Bug Summary

File:lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
Warning:line 1156, column 5
Value stored to 'N' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ScheduleDAGRRList.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/CodeGen/SelectionDAG -I /build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/CodeGen/SelectionDAG -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
1//===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms. The basic approach uses a priority
12// queue of available nodes to schedule. One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#include "ScheduleDAGSDNodes.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/CodeGen/ISDOpcodes.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineOperand.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/ScheduleDAG.h"
30#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
31#include "llvm/CodeGen/SchedulerRegistry.h"
32#include "llvm/CodeGen/SelectionDAGISel.h"
33#include "llvm/CodeGen/SelectionDAGNodes.h"
34#include "llvm/CodeGen/TargetInstrInfo.h"
35#include "llvm/CodeGen/TargetLowering.h"
36#include "llvm/CodeGen/TargetOpcodes.h"
37#include "llvm/CodeGen/TargetRegisterInfo.h"
38#include "llvm/CodeGen/TargetSubtargetInfo.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/MC/MCInstrDesc.h"
41#include "llvm/MC/MCRegisterInfo.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/CodeGen.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/MachineValueType.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <cassert>
52#include <cstdint>
53#include <cstdlib>
54#include <iterator>
55#include <limits>
56#include <memory>
57#include <utility>
58#include <vector>
59
60using namespace llvm;
61
62#define DEBUG_TYPE"pre-RA-sched" "pre-RA-sched"
63
64STATISTIC(NumBacktracks, "Number of times scheduler backtracked")static llvm::Statistic NumBacktracks = {"pre-RA-sched", "NumBacktracks"
, "Number of times scheduler backtracked", {0}, {false}}
;
65STATISTIC(NumUnfolds, "Number of nodes unfolded")static llvm::Statistic NumUnfolds = {"pre-RA-sched", "NumUnfolds"
, "Number of nodes unfolded", {0}, {false}}
;
66STATISTIC(NumDups, "Number of duplicated nodes")static llvm::Statistic NumDups = {"pre-RA-sched", "NumDups", "Number of duplicated nodes"
, {0}, {false}}
;
67STATISTIC(NumPRCopies, "Number of physical register copies")static llvm::Statistic NumPRCopies = {"pre-RA-sched", "NumPRCopies"
, "Number of physical register copies", {0}, {false}}
;
68
69static RegisterScheduler
70 burrListDAGScheduler("list-burr",
71 "Bottom-up register reduction list scheduling",
72 createBURRListDAGScheduler);
73
74static RegisterScheduler
75 sourceListDAGScheduler("source",
76 "Similar to list-burr but schedules in source "
77 "order when possible",
78 createSourceListDAGScheduler);
79
80static RegisterScheduler
81 hybridListDAGScheduler("list-hybrid",
82 "Bottom-up register pressure aware list scheduling "
83 "which tries to balance latency and register pressure",
84 createHybridListDAGScheduler);
85
86static RegisterScheduler
87 ILPListDAGScheduler("list-ilp",
88 "Bottom-up register pressure aware list scheduling "
89 "which tries to balance ILP and register pressure",
90 createILPListDAGScheduler);
91
92static cl::opt<bool> DisableSchedCycles(
93 "disable-sched-cycles", cl::Hidden, cl::init(false),
94 cl::desc("Disable cycle-level precision during preRA scheduling"));
95
96// Temporary sched=list-ilp flags until the heuristics are robust.
97// Some options are also available under sched=list-hybrid.
98static cl::opt<bool> DisableSchedRegPressure(
99 "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
100 cl::desc("Disable regpressure priority in sched=list-ilp"));
101static cl::opt<bool> DisableSchedLiveUses(
102 "disable-sched-live-uses", cl::Hidden, cl::init(true),
103 cl::desc("Disable live use priority in sched=list-ilp"));
104static cl::opt<bool> DisableSchedVRegCycle(
105 "disable-sched-vrcycle", cl::Hidden, cl::init(false),
106 cl::desc("Disable virtual register cycle interference checks"));
107static cl::opt<bool> DisableSchedPhysRegJoin(
108 "disable-sched-physreg-join", cl::Hidden, cl::init(false),
109 cl::desc("Disable physreg def-use affinity"));
110static cl::opt<bool> DisableSchedStalls(
111 "disable-sched-stalls", cl::Hidden, cl::init(true),
112 cl::desc("Disable no-stall priority in sched=list-ilp"));
113static cl::opt<bool> DisableSchedCriticalPath(
114 "disable-sched-critical-path", cl::Hidden, cl::init(false),
115 cl::desc("Disable critical path priority in sched=list-ilp"));
116static cl::opt<bool> DisableSchedHeight(
117 "disable-sched-height", cl::Hidden, cl::init(false),
118 cl::desc("Disable scheduled-height priority in sched=list-ilp"));
119static cl::opt<bool> Disable2AddrHack(
120 "disable-2addr-hack", cl::Hidden, cl::init(true),
121 cl::desc("Disable scheduler's two-address hack"));
122
123static cl::opt<int> MaxReorderWindow(
124 "max-sched-reorder", cl::Hidden, cl::init(6),
125 cl::desc("Number of instructions to allow ahead of the critical path "
126 "in sched=list-ilp"));
127
128static cl::opt<unsigned> AvgIPC(
129 "sched-avg-ipc", cl::Hidden, cl::init(1),
130 cl::desc("Average inst/cycle whan no target itinerary exists."));
131
132namespace {
133
134//===----------------------------------------------------------------------===//
135/// ScheduleDAGRRList - The actual register reduction list scheduler
136/// implementation. This supports both top-down and bottom-up scheduling.
137///
138class ScheduleDAGRRList : public ScheduleDAGSDNodes {
139private:
140 /// NeedLatency - True if the scheduler will make use of latency information.
141 bool NeedLatency;
142
143 /// AvailableQueue - The priority queue to use for the available SUnits.
144 SchedulingPriorityQueue *AvailableQueue;
145
146 /// PendingQueue - This contains all of the instructions whose operands have
147 /// been issued, but their results are not ready yet (due to the latency of
148 /// the operation). Once the operands becomes available, the instruction is
149 /// added to the AvailableQueue.
150 std::vector<SUnit *> PendingQueue;
151
152 /// HazardRec - The hazard recognizer to use.
153 ScheduleHazardRecognizer *HazardRec;
154
155 /// CurCycle - The current scheduler state corresponds to this cycle.
156 unsigned CurCycle = 0;
157
158 /// MinAvailableCycle - Cycle of the soonest available instruction.
159 unsigned MinAvailableCycle;
160
161 /// IssueCount - Count instructions issued in this cycle
162 /// Currently valid only for bottom-up scheduling.
163 unsigned IssueCount;
164
165 /// LiveRegDefs - A set of physical registers and their definition
166 /// that are "live". These nodes must be scheduled before any other nodes that
167 /// modifies the registers can be scheduled.
168 unsigned NumLiveRegs;
169 std::unique_ptr<SUnit*[]> LiveRegDefs;
170 std::unique_ptr<SUnit*[]> LiveRegGens;
171
172 // Collect interferences between physical register use/defs.
173 // Each interference is an SUnit and set of physical registers.
174 SmallVector<SUnit*, 4> Interferences;
175
176 using LRegsMapT = DenseMap<SUnit *, SmallVector<unsigned, 4>>;
177
178 LRegsMapT LRegsMap;
179
180 /// Topo - A topological ordering for SUnits which permits fast IsReachable
181 /// and similar queries.
182 ScheduleDAGTopologicalSort Topo;
183
184 // Hack to keep track of the inverse of FindCallSeqStart without more crazy
185 // DAG crawling.
186 DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
187
188public:
189 ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
190 SchedulingPriorityQueue *availqueue,
191 CodeGenOpt::Level OptLevel)
192 : ScheduleDAGSDNodes(mf),
193 NeedLatency(needlatency), AvailableQueue(availqueue),
194 Topo(SUnits, nullptr) {
195 const TargetSubtargetInfo &STI = mf.getSubtarget();
196 if (DisableSchedCycles || !NeedLatency)
197 HazardRec = new ScheduleHazardRecognizer();
198 else
199 HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
200 }
201
202 ~ScheduleDAGRRList() override {
203 delete HazardRec;
204 delete AvailableQueue;
205 }
206
207 void Schedule() override;
208
209 ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
210
211 /// IsReachable - Checks if SU is reachable from TargetSU.
212 bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
213 return Topo.IsReachable(SU, TargetSU);
214 }
215
216 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
217 /// create a cycle.
218 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
219 return Topo.WillCreateCycle(SU, TargetSU);
220 }
221
222 /// AddPred - adds a predecessor edge to SUnit SU.
223 /// This returns true if this is a new predecessor.
224 /// Updates the topological ordering if required.
225 void AddPred(SUnit *SU, const SDep &D) {
226 Topo.AddPred(SU, D.getSUnit());
227 SU->addPred(D);
228 }
229
230 /// RemovePred - removes a predecessor edge from SUnit SU.
231 /// This returns true if an edge was removed.
232 /// Updates the topological ordering if required.
233 void RemovePred(SUnit *SU, const SDep &D) {
234 Topo.RemovePred(SU, D.getSUnit());
235 SU->removePred(D);
236 }
237
238private:
239 bool isReady(SUnit *SU) {
240 return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
241 AvailableQueue->isReady(SU);
242 }
243
244 void ReleasePred(SUnit *SU, const SDep *PredEdge);
245 void ReleasePredecessors(SUnit *SU);
246 void ReleasePending();
247 void AdvanceToCycle(unsigned NextCycle);
248 void AdvancePastStalls(SUnit *SU);
249 void EmitNode(SUnit *SU);
250 void ScheduleNodeBottomUp(SUnit*);
251 void CapturePred(SDep *PredEdge);
252 void UnscheduleNodeBottomUp(SUnit*);
253 void RestoreHazardCheckerBottomUp();
254 void BacktrackBottomUp(SUnit*, SUnit*);
255 SUnit *TryUnfoldSU(SUnit *);
256 SUnit *CopyAndMoveSuccessors(SUnit*);
257 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
258 const TargetRegisterClass*,
259 const TargetRegisterClass*,
260 SmallVectorImpl<SUnit*>&);
261 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
262
263 void releaseInterferences(unsigned Reg = 0);
264
265 SUnit *PickNodeToScheduleBottomUp();
266 void ListScheduleBottomUp();
267
268 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
269 /// Updates the topological ordering if required.
270 SUnit *CreateNewSUnit(SDNode *N) {
271 unsigned NumSUnits = SUnits.size();
272 SUnit *NewNode = newSUnit(N);
273 // Update the topological ordering.
274 if (NewNode->NodeNum >= NumSUnits)
275 Topo.InitDAGTopologicalSorting();
276 return NewNode;
277 }
278
279 /// CreateClone - Creates a new SUnit from an existing one.
280 /// Updates the topological ordering if required.
281 SUnit *CreateClone(SUnit *N) {
282 unsigned NumSUnits = SUnits.size();
283 SUnit *NewNode = Clone(N);
284 // Update the topological ordering.
285 if (NewNode->NodeNum >= NumSUnits)
286 Topo.InitDAGTopologicalSorting();
287 return NewNode;
288 }
289
290 /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
291 /// need actual latency information but the hybrid scheduler does.
292 bool forceUnitLatencies() const override {
293 return !NeedLatency;
294 }
295};
296
297} // end anonymous namespace
298
299/// GetCostForDef - Looks up the register class and cost for a given definition.
300/// Typically this just means looking up the representative register class,
301/// but for untyped values (MVT::Untyped) it means inspecting the node's
302/// opcode to determine what register class is being generated.
303static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
304 const TargetLowering *TLI,
305 const TargetInstrInfo *TII,
306 const TargetRegisterInfo *TRI,
307 unsigned &RegClass, unsigned &Cost,
308 const MachineFunction &MF) {
309 MVT VT = RegDefPos.GetValue();
310
311 // Special handling for untyped values. These values can only come from
312 // the expansion of custom DAG-to-DAG patterns.
313 if (VT == MVT::Untyped) {
314 const SDNode *Node = RegDefPos.GetNode();
315
316 // Special handling for CopyFromReg of untyped values.
317 if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
318 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
319 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
320 RegClass = RC->getID();
321 Cost = 1;
322 return;
323 }
324
325 unsigned Opcode = Node->getMachineOpcode();
326 if (Opcode == TargetOpcode::REG_SEQUENCE) {
327 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
328 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
329 RegClass = RC->getID();
330 Cost = 1;
331 return;
332 }
333
334 unsigned Idx = RegDefPos.GetIdx();
335 const MCInstrDesc Desc = TII->get(Opcode);
336 const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
337 RegClass = RC->getID();
338 // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
339 // better way to determine it.
340 Cost = 1;
341 } else {
342 RegClass = TLI->getRepRegClassFor(VT)->getID();
343 Cost = TLI->getRepRegClassCostFor(VT);
344 }
345}
346
347/// Schedule - Schedule the DAG using list scheduling.
348void ScheduleDAGRRList::Schedule() {
349 DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "********** List Scheduling "
<< printMBBReference(*BB) << " '" << BB->
getName() << "' **********\n"; } } while (false)
350 << " '" << BB->getName() << "' **********\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "********** List Scheduling "
<< printMBBReference(*BB) << " '" << BB->
getName() << "' **********\n"; } } while (false)
;
351
352 CurCycle = 0;
353 IssueCount = 0;
354 MinAvailableCycle =
355 DisableSchedCycles ? 0 : std::numeric_limits<unsigned>::max();
356 NumLiveRegs = 0;
357 // Allocate slots for each physical register, plus one for a special register
358 // to track the virtual resource of a calling sequence.
359 LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
360 LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
361 CallSeqEndForStart.clear();
362 assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences")(static_cast <bool> (Interferences.empty() && LRegsMap
.empty() && "stale Interferences") ? void (0) : __assert_fail
("Interferences.empty() && LRegsMap.empty() && \"stale Interferences\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 362, __extension__ __PRETTY_FUNCTION__))
;
363
364 // Build the scheduling graph.
365 BuildSchedGraph(nullptr);
366
367 DEBUG(for (SUnit &SU : SUnits)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { for (SUnit &SU : SUnits) SU.dumpAll(this
); } } while (false)
368 SU.dumpAll(this))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { for (SUnit &SU : SUnits) SU.dumpAll(this
); } } while (false)
;
369 Topo.InitDAGTopologicalSorting();
370
371 AvailableQueue->initNodes(SUnits);
372
373 HazardRec->Reset();
374
375 // Execute the actual scheduling loop.
376 ListScheduleBottomUp();
377
378 AvailableQueue->releaseState();
379
380 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { { dbgs() << "*** Final schedule ***\n"
; dumpSchedule(); dbgs() << '\n'; }; } } while (false)
381 dbgs() << "*** Final schedule ***\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { { dbgs() << "*** Final schedule ***\n"
; dumpSchedule(); dbgs() << '\n'; }; } } while (false)
382 dumpSchedule();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { { dbgs() << "*** Final schedule ***\n"
; dumpSchedule(); dbgs() << '\n'; }; } } while (false)
383 dbgs() << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { { dbgs() << "*** Final schedule ***\n"
; dumpSchedule(); dbgs() << '\n'; }; } } while (false)
384 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { { dbgs() << "*** Final schedule ***\n"
; dumpSchedule(); dbgs() << '\n'; }; } } while (false)
;
385}
386
387//===----------------------------------------------------------------------===//
388// Bottom-Up Scheduling
389//===----------------------------------------------------------------------===//
390
391/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
392/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
393void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
394 SUnit *PredSU = PredEdge->getSUnit();
395
396#ifndef NDEBUG
397 if (PredSU->NumSuccsLeft == 0) {
398 dbgs() << "*** Scheduling failed! ***\n";
399 PredSU->dump(this);
400 dbgs() << " has been released too many times!\n";
401 llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 401)
;
402 }
403#endif
404 --PredSU->NumSuccsLeft;
405
406 if (!forceUnitLatencies()) {
407 // Updating predecessor's height. This is now the cycle when the
408 // predecessor can be scheduled without causing a pipeline stall.
409 PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
410 }
411
412 // If all the node's successors are scheduled, this node is ready
413 // to be scheduled. Ignore the special EntrySU node.
414 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
415 PredSU->isAvailable = true;
416
417 unsigned Height = PredSU->getHeight();
418 if (Height < MinAvailableCycle)
419 MinAvailableCycle = Height;
420
421 if (isReady(PredSU)) {
422 AvailableQueue->push(PredSU);
423 }
424 // CapturePred and others may have left the node in the pending queue, avoid
425 // adding it twice.
426 else if (!PredSU->isPending) {
427 PredSU->isPending = true;
428 PendingQueue.push_back(PredSU);
429 }
430 }
431}
432
433/// IsChainDependent - Test if Outer is reachable from Inner through
434/// chain dependencies.
435static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
436 unsigned NestLevel,
437 const TargetInstrInfo *TII) {
438 SDNode *N = Outer;
439 while (true) {
440 if (N == Inner)
441 return true;
442 // For a TokenFactor, examine each operand. There may be multiple ways
443 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
444 // most nesting in order to ensure that we find the corresponding match.
445 if (N->getOpcode() == ISD::TokenFactor) {
446 for (const SDValue &Op : N->op_values())
447 if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
448 return true;
449 return false;
450 }
451 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
452 if (N->isMachineOpcode()) {
453 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
454 ++NestLevel;
455 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
456 if (NestLevel == 0)
457 return false;
458 --NestLevel;
459 }
460 }
461 // Otherwise, find the chain and continue climbing.
462 for (const SDValue &Op : N->op_values())
463 if (Op.getValueType() == MVT::Other) {
464 N = Op.getNode();
465 goto found_chain_operand;
466 }
467 return false;
468 found_chain_operand:;
469 if (N->getOpcode() == ISD::EntryToken)
470 return false;
471 }
472}
473
474/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
475/// the corresponding (lowered) CALLSEQ_BEGIN node.
476///
477/// NestLevel and MaxNested are used in recursion to indcate the current level
478/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
479/// level seen so far.
480///
481/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
482/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
483static SDNode *
484FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
485 const TargetInstrInfo *TII) {
486 while (true) {
487 // For a TokenFactor, examine each operand. There may be multiple ways
488 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
489 // most nesting in order to ensure that we find the corresponding match.
490 if (N->getOpcode() == ISD::TokenFactor) {
491 SDNode *Best = nullptr;
492 unsigned BestMaxNest = MaxNest;
493 for (const SDValue &Op : N->op_values()) {
494 unsigned MyNestLevel = NestLevel;
495 unsigned MyMaxNest = MaxNest;
496 if (SDNode *New = FindCallSeqStart(Op.getNode(),
497 MyNestLevel, MyMaxNest, TII))
498 if (!Best || (MyMaxNest > BestMaxNest)) {
499 Best = New;
500 BestMaxNest = MyMaxNest;
501 }
502 }
503 assert(Best)(static_cast <bool> (Best) ? void (0) : __assert_fail (
"Best", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 503, __extension__ __PRETTY_FUNCTION__))
;
504 MaxNest = BestMaxNest;
505 return Best;
506 }
507 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
508 if (N->isMachineOpcode()) {
509 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
510 ++NestLevel;
511 MaxNest = std::max(MaxNest, NestLevel);
512 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
513 assert(NestLevel != 0)(static_cast <bool> (NestLevel != 0) ? void (0) : __assert_fail
("NestLevel != 0", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 513, __extension__ __PRETTY_FUNCTION__))
;
514 --NestLevel;
515 if (NestLevel == 0)
516 return N;
517 }
518 }
519 // Otherwise, find the chain and continue climbing.
520 for (const SDValue &Op : N->op_values())
521 if (Op.getValueType() == MVT::Other) {
522 N = Op.getNode();
523 goto found_chain_operand;
524 }
525 return nullptr;
526 found_chain_operand:;
527 if (N->getOpcode() == ISD::EntryToken)
528 return nullptr;
529 }
530}
531
532/// Call ReleasePred for each predecessor, then update register live def/gen.
533/// Always update LiveRegDefs for a register dependence even if the current SU
534/// also defines the register. This effectively create one large live range
535/// across a sequence of two-address node. This is important because the
536/// entire chain must be scheduled together. Example:
537///
538/// flags = (3) add
539/// flags = (2) addc flags
540/// flags = (1) addc flags
541///
542/// results in
543///
544/// LiveRegDefs[flags] = 3
545/// LiveRegGens[flags] = 1
546///
547/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
548/// interference on flags.
549void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
550 // Bottom up: release predecessors
551 for (SDep &Pred : SU->Preds) {
552 ReleasePred(SU, &Pred);
553 if (Pred.isAssignedRegDep()) {
554 // This is a physical register dependency and it's impossible or
555 // expensive to copy the register. Make sure nothing that can
556 // clobber the register is scheduled between the predecessor and
557 // this node.
558 SUnit *RegDef = LiveRegDefs[Pred.getReg()]; (void)RegDef;
559 assert((!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) &&(static_cast <bool> ((!RegDef || RegDef == SU || RegDef
== Pred.getSUnit()) && "interference on register dependence"
) ? void (0) : __assert_fail ("(!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) && \"interference on register dependence\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 560, __extension__ __PRETTY_FUNCTION__))
560 "interference on register dependence")(static_cast <bool> ((!RegDef || RegDef == SU || RegDef
== Pred.getSUnit()) && "interference on register dependence"
) ? void (0) : __assert_fail ("(!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) && \"interference on register dependence\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 560, __extension__ __PRETTY_FUNCTION__))
;
561 LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
562 if (!LiveRegGens[Pred.getReg()]) {
563 ++NumLiveRegs;
564 LiveRegGens[Pred.getReg()] = SU;
565 }
566 }
567 }
568
569 // If we're scheduling a lowered CALLSEQ_END, find the corresponding
570 // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
571 // these nodes, to prevent other calls from being interscheduled with them.
572 unsigned CallResource = TRI->getNumRegs();
573 if (!LiveRegDefs[CallResource])
574 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
575 if (Node->isMachineOpcode() &&
576 Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
577 unsigned NestLevel = 0;
578 unsigned MaxNest = 0;
579 SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
580 assert(N && "Must find call sequence start")(static_cast <bool> (N && "Must find call sequence start"
) ? void (0) : __assert_fail ("N && \"Must find call sequence start\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 580, __extension__ __PRETTY_FUNCTION__))
;
581
582 SUnit *Def = &SUnits[N->getNodeId()];
583 CallSeqEndForStart[Def] = SU;
584
585 ++NumLiveRegs;
586 LiveRegDefs[CallResource] = Def;
587 LiveRegGens[CallResource] = SU;
588 break;
589 }
590}
591
592/// Check to see if any of the pending instructions are ready to issue. If
593/// so, add them to the available queue.
594void ScheduleDAGRRList::ReleasePending() {
595 if (DisableSchedCycles) {
596 assert(PendingQueue.empty() && "pending instrs not allowed in this mode")(static_cast <bool> (PendingQueue.empty() && "pending instrs not allowed in this mode"
) ? void (0) : __assert_fail ("PendingQueue.empty() && \"pending instrs not allowed in this mode\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 596, __extension__ __PRETTY_FUNCTION__))
;
597 return;
598 }
599
600 // If the available queue is empty, it is safe to reset MinAvailableCycle.
601 if (AvailableQueue->empty())
602 MinAvailableCycle = std::numeric_limits<unsigned>::max();
603
604 // Check to see if any of the pending instructions are ready to issue. If
605 // so, add them to the available queue.
606 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
607 unsigned ReadyCycle = PendingQueue[i]->getHeight();
608 if (ReadyCycle < MinAvailableCycle)
609 MinAvailableCycle = ReadyCycle;
610
611 if (PendingQueue[i]->isAvailable) {
612 if (!isReady(PendingQueue[i]))
613 continue;
614 AvailableQueue->push(PendingQueue[i]);
615 }
616 PendingQueue[i]->isPending = false;
617 PendingQueue[i] = PendingQueue.back();
618 PendingQueue.pop_back();
619 --i; --e;
620 }
621}
622
623/// Move the scheduler state forward by the specified number of Cycles.
624void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
625 if (NextCycle <= CurCycle)
626 return;
627
628 IssueCount = 0;
629 AvailableQueue->setCurCycle(NextCycle);
630 if (!HazardRec->isEnabled()) {
631 // Bypass lots of virtual calls in case of long latency.
632 CurCycle = NextCycle;
633 }
634 else {
635 for (; CurCycle != NextCycle; ++CurCycle) {
636 HazardRec->RecedeCycle();
637 }
638 }
639 // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
640 // available Q to release pending nodes at least once before popping.
641 ReleasePending();
642}
643
644/// Move the scheduler state forward until the specified node's dependents are
645/// ready and can be scheduled with no resource conflicts.
646void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
647 if (DisableSchedCycles)
648 return;
649
650 // FIXME: Nodes such as CopyFromReg probably should not advance the current
651 // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
652 // has predecessors the cycle will be advanced when they are scheduled.
653 // But given the crude nature of modeling latency though such nodes, we
654 // currently need to treat these nodes like real instructions.
655 // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
656
657 unsigned ReadyCycle = SU->getHeight();
658
659 // Bump CurCycle to account for latency. We assume the latency of other
660 // available instructions may be hidden by the stall (not a full pipe stall).
661 // This updates the hazard recognizer's cycle before reserving resources for
662 // this instruction.
663 AdvanceToCycle(ReadyCycle);
664
665 // Calls are scheduled in their preceding cycle, so don't conflict with
666 // hazards from instructions after the call. EmitNode will reset the
667 // scoreboard state before emitting the call.
668 if (SU->isCall)
669 return;
670
671 // FIXME: For resource conflicts in very long non-pipelined stages, we
672 // should probably skip ahead here to avoid useless scoreboard checks.
673 int Stalls = 0;
674 while (true) {
675 ScheduleHazardRecognizer::HazardType HT =
676 HazardRec->getHazardType(SU, -Stalls);
677
678 if (HT == ScheduleHazardRecognizer::NoHazard)
679 break;
680
681 ++Stalls;
682 }
683 AdvanceToCycle(CurCycle + Stalls);
684}
685
686/// Record this SUnit in the HazardRecognizer.
687/// Does not update CurCycle.
688void ScheduleDAGRRList::EmitNode(SUnit *SU) {
689 if (!HazardRec->isEnabled())
690 return;
691
692 // Check for phys reg copy.
693 if (!SU->getNode())
694 return;
695
696 switch (SU->getNode()->getOpcode()) {
697 default:
698 assert(SU->getNode()->isMachineOpcode() &&(static_cast <bool> (SU->getNode()->isMachineOpcode
() && "This target-independent node should not be scheduled."
) ? void (0) : __assert_fail ("SU->getNode()->isMachineOpcode() && \"This target-independent node should not be scheduled.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 699, __extension__ __PRETTY_FUNCTION__))
699 "This target-independent node should not be scheduled.")(static_cast <bool> (SU->getNode()->isMachineOpcode
() && "This target-independent node should not be scheduled."
) ? void (0) : __assert_fail ("SU->getNode()->isMachineOpcode() && \"This target-independent node should not be scheduled.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 699, __extension__ __PRETTY_FUNCTION__))
;
700 break;
701 case ISD::MERGE_VALUES:
702 case ISD::TokenFactor:
703 case ISD::LIFETIME_START:
704 case ISD::LIFETIME_END:
705 case ISD::CopyToReg:
706 case ISD::CopyFromReg:
707 case ISD::EH_LABEL:
708 // Noops don't affect the scoreboard state. Copies are likely to be
709 // removed.
710 return;
711 case ISD::INLINEASM:
712 // For inline asm, clear the pipeline state.
713 HazardRec->Reset();
714 return;
715 }
716 if (SU->isCall) {
717 // Calls are scheduled with their preceding instructions. For bottom-up
718 // scheduling, clear the pipeline state before emitting.
719 HazardRec->Reset();
720 }
721
722 HazardRec->EmitInstruction(SU);
723}
724
725static void resetVRegCycle(SUnit *SU);
726
727/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
728/// count of its predecessors. If a predecessor pending count is zero, add it to
729/// the Available queue.
730void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
731 DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "\n*** Scheduling [" <<
CurCycle << "]: "; } } while (false)
;
732 DEBUG(SU->dump(this))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { SU->dump(this); } } while (false)
;
733
734#ifndef NDEBUG
735 if (CurCycle < SU->getHeight())
736 DEBUG(dbgs() << " Height [" << SU->getHeight()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Height [" << SU
->getHeight() << "] pipeline stall!\n"; } } while (false
)
737 << "] pipeline stall!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Height [" << SU
->getHeight() << "] pipeline stall!\n"; } } while (false
)
;
738#endif
739
740 // FIXME: Do not modify node height. It may interfere with
741 // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
742 // node its ready cycle can aid heuristics, and after scheduling it can
743 // indicate the scheduled cycle.
744 SU->setHeightToAtLeast(CurCycle);
745
746 // Reserve resources for the scheduled instruction.
747 EmitNode(SU);
748
749 Sequence.push_back(SU);
750
751 AvailableQueue->scheduledNode(SU);
752
753 // If HazardRec is disabled, and each inst counts as one cycle, then
754 // advance CurCycle before ReleasePredecessors to avoid useless pushes to
755 // PendingQueue for schedulers that implement HasReadyFilter.
756 if (!HazardRec->isEnabled() && AvgIPC < 2)
757 AdvanceToCycle(CurCycle + 1);
758
759 // Update liveness of predecessors before successors to avoid treating a
760 // two-address node as a live range def.
761 ReleasePredecessors(SU);
762
763 // Release all the implicit physical register defs that are live.
764 for (SDep &Succ : SU->Succs) {
765 // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node.
766 if (Succ.isAssignedRegDep() && LiveRegDefs[Succ.getReg()] == SU) {
767 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!")(static_cast <bool> (NumLiveRegs > 0 && "NumLiveRegs is already zero!"
) ? void (0) : __assert_fail ("NumLiveRegs > 0 && \"NumLiveRegs is already zero!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 767, __extension__ __PRETTY_FUNCTION__))
;
768 --NumLiveRegs;
769 LiveRegDefs[Succ.getReg()] = nullptr;
770 LiveRegGens[Succ.getReg()] = nullptr;
771 releaseInterferences(Succ.getReg());
772 }
773 }
774 // Release the special call resource dependence, if this is the beginning
775 // of a call.
776 unsigned CallResource = TRI->getNumRegs();
777 if (LiveRegDefs[CallResource] == SU)
778 for (const SDNode *SUNode = SU->getNode(); SUNode;
779 SUNode = SUNode->getGluedNode()) {
780 if (SUNode->isMachineOpcode() &&
781 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
782 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!")(static_cast <bool> (NumLiveRegs > 0 && "NumLiveRegs is already zero!"
) ? void (0) : __assert_fail ("NumLiveRegs > 0 && \"NumLiveRegs is already zero!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 782, __extension__ __PRETTY_FUNCTION__))
;
783 --NumLiveRegs;
784 LiveRegDefs[CallResource] = nullptr;
785 LiveRegGens[CallResource] = nullptr;
786 releaseInterferences(CallResource);
787 }
788 }
789
790 resetVRegCycle(SU);
791
792 SU->isScheduled = true;
793
794 // Conditions under which the scheduler should eagerly advance the cycle:
795 // (1) No available instructions
796 // (2) All pipelines full, so available instructions must have hazards.
797 //
798 // If HazardRec is disabled, the cycle was pre-advanced before calling
799 // ReleasePredecessors. In that case, IssueCount should remain 0.
800 //
801 // Check AvailableQueue after ReleasePredecessors in case of zero latency.
802 if (HazardRec->isEnabled() || AvgIPC > 1) {
803 if (SU->getNode() && SU->getNode()->isMachineOpcode())
804 ++IssueCount;
805 if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
806 || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
807 AdvanceToCycle(CurCycle + 1);
808 }
809}
810
811/// CapturePred - This does the opposite of ReleasePred. Since SU is being
812/// unscheduled, increase the succ left count of its predecessors. Remove
813/// them from AvailableQueue if necessary.
814void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
815 SUnit *PredSU = PredEdge->getSUnit();
816 if (PredSU->isAvailable) {
817 PredSU->isAvailable = false;
818 if (!PredSU->isPending)
819 AvailableQueue->remove(PredSU);
820 }
821
822 assert(PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&(static_cast <bool> (PredSU->NumSuccsLeft < std::
numeric_limits<unsigned>::max() && "NumSuccsLeft will overflow!"
) ? void (0) : __assert_fail ("PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() && \"NumSuccsLeft will overflow!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 823, __extension__ __PRETTY_FUNCTION__))
823 "NumSuccsLeft will overflow!")(static_cast <bool> (PredSU->NumSuccsLeft < std::
numeric_limits<unsigned>::max() && "NumSuccsLeft will overflow!"
) ? void (0) : __assert_fail ("PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() && \"NumSuccsLeft will overflow!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 823, __extension__ __PRETTY_FUNCTION__))
;
824 ++PredSU->NumSuccsLeft;
825}
826
827/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
828/// its predecessor states to reflect the change.
829void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
830 DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "*** Unscheduling [" <<
SU->getHeight() << "]: "; } } while (false)
;
831 DEBUG(SU->dump(this))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { SU->dump(this); } } while (false)
;
832
833 for (SDep &Pred : SU->Preds) {
834 CapturePred(&Pred);
835 if (Pred.isAssignedRegDep() && SU == LiveRegGens[Pred.getReg()]){
836 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!")(static_cast <bool> (NumLiveRegs > 0 && "NumLiveRegs is already zero!"
) ? void (0) : __assert_fail ("NumLiveRegs > 0 && \"NumLiveRegs is already zero!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 836, __extension__ __PRETTY_FUNCTION__))
;
837 assert(LiveRegDefs[Pred.getReg()] == Pred.getSUnit() &&(static_cast <bool> (LiveRegDefs[Pred.getReg()] == Pred
.getSUnit() && "Physical register dependency violated?"
) ? void (0) : __assert_fail ("LiveRegDefs[Pred.getReg()] == Pred.getSUnit() && \"Physical register dependency violated?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 838, __extension__ __PRETTY_FUNCTION__))
838 "Physical register dependency violated?")(static_cast <bool> (LiveRegDefs[Pred.getReg()] == Pred
.getSUnit() && "Physical register dependency violated?"
) ? void (0) : __assert_fail ("LiveRegDefs[Pred.getReg()] == Pred.getSUnit() && \"Physical register dependency violated?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 838, __extension__ __PRETTY_FUNCTION__))
;
839 --NumLiveRegs;
840 LiveRegDefs[Pred.getReg()] = nullptr;
841 LiveRegGens[Pred.getReg()] = nullptr;
842 releaseInterferences(Pred.getReg());
843 }
844 }
845
846 // Reclaim the special call resource dependence, if this is the beginning
847 // of a call.
848 unsigned CallResource = TRI->getNumRegs();
849 for (const SDNode *SUNode = SU->getNode(); SUNode;
850 SUNode = SUNode->getGluedNode()) {
851 if (SUNode->isMachineOpcode() &&
852 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
853 SUnit *SeqEnd = CallSeqEndForStart[SU];
854 assert(SeqEnd && "Call sequence start/end must be known")(static_cast <bool> (SeqEnd && "Call sequence start/end must be known"
) ? void (0) : __assert_fail ("SeqEnd && \"Call sequence start/end must be known\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 854, __extension__ __PRETTY_FUNCTION__))
;
855 assert(!LiveRegDefs[CallResource])(static_cast <bool> (!LiveRegDefs[CallResource]) ? void
(0) : __assert_fail ("!LiveRegDefs[CallResource]", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 855, __extension__ __PRETTY_FUNCTION__))
;
856 assert(!LiveRegGens[CallResource])(static_cast <bool> (!LiveRegGens[CallResource]) ? void
(0) : __assert_fail ("!LiveRegGens[CallResource]", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 856, __extension__ __PRETTY_FUNCTION__))
;
857 ++NumLiveRegs;
858 LiveRegDefs[CallResource] = SU;
859 LiveRegGens[CallResource] = SeqEnd;
860 }
861 }
862
863 // Release the special call resource dependence, if this is the end
864 // of a call.
865 if (LiveRegGens[CallResource] == SU)
866 for (const SDNode *SUNode = SU->getNode(); SUNode;
867 SUNode = SUNode->getGluedNode()) {
868 if (SUNode->isMachineOpcode() &&
869 SUNode->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
870 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!")(static_cast <bool> (NumLiveRegs > 0 && "NumLiveRegs is already zero!"
) ? void (0) : __assert_fail ("NumLiveRegs > 0 && \"NumLiveRegs is already zero!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 870, __extension__ __PRETTY_FUNCTION__))
;
871 assert(LiveRegDefs[CallResource])(static_cast <bool> (LiveRegDefs[CallResource]) ? void (
0) : __assert_fail ("LiveRegDefs[CallResource]", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 871, __extension__ __PRETTY_FUNCTION__))
;
872 assert(LiveRegGens[CallResource])(static_cast <bool> (LiveRegGens[CallResource]) ? void (
0) : __assert_fail ("LiveRegGens[CallResource]", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 872, __extension__ __PRETTY_FUNCTION__))
;
873 --NumLiveRegs;
874 LiveRegDefs[CallResource] = nullptr;
875 LiveRegGens[CallResource] = nullptr;
876 releaseInterferences(CallResource);
877 }
878 }
879
880 for (auto &Succ : SU->Succs) {
881 if (Succ.isAssignedRegDep()) {
882 auto Reg = Succ.getReg();
883 if (!LiveRegDefs[Reg])
884 ++NumLiveRegs;
885 // This becomes the nearest def. Note that an earlier def may still be
886 // pending if this is a two-address node.
887 LiveRegDefs[Reg] = SU;
888
889 // Update LiveRegGen only if was empty before this unscheduling.
890 // This is to avoid incorrect updating LiveRegGen set in previous run.
891 if (!LiveRegGens[Reg]) {
892 // Find the successor with the lowest height.
893 LiveRegGens[Reg] = Succ.getSUnit();
894 for (auto &Succ2 : SU->Succs) {
895 if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
896 Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
897 LiveRegGens[Reg] = Succ2.getSUnit();
898 }
899 }
900 }
901 }
902 if (SU->getHeight() < MinAvailableCycle)
903 MinAvailableCycle = SU->getHeight();
904
905 SU->setHeightDirty();
906 SU->isScheduled = false;
907 SU->isAvailable = true;
908 if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
909 // Don't make available until backtracking is complete.
910 SU->isPending = true;
911 PendingQueue.push_back(SU);
912 }
913 else {
914 AvailableQueue->push(SU);
915 }
916 AvailableQueue->unscheduledNode(SU);
917}
918
919/// After backtracking, the hazard checker needs to be restored to a state
920/// corresponding the current cycle.
921void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
922 HazardRec->Reset();
923
924 unsigned LookAhead = std::min((unsigned)Sequence.size(),
925 HazardRec->getMaxLookAhead());
926 if (LookAhead == 0)
927 return;
928
929 std::vector<SUnit *>::const_iterator I = (Sequence.end() - LookAhead);
930 unsigned HazardCycle = (*I)->getHeight();
931 for (auto E = Sequence.end(); I != E; ++I) {
932 SUnit *SU = *I;
933 for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
934 HazardRec->RecedeCycle();
935 }
936 EmitNode(SU);
937 }
938}
939
940/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
941/// BTCycle in order to schedule a specific node.
942void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
943 SUnit *OldSU = Sequence.back();
944 while (true) {
945 Sequence.pop_back();
946 // FIXME: use ready cycle instead of height
947 CurCycle = OldSU->getHeight();
948 UnscheduleNodeBottomUp(OldSU);
949 AvailableQueue->setCurCycle(CurCycle);
950 if (OldSU == BtSU)
951 break;
952 OldSU = Sequence.back();
953 }
954
955 assert(!SU->isSucc(OldSU) && "Something is wrong!")(static_cast <bool> (!SU->isSucc(OldSU) && "Something is wrong!"
) ? void (0) : __assert_fail ("!SU->isSucc(OldSU) && \"Something is wrong!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 955, __extension__ __PRETTY_FUNCTION__))
;
956
957 RestoreHazardCheckerBottomUp();
958
959 ReleasePending();
960
961 ++NumBacktracks;
962}
963
964static bool isOperandOf(const SUnit *SU, SDNode *N) {
965 for (const SDNode *SUNode = SU->getNode(); SUNode;
966 SUNode = SUNode->getGluedNode()) {
967 if (SUNode->isOperandOf(N))
968 return true;
969 }
970 return false;
971}
972
973/// TryUnfold - Attempt to unfold
974SUnit *ScheduleDAGRRList::TryUnfoldSU(SUnit *SU) {
975 SDNode *N = SU->getNode();
976 // Use while over if to ease fall through.
977 SmallVector<SDNode *, 2> NewNodes;
978 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
979 return nullptr;
980
981 // unfolding an x86 DEC64m operation results in store, dec, load which
982 // can't be handled here so quit
983 if (NewNodes.size() == 3)
984 return nullptr;
985
986 assert(NewNodes.size() == 2 && "Expected a load folding node!")(static_cast <bool> (NewNodes.size() == 2 && "Expected a load folding node!"
) ? void (0) : __assert_fail ("NewNodes.size() == 2 && \"Expected a load folding node!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 986, __extension__ __PRETTY_FUNCTION__))
;
987
988 N = NewNodes[1];
989 SDNode *LoadNode = NewNodes[0];
990 unsigned NumVals = N->getNumValues();
991 unsigned OldNumVals = SU->getNode()->getNumValues();
992
993 // LoadNode may already exist. This can happen when there is another
994 // load from the same location and producing the same type of value
995 // but it has different alignment or volatileness.
996 bool isNewLoad = true;
997 SUnit *LoadSU;
998 if (LoadNode->getNodeId() != -1) {
999 LoadSU = &SUnits[LoadNode->getNodeId()];
1000 // If LoadSU has already been scheduled, we should clone it but
1001 // this would negate the benefit to unfolding so just return SU.
1002 if (LoadSU->isScheduled)
1003 return SU;
1004 isNewLoad = false;
1005 } else {
1006 LoadSU = CreateNewSUnit(LoadNode);
1007 LoadNode->setNodeId(LoadSU->NodeNum);
1008
1009 InitNumRegDefsLeft(LoadSU);
1010 computeLatency(LoadSU);
1011 }
1012
1013 DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Unfolding SU #" <<
SU->NodeNum << "\n"; } } while (false)
;
1014
1015 // Now that we are committed to unfolding replace DAG Uses.
1016 for (unsigned i = 0; i != NumVals; ++i)
1017 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
1018 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals - 1),
1019 SDValue(LoadNode, 1));
1020
1021 SUnit *NewSU = CreateNewSUnit(N);
1022 assert(N->getNodeId() == -1 && "Node already inserted!")(static_cast <bool> (N->getNodeId() == -1 &&
"Node already inserted!") ? void (0) : __assert_fail ("N->getNodeId() == -1 && \"Node already inserted!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1022, __extension__ __PRETTY_FUNCTION__))
;
1023 N->setNodeId(NewSU->NodeNum);
1024
1025 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1026 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1027 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1028 NewSU->isTwoAddress = true;
1029 break;
1030 }
1031 }
1032 if (MCID.isCommutable())
1033 NewSU->isCommutable = true;
1034
1035 InitNumRegDefsLeft(NewSU);
1036 computeLatency(NewSU);
1037
1038 // Record all the edges to and from the old SU, by category.
1039 SmallVector<SDep, 4> ChainPreds;
1040 SmallVector<SDep, 4> ChainSuccs;
1041 SmallVector<SDep, 4> LoadPreds;
1042 SmallVector<SDep, 4> NodePreds;
1043 SmallVector<SDep, 4> NodeSuccs;
1044 for (SDep &Pred : SU->Preds) {
1045 if (Pred.isCtrl())
1046 ChainPreds.push_back(Pred);
1047 else if (isOperandOf(Pred.getSUnit(), LoadNode))
1048 LoadPreds.push_back(Pred);
1049 else
1050 NodePreds.push_back(Pred);
1051 }
1052 for (SDep &Succ : SU->Succs) {
1053 if (Succ.isCtrl())
1054 ChainSuccs.push_back(Succ);
1055 else
1056 NodeSuccs.push_back(Succ);
1057 }
1058
1059 // Now assign edges to the newly-created nodes.
1060 for (const SDep &Pred : ChainPreds) {
1061 RemovePred(SU, Pred);
1062 if (isNewLoad)
1063 AddPred(LoadSU, Pred);
1064 }
1065 for (const SDep &Pred : LoadPreds) {
1066 RemovePred(SU, Pred);
1067 if (isNewLoad)
1068 AddPred(LoadSU, Pred);
1069 }
1070 for (const SDep &Pred : NodePreds) {
1071 RemovePred(SU, Pred);
1072 AddPred(NewSU, Pred);
1073 }
1074 for (SDep D : NodeSuccs) {
1075 SUnit *SuccDep = D.getSUnit();
1076 D.setSUnit(SU);
1077 RemovePred(SuccDep, D);
1078 D.setSUnit(NewSU);
1079 AddPred(SuccDep, D);
1080 // Balance register pressure.
1081 if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled &&
1082 !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1083 --NewSU->NumRegDefsLeft;
1084 }
1085 for (SDep D : ChainSuccs) {
1086 SUnit *SuccDep = D.getSUnit();
1087 D.setSUnit(SU);
1088 RemovePred(SuccDep, D);
1089 if (isNewLoad) {
1090 D.setSUnit(LoadSU);
1091 AddPred(SuccDep, D);
1092 }
1093 }
1094
1095 // Add a data dependency to reflect that NewSU reads the value defined
1096 // by LoadSU.
1097 SDep D(LoadSU, SDep::Data, 0);
1098 D.setLatency(LoadSU->Latency);
1099 AddPred(NewSU, D);
1100
1101 if (isNewLoad)
1102 AvailableQueue->addNode(LoadSU);
1103 AvailableQueue->addNode(NewSU);
1104
1105 ++NumUnfolds;
1106
1107 if (NewSU->NumSuccsLeft == 0)
1108 NewSU->isAvailable = true;
1109
1110 return NewSU;
1111}
1112
1113/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
1114/// successors to the newly created node.
1115SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
1116 SDNode *N = SU->getNode();
1117 if (!N)
1118 return nullptr;
1119
1120 DEBUG(dbgs() << "Considering duplicating the SU\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Considering duplicating the SU\n"
; } } while (false)
;
1121 DEBUG(SU->dump(this))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { SU->dump(this); } } while (false)
;
1122
1123 if (N->getGluedNode() &&
1124 !TII->canCopyGluedNodeDuringSchedule(N)) {
1125 DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it has incoming glue and the target does not "
"want to copy it\n"; } } while (false)
1126 << "Giving up because it has incoming glue and the target does not "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it has incoming glue and the target does not "
"want to copy it\n"; } } while (false)
1127 "want to copy it\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it has incoming glue and the target does not "
"want to copy it\n"; } } while (false)
;
1128 return nullptr;
1129 }
1130
1131 SUnit *NewSU;
1132 bool TryUnfold = false;
1133 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
1134 MVT VT = N->getSimpleValueType(i);
1135 if (VT == MVT::Glue) {
1136 DEBUG(dbgs() << "Giving up because it has outgoing glue\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it has outgoing glue\n"
; } } while (false)
;
1137 return nullptr;
1138 } else if (VT == MVT::Other)
1139 TryUnfold = true;
1140 }
1141 for (const SDValue &Op : N->op_values()) {
1142 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
1143 if (VT == MVT::Glue && !TII->canCopyGluedNodeDuringSchedule(N)) {
1144 DEBUG(dbgs() << "Giving up because it one of the operands is glue and "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it one of the operands is glue and "
"the target does not want to copy it\n"; } } while (false)
1145 "the target does not want to copy it\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it one of the operands is glue and "
"the target does not want to copy it\n"; } } while (false)
;
1146 return nullptr;
1147 }
1148 }
1149
1150 // If possible unfold instruction.
1151 if (TryUnfold) {
1152 SUnit *UnfoldSU = TryUnfoldSU(SU);
1153 if (!UnfoldSU)
1154 return nullptr;
1155 SU = UnfoldSU;
1156 N = SU->getNode();
Value stored to 'N' is never read
1157 // If this can be scheduled don't bother duplicating and just return
1158 if (SU->NumSuccsLeft == 0)
1159 return SU;
1160 }
1161
1162 DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Duplicating SU #" <<
SU->NodeNum << "\n"; } } while (false)
;
1163 NewSU = CreateClone(SU);
1164
1165 // New SUnit has the exact same predecessors.
1166 for (SDep &Pred : SU->Preds)
1167 if (!Pred.isArtificial())
1168 AddPred(NewSU, Pred);
1169
1170 // Only copy scheduled successors. Cut them from old node's successor
1171 // list and move them over.
1172 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1173 for (SDep &Succ : SU->Succs) {
1174 if (Succ.isArtificial())
1175 continue;
1176 SUnit *SuccSU = Succ.getSUnit();
1177 if (SuccSU->isScheduled) {
1178 SDep D = Succ;
1179 D.setSUnit(NewSU);
1180 AddPred(SuccSU, D);
1181 D.setSUnit(SU);
1182 DelDeps.push_back(std::make_pair(SuccSU, D));
1183 }
1184 }
1185 for (auto &DelDep : DelDeps)
1186 RemovePred(DelDep.first, DelDep.second);
1187
1188 AvailableQueue->updateNode(SU);
1189 AvailableQueue->addNode(NewSU);
1190
1191 ++NumDups;
1192 return NewSU;
1193}
1194
1195/// InsertCopiesAndMoveSuccs - Insert register copies and move all
1196/// scheduled successors of the given SUnit to the last copy.
1197void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1198 const TargetRegisterClass *DestRC,
1199 const TargetRegisterClass *SrcRC,
1200 SmallVectorImpl<SUnit*> &Copies) {
1201 SUnit *CopyFromSU = CreateNewSUnit(nullptr);
1202 CopyFromSU->CopySrcRC = SrcRC;
1203 CopyFromSU->CopyDstRC = DestRC;
1204
1205 SUnit *CopyToSU = CreateNewSUnit(nullptr);
1206 CopyToSU->CopySrcRC = DestRC;
1207 CopyToSU->CopyDstRC = SrcRC;
1208
1209 // Only copy scheduled successors. Cut them from old node's successor
1210 // list and move them over.
1211 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1212 for (SDep &Succ : SU->Succs) {
1213 if (Succ.isArtificial())
1214 continue;
1215 SUnit *SuccSU = Succ.getSUnit();
1216 if (SuccSU->isScheduled) {
1217 SDep D = Succ;
1218 D.setSUnit(CopyToSU);
1219 AddPred(SuccSU, D);
1220 DelDeps.push_back(std::make_pair(SuccSU, Succ));
1221 }
1222 else {
1223 // Avoid scheduling the def-side copy before other successors. Otherwise
1224 // we could introduce another physreg interference on the copy and
1225 // continue inserting copies indefinitely.
1226 AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1227 }
1228 }
1229 for (auto &DelDep : DelDeps)
1230 RemovePred(DelDep.first, DelDep.second);
1231
1232 SDep FromDep(SU, SDep::Data, Reg);
1233 FromDep.setLatency(SU->Latency);
1234 AddPred(CopyFromSU, FromDep);
1235 SDep ToDep(CopyFromSU, SDep::Data, 0);
1236 ToDep.setLatency(CopyFromSU->Latency);
1237 AddPred(CopyToSU, ToDep);
1238
1239 AvailableQueue->updateNode(SU);
1240 AvailableQueue->addNode(CopyFromSU);
1241 AvailableQueue->addNode(CopyToSU);
1242 Copies.push_back(CopyFromSU);
1243 Copies.push_back(CopyToSU);
1244
1245 ++NumPRCopies;
1246}
1247
1248/// getPhysicalRegisterVT - Returns the ValueType of the physical register
1249/// definition of the specified node.
1250/// FIXME: Move to SelectionDAG?
1251static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1252 const TargetInstrInfo *TII) {
1253 unsigned NumRes;
1254 if (N->getOpcode() == ISD::CopyFromReg) {
1255 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
1256 NumRes = 1;
1257 } else {
1258 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1259 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!")(static_cast <bool> (MCID.ImplicitDefs && "Physical reg def must be in implicit def list!"
) ? void (0) : __assert_fail ("MCID.ImplicitDefs && \"Physical reg def must be in implicit def list!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1259, __extension__ __PRETTY_FUNCTION__))
;
1260 NumRes = MCID.getNumDefs();
1261 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1262 if (Reg == *ImpDef)
1263 break;
1264 ++NumRes;
1265 }
1266 }
1267 return N->getSimpleValueType(NumRes);
1268}
1269
1270/// CheckForLiveRegDef - Return true and update live register vector if the
1271/// specified register def of the specified SUnit clobbers any "live" registers.
1272static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1273 SUnit **LiveRegDefs,
1274 SmallSet<unsigned, 4> &RegAdded,
1275 SmallVectorImpl<unsigned> &LRegs,
1276 const TargetRegisterInfo *TRI) {
1277 for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1278
1279 // Check if Ref is live.
1280 if (!LiveRegDefs[*AliasI]) continue;
1281
1282 // Allow multiple uses of the same def.
1283 if (LiveRegDefs[*AliasI] == SU) continue;
1284
1285 // Add Reg to the set of interfering live regs.
1286 if (RegAdded.insert(*AliasI).second) {
1287 LRegs.push_back(*AliasI);
1288 }
1289 }
1290}
1291
1292/// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1293/// by RegMask, and add them to LRegs.
1294static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1295 ArrayRef<SUnit*> LiveRegDefs,
1296 SmallSet<unsigned, 4> &RegAdded,
1297 SmallVectorImpl<unsigned> &LRegs) {
1298 // Look at all live registers. Skip Reg0 and the special CallResource.
1299 for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1300 if (!LiveRegDefs[i]) continue;
1301 if (LiveRegDefs[i] == SU) continue;
1302 if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1303 if (RegAdded.insert(i).second)
1304 LRegs.push_back(i);
1305 }
1306}
1307
1308/// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1309static const uint32_t *getNodeRegMask(const SDNode *N) {
1310 for (const SDValue &Op : N->op_values())
1311 if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
1312 return RegOp->getRegMask();
1313 return nullptr;
1314}
1315
1316/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1317/// scheduling of the given node to satisfy live physical register dependencies.
1318/// If the specific node is the last one that's available to schedule, do
1319/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1320bool ScheduleDAGRRList::
1321DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1322 if (NumLiveRegs == 0)
1323 return false;
1324
1325 SmallSet<unsigned, 4> RegAdded;
1326 // If this node would clobber any "live" register, then it's not ready.
1327 //
1328 // If SU is the currently live definition of the same register that it uses,
1329 // then we are free to schedule it.
1330 for (SDep &Pred : SU->Preds) {
1331 if (Pred.isAssignedRegDep() && LiveRegDefs[Pred.getReg()] != SU)
1332 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs.get(),
1333 RegAdded, LRegs, TRI);
1334 }
1335
1336 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1337 if (Node->getOpcode() == ISD::INLINEASM) {
1338 // Inline asm can clobber physical defs.
1339 unsigned NumOps = Node->getNumOperands();
1340 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1341 --NumOps; // Ignore the glue operand.
1342
1343 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1344 unsigned Flags =
1345 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1346 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1347
1348 ++i; // Skip the ID value.
1349 if (InlineAsm::isRegDefKind(Flags) ||
1350 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1351 InlineAsm::isClobberKind(Flags)) {
1352 // Check for def of register or earlyclobber register.
1353 for (; NumVals; --NumVals, ++i) {
1354 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1355 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1356 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1357 }
1358 } else
1359 i += NumVals;
1360 }
1361 continue;
1362 }
1363
1364 if (!Node->isMachineOpcode())
1365 continue;
1366 // If we're in the middle of scheduling a call, don't begin scheduling
1367 // another call. Also, don't allow any physical registers to be live across
1368 // the call.
1369 if (Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
1370 // Check the special calling-sequence resource.
1371 unsigned CallResource = TRI->getNumRegs();
1372 if (LiveRegDefs[CallResource]) {
1373 SDNode *Gen = LiveRegGens[CallResource]->getNode();
1374 while (SDNode *Glued = Gen->getGluedNode())
1375 Gen = Glued;
1376 if (!IsChainDependent(Gen, Node, 0, TII) &&
1377 RegAdded.insert(CallResource).second)
1378 LRegs.push_back(CallResource);
1379 }
1380 }
1381 if (const uint32_t *RegMask = getNodeRegMask(Node))
1382 CheckForLiveRegDefMasked(SU, RegMask,
1383 makeArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
1384 RegAdded, LRegs);
1385
1386 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1387 if (MCID.hasOptionalDef()) {
1388 // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit.
1389 // This operand can be either a def of CPSR, if the S bit is set; or a use
1390 // of %noreg. When the OptionalDef is set to a valid register, we need to
1391 // handle it in the same way as an ImplicitDef.
1392 for (unsigned i = 0; i < MCID.getNumDefs(); ++i)
1393 if (MCID.OpInfo[i].isOptionalDef()) {
1394 const SDValue &OptionalDef = Node->getOperand(i - Node->getNumValues());
1395 unsigned Reg = cast<RegisterSDNode>(OptionalDef)->getReg();
1396 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1397 }
1398 }
1399 if (!MCID.ImplicitDefs)
1400 continue;
1401 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1402 CheckForLiveRegDef(SU, *Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1403 }
1404
1405 return !LRegs.empty();
1406}
1407
1408void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1409 // Add the nodes that aren't ready back onto the available list.
1410 for (unsigned i = Interferences.size(); i > 0; --i) {
1411 SUnit *SU = Interferences[i-1];
1412 LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1413 if (Reg) {
1414 SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1415 if (!is_contained(LRegs, Reg))
1416 continue;
1417 }
1418 SU->isPending = false;
1419 // The interfering node may no longer be available due to backtracking.
1420 // Furthermore, it may have been made available again, in which case it is
1421 // now already in the AvailableQueue.
1422 if (SU->isAvailable && !SU->NodeQueueId) {
1423 DEBUG(dbgs() << " Repushing SU #" << SU->NodeNum << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Repushing SU #" <<
SU->NodeNum << '\n'; } } while (false)
;
1424 AvailableQueue->push(SU);
1425 }
1426 if (i < Interferences.size())
1427 Interferences[i-1] = Interferences.back();
1428 Interferences.pop_back();
1429 LRegsMap.erase(LRegsPos);
1430 }
1431}
1432
1433/// Return a node that can be scheduled in this cycle. Requirements:
1434/// (1) Ready: latency has been satisfied
1435/// (2) No Hazards: resources are available
1436/// (3) No Interferences: may unschedule to break register interferences.
1437SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1438 SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
1439 auto FindAvailableNode = [&]() {
1440 while (CurSU) {
1441 SmallVector<unsigned, 4> LRegs;
1442 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1443 break;
1444 DEBUG(dbgs() << " Interfering reg ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Interfering reg "; if
(LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource"
; else dbgs() << printReg(LRegs[0], TRI); dbgs() <<
" SU #" << CurSU->NodeNum << '\n'; } } while (
false)
1445 if (LRegs[0] == TRI->getNumRegs())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Interfering reg "; if
(LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource"
; else dbgs() << printReg(LRegs[0], TRI); dbgs() <<
" SU #" << CurSU->NodeNum << '\n'; } } while (
false)
1446 dbgs() << "CallResource";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Interfering reg "; if
(LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource"
; else dbgs() << printReg(LRegs[0], TRI); dbgs() <<
" SU #" << CurSU->NodeNum << '\n'; } } while (
false)
1447 elsedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Interfering reg "; if
(LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource"
; else dbgs() << printReg(LRegs[0], TRI); dbgs() <<
" SU #" << CurSU->NodeNum << '\n'; } } while (
false)
1448 dbgs() << printReg(LRegs[0], TRI);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Interfering reg "; if
(LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource"
; else dbgs() << printReg(LRegs[0], TRI); dbgs() <<
" SU #" << CurSU->NodeNum << '\n'; } } while (
false)
1449 dbgs() << " SU #" << CurSU->NodeNum << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Interfering reg "; if
(LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource"
; else dbgs() << printReg(LRegs[0], TRI); dbgs() <<
" SU #" << CurSU->NodeNum << '\n'; } } while (
false)
;
1450 std::pair<LRegsMapT::iterator, bool> LRegsPair =
1451 LRegsMap.insert(std::make_pair(CurSU, LRegs));
1452 if (LRegsPair.second) {
1453 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
1454 Interferences.push_back(CurSU);
1455 }
1456 else {
1457 assert(CurSU->isPending && "Interferences are pending")(static_cast <bool> (CurSU->isPending && "Interferences are pending"
) ? void (0) : __assert_fail ("CurSU->isPending && \"Interferences are pending\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1457, __extension__ __PRETTY_FUNCTION__))
;
1458 // Update the interference with current live regs.
1459 LRegsPair.first->second = LRegs;
1460 }
1461 CurSU = AvailableQueue->pop();
1462 }
1463 };
1464 FindAvailableNode();
1465 if (CurSU)
1466 return CurSU;
1467
1468 // All candidates are delayed due to live physical reg dependencies.
1469 // Try backtracking, code duplication, or inserting cross class copies
1470 // to resolve it.
1471 for (SUnit *TrySU : Interferences) {
1472 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1473
1474 // Try unscheduling up to the point where it's safe to schedule
1475 // this node.
1476 SUnit *BtSU = nullptr;
1477 unsigned LiveCycle = std::numeric_limits<unsigned>::max();
1478 for (unsigned Reg : LRegs) {
1479 if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1480 BtSU = LiveRegGens[Reg];
1481 LiveCycle = BtSU->getHeight();
1482 }
1483 }
1484 if (!WillCreateCycle(TrySU, BtSU)) {
1485 // BacktrackBottomUp mutates Interferences!
1486 BacktrackBottomUp(TrySU, BtSU);
1487
1488 // Force the current node to be scheduled before the node that
1489 // requires the physical reg dep.
1490 if (BtSU->isAvailable) {
1491 BtSU->isAvailable = false;
1492 if (!BtSU->isPending)
1493 AvailableQueue->remove(BtSU);
1494 }
1495 DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum << ") to SU("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "ARTIFICIAL edge from SU("
<< BtSU->NodeNum << ") to SU(" << TrySU
->NodeNum << ")\n"; } } while (false)
1496 << TrySU->NodeNum << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "ARTIFICIAL edge from SU("
<< BtSU->NodeNum << ") to SU(" << TrySU
->NodeNum << ")\n"; } } while (false)
;
1497 AddPred(TrySU, SDep(BtSU, SDep::Artificial));
1498
1499 // If one or more successors has been unscheduled, then the current
1500 // node is no longer available.
1501 if (!TrySU->isAvailable || !TrySU->NodeQueueId) {
1502 DEBUG(dbgs() << "TrySU not available; choosing node from queue\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "TrySU not available; choosing node from queue\n"
; } } while (false)
;
1503 CurSU = AvailableQueue->pop();
1504 } else {
1505 DEBUG(dbgs() << "TrySU available\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "TrySU available\n"; } } while
(false)
;
1506 // Available and in AvailableQueue
1507 AvailableQueue->remove(TrySU);
1508 CurSU = TrySU;
1509 }
1510 FindAvailableNode();
1511 // Interferences has been mutated. We must break.
1512 break;
1513 }
1514 }
1515
1516 if (!CurSU) {
1517 // Can't backtrack. If it's too expensive to copy the value, then try
1518 // duplicate the nodes that produces these "too expensive to copy"
1519 // values to break the dependency. In case even that doesn't work,
1520 // insert cross class copies.
1521 // If it's not too expensive, i.e. cost != -1, issue copies.
1522 SUnit *TrySU = Interferences[0];
1523 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1524 assert(LRegs.size() == 1 && "Can't handle this yet!")(static_cast <bool> (LRegs.size() == 1 && "Can't handle this yet!"
) ? void (0) : __assert_fail ("LRegs.size() == 1 && \"Can't handle this yet!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1524, __extension__ __PRETTY_FUNCTION__))
;
1525 unsigned Reg = LRegs[0];
1526 SUnit *LRDef = LiveRegDefs[Reg];
1527 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1528 const TargetRegisterClass *RC =
1529 TRI->getMinimalPhysRegClass(Reg, VT);
1530 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1531
1532 // If cross copy register class is the same as RC, then it must be possible
1533 // copy the value directly. Do not try duplicate the def.
1534 // If cross copy register class is not the same as RC, then it's possible to
1535 // copy the value but it require cross register class copies and it is
1536 // expensive.
1537 // If cross copy register class is null, then it's not possible to copy
1538 // the value at all.
1539 SUnit *NewDef = nullptr;
1540 if (DestRC != RC) {
1541 NewDef = CopyAndMoveSuccessors(LRDef);
1542 if (!DestRC && !NewDef)
1543 report_fatal_error("Can't handle live physical register dependency!");
1544 }
1545 if (!NewDef) {
1546 // Issue copies, these can be expensive cross register class copies.
1547 SmallVector<SUnit*, 2> Copies;
1548 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1549 DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding an edge from SU #"
<< TrySU->NodeNum << " to SU #" << Copies
.front()->NodeNum << "\n"; } } while (false)
1550 << " to SU #" << Copies.front()->NodeNum << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding an edge from SU #"
<< TrySU->NodeNum << " to SU #" << Copies
.front()->NodeNum << "\n"; } } while (false)
;
1551 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
1552 NewDef = Copies.back();
1553 }
1554
1555 DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding an edge from SU #"
<< NewDef->NodeNum << " to SU #" << TrySU
->NodeNum << "\n"; } } while (false)
1556 << " to SU #" << TrySU->NodeNum << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding an edge from SU #"
<< NewDef->NodeNum << " to SU #" << TrySU
->NodeNum << "\n"; } } while (false)
;
1557 LiveRegDefs[Reg] = NewDef;
1558 AddPred(NewDef, SDep(TrySU, SDep::Artificial));
1559 TrySU->isAvailable = false;
1560 CurSU = NewDef;
1561 }
1562 assert(CurSU && "Unable to resolve live physical register dependencies!")(static_cast <bool> (CurSU && "Unable to resolve live physical register dependencies!"
) ? void (0) : __assert_fail ("CurSU && \"Unable to resolve live physical register dependencies!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1562, __extension__ __PRETTY_FUNCTION__))
;
1563 return CurSU;
1564}
1565
1566/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1567/// schedulers.
1568void ScheduleDAGRRList::ListScheduleBottomUp() {
1569 // Release any predecessors of the special Exit node.
1570 ReleasePredecessors(&ExitSU);
1571
1572 // Add root to Available queue.
1573 if (!SUnits.empty()) {
1574 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1575 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!")(static_cast <bool> (RootSU->Succs.empty() &&
"Graph root shouldn't have successors!") ? void (0) : __assert_fail
("RootSU->Succs.empty() && \"Graph root shouldn't have successors!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1575, __extension__ __PRETTY_FUNCTION__))
;
1576 RootSU->isAvailable = true;
1577 AvailableQueue->push(RootSU);
1578 }
1579
1580 // While Available queue is not empty, grab the node with the highest
1581 // priority. If it is not ready put it back. Schedule the node.
1582 Sequence.reserve(SUnits.size());
1583 while (!AvailableQueue->empty() || !Interferences.empty()) {
1584 DEBUG(dbgs() << "\nExamining Available:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "\nExamining Available:\n"
; AvailableQueue->dump(this); } } while (false)
1585 AvailableQueue->dump(this))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "\nExamining Available:\n"
; AvailableQueue->dump(this); } } while (false)
;
1586
1587 // Pick the best node to schedule taking all constraints into
1588 // consideration.
1589 SUnit *SU = PickNodeToScheduleBottomUp();
1590
1591 AdvancePastStalls(SU);
1592
1593 ScheduleNodeBottomUp(SU);
1594
1595 while (AvailableQueue->empty() && !PendingQueue.empty()) {
1596 // Advance the cycle to free resources. Skip ahead to the next ready SU.
1597 assert(MinAvailableCycle < std::numeric_limits<unsigned>::max() &&(static_cast <bool> (MinAvailableCycle < std::numeric_limits
<unsigned>::max() && "MinAvailableCycle uninitialized"
) ? void (0) : __assert_fail ("MinAvailableCycle < std::numeric_limits<unsigned>::max() && \"MinAvailableCycle uninitialized\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1598, __extension__ __PRETTY_FUNCTION__))
1598 "MinAvailableCycle uninitialized")(static_cast <bool> (MinAvailableCycle < std::numeric_limits
<unsigned>::max() && "MinAvailableCycle uninitialized"
) ? void (0) : __assert_fail ("MinAvailableCycle < std::numeric_limits<unsigned>::max() && \"MinAvailableCycle uninitialized\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1598, __extension__ __PRETTY_FUNCTION__))
;
1599 AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1600 }
1601 }
1602
1603 // Reverse the order if it is bottom up.
1604 std::reverse(Sequence.begin(), Sequence.end());
1605
1606#ifndef NDEBUG
1607 VerifyScheduledSequence(/*isBottomUp=*/true);
1608#endif
1609}
1610
1611namespace {
1612
1613class RegReductionPQBase;
1614
1615struct queue_sort {
1616 bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1617};
1618
1619#ifndef NDEBUG
1620template<class SF>
1621struct reverse_sort : public queue_sort {
1622 SF &SortFunc;
1623
1624 reverse_sort(SF &sf) : SortFunc(sf) {}
1625
1626 bool operator()(SUnit* left, SUnit* right) const {
1627 // reverse left/right rather than simply !SortFunc(left, right)
1628 // to expose different paths in the comparison logic.
1629 return SortFunc(right, left);
1630 }
1631};
1632#endif // NDEBUG
1633
1634/// bu_ls_rr_sort - Priority function for bottom up register pressure
1635// reduction scheduler.
1636struct bu_ls_rr_sort : public queue_sort {
1637 enum {
1638 IsBottomUp = true,
1639 HasReadyFilter = false
1640 };
1641
1642 RegReductionPQBase *SPQ;
1643
1644 bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1645
1646 bool operator()(SUnit* left, SUnit* right) const;
1647};
1648
1649// src_ls_rr_sort - Priority function for source order scheduler.
1650struct src_ls_rr_sort : public queue_sort {
1651 enum {
1652 IsBottomUp = true,
1653 HasReadyFilter = false
1654 };
1655
1656 RegReductionPQBase *SPQ;
1657
1658 src_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1659
1660 bool operator()(SUnit* left, SUnit* right) const;
1661};
1662
1663// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1664struct hybrid_ls_rr_sort : public queue_sort {
1665 enum {
1666 IsBottomUp = true,
1667 HasReadyFilter = false
1668 };
1669
1670 RegReductionPQBase *SPQ;
1671
1672 hybrid_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1673
1674 bool isReady(SUnit *SU, unsigned CurCycle) const;
1675
1676 bool operator()(SUnit* left, SUnit* right) const;
1677};
1678
1679// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1680// scheduler.
1681struct ilp_ls_rr_sort : public queue_sort {
1682 enum {
1683 IsBottomUp = true,
1684 HasReadyFilter = false
1685 };
1686
1687 RegReductionPQBase *SPQ;
1688
1689 ilp_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1690
1691 bool isReady(SUnit *SU, unsigned CurCycle) const;
1692
1693 bool operator()(SUnit* left, SUnit* right) const;
1694};
1695
1696class RegReductionPQBase : public SchedulingPriorityQueue {
1697protected:
1698 std::vector<SUnit *> Queue;
1699 unsigned CurQueueId = 0;
1700 bool TracksRegPressure;
1701 bool SrcOrder;
1702
1703 // SUnits - The SUnits for the current graph.
1704 std::vector<SUnit> *SUnits;
1705
1706 MachineFunction &MF;
1707 const TargetInstrInfo *TII;
1708 const TargetRegisterInfo *TRI;
1709 const TargetLowering *TLI;
1710 ScheduleDAGRRList *scheduleDAG = nullptr;
1711
1712 // SethiUllmanNumbers - The SethiUllman number for each node.
1713 std::vector<unsigned> SethiUllmanNumbers;
1714
1715 /// RegPressure - Tracking current reg pressure per register class.
1716 std::vector<unsigned> RegPressure;
1717
1718 /// RegLimit - Tracking the number of allocatable registers per register
1719 /// class.
1720 std::vector<unsigned> RegLimit;
1721
1722public:
1723 RegReductionPQBase(MachineFunction &mf,
1724 bool hasReadyFilter,
1725 bool tracksrp,
1726 bool srcorder,
1727 const TargetInstrInfo *tii,
1728 const TargetRegisterInfo *tri,
1729 const TargetLowering *tli)
1730 : SchedulingPriorityQueue(hasReadyFilter), TracksRegPressure(tracksrp),
1731 SrcOrder(srcorder), MF(mf), TII(tii), TRI(tri), TLI(tli) {
1732 if (TracksRegPressure) {
1733 unsigned NumRC = TRI->getNumRegClasses();
1734 RegLimit.resize(NumRC);
1735 RegPressure.resize(NumRC);
1736 std::fill(RegLimit.begin(), RegLimit.end(), 0);
1737 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1738 for (const TargetRegisterClass *RC : TRI->regclasses())
1739 RegLimit[RC->getID()] = tri->getRegPressureLimit(RC, MF);
1740 }
1741 }
1742
1743 void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1744 scheduleDAG = scheduleDag;
1745 }
1746
1747 ScheduleHazardRecognizer* getHazardRec() {
1748 return scheduleDAG->getHazardRec();
1749 }
1750
1751 void initNodes(std::vector<SUnit> &sunits) override;
1752
1753 void addNode(const SUnit *SU) override;
1754
1755 void updateNode(const SUnit *SU) override;
1756
1757 void releaseState() override {
1758 SUnits = nullptr;
1759 SethiUllmanNumbers.clear();
1760 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1761 }
1762
1763 unsigned getNodePriority(const SUnit *SU) const;
1764
1765 unsigned getNodeOrdering(const SUnit *SU) const {
1766 if (!SU->getNode()) return 0;
1767
1768 return SU->getNode()->getIROrder();
1769 }
1770
1771 bool empty() const override { return Queue.empty(); }
1772
1773 void push(SUnit *U) override {
1774 assert(!U->NodeQueueId && "Node in the queue already")(static_cast <bool> (!U->NodeQueueId && "Node in the queue already"
) ? void (0) : __assert_fail ("!U->NodeQueueId && \"Node in the queue already\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1774, __extension__ __PRETTY_FUNCTION__))
;
1775 U->NodeQueueId = ++CurQueueId;
1776 Queue.push_back(U);
1777 }
1778
1779 void remove(SUnit *SU) override {
1780 assert(!Queue.empty() && "Queue is empty!")(static_cast <bool> (!Queue.empty() && "Queue is empty!"
) ? void (0) : __assert_fail ("!Queue.empty() && \"Queue is empty!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1780, __extension__ __PRETTY_FUNCTION__))
;
1781 assert(SU->NodeQueueId != 0 && "Not in queue!")(static_cast <bool> (SU->NodeQueueId != 0 &&
"Not in queue!") ? void (0) : __assert_fail ("SU->NodeQueueId != 0 && \"Not in queue!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1781, __extension__ __PRETTY_FUNCTION__))
;
1782 std::vector<SUnit *>::iterator I = llvm::find(Queue, SU);
1783 if (I != std::prev(Queue.end()))
1784 std::swap(*I, Queue.back());
1785 Queue.pop_back();
1786 SU->NodeQueueId = 0;
1787 }
1788
1789 bool tracksRegPressure() const override { return TracksRegPressure; }
1790
1791 void dumpRegPressure() const;
1792
1793 bool HighRegPressure(const SUnit *SU) const;
1794
1795 bool MayReduceRegPressure(SUnit *SU) const;
1796
1797 int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1798
1799 void scheduledNode(SUnit *SU) override;
1800
1801 void unscheduledNode(SUnit *SU) override;
1802
1803protected:
1804 bool canClobber(const SUnit *SU, const SUnit *Op);
1805 void AddPseudoTwoAddrDeps();
1806 void PrescheduleNodesWithMultipleUses();
1807 void CalculateSethiUllmanNumbers();
1808};
1809
1810template<class SF>
1811static SUnit *popFromQueueImpl(std::vector<SUnit *> &Q, SF &Picker) {
1812 std::vector<SUnit *>::iterator Best = Q.begin();
1813 for (auto I = std::next(Q.begin()), E = Q.end(); I != E; ++I)
1814 if (Picker(*Best, *I))
1815 Best = I;
1816 SUnit *V = *Best;
1817 if (Best != std::prev(Q.end()))
1818 std::swap(*Best, Q.back());
1819 Q.pop_back();
1820 return V;
1821}
1822
1823template<class SF>
1824SUnit *popFromQueue(std::vector<SUnit *> &Q, SF &Picker, ScheduleDAG *DAG) {
1825#ifndef NDEBUG
1826 if (DAG->StressSched) {
1827 reverse_sort<SF> RPicker(Picker);
1828 return popFromQueueImpl(Q, RPicker);
1829 }
1830#endif
1831 (void)DAG;
1832 return popFromQueueImpl(Q, Picker);
1833}
1834
1835//===----------------------------------------------------------------------===//
1836// RegReductionPriorityQueue Definition
1837//===----------------------------------------------------------------------===//
1838//
1839// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1840// to reduce register pressure.
1841//
1842template<class SF>
1843class RegReductionPriorityQueue : public RegReductionPQBase {
1844 SF Picker;
1845
1846public:
1847 RegReductionPriorityQueue(MachineFunction &mf,
1848 bool tracksrp,
1849 bool srcorder,
1850 const TargetInstrInfo *tii,
1851 const TargetRegisterInfo *tri,
1852 const TargetLowering *tli)
1853 : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1854 tii, tri, tli),
1855 Picker(this) {}
1856
1857 bool isBottomUp() const override { return SF::IsBottomUp; }
1858
1859 bool isReady(SUnit *U) const override {
1860 return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1861 }
1862
1863 SUnit *pop() override {
1864 if (Queue.empty()) return nullptr;
1865
1866 SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1867 V->NodeQueueId = 0;
1868 return V;
1869 }
1870
1871#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1872 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump(ScheduleDAG *DAG) const override {
1873 // Emulate pop() without clobbering NodeQueueIds.
1874 std::vector<SUnit *> DumpQueue = Queue;
1875 SF DumpPicker = Picker;
1876 while (!DumpQueue.empty()) {
1877 SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1878 dbgs() << "Height " << SU->getHeight() << ": ";
1879 SU->dump(DAG);
1880 }
1881 }
1882#endif
1883};
1884
1885using BURegReductionPriorityQueue = RegReductionPriorityQueue<bu_ls_rr_sort>;
1886using SrcRegReductionPriorityQueue = RegReductionPriorityQueue<src_ls_rr_sort>;
1887using HybridBURRPriorityQueue = RegReductionPriorityQueue<hybrid_ls_rr_sort>;
1888using ILPBURRPriorityQueue = RegReductionPriorityQueue<ilp_ls_rr_sort>;
1889
1890} // end anonymous namespace
1891
1892//===----------------------------------------------------------------------===//
1893// Static Node Priority for Register Pressure Reduction
1894//===----------------------------------------------------------------------===//
1895
1896// Check for special nodes that bypass scheduling heuristics.
1897// Currently this pushes TokenFactor nodes down, but may be used for other
1898// pseudo-ops as well.
1899//
1900// Return -1 to schedule right above left, 1 for left above right.
1901// Return 0 if no bias exists.
1902static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1903 bool LSchedLow = left->isScheduleLow;
1904 bool RSchedLow = right->isScheduleLow;
1905 if (LSchedLow != RSchedLow)
1906 return LSchedLow < RSchedLow ? 1 : -1;
1907 return 0;
1908}
1909
1910/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1911/// Smaller number is the higher priority.
1912static unsigned
1913CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1914 if (SUNumbers[SU->NodeNum] != 0)
1915 return SUNumbers[SU->NodeNum];
1916
1917 // Use WorkList to avoid stack overflow on excessively large IRs.
1918 struct WorkState {
1919 WorkState(const SUnit *SU) : SU(SU) {}
1920 const SUnit *SU;
1921 unsigned PredsProcessed = 0;
1922 };
1923
1924 SmallVector<WorkState, 16> WorkList;
1925 WorkList.push_back(SU);
1926 while (!WorkList.empty()) {
1927 auto &Temp = WorkList.back();
1928 auto *TempSU = Temp.SU;
1929 bool AllPredsKnown = true;
1930 // Try to find a non-evaluated pred and push it into the processing stack.
1931 for (unsigned P = Temp.PredsProcessed; P < TempSU->Preds.size(); ++P) {
1932 auto &Pred = TempSU->Preds[P];
1933 if (Pred.isCtrl()) continue; // ignore chain preds
1934 SUnit *PredSU = Pred.getSUnit();
1935 if (SUNumbers[PredSU->NodeNum] == 0) {
1936#ifndef NDEBUG
1937 // In debug mode, check that we don't have such element in the stack.
1938 for (auto It : WorkList)
1939 assert(It.SU != PredSU && "Trying to push an element twice?")(static_cast <bool> (It.SU != PredSU && "Trying to push an element twice?"
) ? void (0) : __assert_fail ("It.SU != PredSU && \"Trying to push an element twice?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1939, __extension__ __PRETTY_FUNCTION__))
;
1940#endif
1941 // Next time start processing this one starting from the next pred.
1942 Temp.PredsProcessed = P + 1;
1943 WorkList.push_back(PredSU);
1944 AllPredsKnown = false;
1945 break;
1946 }
1947 }
1948
1949 if (!AllPredsKnown)
1950 continue;
1951
1952 // Once all preds are known, we can calculate the answer for this one.
1953 unsigned SethiUllmanNumber = 0;
1954 unsigned Extra = 0;
1955 for (const SDep &Pred : TempSU->Preds) {
1956 if (Pred.isCtrl()) continue; // ignore chain preds
1957 SUnit *PredSU = Pred.getSUnit();
1958 unsigned PredSethiUllman = SUNumbers[PredSU->NodeNum];
1959 assert(PredSethiUllman > 0 && "We should have evaluated this pred!")(static_cast <bool> (PredSethiUllman > 0 && "We should have evaluated this pred!"
) ? void (0) : __assert_fail ("PredSethiUllman > 0 && \"We should have evaluated this pred!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1959, __extension__ __PRETTY_FUNCTION__))
;
1960 if (PredSethiUllman > SethiUllmanNumber) {
1961 SethiUllmanNumber = PredSethiUllman;
1962 Extra = 0;
1963 } else if (PredSethiUllman == SethiUllmanNumber)
1964 ++Extra;
1965 }
1966
1967 SethiUllmanNumber += Extra;
1968 if (SethiUllmanNumber == 0)
1969 SethiUllmanNumber = 1;
1970 SUNumbers[TempSU->NodeNum] = SethiUllmanNumber;
1971 WorkList.pop_back();
1972 }
1973
1974 assert(SUNumbers[SU->NodeNum] > 0 && "SethiUllman should never be zero!")(static_cast <bool> (SUNumbers[SU->NodeNum] > 0 &&
"SethiUllman should never be zero!") ? void (0) : __assert_fail
("SUNumbers[SU->NodeNum] > 0 && \"SethiUllman should never be zero!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 1974, __extension__ __PRETTY_FUNCTION__))
;
1975 return SUNumbers[SU->NodeNum];
1976}
1977
1978/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1979/// scheduling units.
1980void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1981 SethiUllmanNumbers.assign(SUnits->size(), 0);
1982
1983 for (const SUnit &SU : *SUnits)
1984 CalcNodeSethiUllmanNumber(&SU, SethiUllmanNumbers);
1985}
1986
1987void RegReductionPQBase::addNode(const SUnit *SU) {
1988 unsigned SUSize = SethiUllmanNumbers.size();
1989 if (SUnits->size() > SUSize)
1990 SethiUllmanNumbers.resize(SUSize*2, 0);
1991 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1992}
1993
1994void RegReductionPQBase::updateNode(const SUnit *SU) {
1995 SethiUllmanNumbers[SU->NodeNum] = 0;
1996 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1997}
1998
1999// Lower priority means schedule further down. For bottom-up scheduling, lower
2000// priority SUs are scheduled before higher priority SUs.
2001unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
2002 assert(SU->NodeNum < SethiUllmanNumbers.size())(static_cast <bool> (SU->NodeNum < SethiUllmanNumbers
.size()) ? void (0) : __assert_fail ("SU->NodeNum < SethiUllmanNumbers.size()"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 2002, __extension__ __PRETTY_FUNCTION__))
;
2003 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2004 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2005 // CopyToReg should be close to its uses to facilitate coalescing and
2006 // avoid spilling.
2007 return 0;
2008 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2009 Opc == TargetOpcode::SUBREG_TO_REG ||
2010 Opc == TargetOpcode::INSERT_SUBREG)
2011 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2012 // close to their uses to facilitate coalescing.
2013 return 0;
2014 if (SU->NumSuccs == 0 && SU->NumPreds != 0)
2015 // If SU does not have a register use, i.e. it doesn't produce a value
2016 // that would be consumed (e.g. store), then it terminates a chain of
2017 // computation. Give it a large SethiUllman number so it will be
2018 // scheduled right before its predecessors that it doesn't lengthen
2019 // their live ranges.
2020 return 0xffff;
2021 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2022 // If SU does not have a register def, schedule it close to its uses
2023 // because it does not lengthen any live ranges.
2024 return 0;
2025#if 1
2026 return SethiUllmanNumbers[SU->NodeNum];
2027#else
2028 unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
2029 if (SU->isCallOp) {
2030 // FIXME: This assumes all of the defs are used as call operands.
2031 int NP = (int)Priority - SU->getNode()->getNumValues();
2032 return (NP > 0) ? NP : 0;
2033 }
2034 return Priority;
2035#endif
2036}
2037
2038//===----------------------------------------------------------------------===//
2039// Register Pressure Tracking
2040//===----------------------------------------------------------------------===//
2041
2042#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2043LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void RegReductionPQBase::dumpRegPressure() const {
2044 for (const TargetRegisterClass *RC : TRI->regclasses()) {
2045 unsigned Id = RC->getID();
2046 unsigned RP = RegPressure[Id];
2047 if (!RP) continue;
2048 DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << TRI->getRegClassName(RC
) << ": " << RP << " / " << RegLimit[
Id] << '\n'; } } while (false)
2049 << RegLimit[Id] << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << TRI->getRegClassName(RC
) << ": " << RP << " / " << RegLimit[
Id] << '\n'; } } while (false)
;
2050 }
2051}
2052#endif
2053
2054bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
2055 if (!TLI)
2056 return false;
2057
2058 for (const SDep &Pred : SU->Preds) {
2059 if (Pred.isCtrl())
2060 continue;
2061 SUnit *PredSU = Pred.getSUnit();
2062 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2063 // to cover the number of registers defined (they are all live).
2064 if (PredSU->NumRegDefsLeft == 0) {
2065 continue;
2066 }
2067 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2068 RegDefPos.IsValid(); RegDefPos.Advance()) {
2069 unsigned RCId, Cost;
2070 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2071
2072 if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
2073 return true;
2074 }
2075 }
2076 return false;
2077}
2078
2079bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
2080 const SDNode *N = SU->getNode();
2081
2082 if (!N->isMachineOpcode() || !SU->NumSuccs)
2083 return false;
2084
2085 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2086 for (unsigned i = 0; i != NumDefs; ++i) {
2087 MVT VT = N->getSimpleValueType(i);
2088 if (!N->hasAnyUseOfValue(i))
2089 continue;
2090 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2091 if (RegPressure[RCId] >= RegLimit[RCId])
2092 return true;
2093 }
2094 return false;
2095}
2096
2097// Compute the register pressure contribution by this instruction by count up
2098// for uses that are not live and down for defs. Only count register classes
2099// that are already under high pressure. As a side effect, compute the number of
2100// uses of registers that are already live.
2101//
2102// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
2103// so could probably be factored.
2104int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
2105 LiveUses = 0;
2106 int PDiff = 0;
2107 for (const SDep &Pred : SU->Preds) {
2108 if (Pred.isCtrl())
2109 continue;
2110 SUnit *PredSU = Pred.getSUnit();
2111 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2112 // to cover the number of registers defined (they are all live).
2113 if (PredSU->NumRegDefsLeft == 0) {
2114 if (PredSU->getNode()->isMachineOpcode())
2115 ++LiveUses;
2116 continue;
2117 }
2118 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2119 RegDefPos.IsValid(); RegDefPos.Advance()) {
2120 MVT VT = RegDefPos.GetValue();
2121 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2122 if (RegPressure[RCId] >= RegLimit[RCId])
2123 ++PDiff;
2124 }
2125 }
2126 const SDNode *N = SU->getNode();
2127
2128 if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2129 return PDiff;
2130
2131 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2132 for (unsigned i = 0; i != NumDefs; ++i) {
2133 MVT VT = N->getSimpleValueType(i);
2134 if (!N->hasAnyUseOfValue(i))
2135 continue;
2136 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2137 if (RegPressure[RCId] >= RegLimit[RCId])
2138 --PDiff;
2139 }
2140 return PDiff;
2141}
2142
2143void RegReductionPQBase::scheduledNode(SUnit *SU) {
2144 if (!TracksRegPressure)
2145 return;
2146
2147 if (!SU->getNode())
2148 return;
2149
2150 for (const SDep &Pred : SU->Preds) {
2151 if (Pred.isCtrl())
2152 continue;
2153 SUnit *PredSU = Pred.getSUnit();
2154 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2155 // to cover the number of registers defined (they are all live).
2156 if (PredSU->NumRegDefsLeft == 0) {
2157 continue;
2158 }
2159 // FIXME: The ScheduleDAG currently loses information about which of a
2160 // node's values is consumed by each dependence. Consequently, if the node
2161 // defines multiple register classes, we don't know which to pressurize
2162 // here. Instead the following loop consumes the register defs in an
2163 // arbitrary order. At least it handles the common case of clustered loads
2164 // to the same class. For precise liveness, each SDep needs to indicate the
2165 // result number. But that tightly couples the ScheduleDAG with the
2166 // SelectionDAG making updates tricky. A simpler hack would be to attach a
2167 // value type or register class to SDep.
2168 //
2169 // The most important aspect of register tracking is balancing the increase
2170 // here with the reduction further below. Note that this SU may use multiple
2171 // defs in PredSU. The can't be determined here, but we've already
2172 // compensated by reducing NumRegDefsLeft in PredSU during
2173 // ScheduleDAGSDNodes::AddSchedEdges.
2174 --PredSU->NumRegDefsLeft;
2175 unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2176 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2177 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2178 if (SkipRegDefs)
2179 continue;
2180
2181 unsigned RCId, Cost;
2182 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2183 RegPressure[RCId] += Cost;
2184 break;
2185 }
2186 }
2187
2188 // We should have this assert, but there may be dead SDNodes that never
2189 // materialize as SUnits, so they don't appear to generate liveness.
2190 //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2191 int SkipRegDefs = (int)SU->NumRegDefsLeft;
2192 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2193 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2194 if (SkipRegDefs > 0)
2195 continue;
2196 unsigned RCId, Cost;
2197 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2198 if (RegPressure[RCId] < Cost) {
2199 // Register pressure tracking is imprecise. This can happen. But we try
2200 // hard not to let it happen because it likely results in poor scheduling.
2201 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") has too many regdefs\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " SU(" << SU->NodeNum
<< ") has too many regdefs\n"; } } while (false)
;
2202 RegPressure[RCId] = 0;
2203 }
2204 else {
2205 RegPressure[RCId] -= Cost;
2206 }
2207 }
2208 DEBUG(dumpRegPressure())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dumpRegPressure(); } } while (false)
;
2209}
2210
2211void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2212 if (!TracksRegPressure)
2213 return;
2214
2215 const SDNode *N = SU->getNode();
2216 if (!N) return;
2217
2218 if (!N->isMachineOpcode()) {
2219 if (N->getOpcode() != ISD::CopyToReg)
2220 return;
2221 } else {
2222 unsigned Opc = N->getMachineOpcode();
2223 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2224 Opc == TargetOpcode::INSERT_SUBREG ||
2225 Opc == TargetOpcode::SUBREG_TO_REG ||
2226 Opc == TargetOpcode::REG_SEQUENCE ||
2227 Opc == TargetOpcode::IMPLICIT_DEF)
2228 return;
2229 }
2230
2231 for (const SDep &Pred : SU->Preds) {
2232 if (Pred.isCtrl())
2233 continue;
2234 SUnit *PredSU = Pred.getSUnit();
2235 // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2236 // counts data deps.
2237 if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2238 continue;
2239 const SDNode *PN = PredSU->getNode();
2240 if (!PN->isMachineOpcode()) {
2241 if (PN->getOpcode() == ISD::CopyFromReg) {
2242 MVT VT = PN->getSimpleValueType(0);
2243 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2244 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2245 }
2246 continue;
2247 }
2248 unsigned POpc = PN->getMachineOpcode();
2249 if (POpc == TargetOpcode::IMPLICIT_DEF)
2250 continue;
2251 if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2252 POpc == TargetOpcode::INSERT_SUBREG ||
2253 POpc == TargetOpcode::SUBREG_TO_REG) {
2254 MVT VT = PN->getSimpleValueType(0);
2255 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2256 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2257 continue;
2258 }
2259 unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2260 for (unsigned i = 0; i != NumDefs; ++i) {
2261 MVT VT = PN->getSimpleValueType(i);
2262 if (!PN->hasAnyUseOfValue(i))
2263 continue;
2264 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2265 if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2266 // Register pressure tracking is imprecise. This can happen.
2267 RegPressure[RCId] = 0;
2268 else
2269 RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2270 }
2271 }
2272
2273 // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2274 // may transfer data dependencies to CopyToReg.
2275 if (SU->NumSuccs && N->isMachineOpcode()) {
2276 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2277 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2278 MVT VT = N->getSimpleValueType(i);
2279 if (VT == MVT::Glue || VT == MVT::Other)
2280 continue;
2281 if (!N->hasAnyUseOfValue(i))
2282 continue;
2283 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2284 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2285 }
2286 }
2287
2288 DEBUG(dumpRegPressure())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dumpRegPressure(); } } while (false)
;
2289}
2290
2291//===----------------------------------------------------------------------===//
2292// Dynamic Node Priority for Register Pressure Reduction
2293//===----------------------------------------------------------------------===//
2294
2295/// closestSucc - Returns the scheduled cycle of the successor which is
2296/// closest to the current cycle.
2297static unsigned closestSucc(const SUnit *SU) {
2298 unsigned MaxHeight = 0;
2299 for (const SDep &Succ : SU->Succs) {
2300 if (Succ.isCtrl()) continue; // ignore chain succs
2301 unsigned Height = Succ.getSUnit()->getHeight();
2302 // If there are bunch of CopyToRegs stacked up, they should be considered
2303 // to be at the same position.
2304 if (Succ.getSUnit()->getNode() &&
2305 Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2306 Height = closestSucc(Succ.getSUnit())+1;
2307 if (Height > MaxHeight)
2308 MaxHeight = Height;
2309 }
2310 return MaxHeight;
2311}
2312
2313/// calcMaxScratches - Returns an cost estimate of the worse case requirement
2314/// for scratch registers, i.e. number of data dependencies.
2315static unsigned calcMaxScratches(const SUnit *SU) {
2316 unsigned Scratches = 0;
2317 for (const SDep &Pred : SU->Preds) {
2318 if (Pred.isCtrl()) continue; // ignore chain preds
2319 Scratches++;
2320 }
2321 return Scratches;
2322}
2323
2324/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2325/// CopyFromReg from a virtual register.
2326static bool hasOnlyLiveInOpers(const SUnit *SU) {
2327 bool RetVal = false;
2328 for (const SDep &Pred : SU->Preds) {
2329 if (Pred.isCtrl()) continue;
2330 const SUnit *PredSU = Pred.getSUnit();
2331 if (PredSU->getNode() &&
2332 PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2333 unsigned Reg =
2334 cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2335 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2336 RetVal = true;
2337 continue;
2338 }
2339 }
2340 return false;
2341 }
2342 return RetVal;
2343}
2344
2345/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2346/// CopyToReg to a virtual register. This SU def is probably a liveout and
2347/// it has no other use. It should be scheduled closer to the terminator.
2348static bool hasOnlyLiveOutUses(const SUnit *SU) {
2349 bool RetVal = false;
2350 for (const SDep &Succ : SU->Succs) {
2351 if (Succ.isCtrl()) continue;
2352 const SUnit *SuccSU = Succ.getSUnit();
2353 if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2354 unsigned Reg =
2355 cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2356 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2357 RetVal = true;
2358 continue;
2359 }
2360 }
2361 return false;
2362 }
2363 return RetVal;
2364}
2365
2366// Set isVRegCycle for a node with only live in opers and live out uses. Also
2367// set isVRegCycle for its CopyFromReg operands.
2368//
2369// This is only relevant for single-block loops, in which case the VRegCycle
2370// node is likely an induction variable in which the operand and target virtual
2371// registers should be coalesced (e.g. pre/post increment values). Setting the
2372// isVRegCycle flag helps the scheduler prioritize other uses of the same
2373// CopyFromReg so that this node becomes the virtual register "kill". This
2374// avoids interference between the values live in and out of the block and
2375// eliminates a copy inside the loop.
2376static void initVRegCycle(SUnit *SU) {
2377 if (DisableSchedVRegCycle)
2378 return;
2379
2380 if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2381 return;
2382
2383 DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "VRegCycle: SU(" <<
SU->NodeNum << ")\n"; } } while (false)
;
2384
2385 SU->isVRegCycle = true;
2386
2387 for (const SDep &Pred : SU->Preds) {
2388 if (Pred.isCtrl()) continue;
2389 Pred.getSUnit()->isVRegCycle = true;
2390 }
2391}
2392
2393// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2394// CopyFromReg operands. We should no longer penalize other uses of this VReg.
2395static void resetVRegCycle(SUnit *SU) {
2396 if (!SU->isVRegCycle)
2397 return;
2398
2399 for (const SDep &Pred : SU->Preds) {
2400 if (Pred.isCtrl()) continue; // ignore chain preds
2401 SUnit *PredSU = Pred.getSUnit();
2402 if (PredSU->isVRegCycle) {
2403 assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&(static_cast <bool> (PredSU->getNode()->getOpcode
() == ISD::CopyFromReg && "VRegCycle def must be CopyFromReg"
) ? void (0) : __assert_fail ("PredSU->getNode()->getOpcode() == ISD::CopyFromReg && \"VRegCycle def must be CopyFromReg\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 2404, __extension__ __PRETTY_FUNCTION__))
2404 "VRegCycle def must be CopyFromReg")(static_cast <bool> (PredSU->getNode()->getOpcode
() == ISD::CopyFromReg && "VRegCycle def must be CopyFromReg"
) ? void (0) : __assert_fail ("PredSU->getNode()->getOpcode() == ISD::CopyFromReg && \"VRegCycle def must be CopyFromReg\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 2404, __extension__ __PRETTY_FUNCTION__))
;
2405 Pred.getSUnit()->isVRegCycle = false;
2406 }
2407 }
2408}
2409
2410// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2411// means a node that defines the VRegCycle has not been scheduled yet.
2412static bool hasVRegCycleUse(const SUnit *SU) {
2413 // If this SU also defines the VReg, don't hoist it as a "use".
2414 if (SU->isVRegCycle)
2415 return false;
2416
2417 for (const SDep &Pred : SU->Preds) {
2418 if (Pred.isCtrl()) continue; // ignore chain preds
2419 if (Pred.getSUnit()->isVRegCycle &&
2420 Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2421 DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " VReg cycle use: SU (" <<
SU->NodeNum << ")\n"; } } while (false)
;
2422 return true;
2423 }
2424 }
2425 return false;
2426}
2427
2428// Check for either a dependence (latency) or resource (hazard) stall.
2429//
2430// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2431static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2432 if ((int)SPQ->getCurCycle() < Height) return true;
2433 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2434 != ScheduleHazardRecognizer::NoHazard)
2435 return true;
2436 return false;
2437}
2438
2439// Return -1 if left has higher priority, 1 if right has higher priority.
2440// Return 0 if latency-based priority is equivalent.
2441static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2442 RegReductionPQBase *SPQ) {
2443 // Scheduling an instruction that uses a VReg whose postincrement has not yet
2444 // been scheduled will induce a copy. Model this as an extra cycle of latency.
2445 int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2446 int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2447 int LHeight = (int)left->getHeight() + LPenalty;
2448 int RHeight = (int)right->getHeight() + RPenalty;
2449
2450 bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2451 BUHasStall(left, LHeight, SPQ);
2452 bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2453 BUHasStall(right, RHeight, SPQ);
2454
2455 // If scheduling one of the node will cause a pipeline stall, delay it.
2456 // If scheduling either one of the node will cause a pipeline stall, sort
2457 // them according to their height.
2458 if (LStall) {
2459 if (!RStall)
2460 return 1;
2461 if (LHeight != RHeight)
2462 return LHeight > RHeight ? 1 : -1;
2463 } else if (RStall)
2464 return -1;
2465
2466 // If either node is scheduling for latency, sort them by height/depth
2467 // and latency.
2468 if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2469 right->SchedulingPref == Sched::ILP)) {
2470 // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2471 // is enabled, grouping instructions by cycle, then its height is already
2472 // covered so only its depth matters. We also reach this point if both stall
2473 // but have the same height.
2474 if (!SPQ->getHazardRec()->isEnabled()) {
2475 if (LHeight != RHeight)
2476 return LHeight > RHeight ? 1 : -1;
2477 }
2478 int LDepth = left->getDepth() - LPenalty;
2479 int RDepth = right->getDepth() - RPenalty;
2480 if (LDepth != RDepth) {
2481 DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Comparing latency of SU ("
<< left->NodeNum << ") depth " << LDepth
<< " vs SU (" << right->NodeNum << ") depth "
<< RDepth << "\n"; } } while (false)
2482 << ") depth " << LDepth << " vs SU (" << right->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Comparing latency of SU ("
<< left->NodeNum << ") depth " << LDepth
<< " vs SU (" << right->NodeNum << ") depth "
<< RDepth << "\n"; } } while (false)
2483 << ") depth " << RDepth << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Comparing latency of SU ("
<< left->NodeNum << ") depth " << LDepth
<< " vs SU (" << right->NodeNum << ") depth "
<< RDepth << "\n"; } } while (false)
;
2484 return LDepth < RDepth ? 1 : -1;
2485 }
2486 if (left->Latency != right->Latency)
2487 return left->Latency > right->Latency ? 1 : -1;
2488 }
2489 return 0;
2490}
2491
2492static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2493 // Schedule physical register definitions close to their use. This is
2494 // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2495 // long as shortening physreg live ranges is generally good, we can defer
2496 // creating a subtarget hook.
2497 if (!DisableSchedPhysRegJoin) {
2498 bool LHasPhysReg = left->hasPhysRegDefs;
2499 bool RHasPhysReg = right->hasPhysRegDefs;
2500 if (LHasPhysReg != RHasPhysReg) {
2501 #ifndef NDEBUG
2502 static const char *const PhysRegMsg[] = { " has no physreg",
2503 " defines a physreg" };
2504 #endif
2505 DEBUG(dbgs() << " SU (" << left->NodeNum << ") "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " SU (" << left->
NodeNum << ") " << PhysRegMsg[LHasPhysReg] <<
" SU(" << right->NodeNum << ") " << PhysRegMsg
[RHasPhysReg] << "\n"; } } while (false)
2506 << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " SU (" << left->
NodeNum << ") " << PhysRegMsg[LHasPhysReg] <<
" SU(" << right->NodeNum << ") " << PhysRegMsg
[RHasPhysReg] << "\n"; } } while (false)
2507 << PhysRegMsg[RHasPhysReg] << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " SU (" << left->
NodeNum << ") " << PhysRegMsg[LHasPhysReg] <<
" SU(" << right->NodeNum << ") " << PhysRegMsg
[RHasPhysReg] << "\n"; } } while (false)
;
2508 return LHasPhysReg < RHasPhysReg;
2509 }
2510 }
2511
2512 // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2513 unsigned LPriority = SPQ->getNodePriority(left);
2514 unsigned RPriority = SPQ->getNodePriority(right);
2515
2516 // Be really careful about hoisting call operands above previous calls.
2517 // Only allows it if it would reduce register pressure.
2518 if (left->isCall && right->isCallOp) {
2519 unsigned RNumVals = right->getNode()->getNumValues();
2520 RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2521 }
2522 if (right->isCall && left->isCallOp) {
2523 unsigned LNumVals = left->getNode()->getNumValues();
2524 LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2525 }
2526
2527 if (LPriority != RPriority)
2528 return LPriority > RPriority;
2529
2530 // One or both of the nodes are calls and their sethi-ullman numbers are the
2531 // same, then keep source order.
2532 if (left->isCall || right->isCall) {
2533 unsigned LOrder = SPQ->getNodeOrdering(left);
2534 unsigned ROrder = SPQ->getNodeOrdering(right);
2535
2536 // Prefer an ordering where the lower the non-zero order number, the higher
2537 // the preference.
2538 if ((LOrder || ROrder) && LOrder != ROrder)
2539 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2540 }
2541
2542 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2543 // e.g.
2544 // t1 = op t2, c1
2545 // t3 = op t4, c2
2546 //
2547 // and the following instructions are both ready.
2548 // t2 = op c3
2549 // t4 = op c4
2550 //
2551 // Then schedule t2 = op first.
2552 // i.e.
2553 // t4 = op c4
2554 // t2 = op c3
2555 // t1 = op t2, c1
2556 // t3 = op t4, c2
2557 //
2558 // This creates more short live intervals.
2559 unsigned LDist = closestSucc(left);
2560 unsigned RDist = closestSucc(right);
2561 if (LDist != RDist)
2562 return LDist < RDist;
2563
2564 // How many registers becomes live when the node is scheduled.
2565 unsigned LScratch = calcMaxScratches(left);
2566 unsigned RScratch = calcMaxScratches(right);
2567 if (LScratch != RScratch)
2568 return LScratch > RScratch;
2569
2570 // Comparing latency against a call makes little sense unless the node
2571 // is register pressure-neutral.
2572 if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2573 return (left->NodeQueueId > right->NodeQueueId);
2574
2575 // Do not compare latencies when one or both of the nodes are calls.
2576 if (!DisableSchedCycles &&
2577 !(left->isCall || right->isCall)) {
2578 int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2579 if (result != 0)
2580 return result > 0;
2581 }
2582 else {
2583 if (left->getHeight() != right->getHeight())
2584 return left->getHeight() > right->getHeight();
2585
2586 if (left->getDepth() != right->getDepth())
2587 return left->getDepth() < right->getDepth();
2588 }
2589
2590 assert(left->NodeQueueId && right->NodeQueueId &&(static_cast <bool> (left->NodeQueueId && right
->NodeQueueId && "NodeQueueId cannot be zero") ? void
(0) : __assert_fail ("left->NodeQueueId && right->NodeQueueId && \"NodeQueueId cannot be zero\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 2591, __extension__ __PRETTY_FUNCTION__))
2591 "NodeQueueId cannot be zero")(static_cast <bool> (left->NodeQueueId && right
->NodeQueueId && "NodeQueueId cannot be zero") ? void
(0) : __assert_fail ("left->NodeQueueId && right->NodeQueueId && \"NodeQueueId cannot be zero\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 2591, __extension__ __PRETTY_FUNCTION__))
;
2592 return (left->NodeQueueId > right->NodeQueueId);
2593}
2594
2595// Bottom up
2596bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2597 if (int res = checkSpecialNodes(left, right))
2598 return res > 0;
2599
2600 return BURRSort(left, right, SPQ);
2601}
2602
2603// Source order, otherwise bottom up.
2604bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2605 if (int res = checkSpecialNodes(left, right))
2606 return res > 0;
2607
2608 unsigned LOrder = SPQ->getNodeOrdering(left);
2609 unsigned ROrder = SPQ->getNodeOrdering(right);
2610
2611 // Prefer an ordering where the lower the non-zero order number, the higher
2612 // the preference.
2613 if ((LOrder || ROrder) && LOrder != ROrder)
2614 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2615
2616 return BURRSort(left, right, SPQ);
2617}
2618
2619// If the time between now and when the instruction will be ready can cover
2620// the spill code, then avoid adding it to the ready queue. This gives long
2621// stalls highest priority and allows hoisting across calls. It should also
2622// speed up processing the available queue.
2623bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2624 static const unsigned ReadyDelay = 3;
2625
2626 if (SPQ->MayReduceRegPressure(SU)) return true;
2627
2628 if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2629
2630 if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2631 != ScheduleHazardRecognizer::NoHazard)
2632 return false;
2633
2634 return true;
2635}
2636
2637// Return true if right should be scheduled with higher priority than left.
2638bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2639 if (int res = checkSpecialNodes(left, right))
2640 return res > 0;
2641
2642 if (left->isCall || right->isCall)
2643 // No way to compute latency of calls.
2644 return BURRSort(left, right, SPQ);
2645
2646 bool LHigh = SPQ->HighRegPressure(left);
2647 bool RHigh = SPQ->HighRegPressure(right);
2648 // Avoid causing spills. If register pressure is high, schedule for
2649 // register pressure reduction.
2650 if (LHigh && !RHigh) {
2651 DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " pressure SU(" <<
left->NodeNum << ") > SU(" << right->NodeNum
<< ")\n"; } } while (false)
2652 << right->NodeNum << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " pressure SU(" <<
left->NodeNum << ") > SU(" << right->NodeNum
<< ")\n"; } } while (false)
;
2653 return true;
2654 }
2655 else if (!LHigh && RHigh) {
2656 DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " pressure SU(" <<
right->NodeNum << ") > SU(" << left->NodeNum
<< ")\n"; } } while (false)
2657 << left->NodeNum << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " pressure SU(" <<
right->NodeNum << ") > SU(" << left->NodeNum
<< ")\n"; } } while (false)
;
2658 return false;
2659 }
2660 if (!LHigh && !RHigh) {
2661 int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2662 if (result != 0)
2663 return result > 0;
2664 }
2665 return BURRSort(left, right, SPQ);
2666}
2667
2668// Schedule as many instructions in each cycle as possible. So don't make an
2669// instruction available unless it is ready in the current cycle.
2670bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2671 if (SU->getHeight() > CurCycle) return false;
2672
2673 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2674 != ScheduleHazardRecognizer::NoHazard)
2675 return false;
2676
2677 return true;
2678}
2679
2680static bool canEnableCoalescing(SUnit *SU) {
2681 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2682 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2683 // CopyToReg should be close to its uses to facilitate coalescing and
2684 // avoid spilling.
2685 return true;
2686
2687 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2688 Opc == TargetOpcode::SUBREG_TO_REG ||
2689 Opc == TargetOpcode::INSERT_SUBREG)
2690 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2691 // close to their uses to facilitate coalescing.
2692 return true;
2693
2694 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2695 // If SU does not have a register def, schedule it close to its uses
2696 // because it does not lengthen any live ranges.
2697 return true;
2698
2699 return false;
2700}
2701
2702// list-ilp is currently an experimental scheduler that allows various
2703// heuristics to be enabled prior to the normal register reduction logic.
2704bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2705 if (int res = checkSpecialNodes(left, right))
2706 return res > 0;
2707
2708 if (left->isCall || right->isCall)
2709 // No way to compute latency of calls.
2710 return BURRSort(left, right, SPQ);
2711
2712 unsigned LLiveUses = 0, RLiveUses = 0;
2713 int LPDiff = 0, RPDiff = 0;
2714 if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2715 LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2716 RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2717 }
2718 if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2719 DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiffdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "RegPressureDiff SU(" <<
left->NodeNum << "): " << LPDiff << " != SU("
<< right->NodeNum << "): " << RPDiff <<
"\n"; } } while (false)
2720 << " != SU(" << right->NodeNum << "): " << RPDiff << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "RegPressureDiff SU(" <<
left->NodeNum << "): " << LPDiff << " != SU("
<< right->NodeNum << "): " << RPDiff <<
"\n"; } } while (false)
;
2721 return LPDiff > RPDiff;
2722 }
2723
2724 if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2725 bool LReduce = canEnableCoalescing(left);
2726 bool RReduce = canEnableCoalescing(right);
2727 if (LReduce && !RReduce) return false;
2728 if (RReduce && !LReduce) return true;
2729 }
2730
2731 if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2732 DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUsesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Live uses SU(" << left
->NodeNum << "): " << LLiveUses << " != SU("
<< right->NodeNum << "): " << RLiveUses
<< "\n"; } } while (false)
2733 << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Live uses SU(" << left
->NodeNum << "): " << LLiveUses << " != SU("
<< right->NodeNum << "): " << RLiveUses
<< "\n"; } } while (false)
;
2734 return LLiveUses < RLiveUses;
2735 }
2736
2737 if (!DisableSchedStalls) {
2738 bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2739 bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2740 if (LStall != RStall)
2741 return left->getHeight() > right->getHeight();
2742 }
2743
2744 if (!DisableSchedCriticalPath) {
2745 int spread = (int)left->getDepth() - (int)right->getDepth();
2746 if (std::abs(spread) > MaxReorderWindow) {
2747 DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Depth of SU(" << left
->NodeNum << "): " << left->getDepth() <<
" != SU(" << right->NodeNum << "): " <<
right->getDepth() << "\n"; } } while (false)
2748 << left->getDepth() << " != SU(" << right->NodeNum << "): "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Depth of SU(" << left
->NodeNum << "): " << left->getDepth() <<
" != SU(" << right->NodeNum << "): " <<
right->getDepth() << "\n"; } } while (false)
2749 << right->getDepth() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Depth of SU(" << left
->NodeNum << "): " << left->getDepth() <<
" != SU(" << right->NodeNum << "): " <<
right->getDepth() << "\n"; } } while (false)
;
2750 return left->getDepth() < right->getDepth();
2751 }
2752 }
2753
2754 if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2755 int spread = (int)left->getHeight() - (int)right->getHeight();
2756 if (std::abs(spread) > MaxReorderWindow)
2757 return left->getHeight() > right->getHeight();
2758 }
2759
2760 return BURRSort(left, right, SPQ);
2761}
2762
2763void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2764 SUnits = &sunits;
2765 // Add pseudo dependency edges for two-address nodes.
2766 if (!Disable2AddrHack)
2767 AddPseudoTwoAddrDeps();
2768 // Reroute edges to nodes with multiple uses.
2769 if (!TracksRegPressure && !SrcOrder)
2770 PrescheduleNodesWithMultipleUses();
2771 // Calculate node priorities.
2772 CalculateSethiUllmanNumbers();
2773
2774 // For single block loops, mark nodes that look like canonical IV increments.
2775 if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB))
2776 for (SUnit &SU : sunits)
2777 initVRegCycle(&SU);
2778}
2779
2780//===----------------------------------------------------------------------===//
2781// Preschedule for Register Pressure
2782//===----------------------------------------------------------------------===//
2783
2784bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2785 if (SU->isTwoAddress) {
2786 unsigned Opc = SU->getNode()->getMachineOpcode();
2787 const MCInstrDesc &MCID = TII->get(Opc);
2788 unsigned NumRes = MCID.getNumDefs();
2789 unsigned NumOps = MCID.getNumOperands() - NumRes;
2790 for (unsigned i = 0; i != NumOps; ++i) {
2791 if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2792 SDNode *DU = SU->getNode()->getOperand(i).getNode();
2793 if (DU->getNodeId() != -1 &&
2794 Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2795 return true;
2796 }
2797 }
2798 }
2799 return false;
2800}
2801
2802/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2803/// successor's explicit physregs whose definition can reach DepSU.
2804/// i.e. DepSU should not be scheduled above SU.
2805static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2806 ScheduleDAGRRList *scheduleDAG,
2807 const TargetInstrInfo *TII,
2808 const TargetRegisterInfo *TRI) {
2809 const MCPhysReg *ImpDefs
2810 = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2811 const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2812 if(!ImpDefs && !RegMask)
2813 return false;
2814
2815 for (const SDep &Succ : SU->Succs) {
2816 SUnit *SuccSU = Succ.getSUnit();
2817 for (const SDep &SuccPred : SuccSU->Preds) {
2818 if (!SuccPred.isAssignedRegDep())
2819 continue;
2820
2821 if (RegMask &&
2822 MachineOperand::clobbersPhysReg(RegMask, SuccPred.getReg()) &&
2823 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2824 return true;
2825
2826 if (ImpDefs)
2827 for (const MCPhysReg *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2828 // Return true if SU clobbers this physical register use and the
2829 // definition of the register reaches from DepSU. IsReachable queries
2830 // a topological forward sort of the DAG (following the successors).
2831 if (TRI->regsOverlap(*ImpDef, SuccPred.getReg()) &&
2832 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2833 return true;
2834 }
2835 }
2836 return false;
2837}
2838
2839/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2840/// physical register defs.
2841static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2842 const TargetInstrInfo *TII,
2843 const TargetRegisterInfo *TRI) {
2844 SDNode *N = SuccSU->getNode();
2845 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2846 const MCPhysReg *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2847 assert(ImpDefs && "Caller should check hasPhysRegDefs")(static_cast <bool> (ImpDefs && "Caller should check hasPhysRegDefs"
) ? void (0) : __assert_fail ("ImpDefs && \"Caller should check hasPhysRegDefs\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 2847, __extension__ __PRETTY_FUNCTION__))
;
2848 for (const SDNode *SUNode = SU->getNode(); SUNode;
2849 SUNode = SUNode->getGluedNode()) {
2850 if (!SUNode->isMachineOpcode())
2851 continue;
2852 const MCPhysReg *SUImpDefs =
2853 TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2854 const uint32_t *SURegMask = getNodeRegMask(SUNode);
2855 if (!SUImpDefs && !SURegMask)
2856 continue;
2857 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2858 MVT VT = N->getSimpleValueType(i);
2859 if (VT == MVT::Glue || VT == MVT::Other)
2860 continue;
2861 if (!N->hasAnyUseOfValue(i))
2862 continue;
2863 unsigned Reg = ImpDefs[i - NumDefs];
2864 if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2865 return true;
2866 if (!SUImpDefs)
2867 continue;
2868 for (;*SUImpDefs; ++SUImpDefs) {
2869 unsigned SUReg = *SUImpDefs;
2870 if (TRI->regsOverlap(Reg, SUReg))
2871 return true;
2872 }
2873 }
2874 }
2875 return false;
2876}
2877
2878/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2879/// are not handled well by the general register pressure reduction
2880/// heuristics. When presented with code like this:
2881///
2882/// N
2883/// / |
2884/// / |
2885/// U store
2886/// |
2887/// ...
2888///
2889/// the heuristics tend to push the store up, but since the
2890/// operand of the store has another use (U), this would increase
2891/// the length of that other use (the U->N edge).
2892///
2893/// This function transforms code like the above to route U's
2894/// dependence through the store when possible, like this:
2895///
2896/// N
2897/// ||
2898/// ||
2899/// store
2900/// |
2901/// U
2902/// |
2903/// ...
2904///
2905/// This results in the store being scheduled immediately
2906/// after N, which shortens the U->N live range, reducing
2907/// register pressure.
2908void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2909 // Visit all the nodes in topological order, working top-down.
2910 for (SUnit &SU : *SUnits) {
2911 // For now, only look at nodes with no data successors, such as stores.
2912 // These are especially important, due to the heuristics in
2913 // getNodePriority for nodes with no data successors.
2914 if (SU.NumSuccs != 0)
2915 continue;
2916 // For now, only look at nodes with exactly one data predecessor.
2917 if (SU.NumPreds != 1)
2918 continue;
2919 // Avoid prescheduling copies to virtual registers, which don't behave
2920 // like other nodes from the perspective of scheduling heuristics.
2921 if (SDNode *N = SU.getNode())
2922 if (N->getOpcode() == ISD::CopyToReg &&
2923 TargetRegisterInfo::isVirtualRegister
2924 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2925 continue;
2926
2927 // Locate the single data predecessor.
2928 SUnit *PredSU = nullptr;
2929 for (const SDep &Pred : SU.Preds)
2930 if (!Pred.isCtrl()) {
2931 PredSU = Pred.getSUnit();
2932 break;
2933 }
2934 assert(PredSU)(static_cast <bool> (PredSU) ? void (0) : __assert_fail
("PredSU", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 2934, __extension__ __PRETTY_FUNCTION__))
;
2935
2936 // Don't rewrite edges that carry physregs, because that requires additional
2937 // support infrastructure.
2938 if (PredSU->hasPhysRegDefs)
2939 continue;
2940 // Short-circuit the case where SU is PredSU's only data successor.
2941 if (PredSU->NumSuccs == 1)
2942 continue;
2943 // Avoid prescheduling to copies from virtual registers, which don't behave
2944 // like other nodes from the perspective of scheduling heuristics.
2945 if (SDNode *N = SU.getNode())
2946 if (N->getOpcode() == ISD::CopyFromReg &&
2947 TargetRegisterInfo::isVirtualRegister
2948 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2949 continue;
2950
2951 // Perform checks on the successors of PredSU.
2952 for (const SDep &PredSucc : PredSU->Succs) {
2953 SUnit *PredSuccSU = PredSucc.getSUnit();
2954 if (PredSuccSU == &SU) continue;
2955 // If PredSU has another successor with no data successors, for
2956 // now don't attempt to choose either over the other.
2957 if (PredSuccSU->NumSuccs == 0)
2958 goto outer_loop_continue;
2959 // Don't break physical register dependencies.
2960 if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2961 if (canClobberPhysRegDefs(PredSuccSU, &SU, TII, TRI))
2962 goto outer_loop_continue;
2963 // Don't introduce graph cycles.
2964 if (scheduleDAG->IsReachable(&SU, PredSuccSU))
2965 goto outer_loop_continue;
2966 }
2967
2968 // Ok, the transformation is safe and the heuristics suggest it is
2969 // profitable. Update the graph.
2970 DEBUG(dbgs() << " Prescheduling SU #" << SU.NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Prescheduling SU #" <<
SU.NodeNum << " next to PredSU #" << PredSU->
NodeNum << " to guide scheduling in the presence of multiple uses\n"
; } } while (false)
2971 << " next to PredSU #" << PredSU->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Prescheduling SU #" <<
SU.NodeNum << " next to PredSU #" << PredSU->
NodeNum << " to guide scheduling in the presence of multiple uses\n"
; } } while (false)
2972 << " to guide scheduling in the presence of multiple uses\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Prescheduling SU #" <<
SU.NodeNum << " next to PredSU #" << PredSU->
NodeNum << " to guide scheduling in the presence of multiple uses\n"
; } } while (false)
;
2973 for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2974 SDep Edge = PredSU->Succs[i];
2975 assert(!Edge.isAssignedRegDep())(static_cast <bool> (!Edge.isAssignedRegDep()) ? void (
0) : __assert_fail ("!Edge.isAssignedRegDep()", "/build/llvm-toolchain-snapshot-7~svn329677/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 2975, __extension__ __PRETTY_FUNCTION__))
;
2976 SUnit *SuccSU = Edge.getSUnit();
2977 if (SuccSU != &SU) {
2978 Edge.setSUnit(PredSU);
2979 scheduleDAG->RemovePred(SuccSU, Edge);
2980 scheduleDAG->AddPred(&SU, Edge);
2981 Edge.setSUnit(&SU);
2982 scheduleDAG->AddPred(SuccSU, Edge);
2983 --i;
2984 }
2985 }
2986 outer_loop_continue:;
2987 }
2988}
2989
2990/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2991/// it as a def&use operand. Add a pseudo control edge from it to the other
2992/// node (if it won't create a cycle) so the two-address one will be scheduled
2993/// first (lower in the schedule). If both nodes are two-address, favor the
2994/// one that has a CopyToReg use (more likely to be a loop induction update).
2995/// If both are two-address, but one is commutable while the other is not
2996/// commutable, favor the one that's not commutable.
2997void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2998 for (SUnit &SU : *SUnits) {
2999 if (!SU.isTwoAddress)
3000 continue;
3001
3002 SDNode *Node = SU.getNode();
3003 if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode())
3004 continue;
3005
3006 bool isLiveOut = hasOnlyLiveOutUses(&SU);
3007 unsigned Opc = Node->getMachineOpcode();
3008 const MCInstrDesc &MCID = TII->get(Opc);
3009 unsigned NumRes = MCID.getNumDefs();
3010 unsigned NumOps = MCID.getNumOperands() - NumRes;
3011 for (unsigned j = 0; j != NumOps; ++j) {
3012 if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
3013 continue;
3014 SDNode *DU = SU.getNode()->getOperand(j).getNode();
3015 if (DU->getNodeId() == -1)
3016 continue;
3017 const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
3018 if (!DUSU)
3019 continue;
3020 for (const SDep &Succ : DUSU->Succs) {
3021 if (Succ.isCtrl())
3022 continue;
3023 SUnit *SuccSU = Succ.getSUnit();
3024 if (SuccSU == &SU)
3025 continue;
3026 // Be conservative. Ignore if nodes aren't at roughly the same
3027 // depth and height.
3028 if (SuccSU->getHeight() < SU.getHeight() &&
3029 (SU.getHeight() - SuccSU->getHeight()) > 1)
3030 continue;
3031 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
3032 // constrains whatever is using the copy, instead of the copy
3033 // itself. In the case that the copy is coalesced, this
3034 // preserves the intent of the pseudo two-address heurietics.
3035 while (SuccSU->Succs.size() == 1 &&
3036 SuccSU->getNode()->isMachineOpcode() &&
3037 SuccSU->getNode()->getMachineOpcode() ==
3038 TargetOpcode::COPY_TO_REGCLASS)
3039 SuccSU = SuccSU->Succs.front().getSUnit();
3040 // Don't constrain non-instruction nodes.
3041 if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
3042 continue;
3043 // Don't constrain nodes with physical register defs if the
3044 // predecessor can clobber them.
3045 if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) {
3046 if (canClobberPhysRegDefs(SuccSU, &SU, TII, TRI))
3047 continue;
3048 }
3049 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
3050 // these may be coalesced away. We want them close to their uses.
3051 unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
3052 if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
3053 SuccOpc == TargetOpcode::INSERT_SUBREG ||
3054 SuccOpc == TargetOpcode::SUBREG_TO_REG)
3055 continue;
3056 if (!canClobberReachingPhysRegUse(SuccSU, &SU, scheduleDAG, TII, TRI) &&
3057 (!canClobber(SuccSU, DUSU) ||
3058 (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
3059 (!SU.isCommutable && SuccSU->isCommutable)) &&
3060 !scheduleDAG->IsReachable(SuccSU, &SU)) {
3061 DEBUG(dbgs() << " Adding a pseudo-two-addr edge from SU #"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding a pseudo-two-addr edge from SU #"
<< SU.NodeNum << " to SU #" << SuccSU->
NodeNum << "\n"; } } while (false)
3062 << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding a pseudo-two-addr edge from SU #"
<< SU.NodeNum << " to SU #" << SuccSU->
NodeNum << "\n"; } } while (false)
;
3063 scheduleDAG->AddPred(&SU, SDep(SuccSU, SDep::Artificial));
3064 }
3065 }
3066 }
3067 }
3068}
3069
3070//===----------------------------------------------------------------------===//
3071// Public Constructor Functions
3072//===----------------------------------------------------------------------===//
3073
3074ScheduleDAGSDNodes *
3075llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
3076 CodeGenOpt::Level OptLevel) {
3077 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3078 const TargetInstrInfo *TII = STI.getInstrInfo();
3079 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3080
3081 BURegReductionPriorityQueue *PQ =
3082 new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
3083 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3084 PQ->setScheduleDAG(SD);
3085 return SD;
3086}
3087
3088ScheduleDAGSDNodes *
3089llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
3090 CodeGenOpt::Level OptLevel) {
3091 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3092 const TargetInstrInfo *TII = STI.getInstrInfo();
3093 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3094
3095 SrcRegReductionPriorityQueue *PQ =
3096 new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
3097 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3098 PQ->setScheduleDAG(SD);
3099 return SD;
3100}
3101
3102ScheduleDAGSDNodes *
3103llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
3104 CodeGenOpt::Level OptLevel) {
3105 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3106 const TargetInstrInfo *TII = STI.getInstrInfo();
3107 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3108 const TargetLowering *TLI = IS->TLI;
3109
3110 HybridBURRPriorityQueue *PQ =
3111 new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3112
3113 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3114 PQ->setScheduleDAG(SD);
3115 return SD;
3116}
3117
3118ScheduleDAGSDNodes *
3119llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3120 CodeGenOpt::Level OptLevel) {
3121 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3122 const TargetInstrInfo *TII = STI.getInstrInfo();
3123 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3124 const TargetLowering *TLI = IS->TLI;
3125
3126 ILPBURRPriorityQueue *PQ =
3127 new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3128 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3129 PQ->setScheduleDAG(SD);
3130 return SD;
3131}