denominator is zero, the result of the udiv is undefined. Don't | |||
| 3443 | // try to analyze it, because the resolution chosen here may differ from | |||
| 3444 | // the resolution chosen in other parts of the compiler. | |||
| 3445 | if (!RHSC->getValue()->isZero()) { | |||
| 3446 | // Determine if the division can be folded into the operands of | |||
| 3447 | // its operands. | |||
| 3448 | // TODO: Generalize this to non-constants by using known-bits information. | |||
| 3449 | Type *Ty = LHS->getType(); | |||
| 3450 | unsigned LZ = RHSC->getAPInt().countl_zero(); | |||
| 3451 | unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; | |||
| 3452 | // For non-power-of-two values, effectively round the value up to the | |||
| 3453 | // nearest power of two. | |||
| 3454 | if (!RHSC->getAPInt().isPowerOf2()) | |||
| 3455 | ++MaxShiftAmt; | |||
| 3456 | IntegerType *ExtTy = | |||
| 3457 | IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); | |||
| 3458 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) | |||
| 3459 | if (const SCEVConstant *Step = | |||
| 3460 | dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { | |||
| 3461 | // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. | |||
| 3462 | const APInt &StepInt = Step->getAPInt(); | |||
| 3463 | const APInt &DivInt = RHSC->getAPInt(); | |||
| 3464 | if (!StepInt.urem(DivInt) && | |||
| 3465 | getZeroExtendExpr(AR, ExtTy) == | |||
| 3466 | getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), | |||
| 3467 | getZeroExtendExpr(Step, ExtTy), | |||
| 3468 | AR->getLoop(), SCEV::FlagAnyWrap)) { | |||
| 3469 | SmallVector<const SCEV *, 4> Operands; | |||
| 3470 | for (const SCEV *Op : AR->operands()) | |||
| 3471 | Operands.push_back(getUDivExpr(Op, RHS)); | |||
| 3472 | return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); | |||
| 3473 | } | |||
| 3474 | /// Get a canonical UDivExpr for a recurrence. | |||
| 3475 | /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. | |||
| 3476 | // We can currently only fold X%N if X is constant. | |||
| 3477 | const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); | |||
| 3478 | if (StartC && !DivInt.urem(StepInt) && | |||
| 3479 | getZeroExtendExpr(AR, ExtTy) == | |||
| 3480 | getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), | |||
| 3481 | getZeroExtendExpr(Step, ExtTy), | |||
| 3482 | AR->getLoop(), SCEV::FlagAnyWrap)) { | |||
| 3483 | const APInt &StartInt = StartC->getAPInt(); | |||
| 3484 | const APInt &StartRem = StartInt.urem(StepInt); | |||
| 3485 | if (StartRem != 0) { | |||
| 3486 | const SCEV *NewLHS = | |||
| 3487 | getAddRecExpr(getConstant(StartInt - StartRem), Step, | |||
| 3488 | AR->getLoop(), SCEV::FlagNW); | |||
| 3489 | if (LHS != NewLHS) { | |||
| 3490 | LHS = NewLHS; | |||
| 3491 | ||||
| 3492 | // Reset the ID to include the new LHS, and check if it is | |||
| 3493 | // already cached. | |||
| 3494 | ID.clear(); | |||
| 3495 | ID.AddInteger(scUDivExpr); | |||
| 3496 | ID.AddPointer(LHS); | |||
| 3497 | ID.AddPointer(RHS); | |||
| 3498 | IP = nullptr; | |||
| 3499 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) | |||
| 3500 | return S; | |||
| 3501 | } | |||
| 3502 | } | |||
| 3503 | } | |||
| 3504 | } | |||
| 3505 | // (A*B)/C --> A*(B/C) if safe and B/C can be folded. | |||
| 3506 | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { | |||
| 3507 | SmallVector<const SCEV *, 4> Operands; | |||
| 3508 | for (const SCEV *Op : M->operands()) | |||
| 3509 | Operands.push_back(getZeroExtendExpr(Op, ExtTy)); | |||
| 3510 | if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) | |||
| 3511 | // Find an operand that's safely divisible. | |||
| 3512 | for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { | |||
| 3513 | const SCEV *Op = M->getOperand(i); | |||
| 3514 | const SCEV *Div = getUDivExpr(Op, RHSC); | |||
| 3515 | if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { | |||
| 3516 | Operands = SmallVector<const SCEV *, 4>(M->operands()); | |||
| 3517 | Operands[i] = Div; | |||
| 3518 | return getMulExpr(Operands); | |||
| 3519 | } | |||
| 3520 | } | |||
| 3521 | } | |||
| 3522 | ||||
| 3523 | // (A/B)/C --> A/(B*C) if safe and B*C can be folded. | |||
| 3524 | if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { | |||
| 3525 | if (auto *DivisorConstant = | |||
| 3526 | dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { | |||
| 3527 | bool Overflow = false; | |||
| 3528 | APInt NewRHS = | |||
| 3529 | DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); | |||
| 3530 | if (Overflow) { | |||
| 3531 | return getConstant(RHSC->getType(), 0, false); | |||
| 3532 | } | |||
| 3533 | return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); | |||
| 3534 | } | |||
| 3535 | } | |||
| 3536 | ||||
| 3537 | // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. | |||
| 3538 | if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { | |||
| 3539 | SmallVector<const SCEV *, 4> Operands; | |||
| 3540 | for (const SCEV *Op : A->operands()) | |||
| 3541 | Operands.push_back(getZeroExtendExpr(Op, ExtTy)); | |||
| 3542 | if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { | |||
| 3543 | Operands.clear(); | |||
| 3544 | for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { | |||
| 3545 | const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); | |||
| 3546 | if (isa<SCEVUDivExpr>(Op) || | |||
| 3547 | getMulExpr(Op, RHS) != A->getOperand(i)) | |||
| 3548 | break; | |||
| 3549 | Operands.push_back(Op); | |||
| 3550 | } | |||
| 3551 | if (Operands.size() == A->getNumOperands()) | |||
| 3552 | return getAddExpr(Operands); | |||
| 3553 | } | |||
| 3554 | } | |||
| 3555 | ||||
| 3556 | // Fold if both operands are constant. | |||
| 3557 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) | |||
| 3558 | return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt())); | |||
| 3559 | } | |||
| 3560 | } | |||
| 3561 | ||||
| 3562 | // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs | |||
| 3563 | // changes). Make sure we get a new one. | |||
| 3564 | IP = nullptr; | |||
| 3565 | if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; | |||
| 3566 | SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), | |||
| 3567 | LHS, RHS); | |||
| 3568 | UniqueSCEVs.InsertNode(S, IP); | |||
| 3569 | registerUser(S, {LHS, RHS}); | |||
| 3570 | return S; | |||
| 3571 | } | |||
| 3572 | ||||
| 3573 | APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { | |||
| 3574 | APInt A = C1->getAPInt().abs(); | |||
| 3575 | APInt B = C2->getAPInt().abs(); | |||
| 3576 | uint32_t ABW = A.getBitWidth(); | |||
| 3577 | uint32_t BBW = B.getBitWidth(); | |||
| 3578 | ||||
| 3579 | if (ABW > BBW) | |||
| 3580 | B = B.zext(ABW); | |||
| 3581 | else if (ABW < BBW) | |||
| 3582 | A = A.zext(BBW); | |||
| 3583 | ||||
| 3584 | return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); | |||
| 3585 | } | |||
| 3586 | ||||
| 3587 | /// Get a canonical unsigned division expression, or something simpler if | |||
| 3588 | /// possible. There is no representation for an exact udiv in SCEV IR, but we | |||
| 3589 | /// can attempt to remove factors from the LHS and RHS. We can't do this when | |||
| 3590 | /// it's not exact because the udiv may be clearing bits. | |||
| 3591 | const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, | |||
| 3592 | const SCEV *RHS) { | |||
| 3593 | // TODO: we could try to find factors in all sorts of things, but for now we | |||
| 3594 | // just deal with u/exact (multiply, constant). See SCEVDivision towards the | |||
| 3595 | // end of this file for inspiration. | |||
| 3596 | ||||
| 3597 | const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); | |||
| 3598 | if (!Mul || !Mul->hasNoUnsignedWrap()) | |||
| 3599 | return getUDivExpr(LHS, RHS); | |||
| 3600 | ||||
| 3601 | if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { | |||
| 3602 | // If the mulexpr multiplies by a constant, then that constant must be the | |||
| 3603 | // first element of the mulexpr. | |||
| 3604 | if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { | |||
| 3605 | if (LHSCst == RHSCst) { | |||
| 3606 | SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); | |||
| 3607 | return getMulExpr(Operands); | |||
| 3608 | } | |||
| 3609 | ||||
| 3610 | // We can't just assume that LHSCst divides RHSCst cleanly, it could be | |||
| 3611 | // that there's a factor provided by one of the other terms. We need to | |||
| 3612 | // check. | |||
| 3613 | APInt Factor = gcd(LHSCst, RHSCst); | |||
| 3614 | if (!Factor.isIntN(1)) { | |||
| 3615 | LHSCst = | |||
| 3616 | cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); | |||
| 3617 | RHSCst = | |||
| 3618 | cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); | |||
| 3619 | SmallVector<const SCEV *, 2> Operands; | |||
| 3620 | Operands.push_back(LHSCst); | |||
| 3621 | append_range(Operands, Mul->operands().drop_front()); | |||
| 3622 | LHS = getMulExpr(Operands); | |||
| 3623 | RHS = RHSCst; | |||
| 3624 | Mul = dyn_cast<SCEVMulExpr>(LHS); | |||
| 3625 | if (!Mul) | |||
| 3626 | return getUDivExactExpr(LHS, RHS); | |||
| 3627 | } | |||
| 3628 | } | |||
| 3629 | } | |||
| 3630 | ||||
| 3631 | for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { | |||
| 3632 | if (Mul->getOperand(i) == RHS) { | |||
| 3633 | SmallVector<const SCEV *, 2> Operands; | |||
| 3634 | append_range(Operands, Mul->operands().take_front(i)); | |||
| 3635 | append_range(Operands, Mul->operands().drop_front(i + 1)); | |||
| 3636 | return getMulExpr(Operands); | |||
| 3637 | } | |||
| 3638 | } | |||
| 3639 | ||||
| 3640 | return getUDivExpr(LHS, RHS); | |||
| 3641 | } | |||
| 3642 | ||||
| 3643 | /// Get an add recurrence expression for the specified loop. Simplify the | |||
| 3644 | /// expression as much as possible. | |||
| 3645 | const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, | |||
| 3646 | const Loop *L, | |||
| 3647 | SCEV::NoWrapFlags Flags) { | |||
| 3648 | SmallVector<const SCEV *, 4> Operands; | |||
| 3649 | Operands.push_back(Start); | |||
| 3650 | if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) | |||
| 3651 | if (StepChrec->getLoop() == L) { | |||
| 3652 | append_range(Operands, StepChrec->operands()); | |||
| 3653 | return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); | |||
| 3654 | } | |||
| 3655 | ||||
| 3656 | Operands.push_back(Step); | |||
| 3657 | return getAddRecExpr(Operands, L, Flags); | |||
| 3658 | } | |||
| 3659 | ||||
| 3660 | /// Get an add recurrence expression for the specified loop. Simplify the | |||
| 3661 | /// expression as much as possible. | |||
| 3662 | const SCEV * | |||
| 3663 | ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, | |||
| 3664 | const Loop *L, SCEV::NoWrapFlags Flags) { | |||
| 3665 | if (Operands.size() == 1) return Operands[0]; | |||
| 3666 | #ifndef NDEBUG | |||
| 3667 | Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); | |||
| 3668 | for (unsigned i = 1, e = Operands.size(); i != e; ++i) { | |||
| 3669 | assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&(static_cast <bool> (getEffectiveSCEVType(Operands[i]-> getType()) == ETy && "SCEVAddRecExpr operand types don't match!" ) ? void (0) : __assert_fail ("getEffectiveSCEVType(Operands[i]->getType()) == ETy && \"SCEVAddRecExpr operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3670, __extension__ __PRETTY_FUNCTION__)) | |||
| 3670 | "SCEVAddRecExpr operand types don't match!")(static_cast <bool> (getEffectiveSCEVType(Operands[i]-> getType()) == ETy && "SCEVAddRecExpr operand types don't match!" ) ? void (0) : __assert_fail ("getEffectiveSCEVType(Operands[i]->getType()) == ETy && \"SCEVAddRecExpr operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3670, __extension__ __PRETTY_FUNCTION__)); | |||
| 3671 | assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer")(static_cast <bool> (!Operands[i]->getType()->isPointerTy () && "Step must be integer") ? void (0) : __assert_fail ("!Operands[i]->getType()->isPointerTy() && \"Step must be integer\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3671, __extension__ __PRETTY_FUNCTION__)); | |||
| 3672 | } | |||
| 3673 | for (unsigned i = 0, e = Operands.size(); i != e; ++i) | |||
| 3674 | assert(isLoopInvariant(Operands[i], L) &&(static_cast <bool> (isLoopInvariant(Operands[i], L) && "SCEVAddRecExpr operand is not loop-invariant!") ? void (0) : __assert_fail ("isLoopInvariant(Operands[i], L) && \"SCEVAddRecExpr operand is not loop-invariant!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3675, __extension__ __PRETTY_FUNCTION__)) | |||
| 3675 | "SCEVAddRecExpr operand is not loop-invariant!")(static_cast <bool> (isLoopInvariant(Operands[i], L) && "SCEVAddRecExpr operand is not loop-invariant!") ? void (0) : __assert_fail ("isLoopInvariant(Operands[i], L) && \"SCEVAddRecExpr operand is not loop-invariant!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3675, __extension__ __PRETTY_FUNCTION__)); | |||
| 3676 | #endif | |||
| 3677 | ||||
| 3678 | if (Operands.back()->isZero()) { | |||
| 3679 | Operands.pop_back(); | |||
| 3680 | return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X | |||
| 3681 | } | |||
| 3682 | ||||
| 3683 | // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and | |||
| 3684 | // use that information to infer NUW and NSW flags. However, computing a | |||
| 3685 | // BE count requires calling getAddRecExpr, so we may not yet have a | |||
| 3686 | // meaningful BE count at this point (and if we don't, we'd be stuck | |||
| 3687 | // with a SCEVCouldNotCompute as the cached BE count). | |||
| 3688 | ||||
| 3689 | Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); | |||
| 3690 | ||||
| 3691 | // Canonicalize nested AddRecs in by nesting them in order of loop depth. | |||
| 3692 | if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { | |||
| 3693 | const Loop *NestedLoop = NestedAR->getLoop(); | |||
| 3694 | if (L->contains(NestedLoop) | |||
| 3695 | ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) | |||
| 3696 | : (!NestedLoop->contains(L) && | |||
| 3697 | DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { | |||
| 3698 | SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); | |||
| 3699 | Operands[0] = NestedAR->getStart(); | |||
| 3700 | // AddRecs require their operands be loop-invariant with respect to their | |||
| 3701 | // loops. Don't perform this transformation if it would break this | |||
| 3702 | // requirement. | |||
| 3703 | bool AllInvariant = all_of( | |||
| 3704 | Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); | |||
| 3705 | ||||
| 3706 | if (AllInvariant) { | |||
| 3707 | // Create a recurrence for the outer loop with the same step size. | |||
| 3708 | // | |||
| 3709 | // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the | |||
| 3710 | // inner recurrence has the same property. | |||
| 3711 | SCEV::NoWrapFlags OuterFlags = | |||
| 3712 | maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); | |||
| 3713 | ||||
| 3714 | NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); | |||
| 3715 | AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { | |||
| 3716 | return isLoopInvariant(Op, NestedLoop); | |||
| 3717 | }); | |||
| 3718 | ||||
| 3719 | if (AllInvariant) { | |||
| 3720 | // Ok, both add recurrences are valid after the transformation. | |||
| 3721 | // | |||
| 3722 | // The inner recurrence keeps its NW flag but only keeps NUW/NSW if | |||
| 3723 | // the outer recurrence has the same property. | |||
| 3724 | SCEV::NoWrapFlags InnerFlags = | |||
| 3725 | maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); | |||
| 3726 | return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); | |||
| 3727 | } | |||
| 3728 | } | |||
| 3729 | // Reset Operands to its original state. | |||
| 3730 | Operands[0] = NestedAR; | |||
| 3731 | } | |||
| 3732 | } | |||
| 3733 | ||||
| 3734 | // Okay, it looks like we really DO need an addrec expr. Check to see if we | |||
| 3735 | // already have one, otherwise create a new one. | |||
| 3736 | return getOrCreateAddRecExpr(Operands, L, Flags); | |||
| 3737 | } | |||
| 3738 | ||||
| 3739 | const SCEV * | |||
| 3740 | ScalarEvolution::getGEPExpr(GEPOperator *GEP, | |||
| 3741 | const SmallVectorImpl<const SCEV *> &IndexExprs) { | |||
| 3742 | const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); | |||
| 3743 | // getSCEV(Base)->getType() has the same address space as Base->getType() | |||
| 3744 | // because SCEV::getType() preserves the address space. | |||
| 3745 | Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); | |||
| 3746 | const bool AssumeInBoundsFlags = [&]() { | |||
| 3747 | if (!GEP->isInBounds()) | |||
| 3748 | return false; | |||
| 3749 | ||||
| 3750 | // We'd like to propagate flags from the IR to the corresponding SCEV nodes, | |||
| 3751 | // but to do that, we have to ensure that said flag is valid in the entire | |||
| 3752 | // defined scope of the SCEV. | |||
| 3753 | auto *GEPI = dyn_cast<Instruction>(GEP); | |||
| 3754 | // TODO: non-instructions have global scope. We might be able to prove | |||
| 3755 | // some global scope cases | |||
| 3756 | return GEPI && isSCEVExprNeverPoison(GEPI); | |||
| 3757 | }(); | |||
| 3758 | ||||
| 3759 | SCEV::NoWrapFlags OffsetWrap = | |||
| 3760 | AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; | |||
| 3761 | ||||
| 3762 | Type *CurTy = GEP->getType(); | |||
| 3763 | bool FirstIter = true; | |||
| 3764 | SmallVector<const SCEV *, 4> Offsets; | |||
| 3765 | for (const SCEV *IndexExpr : IndexExprs) { | |||
| 3766 | // Compute the (potentially symbolic) offset in bytes for this index. | |||
| 3767 | if (StructType *STy = dyn_cast<StructType>(CurTy)) { | |||
| 3768 | // For a struct, add the member offset. | |||
| 3769 | ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); | |||
| 3770 | unsigned FieldNo = Index->getZExtValue(); | |||
| 3771 | const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); | |||
| 3772 | Offsets.push_back(FieldOffset); | |||
| 3773 | ||||
| 3774 | // Update CurTy to the type of the field at Index. | |||
| 3775 | CurTy = STy->getTypeAtIndex(Index); | |||
| 3776 | } else { | |||
| 3777 | // Update CurTy to its element type. | |||
| 3778 | if (FirstIter) { | |||
| 3779 | assert(isa<PointerType>(CurTy) &&(static_cast <bool> (isa<PointerType>(CurTy) && "The first index of a GEP indexes a pointer") ? void (0) : __assert_fail ("isa<PointerType>(CurTy) && \"The first index of a GEP indexes a pointer\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3780, __extension__ __PRETTY_FUNCTION__)) | |||
| 3780 | "The first index of a GEP indexes a pointer")(static_cast <bool> (isa<PointerType>(CurTy) && "The first index of a GEP indexes a pointer") ? void (0) : __assert_fail ("isa<PointerType>(CurTy) && \"The first index of a GEP indexes a pointer\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3780, __extension__ __PRETTY_FUNCTION__)); | |||
| 3781 | CurTy = GEP->getSourceElementType(); | |||
| 3782 | FirstIter = false; | |||
| 3783 | } else { | |||
| 3784 | CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); | |||
| 3785 | } | |||
| 3786 | // For an array, add the element offset, explicitly scaled. | |||
| 3787 | const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); | |||
| 3788 | // Getelementptr indices are signed. | |||
| 3789 | IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); | |||
| 3790 | ||||
| 3791 | // Multiply the index by the element size to compute the element offset. | |||
| 3792 | const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); | |||
| 3793 | Offsets.push_back(LocalOffset); | |||
| 3794 | } | |||
| 3795 | } | |||
| 3796 | ||||
| 3797 | // Handle degenerate case of GEP without offsets. | |||
| 3798 | if (Offsets.empty()) | |||
| 3799 | return BaseExpr; | |||
| 3800 | ||||
| 3801 | // Add the offsets together, assuming nsw if inbounds. | |||
| 3802 | const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); | |||
| 3803 | // Add the base address and the offset. We cannot use the nsw flag, as the | |||
| 3804 | // base address is unsigned. However, if we know that the offset is | |||
| 3805 | // non-negative, we can use nuw. | |||
| 3806 | SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) | |||
| 3807 | ? SCEV::FlagNUW : SCEV::FlagAnyWrap; | |||
| 3808 | auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); | |||
| 3809 | assert(BaseExpr->getType() == GEPExpr->getType() &&(static_cast <bool> (BaseExpr->getType() == GEPExpr-> getType() && "GEP should not change type mid-flight." ) ? void (0) : __assert_fail ("BaseExpr->getType() == GEPExpr->getType() && \"GEP should not change type mid-flight.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3810, __extension__ __PRETTY_FUNCTION__)) | |||
| 3810 | "GEP should not change type mid-flight.")(static_cast <bool> (BaseExpr->getType() == GEPExpr-> getType() && "GEP should not change type mid-flight." ) ? void (0) : __assert_fail ("BaseExpr->getType() == GEPExpr->getType() && \"GEP should not change type mid-flight.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3810, __extension__ __PRETTY_FUNCTION__)); | |||
| 3811 | return GEPExpr; | |||
| 3812 | } | |||
| 3813 | ||||
| 3814 | SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, | |||
| 3815 | ArrayRef<const SCEV *> Ops) { | |||
| 3816 | FoldingSetNodeID ID; | |||
| 3817 | ID.AddInteger(SCEVType); | |||
| 3818 | for (const SCEV *Op : Ops) | |||
| 3819 | ID.AddPointer(Op); | |||
| 3820 | void *IP = nullptr; | |||
| 3821 | return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); | |||
| 3822 | } | |||
| 3823 | ||||
| 3824 | const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { | |||
| 3825 | SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; | |||
| 3826 | return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); | |||
| 3827 | } | |||
| 3828 | ||||
| 3829 | const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, | |||
| 3830 | SmallVectorImpl<const SCEV *> &Ops) { | |||
| 3831 | assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!")(static_cast <bool> (SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!") ? void (0) : __assert_fail ("SCEVMinMaxExpr::isMinMaxType(Kind) && \"Not a SCEVMinMaxExpr!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3831, __extension__ __PRETTY_FUNCTION__)); | |||
| 3832 | assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!")(static_cast <bool> (!Ops.empty() && "Cannot get empty (u|s)(min|max)!" ) ? void (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty (u|s)(min|max)!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3832, __extension__ __PRETTY_FUNCTION__)); | |||
| 3833 | if (Ops.size() == 1) return Ops[0]; | |||
| 3834 | #ifndef NDEBUG | |||
| 3835 | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); | |||
| 3836 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) { | |||
| 3837 | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType ()) == ETy && "Operand types don't match!") ? void (0 ) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"Operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3838, __extension__ __PRETTY_FUNCTION__)) | |||
| 3838 | "Operand types don't match!")(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType ()) == ETy && "Operand types don't match!") ? void (0 ) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"Operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3838, __extension__ __PRETTY_FUNCTION__)); | |||
| 3839 | assert(Ops[0]->getType()->isPointerTy() ==(static_cast <bool> (Ops[0]->getType()->isPointerTy () == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish" ) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3841, __extension__ __PRETTY_FUNCTION__)) | |||
| 3840 | Ops[i]->getType()->isPointerTy() &&(static_cast <bool> (Ops[0]->getType()->isPointerTy () == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish" ) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3841, __extension__ __PRETTY_FUNCTION__)) | |||
| 3841 | "min/max should be consistently pointerish")(static_cast <bool> (Ops[0]->getType()->isPointerTy () == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish" ) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3841, __extension__ __PRETTY_FUNCTION__)); | |||
| 3842 | } | |||
| 3843 | #endif | |||
| 3844 | ||||
| 3845 | bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; | |||
| 3846 | bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; | |||
| 3847 | ||||
| 3848 | // Sort by complexity, this groups all similar expression types together. | |||
| 3849 | GroupByComplexity(Ops, &LI, DT); | |||
| 3850 | ||||
| 3851 | // Check if we have created the same expression before. | |||
| 3852 | if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { | |||
| 3853 | return S; | |||
| 3854 | } | |||
| 3855 | ||||
| 3856 | // If there are any constants, fold them together. | |||
| 3857 | unsigned Idx = 0; | |||
| 3858 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { | |||
| 3859 | ++Idx; | |||
| 3860 | assert(Idx < Ops.size())(static_cast <bool> (Idx < Ops.size()) ? void (0) : __assert_fail ("Idx < Ops.size()", "llvm/lib/Analysis/ScalarEvolution.cpp" , 3860, __extension__ __PRETTY_FUNCTION__)); | |||
| 3861 | auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { | |||
| 3862 | switch (Kind) { | |||
| 3863 | case scSMaxExpr: | |||
| 3864 | return APIntOps::smax(LHS, RHS); | |||
| 3865 | case scSMinExpr: | |||
| 3866 | return APIntOps::smin(LHS, RHS); | |||
| 3867 | case scUMaxExpr: | |||
| 3868 | return APIntOps::umax(LHS, RHS); | |||
| 3869 | case scUMinExpr: | |||
| 3870 | return APIntOps::umin(LHS, RHS); | |||
| 3871 | default: | |||
| 3872 | llvm_unreachable("Unknown SCEV min/max opcode")::llvm::llvm_unreachable_internal("Unknown SCEV min/max opcode" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3872); | |||
| 3873 | } | |||
| 3874 | }; | |||
| 3875 | ||||
| 3876 | while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { | |||
| 3877 | // We found two constants, fold them together! | |||
| 3878 | ConstantInt *Fold = ConstantInt::get( | |||
| 3879 | getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); | |||
| 3880 | Ops[0] = getConstant(Fold); | |||
| 3881 | Ops.erase(Ops.begin()+1); // Erase the folded element | |||
| 3882 | if (Ops.size() == 1) return Ops[0]; | |||
| 3883 | LHSC = cast<SCEVConstant>(Ops[0]); | |||
| 3884 | } | |||
| 3885 | ||||
| 3886 | bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); | |||
| 3887 | bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); | |||
| 3888 | ||||
| 3889 | if (IsMax ? IsMinV : IsMaxV) { | |||
| 3890 | // If we are left with a constant minimum(/maximum)-int, strip it off. | |||
| 3891 | Ops.erase(Ops.begin()); | |||
| 3892 | --Idx; | |||
| 3893 | } else if (IsMax ? IsMaxV : IsMinV) { | |||
| 3894 | // If we have a max(/min) with a constant maximum(/minimum)-int, | |||
| 3895 | // it will always be the extremum. | |||
| 3896 | return LHSC; | |||
| 3897 | } | |||
| 3898 | ||||
| 3899 | if (Ops.size() == 1) return Ops[0]; | |||
| 3900 | } | |||
| 3901 | ||||
| 3902 | // Find the first operation of the same kind | |||
| 3903 | while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) | |||
| 3904 | ++Idx; | |||
| 3905 | ||||
| 3906 | // Check to see if one of the operands is of the same kind. If so, expand its | |||
| 3907 | // operands onto our operand list, and recurse to simplify. | |||
| 3908 | if (Idx < Ops.size()) { | |||
| 3909 | bool DeletedAny = false; | |||
| 3910 | while (Ops[Idx]->getSCEVType() == Kind) { | |||
| 3911 | const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); | |||
| 3912 | Ops.erase(Ops.begin()+Idx); | |||
| 3913 | append_range(Ops, SMME->operands()); | |||
| 3914 | DeletedAny = true; | |||
| 3915 | } | |||
| 3916 | ||||
| 3917 | if (DeletedAny) | |||
| 3918 | return getMinMaxExpr(Kind, Ops); | |||
| 3919 | } | |||
| 3920 | ||||
| 3921 | // Okay, check to see if the same value occurs in the operand list twice. If | |||
| 3922 | // so, delete one. Since we sorted the list, these values are required to | |||
| 3923 | // be adjacent. | |||
| 3924 | llvm::CmpInst::Predicate GEPred = | |||
| 3925 | IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; | |||
| 3926 | llvm::CmpInst::Predicate LEPred = | |||
| 3927 | IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; | |||
| 3928 | llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; | |||
| 3929 | llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; | |||
| 3930 | for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { | |||
| 3931 | if (Ops[i] == Ops[i + 1] || | |||
| 3932 | isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { | |||
| 3933 | // X op Y op Y --> X op Y | |||
| 3934 | // X op Y --> X, if we know X, Y are ordered appropriately | |||
| 3935 | Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); | |||
| 3936 | --i; | |||
| 3937 | --e; | |||
| 3938 | } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], | |||
| 3939 | Ops[i + 1])) { | |||
| 3940 | // X op Y --> Y, if we know X, Y are ordered appropriately | |||
| 3941 | Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); | |||
| 3942 | --i; | |||
| 3943 | --e; | |||
| 3944 | } | |||
| 3945 | } | |||
| 3946 | ||||
| 3947 | if (Ops.size() == 1) return Ops[0]; | |||
| 3948 | ||||
| 3949 | assert(!Ops.empty() && "Reduced smax down to nothing!")(static_cast <bool> (!Ops.empty() && "Reduced smax down to nothing!" ) ? void (0) : __assert_fail ("!Ops.empty() && \"Reduced smax down to nothing!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3949, __extension__ __PRETTY_FUNCTION__)); | |||
| 3950 | ||||
| 3951 | // Okay, it looks like we really DO need an expr. Check to see if we | |||
| 3952 | // already have one, otherwise create a new one. | |||
| 3953 | FoldingSetNodeID ID; | |||
| 3954 | ID.AddInteger(Kind); | |||
| 3955 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | |||
| 3956 | ID.AddPointer(Ops[i]); | |||
| 3957 | void *IP = nullptr; | |||
| 3958 | const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); | |||
| 3959 | if (ExistingSCEV) | |||
| 3960 | return ExistingSCEV; | |||
| 3961 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); | |||
| 3962 | std::uninitialized_copy(Ops.begin(), Ops.end(), O); | |||
| 3963 | SCEV *S = new (SCEVAllocator) | |||
| 3964 | SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); | |||
| 3965 | ||||
| 3966 | UniqueSCEVs.InsertNode(S, IP); | |||
| 3967 | registerUser(S, Ops); | |||
| 3968 | return S; | |||
| 3969 | } | |||
| 3970 | ||||
| 3971 | namespace { | |||
| 3972 | ||||
| 3973 | class SCEVSequentialMinMaxDeduplicatingVisitor final | |||
| 3974 | : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, | |||
| 3975 | std::optional<const SCEV *>> { | |||
| 3976 | using RetVal = std::optional<const SCEV *>; | |||
| 3977 | using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; | |||
| 3978 | ||||
| 3979 | ScalarEvolution &SE; | |||
| 3980 | const SCEVTypes RootKind; // Must be a sequential min/max expression. | |||
| 3981 | const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. | |||
| 3982 | SmallPtrSet<const SCEV *, 16> SeenOps; | |||
| 3983 | ||||
| 3984 | bool canRecurseInto(SCEVTypes Kind) const { | |||
| 3985 | // We can only recurse into the SCEV expression of the same effective type | |||
| 3986 | // as the type of our root SCEV expression. | |||
| 3987 | return RootKind == Kind || NonSequentialRootKind == Kind; | |||
| 3988 | }; | |||
| 3989 | ||||
| 3990 | RetVal visitAnyMinMaxExpr(const SCEV *S) { | |||
| 3991 | assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&(static_cast <bool> ((isa<SCEVMinMaxExpr>(S) || isa <SCEVSequentialMinMaxExpr>(S)) && "Only for min/max expressions." ) ? void (0) : __assert_fail ("(isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && \"Only for min/max expressions.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3992, __extension__ __PRETTY_FUNCTION__)) | |||
| 3992 | "Only for min/max expressions.")(static_cast <bool> ((isa<SCEVMinMaxExpr>(S) || isa <SCEVSequentialMinMaxExpr>(S)) && "Only for min/max expressions." ) ? void (0) : __assert_fail ("(isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && \"Only for min/max expressions.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 3992, __extension__ __PRETTY_FUNCTION__)); | |||
| 3993 | SCEVTypes Kind = S->getSCEVType(); | |||
| 3994 | ||||
| 3995 | if (!canRecurseInto(Kind)) | |||
| 3996 | return S; | |||
| 3997 | ||||
| 3998 | auto *NAry = cast<SCEVNAryExpr>(S); | |||
| 3999 | SmallVector<const SCEV *> NewOps; | |||
| 4000 | bool Changed = visit(Kind, NAry->operands(), NewOps); | |||
| 4001 | ||||
| 4002 | if (!Changed) | |||
| 4003 | return S; | |||
| 4004 | if (NewOps.empty()) | |||
| 4005 | return std::nullopt; | |||
| 4006 | ||||
| 4007 | return isa<SCEVSequentialMinMaxExpr>(S) | |||
| 4008 | ? SE.getSequentialMinMaxExpr(Kind, NewOps) | |||
| 4009 | : SE.getMinMaxExpr(Kind, NewOps); | |||
| 4010 | } | |||
| 4011 | ||||
| 4012 | RetVal visit(const SCEV *S) { | |||
| 4013 | // Has the whole operand been seen already? | |||
| 4014 | if (!SeenOps.insert(S).second) | |||
| 4015 | return std::nullopt; | |||
| 4016 | return Base::visit(S); | |||
| 4017 | } | |||
| 4018 | ||||
| 4019 | public: | |||
| 4020 | SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, | |||
| 4021 | SCEVTypes RootKind) | |||
| 4022 | : SE(SE), RootKind(RootKind), | |||
| 4023 | NonSequentialRootKind( | |||
| 4024 | SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( | |||
| 4025 | RootKind)) {} | |||
| 4026 | ||||
| 4027 | bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, | |||
| 4028 | SmallVectorImpl<const SCEV *> &NewOps) { | |||
| 4029 | bool Changed = false; | |||
| 4030 | SmallVector<const SCEV *> Ops; | |||
| 4031 | Ops.reserve(OrigOps.size()); | |||
| 4032 | ||||
| 4033 | for (const SCEV *Op : OrigOps) { | |||
| 4034 | RetVal NewOp = visit(Op); | |||
| 4035 | if (NewOp != Op) | |||
| 4036 | Changed = true; | |||
| 4037 | if (NewOp) | |||
| 4038 | Ops.emplace_back(*NewOp); | |||
| 4039 | } | |||
| 4040 | ||||
| 4041 | if (Changed) | |||
| 4042 | NewOps = std::move(Ops); | |||
| 4043 | return Changed; | |||
| 4044 | } | |||
| 4045 | ||||
| 4046 | RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } | |||
| 4047 | ||||
| 4048 | RetVal visitVScale(const SCEVVScale *VScale) { return VScale; } | |||
| 4049 | ||||
| 4050 | RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } | |||
| 4051 | ||||
| 4052 | RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } | |||
| 4053 | ||||
| 4054 | RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } | |||
| 4055 | ||||
| 4056 | RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } | |||
| 4057 | ||||
| 4058 | RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } | |||
| 4059 | ||||
| 4060 | RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } | |||
| 4061 | ||||
| 4062 | RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } | |||
| 4063 | ||||
| 4064 | RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } | |||
| 4065 | ||||
| 4066 | RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { | |||
| 4067 | return visitAnyMinMaxExpr(Expr); | |||
| 4068 | } | |||
| 4069 | ||||
| 4070 | RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { | |||
| 4071 | return visitAnyMinMaxExpr(Expr); | |||
| 4072 | } | |||
| 4073 | ||||
| 4074 | RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { | |||
| 4075 | return visitAnyMinMaxExpr(Expr); | |||
| 4076 | } | |||
| 4077 | ||||
| 4078 | RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { | |||
| 4079 | return visitAnyMinMaxExpr(Expr); | |||
| 4080 | } | |||
| 4081 | ||||
| 4082 | RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { | |||
| 4083 | return visitAnyMinMaxExpr(Expr); | |||
| 4084 | } | |||
| 4085 | ||||
| 4086 | RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } | |||
| 4087 | ||||
| 4088 | RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } | |||
| 4089 | }; | |||
| 4090 | ||||
| 4091 | } // namespace | |||
| 4092 | ||||
| 4093 | static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) { | |||
| 4094 | switch (Kind) { | |||
| 4095 | case scConstant: | |||
| 4096 | case scVScale: | |||
| 4097 | case scTruncate: | |||
| 4098 | case scZeroExtend: | |||
| 4099 | case scSignExtend: | |||
| 4100 | case scPtrToInt: | |||
| 4101 | case scAddExpr: | |||
| 4102 | case scMulExpr: | |||
| 4103 | case scUDivExpr: | |||
| 4104 | case scAddRecExpr: | |||
| 4105 | case scUMaxExpr: | |||
| 4106 | case scSMaxExpr: | |||
| 4107 | case scUMinExpr: | |||
| 4108 | case scSMinExpr: | |||
| 4109 | case scUnknown: | |||
| 4110 | // If any operand is poison, the whole expression is poison. | |||
| 4111 | return true; | |||
| 4112 | case scSequentialUMinExpr: | |||
| 4113 | // FIXME: if the *first* operand is poison, the whole expression is poison. | |||
| 4114 | return false; // Pessimistically, say that it does not propagate poison. | |||
| 4115 | case scCouldNotCompute: | |||
| 4116 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4116); | |||
| 4117 | } | |||
| 4118 | llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 4118); | |||
| 4119 | } | |||
| 4120 | ||||
| 4121 | /// Return true if V is poison given that AssumedPoison is already poison. | |||
| 4122 | static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { | |||
| 4123 | // The only way poison may be introduced in a SCEV expression is from a | |||
| 4124 | // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, | |||
| 4125 | // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* | |||
| 4126 | // introduce poison -- they encode guaranteed, non-speculated knowledge. | |||
| 4127 | // | |||
| 4128 | // Additionally, all SCEV nodes propagate poison from inputs to outputs, | |||
| 4129 | // with the notable exception of umin_seq, where only poison from the first | |||
| 4130 | // operand is (unconditionally) propagated. | |||
| 4131 | struct SCEVPoisonCollector { | |||
| 4132 | bool LookThroughMaybePoisonBlocking; | |||
| 4133 | SmallPtrSet<const SCEV *, 4> MaybePoison; | |||
| 4134 | SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking) | |||
| 4135 | : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {} | |||
| 4136 | ||||
| 4137 | bool follow(const SCEV *S) { | |||
| 4138 | if (!LookThroughMaybePoisonBlocking && | |||
| 4139 | !scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType())) | |||
| 4140 | return false; | |||
| 4141 | ||||
| 4142 | if (auto *SU = dyn_cast<SCEVUnknown>(S)) { | |||
| 4143 | if (!isGuaranteedNotToBePoison(SU->getValue())) | |||
| 4144 | MaybePoison.insert(S); | |||
| 4145 | } | |||
| 4146 | return true; | |||
| 4147 | } | |||
| 4148 | bool isDone() const { return false; } | |||
| 4149 | }; | |||
| 4150 | ||||
| 4151 | // First collect all SCEVs that might result in AssumedPoison to be poison. | |||
| 4152 | // We need to look through potentially poison-blocking operations here, | |||
| 4153 | // because we want to find all SCEVs that *might* result in poison, not only | |||
| 4154 | // those that are *required* to. | |||
| 4155 | SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true); | |||
| 4156 | visitAll(AssumedPoison, PC1); | |||
| 4157 | ||||
| 4158 | // AssumedPoison is never poison. As the assumption is false, the implication | |||
| 4159 | // is true. Don't bother walking the other SCEV in this case. | |||
| 4160 | if (PC1.MaybePoison.empty()) | |||
| 4161 | return true; | |||
| 4162 | ||||
| 4163 | // Collect all SCEVs in S that, if poison, *will* result in S being poison | |||
| 4164 | // as well. We cannot look through potentially poison-blocking operations | |||
| 4165 | // here, as their arguments only *may* make the result poison. | |||
| 4166 | SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false); | |||
| 4167 | visitAll(S, PC2); | |||
| 4168 | ||||
| 4169 | // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, | |||
| 4170 | // it will also make S poison by being part of PC2.MaybePoison. | |||
| 4171 | return all_of(PC1.MaybePoison, | |||
| 4172 | [&](const SCEV *S) { return PC2.MaybePoison.contains(S); }); | |||
| 4173 | } | |||
| 4174 | ||||
| 4175 | const SCEV * | |||
| 4176 | ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, | |||
| 4177 | SmallVectorImpl<const SCEV *> &Ops) { | |||
| 4178 | assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&(static_cast <bool> (SCEVSequentialMinMaxExpr::isSequentialMinMaxType (Kind) && "Not a SCEVSequentialMinMaxExpr!") ? void ( 0) : __assert_fail ("SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && \"Not a SCEVSequentialMinMaxExpr!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4179, __extension__ __PRETTY_FUNCTION__)) | |||
| 4179 | "Not a SCEVSequentialMinMaxExpr!")(static_cast <bool> (SCEVSequentialMinMaxExpr::isSequentialMinMaxType (Kind) && "Not a SCEVSequentialMinMaxExpr!") ? void ( 0) : __assert_fail ("SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && \"Not a SCEVSequentialMinMaxExpr!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4179, __extension__ __PRETTY_FUNCTION__)); | |||
| 4180 | assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!")(static_cast <bool> (!Ops.empty() && "Cannot get empty (u|s)(min|max)!" ) ? void (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty (u|s)(min|max)!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4180, __extension__ __PRETTY_FUNCTION__)); | |||
| 4181 | if (Ops.size() == 1) | |||
| 4182 | return Ops[0]; | |||
| 4183 | #ifndef NDEBUG | |||
| 4184 | Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); | |||
| 4185 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) { | |||
| 4186 | assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType ()) == ETy && "Operand types don't match!") ? void (0 ) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"Operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4187, __extension__ __PRETTY_FUNCTION__)) | |||
| 4187 | "Operand types don't match!")(static_cast <bool> (getEffectiveSCEVType(Ops[i]->getType ()) == ETy && "Operand types don't match!") ? void (0 ) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"Operand types don't match!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4187, __extension__ __PRETTY_FUNCTION__)); | |||
| 4188 | assert(Ops[0]->getType()->isPointerTy() ==(static_cast <bool> (Ops[0]->getType()->isPointerTy () == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish" ) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4190, __extension__ __PRETTY_FUNCTION__)) | |||
| 4189 | Ops[i]->getType()->isPointerTy() &&(static_cast <bool> (Ops[0]->getType()->isPointerTy () == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish" ) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4190, __extension__ __PRETTY_FUNCTION__)) | |||
| 4190 | "min/max should be consistently pointerish")(static_cast <bool> (Ops[0]->getType()->isPointerTy () == Ops[i]->getType()->isPointerTy() && "min/max should be consistently pointerish" ) ? void (0) : __assert_fail ("Ops[0]->getType()->isPointerTy() == Ops[i]->getType()->isPointerTy() && \"min/max should be consistently pointerish\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4190, __extension__ __PRETTY_FUNCTION__)); | |||
| 4191 | } | |||
| 4192 | #endif | |||
| 4193 | ||||
| 4194 | // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, | |||
| 4195 | // so we can *NOT* do any kind of sorting of the expressions! | |||
| 4196 | ||||
| 4197 | // Check if we have created the same expression before. | |||
| 4198 | if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) | |||
| 4199 | return S; | |||
| 4200 | ||||
| 4201 | // FIXME: there are *some* simplifications that we can do here. | |||
| 4202 | ||||
| 4203 | // Keep only the first instance of an operand. | |||
| 4204 | { | |||
| 4205 | SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); | |||
| 4206 | bool Changed = Deduplicator.visit(Kind, Ops, Ops); | |||
| 4207 | if (Changed) | |||
| 4208 | return getSequentialMinMaxExpr(Kind, Ops); | |||
| 4209 | } | |||
| 4210 | ||||
| 4211 | // Check to see if one of the operands is of the same kind. If so, expand its | |||
| 4212 | // operands onto our operand list, and recurse to simplify. | |||
| 4213 | { | |||
| 4214 | unsigned Idx = 0; | |||
| 4215 | bool DeletedAny = false; | |||
| 4216 | while (Idx < Ops.size()) { | |||
| 4217 | if (Ops[Idx]->getSCEVType() != Kind) { | |||
| 4218 | ++Idx; | |||
| 4219 | continue; | |||
| 4220 | } | |||
| 4221 | const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); | |||
| 4222 | Ops.erase(Ops.begin() + Idx); | |||
| 4223 | Ops.insert(Ops.begin() + Idx, SMME->operands().begin(), | |||
| 4224 | SMME->operands().end()); | |||
| 4225 | DeletedAny = true; | |||
| 4226 | } | |||
| 4227 | ||||
| 4228 | if (DeletedAny) | |||
| 4229 | return getSequentialMinMaxExpr(Kind, Ops); | |||
| 4230 | } | |||
| 4231 | ||||
| 4232 | const SCEV *SaturationPoint; | |||
| 4233 | ICmpInst::Predicate Pred; | |||
| 4234 | switch (Kind) { | |||
| 4235 | case scSequentialUMinExpr: | |||
| 4236 | SaturationPoint = getZero(Ops[0]->getType()); | |||
| 4237 | Pred = ICmpInst::ICMP_ULE; | |||
| 4238 | break; | |||
| 4239 | default: | |||
| 4240 | llvm_unreachable("Not a sequential min/max type.")::llvm::llvm_unreachable_internal("Not a sequential min/max type." , "llvm/lib/Analysis/ScalarEvolution.cpp", 4240); | |||
| 4241 | } | |||
| 4242 | ||||
| 4243 | for (unsigned i = 1, e = Ops.size(); i != e; ++i) { | |||
| 4244 | // We can replace %x umin_seq %y with %x umin %y if either: | |||
| 4245 | // * %y being poison implies %x is also poison. | |||
| 4246 | // * %x cannot be the saturating value (e.g. zero for umin). | |||
| 4247 | if (::impliesPoison(Ops[i], Ops[i - 1]) || | |||
| 4248 | isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1], | |||
| 4249 | SaturationPoint)) { | |||
| 4250 | SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; | |||
| 4251 | Ops[i - 1] = getMinMaxExpr( | |||
| 4252 | SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), | |||
| 4253 | SeqOps); | |||
| 4254 | Ops.erase(Ops.begin() + i); | |||
| 4255 | return getSequentialMinMaxExpr(Kind, Ops); | |||
| 4256 | } | |||
| 4257 | // Fold %x umin_seq %y to %x if %x ule %y. | |||
| 4258 | // TODO: We might be able to prove the predicate for a later operand. | |||
| 4259 | if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) { | |||
| 4260 | Ops.erase(Ops.begin() + i); | |||
| 4261 | return getSequentialMinMaxExpr(Kind, Ops); | |||
| 4262 | } | |||
| 4263 | } | |||
| 4264 | ||||
| 4265 | // Okay, it looks like we really DO need an expr. Check to see if we | |||
| 4266 | // already have one, otherwise create a new one. | |||
| 4267 | FoldingSetNodeID ID; | |||
| 4268 | ID.AddInteger(Kind); | |||
| 4269 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | |||
| 4270 | ID.AddPointer(Ops[i]); | |||
| 4271 | void *IP = nullptr; | |||
| 4272 | const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); | |||
| 4273 | if (ExistingSCEV) | |||
| 4274 | return ExistingSCEV; | |||
| 4275 | ||||
| 4276 | const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); | |||
| 4277 | std::uninitialized_copy(Ops.begin(), Ops.end(), O); | |||
| 4278 | SCEV *S = new (SCEVAllocator) | |||
| 4279 | SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); | |||
| 4280 | ||||
| 4281 | UniqueSCEVs.InsertNode(S, IP); | |||
| 4282 | registerUser(S, Ops); | |||
| 4283 | return S; | |||
| 4284 | } | |||
| 4285 | ||||
| 4286 | const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { | |||
| 4287 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; | |||
| 4288 | return getSMaxExpr(Ops); | |||
| 4289 | } | |||
| 4290 | ||||
| 4291 | const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { | |||
| 4292 | return getMinMaxExpr(scSMaxExpr, Ops); | |||
| 4293 | } | |||
| 4294 | ||||
| 4295 | const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { | |||
| 4296 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; | |||
| 4297 | return getUMaxExpr(Ops); | |||
| 4298 | } | |||
| 4299 | ||||
| 4300 | const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { | |||
| 4301 | return getMinMaxExpr(scUMaxExpr, Ops); | |||
| 4302 | } | |||
| 4303 | ||||
| 4304 | const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, | |||
| 4305 | const SCEV *RHS) { | |||
| 4306 | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; | |||
| 4307 | return getSMinExpr(Ops); | |||
| 4308 | } | |||
| 4309 | ||||
| 4310 | const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { | |||
| 4311 | return getMinMaxExpr(scSMinExpr, Ops); | |||
| 4312 | } | |||
| 4313 | ||||
| 4314 | const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, | |||
| 4315 | bool Sequential) { | |||
| 4316 | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; | |||
| 4317 | return getUMinExpr(Ops, Sequential); | |||
| 4318 | } | |||
| 4319 | ||||
| 4320 | const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, | |||
| 4321 | bool Sequential) { | |||
| 4322 | return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) | |||
| 4323 | : getMinMaxExpr(scUMinExpr, Ops); | |||
| 4324 | } | |||
| 4325 | ||||
| 4326 | const SCEV * | |||
| 4327 | ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) { | |||
| 4328 | const SCEV *Res = getConstant(IntTy, Size.getKnownMinValue()); | |||
| 4329 | if (Size.isScalable()) | |||
| 4330 | Res = getMulExpr(Res, getVScale(IntTy)); | |||
| 4331 | return Res; | |||
| 4332 | } | |||
| 4333 | ||||
| 4334 | const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { | |||
| 4335 | return getSizeOfExpr(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); | |||
| 4336 | } | |||
| 4337 | ||||
| 4338 | const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { | |||
| 4339 | return getSizeOfExpr(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); | |||
| 4340 | } | |||
| 4341 | ||||
| 4342 | const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, | |||
| 4343 | StructType *STy, | |||
| 4344 | unsigned FieldNo) { | |||
| 4345 | // We can bypass creating a target-independent constant expression and then | |||
| 4346 | // folding it back into a ConstantInt. This is just a compile-time | |||
| 4347 | // optimization. | |||
| 4348 | return getConstant( | |||
| 4349 | IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); | |||
| 4350 | } | |||
| 4351 | ||||
| 4352 | const SCEV *ScalarEvolution::getUnknown(Value *V) { | |||
| 4353 | // Don't attempt to do anything other than create a SCEVUnknown object | |||
| 4354 | // here. createSCEV only calls getUnknown after checking for all other | |||
| 4355 | // interesting possibilities, and any other code that calls getUnknown | |||
| 4356 | // is doing so in order to hide a value from SCEV canonicalization. | |||
| 4357 | ||||
| 4358 | FoldingSetNodeID ID; | |||
| 4359 | ID.AddInteger(scUnknown); | |||
| 4360 | ID.AddPointer(V); | |||
| 4361 | void *IP = nullptr; | |||
| 4362 | if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { | |||
| 4363 | assert(cast<SCEVUnknown>(S)->getValue() == V &&(static_cast <bool> (cast<SCEVUnknown>(S)->getValue () == V && "Stale SCEVUnknown in uniquing map!") ? void (0) : __assert_fail ("cast<SCEVUnknown>(S)->getValue() == V && \"Stale SCEVUnknown in uniquing map!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4364, __extension__ __PRETTY_FUNCTION__)) | |||
| 4364 | "Stale SCEVUnknown in uniquing map!")(static_cast <bool> (cast<SCEVUnknown>(S)->getValue () == V && "Stale SCEVUnknown in uniquing map!") ? void (0) : __assert_fail ("cast<SCEVUnknown>(S)->getValue() == V && \"Stale SCEVUnknown in uniquing map!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4364, __extension__ __PRETTY_FUNCTION__)); | |||
| 4365 | return S; | |||
| 4366 | } | |||
| 4367 | SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, | |||
| 4368 | FirstUnknown); | |||
| 4369 | FirstUnknown = cast<SCEVUnknown>(S); | |||
| 4370 | UniqueSCEVs.InsertNode(S, IP); | |||
| 4371 | return S; | |||
| 4372 | } | |||
| 4373 | ||||
| 4374 | //===----------------------------------------------------------------------===// | |||
| 4375 | // Basic SCEV Analysis and PHI Idiom Recognition Code | |||
| 4376 | // | |||
| 4377 | ||||
| 4378 | /// Test if values of the given type are analyzable within the SCEV | |||
| 4379 | /// framework. This primarily includes integer types, and it can optionally | |||
| 4380 | /// include pointer types if the ScalarEvolution class has access to | |||
| 4381 | /// target-specific information. | |||
| 4382 | bool ScalarEvolution::isSCEVable(Type *Ty) const { | |||
| 4383 | // Integers and pointers are always SCEVable. | |||
| 4384 | return Ty->isIntOrPtrTy(); | |||
| 4385 | } | |||
| 4386 | ||||
| 4387 | /// Return the size in bits of the specified type, for which isSCEVable must | |||
| 4388 | /// return true. | |||
| 4389 | uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { | |||
| 4390 | assert(isSCEVable(Ty) && "Type is not SCEVable!")(static_cast <bool> (isSCEVable(Ty) && "Type is not SCEVable!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"Type is not SCEVable!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4390, __extension__ __PRETTY_FUNCTION__)); | |||
| 4391 | if (Ty->isPointerTy()) | |||
| 4392 | return getDataLayout().getIndexTypeSizeInBits(Ty); | |||
| 4393 | return getDataLayout().getTypeSizeInBits(Ty); | |||
| 4394 | } | |||
| 4395 | ||||
| 4396 | /// Return a type with the same bitwidth as the given type and which represents | |||
| 4397 | /// how SCEV will treat the given type, for which isSCEVable must return | |||
| 4398 | /// true. For pointer types, this is the pointer index sized integer type. | |||
| 4399 | Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { | |||
| 4400 | assert(isSCEVable(Ty) && "Type is not SCEVable!")(static_cast <bool> (isSCEVable(Ty) && "Type is not SCEVable!" ) ? void (0) : __assert_fail ("isSCEVable(Ty) && \"Type is not SCEVable!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4400, __extension__ __PRETTY_FUNCTION__)); | |||
| 4401 | ||||
| 4402 | if (Ty->isIntegerTy()) | |||
| 4403 | return Ty; | |||
| 4404 | ||||
| 4405 | // The only other support type is pointer. | |||
| 4406 | assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!")(static_cast <bool> (Ty->isPointerTy() && "Unexpected non-pointer non-integer type!" ) ? void (0) : __assert_fail ("Ty->isPointerTy() && \"Unexpected non-pointer non-integer type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4406, __extension__ __PRETTY_FUNCTION__)); | |||
| 4407 | return getDataLayout().getIndexType(Ty); | |||
| 4408 | } | |||
| 4409 | ||||
| 4410 | Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { | |||
| 4411 | return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; | |||
| 4412 | } | |||
| 4413 | ||||
| 4414 | bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, | |||
| 4415 | const SCEV *B) { | |||
| 4416 | /// For a valid use point to exist, the defining scope of one operand | |||
| 4417 | /// must dominate the other. | |||
| 4418 | bool PreciseA, PreciseB; | |||
| 4419 | auto *ScopeA = getDefiningScopeBound({A}, PreciseA); | |||
| 4420 | auto *ScopeB = getDefiningScopeBound({B}, PreciseB); | |||
| 4421 | if (!PreciseA || !PreciseB) | |||
| 4422 | // Can't tell. | |||
| 4423 | return false; | |||
| 4424 | return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || | |||
| 4425 | DT.dominates(ScopeB, ScopeA); | |||
| 4426 | } | |||
| 4427 | ||||
| 4428 | ||||
| 4429 | const SCEV *ScalarEvolution::getCouldNotCompute() { | |||
| 4430 | return CouldNotCompute.get(); | |||
| 4431 | } | |||
| 4432 | ||||
| 4433 | bool ScalarEvolution::checkValidity(const SCEV *S) const { | |||
| 4434 | bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { | |||
| 4435 | auto *SU = dyn_cast<SCEVUnknown>(S); | |||
| 4436 | return SU && SU->getValue() == nullptr; | |||
| 4437 | }); | |||
| 4438 | ||||
| 4439 | return !ContainsNulls; | |||
| 4440 | } | |||
| 4441 | ||||
| 4442 | bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { | |||
| 4443 | HasRecMapType::iterator I = HasRecMap.find(S); | |||
| 4444 | if (I != HasRecMap.end()) | |||
| 4445 | return I->second; | |||
| 4446 | ||||
| 4447 | bool FoundAddRec = | |||
| 4448 | SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); | |||
| 4449 | HasRecMap.insert({S, FoundAddRec}); | |||
| 4450 | return FoundAddRec; | |||
| 4451 | } | |||
| 4452 | ||||
| 4453 | /// Return the ValueOffsetPair set for \p S. \p S can be represented | |||
| 4454 | /// by the value and offset from any ValueOffsetPair in the set. | |||
| 4455 | ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { | |||
| 4456 | ExprValueMapType::iterator SI = ExprValueMap.find_as(S); | |||
| 4457 | if (SI == ExprValueMap.end()) | |||
| 4458 | return std::nullopt; | |||
| 4459 | #ifndef NDEBUG | |||
| 4460 | if (VerifySCEVMap) { | |||
| 4461 | // Check there is no dangling Value in the set returned. | |||
| 4462 | for (Value *V : SI->second) | |||
| 4463 | assert(ValueExprMap.count(V))(static_cast <bool> (ValueExprMap.count(V)) ? void (0) : __assert_fail ("ValueExprMap.count(V)", "llvm/lib/Analysis/ScalarEvolution.cpp" , 4463, __extension__ __PRETTY_FUNCTION__)); | |||
| 4464 | } | |||
| 4465 | #endif | |||
| 4466 | return SI->second.getArrayRef(); | |||
| 4467 | } | |||
| 4468 | ||||
| 4469 | /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) | |||
| 4470 | /// cannot be used separately. eraseValueFromMap should be used to remove | |||
| 4471 | /// V from ValueExprMap and ExprValueMap at the same time. | |||
| 4472 | void ScalarEvolution::eraseValueFromMap(Value *V) { | |||
| 4473 | ValueExprMapType::iterator I = ValueExprMap.find_as(V); | |||
| 4474 | if (I != ValueExprMap.end()) { | |||
| 4475 | auto EVIt = ExprValueMap.find(I->second); | |||
| 4476 | bool Removed = EVIt->second.remove(V); | |||
| 4477 | (void) Removed; | |||
| 4478 | assert(Removed && "Value not in ExprValueMap?")(static_cast <bool> (Removed && "Value not in ExprValueMap?" ) ? void (0) : __assert_fail ("Removed && \"Value not in ExprValueMap?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4478, __extension__ __PRETTY_FUNCTION__)); | |||
| 4479 | ValueExprMap.erase(I); | |||
| 4480 | } | |||
| 4481 | } | |||
| 4482 | ||||
| 4483 | void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { | |||
| 4484 | // A recursive query may have already computed the SCEV. It should be | |||
| 4485 | // equivalent, but may not necessarily be exactly the same, e.g. due to lazily | |||
| 4486 | // inferred nowrap flags. | |||
| 4487 | auto It = ValueExprMap.find_as(V); | |||
| 4488 | if (It == ValueExprMap.end()) { | |||
| 4489 | ValueExprMap.insert({SCEVCallbackVH(V, this), S}); | |||
| 4490 | ExprValueMap[S].insert(V); | |||
| 4491 | } | |||
| 4492 | } | |||
| 4493 | ||||
| 4494 | /// Determine whether this instruction is either not SCEVable or will always | |||
| 4495 | /// produce a SCEVUnknown. We do not have to walk past such instructions when | |||
| 4496 | /// invalidating. | |||
| 4497 | static bool isAlwaysUnknown(const Instruction *I) { | |||
| 4498 | switch (I->getOpcode()) { | |||
| 4499 | case Instruction::Load: | |||
| 4500 | return true; | |||
| 4501 | default: | |||
| 4502 | return false; | |||
| 4503 | } | |||
| 4504 | } | |||
| 4505 | ||||
| 4506 | /// Return an existing SCEV if it exists, otherwise analyze the expression and | |||
| 4507 | /// create a new one. | |||
| 4508 | const SCEV *ScalarEvolution::getSCEV(Value *V) { | |||
| 4509 | assert(isSCEVable(V->getType()) && "Value is not SCEVable!")(static_cast <bool> (isSCEVable(V->getType()) && "Value is not SCEVable!") ? void (0) : __assert_fail ("isSCEVable(V->getType()) && \"Value is not SCEVable!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4509, __extension__ __PRETTY_FUNCTION__)); | |||
| 4510 | ||||
| 4511 | if (const SCEV *S = getExistingSCEV(V)) | |||
| 4512 | return S; | |||
| 4513 | const SCEV *S = createSCEVIter(V); | |||
| 4514 | assert((!isa<Instruction>(V) || !isAlwaysUnknown(cast<Instruction>(V)) ||(static_cast <bool> ((!isa<Instruction>(V) || !isAlwaysUnknown (cast<Instruction>(V)) || isa<SCEVUnknown>(S)) && "isAlwaysUnknown() instruction is not SCEVUnknown") ? void ( 0) : __assert_fail ("(!isa<Instruction>(V) || !isAlwaysUnknown(cast<Instruction>(V)) || isa<SCEVUnknown>(S)) && \"isAlwaysUnknown() instruction is not SCEVUnknown\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4516, __extension__ __PRETTY_FUNCTION__)) | |||
| 4515 | isa<SCEVUnknown>(S)) &&(static_cast <bool> ((!isa<Instruction>(V) || !isAlwaysUnknown (cast<Instruction>(V)) || isa<SCEVUnknown>(S)) && "isAlwaysUnknown() instruction is not SCEVUnknown") ? void ( 0) : __assert_fail ("(!isa<Instruction>(V) || !isAlwaysUnknown(cast<Instruction>(V)) || isa<SCEVUnknown>(S)) && \"isAlwaysUnknown() instruction is not SCEVUnknown\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4516, __extension__ __PRETTY_FUNCTION__)) | |||
| 4516 | "isAlwaysUnknown() instruction is not SCEVUnknown")(static_cast <bool> ((!isa<Instruction>(V) || !isAlwaysUnknown (cast<Instruction>(V)) || isa<SCEVUnknown>(S)) && "isAlwaysUnknown() instruction is not SCEVUnknown") ? void ( 0) : __assert_fail ("(!isa<Instruction>(V) || !isAlwaysUnknown(cast<Instruction>(V)) || isa<SCEVUnknown>(S)) && \"isAlwaysUnknown() instruction is not SCEVUnknown\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4516, __extension__ __PRETTY_FUNCTION__)); | |||
| 4517 | return S; | |||
| 4518 | } | |||
| 4519 | ||||
| 4520 | const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { | |||
| 4521 | assert(isSCEVable(V->getType()) && "Value is not SCEVable!")(static_cast <bool> (isSCEVable(V->getType()) && "Value is not SCEVable!") ? void (0) : __assert_fail ("isSCEVable(V->getType()) && \"Value is not SCEVable!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4521, __extension__ __PRETTY_FUNCTION__)); | |||
| 4522 | ||||
| 4523 | ValueExprMapType::iterator I = ValueExprMap.find_as(V); | |||
| 4524 | if (I != ValueExprMap.end()) { | |||
| 4525 | const SCEV *S = I->second; | |||
| 4526 | assert(checkValidity(S) &&(static_cast <bool> (checkValidity(S) && "existing SCEV has not been properly invalidated" ) ? void (0) : __assert_fail ("checkValidity(S) && \"existing SCEV has not been properly invalidated\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4527, __extension__ __PRETTY_FUNCTION__)) | |||
| 4527 | "existing SCEV has not been properly invalidated")(static_cast <bool> (checkValidity(S) && "existing SCEV has not been properly invalidated" ) ? void (0) : __assert_fail ("checkValidity(S) && \"existing SCEV has not been properly invalidated\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4527, __extension__ __PRETTY_FUNCTION__)); | |||
| 4528 | return S; | |||
| 4529 | } | |||
| 4530 | return nullptr; | |||
| 4531 | } | |||
| 4532 | ||||
| 4533 | /// Return a SCEV corresponding to -V = -1*V | |||
| 4534 | const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, | |||
| 4535 | SCEV::NoWrapFlags Flags) { | |||
| 4536 | if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) | |||
| 4537 | return getConstant( | |||
| 4538 | cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); | |||
| 4539 | ||||
| 4540 | Type *Ty = V->getType(); | |||
| 4541 | Ty = getEffectiveSCEVType(Ty); | |||
| 4542 | return getMulExpr(V, getMinusOne(Ty), Flags); | |||
| 4543 | } | |||
| 4544 | ||||
| 4545 | /// If Expr computes ~A, return A else return nullptr | |||
| 4546 | static const SCEV *MatchNotExpr(const SCEV *Expr) { | |||
| 4547 | const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); | |||
| 4548 | if (!Add || Add->getNumOperands() != 2 || | |||
| 4549 | !Add->getOperand(0)->isAllOnesValue()) | |||
| 4550 | return nullptr; | |||
| 4551 | ||||
| 4552 | const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); | |||
| 4553 | if (!AddRHS || AddRHS->getNumOperands() != 2 || | |||
| 4554 | !AddRHS->getOperand(0)->isAllOnesValue()) | |||
| 4555 | return nullptr; | |||
| 4556 | ||||
| 4557 | return AddRHS->getOperand(1); | |||
| 4558 | } | |||
| 4559 | ||||
| 4560 | /// Return a SCEV corresponding to ~V = -1-V | |||
| 4561 | const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { | |||
| 4562 | assert(!V->getType()->isPointerTy() && "Can't negate pointer")(static_cast <bool> (!V->getType()->isPointerTy() && "Can't negate pointer") ? void (0) : __assert_fail ("!V->getType()->isPointerTy() && \"Can't negate pointer\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4562, __extension__ __PRETTY_FUNCTION__)); | |||
| 4563 | ||||
| 4564 | if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) | |||
| 4565 | return getConstant( | |||
| 4566 | cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); | |||
| 4567 | ||||
| 4568 | // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) | |||
| 4569 | if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { | |||
| 4570 | auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { | |||
| 4571 | SmallVector<const SCEV *, 2> MatchedOperands; | |||
| 4572 | for (const SCEV *Operand : MME->operands()) { | |||
| 4573 | const SCEV *Matched = MatchNotExpr(Operand); | |||
| 4574 | if (!Matched) | |||
| 4575 | return (const SCEV *)nullptr; | |||
| 4576 | MatchedOperands.push_back(Matched); | |||
| 4577 | } | |||
| 4578 | return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), | |||
| 4579 | MatchedOperands); | |||
| 4580 | }; | |||
| 4581 | if (const SCEV *Replaced = MatchMinMaxNegation(MME)) | |||
| 4582 | return Replaced; | |||
| 4583 | } | |||
| 4584 | ||||
| 4585 | Type *Ty = V->getType(); | |||
| 4586 | Ty = getEffectiveSCEVType(Ty); | |||
| 4587 | return getMinusSCEV(getMinusOne(Ty), V); | |||
| 4588 | } | |||
| 4589 | ||||
| 4590 | const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { | |||
| 4591 | assert(P->getType()->isPointerTy())(static_cast <bool> (P->getType()->isPointerTy()) ? void (0) : __assert_fail ("P->getType()->isPointerTy()" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4591, __extension__ __PRETTY_FUNCTION__)); | |||
| 4592 | ||||
| 4593 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { | |||
| 4594 | // The base of an AddRec is the first operand. | |||
| 4595 | SmallVector<const SCEV *> Ops{AddRec->operands()}; | |||
| 4596 | Ops[0] = removePointerBase(Ops[0]); | |||
| 4597 | // Don't try to transfer nowrap flags for now. We could in some cases | |||
| 4598 | // (for example, if pointer operand of the AddRec is a SCEVUnknown). | |||
| 4599 | return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); | |||
| 4600 | } | |||
| 4601 | if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { | |||
| 4602 | // The base of an Add is the pointer operand. | |||
| 4603 | SmallVector<const SCEV *> Ops{Add->operands()}; | |||
| 4604 | const SCEV **PtrOp = nullptr; | |||
| 4605 | for (const SCEV *&AddOp : Ops) { | |||
| 4606 | if (AddOp->getType()->isPointerTy()) { | |||
| 4607 | assert(!PtrOp && "Cannot have multiple pointer ops")(static_cast <bool> (!PtrOp && "Cannot have multiple pointer ops" ) ? void (0) : __assert_fail ("!PtrOp && \"Cannot have multiple pointer ops\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4607, __extension__ __PRETTY_FUNCTION__)); | |||
| 4608 | PtrOp = &AddOp; | |||
| 4609 | } | |||
| 4610 | } | |||
| 4611 | *PtrOp = removePointerBase(*PtrOp); | |||
| 4612 | // Don't try to transfer nowrap flags for now. We could in some cases | |||
| 4613 | // (for example, if the pointer operand of the Add is a SCEVUnknown). | |||
| 4614 | return getAddExpr(Ops); | |||
| 4615 | } | |||
| 4616 | // Any other expression must be a pointer base. | |||
| 4617 | return getZero(P->getType()); | |||
| 4618 | } | |||
| 4619 | ||||
| 4620 | const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, | |||
| 4621 | SCEV::NoWrapFlags Flags, | |||
| 4622 | unsigned Depth) { | |||
| 4623 | // Fast path: X - X --> 0. | |||
| 4624 | if (LHS == RHS) | |||
| 4625 | return getZero(LHS->getType()); | |||
| 4626 | ||||
| 4627 | // If we subtract two pointers with different pointer bases, bail. | |||
| 4628 | // Eventually, we're going to add an assertion to getMulExpr that we | |||
| 4629 | // can't multiply by a pointer. | |||
| 4630 | if (RHS->getType()->isPointerTy()) { | |||
| 4631 | if (!LHS->getType()->isPointerTy() || | |||
| 4632 | getPointerBase(LHS) != getPointerBase(RHS)) | |||
| 4633 | return getCouldNotCompute(); | |||
| 4634 | LHS = removePointerBase(LHS); | |||
| 4635 | RHS = removePointerBase(RHS); | |||
| 4636 | } | |||
| 4637 | ||||
| 4638 | // We represent LHS - RHS as LHS + (-1)*RHS. This transformation | |||
| 4639 | // makes it so that we cannot make much use of NUW. | |||
| 4640 | auto AddFlags = SCEV::FlagAnyWrap; | |||
| 4641 | const bool RHSIsNotMinSigned = | |||
| 4642 | !getSignedRangeMin(RHS).isMinSignedValue(); | |||
| 4643 | if (hasFlags(Flags, SCEV::FlagNSW)) { | |||
| 4644 | // Let M be the minimum representable signed value. Then (-1)*RHS | |||
| 4645 | // signed-wraps if and only if RHS is M. That can happen even for | |||
| 4646 | // a NSW subtraction because e.g. (-1)*M signed-wraps even though | |||
| 4647 | // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + | |||
| 4648 | // (-1)*RHS, we need to prove that RHS != M. | |||
| 4649 | // | |||
| 4650 | // If LHS is non-negative and we know that LHS - RHS does not | |||
| 4651 | // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap | |||
| 4652 | // either by proving that RHS > M or that LHS >= 0. | |||
| 4653 | if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { | |||
| 4654 | AddFlags = SCEV::FlagNSW; | |||
| 4655 | } | |||
| 4656 | } | |||
| 4657 | ||||
| 4658 | // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - | |||
| 4659 | // RHS is NSW and LHS >= 0. | |||
| 4660 | // | |||
| 4661 | // The difficulty here is that the NSW flag may have been proven | |||
| 4662 | // relative to a loop that is to be found in a recurrence in LHS and | |||
| 4663 | // not in RHS. Applying NSW to (-1)*M may then let the NSW have a | |||
| 4664 | // larger scope than intended. | |||
| 4665 | auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; | |||
| 4666 | ||||
| 4667 | return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); | |||
| 4668 | } | |||
| 4669 | ||||
| 4670 | const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, | |||
| 4671 | unsigned Depth) { | |||
| 4672 | Type *SrcTy = V->getType(); | |||
| 4673 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot truncate or zero extend with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or zero extend with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4674, __extension__ __PRETTY_FUNCTION__)) | |||
| 4674 | "Cannot truncate or zero extend with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot truncate or zero extend with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or zero extend with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4674, __extension__ __PRETTY_FUNCTION__)); | |||
| 4675 | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | |||
| 4676 | return V; // No conversion | |||
| 4677 | if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) | |||
| 4678 | return getTruncateExpr(V, Ty, Depth); | |||
| 4679 | return getZeroExtendExpr(V, Ty, Depth); | |||
| 4680 | } | |||
| 4681 | ||||
| 4682 | const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, | |||
| 4683 | unsigned Depth) { | |||
| 4684 | Type *SrcTy = V->getType(); | |||
| 4685 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot truncate or zero extend with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or zero extend with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4686, __extension__ __PRETTY_FUNCTION__)) | |||
| 4686 | "Cannot truncate or zero extend with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot truncate or zero extend with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or zero extend with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4686, __extension__ __PRETTY_FUNCTION__)); | |||
| 4687 | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | |||
| 4688 | return V; // No conversion | |||
| 4689 | if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) | |||
| 4690 | return getTruncateExpr(V, Ty, Depth); | |||
| 4691 | return getSignExtendExpr(V, Ty, Depth); | |||
| 4692 | } | |||
| 4693 | ||||
| 4694 | const SCEV * | |||
| 4695 | ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { | |||
| 4696 | Type *SrcTy = V->getType(); | |||
| 4697 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot noop or zero extend with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or zero extend with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4698, __extension__ __PRETTY_FUNCTION__)) | |||
| 4698 | "Cannot noop or zero extend with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot noop or zero extend with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or zero extend with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4698, __extension__ __PRETTY_FUNCTION__)); | |||
| 4699 | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits (Ty) && "getNoopOrZeroExtend cannot truncate!") ? void (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrZeroExtend cannot truncate!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4700, __extension__ __PRETTY_FUNCTION__)) | |||
| 4700 | "getNoopOrZeroExtend cannot truncate!")(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits (Ty) && "getNoopOrZeroExtend cannot truncate!") ? void (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrZeroExtend cannot truncate!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4700, __extension__ __PRETTY_FUNCTION__)); | |||
| 4701 | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | |||
| 4702 | return V; // No conversion | |||
| 4703 | return getZeroExtendExpr(V, Ty); | |||
| 4704 | } | |||
| 4705 | ||||
| 4706 | const SCEV * | |||
| 4707 | ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { | |||
| 4708 | Type *SrcTy = V->getType(); | |||
| 4709 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot noop or sign extend with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or sign extend with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4710, __extension__ __PRETTY_FUNCTION__)) | |||
| 4710 | "Cannot noop or sign extend with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot noop or sign extend with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or sign extend with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4710, __extension__ __PRETTY_FUNCTION__)); | |||
| 4711 | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits (Ty) && "getNoopOrSignExtend cannot truncate!") ? void (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrSignExtend cannot truncate!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4712, __extension__ __PRETTY_FUNCTION__)) | |||
| 4712 | "getNoopOrSignExtend cannot truncate!")(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits (Ty) && "getNoopOrSignExtend cannot truncate!") ? void (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrSignExtend cannot truncate!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4712, __extension__ __PRETTY_FUNCTION__)); | |||
| 4713 | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | |||
| 4714 | return V; // No conversion | |||
| 4715 | return getSignExtendExpr(V, Ty); | |||
| 4716 | } | |||
| 4717 | ||||
| 4718 | const SCEV * | |||
| 4719 | ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { | |||
| 4720 | Type *SrcTy = V->getType(); | |||
| 4721 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot noop or any extend with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or any extend with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4722, __extension__ __PRETTY_FUNCTION__)) | |||
| 4722 | "Cannot noop or any extend with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot noop or any extend with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot noop or any extend with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4722, __extension__ __PRETTY_FUNCTION__)); | |||
| 4723 | assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits (Ty) && "getNoopOrAnyExtend cannot truncate!") ? void (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrAnyExtend cannot truncate!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4724, __extension__ __PRETTY_FUNCTION__)) | |||
| 4724 | "getNoopOrAnyExtend cannot truncate!")(static_cast <bool> (getTypeSizeInBits(SrcTy) <= getTypeSizeInBits (Ty) && "getNoopOrAnyExtend cannot truncate!") ? void (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrAnyExtend cannot truncate!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4724, __extension__ __PRETTY_FUNCTION__)); | |||
| 4725 | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | |||
| 4726 | return V; // No conversion | |||
| 4727 | return getAnyExtendExpr(V, Ty); | |||
| 4728 | } | |||
| 4729 | ||||
| 4730 | const SCEV * | |||
| 4731 | ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { | |||
| 4732 | Type *SrcTy = V->getType(); | |||
| 4733 | assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot truncate or noop with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or noop with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4734, __extension__ __PRETTY_FUNCTION__)) | |||
| 4734 | "Cannot truncate or noop with non-integer arguments!")(static_cast <bool> (SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && "Cannot truncate or noop with non-integer arguments!" ) ? void (0) : __assert_fail ("SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && \"Cannot truncate or noop with non-integer arguments!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4734, __extension__ __PRETTY_FUNCTION__)); | |||
| 4735 | assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&(static_cast <bool> (getTypeSizeInBits(SrcTy) >= getTypeSizeInBits (Ty) && "getTruncateOrNoop cannot extend!") ? void (0 ) : __assert_fail ("getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && \"getTruncateOrNoop cannot extend!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4736, __extension__ __PRETTY_FUNCTION__)) | |||
| 4736 | "getTruncateOrNoop cannot extend!")(static_cast <bool> (getTypeSizeInBits(SrcTy) >= getTypeSizeInBits (Ty) && "getTruncateOrNoop cannot extend!") ? void (0 ) : __assert_fail ("getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && \"getTruncateOrNoop cannot extend!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4736, __extension__ __PRETTY_FUNCTION__)); | |||
| 4737 | if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) | |||
| 4738 | return V; // No conversion | |||
| 4739 | return getTruncateExpr(V, Ty); | |||
| 4740 | } | |||
| 4741 | ||||
| 4742 | const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, | |||
| 4743 | const SCEV *RHS) { | |||
| 4744 | const SCEV *PromotedLHS = LHS; | |||
| 4745 | const SCEV *PromotedRHS = RHS; | |||
| 4746 | ||||
| 4747 | if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) | |||
| 4748 | PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); | |||
| 4749 | else | |||
| 4750 | PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); | |||
| 4751 | ||||
| 4752 | return getUMaxExpr(PromotedLHS, PromotedRHS); | |||
| 4753 | } | |||
| 4754 | ||||
| 4755 | const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, | |||
| 4756 | const SCEV *RHS, | |||
| 4757 | bool Sequential) { | |||
| 4758 | SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; | |||
| 4759 | return getUMinFromMismatchedTypes(Ops, Sequential); | |||
| 4760 | } | |||
| 4761 | ||||
| 4762 | const SCEV * | |||
| 4763 | ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, | |||
| 4764 | bool Sequential) { | |||
| 4765 | assert(!Ops.empty() && "At least one operand must be!")(static_cast <bool> (!Ops.empty() && "At least one operand must be!" ) ? void (0) : __assert_fail ("!Ops.empty() && \"At least one operand must be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4765, __extension__ __PRETTY_FUNCTION__)); | |||
| 4766 | // Trivial case. | |||
| 4767 | if (Ops.size() == 1) | |||
| 4768 | return Ops[0]; | |||
| 4769 | ||||
| 4770 | // Find the max type first. | |||
| 4771 | Type *MaxType = nullptr; | |||
| 4772 | for (const auto *S : Ops) | |||
| 4773 | if (MaxType) | |||
| 4774 | MaxType = getWiderType(MaxType, S->getType()); | |||
| 4775 | else | |||
| 4776 | MaxType = S->getType(); | |||
| 4777 | assert(MaxType && "Failed to find maximum type!")(static_cast <bool> (MaxType && "Failed to find maximum type!" ) ? void (0) : __assert_fail ("MaxType && \"Failed to find maximum type!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4777, __extension__ __PRETTY_FUNCTION__)); | |||
| 4778 | ||||
| 4779 | // Extend all ops to max type. | |||
| 4780 | SmallVector<const SCEV *, 2> PromotedOps; | |||
| 4781 | for (const auto *S : Ops) | |||
| 4782 | PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); | |||
| 4783 | ||||
| 4784 | // Generate umin. | |||
| 4785 | return getUMinExpr(PromotedOps, Sequential); | |||
| 4786 | } | |||
| 4787 | ||||
| 4788 | const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { | |||
| 4789 | // A pointer operand may evaluate to a nonpointer expression, such as null. | |||
| 4790 | if (!V->getType()->isPointerTy()) | |||
| 4791 | return V; | |||
| 4792 | ||||
| 4793 | while (true) { | |||
| 4794 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { | |||
| 4795 | V = AddRec->getStart(); | |||
| 4796 | } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { | |||
| 4797 | const SCEV *PtrOp = nullptr; | |||
| 4798 | for (const SCEV *AddOp : Add->operands()) { | |||
| 4799 | if (AddOp->getType()->isPointerTy()) { | |||
| 4800 | assert(!PtrOp && "Cannot have multiple pointer ops")(static_cast <bool> (!PtrOp && "Cannot have multiple pointer ops" ) ? void (0) : __assert_fail ("!PtrOp && \"Cannot have multiple pointer ops\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4800, __extension__ __PRETTY_FUNCTION__)); | |||
| 4801 | PtrOp = AddOp; | |||
| 4802 | } | |||
| 4803 | } | |||
| 4804 | assert(PtrOp && "Must have pointer op")(static_cast <bool> (PtrOp && "Must have pointer op" ) ? void (0) : __assert_fail ("PtrOp && \"Must have pointer op\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4804, __extension__ __PRETTY_FUNCTION__)); | |||
| 4805 | V = PtrOp; | |||
| 4806 | } else // Not something we can look further into. | |||
| 4807 | return V; | |||
| 4808 | } | |||
| 4809 | } | |||
| 4810 | ||||
| 4811 | /// Push users of the given Instruction onto the given Worklist. | |||
| 4812 | static void PushDefUseChildren(Instruction *I, | |||
| 4813 | SmallVectorImpl<Instruction *> &Worklist, | |||
| 4814 | SmallPtrSetImpl<Instruction *> &Visited) { | |||
| 4815 | // Push the def-use children onto the Worklist stack. | |||
| 4816 | for (User *U : I->users()) { | |||
| 4817 | auto *UserInsn = cast<Instruction>(U); | |||
| 4818 | if (isAlwaysUnknown(UserInsn)) | |||
| 4819 | continue; | |||
| 4820 | if (Visited.insert(UserInsn).second) | |||
| 4821 | Worklist.push_back(UserInsn); | |||
| 4822 | } | |||
| 4823 | } | |||
| 4824 | ||||
| 4825 | namespace { | |||
| 4826 | ||||
| 4827 | /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start | |||
| 4828 | /// expression in case its Loop is L. If it is not L then | |||
| 4829 | /// if IgnoreOtherLoops is true then use AddRec itself | |||
| 4830 | /// otherwise rewrite cannot be done. | |||
| 4831 | /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. | |||
| 4832 | class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { | |||
| 4833 | public: | |||
| 4834 | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, | |||
| 4835 | bool IgnoreOtherLoops = true) { | |||
| 4836 | SCEVInitRewriter Rewriter(L, SE); | |||
| 4837 | const SCEV *Result = Rewriter.visit(S); | |||
| 4838 | if (Rewriter.hasSeenLoopVariantSCEVUnknown()) | |||
| 4839 | return SE.getCouldNotCompute(); | |||
| 4840 | return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops | |||
| 4841 | ? SE.getCouldNotCompute() | |||
| 4842 | : Result; | |||
| 4843 | } | |||
| 4844 | ||||
| 4845 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | |||
| 4846 | if (!SE.isLoopInvariant(Expr, L)) | |||
| 4847 | SeenLoopVariantSCEVUnknown = true; | |||
| 4848 | return Expr; | |||
| 4849 | } | |||
| 4850 | ||||
| 4851 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { | |||
| 4852 | // Only re-write AddRecExprs for this loop. | |||
| 4853 | if (Expr->getLoop() == L) | |||
| 4854 | return Expr->getStart(); | |||
| 4855 | SeenOtherLoops = true; | |||
| 4856 | return Expr; | |||
| 4857 | } | |||
| 4858 | ||||
| 4859 | bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } | |||
| 4860 | ||||
| 4861 | bool hasSeenOtherLoops() { return SeenOtherLoops; } | |||
| 4862 | ||||
| 4863 | private: | |||
| 4864 | explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) | |||
| 4865 | : SCEVRewriteVisitor(SE), L(L) {} | |||
| 4866 | ||||
| 4867 | const Loop *L; | |||
| 4868 | bool SeenLoopVariantSCEVUnknown = false; | |||
| 4869 | bool SeenOtherLoops = false; | |||
| 4870 | }; | |||
| 4871 | ||||
| 4872 | /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post | |||
| 4873 | /// increment expression in case its Loop is L. If it is not L then | |||
| 4874 | /// use AddRec itself. | |||
| 4875 | /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. | |||
| 4876 | class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { | |||
| 4877 | public: | |||
| 4878 | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { | |||
| 4879 | SCEVPostIncRewriter Rewriter(L, SE); | |||
| 4880 | const SCEV *Result = Rewriter.visit(S); | |||
| 4881 | return Rewriter.hasSeenLoopVariantSCEVUnknown() | |||
| 4882 | ? SE.getCouldNotCompute() | |||
| 4883 | : Result; | |||
| 4884 | } | |||
| 4885 | ||||
| 4886 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | |||
| 4887 | if (!SE.isLoopInvariant(Expr, L)) | |||
| 4888 | SeenLoopVariantSCEVUnknown = true; | |||
| 4889 | return Expr; | |||
| 4890 | } | |||
| 4891 | ||||
| 4892 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { | |||
| 4893 | // Only re-write AddRecExprs for this loop. | |||
| 4894 | if (Expr->getLoop() == L) | |||
| 4895 | return Expr->getPostIncExpr(SE); | |||
| 4896 | SeenOtherLoops = true; | |||
| 4897 | return Expr; | |||
| 4898 | } | |||
| 4899 | ||||
| 4900 | bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } | |||
| 4901 | ||||
| 4902 | bool hasSeenOtherLoops() { return SeenOtherLoops; } | |||
| 4903 | ||||
| 4904 | private: | |||
| 4905 | explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) | |||
| 4906 | : SCEVRewriteVisitor(SE), L(L) {} | |||
| 4907 | ||||
| 4908 | const Loop *L; | |||
| 4909 | bool SeenLoopVariantSCEVUnknown = false; | |||
| 4910 | bool SeenOtherLoops = false; | |||
| 4911 | }; | |||
| 4912 | ||||
| 4913 | /// This class evaluates the compare condition by matching it against the | |||
| 4914 | /// condition of loop latch. If there is a match we assume a true value | |||
| 4915 | /// for the condition while building SCEV nodes. | |||
| 4916 | class SCEVBackedgeConditionFolder | |||
| 4917 | : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { | |||
| 4918 | public: | |||
| 4919 | static const SCEV *rewrite(const SCEV *S, const Loop *L, | |||
| 4920 | ScalarEvolution &SE) { | |||
| 4921 | bool IsPosBECond = false; | |||
| 4922 | Value *BECond = nullptr; | |||
| 4923 | if (BasicBlock *Latch = L->getLoopLatch()) { | |||
| 4924 | BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); | |||
| 4925 | if (BI && BI->isConditional()) { | |||
| 4926 | assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&(static_cast <bool> (BI->getSuccessor(0) != BI->getSuccessor (1) && "Both outgoing branches should not target same header!" ) ? void (0) : __assert_fail ("BI->getSuccessor(0) != BI->getSuccessor(1) && \"Both outgoing branches should not target same header!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4927, __extension__ __PRETTY_FUNCTION__)) | |||
| 4927 | "Both outgoing branches should not target same header!")(static_cast <bool> (BI->getSuccessor(0) != BI->getSuccessor (1) && "Both outgoing branches should not target same header!" ) ? void (0) : __assert_fail ("BI->getSuccessor(0) != BI->getSuccessor(1) && \"Both outgoing branches should not target same header!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 4927, __extension__ __PRETTY_FUNCTION__)); | |||
| 4928 | BECond = BI->getCondition(); | |||
| 4929 | IsPosBECond = BI->getSuccessor(0) == L->getHeader(); | |||
| 4930 | } else { | |||
| 4931 | return S; | |||
| 4932 | } | |||
| 4933 | } | |||
| 4934 | SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); | |||
| 4935 | return Rewriter.visit(S); | |||
| 4936 | } | |||
| 4937 | ||||
| 4938 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | |||
| 4939 | const SCEV *Result = Expr; | |||
| 4940 | bool InvariantF = SE.isLoopInvariant(Expr, L); | |||
| 4941 | ||||
| 4942 | if (!InvariantF) { | |||
| 4943 | Instruction *I = cast<Instruction>(Expr->getValue()); | |||
| 4944 | switch (I->getOpcode()) { | |||
| 4945 | case Instruction::Select: { | |||
| 4946 | SelectInst *SI = cast<SelectInst>(I); | |||
| 4947 | std::optional<const SCEV *> Res = | |||
| 4948 | compareWithBackedgeCondition(SI->getCondition()); | |||
| 4949 | if (Res) { | |||
| 4950 | bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne(); | |||
| 4951 | Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); | |||
| 4952 | } | |||
| 4953 | break; | |||
| 4954 | } | |||
| 4955 | default: { | |||
| 4956 | std::optional<const SCEV *> Res = compareWithBackedgeCondition(I); | |||
| 4957 | if (Res) | |||
| 4958 | Result = *Res; | |||
| 4959 | break; | |||
| 4960 | } | |||
| 4961 | } | |||
| 4962 | } | |||
| 4963 | return Result; | |||
| 4964 | } | |||
| 4965 | ||||
| 4966 | private: | |||
| 4967 | explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, | |||
| 4968 | bool IsPosBECond, ScalarEvolution &SE) | |||
| 4969 | : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), | |||
| 4970 | IsPositiveBECond(IsPosBECond) {} | |||
| 4971 | ||||
| 4972 | std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC); | |||
| 4973 | ||||
| 4974 | const Loop *L; | |||
| 4975 | /// Loop back condition. | |||
| 4976 | Value *BackedgeCond = nullptr; | |||
| 4977 | /// Set to true if loop back is on positive branch condition. | |||
| 4978 | bool IsPositiveBECond; | |||
| 4979 | }; | |||
| 4980 | ||||
| 4981 | std::optional<const SCEV *> | |||
| 4982 | SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { | |||
| 4983 | ||||
| 4984 | // If value matches the backedge condition for loop latch, | |||
| 4985 | // then return a constant evolution node based on loopback | |||
| 4986 | // branch taken. | |||
| 4987 | if (BackedgeCond == IC) | |||
| 4988 | return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) | |||
| 4989 | : SE.getZero(Type::getInt1Ty(SE.getContext())); | |||
| 4990 | return std::nullopt; | |||
| 4991 | } | |||
| 4992 | ||||
| 4993 | class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { | |||
| 4994 | public: | |||
| 4995 | static const SCEV *rewrite(const SCEV *S, const Loop *L, | |||
| 4996 | ScalarEvolution &SE) { | |||
| 4997 | SCEVShiftRewriter Rewriter(L, SE); | |||
| 4998 | const SCEV *Result = Rewriter.visit(S); | |||
| 4999 | return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); | |||
| 5000 | } | |||
| 5001 | ||||
| 5002 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | |||
| 5003 | // Only allow AddRecExprs for this loop. | |||
| 5004 | if (!SE.isLoopInvariant(Expr, L)) | |||
| 5005 | Valid = false; | |||
| 5006 | return Expr; | |||
| 5007 | } | |||
| 5008 | ||||
| 5009 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { | |||
| 5010 | if (Expr->getLoop() == L && Expr->isAffine()) | |||
| 5011 | return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); | |||
| 5012 | Valid = false; | |||
| 5013 | return Expr; | |||
| 5014 | } | |||
| 5015 | ||||
| 5016 | bool isValid() { return Valid; } | |||
| 5017 | ||||
| 5018 | private: | |||
| 5019 | explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) | |||
| 5020 | : SCEVRewriteVisitor(SE), L(L) {} | |||
| 5021 | ||||
| 5022 | const Loop *L; | |||
| 5023 | bool Valid = true; | |||
| 5024 | }; | |||
| 5025 | ||||
| 5026 | } // end anonymous namespace | |||
| 5027 | ||||
| 5028 | SCEV::NoWrapFlags | |||
| 5029 | ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { | |||
| 5030 | if (!AR->isAffine()) | |||
| 5031 | return SCEV::FlagAnyWrap; | |||
| 5032 | ||||
| 5033 | using OBO = OverflowingBinaryOperator; | |||
| 5034 | ||||
| 5035 | SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; | |||
| 5036 | ||||
| 5037 | if (!AR->hasNoSelfWrap()) { | |||
| 5038 | const SCEV *BECount = getConstantMaxBackedgeTakenCount(AR->getLoop()); | |||
| 5039 | if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(BECount)) { | |||
| 5040 | ConstantRange StepCR = getSignedRange(AR->getStepRecurrence(*this)); | |||
| 5041 | const APInt &BECountAP = BECountMax->getAPInt(); | |||
| 5042 | unsigned NoOverflowBitWidth = | |||
| 5043 | BECountAP.getActiveBits() + StepCR.getMinSignedBits(); | |||
| 5044 | if (NoOverflowBitWidth <= getTypeSizeInBits(AR->getType())) | |||
| 5045 | Result = ScalarEvolution::setFlags(Result, SCEV::FlagNW); | |||
| 5046 | } | |||
| 5047 | } | |||
| 5048 | ||||
| 5049 | if (!AR->hasNoSignedWrap()) { | |||
| 5050 | ConstantRange AddRecRange = getSignedRange(AR); | |||
| 5051 | ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); | |||
| 5052 | ||||
| 5053 | auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( | |||
| 5054 | Instruction::Add, IncRange, OBO::NoSignedWrap); | |||
| 5055 | if (NSWRegion.contains(AddRecRange)) | |||
| 5056 | Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); | |||
| 5057 | } | |||
| 5058 | ||||
| 5059 | if (!AR->hasNoUnsignedWrap()) { | |||
| 5060 | ConstantRange AddRecRange = getUnsignedRange(AR); | |||
| 5061 | ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); | |||
| 5062 | ||||
| 5063 | auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( | |||
| 5064 | Instruction::Add, IncRange, OBO::NoUnsignedWrap); | |||
| 5065 | if (NUWRegion.contains(AddRecRange)) | |||
| 5066 | Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); | |||
| 5067 | } | |||
| 5068 | ||||
| 5069 | return Result; | |||
| 5070 | } | |||
| 5071 | ||||
| 5072 | SCEV::NoWrapFlags | |||
| 5073 | ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { | |||
| 5074 | SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); | |||
| 5075 | ||||
| 5076 | if (AR->hasNoSignedWrap()) | |||
| 5077 | return Result; | |||
| 5078 | ||||
| 5079 | if (!AR->isAffine()) | |||
| 5080 | return Result; | |||
| 5081 | ||||
| 5082 | // This function can be expensive, only try to prove NSW once per AddRec. | |||
| 5083 | if (!SignedWrapViaInductionTried.insert(AR).second) | |||
| 5084 | return Result; | |||
| 5085 | ||||
| 5086 | const SCEV *Step = AR->getStepRecurrence(*this); | |||
| 5087 | const Loop *L = AR->getLoop(); | |||
| 5088 | ||||
| 5089 | // Check whether the backedge-taken count is SCEVCouldNotCompute. | |||
| 5090 | // Note that this serves two purposes: It filters out loops that are | |||
| 5091 | // simply not analyzable, and it covers the case where this code is | |||
| 5092 | // being called from within backedge-taken count analysis, such that | |||
| 5093 | // attempting to ask for the backedge-taken count would likely result | |||
| 5094 | // in infinite recursion. In the later case, the analysis code will | |||
| 5095 | // cope with a conservative value, and it will take care to purge | |||
| 5096 | // that value once it has finished. | |||
| 5097 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); | |||
| 5098 | ||||
| 5099 | // Normally, in the cases we can prove no-overflow via a | |||
| 5100 | // backedge guarding condition, we can also compute a backedge | |||
| 5101 | // taken count for the loop. The exceptions are assumptions and | |||
| 5102 | // guards present in the loop -- SCEV is not great at exploiting | |||
| 5103 | // these to compute max backedge taken counts, but can still use | |||
| 5104 | // these to prove lack of overflow. Use this fact to avoid | |||
| 5105 | // doing extra work that may not pay off. | |||
| 5106 | ||||
| 5107 | if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && | |||
| 5108 | AC.assumptions().empty()) | |||
| 5109 | return Result; | |||
| 5110 | ||||
| 5111 | // If the backedge is guarded by a comparison with the pre-inc value the | |||
| 5112 | // addrec is safe. Also, if the entry is guarded by a comparison with the | |||
| 5113 | // start value and the backedge is guarded by a comparison with the post-inc | |||
| 5114 | // value, the addrec is safe. | |||
| 5115 | ICmpInst::Predicate Pred; | |||
| 5116 | const SCEV *OverflowLimit = | |||
| 5117 | getSignedOverflowLimitForStep(Step, &Pred, this); | |||
| 5118 | if (OverflowLimit && | |||
| 5119 | (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || | |||
| 5120 | isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { | |||
| 5121 | Result = setFlags(Result, SCEV::FlagNSW); | |||
| 5122 | } | |||
| 5123 | return Result; | |||
| 5124 | } | |||
| 5125 | SCEV::NoWrapFlags | |||
| 5126 | ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { | |||
| 5127 | SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); | |||
| 5128 | ||||
| 5129 | if (AR->hasNoUnsignedWrap()) | |||
| 5130 | return Result; | |||
| 5131 | ||||
| 5132 | if (!AR->isAffine()) | |||
| 5133 | return Result; | |||
| 5134 | ||||
| 5135 | // This function can be expensive, only try to prove NUW once per AddRec. | |||
| 5136 | if (!UnsignedWrapViaInductionTried.insert(AR).second) | |||
| 5137 | return Result; | |||
| 5138 | ||||
| 5139 | const SCEV *Step = AR->getStepRecurrence(*this); | |||
| 5140 | unsigned BitWidth = getTypeSizeInBits(AR->getType()); | |||
| 5141 | const Loop *L = AR->getLoop(); | |||
| 5142 | ||||
| 5143 | // Check whether the backedge-taken count is SCEVCouldNotCompute. | |||
| 5144 | // Note that this serves two purposes: It filters out loops that are | |||
| 5145 | // simply not analyzable, and it covers the case where this code is | |||
| 5146 | // being called from within backedge-taken count analysis, such that | |||
| 5147 | // attempting to ask for the backedge-taken count would likely result | |||
| 5148 | // in infinite recursion. In the later case, the analysis code will | |||
| 5149 | // cope with a conservative value, and it will take care to purge | |||
| 5150 | // that value once it has finished. | |||
| 5151 | const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); | |||
| 5152 | ||||
| 5153 | // Normally, in the cases we can prove no-overflow via a | |||
| 5154 | // backedge guarding condition, we can also compute a backedge | |||
| 5155 | // taken count for the loop. The exceptions are assumptions and | |||
| 5156 | // guards present in the loop -- SCEV is not great at exploiting | |||
| 5157 | // these to compute max backedge taken counts, but can still use | |||
| 5158 | // these to prove lack of overflow. Use this fact to avoid | |||
| 5159 | // doing extra work that may not pay off. | |||
| 5160 | ||||
| 5161 | if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && | |||
| 5162 | AC.assumptions().empty()) | |||
| 5163 | return Result; | |||
| 5164 | ||||
| 5165 | // If the backedge is guarded by a comparison with the pre-inc value the | |||
| 5166 | // addrec is safe. Also, if the entry is guarded by a comparison with the | |||
| 5167 | // start value and the backedge is guarded by a comparison with the post-inc | |||
| 5168 | // value, the addrec is safe. | |||
| 5169 | if (isKnownPositive(Step)) { | |||
| 5170 | const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - | |||
| 5171 | getUnsignedRangeMax(Step)); | |||
| 5172 | if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || | |||
| 5173 | isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { | |||
| 5174 | Result = setFlags(Result, SCEV::FlagNUW); | |||
| 5175 | } | |||
| 5176 | } | |||
| 5177 | ||||
| 5178 | return Result; | |||
| 5179 | } | |||
| 5180 | ||||
| 5181 | namespace { | |||
| 5182 | ||||
| 5183 | /// Represents an abstract binary operation. This may exist as a | |||
| 5184 | /// normal instruction or constant expression, or may have been | |||
| 5185 | /// derived from an expression tree. | |||
| 5186 | struct BinaryOp { | |||
| 5187 | unsigned Opcode; | |||
| 5188 | Value *LHS; | |||
| 5189 | Value *RHS; | |||
| 5190 | bool IsNSW = false; | |||
| 5191 | bool IsNUW = false; | |||
| 5192 | ||||
| 5193 | /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or | |||
| 5194 | /// constant expression. | |||
| 5195 | Operator *Op = nullptr; | |||
| 5196 | ||||
| 5197 | explicit BinaryOp(Operator *Op) | |||
| 5198 | : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), | |||
| 5199 | Op(Op) { | |||
| 5200 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { | |||
| 5201 | IsNSW = OBO->hasNoSignedWrap(); | |||
| 5202 | IsNUW = OBO->hasNoUnsignedWrap(); | |||
| 5203 | } | |||
| 5204 | } | |||
| 5205 | ||||
| 5206 | explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, | |||
| 5207 | bool IsNUW = false) | |||
| 5208 | : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} | |||
| 5209 | }; | |||
| 5210 | ||||
| 5211 | } // end anonymous namespace | |||
| 5212 | ||||
| 5213 | /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure. | |||
| 5214 | static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL, | |||
| 5215 | AssumptionCache &AC, | |||
| 5216 | const DominatorTree &DT, | |||
| 5217 | const Instruction *CxtI) { | |||
| 5218 | auto *Op = dyn_cast<Operator>(V); | |||
| 5219 | if (!Op) | |||
| 5220 | return std::nullopt; | |||
| 5221 | ||||
| 5222 | // Implementation detail: all the cleverness here should happen without | |||
| 5223 | // creating new SCEV expressions -- our caller knowns tricks to avoid creating | |||
| 5224 | // SCEV expressions when possible, and we should not break that. | |||
| 5225 | ||||
| 5226 | switch (Op->getOpcode()) { | |||
| 5227 | case Instruction::Add: | |||
| 5228 | case Instruction::Sub: | |||
| 5229 | case Instruction::Mul: | |||
| 5230 | case Instruction::UDiv: | |||
| 5231 | case Instruction::URem: | |||
| 5232 | case Instruction::And: | |||
| 5233 | case Instruction::AShr: | |||
| 5234 | case Instruction::Shl: | |||
| 5235 | return BinaryOp(Op); | |||
| 5236 | ||||
| 5237 | case Instruction::Or: { | |||
| 5238 | // LLVM loves to convert `add` of operands with no common bits | |||
| 5239 | // into an `or`. But SCEV really doesn't deal with `or` that well, | |||
| 5240 | // so try extra hard to recognize this `or` as an `add`. | |||
| 5241 | if (haveNoCommonBitsSet(Op->getOperand(0), Op->getOperand(1), DL, &AC, CxtI, | |||
| 5242 | &DT, /*UseInstrInfo=*/true)) | |||
| 5243 | return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1), | |||
| 5244 | /*IsNSW=*/true, /*IsNUW=*/true); | |||
| 5245 | return BinaryOp(Op); | |||
| 5246 | } | |||
| 5247 | ||||
| 5248 | case Instruction::Xor: | |||
| 5249 | if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) | |||
| 5250 | // If the RHS of the xor is a signmask, then this is just an add. | |||
| 5251 | // Instcombine turns add of signmask into xor as a strength reduction step. | |||
| 5252 | if (RHSC->getValue().isSignMask()) | |||
| 5253 | return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); | |||
| 5254 | // Binary `xor` is a bit-wise `add`. | |||
| 5255 | if (V->getType()->isIntegerTy(1)) | |||
| 5256 | return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); | |||
| 5257 | return BinaryOp(Op); | |||
| 5258 | ||||
| 5259 | case Instruction::LShr: | |||
| 5260 | // Turn logical shift right of a constant into a unsigned divide. | |||
| 5261 | if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { | |||
| 5262 | uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); | |||
| 5263 | ||||
| 5264 | // If the shift count is not less than the bitwidth, the result of | |||
| 5265 | // the shift is undefined. Don't try to analyze it, because the | |||
| 5266 | // resolution chosen here may differ from the resolution chosen in | |||
| 5267 | // other parts of the compiler. | |||
| 5268 | if (SA->getValue().ult(BitWidth)) { | |||
| 5269 | Constant *X = | |||
| 5270 | ConstantInt::get(SA->getContext(), | |||
| 5271 | APInt::getOneBitSet(BitWidth, SA->getZExtValue())); | |||
| 5272 | return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); | |||
| 5273 | } | |||
| 5274 | } | |||
| 5275 | return BinaryOp(Op); | |||
| 5276 | ||||
| 5277 | case Instruction::ExtractValue: { | |||
| 5278 | auto *EVI = cast<ExtractValueInst>(Op); | |||
| 5279 | if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) | |||
| 5280 | break; | |||
| 5281 | ||||
| 5282 | auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); | |||
| 5283 | if (!WO) | |||
| 5284 | break; | |||
| 5285 | ||||
| 5286 | Instruction::BinaryOps BinOp = WO->getBinaryOp(); | |||
| 5287 | bool Signed = WO->isSigned(); | |||
| 5288 | // TODO: Should add nuw/nsw flags for mul as well. | |||
| 5289 | if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) | |||
| 5290 | return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); | |||
| 5291 | ||||
| 5292 | // Now that we know that all uses of the arithmetic-result component of | |||
| 5293 | // CI are guarded by the overflow check, we can go ahead and pretend | |||
| 5294 | // that the arithmetic is non-overflowing. | |||
| 5295 | return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), | |||
| 5296 | /* IsNSW = */ Signed, /* IsNUW = */ !Signed); | |||
| 5297 | } | |||
| 5298 | ||||
| 5299 | default: | |||
| 5300 | break; | |||
| 5301 | } | |||
| 5302 | ||||
| 5303 | // Recognise intrinsic loop.decrement.reg, and as this has exactly the same | |||
| 5304 | // semantics as a Sub, return a binary sub expression. | |||
| 5305 | if (auto *II = dyn_cast<IntrinsicInst>(V)) | |||
| 5306 | if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) | |||
| 5307 | return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); | |||
| 5308 | ||||
| 5309 | return std::nullopt; | |||
| 5310 | } | |||
| 5311 | ||||
| 5312 | /// Helper function to createAddRecFromPHIWithCasts. We have a phi | |||
| 5313 | /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via | |||
| 5314 | /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the | |||
| 5315 | /// way. This function checks if \p Op, an operand of this SCEVAddExpr, | |||
| 5316 | /// follows one of the following patterns: | |||
| 5317 | /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) | |||
| 5318 | /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) | |||
| 5319 | /// If the SCEV expression of \p Op conforms with one of the expected patterns | |||
| 5320 | /// we return the type of the truncation operation, and indicate whether the | |||
| 5321 | /// truncated type should be treated as signed/unsigned by setting | |||
| 5322 | /// \p Signed to true/false, respectively. | |||
| 5323 | static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, | |||
| 5324 | bool &Signed, ScalarEvolution &SE) { | |||
| 5325 | // The case where Op == SymbolicPHI (that is, with no type conversions on | |||
| 5326 | // the way) is handled by the regular add recurrence creating logic and | |||
| 5327 | // would have already been triggered in createAddRecForPHI. Reaching it here | |||
| 5328 | // means that createAddRecFromPHI had failed for this PHI before (e.g., | |||
| 5329 | // because one of the other operands of the SCEVAddExpr updating this PHI is | |||
| 5330 | // not invariant). | |||
| 5331 | // | |||
| 5332 | // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in | |||
| 5333 | // this case predicates that allow us to prove that Op == SymbolicPHI will | |||
| 5334 | // be added. | |||
| 5335 | if (Op == SymbolicPHI) | |||
| 5336 | return nullptr; | |||
| 5337 | ||||
| 5338 | unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); | |||
| 5339 | unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); | |||
| 5340 | if (SourceBits != NewBits) | |||
| 5341 | return nullptr; | |||
| 5342 | ||||
| 5343 | const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); | |||
| 5344 | const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); | |||
| 5345 | if (!SExt && !ZExt) | |||
| 5346 | return nullptr; | |||
| 5347 | const SCEVTruncateExpr *Trunc = | |||
| 5348 | SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) | |||
| 5349 | : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); | |||
| 5350 | if (!Trunc) | |||
| 5351 | return nullptr; | |||
| 5352 | const SCEV *X = Trunc->getOperand(); | |||
| 5353 | if (X != SymbolicPHI) | |||
| 5354 | return nullptr; | |||
| 5355 | Signed = SExt != nullptr; | |||
| 5356 | return Trunc->getType(); | |||
| 5357 | } | |||
| 5358 | ||||
| 5359 | static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { | |||
| 5360 | if (!PN->getType()->isIntegerTy()) | |||
| 5361 | return nullptr; | |||
| 5362 | const Loop *L = LI.getLoopFor(PN->getParent()); | |||
| 5363 | if (!L || L->getHeader() != PN->getParent()) | |||
| 5364 | return nullptr; | |||
| 5365 | return L; | |||
| 5366 | } | |||
| 5367 | ||||
| 5368 | // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the | |||
| 5369 | // computation that updates the phi follows the following pattern: | |||
| 5370 | // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum | |||
| 5371 | // which correspond to a phi->trunc->sext/zext->add->phi update chain. | |||
| 5372 | // If so, try to see if it can be rewritten as an AddRecExpr under some | |||
| 5373 | // Predicates. If successful, return them as a pair. Also cache the results | |||
| 5374 | // of the analysis. | |||
| 5375 | // | |||
| 5376 | // Example usage scenario: | |||
| 5377 | // Say the Rewriter is called for the following SCEV: | |||
| 5378 | // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) | |||
| 5379 | // where: | |||
| 5380 | // %X = phi i64 (%Start, %BEValue) | |||
| 5381 | // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), | |||
| 5382 | // and call this function with %SymbolicPHI = %X. | |||
| 5383 | // | |||
| 5384 | // The analysis will find that the value coming around the backedge has | |||
| 5385 | // the following SCEV: | |||
| 5386 | // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) | |||
| 5387 | // Upon concluding that this matches the desired pattern, the function | |||
| 5388 | // will return the pair {NewAddRec, SmallPredsVec} where: | |||
| 5389 | // NewAddRec = {%Start,+,%Step} | |||
| 5390 | // SmallPredsVec = {P1, P2, P3} as follows: | |||
| 5391 | // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> | |||
| 5392 | // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) | |||
| 5393 | // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) | |||
| 5394 | // The returned pair means that SymbolicPHI can be rewritten into NewAddRec | |||
| 5395 | // under the predicates {P1,P2,P3}. | |||
| 5396 | // This predicated rewrite will be cached in PredicatedSCEVRewrites: | |||
| 5397 | // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} | |||
| 5398 | // | |||
| 5399 | // TODO's: | |||
| 5400 | // | |||
| 5401 | // 1) Extend the Induction descriptor to also support inductions that involve | |||
| 5402 | // casts: When needed (namely, when we are called in the context of the | |||
| 5403 | // vectorizer induction analysis), a Set of cast instructions will be | |||
| 5404 | // populated by this method, and provided back to isInductionPHI. This is | |||
| 5405 | // needed to allow the vectorizer to properly record them to be ignored by | |||
| 5406 | // the cost model and to avoid vectorizing them (otherwise these casts, | |||
| 5407 | // which are redundant under the runtime overflow checks, will be | |||
| 5408 | // vectorized, which can be costly). | |||
| 5409 | // | |||
| 5410 | // 2) Support additional induction/PHISCEV patterns: We also want to support | |||
| 5411 | // inductions where the sext-trunc / zext-trunc operations (partly) occur | |||
| 5412 | // after the induction update operation (the induction increment): | |||
| 5413 | // | |||
| 5414 | // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) | |||
| 5415 | // which correspond to a phi->add->trunc->sext/zext->phi update chain. | |||
| 5416 | // | |||
| 5417 | // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) | |||
| 5418 | // which correspond to a phi->trunc->add->sext/zext->phi update chain. | |||
| 5419 | // | |||
| 5420 | // 3) Outline common code with createAddRecFromPHI to avoid duplication. | |||
| 5421 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> | |||
| 5422 | ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { | |||
| 5423 | SmallVector<const SCEVPredicate *, 3> Predicates; | |||
| 5424 | ||||
| 5425 | // *** Part1: Analyze if we have a phi-with-cast pattern for which we can | |||
| 5426 | // return an AddRec expression under some predicate. | |||
| 5427 | ||||
| 5428 | auto *PN = cast<PHINode>(SymbolicPHI->getValue()); | |||
| 5429 | const Loop *L = isIntegerLoopHeaderPHI(PN, LI); | |||
| 5430 | assert(L && "Expecting an integer loop header phi")(static_cast <bool> (L && "Expecting an integer loop header phi" ) ? void (0) : __assert_fail ("L && \"Expecting an integer loop header phi\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 5430, __extension__ __PRETTY_FUNCTION__)); | |||
| 5431 | ||||
| 5432 | // The loop may have multiple entrances or multiple exits; we can analyze | |||
| 5433 | // this phi as an addrec if it has a unique entry value and a unique | |||
| 5434 | // backedge value. | |||
| 5435 | Value *BEValueV = nullptr, *StartValueV = nullptr; | |||
| 5436 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | |||
| 5437 | Value *V = PN->getIncomingValue(i); | |||
| 5438 | if (L->contains(PN->getIncomingBlock(i))) { | |||
| 5439 | if (!BEValueV) { | |||
| 5440 | BEValueV = V; | |||
| 5441 | } else if (BEValueV != V) { | |||
| 5442 | BEValueV = nullptr; | |||
| 5443 | break; | |||
| 5444 | } | |||
| 5445 | } else if (!StartValueV) { | |||
| 5446 | StartValueV = V; | |||
| 5447 | } else if (StartValueV != V) { | |||
| 5448 | StartValueV = nullptr; | |||
| 5449 | break; | |||
| 5450 | } | |||
| 5451 | } | |||
| 5452 | if (!BEValueV || !StartValueV) | |||
| 5453 | return std::nullopt; | |||
| 5454 | ||||
| 5455 | const SCEV *BEValue = getSCEV(BEValueV); | |||
| 5456 | ||||
| 5457 | // If the value coming around the backedge is an add with the symbolic | |||
| 5458 | // value we just inserted, possibly with casts that we can ignore under | |||
| 5459 | // an appropriate runtime guard, then we found a simple induction variable! | |||
| 5460 | const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); | |||
| 5461 | if (!Add) | |||
| 5462 | return std::nullopt; | |||
| 5463 | ||||
| 5464 | // If there is a single occurrence of the symbolic value, possibly | |||
| 5465 | // casted, replace it with a recurrence. | |||
| 5466 | unsigned FoundIndex = Add->getNumOperands(); | |||
| 5467 | Type *TruncTy = nullptr; | |||
| 5468 | bool Signed; | |||
| 5469 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) | |||
| 5470 | if ((TruncTy = | |||
| 5471 | isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) | |||
| 5472 | if (FoundIndex == e) { | |||
| 5473 | FoundIndex = i; | |||
| 5474 | break; | |||
| 5475 | } | |||
| 5476 | ||||
| 5477 | if (FoundIndex == Add->getNumOperands()) | |||
| 5478 | return std::nullopt; | |||
| 5479 | ||||
| 5480 | // Create an add with everything but the specified operand. | |||
| 5481 | SmallVector<const SCEV *, 8> Ops; | |||
| 5482 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) | |||
| 5483 | if (i != FoundIndex) | |||
| 5484 | Ops.push_back(Add->getOperand(i)); | |||
| 5485 | const SCEV *Accum = getAddExpr(Ops); | |||
| 5486 | ||||
| 5487 | // The runtime checks will not be valid if the step amount is | |||
| 5488 | // varying inside the loop. | |||
| 5489 | if (!isLoopInvariant(Accum, L)) | |||
| 5490 | return std::nullopt; | |||
| 5491 | ||||
| 5492 | // *** Part2: Create the predicates | |||
| 5493 | ||||
| 5494 | // Analysis was successful: we have a phi-with-cast pattern for which we | |||
| 5495 | // can return an AddRec expression under the following predicates: | |||
| 5496 | // | |||
| 5497 | // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) | |||
| 5498 | // fits within the truncated type (does not overflow) for i = 0 to n-1. | |||
| 5499 | // P2: An Equal predicate that guarantees that | |||
| 5500 | // Start = (Ext ix (Trunc iy (Start) to ix) to iy) | |||
| 5501 | // P3: An Equal predicate that guarantees that | |||
| 5502 | // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) | |||
| 5503 | // | |||
| 5504 | // As we next prove, the above predicates guarantee that: | |||
| 5505 | // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) | |||
| 5506 | // | |||
| 5507 | // | |||
| 5508 | // More formally, we want to prove that: | |||
| 5509 | // Expr(i+1) = Start + (i+1) * Accum | |||
| 5510 | // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum | |||
| 5511 | // | |||
| 5512 | // Given that: | |||
| 5513 | // 1) Expr(0) = Start | |||
| 5514 | // 2) Expr(1) = Start + Accum | |||
| 5515 | // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 | |||
| 5516 | // 3) Induction hypothesis (step i): | |||
| 5517 | // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum | |||
| 5518 | // | |||
| 5519 | // Proof: | |||
| 5520 | // Expr(i+1) = | |||
| 5521 | // = Start + (i+1)*Accum | |||
| 5522 | // = (Start + i*Accum) + Accum | |||
| 5523 | // = Expr(i) + Accum | |||
| 5524 | // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum | |||
| 5525 | // :: from step i | |||
| 5526 | // | |||
| 5527 | // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum | |||
| 5528 | // | |||
| 5529 | // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) | |||
| 5530 | // + (Ext ix (Trunc iy (Accum) to ix) to iy) | |||
| 5531 | // + Accum :: from P3 | |||
| 5532 | // | |||
| 5533 | // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) | |||
| 5534 | // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) | |||
| 5535 | // | |||
| 5536 | // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum | |||
| 5537 | // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum | |||
| 5538 | // | |||
| 5539 | // By induction, the same applies to all iterations 1<=i<n: | |||
| 5540 | // | |||
| 5541 | ||||
| 5542 | // Create a truncated addrec for which we will add a no overflow check (P1). | |||
| 5543 | const SCEV *StartVal = getSCEV(StartValueV); | |||
| 5544 | const SCEV *PHISCEV = | |||
| 5545 | getAddRecExpr(getTruncateExpr(StartVal, TruncTy), | |||
| 5546 | getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); | |||
| 5547 | ||||
| 5548 | // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. | |||
| 5549 | // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV | |||
| 5550 | // will be constant. | |||
| 5551 | // | |||
| 5552 | // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't | |||
| 5553 | // add P1. | |||
| 5554 | if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { | |||
| 5555 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags = | |||
| 5556 | Signed ? SCEVWrapPredicate::IncrementNSSW | |||
| 5557 | : SCEVWrapPredicate::IncrementNUSW; | |||
| 5558 | const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); | |||
| 5559 | Predicates.push_back(AddRecPred); | |||
| 5560 | } | |||
| 5561 | ||||
| 5562 | // Create the Equal Predicates P2,P3: | |||
| 5563 | ||||
| 5564 | // It is possible that the predicates P2 and/or P3 are computable at | |||
| 5565 | // compile time due to StartVal and/or Accum being constants. | |||
| 5566 | // If either one is, then we can check that now and escape if either P2 | |||
| 5567 | // or P3 is false. | |||
| 5568 | ||||
| 5569 | // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) | |||
| 5570 | // for each of StartVal and Accum | |||
| 5571 | auto getExtendedExpr = [&](const SCEV *Expr, | |||
| 5572 | bool CreateSignExtend) -> const SCEV * { | |||
| 5573 | assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant")(static_cast <bool> (isLoopInvariant(Expr, L) && "Expr is expected to be invariant") ? void (0) : __assert_fail ("isLoopInvariant(Expr, L) && \"Expr is expected to be invariant\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 5573, __extension__ __PRETTY_FUNCTION__)); | |||
| 5574 | const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); | |||
| 5575 | const SCEV *ExtendedExpr = | |||
| 5576 | CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) | |||
| 5577 | : getZeroExtendExpr(TruncatedExpr, Expr->getType()); | |||
| 5578 | return ExtendedExpr; | |||
| 5579 | }; | |||
| 5580 | ||||
| 5581 | // Given: | |||
| 5582 | // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy | |||
| 5583 | // = getExtendedExpr(Expr) | |||
| 5584 | // Determine whether the predicate P: Expr == ExtendedExpr | |||
| 5585 | // is known to be false at compile time | |||
| 5586 | auto PredIsKnownFalse = [&](const SCEV *Expr, | |||
| 5587 | const SCEV *ExtendedExpr) -> bool { | |||
| 5588 | return Expr != ExtendedExpr && | |||
| 5589 | isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); | |||
| 5590 | }; | |||
| 5591 | ||||
| 5592 | const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); | |||
| 5593 | if (PredIsKnownFalse(StartVal, StartExtended)) { | |||
| 5594 | LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << "P2 is compile-time false\n" ;; } } while (false); | |||
| 5595 | return std::nullopt; | |||
| 5596 | } | |||
| 5597 | ||||
| 5598 | // The Step is always Signed (because the overflow checks are either | |||
| 5599 | // NSSW or NUSW) | |||
| 5600 | const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); | |||
| 5601 | if (PredIsKnownFalse(Accum, AccumExtended)) { | |||
| 5602 | LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << "P3 is compile-time false\n" ;; } } while (false); | |||
| 5603 | return std::nullopt; | |||
| 5604 | } | |||
| 5605 | ||||
| 5606 | auto AppendPredicate = [&](const SCEV *Expr, | |||
| 5607 | const SCEV *ExtendedExpr) -> void { | |||
| 5608 | if (Expr != ExtendedExpr && | |||
| 5609 | !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { | |||
| 5610 | const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); | |||
| 5611 | LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << "Added Predicate: " << *Pred; } } while (false); | |||
| 5612 | Predicates.push_back(Pred); | |||
| 5613 | } | |||
| 5614 | }; | |||
| 5615 | ||||
| 5616 | AppendPredicate(StartVal, StartExtended); | |||
| 5617 | AppendPredicate(Accum, AccumExtended); | |||
| 5618 | ||||
| 5619 | // *** Part3: Predicates are ready. Now go ahead and create the new addrec in | |||
| 5620 | // which the casts had been folded away. The caller can rewrite SymbolicPHI | |||
| 5621 | // into NewAR if it will also add the runtime overflow checks specified in | |||
| 5622 | // Predicates. | |||
| 5623 | auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); | |||
| 5624 | ||||
| 5625 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = | |||
| 5626 | std::make_pair(NewAR, Predicates); | |||
| 5627 | // Remember the result of the analysis for this SCEV at this locayyytion. | |||
| 5628 | PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; | |||
| 5629 | return PredRewrite; | |||
| 5630 | } | |||
| 5631 | ||||
| 5632 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> | |||
| 5633 | ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { | |||
| 5634 | auto *PN = cast<PHINode>(SymbolicPHI->getValue()); | |||
| 5635 | const Loop *L = isIntegerLoopHeaderPHI(PN, LI); | |||
| 5636 | if (!L) | |||
| 5637 | return std::nullopt; | |||
| 5638 | ||||
| 5639 | // Check to see if we already analyzed this PHI. | |||
| 5640 | auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); | |||
| 5641 | if (I != PredicatedSCEVRewrites.end()) { | |||
| 5642 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = | |||
| 5643 | I->second; | |||
| 5644 | // Analysis was done before and failed to create an AddRec: | |||
| 5645 | if (Rewrite.first == SymbolicPHI) | |||
| 5646 | return std::nullopt; | |||
| 5647 | // Analysis was done before and succeeded to create an AddRec under | |||
| 5648 | // a predicate: | |||
| 5649 | assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec")(static_cast <bool> (isa<SCEVAddRecExpr>(Rewrite. first) && "Expected an AddRec") ? void (0) : __assert_fail ("isa<SCEVAddRecExpr>(Rewrite.first) && \"Expected an AddRec\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 5649, __extension__ __PRETTY_FUNCTION__)); | |||
| 5650 | assert(!(Rewrite.second).empty() && "Expected to find Predicates")(static_cast <bool> (!(Rewrite.second).empty() && "Expected to find Predicates") ? void (0) : __assert_fail ("!(Rewrite.second).empty() && \"Expected to find Predicates\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 5650, __extension__ __PRETTY_FUNCTION__)); | |||
| 5651 | return Rewrite; | |||
| 5652 | } | |||
| 5653 | ||||
| 5654 | std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> | |||
| 5655 | Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); | |||
| 5656 | ||||
| 5657 | // Record in the cache that the analysis failed | |||
| 5658 | if (!Rewrite) { | |||
| 5659 | SmallVector<const SCEVPredicate *, 3> Predicates; | |||
| 5660 | PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; | |||
| 5661 | return std::nullopt; | |||
| 5662 | } | |||
| 5663 | ||||
| 5664 | return Rewrite; | |||
| 5665 | } | |||
| 5666 | ||||
| 5667 | // FIXME: This utility is currently required because the Rewriter currently | |||
| 5668 | // does not rewrite this expression: | |||
| 5669 | // {0, +, (sext ix (trunc iy to ix) to iy)} | |||
| 5670 | // into {0, +, %step}, | |||
| 5671 | // even when the following Equal predicate exists: | |||
| 5672 | // "%step == (sext ix (trunc iy to ix) to iy)". | |||
| 5673 | bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( | |||
| 5674 | const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { | |||
| 5675 | if (AR1 == AR2) | |||
| 5676 | return true; | |||
| 5677 | ||||
| 5678 | auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { | |||
| 5679 | if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && | |||
| 5680 | !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) | |||
| 5681 | return false; | |||
| 5682 | return true; | |||
| 5683 | }; | |||
| 5684 | ||||
| 5685 | if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || | |||
| 5686 | !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) | |||
| 5687 | return false; | |||
| 5688 | return true; | |||
| 5689 | } | |||
| 5690 | ||||
| 5691 | /// A helper function for createAddRecFromPHI to handle simple cases. | |||
| 5692 | /// | |||
| 5693 | /// This function tries to find an AddRec expression for the simplest (yet most | |||
| 5694 | /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). | |||
| 5695 | /// If it fails, createAddRecFromPHI will use a more general, but slow, | |||
| 5696 | /// technique for finding the AddRec expression. | |||
| 5697 | const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, | |||
| 5698 | Value *BEValueV, | |||
| 5699 | Value *StartValueV) { | |||
| 5700 | const Loop *L = LI.getLoopFor(PN->getParent()); | |||
| 5701 | assert(L && L->getHeader() == PN->getParent())(static_cast <bool> (L && L->getHeader() == PN ->getParent()) ? void (0) : __assert_fail ("L && L->getHeader() == PN->getParent()" , "llvm/lib/Analysis/ScalarEvolution.cpp", 5701, __extension__ __PRETTY_FUNCTION__)); | |||
| 5702 | assert(BEValueV && StartValueV)(static_cast <bool> (BEValueV && StartValueV) ? void (0) : __assert_fail ("BEValueV && StartValueV", "llvm/lib/Analysis/ScalarEvolution.cpp", 5702, __extension__ __PRETTY_FUNCTION__)); | |||
| 5703 | ||||
| 5704 | auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN); | |||
| 5705 | if (!BO) | |||
| 5706 | return nullptr; | |||
| 5707 | ||||
| 5708 | if (BO->Opcode != Instruction::Add) | |||
| 5709 | return nullptr; | |||
| 5710 | ||||
| 5711 | const SCEV *Accum = nullptr; | |||
| 5712 | if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) | |||
| 5713 | Accum = getSCEV(BO->RHS); | |||
| 5714 | else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) | |||
| 5715 | Accum = getSCEV(BO->LHS); | |||
| 5716 | ||||
| 5717 | if (!Accum) | |||
| 5718 | return nullptr; | |||
| 5719 | ||||
| 5720 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; | |||
| 5721 | if (BO->IsNUW) | |||
| 5722 | Flags = setFlags(Flags, SCEV::FlagNUW); | |||
| 5723 | if (BO->IsNSW) | |||
| 5724 | Flags = setFlags(Flags, SCEV::FlagNSW); | |||
| 5725 | ||||
| 5726 | const SCEV *StartVal = getSCEV(StartValueV); | |||
| 5727 | const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); | |||
| 5728 | insertValueToMap(PN, PHISCEV); | |||
| 5729 | ||||
| 5730 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { | |||
| 5731 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), | |||
| 5732 | (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | | |||
| 5733 | proveNoWrapViaConstantRanges(AR))); | |||
| 5734 | } | |||
| 5735 | ||||
| 5736 | // We can add Flags to the post-inc expression only if we | |||
| 5737 | // know that it is *undefined behavior* for BEValueV to | |||
| 5738 | // overflow. | |||
| 5739 | if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { | |||
| 5740 | assert(isLoopInvariant(Accum, L) &&(static_cast <bool> (isLoopInvariant(Accum, L) && "Accum is defined outside L, but is not invariant?") ? void ( 0) : __assert_fail ("isLoopInvariant(Accum, L) && \"Accum is defined outside L, but is not invariant?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 5741, __extension__ __PRETTY_FUNCTION__)) | |||
| 5741 | "Accum is defined outside L, but is not invariant?")(static_cast <bool> (isLoopInvariant(Accum, L) && "Accum is defined outside L, but is not invariant?") ? void ( 0) : __assert_fail ("isLoopInvariant(Accum, L) && \"Accum is defined outside L, but is not invariant?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 5741, __extension__ __PRETTY_FUNCTION__)); | |||
| 5742 | if (isAddRecNeverPoison(BEInst, L)) | |||
| 5743 | (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); | |||
| 5744 | } | |||
| 5745 | ||||
| 5746 | return PHISCEV; | |||
| 5747 | } | |||
| 5748 | ||||
| 5749 | const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { | |||
| 5750 | const Loop *L = LI.getLoopFor(PN->getParent()); | |||
| 5751 | if (!L || L->getHeader() != PN->getParent()) | |||
| 5752 | return nullptr; | |||
| 5753 | ||||
| 5754 | // The loop may have multiple entrances or multiple exits; we can analyze | |||
| 5755 | // this phi as an addrec if it has a unique entry value and a unique | |||
| 5756 | // backedge value. | |||
| 5757 | Value *BEValueV = nullptr, *StartValueV = nullptr; | |||
| 5758 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | |||
| 5759 | Value *V = PN->getIncomingValue(i); | |||
| 5760 | if (L->contains(PN->getIncomingBlock(i))) { | |||
| 5761 | if (!BEValueV) { | |||
| 5762 | BEValueV = V; | |||
| 5763 | } else if (BEValueV != V) { | |||
| 5764 | BEValueV = nullptr; | |||
| 5765 | break; | |||
| 5766 | } | |||
| 5767 | } else if (!StartValueV) { | |||
| 5768 | StartValueV = V; | |||
| 5769 | } else if (StartValueV != V) { | |||
| 5770 | StartValueV = nullptr; | |||
| 5771 | break; | |||
| 5772 | } | |||
| 5773 | } | |||
| 5774 | if (!BEValueV || !StartValueV) | |||
| 5775 | return nullptr; | |||
| 5776 | ||||
| 5777 | assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&(static_cast <bool> (ValueExprMap.find_as(PN) == ValueExprMap .end() && "PHI node already processed?") ? void (0) : __assert_fail ("ValueExprMap.find_as(PN) == ValueExprMap.end() && \"PHI node already processed?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 5778, __extension__ __PRETTY_FUNCTION__)) | |||
| 5778 | "PHI node already processed?")(static_cast <bool> (ValueExprMap.find_as(PN) == ValueExprMap .end() && "PHI node already processed?") ? void (0) : __assert_fail ("ValueExprMap.find_as(PN) == ValueExprMap.end() && \"PHI node already processed?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 5778, __extension__ __PRETTY_FUNCTION__)); | |||
| 5779 | ||||
| 5780 | // First, try to find AddRec expression without creating a fictituos symbolic | |||
| 5781 | // value for PN. | |||
| 5782 | if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) | |||
| 5783 | return S; | |||
| 5784 | ||||
| 5785 | // Handle PHI node value symbolically. | |||
| 5786 | const SCEV *SymbolicName = getUnknown(PN); | |||
| 5787 | insertValueToMap(PN, SymbolicName); | |||
| 5788 | ||||
| 5789 | // Using this symbolic name for the PHI, analyze the value coming around | |||
| 5790 | // the back-edge. | |||
| 5791 | const SCEV *BEValue = getSCEV(BEValueV); | |||
| 5792 | ||||
| 5793 | // NOTE: If BEValue is loop invariant, we know that the PHI node just | |||
| 5794 | // has a special value for the first iteration of the loop. | |||
| 5795 | ||||
| 5796 | // If the value coming around the backedge is an add with the symbolic | |||
| 5797 | // value we just inserted, then we found a simple induction variable! | |||
| 5798 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { | |||
| 5799 | // If there is a single occurrence of the symbolic value, replace it | |||
| 5800 | // with a recurrence. | |||
| 5801 | unsigned FoundIndex = Add->getNumOperands(); | |||
| 5802 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) | |||
| 5803 | if (Add->getOperand(i) == SymbolicName) | |||
| 5804 | if (FoundIndex == e) { | |||
| 5805 | FoundIndex = i; | |||
| 5806 | break; | |||
| 5807 | } | |||
| 5808 | ||||
| 5809 | if (FoundIndex != Add->getNumOperands()) { | |||
| 5810 | // Create an add with everything but the specified operand. | |||
| 5811 | SmallVector<const SCEV *, 8> Ops; | |||
| 5812 | for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) | |||
| 5813 | if (i != FoundIndex) | |||
| 5814 | Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), | |||
| 5815 | L, *this)); | |||
| 5816 | const SCEV *Accum = getAddExpr(Ops); | |||
| 5817 | ||||
| 5818 | // This is not a valid addrec if the step amount is varying each | |||
| 5819 | // loop iteration, but is not itself an addrec in this loop. | |||
| 5820 | if (isLoopInvariant(Accum, L) || | |||
| 5821 | (isa<SCEVAddRecExpr>(Accum) && | |||
| 5822 | cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { | |||
| 5823 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; | |||
| 5824 | ||||
| 5825 | if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) { | |||
| 5826 | if (BO->Opcode == Instruction::Add && BO->LHS == PN) { | |||
| 5827 | if (BO->IsNUW) | |||
| 5828 | Flags = setFlags(Flags, SCEV::FlagNUW); | |||
| 5829 | if (BO->IsNSW) | |||
| 5830 | Flags = setFlags(Flags, SCEV::FlagNSW); | |||
| 5831 | } | |||
| 5832 | } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { | |||
| 5833 | // If the increment is an inbounds GEP, then we know the address | |||
| 5834 | // space cannot be wrapped around. We cannot make any guarantee | |||
| 5835 | // about signed or unsigned overflow because pointers are | |||
| 5836 | // unsigned but we may have a negative index from the base | |||
| 5837 | // pointer. We can guarantee that no unsigned wrap occurs if the | |||
| 5838 | // indices form a positive value. | |||
| 5839 | if (GEP->isInBounds() && GEP->getOperand(0) == PN) { | |||
| 5840 | Flags = setFlags(Flags, SCEV::FlagNW); | |||
| 5841 | if (isKnownPositive(Accum)) | |||
| 5842 | Flags = setFlags(Flags, SCEV::FlagNUW); | |||
| 5843 | } | |||
| 5844 | ||||
| 5845 | // We cannot transfer nuw and nsw flags from subtraction | |||
| 5846 | // operations -- sub nuw X, Y is not the same as add nuw X, -Y | |||
| 5847 | // for instance. | |||
| 5848 | } | |||
| 5849 | ||||
| 5850 | const SCEV *StartVal = getSCEV(StartValueV); | |||
| 5851 | const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); | |||
| 5852 | ||||
| 5853 | // Okay, for the entire analysis of this edge we assumed the PHI | |||
| 5854 | // to be symbolic. We now need to go back and purge all of the | |||
| 5855 | // entries for the scalars that use the symbolic expression. | |||
| 5856 | forgetMemoizedResults(SymbolicName); | |||
| 5857 | insertValueToMap(PN, PHISCEV); | |||
| 5858 | ||||
| 5859 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { | |||
| 5860 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), | |||
| 5861 | (SCEV::NoWrapFlags)(AR->getNoWrapFlags() | | |||
| 5862 | proveNoWrapViaConstantRanges(AR))); | |||
| 5863 | } | |||
| 5864 | ||||
| 5865 | // We can add Flags to the post-inc expression only if we | |||
| 5866 | // know that it is *undefined behavior* for BEValueV to | |||
| 5867 | // overflow. | |||
| 5868 | if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) | |||
| 5869 | if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) | |||
| 5870 | (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); | |||
| 5871 | ||||
| 5872 | return PHISCEV; | |||
| 5873 | } | |||
| 5874 | } | |||
| 5875 | } else { | |||
| 5876 | // Otherwise, this could be a loop like this: | |||
| 5877 | // i = 0; for (j = 1; ..; ++j) { .... i = j; } | |||
| 5878 | // In this case, j = {1,+,1} and BEValue is j. | |||
| 5879 | // Because the other in-value of i (0) fits the evolution of BEValue | |||
| 5880 | // i really is an addrec evolution. | |||
| 5881 | // | |||
| 5882 | // We can generalize this saying that i is the shifted value of BEValue | |||
| 5883 | // by one iteration: | |||
| 5884 | // PHI(f(0), f({1,+,1})) --> f({0,+,1}) | |||
| 5885 | const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); | |||
| 5886 | const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); | |||
| 5887 | if (Shifted != getCouldNotCompute() && | |||
| 5888 | Start != getCouldNotCompute()) { | |||
| 5889 | const SCEV *StartVal = getSCEV(StartValueV); | |||
| 5890 | if (Start == StartVal) { | |||
| 5891 | // Okay, for the entire analysis of this edge we assumed the PHI | |||
| 5892 | // to be symbolic. We now need to go back and purge all of the | |||
| 5893 | // entries for the scalars that use the symbolic expression. | |||
| 5894 | forgetMemoizedResults(SymbolicName); | |||
| 5895 | insertValueToMap(PN, Shifted); | |||
| 5896 | return Shifted; | |||
| 5897 | } | |||
| 5898 | } | |||
| 5899 | } | |||
| 5900 | ||||
| 5901 | // Remove the temporary PHI node SCEV that has been inserted while intending | |||
| 5902 | // to create an AddRecExpr for this PHI node. We can not keep this temporary | |||
| 5903 | // as it will prevent later (possibly simpler) SCEV expressions to be added | |||
| 5904 | // to the ValueExprMap. | |||
| 5905 | eraseValueFromMap(PN); | |||
| 5906 | ||||
| 5907 | return nullptr; | |||
| 5908 | } | |||
| 5909 | ||||
| 5910 | // Try to match a control flow sequence that branches out at BI and merges back | |||
| 5911 | // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful | |||
| 5912 | // match. | |||
| 5913 | static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, | |||
| 5914 | Value *&C, Value *&LHS, Value *&RHS) { | |||
| 5915 | C = BI->getCondition(); | |||
| 5916 | ||||
| 5917 | BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); | |||
| 5918 | BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); | |||
| 5919 | ||||
| 5920 | if (!LeftEdge.isSingleEdge()) | |||
| 5921 | return false; | |||
| 5922 | ||||
| 5923 | assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()")(static_cast <bool> (RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()") ? void (0) : __assert_fail ("RightEdge.isSingleEdge() && \"Follows from LeftEdge.isSingleEdge()\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 5923, __extension__ __PRETTY_FUNCTION__)); | |||
| 5924 | ||||
| 5925 | Use &LeftUse = Merge->getOperandUse(0); | |||
| 5926 | Use &RightUse = Merge->getOperandUse(1); | |||
| 5927 | ||||
| 5928 | if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { | |||
| 5929 | LHS = LeftUse; | |||
| 5930 | RHS = RightUse; | |||
| 5931 | return true; | |||
| 5932 | } | |||
| 5933 | ||||
| 5934 | if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { | |||
| 5935 | LHS = RightUse; | |||
| 5936 | RHS = LeftUse; | |||
| 5937 | return true; | |||
| 5938 | } | |||
| 5939 | ||||
| 5940 | return false; | |||
| 5941 | } | |||
| 5942 | ||||
| 5943 | const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { | |||
| 5944 | auto IsReachable = | |||
| 5945 | [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; | |||
| 5946 | if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { | |||
| 5947 | // Try to match | |||
| 5948 | // | |||
| 5949 | // br %cond, label %left, label %right | |||
| 5950 | // left: | |||
| 5951 | // br label %merge | |||
| 5952 | // right: | |||
| 5953 | // br label %merge | |||
| 5954 | // merge: | |||
| 5955 | // V = phi [ %x, %left ], [ %y, %right ] | |||
| 5956 | // | |||
| 5957 | // as "select %cond, %x, %y" | |||
| 5958 | ||||
| 5959 | BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); | |||
| 5960 | assert(IDom && "At least the entry block should dominate PN")(static_cast <bool> (IDom && "At least the entry block should dominate PN" ) ? void (0) : __assert_fail ("IDom && \"At least the entry block should dominate PN\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 5960, __extension__ __PRETTY_FUNCTION__)); | |||
| 5961 | ||||
| 5962 | auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); | |||
| 5963 | Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; | |||
| 5964 | ||||
| 5965 | if (BI && BI->isConditional() && | |||
| 5966 | BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && | |||
| 5967 | properlyDominates(getSCEV(LHS), PN->getParent()) && | |||
| 5968 | properlyDominates(getSCEV(RHS), PN->getParent())) | |||
| 5969 | return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); | |||
| 5970 | } | |||
| 5971 | ||||
| 5972 | return nullptr; | |||
| 5973 | } | |||
| 5974 | ||||
| 5975 | const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { | |||
| 5976 | if (const SCEV *S = createAddRecFromPHI(PN)) | |||
| 5977 | return S; | |||
| 5978 | ||||
| 5979 | if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) | |||
| 5980 | return getSCEV(V); | |||
| 5981 | ||||
| 5982 | if (const SCEV *S = createNodeFromSelectLikePHI(PN)) | |||
| 5983 | return S; | |||
| 5984 | ||||
| 5985 | // If it's not a loop phi, we can't handle it yet. | |||
| 5986 | return getUnknown(PN); | |||
| 5987 | } | |||
| 5988 | ||||
| 5989 | bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, | |||
| 5990 | SCEVTypes RootKind) { | |||
| 5991 | struct FindClosure { | |||
| 5992 | const SCEV *OperandToFind; | |||
| 5993 | const SCEVTypes RootKind; // Must be a sequential min/max expression. | |||
| 5994 | const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. | |||
| 5995 | ||||
| 5996 | bool Found = false; | |||
| 5997 | ||||
| 5998 | bool canRecurseInto(SCEVTypes Kind) const { | |||
| 5999 | // We can only recurse into the SCEV expression of the same effective type | |||
| 6000 | // as the type of our root SCEV expression, and into zero-extensions. | |||
| 6001 | return RootKind == Kind || NonSequentialRootKind == Kind || | |||
| 6002 | scZeroExtend == Kind; | |||
| 6003 | }; | |||
| 6004 | ||||
| 6005 | FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) | |||
| 6006 | : OperandToFind(OperandToFind), RootKind(RootKind), | |||
| 6007 | NonSequentialRootKind( | |||
| 6008 | SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( | |||
| 6009 | RootKind)) {} | |||
| 6010 | ||||
| 6011 | bool follow(const SCEV *S) { | |||
| 6012 | Found = S == OperandToFind; | |||
| 6013 | ||||
| 6014 | return !isDone() && canRecurseInto(S->getSCEVType()); | |||
| 6015 | } | |||
| 6016 | ||||
| 6017 | bool isDone() const { return Found; } | |||
| 6018 | }; | |||
| 6019 | ||||
| 6020 | FindClosure FC(OperandToFind, RootKind); | |||
| 6021 | visitAll(Root, FC); | |||
| 6022 | return FC.Found; | |||
| 6023 | } | |||
| 6024 | ||||
| 6025 | std::optional<const SCEV *> | |||
| 6026 | ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, | |||
| 6027 | ICmpInst *Cond, | |||
| 6028 | Value *TrueVal, | |||
| 6029 | Value *FalseVal) { | |||
| 6030 | // Try to match some simple smax or umax patterns. | |||
| 6031 | auto *ICI = Cond; | |||
| 6032 | ||||
| 6033 | Value *LHS = ICI->getOperand(0); | |||
| 6034 | Value *RHS = ICI->getOperand(1); | |||
| 6035 | ||||
| 6036 | switch (ICI->getPredicate()) { | |||
| 6037 | case ICmpInst::ICMP_SLT: | |||
| 6038 | case ICmpInst::ICMP_SLE: | |||
| 6039 | case ICmpInst::ICMP_ULT: | |||
| 6040 | case ICmpInst::ICMP_ULE: | |||
| 6041 | std::swap(LHS, RHS); | |||
| 6042 | [[fallthrough]]; | |||
| 6043 | case ICmpInst::ICMP_SGT: | |||
| 6044 | case ICmpInst::ICMP_SGE: | |||
| 6045 | case ICmpInst::ICMP_UGT: | |||
| 6046 | case ICmpInst::ICMP_UGE: | |||
| 6047 | // a > b ? a+x : b+x -> max(a, b)+x | |||
| 6048 | // a > b ? b+x : a+x -> min(a, b)+x | |||
| 6049 | if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) { | |||
| 6050 | bool Signed = ICI->isSigned(); | |||
| 6051 | const SCEV *LA = getSCEV(TrueVal); | |||
| 6052 | const SCEV *RA = getSCEV(FalseVal); | |||
| 6053 | const SCEV *LS = getSCEV(LHS); | |||
| 6054 | const SCEV *RS = getSCEV(RHS); | |||
| 6055 | if (LA->getType()->isPointerTy()) { | |||
| 6056 | // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. | |||
| 6057 | // Need to make sure we can't produce weird expressions involving | |||
| 6058 | // negated pointers. | |||
| 6059 | if (LA == LS && RA == RS) | |||
| 6060 | return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); | |||
| 6061 | if (LA == RS && RA == LS) | |||
| 6062 | return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); | |||
| 6063 | } | |||
| 6064 | auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { | |||
| 6065 | if (Op->getType()->isPointerTy()) { | |||
| 6066 | Op = getLosslessPtrToIntExpr(Op); | |||
| 6067 | if (isa<SCEVCouldNotCompute>(Op)) | |||
| 6068 | return Op; | |||
| 6069 | } | |||
| 6070 | if (Signed) | |||
| 6071 | Op = getNoopOrSignExtend(Op, Ty); | |||
| 6072 | else | |||
| 6073 | Op = getNoopOrZeroExtend(Op, Ty); | |||
| 6074 | return Op; | |||
| 6075 | }; | |||
| 6076 | LS = CoerceOperand(LS); | |||
| 6077 | RS = CoerceOperand(RS); | |||
| 6078 | if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) | |||
| 6079 | break; | |||
| 6080 | const SCEV *LDiff = getMinusSCEV(LA, LS); | |||
| 6081 | const SCEV *RDiff = getMinusSCEV(RA, RS); | |||
| 6082 | if (LDiff == RDiff) | |||
| 6083 | return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), | |||
| 6084 | LDiff); | |||
| 6085 | LDiff = getMinusSCEV(LA, RS); | |||
| 6086 | RDiff = getMinusSCEV(RA, LS); | |||
| 6087 | if (LDiff == RDiff) | |||
| 6088 | return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), | |||
| 6089 | LDiff); | |||
| 6090 | } | |||
| 6091 | break; | |||
| 6092 | case ICmpInst::ICMP_NE: | |||
| 6093 | // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y | |||
| 6094 | std::swap(TrueVal, FalseVal); | |||
| 6095 | [[fallthrough]]; | |||
| 6096 | case ICmpInst::ICMP_EQ: | |||
| 6097 | // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 | |||
| 6098 | if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) && | |||
| 6099 | isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { | |||
| 6100 | const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty); | |||
| 6101 | const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y | |||
| 6102 | const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y | |||
| 6103 | const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x | |||
| 6104 | const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y | |||
| 6105 | if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) | |||
| 6106 | return getAddExpr(getUMaxExpr(X, C), Y); | |||
| 6107 | } | |||
| 6108 | // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) | |||
| 6109 | // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) | |||
| 6110 | // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) | |||
| 6111 | // -> umin_seq(x, umin (..., umin_seq(...), ...)) | |||
| 6112 | if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && | |||
| 6113 | isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { | |||
| 6114 | const SCEV *X = getSCEV(LHS); | |||
| 6115 | while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) | |||
| 6116 | X = ZExt->getOperand(); | |||
| 6117 | if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) { | |||
| 6118 | const SCEV *FalseValExpr = getSCEV(FalseVal); | |||
| 6119 | if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) | |||
| 6120 | return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr, | |||
| 6121 | /*Sequential=*/true); | |||
| 6122 | } | |||
| 6123 | } | |||
| 6124 | break; | |||
| 6125 | default: | |||
| 6126 | break; | |||
| 6127 | } | |||
| 6128 | ||||
| 6129 | return std::nullopt; | |||
| 6130 | } | |||
| 6131 | ||||
| 6132 | static std::optional<const SCEV *> | |||
| 6133 | createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, | |||
| 6134 | const SCEV *TrueExpr, const SCEV *FalseExpr) { | |||
| 6135 | assert(CondExpr->getType()->isIntegerTy(1) &&(static_cast <bool> (CondExpr->getType()->isIntegerTy (1) && TrueExpr->getType() == FalseExpr->getType () && TrueExpr->getType()->isIntegerTy(1) && "Unexpected operands of a select.") ? void (0) : __assert_fail ("CondExpr->getType()->isIntegerTy(1) && TrueExpr->getType() == FalseExpr->getType() && TrueExpr->getType()->isIntegerTy(1) && \"Unexpected operands of a select.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6138, __extension__ __PRETTY_FUNCTION__)) | |||
| 6136 | TrueExpr->getType() == FalseExpr->getType() &&(static_cast <bool> (CondExpr->getType()->isIntegerTy (1) && TrueExpr->getType() == FalseExpr->getType () && TrueExpr->getType()->isIntegerTy(1) && "Unexpected operands of a select.") ? void (0) : __assert_fail ("CondExpr->getType()->isIntegerTy(1) && TrueExpr->getType() == FalseExpr->getType() && TrueExpr->getType()->isIntegerTy(1) && \"Unexpected operands of a select.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6138, __extension__ __PRETTY_FUNCTION__)) | |||
| 6137 | TrueExpr->getType()->isIntegerTy(1) &&(static_cast <bool> (CondExpr->getType()->isIntegerTy (1) && TrueExpr->getType() == FalseExpr->getType () && TrueExpr->getType()->isIntegerTy(1) && "Unexpected operands of a select.") ? void (0) : __assert_fail ("CondExpr->getType()->isIntegerTy(1) && TrueExpr->getType() == FalseExpr->getType() && TrueExpr->getType()->isIntegerTy(1) && \"Unexpected operands of a select.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6138, __extension__ __PRETTY_FUNCTION__)) | |||
| 6138 | "Unexpected operands of a select.")(static_cast <bool> (CondExpr->getType()->isIntegerTy (1) && TrueExpr->getType() == FalseExpr->getType () && TrueExpr->getType()->isIntegerTy(1) && "Unexpected operands of a select.") ? void (0) : __assert_fail ("CondExpr->getType()->isIntegerTy(1) && TrueExpr->getType() == FalseExpr->getType() && TrueExpr->getType()->isIntegerTy(1) && \"Unexpected operands of a select.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6138, __extension__ __PRETTY_FUNCTION__)); | |||
| 6139 | ||||
| 6140 | // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) | |||
| 6141 | // --> C + (umin_seq cond, x - C) | |||
| 6142 | // | |||
| 6143 | // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) | |||
| 6144 | // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) | |||
| 6145 | // --> C + (umin_seq ~cond, x - C) | |||
| 6146 | ||||
| 6147 | // FIXME: while we can't legally model the case where both of the hands | |||
| 6148 | // are fully variable, we only require that the *difference* is constant. | |||
| 6149 | if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr)) | |||
| 6150 | return std::nullopt; | |||
| 6151 | ||||
| 6152 | const SCEV *X, *C; | |||
| 6153 | if (isa<SCEVConstant>(TrueExpr)) { | |||
| 6154 | CondExpr = SE->getNotSCEV(CondExpr); | |||
| 6155 | X = FalseExpr; | |||
| 6156 | C = TrueExpr; | |||
| 6157 | } else { | |||
| 6158 | X = TrueExpr; | |||
| 6159 | C = FalseExpr; | |||
| 6160 | } | |||
| 6161 | return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C), | |||
| 6162 | /*Sequential=*/true)); | |||
| 6163 | } | |||
| 6164 | ||||
| 6165 | static std::optional<const SCEV *> | |||
| 6166 | createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal, | |||
| 6167 | Value *FalseVal) { | |||
| 6168 | if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal)) | |||
| 6169 | return std::nullopt; | |||
| 6170 | ||||
| 6171 | const auto *SECond = SE->getSCEV(Cond); | |||
| 6172 | const auto *SETrue = SE->getSCEV(TrueVal); | |||
| 6173 | const auto *SEFalse = SE->getSCEV(FalseVal); | |||
| 6174 | return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse); | |||
| 6175 | } | |||
| 6176 | ||||
| 6177 | const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( | |||
| 6178 | Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { | |||
| 6179 | assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?")(static_cast <bool> (Cond->getType()->isIntegerTy (1) && "Select condition is not an i1?") ? void (0) : __assert_fail ("Cond->getType()->isIntegerTy(1) && \"Select condition is not an i1?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6179, __extension__ __PRETTY_FUNCTION__)); | |||
| 6180 | assert(TrueVal->getType() == FalseVal->getType() &&(static_cast <bool> (TrueVal->getType() == FalseVal-> getType() && V->getType() == TrueVal->getType() && "Types of select hands and of the result must match." ) ? void (0) : __assert_fail ("TrueVal->getType() == FalseVal->getType() && V->getType() == TrueVal->getType() && \"Types of select hands and of the result must match.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6182, __extension__ __PRETTY_FUNCTION__)) | |||
| 6181 | V->getType() == TrueVal->getType() &&(static_cast <bool> (TrueVal->getType() == FalseVal-> getType() && V->getType() == TrueVal->getType() && "Types of select hands and of the result must match." ) ? void (0) : __assert_fail ("TrueVal->getType() == FalseVal->getType() && V->getType() == TrueVal->getType() && \"Types of select hands and of the result must match.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6182, __extension__ __PRETTY_FUNCTION__)) | |||
| 6182 | "Types of select hands and of the result must match.")(static_cast <bool> (TrueVal->getType() == FalseVal-> getType() && V->getType() == TrueVal->getType() && "Types of select hands and of the result must match." ) ? void (0) : __assert_fail ("TrueVal->getType() == FalseVal->getType() && V->getType() == TrueVal->getType() && \"Types of select hands and of the result must match.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6182, __extension__ __PRETTY_FUNCTION__)); | |||
| 6183 | ||||
| 6184 | // For now, only deal with i1-typed `select`s. | |||
| 6185 | if (!V->getType()->isIntegerTy(1)) | |||
| 6186 | return getUnknown(V); | |||
| 6187 | ||||
| 6188 | if (std::optional<const SCEV *> S = | |||
| 6189 | createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal)) | |||
| 6190 | return *S; | |||
| 6191 | ||||
| 6192 | return getUnknown(V); | |||
| 6193 | } | |||
| 6194 | ||||
| 6195 | const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, | |||
| 6196 | Value *TrueVal, | |||
| 6197 | Value *FalseVal) { | |||
| 6198 | // Handle "constant" branch or select. This can occur for instance when a | |||
| 6199 | // loop pass transforms an inner loop and moves on to process the outer loop. | |||
| 6200 | if (auto *CI = dyn_cast<ConstantInt>(Cond)) | |||
| 6201 | return getSCEV(CI->isOne() ? TrueVal : FalseVal); | |||
| 6202 | ||||
| 6203 | if (auto *I = dyn_cast<Instruction>(V)) { | |||
| 6204 | if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { | |||
| 6205 | if (std::optional<const SCEV *> S = | |||
| 6206 | createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI, | |||
| 6207 | TrueVal, FalseVal)) | |||
| 6208 | return *S; | |||
| 6209 | } | |||
| 6210 | } | |||
| 6211 | ||||
| 6212 | return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); | |||
| 6213 | } | |||
| 6214 | ||||
| 6215 | /// Expand GEP instructions into add and multiply operations. This allows them | |||
| 6216 | /// to be analyzed by regular SCEV code. | |||
| 6217 | const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { | |||
| 6218 | assert(GEP->getSourceElementType()->isSized() &&(static_cast <bool> (GEP->getSourceElementType()-> isSized() && "GEP source element type must be sized") ? void (0) : __assert_fail ("GEP->getSourceElementType()->isSized() && \"GEP source element type must be sized\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6219, __extension__ __PRETTY_FUNCTION__)) | |||
| 6219 | "GEP source element type must be sized")(static_cast <bool> (GEP->getSourceElementType()-> isSized() && "GEP source element type must be sized") ? void (0) : __assert_fail ("GEP->getSourceElementType()->isSized() && \"GEP source element type must be sized\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6219, __extension__ __PRETTY_FUNCTION__)); | |||
| 6220 | ||||
| 6221 | SmallVector<const SCEV *, 4> IndexExprs; | |||
| 6222 | for (Value *Index : GEP->indices()) | |||
| 6223 | IndexExprs.push_back(getSCEV(Index)); | |||
| 6224 | return getGEPExpr(GEP, IndexExprs); | |||
| 6225 | } | |||
| 6226 | ||||
| 6227 | APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) { | |||
| 6228 | uint64_t BitWidth = getTypeSizeInBits(S->getType()); | |||
| 6229 | auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) { | |||
| 6230 | return TrailingZeros >= BitWidth | |||
| 6231 | ? APInt::getZero(BitWidth) | |||
| 6232 | : APInt::getOneBitSet(BitWidth, TrailingZeros); | |||
| 6233 | }; | |||
| 6234 | auto GetGCDMultiple = [this](const SCEVNAryExpr *N) { | |||
| 6235 | // The result is GCD of all operands results. | |||
| 6236 | APInt Res = getConstantMultiple(N->getOperand(0)); | |||
| 6237 | for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I) | |||
| 6238 | Res = APIntOps::GreatestCommonDivisor( | |||
| 6239 | Res, getConstantMultiple(N->getOperand(I))); | |||
| 6240 | return Res; | |||
| 6241 | }; | |||
| 6242 | ||||
| 6243 | switch (S->getSCEVType()) { | |||
| 6244 | case scConstant: | |||
| 6245 | return cast<SCEVConstant>(S)->getAPInt(); | |||
| 6246 | case scPtrToInt: | |||
| 6247 | return getConstantMultiple(cast<SCEVPtrToIntExpr>(S)->getOperand()); | |||
| 6248 | case scUDivExpr: | |||
| 6249 | case scVScale: | |||
| 6250 | return APInt(BitWidth, 1); | |||
| 6251 | case scTruncate: { | |||
| 6252 | // Only multiples that are a power of 2 will hold after truncation. | |||
| 6253 | const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S); | |||
| 6254 | uint32_t TZ = getMinTrailingZeros(T->getOperand()); | |||
| 6255 | return GetShiftedByZeros(TZ); | |||
| 6256 | } | |||
| 6257 | case scZeroExtend: { | |||
| 6258 | const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(S); | |||
| 6259 | return getConstantMultiple(Z->getOperand()).zext(BitWidth); | |||
| 6260 | } | |||
| 6261 | case scSignExtend: { | |||
| 6262 | const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S); | |||
| 6263 | return getConstantMultiple(E->getOperand()).sext(BitWidth); | |||
| 6264 | } | |||
| 6265 | case scMulExpr: { | |||
| 6266 | const SCEVMulExpr *M = cast<SCEVMulExpr>(S); | |||
| 6267 | if (M->hasNoUnsignedWrap()) { | |||
| 6268 | // The result is the product of all operand results. | |||
| 6269 | APInt Res = getConstantMultiple(M->getOperand(0)); | |||
| 6270 | for (const SCEV *Operand : M->operands().drop_front()) | |||
| 6271 | Res = Res * getConstantMultiple(Operand); | |||
| 6272 | return Res; | |||
| 6273 | } | |||
| 6274 | ||||
| 6275 | // If there are no wrap guarentees, find the trailing zeros, which is the | |||
| 6276 | // sum of trailing zeros for all its operands. | |||
| 6277 | uint32_t TZ = 0; | |||
| 6278 | for (const SCEV *Operand : M->operands()) | |||
| 6279 | TZ += getMinTrailingZeros(Operand); | |||
| 6280 | return GetShiftedByZeros(TZ); | |||
| 6281 | } | |||
| 6282 | case scAddExpr: | |||
| 6283 | case scAddRecExpr: { | |||
| 6284 | const SCEVNAryExpr *N = cast<SCEVNAryExpr>(S); | |||
| 6285 | if (N->hasNoUnsignedWrap()) | |||
| 6286 | return GetGCDMultiple(N); | |||
| 6287 | // Find the trailing bits, which is the minimum of its operands. | |||
| 6288 | uint32_t TZ = getMinTrailingZeros(N->getOperand(0)); | |||
| 6289 | for (const SCEV *Operand : N->operands().drop_front()) | |||
| 6290 | TZ = std::min(TZ, getMinTrailingZeros(Operand)); | |||
| 6291 | return GetShiftedByZeros(TZ); | |||
| 6292 | } | |||
| 6293 | case scUMaxExpr: | |||
| 6294 | case scSMaxExpr: | |||
| 6295 | case scUMinExpr: | |||
| 6296 | case scSMinExpr: | |||
| 6297 | case scSequentialUMinExpr: | |||
| 6298 | return GetGCDMultiple(cast<SCEVNAryExpr>(S)); | |||
| 6299 | case scUnknown: { | |||
| 6300 | // ask ValueTracking for known bits | |||
| 6301 | const SCEVUnknown *U = cast<SCEVUnknown>(S); | |||
| 6302 | unsigned Known = | |||
| 6303 | computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT) | |||
| 6304 | .countMinTrailingZeros(); | |||
| 6305 | return GetShiftedByZeros(Known); | |||
| 6306 | } | |||
| 6307 | case scCouldNotCompute: | |||
| 6308 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6308); | |||
| 6309 | } | |||
| 6310 | llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 6310); | |||
| 6311 | } | |||
| 6312 | ||||
| 6313 | APInt ScalarEvolution::getConstantMultiple(const SCEV *S) { | |||
| 6314 | auto I = ConstantMultipleCache.find(S); | |||
| 6315 | if (I != ConstantMultipleCache.end()) | |||
| 6316 | return I->second; | |||
| 6317 | ||||
| 6318 | APInt Result = getConstantMultipleImpl(S); | |||
| 6319 | auto InsertPair = ConstantMultipleCache.insert({S, Result}); | |||
| 6320 | assert(InsertPair.second && "Should insert a new key")(static_cast <bool> (InsertPair.second && "Should insert a new key" ) ? void (0) : __assert_fail ("InsertPair.second && \"Should insert a new key\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6320, __extension__ __PRETTY_FUNCTION__)); | |||
| 6321 | return InsertPair.first->second; | |||
| 6322 | } | |||
| 6323 | ||||
| 6324 | APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) { | |||
| 6325 | APInt Multiple = getConstantMultiple(S); | |||
| 6326 | return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple; | |||
| 6327 | } | |||
| 6328 | ||||
| 6329 | uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) { | |||
| 6330 | return std::min(getConstantMultiple(S).countTrailingZeros(), | |||
| 6331 | (unsigned)getTypeSizeInBits(S->getType())); | |||
| 6332 | } | |||
| 6333 | ||||
| 6334 | /// Helper method to assign a range to V from metadata present in the IR. | |||
| 6335 | static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) { | |||
| 6336 | if (Instruction *I = dyn_cast<Instruction>(V)) | |||
| 6337 | if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) | |||
| 6338 | return getConstantRangeFromMetadata(*MD); | |||
| 6339 | ||||
| 6340 | return std::nullopt; | |||
| 6341 | } | |||
| 6342 | ||||
| 6343 | void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, | |||
| 6344 | SCEV::NoWrapFlags Flags) { | |||
| 6345 | if (AddRec->getNoWrapFlags(Flags) != Flags) { | |||
| 6346 | AddRec->setNoWrapFlags(Flags); | |||
| 6347 | UnsignedRanges.erase(AddRec); | |||
| 6348 | SignedRanges.erase(AddRec); | |||
| 6349 | ConstantMultipleCache.erase(AddRec); | |||
| 6350 | } | |||
| 6351 | } | |||
| 6352 | ||||
| 6353 | ConstantRange ScalarEvolution:: | |||
| 6354 | getRangeForUnknownRecurrence(const SCEVUnknown *U) { | |||
| 6355 | const DataLayout &DL = getDataLayout(); | |||
| 6356 | ||||
| 6357 | unsigned BitWidth = getTypeSizeInBits(U->getType()); | |||
| 6358 | const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); | |||
| 6359 | ||||
| 6360 | // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then | |||
| 6361 | // use information about the trip count to improve our available range. Note | |||
| 6362 | // that the trip count independent cases are already handled by known bits. | |||
| 6363 | // WARNING: The definition of recurrence used here is subtly different than | |||
| 6364 | // the one used by AddRec (and thus most of this file). Step is allowed to | |||
| 6365 | // be arbitrarily loop varying here, where AddRec allows only loop invariant | |||
| 6366 | // and other addrecs in the same loop (for non-affine addrecs). The code | |||
| 6367 | // below intentionally handles the case where step is not loop invariant. | |||
| 6368 | auto *P = dyn_cast<PHINode>(U->getValue()); | |||
| 6369 | if (!P) | |||
| 6370 | return FullSet; | |||
| 6371 | ||||
| 6372 | // Make sure that no Phi input comes from an unreachable block. Otherwise, | |||
| 6373 | // even the values that are not available in these blocks may come from them, | |||
| 6374 | // and this leads to false-positive recurrence test. | |||
| 6375 | for (auto *Pred : predecessors(P->getParent())) | |||
| 6376 | if (!DT.isReachableFromEntry(Pred)) | |||
| 6377 | return FullSet; | |||
| 6378 | ||||
| 6379 | BinaryOperator *BO; | |||
| 6380 | Value *Start, *Step; | |||
| 6381 | if (!matchSimpleRecurrence(P, BO, Start, Step)) | |||
| 6382 | return FullSet; | |||
| 6383 | ||||
| 6384 | // If we found a recurrence in reachable code, we must be in a loop. Note | |||
| 6385 | // that BO might be in some subloop of L, and that's completely okay. | |||
| 6386 | auto *L = LI.getLoopFor(P->getParent()); | |||
| 6387 | assert(L && L->getHeader() == P->getParent())(static_cast <bool> (L && L->getHeader() == P ->getParent()) ? void (0) : __assert_fail ("L && L->getHeader() == P->getParent()" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6387, __extension__ __PRETTY_FUNCTION__)); | |||
| 6388 | if (!L->contains(BO->getParent())) | |||
| 6389 | // NOTE: This bailout should be an assert instead. However, asserting | |||
| 6390 | // the condition here exposes a case where LoopFusion is querying SCEV | |||
| 6391 | // with malformed loop information during the midst of the transform. | |||
| 6392 | // There doesn't appear to be an obvious fix, so for the moment bailout | |||
| 6393 | // until the caller issue can be fixed. PR49566 tracks the bug. | |||
| 6394 | return FullSet; | |||
| 6395 | ||||
| 6396 | // TODO: Extend to other opcodes such as mul, and div | |||
| 6397 | switch (BO->getOpcode()) { | |||
| 6398 | default: | |||
| 6399 | return FullSet; | |||
| 6400 | case Instruction::AShr: | |||
| 6401 | case Instruction::LShr: | |||
| 6402 | case Instruction::Shl: | |||
| 6403 | break; | |||
| 6404 | }; | |||
| 6405 | ||||
| 6406 | if (BO->getOperand(0) != P) | |||
| 6407 | // TODO: Handle the power function forms some day. | |||
| 6408 | return FullSet; | |||
| 6409 | ||||
| 6410 | unsigned TC = getSmallConstantMaxTripCount(L); | |||
| 6411 | if (!TC || TC >= BitWidth) | |||
| 6412 | return FullSet; | |||
| 6413 | ||||
| 6414 | auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); | |||
| 6415 | auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); | |||
| 6416 | assert(KnownStart.getBitWidth() == BitWidth &&(static_cast <bool> (KnownStart.getBitWidth() == BitWidth && KnownStep.getBitWidth() == BitWidth) ? void (0) : __assert_fail ("KnownStart.getBitWidth() == BitWidth && KnownStep.getBitWidth() == BitWidth" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6417, __extension__ __PRETTY_FUNCTION__)) | |||
| 6417 | KnownStep.getBitWidth() == BitWidth)(static_cast <bool> (KnownStart.getBitWidth() == BitWidth && KnownStep.getBitWidth() == BitWidth) ? void (0) : __assert_fail ("KnownStart.getBitWidth() == BitWidth && KnownStep.getBitWidth() == BitWidth" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6417, __extension__ __PRETTY_FUNCTION__)); | |||
| 6418 | ||||
| 6419 | // Compute total shift amount, being careful of overflow and bitwidths. | |||
| 6420 | auto MaxShiftAmt = KnownStep.getMaxValue(); | |||
| 6421 | APInt TCAP(BitWidth, TC-1); | |||
| 6422 | bool Overflow = false; | |||
| 6423 | auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); | |||
| 6424 | if (Overflow) | |||
| 6425 | return FullSet; | |||
| 6426 | ||||
| 6427 | switch (BO->getOpcode()) { | |||
| 6428 | default: | |||
| 6429 | llvm_unreachable("filtered out above")::llvm::llvm_unreachable_internal("filtered out above", "llvm/lib/Analysis/ScalarEvolution.cpp" , 6429); | |||
| 6430 | case Instruction::AShr: { | |||
| 6431 | // For each ashr, three cases: | |||
| 6432 | // shift = 0 => unchanged value | |||
| 6433 | // saturation => 0 or -1 | |||
| 6434 | // other => a value closer to zero (of the same sign) | |||
| 6435 | // Thus, the end value is closer to zero than the start. | |||
| 6436 | auto KnownEnd = KnownBits::ashr(KnownStart, | |||
| 6437 | KnownBits::makeConstant(TotalShift)); | |||
| 6438 | if (KnownStart.isNonNegative()) | |||
| 6439 | // Analogous to lshr (simply not yet canonicalized) | |||
| 6440 | return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), | |||
| 6441 | KnownStart.getMaxValue() + 1); | |||
| 6442 | if (KnownStart.isNegative()) | |||
| 6443 | // End >=u Start && End <=s Start | |||
| 6444 | return ConstantRange::getNonEmpty(KnownStart.getMinValue(), | |||
| 6445 | KnownEnd.getMaxValue() + 1); | |||
| 6446 | break; | |||
| 6447 | } | |||
| 6448 | case Instruction::LShr: { | |||
| 6449 | // For each lshr, three cases: | |||
| 6450 | // shift = 0 => unchanged value | |||
| 6451 | // saturation => 0 | |||
| 6452 | // other => a smaller positive number | |||
| 6453 | // Thus, the low end of the unsigned range is the last value produced. | |||
| 6454 | auto KnownEnd = KnownBits::lshr(KnownStart, | |||
| 6455 | KnownBits::makeConstant(TotalShift)); | |||
| 6456 | return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), | |||
| 6457 | KnownStart.getMaxValue() + 1); | |||
| 6458 | } | |||
| 6459 | case Instruction::Shl: { | |||
| 6460 | // Iff no bits are shifted out, value increases on every shift. | |||
| 6461 | auto KnownEnd = KnownBits::shl(KnownStart, | |||
| 6462 | KnownBits::makeConstant(TotalShift)); | |||
| 6463 | if (TotalShift.ult(KnownStart.countMinLeadingZeros())) | |||
| 6464 | return ConstantRange(KnownStart.getMinValue(), | |||
| 6465 | KnownEnd.getMaxValue() + 1); | |||
| 6466 | break; | |||
| 6467 | } | |||
| 6468 | }; | |||
| 6469 | return FullSet; | |||
| 6470 | } | |||
| 6471 | ||||
| 6472 | const ConstantRange & | |||
| 6473 | ScalarEvolution::getRangeRefIter(const SCEV *S, | |||
| 6474 | ScalarEvolution::RangeSignHint SignHint) { | |||
| 6475 | DenseMap<const SCEV *, ConstantRange> &Cache = | |||
| 6476 | SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges | |||
| 6477 | : SignedRanges; | |||
| 6478 | SmallVector<const SCEV *> WorkList; | |||
| 6479 | SmallPtrSet<const SCEV *, 8> Seen; | |||
| 6480 | ||||
| 6481 | // Add Expr to the worklist, if Expr is either an N-ary expression or a | |||
| 6482 | // SCEVUnknown PHI node. | |||
| 6483 | auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) { | |||
| 6484 | if (!Seen.insert(Expr).second) | |||
| 6485 | return; | |||
| 6486 | if (Cache.contains(Expr)) | |||
| 6487 | return; | |||
| 6488 | switch (Expr->getSCEVType()) { | |||
| 6489 | case scUnknown: | |||
| 6490 | if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue())) | |||
| 6491 | break; | |||
| 6492 | [[fallthrough]]; | |||
| 6493 | case scConstant: | |||
| 6494 | case scVScale: | |||
| 6495 | case scTruncate: | |||
| 6496 | case scZeroExtend: | |||
| 6497 | case scSignExtend: | |||
| 6498 | case scPtrToInt: | |||
| 6499 | case scAddExpr: | |||
| 6500 | case scMulExpr: | |||
| 6501 | case scUDivExpr: | |||
| 6502 | case scAddRecExpr: | |||
| 6503 | case scUMaxExpr: | |||
| 6504 | case scSMaxExpr: | |||
| 6505 | case scUMinExpr: | |||
| 6506 | case scSMinExpr: | |||
| 6507 | case scSequentialUMinExpr: | |||
| 6508 | WorkList.push_back(Expr); | |||
| 6509 | break; | |||
| 6510 | case scCouldNotCompute: | |||
| 6511 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6511); | |||
| 6512 | } | |||
| 6513 | }; | |||
| 6514 | AddToWorklist(S); | |||
| 6515 | ||||
| 6516 | // Build worklist by queuing operands of N-ary expressions and phi nodes. | |||
| 6517 | for (unsigned I = 0; I != WorkList.size(); ++I) { | |||
| 6518 | const SCEV *P = WorkList[I]; | |||
| 6519 | auto *UnknownS = dyn_cast<SCEVUnknown>(P); | |||
| 6520 | // If it is not a `SCEVUnknown`, just recurse into operands. | |||
| 6521 | if (!UnknownS) { | |||
| 6522 | for (const SCEV *Op : P->operands()) | |||
| 6523 | AddToWorklist(Op); | |||
| 6524 | continue; | |||
| 6525 | } | |||
| 6526 | // `SCEVUnknown`'s require special treatment. | |||
| 6527 | if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) { | |||
| 6528 | if (!PendingPhiRangesIter.insert(P).second) | |||
| 6529 | continue; | |||
| 6530 | for (auto &Op : reverse(P->operands())) | |||
| 6531 | AddToWorklist(getSCEV(Op)); | |||
| 6532 | } | |||
| 6533 | } | |||
| 6534 | ||||
| 6535 | if (!WorkList.empty()) { | |||
| 6536 | // Use getRangeRef to compute ranges for items in the worklist in reverse | |||
| 6537 | // order. This will force ranges for earlier operands to be computed before | |||
| 6538 | // their users in most cases. | |||
| 6539 | for (const SCEV *P : | |||
| 6540 | reverse(make_range(WorkList.begin() + 1, WorkList.end()))) { | |||
| 6541 | getRangeRef(P, SignHint); | |||
| 6542 | ||||
| 6543 | if (auto *UnknownS = dyn_cast<SCEVUnknown>(P)) | |||
| 6544 | if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) | |||
| 6545 | PendingPhiRangesIter.erase(P); | |||
| 6546 | } | |||
| 6547 | } | |||
| 6548 | ||||
| 6549 | return getRangeRef(S, SignHint, 0); | |||
| 6550 | } | |||
| 6551 | ||||
| 6552 | /// Determine the range for a particular SCEV. If SignHint is | |||
| 6553 | /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges | |||
| 6554 | /// with a "cleaner" unsigned (resp. signed) representation. | |||
| 6555 | const ConstantRange &ScalarEvolution::getRangeRef( | |||
| 6556 | const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) { | |||
| 6557 | DenseMap<const SCEV *, ConstantRange> &Cache = | |||
| 6558 | SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges | |||
| 6559 | : SignedRanges; | |||
| 6560 | ConstantRange::PreferredRangeType RangeType = | |||
| 6561 | SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned | |||
| 6562 | : ConstantRange::Signed; | |||
| 6563 | ||||
| 6564 | // See if we've computed this range already. | |||
| 6565 | DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); | |||
| 6566 | if (I != Cache.end()) | |||
| 6567 | return I->second; | |||
| 6568 | ||||
| 6569 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) | |||
| 6570 | return setRange(C, SignHint, ConstantRange(C->getAPInt())); | |||
| 6571 | ||||
| 6572 | // Switch to iteratively computing the range for S, if it is part of a deeply | |||
| 6573 | // nested expression. | |||
| 6574 | if (Depth > RangeIterThreshold) | |||
| 6575 | return getRangeRefIter(S, SignHint); | |||
| 6576 | ||||
| 6577 | unsigned BitWidth = getTypeSizeInBits(S->getType()); | |||
| 6578 | ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); | |||
| 6579 | using OBO = OverflowingBinaryOperator; | |||
| 6580 | ||||
| 6581 | // If the value has known zeros, the maximum value will have those known zeros | |||
| 6582 | // as well. | |||
| 6583 | if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { | |||
| 6584 | APInt Multiple = getNonZeroConstantMultiple(S); | |||
| 6585 | APInt Remainder = APInt::getMaxValue(BitWidth).urem(Multiple); | |||
| 6586 | if (!Remainder.isZero()) | |||
| 6587 | ConservativeResult = | |||
| 6588 | ConstantRange(APInt::getMinValue(BitWidth), | |||
| 6589 | APInt::getMaxValue(BitWidth) - Remainder + 1); | |||
| 6590 | } | |||
| 6591 | else { | |||
| 6592 | uint32_t TZ = getMinTrailingZeros(S); | |||
| 6593 | if (TZ != 0) { | |||
| 6594 | ConservativeResult = ConstantRange( | |||
| 6595 | APInt::getSignedMinValue(BitWidth), | |||
| 6596 | APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); | |||
| 6597 | } | |||
| 6598 | } | |||
| 6599 | ||||
| 6600 | switch (S->getSCEVType()) { | |||
| 6601 | case scConstant: | |||
| 6602 | llvm_unreachable("Already handled above.")::llvm::llvm_unreachable_internal("Already handled above.", "llvm/lib/Analysis/ScalarEvolution.cpp" , 6602); | |||
| 6603 | case scVScale: | |||
| 6604 | return setRange(S, SignHint, getVScaleRange(&F, BitWidth)); | |||
| 6605 | case scTruncate: { | |||
| 6606 | const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S); | |||
| 6607 | ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1); | |||
| 6608 | return setRange( | |||
| 6609 | Trunc, SignHint, | |||
| 6610 | ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType)); | |||
| 6611 | } | |||
| 6612 | case scZeroExtend: { | |||
| 6613 | const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S); | |||
| 6614 | ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1); | |||
| 6615 | return setRange( | |||
| 6616 | ZExt, SignHint, | |||
| 6617 | ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType)); | |||
| 6618 | } | |||
| 6619 | case scSignExtend: { | |||
| 6620 | const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S); | |||
| 6621 | ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1); | |||
| 6622 | return setRange( | |||
| 6623 | SExt, SignHint, | |||
| 6624 | ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType)); | |||
| 6625 | } | |||
| 6626 | case scPtrToInt: { | |||
| 6627 | const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S); | |||
| 6628 | ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1); | |||
| 6629 | return setRange(PtrToInt, SignHint, X); | |||
| 6630 | } | |||
| 6631 | case scAddExpr: { | |||
| 6632 | const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); | |||
| 6633 | ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1); | |||
| 6634 | unsigned WrapType = OBO::AnyWrap; | |||
| 6635 | if (Add->hasNoSignedWrap()) | |||
| 6636 | WrapType |= OBO::NoSignedWrap; | |||
| 6637 | if (Add->hasNoUnsignedWrap()) | |||
| 6638 | WrapType |= OBO::NoUnsignedWrap; | |||
| 6639 | for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) | |||
| 6640 | X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1), | |||
| 6641 | WrapType, RangeType); | |||
| 6642 | return setRange(Add, SignHint, | |||
| 6643 | ConservativeResult.intersectWith(X, RangeType)); | |||
| 6644 | } | |||
| 6645 | case scMulExpr: { | |||
| 6646 | const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S); | |||
| 6647 | ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1); | |||
| 6648 | for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) | |||
| 6649 | X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1)); | |||
| 6650 | return setRange(Mul, SignHint, | |||
| 6651 | ConservativeResult.intersectWith(X, RangeType)); | |||
| 6652 | } | |||
| 6653 | case scUDivExpr: { | |||
| 6654 | const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); | |||
| 6655 | ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1); | |||
| 6656 | ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1); | |||
| 6657 | return setRange(UDiv, SignHint, | |||
| 6658 | ConservativeResult.intersectWith(X.udiv(Y), RangeType)); | |||
| 6659 | } | |||
| 6660 | case scAddRecExpr: { | |||
| 6661 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S); | |||
| 6662 | // If there's no unsigned wrap, the value will never be less than its | |||
| 6663 | // initial value. | |||
| 6664 | if (AddRec->hasNoUnsignedWrap()) { | |||
| 6665 | APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); | |||
| 6666 | if (!UnsignedMinValue.isZero()) | |||
| 6667 | ConservativeResult = ConservativeResult.intersectWith( | |||
| 6668 | ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); | |||
| 6669 | } | |||
| 6670 | ||||
| 6671 | // If there's no signed wrap, and all the operands except initial value have | |||
| 6672 | // the same sign or zero, the value won't ever be: | |||
| 6673 | // 1: smaller than initial value if operands are non negative, | |||
| 6674 | // 2: bigger than initial value if operands are non positive. | |||
| 6675 | // For both cases, value can not cross signed min/max boundary. | |||
| 6676 | if (AddRec->hasNoSignedWrap()) { | |||
| 6677 | bool AllNonNeg = true; | |||
| 6678 | bool AllNonPos = true; | |||
| 6679 | for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { | |||
| 6680 | if (!isKnownNonNegative(AddRec->getOperand(i))) | |||
| 6681 | AllNonNeg = false; | |||
| 6682 | if (!isKnownNonPositive(AddRec->getOperand(i))) | |||
| 6683 | AllNonPos = false; | |||
| 6684 | } | |||
| 6685 | if (AllNonNeg) | |||
| 6686 | ConservativeResult = ConservativeResult.intersectWith( | |||
| 6687 | ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), | |||
| 6688 | APInt::getSignedMinValue(BitWidth)), | |||
| 6689 | RangeType); | |||
| 6690 | else if (AllNonPos) | |||
| 6691 | ConservativeResult = ConservativeResult.intersectWith( | |||
| 6692 | ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth), | |||
| 6693 | getSignedRangeMax(AddRec->getStart()) + | |||
| 6694 | 1), | |||
| 6695 | RangeType); | |||
| 6696 | } | |||
| 6697 | ||||
| 6698 | // TODO: non-affine addrec | |||
| 6699 | if (AddRec->isAffine()) { | |||
| 6700 | const SCEV *MaxBECount = | |||
| 6701 | getConstantMaxBackedgeTakenCount(AddRec->getLoop()); | |||
| 6702 | if (!isa<SCEVCouldNotCompute>(MaxBECount) && | |||
| 6703 | getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { | |||
| 6704 | auto RangeFromAffine = getRangeForAffineAR( | |||
| 6705 | AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, | |||
| 6706 | BitWidth); | |||
| 6707 | ConservativeResult = | |||
| 6708 | ConservativeResult.intersectWith(RangeFromAffine, RangeType); | |||
| 6709 | ||||
| 6710 | auto RangeFromFactoring = getRangeViaFactoring( | |||
| 6711 | AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, | |||
| 6712 | BitWidth); | |||
| 6713 | ConservativeResult = | |||
| 6714 | ConservativeResult.intersectWith(RangeFromFactoring, RangeType); | |||
| 6715 | } | |||
| 6716 | ||||
| 6717 | // Now try symbolic BE count and more powerful methods. | |||
| 6718 | if (UseExpensiveRangeSharpening) { | |||
| 6719 | const SCEV *SymbolicMaxBECount = | |||
| 6720 | getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); | |||
| 6721 | if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && | |||
| 6722 | getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && | |||
| 6723 | AddRec->hasNoSelfWrap()) { | |||
| 6724 | auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( | |||
| 6725 | AddRec, SymbolicMaxBECount, BitWidth, SignHint); | |||
| 6726 | ConservativeResult = | |||
| 6727 | ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); | |||
| 6728 | } | |||
| 6729 | } | |||
| 6730 | } | |||
| 6731 | ||||
| 6732 | return setRange(AddRec, SignHint, std::move(ConservativeResult)); | |||
| 6733 | } | |||
| 6734 | case scUMaxExpr: | |||
| 6735 | case scSMaxExpr: | |||
| 6736 | case scUMinExpr: | |||
| 6737 | case scSMinExpr: | |||
| 6738 | case scSequentialUMinExpr: { | |||
| 6739 | Intrinsic::ID ID; | |||
| 6740 | switch (S->getSCEVType()) { | |||
| 6741 | case scUMaxExpr: | |||
| 6742 | ID = Intrinsic::umax; | |||
| 6743 | break; | |||
| 6744 | case scSMaxExpr: | |||
| 6745 | ID = Intrinsic::smax; | |||
| 6746 | break; | |||
| 6747 | case scUMinExpr: | |||
| 6748 | case scSequentialUMinExpr: | |||
| 6749 | ID = Intrinsic::umin; | |||
| 6750 | break; | |||
| 6751 | case scSMinExpr: | |||
| 6752 | ID = Intrinsic::smin; | |||
| 6753 | break; | |||
| 6754 | default: | |||
| 6755 | llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.")::llvm::llvm_unreachable_internal("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr." , "llvm/lib/Analysis/ScalarEvolution.cpp", 6755); | |||
| 6756 | } | |||
| 6757 | ||||
| 6758 | const auto *NAry = cast<SCEVNAryExpr>(S); | |||
| 6759 | ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1); | |||
| 6760 | for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) | |||
| 6761 | X = X.intrinsic( | |||
| 6762 | ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)}); | |||
| 6763 | return setRange(S, SignHint, | |||
| 6764 | ConservativeResult.intersectWith(X, RangeType)); | |||
| 6765 | } | |||
| 6766 | case scUnknown: { | |||
| 6767 | const SCEVUnknown *U = cast<SCEVUnknown>(S); | |||
| 6768 | ||||
| 6769 | // Check if the IR explicitly contains !range metadata. | |||
| 6770 | std::optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); | |||
| 6771 | if (MDRange) | |||
| 6772 | ConservativeResult = | |||
| 6773 | ConservativeResult.intersectWith(*MDRange, RangeType); | |||
| 6774 | ||||
| 6775 | // Use facts about recurrences in the underlying IR. Note that add | |||
| 6776 | // recurrences are AddRecExprs and thus don't hit this path. This | |||
| 6777 | // primarily handles shift recurrences. | |||
| 6778 | auto CR = getRangeForUnknownRecurrence(U); | |||
| 6779 | ConservativeResult = ConservativeResult.intersectWith(CR); | |||
| 6780 | ||||
| 6781 | // See if ValueTracking can give us a useful range. | |||
| 6782 | const DataLayout &DL = getDataLayout(); | |||
| 6783 | KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); | |||
| 6784 | if (Known.getBitWidth() != BitWidth) | |||
| 6785 | Known = Known.zextOrTrunc(BitWidth); | |||
| 6786 | ||||
| 6787 | // ValueTracking may be able to compute a tighter result for the number of | |||
| 6788 | // sign bits than for the value of those sign bits. | |||
| 6789 | unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); | |||
| 6790 | if (U->getType()->isPointerTy()) { | |||
| 6791 | // If the pointer size is larger than the index size type, this can cause | |||
| 6792 | // NS to be larger than BitWidth. So compensate for this. | |||
| 6793 | unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); | |||
| 6794 | int ptrIdxDiff = ptrSize - BitWidth; | |||
| 6795 | if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) | |||
| 6796 | NS -= ptrIdxDiff; | |||
| 6797 | } | |||
| 6798 | ||||
| 6799 | if (NS > 1) { | |||
| 6800 | // If we know any of the sign bits, we know all of the sign bits. | |||
| 6801 | if (!Known.Zero.getHiBits(NS).isZero()) | |||
| 6802 | Known.Zero.setHighBits(NS); | |||
| 6803 | if (!Known.One.getHiBits(NS).isZero()) | |||
| 6804 | Known.One.setHighBits(NS); | |||
| 6805 | } | |||
| 6806 | ||||
| 6807 | if (Known.getMinValue() != Known.getMaxValue() + 1) | |||
| 6808 | ConservativeResult = ConservativeResult.intersectWith( | |||
| 6809 | ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), | |||
| 6810 | RangeType); | |||
| 6811 | if (NS > 1) | |||
| 6812 | ConservativeResult = ConservativeResult.intersectWith( | |||
| 6813 | ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), | |||
| 6814 | APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), | |||
| 6815 | RangeType); | |||
| 6816 | ||||
| 6817 | if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) { | |||
| 6818 | // Strengthen the range if the underlying IR value is a global using the | |||
| 6819 | // size of the global. | |||
| 6820 | ObjectSizeOpts Opts; | |||
| 6821 | Opts.RoundToAlign = false; | |||
| 6822 | Opts.NullIsUnknownSize = true; | |||
| 6823 | uint64_t ObjSize; | |||
| 6824 | auto *GV = dyn_cast<GlobalVariable>(U->getValue()); | |||
| 6825 | if (GV && getObjectSize(U->getValue(), ObjSize, DL, &TLI, Opts) && | |||
| 6826 | ObjSize > 1) { | |||
| 6827 | // The highest address the object can start is ObjSize bytes before the | |||
| 6828 | // end (unsigned max value). If this value is not a multiple of the | |||
| 6829 | // alignment, the last possible start value is the next lowest multiple | |||
| 6830 | // of the alignment. Note: The computations below cannot overflow, | |||
| 6831 | // because if they would there's no possible start address for the | |||
| 6832 | // object. | |||
| 6833 | APInt MaxVal = APInt::getMaxValue(BitWidth) - APInt(BitWidth, ObjSize); | |||
| 6834 | uint64_t Align = GV->getAlign().valueOrOne().value(); | |||
| 6835 | uint64_t Rem = MaxVal.urem(Align); | |||
| 6836 | MaxVal -= APInt(BitWidth, Rem); | |||
| 6837 | ConservativeResult = ConservativeResult.intersectWith( | |||
| 6838 | {ConservativeResult.getUnsignedMin(), MaxVal + 1}, RangeType); | |||
| 6839 | } | |||
| 6840 | } | |||
| 6841 | ||||
| 6842 | // A range of Phi is a subset of union of all ranges of its input. | |||
| 6843 | if (PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { | |||
| 6844 | // Make sure that we do not run over cycled Phis. | |||
| 6845 | if (PendingPhiRanges.insert(Phi).second) { | |||
| 6846 | ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); | |||
| 6847 | ||||
| 6848 | for (const auto &Op : Phi->operands()) { | |||
| 6849 | auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1); | |||
| 6850 | RangeFromOps = RangeFromOps.unionWith(OpRange); | |||
| 6851 | // No point to continue if we already have a full set. | |||
| 6852 | if (RangeFromOps.isFullSet()) | |||
| 6853 | break; | |||
| 6854 | } | |||
| 6855 | ConservativeResult = | |||
| 6856 | ConservativeResult.intersectWith(RangeFromOps, RangeType); | |||
| 6857 | bool Erased = PendingPhiRanges.erase(Phi); | |||
| 6858 | assert(Erased && "Failed to erase Phi properly?")(static_cast <bool> (Erased && "Failed to erase Phi properly?" ) ? void (0) : __assert_fail ("Erased && \"Failed to erase Phi properly?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6858, __extension__ __PRETTY_FUNCTION__)); | |||
| 6859 | (void)Erased; | |||
| 6860 | } | |||
| 6861 | } | |||
| 6862 | ||||
| 6863 | // vscale can't be equal to zero | |||
| 6864 | if (const auto *II = dyn_cast<IntrinsicInst>(U->getValue())) | |||
| 6865 | if (II->getIntrinsicID() == Intrinsic::vscale) { | |||
| 6866 | ConstantRange Disallowed = APInt::getZero(BitWidth); | |||
| 6867 | ConservativeResult = ConservativeResult.difference(Disallowed); | |||
| 6868 | } | |||
| 6869 | ||||
| 6870 | return setRange(U, SignHint, std::move(ConservativeResult)); | |||
| 6871 | } | |||
| 6872 | case scCouldNotCompute: | |||
| 6873 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6873); | |||
| 6874 | } | |||
| 6875 | ||||
| 6876 | return setRange(S, SignHint, std::move(ConservativeResult)); | |||
| 6877 | } | |||
| 6878 | ||||
| 6879 | // Given a StartRange, Step and MaxBECount for an expression compute a range of | |||
| 6880 | // values that the expression can take. Initially, the expression has a value | |||
| 6881 | // from StartRange and then is changed by Step up to MaxBECount times. Signed | |||
| 6882 | // argument defines if we treat Step as signed or unsigned. | |||
| 6883 | static ConstantRange getRangeForAffineARHelper(APInt Step, | |||
| 6884 | const ConstantRange &StartRange, | |||
| 6885 | const APInt &MaxBECount, | |||
| 6886 | unsigned BitWidth, bool Signed) { | |||
| 6887 | // If either Step or MaxBECount is 0, then the expression won't change, and we | |||
| 6888 | // just need to return the initial range. | |||
| 6889 | if (Step == 0 || MaxBECount == 0) | |||
| 6890 | return StartRange; | |||
| 6891 | ||||
| 6892 | // If we don't know anything about the initial value (i.e. StartRange is | |||
| 6893 | // FullRange), then we don't know anything about the final range either. | |||
| 6894 | // Return FullRange. | |||
| 6895 | if (StartRange.isFullSet()) | |||
| 6896 | return ConstantRange::getFull(BitWidth); | |||
| 6897 | ||||
| 6898 | // If Step is signed and negative, then we use its absolute value, but we also | |||
| 6899 | // note that we're moving in the opposite direction. | |||
| 6900 | bool Descending = Signed && Step.isNegative(); | |||
| 6901 | ||||
| 6902 | if (Signed) | |||
| 6903 | // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: | |||
| 6904 | // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. | |||
| 6905 | // This equations hold true due to the well-defined wrap-around behavior of | |||
| 6906 | // APInt. | |||
| 6907 | Step = Step.abs(); | |||
| 6908 | ||||
| 6909 | // Check if Offset is more than full span of BitWidth. If it is, the | |||
| 6910 | // expression is guaranteed to overflow. | |||
| 6911 | if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) | |||
| 6912 | return ConstantRange::getFull(BitWidth); | |||
| 6913 | ||||
| 6914 | // Offset is by how much the expression can change. Checks above guarantee no | |||
| 6915 | // overflow here. | |||
| 6916 | APInt Offset = Step * MaxBECount; | |||
| 6917 | ||||
| 6918 | // Minimum value of the final range will match the minimal value of StartRange | |||
| 6919 | // if the expression is increasing and will be decreased by Offset otherwise. | |||
| 6920 | // Maximum value of the final range will match the maximal value of StartRange | |||
| 6921 | // if the expression is decreasing and will be increased by Offset otherwise. | |||
| 6922 | APInt StartLower = StartRange.getLower(); | |||
| 6923 | APInt StartUpper = StartRange.getUpper() - 1; | |||
| 6924 | APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) | |||
| 6925 | : (StartUpper + std::move(Offset)); | |||
| 6926 | ||||
| 6927 | // It's possible that the new minimum/maximum value will fall into the initial | |||
| 6928 | // range (due to wrap around). This means that the expression can take any | |||
| 6929 | // value in this bitwidth, and we have to return full range. | |||
| 6930 | if (StartRange.contains(MovedBoundary)) | |||
| 6931 | return ConstantRange::getFull(BitWidth); | |||
| 6932 | ||||
| 6933 | APInt NewLower = | |||
| 6934 | Descending ? std::move(MovedBoundary) : std::move(StartLower); | |||
| 6935 | APInt NewUpper = | |||
| 6936 | Descending ? std::move(StartUpper) : std::move(MovedBoundary); | |||
| 6937 | NewUpper += 1; | |||
| 6938 | ||||
| 6939 | // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. | |||
| 6940 | return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); | |||
| 6941 | } | |||
| 6942 | ||||
| 6943 | ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, | |||
| 6944 | const SCEV *Step, | |||
| 6945 | const SCEV *MaxBECount, | |||
| 6946 | unsigned BitWidth) { | |||
| 6947 | assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&(static_cast <bool> (!isa<SCEVCouldNotCompute>(MaxBECount ) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && "Precondition!") ? void (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6949, __extension__ __PRETTY_FUNCTION__)) | |||
| 6948 | getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&(static_cast <bool> (!isa<SCEVCouldNotCompute>(MaxBECount ) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && "Precondition!") ? void (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6949, __extension__ __PRETTY_FUNCTION__)) | |||
| 6949 | "Precondition!")(static_cast <bool> (!isa<SCEVCouldNotCompute>(MaxBECount ) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && "Precondition!") ? void (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6949, __extension__ __PRETTY_FUNCTION__)); | |||
| 6950 | ||||
| 6951 | MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); | |||
| 6952 | APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); | |||
| 6953 | ||||
| 6954 | // First, consider step signed. | |||
| 6955 | ConstantRange StartSRange = getSignedRange(Start); | |||
| 6956 | ConstantRange StepSRange = getSignedRange(Step); | |||
| 6957 | ||||
| 6958 | // If Step can be both positive and negative, we need to find ranges for the | |||
| 6959 | // maximum absolute step values in both directions and union them. | |||
| 6960 | ConstantRange SR = | |||
| 6961 | getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, | |||
| 6962 | MaxBECountValue, BitWidth, /* Signed = */ true); | |||
| 6963 | SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), | |||
| 6964 | StartSRange, MaxBECountValue, | |||
| 6965 | BitWidth, /* Signed = */ true)); | |||
| 6966 | ||||
| 6967 | // Next, consider step unsigned. | |||
| 6968 | ConstantRange UR = getRangeForAffineARHelper( | |||
| 6969 | getUnsignedRangeMax(Step), getUnsignedRange(Start), | |||
| 6970 | MaxBECountValue, BitWidth, /* Signed = */ false); | |||
| 6971 | ||||
| 6972 | // Finally, intersect signed and unsigned ranges. | |||
| 6973 | return SR.intersectWith(UR, ConstantRange::Smallest); | |||
| 6974 | } | |||
| 6975 | ||||
| 6976 | ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( | |||
| 6977 | const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, | |||
| 6978 | ScalarEvolution::RangeSignHint SignHint) { | |||
| 6979 | assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n")(static_cast <bool> (AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n" ) ? void (0) : __assert_fail ("AddRec->isAffine() && \"Non-affine AddRecs are not suppored!\\n\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6979, __extension__ __PRETTY_FUNCTION__)); | |||
| 6980 | assert(AddRec->hasNoSelfWrap() &&(static_cast <bool> (AddRec->hasNoSelfWrap() && "This only works for non-self-wrapping AddRecs!") ? void (0) : __assert_fail ("AddRec->hasNoSelfWrap() && \"This only works for non-self-wrapping AddRecs!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6981, __extension__ __PRETTY_FUNCTION__)) | |||
| 6981 | "This only works for non-self-wrapping AddRecs!")(static_cast <bool> (AddRec->hasNoSelfWrap() && "This only works for non-self-wrapping AddRecs!") ? void (0) : __assert_fail ("AddRec->hasNoSelfWrap() && \"This only works for non-self-wrapping AddRecs!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 6981, __extension__ __PRETTY_FUNCTION__)); | |||
| 6982 | const bool IsSigned = SignHint == HINT_RANGE_SIGNED; | |||
| 6983 | const SCEV *Step = AddRec->getStepRecurrence(*this); | |||
| 6984 | // Only deal with constant step to save compile time. | |||
| 6985 | if (!isa<SCEVConstant>(Step)) | |||
| 6986 | return ConstantRange::getFull(BitWidth); | |||
| 6987 | // Let's make sure that we can prove that we do not self-wrap during | |||
| 6988 | // MaxBECount iterations. We need this because MaxBECount is a maximum | |||
| 6989 | // iteration count estimate, and we might infer nw from some exit for which we | |||
| 6990 | // do not know max exit count (or any other side reasoning). | |||
| 6991 | // TODO: Turn into assert at some point. | |||
| 6992 | if (getTypeSizeInBits(MaxBECount->getType()) > | |||
| 6993 | getTypeSizeInBits(AddRec->getType())) | |||
| 6994 | return ConstantRange::getFull(BitWidth); | |||
| 6995 | MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); | |||
| 6996 | const SCEV *RangeWidth = getMinusOne(AddRec->getType()); | |||
| 6997 | const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); | |||
| 6998 | const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); | |||
| 6999 | if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, | |||
| 7000 | MaxItersWithoutWrap)) | |||
| 7001 | return ConstantRange::getFull(BitWidth); | |||
| 7002 | ||||
| 7003 | ICmpInst::Predicate LEPred = | |||
| 7004 | IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; | |||
| 7005 | ICmpInst::Predicate GEPred = | |||
| 7006 | IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; | |||
| 7007 | const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); | |||
| 7008 | ||||
| 7009 | // We know that there is no self-wrap. Let's take Start and End values and | |||
| 7010 | // look at all intermediate values V1, V2, ..., Vn that IndVar takes during | |||
| 7011 | // the iteration. They either lie inside the range [Min(Start, End), | |||
| 7012 | // Max(Start, End)] or outside it: | |||
| 7013 | // | |||
| 7014 | // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; | |||
| 7015 | // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; | |||
| 7016 | // | |||
| 7017 | // No self wrap flag guarantees that the intermediate values cannot be BOTH | |||
| 7018 | // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that | |||
| 7019 | // knowledge, let's try to prove that we are dealing with Case 1. It is so if | |||
| 7020 | // Start <= End and step is positive, or Start >= End and step is negative. | |||
| 7021 | const SCEV *Start = applyLoopGuards(AddRec->getStart(), AddRec->getLoop()); | |||
| 7022 | ConstantRange StartRange = getRangeRef(Start, SignHint); | |||
| 7023 | ConstantRange EndRange = getRangeRef(End, SignHint); | |||
| 7024 | ConstantRange RangeBetween = StartRange.unionWith(EndRange); | |||
| 7025 | // If they already cover full iteration space, we will know nothing useful | |||
| 7026 | // even if we prove what we want to prove. | |||
| 7027 | if (RangeBetween.isFullSet()) | |||
| 7028 | return RangeBetween; | |||
| 7029 | // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). | |||
| 7030 | bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() | |||
| 7031 | : RangeBetween.isWrappedSet(); | |||
| 7032 | if (IsWrappedSet) | |||
| 7033 | return ConstantRange::getFull(BitWidth); | |||
| 7034 | ||||
| 7035 | if (isKnownPositive(Step) && | |||
| 7036 | isKnownPredicateViaConstantRanges(LEPred, Start, End)) | |||
| 7037 | return RangeBetween; | |||
| 7038 | if (isKnownNegative(Step) && | |||
| 7039 | isKnownPredicateViaConstantRanges(GEPred, Start, End)) | |||
| 7040 | return RangeBetween; | |||
| 7041 | return ConstantRange::getFull(BitWidth); | |||
| 7042 | } | |||
| 7043 | ||||
| 7044 | ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, | |||
| 7045 | const SCEV *Step, | |||
| 7046 | const SCEV *MaxBECount, | |||
| 7047 | unsigned BitWidth) { | |||
| 7048 | // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) | |||
| 7049 | // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) | |||
| 7050 | ||||
| 7051 | struct SelectPattern { | |||
| 7052 | Value *Condition = nullptr; | |||
| 7053 | APInt TrueValue; | |||
| 7054 | APInt FalseValue; | |||
| 7055 | ||||
| 7056 | explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, | |||
| 7057 | const SCEV *S) { | |||
| 7058 | std::optional<unsigned> CastOp; | |||
| 7059 | APInt Offset(BitWidth, 0); | |||
| 7060 | ||||
| 7061 | assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&(static_cast <bool> (SE.getTypeSizeInBits(S->getType ()) == BitWidth && "Should be!") ? void (0) : __assert_fail ("SE.getTypeSizeInBits(S->getType()) == BitWidth && \"Should be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 7062, __extension__ __PRETTY_FUNCTION__)) | |||
| 7062 | "Should be!")(static_cast <bool> (SE.getTypeSizeInBits(S->getType ()) == BitWidth && "Should be!") ? void (0) : __assert_fail ("SE.getTypeSizeInBits(S->getType()) == BitWidth && \"Should be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 7062, __extension__ __PRETTY_FUNCTION__)); | |||
| 7063 | ||||
| 7064 | // Peel off a constant offset: | |||
| 7065 | if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { | |||
| 7066 | // In the future we could consider being smarter here and handle | |||
| 7067 | // {Start+Step,+,Step} too. | |||
| 7068 | if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) | |||
| 7069 | return; | |||
| 7070 | ||||
| 7071 | Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); | |||
| 7072 | S = SA->getOperand(1); | |||
| 7073 | } | |||
| 7074 | ||||
| 7075 | // Peel off a cast operation | |||
| 7076 | if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { | |||
| 7077 | CastOp = SCast->getSCEVType(); | |||
| 7078 | S = SCast->getOperand(); | |||
| 7079 | } | |||
| 7080 | ||||
| 7081 | using namespace llvm::PatternMatch; | |||
| 7082 | ||||
| 7083 | auto *SU = dyn_cast<SCEVUnknown>(S); | |||
| 7084 | const APInt *TrueVal, *FalseVal; | |||
| 7085 | if (!SU || | |||
| 7086 | !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), | |||
| 7087 | m_APInt(FalseVal)))) { | |||
| 7088 | Condition = nullptr; | |||
| 7089 | return; | |||
| 7090 | } | |||
| 7091 | ||||
| 7092 | TrueValue = *TrueVal; | |||
| 7093 | FalseValue = *FalseVal; | |||
| 7094 | ||||
| 7095 | // Re-apply the cast we peeled off earlier | |||
| 7096 | if (CastOp) | |||
| 7097 | switch (*CastOp) { | |||
| 7098 | default: | |||
| 7099 | llvm_unreachable("Unknown SCEV cast type!")::llvm::llvm_unreachable_internal("Unknown SCEV cast type!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 7099); | |||
| 7100 | ||||
| 7101 | case scTruncate: | |||
| 7102 | TrueValue = TrueValue.trunc(BitWidth); | |||
| 7103 | FalseValue = FalseValue.trunc(BitWidth); | |||
| 7104 | break; | |||
| 7105 | case scZeroExtend: | |||
| 7106 | TrueValue = TrueValue.zext(BitWidth); | |||
| 7107 | FalseValue = FalseValue.zext(BitWidth); | |||
| 7108 | break; | |||
| 7109 | case scSignExtend: | |||
| 7110 | TrueValue = TrueValue.sext(BitWidth); | |||
| 7111 | FalseValue = FalseValue.sext(BitWidth); | |||
| 7112 | break; | |||
| 7113 | } | |||
| 7114 | ||||
| 7115 | // Re-apply the constant offset we peeled off earlier | |||
| 7116 | TrueValue += Offset; | |||
| 7117 | FalseValue += Offset; | |||
| 7118 | } | |||
| 7119 | ||||
| 7120 | bool isRecognized() { return Condition != nullptr; } | |||
| 7121 | }; | |||
| 7122 | ||||
| 7123 | SelectPattern StartPattern(*this, BitWidth, Start); | |||
| 7124 | if (!StartPattern.isRecognized()) | |||
| 7125 | return ConstantRange::getFull(BitWidth); | |||
| 7126 | ||||
| 7127 | SelectPattern StepPattern(*this, BitWidth, Step); | |||
| 7128 | if (!StepPattern.isRecognized()) | |||
| 7129 | return ConstantRange::getFull(BitWidth); | |||
| 7130 | ||||
| 7131 | if (StartPattern.Condition != StepPattern.Condition) { | |||
| 7132 | // We don't handle this case today; but we could, by considering four | |||
| 7133 | // possibilities below instead of two. I'm not sure if there are cases where | |||
| 7134 | // that will help over what getRange already does, though. | |||
| 7135 | return ConstantRange::getFull(BitWidth); | |||
| 7136 | } | |||
| 7137 | ||||
| 7138 | // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to | |||
| 7139 | // construct arbitrary general SCEV expressions here. This function is called | |||
| 7140 | // from deep in the call stack, and calling getSCEV (on a sext instruction, | |||
| 7141 | // say) can end up caching a suboptimal value. | |||
| 7142 | ||||
| 7143 | // FIXME: without the explicit `this` receiver below, MSVC errors out with | |||
| 7144 | // C2352 and C2512 (otherwise it isn't needed). | |||
| 7145 | ||||
| 7146 | const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); | |||
| 7147 | const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); | |||
| 7148 | const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); | |||
| 7149 | const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); | |||
| 7150 | ||||
| 7151 | ConstantRange TrueRange = | |||
| 7152 | this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); | |||
| 7153 | ConstantRange FalseRange = | |||
| 7154 | this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); | |||
| 7155 | ||||
| 7156 | return TrueRange.unionWith(FalseRange); | |||
| 7157 | } | |||
| 7158 | ||||
| 7159 | SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { | |||
| 7160 | if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; | |||
| 7161 | const BinaryOperator *BinOp = cast<BinaryOperator>(V); | |||
| 7162 | ||||
| 7163 | // Return early if there are no flags to propagate to the SCEV. | |||
| 7164 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; | |||
| 7165 | if (BinOp->hasNoUnsignedWrap()) | |||
| 7166 | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); | |||
| 7167 | if (BinOp->hasNoSignedWrap()) | |||
| 7168 | Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); | |||
| 7169 | if (Flags == SCEV::FlagAnyWrap) | |||
| 7170 | return SCEV::FlagAnyWrap; | |||
| 7171 | ||||
| 7172 | return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; | |||
| 7173 | } | |||
| 7174 | ||||
| 7175 | const Instruction * | |||
| 7176 | ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { | |||
| 7177 | if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) | |||
| 7178 | return &*AddRec->getLoop()->getHeader()->begin(); | |||
| 7179 | if (auto *U = dyn_cast<SCEVUnknown>(S)) | |||
| 7180 | if (auto *I = dyn_cast<Instruction>(U->getValue())) | |||
| 7181 | return I; | |||
| 7182 | return nullptr; | |||
| 7183 | } | |||
| 7184 | ||||
| 7185 | const Instruction * | |||
| 7186 | ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, | |||
| 7187 | bool &Precise) { | |||
| 7188 | Precise = true; | |||
| 7189 | // Do a bounded search of the def relation of the requested SCEVs. | |||
| 7190 | SmallSet<const SCEV *, 16> Visited; | |||
| 7191 | SmallVector<const SCEV *> Worklist; | |||
| 7192 | auto pushOp = [&](const SCEV *S) { | |||
| 7193 | if (!Visited.insert(S).second) | |||
| 7194 | return; | |||
| 7195 | // Threshold of 30 here is arbitrary. | |||
| 7196 | if (Visited.size() > 30) { | |||
| 7197 | Precise = false; | |||
| 7198 | return; | |||
| 7199 | } | |||
| 7200 | Worklist.push_back(S); | |||
| 7201 | }; | |||
| 7202 | ||||
| 7203 | for (const auto *S : Ops) | |||
| 7204 | pushOp(S); | |||
| 7205 | ||||
| 7206 | const Instruction *Bound = nullptr; | |||
| 7207 | while (!Worklist.empty()) { | |||
| 7208 | auto *S = Worklist.pop_back_val(); | |||
| 7209 | if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { | |||
| 7210 | if (!Bound || DT.dominates(Bound, DefI)) | |||
| 7211 | Bound = DefI; | |||
| 7212 | } else { | |||
| 7213 | for (const auto *Op : S->operands()) | |||
| 7214 | pushOp(Op); | |||
| 7215 | } | |||
| 7216 | } | |||
| 7217 | return Bound ? Bound : &*F.getEntryBlock().begin(); | |||
| 7218 | } | |||
| 7219 | ||||
| 7220 | const Instruction * | |||
| 7221 | ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { | |||
| 7222 | bool Discard; | |||
| 7223 | return getDefiningScopeBound(Ops, Discard); | |||
| 7224 | } | |||
| 7225 | ||||
| 7226 | bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, | |||
| 7227 | const Instruction *B) { | |||
| 7228 | if (A->getParent() == B->getParent() && | |||
| 7229 | isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), | |||
| 7230 | B->getIterator())) | |||
| 7231 | return true; | |||
| 7232 | ||||
| 7233 | auto *BLoop = LI.getLoopFor(B->getParent()); | |||
| 7234 | if (BLoop && BLoop->getHeader() == B->getParent() && | |||
| 7235 | BLoop->getLoopPreheader() == A->getParent() && | |||
| 7236 | isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), | |||
| 7237 | A->getParent()->end()) && | |||
| 7238 | isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), | |||
| 7239 | B->getIterator())) | |||
| 7240 | return true; | |||
| 7241 | return false; | |||
| 7242 | } | |||
| 7243 | ||||
| 7244 | ||||
| 7245 | bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { | |||
| 7246 | // Only proceed if we can prove that I does not yield poison. | |||
| 7247 | if (!programUndefinedIfPoison(I)) | |||
| 7248 | return false; | |||
| 7249 | ||||
| 7250 | // At this point we know that if I is executed, then it does not wrap | |||
| 7251 | // according to at least one of NSW or NUW. If I is not executed, then we do | |||
| 7252 | // not know if the calculation that I represents would wrap. Multiple | |||
| 7253 | // instructions can map to the same SCEV. If we apply NSW or NUW from I to | |||
| 7254 | // the SCEV, we must guarantee no wrapping for that SCEV also when it is | |||
| 7255 | // derived from other instructions that map to the same SCEV. We cannot make | |||
| 7256 | // that guarantee for cases where I is not executed. So we need to find a | |||
| 7257 | // upper bound on the defining scope for the SCEV, and prove that I is | |||
| 7258 | // executed every time we enter that scope. When the bounding scope is a | |||
| 7259 | // loop (the common case), this is equivalent to proving I executes on every | |||
| 7260 | // iteration of that loop. | |||
| 7261 | SmallVector<const SCEV *> SCEVOps; | |||
| 7262 | for (const Use &Op : I->operands()) { | |||
| 7263 | // I could be an extractvalue from a call to an overflow intrinsic. | |||
| 7264 | // TODO: We can do better here in some cases. | |||
| 7265 | if (isSCEVable(Op->getType())) | |||
| 7266 | SCEVOps.push_back(getSCEV(Op)); | |||
| 7267 | } | |||
| 7268 | auto *DefI = getDefiningScopeBound(SCEVOps); | |||
| 7269 | return isGuaranteedToTransferExecutionTo(DefI, I); | |||
| 7270 | } | |||
| 7271 | ||||
| 7272 | bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { | |||
| 7273 | // If we know that \c I can never be poison period, then that's enough. | |||
| 7274 | if (isSCEVExprNeverPoison(I)) | |||
| 7275 | return true; | |||
| 7276 | ||||
| 7277 | // If the loop only has one exit, then we know that, if the loop is entered, | |||
| 7278 | // any instruction dominating that exit will be executed. If any such | |||
| 7279 | // instruction would result in UB, the addrec cannot be poison. | |||
| 7280 | // | |||
| 7281 | // This is basically the same reasoning as in isSCEVExprNeverPoison(), but | |||
| 7282 | // also handles uses outside the loop header (they just need to dominate the | |||
| 7283 | // single exit). | |||
| 7284 | ||||
| 7285 | auto *ExitingBB = L->getExitingBlock(); | |||
| 7286 | if (!ExitingBB || !loopHasNoAbnormalExits(L)) | |||
| 7287 | return false; | |||
| 7288 | ||||
| 7289 | SmallPtrSet<const Value *, 16> KnownPoison; | |||
| 7290 | SmallVector<const Instruction *, 8> Worklist; | |||
| 7291 | ||||
| 7292 | // We start by assuming \c I, the post-inc add recurrence, is poison. Only | |||
| 7293 | // things that are known to be poison under that assumption go on the | |||
| 7294 | // Worklist. | |||
| 7295 | KnownPoison.insert(I); | |||
| 7296 | Worklist.push_back(I); | |||
| 7297 | ||||
| 7298 | while (!Worklist.empty()) { | |||
| 7299 | const Instruction *Poison = Worklist.pop_back_val(); | |||
| 7300 | ||||
| 7301 | for (const Use &U : Poison->uses()) { | |||
| 7302 | const Instruction *PoisonUser = cast<Instruction>(U.getUser()); | |||
| 7303 | if (mustTriggerUB(PoisonUser, KnownPoison) && | |||
| 7304 | DT.dominates(PoisonUser->getParent(), ExitingBB)) | |||
| 7305 | return true; | |||
| 7306 | ||||
| 7307 | if (propagatesPoison(U) && L->contains(PoisonUser)) | |||
| 7308 | if (KnownPoison.insert(PoisonUser).second) | |||
| 7309 | Worklist.push_back(PoisonUser); | |||
| 7310 | } | |||
| 7311 | } | |||
| 7312 | ||||
| 7313 | return false; | |||
| 7314 | } | |||
| 7315 | ||||
| 7316 | ScalarEvolution::LoopProperties | |||
| 7317 | ScalarEvolution::getLoopProperties(const Loop *L) { | |||
| 7318 | using LoopProperties = ScalarEvolution::LoopProperties; | |||
| 7319 | ||||
| 7320 | auto Itr = LoopPropertiesCache.find(L); | |||
| 7321 | if (Itr == LoopPropertiesCache.end()) { | |||
| 7322 | auto HasSideEffects = [](Instruction *I) { | |||
| 7323 | if (auto *SI = dyn_cast<StoreInst>(I)) | |||
| 7324 | return !SI->isSimple(); | |||
| 7325 | ||||
| 7326 | return I->mayThrow() || I->mayWriteToMemory(); | |||
| 7327 | }; | |||
| 7328 | ||||
| 7329 | LoopProperties LP = {/* HasNoAbnormalExits */ true, | |||
| 7330 | /*HasNoSideEffects*/ true}; | |||
| 7331 | ||||
| 7332 | for (auto *BB : L->getBlocks()) | |||
| 7333 | for (auto &I : *BB) { | |||
| 7334 | if (!isGuaranteedToTransferExecutionToSuccessor(&I)) | |||
| 7335 | LP.HasNoAbnormalExits = false; | |||
| 7336 | if (HasSideEffects(&I)) | |||
| 7337 | LP.HasNoSideEffects = false; | |||
| 7338 | if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) | |||
| 7339 | break; // We're already as pessimistic as we can get. | |||
| 7340 | } | |||
| 7341 | ||||
| 7342 | auto InsertPair = LoopPropertiesCache.insert({L, LP}); | |||
| 7343 | assert(InsertPair.second && "We just checked!")(static_cast <bool> (InsertPair.second && "We just checked!" ) ? void (0) : __assert_fail ("InsertPair.second && \"We just checked!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 7343, __extension__ __PRETTY_FUNCTION__)); | |||
| 7344 | Itr = InsertPair.first; | |||
| 7345 | } | |||
| 7346 | ||||
| 7347 | return Itr->second; | |||
| 7348 | } | |||
| 7349 | ||||
| 7350 | bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { | |||
| 7351 | // A mustprogress loop without side effects must be finite. | |||
| 7352 | // TODO: The check used here is very conservative. It's only *specific* | |||
| 7353 | // side effects which are well defined in infinite loops. | |||
| 7354 | return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); | |||
| 7355 | } | |||
| 7356 | ||||
| 7357 | const SCEV *ScalarEvolution::createSCEVIter(Value *V) { | |||
| 7358 | // Worklist item with a Value and a bool indicating whether all operands have | |||
| 7359 | // been visited already. | |||
| 7360 | using PointerTy = PointerIntPair<Value *, 1, bool>; | |||
| 7361 | SmallVector<PointerTy> Stack; | |||
| 7362 | ||||
| 7363 | Stack.emplace_back(V, true); | |||
| 7364 | Stack.emplace_back(V, false); | |||
| 7365 | while (!Stack.empty()) { | |||
| 7366 | auto E = Stack.pop_back_val(); | |||
| 7367 | Value *CurV = E.getPointer(); | |||
| 7368 | ||||
| 7369 | if (getExistingSCEV(CurV)) | |||
| 7370 | continue; | |||
| 7371 | ||||
| 7372 | SmallVector<Value *> Ops; | |||
| 7373 | const SCEV *CreatedSCEV = nullptr; | |||
| 7374 | // If all operands have been visited already, create the SCEV. | |||
| 7375 | if (E.getInt()) { | |||
| 7376 | CreatedSCEV = createSCEV(CurV); | |||
| 7377 | } else { | |||
| 7378 | // Otherwise get the operands we need to create SCEV's for before creating | |||
| 7379 | // the SCEV for CurV. If the SCEV for CurV can be constructed trivially, | |||
| 7380 | // just use it. | |||
| 7381 | CreatedSCEV = getOperandsToCreate(CurV, Ops); | |||
| 7382 | } | |||
| 7383 | ||||
| 7384 | if (CreatedSCEV) { | |||
| 7385 | insertValueToMap(CurV, CreatedSCEV); | |||
| 7386 | } else { | |||
| 7387 | // Queue CurV for SCEV creation, followed by its's operands which need to | |||
| 7388 | // be constructed first. | |||
| 7389 | Stack.emplace_back(CurV, true); | |||
| 7390 | for (Value *Op : Ops) | |||
| 7391 | Stack.emplace_back(Op, false); | |||
| 7392 | } | |||
| 7393 | } | |||
| 7394 | ||||
| 7395 | return getExistingSCEV(V); | |||
| 7396 | } | |||
| 7397 | ||||
| 7398 | const SCEV * | |||
| 7399 | ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) { | |||
| 7400 | if (!isSCEVable(V->getType())) | |||
| 7401 | return getUnknown(V); | |||
| 7402 | ||||
| 7403 | if (Instruction *I = dyn_cast<Instruction>(V)) { | |||
| 7404 | // Don't attempt to analyze instructions in blocks that aren't | |||
| 7405 | // reachable. Such instructions don't matter, and they aren't required | |||
| 7406 | // to obey basic rules for definitions dominating uses which this | |||
| 7407 | // analysis depends on. | |||
| 7408 | if (!DT.isReachableFromEntry(I->getParent())) | |||
| 7409 | return getUnknown(PoisonValue::get(V->getType())); | |||
| 7410 | } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) | |||
| 7411 | return getConstant(CI); | |||
| 7412 | else if (isa<GlobalAlias>(V)) | |||
| 7413 | return getUnknown(V); | |||
| 7414 | else if (!isa<ConstantExpr>(V)) | |||
| 7415 | return getUnknown(V); | |||
| 7416 | ||||
| 7417 | Operator *U = cast<Operator>(V); | |||
| 7418 | if (auto BO = | |||
| 7419 | MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { | |||
| 7420 | bool IsConstArg = isa<ConstantInt>(BO->RHS); | |||
| 7421 | switch (BO->Opcode) { | |||
| 7422 | case Instruction::Add: | |||
| 7423 | case Instruction::Mul: { | |||
| 7424 | // For additions and multiplications, traverse add/mul chains for which we | |||
| 7425 | // can potentially create a single SCEV, to reduce the number of | |||
| 7426 | // get{Add,Mul}Expr calls. | |||
| 7427 | do { | |||
| 7428 | if (BO->Op) { | |||
| 7429 | if (BO->Op != V && getExistingSCEV(BO->Op)) { | |||
| 7430 | Ops.push_back(BO->Op); | |||
| 7431 | break; | |||
| 7432 | } | |||
| 7433 | } | |||
| 7434 | Ops.push_back(BO->RHS); | |||
| 7435 | auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, | |||
| 7436 | dyn_cast<Instruction>(V)); | |||
| 7437 | if (!NewBO || | |||
| 7438 | (BO->Opcode == Instruction::Add && | |||
| 7439 | (NewBO->Opcode != Instruction::Add && | |||
| 7440 | NewBO->Opcode != Instruction::Sub)) || | |||
| 7441 | (BO->Opcode == Instruction::Mul && | |||
| 7442 | NewBO->Opcode != Instruction::Mul)) { | |||
| 7443 | Ops.push_back(BO->LHS); | |||
| 7444 | break; | |||
| 7445 | } | |||
| 7446 | // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions | |||
| 7447 | // requires a SCEV for the LHS. | |||
| 7448 | if (BO->Op && (BO->IsNSW || BO->IsNUW)) { | |||
| 7449 | auto *I = dyn_cast<Instruction>(BO->Op); | |||
| 7450 | if (I && programUndefinedIfPoison(I)) { | |||
| 7451 | Ops.push_back(BO->LHS); | |||
| 7452 | break; | |||
| 7453 | } | |||
| 7454 | } | |||
| 7455 | BO = NewBO; | |||
| 7456 | } while (true); | |||
| 7457 | return nullptr; | |||
| 7458 | } | |||
| 7459 | case Instruction::Sub: | |||
| 7460 | case Instruction::UDiv: | |||
| 7461 | case Instruction::URem: | |||
| 7462 | break; | |||
| 7463 | case Instruction::AShr: | |||
| 7464 | case Instruction::Shl: | |||
| 7465 | case Instruction::Xor: | |||
| 7466 | if (!IsConstArg) | |||
| 7467 | return nullptr; | |||
| 7468 | break; | |||
| 7469 | case Instruction::And: | |||
| 7470 | case Instruction::Or: | |||
| 7471 | if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(1)) | |||
| 7472 | return nullptr; | |||
| 7473 | break; | |||
| 7474 | case Instruction::LShr: | |||
| 7475 | return getUnknown(V); | |||
| 7476 | default: | |||
| 7477 | llvm_unreachable("Unhandled binop")::llvm::llvm_unreachable_internal("Unhandled binop", "llvm/lib/Analysis/ScalarEvolution.cpp" , 7477); | |||
| 7478 | break; | |||
| 7479 | } | |||
| 7480 | ||||
| 7481 | Ops.push_back(BO->LHS); | |||
| 7482 | Ops.push_back(BO->RHS); | |||
| 7483 | return nullptr; | |||
| 7484 | } | |||
| 7485 | ||||
| 7486 | switch (U->getOpcode()) { | |||
| 7487 | case Instruction::Trunc: | |||
| 7488 | case Instruction::ZExt: | |||
| 7489 | case Instruction::SExt: | |||
| 7490 | case Instruction::PtrToInt: | |||
| 7491 | Ops.push_back(U->getOperand(0)); | |||
| 7492 | return nullptr; | |||
| 7493 | ||||
| 7494 | case Instruction::BitCast: | |||
| 7495 | if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) { | |||
| 7496 | Ops.push_back(U->getOperand(0)); | |||
| 7497 | return nullptr; | |||
| 7498 | } | |||
| 7499 | return getUnknown(V); | |||
| 7500 | ||||
| 7501 | case Instruction::SDiv: | |||
| 7502 | case Instruction::SRem: | |||
| 7503 | Ops.push_back(U->getOperand(0)); | |||
| 7504 | Ops.push_back(U->getOperand(1)); | |||
| 7505 | return nullptr; | |||
| 7506 | ||||
| 7507 | case Instruction::GetElementPtr: | |||
| 7508 | assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() &&(static_cast <bool> (cast<GEPOperator>(U)->getSourceElementType ()->isSized() && "GEP source element type must be sized" ) ? void (0) : __assert_fail ("cast<GEPOperator>(U)->getSourceElementType()->isSized() && \"GEP source element type must be sized\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 7509, __extension__ __PRETTY_FUNCTION__)) | |||
| 7509 | "GEP source element type must be sized")(static_cast <bool> (cast<GEPOperator>(U)->getSourceElementType ()->isSized() && "GEP source element type must be sized" ) ? void (0) : __assert_fail ("cast<GEPOperator>(U)->getSourceElementType()->isSized() && \"GEP source element type must be sized\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 7509, __extension__ __PRETTY_FUNCTION__)); | |||
| 7510 | for (Value *Index : U->operands()) | |||
| 7511 | Ops.push_back(Index); | |||
| 7512 | return nullptr; | |||
| 7513 | ||||
| 7514 | case Instruction::IntToPtr: | |||
| 7515 | return getUnknown(V); | |||
| 7516 | ||||
| 7517 | case Instruction::PHI: | |||
| 7518 | // Keep constructing SCEVs' for phis recursively for now. | |||
| 7519 | return nullptr; | |||
| 7520 | ||||
| 7521 | case Instruction::Select: { | |||
| 7522 | // Check if U is a select that can be simplified to a SCEVUnknown. | |||
| 7523 | auto CanSimplifyToUnknown = [this, U]() { | |||
| 7524 | if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0))) | |||
| 7525 | return false; | |||
| 7526 | ||||
| 7527 | auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0)); | |||
| 7528 | if (!ICI) | |||
| 7529 | return false; | |||
| 7530 | Value *LHS = ICI->getOperand(0); | |||
| 7531 | Value *RHS = ICI->getOperand(1); | |||
| 7532 | if (ICI->getPredicate() == CmpInst::ICMP_EQ || | |||
| 7533 | ICI->getPredicate() == CmpInst::ICMP_NE) { | |||
| 7534 | if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero())) | |||
| 7535 | return true; | |||
| 7536 | } else if (getTypeSizeInBits(LHS->getType()) > | |||
| 7537 | getTypeSizeInBits(U->getType())) | |||
| 7538 | return true; | |||
| 7539 | return false; | |||
| 7540 | }; | |||
| 7541 | if (CanSimplifyToUnknown()) | |||
| 7542 | return getUnknown(U); | |||
| 7543 | ||||
| 7544 | for (Value *Inc : U->operands()) | |||
| 7545 | Ops.push_back(Inc); | |||
| 7546 | return nullptr; | |||
| 7547 | break; | |||
| 7548 | } | |||
| 7549 | case Instruction::Call: | |||
| 7550 | case Instruction::Invoke: | |||
| 7551 | if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) { | |||
| 7552 | Ops.push_back(RV); | |||
| 7553 | return nullptr; | |||
| 7554 | } | |||
| 7555 | ||||
| 7556 | if (auto *II = dyn_cast<IntrinsicInst>(U)) { | |||
| 7557 | switch (II->getIntrinsicID()) { | |||
| 7558 | case Intrinsic::abs: | |||
| 7559 | Ops.push_back(II->getArgOperand(0)); | |||
| 7560 | return nullptr; | |||
| 7561 | case Intrinsic::umax: | |||
| 7562 | case Intrinsic::umin: | |||
| 7563 | case Intrinsic::smax: | |||
| 7564 | case Intrinsic::smin: | |||
| 7565 | case Intrinsic::usub_sat: | |||
| 7566 | case Intrinsic::uadd_sat: | |||
| 7567 | Ops.push_back(II->getArgOperand(0)); | |||
| 7568 | Ops.push_back(II->getArgOperand(1)); | |||
| 7569 | return nullptr; | |||
| 7570 | case Intrinsic::start_loop_iterations: | |||
| 7571 | case Intrinsic::annotation: | |||
| 7572 | case Intrinsic::ptr_annotation: | |||
| 7573 | Ops.push_back(II->getArgOperand(0)); | |||
| 7574 | return nullptr; | |||
| 7575 | default: | |||
| 7576 | break; | |||
| 7577 | } | |||
| 7578 | } | |||
| 7579 | break; | |||
| 7580 | } | |||
| 7581 | ||||
| 7582 | return nullptr; | |||
| 7583 | } | |||
| 7584 | ||||
| 7585 | const SCEV *ScalarEvolution::createSCEV(Value *V) { | |||
| 7586 | if (!isSCEVable(V->getType())) | |||
| 7587 | return getUnknown(V); | |||
| 7588 | ||||
| 7589 | if (Instruction *I = dyn_cast<Instruction>(V)) { | |||
| 7590 | // Don't attempt to analyze instructions in blocks that aren't | |||
| 7591 | // reachable. Such instructions don't matter, and they aren't required | |||
| 7592 | // to obey basic rules for definitions dominating uses which this | |||
| 7593 | // analysis depends on. | |||
| 7594 | if (!DT.isReachableFromEntry(I->getParent())) | |||
| 7595 | return getUnknown(PoisonValue::get(V->getType())); | |||
| 7596 | } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) | |||
| 7597 | return getConstant(CI); | |||
| 7598 | else if (isa<GlobalAlias>(V)) | |||
| 7599 | return getUnknown(V); | |||
| 7600 | else if (!isa<ConstantExpr>(V)) | |||
| 7601 | return getUnknown(V); | |||
| 7602 | ||||
| 7603 | const SCEV *LHS; | |||
| 7604 | const SCEV *RHS; | |||
| 7605 | ||||
| 7606 | Operator *U = cast<Operator>(V); | |||
| 7607 | if (auto BO = | |||
| 7608 | MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) { | |||
| 7609 | switch (BO->Opcode) { | |||
| 7610 | case Instruction::Add: { | |||
| 7611 | // The simple thing to do would be to just call getSCEV on both operands | |||
| 7612 | // and call getAddExpr with the result. However if we're looking at a | |||
| 7613 | // bunch of things all added together, this can be quite inefficient, | |||
| 7614 | // because it leads to N-1 getAddExpr calls for N ultimate operands. | |||
| 7615 | // Instead, gather up all the operands and make a single getAddExpr call. | |||
| 7616 | // LLVM IR canonical form means we need only traverse the left operands. | |||
| 7617 | SmallVector<const SCEV *, 4> AddOps; | |||
| 7618 | do { | |||
| 7619 | if (BO->Op) { | |||
| 7620 | if (auto *OpSCEV = getExistingSCEV(BO->Op)) { | |||
| 7621 | AddOps.push_back(OpSCEV); | |||
| 7622 | break; | |||
| 7623 | } | |||
| 7624 | ||||
| 7625 | // If a NUW or NSW flag can be applied to the SCEV for this | |||
| 7626 | // addition, then compute the SCEV for this addition by itself | |||
| 7627 | // with a separate call to getAddExpr. We need to do that | |||
| 7628 | // instead of pushing the operands of the addition onto AddOps, | |||
| 7629 | // since the flags are only known to apply to this particular | |||
| 7630 | // addition - they may not apply to other additions that can be | |||
| 7631 | // formed with operands from AddOps. | |||
| 7632 | const SCEV *RHS = getSCEV(BO->RHS); | |||
| 7633 | SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); | |||
| 7634 | if (Flags != SCEV::FlagAnyWrap) { | |||
| 7635 | const SCEV *LHS = getSCEV(BO->LHS); | |||
| 7636 | if (BO->Opcode == Instruction::Sub) | |||
| 7637 | AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); | |||
| 7638 | else | |||
| 7639 | AddOps.push_back(getAddExpr(LHS, RHS, Flags)); | |||
| 7640 | break; | |||
| 7641 | } | |||
| 7642 | } | |||
| 7643 | ||||
| 7644 | if (BO->Opcode == Instruction::Sub) | |||
| 7645 | AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); | |||
| 7646 | else | |||
| 7647 | AddOps.push_back(getSCEV(BO->RHS)); | |||
| 7648 | ||||
| 7649 | auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, | |||
| 7650 | dyn_cast<Instruction>(V)); | |||
| 7651 | if (!NewBO || (NewBO->Opcode != Instruction::Add && | |||
| 7652 | NewBO->Opcode != Instruction::Sub)) { | |||
| 7653 | AddOps.push_back(getSCEV(BO->LHS)); | |||
| 7654 | break; | |||
| 7655 | } | |||
| 7656 | BO = NewBO; | |||
| 7657 | } while (true); | |||
| 7658 | ||||
| 7659 | return getAddExpr(AddOps); | |||
| 7660 | } | |||
| 7661 | ||||
| 7662 | case Instruction::Mul: { | |||
| 7663 | SmallVector<const SCEV *, 4> MulOps; | |||
| 7664 | do { | |||
| 7665 | if (BO->Op) { | |||
| 7666 | if (auto *OpSCEV = getExistingSCEV(BO->Op)) { | |||
| 7667 | MulOps.push_back(OpSCEV); | |||
| 7668 | break; | |||
| 7669 | } | |||
| 7670 | ||||
| 7671 | SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); | |||
| 7672 | if (Flags != SCEV::FlagAnyWrap) { | |||
| 7673 | LHS = getSCEV(BO->LHS); | |||
| 7674 | RHS = getSCEV(BO->RHS); | |||
| 7675 | MulOps.push_back(getMulExpr(LHS, RHS, Flags)); | |||
| 7676 | break; | |||
| 7677 | } | |||
| 7678 | } | |||
| 7679 | ||||
| 7680 | MulOps.push_back(getSCEV(BO->RHS)); | |||
| 7681 | auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT, | |||
| 7682 | dyn_cast<Instruction>(V)); | |||
| 7683 | if (!NewBO || NewBO->Opcode != Instruction::Mul) { | |||
| 7684 | MulOps.push_back(getSCEV(BO->LHS)); | |||
| 7685 | break; | |||
| 7686 | } | |||
| 7687 | BO = NewBO; | |||
| 7688 | } while (true); | |||
| 7689 | ||||
| 7690 | return getMulExpr(MulOps); | |||
| 7691 | } | |||
| 7692 | case Instruction::UDiv: | |||
| 7693 | LHS = getSCEV(BO->LHS); | |||
| 7694 | RHS = getSCEV(BO->RHS); | |||
| 7695 | return getUDivExpr(LHS, RHS); | |||
| 7696 | case Instruction::URem: | |||
| 7697 | LHS = getSCEV(BO->LHS); | |||
| 7698 | RHS = getSCEV(BO->RHS); | |||
| 7699 | return getURemExpr(LHS, RHS); | |||
| 7700 | case Instruction::Sub: { | |||
| 7701 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; | |||
| 7702 | if (BO->Op) | |||
| 7703 | Flags = getNoWrapFlagsFromUB(BO->Op); | |||
| 7704 | LHS = getSCEV(BO->LHS); | |||
| 7705 | RHS = getSCEV(BO->RHS); | |||
| 7706 | return getMinusSCEV(LHS, RHS, Flags); | |||
| 7707 | } | |||
| 7708 | case Instruction::And: | |||
| 7709 | // For an expression like x&255 that merely masks off the high bits, | |||
| 7710 | // use zext(trunc(x)) as the SCEV expression. | |||
| 7711 | if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { | |||
| 7712 | if (CI->isZero()) | |||
| 7713 | return getSCEV(BO->RHS); | |||
| 7714 | if (CI->isMinusOne()) | |||
| 7715 | return getSCEV(BO->LHS); | |||
| 7716 | const APInt &A = CI->getValue(); | |||
| 7717 | ||||
| 7718 | // Instcombine's ShrinkDemandedConstant may strip bits out of | |||
| 7719 | // constants, obscuring what would otherwise be a low-bits mask. | |||
| 7720 | // Use computeKnownBits to compute what ShrinkDemandedConstant | |||
| 7721 | // knew about to reconstruct a low-bits mask value. | |||
| 7722 | unsigned LZ = A.countl_zero(); | |||
| 7723 | unsigned TZ = A.countr_zero(); | |||
| 7724 | unsigned BitWidth = A.getBitWidth(); | |||
| 7725 | KnownBits Known(BitWidth); | |||
| 7726 | computeKnownBits(BO->LHS, Known, getDataLayout(), | |||
| 7727 | 0, &AC, nullptr, &DT); | |||
| 7728 | ||||
| 7729 | APInt EffectiveMask = | |||
| 7730 | APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); | |||
| 7731 | if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { | |||
| 7732 | const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); | |||
| 7733 | const SCEV *LHS = getSCEV(BO->LHS); | |||
| 7734 | const SCEV *ShiftedLHS = nullptr; | |||
| 7735 | if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { | |||
| 7736 | if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { | |||
| 7737 | // For an expression like (x * 8) & 8, simplify the multiply. | |||
| 7738 | unsigned MulZeros = OpC->getAPInt().countr_zero(); | |||
| 7739 | unsigned GCD = std::min(MulZeros, TZ); | |||
| 7740 | APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); | |||
| 7741 | SmallVector<const SCEV*, 4> MulOps; | |||
| 7742 | MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); | |||
| 7743 | append_range(MulOps, LHSMul->operands().drop_front()); | |||
| 7744 | auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); | |||
| 7745 | ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); | |||
| 7746 | } | |||
| 7747 | } | |||
| 7748 | if (!ShiftedLHS) | |||
| 7749 | ShiftedLHS = getUDivExpr(LHS, MulCount); | |||
| 7750 | return getMulExpr( | |||
| 7751 | getZeroExtendExpr( | |||
| 7752 | getTruncateExpr(ShiftedLHS, | |||
| 7753 | IntegerType::get(getContext(), BitWidth - LZ - TZ)), | |||
| 7754 | BO->LHS->getType()), | |||
| 7755 | MulCount); | |||
| 7756 | } | |||
| 7757 | } | |||
| 7758 | // Binary `and` is a bit-wise `umin`. | |||
| 7759 | if (BO->LHS->getType()->isIntegerTy(1)) { | |||
| 7760 | LHS = getSCEV(BO->LHS); | |||
| 7761 | RHS = getSCEV(BO->RHS); | |||
| 7762 | return getUMinExpr(LHS, RHS); | |||
| 7763 | } | |||
| 7764 | break; | |||
| 7765 | ||||
| 7766 | case Instruction::Or: | |||
| 7767 | // Binary `or` is a bit-wise `umax`. | |||
| 7768 | if (BO->LHS->getType()->isIntegerTy(1)) { | |||
| 7769 | LHS = getSCEV(BO->LHS); | |||
| 7770 | RHS = getSCEV(BO->RHS); | |||
| 7771 | return getUMaxExpr(LHS, RHS); | |||
| 7772 | } | |||
| 7773 | break; | |||
| 7774 | ||||
| 7775 | case Instruction::Xor: | |||
| 7776 | if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { | |||
| 7777 | // If the RHS of xor is -1, then this is a not operation. | |||
| 7778 | if (CI->isMinusOne()) | |||
| 7779 | return getNotSCEV(getSCEV(BO->LHS)); | |||
| 7780 | ||||
| 7781 | // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. | |||
| 7782 | // This is a variant of the check for xor with -1, and it handles | |||
| 7783 | // the case where instcombine has trimmed non-demanded bits out | |||
| 7784 | // of an xor with -1. | |||
| 7785 | if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) | |||
| 7786 | if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) | |||
| 7787 | if (LBO->getOpcode() == Instruction::And && | |||
| 7788 | LCI->getValue() == CI->getValue()) | |||
| 7789 | if (const SCEVZeroExtendExpr *Z = | |||
| 7790 | dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { | |||
| 7791 | Type *UTy = BO->LHS->getType(); | |||
| 7792 | const SCEV *Z0 = Z->getOperand(); | |||
| 7793 | Type *Z0Ty = Z0->getType(); | |||
| 7794 | unsigned Z0TySize = getTypeSizeInBits(Z0Ty); | |||
| 7795 | ||||
| 7796 | // If C is a low-bits mask, the zero extend is serving to | |||
| 7797 | // mask off the high bits. Complement the operand and | |||
| 7798 | // re-apply the zext. | |||
| 7799 | if (CI->getValue().isMask(Z0TySize)) | |||
| 7800 | return getZeroExtendExpr(getNotSCEV(Z0), UTy); | |||
| 7801 | ||||
| 7802 | // If C is a single bit, it may be in the sign-bit position | |||
| 7803 | // before the zero-extend. In this case, represent the xor | |||
| 7804 | // using an add, which is equivalent, and re-apply the zext. | |||
| 7805 | APInt Trunc = CI->getValue().trunc(Z0TySize); | |||
| 7806 | if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && | |||
| 7807 | Trunc.isSignMask()) | |||
| 7808 | return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), | |||
| 7809 | UTy); | |||
| 7810 | } | |||
| 7811 | } | |||
| 7812 | break; | |||
| 7813 | ||||
| 7814 | case Instruction::Shl: | |||
| 7815 | // Turn shift left of a constant amount into a multiply. | |||
| 7816 | if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { | |||
| 7817 | uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); | |||
| 7818 | ||||
| 7819 | // If the shift count is not less than the bitwidth, the result of | |||
| 7820 | // the shift is undefined. Don't try to analyze it, because the | |||
| 7821 | // resolution chosen here may differ from the resolution chosen in | |||
| 7822 | // other parts of the compiler. | |||
| 7823 | if (SA->getValue().uge(BitWidth)) | |||
| 7824 | break; | |||
| 7825 | ||||
| 7826 | // We can safely preserve the nuw flag in all cases. It's also safe to | |||
| 7827 | // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation | |||
| 7828 | // requires special handling. It can be preserved as long as we're not | |||
| 7829 | // left shifting by bitwidth - 1. | |||
| 7830 | auto Flags = SCEV::FlagAnyWrap; | |||
| 7831 | if (BO->Op) { | |||
| 7832 | auto MulFlags = getNoWrapFlagsFromUB(BO->Op); | |||
| 7833 | if ((MulFlags & SCEV::FlagNSW) && | |||
| 7834 | ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) | |||
| 7835 | Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); | |||
| 7836 | if (MulFlags & SCEV::FlagNUW) | |||
| 7837 | Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); | |||
| 7838 | } | |||
| 7839 | ||||
| 7840 | ConstantInt *X = ConstantInt::get( | |||
| 7841 | getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); | |||
| 7842 | return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags); | |||
| 7843 | } | |||
| 7844 | break; | |||
| 7845 | ||||
| 7846 | case Instruction::AShr: { | |||
| 7847 | // AShr X, C, where C is a constant. | |||
| 7848 | ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); | |||
| 7849 | if (!CI) | |||
| 7850 | break; | |||
| 7851 | ||||
| 7852 | Type *OuterTy = BO->LHS->getType(); | |||
| 7853 | uint64_t BitWidth = getTypeSizeInBits(OuterTy); | |||
| 7854 | // If the shift count is not less than the bitwidth, the result of | |||
| 7855 | // the shift is undefined. Don't try to analyze it, because the | |||
| 7856 | // resolution chosen here may differ from the resolution chosen in | |||
| 7857 | // other parts of the compiler. | |||
| 7858 | if (CI->getValue().uge(BitWidth)) | |||
| 7859 | break; | |||
| 7860 | ||||
| 7861 | if (CI->isZero()) | |||
| 7862 | return getSCEV(BO->LHS); // shift by zero --> noop | |||
| 7863 | ||||
| 7864 | uint64_t AShrAmt = CI->getZExtValue(); | |||
| 7865 | Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); | |||
| 7866 | ||||
| 7867 | Operator *L = dyn_cast<Operator>(BO->LHS); | |||
| 7868 | if (L && L->getOpcode() == Instruction::Shl) { | |||
| 7869 | // X = Shl A, n | |||
| 7870 | // Y = AShr X, m | |||
| 7871 | // Both n and m are constant. | |||
| 7872 | ||||
| 7873 | const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); | |||
| 7874 | if (L->getOperand(1) == BO->RHS) | |||
| 7875 | // For a two-shift sext-inreg, i.e. n = m, | |||
| 7876 | // use sext(trunc(x)) as the SCEV expression. | |||
| 7877 | return getSignExtendExpr( | |||
| 7878 | getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); | |||
| 7879 | ||||
| 7880 | ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); | |||
| 7881 | if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { | |||
| 7882 | uint64_t ShlAmt = ShlAmtCI->getZExtValue(); | |||
| 7883 | if (ShlAmt > AShrAmt) { | |||
| 7884 | // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV | |||
| 7885 | // expression. We already checked that ShlAmt < BitWidth, so | |||
| 7886 | // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as | |||
| 7887 | // ShlAmt - AShrAmt < Amt. | |||
| 7888 | APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, | |||
| 7889 | ShlAmt - AShrAmt); | |||
| 7890 | return getSignExtendExpr( | |||
| 7891 | getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), | |||
| 7892 | getConstant(Mul)), OuterTy); | |||
| 7893 | } | |||
| 7894 | } | |||
| 7895 | } | |||
| 7896 | break; | |||
| 7897 | } | |||
| 7898 | } | |||
| 7899 | } | |||
| 7900 | ||||
| 7901 | switch (U->getOpcode()) { | |||
| 7902 | case Instruction::Trunc: | |||
| 7903 | return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); | |||
| 7904 | ||||
| 7905 | case Instruction::ZExt: | |||
| 7906 | return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); | |||
| 7907 | ||||
| 7908 | case Instruction::SExt: | |||
| 7909 | if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT, | |||
| 7910 | dyn_cast<Instruction>(V))) { | |||
| 7911 | // The NSW flag of a subtract does not always survive the conversion to | |||
| 7912 | // A + (-1)*B. By pushing sign extension onto its operands we are much | |||
| 7913 | // more likely to preserve NSW and allow later AddRec optimisations. | |||
| 7914 | // | |||
| 7915 | // NOTE: This is effectively duplicating this logic from getSignExtend: | |||
| 7916 | // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> | |||
| 7917 | // but by that point the NSW information has potentially been lost. | |||
| 7918 | if (BO->Opcode == Instruction::Sub && BO->IsNSW) { | |||
| 7919 | Type *Ty = U->getType(); | |||
| 7920 | auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); | |||
| 7921 | auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); | |||
| 7922 | return getMinusSCEV(V1, V2, SCEV::FlagNSW); | |||
| 7923 | } | |||
| 7924 | } | |||
| 7925 | return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); | |||
| 7926 | ||||
| 7927 | case Instruction::BitCast: | |||
| 7928 | // BitCasts are no-op casts so we just eliminate the cast. | |||
| 7929 | if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) | |||
| 7930 | return getSCEV(U->getOperand(0)); | |||
| 7931 | break; | |||
| 7932 | ||||
| 7933 | case Instruction::PtrToInt: { | |||
| 7934 | // Pointer to integer cast is straight-forward, so do model it. | |||
| 7935 | const SCEV *Op = getSCEV(U->getOperand(0)); | |||
| 7936 | Type *DstIntTy = U->getType(); | |||
| 7937 | // But only if effective SCEV (integer) type is wide enough to represent | |||
| 7938 | // all possible pointer values. | |||
| 7939 | const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); | |||
| 7940 | if (isa<SCEVCouldNotCompute>(IntOp)) | |||
| 7941 | return getUnknown(V); | |||
| 7942 | return IntOp; | |||
| 7943 | } | |||
| 7944 | case Instruction::IntToPtr: | |||
| 7945 | // Just don't deal with inttoptr casts. | |||
| 7946 | return getUnknown(V); | |||
| 7947 | ||||
| 7948 | case Instruction::SDiv: | |||
| 7949 | // If both operands are non-negative, this is just an udiv. | |||
| 7950 | if (isKnownNonNegative(getSCEV(U->getOperand(0))) && | |||
| 7951 | isKnownNonNegative(getSCEV(U->getOperand(1)))) | |||
| 7952 | return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); | |||
| 7953 | break; | |||
| 7954 | ||||
| 7955 | case Instruction::SRem: | |||
| 7956 | // If both operands are non-negative, this is just an urem. | |||
| 7957 | if (isKnownNonNegative(getSCEV(U->getOperand(0))) && | |||
| 7958 | isKnownNonNegative(getSCEV(U->getOperand(1)))) | |||
| 7959 | return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); | |||
| 7960 | break; | |||
| 7961 | ||||
| 7962 | case Instruction::GetElementPtr: | |||
| 7963 | return createNodeForGEP(cast<GEPOperator>(U)); | |||
| 7964 | ||||
| 7965 | case Instruction::PHI: | |||
| 7966 | return createNodeForPHI(cast<PHINode>(U)); | |||
| 7967 | ||||
| 7968 | case Instruction::Select: | |||
| 7969 | return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), | |||
| 7970 | U->getOperand(2)); | |||
| 7971 | ||||
| 7972 | case Instruction::Call: | |||
| 7973 | case Instruction::Invoke: | |||
| 7974 | if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) | |||
| 7975 | return getSCEV(RV); | |||
| 7976 | ||||
| 7977 | if (auto *II = dyn_cast<IntrinsicInst>(U)) { | |||
| 7978 | switch (II->getIntrinsicID()) { | |||
| 7979 | case Intrinsic::abs: | |||
| 7980 | return getAbsExpr( | |||
| 7981 | getSCEV(II->getArgOperand(0)), | |||
| 7982 | /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); | |||
| 7983 | case Intrinsic::umax: | |||
| 7984 | LHS = getSCEV(II->getArgOperand(0)); | |||
| 7985 | RHS = getSCEV(II->getArgOperand(1)); | |||
| 7986 | return getUMaxExpr(LHS, RHS); | |||
| 7987 | case Intrinsic::umin: | |||
| 7988 | LHS = getSCEV(II->getArgOperand(0)); | |||
| 7989 | RHS = getSCEV(II->getArgOperand(1)); | |||
| 7990 | return getUMinExpr(LHS, RHS); | |||
| 7991 | case Intrinsic::smax: | |||
| 7992 | LHS = getSCEV(II->getArgOperand(0)); | |||
| 7993 | RHS = getSCEV(II->getArgOperand(1)); | |||
| 7994 | return getSMaxExpr(LHS, RHS); | |||
| 7995 | case Intrinsic::smin: | |||
| 7996 | LHS = getSCEV(II->getArgOperand(0)); | |||
| 7997 | RHS = getSCEV(II->getArgOperand(1)); | |||
| 7998 | return getSMinExpr(LHS, RHS); | |||
| 7999 | case Intrinsic::usub_sat: { | |||
| 8000 | const SCEV *X = getSCEV(II->getArgOperand(0)); | |||
| 8001 | const SCEV *Y = getSCEV(II->getArgOperand(1)); | |||
| 8002 | const SCEV *ClampedY = getUMinExpr(X, Y); | |||
| 8003 | return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); | |||
| 8004 | } | |||
| 8005 | case Intrinsic::uadd_sat: { | |||
| 8006 | const SCEV *X = getSCEV(II->getArgOperand(0)); | |||
| 8007 | const SCEV *Y = getSCEV(II->getArgOperand(1)); | |||
| 8008 | const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); | |||
| 8009 | return getAddExpr(ClampedX, Y, SCEV::FlagNUW); | |||
| 8010 | } | |||
| 8011 | case Intrinsic::start_loop_iterations: | |||
| 8012 | case Intrinsic::annotation: | |||
| 8013 | case Intrinsic::ptr_annotation: | |||
| 8014 | // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is | |||
| 8015 | // just eqivalent to the first operand for SCEV purposes. | |||
| 8016 | return getSCEV(II->getArgOperand(0)); | |||
| 8017 | case Intrinsic::vscale: | |||
| 8018 | return getVScale(II->getType()); | |||
| 8019 | default: | |||
| 8020 | break; | |||
| 8021 | } | |||
| 8022 | } | |||
| 8023 | break; | |||
| 8024 | } | |||
| 8025 | ||||
| 8026 | return getUnknown(V); | |||
| 8027 | } | |||
| 8028 | ||||
| 8029 | //===----------------------------------------------------------------------===// | |||
| 8030 | // Iteration Count Computation Code | |||
| 8031 | // | |||
| 8032 | ||||
| 8033 | const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { | |||
| 8034 | if (isa<SCEVCouldNotCompute>(ExitCount)) | |||
| 8035 | return getCouldNotCompute(); | |||
| 8036 | ||||
| 8037 | auto *ExitCountType = ExitCount->getType(); | |||
| 8038 | assert(ExitCountType->isIntegerTy())(static_cast <bool> (ExitCountType->isIntegerTy()) ? void (0) : __assert_fail ("ExitCountType->isIntegerTy()", "llvm/lib/Analysis/ScalarEvolution.cpp", 8038, __extension__ __PRETTY_FUNCTION__)); | |||
| 8039 | auto *EvalTy = Type::getIntNTy(ExitCountType->getContext(), | |||
| 8040 | 1 + ExitCountType->getScalarSizeInBits()); | |||
| 8041 | return getTripCountFromExitCount(ExitCount, EvalTy, nullptr); | |||
| 8042 | } | |||
| 8043 | ||||
| 8044 | const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, | |||
| 8045 | Type *EvalTy, | |||
| 8046 | const Loop *L) { | |||
| 8047 | if (isa<SCEVCouldNotCompute>(ExitCount)) | |||
| 8048 | return getCouldNotCompute(); | |||
| 8049 | ||||
| 8050 | unsigned ExitCountSize = getTypeSizeInBits(ExitCount->getType()); | |||
| 8051 | unsigned EvalSize = EvalTy->getPrimitiveSizeInBits(); | |||
| 8052 | ||||
| 8053 | auto CanAddOneWithoutOverflow = [&]() { | |||
| 8054 | ConstantRange ExitCountRange = | |||
| 8055 | getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED); | |||
| 8056 | if (!ExitCountRange.contains(APInt::getMaxValue(ExitCountSize))) | |||
| 8057 | return true; | |||
| 8058 | ||||
| 8059 | return L && isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount, | |||
| 8060 | getMinusOne(ExitCount->getType())); | |||
| 8061 | }; | |||
| 8062 | ||||
| 8063 | // If we need to zero extend the backedge count, check if we can add one to | |||
| 8064 | // it prior to zero extending without overflow. Provided this is safe, it | |||
| 8065 | // allows better simplification of the +1. | |||
| 8066 | if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow()) | |||
| 8067 | return getZeroExtendExpr( | |||
| 8068 | getAddExpr(ExitCount, getOne(ExitCount->getType())), EvalTy); | |||
| 8069 | ||||
| 8070 | // Get the total trip count from the count by adding 1. This may wrap. | |||
| 8071 | return getAddExpr(getTruncateOrZeroExtend(ExitCount, EvalTy), getOne(EvalTy)); | |||
| 8072 | } | |||
| 8073 | ||||
| 8074 | static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { | |||
| 8075 | if (!ExitCount) | |||
| 8076 | return 0; | |||
| 8077 | ||||
| 8078 | ConstantInt *ExitConst = ExitCount->getValue(); | |||
| 8079 | ||||
| 8080 | // Guard against huge trip counts. | |||
| 8081 | if (ExitConst->getValue().getActiveBits() > 32) | |||
| 8082 | return 0; | |||
| 8083 | ||||
| 8084 | // In case of integer overflow, this returns 0, which is correct. | |||
| 8085 | return ((unsigned)ExitConst->getZExtValue()) + 1; | |||
| 8086 | } | |||
| 8087 | ||||
| 8088 | unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { | |||
| 8089 | auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); | |||
| 8090 | return getConstantTripCount(ExitCount); | |||
| 8091 | } | |||
| 8092 | ||||
| 8093 | unsigned | |||
| 8094 | ScalarEvolution::getSmallConstantTripCount(const Loop *L, | |||
| 8095 | const BasicBlock *ExitingBlock) { | |||
| 8096 | assert(ExitingBlock && "Must pass a non-null exiting block!")(static_cast <bool> (ExitingBlock && "Must pass a non-null exiting block!" ) ? void (0) : __assert_fail ("ExitingBlock && \"Must pass a non-null exiting block!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8096, __extension__ __PRETTY_FUNCTION__)); | |||
| 8097 | assert(L->isLoopExiting(ExitingBlock) &&(static_cast <bool> (L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!") ? void (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8098, __extension__ __PRETTY_FUNCTION__)) | |||
| 8098 | "Exiting block must actually branch out of the loop!")(static_cast <bool> (L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!") ? void (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8098, __extension__ __PRETTY_FUNCTION__)); | |||
| 8099 | const SCEVConstant *ExitCount = | |||
| 8100 | dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); | |||
| 8101 | return getConstantTripCount(ExitCount); | |||
| 8102 | } | |||
| 8103 | ||||
| 8104 | unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { | |||
| 8105 | const auto *MaxExitCount = | |||
| 8106 | dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); | |||
| 8107 | return getConstantTripCount(MaxExitCount); | |||
| 8108 | } | |||
| 8109 | ||||
| 8110 | const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { | |||
| 8111 | // We can't infer from Array in Irregular Loop. | |||
| 8112 | // FIXME: It's hard to infer loop bound from array operated in Nested Loop. | |||
| 8113 | if (!L->isLoopSimplifyForm() || !L->isInnermost()) | |||
| 8114 | return getCouldNotCompute(); | |||
| 8115 | ||||
| 8116 | // FIXME: To make the scene more typical, we only analysis loops that have | |||
| 8117 | // one exiting block and that block must be the latch. To make it easier to | |||
| 8118 | // capture loops that have memory access and memory access will be executed | |||
| 8119 | // in each iteration. | |||
| 8120 | const BasicBlock *LoopLatch = L->getLoopLatch(); | |||
| 8121 | assert(LoopLatch && "See defination of simplify form loop.")(static_cast <bool> (LoopLatch && "See defination of simplify form loop." ) ? void (0) : __assert_fail ("LoopLatch && \"See defination of simplify form loop.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8121, __extension__ __PRETTY_FUNCTION__)); | |||
| 8122 | if (L->getExitingBlock() != LoopLatch) | |||
| 8123 | return getCouldNotCompute(); | |||
| 8124 | ||||
| 8125 | const DataLayout &DL = getDataLayout(); | |||
| 8126 | SmallVector<const SCEV *> InferCountColl; | |||
| 8127 | for (auto *BB : L->getBlocks()) { | |||
| 8128 | // Go here, we can know that Loop is a single exiting and simplified form | |||
| 8129 | // loop. Make sure that infer from Memory Operation in those BBs must be | |||
| 8130 | // executed in loop. First step, we can make sure that max execution time | |||
| 8131 | // of MemAccessBB in loop represents latch max excution time. | |||
| 8132 | // If MemAccessBB does not dom Latch, skip. | |||
| 8133 | // Entry | |||
| 8134 | // │ | |||
| 8135 | // ┌─────▼─────┐ | |||
| 8136 | // │Loop Header◄─────┐ | |||
| 8137 | // └──┬──────┬─┘ │ | |||
| 8138 | // │ │ │ | |||
| 8139 | // ┌────────▼──┐ ┌─▼─────┐ │ | |||
| 8140 | // │MemAccessBB│ │OtherBB│ │ | |||
| 8141 | // └────────┬──┘ └─┬─────┘ │ | |||
| 8142 | // │ │ │ | |||
| 8143 | // ┌─▼──────▼─┐ │ | |||
| 8144 | // │Loop Latch├─────┘ | |||
| 8145 | // └────┬─────┘ | |||
| 8146 | // ▼ | |||
| 8147 | // Exit | |||
| 8148 | if (!DT.dominates(BB, LoopLatch)) | |||
| 8149 | continue; | |||
| 8150 | ||||
| 8151 | for (Instruction &Inst : *BB) { | |||
| 8152 | // Find Memory Operation Instruction. | |||
| 8153 | auto *GEP = getLoadStorePointerOperand(&Inst); | |||
| 8154 | if (!GEP) | |||
| 8155 | continue; | |||
| 8156 | ||||
| 8157 | auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); | |||
| 8158 | // Do not infer from scalar type, eg."ElemSize = sizeof()". | |||
| 8159 | if (!ElemSize) | |||
| 8160 | continue; | |||
| 8161 | ||||
| 8162 | // Use a existing polynomial recurrence on the trip count. | |||
| 8163 | auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); | |||
| 8164 | if (!AddRec) | |||
| 8165 | continue; | |||
| 8166 | auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); | |||
| 8167 | auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); | |||
| 8168 | if (!ArrBase || !Step) | |||
| 8169 | continue; | |||
| 8170 | assert(isLoopInvariant(ArrBase, L) && "See addrec definition")(static_cast <bool> (isLoopInvariant(ArrBase, L) && "See addrec definition") ? void (0) : __assert_fail ("isLoopInvariant(ArrBase, L) && \"See addrec definition\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8170, __extension__ __PRETTY_FUNCTION__)); | |||
| 8171 | ||||
| 8172 | // Only handle { %array + step }, | |||
| 8173 | // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. | |||
| 8174 | if (AddRec->getStart() != ArrBase) | |||
| 8175 | continue; | |||
| 8176 | ||||
| 8177 | // Memory operation pattern which have gaps. | |||
| 8178 | // Or repeat memory opreation. | |||
| 8179 | // And index of GEP wraps arround. | |||
| 8180 | if (Step->getAPInt().getActiveBits() > 32 || | |||
| 8181 | Step->getAPInt().getZExtValue() != | |||
| 8182 | ElemSize->getAPInt().getZExtValue() || | |||
| 8183 | Step->isZero() || Step->getAPInt().isNegative()) | |||
| 8184 | continue; | |||
| 8185 | ||||
| 8186 | // Only infer from stack array which has certain size. | |||
| 8187 | // Make sure alloca instruction is not excuted in loop. | |||
| 8188 | AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); | |||
| 8189 | if (!AllocateInst || L->contains(AllocateInst->getParent())) | |||
| 8190 | continue; | |||
| 8191 | ||||
| 8192 | // Make sure only handle normal array. | |||
| 8193 | auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); | |||
| 8194 | auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); | |||
| 8195 | if (!Ty || !ArrSize || !ArrSize->isOne()) | |||
| 8196 | continue; | |||
| 8197 | ||||
| 8198 | // FIXME: Since gep indices are silently zext to the indexing type, | |||
| 8199 | // we will have a narrow gep index which wraps around rather than | |||
| 8200 | // increasing strictly, we shoule ensure that step is increasing | |||
| 8201 | // strictly by the loop iteration. | |||
| 8202 | // Now we can infer a max execution time by MemLength/StepLength. | |||
| 8203 | const SCEV *MemSize = | |||
| 8204 | getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); | |||
| 8205 | auto *MaxExeCount = | |||
| 8206 | dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); | |||
| 8207 | if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) | |||
| 8208 | continue; | |||
| 8209 | ||||
| 8210 | // If the loop reaches the maximum number of executions, we can not | |||
| 8211 | // access bytes starting outside the statically allocated size without | |||
| 8212 | // being immediate UB. But it is allowed to enter loop header one more | |||
| 8213 | // time. | |||
| 8214 | auto *InferCount = dyn_cast<SCEVConstant>( | |||
| 8215 | getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); | |||
| 8216 | // Discard the maximum number of execution times under 32bits. | |||
| 8217 | if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) | |||
| 8218 | continue; | |||
| 8219 | ||||
| 8220 | InferCountColl.push_back(InferCount); | |||
| 8221 | } | |||
| 8222 | } | |||
| 8223 | ||||
| 8224 | if (InferCountColl.size() == 0) | |||
| 8225 | return getCouldNotCompute(); | |||
| 8226 | ||||
| 8227 | return getUMinFromMismatchedTypes(InferCountColl); | |||
| 8228 | } | |||
| 8229 | ||||
| 8230 | unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { | |||
| 8231 | SmallVector<BasicBlock *, 8> ExitingBlocks; | |||
| 8232 | L->getExitingBlocks(ExitingBlocks); | |||
| 8233 | ||||
| 8234 | std::optional<unsigned> Res; | |||
| 8235 | for (auto *ExitingBB : ExitingBlocks) { | |||
| 8236 | unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); | |||
| 8237 | if (!Res) | |||
| 8238 | Res = Multiple; | |||
| 8239 | Res = (unsigned)std::gcd(*Res, Multiple); | |||
| 8240 | } | |||
| 8241 | return Res.value_or(1); | |||
| 8242 | } | |||
| 8243 | ||||
| 8244 | unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, | |||
| 8245 | const SCEV *ExitCount) { | |||
| 8246 | if (ExitCount == getCouldNotCompute()) | |||
| 8247 | return 1; | |||
| 8248 | ||||
| 8249 | // Get the trip count | |||
| 8250 | const SCEV *TCExpr = getTripCountFromExitCount(applyLoopGuards(ExitCount, L)); | |||
| 8251 | ||||
| 8252 | // If a trip multiple is huge (>=2^32), the trip count is still divisible by | |||
| 8253 | // the greatest power of 2 divisor less than 2^32. | |||
| 8254 | auto GetSmallMultiple = [](unsigned TrailingZeros) { | |||
| 8255 | return 1U << std::min((uint32_t)31, TrailingZeros); | |||
| 8256 | }; | |||
| 8257 | ||||
| 8258 | const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); | |||
| 8259 | if (!TC) { | |||
| 8260 | APInt Multiple = getNonZeroConstantMultiple(TCExpr); | |||
| 8261 | return Multiple.getActiveBits() > 32 | |||
| 8262 | ? 1 | |||
| 8263 | : Multiple.zextOrTrunc(32).getZExtValue(); | |||
| 8264 | } | |||
| 8265 | ||||
| 8266 | ConstantInt *Result = TC->getValue(); | |||
| 8267 | assert(Result && "SCEVConstant expected to have non-null ConstantInt")(static_cast <bool> (Result && "SCEVConstant expected to have non-null ConstantInt" ) ? void (0) : __assert_fail ("Result && \"SCEVConstant expected to have non-null ConstantInt\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8267, __extension__ __PRETTY_FUNCTION__)); | |||
| 8268 | assert(Result->getValue() != 0 && "trip count should never be zero")(static_cast <bool> (Result->getValue() != 0 && "trip count should never be zero") ? void (0) : __assert_fail ("Result->getValue() != 0 && \"trip count should never be zero\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8268, __extension__ __PRETTY_FUNCTION__)); | |||
| 8269 | ||||
| 8270 | // Guard against huge trip multiples. | |||
| 8271 | if (Result->getValue().getActiveBits() > 32) | |||
| 8272 | return GetSmallMultiple(Result->getValue().countTrailingZeros()); | |||
| 8273 | ||||
| 8274 | return (unsigned)Result->getZExtValue(); | |||
| 8275 | } | |||
| 8276 | ||||
| 8277 | /// Returns the largest constant divisor of the trip count of this loop as a | |||
| 8278 | /// normal unsigned value, if possible. This means that the actual trip count is | |||
| 8279 | /// always a multiple of the returned value (don't forget the trip count could | |||
| 8280 | /// very well be zero as well!). | |||
| 8281 | /// | |||
| 8282 | /// Returns 1 if the trip count is unknown or not guaranteed to be the | |||
| 8283 | /// multiple of a constant (which is also the case if the trip count is simply | |||
| 8284 | /// constant, use getSmallConstantTripCount for that case), Will also return 1 | |||
| 8285 | /// if the trip count is very large (>= 2^32). | |||
| 8286 | /// | |||
| 8287 | /// As explained in the comments for getSmallConstantTripCount, this assumes | |||
| 8288 | /// that control exits the loop via ExitingBlock. | |||
| 8289 | unsigned | |||
| 8290 | ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, | |||
| 8291 | const BasicBlock *ExitingBlock) { | |||
| 8292 | assert(ExitingBlock && "Must pass a non-null exiting block!")(static_cast <bool> (ExitingBlock && "Must pass a non-null exiting block!" ) ? void (0) : __assert_fail ("ExitingBlock && \"Must pass a non-null exiting block!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8292, __extension__ __PRETTY_FUNCTION__)); | |||
| 8293 | assert(L->isLoopExiting(ExitingBlock) &&(static_cast <bool> (L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!") ? void (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8294, __extension__ __PRETTY_FUNCTION__)) | |||
| 8294 | "Exiting block must actually branch out of the loop!")(static_cast <bool> (L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!") ? void (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8294, __extension__ __PRETTY_FUNCTION__)); | |||
| 8295 | const SCEV *ExitCount = getExitCount(L, ExitingBlock); | |||
| 8296 | return getSmallConstantTripMultiple(L, ExitCount); | |||
| 8297 | } | |||
| 8298 | ||||
| 8299 | const SCEV *ScalarEvolution::getExitCount(const Loop *L, | |||
| 8300 | const BasicBlock *ExitingBlock, | |||
| 8301 | ExitCountKind Kind) { | |||
| 8302 | switch (Kind) { | |||
| 8303 | case Exact: | |||
| 8304 | return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); | |||
| 8305 | case SymbolicMaximum: | |||
| 8306 | return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this); | |||
| 8307 | case ConstantMaximum: | |||
| 8308 | return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); | |||
| 8309 | }; | |||
| 8310 | llvm_unreachable("Invalid ExitCountKind!")::llvm::llvm_unreachable_internal("Invalid ExitCountKind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 8310); | |||
| 8311 | } | |||
| 8312 | ||||
| 8313 | const SCEV * | |||
| 8314 | ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, | |||
| 8315 | SmallVector<const SCEVPredicate *, 4> &Preds) { | |||
| 8316 | return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); | |||
| 8317 | } | |||
| 8318 | ||||
| 8319 | const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, | |||
| 8320 | ExitCountKind Kind) { | |||
| 8321 | switch (Kind) { | |||
| 8322 | case Exact: | |||
| 8323 | return getBackedgeTakenInfo(L).getExact(L, this); | |||
| 8324 | case ConstantMaximum: | |||
| 8325 | return getBackedgeTakenInfo(L).getConstantMax(this); | |||
| 8326 | case SymbolicMaximum: | |||
| 8327 | return getBackedgeTakenInfo(L).getSymbolicMax(L, this); | |||
| 8328 | }; | |||
| 8329 | llvm_unreachable("Invalid ExitCountKind!")::llvm::llvm_unreachable_internal("Invalid ExitCountKind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 8329); | |||
| 8330 | } | |||
| 8331 | ||||
| 8332 | bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { | |||
| 8333 | return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); | |||
| 8334 | } | |||
| 8335 | ||||
| 8336 | /// Push PHI nodes in the header of the given loop onto the given Worklist. | |||
| 8337 | static void PushLoopPHIs(const Loop *L, | |||
| 8338 | SmallVectorImpl<Instruction *> &Worklist, | |||
| 8339 | SmallPtrSetImpl<Instruction *> &Visited) { | |||
| 8340 | BasicBlock *Header = L->getHeader(); | |||
| 8341 | ||||
| 8342 | // Push all Loop-header PHIs onto the Worklist stack. | |||
| 8343 | for (PHINode &PN : Header->phis()) | |||
| 8344 | if (Visited.insert(&PN).second) | |||
| 8345 | Worklist.push_back(&PN); | |||
| 8346 | } | |||
| 8347 | ||||
| 8348 | const ScalarEvolution::BackedgeTakenInfo & | |||
| 8349 | ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { | |||
| 8350 | auto &BTI = getBackedgeTakenInfo(L); | |||
| 8351 | if (BTI.hasFullInfo()) | |||
| 8352 | return BTI; | |||
| 8353 | ||||
| 8354 | auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); | |||
| 8355 | ||||
| 8356 | if (!Pair.second) | |||
| 8357 | return Pair.first->second; | |||
| 8358 | ||||
| 8359 | BackedgeTakenInfo Result = | |||
| 8360 | computeBackedgeTakenCount(L, /*AllowPredicates=*/true); | |||
| 8361 | ||||
| 8362 | return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); | |||
| 8363 | } | |||
| 8364 | ||||
| 8365 | ScalarEvolution::BackedgeTakenInfo & | |||
| 8366 | ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { | |||
| 8367 | // Initially insert an invalid entry for this loop. If the insertion | |||
| 8368 | // succeeds, proceed to actually compute a backedge-taken count and | |||
| 8369 | // update the value. The temporary CouldNotCompute value tells SCEV | |||
| 8370 | // code elsewhere that it shouldn't attempt to request a new | |||
| 8371 | // backedge-taken count, which could result in infinite recursion. | |||
| 8372 | std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = | |||
| 8373 | BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); | |||
| 8374 | if (!Pair.second) | |||
| 8375 | return Pair.first->second; | |||
| 8376 | ||||
| 8377 | // computeBackedgeTakenCount may allocate memory for its result. Inserting it | |||
| 8378 | // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result | |||
| 8379 | // must be cleared in this scope. | |||
| 8380 | BackedgeTakenInfo Result = computeBackedgeTakenCount(L); | |||
| 8381 | ||||
| 8382 | // In product build, there are no usage of statistic. | |||
| 8383 | (void)NumTripCountsComputed; | |||
| 8384 | (void)NumTripCountsNotComputed; | |||
| 8385 | #if LLVM_ENABLE_STATS1 || !defined(NDEBUG) | |||
| 8386 | const SCEV *BEExact = Result.getExact(L, this); | |||
| 8387 | if (BEExact != getCouldNotCompute()) { | |||
| 8388 | assert(isLoopInvariant(BEExact, L) &&(static_cast <bool> (isLoopInvariant(BEExact, L) && isLoopInvariant(Result.getConstantMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!" ) ? void (0) : __assert_fail ("isLoopInvariant(BEExact, L) && isLoopInvariant(Result.getConstantMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8390, __extension__ __PRETTY_FUNCTION__)) | |||
| 8389 | isLoopInvariant(Result.getConstantMax(this), L) &&(static_cast <bool> (isLoopInvariant(BEExact, L) && isLoopInvariant(Result.getConstantMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!" ) ? void (0) : __assert_fail ("isLoopInvariant(BEExact, L) && isLoopInvariant(Result.getConstantMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8390, __extension__ __PRETTY_FUNCTION__)) | |||
| 8390 | "Computed backedge-taken count isn't loop invariant for loop!")(static_cast <bool> (isLoopInvariant(BEExact, L) && isLoopInvariant(Result.getConstantMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!" ) ? void (0) : __assert_fail ("isLoopInvariant(BEExact, L) && isLoopInvariant(Result.getConstantMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8390, __extension__ __PRETTY_FUNCTION__)); | |||
| 8391 | ++NumTripCountsComputed; | |||
| 8392 | } else if (Result.getConstantMax(this) == getCouldNotCompute() && | |||
| 8393 | isa<PHINode>(L->getHeader()->begin())) { | |||
| 8394 | // Only count loops that have phi nodes as not being computable. | |||
| 8395 | ++NumTripCountsNotComputed; | |||
| 8396 | } | |||
| 8397 | #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) | |||
| 8398 | ||||
| 8399 | // Now that we know more about the trip count for this loop, forget any | |||
| 8400 | // existing SCEV values for PHI nodes in this loop since they are only | |||
| 8401 | // conservative estimates made without the benefit of trip count | |||
| 8402 | // information. This invalidation is not necessary for correctness, and is | |||
| 8403 | // only done to produce more precise results. | |||
| 8404 | if (Result.hasAnyInfo()) { | |||
| 8405 | // Invalidate any expression using an addrec in this loop. | |||
| 8406 | SmallVector<const SCEV *, 8> ToForget; | |||
| 8407 | auto LoopUsersIt = LoopUsers.find(L); | |||
| 8408 | if (LoopUsersIt != LoopUsers.end()) | |||
| 8409 | append_range(ToForget, LoopUsersIt->second); | |||
| 8410 | forgetMemoizedResults(ToForget); | |||
| 8411 | ||||
| 8412 | // Invalidate constant-evolved loop header phis. | |||
| 8413 | for (PHINode &PN : L->getHeader()->phis()) | |||
| 8414 | ConstantEvolutionLoopExitValue.erase(&PN); | |||
| 8415 | } | |||
| 8416 | ||||
| 8417 | // Re-lookup the insert position, since the call to | |||
| 8418 | // computeBackedgeTakenCount above could result in a | |||
| 8419 | // recusive call to getBackedgeTakenInfo (on a different | |||
| 8420 | // loop), which would invalidate the iterator computed | |||
| 8421 | // earlier. | |||
| 8422 | return BackedgeTakenCounts.find(L)->second = std::move(Result); | |||
| 8423 | } | |||
| 8424 | ||||
| 8425 | void ScalarEvolution::forgetAllLoops() { | |||
| 8426 | // This method is intended to forget all info about loops. It should | |||
| 8427 | // invalidate caches as if the following happened: | |||
| 8428 | // - The trip counts of all loops have changed arbitrarily | |||
| 8429 | // - Every llvm::Value has been updated in place to produce a different | |||
| 8430 | // result. | |||
| 8431 | BackedgeTakenCounts.clear(); | |||
| 8432 | PredicatedBackedgeTakenCounts.clear(); | |||
| 8433 | BECountUsers.clear(); | |||
| 8434 | LoopPropertiesCache.clear(); | |||
| 8435 | ConstantEvolutionLoopExitValue.clear(); | |||
| 8436 | ValueExprMap.clear(); | |||
| 8437 | ValuesAtScopes.clear(); | |||
| 8438 | ValuesAtScopesUsers.clear(); | |||
| 8439 | LoopDispositions.clear(); | |||
| 8440 | BlockDispositions.clear(); | |||
| 8441 | UnsignedRanges.clear(); | |||
| 8442 | SignedRanges.clear(); | |||
| 8443 | ExprValueMap.clear(); | |||
| 8444 | HasRecMap.clear(); | |||
| 8445 | ConstantMultipleCache.clear(); | |||
| 8446 | PredicatedSCEVRewrites.clear(); | |||
| 8447 | FoldCache.clear(); | |||
| 8448 | FoldCacheUser.clear(); | |||
| 8449 | } | |||
| 8450 | void ScalarEvolution::visitAndClearUsers( | |||
| 8451 | SmallVectorImpl<Instruction *> &Worklist, | |||
| 8452 | SmallPtrSetImpl<Instruction *> &Visited, | |||
| 8453 | SmallVectorImpl<const SCEV *> &ToForget) { | |||
| 8454 | while (!Worklist.empty()) { | |||
| 8455 | Instruction *I = Worklist.pop_back_val(); | |||
| 8456 | if (!isSCEVable(I->getType())) | |||
| 8457 | continue; | |||
| 8458 | ||||
| 8459 | ValueExprMapType::iterator It = | |||
| 8460 | ValueExprMap.find_as(static_cast<Value *>(I)); | |||
| 8461 | if (It != ValueExprMap.end()) { | |||
| 8462 | eraseValueFromMap(It->first); | |||
| 8463 | ToForget.push_back(It->second); | |||
| 8464 | if (PHINode *PN = dyn_cast<PHINode>(I)) | |||
| 8465 | ConstantEvolutionLoopExitValue.erase(PN); | |||
| 8466 | } | |||
| 8467 | ||||
| 8468 | PushDefUseChildren(I, Worklist, Visited); | |||
| 8469 | } | |||
| 8470 | } | |||
| 8471 | ||||
| 8472 | void ScalarEvolution::forgetLoop(const Loop *L) { | |||
| 8473 | SmallVector<const Loop *, 16> LoopWorklist(1, L); | |||
| 8474 | SmallVector<Instruction *, 32> Worklist; | |||
| 8475 | SmallPtrSet<Instruction *, 16> Visited; | |||
| 8476 | SmallVector<const SCEV *, 16> ToForget; | |||
| 8477 | ||||
| 8478 | // Iterate over all the loops and sub-loops to drop SCEV information. | |||
| 8479 | while (!LoopWorklist.empty()) { | |||
| 8480 | auto *CurrL = LoopWorklist.pop_back_val(); | |||
| 8481 | ||||
| 8482 | // Drop any stored trip count value. | |||
| 8483 | forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); | |||
| 8484 | forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); | |||
| 8485 | ||||
| 8486 | // Drop information about predicated SCEV rewrites for this loop. | |||
| 8487 | for (auto I = PredicatedSCEVRewrites.begin(); | |||
| 8488 | I != PredicatedSCEVRewrites.end();) { | |||
| 8489 | std::pair<const SCEV *, const Loop *> Entry = I->first; | |||
| 8490 | if (Entry.second == CurrL) | |||
| 8491 | PredicatedSCEVRewrites.erase(I++); | |||
| 8492 | else | |||
| 8493 | ++I; | |||
| 8494 | } | |||
| 8495 | ||||
| 8496 | auto LoopUsersItr = LoopUsers.find(CurrL); | |||
| 8497 | if (LoopUsersItr != LoopUsers.end()) { | |||
| 8498 | ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), | |||
| 8499 | LoopUsersItr->second.end()); | |||
| 8500 | } | |||
| 8501 | ||||
| 8502 | // Drop information about expressions based on loop-header PHIs. | |||
| 8503 | PushLoopPHIs(CurrL, Worklist, Visited); | |||
| 8504 | visitAndClearUsers(Worklist, Visited, ToForget); | |||
| 8505 | ||||
| 8506 | LoopPropertiesCache.erase(CurrL); | |||
| 8507 | // Forget all contained loops too, to avoid dangling entries in the | |||
| 8508 | // ValuesAtScopes map. | |||
| 8509 | LoopWorklist.append(CurrL->begin(), CurrL->end()); | |||
| 8510 | } | |||
| 8511 | forgetMemoizedResults(ToForget); | |||
| 8512 | } | |||
| 8513 | ||||
| 8514 | void ScalarEvolution::forgetTopmostLoop(const Loop *L) { | |||
| 8515 | forgetLoop(L->getOutermostLoop()); | |||
| 8516 | } | |||
| 8517 | ||||
| 8518 | void ScalarEvolution::forgetValue(Value *V) { | |||
| 8519 | Instruction *I = dyn_cast<Instruction>(V); | |||
| 8520 | if (!I) return; | |||
| 8521 | ||||
| 8522 | // Drop information about expressions based on loop-header PHIs. | |||
| 8523 | SmallVector<Instruction *, 16> Worklist; | |||
| 8524 | SmallPtrSet<Instruction *, 8> Visited; | |||
| 8525 | SmallVector<const SCEV *, 8> ToForget; | |||
| 8526 | Worklist.push_back(I); | |||
| 8527 | Visited.insert(I); | |||
| 8528 | visitAndClearUsers(Worklist, Visited, ToForget); | |||
| 8529 | ||||
| 8530 | forgetMemoizedResults(ToForget); | |||
| 8531 | } | |||
| 8532 | ||||
| 8533 | void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); } | |||
| 8534 | ||||
| 8535 | void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) { | |||
| 8536 | // Unless a specific value is passed to invalidation, completely clear both | |||
| 8537 | // caches. | |||
| 8538 | if (!V) { | |||
| 8539 | BlockDispositions.clear(); | |||
| 8540 | LoopDispositions.clear(); | |||
| 8541 | return; | |||
| 8542 | } | |||
| 8543 | ||||
| 8544 | if (!isSCEVable(V->getType())) | |||
| 8545 | return; | |||
| 8546 | ||||
| 8547 | const SCEV *S = getExistingSCEV(V); | |||
| 8548 | if (!S) | |||
| 8549 | return; | |||
| 8550 | ||||
| 8551 | // Invalidate the block and loop dispositions cached for S. Dispositions of | |||
| 8552 | // S's users may change if S's disposition changes (i.e. a user may change to | |||
| 8553 | // loop-invariant, if S changes to loop invariant), so also invalidate | |||
| 8554 | // dispositions of S's users recursively. | |||
| 8555 | SmallVector<const SCEV *, 8> Worklist = {S}; | |||
| 8556 | SmallPtrSet<const SCEV *, 8> Seen = {S}; | |||
| 8557 | while (!Worklist.empty()) { | |||
| 8558 | const SCEV *Curr = Worklist.pop_back_val(); | |||
| 8559 | bool LoopDispoRemoved = LoopDispositions.erase(Curr); | |||
| 8560 | bool BlockDispoRemoved = BlockDispositions.erase(Curr); | |||
| 8561 | if (!LoopDispoRemoved && !BlockDispoRemoved) | |||
| 8562 | continue; | |||
| 8563 | auto Users = SCEVUsers.find(Curr); | |||
| 8564 | if (Users != SCEVUsers.end()) | |||
| 8565 | for (const auto *User : Users->second) | |||
| 8566 | if (Seen.insert(User).second) | |||
| 8567 | Worklist.push_back(User); | |||
| 8568 | } | |||
| 8569 | } | |||
| 8570 | ||||
| 8571 | /// Get the exact loop backedge taken count considering all loop exits. A | |||
| 8572 | /// computable result can only be returned for loops with all exiting blocks | |||
| 8573 | /// dominating the latch. howFarToZero assumes that the limit of each loop test | |||
| 8574 | /// is never skipped. This is a valid assumption as long as the loop exits via | |||
| 8575 | /// that test. For precise results, it is the caller's responsibility to specify | |||
| 8576 | /// the relevant loop exiting block using getExact(ExitingBlock, SE). | |||
| 8577 | const SCEV * | |||
| 8578 | ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, | |||
| 8579 | SmallVector<const SCEVPredicate *, 4> *Preds) const { | |||
| 8580 | // If any exits were not computable, the loop is not computable. | |||
| 8581 | if (!isComplete() || ExitNotTaken.empty()) | |||
| 8582 | return SE->getCouldNotCompute(); | |||
| 8583 | ||||
| 8584 | const BasicBlock *Latch = L->getLoopLatch(); | |||
| 8585 | // All exiting blocks we have collected must dominate the only backedge. | |||
| 8586 | if (!Latch) | |||
| 8587 | return SE->getCouldNotCompute(); | |||
| 8588 | ||||
| 8589 | // All exiting blocks we have gathered dominate loop's latch, so exact trip | |||
| 8590 | // count is simply a minimum out of all these calculated exit counts. | |||
| 8591 | SmallVector<const SCEV *, 2> Ops; | |||
| 8592 | for (const auto &ENT : ExitNotTaken) { | |||
| 8593 | const SCEV *BECount = ENT.ExactNotTaken; | |||
| 8594 | assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!")(static_cast <bool> (BECount != SE->getCouldNotCompute () && "Bad exit SCEV!") ? void (0) : __assert_fail ("BECount != SE->getCouldNotCompute() && \"Bad exit SCEV!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8594, __extension__ __PRETTY_FUNCTION__)); | |||
| 8595 | assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&(static_cast <bool> (SE->DT.dominates(ENT.ExitingBlock , Latch) && "We should only have known counts for exiting blocks that dominate " "latch!") ? void (0) : __assert_fail ("SE->DT.dominates(ENT.ExitingBlock, Latch) && \"We should only have known counts for exiting blocks that dominate \" \"latch!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8597, __extension__ __PRETTY_FUNCTION__)) | |||
| 8596 | "We should only have known counts for exiting blocks that dominate "(static_cast <bool> (SE->DT.dominates(ENT.ExitingBlock , Latch) && "We should only have known counts for exiting blocks that dominate " "latch!") ? void (0) : __assert_fail ("SE->DT.dominates(ENT.ExitingBlock, Latch) && \"We should only have known counts for exiting blocks that dominate \" \"latch!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8597, __extension__ __PRETTY_FUNCTION__)) | |||
| 8597 | "latch!")(static_cast <bool> (SE->DT.dominates(ENT.ExitingBlock , Latch) && "We should only have known counts for exiting blocks that dominate " "latch!") ? void (0) : __assert_fail ("SE->DT.dominates(ENT.ExitingBlock, Latch) && \"We should only have known counts for exiting blocks that dominate \" \"latch!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8597, __extension__ __PRETTY_FUNCTION__)); | |||
| 8598 | ||||
| 8599 | Ops.push_back(BECount); | |||
| 8600 | ||||
| 8601 | if (Preds) | |||
| 8602 | for (const auto *P : ENT.Predicates) | |||
| 8603 | Preds->push_back(P); | |||
| 8604 | ||||
| 8605 | assert((Preds || ENT.hasAlwaysTruePredicate()) &&(static_cast <bool> ((Preds || ENT.hasAlwaysTruePredicate ()) && "Predicate should be always true!") ? void (0) : __assert_fail ("(Preds || ENT.hasAlwaysTruePredicate()) && \"Predicate should be always true!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8606, __extension__ __PRETTY_FUNCTION__)) | |||
| 8606 | "Predicate should be always true!")(static_cast <bool> ((Preds || ENT.hasAlwaysTruePredicate ()) && "Predicate should be always true!") ? void (0) : __assert_fail ("(Preds || ENT.hasAlwaysTruePredicate()) && \"Predicate should be always true!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8606, __extension__ __PRETTY_FUNCTION__)); | |||
| 8607 | } | |||
| 8608 | ||||
| 8609 | // If an earlier exit exits on the first iteration (exit count zero), then | |||
| 8610 | // a later poison exit count should not propagate into the result. This are | |||
| 8611 | // exactly the semantics provided by umin_seq. | |||
| 8612 | return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true); | |||
| 8613 | } | |||
| 8614 | ||||
| 8615 | /// Get the exact not taken count for this loop exit. | |||
| 8616 | const SCEV * | |||
| 8617 | ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, | |||
| 8618 | ScalarEvolution *SE) const { | |||
| 8619 | for (const auto &ENT : ExitNotTaken) | |||
| 8620 | if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) | |||
| 8621 | return ENT.ExactNotTaken; | |||
| 8622 | ||||
| 8623 | return SE->getCouldNotCompute(); | |||
| 8624 | } | |||
| 8625 | ||||
| 8626 | const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( | |||
| 8627 | const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { | |||
| 8628 | for (const auto &ENT : ExitNotTaken) | |||
| 8629 | if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) | |||
| 8630 | return ENT.ConstantMaxNotTaken; | |||
| 8631 | ||||
| 8632 | return SE->getCouldNotCompute(); | |||
| 8633 | } | |||
| 8634 | ||||
| 8635 | const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax( | |||
| 8636 | const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { | |||
| 8637 | for (const auto &ENT : ExitNotTaken) | |||
| 8638 | if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) | |||
| 8639 | return ENT.SymbolicMaxNotTaken; | |||
| 8640 | ||||
| 8641 | return SE->getCouldNotCompute(); | |||
| 8642 | } | |||
| 8643 | ||||
| 8644 | /// getConstantMax - Get the constant max backedge taken count for the loop. | |||
| 8645 | const SCEV * | |||
| 8646 | ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { | |||
| 8647 | auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { | |||
| 8648 | return !ENT.hasAlwaysTruePredicate(); | |||
| 8649 | }; | |||
| 8650 | ||||
| 8651 | if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) | |||
| 8652 | return SE->getCouldNotCompute(); | |||
| 8653 | ||||
| 8654 | assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||(static_cast <bool> ((isa<SCEVCouldNotCompute>(getConstantMax ()) || isa<SCEVConstant>(getConstantMax())) && "No point in having a non-constant max backedge taken count!" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(getConstantMax()) || isa<SCEVConstant>(getConstantMax())) && \"No point in having a non-constant max backedge taken count!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8656, __extension__ __PRETTY_FUNCTION__)) | |||
| 8655 | isa<SCEVConstant>(getConstantMax())) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(getConstantMax ()) || isa<SCEVConstant>(getConstantMax())) && "No point in having a non-constant max backedge taken count!" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(getConstantMax()) || isa<SCEVConstant>(getConstantMax())) && \"No point in having a non-constant max backedge taken count!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8656, __extension__ __PRETTY_FUNCTION__)) | |||
| 8656 | "No point in having a non-constant max backedge taken count!")(static_cast <bool> ((isa<SCEVCouldNotCompute>(getConstantMax ()) || isa<SCEVConstant>(getConstantMax())) && "No point in having a non-constant max backedge taken count!" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(getConstantMax()) || isa<SCEVConstant>(getConstantMax())) && \"No point in having a non-constant max backedge taken count!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8656, __extension__ __PRETTY_FUNCTION__)); | |||
| 8657 | return getConstantMax(); | |||
| 8658 | } | |||
| 8659 | ||||
| 8660 | const SCEV * | |||
| 8661 | ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, | |||
| 8662 | ScalarEvolution *SE) { | |||
| 8663 | if (!SymbolicMax) | |||
| 8664 | SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); | |||
| 8665 | return SymbolicMax; | |||
| 8666 | } | |||
| 8667 | ||||
| 8668 | bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( | |||
| 8669 | ScalarEvolution *SE) const { | |||
| 8670 | auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { | |||
| 8671 | return !ENT.hasAlwaysTruePredicate(); | |||
| 8672 | }; | |||
| 8673 | return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); | |||
| 8674 | } | |||
| 8675 | ||||
| 8676 | ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) | |||
| 8677 | : ExitLimit(E, E, E, false, std::nullopt) {} | |||
| 8678 | ||||
| 8679 | ScalarEvolution::ExitLimit::ExitLimit( | |||
| 8680 | const SCEV *E, const SCEV *ConstantMaxNotTaken, | |||
| 8681 | const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, | |||
| 8682 | ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) | |||
| 8683 | : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken), | |||
| 8684 | SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) { | |||
| 8685 | // If we prove the max count is zero, so is the symbolic bound. This happens | |||
| 8686 | // in practice due to differences in a) how context sensitive we've chosen | |||
| 8687 | // to be and b) how we reason about bounds implied by UB. | |||
| 8688 | if (ConstantMaxNotTaken->isZero()) { | |||
| 8689 | this->ExactNotTaken = E = ConstantMaxNotTaken; | |||
| 8690 | this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken; | |||
| 8691 | } | |||
| 8692 | ||||
| 8693 | assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||(static_cast <bool> ((isa<SCEVCouldNotCompute>(ExactNotTaken ) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && "Exact is not allowed to be less precise than Constant Max") ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ExactNotTaken) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && \"Exact is not allowed to be less precise than Constant Max\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8695, __extension__ __PRETTY_FUNCTION__)) | |||
| 8694 | !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(ExactNotTaken ) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && "Exact is not allowed to be less precise than Constant Max") ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ExactNotTaken) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && \"Exact is not allowed to be less precise than Constant Max\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8695, __extension__ __PRETTY_FUNCTION__)) | |||
| 8695 | "Exact is not allowed to be less precise than Constant Max")(static_cast <bool> ((isa<SCEVCouldNotCompute>(ExactNotTaken ) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && "Exact is not allowed to be less precise than Constant Max") ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ExactNotTaken) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && \"Exact is not allowed to be less precise than Constant Max\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8695, __extension__ __PRETTY_FUNCTION__)); | |||
| 8696 | assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||(static_cast <bool> ((isa<SCEVCouldNotCompute>(ExactNotTaken ) || !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && "Exact is not allowed to be less precise than Symbolic Max") ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ExactNotTaken) || !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && \"Exact is not allowed to be less precise than Symbolic Max\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8698, __extension__ __PRETTY_FUNCTION__)) | |||
| 8697 | !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(ExactNotTaken ) || !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && "Exact is not allowed to be less precise than Symbolic Max") ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ExactNotTaken) || !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && \"Exact is not allowed to be less precise than Symbolic Max\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8698, __extension__ __PRETTY_FUNCTION__)) | |||
| 8698 | "Exact is not allowed to be less precise than Symbolic Max")(static_cast <bool> ((isa<SCEVCouldNotCompute>(ExactNotTaken ) || !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && "Exact is not allowed to be less precise than Symbolic Max") ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ExactNotTaken) || !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) && \"Exact is not allowed to be less precise than Symbolic Max\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8698, __extension__ __PRETTY_FUNCTION__)); | |||
| 8699 | assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) ||(static_cast <bool> ((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken ) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && "Symbolic Max is not allowed to be less precise than Constant Max" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && \"Symbolic Max is not allowed to be less precise than Constant Max\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8701, __extension__ __PRETTY_FUNCTION__)) | |||
| 8700 | !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken ) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && "Symbolic Max is not allowed to be less precise than Constant Max" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && \"Symbolic Max is not allowed to be less precise than Constant Max\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8701, __extension__ __PRETTY_FUNCTION__)) | |||
| 8701 | "Symbolic Max is not allowed to be less precise than Constant Max")(static_cast <bool> ((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken ) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && "Symbolic Max is not allowed to be less precise than Constant Max" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) || !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) && \"Symbolic Max is not allowed to be less precise than Constant Max\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8701, __extension__ __PRETTY_FUNCTION__)); | |||
| 8702 | assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken ) || isa<SCEVConstant>(ConstantMaxNotTaken)) && "No point in having a non-constant max backedge taken count!" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || isa<SCEVConstant>(ConstantMaxNotTaken)) && \"No point in having a non-constant max backedge taken count!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8704, __extension__ __PRETTY_FUNCTION__)) | |||
| 8703 | isa<SCEVConstant>(ConstantMaxNotTaken)) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken ) || isa<SCEVConstant>(ConstantMaxNotTaken)) && "No point in having a non-constant max backedge taken count!" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || isa<SCEVConstant>(ConstantMaxNotTaken)) && \"No point in having a non-constant max backedge taken count!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8704, __extension__ __PRETTY_FUNCTION__)) | |||
| 8704 | "No point in having a non-constant max backedge taken count!")(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken ) || isa<SCEVConstant>(ConstantMaxNotTaken)) && "No point in having a non-constant max backedge taken count!" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || isa<SCEVConstant>(ConstantMaxNotTaken)) && \"No point in having a non-constant max backedge taken count!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8704, __extension__ __PRETTY_FUNCTION__)); | |||
| 8705 | for (const auto *PredSet : PredSetList) | |||
| 8706 | for (const auto *P : *PredSet) | |||
| 8707 | addPredicate(P); | |||
| 8708 | assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && "Backedge count should be int" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && \"Backedge count should be int\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8709, __extension__ __PRETTY_FUNCTION__)) | |||
| 8709 | "Backedge count should be int")(static_cast <bool> ((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && "Backedge count should be int" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && \"Backedge count should be int\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8709, __extension__ __PRETTY_FUNCTION__)); | |||
| 8710 | assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken ) || !ConstantMaxNotTaken->getType()->isPointerTy()) && "Max backedge count should be int") ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || !ConstantMaxNotTaken->getType()->isPointerTy()) && \"Max backedge count should be int\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8712, __extension__ __PRETTY_FUNCTION__)) | |||
| 8711 | !ConstantMaxNotTaken->getType()->isPointerTy()) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken ) || !ConstantMaxNotTaken->getType()->isPointerTy()) && "Max backedge count should be int") ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || !ConstantMaxNotTaken->getType()->isPointerTy()) && \"Max backedge count should be int\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8712, __extension__ __PRETTY_FUNCTION__)) | |||
| 8712 | "Max backedge count should be int")(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken ) || !ConstantMaxNotTaken->getType()->isPointerTy()) && "Max backedge count should be int") ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) || !ConstantMaxNotTaken->getType()->isPointerTy()) && \"Max backedge count should be int\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8712, __extension__ __PRETTY_FUNCTION__)); | |||
| 8713 | } | |||
| 8714 | ||||
| 8715 | ScalarEvolution::ExitLimit::ExitLimit( | |||
| 8716 | const SCEV *E, const SCEV *ConstantMaxNotTaken, | |||
| 8717 | const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, | |||
| 8718 | const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) | |||
| 8719 | : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero, | |||
| 8720 | { &PredSet }) {} | |||
| 8721 | ||||
| 8722 | /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each | |||
| 8723 | /// computable exit into a persistent ExitNotTakenInfo array. | |||
| 8724 | ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( | |||
| 8725 | ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, | |||
| 8726 | bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) | |||
| 8727 | : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { | |||
| 8728 | using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; | |||
| 8729 | ||||
| 8730 | ExitNotTaken.reserve(ExitCounts.size()); | |||
| 8731 | std::transform(ExitCounts.begin(), ExitCounts.end(), | |||
| 8732 | std::back_inserter(ExitNotTaken), | |||
| 8733 | [&](const EdgeExitInfo &EEI) { | |||
| 8734 | BasicBlock *ExitBB = EEI.first; | |||
| 8735 | const ExitLimit &EL = EEI.second; | |||
| 8736 | return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, | |||
| 8737 | EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken, | |||
| 8738 | EL.Predicates); | |||
| 8739 | }); | |||
| 8740 | assert((isa<SCEVCouldNotCompute>(ConstantMax) ||(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMax ) || isa<SCEVConstant>(ConstantMax)) && "No point in having a non-constant max backedge taken count!" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMax) || isa<SCEVConstant>(ConstantMax)) && \"No point in having a non-constant max backedge taken count!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8742, __extension__ __PRETTY_FUNCTION__)) | |||
| 8741 | isa<SCEVConstant>(ConstantMax)) &&(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMax ) || isa<SCEVConstant>(ConstantMax)) && "No point in having a non-constant max backedge taken count!" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMax) || isa<SCEVConstant>(ConstantMax)) && \"No point in having a non-constant max backedge taken count!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8742, __extension__ __PRETTY_FUNCTION__)) | |||
| 8742 | "No point in having a non-constant max backedge taken count!")(static_cast <bool> ((isa<SCEVCouldNotCompute>(ConstantMax ) || isa<SCEVConstant>(ConstantMax)) && "No point in having a non-constant max backedge taken count!" ) ? void (0) : __assert_fail ("(isa<SCEVCouldNotCompute>(ConstantMax) || isa<SCEVConstant>(ConstantMax)) && \"No point in having a non-constant max backedge taken count!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8742, __extension__ __PRETTY_FUNCTION__)); | |||
| 8743 | } | |||
| 8744 | ||||
| 8745 | /// Compute the number of times the backedge of the specified loop will execute. | |||
| 8746 | ScalarEvolution::BackedgeTakenInfo | |||
| 8747 | ScalarEvolution::computeBackedgeTakenCount(const Loop *L, | |||
| 8748 | bool AllowPredicates) { | |||
| 8749 | SmallVector<BasicBlock *, 8> ExitingBlocks; | |||
| 8750 | L->getExitingBlocks(ExitingBlocks); | |||
| 8751 | ||||
| 8752 | using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; | |||
| 8753 | ||||
| 8754 | SmallVector<EdgeExitInfo, 4> ExitCounts; | |||
| 8755 | bool CouldComputeBECount = true; | |||
| 8756 | BasicBlock *Latch = L->getLoopLatch(); // may be NULL. | |||
| 8757 | const SCEV *MustExitMaxBECount = nullptr; | |||
| 8758 | const SCEV *MayExitMaxBECount = nullptr; | |||
| 8759 | bool MustExitMaxOrZero = false; | |||
| 8760 | ||||
| 8761 | // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts | |||
| 8762 | // and compute maxBECount. | |||
| 8763 | // Do a union of all the predicates here. | |||
| 8764 | for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { | |||
| 8765 | BasicBlock *ExitBB = ExitingBlocks[i]; | |||
| 8766 | ||||
| 8767 | // We canonicalize untaken exits to br (constant), ignore them so that | |||
| 8768 | // proving an exit untaken doesn't negatively impact our ability to reason | |||
| 8769 | // about the loop as whole. | |||
| 8770 | if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) | |||
| 8771 | if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { | |||
| 8772 | bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); | |||
| 8773 | if (ExitIfTrue == CI->isZero()) | |||
| 8774 | continue; | |||
| 8775 | } | |||
| 8776 | ||||
| 8777 | ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); | |||
| 8778 | ||||
| 8779 | assert((AllowPredicates || EL.Predicates.empty()) &&(static_cast <bool> ((AllowPredicates || EL.Predicates. empty()) && "Predicated exit limit when predicates are not allowed!" ) ? void (0) : __assert_fail ("(AllowPredicates || EL.Predicates.empty()) && \"Predicated exit limit when predicates are not allowed!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8780, __extension__ __PRETTY_FUNCTION__)) | |||
| 8780 | "Predicated exit limit when predicates are not allowed!")(static_cast <bool> ((AllowPredicates || EL.Predicates. empty()) && "Predicated exit limit when predicates are not allowed!" ) ? void (0) : __assert_fail ("(AllowPredicates || EL.Predicates.empty()) && \"Predicated exit limit when predicates are not allowed!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8780, __extension__ __PRETTY_FUNCTION__)); | |||
| 8781 | ||||
| 8782 | // 1. For each exit that can be computed, add an entry to ExitCounts. | |||
| 8783 | // CouldComputeBECount is true only if all exits can be computed. | |||
| 8784 | if (EL.ExactNotTaken == getCouldNotCompute()) | |||
| 8785 | // We couldn't compute an exact value for this exit, so | |||
| 8786 | // we won't be able to compute an exact value for the loop. | |||
| 8787 | CouldComputeBECount = false; | |||
| 8788 | // Remember exit count if either exact or symbolic is known. Because | |||
| 8789 | // Exact always implies symbolic, only check symbolic. | |||
| 8790 | if (EL.SymbolicMaxNotTaken != getCouldNotCompute()) | |||
| 8791 | ExitCounts.emplace_back(ExitBB, EL); | |||
| 8792 | else | |||
| 8793 | assert(EL.ExactNotTaken == getCouldNotCompute() &&(static_cast <bool> (EL.ExactNotTaken == getCouldNotCompute () && "Exact is known but symbolic isn't?") ? void (0 ) : __assert_fail ("EL.ExactNotTaken == getCouldNotCompute() && \"Exact is known but symbolic isn't?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8794, __extension__ __PRETTY_FUNCTION__)) | |||
| 8794 | "Exact is known but symbolic isn't?")(static_cast <bool> (EL.ExactNotTaken == getCouldNotCompute () && "Exact is known but symbolic isn't?") ? void (0 ) : __assert_fail ("EL.ExactNotTaken == getCouldNotCompute() && \"Exact is known but symbolic isn't?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8794, __extension__ __PRETTY_FUNCTION__)); | |||
| 8795 | ||||
| 8796 | // 2. Derive the loop's MaxBECount from each exit's max number of | |||
| 8797 | // non-exiting iterations. Partition the loop exits into two kinds: | |||
| 8798 | // LoopMustExits and LoopMayExits. | |||
| 8799 | // | |||
| 8800 | // If the exit dominates the loop latch, it is a LoopMustExit otherwise it | |||
| 8801 | // is a LoopMayExit. If any computable LoopMustExit is found, then | |||
| 8802 | // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable | |||
| 8803 | // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum | |||
| 8804 | // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than | |||
| 8805 | // any | |||
| 8806 | // computable EL.ConstantMaxNotTaken. | |||
| 8807 | if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch && | |||
| 8808 | DT.dominates(ExitBB, Latch)) { | |||
| 8809 | if (!MustExitMaxBECount) { | |||
| 8810 | MustExitMaxBECount = EL.ConstantMaxNotTaken; | |||
| 8811 | MustExitMaxOrZero = EL.MaxOrZero; | |||
| 8812 | } else { | |||
| 8813 | MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount, | |||
| 8814 | EL.ConstantMaxNotTaken); | |||
| 8815 | } | |||
| 8816 | } else if (MayExitMaxBECount != getCouldNotCompute()) { | |||
| 8817 | if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute()) | |||
| 8818 | MayExitMaxBECount = EL.ConstantMaxNotTaken; | |||
| 8819 | else { | |||
| 8820 | MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount, | |||
| 8821 | EL.ConstantMaxNotTaken); | |||
| 8822 | } | |||
| 8823 | } | |||
| 8824 | } | |||
| 8825 | const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : | |||
| 8826 | (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); | |||
| 8827 | // The loop backedge will be taken the maximum or zero times if there's | |||
| 8828 | // a single exit that must be taken the maximum or zero times. | |||
| 8829 | bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); | |||
| 8830 | ||||
| 8831 | // Remember which SCEVs are used in exit limits for invalidation purposes. | |||
| 8832 | // We only care about non-constant SCEVs here, so we can ignore | |||
| 8833 | // EL.ConstantMaxNotTaken | |||
| 8834 | // and MaxBECount, which must be SCEVConstant. | |||
| 8835 | for (const auto &Pair : ExitCounts) { | |||
| 8836 | if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) | |||
| 8837 | BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); | |||
| 8838 | if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken)) | |||
| 8839 | BECountUsers[Pair.second.SymbolicMaxNotTaken].insert( | |||
| 8840 | {L, AllowPredicates}); | |||
| 8841 | } | |||
| 8842 | return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, | |||
| 8843 | MaxBECount, MaxOrZero); | |||
| 8844 | } | |||
| 8845 | ||||
| 8846 | ScalarEvolution::ExitLimit | |||
| 8847 | ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, | |||
| 8848 | bool AllowPredicates) { | |||
| 8849 | assert(L->contains(ExitingBlock) && "Exit count for non-loop block?")(static_cast <bool> (L->contains(ExitingBlock) && "Exit count for non-loop block?") ? void (0) : __assert_fail ("L->contains(ExitingBlock) && \"Exit count for non-loop block?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8849, __extension__ __PRETTY_FUNCTION__)); | |||
| 8850 | // If our exiting block does not dominate the latch, then its connection with | |||
| 8851 | // loop's exit limit may be far from trivial. | |||
| 8852 | const BasicBlock *Latch = L->getLoopLatch(); | |||
| 8853 | if (!Latch || !DT.dominates(ExitingBlock, Latch)) | |||
| 8854 | return getCouldNotCompute(); | |||
| 8855 | ||||
| 8856 | bool IsOnlyExit = (L->getExitingBlock() != nullptr); | |||
| 8857 | Instruction *Term = ExitingBlock->getTerminator(); | |||
| 8858 | if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { | |||
| 8859 | assert(BI->isConditional() && "If unconditional, it can't be in loop!")(static_cast <bool> (BI->isConditional() && "If unconditional, it can't be in loop!" ) ? void (0) : __assert_fail ("BI->isConditional() && \"If unconditional, it can't be in loop!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8859, __extension__ __PRETTY_FUNCTION__)); | |||
| 8860 | bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); | |||
| 8861 | assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&(static_cast <bool> (ExitIfTrue == L->contains(BI-> getSuccessor(1)) && "It should have one successor in loop and one exit block!" ) ? void (0) : __assert_fail ("ExitIfTrue == L->contains(BI->getSuccessor(1)) && \"It should have one successor in loop and one exit block!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8862, __extension__ __PRETTY_FUNCTION__)) | |||
| 8862 | "It should have one successor in loop and one exit block!")(static_cast <bool> (ExitIfTrue == L->contains(BI-> getSuccessor(1)) && "It should have one successor in loop and one exit block!" ) ? void (0) : __assert_fail ("ExitIfTrue == L->contains(BI->getSuccessor(1)) && \"It should have one successor in loop and one exit block!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8862, __extension__ __PRETTY_FUNCTION__)); | |||
| 8863 | // Proceed to the next level to examine the exit condition expression. | |||
| 8864 | return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue, | |||
| 8865 | /*ControlsOnlyExit=*/IsOnlyExit, | |||
| 8866 | AllowPredicates); | |||
| 8867 | } | |||
| 8868 | ||||
| 8869 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { | |||
| 8870 | // For switch, make sure that there is a single exit from the loop. | |||
| 8871 | BasicBlock *Exit = nullptr; | |||
| 8872 | for (auto *SBB : successors(ExitingBlock)) | |||
| 8873 | if (!L->contains(SBB)) { | |||
| 8874 | if (Exit) // Multiple exit successors. | |||
| 8875 | return getCouldNotCompute(); | |||
| 8876 | Exit = SBB; | |||
| 8877 | } | |||
| 8878 | assert(Exit && "Exiting block must have at least one exit")(static_cast <bool> (Exit && "Exiting block must have at least one exit" ) ? void (0) : __assert_fail ("Exit && \"Exiting block must have at least one exit\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8878, __extension__ __PRETTY_FUNCTION__)); | |||
| 8879 | return computeExitLimitFromSingleExitSwitch( | |||
| 8880 | L, SI, Exit, | |||
| 8881 | /*ControlsOnlyExit=*/IsOnlyExit); | |||
| 8882 | } | |||
| 8883 | ||||
| 8884 | return getCouldNotCompute(); | |||
| 8885 | } | |||
| 8886 | ||||
| 8887 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( | |||
| 8888 | const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, | |||
| 8889 | bool AllowPredicates) { | |||
| 8890 | ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); | |||
| 8891 | return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, | |||
| 8892 | ControlsOnlyExit, AllowPredicates); | |||
| 8893 | } | |||
| 8894 | ||||
| 8895 | std::optional<ScalarEvolution::ExitLimit> | |||
| 8896 | ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, | |||
| 8897 | bool ExitIfTrue, bool ControlsOnlyExit, | |||
| 8898 | bool AllowPredicates) { | |||
| 8899 | (void)this->L; | |||
| 8900 | (void)this->ExitIfTrue; | |||
| 8901 | (void)this->AllowPredicates; | |||
| 8902 | ||||
| 8903 | assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&(static_cast <bool> (this->L == L && this-> ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && "Variance in assumed invariant key components!" ) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8905, __extension__ __PRETTY_FUNCTION__)) | |||
| 8904 | this->AllowPredicates == AllowPredicates &&(static_cast <bool> (this->L == L && this-> ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && "Variance in assumed invariant key components!" ) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8905, __extension__ __PRETTY_FUNCTION__)) | |||
| 8905 | "Variance in assumed invariant key components!")(static_cast <bool> (this->L == L && this-> ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && "Variance in assumed invariant key components!" ) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8905, __extension__ __PRETTY_FUNCTION__)); | |||
| 8906 | auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit}); | |||
| 8907 | if (Itr == TripCountMap.end()) | |||
| 8908 | return std::nullopt; | |||
| 8909 | return Itr->second; | |||
| 8910 | } | |||
| 8911 | ||||
| 8912 | void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, | |||
| 8913 | bool ExitIfTrue, | |||
| 8914 | bool ControlsOnlyExit, | |||
| 8915 | bool AllowPredicates, | |||
| 8916 | const ExitLimit &EL) { | |||
| 8917 | assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&(static_cast <bool> (this->L == L && this-> ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && "Variance in assumed invariant key components!" ) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8919, __extension__ __PRETTY_FUNCTION__)) | |||
| 8918 | this->AllowPredicates == AllowPredicates &&(static_cast <bool> (this->L == L && this-> ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && "Variance in assumed invariant key components!" ) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8919, __extension__ __PRETTY_FUNCTION__)) | |||
| 8919 | "Variance in assumed invariant key components!")(static_cast <bool> (this->L == L && this-> ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && "Variance in assumed invariant key components!" ) ? void (0) : __assert_fail ("this->L == L && this->ExitIfTrue == ExitIfTrue && this->AllowPredicates == AllowPredicates && \"Variance in assumed invariant key components!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8919, __extension__ __PRETTY_FUNCTION__)); | |||
| 8920 | ||||
| 8921 | auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL}); | |||
| 8922 | assert(InsertResult.second && "Expected successful insertion!")(static_cast <bool> (InsertResult.second && "Expected successful insertion!" ) ? void (0) : __assert_fail ("InsertResult.second && \"Expected successful insertion!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 8922, __extension__ __PRETTY_FUNCTION__)); | |||
| 8923 | (void)InsertResult; | |||
| 8924 | (void)ExitIfTrue; | |||
| 8925 | } | |||
| 8926 | ||||
| 8927 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( | |||
| 8928 | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, | |||
| 8929 | bool ControlsOnlyExit, bool AllowPredicates) { | |||
| 8930 | ||||
| 8931 | if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit, | |||
| 8932 | AllowPredicates)) | |||
| 8933 | return *MaybeEL; | |||
| 8934 | ||||
| 8935 | ExitLimit EL = computeExitLimitFromCondImpl( | |||
| 8936 | Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates); | |||
| 8937 | Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL); | |||
| 8938 | return EL; | |||
| 8939 | } | |||
| 8940 | ||||
| 8941 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( | |||
| 8942 | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, | |||
| 8943 | bool ControlsOnlyExit, bool AllowPredicates) { | |||
| 8944 | // Handle BinOp conditions (And, Or). | |||
| 8945 | if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( | |||
| 8946 | Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates)) | |||
| 8947 | return *LimitFromBinOp; | |||
| 8948 | ||||
| 8949 | // With an icmp, it may be feasible to compute an exact backedge-taken count. | |||
| 8950 | // Proceed to the next level to examine the icmp. | |||
| 8951 | if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { | |||
| 8952 | ExitLimit EL = | |||
| 8953 | computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit); | |||
| 8954 | if (EL.hasFullInfo() || !AllowPredicates) | |||
| 8955 | return EL; | |||
| 8956 | ||||
| 8957 | // Try again, but use SCEV predicates this time. | |||
| 8958 | return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, | |||
| 8959 | ControlsOnlyExit, | |||
| 8960 | /*AllowPredicates=*/true); | |||
| 8961 | } | |||
| 8962 | ||||
| 8963 | // Check for a constant condition. These are normally stripped out by | |||
| 8964 | // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to | |||
| 8965 | // preserve the CFG and is temporarily leaving constant conditions | |||
| 8966 | // in place. | |||
| 8967 | if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { | |||
| 8968 | if (ExitIfTrue == !CI->getZExtValue()) | |||
| 8969 | // The backedge is always taken. | |||
| 8970 | return getCouldNotCompute(); | |||
| 8971 | // The backedge is never taken. | |||
| 8972 | return getZero(CI->getType()); | |||
| 8973 | } | |||
| 8974 | ||||
| 8975 | // If we're exiting based on the overflow flag of an x.with.overflow intrinsic | |||
| 8976 | // with a constant step, we can form an equivalent icmp predicate and figure | |||
| 8977 | // out how many iterations will be taken before we exit. | |||
| 8978 | const WithOverflowInst *WO; | |||
| 8979 | const APInt *C; | |||
| 8980 | if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && | |||
| 8981 | match(WO->getRHS(), m_APInt(C))) { | |||
| 8982 | ConstantRange NWR = | |||
| 8983 | ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, | |||
| 8984 | WO->getNoWrapKind()); | |||
| 8985 | CmpInst::Predicate Pred; | |||
| 8986 | APInt NewRHSC, Offset; | |||
| 8987 | NWR.getEquivalentICmp(Pred, NewRHSC, Offset); | |||
| 8988 | if (!ExitIfTrue) | |||
| 8989 | Pred = ICmpInst::getInversePredicate(Pred); | |||
| 8990 | auto *LHS = getSCEV(WO->getLHS()); | |||
| 8991 | if (Offset != 0) | |||
| 8992 | LHS = getAddExpr(LHS, getConstant(Offset)); | |||
| 8993 | auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), | |||
| 8994 | ControlsOnlyExit, AllowPredicates); | |||
| 8995 | if (EL.hasAnyInfo()) | |||
| 8996 | return EL; | |||
| 8997 | } | |||
| 8998 | ||||
| 8999 | // If it's not an integer or pointer comparison then compute it the hard way. | |||
| 9000 | return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); | |||
| 9001 | } | |||
| 9002 | ||||
| 9003 | std::optional<ScalarEvolution::ExitLimit> | |||
| 9004 | ScalarEvolution::computeExitLimitFromCondFromBinOp( | |||
| 9005 | ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, | |||
| 9006 | bool ControlsOnlyExit, bool AllowPredicates) { | |||
| 9007 | // Check if the controlling expression for this loop is an And or Or. | |||
| 9008 | Value *Op0, *Op1; | |||
| 9009 | bool IsAnd = false; | |||
| 9010 | if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) | |||
| 9011 | IsAnd = true; | |||
| 9012 | else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) | |||
| 9013 | IsAnd = false; | |||
| 9014 | else | |||
| 9015 | return std::nullopt; | |||
| 9016 | ||||
| 9017 | // EitherMayExit is true in these two cases: | |||
| 9018 | // br (and Op0 Op1), loop, exit | |||
| 9019 | // br (or Op0 Op1), exit, loop | |||
| 9020 | bool EitherMayExit = IsAnd ^ ExitIfTrue; | |||
| 9021 | ExitLimit EL0 = computeExitLimitFromCondCached( | |||
| 9022 | Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit, | |||
| 9023 | AllowPredicates); | |||
| 9024 | ExitLimit EL1 = computeExitLimitFromCondCached( | |||
| 9025 | Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit, | |||
| 9026 | AllowPredicates); | |||
| 9027 | ||||
| 9028 | // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" | |||
| 9029 | const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); | |||
| 9030 | if (isa<ConstantInt>(Op1)) | |||
| 9031 | return Op1 == NeutralElement ? EL0 : EL1; | |||
| 9032 | if (isa<ConstantInt>(Op0)) | |||
| 9033 | return Op0 == NeutralElement ? EL1 : EL0; | |||
| 9034 | ||||
| 9035 | const SCEV *BECount = getCouldNotCompute(); | |||
| 9036 | const SCEV *ConstantMaxBECount = getCouldNotCompute(); | |||
| 9037 | const SCEV *SymbolicMaxBECount = getCouldNotCompute(); | |||
| 9038 | if (EitherMayExit) { | |||
| 9039 | bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond); | |||
| 9040 | // Both conditions must be same for the loop to continue executing. | |||
| 9041 | // Choose the less conservative count. | |||
| 9042 | if (EL0.ExactNotTaken != getCouldNotCompute() && | |||
| 9043 | EL1.ExactNotTaken != getCouldNotCompute()) { | |||
| 9044 | BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken, | |||
| 9045 | UseSequentialUMin); | |||
| 9046 | } | |||
| 9047 | if (EL0.ConstantMaxNotTaken == getCouldNotCompute()) | |||
| 9048 | ConstantMaxBECount = EL1.ConstantMaxNotTaken; | |||
| 9049 | else if (EL1.ConstantMaxNotTaken == getCouldNotCompute()) | |||
| 9050 | ConstantMaxBECount = EL0.ConstantMaxNotTaken; | |||
| 9051 | else | |||
| 9052 | ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken, | |||
| 9053 | EL1.ConstantMaxNotTaken); | |||
| 9054 | if (EL0.SymbolicMaxNotTaken == getCouldNotCompute()) | |||
| 9055 | SymbolicMaxBECount = EL1.SymbolicMaxNotTaken; | |||
| 9056 | else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute()) | |||
| 9057 | SymbolicMaxBECount = EL0.SymbolicMaxNotTaken; | |||
| 9058 | else | |||
| 9059 | SymbolicMaxBECount = getUMinFromMismatchedTypes( | |||
| 9060 | EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin); | |||
| 9061 | } else { | |||
| 9062 | // Both conditions must be same at the same time for the loop to exit. | |||
| 9063 | // For now, be conservative. | |||
| 9064 | if (EL0.ExactNotTaken == EL1.ExactNotTaken) | |||
| 9065 | BECount = EL0.ExactNotTaken; | |||
| 9066 | } | |||
| 9067 | ||||
| 9068 | // There are cases (e.g. PR26207) where computeExitLimitFromCond is able | |||
| 9069 | // to be more aggressive when computing BECount than when computing | |||
| 9070 | // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken | |||
| 9071 | // and | |||
| 9072 | // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and | |||
| 9073 | // EL1.ConstantMaxNotTaken to not. | |||
| 9074 | if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && | |||
| 9075 | !isa<SCEVCouldNotCompute>(BECount)) | |||
| 9076 | ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); | |||
| 9077 | if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount)) | |||
| 9078 | SymbolicMaxBECount = | |||
| 9079 | isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; | |||
| 9080 | return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, | |||
| 9081 | { &EL0.Predicates, &EL1.Predicates }); | |||
| 9082 | } | |||
| 9083 | ||||
| 9084 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( | |||
| 9085 | const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, | |||
| 9086 | bool AllowPredicates) { | |||
| 9087 | // If the condition was exit on true, convert the condition to exit on false | |||
| 9088 | ICmpInst::Predicate Pred; | |||
| 9089 | if (!ExitIfTrue) | |||
| 9090 | Pred = ExitCond->getPredicate(); | |||
| 9091 | else | |||
| 9092 | Pred = ExitCond->getInversePredicate(); | |||
| 9093 | const ICmpInst::Predicate OriginalPred = Pred; | |||
| 9094 | ||||
| 9095 | const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); | |||
| 9096 | const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); | |||
| 9097 | ||||
| 9098 | ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsOnlyExit, | |||
| 9099 | AllowPredicates); | |||
| 9100 | if (EL.hasAnyInfo()) | |||
| 9101 | return EL; | |||
| 9102 | ||||
| 9103 | auto *ExhaustiveCount = | |||
| 9104 | computeExitCountExhaustively(L, ExitCond, ExitIfTrue); | |||
| 9105 | ||||
| 9106 | if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) | |||
| 9107 | return ExhaustiveCount; | |||
| 9108 | ||||
| 9109 | return computeShiftCompareExitLimit(ExitCond->getOperand(0), | |||
| 9110 | ExitCond->getOperand(1), L, OriginalPred); | |||
| 9111 | } | |||
| 9112 | ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp( | |||
| 9113 | const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, | |||
| 9114 | bool ControlsOnlyExit, bool AllowPredicates) { | |||
| 9115 | ||||
| 9116 | // Try to evaluate any dependencies out of the loop. | |||
| 9117 | LHS = getSCEVAtScope(LHS, L); | |||
| 9118 | RHS = getSCEVAtScope(RHS, L); | |||
| 9119 | ||||
| 9120 | // At this point, we would like to compute how many iterations of the | |||
| 9121 | // loop the predicate will return true for these inputs. | |||
| 9122 | if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { | |||
| 9123 | // If there is a loop-invariant, force it into the RHS. | |||
| 9124 | std::swap(LHS, RHS); | |||
| 9125 | Pred = ICmpInst::getSwappedPredicate(Pred); | |||
| 9126 | } | |||
| 9127 | ||||
| 9128 | bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) && | |||
| 9129 | loopIsFiniteByAssumption(L); | |||
| 9130 | // Simplify the operands before analyzing them. | |||
| 9131 | (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0); | |||
| 9132 | ||||
| 9133 | // If we have a comparison of a chrec against a constant, try to use value | |||
| 9134 | // ranges to answer this query. | |||
| 9135 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) | |||
| 9136 | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) | |||
| 9137 | if (AddRec->getLoop() == L) { | |||
| 9138 | // Form the constant range. | |||
| 9139 | ConstantRange CompRange = | |||
| 9140 | ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); | |||
| 9141 | ||||
| 9142 | const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); | |||
| 9143 | if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; | |||
| 9144 | } | |||
| 9145 | ||||
| 9146 | // If this loop must exit based on this condition (or execute undefined | |||
| 9147 | // behaviour), and we can prove the test sequence produced must repeat | |||
| 9148 | // the same values on self-wrap of the IV, then we can infer that IV | |||
| 9149 | // doesn't self wrap because if it did, we'd have an infinite (undefined) | |||
| 9150 | // loop. | |||
| 9151 | if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { | |||
| 9152 | // TODO: We can peel off any functions which are invertible *in L*. Loop | |||
| 9153 | // invariant terms are effectively constants for our purposes here. | |||
| 9154 | auto *InnerLHS = LHS; | |||
| 9155 | if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) | |||
| 9156 | InnerLHS = ZExt->getOperand(); | |||
| 9157 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { | |||
| 9158 | auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); | |||
| 9159 | if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && | |||
| 9160 | StrideC && StrideC->getAPInt().isPowerOf2()) { | |||
| 9161 | auto Flags = AR->getNoWrapFlags(); | |||
| 9162 | Flags = setFlags(Flags, SCEV::FlagNW); | |||
| 9163 | SmallVector<const SCEV*> Operands{AR->operands()}; | |||
| 9164 | Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); | |||
| 9165 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); | |||
| 9166 | } | |||
| 9167 | } | |||
| 9168 | } | |||
| 9169 | ||||
| 9170 | switch (Pred) { | |||
| 9171 | case ICmpInst::ICMP_NE: { // while (X != Y) | |||
| 9172 | // Convert to: while (X-Y != 0) | |||
| 9173 | if (LHS->getType()->isPointerTy()) { | |||
| 9174 | LHS = getLosslessPtrToIntExpr(LHS); | |||
| 9175 | if (isa<SCEVCouldNotCompute>(LHS)) | |||
| 9176 | return LHS; | |||
| 9177 | } | |||
| 9178 | if (RHS->getType()->isPointerTy()) { | |||
| 9179 | RHS = getLosslessPtrToIntExpr(RHS); | |||
| 9180 | if (isa<SCEVCouldNotCompute>(RHS)) | |||
| 9181 | return RHS; | |||
| 9182 | } | |||
| 9183 | ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit, | |||
| 9184 | AllowPredicates); | |||
| 9185 | if (EL.hasAnyInfo()) | |||
| 9186 | return EL; | |||
| 9187 | break; | |||
| 9188 | } | |||
| 9189 | case ICmpInst::ICMP_EQ: { // while (X == Y) | |||
| 9190 | // Convert to: while (X-Y == 0) | |||
| 9191 | if (LHS->getType()->isPointerTy()) { | |||
| 9192 | LHS = getLosslessPtrToIntExpr(LHS); | |||
| 9193 | if (isa<SCEVCouldNotCompute>(LHS)) | |||
| 9194 | return LHS; | |||
| 9195 | } | |||
| 9196 | if (RHS->getType()->isPointerTy()) { | |||
| 9197 | RHS = getLosslessPtrToIntExpr(RHS); | |||
| 9198 | if (isa<SCEVCouldNotCompute>(RHS)) | |||
| 9199 | return RHS; | |||
| 9200 | } | |||
| 9201 | ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); | |||
| 9202 | if (EL.hasAnyInfo()) return EL; | |||
| 9203 | break; | |||
| 9204 | } | |||
| 9205 | case ICmpInst::ICMP_SLE: | |||
| 9206 | case ICmpInst::ICMP_ULE: | |||
| 9207 | // Since the loop is finite, an invariant RHS cannot include the boundary | |||
| 9208 | // value, otherwise it would loop forever. | |||
| 9209 | if (!EnableFiniteLoopControl || !ControllingFiniteLoop || | |||
| 9210 | !isLoopInvariant(RHS, L)) | |||
| 9211 | break; | |||
| 9212 | RHS = getAddExpr(getOne(RHS->getType()), RHS); | |||
| 9213 | [[fallthrough]]; | |||
| 9214 | case ICmpInst::ICMP_SLT: | |||
| 9215 | case ICmpInst::ICMP_ULT: { // while (X < Y) | |||
| 9216 | bool IsSigned = ICmpInst::isSigned(Pred); | |||
| 9217 | ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsOnlyExit, | |||
| 9218 | AllowPredicates); | |||
| 9219 | if (EL.hasAnyInfo()) | |||
| 9220 | return EL; | |||
| 9221 | break; | |||
| 9222 | } | |||
| 9223 | case ICmpInst::ICMP_SGE: | |||
| 9224 | case ICmpInst::ICMP_UGE: | |||
| 9225 | // Since the loop is finite, an invariant RHS cannot include the boundary | |||
| 9226 | // value, otherwise it would loop forever. | |||
| 9227 | if (!EnableFiniteLoopControl || !ControllingFiniteLoop || | |||
| 9228 | !isLoopInvariant(RHS, L)) | |||
| 9229 | break; | |||
| 9230 | RHS = getAddExpr(getMinusOne(RHS->getType()), RHS); | |||
| 9231 | [[fallthrough]]; | |||
| 9232 | case ICmpInst::ICMP_SGT: | |||
| 9233 | case ICmpInst::ICMP_UGT: { // while (X > Y) | |||
| 9234 | bool IsSigned = ICmpInst::isSigned(Pred); | |||
| 9235 | ExitLimit EL = howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsOnlyExit, | |||
| 9236 | AllowPredicates); | |||
| 9237 | if (EL.hasAnyInfo()) | |||
| 9238 | return EL; | |||
| 9239 | break; | |||
| 9240 | } | |||
| 9241 | default: | |||
| 9242 | break; | |||
| 9243 | } | |||
| 9244 | ||||
| 9245 | return getCouldNotCompute(); | |||
| 9246 | } | |||
| 9247 | ||||
| 9248 | ScalarEvolution::ExitLimit | |||
| 9249 | ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, | |||
| 9250 | SwitchInst *Switch, | |||
| 9251 | BasicBlock *ExitingBlock, | |||
| 9252 | bool ControlsOnlyExit) { | |||
| 9253 | assert(!L->contains(ExitingBlock) && "Not an exiting block!")(static_cast <bool> (!L->contains(ExitingBlock) && "Not an exiting block!") ? void (0) : __assert_fail ("!L->contains(ExitingBlock) && \"Not an exiting block!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9253, __extension__ __PRETTY_FUNCTION__)); | |||
| 9254 | ||||
| 9255 | // Give up if the exit is the default dest of a switch. | |||
| 9256 | if (Switch->getDefaultDest() == ExitingBlock) | |||
| 9257 | return getCouldNotCompute(); | |||
| 9258 | ||||
| 9259 | assert(L->contains(Switch->getDefaultDest()) &&(static_cast <bool> (L->contains(Switch->getDefaultDest ()) && "Default case must not exit the loop!") ? void (0) : __assert_fail ("L->contains(Switch->getDefaultDest()) && \"Default case must not exit the loop!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9260, __extension__ __PRETTY_FUNCTION__)) | |||
| 9260 | "Default case must not exit the loop!")(static_cast <bool> (L->contains(Switch->getDefaultDest ()) && "Default case must not exit the loop!") ? void (0) : __assert_fail ("L->contains(Switch->getDefaultDest()) && \"Default case must not exit the loop!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9260, __extension__ __PRETTY_FUNCTION__)); | |||
| 9261 | const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); | |||
| 9262 | const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); | |||
| 9263 | ||||
| 9264 | // while (X != Y) --> while (X-Y != 0) | |||
| 9265 | ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit); | |||
| 9266 | if (EL.hasAnyInfo()) | |||
| 9267 | return EL; | |||
| 9268 | ||||
| 9269 | return getCouldNotCompute(); | |||
| 9270 | } | |||
| 9271 | ||||
| 9272 | static ConstantInt * | |||
| 9273 | EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, | |||
| 9274 | ScalarEvolution &SE) { | |||
| 9275 | const SCEV *InVal = SE.getConstant(C); | |||
| 9276 | const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); | |||
| 9277 | assert(isa<SCEVConstant>(Val) &&(static_cast <bool> (isa<SCEVConstant>(Val) && "Evaluation of SCEV at constant didn't fold correctly?") ? void (0) : __assert_fail ("isa<SCEVConstant>(Val) && \"Evaluation of SCEV at constant didn't fold correctly?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9278, __extension__ __PRETTY_FUNCTION__)) | |||
| 9278 | "Evaluation of SCEV at constant didn't fold correctly?")(static_cast <bool> (isa<SCEVConstant>(Val) && "Evaluation of SCEV at constant didn't fold correctly?") ? void (0) : __assert_fail ("isa<SCEVConstant>(Val) && \"Evaluation of SCEV at constant didn't fold correctly?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9278, __extension__ __PRETTY_FUNCTION__)); | |||
| 9279 | return cast<SCEVConstant>(Val)->getValue(); | |||
| 9280 | } | |||
| 9281 | ||||
| 9282 | ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( | |||
| 9283 | Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { | |||
| 9284 | ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); | |||
| 9285 | if (!RHS) | |||
| 9286 | return getCouldNotCompute(); | |||
| 9287 | ||||
| 9288 | const BasicBlock *Latch = L->getLoopLatch(); | |||
| 9289 | if (!Latch) | |||
| 9290 | return getCouldNotCompute(); | |||
| 9291 | ||||
| 9292 | const BasicBlock *Predecessor = L->getLoopPredecessor(); | |||
| 9293 | if (!Predecessor) | |||
| 9294 | return getCouldNotCompute(); | |||
| 9295 | ||||
| 9296 | // Return true if V is of the form "LHS `shift_op` <positive constant>". | |||
| 9297 | // Return LHS in OutLHS and shift_opt in OutOpCode. | |||
| 9298 | auto MatchPositiveShift = | |||
| 9299 | [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { | |||
| 9300 | ||||
| 9301 | using namespace PatternMatch; | |||
| 9302 | ||||
| 9303 | ConstantInt *ShiftAmt; | |||
| 9304 | if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) | |||
| 9305 | OutOpCode = Instruction::LShr; | |||
| 9306 | else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) | |||
| 9307 | OutOpCode = Instruction::AShr; | |||
| 9308 | else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) | |||
| 9309 | OutOpCode = Instruction::Shl; | |||
| 9310 | else | |||
| 9311 | return false; | |||
| 9312 | ||||
| 9313 | return ShiftAmt->getValue().isStrictlyPositive(); | |||
| 9314 | }; | |||
| 9315 | ||||
| 9316 | // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in | |||
| 9317 | // | |||
| 9318 | // loop: | |||
| 9319 | // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] | |||
| 9320 | // %iv.shifted = lshr i32 %iv, <positive constant> | |||
| 9321 | // | |||
| 9322 | // Return true on a successful match. Return the corresponding PHI node (%iv | |||
| 9323 | // above) in PNOut and the opcode of the shift operation in OpCodeOut. | |||
| 9324 | auto MatchShiftRecurrence = | |||
| 9325 | [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { | |||
| 9326 | std::optional<Instruction::BinaryOps> PostShiftOpCode; | |||
| 9327 | ||||
| 9328 | { | |||
| 9329 | Instruction::BinaryOps OpC; | |||
| 9330 | Value *V; | |||
| 9331 | ||||
| 9332 | // If we encounter a shift instruction, "peel off" the shift operation, | |||
| 9333 | // and remember that we did so. Later when we inspect %iv's backedge | |||
| 9334 | // value, we will make sure that the backedge value uses the same | |||
| 9335 | // operation. | |||
| 9336 | // | |||
| 9337 | // Note: the peeled shift operation does not have to be the same | |||
| 9338 | // instruction as the one feeding into the PHI's backedge value. We only | |||
| 9339 | // really care about it being the same *kind* of shift instruction -- | |||
| 9340 | // that's all that is required for our later inferences to hold. | |||
| 9341 | if (MatchPositiveShift(LHS, V, OpC)) { | |||
| 9342 | PostShiftOpCode = OpC; | |||
| 9343 | LHS = V; | |||
| 9344 | } | |||
| 9345 | } | |||
| 9346 | ||||
| 9347 | PNOut = dyn_cast<PHINode>(LHS); | |||
| 9348 | if (!PNOut || PNOut->getParent() != L->getHeader()) | |||
| 9349 | return false; | |||
| 9350 | ||||
| 9351 | Value *BEValue = PNOut->getIncomingValueForBlock(Latch); | |||
| 9352 | Value *OpLHS; | |||
| 9353 | ||||
| 9354 | return | |||
| 9355 | // The backedge value for the PHI node must be a shift by a positive | |||
| 9356 | // amount | |||
| 9357 | MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && | |||
| 9358 | ||||
| 9359 | // of the PHI node itself | |||
| 9360 | OpLHS == PNOut && | |||
| 9361 | ||||
| 9362 | // and the kind of shift should be match the kind of shift we peeled | |||
| 9363 | // off, if any. | |||
| 9364 | (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut); | |||
| 9365 | }; | |||
| 9366 | ||||
| 9367 | PHINode *PN; | |||
| 9368 | Instruction::BinaryOps OpCode; | |||
| 9369 | if (!MatchShiftRecurrence(LHS, PN, OpCode)) | |||
| 9370 | return getCouldNotCompute(); | |||
| 9371 | ||||
| 9372 | const DataLayout &DL = getDataLayout(); | |||
| 9373 | ||||
| 9374 | // The key rationale for this optimization is that for some kinds of shift | |||
| 9375 | // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 | |||
| 9376 | // within a finite number of iterations. If the condition guarding the | |||
| 9377 | // backedge (in the sense that the backedge is taken if the condition is true) | |||
| 9378 | // is false for the value the shift recurrence stabilizes to, then we know | |||
| 9379 | // that the backedge is taken only a finite number of times. | |||
| 9380 | ||||
| 9381 | ConstantInt *StableValue = nullptr; | |||
| 9382 | switch (OpCode) { | |||
| 9383 | default: | |||
| 9384 | llvm_unreachable("Impossible case!")::llvm::llvm_unreachable_internal("Impossible case!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 9384); | |||
| 9385 | ||||
| 9386 | case Instruction::AShr: { | |||
| 9387 | // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most | |||
| 9388 | // bitwidth(K) iterations. | |||
| 9389 | Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); | |||
| 9390 | KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, | |||
| 9391 | Predecessor->getTerminator(), &DT); | |||
| 9392 | auto *Ty = cast<IntegerType>(RHS->getType()); | |||
| 9393 | if (Known.isNonNegative()) | |||
| 9394 | StableValue = ConstantInt::get(Ty, 0); | |||
| 9395 | else if (Known.isNegative()) | |||
| 9396 | StableValue = ConstantInt::get(Ty, -1, true); | |||
| 9397 | else | |||
| 9398 | return getCouldNotCompute(); | |||
| 9399 | ||||
| 9400 | break; | |||
| 9401 | } | |||
| 9402 | case Instruction::LShr: | |||
| 9403 | case Instruction::Shl: | |||
| 9404 | // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} | |||
| 9405 | // stabilize to 0 in at most bitwidth(K) iterations. | |||
| 9406 | StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); | |||
| 9407 | break; | |||
| 9408 | } | |||
| 9409 | ||||
| 9410 | auto *Result = | |||
| 9411 | ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); | |||
| 9412 | assert(Result->getType()->isIntegerTy(1) &&(static_cast <bool> (Result->getType()->isIntegerTy (1) && "Otherwise cannot be an operand to a branch instruction" ) ? void (0) : __assert_fail ("Result->getType()->isIntegerTy(1) && \"Otherwise cannot be an operand to a branch instruction\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9413, __extension__ __PRETTY_FUNCTION__)) | |||
| 9413 | "Otherwise cannot be an operand to a branch instruction")(static_cast <bool> (Result->getType()->isIntegerTy (1) && "Otherwise cannot be an operand to a branch instruction" ) ? void (0) : __assert_fail ("Result->getType()->isIntegerTy(1) && \"Otherwise cannot be an operand to a branch instruction\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9413, __extension__ __PRETTY_FUNCTION__)); | |||
| 9414 | ||||
| 9415 | if (Result->isZeroValue()) { | |||
| 9416 | unsigned BitWidth = getTypeSizeInBits(RHS->getType()); | |||
| 9417 | const SCEV *UpperBound = | |||
| 9418 | getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); | |||
| 9419 | return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false); | |||
| 9420 | } | |||
| 9421 | ||||
| 9422 | return getCouldNotCompute(); | |||
| 9423 | } | |||
| 9424 | ||||
| 9425 | /// Return true if we can constant fold an instruction of the specified type, | |||
| 9426 | /// assuming that all operands were constants. | |||
| 9427 | static bool CanConstantFold(const Instruction *I) { | |||
| 9428 | if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || | |||
| 9429 | isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || | |||
| 9430 | isa<LoadInst>(I) || isa<ExtractValueInst>(I)) | |||
| 9431 | return true; | |||
| 9432 | ||||
| 9433 | if (const CallInst *CI = dyn_cast<CallInst>(I)) | |||
| 9434 | if (const Function *F = CI->getCalledFunction()) | |||
| 9435 | return canConstantFoldCallTo(CI, F); | |||
| 9436 | return false; | |||
| 9437 | } | |||
| 9438 | ||||
| 9439 | /// Determine whether this instruction can constant evolve within this loop | |||
| 9440 | /// assuming its operands can all constant evolve. | |||
| 9441 | static bool canConstantEvolve(Instruction *I, const Loop *L) { | |||
| 9442 | // An instruction outside of the loop can't be derived from a loop PHI. | |||
| 9443 | if (!L->contains(I)) return false; | |||
| 9444 | ||||
| 9445 | if (isa<PHINode>(I)) { | |||
| 9446 | // We don't currently keep track of the control flow needed to evaluate | |||
| 9447 | // PHIs, so we cannot handle PHIs inside of loops. | |||
| 9448 | return L->getHeader() == I->getParent(); | |||
| 9449 | } | |||
| 9450 | ||||
| 9451 | // If we won't be able to constant fold this expression even if the operands | |||
| 9452 | // are constants, bail early. | |||
| 9453 | return CanConstantFold(I); | |||
| 9454 | } | |||
| 9455 | ||||
| 9456 | /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by | |||
| 9457 | /// recursing through each instruction operand until reaching a loop header phi. | |||
| 9458 | static PHINode * | |||
| 9459 | getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, | |||
| 9460 | DenseMap<Instruction *, PHINode *> &PHIMap, | |||
| 9461 | unsigned Depth) { | |||
| 9462 | if (Depth > MaxConstantEvolvingDepth) | |||
| 9463 | return nullptr; | |||
| 9464 | ||||
| 9465 | // Otherwise, we can evaluate this instruction if all of its operands are | |||
| 9466 | // constant or derived from a PHI node themselves. | |||
| 9467 | PHINode *PHI = nullptr; | |||
| 9468 | for (Value *Op : UseInst->operands()) { | |||
| 9469 | if (isa<Constant>(Op)) continue; | |||
| 9470 | ||||
| 9471 | Instruction *OpInst = dyn_cast<Instruction>(Op); | |||
| 9472 | if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; | |||
| 9473 | ||||
| 9474 | PHINode *P = dyn_cast<PHINode>(OpInst); | |||
| 9475 | if (!P) | |||
| 9476 | // If this operand is already visited, reuse the prior result. | |||
| 9477 | // We may have P != PHI if this is the deepest point at which the | |||
| 9478 | // inconsistent paths meet. | |||
| 9479 | P = PHIMap.lookup(OpInst); | |||
| 9480 | if (!P) { | |||
| 9481 | // Recurse and memoize the results, whether a phi is found or not. | |||
| 9482 | // This recursive call invalidates pointers into PHIMap. | |||
| 9483 | P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); | |||
| 9484 | PHIMap[OpInst] = P; | |||
| 9485 | } | |||
| 9486 | if (!P) | |||
| 9487 | return nullptr; // Not evolving from PHI | |||
| 9488 | if (PHI && PHI != P) | |||
| 9489 | return nullptr; // Evolving from multiple different PHIs. | |||
| 9490 | PHI = P; | |||
| 9491 | } | |||
| 9492 | // This is a expression evolving from a constant PHI! | |||
| 9493 | return PHI; | |||
| 9494 | } | |||
| 9495 | ||||
| 9496 | /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node | |||
| 9497 | /// in the loop that V is derived from. We allow arbitrary operations along the | |||
| 9498 | /// way, but the operands of an operation must either be constants or a value | |||
| 9499 | /// derived from a constant PHI. If this expression does not fit with these | |||
| 9500 | /// constraints, return null. | |||
| 9501 | static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { | |||
| 9502 | Instruction *I = dyn_cast<Instruction>(V); | |||
| 9503 | if (!I || !canConstantEvolve(I, L)) return nullptr; | |||
| 9504 | ||||
| 9505 | if (PHINode *PN = dyn_cast<PHINode>(I)) | |||
| 9506 | return PN; | |||
| 9507 | ||||
| 9508 | // Record non-constant instructions contained by the loop. | |||
| 9509 | DenseMap<Instruction *, PHINode *> PHIMap; | |||
| 9510 | return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); | |||
| 9511 | } | |||
| 9512 | ||||
| 9513 | /// EvaluateExpression - Given an expression that passes the | |||
| 9514 | /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node | |||
| 9515 | /// in the loop has the value PHIVal. If we can't fold this expression for some | |||
| 9516 | /// reason, return null. | |||
| 9517 | static Constant *EvaluateExpression(Value *V, const Loop *L, | |||
| 9518 | DenseMap<Instruction *, Constant *> &Vals, | |||
| 9519 | const DataLayout &DL, | |||
| 9520 | const TargetLibraryInfo *TLI) { | |||
| 9521 | // Convenient constant check, but redundant for recursive calls. | |||
| 9522 | if (Constant *C = dyn_cast<Constant>(V)) return C; | |||
| 9523 | Instruction *I = dyn_cast<Instruction>(V); | |||
| 9524 | if (!I) return nullptr; | |||
| 9525 | ||||
| 9526 | if (Constant *C = Vals.lookup(I)) return C; | |||
| 9527 | ||||
| 9528 | // An instruction inside the loop depends on a value outside the loop that we | |||
| 9529 | // weren't given a mapping for, or a value such as a call inside the loop. | |||
| 9530 | if (!canConstantEvolve(I, L)) return nullptr; | |||
| 9531 | ||||
| 9532 | // An unmapped PHI can be due to a branch or another loop inside this loop, | |||
| 9533 | // or due to this not being the initial iteration through a loop where we | |||
| 9534 | // couldn't compute the evolution of this particular PHI last time. | |||
| 9535 | if (isa<PHINode>(I)) return nullptr; | |||
| 9536 | ||||
| 9537 | std::vector<Constant*> Operands(I->getNumOperands()); | |||
| 9538 | ||||
| 9539 | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | |||
| 9540 | Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); | |||
| 9541 | if (!Operand) { | |||
| 9542 | Operands[i] = dyn_cast<Constant>(I->getOperand(i)); | |||
| 9543 | if (!Operands[i]) return nullptr; | |||
| 9544 | continue; | |||
| 9545 | } | |||
| 9546 | Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); | |||
| 9547 | Vals[Operand] = C; | |||
| 9548 | if (!C) return nullptr; | |||
| 9549 | Operands[i] = C; | |||
| 9550 | } | |||
| 9551 | ||||
| 9552 | return ConstantFoldInstOperands(I, Operands, DL, TLI); | |||
| 9553 | } | |||
| 9554 | ||||
| 9555 | ||||
| 9556 | // If every incoming value to PN except the one for BB is a specific Constant, | |||
| 9557 | // return that, else return nullptr. | |||
| 9558 | static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { | |||
| 9559 | Constant *IncomingVal = nullptr; | |||
| 9560 | ||||
| 9561 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | |||
| 9562 | if (PN->getIncomingBlock(i) == BB) | |||
| 9563 | continue; | |||
| 9564 | ||||
| 9565 | auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); | |||
| 9566 | if (!CurrentVal) | |||
| 9567 | return nullptr; | |||
| 9568 | ||||
| 9569 | if (IncomingVal != CurrentVal) { | |||
| 9570 | if (IncomingVal) | |||
| 9571 | return nullptr; | |||
| 9572 | IncomingVal = CurrentVal; | |||
| 9573 | } | |||
| 9574 | } | |||
| 9575 | ||||
| 9576 | return IncomingVal; | |||
| 9577 | } | |||
| 9578 | ||||
| 9579 | /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is | |||
| 9580 | /// in the header of its containing loop, we know the loop executes a | |||
| 9581 | /// constant number of times, and the PHI node is just a recurrence | |||
| 9582 | /// involving constants, fold it. | |||
| 9583 | Constant * | |||
| 9584 | ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, | |||
| 9585 | const APInt &BEs, | |||
| 9586 | const Loop *L) { | |||
| 9587 | auto I = ConstantEvolutionLoopExitValue.find(PN); | |||
| 9588 | if (I != ConstantEvolutionLoopExitValue.end()) | |||
| 9589 | return I->second; | |||
| 9590 | ||||
| 9591 | if (BEs.ugt(MaxBruteForceIterations)) | |||
| 9592 | return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. | |||
| 9593 | ||||
| 9594 | Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; | |||
| 9595 | ||||
| 9596 | DenseMap<Instruction *, Constant *> CurrentIterVals; | |||
| 9597 | BasicBlock *Header = L->getHeader(); | |||
| 9598 | assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!")(static_cast <bool> (PN->getParent() == Header && "Can't evaluate PHI not in loop header!") ? void (0) : __assert_fail ("PN->getParent() == Header && \"Can't evaluate PHI not in loop header!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9598, __extension__ __PRETTY_FUNCTION__)); | |||
| 9599 | ||||
| 9600 | BasicBlock *Latch = L->getLoopLatch(); | |||
| 9601 | if (!Latch) | |||
| 9602 | return nullptr; | |||
| 9603 | ||||
| 9604 | for (PHINode &PHI : Header->phis()) { | |||
| 9605 | if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) | |||
| 9606 | CurrentIterVals[&PHI] = StartCST; | |||
| 9607 | } | |||
| 9608 | if (!CurrentIterVals.count(PN)) | |||
| 9609 | return RetVal = nullptr; | |||
| 9610 | ||||
| 9611 | Value *BEValue = PN->getIncomingValueForBlock(Latch); | |||
| 9612 | ||||
| 9613 | // Execute the loop symbolically to determine the exit value. | |||
| 9614 | assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&(static_cast <bool> (BEs.getActiveBits() < 8 * sizeof (unsigned) && "BEs is <= MaxBruteForceIterations which is an 'unsigned'!" ) ? void (0) : __assert_fail ("BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && \"BEs is <= MaxBruteForceIterations which is an 'unsigned'!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9615, __extension__ __PRETTY_FUNCTION__)) | |||
| 9615 | "BEs is <= MaxBruteForceIterations which is an 'unsigned'!")(static_cast <bool> (BEs.getActiveBits() < 8 * sizeof (unsigned) && "BEs is <= MaxBruteForceIterations which is an 'unsigned'!" ) ? void (0) : __assert_fail ("BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && \"BEs is <= MaxBruteForceIterations which is an 'unsigned'!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9615, __extension__ __PRETTY_FUNCTION__)); | |||
| 9616 | ||||
| 9617 | unsigned NumIterations = BEs.getZExtValue(); // must be in range | |||
| 9618 | unsigned IterationNum = 0; | |||
| 9619 | const DataLayout &DL = getDataLayout(); | |||
| 9620 | for (; ; ++IterationNum) { | |||
| 9621 | if (IterationNum == NumIterations) | |||
| 9622 | return RetVal = CurrentIterVals[PN]; // Got exit value! | |||
| 9623 | ||||
| 9624 | // Compute the value of the PHIs for the next iteration. | |||
| 9625 | // EvaluateExpression adds non-phi values to the CurrentIterVals map. | |||
| 9626 | DenseMap<Instruction *, Constant *> NextIterVals; | |||
| 9627 | Constant *NextPHI = | |||
| 9628 | EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); | |||
| 9629 | if (!NextPHI) | |||
| 9630 | return nullptr; // Couldn't evaluate! | |||
| 9631 | NextIterVals[PN] = NextPHI; | |||
| 9632 | ||||
| 9633 | bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; | |||
| 9634 | ||||
| 9635 | // Also evaluate the other PHI nodes. However, we don't get to stop if we | |||
| 9636 | // cease to be able to evaluate one of them or if they stop evolving, | |||
| 9637 | // because that doesn't necessarily prevent us from computing PN. | |||
| 9638 | SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; | |||
| 9639 | for (const auto &I : CurrentIterVals) { | |||
| 9640 | PHINode *PHI = dyn_cast<PHINode>(I.first); | |||
| 9641 | if (!PHI || PHI == PN || PHI->getParent() != Header) continue; | |||
| 9642 | PHIsToCompute.emplace_back(PHI, I.second); | |||
| 9643 | } | |||
| 9644 | // We use two distinct loops because EvaluateExpression may invalidate any | |||
| 9645 | // iterators into CurrentIterVals. | |||
| 9646 | for (const auto &I : PHIsToCompute) { | |||
| 9647 | PHINode *PHI = I.first; | |||
| 9648 | Constant *&NextPHI = NextIterVals[PHI]; | |||
| 9649 | if (!NextPHI) { // Not already computed. | |||
| 9650 | Value *BEValue = PHI->getIncomingValueForBlock(Latch); | |||
| 9651 | NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); | |||
| 9652 | } | |||
| 9653 | if (NextPHI != I.second) | |||
| 9654 | StoppedEvolving = false; | |||
| 9655 | } | |||
| 9656 | ||||
| 9657 | // If all entries in CurrentIterVals == NextIterVals then we can stop | |||
| 9658 | // iterating, the loop can't continue to change. | |||
| 9659 | if (StoppedEvolving) | |||
| 9660 | return RetVal = CurrentIterVals[PN]; | |||
| 9661 | ||||
| 9662 | CurrentIterVals.swap(NextIterVals); | |||
| 9663 | } | |||
| 9664 | } | |||
| 9665 | ||||
| 9666 | const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, | |||
| 9667 | Value *Cond, | |||
| 9668 | bool ExitWhen) { | |||
| 9669 | PHINode *PN = getConstantEvolvingPHI(Cond, L); | |||
| 9670 | if (!PN) return getCouldNotCompute(); | |||
| 9671 | ||||
| 9672 | // If the loop is canonicalized, the PHI will have exactly two entries. | |||
| 9673 | // That's the only form we support here. | |||
| 9674 | if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); | |||
| 9675 | ||||
| 9676 | DenseMap<Instruction *, Constant *> CurrentIterVals; | |||
| 9677 | BasicBlock *Header = L->getHeader(); | |||
| 9678 | assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!")(static_cast <bool> (PN->getParent() == Header && "Can't evaluate PHI not in loop header!") ? void (0) : __assert_fail ("PN->getParent() == Header && \"Can't evaluate PHI not in loop header!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9678, __extension__ __PRETTY_FUNCTION__)); | |||
| 9679 | ||||
| 9680 | BasicBlock *Latch = L->getLoopLatch(); | |||
| 9681 | assert(Latch && "Should follow from NumIncomingValues == 2!")(static_cast <bool> (Latch && "Should follow from NumIncomingValues == 2!" ) ? void (0) : __assert_fail ("Latch && \"Should follow from NumIncomingValues == 2!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9681, __extension__ __PRETTY_FUNCTION__)); | |||
| 9682 | ||||
| 9683 | for (PHINode &PHI : Header->phis()) { | |||
| 9684 | if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) | |||
| 9685 | CurrentIterVals[&PHI] = StartCST; | |||
| 9686 | } | |||
| 9687 | if (!CurrentIterVals.count(PN)) | |||
| 9688 | return getCouldNotCompute(); | |||
| 9689 | ||||
| 9690 | // Okay, we find a PHI node that defines the trip count of this loop. Execute | |||
| 9691 | // the loop symbolically to determine when the condition gets a value of | |||
| 9692 | // "ExitWhen". | |||
| 9693 | unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. | |||
| 9694 | const DataLayout &DL = getDataLayout(); | |||
| 9695 | for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ | |||
| 9696 | auto *CondVal = dyn_cast_or_null<ConstantInt>( | |||
| 9697 | EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); | |||
| 9698 | ||||
| 9699 | // Couldn't symbolically evaluate. | |||
| 9700 | if (!CondVal) return getCouldNotCompute(); | |||
| 9701 | ||||
| 9702 | if (CondVal->getValue() == uint64_t(ExitWhen)) { | |||
| 9703 | ++NumBruteForceTripCountsComputed; | |||
| 9704 | return getConstant(Type::getInt32Ty(getContext()), IterationNum); | |||
| 9705 | } | |||
| 9706 | ||||
| 9707 | // Update all the PHI nodes for the next iteration. | |||
| 9708 | DenseMap<Instruction *, Constant *> NextIterVals; | |||
| 9709 | ||||
| 9710 | // Create a list of which PHIs we need to compute. We want to do this before | |||
| 9711 | // calling EvaluateExpression on them because that may invalidate iterators | |||
| 9712 | // into CurrentIterVals. | |||
| 9713 | SmallVector<PHINode *, 8> PHIsToCompute; | |||
| 9714 | for (const auto &I : CurrentIterVals) { | |||
| 9715 | PHINode *PHI = dyn_cast<PHINode>(I.first); | |||
| 9716 | if (!PHI || PHI->getParent() != Header) continue; | |||
| 9717 | PHIsToCompute.push_back(PHI); | |||
| 9718 | } | |||
| 9719 | for (PHINode *PHI : PHIsToCompute) { | |||
| 9720 | Constant *&NextPHI = NextIterVals[PHI]; | |||
| 9721 | if (NextPHI) continue; // Already computed! | |||
| 9722 | ||||
| 9723 | Value *BEValue = PHI->getIncomingValueForBlock(Latch); | |||
| 9724 | NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); | |||
| 9725 | } | |||
| 9726 | CurrentIterVals.swap(NextIterVals); | |||
| 9727 | } | |||
| 9728 | ||||
| 9729 | // Too many iterations were needed to evaluate. | |||
| 9730 | return getCouldNotCompute(); | |||
| 9731 | } | |||
| 9732 | ||||
| 9733 | const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { | |||
| 9734 | SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = | |||
| 9735 | ValuesAtScopes[V]; | |||
| 9736 | // Check to see if we've folded this expression at this loop before. | |||
| 9737 | for (auto &LS : Values) | |||
| 9738 | if (LS.first == L) | |||
| 9739 | return LS.second ? LS.second : V; | |||
| 9740 | ||||
| 9741 | Values.emplace_back(L, nullptr); | |||
| 9742 | ||||
| 9743 | // Otherwise compute it. | |||
| 9744 | const SCEV *C = computeSCEVAtScope(V, L); | |||
| 9745 | for (auto &LS : reverse(ValuesAtScopes[V])) | |||
| 9746 | if (LS.first == L) { | |||
| 9747 | LS.second = C; | |||
| 9748 | if (!isa<SCEVConstant>(C)) | |||
| 9749 | ValuesAtScopesUsers[C].push_back({L, V}); | |||
| 9750 | break; | |||
| 9751 | } | |||
| 9752 | return C; | |||
| 9753 | } | |||
| 9754 | ||||
| 9755 | /// This builds up a Constant using the ConstantExpr interface. That way, we | |||
| 9756 | /// will return Constants for objects which aren't represented by a | |||
| 9757 | /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. | |||
| 9758 | /// Returns NULL if the SCEV isn't representable as a Constant. | |||
| 9759 | static Constant *BuildConstantFromSCEV(const SCEV *V) { | |||
| 9760 | switch (V->getSCEVType()) { | |||
| 9761 | case scCouldNotCompute: | |||
| 9762 | case scAddRecExpr: | |||
| 9763 | case scVScale: | |||
| 9764 | return nullptr; | |||
| 9765 | case scConstant: | |||
| 9766 | return cast<SCEVConstant>(V)->getValue(); | |||
| 9767 | case scUnknown: | |||
| 9768 | return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); | |||
| 9769 | case scSignExtend: { | |||
| 9770 | const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); | |||
| 9771 | if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) | |||
| 9772 | return ConstantExpr::getSExt(CastOp, SS->getType()); | |||
| 9773 | return nullptr; | |||
| 9774 | } | |||
| 9775 | case scZeroExtend: { | |||
| 9776 | const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); | |||
| 9777 | if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) | |||
| 9778 | return ConstantExpr::getZExt(CastOp, SZ->getType()); | |||
| 9779 | return nullptr; | |||
| 9780 | } | |||
| 9781 | case scPtrToInt: { | |||
| 9782 | const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); | |||
| 9783 | if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) | |||
| 9784 | return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); | |||
| 9785 | ||||
| 9786 | return nullptr; | |||
| 9787 | } | |||
| 9788 | case scTruncate: { | |||
| 9789 | const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); | |||
| 9790 | if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) | |||
| 9791 | return ConstantExpr::getTrunc(CastOp, ST->getType()); | |||
| 9792 | return nullptr; | |||
| 9793 | } | |||
| 9794 | case scAddExpr: { | |||
| 9795 | const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); | |||
| 9796 | Constant *C = nullptr; | |||
| 9797 | for (const SCEV *Op : SA->operands()) { | |||
| 9798 | Constant *OpC = BuildConstantFromSCEV(Op); | |||
| 9799 | if (!OpC) | |||
| 9800 | return nullptr; | |||
| 9801 | if (!C) { | |||
| 9802 | C = OpC; | |||
| 9803 | continue; | |||
| 9804 | } | |||
| 9805 | assert(!C->getType()->isPointerTy() &&(static_cast <bool> (!C->getType()->isPointerTy() && "Can only have one pointer, and it must be last") ? void (0) : __assert_fail ("!C->getType()->isPointerTy() && \"Can only have one pointer, and it must be last\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9806, __extension__ __PRETTY_FUNCTION__)) | |||
| 9806 | "Can only have one pointer, and it must be last")(static_cast <bool> (!C->getType()->isPointerTy() && "Can only have one pointer, and it must be last") ? void (0) : __assert_fail ("!C->getType()->isPointerTy() && \"Can only have one pointer, and it must be last\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9806, __extension__ __PRETTY_FUNCTION__)); | |||
| 9807 | if (auto *PT = dyn_cast<PointerType>(OpC->getType())) { | |||
| 9808 | // The offsets have been converted to bytes. We can add bytes to an | |||
| 9809 | // i8* by GEP with the byte count in the first index. | |||
| 9810 | Type *DestPtrTy = | |||
| 9811 | Type::getInt8PtrTy(PT->getContext(), PT->getAddressSpace()); | |||
| 9812 | OpC = ConstantExpr::getBitCast(OpC, DestPtrTy); | |||
| 9813 | C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), | |||
| 9814 | OpC, C); | |||
| 9815 | } else { | |||
| 9816 | C = ConstantExpr::getAdd(C, OpC); | |||
| 9817 | } | |||
| 9818 | } | |||
| 9819 | return C; | |||
| 9820 | } | |||
| 9821 | case scMulExpr: { | |||
| 9822 | const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); | |||
| 9823 | Constant *C = nullptr; | |||
| 9824 | for (const SCEV *Op : SM->operands()) { | |||
| 9825 | assert(!Op->getType()->isPointerTy() && "Can't multiply pointers")(static_cast <bool> (!Op->getType()->isPointerTy( ) && "Can't multiply pointers") ? void (0) : __assert_fail ("!Op->getType()->isPointerTy() && \"Can't multiply pointers\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9825, __extension__ __PRETTY_FUNCTION__)); | |||
| 9826 | Constant *OpC = BuildConstantFromSCEV(Op); | |||
| 9827 | if (!OpC) | |||
| 9828 | return nullptr; | |||
| 9829 | C = C ? ConstantExpr::getMul(C, OpC) : OpC; | |||
| 9830 | } | |||
| 9831 | return C; | |||
| 9832 | } | |||
| 9833 | case scUDivExpr: | |||
| 9834 | case scSMaxExpr: | |||
| 9835 | case scUMaxExpr: | |||
| 9836 | case scSMinExpr: | |||
| 9837 | case scUMinExpr: | |||
| 9838 | case scSequentialUMinExpr: | |||
| 9839 | return nullptr; // TODO: smax, umax, smin, umax, umin_seq. | |||
| 9840 | } | |||
| 9841 | llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 9841); | |||
| 9842 | } | |||
| 9843 | ||||
| 9844 | const SCEV * | |||
| 9845 | ScalarEvolution::getWithOperands(const SCEV *S, | |||
| 9846 | SmallVectorImpl<const SCEV *> &NewOps) { | |||
| 9847 | switch (S->getSCEVType()) { | |||
| 9848 | case scTruncate: | |||
| 9849 | case scZeroExtend: | |||
| 9850 | case scSignExtend: | |||
| 9851 | case scPtrToInt: | |||
| 9852 | return getCastExpr(S->getSCEVType(), NewOps[0], S->getType()); | |||
| 9853 | case scAddRecExpr: { | |||
| 9854 | auto *AddRec = cast<SCEVAddRecExpr>(S); | |||
| 9855 | return getAddRecExpr(NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags()); | |||
| 9856 | } | |||
| 9857 | case scAddExpr: | |||
| 9858 | return getAddExpr(NewOps, cast<SCEVAddExpr>(S)->getNoWrapFlags()); | |||
| 9859 | case scMulExpr: | |||
| 9860 | return getMulExpr(NewOps, cast<SCEVMulExpr>(S)->getNoWrapFlags()); | |||
| 9861 | case scUDivExpr: | |||
| 9862 | return getUDivExpr(NewOps[0], NewOps[1]); | |||
| 9863 | case scUMaxExpr: | |||
| 9864 | case scSMaxExpr: | |||
| 9865 | case scUMinExpr: | |||
| 9866 | case scSMinExpr: | |||
| 9867 | return getMinMaxExpr(S->getSCEVType(), NewOps); | |||
| 9868 | case scSequentialUMinExpr: | |||
| 9869 | return getSequentialMinMaxExpr(S->getSCEVType(), NewOps); | |||
| 9870 | case scConstant: | |||
| 9871 | case scVScale: | |||
| 9872 | case scUnknown: | |||
| 9873 | return S; | |||
| 9874 | case scCouldNotCompute: | |||
| 9875 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 9875); | |||
| 9876 | } | |||
| 9877 | llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 9877); | |||
| 9878 | } | |||
| 9879 | ||||
| 9880 | const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { | |||
| 9881 | switch (V->getSCEVType()) { | |||
| 9882 | case scConstant: | |||
| 9883 | case scVScale: | |||
| 9884 | return V; | |||
| 9885 | case scAddRecExpr: { | |||
| 9886 | // If this is a loop recurrence for a loop that does not contain L, then we | |||
| 9887 | // are dealing with the final value computed by the loop. | |||
| 9888 | const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V); | |||
| 9889 | // First, attempt to evaluate each operand. | |||
| 9890 | // Avoid performing the look-up in the common case where the specified | |||
| 9891 | // expression has no loop-variant portions. | |||
| 9892 | for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { | |||
| 9893 | const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); | |||
| 9894 | if (OpAtScope == AddRec->getOperand(i)) | |||
| 9895 | continue; | |||
| 9896 | ||||
| 9897 | // Okay, at least one of these operands is loop variant but might be | |||
| 9898 | // foldable. Build a new instance of the folded commutative expression. | |||
| 9899 | SmallVector<const SCEV *, 8> NewOps; | |||
| 9900 | NewOps.reserve(AddRec->getNumOperands()); | |||
| 9901 | append_range(NewOps, AddRec->operands().take_front(i)); | |||
| 9902 | NewOps.push_back(OpAtScope); | |||
| 9903 | for (++i; i != e; ++i) | |||
| 9904 | NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); | |||
| 9905 | ||||
| 9906 | const SCEV *FoldedRec = getAddRecExpr( | |||
| 9907 | NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW)); | |||
| 9908 | AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); | |||
| 9909 | // The addrec may be folded to a nonrecurrence, for example, if the | |||
| 9910 | // induction variable is multiplied by zero after constant folding. Go | |||
| 9911 | // ahead and return the folded value. | |||
| 9912 | if (!AddRec) | |||
| 9913 | return FoldedRec; | |||
| 9914 | break; | |||
| 9915 | } | |||
| 9916 | ||||
| 9917 | // If the scope is outside the addrec's loop, evaluate it by using the | |||
| 9918 | // loop exit value of the addrec. | |||
| 9919 | if (!AddRec->getLoop()->contains(L)) { | |||
| 9920 | // To evaluate this recurrence, we need to know how many times the AddRec | |||
| 9921 | // loop iterates. Compute this now. | |||
| 9922 | const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); | |||
| 9923 | if (BackedgeTakenCount == getCouldNotCompute()) | |||
| 9924 | return AddRec; | |||
| 9925 | ||||
| 9926 | // Then, evaluate the AddRec. | |||
| 9927 | return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); | |||
| 9928 | } | |||
| 9929 | ||||
| 9930 | return AddRec; | |||
| 9931 | } | |||
| 9932 | case scTruncate: | |||
| 9933 | case scZeroExtend: | |||
| 9934 | case scSignExtend: | |||
| 9935 | case scPtrToInt: | |||
| 9936 | case scAddExpr: | |||
| 9937 | case scMulExpr: | |||
| 9938 | case scUDivExpr: | |||
| 9939 | case scUMaxExpr: | |||
| 9940 | case scSMaxExpr: | |||
| 9941 | case scUMinExpr: | |||
| 9942 | case scSMinExpr: | |||
| 9943 | case scSequentialUMinExpr: { | |||
| 9944 | ArrayRef<const SCEV *> Ops = V->operands(); | |||
| 9945 | // Avoid performing the look-up in the common case where the specified | |||
| 9946 | // expression has no loop-variant portions. | |||
| 9947 | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | |||
| 9948 | const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L); | |||
| 9949 | if (OpAtScope != Ops[i]) { | |||
| 9950 | // Okay, at least one of these operands is loop variant but might be | |||
| 9951 | // foldable. Build a new instance of the folded commutative expression. | |||
| 9952 | SmallVector<const SCEV *, 8> NewOps; | |||
| 9953 | NewOps.reserve(Ops.size()); | |||
| 9954 | append_range(NewOps, Ops.take_front(i)); | |||
| 9955 | NewOps.push_back(OpAtScope); | |||
| 9956 | ||||
| 9957 | for (++i; i != e; ++i) { | |||
| 9958 | OpAtScope = getSCEVAtScope(Ops[i], L); | |||
| 9959 | NewOps.push_back(OpAtScope); | |||
| 9960 | } | |||
| 9961 | ||||
| 9962 | return getWithOperands(V, NewOps); | |||
| 9963 | } | |||
| 9964 | } | |||
| 9965 | // If we got here, all operands are loop invariant. | |||
| 9966 | return V; | |||
| 9967 | } | |||
| 9968 | case scUnknown: { | |||
| 9969 | // If this instruction is evolved from a constant-evolving PHI, compute the | |||
| 9970 | // exit value from the loop without using SCEVs. | |||
| 9971 | const SCEVUnknown *SU = cast<SCEVUnknown>(V); | |||
| 9972 | Instruction *I = dyn_cast<Instruction>(SU->getValue()); | |||
| 9973 | if (!I) | |||
| 9974 | return V; // This is some other type of SCEVUnknown, just return it. | |||
| 9975 | ||||
| 9976 | if (PHINode *PN = dyn_cast<PHINode>(I)) { | |||
| 9977 | const Loop *CurrLoop = this->LI[I->getParent()]; | |||
| 9978 | // Looking for loop exit value. | |||
| 9979 | if (CurrLoop && CurrLoop->getParentLoop() == L && | |||
| 9980 | PN->getParent() == CurrLoop->getHeader()) { | |||
| 9981 | // Okay, there is no closed form solution for the PHI node. Check | |||
| 9982 | // to see if the loop that contains it has a known backedge-taken | |||
| 9983 | // count. If so, we may be able to force computation of the exit | |||
| 9984 | // value. | |||
| 9985 | const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); | |||
| 9986 | // This trivial case can show up in some degenerate cases where | |||
| 9987 | // the incoming IR has not yet been fully simplified. | |||
| 9988 | if (BackedgeTakenCount->isZero()) { | |||
| 9989 | Value *InitValue = nullptr; | |||
| 9990 | bool MultipleInitValues = false; | |||
| 9991 | for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { | |||
| 9992 | if (!CurrLoop->contains(PN->getIncomingBlock(i))) { | |||
| 9993 | if (!InitValue) | |||
| 9994 | InitValue = PN->getIncomingValue(i); | |||
| 9995 | else if (InitValue != PN->getIncomingValue(i)) { | |||
| 9996 | MultipleInitValues = true; | |||
| 9997 | break; | |||
| 9998 | } | |||
| 9999 | } | |||
| 10000 | } | |||
| 10001 | if (!MultipleInitValues && InitValue) | |||
| 10002 | return getSCEV(InitValue); | |||
| 10003 | } | |||
| 10004 | // Do we have a loop invariant value flowing around the backedge | |||
| 10005 | // for a loop which must execute the backedge? | |||
| 10006 | if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && | |||
| 10007 | isKnownPositive(BackedgeTakenCount) && | |||
| 10008 | PN->getNumIncomingValues() == 2) { | |||
| 10009 | ||||
| 10010 | unsigned InLoopPred = | |||
| 10011 | CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; | |||
| 10012 | Value *BackedgeVal = PN->getIncomingValue(InLoopPred); | |||
| 10013 | if (CurrLoop->isLoopInvariant(BackedgeVal)) | |||
| 10014 | return getSCEV(BackedgeVal); | |||
| 10015 | } | |||
| 10016 | if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { | |||
| 10017 | // Okay, we know how many times the containing loop executes. If | |||
| 10018 | // this is a constant evolving PHI node, get the final value at | |||
| 10019 | // the specified iteration number. | |||
| 10020 | Constant *RV = | |||
| 10021 | getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop); | |||
| 10022 | if (RV) | |||
| 10023 | return getSCEV(RV); | |||
| 10024 | } | |||
| 10025 | } | |||
| 10026 | } | |||
| 10027 | ||||
| 10028 | // Okay, this is an expression that we cannot symbolically evaluate | |||
| 10029 | // into a SCEV. Check to see if it's possible to symbolically evaluate | |||
| 10030 | // the arguments into constants, and if so, try to constant propagate the | |||
| 10031 | // result. This is particularly useful for computing loop exit values. | |||
| 10032 | if (!CanConstantFold(I)) | |||
| 10033 | return V; // This is some other type of SCEVUnknown, just return it. | |||
| 10034 | ||||
| 10035 | SmallVector<Constant *, 4> Operands; | |||
| 10036 | Operands.reserve(I->getNumOperands()); | |||
| 10037 | bool MadeImprovement = false; | |||
| 10038 | for (Value *Op : I->operands()) { | |||
| 10039 | if (Constant *C = dyn_cast<Constant>(Op)) { | |||
| 10040 | Operands.push_back(C); | |||
| 10041 | continue; | |||
| 10042 | } | |||
| 10043 | ||||
| 10044 | // If any of the operands is non-constant and if they are | |||
| 10045 | // non-integer and non-pointer, don't even try to analyze them | |||
| 10046 | // with scev techniques. | |||
| 10047 | if (!isSCEVable(Op->getType())) | |||
| 10048 | return V; | |||
| 10049 | ||||
| 10050 | const SCEV *OrigV = getSCEV(Op); | |||
| 10051 | const SCEV *OpV = getSCEVAtScope(OrigV, L); | |||
| 10052 | MadeImprovement |= OrigV != OpV; | |||
| 10053 | ||||
| 10054 | Constant *C = BuildConstantFromSCEV(OpV); | |||
| 10055 | if (!C) | |||
| 10056 | return V; | |||
| 10057 | if (C->getType() != Op->getType()) | |||
| 10058 | C = ConstantExpr::getCast( | |||
| 10059 | CastInst::getCastOpcode(C, false, Op->getType(), false), C, | |||
| 10060 | Op->getType()); | |||
| 10061 | Operands.push_back(C); | |||
| 10062 | } | |||
| 10063 | ||||
| 10064 | // Check to see if getSCEVAtScope actually made an improvement. | |||
| 10065 | if (!MadeImprovement) | |||
| 10066 | return V; // This is some other type of SCEVUnknown, just return it. | |||
| 10067 | ||||
| 10068 | Constant *C = nullptr; | |||
| 10069 | const DataLayout &DL = getDataLayout(); | |||
| 10070 | C = ConstantFoldInstOperands(I, Operands, DL, &TLI); | |||
| 10071 | if (!C) | |||
| 10072 | return V; | |||
| 10073 | return getSCEV(C); | |||
| 10074 | } | |||
| 10075 | case scCouldNotCompute: | |||
| 10076 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10076); | |||
| 10077 | } | |||
| 10078 | llvm_unreachable("Unknown SCEV type!")::llvm::llvm_unreachable_internal("Unknown SCEV type!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 10078); | |||
| 10079 | } | |||
| 10080 | ||||
| 10081 | const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { | |||
| 10082 | return getSCEVAtScope(getSCEV(V), L); | |||
| 10083 | } | |||
| 10084 | ||||
| 10085 | const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { | |||
| 10086 | if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) | |||
| 10087 | return stripInjectiveFunctions(ZExt->getOperand()); | |||
| 10088 | if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) | |||
| 10089 | return stripInjectiveFunctions(SExt->getOperand()); | |||
| 10090 | return S; | |||
| 10091 | } | |||
| 10092 | ||||
| 10093 | /// Finds the minimum unsigned root of the following equation: | |||
| 10094 | /// | |||
| 10095 | /// A * X = B (mod N) | |||
| 10096 | /// | |||
| 10097 | /// where N = 2^BW and BW is the common bit width of A and B. The signedness of | |||
| 10098 | /// A and B isn't important. | |||
| 10099 | /// | |||
| 10100 | /// If the equation does not have a solution, SCEVCouldNotCompute is returned. | |||
| 10101 | static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, | |||
| 10102 | ScalarEvolution &SE) { | |||
| 10103 | uint32_t BW = A.getBitWidth(); | |||
| 10104 | assert(BW == SE.getTypeSizeInBits(B->getType()))(static_cast <bool> (BW == SE.getTypeSizeInBits(B->getType ())) ? void (0) : __assert_fail ("BW == SE.getTypeSizeInBits(B->getType())" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10104, __extension__ __PRETTY_FUNCTION__)); | |||
| 10105 | assert(A != 0 && "A must be non-zero.")(static_cast <bool> (A != 0 && "A must be non-zero." ) ? void (0) : __assert_fail ("A != 0 && \"A must be non-zero.\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10105, __extension__ __PRETTY_FUNCTION__)); | |||
| 10106 | ||||
| 10107 | // 1. D = gcd(A, N) | |||
| 10108 | // | |||
| 10109 | // The gcd of A and N may have only one prime factor: 2. The number of | |||
| 10110 | // trailing zeros in A is its multiplicity | |||
| 10111 | uint32_t Mult2 = A.countr_zero(); | |||
| 10112 | // D = 2^Mult2 | |||
| 10113 | ||||
| 10114 | // 2. Check if B is divisible by D. | |||
| 10115 | // | |||
| 10116 | // B is divisible by D if and only if the multiplicity of prime factor 2 for B | |||
| 10117 | // is not less than multiplicity of this prime factor for D. | |||
| 10118 | if (SE.getMinTrailingZeros(B) < Mult2) | |||
| 10119 | return SE.getCouldNotCompute(); | |||
| 10120 | ||||
| 10121 | // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic | |||
| 10122 | // modulo (N / D). | |||
| 10123 | // | |||
| 10124 | // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent | |||
| 10125 | // (N / D) in general. The inverse itself always fits into BW bits, though, | |||
| 10126 | // so we immediately truncate it. | |||
| 10127 | APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D | |||
| 10128 | APInt Mod(BW + 1, 0); | |||
| 10129 | Mod.setBit(BW - Mult2); // Mod = N / D | |||
| 10130 | APInt I = AD.multiplicativeInverse(Mod).trunc(BW); | |||
| 10131 | ||||
| 10132 | // 4. Compute the minimum unsigned root of the equation: | |||
| 10133 | // I * (B / D) mod (N / D) | |||
| 10134 | // To simplify the computation, we factor out the divide by D: | |||
| 10135 | // (I * B mod N) / D | |||
| 10136 | const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); | |||
| 10137 | return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); | |||
| 10138 | } | |||
| 10139 | ||||
| 10140 | /// For a given quadratic addrec, generate coefficients of the corresponding | |||
| 10141 | /// quadratic equation, multiplied by a common value to ensure that they are | |||
| 10142 | /// integers. | |||
| 10143 | /// The returned value is a tuple { A, B, C, M, BitWidth }, where | |||
| 10144 | /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C | |||
| 10145 | /// were multiplied by, and BitWidth is the bit width of the original addrec | |||
| 10146 | /// coefficients. | |||
| 10147 | /// This function returns std::nullopt if the addrec coefficients are not | |||
| 10148 | /// compile- time constants. | |||
| 10149 | static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> | |||
| 10150 | GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { | |||
| 10151 | assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!")(static_cast <bool> (AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!") ? void (0) : __assert_fail ("AddRec->getNumOperands() == 3 && \"This is not a quadratic chrec!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10151, __extension__ __PRETTY_FUNCTION__)); | |||
| 10152 | const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); | |||
| 10153 | const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); | |||
| 10154 | const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); | |||
| 10155 | LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << __func__ << ": analyzing quadratic addrec: " << *AddRec << '\n'; } } while (false) | |||
| 10156 | << *AddRec << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << __func__ << ": analyzing quadratic addrec: " << *AddRec << '\n'; } } while (false); | |||
| 10157 | ||||
| 10158 | // We currently can only solve this if the coefficients are constants. | |||
| 10159 | if (!LC || !MC || !NC) { | |||
| 10160 | LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << __func__ << ": coefficients are not constant\n" ; } } while (false); | |||
| 10161 | return std::nullopt; | |||
| 10162 | } | |||
| 10163 | ||||
| 10164 | APInt L = LC->getAPInt(); | |||
| 10165 | APInt M = MC->getAPInt(); | |||
| 10166 | APInt N = NC->getAPInt(); | |||
| 10167 | assert(!N.isZero() && "This is not a quadratic addrec")(static_cast <bool> (!N.isZero() && "This is not a quadratic addrec" ) ? void (0) : __assert_fail ("!N.isZero() && \"This is not a quadratic addrec\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10167, __extension__ __PRETTY_FUNCTION__)); | |||
| 10168 | ||||
| 10169 | unsigned BitWidth = LC->getAPInt().getBitWidth(); | |||
| 10170 | unsigned NewWidth = BitWidth + 1; | |||
| 10171 | LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << __func__ << ": addrec coeff bw: " << BitWidth << '\n'; } } while (false) | |||
| 10172 | << BitWidth << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << __func__ << ": addrec coeff bw: " << BitWidth << '\n'; } } while (false); | |||
| 10173 | // The sign-extension (as opposed to a zero-extension) here matches the | |||
| 10174 | // extension used in SolveQuadraticEquationWrap (with the same motivation). | |||
| 10175 | N = N.sext(NewWidth); | |||
| 10176 | M = M.sext(NewWidth); | |||
| 10177 | L = L.sext(NewWidth); | |||
| 10178 | ||||
| 10179 | // The increments are M, M+N, M+2N, ..., so the accumulated values are | |||
| 10180 | // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, | |||
| 10181 | // L+M, L+2M+N, L+3M+3N, ... | |||
| 10182 | // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. | |||
| 10183 | // | |||
| 10184 | // The equation Acc = 0 is then | |||
| 10185 | // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. | |||
| 10186 | // In a quadratic form it becomes: | |||
| 10187 | // N n^2 + (2M-N) n + 2L = 0. | |||
| 10188 | ||||
| 10189 | APInt A = N; | |||
| 10190 | APInt B = 2 * M - A; | |||
| 10191 | APInt C = 2 * L; | |||
| 10192 | APInt T = APInt(NewWidth, 2); | |||
| 10193 | LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << Bdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << __func__ << ": equation " << A << "x^2 + " << B << "x + " << C << ", coeff bw: " << NewWidth << ", multiplied by " << T << '\n'; } } while (false) | |||
| 10194 | << "x + " << C << ", coeff bw: " << NewWidthdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << __func__ << ": equation " << A << "x^2 + " << B << "x + " << C << ", coeff bw: " << NewWidth << ", multiplied by " << T << '\n'; } } while (false) | |||
| 10195 | << ", multiplied by " << T << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << __func__ << ": equation " << A << "x^2 + " << B << "x + " << C << ", coeff bw: " << NewWidth << ", multiplied by " << T << '\n'; } } while (false); | |||
| 10196 | return std::make_tuple(A, B, C, T, BitWidth); | |||
| 10197 | } | |||
| 10198 | ||||
| 10199 | /// Helper function to compare optional APInts: | |||
| 10200 | /// (a) if X and Y both exist, return min(X, Y), | |||
| 10201 | /// (b) if neither X nor Y exist, return std::nullopt, | |||
| 10202 | /// (c) if exactly one of X and Y exists, return that value. | |||
| 10203 | static std::optional<APInt> MinOptional(std::optional<APInt> X, | |||
| 10204 | std::optional<APInt> Y) { | |||
| 10205 | if (X && Y) { | |||
| 10206 | unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); | |||
| 10207 | APInt XW = X->sext(W); | |||
| 10208 | APInt YW = Y->sext(W); | |||
| 10209 | return XW.slt(YW) ? *X : *Y; | |||
| 10210 | } | |||
| 10211 | if (!X && !Y) | |||
| 10212 | return std::nullopt; | |||
| 10213 | return X ? *X : *Y; | |||
| 10214 | } | |||
| 10215 | ||||
| 10216 | /// Helper function to truncate an optional APInt to a given BitWidth. | |||
| 10217 | /// When solving addrec-related equations, it is preferable to return a value | |||
| 10218 | /// that has the same bit width as the original addrec's coefficients. If the | |||
| 10219 | /// solution fits in the original bit width, truncate it (except for i1). | |||
| 10220 | /// Returning a value of a different bit width may inhibit some optimizations. | |||
| 10221 | /// | |||
| 10222 | /// In general, a solution to a quadratic equation generated from an addrec | |||
| 10223 | /// may require BW+1 bits, where BW is the bit width of the addrec's | |||
| 10224 | /// coefficients. The reason is that the coefficients of the quadratic | |||
| 10225 | /// equation are BW+1 bits wide (to avoid truncation when converting from | |||
| 10226 | /// the addrec to the equation). | |||
| 10227 | static std::optional<APInt> TruncIfPossible(std::optional<APInt> X, | |||
| 10228 | unsigned BitWidth) { | |||
| 10229 | if (!X) | |||
| 10230 | return std::nullopt; | |||
| 10231 | unsigned W = X->getBitWidth(); | |||
| 10232 | if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) | |||
| 10233 | return X->trunc(BitWidth); | |||
| 10234 | return X; | |||
| 10235 | } | |||
| 10236 | ||||
| 10237 | /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n | |||
| 10238 | /// iterations. The values L, M, N are assumed to be signed, and they | |||
| 10239 | /// should all have the same bit widths. | |||
| 10240 | /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, | |||
| 10241 | /// where BW is the bit width of the addrec's coefficients. | |||
| 10242 | /// If the calculated value is a BW-bit integer (for BW > 1), it will be | |||
| 10243 | /// returned as such, otherwise the bit width of the returned value may | |||
| 10244 | /// be greater than BW. | |||
| 10245 | /// | |||
| 10246 | /// This function returns std::nullopt if | |||
| 10247 | /// (a) the addrec coefficients are not constant, or | |||
| 10248 | /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases | |||
| 10249 | /// like x^2 = 5, no integer solutions exist, in other cases an integer | |||
| 10250 | /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. | |||
| 10251 | static std::optional<APInt> | |||
| 10252 | SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { | |||
| 10253 | APInt A, B, C, M; | |||
| 10254 | unsigned BitWidth; | |||
| 10255 | auto T = GetQuadraticEquation(AddRec); | |||
| 10256 | if (!T) | |||
| 10257 | return std::nullopt; | |||
| 10258 | ||||
| 10259 | std::tie(A, B, C, M, BitWidth) = *T; | |||
| 10260 | LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << __func__ << ": solving for unsigned overflow\n" ; } } while (false); | |||
| 10261 | std::optional<APInt> X = | |||
| 10262 | APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1); | |||
| 10263 | if (!X) | |||
| 10264 | return std::nullopt; | |||
| 10265 | ||||
| 10266 | ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); | |||
| 10267 | ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); | |||
| 10268 | if (!V->isZero()) | |||
| 10269 | return std::nullopt; | |||
| 10270 | ||||
| 10271 | return TruncIfPossible(X, BitWidth); | |||
| 10272 | } | |||
| 10273 | ||||
| 10274 | /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n | |||
| 10275 | /// iterations. The values M, N are assumed to be signed, and they | |||
| 10276 | /// should all have the same bit widths. | |||
| 10277 | /// Find the least n such that c(n) does not belong to the given range, | |||
| 10278 | /// while c(n-1) does. | |||
| 10279 | /// | |||
| 10280 | /// This function returns std::nullopt if | |||
| 10281 | /// (a) the addrec coefficients are not constant, or | |||
| 10282 | /// (b) SolveQuadraticEquationWrap was unable to find a solution for the | |||
| 10283 | /// bounds of the range. | |||
| 10284 | static std::optional<APInt> | |||
| 10285 | SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, | |||
| 10286 | const ConstantRange &Range, ScalarEvolution &SE) { | |||
| 10287 | assert(AddRec->getOperand(0)->isZero() &&(static_cast <bool> (AddRec->getOperand(0)->isZero () && "Starting value of addrec should be 0") ? void ( 0) : __assert_fail ("AddRec->getOperand(0)->isZero() && \"Starting value of addrec should be 0\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10288, __extension__ __PRETTY_FUNCTION__)) | |||
| 10288 | "Starting value of addrec should be 0")(static_cast <bool> (AddRec->getOperand(0)->isZero () && "Starting value of addrec should be 0") ? void ( 0) : __assert_fail ("AddRec->getOperand(0)->isZero() && \"Starting value of addrec should be 0\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10288, __extension__ __PRETTY_FUNCTION__)); | |||
| 10289 | LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << __func__ << ": solving boundary crossing for range " << Range << ", addrec " << *AddRec << '\n'; } } while (false) | |||
| 10290 | << Range << ", addrec " << *AddRec << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << __func__ << ": solving boundary crossing for range " << Range << ", addrec " << *AddRec << '\n'; } } while (false); | |||
| 10291 | // This case is handled in getNumIterationsInRange. Here we can assume that | |||
| 10292 | // we start in the range. | |||
| 10293 | assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&(static_cast <bool> (Range.contains(APInt(SE.getTypeSizeInBits (AddRec->getType()), 0)) && "Addrec's initial value should be in range" ) ? void (0) : __assert_fail ("Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && \"Addrec's initial value should be in range\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10294, __extension__ __PRETTY_FUNCTION__)) | |||
| 10294 | "Addrec's initial value should be in range")(static_cast <bool> (Range.contains(APInt(SE.getTypeSizeInBits (AddRec->getType()), 0)) && "Addrec's initial value should be in range" ) ? void (0) : __assert_fail ("Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && \"Addrec's initial value should be in range\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10294, __extension__ __PRETTY_FUNCTION__)); | |||
| 10295 | ||||
| 10296 | APInt A, B, C, M; | |||
| 10297 | unsigned BitWidth; | |||
| 10298 | auto T = GetQuadraticEquation(AddRec); | |||
| 10299 | if (!T) | |||
| 10300 | return std::nullopt; | |||
| 10301 | ||||
| 10302 | // Be careful about the return value: there can be two reasons for not | |||
| 10303 | // returning an actual number. First, if no solutions to the equations | |||
| 10304 | // were found, and second, if the solutions don't leave the given range. | |||
| 10305 | // The first case means that the actual solution is "unknown", the second | |||
| 10306 | // means that it's known, but not valid. If the solution is unknown, we | |||
| 10307 | // cannot make any conclusions. | |||
| 10308 | // Return a pair: the optional solution and a flag indicating if the | |||
| 10309 | // solution was found. | |||
| 10310 | auto SolveForBoundary = | |||
| 10311 | [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> { | |||
| 10312 | // Solve for signed overflow and unsigned overflow, pick the lower | |||
| 10313 | // solution. | |||
| 10314 | LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: checking boundary " << Bound << " (before multiplying by " << M << ")\n"; } } while (false) | |||
| 10315 | << Bound << " (before multiplying by " << M << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: checking boundary " << Bound << " (before multiplying by " << M << ")\n"; } } while (false); | |||
| 10316 | Bound *= M; // The quadratic equation multiplier. | |||
| 10317 | ||||
| 10318 | std::optional<APInt> SO; | |||
| 10319 | if (BitWidth > 1) { | |||
| 10320 | LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: solving for " "signed overflow\n"; } } while (false) | |||
| 10321 | "signed overflow\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: solving for " "signed overflow\n"; } } while (false); | |||
| 10322 | SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); | |||
| 10323 | } | |||
| 10324 | LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: solving for " "unsigned overflow\n"; } } while (false) | |||
| 10325 | "unsigned overflow\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("scalar-evolution")) { dbgs() << "SolveQuadraticAddRecRange: solving for " "unsigned overflow\n"; } } while (false); | |||
| 10326 | std::optional<APInt> UO = | |||
| 10327 | APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1); | |||
| 10328 | ||||
| 10329 | auto LeavesRange = [&] (const APInt &X) { | |||
| 10330 | ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); | |||
| 10331 | ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); | |||
| 10332 | if (Range.contains(V0->getValue())) | |||
| 10333 | return false; | |||
| 10334 | // X should be at least 1, so X-1 is non-negative. | |||
| 10335 | ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); | |||
| 10336 | ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); | |||
| 10337 | if (Range.contains(V1->getValue())) | |||
| 10338 | return true; | |||
| 10339 | return false; | |||
| 10340 | }; | |||
| 10341 | ||||
| 10342 | // If SolveQuadraticEquationWrap returns std::nullopt, it means that there | |||
| 10343 | // can be a solution, but the function failed to find it. We cannot treat it | |||
| 10344 | // as "no solution". | |||
| 10345 | if (!SO || !UO) | |||
| 10346 | return {std::nullopt, false}; | |||
| 10347 | ||||
| 10348 | // Check the smaller value first to see if it leaves the range. | |||
| 10349 | // At this point, both SO and UO must have values. | |||
| 10350 | std::optional<APInt> Min = MinOptional(SO, UO); | |||
| 10351 | if (LeavesRange(*Min)) | |||
| 10352 | return { Min, true }; | |||
| 10353 | std::optional<APInt> Max = Min == SO ? UO : SO; | |||
| 10354 | if (LeavesRange(*Max)) | |||
| 10355 | return { Max, true }; | |||
| 10356 | ||||
| 10357 | // Solutions were found, but were eliminated, hence the "true". | |||
| 10358 | return {std::nullopt, true}; | |||
| 10359 | }; | |||
| 10360 | ||||
| 10361 | std::tie(A, B, C, M, BitWidth) = *T; | |||
| 10362 | // Lower bound is inclusive, subtract 1 to represent the exiting value. | |||
| 10363 | APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1; | |||
| 10364 | APInt Upper = Range.getUpper().sext(A.getBitWidth()); | |||
| 10365 | auto SL = SolveForBoundary(Lower); | |||
| 10366 | auto SU = SolveForBoundary(Upper); | |||
| 10367 | // If any of the solutions was unknown, no meaninigful conclusions can | |||
| 10368 | // be made. | |||
| 10369 | if (!SL.second || !SU.second) | |||
| 10370 | return std::nullopt; | |||
| 10371 | ||||
| 10372 | // Claim: The correct solution is not some value between Min and Max. | |||
| 10373 | // | |||
| 10374 | // Justification: Assuming that Min and Max are different values, one of | |||
| 10375 | // them is when the first signed overflow happens, the other is when the | |||
| 10376 | // first unsigned overflow happens. Crossing the range boundary is only | |||
| 10377 | // possible via an overflow (treating 0 as a special case of it, modeling | |||
| 10378 | // an overflow as crossing k*2^W for some k). | |||
| 10379 | // | |||
| 10380 | // The interesting case here is when Min was eliminated as an invalid | |||
| 10381 | // solution, but Max was not. The argument is that if there was another | |||
| 10382 | // overflow between Min and Max, it would also have been eliminated if | |||
| 10383 | // it was considered. | |||
| 10384 | // | |||
| 10385 | // For a given boundary, it is possible to have two overflows of the same | |||
| 10386 | // type (signed/unsigned) without having the other type in between: this | |||
| 10387 | // can happen when the vertex of the parabola is between the iterations | |||
| 10388 | // corresponding to the overflows. This is only possible when the two | |||
| 10389 | // overflows cross k*2^W for the same k. In such case, if the second one | |||
| 10390 | // left the range (and was the first one to do so), the first overflow | |||
| 10391 | // would have to enter the range, which would mean that either we had left | |||
| 10392 | // the range before or that we started outside of it. Both of these cases | |||
| 10393 | // are contradictions. | |||
| 10394 | // | |||
| 10395 | // Claim: In the case where SolveForBoundary returns std::nullopt, the correct | |||
| 10396 | // solution is not some value between the Max for this boundary and the | |||
| 10397 | // Min of the other boundary. | |||
| 10398 | // | |||
| 10399 | // Justification: Assume that we had such Max_A and Min_B corresponding | |||
| 10400 | // to range boundaries A and B and such that Max_A < Min_B. If there was | |||
| 10401 | // a solution between Max_A and Min_B, it would have to be caused by an | |||
| 10402 | // overflow corresponding to either A or B. It cannot correspond to B, | |||
| 10403 | // since Min_B is the first occurrence of such an overflow. If it | |||
| 10404 | // corresponded to A, it would have to be either a signed or an unsigned | |||
| 10405 | // overflow that is larger than both eliminated overflows for A. But | |||
| 10406 | // between the eliminated overflows and this overflow, the values would | |||
| 10407 | // cover the entire value space, thus crossing the other boundary, which | |||
| 10408 | // is a contradiction. | |||
| 10409 | ||||
| 10410 | return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); | |||
| 10411 | } | |||
| 10412 | ||||
| 10413 | ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V, | |||
| 10414 | const Loop *L, | |||
| 10415 | bool ControlsOnlyExit, | |||
| 10416 | bool AllowPredicates) { | |||
| 10417 | ||||
| 10418 | // This is only used for loops with a "x != y" exit test. The exit condition | |||
| 10419 | // is now expressed as a single expression, V = x-y. So the exit test is | |||
| 10420 | // effectively V != 0. We know and take advantage of the fact that this | |||
| 10421 | // expression only being used in a comparison by zero context. | |||
| 10422 | ||||
| 10423 | SmallPtrSet<const SCEVPredicate *, 4> Predicates; | |||
| 10424 | // If the value is a constant | |||
| 10425 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { | |||
| 10426 | // If the value is already zero, the branch will execute zero times. | |||
| 10427 | if (C->getValue()->isZero()) return C; | |||
| 10428 | return getCouldNotCompute(); // Otherwise it will loop infinitely. | |||
| 10429 | } | |||
| 10430 | ||||
| 10431 | const SCEVAddRecExpr *AddRec = | |||
| 10432 | dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); | |||
| 10433 | ||||
| 10434 | if (!AddRec && AllowPredicates) | |||
| 10435 | // Try to make this an AddRec using runtime tests, in the first X | |||
| 10436 | // iterations of this loop, where X is the SCEV expression found by the | |||
| 10437 | // algorithm below. | |||
| 10438 | AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); | |||
| 10439 | ||||
| 10440 | if (!AddRec || AddRec->getLoop() != L) | |||
| 10441 | return getCouldNotCompute(); | |||
| 10442 | ||||
| 10443 | // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of | |||
| 10444 | // the quadratic equation to solve it. | |||
| 10445 | if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { | |||
| 10446 | // We can only use this value if the chrec ends up with an exact zero | |||
| 10447 | // value at this index. When solving for "X*X != 5", for example, we | |||
| 10448 | // should not accept a root of 2. | |||
| 10449 | if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { | |||
| 10450 | const auto *R = cast<SCEVConstant>(getConstant(*S)); | |||
| 10451 | return ExitLimit(R, R, R, false, Predicates); | |||
| 10452 | } | |||
| 10453 | return getCouldNotCompute(); | |||
| 10454 | } | |||
| 10455 | ||||
| 10456 | // Otherwise we can only handle this if it is affine. | |||
| 10457 | if (!AddRec->isAffine()) | |||
| 10458 | return getCouldNotCompute(); | |||
| 10459 | ||||
| 10460 | // If this is an affine expression, the execution count of this branch is | |||
| 10461 | // the minimum unsigned root of the following equation: | |||
| 10462 | // | |||
| 10463 | // Start + Step*N = 0 (mod 2^BW) | |||
| 10464 | // | |||
| 10465 | // equivalent to: | |||
| 10466 | // | |||
| 10467 | // Step*N = -Start (mod 2^BW) | |||
| 10468 | // | |||
| 10469 | // where BW is the common bit width of Start and Step. | |||
| 10470 | ||||
| 10471 | // Get the initial value for the loop. | |||
| 10472 | const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); | |||
| 10473 | const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); | |||
| 10474 | ||||
| 10475 | // For now we handle only constant steps. | |||
| 10476 | // | |||
| 10477 | // TODO: Handle a nonconstant Step given AddRec<NUW>. If the | |||
| 10478 | // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap | |||
| 10479 | // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. | |||
| 10480 | // We have not yet seen any such cases. | |||
| 10481 | const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); | |||
| 10482 | if (!StepC || StepC->getValue()->isZero()) | |||
| 10483 | return getCouldNotCompute(); | |||
| 10484 | ||||
| 10485 | // For positive steps (counting up until unsigned overflow): | |||
| 10486 | // N = -Start/Step (as unsigned) | |||
| 10487 | // For negative steps (counting down to zero): | |||
| 10488 | // N = Start/-Step | |||
| 10489 | // First compute the unsigned distance from zero in the direction of Step. | |||
| 10490 | bool CountDown = StepC->getAPInt().isNegative(); | |||
| 10491 | const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); | |||
| 10492 | ||||
| 10493 | // Handle unitary steps, which cannot wraparound. | |||
| 10494 | // 1*N = -Start; -1*N = Start (mod 2^BW), so: | |||
| 10495 | // N = Distance (as unsigned) | |||
| 10496 | if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { | |||
| 10497 | APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); | |||
| 10498 | MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); | |||
| 10499 | ||||
| 10500 | // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, | |||
| 10501 | // we end up with a loop whose backedge-taken count is n - 1. Detect this | |||
| 10502 | // case, and see if we can improve the bound. | |||
| 10503 | // | |||
| 10504 | // Explicitly handling this here is necessary because getUnsignedRange | |||
| 10505 | // isn't context-sensitive; it doesn't know that we only care about the | |||
| 10506 | // range inside the loop. | |||
| 10507 | const SCEV *Zero = getZero(Distance->getType()); | |||
| 10508 | const SCEV *One = getOne(Distance->getType()); | |||
| 10509 | const SCEV *DistancePlusOne = getAddExpr(Distance, One); | |||
| 10510 | if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { | |||
| 10511 | // If Distance + 1 doesn't overflow, we can compute the maximum distance | |||
| 10512 | // as "unsigned_max(Distance + 1) - 1". | |||
| 10513 | ConstantRange CR = getUnsignedRange(DistancePlusOne); | |||
| 10514 | MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); | |||
| 10515 | } | |||
| 10516 | return ExitLimit(Distance, getConstant(MaxBECount), Distance, false, | |||
| 10517 | Predicates); | |||
| 10518 | } | |||
| 10519 | ||||
| 10520 | // If the condition controls loop exit (the loop exits only if the expression | |||
| 10521 | // is true) and the addition is no-wrap we can use unsigned divide to | |||
| 10522 | // compute the backedge count. In this case, the step may not divide the | |||
| 10523 | // distance, but we don't care because if the condition is "missed" the loop | |||
| 10524 | // will have undefined behavior due to wrapping. | |||
| 10525 | if (ControlsOnlyExit && AddRec->hasNoSelfWrap() && | |||
| 10526 | loopHasNoAbnormalExits(AddRec->getLoop())) { | |||
| 10527 | const SCEV *Exact = | |||
| 10528 | getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); | |||
| 10529 | const SCEV *ConstantMax = getCouldNotCompute(); | |||
| 10530 | if (Exact != getCouldNotCompute()) { | |||
| 10531 | APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); | |||
| 10532 | ConstantMax = | |||
| 10533 | getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); | |||
| 10534 | } | |||
| 10535 | const SCEV *SymbolicMax = | |||
| 10536 | isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact; | |||
| 10537 | return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates); | |||
| 10538 | } | |||
| 10539 | ||||
| 10540 | // Solve the general equation. | |||
| 10541 | const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), | |||
| 10542 | getNegativeSCEV(Start), *this); | |||
| 10543 | ||||
| 10544 | const SCEV *M = E; | |||
| 10545 | if (E != getCouldNotCompute()) { | |||
| 10546 | APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); | |||
| 10547 | M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); | |||
| 10548 | } | |||
| 10549 | auto *S = isa<SCEVCouldNotCompute>(E) ? M : E; | |||
| 10550 | return ExitLimit(E, M, S, false, Predicates); | |||
| 10551 | } | |||
| 10552 | ||||
| 10553 | ScalarEvolution::ExitLimit | |||
| 10554 | ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { | |||
| 10555 | // Loops that look like: while (X == 0) are very strange indeed. We don't | |||
| 10556 | // handle them yet except for the trivial case. This could be expanded in the | |||
| 10557 | // future as needed. | |||
| 10558 | ||||
| 10559 | // If the value is a constant, check to see if it is known to be non-zero | |||
| 10560 | // already. If so, the backedge will execute zero times. | |||
| 10561 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { | |||
| 10562 | if (!C->getValue()->isZero()) | |||
| 10563 | return getZero(C->getType()); | |||
| 10564 | return getCouldNotCompute(); // Otherwise it will loop infinitely. | |||
| 10565 | } | |||
| 10566 | ||||
| 10567 | // We could implement others, but I really doubt anyone writes loops like | |||
| 10568 | // this, and if they did, they would already be constant folded. | |||
| 10569 | return getCouldNotCompute(); | |||
| 10570 | } | |||
| 10571 | ||||
| 10572 | std::pair<const BasicBlock *, const BasicBlock *> | |||
| 10573 | ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) | |||
| 10574 | const { | |||
| 10575 | // If the block has a unique predecessor, then there is no path from the | |||
| 10576 | // predecessor to the block that does not go through the direct edge | |||
| 10577 | // from the predecessor to the block. | |||
| 10578 | if (const BasicBlock *Pred = BB->getSinglePredecessor()) | |||
| 10579 | return {Pred, BB}; | |||
| 10580 | ||||
| 10581 | // A loop's header is defined to be a block that dominates the loop. | |||
| 10582 | // If the header has a unique predecessor outside the loop, it must be | |||
| 10583 | // a block that has exactly one successor that can reach the loop. | |||
| 10584 | if (const Loop *L = LI.getLoopFor(BB)) | |||
| 10585 | return {L->getLoopPredecessor(), L->getHeader()}; | |||
| 10586 | ||||
| 10587 | return {nullptr, nullptr}; | |||
| 10588 | } | |||
| 10589 | ||||
| 10590 | /// SCEV structural equivalence is usually sufficient for testing whether two | |||
| 10591 | /// expressions are equal, however for the purposes of looking for a condition | |||
| 10592 | /// guarding a loop, it can be useful to be a little more general, since a | |||
| 10593 | /// front-end may have replicated the controlling expression. | |||
| 10594 | static bool HasSameValue(const SCEV *A, const SCEV *B) { | |||
| 10595 | // Quick check to see if they are the same SCEV. | |||
| 10596 | if (A == B) return true; | |||
| 10597 | ||||
| 10598 | auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { | |||
| 10599 | // Not all instructions that are "identical" compute the same value. For | |||
| 10600 | // instance, two distinct alloca instructions allocating the same type are | |||
| 10601 | // identical and do not read memory; but compute distinct values. | |||
| 10602 | return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); | |||
| 10603 | }; | |||
| 10604 | ||||
| 10605 | // Otherwise, if they're both SCEVUnknown, it's possible that they hold | |||
| 10606 | // two different instructions with the same value. Check for this case. | |||
| 10607 | if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) | |||
| 10608 | if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) | |||
| 10609 | if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) | |||
| 10610 | if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) | |||
| 10611 | if (ComputesEqualValues(AI, BI)) | |||
| 10612 | return true; | |||
| 10613 | ||||
| 10614 | // Otherwise assume they may have a different value. | |||
| 10615 | return false; | |||
| 10616 | } | |||
| 10617 | ||||
| 10618 | bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, | |||
| 10619 | const SCEV *&LHS, const SCEV *&RHS, | |||
| 10620 | unsigned Depth) { | |||
| 10621 | bool Changed = false; | |||
| 10622 | // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or | |||
| 10623 | // '0 != 0'. | |||
| 10624 | auto TrivialCase = [&](bool TriviallyTrue) { | |||
| 10625 | LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); | |||
| 10626 | Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; | |||
| 10627 | return true; | |||
| 10628 | }; | |||
| 10629 | // If we hit the max recursion limit bail out. | |||
| 10630 | if (Depth >= 3) | |||
| 10631 | return false; | |||
| 10632 | ||||
| 10633 | // Canonicalize a constant to the right side. | |||
| 10634 | if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { | |||
| 10635 | // Check for both operands constant. | |||
| 10636 | if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { | |||
| 10637 | if (ConstantExpr::getICmp(Pred, | |||
| 10638 | LHSC->getValue(), | |||
| 10639 | RHSC->getValue())->isNullValue()) | |||
| 10640 | return TrivialCase(false); | |||
| 10641 | return TrivialCase(true); | |||
| 10642 | } | |||
| 10643 | // Otherwise swap the operands to put the constant on the right. | |||
| 10644 | std::swap(LHS, RHS); | |||
| 10645 | Pred = ICmpInst::getSwappedPredicate(Pred); | |||
| 10646 | Changed = true; | |||
| 10647 | } | |||
| 10648 | ||||
| 10649 | // If we're comparing an addrec with a value which is loop-invariant in the | |||
| 10650 | // addrec's loop, put the addrec on the left. Also make a dominance check, | |||
| 10651 | // as both operands could be addrecs loop-invariant in each other's loop. | |||
| 10652 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { | |||
| 10653 | const Loop *L = AR->getLoop(); | |||
| 10654 | if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { | |||
| 10655 | std::swap(LHS, RHS); | |||
| 10656 | Pred = ICmpInst::getSwappedPredicate(Pred); | |||
| 10657 | Changed = true; | |||
| 10658 | } | |||
| 10659 | } | |||
| 10660 | ||||
| 10661 | // If there's a constant operand, canonicalize comparisons with boundary | |||
| 10662 | // cases, and canonicalize *-or-equal comparisons to regular comparisons. | |||
| 10663 | if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { | |||
| 10664 | const APInt &RA = RC->getAPInt(); | |||
| 10665 | ||||
| 10666 | bool SimplifiedByConstantRange = false; | |||
| 10667 | ||||
| 10668 | if (!ICmpInst::isEquality(Pred)) { | |||
| 10669 | ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); | |||
| 10670 | if (ExactCR.isFullSet()) | |||
| 10671 | return TrivialCase(true); | |||
| 10672 | if (ExactCR.isEmptySet()) | |||
| 10673 | return TrivialCase(false); | |||
| 10674 | ||||
| 10675 | APInt NewRHS; | |||
| 10676 | CmpInst::Predicate NewPred; | |||
| 10677 | if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && | |||
| 10678 | ICmpInst::isEquality(NewPred)) { | |||
| 10679 | // We were able to convert an inequality to an equality. | |||
| 10680 | Pred = NewPred; | |||
| 10681 | RHS = getConstant(NewRHS); | |||
| 10682 | Changed = SimplifiedByConstantRange = true; | |||
| 10683 | } | |||
| 10684 | } | |||
| 10685 | ||||
| 10686 | if (!SimplifiedByConstantRange) { | |||
| 10687 | switch (Pred) { | |||
| 10688 | default: | |||
| 10689 | break; | |||
| 10690 | case ICmpInst::ICMP_EQ: | |||
| 10691 | case ICmpInst::ICMP_NE: | |||
| 10692 | // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. | |||
| 10693 | if (!RA) | |||
| 10694 | if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) | |||
| 10695 | if (const SCEVMulExpr *ME = | |||
| 10696 | dyn_cast<SCEVMulExpr>(AE->getOperand(0))) | |||
| 10697 | if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && | |||
| 10698 | ME->getOperand(0)->isAllOnesValue()) { | |||
| 10699 | RHS = AE->getOperand(1); | |||
| 10700 | LHS = ME->getOperand(1); | |||
| 10701 | Changed = true; | |||
| 10702 | } | |||
| 10703 | break; | |||
| 10704 | ||||
| 10705 | ||||
| 10706 | // The "Should have been caught earlier!" messages refer to the fact | |||
| 10707 | // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above | |||
| 10708 | // should have fired on the corresponding cases, and canonicalized the | |||
| 10709 | // check to trivial case. | |||
| 10710 | ||||
| 10711 | case ICmpInst::ICMP_UGE: | |||
| 10712 | assert(!RA.isMinValue() && "Should have been caught earlier!")(static_cast <bool> (!RA.isMinValue() && "Should have been caught earlier!" ) ? void (0) : __assert_fail ("!RA.isMinValue() && \"Should have been caught earlier!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10712, __extension__ __PRETTY_FUNCTION__)); | |||
| 10713 | Pred = ICmpInst::ICMP_UGT; | |||
| 10714 | RHS = getConstant(RA - 1); | |||
| 10715 | Changed = true; | |||
| 10716 | break; | |||
| 10717 | case ICmpInst::ICMP_ULE: | |||
| 10718 | assert(!RA.isMaxValue() && "Should have been caught earlier!")(static_cast <bool> (!RA.isMaxValue() && "Should have been caught earlier!" ) ? void (0) : __assert_fail ("!RA.isMaxValue() && \"Should have been caught earlier!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10718, __extension__ __PRETTY_FUNCTION__)); | |||
| 10719 | Pred = ICmpInst::ICMP_ULT; | |||
| 10720 | RHS = getConstant(RA + 1); | |||
| 10721 | Changed = true; | |||
| 10722 | break; | |||
| 10723 | case ICmpInst::ICMP_SGE: | |||
| 10724 | assert(!RA.isMinSignedValue() && "Should have been caught earlier!")(static_cast <bool> (!RA.isMinSignedValue() && "Should have been caught earlier!" ) ? void (0) : __assert_fail ("!RA.isMinSignedValue() && \"Should have been caught earlier!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10724, __extension__ __PRETTY_FUNCTION__)); | |||
| 10725 | Pred = ICmpInst::ICMP_SGT; | |||
| 10726 | RHS = getConstant(RA - 1); | |||
| 10727 | Changed = true; | |||
| 10728 | break; | |||
| 10729 | case ICmpInst::ICMP_SLE: | |||
| 10730 | assert(!RA.isMaxSignedValue() && "Should have been caught earlier!")(static_cast <bool> (!RA.isMaxSignedValue() && "Should have been caught earlier!" ) ? void (0) : __assert_fail ("!RA.isMaxSignedValue() && \"Should have been caught earlier!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10730, __extension__ __PRETTY_FUNCTION__)); | |||
| 10731 | Pred = ICmpInst::ICMP_SLT; | |||
| 10732 | RHS = getConstant(RA + 1); | |||
| 10733 | Changed = true; | |||
| 10734 | break; | |||
| 10735 | } | |||
| 10736 | } | |||
| 10737 | } | |||
| 10738 | ||||
| 10739 | // Check for obvious equality. | |||
| 10740 | if (HasSameValue(LHS, RHS)) { | |||
| 10741 | if (ICmpInst::isTrueWhenEqual(Pred)) | |||
| 10742 | return TrivialCase(true); | |||
| 10743 | if (ICmpInst::isFalseWhenEqual(Pred)) | |||
| 10744 | return TrivialCase(false); | |||
| 10745 | } | |||
| 10746 | ||||
| 10747 | // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by | |||
| 10748 | // adding or subtracting 1 from one of the operands. | |||
| 10749 | switch (Pred) { | |||
| 10750 | case ICmpInst::ICMP_SLE: | |||
| 10751 | if (!getSignedRangeMax(RHS).isMaxSignedValue()) { | |||
| 10752 | RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, | |||
| 10753 | SCEV::FlagNSW); | |||
| 10754 | Pred = ICmpInst::ICMP_SLT; | |||
| 10755 | Changed = true; | |||
| 10756 | } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { | |||
| 10757 | LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, | |||
| 10758 | SCEV::FlagNSW); | |||
| 10759 | Pred = ICmpInst::ICMP_SLT; | |||
| 10760 | Changed = true; | |||
| 10761 | } | |||
| 10762 | break; | |||
| 10763 | case ICmpInst::ICMP_SGE: | |||
| 10764 | if (!getSignedRangeMin(RHS).isMinSignedValue()) { | |||
| 10765 | RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, | |||
| 10766 | SCEV::FlagNSW); | |||
| 10767 | Pred = ICmpInst::ICMP_SGT; | |||
| 10768 | Changed = true; | |||
| 10769 | } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { | |||
| 10770 | LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, | |||
| 10771 | SCEV::FlagNSW); | |||
| 10772 | Pred = ICmpInst::ICMP_SGT; | |||
| 10773 | Changed = true; | |||
| 10774 | } | |||
| 10775 | break; | |||
| 10776 | case ICmpInst::ICMP_ULE: | |||
| 10777 | if (!getUnsignedRangeMax(RHS).isMaxValue()) { | |||
| 10778 | RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, | |||
| 10779 | SCEV::FlagNUW); | |||
| 10780 | Pred = ICmpInst::ICMP_ULT; | |||
| 10781 | Changed = true; | |||
| 10782 | } else if (!getUnsignedRangeMin(LHS).isMinValue()) { | |||
| 10783 | LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); | |||
| 10784 | Pred = ICmpInst::ICMP_ULT; | |||
| 10785 | Changed = true; | |||
| 10786 | } | |||
| 10787 | break; | |||
| 10788 | case ICmpInst::ICMP_UGE: | |||
| 10789 | if (!getUnsignedRangeMin(RHS).isMinValue()) { | |||
| 10790 | RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); | |||
| 10791 | Pred = ICmpInst::ICMP_UGT; | |||
| 10792 | Changed = true; | |||
| 10793 | } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { | |||
| 10794 | LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, | |||
| 10795 | SCEV::FlagNUW); | |||
| 10796 | Pred = ICmpInst::ICMP_UGT; | |||
| 10797 | Changed = true; | |||
| 10798 | } | |||
| 10799 | break; | |||
| 10800 | default: | |||
| 10801 | break; | |||
| 10802 | } | |||
| 10803 | ||||
| 10804 | // TODO: More simplifications are possible here. | |||
| 10805 | ||||
| 10806 | // Recursively simplify until we either hit a recursion limit or nothing | |||
| 10807 | // changes. | |||
| 10808 | if (Changed) | |||
| 10809 | return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1); | |||
| 10810 | ||||
| 10811 | return Changed; | |||
| 10812 | } | |||
| 10813 | ||||
| 10814 | bool ScalarEvolution::isKnownNegative(const SCEV *S) { | |||
| 10815 | return getSignedRangeMax(S).isNegative(); | |||
| 10816 | } | |||
| 10817 | ||||
| 10818 | bool ScalarEvolution::isKnownPositive(const SCEV *S) { | |||
| 10819 | return getSignedRangeMin(S).isStrictlyPositive(); | |||
| 10820 | } | |||
| 10821 | ||||
| 10822 | bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { | |||
| 10823 | return !getSignedRangeMin(S).isNegative(); | |||
| 10824 | } | |||
| 10825 | ||||
| 10826 | bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { | |||
| 10827 | return !getSignedRangeMax(S).isStrictlyPositive(); | |||
| 10828 | } | |||
| 10829 | ||||
| 10830 | bool ScalarEvolution::isKnownNonZero(const SCEV *S) { | |||
| 10831 | return getUnsignedRangeMin(S) != 0; | |||
| 10832 | } | |||
| 10833 | ||||
| 10834 | std::pair<const SCEV *, const SCEV *> | |||
| 10835 | ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { | |||
| 10836 | // Compute SCEV on entry of loop L. | |||
| 10837 | const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); | |||
| 10838 | if (Start == getCouldNotCompute()) | |||
| 10839 | return { Start, Start }; | |||
| 10840 | // Compute post increment SCEV for loop L. | |||
| 10841 | const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); | |||
| 10842 | assert(PostInc != getCouldNotCompute() && "Unexpected could not compute")(static_cast <bool> (PostInc != getCouldNotCompute() && "Unexpected could not compute") ? void (0) : __assert_fail ( "PostInc != getCouldNotCompute() && \"Unexpected could not compute\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10842, __extension__ __PRETTY_FUNCTION__)); | |||
| 10843 | return { Start, PostInc }; | |||
| 10844 | } | |||
| 10845 | ||||
| 10846 | bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, | |||
| 10847 | const SCEV *LHS, const SCEV *RHS) { | |||
| 10848 | // First collect all loops. | |||
| 10849 | SmallPtrSet<const Loop *, 8> LoopsUsed; | |||
| 10850 | getUsedLoops(LHS, LoopsUsed); | |||
| 10851 | getUsedLoops(RHS, LoopsUsed); | |||
| 10852 | ||||
| 10853 | if (LoopsUsed.empty()) | |||
| 10854 | return false; | |||
| 10855 | ||||
| 10856 | // Domination relationship must be a linear order on collected loops. | |||
| 10857 | #ifndef NDEBUG | |||
| 10858 | for (const auto *L1 : LoopsUsed) | |||
| 10859 | for (const auto *L2 : LoopsUsed) | |||
| 10860 | assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||(static_cast <bool> ((DT.dominates(L1->getHeader(), L2 ->getHeader()) || DT.dominates(L2->getHeader(), L1-> getHeader())) && "Domination relationship is not a linear order" ) ? void (0) : __assert_fail ("(DT.dominates(L1->getHeader(), L2->getHeader()) || DT.dominates(L2->getHeader(), L1->getHeader())) && \"Domination relationship is not a linear order\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10862, __extension__ __PRETTY_FUNCTION__)) | |||
| 10861 | DT.dominates(L2->getHeader(), L1->getHeader())) &&(static_cast <bool> ((DT.dominates(L1->getHeader(), L2 ->getHeader()) || DT.dominates(L2->getHeader(), L1-> getHeader())) && "Domination relationship is not a linear order" ) ? void (0) : __assert_fail ("(DT.dominates(L1->getHeader(), L2->getHeader()) || DT.dominates(L2->getHeader(), L1->getHeader())) && \"Domination relationship is not a linear order\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10862, __extension__ __PRETTY_FUNCTION__)) | |||
| 10862 | "Domination relationship is not a linear order")(static_cast <bool> ((DT.dominates(L1->getHeader(), L2 ->getHeader()) || DT.dominates(L2->getHeader(), L1-> getHeader())) && "Domination relationship is not a linear order" ) ? void (0) : __assert_fail ("(DT.dominates(L1->getHeader(), L2->getHeader()) || DT.dominates(L2->getHeader(), L1->getHeader())) && \"Domination relationship is not a linear order\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10862, __extension__ __PRETTY_FUNCTION__)); | |||
| 10863 | #endif | |||
| 10864 | ||||
| 10865 | const Loop *MDL = | |||
| 10866 | *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), | |||
| 10867 | [&](const Loop *L1, const Loop *L2) { | |||
| 10868 | return DT.properlyDominates(L1->getHeader(), L2->getHeader()); | |||
| 10869 | }); | |||
| 10870 | ||||
| 10871 | // Get init and post increment value for LHS. | |||
| 10872 | auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); | |||
| 10873 | // if LHS contains unknown non-invariant SCEV then bail out. | |||
| 10874 | if (SplitLHS.first == getCouldNotCompute()) | |||
| 10875 | return false; | |||
| 10876 | assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC")(static_cast <bool> (SplitLHS.second != getCouldNotCompute () && "Unexpected CNC") ? void (0) : __assert_fail ("SplitLHS.second != getCouldNotCompute() && \"Unexpected CNC\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10876, __extension__ __PRETTY_FUNCTION__)); | |||
| 10877 | // Get init and post increment value for RHS. | |||
| 10878 | auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); | |||
| 10879 | // if RHS contains unknown non-invariant SCEV then bail out. | |||
| 10880 | if (SplitRHS.first == getCouldNotCompute()) | |||
| 10881 | return false; | |||
| 10882 | assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC")(static_cast <bool> (SplitRHS.second != getCouldNotCompute () && "Unexpected CNC") ? void (0) : __assert_fail ("SplitRHS.second != getCouldNotCompute() && \"Unexpected CNC\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10882, __extension__ __PRETTY_FUNCTION__)); | |||
| 10883 | // It is possible that init SCEV contains an invariant load but it does | |||
| 10884 | // not dominate MDL and is not available at MDL loop entry, so we should | |||
| 10885 | // check it here. | |||
| 10886 | if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || | |||
| 10887 | !isAvailableAtLoopEntry(SplitRHS.first, MDL)) | |||
| 10888 | return false; | |||
| 10889 | ||||
| 10890 | // It seems backedge guard check is faster than entry one so in some cases | |||
| 10891 | // it can speed up whole estimation by short circuit | |||
| 10892 | return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, | |||
| 10893 | SplitRHS.second) && | |||
| 10894 | isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); | |||
| 10895 | } | |||
| 10896 | ||||
| 10897 | bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, | |||
| 10898 | const SCEV *LHS, const SCEV *RHS) { | |||
| 10899 | // Canonicalize the inputs first. | |||
| 10900 | (void)SimplifyICmpOperands(Pred, LHS, RHS); | |||
| 10901 | ||||
| 10902 | if (isKnownViaInduction(Pred, LHS, RHS)) | |||
| 10903 | return true; | |||
| 10904 | ||||
| 10905 | if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) | |||
| 10906 | return true; | |||
| 10907 | ||||
| 10908 | // Otherwise see what can be done with some simple reasoning. | |||
| 10909 | return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); | |||
| 10910 | } | |||
| 10911 | ||||
| 10912 | std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, | |||
| 10913 | const SCEV *LHS, | |||
| 10914 | const SCEV *RHS) { | |||
| 10915 | if (isKnownPredicate(Pred, LHS, RHS)) | |||
| 10916 | return true; | |||
| 10917 | if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) | |||
| 10918 | return false; | |||
| 10919 | return std::nullopt; | |||
| 10920 | } | |||
| 10921 | ||||
| 10922 | bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, | |||
| 10923 | const SCEV *LHS, const SCEV *RHS, | |||
| 10924 | const Instruction *CtxI) { | |||
| 10925 | // TODO: Analyze guards and assumes from Context's block. | |||
| 10926 | return isKnownPredicate(Pred, LHS, RHS) || | |||
| 10927 | isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); | |||
| 10928 | } | |||
| 10929 | ||||
| 10930 | std::optional<bool> | |||
| 10931 | ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, | |||
| 10932 | const SCEV *RHS, const Instruction *CtxI) { | |||
| 10933 | std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); | |||
| 10934 | if (KnownWithoutContext) | |||
| ||||
| 10935 | return KnownWithoutContext; | |||
| 10936 | ||||
| 10937 | if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) | |||
| 10938 | return true; | |||
| 10939 | if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), | |||
| 10940 | ICmpInst::getInversePredicate(Pred), | |||
| 10941 | LHS, RHS)) | |||
| 10942 | return false; | |||
| 10943 | return std::nullopt; | |||
| 10944 | } | |||
| 10945 | ||||
| 10946 | bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, | |||
| 10947 | const SCEVAddRecExpr *LHS, | |||
| 10948 | const SCEV *RHS) { | |||
| 10949 | const Loop *L = LHS->getLoop(); | |||
| 10950 | return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && | |||
| 10951 | isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); | |||
| 10952 | } | |||
| 10953 | ||||
| 10954 | std::optional<ScalarEvolution::MonotonicPredicateType> | |||
| 10955 | ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, | |||
| 10956 | ICmpInst::Predicate Pred) { | |||
| 10957 | auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); | |||
| 10958 | ||||
| 10959 | #ifndef NDEBUG | |||
| 10960 | // Verify an invariant: inverting the predicate should turn a monotonically | |||
| 10961 | // increasing change to a monotonically decreasing one, and vice versa. | |||
| 10962 | if (Result) { | |||
| 10963 | auto ResultSwapped = | |||
| 10964 | getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); | |||
| 10965 | ||||
| 10966 | assert(*ResultSwapped != *Result &&(static_cast <bool> (*ResultSwapped != *Result && "monotonicity should flip as we flip the predicate") ? void ( 0) : __assert_fail ("*ResultSwapped != *Result && \"monotonicity should flip as we flip the predicate\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10967, __extension__ __PRETTY_FUNCTION__)) | |||
| 10967 | "monotonicity should flip as we flip the predicate")(static_cast <bool> (*ResultSwapped != *Result && "monotonicity should flip as we flip the predicate") ? void ( 0) : __assert_fail ("*ResultSwapped != *Result && \"monotonicity should flip as we flip the predicate\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10967, __extension__ __PRETTY_FUNCTION__)); | |||
| 10968 | } | |||
| 10969 | #endif | |||
| 10970 | ||||
| 10971 | return Result; | |||
| 10972 | } | |||
| 10973 | ||||
| 10974 | std::optional<ScalarEvolution::MonotonicPredicateType> | |||
| 10975 | ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, | |||
| 10976 | ICmpInst::Predicate Pred) { | |||
| 10977 | // A zero step value for LHS means the induction variable is essentially a | |||
| 10978 | // loop invariant value. We don't really depend on the predicate actually | |||
| 10979 | // flipping from false to true (for increasing predicates, and the other way | |||
| 10980 | // around for decreasing predicates), all we care about is that *if* the | |||
| 10981 | // predicate changes then it only changes from false to true. | |||
| 10982 | // | |||
| 10983 | // A zero step value in itself is not very useful, but there may be places | |||
| 10984 | // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be | |||
| 10985 | // as general as possible. | |||
| 10986 | ||||
| 10987 | // Only handle LE/LT/GE/GT predicates. | |||
| 10988 | if (!ICmpInst::isRelational(Pred)) | |||
| 10989 | return std::nullopt; | |||
| 10990 | ||||
| 10991 | bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); | |||
| 10992 | assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&(static_cast <bool> ((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && "Should be greater or less!" ) ? void (0) : __assert_fail ("(IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && \"Should be greater or less!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10993, __extension__ __PRETTY_FUNCTION__)) | |||
| 10993 | "Should be greater or less!")(static_cast <bool> ((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && "Should be greater or less!" ) ? void (0) : __assert_fail ("(IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && \"Should be greater or less!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 10993, __extension__ __PRETTY_FUNCTION__)); | |||
| 10994 | ||||
| 10995 | // Check that AR does not wrap. | |||
| 10996 | if (ICmpInst::isUnsigned(Pred)) { | |||
| 10997 | if (!LHS->hasNoUnsignedWrap()) | |||
| 10998 | return std::nullopt; | |||
| 10999 | return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; | |||
| 11000 | } | |||
| 11001 | assert(ICmpInst::isSigned(Pred) &&(static_cast <bool> (ICmpInst::isSigned(Pred) && "Relational predicate is either signed or unsigned!") ? void (0) : __assert_fail ("ICmpInst::isSigned(Pred) && \"Relational predicate is either signed or unsigned!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11002, __extension__ __PRETTY_FUNCTION__)) | |||
| 11002 | "Relational predicate is either signed or unsigned!")(static_cast <bool> (ICmpInst::isSigned(Pred) && "Relational predicate is either signed or unsigned!") ? void (0) : __assert_fail ("ICmpInst::isSigned(Pred) && \"Relational predicate is either signed or unsigned!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11002, __extension__ __PRETTY_FUNCTION__)); | |||
| 11003 | if (!LHS->hasNoSignedWrap()) | |||
| 11004 | return std::nullopt; | |||
| 11005 | ||||
| 11006 | const SCEV *Step = LHS->getStepRecurrence(*this); | |||
| 11007 | ||||
| 11008 | if (isKnownNonNegative(Step)) | |||
| 11009 | return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; | |||
| 11010 | ||||
| 11011 | if (isKnownNonPositive(Step)) | |||
| 11012 | return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; | |||
| 11013 | ||||
| 11014 | return std::nullopt; | |||
| 11015 | } | |||
| 11016 | ||||
| 11017 | std::optional<ScalarEvolution::LoopInvariantPredicate> | |||
| 11018 | ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, | |||
| 11019 | const SCEV *LHS, const SCEV *RHS, | |||
| 11020 | const Loop *L, | |||
| 11021 | const Instruction *CtxI) { | |||
| 11022 | // If there is a loop-invariant, force it into the RHS, otherwise bail out. | |||
| 11023 | if (!isLoopInvariant(RHS, L)) { | |||
| 11024 | if (!isLoopInvariant(LHS, L)) | |||
| 11025 | return std::nullopt; | |||
| 11026 | ||||
| 11027 | std::swap(LHS, RHS); | |||
| 11028 | Pred = ICmpInst::getSwappedPredicate(Pred); | |||
| 11029 | } | |||
| 11030 | ||||
| 11031 | const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); | |||
| 11032 | if (!ArLHS || ArLHS->getLoop() != L) | |||
| 11033 | return std::nullopt; | |||
| 11034 | ||||
| 11035 | auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); | |||
| 11036 | if (!MonotonicType) | |||
| 11037 | return std::nullopt; | |||
| 11038 | // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to | |||
| 11039 | // true as the loop iterates, and the backedge is control dependent on | |||
| 11040 | // "ArLHS `Pred` RHS" == true then we can reason as follows: | |||
| 11041 | // | |||
| 11042 | // * if the predicate was false in the first iteration then the predicate | |||
| 11043 | // is never evaluated again, since the loop exits without taking the | |||
| 11044 | // backedge. | |||
| 11045 | // * if the predicate was true in the first iteration then it will | |||
| 11046 | // continue to be true for all future iterations since it is | |||
| 11047 | // monotonically increasing. | |||
| 11048 | // | |||
| 11049 | // For both the above possibilities, we can replace the loop varying | |||
| 11050 | // predicate with its value on the first iteration of the loop (which is | |||
| 11051 | // loop invariant). | |||
| 11052 | // | |||
| 11053 | // A similar reasoning applies for a monotonically decreasing predicate, by | |||
| 11054 | // replacing true with false and false with true in the above two bullets. | |||
| 11055 | bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; | |||
| 11056 | auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); | |||
| 11057 | ||||
| 11058 | if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) | |||
| 11059 | return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), | |||
| 11060 | RHS); | |||
| 11061 | ||||
| 11062 | if (!CtxI) | |||
| 11063 | return std::nullopt; | |||
| 11064 | // Try to prove via context. | |||
| 11065 | // TODO: Support other cases. | |||
| 11066 | switch (Pred) { | |||
| 11067 | default: | |||
| 11068 | break; | |||
| 11069 | case ICmpInst::ICMP_ULE: | |||
| 11070 | case ICmpInst::ICMP_ULT: { | |||
| 11071 | assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!")(static_cast <bool> (ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!") ? void (0) : __assert_fail ("ArLHS->hasNoUnsignedWrap() && \"Is a requirement of monotonicity!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11071, __extension__ __PRETTY_FUNCTION__)); | |||
| 11072 | // Given preconditions | |||
| 11073 | // (1) ArLHS does not cross the border of positive and negative parts of | |||
| 11074 | // range because of: | |||
| 11075 | // - Positive step; (TODO: lift this limitation) | |||
| 11076 | // - nuw - does not cross zero boundary; | |||
| 11077 | // - nsw - does not cross SINT_MAX boundary; | |||
| 11078 | // (2) ArLHS <s RHS | |||
| 11079 | // (3) RHS >=s 0 | |||
| 11080 | // we can replace the loop variant ArLHS <u RHS condition with loop | |||
| 11081 | // invariant Start(ArLHS) <u RHS. | |||
| 11082 | // | |||
| 11083 | // Because of (1) there are two options: | |||
| 11084 | // - ArLHS is always negative. It means that ArLHS <u RHS is always false; | |||
| 11085 | // - ArLHS is always non-negative. Because of (3) RHS is also non-negative. | |||
| 11086 | // It means that ArLHS <s RHS <=> ArLHS <u RHS. | |||
| 11087 | // Because of (2) ArLHS <u RHS is trivially true. | |||
| 11088 | // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0. | |||
| 11089 | // We can strengthen this to Start(ArLHS) <u RHS. | |||
| 11090 | auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred); | |||
| 11091 | if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() && | |||
| 11092 | isKnownPositive(ArLHS->getStepRecurrence(*this)) && | |||
| 11093 | isKnownNonNegative(RHS) && | |||
| 11094 | isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI)) | |||
| 11095 | return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), | |||
| 11096 | RHS); | |||
| 11097 | } | |||
| 11098 | } | |||
| 11099 | ||||
| 11100 | return std::nullopt; | |||
| 11101 | } | |||
| 11102 | ||||
| 11103 | std::optional<ScalarEvolution::LoopInvariantPredicate> | |||
| 11104 | ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( | |||
| 11105 | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, | |||
| 11106 | const Instruction *CtxI, const SCEV *MaxIter) { | |||
| 11107 | if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( | |||
| 11108 | Pred, LHS, RHS, L, CtxI, MaxIter)) | |||
| 11109 | return LIP; | |||
| 11110 | if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter)) | |||
| 11111 | // Number of iterations expressed as UMIN isn't always great for expressing | |||
| 11112 | // the value on the last iteration. If the straightforward approach didn't | |||
| 11113 | // work, try the following trick: if the a predicate is invariant for X, it | |||
| 11114 | // is also invariant for umin(X, ...). So try to find something that works | |||
| 11115 | // among subexpressions of MaxIter expressed as umin. | |||
| 11116 | for (auto *Op : UMin->operands()) | |||
| 11117 | if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl( | |||
| 11118 | Pred, LHS, RHS, L, CtxI, Op)) | |||
| 11119 | return LIP; | |||
| 11120 | return std::nullopt; | |||
| 11121 | } | |||
| 11122 | ||||
| 11123 | std::optional<ScalarEvolution::LoopInvariantPredicate> | |||
| 11124 | ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl( | |||
| 11125 | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, | |||
| 11126 | const Instruction *CtxI, const SCEV *MaxIter) { | |||
| 11127 | // Try to prove the following set of facts: | |||
| 11128 | // - The predicate is monotonic in the iteration space. | |||
| 11129 | // - If the check does not fail on the 1st iteration: | |||
| 11130 | // - No overflow will happen during first MaxIter iterations; | |||
| 11131 | // - It will not fail on the MaxIter'th iteration. | |||
| 11132 | // If the check does fail on the 1st iteration, we leave the loop and no | |||
| 11133 | // other checks matter. | |||
| 11134 | ||||
| 11135 | // If there is a loop-invariant, force it into the RHS, otherwise bail out. | |||
| 11136 | if (!isLoopInvariant(RHS, L)) { | |||
| 11137 | if (!isLoopInvariant(LHS, L)) | |||
| 11138 | return std::nullopt; | |||
| 11139 | ||||
| 11140 | std::swap(LHS, RHS); | |||
| 11141 | Pred = ICmpInst::getSwappedPredicate(Pred); | |||
| 11142 | } | |||
| 11143 | ||||
| 11144 | auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); | |||
| 11145 | if (!AR || AR->getLoop() != L) | |||
| 11146 | return std::nullopt; | |||
| 11147 | ||||
| 11148 | // The predicate must be relational (i.e. <, <=, >=, >). | |||
| 11149 | if (!ICmpInst::isRelational(Pred)) | |||
| 11150 | return std::nullopt; | |||
| 11151 | ||||
| 11152 | // TODO: Support steps other than +/- 1. | |||
| 11153 | const SCEV *Step = AR->getStepRecurrence(*this); | |||
| 11154 | auto *One = getOne(Step->getType()); | |||
| 11155 | auto *MinusOne = getNegativeSCEV(One); | |||
| 11156 | if (Step != One && Step != MinusOne) | |||
| 11157 | return std::nullopt; | |||
| 11158 | ||||
| 11159 | // Type mismatch here means that MaxIter is potentially larger than max | |||
| 11160 | // unsigned value in start type, which mean we cannot prove no wrap for the | |||
| 11161 | // indvar. | |||
| 11162 | if (AR->getType() != MaxIter->getType()) | |||
| 11163 | return std::nullopt; | |||
| 11164 | ||||
| 11165 | // Value of IV on suggested last iteration. | |||
| 11166 | const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); | |||
| 11167 | // Does it still meet the requirement? | |||
| 11168 | if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) | |||
| 11169 | return std::nullopt; | |||
| 11170 | // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does | |||
| 11171 | // not exceed max unsigned value of this type), this effectively proves | |||
| 11172 | // that there is no wrap during the iteration. To prove that there is no | |||
| 11173 | // signed/unsigned wrap, we need to check that | |||
| 11174 | // Start <= Last for step = 1 or Start >= Last for step = -1. | |||
| 11175 | ICmpInst::Predicate NoOverflowPred = | |||
| 11176 | CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; | |||
| 11177 | if (Step == MinusOne) | |||
| 11178 | NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); | |||
| 11179 | const SCEV *Start = AR->getStart(); | |||
| 11180 | if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) | |||
| 11181 | return std::nullopt; | |||
| 11182 | ||||
| 11183 | // Everything is fine. | |||
| 11184 | return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); | |||
| 11185 | } | |||
| 11186 | ||||
| 11187 | bool ScalarEvolution::isKnownPredicateViaConstantRanges( | |||
| 11188 | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { | |||
| 11189 | if (HasSameValue(LHS, RHS)) | |||
| 11190 | return ICmpInst::isTrueWhenEqual(Pred); | |||
| 11191 | ||||
| 11192 | // This code is split out from isKnownPredicate because it is called from | |||
| 11193 | // within isLoopEntryGuardedByCond. | |||
| 11194 | ||||
| 11195 | auto CheckRanges = [&](const ConstantRange &RangeLHS, | |||
| 11196 | const ConstantRange &RangeRHS) { | |||
| 11197 | return RangeLHS.icmp(Pred, RangeRHS); | |||
| 11198 | }; | |||
| 11199 | ||||
| 11200 | // The check at the top of the function catches the case where the values are | |||
| 11201 | // known to be equal. | |||
| 11202 | if (Pred == CmpInst::ICMP_EQ) | |||
| 11203 | return false; | |||
| 11204 | ||||
| 11205 | if (Pred == CmpInst::ICMP_NE) { | |||
| 11206 | auto SL = getSignedRange(LHS); | |||
| 11207 | auto SR = getSignedRange(RHS); | |||
| 11208 | if (CheckRanges(SL, SR)) | |||
| 11209 | return true; | |||
| 11210 | auto UL = getUnsignedRange(LHS); | |||
| 11211 | auto UR = getUnsignedRange(RHS); | |||
| 11212 | if (CheckRanges(UL, UR)) | |||
| 11213 | return true; | |||
| 11214 | auto *Diff = getMinusSCEV(LHS, RHS); | |||
| 11215 | return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); | |||
| 11216 | } | |||
| 11217 | ||||
| 11218 | if (CmpInst::isSigned(Pred)) { | |||
| 11219 | auto SL = getSignedRange(LHS); | |||
| 11220 | auto SR = getSignedRange(RHS); | |||
| 11221 | return CheckRanges(SL, SR); | |||
| 11222 | } | |||
| 11223 | ||||
| 11224 | auto UL = getUnsignedRange(LHS); | |||
| 11225 | auto UR = getUnsignedRange(RHS); | |||
| 11226 | return CheckRanges(UL, UR); | |||
| 11227 | } | |||
| 11228 | ||||
| 11229 | bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, | |||
| 11230 | const SCEV *LHS, | |||
| 11231 | const SCEV *RHS) { | |||
| 11232 | // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where | |||
| 11233 | // C1 and C2 are constant integers. If either X or Y are not add expressions, | |||
| 11234 | // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via | |||
| 11235 | // OutC1 and OutC2. | |||
| 11236 | auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, | |||
| 11237 | APInt &OutC1, APInt &OutC2, | |||
| 11238 | SCEV::NoWrapFlags ExpectedFlags) { | |||
| 11239 | const SCEV *XNonConstOp, *XConstOp; | |||
| 11240 | const SCEV *YNonConstOp, *YConstOp; | |||
| 11241 | SCEV::NoWrapFlags XFlagsPresent; | |||
| 11242 | SCEV::NoWrapFlags YFlagsPresent; | |||
| 11243 | ||||
| 11244 | if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { | |||
| 11245 | XConstOp = getZero(X->getType()); | |||
| 11246 | XNonConstOp = X; | |||
| 11247 | XFlagsPresent = ExpectedFlags; | |||
| 11248 | } | |||
| 11249 | if (!isa<SCEVConstant>(XConstOp) || | |||
| 11250 | (XFlagsPresent & ExpectedFlags) != ExpectedFlags) | |||
| 11251 | return false; | |||
| 11252 | ||||
| 11253 | if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { | |||
| 11254 | YConstOp = getZero(Y->getType()); | |||
| 11255 | YNonConstOp = Y; | |||
| 11256 | YFlagsPresent = ExpectedFlags; | |||
| 11257 | } | |||
| 11258 | ||||
| 11259 | if (!isa<SCEVConstant>(YConstOp) || | |||
| 11260 | (YFlagsPresent & ExpectedFlags) != ExpectedFlags) | |||
| 11261 | return false; | |||
| 11262 | ||||
| 11263 | if (YNonConstOp != XNonConstOp) | |||
| 11264 | return false; | |||
| 11265 | ||||
| 11266 | OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); | |||
| 11267 | OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); | |||
| 11268 | ||||
| 11269 | return true; | |||
| 11270 | }; | |||
| 11271 | ||||
| 11272 | APInt C1; | |||
| 11273 | APInt C2; | |||
| 11274 | ||||
| 11275 | switch (Pred) { | |||
| 11276 | default: | |||
| 11277 | break; | |||
| 11278 | ||||
| 11279 | case ICmpInst::ICMP_SGE: | |||
| 11280 | std::swap(LHS, RHS); | |||
| 11281 | [[fallthrough]]; | |||
| 11282 | case ICmpInst::ICMP_SLE: | |||
| 11283 | // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. | |||
| 11284 | if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) | |||
| 11285 | return true; | |||
| 11286 | ||||
| 11287 | break; | |||
| 11288 | ||||
| 11289 | case ICmpInst::ICMP_SGT: | |||
| 11290 | std::swap(LHS, RHS); | |||
| 11291 | [[fallthrough]]; | |||
| 11292 | case ICmpInst::ICMP_SLT: | |||
| 11293 | // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. | |||
| 11294 | if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) | |||
| 11295 | return true; | |||
| 11296 | ||||
| 11297 | break; | |||
| 11298 | ||||
| 11299 | case ICmpInst::ICMP_UGE: | |||
| 11300 | std::swap(LHS, RHS); | |||
| 11301 | [[fallthrough]]; | |||
| 11302 | case ICmpInst::ICMP_ULE: | |||
| 11303 | // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. | |||
| 11304 | if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) | |||
| 11305 | return true; | |||
| 11306 | ||||
| 11307 | break; | |||
| 11308 | ||||
| 11309 | case ICmpInst::ICMP_UGT: | |||
| 11310 | std::swap(LHS, RHS); | |||
| 11311 | [[fallthrough]]; | |||
| 11312 | case ICmpInst::ICMP_ULT: | |||
| 11313 | // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. | |||
| 11314 | if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) | |||
| 11315 | return true; | |||
| 11316 | break; | |||
| 11317 | } | |||
| 11318 | ||||
| 11319 | return false; | |||
| 11320 | } | |||
| 11321 | ||||
| 11322 | bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, | |||
| 11323 | const SCEV *LHS, | |||
| 11324 | const SCEV *RHS) { | |||
| 11325 | if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) | |||
| 11326 | return false; | |||
| 11327 | ||||
| 11328 | // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on | |||
| 11329 | // the stack can result in exponential time complexity. | |||
| 11330 | SaveAndRestore Restore(ProvingSplitPredicate, true); | |||
| 11331 | ||||
| 11332 | // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L | |||
| 11333 | // | |||
| 11334 | // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use | |||
| 11335 | // isKnownPredicate. isKnownPredicate is more powerful, but also more | |||
| 11336 | // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the | |||
| 11337 | // interesting cases seen in practice. We can consider "upgrading" L >= 0 to | |||
| 11338 | // use isKnownPredicate later if needed. | |||
| 11339 | return isKnownNonNegative(RHS) && | |||
| 11340 | isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && | |||
| 11341 | isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); | |||
| 11342 | } | |||
| 11343 | ||||
| 11344 | bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, | |||
| 11345 | ICmpInst::Predicate Pred, | |||
| 11346 | const SCEV *LHS, const SCEV *RHS) { | |||
| 11347 | // No need to even try if we know the module has no guards. | |||
| 11348 | if (!HasGuards) | |||
| 11349 | return false; | |||
| 11350 | ||||
| 11351 | return any_of(*BB, [&](const Instruction &I) { | |||
| 11352 | using namespace llvm::PatternMatch; | |||
| 11353 | ||||
| 11354 | Value *Condition; | |||
| 11355 | return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( | |||
| 11356 | m_Value(Condition))) && | |||
| 11357 | isImpliedCond(Pred, LHS, RHS, Condition, false); | |||
| 11358 | }); | |||
| 11359 | } | |||
| 11360 | ||||
| 11361 | /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is | |||
| 11362 | /// protected by a conditional between LHS and RHS. This is used to | |||
| 11363 | /// to eliminate casts. | |||
| 11364 | bool | |||
| 11365 | ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, | |||
| 11366 | ICmpInst::Predicate Pred, | |||
| 11367 | const SCEV *LHS, const SCEV *RHS) { | |||
| 11368 | // Interpret a null as meaning no loop, where there is obviously no guard | |||
| 11369 | // (interprocedural conditions notwithstanding). Do not bother about | |||
| 11370 | // unreachable loops. | |||
| 11371 | if (!L || !DT.isReachableFromEntry(L->getHeader())) | |||
| 11372 | return true; | |||
| 11373 | ||||
| 11374 | if (VerifyIR) | |||
| 11375 | assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&(static_cast <bool> (!verifyFunction(*L->getHeader() ->getParent(), &dbgs()) && "This cannot be done on broken IR!" ) ? void (0) : __assert_fail ("!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && \"This cannot be done on broken IR!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11376, __extension__ __PRETTY_FUNCTION__)) | |||
| 11376 | "This cannot be done on broken IR!")(static_cast <bool> (!verifyFunction(*L->getHeader() ->getParent(), &dbgs()) && "This cannot be done on broken IR!" ) ? void (0) : __assert_fail ("!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && \"This cannot be done on broken IR!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11376, __extension__ __PRETTY_FUNCTION__)); | |||
| 11377 | ||||
| 11378 | ||||
| 11379 | if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) | |||
| 11380 | return true; | |||
| 11381 | ||||
| 11382 | BasicBlock *Latch = L->getLoopLatch(); | |||
| 11383 | if (!Latch) | |||
| 11384 | return false; | |||
| 11385 | ||||
| 11386 | BranchInst *LoopContinuePredicate = | |||
| 11387 | dyn_cast<BranchInst>(Latch->getTerminator()); | |||
| 11388 | if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && | |||
| 11389 | isImpliedCond(Pred, LHS, RHS, | |||
| 11390 | LoopContinuePredicate->getCondition(), | |||
| 11391 | LoopContinuePredicate->getSuccessor(0) != L->getHeader())) | |||
| 11392 | return true; | |||
| 11393 | ||||
| 11394 | // We don't want more than one activation of the following loops on the stack | |||
| 11395 | // -- that can lead to O(n!) time complexity. | |||
| 11396 | if (WalkingBEDominatingConds) | |||
| 11397 | return false; | |||
| 11398 | ||||
| 11399 | SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true); | |||
| 11400 | ||||
| 11401 | // See if we can exploit a trip count to prove the predicate. | |||
| 11402 | const auto &BETakenInfo = getBackedgeTakenInfo(L); | |||
| 11403 | const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); | |||
| 11404 | if (LatchBECount != getCouldNotCompute()) { | |||
| 11405 | // We know that Latch branches back to the loop header exactly | |||
| 11406 | // LatchBECount times. This means the backdege condition at Latch is | |||
| 11407 | // equivalent to "{0,+,1} u< LatchBECount". | |||
| 11408 | Type *Ty = LatchBECount->getType(); | |||
| 11409 | auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); | |||
| 11410 | const SCEV *LoopCounter = | |||
| 11411 | getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); | |||
| 11412 | if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, | |||
| 11413 | LatchBECount)) | |||
| 11414 | return true; | |||
| 11415 | } | |||
| 11416 | ||||
| 11417 | // Check conditions due to any @llvm.assume intrinsics. | |||
| 11418 | for (auto &AssumeVH : AC.assumptions()) { | |||
| 11419 | if (!AssumeVH) | |||
| 11420 | continue; | |||
| 11421 | auto *CI = cast<CallInst>(AssumeVH); | |||
| 11422 | if (!DT.dominates(CI, Latch->getTerminator())) | |||
| 11423 | continue; | |||
| 11424 | ||||
| 11425 | if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) | |||
| 11426 | return true; | |||
| 11427 | } | |||
| 11428 | ||||
| 11429 | if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) | |||
| 11430 | return true; | |||
| 11431 | ||||
| 11432 | for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; | |||
| 11433 | DTN != HeaderDTN; DTN = DTN->getIDom()) { | |||
| 11434 | assert(DTN && "should reach the loop header before reaching the root!")(static_cast <bool> (DTN && "should reach the loop header before reaching the root!" ) ? void (0) : __assert_fail ("DTN && \"should reach the loop header before reaching the root!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11434, __extension__ __PRETTY_FUNCTION__)); | |||
| 11435 | ||||
| 11436 | BasicBlock *BB = DTN->getBlock(); | |||
| 11437 | if (isImpliedViaGuard(BB, Pred, LHS, RHS)) | |||
| 11438 | return true; | |||
| 11439 | ||||
| 11440 | BasicBlock *PBB = BB->getSinglePredecessor(); | |||
| 11441 | if (!PBB) | |||
| 11442 | continue; | |||
| 11443 | ||||
| 11444 | BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); | |||
| 11445 | if (!ContinuePredicate || !ContinuePredicate->isConditional()) | |||
| 11446 | continue; | |||
| 11447 | ||||
| 11448 | Value *Condition = ContinuePredicate->getCondition(); | |||
| 11449 | ||||
| 11450 | // If we have an edge `E` within the loop body that dominates the only | |||
| 11451 | // latch, the condition guarding `E` also guards the backedge. This | |||
| 11452 | // reasoning works only for loops with a single latch. | |||
| 11453 | ||||
| 11454 | BasicBlockEdge DominatingEdge(PBB, BB); | |||
| 11455 | if (DominatingEdge.isSingleEdge()) { | |||
| 11456 | // We're constructively (and conservatively) enumerating edges within the | |||
| 11457 | // loop body that dominate the latch. The dominator tree better agree | |||
| 11458 | // with us on this: | |||
| 11459 | assert(DT.dominates(DominatingEdge, Latch) && "should be!")(static_cast <bool> (DT.dominates(DominatingEdge, Latch ) && "should be!") ? void (0) : __assert_fail ("DT.dominates(DominatingEdge, Latch) && \"should be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11459, __extension__ __PRETTY_FUNCTION__)); | |||
| 11460 | ||||
| 11461 | if (isImpliedCond(Pred, LHS, RHS, Condition, | |||
| 11462 | BB != ContinuePredicate->getSuccessor(0))) | |||
| 11463 | return true; | |||
| 11464 | } | |||
| 11465 | } | |||
| 11466 | ||||
| 11467 | return false; | |||
| 11468 | } | |||
| 11469 | ||||
| 11470 | bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, | |||
| 11471 | ICmpInst::Predicate Pred, | |||
| 11472 | const SCEV *LHS, | |||
| 11473 | const SCEV *RHS) { | |||
| 11474 | // Do not bother proving facts for unreachable code. | |||
| 11475 | if (!DT.isReachableFromEntry(BB)) | |||
| 11476 | return true; | |||
| 11477 | if (VerifyIR) | |||
| 11478 | assert(!verifyFunction(*BB->getParent(), &dbgs()) &&(static_cast <bool> (!verifyFunction(*BB->getParent( ), &dbgs()) && "This cannot be done on broken IR!" ) ? void (0) : __assert_fail ("!verifyFunction(*BB->getParent(), &dbgs()) && \"This cannot be done on broken IR!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11479, __extension__ __PRETTY_FUNCTION__)) | |||
| 11479 | "This cannot be done on broken IR!")(static_cast <bool> (!verifyFunction(*BB->getParent( ), &dbgs()) && "This cannot be done on broken IR!" ) ? void (0) : __assert_fail ("!verifyFunction(*BB->getParent(), &dbgs()) && \"This cannot be done on broken IR!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11479, __extension__ __PRETTY_FUNCTION__)); | |||
| 11480 | ||||
| 11481 | // If we cannot prove strict comparison (e.g. a > b), maybe we can prove | |||
| 11482 | // the facts (a >= b && a != b) separately. A typical situation is when the | |||
| 11483 | // non-strict comparison is known from ranges and non-equality is known from | |||
| 11484 | // dominating predicates. If we are proving strict comparison, we always try | |||
| 11485 | // to prove non-equality and non-strict comparison separately. | |||
| 11486 | auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); | |||
| 11487 | const bool ProvingStrictComparison = (Pred != NonStrictPredicate); | |||
| 11488 | bool ProvedNonStrictComparison = false; | |||
| 11489 | bool ProvedNonEquality = false; | |||
| 11490 | ||||
| 11491 | auto SplitAndProve = | |||
| 11492 | [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { | |||
| 11493 | if (!ProvedNonStrictComparison) | |||
| 11494 | ProvedNonStrictComparison = Fn(NonStrictPredicate); | |||
| 11495 | if (!ProvedNonEquality) | |||
| 11496 | ProvedNonEquality = Fn(ICmpInst::ICMP_NE); | |||
| 11497 | if (ProvedNonStrictComparison && ProvedNonEquality) | |||
| 11498 | return true; | |||
| 11499 | return false; | |||
| 11500 | }; | |||
| 11501 | ||||
| 11502 | if (ProvingStrictComparison
| |||
| 11503 | auto ProofFn = [&](ICmpInst::Predicate P) { | |||
| 11504 | return isKnownViaNonRecursiveReasoning(P, LHS, RHS); | |||
| 11505 | }; | |||
| 11506 | if (SplitAndProve(ProofFn)) | |||
| 11507 | return true; | |||
| 11508 | } | |||
| 11509 | ||||
| 11510 | // Try to prove (Pred, LHS, RHS) using isImpliedCond. | |||
| 11511 | auto ProveViaCond = [&](const Value *Condition, bool Inverse) { | |||
| 11512 | const Instruction *CtxI = &BB->front(); | |||
| ||||
| 11513 | if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) | |||
| 11514 | return true; | |||
| 11515 | if (ProvingStrictComparison) { | |||
| 11516 | auto ProofFn = [&](ICmpInst::Predicate P) { | |||
| 11517 | return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); | |||
| 11518 | }; | |||
| 11519 | if (SplitAndProve(ProofFn)) | |||
| 11520 | return true; | |||
| 11521 | } | |||
| 11522 | return false; | |||
| 11523 | }; | |||
| 11524 | ||||
| 11525 | // Starting at the block's predecessor, climb up the predecessor chain, as long | |||
| 11526 | // as there are predecessors that can be found that have unique successors | |||
| 11527 | // leading to the original block. | |||
| 11528 | const Loop *ContainingLoop = LI.getLoopFor(BB); | |||
| 11529 | const BasicBlock *PredBB; | |||
| 11530 | if (ContainingLoop && ContainingLoop->getHeader() == BB) | |||
| 11531 | PredBB = ContainingLoop->getLoopPredecessor(); | |||
| 11532 | else | |||
| 11533 | PredBB = BB->getSinglePredecessor(); | |||
| 11534 | for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); | |||
| 11535 | Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { | |||
| 11536 | const BranchInst *BlockEntryPredicate = | |||
| 11537 | dyn_cast<BranchInst>(Pair.first->getTerminator()); | |||
| 11538 | if (!BlockEntryPredicate
| |||
| 11539 | continue; | |||
| 11540 | ||||
| 11541 | if (ProveViaCond(BlockEntryPredicate->getCondition(), | |||
| 11542 | BlockEntryPredicate->getSuccessor(0) != Pair.second)) | |||
| 11543 | return true; | |||
| 11544 | } | |||
| 11545 | ||||
| 11546 | // Check conditions due to any @llvm.assume intrinsics. | |||
| 11547 | for (auto &AssumeVH : AC.assumptions()) { | |||
| 11548 | if (!AssumeVH) | |||
| 11549 | continue; | |||
| 11550 | auto *CI = cast<CallInst>(AssumeVH); | |||
| 11551 | if (!DT.dominates(CI, BB)) | |||
| 11552 | continue; | |||
| 11553 | ||||
| 11554 | if (ProveViaCond(CI->getArgOperand(0), false)) | |||
| 11555 | return true; | |||
| 11556 | } | |||
| 11557 | ||||
| 11558 | // Check conditions due to any @llvm.experimental.guard intrinsics. | |||
| 11559 | auto *GuardDecl = F.getParent()->getFunction( | |||
| 11560 | Intrinsic::getName(Intrinsic::experimental_guard)); | |||
| 11561 | if (GuardDecl) | |||
| 11562 | for (const auto *GU : GuardDecl->users()) | |||
| 11563 | if (const auto *Guard = dyn_cast<IntrinsicInst>(GU)) | |||
| 11564 | if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB)) | |||
| 11565 | if (ProveViaCond(Guard->getArgOperand(0), false)) | |||
| 11566 | return true; | |||
| 11567 | return false; | |||
| 11568 | } | |||
| 11569 | ||||
| 11570 | bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, | |||
| 11571 | ICmpInst::Predicate Pred, | |||
| 11572 | const SCEV *LHS, | |||
| 11573 | const SCEV *RHS) { | |||
| 11574 | // Interpret a null as meaning no loop, where there is obviously no guard | |||
| 11575 | // (interprocedural conditions notwithstanding). | |||
| 11576 | if (!L) | |||
| 11577 | return false; | |||
| 11578 | ||||
| 11579 | // Both LHS and RHS must be available at loop entry. | |||
| 11580 | assert(isAvailableAtLoopEntry(LHS, L) &&(static_cast <bool> (isAvailableAtLoopEntry(LHS, L) && "LHS is not available at Loop Entry") ? void (0) : __assert_fail ("isAvailableAtLoopEntry(LHS, L) && \"LHS is not available at Loop Entry\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11581, __extension__ __PRETTY_FUNCTION__)) | |||
| 11581 | "LHS is not available at Loop Entry")(static_cast <bool> (isAvailableAtLoopEntry(LHS, L) && "LHS is not available at Loop Entry") ? void (0) : __assert_fail ("isAvailableAtLoopEntry(LHS, L) && \"LHS is not available at Loop Entry\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11581, __extension__ __PRETTY_FUNCTION__)); | |||
| 11582 | assert(isAvailableAtLoopEntry(RHS, L) &&(static_cast <bool> (isAvailableAtLoopEntry(RHS, L) && "RHS is not available at Loop Entry") ? void (0) : __assert_fail ("isAvailableAtLoopEntry(RHS, L) && \"RHS is not available at Loop Entry\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11583, __extension__ __PRETTY_FUNCTION__)) | |||
| 11583 | "RHS is not available at Loop Entry")(static_cast <bool> (isAvailableAtLoopEntry(RHS, L) && "RHS is not available at Loop Entry") ? void (0) : __assert_fail ("isAvailableAtLoopEntry(RHS, L) && \"RHS is not available at Loop Entry\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11583, __extension__ __PRETTY_FUNCTION__)); | |||
| 11584 | ||||
| 11585 | if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) | |||
| 11586 | return true; | |||
| 11587 | ||||
| 11588 | return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); | |||
| 11589 | } | |||
| 11590 | ||||
| 11591 | bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, | |||
| 11592 | const SCEV *RHS, | |||
| 11593 | const Value *FoundCondValue, bool Inverse, | |||
| 11594 | const Instruction *CtxI) { | |||
| 11595 | // False conditions implies anything. Do not bother analyzing it further. | |||
| 11596 | if (FoundCondValue == | |||
| 11597 | ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) | |||
| 11598 | return true; | |||
| 11599 | ||||
| 11600 | if (!PendingLoopPredicates.insert(FoundCondValue).second) | |||
| 11601 | return false; | |||
| 11602 | ||||
| 11603 | auto ClearOnExit = | |||
| 11604 | make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); | |||
| 11605 | ||||
| 11606 | // Recursively handle And and Or conditions. | |||
| 11607 | const Value *Op0, *Op1; | |||
| 11608 | if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { | |||
| 11609 | if (!Inverse) | |||
| 11610 | return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || | |||
| 11611 | isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); | |||
| 11612 | } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { | |||
| 11613 | if (Inverse) | |||
| 11614 | return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || | |||
| 11615 | isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); | |||
| 11616 | } | |||
| 11617 | ||||
| 11618 | const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); | |||
| 11619 | if (!ICI) return false; | |||
| 11620 | ||||
| 11621 | // Now that we found a conditional branch that dominates the loop or controls | |||
| 11622 | // the loop latch. Check to see if it is the comparison we are looking for. | |||
| 11623 | ICmpInst::Predicate FoundPred; | |||
| 11624 | if (Inverse) | |||
| 11625 | FoundPred = ICI->getInversePredicate(); | |||
| 11626 | else | |||
| 11627 | FoundPred = ICI->getPredicate(); | |||
| 11628 | ||||
| 11629 | const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); | |||
| 11630 | const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); | |||
| 11631 | ||||
| 11632 | return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); | |||
| 11633 | } | |||
| 11634 | ||||
| 11635 | bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, | |||
| 11636 | const SCEV *RHS, | |||
| 11637 | ICmpInst::Predicate FoundPred, | |||
| 11638 | const SCEV *FoundLHS, const SCEV *FoundRHS, | |||
| 11639 | const Instruction *CtxI) { | |||
| 11640 | // Balance the types. | |||
| 11641 | if (getTypeSizeInBits(LHS->getType()) < | |||
| 11642 | getTypeSizeInBits(FoundLHS->getType())) { | |||
| 11643 | // For unsigned and equality predicates, try to prove that both found | |||
| 11644 | // operands fit into narrow unsigned range. If so, try to prove facts in | |||
| 11645 | // narrow types. | |||
| 11646 | if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && | |||
| 11647 | !FoundRHS->getType()->isPointerTy()) { | |||
| 11648 | auto *NarrowType = LHS->getType(); | |||
| 11649 | auto *WideType = FoundLHS->getType(); | |||
| 11650 | auto BitWidth = getTypeSizeInBits(NarrowType); | |||
| 11651 | const SCEV *MaxValue = getZeroExtendExpr( | |||
| 11652 | getConstant(APInt::getMaxValue(BitWidth)), WideType); | |||
| 11653 | if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, | |||
| 11654 | MaxValue) && | |||
| 11655 | isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, | |||
| 11656 | MaxValue)) { | |||
| 11657 | const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); | |||
| 11658 | const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); | |||
| 11659 | if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, | |||
| 11660 | TruncFoundRHS, CtxI)) | |||
| 11661 | return true; | |||
| 11662 | } | |||
| 11663 | } | |||
| 11664 | ||||
| 11665 | if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) | |||
| 11666 | return false; | |||
| 11667 | if (CmpInst::isSigned(Pred)) { | |||
| 11668 | LHS = getSignExtendExpr(LHS, FoundLHS->getType()); | |||
| 11669 | RHS = getSignExtendExpr(RHS, FoundLHS->getType()); | |||
| 11670 | } else { | |||
| 11671 | LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); | |||
| 11672 | RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); | |||
| 11673 | } | |||
| 11674 | } else if (getTypeSizeInBits(LHS->getType()) > | |||
| 11675 | getTypeSizeInBits(FoundLHS->getType())) { | |||
| 11676 | if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) | |||
| 11677 | return false; | |||
| 11678 | if (CmpInst::isSigned(FoundPred)) { | |||
| 11679 | FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); | |||
| 11680 | FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); | |||
| 11681 | } else { | |||
| 11682 | FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); | |||
| 11683 | FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); | |||
| 11684 | } | |||
| 11685 | } | |||
| 11686 | return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, | |||
| 11687 | FoundRHS, CtxI); | |||
| 11688 | } | |||
| 11689 | ||||
| 11690 | bool ScalarEvolution::isImpliedCondBalancedTypes( | |||
| 11691 | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, | |||
| 11692 | ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, | |||
| 11693 | const Instruction *CtxI) { | |||
| 11694 | assert(getTypeSizeInBits(LHS->getType()) ==(static_cast <bool> (getTypeSizeInBits(LHS->getType( )) == getTypeSizeInBits(FoundLHS->getType()) && "Types should be balanced!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(FoundLHS->getType()) && \"Types should be balanced!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11696, __extension__ __PRETTY_FUNCTION__)) | |||
| 11695 | getTypeSizeInBits(FoundLHS->getType()) &&(static_cast <bool> (getTypeSizeInBits(LHS->getType( )) == getTypeSizeInBits(FoundLHS->getType()) && "Types should be balanced!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(FoundLHS->getType()) && \"Types should be balanced!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11696, __extension__ __PRETTY_FUNCTION__)) | |||
| 11696 | "Types should be balanced!")(static_cast <bool> (getTypeSizeInBits(LHS->getType( )) == getTypeSizeInBits(FoundLHS->getType()) && "Types should be balanced!" ) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(FoundLHS->getType()) && \"Types should be balanced!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11696, __extension__ __PRETTY_FUNCTION__)); | |||
| 11697 | // Canonicalize the query to match the way instcombine will have | |||
| 11698 | // canonicalized the comparison. | |||
| 11699 | if (SimplifyICmpOperands(Pred, LHS, RHS)) | |||
| 11700 | if (LHS == RHS) | |||
| 11701 | return CmpInst::isTrueWhenEqual(Pred); | |||
| 11702 | if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) | |||
| 11703 | if (FoundLHS == FoundRHS) | |||
| 11704 | return CmpInst::isFalseWhenEqual(FoundPred); | |||
| 11705 | ||||
| 11706 | // Check to see if we can make the LHS or RHS match. | |||
| 11707 | if (LHS == FoundRHS || RHS == FoundLHS) { | |||
| 11708 | if (isa<SCEVConstant>(RHS)) { | |||
| 11709 | std::swap(FoundLHS, FoundRHS); | |||
| 11710 | FoundPred = ICmpInst::getSwappedPredicate(FoundPred); | |||
| 11711 | } else { | |||
| 11712 | std::swap(LHS, RHS); | |||
| 11713 | Pred = ICmpInst::getSwappedPredicate(Pred); | |||
| 11714 | } | |||
| 11715 | } | |||
| 11716 | ||||
| 11717 | // Check whether the found predicate is the same as the desired predicate. | |||
| 11718 | if (FoundPred == Pred) | |||
| 11719 | return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); | |||
| 11720 | ||||
| 11721 | // Check whether swapping the found predicate makes it the same as the | |||
| 11722 | // desired predicate. | |||
| 11723 | if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { | |||
| 11724 | // We can write the implication | |||
| 11725 | // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS | |||
| 11726 | // using one of the following ways: | |||
| 11727 | // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS | |||
| 11728 | // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS | |||
| 11729 | // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS | |||
| 11730 | // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS | |||
| 11731 | // Forms 1. and 2. require swapping the operands of one condition. Don't | |||
| 11732 | // do this if it would break canonical constant/addrec ordering. | |||
| 11733 | if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) | |||
| 11734 | return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, | |||
| 11735 | CtxI); | |||
| 11736 | if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) | |||
| 11737 | return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); | |||
| 11738 | ||||
| 11739 | // There's no clear preference between forms 3. and 4., try both. Avoid | |||
| 11740 | // forming getNotSCEV of pointer values as the resulting subtract is | |||
| 11741 | // not legal. | |||
| 11742 | if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && | |||
| 11743 | isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), | |||
| 11744 | FoundLHS, FoundRHS, CtxI)) | |||
| 11745 | return true; | |||
| 11746 | ||||
| 11747 | if (!FoundLHS->getType()->isPointerTy() && | |||
| 11748 | !FoundRHS->getType()->isPointerTy() && | |||
| 11749 | isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), | |||
| 11750 | getNotSCEV(FoundRHS), CtxI)) | |||
| 11751 | return true; | |||
| 11752 | ||||
| 11753 | return false; | |||
| 11754 | } | |||
| 11755 | ||||
| 11756 | auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, | |||
| 11757 | CmpInst::Predicate P2) { | |||
| 11758 | assert(P1 != P2 && "Handled earlier!")(static_cast <bool> (P1 != P2 && "Handled earlier!" ) ? void (0) : __assert_fail ("P1 != P2 && \"Handled earlier!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11758, __extension__ __PRETTY_FUNCTION__)); | |||
| 11759 | return CmpInst::isRelational(P2) && | |||
| 11760 | P1 == CmpInst::getFlippedSignednessPredicate(P2); | |||
| 11761 | }; | |||
| 11762 | if (IsSignFlippedPredicate(Pred, FoundPred)) { | |||
| 11763 | // Unsigned comparison is the same as signed comparison when both the | |||
| 11764 | // operands are non-negative or negative. | |||
| 11765 | if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || | |||
| 11766 | (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) | |||
| 11767 | return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); | |||
| 11768 | // Create local copies that we can freely swap and canonicalize our | |||
| 11769 | // conditions to "le/lt". | |||
| 11770 | ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; | |||
| 11771 | const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, | |||
| 11772 | *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; | |||
| 11773 | if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { | |||
| 11774 | CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); | |||
| 11775 | CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); | |||
| 11776 | std::swap(CanonicalLHS, CanonicalRHS); | |||
| 11777 | std::swap(CanonicalFoundLHS, CanonicalFoundRHS); | |||
| 11778 | } | |||
| 11779 | assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&(static_cast <bool> ((ICmpInst::isLT(CanonicalPred) || ICmpInst ::isLE(CanonicalPred)) && "Must be!") ? void (0) : __assert_fail ("(ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && \"Must be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11780, __extension__ __PRETTY_FUNCTION__)) | |||
| 11780 | "Must be!")(static_cast <bool> ((ICmpInst::isLT(CanonicalPred) || ICmpInst ::isLE(CanonicalPred)) && "Must be!") ? void (0) : __assert_fail ("(ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && \"Must be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11780, __extension__ __PRETTY_FUNCTION__)); | |||
| 11781 | assert((ICmpInst::isLT(CanonicalFoundPred) ||(static_cast <bool> ((ICmpInst::isLT(CanonicalFoundPred ) || ICmpInst::isLE(CanonicalFoundPred)) && "Must be!" ) ? void (0) : __assert_fail ("(ICmpInst::isLT(CanonicalFoundPred) || ICmpInst::isLE(CanonicalFoundPred)) && \"Must be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11783, __extension__ __PRETTY_FUNCTION__)) | |||
| 11782 | ICmpInst::isLE(CanonicalFoundPred)) &&(static_cast <bool> ((ICmpInst::isLT(CanonicalFoundPred ) || ICmpInst::isLE(CanonicalFoundPred)) && "Must be!" ) ? void (0) : __assert_fail ("(ICmpInst::isLT(CanonicalFoundPred) || ICmpInst::isLE(CanonicalFoundPred)) && \"Must be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11783, __extension__ __PRETTY_FUNCTION__)) | |||
| 11783 | "Must be!")(static_cast <bool> ((ICmpInst::isLT(CanonicalFoundPred ) || ICmpInst::isLE(CanonicalFoundPred)) && "Must be!" ) ? void (0) : __assert_fail ("(ICmpInst::isLT(CanonicalFoundPred) || ICmpInst::isLE(CanonicalFoundPred)) && \"Must be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 11783, __extension__ __PRETTY_FUNCTION__)); | |||
| 11784 | if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) | |||
| 11785 | // Use implication: | |||
| 11786 | // x <u y && y >=s 0 --> x <s y. | |||
| 11787 | // If we can prove the left part, the right part is also proven. | |||
| 11788 | return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, | |||
| 11789 | CanonicalRHS, CanonicalFoundLHS, | |||
| 11790 | CanonicalFoundRHS); | |||
| 11791 | if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) | |||
| 11792 | // Use implication: | |||
| 11793 | // x <s y && y <s 0 --> x <u y. | |||
| 11794 | // If we can prove the left part, the right part is also proven. | |||
| 11795 | return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, | |||
| 11796 | CanonicalRHS, CanonicalFoundLHS, | |||
| 11797 | CanonicalFoundRHS); | |||
| 11798 | } | |||
| 11799 | ||||
| 11800 | // Check if we can make progress by sharpening ranges. | |||
| 11801 | if (FoundPred == ICmpInst::ICMP_NE && | |||
| 11802 | (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { | |||
| 11803 | ||||
| 11804 | const SCEVConstant *C = nullptr; | |||
| 11805 | const SCEV *V = nullptr; | |||
| 11806 | ||||
| 11807 | if (isa<SCEVConstant>(FoundLHS)) { | |||
| 11808 | C = cast<SCEVConstant>(FoundLHS); | |||
| 11809 | V = FoundRHS; | |||
| 11810 | } else { | |||
| 11811 | C = cast<SCEVConstant>(FoundRHS); | |||
| 11812 | V = FoundLHS; | |||
| 11813 | } | |||
| 11814 | ||||
| 11815 | // The guarding predicate tells us that C != V. If the known range | |||
| 11816 | // of V is [C, t), we can sharpen the range to [C + 1, t). The | |||
| 11817 | // range we consider has to correspond to same signedness as the | |||
| 11818 | // predicate we're interested in folding. | |||
| 11819 | ||||
| 11820 | APInt Min = ICmpInst::isSigned(Pred) ? | |||
| 11821 | getSignedRangeMin(V) : getUnsignedRangeMin(V); | |||
| 11822 | ||||
| 11823 | if (Min == C->getAPInt()) { | |||
| 11824 | // Given (V >= Min && V != Min) we conclude V >= (Min + 1). | |||
| 11825 | // This is true even if (Min + 1) wraps around -- in case of | |||
| 11826 | // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). | |||
| 11827 | ||||
| 11828 | APInt SharperMin = Min + 1; | |||
| 11829 | ||||
| 11830 | switch (Pred) { | |||
| 11831 | case ICmpInst::ICMP_SGE: | |||
| 11832 | case ICmpInst::ICMP_UGE: | |||
| 11833 | // We know V `Pred` SharperMin. If this implies LHS `Pred` | |||
| 11834 | // RHS, we're done. | |||
| 11835 | if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), | |||
| 11836 | CtxI)) | |||
| 11837 | return true; | |||
| 11838 | [[fallthrough]]; | |||
| 11839 | ||||
| 11840 | case ICmpInst::ICMP_SGT: | |||
| 11841 | case ICmpInst::ICMP_UGT: | |||
| 11842 | // We know from the range information that (V `Pred` Min || | |||
| 11843 | // V == Min). We know from the guarding condition that !(V | |||
| 11844 | // == Min). This gives us | |||
| 11845 | // | |||
| 11846 | // V `Pred` Min || V == Min && !(V == Min) | |||
| 11847 | // => V `Pred` Min | |||
| 11848 | // | |||
| 11849 | // If V `Pred` Min implies LHS `Pred` RHS, we're done. | |||
| 11850 | ||||
| 11851 | if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) | |||
| 11852 | return true; | |||
| 11853 | break; | |||
| 11854 | ||||
| 11855 | // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. | |||
| 11856 | case ICmpInst::ICMP_SLE: | |||
| 11857 | case ICmpInst::ICMP_ULE: | |||
| 11858 | if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, | |||
| 11859 | LHS, V, getConstant(SharperMin), CtxI)) | |||
| 11860 | return true; | |||
| 11861 | [[fallthrough]]; | |||
| 11862 | ||||
| 11863 | case ICmpInst::ICMP_SLT: | |||
| 11864 | case ICmpInst::ICMP_ULT: | |||
| 11865 | if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, | |||
| 11866 | LHS, V, getConstant(Min), CtxI)) | |||
| 11867 | return true; | |||
| 11868 | break; | |||
| 11869 | ||||
| 11870 | default: | |||
| 11871 | // No change | |||
| 11872 | break; | |||
| 11873 | } | |||
| 11874 | } | |||
| 11875 | } | |||
| 11876 | ||||
| 11877 | // Check whether the actual condition is beyond sufficient. | |||
| 11878 | if (FoundPred == ICmpInst::ICMP_EQ) | |||
| 11879 | if (ICmpInst::isTrueWhenEqual(Pred)) | |||
| 11880 | if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) | |||
| 11881 | return true; | |||
| 11882 | if (Pred == ICmpInst::ICMP_NE) | |||
| 11883 | if (!ICmpInst::isTrueWhenEqual(FoundPred)) | |||
| 11884 | if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) | |||
| 11885 | return true; | |||
| 11886 | ||||
| 11887 | // Otherwise assume the worst. | |||
| 11888 | return false; | |||
| 11889 | } | |||
| 11890 | ||||
| 11891 | bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, | |||
| 11892 | const SCEV *&L, const SCEV *&R, | |||
| 11893 | SCEV::NoWrapFlags &Flags) { | |||
| 11894 | const auto *AE = dyn_cast<SCEVAddExpr>(Expr); | |||
| 11895 | if (!AE || AE->getNumOperands() != 2) | |||
| 11896 | return false; | |||
| 11897 | ||||
| 11898 | L = AE->getOperand(0); | |||
| 11899 | R = AE->getOperand(1); | |||
| 11900 | Flags = AE->getNoWrapFlags(); | |||
| 11901 | return true; | |||
| 11902 | } | |||
| 11903 | ||||
| 11904 | std::optional<APInt> | |||
| 11905 | ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) { | |||
| 11906 | // We avoid subtracting expressions here because this function is usually | |||
| 11907 | // fairly deep in the call stack (i.e. is called many times). | |||
| 11908 | ||||
| 11909 | // X - X = 0. | |||
| 11910 | if (More == Less) | |||
| 11911 | return APInt(getTypeSizeInBits(More->getType()), 0); | |||
| 11912 | ||||
| 11913 | if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { | |||
| 11914 | const auto *LAR = cast<SCEVAddRecExpr>(Less); | |||
| 11915 | const auto *MAR = cast<SCEVAddRecExpr>(More); | |||
| 11916 | ||||
| 11917 | if (LAR->getLoop() != MAR->getLoop()) | |||
| 11918 | return std::nullopt; | |||
| 11919 | ||||
| 11920 | // We look at affine expressions only; not for correctness but to keep | |||
| 11921 | // getStepRecurrence cheap. | |||
| 11922 | if (!LAR->isAffine() || !MAR->isAffine()) | |||
| 11923 | return std::nullopt; | |||
| 11924 | ||||
| 11925 | if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) | |||
| 11926 | return std::nullopt; | |||
| 11927 | ||||
| 11928 | Less = LAR->getStart(); | |||
| 11929 | More = MAR->getStart(); | |||
| 11930 | ||||
| 11931 | // fall through | |||
| 11932 | } | |||
| 11933 | ||||
| 11934 | if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { | |||
| 11935 | const auto &M = cast<SCEVConstant>(More)->getAPInt(); | |||
| 11936 | const auto &L = cast<SCEVConstant>(Less)->getAPInt(); | |||
| 11937 | return M - L; | |||
| 11938 | } | |||
| 11939 | ||||
| 11940 | SCEV::NoWrapFlags Flags; | |||
| 11941 | const SCEV *LLess = nullptr, *RLess = nullptr; | |||
| 11942 | const SCEV *LMore = nullptr, *RMore = nullptr; | |||
| 11943 | const SCEVConstant *C1 = nullptr, *C2 = nullptr; | |||
| 11944 | // Compare (X + C1) vs X. | |||
| 11945 | if (splitBinaryAdd(Less, LLess, RLess, Flags)) | |||
| 11946 | if ((C1 = dyn_cast<SCEVConstant>(LLess))) | |||
| 11947 | if (RLess == More) | |||
| 11948 | return -(C1->getAPInt()); | |||
| 11949 | ||||
| 11950 | // Compare X vs (X + C2). | |||
| 11951 | if (splitBinaryAdd(More, LMore, RMore, Flags)) | |||
| 11952 | if ((C2 = dyn_cast<SCEVConstant>(LMore))) | |||
| 11953 | if (RMore == Less) | |||
| 11954 | return C2->getAPInt(); | |||
| 11955 | ||||
| 11956 | // Compare (X + C1) vs (X + C2). | |||
| 11957 | if (C1 && C2 && RLess == RMore) | |||
| 11958 | return C2->getAPInt() - C1->getAPInt(); | |||
| 11959 | ||||
| 11960 | return std::nullopt; | |||
| 11961 | } | |||
| 11962 | ||||
| 11963 | bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( | |||
| 11964 | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, | |||
| 11965 | const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { | |||
| 11966 | // Try to recognize the following pattern: | |||
| 11967 | // | |||
| 11968 | // FoundRHS = ... | |||
| 11969 | // ... | |||
| 11970 | // loop: | |||
| 11971 | // FoundLHS = {Start,+,W} | |||
| 11972 | // context_bb: // Basic block from the same loop | |||
| 11973 | // known(Pred, FoundLHS, FoundRHS) | |||
| 11974 | // | |||
| 11975 | // If some predicate is known in the context of a loop, it is also known on | |||
| 11976 | // each iteration of this loop, including the first iteration. Therefore, in | |||
| 11977 | // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to | |||
| 11978 | // prove the original pred using this fact. | |||
| 11979 | if (!CtxI) | |||
| 11980 | return false; | |||
| 11981 | const BasicBlock *ContextBB = CtxI->getParent(); | |||
| 11982 | // Make sure AR varies in the context block. | |||
| 11983 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { | |||
| 11984 | const Loop *L = AR->getLoop(); | |||
| 11985 | // Make sure that context belongs to the loop and executes on 1st iteration | |||
| 11986 | // (if it ever executes at all). | |||
| 11987 | if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) | |||
| 11988 | return false; | |||
| 11989 | if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) | |||
| 11990 | return false; | |||
| 11991 | return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); | |||
| 11992 | } | |||
| 11993 | ||||
| 11994 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { | |||
| 11995 | const Loop *L = AR->getLoop(); | |||
| 11996 | // Make sure that context belongs to the loop and executes on 1st iteration | |||
| 11997 | // (if it ever executes at all). | |||
| 11998 | if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) | |||
| 11999 | return false; | |||
| 12000 | if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) | |||
| 12001 | return false; | |||
| 12002 | return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); | |||
| 12003 | } | |||
| 12004 | ||||
| 12005 | return false; | |||
| 12006 | } | |||
| 12007 | ||||
| 12008 | bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( | |||
| 12009 | ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, | |||
| 12010 | const SCEV *FoundLHS, const SCEV *FoundRHS) { | |||
| 12011 | if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) | |||
| 12012 | return false; | |||
| 12013 | ||||
| 12014 | const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); | |||
| 12015 | if (!AddRecLHS) | |||
| 12016 | return false; | |||
| 12017 | ||||
| 12018 | const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); | |||
| 12019 | if (!AddRecFoundLHS) | |||
| 12020 | return false; | |||
| 12021 | ||||
| 12022 | // We'd like to let SCEV reason about control dependencies, so we constrain | |||
| 12023 | // both the inequalities to be about add recurrences on the same loop. This | |||
| 12024 | // way we can use isLoopEntryGuardedByCond later. | |||
| 12025 | ||||
| 12026 | const Loop *L = AddRecFoundLHS->getLoop(); | |||
| 12027 | if (L != AddRecLHS->getLoop()) | |||
| 12028 | return false; | |||
| 12029 | ||||
| 12030 | // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) | |||
| 12031 | // | |||
| 12032 | // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) | |||
| 12033 | // ... (2) | |||
| 12034 | // | |||
| 12035 | // Informal proof for (2), assuming (1) [*]: | |||
| 12036 | // | |||
| 12037 | // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] | |||
| 12038 | // | |||
| 12039 | // Then | |||
| 12040 | // | |||
| 12041 | // FoundLHS s< FoundRHS s< INT_MIN - C | |||
| 12042 | // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] | |||
| 12043 | // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] | |||
| 12044 | // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< | |||
| 12045 | // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] | |||
| 12046 | // <=> FoundLHS + C s< FoundRHS + C | |||
| 12047 | // | |||
| 12048 | // [*]: (1) can be proved by ruling out overflow. | |||
| 12049 | // | |||
| 12050 | // [**]: This can be proved by analyzing all the four possibilities: | |||
| 12051 | // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and | |||
| 12052 | // (A s>= 0, B s>= 0). | |||
| 12053 | // | |||
| 12054 | // Note: | |||
| 12055 | // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" | |||
| 12056 | // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS | |||
| 12057 | // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS | |||
| 12058 | // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is | |||
| 12059 | // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + | |||
| 12060 | // C)". | |||
| 12061 | ||||
| 12062 | std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); | |||
| 12063 | std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); | |||
| 12064 | if (!LDiff || !RDiff || *LDiff != *RDiff) | |||
| 12065 | return false; | |||
| 12066 | ||||
| 12067 | if (LDiff->isMinValue()) | |||
| 12068 | return true; | |||
| 12069 | ||||
| 12070 | APInt FoundRHSLimit; | |||
| 12071 | ||||
| 12072 | if (Pred == CmpInst::ICMP_ULT) { | |||
| 12073 | FoundRHSLimit = -(*RDiff); | |||
| 12074 | } else { | |||
| 12075 | assert(Pred == CmpInst::ICMP_SLT && "Checked above!")(static_cast <bool> (Pred == CmpInst::ICMP_SLT && "Checked above!") ? void (0) : __assert_fail ("Pred == CmpInst::ICMP_SLT && \"Checked above!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12075, __extension__ __PRETTY_FUNCTION__)); | |||
| 12076 | FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; | |||
| 12077 | } | |||
| 12078 | ||||
| 12079 | // Try to prove (1) or (2), as needed. | |||
| 12080 | return isAvailableAtLoopEntry(FoundRHS, L) && | |||
| 12081 | isLoopEntryGuardedByCond(L, Pred, FoundRHS, | |||
| 12082 | getConstant(FoundRHSLimit)); | |||
| 12083 | } | |||
| 12084 | ||||
| 12085 | bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, | |||
| 12086 | const SCEV *LHS, const SCEV *RHS, | |||
| 12087 | const SCEV *FoundLHS, | |||
| 12088 | const SCEV *FoundRHS, unsigned Depth) { | |||
| 12089 | const PHINode *LPhi = nullptr, *RPhi = nullptr; | |||
| 12090 | ||||
| 12091 | auto ClearOnExit = make_scope_exit([&]() { | |||
| 12092 | if (LPhi) { | |||
| 12093 | bool Erased = PendingMerges.erase(LPhi); | |||
| 12094 | assert(Erased && "Failed to erase LPhi!")(static_cast <bool> (Erased && "Failed to erase LPhi!" ) ? void (0) : __assert_fail ("Erased && \"Failed to erase LPhi!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12094, __extension__ __PRETTY_FUNCTION__)); | |||
| 12095 | (void)Erased; | |||
| 12096 | } | |||
| 12097 | if (RPhi) { | |||
| 12098 | bool Erased = PendingMerges.erase(RPhi); | |||
| 12099 | assert(Erased && "Failed to erase RPhi!")(static_cast <bool> (Erased && "Failed to erase RPhi!" ) ? void (0) : __assert_fail ("Erased && \"Failed to erase RPhi!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12099, __extension__ __PRETTY_FUNCTION__)); | |||
| 12100 | (void)Erased; | |||
| 12101 | } | |||
| 12102 | }); | |||
| 12103 | ||||
| 12104 | // Find respective Phis and check that they are not being pending. | |||
| 12105 | if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) | |||
| 12106 | if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { | |||
| 12107 | if (!PendingMerges.insert(Phi).second) | |||
| 12108 | return false; | |||
| 12109 | LPhi = Phi; | |||
| 12110 | } | |||
| 12111 | if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) | |||
| 12112 | if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { | |||
| 12113 | // If we detect a loop of Phi nodes being processed by this method, for | |||
| 12114 | // example: | |||
| 12115 | // | |||
| 12116 | // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] | |||
| 12117 | // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] | |||
| 12118 | // | |||
| 12119 | // we don't want to deal with a case that complex, so return conservative | |||
| 12120 | // answer false. | |||
| 12121 | if (!PendingMerges.insert(Phi).second) | |||
| 12122 | return false; | |||
| 12123 | RPhi = Phi; | |||
| 12124 | } | |||
| 12125 | ||||
| 12126 | // If none of LHS, RHS is a Phi, nothing to do here. | |||
| 12127 | if (!LPhi && !RPhi) | |||
| 12128 | return false; | |||
| 12129 | ||||
| 12130 | // If there is a SCEVUnknown Phi we are interested in, make it left. | |||
| 12131 | if (!LPhi) { | |||
| 12132 | std::swap(LHS, RHS); | |||
| 12133 | std::swap(FoundLHS, FoundRHS); | |||
| 12134 | std::swap(LPhi, RPhi); | |||
| 12135 | Pred = ICmpInst::getSwappedPredicate(Pred); | |||
| 12136 | } | |||
| 12137 | ||||
| 12138 | assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!")(static_cast <bool> (LPhi && "LPhi should definitely be a SCEVUnknown Phi!" ) ? void (0) : __assert_fail ("LPhi && \"LPhi should definitely be a SCEVUnknown Phi!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12138, __extension__ __PRETTY_FUNCTION__)); | |||
| 12139 | const BasicBlock *LBB = LPhi->getParent(); | |||
| 12140 | const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); | |||
| 12141 | ||||
| 12142 | auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { | |||
| 12143 | return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || | |||
| 12144 | isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || | |||
| 12145 | isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); | |||
| 12146 | }; | |||
| 12147 | ||||
| 12148 | if (RPhi && RPhi->getParent() == LBB) { | |||
| 12149 | // Case one: RHS is also a SCEVUnknown Phi from the same basic block. | |||
| 12150 | // If we compare two Phis from the same block, and for each entry block | |||
| 12151 | // the predicate is true for incoming values from this block, then the | |||
| 12152 | // predicate is also true for the Phis. | |||
| 12153 | for (const BasicBlock *IncBB : predecessors(LBB)) { | |||
| 12154 | const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); | |||
| 12155 | const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); | |||
| 12156 | if (!ProvedEasily(L, R)) | |||
| 12157 | return false; | |||
| 12158 | } | |||
| 12159 | } else if (RAR && RAR->getLoop()->getHeader() == LBB) { | |||
| 12160 | // Case two: RHS is also a Phi from the same basic block, and it is an | |||
| 12161 | // AddRec. It means that there is a loop which has both AddRec and Unknown | |||
| 12162 | // PHIs, for it we can compare incoming values of AddRec from above the loop | |||
| 12163 | // and latch with their respective incoming values of LPhi. | |||
| 12164 | // TODO: Generalize to handle loops with many inputs in a header. | |||
| 12165 | if (LPhi->getNumIncomingValues() != 2) return false; | |||
| 12166 | ||||
| 12167 | auto *RLoop = RAR->getLoop(); | |||
| 12168 | auto *Predecessor = RLoop->getLoopPredecessor(); | |||
| 12169 | assert(Predecessor && "Loop with AddRec with no predecessor?")(static_cast <bool> (Predecessor && "Loop with AddRec with no predecessor?" ) ? void (0) : __assert_fail ("Predecessor && \"Loop with AddRec with no predecessor?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12169, __extension__ __PRETTY_FUNCTION__)); | |||
| 12170 | const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); | |||
| 12171 | if (!ProvedEasily(L1, RAR->getStart())) | |||
| 12172 | return false; | |||
| 12173 | auto *Latch = RLoop->getLoopLatch(); | |||
| 12174 | assert(Latch && "Loop with AddRec with no latch?")(static_cast <bool> (Latch && "Loop with AddRec with no latch?" ) ? void (0) : __assert_fail ("Latch && \"Loop with AddRec with no latch?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12174, __extension__ __PRETTY_FUNCTION__)); | |||
| 12175 | const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); | |||
| 12176 | if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) | |||
| 12177 | return false; | |||
| 12178 | } else { | |||
| 12179 | // In all other cases go over inputs of LHS and compare each of them to RHS, | |||
| 12180 | // the predicate is true for (LHS, RHS) if it is true for all such pairs. | |||
| 12181 | // At this point RHS is either a non-Phi, or it is a Phi from some block | |||
| 12182 | // different from LBB. | |||
| 12183 | for (const BasicBlock *IncBB : predecessors(LBB)) { | |||
| 12184 | // Check that RHS is available in this block. | |||
| 12185 | if (!dominates(RHS, IncBB)) | |||
| 12186 | return false; | |||
| 12187 | const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); | |||
| 12188 | // Make sure L does not refer to a value from a potentially previous | |||
| 12189 | // iteration of a loop. | |||
| 12190 | if (!properlyDominates(L, LBB)) | |||
| 12191 | return false; | |||
| 12192 | if (!ProvedEasily(L, RHS)) | |||
| 12193 | return false; | |||
| 12194 | } | |||
| 12195 | } | |||
| 12196 | return true; | |||
| 12197 | } | |||
| 12198 | ||||
| 12199 | bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, | |||
| 12200 | const SCEV *LHS, | |||
| 12201 | const SCEV *RHS, | |||
| 12202 | const SCEV *FoundLHS, | |||
| 12203 | const SCEV *FoundRHS) { | |||
| 12204 | // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make | |||
| 12205 | // sure that we are dealing with same LHS. | |||
| 12206 | if (RHS == FoundRHS) { | |||
| 12207 | std::swap(LHS, RHS); | |||
| 12208 | std::swap(FoundLHS, FoundRHS); | |||
| 12209 | Pred = ICmpInst::getSwappedPredicate(Pred); | |||
| 12210 | } | |||
| 12211 | if (LHS != FoundLHS) | |||
| 12212 | return false; | |||
| 12213 | ||||
| 12214 | auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); | |||
| 12215 | if (!SUFoundRHS) | |||
| 12216 | return false; | |||
| 12217 | ||||
| 12218 | Value *Shiftee, *ShiftValue; | |||
| 12219 | ||||
| 12220 | using namespace PatternMatch; | |||
| 12221 | if (match(SUFoundRHS->getValue(), | |||
| 12222 | m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { | |||
| 12223 | auto *ShifteeS = getSCEV(Shiftee); | |||
| 12224 | // Prove one of the following: | |||
| 12225 | // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS | |||
| 12226 | // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS | |||
| 12227 | // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 | |||
| 12228 | // ---> LHS <s RHS | |||
| 12229 | // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 | |||
| 12230 | // ---> LHS <=s RHS | |||
| 12231 | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) | |||
| 12232 | return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); | |||
| 12233 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) | |||
| 12234 | if (isKnownNonNegative(ShifteeS)) | |||
| 12235 | return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); | |||
| 12236 | } | |||
| 12237 | ||||
| 12238 | return false; | |||
| 12239 | } | |||
| 12240 | ||||
| 12241 | bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, | |||
| 12242 | const SCEV *LHS, const SCEV *RHS, | |||
| 12243 | const SCEV *FoundLHS, | |||
| 12244 | const SCEV *FoundRHS, | |||
| 12245 | const Instruction *CtxI) { | |||
| 12246 | if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) | |||
| 12247 | return true; | |||
| 12248 | ||||
| 12249 | if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) | |||
| 12250 | return true; | |||
| 12251 | ||||
| 12252 | if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) | |||
| 12253 | return true; | |||
| 12254 | ||||
| 12255 | if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, | |||
| 12256 | CtxI)) | |||
| 12257 | return true; | |||
| 12258 | ||||
| 12259 | return isImpliedCondOperandsHelper(Pred, LHS, RHS, | |||
| 12260 | FoundLHS, FoundRHS); | |||
| 12261 | } | |||
| 12262 | ||||
| 12263 | /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? | |||
| 12264 | template <typename MinMaxExprType> | |||
| 12265 | static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, | |||
| 12266 | const SCEV *Candidate) { | |||
| 12267 | const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); | |||
| 12268 | if (!MinMaxExpr) | |||
| 12269 | return false; | |||
| 12270 | ||||
| 12271 | return is_contained(MinMaxExpr->operands(), Candidate); | |||
| 12272 | } | |||
| 12273 | ||||
| 12274 | static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, | |||
| 12275 | ICmpInst::Predicate Pred, | |||
| 12276 | const SCEV *LHS, const SCEV *RHS) { | |||
| 12277 | // If both sides are affine addrecs for the same loop, with equal | |||
| 12278 | // steps, and we know the recurrences don't wrap, then we only | |||
| 12279 | // need to check the predicate on the starting values. | |||
| 12280 | ||||
| 12281 | if (!ICmpInst::isRelational(Pred)) | |||
| 12282 | return false; | |||
| 12283 | ||||
| 12284 | const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); | |||
| 12285 | if (!LAR) | |||
| 12286 | return false; | |||
| 12287 | const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); | |||
| 12288 | if (!RAR) | |||
| 12289 | return false; | |||
| 12290 | if (LAR->getLoop() != RAR->getLoop()) | |||
| 12291 | return false; | |||
| 12292 | if (!LAR->isAffine() || !RAR->isAffine()) | |||
| 12293 | return false; | |||
| 12294 | ||||
| 12295 | if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) | |||
| 12296 | return false; | |||
| 12297 | ||||
| 12298 | SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? | |||
| 12299 | SCEV::FlagNSW : SCEV::FlagNUW; | |||
| 12300 | if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) | |||
| 12301 | return false; | |||
| 12302 | ||||
| 12303 | return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); | |||
| 12304 | } | |||
| 12305 | ||||
| 12306 | /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max | |||
| 12307 | /// expression? | |||
| 12308 | static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, | |||
| 12309 | ICmpInst::Predicate Pred, | |||
| 12310 | const SCEV *LHS, const SCEV *RHS) { | |||
| 12311 | switch (Pred) { | |||
| 12312 | default: | |||
| 12313 | return false; | |||
| 12314 | ||||
| 12315 | case ICmpInst::ICMP_SGE: | |||
| 12316 | std::swap(LHS, RHS); | |||
| 12317 | [[fallthrough]]; | |||
| 12318 | case ICmpInst::ICMP_SLE: | |||
| 12319 | return | |||
| 12320 | // min(A, ...) <= A | |||
| 12321 | IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || | |||
| 12322 | // A <= max(A, ...) | |||
| 12323 | IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); | |||
| 12324 | ||||
| 12325 | case ICmpInst::ICMP_UGE: | |||
| 12326 | std::swap(LHS, RHS); | |||
| 12327 | [[fallthrough]]; | |||
| 12328 | case ICmpInst::ICMP_ULE: | |||
| 12329 | return | |||
| 12330 | // min(A, ...) <= A | |||
| 12331 | // FIXME: what about umin_seq? | |||
| 12332 | IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || | |||
| 12333 | // A <= max(A, ...) | |||
| 12334 | IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); | |||
| 12335 | } | |||
| 12336 | ||||
| 12337 | llvm_unreachable("covered switch fell through?!")::llvm::llvm_unreachable_internal("covered switch fell through?!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12337); | |||
| 12338 | } | |||
| 12339 | ||||
| 12340 | bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, | |||
| 12341 | const SCEV *LHS, const SCEV *RHS, | |||
| 12342 | const SCEV *FoundLHS, | |||
| 12343 | const SCEV *FoundRHS, | |||
| 12344 | unsigned Depth) { | |||
| 12345 | assert(getTypeSizeInBits(LHS->getType()) ==(static_cast <bool> (getTypeSizeInBits(LHS->getType( )) == getTypeSizeInBits(RHS->getType()) && "LHS and RHS have different sizes?" ) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(RHS->getType()) && \"LHS and RHS have different sizes?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12347, __extension__ __PRETTY_FUNCTION__)) | |||
| 12346 | getTypeSizeInBits(RHS->getType()) &&(static_cast <bool> (getTypeSizeInBits(LHS->getType( )) == getTypeSizeInBits(RHS->getType()) && "LHS and RHS have different sizes?" ) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(RHS->getType()) && \"LHS and RHS have different sizes?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12347, __extension__ __PRETTY_FUNCTION__)) | |||
| 12347 | "LHS and RHS have different sizes?")(static_cast <bool> (getTypeSizeInBits(LHS->getType( )) == getTypeSizeInBits(RHS->getType()) && "LHS and RHS have different sizes?" ) ? void (0) : __assert_fail ("getTypeSizeInBits(LHS->getType()) == getTypeSizeInBits(RHS->getType()) && \"LHS and RHS have different sizes?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12347, __extension__ __PRETTY_FUNCTION__)); | |||
| 12348 | assert(getTypeSizeInBits(FoundLHS->getType()) ==(static_cast <bool> (getTypeSizeInBits(FoundLHS->getType ()) == getTypeSizeInBits(FoundRHS->getType()) && "FoundLHS and FoundRHS have different sizes?" ) ? void (0) : __assert_fail ("getTypeSizeInBits(FoundLHS->getType()) == getTypeSizeInBits(FoundRHS->getType()) && \"FoundLHS and FoundRHS have different sizes?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12350, __extension__ __PRETTY_FUNCTION__)) | |||
| 12349 | getTypeSizeInBits(FoundRHS->getType()) &&(static_cast <bool> (getTypeSizeInBits(FoundLHS->getType ()) == getTypeSizeInBits(FoundRHS->getType()) && "FoundLHS and FoundRHS have different sizes?" ) ? void (0) : __assert_fail ("getTypeSizeInBits(FoundLHS->getType()) == getTypeSizeInBits(FoundRHS->getType()) && \"FoundLHS and FoundRHS have different sizes?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12350, __extension__ __PRETTY_FUNCTION__)) | |||
| 12350 | "FoundLHS and FoundRHS have different sizes?")(static_cast <bool> (getTypeSizeInBits(FoundLHS->getType ()) == getTypeSizeInBits(FoundRHS->getType()) && "FoundLHS and FoundRHS have different sizes?" ) ? void (0) : __assert_fail ("getTypeSizeInBits(FoundLHS->getType()) == getTypeSizeInBits(FoundRHS->getType()) && \"FoundLHS and FoundRHS have different sizes?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12350, __extension__ __PRETTY_FUNCTION__)); | |||
| 12351 | // We want to avoid hurting the compile time with analysis of too big trees. | |||
| 12352 | if (Depth > MaxSCEVOperationsImplicationDepth) | |||
| 12353 | return false; | |||
| 12354 | ||||
| 12355 | // We only want to work with GT comparison so far. | |||
| 12356 | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { | |||
| 12357 | Pred = CmpInst::getSwappedPredicate(Pred); | |||
| 12358 | std::swap(LHS, RHS); | |||
| 12359 | std::swap(FoundLHS, FoundRHS); | |||
| 12360 | } | |||
| 12361 | ||||
| 12362 | // For unsigned, try to reduce it to corresponding signed comparison. | |||
| 12363 | if (Pred == ICmpInst::ICMP_UGT) | |||
| 12364 | // We can replace unsigned predicate with its signed counterpart if all | |||
| 12365 | // involved values are non-negative. | |||
| 12366 | // TODO: We could have better support for unsigned. | |||
| 12367 | if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { | |||
| 12368 | // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing | |||
| 12369 | // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us | |||
| 12370 | // use this fact to prove that LHS and RHS are non-negative. | |||
| 12371 | const SCEV *MinusOne = getMinusOne(LHS->getType()); | |||
| 12372 | if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, | |||
| 12373 | FoundRHS) && | |||
| 12374 | isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, | |||
| 12375 | FoundRHS)) | |||
| 12376 | Pred = ICmpInst::ICMP_SGT; | |||
| 12377 | } | |||
| 12378 | ||||
| 12379 | if (Pred != ICmpInst::ICMP_SGT) | |||
| 12380 | return false; | |||
| 12381 | ||||
| 12382 | auto GetOpFromSExt = [&](const SCEV *S) { | |||
| 12383 | if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) | |||
| 12384 | return Ext->getOperand(); | |||
| 12385 | // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off | |||
| 12386 | // the constant in some cases. | |||
| 12387 | return S; | |||
| 12388 | }; | |||
| 12389 | ||||
| 12390 | // Acquire values from extensions. | |||
| 12391 | auto *OrigLHS = LHS; | |||
| 12392 | auto *OrigFoundLHS = FoundLHS; | |||
| 12393 | LHS = GetOpFromSExt(LHS); | |||
| 12394 | FoundLHS = GetOpFromSExt(FoundLHS); | |||
| 12395 | ||||
| 12396 | // Is the SGT predicate can be proved trivially or using the found context. | |||
| 12397 | auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { | |||
| 12398 | return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || | |||
| 12399 | isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, | |||
| 12400 | FoundRHS, Depth + 1); | |||
| 12401 | }; | |||
| 12402 | ||||
| 12403 | if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { | |||
| 12404 | // We want to avoid creation of any new non-constant SCEV. Since we are | |||
| 12405 | // going to compare the operands to RHS, we should be certain that we don't | |||
| 12406 | // need any size extensions for this. So let's decline all cases when the | |||
| 12407 | // sizes of types of LHS and RHS do not match. | |||
| 12408 | // TODO: Maybe try to get RHS from sext to catch more cases? | |||
| 12409 | if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) | |||
| 12410 | return false; | |||
| 12411 | ||||
| 12412 | // Should not overflow. | |||
| 12413 | if (!LHSAddExpr->hasNoSignedWrap()) | |||
| 12414 | return false; | |||
| 12415 | ||||
| 12416 | auto *LL = LHSAddExpr->getOperand(0); | |||
| 12417 | auto *LR = LHSAddExpr->getOperand(1); | |||
| 12418 | auto *MinusOne = getMinusOne(RHS->getType()); | |||
| 12419 | ||||
| 12420 | // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. | |||
| 12421 | auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { | |||
| 12422 | return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); | |||
| 12423 | }; | |||
| 12424 | // Try to prove the following rule: | |||
| 12425 | // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). | |||
| 12426 | // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). | |||
| 12427 | if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) | |||
| 12428 | return true; | |||
| 12429 | } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { | |||
| 12430 | Value *LL, *LR; | |||
| 12431 | // FIXME: Once we have SDiv implemented, we can get rid of this matching. | |||
| 12432 | ||||
| 12433 | using namespace llvm::PatternMatch; | |||
| 12434 | ||||
| 12435 | if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { | |||
| 12436 | // Rules for division. | |||
| 12437 | // We are going to perform some comparisons with Denominator and its | |||
| 12438 | // derivative expressions. In general case, creating a SCEV for it may | |||
| 12439 | // lead to a complex analysis of the entire graph, and in particular it | |||
| 12440 | // can request trip count recalculation for the same loop. This would | |||
| 12441 | // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid | |||
| 12442 | // this, we only want to create SCEVs that are constants in this section. | |||
| 12443 | // So we bail if Denominator is not a constant. | |||
| 12444 | if (!isa<ConstantInt>(LR)) | |||
| 12445 | return false; | |||
| 12446 | ||||
| 12447 | auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); | |||
| 12448 | ||||
| 12449 | // We want to make sure that LHS = FoundLHS / Denominator. If it is so, | |||
| 12450 | // then a SCEV for the numerator already exists and matches with FoundLHS. | |||
| 12451 | auto *Numerator = getExistingSCEV(LL); | |||
| 12452 | if (!Numerator || Numerator->getType() != FoundLHS->getType()) | |||
| 12453 | return false; | |||
| 12454 | ||||
| 12455 | // Make sure that the numerator matches with FoundLHS and the denominator | |||
| 12456 | // is positive. | |||
| 12457 | if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) | |||
| 12458 | return false; | |||
| 12459 | ||||
| 12460 | auto *DTy = Denominator->getType(); | |||
| 12461 | auto *FRHSTy = FoundRHS->getType(); | |||
| 12462 | if (DTy->isPointerTy() != FRHSTy->isPointerTy()) | |||
| 12463 | // One of types is a pointer and another one is not. We cannot extend | |||
| 12464 | // them properly to a wider type, so let us just reject this case. | |||
| 12465 | // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help | |||
| 12466 | // to avoid this check. | |||
| 12467 | return false; | |||
| 12468 | ||||
| 12469 | // Given that: | |||
| 12470 | // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. | |||
| 12471 | auto *WTy = getWiderType(DTy, FRHSTy); | |||
| 12472 | auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); | |||
| 12473 | auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); | |||
| 12474 | ||||
| 12475 | // Try to prove the following rule: | |||
| 12476 | // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). | |||
| 12477 | // For example, given that FoundLHS > 2. It means that FoundLHS is at | |||
| 12478 | // least 3. If we divide it by Denominator < 4, we will have at least 1. | |||
| 12479 | auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); | |||
| 12480 | if (isKnownNonPositive(RHS) && | |||
| 12481 | IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) | |||
| 12482 | return true; | |||
| 12483 | ||||
| 12484 | // Try to prove the following rule: | |||
| 12485 | // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). | |||
| 12486 | // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. | |||
| 12487 | // If we divide it by Denominator > 2, then: | |||
| 12488 | // 1. If FoundLHS is negative, then the result is 0. | |||
| 12489 | // 2. If FoundLHS is non-negative, then the result is non-negative. | |||
| 12490 | // Anyways, the result is non-negative. | |||
| 12491 | auto *MinusOne = getMinusOne(WTy); | |||
| 12492 | auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); | |||
| 12493 | if (isKnownNegative(RHS) && | |||
| 12494 | IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) | |||
| 12495 | return true; | |||
| 12496 | } | |||
| 12497 | } | |||
| 12498 | ||||
| 12499 | // If our expression contained SCEVUnknown Phis, and we split it down and now | |||
| 12500 | // need to prove something for them, try to prove the predicate for every | |||
| 12501 | // possible incoming values of those Phis. | |||
| 12502 | if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) | |||
| 12503 | return true; | |||
| 12504 | ||||
| 12505 | return false; | |||
| 12506 | } | |||
| 12507 | ||||
| 12508 | static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, | |||
| 12509 | const SCEV *LHS, const SCEV *RHS) { | |||
| 12510 | // zext x u<= sext x, sext x s<= zext x | |||
| 12511 | switch (Pred) { | |||
| 12512 | case ICmpInst::ICMP_SGE: | |||
| 12513 | std::swap(LHS, RHS); | |||
| 12514 | [[fallthrough]]; | |||
| 12515 | case ICmpInst::ICMP_SLE: { | |||
| 12516 | // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. | |||
| 12517 | const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); | |||
| 12518 | const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); | |||
| 12519 | if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) | |||
| 12520 | return true; | |||
| 12521 | break; | |||
| 12522 | } | |||
| 12523 | case ICmpInst::ICMP_UGE: | |||
| 12524 | std::swap(LHS, RHS); | |||
| 12525 | [[fallthrough]]; | |||
| 12526 | case ICmpInst::ICMP_ULE: { | |||
| 12527 | // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. | |||
| 12528 | const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); | |||
| 12529 | const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); | |||
| 12530 | if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) | |||
| 12531 | return true; | |||
| 12532 | break; | |||
| 12533 | } | |||
| 12534 | default: | |||
| 12535 | break; | |||
| 12536 | }; | |||
| 12537 | return false; | |||
| 12538 | } | |||
| 12539 | ||||
| 12540 | bool | |||
| 12541 | ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, | |||
| 12542 | const SCEV *LHS, const SCEV *RHS) { | |||
| 12543 | return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || | |||
| 12544 | isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || | |||
| 12545 | IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || | |||
| 12546 | IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || | |||
| 12547 | isKnownPredicateViaNoOverflow(Pred, LHS, RHS); | |||
| 12548 | } | |||
| 12549 | ||||
| 12550 | bool | |||
| 12551 | ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, | |||
| 12552 | const SCEV *LHS, const SCEV *RHS, | |||
| 12553 | const SCEV *FoundLHS, | |||
| 12554 | const SCEV *FoundRHS) { | |||
| 12555 | switch (Pred) { | |||
| 12556 | default: llvm_unreachable("Unexpected ICmpInst::Predicate value!")::llvm::llvm_unreachable_internal("Unexpected ICmpInst::Predicate value!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12556); | |||
| 12557 | case ICmpInst::ICMP_EQ: | |||
| 12558 | case ICmpInst::ICMP_NE: | |||
| 12559 | if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) | |||
| 12560 | return true; | |||
| 12561 | break; | |||
| 12562 | case ICmpInst::ICMP_SLT: | |||
| 12563 | case ICmpInst::ICMP_SLE: | |||
| 12564 | if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && | |||
| 12565 | isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) | |||
| 12566 | return true; | |||
| 12567 | break; | |||
| 12568 | case ICmpInst::ICMP_SGT: | |||
| 12569 | case ICmpInst::ICMP_SGE: | |||
| 12570 | if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && | |||
| 12571 | isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) | |||
| 12572 | return true; | |||
| 12573 | break; | |||
| 12574 | case ICmpInst::ICMP_ULT: | |||
| 12575 | case ICmpInst::ICMP_ULE: | |||
| 12576 | if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && | |||
| 12577 | isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) | |||
| 12578 | return true; | |||
| 12579 | break; | |||
| 12580 | case ICmpInst::ICMP_UGT: | |||
| 12581 | case ICmpInst::ICMP_UGE: | |||
| 12582 | if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && | |||
| 12583 | isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) | |||
| 12584 | return true; | |||
| 12585 | break; | |||
| 12586 | } | |||
| 12587 | ||||
| 12588 | // Maybe it can be proved via operations? | |||
| 12589 | if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) | |||
| 12590 | return true; | |||
| 12591 | ||||
| 12592 | return false; | |||
| 12593 | } | |||
| 12594 | ||||
| 12595 | bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, | |||
| 12596 | const SCEV *LHS, | |||
| 12597 | const SCEV *RHS, | |||
| 12598 | const SCEV *FoundLHS, | |||
| 12599 | const SCEV *FoundRHS) { | |||
| 12600 | if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) | |||
| 12601 | // The restriction on `FoundRHS` be lifted easily -- it exists only to | |||
| 12602 | // reduce the compile time impact of this optimization. | |||
| 12603 | return false; | |||
| 12604 | ||||
| 12605 | std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); | |||
| 12606 | if (!Addend) | |||
| 12607 | return false; | |||
| 12608 | ||||
| 12609 | const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); | |||
| 12610 | ||||
| 12611 | // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the | |||
| 12612 | // antecedent "`FoundLHS` `Pred` `FoundRHS`". | |||
| 12613 | ConstantRange FoundLHSRange = | |||
| 12614 | ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); | |||
| 12615 | ||||
| 12616 | // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: | |||
| 12617 | ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); | |||
| 12618 | ||||
| 12619 | // We can also compute the range of values for `LHS` that satisfy the | |||
| 12620 | // consequent, "`LHS` `Pred` `RHS`": | |||
| 12621 | const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); | |||
| 12622 | // The antecedent implies the consequent if every value of `LHS` that | |||
| 12623 | // satisfies the antecedent also satisfies the consequent. | |||
| 12624 | return LHSRange.icmp(Pred, ConstRHS); | |||
| 12625 | } | |||
| 12626 | ||||
| 12627 | bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, | |||
| 12628 | bool IsSigned) { | |||
| 12629 | assert(isKnownPositive(Stride) && "Positive stride expected!")(static_cast <bool> (isKnownPositive(Stride) && "Positive stride expected!") ? void (0) : __assert_fail ("isKnownPositive(Stride) && \"Positive stride expected!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12629, __extension__ __PRETTY_FUNCTION__)); | |||
| 12630 | ||||
| 12631 | unsigned BitWidth = getTypeSizeInBits(RHS->getType()); | |||
| 12632 | const SCEV *One = getOne(Stride->getType()); | |||
| 12633 | ||||
| 12634 | if (IsSigned) { | |||
| 12635 | APInt MaxRHS = getSignedRangeMax(RHS); | |||
| 12636 | APInt MaxValue = APInt::getSignedMaxValue(BitWidth); | |||
| 12637 | APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); | |||
| 12638 | ||||
| 12639 | // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! | |||
| 12640 | return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); | |||
| 12641 | } | |||
| 12642 | ||||
| 12643 | APInt MaxRHS = getUnsignedRangeMax(RHS); | |||
| 12644 | APInt MaxValue = APInt::getMaxValue(BitWidth); | |||
| 12645 | APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); | |||
| 12646 | ||||
| 12647 | // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! | |||
| 12648 | return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); | |||
| 12649 | } | |||
| 12650 | ||||
| 12651 | bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, | |||
| 12652 | bool IsSigned) { | |||
| 12653 | ||||
| 12654 | unsigned BitWidth = getTypeSizeInBits(RHS->getType()); | |||
| 12655 | const SCEV *One = getOne(Stride->getType()); | |||
| 12656 | ||||
| 12657 | if (IsSigned) { | |||
| 12658 | APInt MinRHS = getSignedRangeMin(RHS); | |||
| 12659 | APInt MinValue = APInt::getSignedMinValue(BitWidth); | |||
| 12660 | APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); | |||
| 12661 | ||||
| 12662 | // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! | |||
| 12663 | return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); | |||
| 12664 | } | |||
| 12665 | ||||
| 12666 | APInt MinRHS = getUnsignedRangeMin(RHS); | |||
| 12667 | APInt MinValue = APInt::getMinValue(BitWidth); | |||
| 12668 | APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); | |||
| 12669 | ||||
| 12670 | // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! | |||
| 12671 | return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); | |||
| 12672 | } | |||
| 12673 | ||||
| 12674 | const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { | |||
| 12675 | // umin(N, 1) + floor((N - umin(N, 1)) / D) | |||
| 12676 | // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin | |||
| 12677 | // expression fixes the case of N=0. | |||
| 12678 | const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); | |||
| 12679 | const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); | |||
| 12680 | return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); | |||
| 12681 | } | |||
| 12682 | ||||
| 12683 | const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, | |||
| 12684 | const SCEV *Stride, | |||
| 12685 | const SCEV *End, | |||
| 12686 | unsigned BitWidth, | |||
| 12687 | bool IsSigned) { | |||
| 12688 | // The logic in this function assumes we can represent a positive stride. | |||
| 12689 | // If we can't, the backedge-taken count must be zero. | |||
| 12690 | if (IsSigned && BitWidth == 1) | |||
| 12691 | return getZero(Stride->getType()); | |||
| 12692 | ||||
| 12693 | // This code below only been closely audited for negative strides in the | |||
| 12694 | // unsigned comparison case, it may be correct for signed comparison, but | |||
| 12695 | // that needs to be established. | |||
| 12696 | if (IsSigned && isKnownNegative(Stride)) | |||
| 12697 | return getCouldNotCompute(); | |||
| 12698 | ||||
| 12699 | // Calculate the maximum backedge count based on the range of values | |||
| 12700 | // permitted by Start, End, and Stride. | |||
| 12701 | APInt MinStart = | |||
| 12702 | IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); | |||
| 12703 | ||||
| 12704 | APInt MinStride = | |||
| 12705 | IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); | |||
| 12706 | ||||
| 12707 | // We assume either the stride is positive, or the backedge-taken count | |||
| 12708 | // is zero. So force StrideForMaxBECount to be at least one. | |||
| 12709 | APInt One(BitWidth, 1); | |||
| 12710 | APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) | |||
| 12711 | : APIntOps::umax(One, MinStride); | |||
| 12712 | ||||
| 12713 | APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) | |||
| 12714 | : APInt::getMaxValue(BitWidth); | |||
| 12715 | APInt Limit = MaxValue - (StrideForMaxBECount - 1); | |||
| 12716 | ||||
| 12717 | // Although End can be a MAX expression we estimate MaxEnd considering only | |||
| 12718 | // the case End = RHS of the loop termination condition. This is safe because | |||
| 12719 | // in the other case (End - Start) is zero, leading to a zero maximum backedge | |||
| 12720 | // taken count. | |||
| 12721 | APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) | |||
| 12722 | : APIntOps::umin(getUnsignedRangeMax(End), Limit); | |||
| 12723 | ||||
| 12724 | // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) | |||
| 12725 | MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) | |||
| 12726 | : APIntOps::umax(MaxEnd, MinStart); | |||
| 12727 | ||||
| 12728 | return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, | |||
| 12729 | getConstant(StrideForMaxBECount) /* Step */); | |||
| 12730 | } | |||
| 12731 | ||||
| 12732 | ScalarEvolution::ExitLimit | |||
| 12733 | ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, | |||
| 12734 | const Loop *L, bool IsSigned, | |||
| 12735 | bool ControlsOnlyExit, bool AllowPredicates) { | |||
| 12736 | SmallPtrSet<const SCEVPredicate *, 4> Predicates; | |||
| 12737 | ||||
| 12738 | const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); | |||
| 12739 | bool PredicatedIV = false; | |||
| 12740 | ||||
| 12741 | auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { | |||
| 12742 | // Can we prove this loop *must* be UB if overflow of IV occurs? | |||
| 12743 | // Reasoning goes as follows: | |||
| 12744 | // * Suppose the IV did self wrap. | |||
| 12745 | // * If Stride evenly divides the iteration space, then once wrap | |||
| 12746 | // occurs, the loop must revisit the same values. | |||
| 12747 | // * We know that RHS is invariant, and that none of those values | |||
| 12748 | // caused this exit to be taken previously. Thus, this exit is | |||
| 12749 | // dynamically dead. | |||
| 12750 | // * If this is the sole exit, then a dead exit implies the loop | |||
| 12751 | // must be infinite if there are no abnormal exits. | |||
| 12752 | // * If the loop were infinite, then it must either not be mustprogress | |||
| 12753 | // or have side effects. Otherwise, it must be UB. | |||
| 12754 | // * It can't (by assumption), be UB so we have contradicted our | |||
| 12755 | // premise and can conclude the IV did not in fact self-wrap. | |||
| 12756 | if (!isLoopInvariant(RHS, L)) | |||
| 12757 | return false; | |||
| 12758 | ||||
| 12759 | auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); | |||
| 12760 | if (!StrideC || !StrideC->getAPInt().isPowerOf2()) | |||
| 12761 | return false; | |||
| 12762 | ||||
| 12763 | if (!ControlsOnlyExit || !loopHasNoAbnormalExits(L)) | |||
| 12764 | return false; | |||
| 12765 | ||||
| 12766 | return loopIsFiniteByAssumption(L); | |||
| 12767 | }; | |||
| 12768 | ||||
| 12769 | if (!IV) { | |||
| 12770 | if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { | |||
| 12771 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); | |||
| 12772 | if (AR && AR->getLoop() == L && AR->isAffine()) { | |||
| 12773 | auto canProveNUW = [&]() { | |||
| 12774 | if (!isLoopInvariant(RHS, L)) | |||
| 12775 | return false; | |||
| 12776 | ||||
| 12777 | if (!isKnownNonZero(AR->getStepRecurrence(*this))) | |||
| 12778 | // We need the sequence defined by AR to strictly increase in the | |||
| 12779 | // unsigned integer domain for the logic below to hold. | |||
| 12780 | return false; | |||
| 12781 | ||||
| 12782 | const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); | |||
| 12783 | const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); | |||
| 12784 | // If RHS <=u Limit, then there must exist a value V in the sequence | |||
| 12785 | // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and | |||
| 12786 | // V <=u UINT_MAX. Thus, we must exit the loop before unsigned | |||
| 12787 | // overflow occurs. This limit also implies that a signed comparison | |||
| 12788 | // (in the wide bitwidth) is equivalent to an unsigned comparison as | |||
| 12789 | // the high bits on both sides must be zero. | |||
| 12790 | APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); | |||
| 12791 | APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); | |||
| 12792 | Limit = Limit.zext(OuterBitWidth); | |||
| 12793 | return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); | |||
| 12794 | }; | |||
| 12795 | auto Flags = AR->getNoWrapFlags(); | |||
| 12796 | if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) | |||
| 12797 | Flags = setFlags(Flags, SCEV::FlagNUW); | |||
| 12798 | ||||
| 12799 | setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); | |||
| 12800 | if (AR->hasNoUnsignedWrap()) { | |||
| 12801 | // Emulate what getZeroExtendExpr would have done during construction | |||
| 12802 | // if we'd been able to infer the fact just above at that time. | |||
| 12803 | const SCEV *Step = AR->getStepRecurrence(*this); | |||
| 12804 | Type *Ty = ZExt->getType(); | |||
| 12805 | auto *S = getAddRecExpr( | |||
| 12806 | getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), | |||
| 12807 | getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); | |||
| 12808 | IV = dyn_cast<SCEVAddRecExpr>(S); | |||
| 12809 | } | |||
| 12810 | } | |||
| 12811 | } | |||
| 12812 | } | |||
| 12813 | ||||
| 12814 | ||||
| 12815 | if (!IV && AllowPredicates) { | |||
| 12816 | // Try to make this an AddRec using runtime tests, in the first X | |||
| 12817 | // iterations of this loop, where X is the SCEV expression found by the | |||
| 12818 | // algorithm below. | |||
| 12819 | IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); | |||
| 12820 | PredicatedIV = true; | |||
| 12821 | } | |||
| 12822 | ||||
| 12823 | // Avoid weird loops | |||
| 12824 | if (!IV || IV->getLoop() != L || !IV->isAffine()) | |||
| 12825 | return getCouldNotCompute(); | |||
| 12826 | ||||
| 12827 | // A precondition of this method is that the condition being analyzed | |||
| 12828 | // reaches an exiting branch which dominates the latch. Given that, we can | |||
| 12829 | // assume that an increment which violates the nowrap specification and | |||
| 12830 | // produces poison must cause undefined behavior when the resulting poison | |||
| 12831 | // value is branched upon and thus we can conclude that the backedge is | |||
| 12832 | // taken no more often than would be required to produce that poison value. | |||
| 12833 | // Note that a well defined loop can exit on the iteration which violates | |||
| 12834 | // the nowrap specification if there is another exit (either explicit or | |||
| 12835 | // implicit/exceptional) which causes the loop to execute before the | |||
| 12836 | // exiting instruction we're analyzing would trigger UB. | |||
| 12837 | auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; | |||
| 12838 | bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType); | |||
| 12839 | ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | |||
| 12840 | ||||
| 12841 | const SCEV *Stride = IV->getStepRecurrence(*this); | |||
| 12842 | ||||
| 12843 | bool PositiveStride = isKnownPositive(Stride); | |||
| 12844 | ||||
| 12845 | // Avoid negative or zero stride values. | |||
| 12846 | if (!PositiveStride) { | |||
| 12847 | // We can compute the correct backedge taken count for loops with unknown | |||
| 12848 | // strides if we can prove that the loop is not an infinite loop with side | |||
| 12849 | // effects. Here's the loop structure we are trying to handle - | |||
| 12850 | // | |||
| 12851 | // i = start | |||
| 12852 | // do { | |||
| 12853 | // A[i] = i; | |||
| 12854 | // i += s; | |||
| 12855 | // } while (i < end); | |||
| 12856 | // | |||
| 12857 | // The backedge taken count for such loops is evaluated as - | |||
| 12858 | // (max(end, start + stride) - start - 1) /u stride | |||
| 12859 | // | |||
| 12860 | // The additional preconditions that we need to check to prove correctness | |||
| 12861 | // of the above formula is as follows - | |||
| 12862 | // | |||
| 12863 | // a) IV is either nuw or nsw depending upon signedness (indicated by the | |||
| 12864 | // NoWrap flag). | |||
| 12865 | // b) the loop is guaranteed to be finite (e.g. is mustprogress and has | |||
| 12866 | // no side effects within the loop) | |||
| 12867 | // c) loop has a single static exit (with no abnormal exits) | |||
| 12868 | // | |||
| 12869 | // Precondition a) implies that if the stride is negative, this is a single | |||
| 12870 | // trip loop. The backedge taken count formula reduces to zero in this case. | |||
| 12871 | // | |||
| 12872 | // Precondition b) and c) combine to imply that if rhs is invariant in L, | |||
| 12873 | // then a zero stride means the backedge can't be taken without executing | |||
| 12874 | // undefined behavior. | |||
| 12875 | // | |||
| 12876 | // The positive stride case is the same as isKnownPositive(Stride) returning | |||
| 12877 | // true (original behavior of the function). | |||
| 12878 | // | |||
| 12879 | if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || | |||
| 12880 | !loopHasNoAbnormalExits(L)) | |||
| 12881 | return getCouldNotCompute(); | |||
| 12882 | ||||
| 12883 | if (!isKnownNonZero(Stride)) { | |||
| 12884 | // If we have a step of zero, and RHS isn't invariant in L, we don't know | |||
| 12885 | // if it might eventually be greater than start and if so, on which | |||
| 12886 | // iteration. We can't even produce a useful upper bound. | |||
| 12887 | if (!isLoopInvariant(RHS, L)) | |||
| 12888 | return getCouldNotCompute(); | |||
| 12889 | ||||
| 12890 | // We allow a potentially zero stride, but we need to divide by stride | |||
| 12891 | // below. Since the loop can't be infinite and this check must control | |||
| 12892 | // the sole exit, we can infer the exit must be taken on the first | |||
| 12893 | // iteration (e.g. backedge count = 0) if the stride is zero. Given that, | |||
| 12894 | // we know the numerator in the divides below must be zero, so we can | |||
| 12895 | // pick an arbitrary non-zero value for the denominator (e.g. stride) | |||
| 12896 | // and produce the right result. | |||
| 12897 | // FIXME: Handle the case where Stride is poison? | |||
| 12898 | auto wouldZeroStrideBeUB = [&]() { | |||
| 12899 | // Proof by contradiction. Suppose the stride were zero. If we can | |||
| 12900 | // prove that the backedge *is* taken on the first iteration, then since | |||
| 12901 | // we know this condition controls the sole exit, we must have an | |||
| 12902 | // infinite loop. We can't have a (well defined) infinite loop per | |||
| 12903 | // check just above. | |||
| 12904 | // Note: The (Start - Stride) term is used to get the start' term from | |||
| 12905 | // (start' + stride,+,stride). Remember that we only care about the | |||
| 12906 | // result of this expression when stride == 0 at runtime. | |||
| 12907 | auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); | |||
| 12908 | return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); | |||
| 12909 | }; | |||
| 12910 | if (!wouldZeroStrideBeUB()) { | |||
| 12911 | Stride = getUMaxExpr(Stride, getOne(Stride->getType())); | |||
| 12912 | } | |||
| 12913 | } | |||
| 12914 | } else if (!Stride->isOne() && !NoWrap) { | |||
| 12915 | auto isUBOnWrap = [&]() { | |||
| 12916 | // From no-self-wrap, we need to then prove no-(un)signed-wrap. This | |||
| 12917 | // follows trivially from the fact that every (un)signed-wrapped, but | |||
| 12918 | // not self-wrapped value must be LT than the last value before | |||
| 12919 | // (un)signed wrap. Since we know that last value didn't exit, nor | |||
| 12920 | // will any smaller one. | |||
| 12921 | return canAssumeNoSelfWrap(IV); | |||
| 12922 | }; | |||
| 12923 | ||||
| 12924 | // Avoid proven overflow cases: this will ensure that the backedge taken | |||
| 12925 | // count will not generate any unsigned overflow. Relaxed no-overflow | |||
| 12926 | // conditions exploit NoWrapFlags, allowing to optimize in presence of | |||
| 12927 | // undefined behaviors like the case of C language. | |||
| 12928 | if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) | |||
| 12929 | return getCouldNotCompute(); | |||
| 12930 | } | |||
| 12931 | ||||
| 12932 | // On all paths just preceeding, we established the following invariant: | |||
| 12933 | // IV can be assumed not to overflow up to and including the exiting | |||
| 12934 | // iteration. We proved this in one of two ways: | |||
| 12935 | // 1) We can show overflow doesn't occur before the exiting iteration | |||
| 12936 | // 1a) canIVOverflowOnLT, and b) step of one | |||
| 12937 | // 2) We can show that if overflow occurs, the loop must execute UB | |||
| 12938 | // before any possible exit. | |||
| 12939 | // Note that we have not yet proved RHS invariant (in general). | |||
| 12940 | ||||
| 12941 | const SCEV *Start = IV->getStart(); | |||
| 12942 | ||||
| 12943 | // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. | |||
| 12944 | // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. | |||
| 12945 | // Use integer-typed versions for actual computation; we can't subtract | |||
| 12946 | // pointers in general. | |||
| 12947 | const SCEV *OrigStart = Start; | |||
| 12948 | const SCEV *OrigRHS = RHS; | |||
| 12949 | if (Start->getType()->isPointerTy()) { | |||
| 12950 | Start = getLosslessPtrToIntExpr(Start); | |||
| 12951 | if (isa<SCEVCouldNotCompute>(Start)) | |||
| 12952 | return Start; | |||
| 12953 | } | |||
| 12954 | if (RHS->getType()->isPointerTy()) { | |||
| 12955 | RHS = getLosslessPtrToIntExpr(RHS); | |||
| 12956 | if (isa<SCEVCouldNotCompute>(RHS)) | |||
| 12957 | return RHS; | |||
| 12958 | } | |||
| 12959 | ||||
| 12960 | // When the RHS is not invariant, we do not know the end bound of the loop and | |||
| 12961 | // cannot calculate the ExactBECount needed by ExitLimit. However, we can | |||
| 12962 | // calculate the MaxBECount, given the start, stride and max value for the end | |||
| 12963 | // bound of the loop (RHS), and the fact that IV does not overflow (which is | |||
| 12964 | // checked above). | |||
| 12965 | if (!isLoopInvariant(RHS, L)) { | |||
| 12966 | const SCEV *MaxBECount = computeMaxBECountForLT( | |||
| 12967 | Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); | |||
| 12968 | return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, | |||
| 12969 | MaxBECount, false /*MaxOrZero*/, Predicates); | |||
| 12970 | } | |||
| 12971 | ||||
| 12972 | // We use the expression (max(End,Start)-Start)/Stride to describe the | |||
| 12973 | // backedge count, as if the backedge is taken at least once max(End,Start) | |||
| 12974 | // is End and so the result is as above, and if not max(End,Start) is Start | |||
| 12975 | // so we get a backedge count of zero. | |||
| 12976 | const SCEV *BECount = nullptr; | |||
| 12977 | auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); | |||
| 12978 | assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!")(static_cast <bool> (isAvailableAtLoopEntry(OrigStartMinusStride , L) && "Must be!") ? void (0) : __assert_fail ("isAvailableAtLoopEntry(OrigStartMinusStride, L) && \"Must be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12978, __extension__ __PRETTY_FUNCTION__)); | |||
| 12979 | assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!")(static_cast <bool> (isAvailableAtLoopEntry(OrigStart, L ) && "Must be!") ? void (0) : __assert_fail ("isAvailableAtLoopEntry(OrigStart, L) && \"Must be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12979, __extension__ __PRETTY_FUNCTION__)); | |||
| 12980 | assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!")(static_cast <bool> (isAvailableAtLoopEntry(OrigRHS, L) && "Must be!") ? void (0) : __assert_fail ("isAvailableAtLoopEntry(OrigRHS, L) && \"Must be!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 12980, __extension__ __PRETTY_FUNCTION__)); | |||
| 12981 | // Can we prove (max(RHS,Start) > Start - Stride? | |||
| 12982 | if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && | |||
| 12983 | isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { | |||
| 12984 | // In this case, we can use a refined formula for computing backedge taken | |||
| 12985 | // count. The general formula remains: | |||
| 12986 | // "End-Start /uceiling Stride" where "End = max(RHS,Start)" | |||
| 12987 | // We want to use the alternate formula: | |||
| 12988 | // "((End - 1) - (Start - Stride)) /u Stride" | |||
| 12989 | // Let's do a quick case analysis to show these are equivalent under | |||
| 12990 | // our precondition that max(RHS,Start) > Start - Stride. | |||
| 12991 | // * For RHS <= Start, the backedge-taken count must be zero. | |||
| 12992 | // "((End - 1) - (Start - Stride)) /u Stride" reduces to | |||
| 12993 | // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to | |||
| 12994 | // "Stride - 1 /u Stride" which is indeed zero for all non-zero values | |||
| 12995 | // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing | |||
| 12996 | // this to the stride of 1 case. | |||
| 12997 | // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". | |||
| 12998 | // "((End - 1) - (Start - Stride)) /u Stride" reduces to | |||
| 12999 | // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to | |||
| 13000 | // "((RHS - (Start - Stride) - 1) /u Stride". | |||
| 13001 | // Our preconditions trivially imply no overflow in that form. | |||
| 13002 | const SCEV *MinusOne = getMinusOne(Stride->getType()); | |||
| 13003 | const SCEV *Numerator = | |||
| 13004 | getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); | |||
| 13005 | BECount = getUDivExpr(Numerator, Stride); | |||
| 13006 | } | |||
| 13007 | ||||
| 13008 | const SCEV *BECountIfBackedgeTaken = nullptr; | |||
| 13009 | if (!BECount) { | |||
| 13010 | auto canProveRHSGreaterThanEqualStart = [&]() { | |||
| 13011 | auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; | |||
| 13012 | if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) | |||
| 13013 | return true; | |||
| 13014 | ||||
| 13015 | // (RHS > Start - 1) implies RHS >= Start. | |||
| 13016 | // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if | |||
| 13017 | // "Start - 1" doesn't overflow. | |||
| 13018 | // * For signed comparison, if Start - 1 does overflow, it's equal | |||
| 13019 | // to INT_MAX, and "RHS >s INT_MAX" is trivially false. | |||
| 13020 | // * For unsigned comparison, if Start - 1 does overflow, it's equal | |||
| 13021 | // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. | |||
| 13022 | // | |||
| 13023 | // FIXME: Should isLoopEntryGuardedByCond do this for us? | |||
| 13024 | auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | |||
| 13025 | auto *StartMinusOne = getAddExpr(OrigStart, | |||
| 13026 | getMinusOne(OrigStart->getType())); | |||
| 13027 | return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); | |||
| 13028 | }; | |||
| 13029 | ||||
| 13030 | // If we know that RHS >= Start in the context of loop, then we know that | |||
| 13031 | // max(RHS, Start) = RHS at this point. | |||
| 13032 | const SCEV *End; | |||
| 13033 | if (canProveRHSGreaterThanEqualStart()) { | |||
| 13034 | End = RHS; | |||
| 13035 | } else { | |||
| 13036 | // If RHS < Start, the backedge will be taken zero times. So in | |||
| 13037 | // general, we can write the backedge-taken count as: | |||
| 13038 | // | |||
| 13039 | // RHS >= Start ? ceil(RHS - Start) / Stride : 0 | |||
| 13040 | // | |||
| 13041 | // We convert it to the following to make it more convenient for SCEV: | |||
| 13042 | // | |||
| 13043 | // ceil(max(RHS, Start) - Start) / Stride | |||
| 13044 | End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); | |||
| 13045 | ||||
| 13046 | // See what would happen if we assume the backedge is taken. This is | |||
| 13047 | // used to compute MaxBECount. | |||
| 13048 | BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); | |||
| 13049 | } | |||
| 13050 | ||||
| 13051 | // At this point, we know: | |||
| 13052 | // | |||
| 13053 | // 1. If IsSigned, Start <=s End; otherwise, Start <=u End | |||
| 13054 | // 2. The index variable doesn't overflow. | |||
| 13055 | // | |||
| 13056 | // Therefore, we know N exists such that | |||
| 13057 | // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" | |||
| 13058 | // doesn't overflow. | |||
| 13059 | // | |||
| 13060 | // Using this information, try to prove whether the addition in | |||
| 13061 | // "(Start - End) + (Stride - 1)" has unsigned overflow. | |||
| 13062 | const SCEV *One = getOne(Stride->getType()); | |||
| 13063 | bool MayAddOverflow = [&] { | |||
| 13064 | if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { | |||
| 13065 | if (StrideC->getAPInt().isPowerOf2()) { | |||
| 13066 | // Suppose Stride is a power of two, and Start/End are unsigned | |||
| 13067 | // integers. Let UMAX be the largest representable unsigned | |||
| 13068 | // integer. | |||
| 13069 | // | |||
| 13070 | // By the preconditions of this function, we know | |||
| 13071 | // "(Start + Stride * N) >= End", and this doesn't overflow. | |||
| 13072 | // As a formula: | |||
| 13073 | // | |||
| 13074 | // End <= (Start + Stride * N) <= UMAX | |||
| 13075 | // | |||
| 13076 | // Subtracting Start from all the terms: | |||
| 13077 | // | |||
| 13078 | // End - Start <= Stride * N <= UMAX - Start | |||
| 13079 | // | |||
| 13080 | // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: | |||
| 13081 | // | |||
| 13082 | // End - Start <= Stride * N <= UMAX | |||
| 13083 | // | |||
| 13084 | // Stride * N is a multiple of Stride. Therefore, | |||
| 13085 | // | |||
| 13086 | // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) | |||
| 13087 | // | |||
| 13088 | // Since Stride is a power of two, UMAX + 1 is divisible by Stride. | |||
| 13089 | // Therefore, UMAX mod Stride == Stride - 1. So we can write: | |||
| 13090 | // | |||
| 13091 | // End - Start <= Stride * N <= UMAX - Stride - 1 | |||
| 13092 | // | |||
| 13093 | // Dropping the middle term: | |||
| 13094 | // | |||
| 13095 | // End - Start <= UMAX - Stride - 1 | |||
| 13096 | // | |||
| 13097 | // Adding Stride - 1 to both sides: | |||
| 13098 | // | |||
| 13099 | // (End - Start) + (Stride - 1) <= UMAX | |||
| 13100 | // | |||
| 13101 | // In other words, the addition doesn't have unsigned overflow. | |||
| 13102 | // | |||
| 13103 | // A similar proof works if we treat Start/End as signed values. | |||
| 13104 | // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to | |||
| 13105 | // use signed max instead of unsigned max. Note that we're trying | |||
| 13106 | // to prove a lack of unsigned overflow in either case. | |||
| 13107 | return false; | |||
| 13108 | } | |||
| 13109 | } | |||
| 13110 | if (Start == Stride || Start == getMinusSCEV(Stride, One)) { | |||
| 13111 | // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. | |||
| 13112 | // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. | |||
| 13113 | // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. | |||
| 13114 | // | |||
| 13115 | // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. | |||
| 13116 | return false; | |||
| 13117 | } | |||
| 13118 | return true; | |||
| 13119 | }(); | |||
| 13120 | ||||
| 13121 | const SCEV *Delta = getMinusSCEV(End, Start); | |||
| 13122 | if (!MayAddOverflow) { | |||
| 13123 | // floor((D + (S - 1)) / S) | |||
| 13124 | // We prefer this formulation if it's legal because it's fewer operations. | |||
| 13125 | BECount = | |||
| 13126 | getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); | |||
| 13127 | } else { | |||
| 13128 | BECount = getUDivCeilSCEV(Delta, Stride); | |||
| 13129 | } | |||
| 13130 | } | |||
| 13131 | ||||
| 13132 | const SCEV *ConstantMaxBECount; | |||
| 13133 | bool MaxOrZero = false; | |||
| 13134 | if (isa<SCEVConstant>(BECount)) { | |||
| 13135 | ConstantMaxBECount = BECount; | |||
| 13136 | } else if (BECountIfBackedgeTaken && | |||
| 13137 | isa<SCEVConstant>(BECountIfBackedgeTaken)) { | |||
| 13138 | // If we know exactly how many times the backedge will be taken if it's | |||
| 13139 | // taken at least once, then the backedge count will either be that or | |||
| 13140 | // zero. | |||
| 13141 | ConstantMaxBECount = BECountIfBackedgeTaken; | |||
| 13142 | MaxOrZero = true; | |||
| 13143 | } else { | |||
| 13144 | ConstantMaxBECount = computeMaxBECountForLT( | |||
| 13145 | Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); | |||
| 13146 | } | |||
| 13147 | ||||
| 13148 | if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) && | |||
| 13149 | !isa<SCEVCouldNotCompute>(BECount)) | |||
| 13150 | ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount)); | |||
| 13151 | ||||
| 13152 | const SCEV *SymbolicMaxBECount = | |||
| 13153 | isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; | |||
| 13154 | return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero, | |||
| 13155 | Predicates); | |||
| 13156 | } | |||
| 13157 | ||||
| 13158 | ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans( | |||
| 13159 | const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned, | |||
| 13160 | bool ControlsOnlyExit, bool AllowPredicates) { | |||
| 13161 | SmallPtrSet<const SCEVPredicate *, 4> Predicates; | |||
| 13162 | // We handle only IV > Invariant | |||
| 13163 | if (!isLoopInvariant(RHS, L)) | |||
| 13164 | return getCouldNotCompute(); | |||
| 13165 | ||||
| 13166 | const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); | |||
| 13167 | if (!IV && AllowPredicates) | |||
| 13168 | // Try to make this an AddRec using runtime tests, in the first X | |||
| 13169 | // iterations of this loop, where X is the SCEV expression found by the | |||
| 13170 | // algorithm below. | |||
| 13171 | IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); | |||
| 13172 | ||||
| 13173 | // Avoid weird loops | |||
| 13174 | if (!IV || IV->getLoop() != L || !IV->isAffine()) | |||
| 13175 | return getCouldNotCompute(); | |||
| 13176 | ||||
| 13177 | auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; | |||
| 13178 | bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType); | |||
| 13179 | ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | |||
| 13180 | ||||
| 13181 | const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); | |||
| 13182 | ||||
| 13183 | // Avoid negative or zero stride values | |||
| 13184 | if (!isKnownPositive(Stride)) | |||
| 13185 | return getCouldNotCompute(); | |||
| 13186 | ||||
| 13187 | // Avoid proven overflow cases: this will ensure that the backedge taken count | |||
| 13188 | // will not generate any unsigned overflow. Relaxed no-overflow conditions | |||
| 13189 | // exploit NoWrapFlags, allowing to optimize in presence of undefined | |||
| 13190 | // behaviors like the case of C language. | |||
| 13191 | if (!Stride->isOne() && !NoWrap) | |||
| 13192 | if (canIVOverflowOnGT(RHS, Stride, IsSigned)) | |||
| 13193 | return getCouldNotCompute(); | |||
| 13194 | ||||
| 13195 | const SCEV *Start = IV->getStart(); | |||
| 13196 | const SCEV *End = RHS; | |||
| 13197 | if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { | |||
| 13198 | // If we know that Start >= RHS in the context of loop, then we know that | |||
| 13199 | // min(RHS, Start) = RHS at this point. | |||
| 13200 | if (isLoopEntryGuardedByCond( | |||
| 13201 | L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) | |||
| 13202 | End = RHS; | |||
| 13203 | else | |||
| 13204 | End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); | |||
| 13205 | } | |||
| 13206 | ||||
| 13207 | if (Start->getType()->isPointerTy()) { | |||
| 13208 | Start = getLosslessPtrToIntExpr(Start); | |||
| 13209 | if (isa<SCEVCouldNotCompute>(Start)) | |||
| 13210 | return Start; | |||
| 13211 | } | |||
| 13212 | if (End->getType()->isPointerTy()) { | |||
| 13213 | End = getLosslessPtrToIntExpr(End); | |||
| 13214 | if (isa<SCEVCouldNotCompute>(End)) | |||
| 13215 | return End; | |||
| 13216 | } | |||
| 13217 | ||||
| 13218 | // Compute ((Start - End) + (Stride - 1)) / Stride. | |||
| 13219 | // FIXME: This can overflow. Holding off on fixing this for now; | |||
| 13220 | // howManyGreaterThans will hopefully be gone soon. | |||
| 13221 | const SCEV *One = getOne(Stride->getType()); | |||
| 13222 | const SCEV *BECount = getUDivExpr( | |||
| 13223 | getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); | |||
| 13224 | ||||
| 13225 | APInt MaxStart = IsSigned ? getSignedRangeMax(Start) | |||
| 13226 | : getUnsignedRangeMax(Start); | |||
| 13227 | ||||
| 13228 | APInt MinStride = IsSigned ? getSignedRangeMin(Stride) | |||
| 13229 | : getUnsignedRangeMin(Stride); | |||
| 13230 | ||||
| 13231 | unsigned BitWidth = getTypeSizeInBits(LHS->getType()); | |||
| 13232 | APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) | |||
| 13233 | : APInt::getMinValue(BitWidth) + (MinStride - 1); | |||
| 13234 | ||||
| 13235 | // Although End can be a MIN expression we estimate MinEnd considering only | |||
| 13236 | // the case End = RHS. This is safe because in the other case (Start - End) | |||
| 13237 | // is zero, leading to a zero maximum backedge taken count. | |||
| 13238 | APInt MinEnd = | |||
| 13239 | IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) | |||
| 13240 | : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); | |||
| 13241 | ||||
| 13242 | const SCEV *ConstantMaxBECount = | |||
| 13243 | isa<SCEVConstant>(BECount) | |||
| 13244 | ? BECount | |||
| 13245 | : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), | |||
| 13246 | getConstant(MinStride)); | |||
| 13247 | ||||
| 13248 | if (isa<SCEVCouldNotCompute>(ConstantMaxBECount)) | |||
| 13249 | ConstantMaxBECount = BECount; | |||
| 13250 | const SCEV *SymbolicMaxBECount = | |||
| 13251 | isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount; | |||
| 13252 | ||||
| 13253 | return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false, | |||
| 13254 | Predicates); | |||
| 13255 | } | |||
| 13256 | ||||
| 13257 | const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, | |||
| 13258 | ScalarEvolution &SE) const { | |||
| 13259 | if (Range.isFullSet()) // Infinite loop. | |||
| 13260 | return SE.getCouldNotCompute(); | |||
| 13261 | ||||
| 13262 | // If the start is a non-zero constant, shift the range to simplify things. | |||
| 13263 | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) | |||
| 13264 | if (!SC->getValue()->isZero()) { | |||
| 13265 | SmallVector<const SCEV *, 4> Operands(operands()); | |||
| 13266 | Operands[0] = SE.getZero(SC->getType()); | |||
| 13267 | const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), | |||
| 13268 | getNoWrapFlags(FlagNW)); | |||
| 13269 | if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) | |||
| 13270 | return ShiftedAddRec->getNumIterationsInRange( | |||
| 13271 | Range.subtract(SC->getAPInt()), SE); | |||
| 13272 | // This is strange and shouldn't happen. | |||
| 13273 | return SE.getCouldNotCompute(); | |||
| 13274 | } | |||
| 13275 | ||||
| 13276 | // The only time we can solve this is when we have all constant indices. | |||
| 13277 | // Otherwise, we cannot determine the overflow conditions. | |||
| 13278 | if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) | |||
| 13279 | return SE.getCouldNotCompute(); | |||
| 13280 | ||||
| 13281 | // Okay at this point we know that all elements of the chrec are constants and | |||
| 13282 | // that the start element is zero. | |||
| 13283 | ||||
| 13284 | // First check to see if the range contains zero. If not, the first | |||
| 13285 | // iteration exits. | |||
| 13286 | unsigned BitWidth = SE.getTypeSizeInBits(getType()); | |||
| 13287 | if (!Range.contains(APInt(BitWidth, 0))) | |||
| 13288 | return SE.getZero(getType()); | |||
| 13289 | ||||
| 13290 | if (isAffine()) { | |||
| 13291 | // If this is an affine expression then we have this situation: | |||
| 13292 | // Solve {0,+,A} in Range === Ax in Range | |||
| 13293 | ||||
| 13294 | // We know that zero is in the range. If A is positive then we know that | |||
| 13295 | // the upper value of the range must be the first possible exit value. | |||
| 13296 | // If A is negative then the lower of the range is the last possible loop | |||
| 13297 | // value. Also note that we already checked for a full range. | |||
| 13298 | APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); | |||
| 13299 | APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); | |||
| 13300 | ||||
| 13301 | // The exit value should be (End+A)/A. | |||
| 13302 | APInt ExitVal = (End + A).udiv(A); | |||
| 13303 | ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); | |||
| 13304 | ||||
| 13305 | // Evaluate at the exit value. If we really did fall out of the valid | |||
| 13306 | // range, then we computed our trip count, otherwise wrap around or other | |||
| 13307 | // things must have happened. | |||
| 13308 | ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); | |||
| 13309 | if (Range.contains(Val->getValue())) | |||
| 13310 | return SE.getCouldNotCompute(); // Something strange happened | |||
| 13311 | ||||
| 13312 | // Ensure that the previous value is in the range. | |||
| 13313 | assert(Range.contains((static_cast <bool> (Range.contains( EvaluateConstantChrecAtConstant (this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)-> getValue()) && "Linear scev computation is off in a bad way!" ) ? void (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && \"Linear scev computation is off in a bad way!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13316, __extension__ __PRETTY_FUNCTION__)) | |||
| 13314 | EvaluateConstantChrecAtConstant(this,(static_cast <bool> (Range.contains( EvaluateConstantChrecAtConstant (this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)-> getValue()) && "Linear scev computation is off in a bad way!" ) ? void (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && \"Linear scev computation is off in a bad way!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13316, __extension__ __PRETTY_FUNCTION__)) | |||
| 13315 | ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&(static_cast <bool> (Range.contains( EvaluateConstantChrecAtConstant (this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)-> getValue()) && "Linear scev computation is off in a bad way!" ) ? void (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && \"Linear scev computation is off in a bad way!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13316, __extension__ __PRETTY_FUNCTION__)) | |||
| 13316 | "Linear scev computation is off in a bad way!")(static_cast <bool> (Range.contains( EvaluateConstantChrecAtConstant (this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)-> getValue()) && "Linear scev computation is off in a bad way!" ) ? void (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && \"Linear scev computation is off in a bad way!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13316, __extension__ __PRETTY_FUNCTION__)); | |||
| 13317 | return SE.getConstant(ExitValue); | |||
| 13318 | } | |||
| 13319 | ||||
| 13320 | if (isQuadratic()) { | |||
| 13321 | if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) | |||
| 13322 | return SE.getConstant(*S); | |||
| 13323 | } | |||
| 13324 | ||||
| 13325 | return SE.getCouldNotCompute(); | |||
| 13326 | } | |||
| 13327 | ||||
| 13328 | const SCEVAddRecExpr * | |||
| 13329 | SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { | |||
| 13330 | assert(getNumOperands() > 1 && "AddRec with zero step?")(static_cast <bool> (getNumOperands() > 1 && "AddRec with zero step?") ? void (0) : __assert_fail ("getNumOperands() > 1 && \"AddRec with zero step?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13330, __extension__ __PRETTY_FUNCTION__)); | |||
| 13331 | // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), | |||
| 13332 | // but in this case we cannot guarantee that the value returned will be an | |||
| 13333 | // AddRec because SCEV does not have a fixed point where it stops | |||
| 13334 | // simplification: it is legal to return ({rec1} + {rec2}). For example, it | |||
| 13335 | // may happen if we reach arithmetic depth limit while simplifying. So we | |||
| 13336 | // construct the returned value explicitly. | |||
| 13337 | SmallVector<const SCEV *, 3> Ops; | |||
| 13338 | // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and | |||
| 13339 | // (this + Step) is {A+B,+,B+C,+...,+,N}. | |||
| 13340 | for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) | |||
| 13341 | Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); | |||
| 13342 | // We know that the last operand is not a constant zero (otherwise it would | |||
| 13343 | // have been popped out earlier). This guarantees us that if the result has | |||
| 13344 | // the same last operand, then it will also not be popped out, meaning that | |||
| 13345 | // the returned value will be an AddRec. | |||
| 13346 | const SCEV *Last = getOperand(getNumOperands() - 1); | |||
| 13347 | assert(!Last->isZero() && "Recurrency with zero step?")(static_cast <bool> (!Last->isZero() && "Recurrency with zero step?" ) ? void (0) : __assert_fail ("!Last->isZero() && \"Recurrency with zero step?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13347, __extension__ __PRETTY_FUNCTION__)); | |||
| 13348 | Ops.push_back(Last); | |||
| 13349 | return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), | |||
| 13350 | SCEV::FlagAnyWrap)); | |||
| 13351 | } | |||
| 13352 | ||||
| 13353 | // Return true when S contains at least an undef value. | |||
| 13354 | bool ScalarEvolution::containsUndefs(const SCEV *S) const { | |||
| 13355 | return SCEVExprContains(S, [](const SCEV *S) { | |||
| 13356 | if (const auto *SU = dyn_cast<SCEVUnknown>(S)) | |||
| 13357 | return isa<UndefValue>(SU->getValue()); | |||
| 13358 | return false; | |||
| 13359 | }); | |||
| 13360 | } | |||
| 13361 | ||||
| 13362 | // Return true when S contains a value that is a nullptr. | |||
| 13363 | bool ScalarEvolution::containsErasedValue(const SCEV *S) const { | |||
| 13364 | return SCEVExprContains(S, [](const SCEV *S) { | |||
| 13365 | if (const auto *SU = dyn_cast<SCEVUnknown>(S)) | |||
| 13366 | return SU->getValue() == nullptr; | |||
| 13367 | return false; | |||
| 13368 | }); | |||
| 13369 | } | |||
| 13370 | ||||
| 13371 | /// Return the size of an element read or written by Inst. | |||
| 13372 | const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { | |||
| 13373 | Type *Ty; | |||
| 13374 | if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) | |||
| 13375 | Ty = Store->getValueOperand()->getType(); | |||
| 13376 | else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) | |||
| 13377 | Ty = Load->getType(); | |||
| 13378 | else | |||
| 13379 | return nullptr; | |||
| 13380 | ||||
| 13381 | Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); | |||
| 13382 | return getSizeOfExpr(ETy, Ty); | |||
| 13383 | } | |||
| 13384 | ||||
| 13385 | //===----------------------------------------------------------------------===// | |||
| 13386 | // SCEVCallbackVH Class Implementation | |||
| 13387 | //===----------------------------------------------------------------------===// | |||
| 13388 | ||||
| 13389 | void ScalarEvolution::SCEVCallbackVH::deleted() { | |||
| 13390 | assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!")(static_cast <bool> (SE && "SCEVCallbackVH called with a null ScalarEvolution!" ) ? void (0) : __assert_fail ("SE && \"SCEVCallbackVH called with a null ScalarEvolution!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13390, __extension__ __PRETTY_FUNCTION__)); | |||
| 13391 | if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) | |||
| 13392 | SE->ConstantEvolutionLoopExitValue.erase(PN); | |||
| 13393 | SE->eraseValueFromMap(getValPtr()); | |||
| 13394 | // this now dangles! | |||
| 13395 | } | |||
| 13396 | ||||
| 13397 | void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { | |||
| 13398 | assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!")(static_cast <bool> (SE && "SCEVCallbackVH called with a null ScalarEvolution!" ) ? void (0) : __assert_fail ("SE && \"SCEVCallbackVH called with a null ScalarEvolution!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13398, __extension__ __PRETTY_FUNCTION__)); | |||
| 13399 | ||||
| 13400 | // Forget all the expressions associated with users of the old value, | |||
| 13401 | // so that future queries will recompute the expressions using the new | |||
| 13402 | // value. | |||
| 13403 | Value *Old = getValPtr(); | |||
| 13404 | SmallVector<User *, 16> Worklist(Old->users()); | |||
| 13405 | SmallPtrSet<User *, 8> Visited; | |||
| 13406 | while (!Worklist.empty()) { | |||
| 13407 | User *U = Worklist.pop_back_val(); | |||
| 13408 | // Deleting the Old value will cause this to dangle. Postpone | |||
| 13409 | // that until everything else is done. | |||
| 13410 | if (U == Old) | |||
| 13411 | continue; | |||
| 13412 | if (!Visited.insert(U).second) | |||
| 13413 | continue; | |||
| 13414 | if (PHINode *PN = dyn_cast<PHINode>(U)) | |||
| 13415 | SE->ConstantEvolutionLoopExitValue.erase(PN); | |||
| 13416 | SE->eraseValueFromMap(U); | |||
| 13417 | llvm::append_range(Worklist, U->users()); | |||
| 13418 | } | |||
| 13419 | // Delete the Old value. | |||
| 13420 | if (PHINode *PN = dyn_cast<PHINode>(Old)) | |||
| 13421 | SE->ConstantEvolutionLoopExitValue.erase(PN); | |||
| 13422 | SE->eraseValueFromMap(Old); | |||
| 13423 | // this now dangles! | |||
| 13424 | } | |||
| 13425 | ||||
| 13426 | ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) | |||
| 13427 | : CallbackVH(V), SE(se) {} | |||
| 13428 | ||||
| 13429 | //===----------------------------------------------------------------------===// | |||
| 13430 | // ScalarEvolution Class Implementation | |||
| 13431 | //===----------------------------------------------------------------------===// | |||
| 13432 | ||||
| 13433 | ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, | |||
| 13434 | AssumptionCache &AC, DominatorTree &DT, | |||
| 13435 | LoopInfo &LI) | |||
| 13436 | : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), | |||
| 13437 | CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), | |||
| 13438 | LoopDispositions(64), BlockDispositions(64) { | |||
| 13439 | // To use guards for proving predicates, we need to scan every instruction in | |||
| 13440 | // relevant basic blocks, and not just terminators. Doing this is a waste of | |||
| 13441 | // time if the IR does not actually contain any calls to | |||
| 13442 | // @llvm.experimental.guard, so do a quick check and remember this beforehand. | |||
| 13443 | // | |||
| 13444 | // This pessimizes the case where a pass that preserves ScalarEvolution wants | |||
| 13445 | // to _add_ guards to the module when there weren't any before, and wants | |||
| 13446 | // ScalarEvolution to optimize based on those guards. For now we prefer to be | |||
| 13447 | // efficient in lieu of being smart in that rather obscure case. | |||
| 13448 | ||||
| 13449 | auto *GuardDecl = F.getParent()->getFunction( | |||
| 13450 | Intrinsic::getName(Intrinsic::experimental_guard)); | |||
| 13451 | HasGuards = GuardDecl && !GuardDecl->use_empty(); | |||
| 13452 | } | |||
| 13453 | ||||
| 13454 | ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) | |||
| 13455 | : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), | |||
| 13456 | LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), | |||
| 13457 | ValueExprMap(std::move(Arg.ValueExprMap)), | |||
| 13458 | PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), | |||
| 13459 | PendingPhiRanges(std::move(Arg.PendingPhiRanges)), | |||
| 13460 | PendingMerges(std::move(Arg.PendingMerges)), | |||
| 13461 | ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)), | |||
| 13462 | BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), | |||
| 13463 | PredicatedBackedgeTakenCounts( | |||
| 13464 | std::move(Arg.PredicatedBackedgeTakenCounts)), | |||
| 13465 | BECountUsers(std::move(Arg.BECountUsers)), | |||
| 13466 | ConstantEvolutionLoopExitValue( | |||
| 13467 | std::move(Arg.ConstantEvolutionLoopExitValue)), | |||
| 13468 | ValuesAtScopes(std::move(Arg.ValuesAtScopes)), | |||
| 13469 | ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), | |||
| 13470 | LoopDispositions(std::move(Arg.LoopDispositions)), | |||
| 13471 | LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), | |||
| 13472 | BlockDispositions(std::move(Arg.BlockDispositions)), | |||
| 13473 | SCEVUsers(std::move(Arg.SCEVUsers)), | |||
| 13474 | UnsignedRanges(std::move(Arg.UnsignedRanges)), | |||
| 13475 | SignedRanges(std::move(Arg.SignedRanges)), | |||
| 13476 | UniqueSCEVs(std::move(Arg.UniqueSCEVs)), | |||
| 13477 | UniquePreds(std::move(Arg.UniquePreds)), | |||
| 13478 | SCEVAllocator(std::move(Arg.SCEVAllocator)), | |||
| 13479 | LoopUsers(std::move(Arg.LoopUsers)), | |||
| 13480 | PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), | |||
| 13481 | FirstUnknown(Arg.FirstUnknown) { | |||
| 13482 | Arg.FirstUnknown = nullptr; | |||
| 13483 | } | |||
| 13484 | ||||
| 13485 | ScalarEvolution::~ScalarEvolution() { | |||
| 13486 | // Iterate through all the SCEVUnknown instances and call their | |||
| 13487 | // destructors, so that they release their references to their values. | |||
| 13488 | for (SCEVUnknown *U = FirstUnknown; U;) { | |||
| 13489 | SCEVUnknown *Tmp = U; | |||
| 13490 | U = U->Next; | |||
| 13491 | Tmp->~SCEVUnknown(); | |||
| 13492 | } | |||
| 13493 | FirstUnknown = nullptr; | |||
| 13494 | ||||
| 13495 | ExprValueMap.clear(); | |||
| 13496 | ValueExprMap.clear(); | |||
| 13497 | HasRecMap.clear(); | |||
| 13498 | BackedgeTakenCounts.clear(); | |||
| 13499 | PredicatedBackedgeTakenCounts.clear(); | |||
| 13500 | ||||
| 13501 | assert(PendingLoopPredicates.empty() && "isImpliedCond garbage")(static_cast <bool> (PendingLoopPredicates.empty() && "isImpliedCond garbage") ? void (0) : __assert_fail ("PendingLoopPredicates.empty() && \"isImpliedCond garbage\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13501, __extension__ __PRETTY_FUNCTION__)); | |||
| 13502 | assert(PendingPhiRanges.empty() && "getRangeRef garbage")(static_cast <bool> (PendingPhiRanges.empty() && "getRangeRef garbage") ? void (0) : __assert_fail ("PendingPhiRanges.empty() && \"getRangeRef garbage\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13502, __extension__ __PRETTY_FUNCTION__)); | |||
| 13503 | assert(PendingMerges.empty() && "isImpliedViaMerge garbage")(static_cast <bool> (PendingMerges.empty() && "isImpliedViaMerge garbage" ) ? void (0) : __assert_fail ("PendingMerges.empty() && \"isImpliedViaMerge garbage\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13503, __extension__ __PRETTY_FUNCTION__)); | |||
| 13504 | assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!")(static_cast <bool> (!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!") ? void (0) : __assert_fail ("!WalkingBEDominatingConds && \"isLoopBackedgeGuardedByCond garbage!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13504, __extension__ __PRETTY_FUNCTION__)); | |||
| 13505 | assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!")(static_cast <bool> (!ProvingSplitPredicate && "ProvingSplitPredicate garbage!" ) ? void (0) : __assert_fail ("!ProvingSplitPredicate && \"ProvingSplitPredicate garbage!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13505, __extension__ __PRETTY_FUNCTION__)); | |||
| 13506 | } | |||
| 13507 | ||||
| 13508 | bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { | |||
| 13509 | return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); | |||
| 13510 | } | |||
| 13511 | ||||
| 13512 | static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, | |||
| 13513 | const Loop *L) { | |||
| 13514 | // Print all inner loops first | |||
| 13515 | for (Loop *I : *L) | |||
| 13516 | PrintLoopInfo(OS, SE, I); | |||
| 13517 | ||||
| 13518 | OS << "Loop "; | |||
| 13519 | L->getHeader()->printAsOperand(OS, /*PrintType=*/false); | |||
| 13520 | OS << ": "; | |||
| 13521 | ||||
| 13522 | SmallVector<BasicBlock *, 8> ExitingBlocks; | |||
| 13523 | L->getExitingBlocks(ExitingBlocks); | |||
| 13524 | if (ExitingBlocks.size() != 1) | |||
| 13525 | OS << "<multiple exits> "; | |||
| 13526 | ||||
| 13527 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) | |||
| 13528 | OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; | |||
| 13529 | else | |||
| 13530 | OS << "Unpredictable backedge-taken count.\n"; | |||
| 13531 | ||||
| 13532 | if (ExitingBlocks.size() > 1) | |||
| 13533 | for (BasicBlock *ExitingBlock : ExitingBlocks) { | |||
| 13534 | OS << " exit count for " << ExitingBlock->getName() << ": " | |||
| 13535 | << *SE->getExitCount(L, ExitingBlock) << "\n"; | |||
| 13536 | } | |||
| 13537 | ||||
| 13538 | OS << "Loop "; | |||
| 13539 | L->getHeader()->printAsOperand(OS, /*PrintType=*/false); | |||
| 13540 | OS << ": "; | |||
| 13541 | ||||
| 13542 | auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L); | |||
| 13543 | if (!isa<SCEVCouldNotCompute>(ConstantBTC)) { | |||
| 13544 | OS << "constant max backedge-taken count is " << *ConstantBTC; | |||
| 13545 | if (SE->isBackedgeTakenCountMaxOrZero(L)) | |||
| 13546 | OS << ", actual taken count either this or zero."; | |||
| 13547 | } else { | |||
| 13548 | OS << "Unpredictable constant max backedge-taken count. "; | |||
| 13549 | } | |||
| 13550 | ||||
| 13551 | OS << "\n" | |||
| 13552 | "Loop "; | |||
| 13553 | L->getHeader()->printAsOperand(OS, /*PrintType=*/false); | |||
| 13554 | OS << ": "; | |||
| 13555 | ||||
| 13556 | auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L); | |||
| 13557 | if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) { | |||
| 13558 | OS << "symbolic max backedge-taken count is " << *SymbolicBTC; | |||
| 13559 | if (SE->isBackedgeTakenCountMaxOrZero(L)) | |||
| 13560 | OS << ", actual taken count either this or zero."; | |||
| 13561 | } else { | |||
| 13562 | OS << "Unpredictable symbolic max backedge-taken count. "; | |||
| 13563 | } | |||
| 13564 | ||||
| 13565 | OS << "\n"; | |||
| 13566 | if (ExitingBlocks.size() > 1) | |||
| 13567 | for (BasicBlock *ExitingBlock : ExitingBlocks) { | |||
| 13568 | OS << " symbolic max exit count for " << ExitingBlock->getName() << ": " | |||
| 13569 | << *SE->getExitCount(L, ExitingBlock, ScalarEvolution::SymbolicMaximum) | |||
| 13570 | << "\n"; | |||
| 13571 | } | |||
| 13572 | ||||
| 13573 | OS << "Loop "; | |||
| 13574 | L->getHeader()->printAsOperand(OS, /*PrintType=*/false); | |||
| 13575 | OS << ": "; | |||
| 13576 | ||||
| 13577 | SmallVector<const SCEVPredicate *, 4> Preds; | |||
| 13578 | auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); | |||
| 13579 | if (!isa<SCEVCouldNotCompute>(PBT)) { | |||
| 13580 | OS << "Predicated backedge-taken count is " << *PBT << "\n"; | |||
| 13581 | OS << " Predicates:\n"; | |||
| 13582 | for (const auto *P : Preds) | |||
| 13583 | P->print(OS, 4); | |||
| 13584 | } else { | |||
| 13585 | OS << "Unpredictable predicated backedge-taken count. "; | |||
| 13586 | } | |||
| 13587 | OS << "\n"; | |||
| 13588 | ||||
| 13589 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { | |||
| 13590 | OS << "Loop "; | |||
| 13591 | L->getHeader()->printAsOperand(OS, /*PrintType=*/false); | |||
| 13592 | OS << ": "; | |||
| 13593 | OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; | |||
| 13594 | } | |||
| 13595 | } | |||
| 13596 | ||||
| 13597 | static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { | |||
| 13598 | switch (LD) { | |||
| 13599 | case ScalarEvolution::LoopVariant: | |||
| 13600 | return "Variant"; | |||
| 13601 | case ScalarEvolution::LoopInvariant: | |||
| 13602 | return "Invariant"; | |||
| 13603 | case ScalarEvolution::LoopComputable: | |||
| 13604 | return "Computable"; | |||
| 13605 | } | |||
| 13606 | llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!")::llvm::llvm_unreachable_internal("Unknown ScalarEvolution::LoopDisposition kind!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13606); | |||
| 13607 | } | |||
| 13608 | ||||
| 13609 | void ScalarEvolution::print(raw_ostream &OS) const { | |||
| 13610 | // ScalarEvolution's implementation of the print method is to print | |||
| 13611 | // out SCEV values of all instructions that are interesting. Doing | |||
| 13612 | // this potentially causes it to create new SCEV objects though, | |||
| 13613 | // which technically conflicts with the const qualifier. This isn't | |||
| 13614 | // observable from outside the class though, so casting away the | |||
| 13615 | // const isn't dangerous. | |||
| 13616 | ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); | |||
| 13617 | ||||
| 13618 | if (ClassifyExpressions) { | |||
| 13619 | OS << "Classifying expressions for: "; | |||
| 13620 | F.printAsOperand(OS, /*PrintType=*/false); | |||
| 13621 | OS << "\n"; | |||
| 13622 | for (Instruction &I : instructions(F)) | |||
| 13623 | if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { | |||
| 13624 | OS << I << '\n'; | |||
| 13625 | OS << " --> "; | |||
| 13626 | const SCEV *SV = SE.getSCEV(&I); | |||
| 13627 | SV->print(OS); | |||
| 13628 | if (!isa<SCEVCouldNotCompute>(SV)) { | |||
| 13629 | OS << " U: "; | |||
| 13630 | SE.getUnsignedRange(SV).print(OS); | |||
| 13631 | OS << " S: "; | |||
| 13632 | SE.getSignedRange(SV).print(OS); | |||
| 13633 | } | |||
| 13634 | ||||
| 13635 | const Loop *L = LI.getLoopFor(I.getParent()); | |||
| 13636 | ||||
| 13637 | const SCEV *AtUse = SE.getSCEVAtScope(SV, L); | |||
| 13638 | if (AtUse != SV) { | |||
| 13639 | OS << " --> "; | |||
| 13640 | AtUse->print(OS); | |||
| 13641 | if (!isa<SCEVCouldNotCompute>(AtUse)) { | |||
| 13642 | OS << " U: "; | |||
| 13643 | SE.getUnsignedRange(AtUse).print(OS); | |||
| 13644 | OS << " S: "; | |||
| 13645 | SE.getSignedRange(AtUse).print(OS); | |||
| 13646 | } | |||
| 13647 | } | |||
| 13648 | ||||
| 13649 | if (L) { | |||
| 13650 | OS << "\t\t" "Exits: "; | |||
| 13651 | const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); | |||
| 13652 | if (!SE.isLoopInvariant(ExitValue, L)) { | |||
| 13653 | OS << "<<Unknown>>"; | |||
| 13654 | } else { | |||
| 13655 | OS << *ExitValue; | |||
| 13656 | } | |||
| 13657 | ||||
| 13658 | bool First = true; | |||
| 13659 | for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { | |||
| 13660 | if (First) { | |||
| 13661 | OS << "\t\t" "LoopDispositions: { "; | |||
| 13662 | First = false; | |||
| 13663 | } else { | |||
| 13664 | OS << ", "; | |||
| 13665 | } | |||
| 13666 | ||||
| 13667 | Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); | |||
| 13668 | OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); | |||
| 13669 | } | |||
| 13670 | ||||
| 13671 | for (const auto *InnerL : depth_first(L)) { | |||
| 13672 | if (InnerL == L) | |||
| 13673 | continue; | |||
| 13674 | if (First) { | |||
| 13675 | OS << "\t\t" "LoopDispositions: { "; | |||
| 13676 | First = false; | |||
| 13677 | } else { | |||
| 13678 | OS << ", "; | |||
| 13679 | } | |||
| 13680 | ||||
| 13681 | InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); | |||
| 13682 | OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); | |||
| 13683 | } | |||
| 13684 | ||||
| 13685 | OS << " }"; | |||
| 13686 | } | |||
| 13687 | ||||
| 13688 | OS << "\n"; | |||
| 13689 | } | |||
| 13690 | } | |||
| 13691 | ||||
| 13692 | OS << "Determining loop execution counts for: "; | |||
| 13693 | F.printAsOperand(OS, /*PrintType=*/false); | |||
| 13694 | OS << "\n"; | |||
| 13695 | for (Loop *I : LI) | |||
| 13696 | PrintLoopInfo(OS, &SE, I); | |||
| 13697 | } | |||
| 13698 | ||||
| 13699 | ScalarEvolution::LoopDisposition | |||
| 13700 | ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { | |||
| 13701 | auto &Values = LoopDispositions[S]; | |||
| 13702 | for (auto &V : Values) { | |||
| 13703 | if (V.getPointer() == L) | |||
| 13704 | return V.getInt(); | |||
| 13705 | } | |||
| 13706 | Values.emplace_back(L, LoopVariant); | |||
| 13707 | LoopDisposition D = computeLoopDisposition(S, L); | |||
| 13708 | auto &Values2 = LoopDispositions[S]; | |||
| 13709 | for (auto &V : llvm::reverse(Values2)) { | |||
| 13710 | if (V.getPointer() == L) { | |||
| 13711 | V.setInt(D); | |||
| 13712 | break; | |||
| 13713 | } | |||
| 13714 | } | |||
| 13715 | return D; | |||
| 13716 | } | |||
| 13717 | ||||
| 13718 | ScalarEvolution::LoopDisposition | |||
| 13719 | ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { | |||
| 13720 | switch (S->getSCEVType()) { | |||
| 13721 | case scConstant: | |||
| 13722 | case scVScale: | |||
| 13723 | return LoopInvariant; | |||
| 13724 | case scAddRecExpr: { | |||
| 13725 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); | |||
| 13726 | ||||
| 13727 | // If L is the addrec's loop, it's computable. | |||
| 13728 | if (AR->getLoop() == L) | |||
| 13729 | return LoopComputable; | |||
| 13730 | ||||
| 13731 | // Add recurrences are never invariant in the function-body (null loop). | |||
| 13732 | if (!L) | |||
| 13733 | return LoopVariant; | |||
| 13734 | ||||
| 13735 | // Everything that is not defined at loop entry is variant. | |||
| 13736 | if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) | |||
| 13737 | return LoopVariant; | |||
| 13738 | assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"(static_cast <bool> (!L->contains(AR->getLoop()) && "Containing loop's header does not" " dominate the contained loop's header?" ) ? void (0) : __assert_fail ("!L->contains(AR->getLoop()) && \"Containing loop's header does not\" \" dominate the contained loop's header?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13739, __extension__ __PRETTY_FUNCTION__)) | |||
| 13739 | " dominate the contained loop's header?")(static_cast <bool> (!L->contains(AR->getLoop()) && "Containing loop's header does not" " dominate the contained loop's header?" ) ? void (0) : __assert_fail ("!L->contains(AR->getLoop()) && \"Containing loop's header does not\" \" dominate the contained loop's header?\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13739, __extension__ __PRETTY_FUNCTION__)); | |||
| 13740 | ||||
| 13741 | // This recurrence is invariant w.r.t. L if AR's loop contains L. | |||
| 13742 | if (AR->getLoop()->contains(L)) | |||
| 13743 | return LoopInvariant; | |||
| 13744 | ||||
| 13745 | // This recurrence is variant w.r.t. L if any of its operands | |||
| 13746 | // are variant. | |||
| 13747 | for (const auto *Op : AR->operands()) | |||
| 13748 | if (!isLoopInvariant(Op, L)) | |||
| 13749 | return LoopVariant; | |||
| 13750 | ||||
| 13751 | // Otherwise it's loop-invariant. | |||
| 13752 | return LoopInvariant; | |||
| 13753 | } | |||
| 13754 | case scTruncate: | |||
| 13755 | case scZeroExtend: | |||
| 13756 | case scSignExtend: | |||
| 13757 | case scPtrToInt: | |||
| 13758 | case scAddExpr: | |||
| 13759 | case scMulExpr: | |||
| 13760 | case scUDivExpr: | |||
| 13761 | case scUMaxExpr: | |||
| 13762 | case scSMaxExpr: | |||
| 13763 | case scUMinExpr: | |||
| 13764 | case scSMinExpr: | |||
| 13765 | case scSequentialUMinExpr: { | |||
| 13766 | bool HasVarying = false; | |||
| 13767 | for (const auto *Op : S->operands()) { | |||
| 13768 | LoopDisposition D = getLoopDisposition(Op, L); | |||
| 13769 | if (D == LoopVariant) | |||
| 13770 | return LoopVariant; | |||
| 13771 | if (D == LoopComputable) | |||
| 13772 | HasVarying = true; | |||
| 13773 | } | |||
| 13774 | return HasVarying ? LoopComputable : LoopInvariant; | |||
| 13775 | } | |||
| 13776 | case scUnknown: | |||
| 13777 | // All non-instruction values are loop invariant. All instructions are loop | |||
| 13778 | // invariant if they are not contained in the specified loop. | |||
| 13779 | // Instructions are never considered invariant in the function body | |||
| 13780 | // (null loop) because they are defined within the "loop". | |||
| 13781 | if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) | |||
| 13782 | return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; | |||
| 13783 | return LoopInvariant; | |||
| 13784 | case scCouldNotCompute: | |||
| 13785 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13785); | |||
| 13786 | } | |||
| 13787 | llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 13787); | |||
| 13788 | } | |||
| 13789 | ||||
| 13790 | bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { | |||
| 13791 | return getLoopDisposition(S, L) == LoopInvariant; | |||
| 13792 | } | |||
| 13793 | ||||
| 13794 | bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { | |||
| 13795 | return getLoopDisposition(S, L) == LoopComputable; | |||
| 13796 | } | |||
| 13797 | ||||
| 13798 | ScalarEvolution::BlockDisposition | |||
| 13799 | ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { | |||
| 13800 | auto &Values = BlockDispositions[S]; | |||
| 13801 | for (auto &V : Values) { | |||
| 13802 | if (V.getPointer() == BB) | |||
| 13803 | return V.getInt(); | |||
| 13804 | } | |||
| 13805 | Values.emplace_back(BB, DoesNotDominateBlock); | |||
| 13806 | BlockDisposition D = computeBlockDisposition(S, BB); | |||
| 13807 | auto &Values2 = BlockDispositions[S]; | |||
| 13808 | for (auto &V : llvm::reverse(Values2)) { | |||
| 13809 | if (V.getPointer() == BB) { | |||
| 13810 | V.setInt(D); | |||
| 13811 | break; | |||
| 13812 | } | |||
| 13813 | } | |||
| 13814 | return D; | |||
| 13815 | } | |||
| 13816 | ||||
| 13817 | ScalarEvolution::BlockDisposition | |||
| 13818 | ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { | |||
| 13819 | switch (S->getSCEVType()) { | |||
| 13820 | case scConstant: | |||
| 13821 | case scVScale: | |||
| 13822 | return ProperlyDominatesBlock; | |||
| 13823 | case scAddRecExpr: { | |||
| 13824 | // This uses a "dominates" query instead of "properly dominates" query | |||
| 13825 | // to test for proper dominance too, because the instruction which | |||
| 13826 | // produces the addrec's value is a PHI, and a PHI effectively properly | |||
| 13827 | // dominates its entire containing block. | |||
| 13828 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); | |||
| 13829 | if (!DT.dominates(AR->getLoop()->getHeader(), BB)) | |||
| 13830 | return DoesNotDominateBlock; | |||
| 13831 | ||||
| 13832 | // Fall through into SCEVNAryExpr handling. | |||
| 13833 | [[fallthrough]]; | |||
| 13834 | } | |||
| 13835 | case scTruncate: | |||
| 13836 | case scZeroExtend: | |||
| 13837 | case scSignExtend: | |||
| 13838 | case scPtrToInt: | |||
| 13839 | case scAddExpr: | |||
| 13840 | case scMulExpr: | |||
| 13841 | case scUDivExpr: | |||
| 13842 | case scUMaxExpr: | |||
| 13843 | case scSMaxExpr: | |||
| 13844 | case scUMinExpr: | |||
| 13845 | case scSMinExpr: | |||
| 13846 | case scSequentialUMinExpr: { | |||
| 13847 | bool Proper = true; | |||
| 13848 | for (const SCEV *NAryOp : S->operands()) { | |||
| 13849 | BlockDisposition D = getBlockDisposition(NAryOp, BB); | |||
| 13850 | if (D == DoesNotDominateBlock) | |||
| 13851 | return DoesNotDominateBlock; | |||
| 13852 | if (D == DominatesBlock) | |||
| 13853 | Proper = false; | |||
| 13854 | } | |||
| 13855 | return Proper ? ProperlyDominatesBlock : DominatesBlock; | |||
| 13856 | } | |||
| 13857 | case scUnknown: | |||
| 13858 | if (Instruction *I = | |||
| 13859 | dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { | |||
| 13860 | if (I->getParent() == BB) | |||
| 13861 | return DominatesBlock; | |||
| 13862 | if (DT.properlyDominates(I->getParent(), BB)) | |||
| 13863 | return ProperlyDominatesBlock; | |||
| 13864 | return DoesNotDominateBlock; | |||
| 13865 | } | |||
| 13866 | return ProperlyDominatesBlock; | |||
| 13867 | case scCouldNotCompute: | |||
| 13868 | llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!" , "llvm/lib/Analysis/ScalarEvolution.cpp", 13868); | |||
| 13869 | } | |||
| 13870 | llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Analysis/ScalarEvolution.cpp" , 13870); | |||
| 13871 | } | |||
| 13872 | ||||
| 13873 | bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { | |||
| 13874 | return getBlockDisposition(S, BB) >= DominatesBlock; | |||
| 13875 | } | |||
| 13876 | ||||
| 13877 | bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { | |||
| 13878 | return getBlockDisposition(S, BB) == ProperlyDominatesBlock; | |||
| 13879 | } | |||
| 13880 | ||||
| 13881 | bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { | |||
| 13882 | return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); | |||
| 13883 | } | |||
| 13884 | ||||
| 13885 | void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, | |||
| 13886 | bool Predicated) { | |||
| 13887 | auto &BECounts = | |||
| 13888 | Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; | |||
| 13889 | auto It = BECounts.find(L); | |||
| 13890 | if (It != BECounts.end()) { | |||
| 13891 | for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { | |||
| 13892 | for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { | |||
| 13893 | if (!isa<SCEVConstant>(S)) { | |||
| 13894 | auto UserIt = BECountUsers.find(S); | |||
| 13895 | assert(UserIt != BECountUsers.end())(static_cast <bool> (UserIt != BECountUsers.end()) ? void (0) : __assert_fail ("UserIt != BECountUsers.end()", "llvm/lib/Analysis/ScalarEvolution.cpp" , 13895, __extension__ __PRETTY_FUNCTION__)); | |||
| 13896 | UserIt->second.erase({L, Predicated}); | |||
| 13897 | } | |||
| 13898 | } | |||
| 13899 | } | |||
| 13900 | BECounts.erase(It); | |||
| 13901 | } | |||
| 13902 | } | |||
| 13903 | ||||
| 13904 | void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { | |||
| 13905 | SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); | |||
| 13906 | SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); | |||
| 13907 | ||||
| 13908 | while (!Worklist.empty()) { | |||
| 13909 | const SCEV *Curr = Worklist.pop_back_val(); | |||
| 13910 | auto Users = SCEVUsers.find(Curr); | |||
| 13911 | if (Users != SCEVUsers.end()) | |||
| 13912 | for (const auto *User : Users->second) | |||
| 13913 | if (ToForget.insert(User).second) | |||
| 13914 | Worklist.push_back(User); | |||
| 13915 | } | |||
| 13916 | ||||
| 13917 | for (const auto *S : ToForget) | |||
| 13918 | forgetMemoizedResultsImpl(S); | |||
| 13919 | ||||
| 13920 | for (auto I = PredicatedSCEVRewrites.begin(); | |||
| 13921 | I != PredicatedSCEVRewrites.end();) { | |||
| 13922 | std::pair<const SCEV *, const Loop *> Entry = I->first; | |||
| 13923 | if (ToForget.count(Entry.first)) | |||
| 13924 | PredicatedSCEVRewrites.erase(I++); | |||
| 13925 | else | |||
| 13926 | ++I; | |||
| 13927 | } | |||
| 13928 | } | |||
| 13929 | ||||
| 13930 | void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { | |||
| 13931 | LoopDispositions.erase(S); | |||
| 13932 | BlockDispositions.erase(S); | |||
| 13933 | UnsignedRanges.erase(S); | |||
| 13934 | SignedRanges.erase(S); | |||
| 13935 | HasRecMap.erase(S); | |||
| 13936 | ConstantMultipleCache.erase(S); | |||
| 13937 | ||||
| 13938 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) { | |||
| 13939 | UnsignedWrapViaInductionTried.erase(AR); | |||
| 13940 | SignedWrapViaInductionTried.erase(AR); | |||
| 13941 | } | |||
| 13942 | ||||
| 13943 | auto ExprIt = ExprValueMap.find(S); | |||
| 13944 | if (ExprIt != ExprValueMap.end()) { | |||
| 13945 | for (Value *V : ExprIt->second) { | |||
| 13946 | auto ValueIt = ValueExprMap.find_as(V); | |||
| 13947 | if (ValueIt != ValueExprMap.end()) | |||
| 13948 | ValueExprMap.erase(ValueIt); | |||
| 13949 | } | |||
| 13950 | ExprValueMap.erase(ExprIt); | |||
| 13951 | } | |||
| 13952 | ||||
| 13953 | auto ScopeIt = ValuesAtScopes.find(S); | |||
| 13954 | if (ScopeIt != ValuesAtScopes.end()) { | |||
| 13955 | for (const auto &Pair : ScopeIt->second) | |||
| 13956 | if (!isa_and_nonnull<SCEVConstant>(Pair.second)) | |||
| 13957 | erase_value(ValuesAtScopesUsers[Pair.second], | |||
| 13958 | std::make_pair(Pair.first, S)); | |||
| 13959 | ValuesAtScopes.erase(ScopeIt); | |||
| 13960 | } | |||
| 13961 | ||||
| 13962 | auto ScopeUserIt = ValuesAtScopesUsers.find(S); | |||
| 13963 | if (ScopeUserIt != ValuesAtScopesUsers.end()) { | |||
| 13964 | for (const auto &Pair : ScopeUserIt->second) | |||
| 13965 | erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); | |||
| 13966 | ValuesAtScopesUsers.erase(ScopeUserIt); | |||
| 13967 | } | |||
| 13968 | ||||
| 13969 | auto BEUsersIt = BECountUsers.find(S); | |||
| 13970 | if (BEUsersIt != BECountUsers.end()) { | |||
| 13971 | // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. | |||
| 13972 | auto Copy = BEUsersIt->second; | |||
| 13973 | for (const auto &Pair : Copy) | |||
| 13974 | forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); | |||
| 13975 | BECountUsers.erase(BEUsersIt); | |||
| 13976 | } | |||
| 13977 | ||||
| 13978 | auto FoldUser = FoldCacheUser.find(S); | |||
| 13979 | if (FoldUser != FoldCacheUser.end()) | |||
| 13980 | for (auto &KV : FoldUser->second) | |||
| 13981 | FoldCache.erase(KV); | |||
| 13982 | FoldCacheUser.erase(S); | |||
| 13983 | } | |||
| 13984 | ||||
| 13985 | void | |||
| 13986 | ScalarEvolution::getUsedLoops(const SCEV *S, | |||
| 13987 | SmallPtrSetImpl<const Loop *> &LoopsUsed) { | |||
| 13988 | struct FindUsedLoops { | |||
| 13989 | FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) | |||
| 13990 | : LoopsUsed(LoopsUsed) {} | |||
| 13991 | SmallPtrSetImpl<const Loop *> &LoopsUsed; | |||
| 13992 | bool follow(const SCEV *S) { | |||
| 13993 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) | |||
| 13994 | LoopsUsed.insert(AR->getLoop()); | |||
| 13995 | return true; | |||
| 13996 | } | |||
| 13997 | ||||
| 13998 | bool isDone() const { return false; } | |||
| 13999 | }; | |||
| 14000 | ||||
| 14001 | FindUsedLoops F(LoopsUsed); | |||
| 14002 | SCEVTraversal<FindUsedLoops>(F).visitAll(S); | |||
| 14003 | } | |||
| 14004 | ||||
| 14005 | void ScalarEvolution::getReachableBlocks( | |||
| 14006 | SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { | |||
| 14007 | SmallVector<BasicBlock *> Worklist; | |||
| 14008 | Worklist.push_back(&F.getEntryBlock()); | |||
| 14009 | while (!Worklist.empty()) { | |||
| 14010 | BasicBlock *BB = Worklist.pop_back_val(); | |||
| 14011 | if (!Reachable.insert(BB).second) | |||
| 14012 | continue; | |||
| 14013 | ||||
| 14014 | Value *Cond; | |||
| 14015 | BasicBlock *TrueBB, *FalseBB; | |||
| 14016 | if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), | |||
| 14017 | m_BasicBlock(FalseBB)))) { | |||
| 14018 | if (auto *C = dyn_cast<ConstantInt>(Cond)) { | |||
| 14019 | Worklist.push_back(C->isOne() ? TrueBB : FalseBB); | |||
| 14020 | continue; | |||
| 14021 | } | |||
| 14022 | ||||
| 14023 | if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { | |||
| 14024 | const SCEV *L = getSCEV(Cmp->getOperand(0)); | |||
| 14025 | const SCEV *R = getSCEV(Cmp->getOperand(1)); | |||
| 14026 | if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) { | |||
| 14027 | Worklist.push_back(TrueBB); | |||
| 14028 | continue; | |||
| 14029 | } | |||
| 14030 | if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L, | |||
| 14031 | R)) { | |||
| 14032 | Worklist.push_back(FalseBB); | |||
| 14033 | continue; | |||
| 14034 | } | |||
| 14035 | } | |||
| 14036 | } | |||
| 14037 | ||||
| 14038 | append_range(Worklist, successors(BB)); | |||
| 14039 | } | |||
| 14040 | } | |||
| 14041 | ||||
| 14042 | void ScalarEvolution::verify() const { | |||
| 14043 | ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); | |||
| 14044 | ScalarEvolution SE2(F, TLI, AC, DT, LI); | |||
| 14045 | ||||
| 14046 | SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); | |||
| 14047 | ||||
| 14048 | // Map's SCEV expressions from one ScalarEvolution "universe" to another. | |||
| 14049 | struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { | |||
| 14050 | SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} | |||
| 14051 | ||||
| 14052 | const SCEV *visitConstant(const SCEVConstant *Constant) { | |||
| 14053 | return SE.getConstant(Constant->getAPInt()); | |||
| 14054 | } | |||
| 14055 | ||||
| 14056 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | |||
| 14057 | return SE.getUnknown(Expr->getValue()); | |||
| 14058 | } | |||
| 14059 | ||||
| 14060 | const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { | |||
| 14061 | return SE.getCouldNotCompute(); | |||
| 14062 | } | |||
| 14063 | }; | |||
| 14064 | ||||
| 14065 | SCEVMapper SCM(SE2); | |||
| 14066 | SmallPtrSet<BasicBlock *, 16> ReachableBlocks; | |||
| 14067 | SE2.getReachableBlocks(ReachableBlocks, F); | |||
| 14068 | ||||
| 14069 | auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { | |||
| 14070 | if (containsUndefs(Old) || containsUndefs(New)) { | |||
| 14071 | // SCEV treats "undef" as an unknown but consistent value (i.e. it does | |||
| 14072 | // not propagate undef aggressively). This means we can (and do) fail | |||
| 14073 | // verification in cases where a transform makes a value go from "undef" | |||
| 14074 | // to "undef+1" (say). The transform is fine, since in both cases the | |||
| 14075 | // result is "undef", but SCEV thinks the value increased by 1. | |||
| 14076 | return nullptr; | |||
| 14077 | } | |||
| 14078 | ||||
| 14079 | // Unless VerifySCEVStrict is set, we only compare constant deltas. | |||
| 14080 | const SCEV *Delta = SE2.getMinusSCEV(Old, New); | |||
| 14081 | if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) | |||
| 14082 | return nullptr; | |||
| 14083 | ||||
| 14084 | return Delta; | |||
| 14085 | }; | |||
| 14086 | ||||
| 14087 | while (!LoopStack.empty()) { | |||
| 14088 | auto *L = LoopStack.pop_back_val(); | |||
| 14089 | llvm::append_range(LoopStack, *L); | |||
| 14090 | ||||
| 14091 | // Only verify BECounts in reachable loops. For an unreachable loop, | |||
| 14092 | // any BECount is legal. | |||
| 14093 | if (!ReachableBlocks.contains(L->getHeader())) | |||
| 14094 | continue; | |||
| 14095 | ||||
| 14096 | // Only verify cached BECounts. Computing new BECounts may change the | |||
| 14097 | // results of subsequent SCEV uses. | |||
| 14098 | auto It = BackedgeTakenCounts.find(L); | |||
| 14099 | if (It == BackedgeTakenCounts.end()) | |||
| 14100 | continue; | |||
| 14101 | ||||
| 14102 | auto *CurBECount = | |||
| 14103 | SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); | |||
| 14104 | auto *NewBECount = SE2.getBackedgeTakenCount(L); | |||
| 14105 | ||||
| 14106 | if (CurBECount == SE2.getCouldNotCompute() || | |||
| 14107 | NewBECount == SE2.getCouldNotCompute()) { | |||
| 14108 | // NB! This situation is legal, but is very suspicious -- whatever pass | |||
| 14109 | // change the loop to make a trip count go from could not compute to | |||
| 14110 | // computable or vice-versa *should have* invalidated SCEV. However, we | |||
| 14111 | // choose not to assert here (for now) since we don't want false | |||
| 14112 | // positives. | |||
| 14113 | continue; | |||
| 14114 | } | |||
| 14115 | ||||
| 14116 | if (SE.getTypeSizeInBits(CurBECount->getType()) > | |||
| 14117 | SE.getTypeSizeInBits(NewBECount->getType())) | |||
| 14118 | NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); | |||
| 14119 | else if (SE.getTypeSizeInBits(CurBECount->getType()) < | |||
| 14120 | SE.getTypeSizeInBits(NewBECount->getType())) | |||
| 14121 | CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); | |||
| 14122 | ||||
| 14123 | const SCEV *Delta = GetDelta(CurBECount, NewBECount); | |||
| 14124 | if (Delta && !Delta->isZero()) { | |||
| 14125 | dbgs() << "Trip Count for " << *L << " Changed!\n"; | |||
| 14126 | dbgs() << "Old: " << *CurBECount << "\n"; | |||
| 14127 | dbgs() << "New: " << *NewBECount << "\n"; | |||
| 14128 | dbgs() << "Delta: " << *Delta << "\n"; | |||
| 14129 | std::abort(); | |||
| 14130 | } | |||
| 14131 | } | |||
| 14132 | ||||
| 14133 | // Collect all valid loops currently in LoopInfo. | |||
| 14134 | SmallPtrSet<Loop *, 32> ValidLoops; | |||
| 14135 | SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); | |||
| 14136 | while (!Worklist.empty()) { | |||
| 14137 | Loop *L = Worklist.pop_back_val(); | |||
| 14138 | if (ValidLoops.insert(L).second) | |||
| 14139 | Worklist.append(L->begin(), L->end()); | |||
| 14140 | } | |||
| 14141 | for (const auto &KV : ValueExprMap) { | |||
| 14142 | #ifndef NDEBUG | |||
| 14143 | // Check for SCEV expressions referencing invalid/deleted loops. | |||
| 14144 | if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { | |||
| 14145 | assert(ValidLoops.contains(AR->getLoop()) &&(static_cast <bool> (ValidLoops.contains(AR->getLoop ()) && "AddRec references invalid loop") ? void (0) : __assert_fail ("ValidLoops.contains(AR->getLoop()) && \"AddRec references invalid loop\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 14146, __extension__ __PRETTY_FUNCTION__)) | |||
| 14146 | "AddRec references invalid loop")(static_cast <bool> (ValidLoops.contains(AR->getLoop ()) && "AddRec references invalid loop") ? void (0) : __assert_fail ("ValidLoops.contains(AR->getLoop()) && \"AddRec references invalid loop\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 14146, __extension__ __PRETTY_FUNCTION__)); | |||
| 14147 | } | |||
| 14148 | #endif | |||
| 14149 | ||||
| 14150 | // Check that the value is also part of the reverse map. | |||
| 14151 | auto It = ExprValueMap.find(KV.second); | |||
| 14152 | if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { | |||
| 14153 | dbgs() << "Value " << *KV.first | |||
| 14154 | << " is in ValueExprMap but not in ExprValueMap\n"; | |||
| 14155 | std::abort(); | |||
| 14156 | } | |||
| 14157 | ||||
| 14158 | if (auto *I = dyn_cast<Instruction>(&*KV.first)) { | |||
| 14159 | if (!ReachableBlocks.contains(I->getParent())) | |||
| 14160 | continue; | |||
| 14161 | const SCEV *OldSCEV = SCM.visit(KV.second); | |||
| 14162 | const SCEV *NewSCEV = SE2.getSCEV(I); | |||
| 14163 | const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); | |||
| 14164 | if (Delta && !Delta->isZero()) { | |||
| 14165 | dbgs() << "SCEV for value " << *I << " changed!\n" | |||
| 14166 | << "Old: " << *OldSCEV << "\n" | |||
| 14167 | << "New: " << *NewSCEV << "\n" | |||
| 14168 | << "Delta: " << *Delta << "\n"; | |||
| 14169 | std::abort(); | |||
| 14170 | } | |||
| 14171 | } | |||
| 14172 | } | |||
| 14173 | ||||
| 14174 | for (const auto &KV : ExprValueMap) { | |||
| 14175 | for (Value *V : KV.second) { | |||
| 14176 | auto It = ValueExprMap.find_as(V); | |||
| 14177 | if (It == ValueExprMap.end()) { | |||
| 14178 | dbgs() << "Value " << *V | |||
| 14179 | << " is in ExprValueMap but not in ValueExprMap\n"; | |||
| 14180 | std::abort(); | |||
| 14181 | } | |||
| 14182 | if (It->second != KV.first) { | |||
| 14183 | dbgs() << "Value " << *V << " mapped to " << *It->second | |||
| 14184 | << " rather than " << *KV.first << "\n"; | |||
| 14185 | std::abort(); | |||
| 14186 | } | |||
| 14187 | } | |||
| 14188 | } | |||
| 14189 | ||||
| 14190 | // Verify integrity of SCEV users. | |||
| 14191 | for (const auto &S : UniqueSCEVs) { | |||
| 14192 | for (const auto *Op : S.operands()) { | |||
| 14193 | // We do not store dependencies of constants. | |||
| 14194 | if (isa<SCEVConstant>(Op)) | |||
| 14195 | continue; | |||
| 14196 | auto It = SCEVUsers.find(Op); | |||
| 14197 | if (It != SCEVUsers.end() && It->second.count(&S)) | |||
| 14198 | continue; | |||
| 14199 | dbgs() << "Use of operand " << *Op << " by user " << S | |||
| 14200 | << " is not being tracked!\n"; | |||
| 14201 | std::abort(); | |||
| 14202 | } | |||
| 14203 | } | |||
| 14204 | ||||
| 14205 | // Verify integrity of ValuesAtScopes users. | |||
| 14206 | for (const auto &ValueAndVec : ValuesAtScopes) { | |||
| 14207 | const SCEV *Value = ValueAndVec.first; | |||
| 14208 | for (const auto &LoopAndValueAtScope : ValueAndVec.second) { | |||
| 14209 | const Loop *L = LoopAndValueAtScope.first; | |||
| 14210 | const SCEV *ValueAtScope = LoopAndValueAtScope.second; | |||
| 14211 | if (!isa<SCEVConstant>(ValueAtScope)) { | |||
| 14212 | auto It = ValuesAtScopesUsers.find(ValueAtScope); | |||
| 14213 | if (It != ValuesAtScopesUsers.end() && | |||
| 14214 | is_contained(It->second, std::make_pair(L, Value))) | |||
| 14215 | continue; | |||
| 14216 | dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " | |||
| 14217 | << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; | |||
| 14218 | std::abort(); | |||
| 14219 | } | |||
| 14220 | } | |||
| 14221 | } | |||
| 14222 | ||||
| 14223 | for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { | |||
| 14224 | const SCEV *ValueAtScope = ValueAtScopeAndVec.first; | |||
| 14225 | for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { | |||
| 14226 | const Loop *L = LoopAndValue.first; | |||
| 14227 | const SCEV *Value = LoopAndValue.second; | |||
| 14228 | assert(!isa<SCEVConstant>(Value))(static_cast <bool> (!isa<SCEVConstant>(Value)) ? void (0) : __assert_fail ("!isa<SCEVConstant>(Value)", "llvm/lib/Analysis/ScalarEvolution.cpp", 14228, __extension__ __PRETTY_FUNCTION__)); | |||
| 14229 | auto It = ValuesAtScopes.find(Value); | |||
| 14230 | if (It != ValuesAtScopes.end() && | |||
| 14231 | is_contained(It->second, std::make_pair(L, ValueAtScope))) | |||
| 14232 | continue; | |||
| 14233 | dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " | |||
| 14234 | << *ValueAtScope << " missing in ValuesAtScopes\n"; | |||
| 14235 | std::abort(); | |||
| 14236 | } | |||
| 14237 | } | |||
| 14238 | ||||
| 14239 | // Verify integrity of BECountUsers. | |||
| 14240 | auto VerifyBECountUsers = [&](bool Predicated) { | |||
| 14241 | auto &BECounts = | |||
| 14242 | Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; | |||
| 14243 | for (const auto &LoopAndBEInfo : BECounts) { | |||
| 14244 | for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { | |||
| 14245 | for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) { | |||
| 14246 | if (!isa<SCEVConstant>(S)) { | |||
| 14247 | auto UserIt = BECountUsers.find(S); | |||
| 14248 | if (UserIt != BECountUsers.end() && | |||
| 14249 | UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) | |||
| 14250 | continue; | |||
| 14251 | dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first | |||
| 14252 | << " missing from BECountUsers\n"; | |||
| 14253 | std::abort(); | |||
| 14254 | } | |||
| 14255 | } | |||
| 14256 | } | |||
| 14257 | } | |||
| 14258 | }; | |||
| 14259 | VerifyBECountUsers(/* Predicated */ false); | |||
| 14260 | VerifyBECountUsers(/* Predicated */ true); | |||
| 14261 | ||||
| 14262 | // Verify intergity of loop disposition cache. | |||
| 14263 | for (auto &[S, Values] : LoopDispositions) { | |||
| 14264 | for (auto [Loop, CachedDisposition] : Values) { | |||
| 14265 | const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop); | |||
| 14266 | if (CachedDisposition != RecomputedDisposition) { | |||
| 14267 | dbgs() << "Cached disposition of " << *S << " for loop " << *Loop | |||
| 14268 | << " is incorrect: cached " | |||
| 14269 | << loopDispositionToStr(CachedDisposition) << ", actual " | |||
| 14270 | << loopDispositionToStr(RecomputedDisposition) << "\n"; | |||
| 14271 | std::abort(); | |||
| 14272 | } | |||
| 14273 | } | |||
| 14274 | } | |||
| 14275 | ||||
| 14276 | // Verify integrity of the block disposition cache. | |||
| 14277 | for (auto &[S, Values] : BlockDispositions) { | |||
| 14278 | for (auto [BB, CachedDisposition] : Values) { | |||
| 14279 | const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB); | |||
| 14280 | if (CachedDisposition != RecomputedDisposition) { | |||
| 14281 | dbgs() << "Cached disposition of " << *S << " for block %" | |||
| 14282 | << BB->getName() << " is incorrect! \n"; | |||
| 14283 | std::abort(); | |||
| 14284 | } | |||
| 14285 | } | |||
| 14286 | } | |||
| 14287 | ||||
| 14288 | // Verify FoldCache/FoldCacheUser caches. | |||
| 14289 | for (auto [FoldID, Expr] : FoldCache) { | |||
| 14290 | auto I = FoldCacheUser.find(Expr); | |||
| 14291 | if (I == FoldCacheUser.end()) { | |||
| 14292 | dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr | |||
| 14293 | << "!\n"; | |||
| 14294 | std::abort(); | |||
| 14295 | } | |||
| 14296 | if (!is_contained(I->second, FoldID)) { | |||
| 14297 | dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n"; | |||
| 14298 | std::abort(); | |||
| 14299 | } | |||
| 14300 | } | |||
| 14301 | for (auto [Expr, IDs] : FoldCacheUser) { | |||
| 14302 | for (auto &FoldID : IDs) { | |||
| 14303 | auto I = FoldCache.find(FoldID); | |||
| 14304 | if (I == FoldCache.end()) { | |||
| 14305 | dbgs() << "Missing entry in FoldCache for expression " << *Expr | |||
| 14306 | << "!\n"; | |||
| 14307 | std::abort(); | |||
| 14308 | } | |||
| 14309 | if (I->second != Expr) { | |||
| 14310 | dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: " | |||
| 14311 | << *I->second << " != " << *Expr << "!\n"; | |||
| 14312 | std::abort(); | |||
| 14313 | } | |||
| 14314 | } | |||
| 14315 | } | |||
| 14316 | ||||
| 14317 | // Verify that ConstantMultipleCache computations are correct. It is possible | |||
| 14318 | // that a recomputed multiple has a higher multiple than the cached multiple | |||
| 14319 | // due to strengthened wrap flags. In this case, the cached multiple is a | |||
| 14320 | // conservative, but still correct if it divides the recomputed multiple. As | |||
| 14321 | // a special case, if if one multiple is zero, the other must also be zero. | |||
| 14322 | for (auto [S, Multiple] : ConstantMultipleCache) { | |||
| 14323 | APInt RecomputedMultiple = SE2.getConstantMultipleImpl(S); | |||
| 14324 | if ((Multiple != RecomputedMultiple && | |||
| 14325 | (Multiple == 0 || RecomputedMultiple == 0)) && | |||
| 14326 | RecomputedMultiple.urem(Multiple) != 0) { | |||
| 14327 | dbgs() << "Incorrect cached computation in ConstantMultipleCache for " | |||
| 14328 | << *S << " : Computed " << RecomputedMultiple | |||
| 14329 | << " but cache contains " << Multiple << "!\n"; | |||
| 14330 | std::abort(); | |||
| 14331 | } | |||
| 14332 | } | |||
| 14333 | } | |||
| 14334 | ||||
| 14335 | bool ScalarEvolution::invalidate( | |||
| 14336 | Function &F, const PreservedAnalyses &PA, | |||
| 14337 | FunctionAnalysisManager::Invalidator &Inv) { | |||
| 14338 | // Invalidate the ScalarEvolution object whenever it isn't preserved or one | |||
| 14339 | // of its dependencies is invalidated. | |||
| 14340 | auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); | |||
| 14341 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || | |||
| 14342 | Inv.invalidate<AssumptionAnalysis>(F, PA) || | |||
| 14343 | Inv.invalidate<DominatorTreeAnalysis>(F, PA) || | |||
| 14344 | Inv.invalidate<LoopAnalysis>(F, PA); | |||
| 14345 | } | |||
| 14346 | ||||
| 14347 | AnalysisKey ScalarEvolutionAnalysis::Key; | |||
| 14348 | ||||
| 14349 | ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, | |||
| 14350 | FunctionAnalysisManager &AM) { | |||
| 14351 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); | |||
| 14352 | auto &AC = AM.getResult<AssumptionAnalysis>(F); | |||
| 14353 | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | |||
| 14354 | auto &LI = AM.getResult<LoopAnalysis>(F); | |||
| 14355 | return ScalarEvolution(F, TLI, AC, DT, LI); | |||
| 14356 | } | |||
| 14357 | ||||
| 14358 | PreservedAnalyses | |||
| 14359 | ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { | |||
| 14360 | AM.getResult<ScalarEvolutionAnalysis>(F).verify(); | |||
| 14361 | return PreservedAnalyses::all(); | |||
| 14362 | } | |||
| 14363 | ||||
| 14364 | PreservedAnalyses | |||
| 14365 | ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { | |||
| 14366 | // For compatibility with opt's -analyze feature under legacy pass manager | |||
| 14367 | // which was not ported to NPM. This keeps tests using | |||
| 14368 | // update_analyze_test_checks.py working. | |||
| 14369 | OS << "Printing analysis 'Scalar Evolution Analysis' for function '" | |||
| 14370 | << F.getName() << "':\n"; | |||
| 14371 | AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); | |||
| 14372 | return PreservedAnalyses::all(); | |||
| 14373 | } | |||
| 14374 | ||||
| 14375 | INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",static void *initializeScalarEvolutionWrapperPassPassOnce(PassRegistry &Registry) { | |||
| 14376 | "Scalar Evolution Analysis", false, true)static void *initializeScalarEvolutionWrapperPassPassOnce(PassRegistry &Registry) { | |||
| 14377 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry); | |||
| 14378 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry); | |||
| 14379 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry); | |||
| 14380 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | |||
| 14381 | INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",PassInfo *PI = new PassInfo( "Scalar Evolution Analysis", "scalar-evolution" , &ScalarEvolutionWrapperPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<ScalarEvolutionWrapperPass>), false, true ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeScalarEvolutionWrapperPassPassFlag; void llvm::initializeScalarEvolutionWrapperPassPass(PassRegistry & Registry) { llvm::call_once(InitializeScalarEvolutionWrapperPassPassFlag , initializeScalarEvolutionWrapperPassPassOnce, std::ref(Registry )); } | |||
| 14382 | "Scalar Evolution Analysis", false, true)PassInfo *PI = new PassInfo( "Scalar Evolution Analysis", "scalar-evolution" , &ScalarEvolutionWrapperPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<ScalarEvolutionWrapperPass>), false, true ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeScalarEvolutionWrapperPassPassFlag; void llvm::initializeScalarEvolutionWrapperPassPass(PassRegistry & Registry) { llvm::call_once(InitializeScalarEvolutionWrapperPassPassFlag , initializeScalarEvolutionWrapperPassPassOnce, std::ref(Registry )); } | |||
| 14383 | ||||
| 14384 | char ScalarEvolutionWrapperPass::ID = 0; | |||
| 14385 | ||||
| 14386 | ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { | |||
| 14387 | initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); | |||
| 14388 | } | |||
| 14389 | ||||
| 14390 | bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { | |||
| 14391 | SE.reset(new ScalarEvolution( | |||
| 14392 | F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), | |||
| 14393 | getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), | |||
| 14394 | getAnalysis<DominatorTreeWrapperPass>().getDomTree(), | |||
| 14395 | getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); | |||
| 14396 | return false; | |||
| 14397 | } | |||
| 14398 | ||||
| 14399 | void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } | |||
| 14400 | ||||
| 14401 | void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { | |||
| 14402 | SE->print(OS); | |||
| 14403 | } | |||
| 14404 | ||||
| 14405 | void ScalarEvolutionWrapperPass::verifyAnalysis() const { | |||
| 14406 | if (!VerifySCEV) | |||
| 14407 | return; | |||
| 14408 | ||||
| 14409 | SE->verify(); | |||
| 14410 | } | |||
| 14411 | ||||
| 14412 | void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | |||
| 14413 | AU.setPreservesAll(); | |||
| 14414 | AU.addRequiredTransitive<AssumptionCacheTracker>(); | |||
| 14415 | AU.addRequiredTransitive<LoopInfoWrapperPass>(); | |||
| 14416 | AU.addRequiredTransitive<DominatorTreeWrapperPass>(); | |||
| 14417 | AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); | |||
| 14418 | } | |||
| 14419 | ||||
| 14420 | const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, | |||
| 14421 | const SCEV *RHS) { | |||
| 14422 | return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); | |||
| 14423 | } | |||
| 14424 | ||||
| 14425 | const SCEVPredicate * | |||
| 14426 | ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, | |||
| 14427 | const SCEV *LHS, const SCEV *RHS) { | |||
| 14428 | FoldingSetNodeID ID; | |||
| 14429 | assert(LHS->getType() == RHS->getType() &&(static_cast <bool> (LHS->getType() == RHS->getType () && "Type mismatch between LHS and RHS") ? void (0) : __assert_fail ("LHS->getType() == RHS->getType() && \"Type mismatch between LHS and RHS\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 14430, __extension__ __PRETTY_FUNCTION__)) | |||
| 14430 | "Type mismatch between LHS and RHS")(static_cast <bool> (LHS->getType() == RHS->getType () && "Type mismatch between LHS and RHS") ? void (0) : __assert_fail ("LHS->getType() == RHS->getType() && \"Type mismatch between LHS and RHS\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 14430, __extension__ __PRETTY_FUNCTION__)); | |||
| 14431 | // Unique this node based on the arguments | |||
| 14432 | ID.AddInteger(SCEVPredicate::P_Compare); | |||
| 14433 | ID.AddInteger(Pred); | |||
| 14434 | ID.AddPointer(LHS); | |||
| 14435 | ID.AddPointer(RHS); | |||
| 14436 | void *IP = nullptr; | |||
| 14437 | if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) | |||
| 14438 | return S; | |||
| 14439 | SCEVComparePredicate *Eq = new (SCEVAllocator) | |||
| 14440 | SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); | |||
| 14441 | UniquePreds.InsertNode(Eq, IP); | |||
| 14442 | return Eq; | |||
| 14443 | } | |||
| 14444 | ||||
| 14445 | const SCEVPredicate *ScalarEvolution::getWrapPredicate( | |||
| 14446 | const SCEVAddRecExpr *AR, | |||
| 14447 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { | |||
| 14448 | FoldingSetNodeID ID; | |||
| 14449 | // Unique this node based on the arguments | |||
| 14450 | ID.AddInteger(SCEVPredicate::P_Wrap); | |||
| 14451 | ID.AddPointer(AR); | |||
| 14452 | ID.AddInteger(AddedFlags); | |||
| 14453 | void *IP = nullptr; | |||
| 14454 | if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) | |||
| 14455 | return S; | |||
| 14456 | auto *OF = new (SCEVAllocator) | |||
| 14457 | SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); | |||
| 14458 | UniquePreds.InsertNode(OF, IP); | |||
| 14459 | return OF; | |||
| 14460 | } | |||
| 14461 | ||||
| 14462 | namespace { | |||
| 14463 | ||||
| 14464 | class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { | |||
| 14465 | public: | |||
| 14466 | ||||
| 14467 | /// Rewrites \p S in the context of a loop L and the SCEV predication | |||
| 14468 | /// infrastructure. | |||
| 14469 | /// | |||
| 14470 | /// If \p Pred is non-null, the SCEV expression is rewritten to respect the | |||
| 14471 | /// equivalences present in \p Pred. | |||
| 14472 | /// | |||
| 14473 | /// If \p NewPreds is non-null, rewrite is free to add further predicates to | |||
| 14474 | /// \p NewPreds such that the result will be an AddRecExpr. | |||
| 14475 | static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, | |||
| 14476 | SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, | |||
| 14477 | const SCEVPredicate *Pred) { | |||
| 14478 | SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); | |||
| 14479 | return Rewriter.visit(S); | |||
| 14480 | } | |||
| 14481 | ||||
| 14482 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | |||
| 14483 | if (Pred) { | |||
| 14484 | if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { | |||
| 14485 | for (const auto *Pred : U->getPredicates()) | |||
| 14486 | if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) | |||
| 14487 | if (IPred->getLHS() == Expr && | |||
| 14488 | IPred->getPredicate() == ICmpInst::ICMP_EQ) | |||
| 14489 | return IPred->getRHS(); | |||
| 14490 | } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { | |||
| 14491 | if (IPred->getLHS() == Expr && | |||
| 14492 | IPred->getPredicate() == ICmpInst::ICMP_EQ) | |||
| 14493 | return IPred->getRHS(); | |||
| 14494 | } | |||
| 14495 | } | |||
| 14496 | return convertToAddRecWithPreds(Expr); | |||
| 14497 | } | |||
| 14498 | ||||
| 14499 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { | |||
| 14500 | const SCEV *Operand = visit(Expr->getOperand()); | |||
| 14501 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); | |||
| 14502 | if (AR && AR->getLoop() == L && AR->isAffine()) { | |||
| 14503 | // This couldn't be folded because the operand didn't have the nuw | |||
| 14504 | // flag. Add the nusw flag as an assumption that we could make. | |||
| 14505 | const SCEV *Step = AR->getStepRecurrence(SE); | |||
| 14506 | Type *Ty = Expr->getType(); | |||
| 14507 | if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) | |||
| 14508 | return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), | |||
| 14509 | SE.getSignExtendExpr(Step, Ty), L, | |||
| 14510 | AR->getNoWrapFlags()); | |||
| 14511 | } | |||
| 14512 | return SE.getZeroExtendExpr(Operand, Expr->getType()); | |||
| 14513 | } | |||
| 14514 | ||||
| 14515 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { | |||
| 14516 | const SCEV *Operand = visit(Expr->getOperand()); | |||
| 14517 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); | |||
| 14518 | if (AR && AR->getLoop() == L && AR->isAffine()) { | |||
| 14519 | // This couldn't be folded because the operand didn't have the nsw | |||
| 14520 | // flag. Add the nssw flag as an assumption that we could make. | |||
| 14521 | const SCEV *Step = AR->getStepRecurrence(SE); | |||
| 14522 | Type *Ty = Expr->getType(); | |||
| 14523 | if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) | |||
| 14524 | return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), | |||
| 14525 | SE.getSignExtendExpr(Step, Ty), L, | |||
| 14526 | AR->getNoWrapFlags()); | |||
| 14527 | } | |||
| 14528 | return SE.getSignExtendExpr(Operand, Expr->getType()); | |||
| 14529 | } | |||
| 14530 | ||||
| 14531 | private: | |||
| 14532 | explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, | |||
| 14533 | SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, | |||
| 14534 | const SCEVPredicate *Pred) | |||
| 14535 | : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} | |||
| 14536 | ||||
| 14537 | bool addOverflowAssumption(const SCEVPredicate *P) { | |||
| 14538 | if (!NewPreds) { | |||
| 14539 | // Check if we've already made this assumption. | |||
| 14540 | return Pred && Pred->implies(P); | |||
| 14541 | } | |||
| 14542 | NewPreds->insert(P); | |||
| 14543 | return true; | |||
| 14544 | } | |||
| 14545 | ||||
| 14546 | bool addOverflowAssumption(const SCEVAddRecExpr *AR, | |||
| 14547 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { | |||
| 14548 | auto *A = SE.getWrapPredicate(AR, AddedFlags); | |||
| 14549 | return addOverflowAssumption(A); | |||
| 14550 | } | |||
| 14551 | ||||
| 14552 | // If \p Expr represents a PHINode, we try to see if it can be represented | |||
| 14553 | // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible | |||
| 14554 | // to add this predicate as a runtime overflow check, we return the AddRec. | |||
| 14555 | // If \p Expr does not meet these conditions (is not a PHI node, or we | |||
| 14556 | // couldn't create an AddRec for it, or couldn't add the predicate), we just | |||
| 14557 | // return \p Expr. | |||
| 14558 | const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { | |||
| 14559 | if (!isa<PHINode>(Expr->getValue())) | |||
| 14560 | return Expr; | |||
| 14561 | std::optional< | |||
| 14562 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> | |||
| 14563 | PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); | |||
| 14564 | if (!PredicatedRewrite) | |||
| 14565 | return Expr; | |||
| 14566 | for (const auto *P : PredicatedRewrite->second){ | |||
| 14567 | // Wrap predicates from outer loops are not supported. | |||
| 14568 | if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { | |||
| 14569 | if (L != WP->getExpr()->getLoop()) | |||
| 14570 | return Expr; | |||
| 14571 | } | |||
| 14572 | if (!addOverflowAssumption(P)) | |||
| 14573 | return Expr; | |||
| 14574 | } | |||
| 14575 | return PredicatedRewrite->first; | |||
| 14576 | } | |||
| 14577 | ||||
| 14578 | SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; | |||
| 14579 | const SCEVPredicate *Pred; | |||
| 14580 | const Loop *L; | |||
| 14581 | }; | |||
| 14582 | ||||
| 14583 | } // end anonymous namespace | |||
| 14584 | ||||
| 14585 | const SCEV * | |||
| 14586 | ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, | |||
| 14587 | const SCEVPredicate &Preds) { | |||
| 14588 | return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); | |||
| 14589 | } | |||
| 14590 | ||||
| 14591 | const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( | |||
| 14592 | const SCEV *S, const Loop *L, | |||
| 14593 | SmallPtrSetImpl<const SCEVPredicate *> &Preds) { | |||
| 14594 | SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; | |||
| 14595 | S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); | |||
| 14596 | auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); | |||
| 14597 | ||||
| 14598 | if (!AddRec) | |||
| 14599 | return nullptr; | |||
| 14600 | ||||
| 14601 | // Since the transformation was successful, we can now transfer the SCEV | |||
| 14602 | // predicates. | |||
| 14603 | for (const auto *P : TransformPreds) | |||
| 14604 | Preds.insert(P); | |||
| 14605 | ||||
| 14606 | return AddRec; | |||
| 14607 | } | |||
| 14608 | ||||
| 14609 | /// SCEV predicates | |||
| 14610 | SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, | |||
| 14611 | SCEVPredicateKind Kind) | |||
| 14612 | : FastID(ID), Kind(Kind) {} | |||
| 14613 | ||||
| 14614 | SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, | |||
| 14615 | const ICmpInst::Predicate Pred, | |||
| 14616 | const SCEV *LHS, const SCEV *RHS) | |||
| 14617 | : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { | |||
| 14618 | assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match")(static_cast <bool> (LHS->getType() == RHS->getType () && "LHS and RHS types don't match") ? void (0) : __assert_fail ("LHS->getType() == RHS->getType() && \"LHS and RHS types don't match\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 14618, __extension__ __PRETTY_FUNCTION__)); | |||
| 14619 | assert(LHS != RHS && "LHS and RHS are the same SCEV")(static_cast <bool> (LHS != RHS && "LHS and RHS are the same SCEV" ) ? void (0) : __assert_fail ("LHS != RHS && \"LHS and RHS are the same SCEV\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 14619, __extension__ __PRETTY_FUNCTION__)); | |||
| 14620 | } | |||
| 14621 | ||||
| 14622 | bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { | |||
| 14623 | const auto *Op = dyn_cast<SCEVComparePredicate>(N); | |||
| 14624 | ||||
| 14625 | if (!Op) | |||
| 14626 | return false; | |||
| 14627 | ||||
| 14628 | if (Pred != ICmpInst::ICMP_EQ) | |||
| 14629 | return false; | |||
| 14630 | ||||
| 14631 | return Op->LHS == LHS && Op->RHS == RHS; | |||
| 14632 | } | |||
| 14633 | ||||
| 14634 | bool SCEVComparePredicate::isAlwaysTrue() const { return false; } | |||
| 14635 | ||||
| 14636 | void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { | |||
| 14637 | if (Pred == ICmpInst::ICMP_EQ) | |||
| 14638 | OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; | |||
| 14639 | else | |||
| 14640 | OS.indent(Depth) << "Compare predicate: " << *LHS << " " << Pred << ") " | |||
| 14641 | << *RHS << "\n"; | |||
| 14642 | ||||
| 14643 | } | |||
| 14644 | ||||
| 14645 | SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, | |||
| 14646 | const SCEVAddRecExpr *AR, | |||
| 14647 | IncrementWrapFlags Flags) | |||
| 14648 | : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} | |||
| 14649 | ||||
| 14650 | const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } | |||
| 14651 | ||||
| 14652 | bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { | |||
| 14653 | const auto *Op = dyn_cast<SCEVWrapPredicate>(N); | |||
| 14654 | ||||
| 14655 | return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; | |||
| 14656 | } | |||
| 14657 | ||||
| 14658 | bool SCEVWrapPredicate::isAlwaysTrue() const { | |||
| 14659 | SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); | |||
| 14660 | IncrementWrapFlags IFlags = Flags; | |||
| 14661 | ||||
| 14662 | if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) | |||
| 14663 | IFlags = clearFlags(IFlags, IncrementNSSW); | |||
| 14664 | ||||
| 14665 | return IFlags == IncrementAnyWrap; | |||
| 14666 | } | |||
| 14667 | ||||
| 14668 | void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { | |||
| 14669 | OS.indent(Depth) << *getExpr() << " Added Flags: "; | |||
| 14670 | if (SCEVWrapPredicate::IncrementNUSW & getFlags()) | |||
| 14671 | OS << "<nusw>"; | |||
| 14672 | if (SCEVWrapPredicate::IncrementNSSW & getFlags()) | |||
| 14673 | OS << "<nssw>"; | |||
| 14674 | OS << "\n"; | |||
| 14675 | } | |||
| 14676 | ||||
| 14677 | SCEVWrapPredicate::IncrementWrapFlags | |||
| 14678 | SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, | |||
| 14679 | ScalarEvolution &SE) { | |||
| 14680 | IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; | |||
| 14681 | SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); | |||
| 14682 | ||||
| 14683 | // We can safely transfer the NSW flag as NSSW. | |||
| 14684 | if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) | |||
| 14685 | ImpliedFlags = IncrementNSSW; | |||
| 14686 | ||||
| 14687 | if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { | |||
| 14688 | // If the increment is positive, the SCEV NUW flag will also imply the | |||
| 14689 | // WrapPredicate NUSW flag. | |||
| 14690 | if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) | |||
| 14691 | if (Step->getValue()->getValue().isNonNegative()) | |||
| 14692 | ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); | |||
| 14693 | } | |||
| 14694 | ||||
| 14695 | return ImpliedFlags; | |||
| 14696 | } | |||
| 14697 | ||||
| 14698 | /// Union predicates don't get cached so create a dummy set ID for it. | |||
| 14699 | SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) | |||
| 14700 | : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { | |||
| 14701 | for (const auto *P : Preds) | |||
| 14702 | add(P); | |||
| 14703 | } | |||
| 14704 | ||||
| 14705 | bool SCEVUnionPredicate::isAlwaysTrue() const { | |||
| 14706 | return all_of(Preds, | |||
| 14707 | [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); | |||
| 14708 | } | |||
| 14709 | ||||
| 14710 | bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { | |||
| 14711 | if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) | |||
| 14712 | return all_of(Set->Preds, | |||
| 14713 | [this](const SCEVPredicate *I) { return this->implies(I); }); | |||
| 14714 | ||||
| 14715 | return any_of(Preds, | |||
| 14716 | [N](const SCEVPredicate *I) { return I->implies(N); }); | |||
| 14717 | } | |||
| 14718 | ||||
| 14719 | void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { | |||
| 14720 | for (const auto *Pred : Preds) | |||
| 14721 | Pred->print(OS, Depth); | |||
| 14722 | } | |||
| 14723 | ||||
| 14724 | void SCEVUnionPredicate::add(const SCEVPredicate *N) { | |||
| 14725 | if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { | |||
| 14726 | for (const auto *Pred : Set->Preds) | |||
| 14727 | add(Pred); | |||
| 14728 | return; | |||
| 14729 | } | |||
| 14730 | ||||
| 14731 | Preds.push_back(N); | |||
| 14732 | } | |||
| 14733 | ||||
| 14734 | PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, | |||
| 14735 | Loop &L) | |||
| 14736 | : SE(SE), L(L) { | |||
| 14737 | SmallVector<const SCEVPredicate*, 4> Empty; | |||
| 14738 | Preds = std::make_unique<SCEVUnionPredicate>(Empty); | |||
| 14739 | } | |||
| 14740 | ||||
| 14741 | void ScalarEvolution::registerUser(const SCEV *User, | |||
| 14742 | ArrayRef<const SCEV *> Ops) { | |||
| 14743 | for (const auto *Op : Ops) | |||
| 14744 | // We do not expect that forgetting cached data for SCEVConstants will ever | |||
| 14745 | // open any prospects for sharpening or introduce any correctness issues, | |||
| 14746 | // so we don't bother storing their dependencies. | |||
| 14747 | if (!isa<SCEVConstant>(Op)) | |||
| 14748 | SCEVUsers[Op].insert(User); | |||
| 14749 | } | |||
| 14750 | ||||
| 14751 | const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { | |||
| 14752 | const SCEV *Expr = SE.getSCEV(V); | |||
| 14753 | RewriteEntry &Entry = RewriteMap[Expr]; | |||
| 14754 | ||||
| 14755 | // If we already have an entry and the version matches, return it. | |||
| 14756 | if (Entry.second && Generation == Entry.first) | |||
| 14757 | return Entry.second; | |||
| 14758 | ||||
| 14759 | // We found an entry but it's stale. Rewrite the stale entry | |||
| 14760 | // according to the current predicate. | |||
| 14761 | if (Entry.second) | |||
| 14762 | Expr = Entry.second; | |||
| 14763 | ||||
| 14764 | const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); | |||
| 14765 | Entry = {Generation, NewSCEV}; | |||
| 14766 | ||||
| 14767 | return NewSCEV; | |||
| 14768 | } | |||
| 14769 | ||||
| 14770 | const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { | |||
| 14771 | if (!BackedgeCount) { | |||
| 14772 | SmallVector<const SCEVPredicate *, 4> Preds; | |||
| 14773 | BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); | |||
| 14774 | for (const auto *P : Preds) | |||
| 14775 | addPredicate(*P); | |||
| 14776 | } | |||
| 14777 | return BackedgeCount; | |||
| 14778 | } | |||
| 14779 | ||||
| 14780 | void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { | |||
| 14781 | if (Preds->implies(&Pred)) | |||
| 14782 | return; | |||
| 14783 | ||||
| 14784 | auto &OldPreds = Preds->getPredicates(); | |||
| 14785 | SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); | |||
| 14786 | NewPreds.push_back(&Pred); | |||
| 14787 | Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); | |||
| 14788 | updateGeneration(); | |||
| 14789 | } | |||
| 14790 | ||||
| 14791 | const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { | |||
| 14792 | return *Preds; | |||
| 14793 | } | |||
| 14794 | ||||
| 14795 | void PredicatedScalarEvolution::updateGeneration() { | |||
| 14796 | // If the generation number wrapped recompute everything. | |||
| 14797 | if (++Generation == 0) { | |||
| 14798 | for (auto &II : RewriteMap) { | |||
| 14799 | const SCEV *Rewritten = II.second.second; | |||
| 14800 | II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; | |||
| 14801 | } | |||
| 14802 | } | |||
| 14803 | } | |||
| 14804 | ||||
| 14805 | void PredicatedScalarEvolution::setNoOverflow( | |||
| 14806 | Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { | |||
| 14807 | const SCEV *Expr = getSCEV(V); | |||
| 14808 | const auto *AR = cast<SCEVAddRecExpr>(Expr); | |||
| 14809 | ||||
| 14810 | auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); | |||
| 14811 | ||||
| 14812 | // Clear the statically implied flags. | |||
| 14813 | Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); | |||
| 14814 | addPredicate(*SE.getWrapPredicate(AR, Flags)); | |||
| 14815 | ||||
| 14816 | auto II = FlagsMap.insert({V, Flags}); | |||
| 14817 | if (!II.second) | |||
| 14818 | II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); | |||
| 14819 | } | |||
| 14820 | ||||
| 14821 | bool PredicatedScalarEvolution::hasNoOverflow( | |||
| 14822 | Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { | |||
| 14823 | const SCEV *Expr = getSCEV(V); | |||
| 14824 | const auto *AR = cast<SCEVAddRecExpr>(Expr); | |||
| 14825 | ||||
| 14826 | Flags = SCEVWrapPredicate::clearFlags( | |||
| 14827 | Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); | |||
| 14828 | ||||
| 14829 | auto II = FlagsMap.find(V); | |||
| 14830 | ||||
| 14831 | if (II != FlagsMap.end()) | |||
| 14832 | Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); | |||
| 14833 | ||||
| 14834 | return Flags == SCEVWrapPredicate::IncrementAnyWrap; | |||
| 14835 | } | |||
| 14836 | ||||
| 14837 | const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { | |||
| 14838 | const SCEV *Expr = this->getSCEV(V); | |||
| 14839 | SmallPtrSet<const SCEVPredicate *, 4> NewPreds; | |||
| 14840 | auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); | |||
| 14841 | ||||
| 14842 | if (!New) | |||
| 14843 | return nullptr; | |||
| 14844 | ||||
| 14845 | for (const auto *P : NewPreds) | |||
| 14846 | addPredicate(*P); | |||
| 14847 | ||||
| 14848 | RewriteMap[SE.getSCEV(V)] = {Generation, New}; | |||
| 14849 | return New; | |||
| 14850 | } | |||
| 14851 | ||||
| 14852 | PredicatedScalarEvolution::PredicatedScalarEvolution( | |||
| 14853 | const PredicatedScalarEvolution &Init) | |||
| 14854 | : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), | |||
| 14855 | Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), | |||
| 14856 | Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { | |||
| 14857 | for (auto I : Init.FlagsMap) | |||
| 14858 | FlagsMap.insert(I); | |||
| 14859 | } | |||
| 14860 | ||||
| 14861 | void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { | |||
| 14862 | // For each block. | |||
| 14863 | for (auto *BB : L.getBlocks()) | |||
| 14864 | for (auto &I : *BB) { | |||
| 14865 | if (!SE.isSCEVable(I.getType())) | |||
| 14866 | continue; | |||
| 14867 | ||||
| 14868 | auto *Expr = SE.getSCEV(&I); | |||
| 14869 | auto II = RewriteMap.find(Expr); | |||
| 14870 | ||||
| 14871 | if (II == RewriteMap.end()) | |||
| 14872 | continue; | |||
| 14873 | ||||
| 14874 | // Don't print things that are not interesting. | |||
| 14875 | if (II->second.second == Expr) | |||
| 14876 | continue; | |||
| 14877 | ||||
| 14878 | OS.indent(Depth) << "[PSE]" << I << ":\n"; | |||
| 14879 | OS.indent(Depth + 2) << *Expr << "\n"; | |||
| 14880 | OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; | |||
| 14881 | } | |||
| 14882 | } | |||
| 14883 | ||||
| 14884 | // Match the mathematical pattern A - (A / B) * B, where A and B can be | |||
| 14885 | // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used | |||
| 14886 | // for URem with constant power-of-2 second operands. | |||
| 14887 | // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is | |||
| 14888 | // 4, A / B becomes X / 8). | |||
| 14889 | bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, | |||
| 14890 | const SCEV *&RHS) { | |||
| 14891 | // Try to match 'zext (trunc A to iB) to iY', which is used | |||
| 14892 | // for URem with constant power-of-2 second operands. Make sure the size of | |||
| 14893 | // the operand A matches the size of the whole expressions. | |||
| 14894 | if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) | |||
| 14895 | if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { | |||
| 14896 | LHS = Trunc->getOperand(); | |||
| 14897 | // Bail out if the type of the LHS is larger than the type of the | |||
| 14898 | // expression for now. | |||
| 14899 | if (getTypeSizeInBits(LHS->getType()) > | |||
| 14900 | getTypeSizeInBits(Expr->getType())) | |||
| 14901 | return false; | |||
| 14902 | if (LHS->getType() != Expr->getType()) | |||
| 14903 | LHS = getZeroExtendExpr(LHS, Expr->getType()); | |||
| 14904 | RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) | |||
| 14905 | << getTypeSizeInBits(Trunc->getType())); | |||
| 14906 | return true; | |||
| 14907 | } | |||
| 14908 | const auto *Add = dyn_cast<SCEVAddExpr>(Expr); | |||
| 14909 | if (Add == nullptr || Add->getNumOperands() != 2) | |||
| 14910 | return false; | |||
| 14911 | ||||
| 14912 | const SCEV *A = Add->getOperand(1); | |||
| 14913 | const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); | |||
| 14914 | ||||
| 14915 | if (Mul == nullptr) | |||
| 14916 | return false; | |||
| 14917 | ||||
| 14918 | const auto MatchURemWithDivisor = [&](const SCEV *B) { | |||
| 14919 | // (SomeExpr + (-(SomeExpr / B) * B)). | |||
| 14920 | if (Expr == getURemExpr(A, B)) { | |||
| 14921 | LHS = A; | |||
| 14922 | RHS = B; | |||
| 14923 | return true; | |||
| 14924 | } | |||
| 14925 | return false; | |||
| 14926 | }; | |||
| 14927 | ||||
| 14928 | // (SomeExpr + (-1 * (SomeExpr / B) * B)). | |||
| 14929 | if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) | |||
| 14930 | return MatchURemWithDivisor(Mul->getOperand(1)) || | |||
| 14931 | MatchURemWithDivisor(Mul->getOperand(2)); | |||
| 14932 | ||||
| 14933 | // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). | |||
| 14934 | if (Mul->getNumOperands() == 2) | |||
| 14935 | return MatchURemWithDivisor(Mul->getOperand(1)) || | |||
| 14936 | MatchURemWithDivisor(Mul->getOperand(0)) || | |||
| 14937 | MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || | |||
| 14938 | MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); | |||
| 14939 | return false; | |||
| 14940 | } | |||
| 14941 | ||||
| 14942 | const SCEV * | |||
| 14943 | ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { | |||
| 14944 | SmallVector<BasicBlock*, 16> ExitingBlocks; | |||
| 14945 | L->getExitingBlocks(ExitingBlocks); | |||
| 14946 | ||||
| 14947 | // Form an expression for the maximum exit count possible for this loop. We | |||
| 14948 | // merge the max and exact information to approximate a version of | |||
| 14949 | // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. | |||
| 14950 | SmallVector<const SCEV*, 4> ExitCounts; | |||
| 14951 | for (BasicBlock *ExitingBB : ExitingBlocks) { | |||
| 14952 | const SCEV *ExitCount = | |||
| 14953 | getExitCount(L, ExitingBB, ScalarEvolution::SymbolicMaximum); | |||
| 14954 | if (!isa<SCEVCouldNotCompute>(ExitCount)) { | |||
| 14955 | assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&(static_cast <bool> (DT.dominates(ExitingBB, L->getLoopLatch ()) && "We should only have known counts for exiting blocks that " "dominate latch!") ? void (0) : __assert_fail ("DT.dominates(ExitingBB, L->getLoopLatch()) && \"We should only have known counts for exiting blocks that \" \"dominate latch!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 14957, __extension__ __PRETTY_FUNCTION__)) | |||
| 14956 | "We should only have known counts for exiting blocks that "(static_cast <bool> (DT.dominates(ExitingBB, L->getLoopLatch ()) && "We should only have known counts for exiting blocks that " "dominate latch!") ? void (0) : __assert_fail ("DT.dominates(ExitingBB, L->getLoopLatch()) && \"We should only have known counts for exiting blocks that \" \"dominate latch!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 14957, __extension__ __PRETTY_FUNCTION__)) | |||
| 14957 | "dominate latch!")(static_cast <bool> (DT.dominates(ExitingBB, L->getLoopLatch ()) && "We should only have known counts for exiting blocks that " "dominate latch!") ? void (0) : __assert_fail ("DT.dominates(ExitingBB, L->getLoopLatch()) && \"We should only have known counts for exiting blocks that \" \"dominate latch!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 14957, __extension__ __PRETTY_FUNCTION__)); | |||
| 14958 | ExitCounts.push_back(ExitCount); | |||
| 14959 | } | |||
| 14960 | } | |||
| 14961 | if (ExitCounts.empty()) | |||
| 14962 | return getCouldNotCompute(); | |||
| 14963 | return getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true); | |||
| 14964 | } | |||
| 14965 | ||||
| 14966 | /// A rewriter to replace SCEV expressions in Map with the corresponding entry | |||
| 14967 | /// in the map. It skips AddRecExpr because we cannot guarantee that the | |||
| 14968 | /// replacement is loop invariant in the loop of the AddRec. | |||
| 14969 | class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { | |||
| 14970 | const DenseMap<const SCEV *, const SCEV *> ⤅ | |||
| 14971 | ||||
| 14972 | public: | |||
| 14973 | SCEVLoopGuardRewriter(ScalarEvolution &SE, | |||
| 14974 | DenseMap<const SCEV *, const SCEV *> &M) | |||
| 14975 | : SCEVRewriteVisitor(SE), Map(M) {} | |||
| 14976 | ||||
| 14977 | const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } | |||
| 14978 | ||||
| 14979 | const SCEV *visitUnknown(const SCEVUnknown *Expr) { | |||
| 14980 | auto I = Map.find(Expr); | |||
| 14981 | if (I == Map.end()) | |||
| 14982 | return Expr; | |||
| 14983 | return I->second; | |||
| 14984 | } | |||
| 14985 | ||||
| 14986 | const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { | |||
| 14987 | auto I = Map.find(Expr); | |||
| 14988 | if (I == Map.end()) | |||
| 14989 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( | |||
| 14990 | Expr); | |||
| 14991 | return I->second; | |||
| 14992 | } | |||
| 14993 | ||||
| 14994 | const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { | |||
| 14995 | auto I = Map.find(Expr); | |||
| 14996 | if (I == Map.end()) | |||
| 14997 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr( | |||
| 14998 | Expr); | |||
| 14999 | return I->second; | |||
| 15000 | } | |||
| 15001 | ||||
| 15002 | const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) { | |||
| 15003 | auto I = Map.find(Expr); | |||
| 15004 | if (I == Map.end()) | |||
| 15005 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr); | |||
| 15006 | return I->second; | |||
| 15007 | } | |||
| 15008 | ||||
| 15009 | const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) { | |||
| 15010 | auto I = Map.find(Expr); | |||
| 15011 | if (I == Map.end()) | |||
| 15012 | return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr); | |||
| 15013 | return I->second; | |||
| 15014 | } | |||
| 15015 | }; | |||
| 15016 | ||||
| 15017 | const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { | |||
| 15018 | SmallVector<const SCEV *> ExprsToRewrite; | |||
| 15019 | auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, | |||
| 15020 | const SCEV *RHS, | |||
| 15021 | DenseMap<const SCEV *, const SCEV *> | |||
| 15022 | &RewriteMap) { | |||
| 15023 | // WARNING: It is generally unsound to apply any wrap flags to the proposed | |||
| 15024 | // replacement SCEV which isn't directly implied by the structure of that | |||
| 15025 | // SCEV. In particular, using contextual facts to imply flags is *NOT* | |||
| 15026 | // legal. See the scoping rules for flags in the header to understand why. | |||
| 15027 | ||||
| 15028 | // If LHS is a constant, apply information to the other expression. | |||
| 15029 | if (isa<SCEVConstant>(LHS)) { | |||
| 15030 | std::swap(LHS, RHS); | |||
| 15031 | Predicate = CmpInst::getSwappedPredicate(Predicate); | |||
| 15032 | } | |||
| 15033 | ||||
| 15034 | // Check for a condition of the form (-C1 + X < C2). InstCombine will | |||
| 15035 | // create this form when combining two checks of the form (X u< C2 + C1) and | |||
| 15036 | // (X >=u C1). | |||
| 15037 | auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, | |||
| 15038 | &ExprsToRewrite]() { | |||
| 15039 | auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); | |||
| 15040 | if (!AddExpr || AddExpr->getNumOperands() != 2) | |||
| 15041 | return false; | |||
| 15042 | ||||
| 15043 | auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); | |||
| 15044 | auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); | |||
| 15045 | auto *C2 = dyn_cast<SCEVConstant>(RHS); | |||
| 15046 | if (!C1 || !C2 || !LHSUnknown) | |||
| 15047 | return false; | |||
| 15048 | ||||
| 15049 | auto ExactRegion = | |||
| 15050 | ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) | |||
| 15051 | .sub(C1->getAPInt()); | |||
| 15052 | ||||
| 15053 | // Bail out, unless we have a non-wrapping, monotonic range. | |||
| 15054 | if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) | |||
| 15055 | return false; | |||
| 15056 | auto I = RewriteMap.find(LHSUnknown); | |||
| 15057 | const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; | |||
| 15058 | RewriteMap[LHSUnknown] = getUMaxExpr( | |||
| 15059 | getConstant(ExactRegion.getUnsignedMin()), | |||
| 15060 | getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); | |||
| 15061 | ExprsToRewrite.push_back(LHSUnknown); | |||
| 15062 | return true; | |||
| 15063 | }; | |||
| 15064 | if (MatchRangeCheckIdiom()) | |||
| 15065 | return; | |||
| 15066 | ||||
| 15067 | // Return true if \p Expr is a MinMax SCEV expression with a non-negative | |||
| 15068 | // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS | |||
| 15069 | // the non-constant operand and in \p LHS the constant operand. | |||
| 15070 | auto IsMinMaxSCEVWithNonNegativeConstant = | |||
| 15071 | [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS, | |||
| 15072 | const SCEV *&RHS) { | |||
| 15073 | if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) { | |||
| 15074 | if (MinMax->getNumOperands() != 2) | |||
| 15075 | return false; | |||
| 15076 | if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) { | |||
| 15077 | if (C->getAPInt().isNegative()) | |||
| 15078 | return false; | |||
| 15079 | SCTy = MinMax->getSCEVType(); | |||
| 15080 | LHS = MinMax->getOperand(0); | |||
| 15081 | RHS = MinMax->getOperand(1); | |||
| 15082 | return true; | |||
| 15083 | } | |||
| 15084 | } | |||
| 15085 | return false; | |||
| 15086 | }; | |||
| 15087 | ||||
| 15088 | // Checks whether Expr is a non-negative constant, and Divisor is a positive | |||
| 15089 | // constant, and returns their APInt in ExprVal and in DivisorVal. | |||
| 15090 | auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor, | |||
| 15091 | APInt &ExprVal, APInt &DivisorVal) { | |||
| 15092 | auto *ConstExpr = dyn_cast<SCEVConstant>(Expr); | |||
| 15093 | auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor); | |||
| 15094 | if (!ConstExpr || !ConstDivisor) | |||
| 15095 | return false; | |||
| 15096 | ExprVal = ConstExpr->getAPInt(); | |||
| 15097 | DivisorVal = ConstDivisor->getAPInt(); | |||
| 15098 | return ExprVal.isNonNegative() && !DivisorVal.isNonPositive(); | |||
| 15099 | }; | |||
| 15100 | ||||
| 15101 | // Return a new SCEV that modifies \p Expr to the closest number divides by | |||
| 15102 | // \p Divisor and greater or equal than Expr. | |||
| 15103 | // For now, only handle constant Expr and Divisor. | |||
| 15104 | auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr, | |||
| 15105 | const SCEV *Divisor) { | |||
| 15106 | APInt ExprVal; | |||
| 15107 | APInt DivisorVal; | |||
| 15108 | if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) | |||
| 15109 | return Expr; | |||
| 15110 | APInt Rem = ExprVal.urem(DivisorVal); | |||
| 15111 | if (!Rem.isZero()) | |||
| 15112 | // return the SCEV: Expr + Divisor - Expr % Divisor | |||
| 15113 | return getConstant(ExprVal + DivisorVal - Rem); | |||
| 15114 | return Expr; | |||
| 15115 | }; | |||
| 15116 | ||||
| 15117 | // Return a new SCEV that modifies \p Expr to the closest number divides by | |||
| 15118 | // \p Divisor and less or equal than Expr. | |||
| 15119 | // For now, only handle constant Expr and Divisor. | |||
| 15120 | auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr, | |||
| 15121 | const SCEV *Divisor) { | |||
| 15122 | APInt ExprVal; | |||
| 15123 | APInt DivisorVal; | |||
| 15124 | if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal)) | |||
| 15125 | return Expr; | |||
| 15126 | APInt Rem = ExprVal.urem(DivisorVal); | |||
| 15127 | // return the SCEV: Expr - Expr % Divisor | |||
| 15128 | return getConstant(ExprVal - Rem); | |||
| 15129 | }; | |||
| 15130 | ||||
| 15131 | // Apply divisibilty by \p Divisor on MinMaxExpr with constant values, | |||
| 15132 | // recursively. This is done by aligning up/down the constant value to the | |||
| 15133 | // Divisor. | |||
| 15134 | std::function<const SCEV *(const SCEV *, const SCEV *)> | |||
| 15135 | ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr, | |||
| 15136 | const SCEV *Divisor) { | |||
| 15137 | const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr; | |||
| 15138 | SCEVTypes SCTy; | |||
| 15139 | if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS, | |||
| 15140 | MinMaxRHS)) | |||
| 15141 | return MinMaxExpr; | |||
| 15142 | auto IsMin = | |||
| 15143 | isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr); | |||
| 15144 | assert(isKnownNonNegative(MinMaxLHS) &&(static_cast <bool> (isKnownNonNegative(MinMaxLHS) && "Expected non-negative operand!") ? void (0) : __assert_fail ("isKnownNonNegative(MinMaxLHS) && \"Expected non-negative operand!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 15145, __extension__ __PRETTY_FUNCTION__)) | |||
| 15145 | "Expected non-negative operand!")(static_cast <bool> (isKnownNonNegative(MinMaxLHS) && "Expected non-negative operand!") ? void (0) : __assert_fail ("isKnownNonNegative(MinMaxLHS) && \"Expected non-negative operand!\"" , "llvm/lib/Analysis/ScalarEvolution.cpp", 15145, __extension__ __PRETTY_FUNCTION__)); | |||
| 15146 | auto *DivisibleExpr = | |||
| 15147 | IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor) | |||
| 15148 | : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor); | |||
| 15149 | SmallVector<const SCEV *> Ops = { | |||
| 15150 | ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr}; | |||
| 15151 | return getMinMaxExpr(SCTy, Ops); | |||
| 15152 | }; | |||
| 15153 | ||||
| 15154 | // If we have LHS == 0, check if LHS is computing a property of some unknown | |||
| 15155 | // SCEV %v which we can rewrite %v to express explicitly. | |||
| 15156 | const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); | |||
| 15157 | if (Predicate == CmpInst::ICMP_EQ && RHSC && | |||
| 15158 | RHSC->getValue()->isNullValue()) { | |||
| 15159 | // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to | |||
| 15160 | // explicitly express that. | |||
| 15161 | const SCEV *URemLHS = nullptr; | |||
| 15162 | const SCEV *URemRHS = nullptr; | |||
| 15163 | if (matchURem(LHS, URemLHS, URemRHS)) { | |||
| 15164 | if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { | |||
| 15165 | auto I = RewriteMap.find(LHSUnknown); | |||
| 15166 | const SCEV *RewrittenLHS = | |||
| 15167 | I != RewriteMap.end() ? I->second : LHSUnknown; | |||
| 15168 | RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS); | |||
| 15169 | const auto *Multiple = | |||
| 15170 | getMulExpr(getUDivExpr(RewrittenLHS, URemRHS), URemRHS); | |||
| 15171 | RewriteMap[LHSUnknown] = Multiple; | |||
| 15172 | ExprsToRewrite.push_back(LHSUnknown); | |||
| 15173 | return; | |||
| 15174 | } | |||
| 15175 | } | |||
| 15176 | } | |||
| 15177 | ||||
| 15178 | // Do not apply information for constants or if RHS contains an AddRec. | |||
| 15179 | if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) | |||
| 15180 | return; | |||
| 15181 | ||||
| 15182 | // If RHS is SCEVUnknown, make sure the information is applied to it. | |||
| 15183 | if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { | |||
| 15184 | std::swap(LHS, RHS); | |||
| 15185 | Predicate = CmpInst::getSwappedPredicate(Predicate); | |||
| 15186 | } | |||
| 15187 | ||||
| 15188 | // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From | |||
| 15189 | // and \p FromRewritten are the same (i.e. there has been no rewrite | |||
| 15190 | // registered for \p From), then puts this value in the list of rewritten | |||
| 15191 | // expressions. | |||
| 15192 | auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten, | |||
| 15193 | const SCEV *To) { | |||
| 15194 | if (From == FromRewritten) | |||
| 15195 | ExprsToRewrite.push_back(From); | |||
| 15196 | RewriteMap[From] = To; | |||
| 15197 | }; | |||
| 15198 | ||||
| 15199 | // Checks whether \p S has already been rewritten. In that case returns the | |||
| 15200 | // existing rewrite because we want to chain further rewrites onto the | |||
| 15201 | // already rewritten value. Otherwise returns \p S. | |||
| 15202 | auto GetMaybeRewritten = [&](const SCEV *S) { | |||
| 15203 | auto I = RewriteMap.find(S); | |||
| 15204 | return I != RewriteMap.end() ? I->second : S; | |||
| 15205 | }; | |||
| 15206 | ||||
| 15207 | // Check for the SCEV expression (A /u B) * B while B is a constant, inside | |||
| 15208 | // \p Expr. The check is done recuresively on \p Expr, which is assumed to | |||
| 15209 | // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A | |||
| 15210 | // /u B) * B was found, and return the divisor B in \p DividesBy. For | |||
| 15211 | // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since | |||
| 15212 | // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p | |||
| 15213 | // DividesBy. | |||
| 15214 | std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo = | |||
| 15215 | [&](const SCEV *Expr, const SCEV *&DividesBy) { | |||
| 15216 | if (auto *Mul = dyn_cast<SCEVMulExpr>(Expr)) { | |||
| 15217 | if (Mul->getNumOperands() != 2) | |||
| 15218 | return false; | |||
| 15219 | auto *MulLHS = Mul->getOperand(0); | |||
| 15220 | auto *MulRHS = Mul->getOperand(1); | |||
| 15221 | if (isa<SCEVConstant>(MulLHS)) | |||
| 15222 | std::swap(MulLHS, MulRHS); | |||
| 15223 | if (auto *Div = dyn_cast<SCEVUDivExpr>(MulLHS)) | |||
| 15224 | if (Div->getOperand(1) == MulRHS) { | |||
| 15225 | DividesBy = MulRHS; | |||
| 15226 | return true; | |||
| 15227 | } | |||
| 15228 | } | |||
| 15229 | if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) | |||
| 15230 | return HasDivisibiltyInfo(MinMax->getOperand(0), DividesBy) || | |||
| 15231 | HasDivisibiltyInfo(MinMax->getOperand(1), DividesBy); | |||
| 15232 | return false; | |||
| 15233 | }; | |||
| 15234 | ||||
| 15235 | // Return true if Expr known to divide by \p DividesBy. | |||
| 15236 | std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy = | |||
| 15237 | [&](const SCEV *Expr, const SCEV *DividesBy) { | |||
| 15238 | if (getURemExpr(Expr, DividesBy)->isZero()) | |||
| 15239 | return true; | |||
| 15240 | if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) | |||
| 15241 | return IsKnownToDivideBy(MinMax->getOperand(0), DividesBy) && | |||
| 15242 | IsKnownToDivideBy(MinMax->getOperand(1), DividesBy); | |||
| 15243 | return false; | |||
| 15244 | }; | |||
| 15245 | ||||
| 15246 | const SCEV *RewrittenLHS = GetMaybeRewritten(LHS); | |||
| 15247 | const SCEV *DividesBy = nullptr; | |||
| 15248 | if (HasDivisibiltyInfo(RewrittenLHS, DividesBy)) | |||
| 15249 | // Check that the whole expression is divided by DividesBy | |||
| 15250 | DividesBy = | |||
| 15251 | IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr; | |||
| 15252 | ||||
| 15253 | // Collect rewrites for LHS and its transitive operands based on the | |||
| 15254 | // condition. | |||
| 15255 | // For min/max expressions, also apply the guard to its operands: | |||
| 15256 | // 'min(a, b) >= c' -> '(a >= c) and (b >= c)', | |||
| 15257 | // 'min(a, b) > c' -> '(a > c) and (b > c)', | |||
| 15258 | // 'max(a, b) <= c' -> '(a <= c) and (b <= c)', | |||
| 15259 | // 'max(a, b) < c' -> '(a < c) and (b < c)'. | |||
| 15260 | ||||
| 15261 | // We cannot express strict predicates in SCEV, so instead we replace them | |||
| 15262 | // with non-strict ones against plus or minus one of RHS depending on the | |||
| 15263 | // predicate. | |||
| 15264 | const SCEV *One = getOne(RHS->getType()); | |||
| 15265 | switch (Predicate) { | |||
| 15266 | case CmpInst::ICMP_ULT: | |||
| 15267 | if (RHS->getType()->isPointerTy()) | |||
| 15268 | return; | |||
| 15269 | RHS = getUMaxExpr(RHS, One); | |||
| 15270 | LLVM_FALLTHROUGH[[fallthrough]]; | |||
| 15271 | case CmpInst::ICMP_SLT: { | |||
| 15272 | RHS = getMinusSCEV(RHS, One); | |||
| 15273 | RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; | |||
| 15274 | break; | |||
| 15275 | } | |||
| 15276 | case CmpInst::ICMP_UGT: | |||
| 15277 | case CmpInst::ICMP_SGT: | |||
| 15278 | RHS = getAddExpr(RHS, One); | |||
| 15279 | RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; | |||
| 15280 | break; | |||
| 15281 | case CmpInst::ICMP_ULE: | |||
| 15282 | case CmpInst::ICMP_SLE: | |||
| 15283 | RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS; | |||
| 15284 | break; | |||
| 15285 | case CmpInst::ICMP_UGE: | |||
| 15286 | case CmpInst::ICMP_SGE: | |||
| 15287 | RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS; | |||
| 15288 | break; | |||
| 15289 | default: | |||
| 15290 | break; | |||
| 15291 | } | |||
| 15292 | ||||
| 15293 | SmallVector<const SCEV *, 16> Worklist(1, LHS); | |||
| 15294 | SmallPtrSet<const SCEV *, 16> Visited; | |||
| 15295 | ||||
| 15296 | auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) { | |||
| 15297 | append_range(Worklist, S->operands()); | |||
| 15298 | }; | |||
| 15299 | ||||
| 15300 | while (!Worklist.empty()) { | |||
| 15301 | const SCEV *From = Worklist.pop_back_val(); | |||
| 15302 | if (isa<SCEVConstant>(From)) | |||
| 15303 | continue; | |||
| 15304 | if (!Visited.insert(From).second) | |||
| 15305 | continue; | |||
| 15306 | const SCEV *FromRewritten = GetMaybeRewritten(From); | |||
| 15307 | const SCEV *To = nullptr; | |||
| 15308 | ||||
| 15309 | switch (Predicate) { | |||
| 15310 | case CmpInst::ICMP_ULT: | |||
| 15311 | case CmpInst::ICMP_ULE: | |||
| 15312 | To = getUMinExpr(FromRewritten, RHS); | |||
| 15313 | if (auto *UMax = dyn_cast<SCEVUMaxExpr>(FromRewritten)) | |||
| 15314 | EnqueueOperands(UMax); | |||
| 15315 | break; | |||
| 15316 | case CmpInst::ICMP_SLT: | |||
| 15317 | case CmpInst::ICMP_SLE: | |||
| 15318 | To = getSMinExpr(FromRewritten, RHS); | |||
| 15319 | if (auto *SMax = dyn_cast<SCEVSMaxExpr>(FromRewritten)) | |||
| 15320 | EnqueueOperands(SMax); | |||
| 15321 | break; | |||
| 15322 | case CmpInst::ICMP_UGT: | |||
| 15323 | case CmpInst::ICMP_UGE: | |||
| 15324 | To = getUMaxExpr(FromRewritten, RHS); | |||
| 15325 | if (auto *UMin = dyn_cast<SCEVUMinExpr>(FromRewritten)) | |||
| 15326 | EnqueueOperands(UMin); | |||
| 15327 | break; | |||
| 15328 | case CmpInst::ICMP_SGT: | |||
| 15329 | case CmpInst::ICMP_SGE: | |||
| 15330 | To = getSMaxExpr(FromRewritten, RHS); | |||
| 15331 | if (auto *SMin = dyn_cast<SCEVSMinExpr>(FromRewritten)) | |||
| 15332 | EnqueueOperands(SMin); | |||
| 15333 | break; | |||
| 15334 | case CmpInst::ICMP_EQ: | |||
| 15335 | if (isa<SCEVConstant>(RHS)) | |||
| 15336 | To = RHS; | |||
| 15337 | break; | |||
| 15338 | case CmpInst::ICMP_NE: | |||
| 15339 | if (isa<SCEVConstant>(RHS) && | |||
| 15340 | cast<SCEVConstant>(RHS)->getValue()->isNullValue()) { | |||
| 15341 | const SCEV *OneAlignedUp = | |||
| 15342 | DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One; | |||
| 15343 | To = getUMaxExpr(FromRewritten, OneAlignedUp); | |||
| 15344 | } | |||
| 15345 | break; | |||
| 15346 | default: | |||
| 15347 | break; | |||
| 15348 | } | |||
| 15349 | ||||
| 15350 | if (To) | |||
| 15351 | AddRewrite(From, FromRewritten, To); | |||
| 15352 | } | |||
| 15353 | }; | |||
| 15354 | ||||
| 15355 | BasicBlock *Header = L->getHeader(); | |||
| 15356 | SmallVector<PointerIntPair<Value *, 1, bool>> Terms; | |||
| 15357 | // First, collect information from assumptions dominating the loop. | |||
| 15358 | for (auto &AssumeVH : AC.assumptions()) { | |||
| 15359 | if (!AssumeVH) | |||
| 15360 | continue; | |||
| 15361 | auto *AssumeI = cast<CallInst>(AssumeVH); | |||
| 15362 | if (!DT.dominates(AssumeI, Header)) | |||
| 15363 | continue; | |||
| 15364 | Terms.emplace_back(AssumeI->getOperand(0), true); | |||
| 15365 | } | |||
| 15366 | ||||
| 15367 | // Second, collect information from llvm.experimental.guards dominating the loop. | |||
| 15368 | auto *GuardDecl = F.getParent()->getFunction( | |||
| 15369 | Intrinsic::getName(Intrinsic::experimental_guard)); | |||
| 15370 | if (GuardDecl) | |||
| 15371 | for (const auto *GU : GuardDecl->users()) | |||
| 15372 | if (const auto *Guard = dyn_cast<IntrinsicInst>(GU)) | |||
| 15373 | if (Guard->getFunction() == Header->getParent() && DT.dominates(Guard, Header)) | |||
| 15374 | Terms.emplace_back(Guard->getArgOperand(0), true); | |||
| 15375 | ||||
| 15376 | // Third, collect conditions from dominating branches. Starting at the loop | |||
| 15377 | // predecessor, climb up the predecessor chain, as long as there are | |||
| 15378 | // predecessors that can be found that have unique successors leading to the | |||
| 15379 | // original header. | |||
| 15380 | // TODO: share this logic with isLoopEntryGuardedByCond. | |||
| 15381 | for (std::pair<const BasicBlock *, const BasicBlock *> Pair( | |||
| 15382 | L->getLoopPredecessor(), Header); | |||
| 15383 | Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { | |||
| 15384 | ||||
| 15385 | const BranchInst *LoopEntryPredicate = | |||
| 15386 | dyn_cast<BranchInst>(Pair.first->getTerminator()); | |||
| 15387 | if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) | |||
| 15388 | continue; | |||
| 15389 | ||||
| 15390 | Terms.emplace_back(LoopEntryPredicate->getCondition(), | |||
| 15391 | LoopEntryPredicate->getSuccessor(0) == Pair.second); | |||
| 15392 | } | |||
| 15393 | ||||
| 15394 | // Now apply the information from the collected conditions to RewriteMap. | |||
| 15395 | // Conditions are processed in reverse order, so the earliest conditions is | |||
| 15396 | // processed first. This ensures the SCEVs with the shortest dependency chains | |||
| 15397 | // are constructed first. | |||
| 15398 | DenseMap<const SCEV *, const SCEV *> RewriteMap; | |||
| 15399 | for (auto [Term, EnterIfTrue] : reverse(Terms)) { | |||
| 15400 | SmallVector<Value *, 8> Worklist; | |||
| 15401 | SmallPtrSet<Value *, 8> Visited; | |||
| 15402 | Worklist.push_back(Term); | |||
| 15403 | while (!Worklist.empty()) { | |||
| 15404 | Value *Cond = Worklist.pop_back_val(); | |||
| 15405 | if (!Visited.insert(Cond).second) | |||
| 15406 | continue; | |||
| 15407 | ||||
| 15408 | if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { | |||
| 15409 | auto Predicate = | |||
| 15410 | EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); | |||
| 15411 | const auto *LHS = getSCEV(Cmp->getOperand(0)); | |||
| 15412 | const auto *RHS = getSCEV(Cmp->getOperand(1)); | |||
| 15413 | CollectCondition(Predicate, LHS, RHS, RewriteMap); | |||
| 15414 | continue; | |||
| 15415 | } | |||
| 15416 | ||||
| 15417 | Value *L, *R; | |||
| 15418 | if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) | |||
| 15419 | : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { | |||
| 15420 | Worklist.push_back(L); | |||
| 15421 | Worklist.push_back(R); | |||
| 15422 | } | |||
| 15423 | } | |||
| 15424 | } | |||
| 15425 | ||||
| 15426 | if (RewriteMap.empty()) | |||
| 15427 | return Expr; | |||
| 15428 | ||||
| 15429 | // Now that all rewrite information is collect, rewrite the collected | |||
| 15430 | // expressions with the information in the map. This applies information to | |||
| 15431 | // sub-expressions. | |||
| 15432 | if (ExprsToRewrite.size() > 1) { | |||
| 15433 | for (const SCEV *Expr : ExprsToRewrite) { | |||
| 15434 | const SCEV *RewriteTo = RewriteMap[Expr]; | |||
| 15435 | RewriteMap.erase(Expr); | |||
| 15436 | SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); | |||
| 15437 | RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); | |||
| 15438 | } | |||
| 15439 | } | |||
| 15440 | ||||
| 15441 | SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); | |||
| 15442 | return Rewriter.visit(Expr); | |||
| 15443 | } |