Bug Summary

File:build/source/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
Warning:line 1180, column 5
Value stored to 'N' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ScheduleDAGRRList.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/CodeGen/SelectionDAG -I /build/source/llvm/lib/CodeGen/SelectionDAG -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1679443490 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-03-22-005342-16304-1 -x c++ /build/source/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
1//===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements bottom-up and top-down register pressure reduction list
10// schedulers, using standard algorithms. The basic approach uses a priority
11// queue of available nodes to schedule. One at a time, nodes are taken from
12// the priority queue (thus in priority order), checked for legality to
13// schedule, and emitted if legal.
14//
15//===----------------------------------------------------------------------===//
16
17#include "ScheduleDAGSDNodes.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/ISDOpcodes.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineOperand.h"
27#include "llvm/CodeGen/Register.h"
28#include "llvm/CodeGen/ScheduleDAG.h"
29#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
30#include "llvm/CodeGen/SchedulerRegistry.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/CodeGen/SelectionDAGNodes.h"
33#include "llvm/CodeGen/TargetInstrInfo.h"
34#include "llvm/CodeGen/TargetLowering.h"
35#include "llvm/CodeGen/TargetOpcodes.h"
36#include "llvm/CodeGen/TargetRegisterInfo.h"
37#include "llvm/CodeGen/TargetSubtargetInfo.h"
38#include "llvm/Config/llvm-config.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/MC/MCInstrDesc.h"
41#include "llvm/MC/MCRegisterInfo.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/CodeGen.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/MachineValueType.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <cassert>
52#include <cstdint>
53#include <cstdlib>
54#include <iterator>
55#include <limits>
56#include <memory>
57#include <utility>
58#include <vector>
59
60using namespace llvm;
61
62#define DEBUG_TYPE"pre-RA-sched" "pre-RA-sched"
63
64STATISTIC(NumBacktracks, "Number of times scheduler backtracked")static llvm::Statistic NumBacktracks = {"pre-RA-sched", "NumBacktracks"
, "Number of times scheduler backtracked"}
;
65STATISTIC(NumUnfolds, "Number of nodes unfolded")static llvm::Statistic NumUnfolds = {"pre-RA-sched", "NumUnfolds"
, "Number of nodes unfolded"}
;
66STATISTIC(NumDups, "Number of duplicated nodes")static llvm::Statistic NumDups = {"pre-RA-sched", "NumDups", "Number of duplicated nodes"
}
;
67STATISTIC(NumPRCopies, "Number of physical register copies")static llvm::Statistic NumPRCopies = {"pre-RA-sched", "NumPRCopies"
, "Number of physical register copies"}
;
68
69static RegisterScheduler
70 burrListDAGScheduler("list-burr",
71 "Bottom-up register reduction list scheduling",
72 createBURRListDAGScheduler);
73
74static RegisterScheduler
75 sourceListDAGScheduler("source",
76 "Similar to list-burr but schedules in source "
77 "order when possible",
78 createSourceListDAGScheduler);
79
80static RegisterScheduler
81 hybridListDAGScheduler("list-hybrid",
82 "Bottom-up register pressure aware list scheduling "
83 "which tries to balance latency and register pressure",
84 createHybridListDAGScheduler);
85
86static RegisterScheduler
87 ILPListDAGScheduler("list-ilp",
88 "Bottom-up register pressure aware list scheduling "
89 "which tries to balance ILP and register pressure",
90 createILPListDAGScheduler);
91
92static cl::opt<bool> DisableSchedCycles(
93 "disable-sched-cycles", cl::Hidden, cl::init(false),
94 cl::desc("Disable cycle-level precision during preRA scheduling"));
95
96// Temporary sched=list-ilp flags until the heuristics are robust.
97// Some options are also available under sched=list-hybrid.
98static cl::opt<bool> DisableSchedRegPressure(
99 "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
100 cl::desc("Disable regpressure priority in sched=list-ilp"));
101static cl::opt<bool> DisableSchedLiveUses(
102 "disable-sched-live-uses", cl::Hidden, cl::init(true),
103 cl::desc("Disable live use priority in sched=list-ilp"));
104static cl::opt<bool> DisableSchedVRegCycle(
105 "disable-sched-vrcycle", cl::Hidden, cl::init(false),
106 cl::desc("Disable virtual register cycle interference checks"));
107static cl::opt<bool> DisableSchedPhysRegJoin(
108 "disable-sched-physreg-join", cl::Hidden, cl::init(false),
109 cl::desc("Disable physreg def-use affinity"));
110static cl::opt<bool> DisableSchedStalls(
111 "disable-sched-stalls", cl::Hidden, cl::init(true),
112 cl::desc("Disable no-stall priority in sched=list-ilp"));
113static cl::opt<bool> DisableSchedCriticalPath(
114 "disable-sched-critical-path", cl::Hidden, cl::init(false),
115 cl::desc("Disable critical path priority in sched=list-ilp"));
116static cl::opt<bool> DisableSchedHeight(
117 "disable-sched-height", cl::Hidden, cl::init(false),
118 cl::desc("Disable scheduled-height priority in sched=list-ilp"));
119static cl::opt<bool> Disable2AddrHack(
120 "disable-2addr-hack", cl::Hidden, cl::init(true),
121 cl::desc("Disable scheduler's two-address hack"));
122
123static cl::opt<int> MaxReorderWindow(
124 "max-sched-reorder", cl::Hidden, cl::init(6),
125 cl::desc("Number of instructions to allow ahead of the critical path "
126 "in sched=list-ilp"));
127
128static cl::opt<unsigned> AvgIPC(
129 "sched-avg-ipc", cl::Hidden, cl::init(1),
130 cl::desc("Average inst/cycle whan no target itinerary exists."));
131
132namespace {
133
134//===----------------------------------------------------------------------===//
135/// ScheduleDAGRRList - The actual register reduction list scheduler
136/// implementation. This supports both top-down and bottom-up scheduling.
137///
138class ScheduleDAGRRList : public ScheduleDAGSDNodes {
139private:
140 /// NeedLatency - True if the scheduler will make use of latency information.
141 bool NeedLatency;
142
143 /// AvailableQueue - The priority queue to use for the available SUnits.
144 SchedulingPriorityQueue *AvailableQueue;
145
146 /// PendingQueue - This contains all of the instructions whose operands have
147 /// been issued, but their results are not ready yet (due to the latency of
148 /// the operation). Once the operands becomes available, the instruction is
149 /// added to the AvailableQueue.
150 std::vector<SUnit *> PendingQueue;
151
152 /// HazardRec - The hazard recognizer to use.
153 ScheduleHazardRecognizer *HazardRec;
154
155 /// CurCycle - The current scheduler state corresponds to this cycle.
156 unsigned CurCycle = 0;
157
158 /// MinAvailableCycle - Cycle of the soonest available instruction.
159 unsigned MinAvailableCycle;
160
161 /// IssueCount - Count instructions issued in this cycle
162 /// Currently valid only for bottom-up scheduling.
163 unsigned IssueCount;
164
165 /// LiveRegDefs - A set of physical registers and their definition
166 /// that are "live". These nodes must be scheduled before any other nodes that
167 /// modifies the registers can be scheduled.
168 unsigned NumLiveRegs;
169 std::unique_ptr<SUnit*[]> LiveRegDefs;
170 std::unique_ptr<SUnit*[]> LiveRegGens;
171
172 // Collect interferences between physical register use/defs.
173 // Each interference is an SUnit and set of physical registers.
174 SmallVector<SUnit*, 4> Interferences;
175
176 using LRegsMapT = DenseMap<SUnit *, SmallVector<unsigned, 4>>;
177
178 LRegsMapT LRegsMap;
179
180 /// Topo - A topological ordering for SUnits which permits fast IsReachable
181 /// and similar queries.
182 ScheduleDAGTopologicalSort Topo;
183
184 // Hack to keep track of the inverse of FindCallSeqStart without more crazy
185 // DAG crawling.
186 DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
187
188public:
189 ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
190 SchedulingPriorityQueue *availqueue,
191 CodeGenOpt::Level OptLevel)
192 : ScheduleDAGSDNodes(mf),
193 NeedLatency(needlatency), AvailableQueue(availqueue),
194 Topo(SUnits, nullptr) {
195 const TargetSubtargetInfo &STI = mf.getSubtarget();
196 if (DisableSchedCycles || !NeedLatency)
197 HazardRec = new ScheduleHazardRecognizer();
198 else
199 HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
200 }
201
202 ~ScheduleDAGRRList() override {
203 delete HazardRec;
204 delete AvailableQueue;
205 }
206
207 void Schedule() override;
208
209 ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
210
211 /// IsReachable - Checks if SU is reachable from TargetSU.
212 bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
213 return Topo.IsReachable(SU, TargetSU);
214 }
215
216 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
217 /// create a cycle.
218 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
219 return Topo.WillCreateCycle(SU, TargetSU);
220 }
221
222 /// AddPredQueued - Queues and update to add a predecessor edge to SUnit SU.
223 /// This returns true if this is a new predecessor.
224 /// Does *NOT* update the topological ordering! It just queues an update.
225 void AddPredQueued(SUnit *SU, const SDep &D) {
226 Topo.AddPredQueued(SU, D.getSUnit());
227 SU->addPred(D);
228 }
229
230 /// AddPred - adds a predecessor edge to SUnit SU.
231 /// This returns true if this is a new predecessor.
232 /// Updates the topological ordering if required.
233 void AddPred(SUnit *SU, const SDep &D) {
234 Topo.AddPred(SU, D.getSUnit());
235 SU->addPred(D);
236 }
237
238 /// RemovePred - removes a predecessor edge from SUnit SU.
239 /// This returns true if an edge was removed.
240 /// Updates the topological ordering if required.
241 void RemovePred(SUnit *SU, const SDep &D) {
242 Topo.RemovePred(SU, D.getSUnit());
243 SU->removePred(D);
244 }
245
246private:
247 bool isReady(SUnit *SU) {
248 return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
249 AvailableQueue->isReady(SU);
250 }
251
252 void ReleasePred(SUnit *SU, const SDep *PredEdge);
253 void ReleasePredecessors(SUnit *SU);
254 void ReleasePending();
255 void AdvanceToCycle(unsigned NextCycle);
256 void AdvancePastStalls(SUnit *SU);
257 void EmitNode(SUnit *SU);
258 void ScheduleNodeBottomUp(SUnit*);
259 void CapturePred(SDep *PredEdge);
260 void UnscheduleNodeBottomUp(SUnit*);
261 void RestoreHazardCheckerBottomUp();
262 void BacktrackBottomUp(SUnit*, SUnit*);
263 SUnit *TryUnfoldSU(SUnit *);
264 SUnit *CopyAndMoveSuccessors(SUnit*);
265 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
266 const TargetRegisterClass*,
267 const TargetRegisterClass*,
268 SmallVectorImpl<SUnit*>&);
269 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
270
271 void releaseInterferences(unsigned Reg = 0);
272
273 SUnit *PickNodeToScheduleBottomUp();
274 void ListScheduleBottomUp();
275
276 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
277 SUnit *CreateNewSUnit(SDNode *N) {
278 unsigned NumSUnits = SUnits.size();
279 SUnit *NewNode = newSUnit(N);
280 // Update the topological ordering.
281 if (NewNode->NodeNum >= NumSUnits)
282 Topo.AddSUnitWithoutPredecessors(NewNode);
283 return NewNode;
284 }
285
286 /// CreateClone - Creates a new SUnit from an existing one.
287 SUnit *CreateClone(SUnit *N) {
288 unsigned NumSUnits = SUnits.size();
289 SUnit *NewNode = Clone(N);
290 // Update the topological ordering.
291 if (NewNode->NodeNum >= NumSUnits)
292 Topo.AddSUnitWithoutPredecessors(NewNode);
293 return NewNode;
294 }
295
296 /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
297 /// need actual latency information but the hybrid scheduler does.
298 bool forceUnitLatencies() const override {
299 return !NeedLatency;
300 }
301};
302
303} // end anonymous namespace
304
305static constexpr unsigned RegSequenceCost = 1;
306
307/// GetCostForDef - Looks up the register class and cost for a given definition.
308/// Typically this just means looking up the representative register class,
309/// but for untyped values (MVT::Untyped) it means inspecting the node's
310/// opcode to determine what register class is being generated.
311static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
312 const TargetLowering *TLI,
313 const TargetInstrInfo *TII,
314 const TargetRegisterInfo *TRI,
315 unsigned &RegClass, unsigned &Cost,
316 const MachineFunction &MF) {
317 MVT VT = RegDefPos.GetValue();
318
319 // Special handling for untyped values. These values can only come from
320 // the expansion of custom DAG-to-DAG patterns.
321 if (VT == MVT::Untyped) {
322 const SDNode *Node = RegDefPos.GetNode();
323
324 // Special handling for CopyFromReg of untyped values.
325 if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
326 Register Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
327 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
328 RegClass = RC->getID();
329 Cost = 1;
330 return;
331 }
332
333 unsigned Opcode = Node->getMachineOpcode();
334 if (Opcode == TargetOpcode::REG_SEQUENCE) {
335 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
336 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
337 RegClass = RC->getID();
338 Cost = RegSequenceCost;
339 return;
340 }
341
342 unsigned Idx = RegDefPos.GetIdx();
343 const MCInstrDesc &Desc = TII->get(Opcode);
344 const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
345 assert(RC && "Not a valid register class")(static_cast <bool> (RC && "Not a valid register class"
) ? void (0) : __assert_fail ("RC && \"Not a valid register class\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 345,
__extension__ __PRETTY_FUNCTION__))
;
346 RegClass = RC->getID();
347 // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
348 // better way to determine it.
349 Cost = 1;
350 } else {
351 RegClass = TLI->getRepRegClassFor(VT)->getID();
352 Cost = TLI->getRepRegClassCostFor(VT);
353 }
354}
355
356/// Schedule - Schedule the DAG using list scheduling.
357void ScheduleDAGRRList::Schedule() {
358 LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "********** List Scheduling "
<< printMBBReference(*BB) << " '" << BB->
getName() << "' **********\n"; } } while (false)
359 << " '" << BB->getName() << "' **********\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "********** List Scheduling "
<< printMBBReference(*BB) << " '" << BB->
getName() << "' **********\n"; } } while (false)
;
360
361 CurCycle = 0;
362 IssueCount = 0;
363 MinAvailableCycle =
364 DisableSchedCycles ? 0 : std::numeric_limits<unsigned>::max();
365 NumLiveRegs = 0;
366 // Allocate slots for each physical register, plus one for a special register
367 // to track the virtual resource of a calling sequence.
368 LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
369 LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
370 CallSeqEndForStart.clear();
371 assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences")(static_cast <bool> (Interferences.empty() && LRegsMap
.empty() && "stale Interferences") ? void (0) : __assert_fail
("Interferences.empty() && LRegsMap.empty() && \"stale Interferences\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 371,
__extension__ __PRETTY_FUNCTION__))
;
372
373 // Build the scheduling graph.
374 BuildSchedGraph(nullptr);
375
376 LLVM_DEBUG(dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dump(); } } while (false)
;
377 Topo.MarkDirty();
378
379 AvailableQueue->initNodes(SUnits);
380
381 HazardRec->Reset();
382
383 // Execute the actual scheduling loop.
384 ListScheduleBottomUp();
385
386 AvailableQueue->releaseState();
387
388 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { { dbgs() << "*** Final schedule ***\n"
; dumpSchedule(); dbgs() << '\n'; }; } } while (false)
389 dbgs() << "*** Final schedule ***\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { { dbgs() << "*** Final schedule ***\n"
; dumpSchedule(); dbgs() << '\n'; }; } } while (false)
390 dumpSchedule();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { { dbgs() << "*** Final schedule ***\n"
; dumpSchedule(); dbgs() << '\n'; }; } } while (false)
391 dbgs() << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { { dbgs() << "*** Final schedule ***\n"
; dumpSchedule(); dbgs() << '\n'; }; } } while (false)
392 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { { dbgs() << "*** Final schedule ***\n"
; dumpSchedule(); dbgs() << '\n'; }; } } while (false)
;
393}
394
395//===----------------------------------------------------------------------===//
396// Bottom-Up Scheduling
397//===----------------------------------------------------------------------===//
398
399/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
400/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
401void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
402 SUnit *PredSU = PredEdge->getSUnit();
403
404#ifndef NDEBUG
405 if (PredSU->NumSuccsLeft == 0) {
406 dbgs() << "*** Scheduling failed! ***\n";
407 dumpNode(*PredSU);
408 dbgs() << " has been released too many times!\n";
409 llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 409)
;
410 }
411#endif
412 --PredSU->NumSuccsLeft;
413
414 if (!forceUnitLatencies()) {
415 // Updating predecessor's height. This is now the cycle when the
416 // predecessor can be scheduled without causing a pipeline stall.
417 PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
418 }
419
420 // If all the node's successors are scheduled, this node is ready
421 // to be scheduled. Ignore the special EntrySU node.
422 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
423 PredSU->isAvailable = true;
424
425 unsigned Height = PredSU->getHeight();
426 if (Height < MinAvailableCycle)
427 MinAvailableCycle = Height;
428
429 if (isReady(PredSU)) {
430 AvailableQueue->push(PredSU);
431 }
432 // CapturePred and others may have left the node in the pending queue, avoid
433 // adding it twice.
434 else if (!PredSU->isPending) {
435 PredSU->isPending = true;
436 PendingQueue.push_back(PredSU);
437 }
438 }
439}
440
441/// IsChainDependent - Test if Outer is reachable from Inner through
442/// chain dependencies.
443static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
444 unsigned NestLevel,
445 const TargetInstrInfo *TII) {
446 SDNode *N = Outer;
447 while (true) {
448 if (N == Inner)
449 return true;
450 // For a TokenFactor, examine each operand. There may be multiple ways
451 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
452 // most nesting in order to ensure that we find the corresponding match.
453 if (N->getOpcode() == ISD::TokenFactor) {
454 for (const SDValue &Op : N->op_values())
455 if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
456 return true;
457 return false;
458 }
459 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
460 if (N->isMachineOpcode()) {
461 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
462 ++NestLevel;
463 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
464 if (NestLevel == 0)
465 return false;
466 --NestLevel;
467 }
468 }
469 // Otherwise, find the chain and continue climbing.
470 for (const SDValue &Op : N->op_values())
471 if (Op.getValueType() == MVT::Other) {
472 N = Op.getNode();
473 goto found_chain_operand;
474 }
475 return false;
476 found_chain_operand:;
477 if (N->getOpcode() == ISD::EntryToken)
478 return false;
479 }
480}
481
482/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
483/// the corresponding (lowered) CALLSEQ_BEGIN node.
484///
485/// NestLevel and MaxNested are used in recursion to indcate the current level
486/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
487/// level seen so far.
488///
489/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
490/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
491static SDNode *
492FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
493 const TargetInstrInfo *TII) {
494 while (true) {
495 // For a TokenFactor, examine each operand. There may be multiple ways
496 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
497 // most nesting in order to ensure that we find the corresponding match.
498 if (N->getOpcode() == ISD::TokenFactor) {
499 SDNode *Best = nullptr;
500 unsigned BestMaxNest = MaxNest;
501 for (const SDValue &Op : N->op_values()) {
502 unsigned MyNestLevel = NestLevel;
503 unsigned MyMaxNest = MaxNest;
504 if (SDNode *New = FindCallSeqStart(Op.getNode(),
505 MyNestLevel, MyMaxNest, TII))
506 if (!Best || (MyMaxNest > BestMaxNest)) {
507 Best = New;
508 BestMaxNest = MyMaxNest;
509 }
510 }
511 assert(Best)(static_cast <bool> (Best) ? void (0) : __assert_fail (
"Best", "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 511, __extension__ __PRETTY_FUNCTION__))
;
512 MaxNest = BestMaxNest;
513 return Best;
514 }
515 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
516 if (N->isMachineOpcode()) {
517 if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
518 ++NestLevel;
519 MaxNest = std::max(MaxNest, NestLevel);
520 } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
521 assert(NestLevel != 0)(static_cast <bool> (NestLevel != 0) ? void (0) : __assert_fail
("NestLevel != 0", "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 521, __extension__ __PRETTY_FUNCTION__))
;
522 --NestLevel;
523 if (NestLevel == 0)
524 return N;
525 }
526 }
527 // Otherwise, find the chain and continue climbing.
528 for (const SDValue &Op : N->op_values())
529 if (Op.getValueType() == MVT::Other) {
530 N = Op.getNode();
531 goto found_chain_operand;
532 }
533 return nullptr;
534 found_chain_operand:;
535 if (N->getOpcode() == ISD::EntryToken)
536 return nullptr;
537 }
538}
539
540/// Call ReleasePred for each predecessor, then update register live def/gen.
541/// Always update LiveRegDefs for a register dependence even if the current SU
542/// also defines the register. This effectively create one large live range
543/// across a sequence of two-address node. This is important because the
544/// entire chain must be scheduled together. Example:
545///
546/// flags = (3) add
547/// flags = (2) addc flags
548/// flags = (1) addc flags
549///
550/// results in
551///
552/// LiveRegDefs[flags] = 3
553/// LiveRegGens[flags] = 1
554///
555/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
556/// interference on flags.
557void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
558 // Bottom up: release predecessors
559 for (SDep &Pred : SU->Preds) {
560 ReleasePred(SU, &Pred);
561 if (Pred.isAssignedRegDep()) {
562 // This is a physical register dependency and it's impossible or
563 // expensive to copy the register. Make sure nothing that can
564 // clobber the register is scheduled between the predecessor and
565 // this node.
566 SUnit *RegDef = LiveRegDefs[Pred.getReg()]; (void)RegDef;
567 assert((!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) &&(static_cast <bool> ((!RegDef || RegDef == SU || RegDef
== Pred.getSUnit()) && "interference on register dependence"
) ? void (0) : __assert_fail ("(!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) && \"interference on register dependence\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 568,
__extension__ __PRETTY_FUNCTION__))
568 "interference on register dependence")(static_cast <bool> ((!RegDef || RegDef == SU || RegDef
== Pred.getSUnit()) && "interference on register dependence"
) ? void (0) : __assert_fail ("(!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) && \"interference on register dependence\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 568,
__extension__ __PRETTY_FUNCTION__))
;
569 LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
570 if (!LiveRegGens[Pred.getReg()]) {
571 ++NumLiveRegs;
572 LiveRegGens[Pred.getReg()] = SU;
573 }
574 }
575 }
576
577 // If we're scheduling a lowered CALLSEQ_END, find the corresponding
578 // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
579 // these nodes, to prevent other calls from being interscheduled with them.
580 unsigned CallResource = TRI->getNumRegs();
581 if (!LiveRegDefs[CallResource])
582 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
583 if (Node->isMachineOpcode() &&
584 Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
585 unsigned NestLevel = 0;
586 unsigned MaxNest = 0;
587 SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
588 assert(N && "Must find call sequence start")(static_cast <bool> (N && "Must find call sequence start"
) ? void (0) : __assert_fail ("N && \"Must find call sequence start\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 588,
__extension__ __PRETTY_FUNCTION__))
;
589
590 SUnit *Def = &SUnits[N->getNodeId()];
591 CallSeqEndForStart[Def] = SU;
592
593 ++NumLiveRegs;
594 LiveRegDefs[CallResource] = Def;
595 LiveRegGens[CallResource] = SU;
596 break;
597 }
598}
599
600/// Check to see if any of the pending instructions are ready to issue. If
601/// so, add them to the available queue.
602void ScheduleDAGRRList::ReleasePending() {
603 if (DisableSchedCycles) {
604 assert(PendingQueue.empty() && "pending instrs not allowed in this mode")(static_cast <bool> (PendingQueue.empty() && "pending instrs not allowed in this mode"
) ? void (0) : __assert_fail ("PendingQueue.empty() && \"pending instrs not allowed in this mode\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 604,
__extension__ __PRETTY_FUNCTION__))
;
605 return;
606 }
607
608 // If the available queue is empty, it is safe to reset MinAvailableCycle.
609 if (AvailableQueue->empty())
610 MinAvailableCycle = std::numeric_limits<unsigned>::max();
611
612 // Check to see if any of the pending instructions are ready to issue. If
613 // so, add them to the available queue.
614 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
615 unsigned ReadyCycle = PendingQueue[i]->getHeight();
616 if (ReadyCycle < MinAvailableCycle)
617 MinAvailableCycle = ReadyCycle;
618
619 if (PendingQueue[i]->isAvailable) {
620 if (!isReady(PendingQueue[i]))
621 continue;
622 AvailableQueue->push(PendingQueue[i]);
623 }
624 PendingQueue[i]->isPending = false;
625 PendingQueue[i] = PendingQueue.back();
626 PendingQueue.pop_back();
627 --i; --e;
628 }
629}
630
631/// Move the scheduler state forward by the specified number of Cycles.
632void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
633 if (NextCycle <= CurCycle)
634 return;
635
636 IssueCount = 0;
637 AvailableQueue->setCurCycle(NextCycle);
638 if (!HazardRec->isEnabled()) {
639 // Bypass lots of virtual calls in case of long latency.
640 CurCycle = NextCycle;
641 }
642 else {
643 for (; CurCycle != NextCycle; ++CurCycle) {
644 HazardRec->RecedeCycle();
645 }
646 }
647 // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
648 // available Q to release pending nodes at least once before popping.
649 ReleasePending();
650}
651
652/// Move the scheduler state forward until the specified node's dependents are
653/// ready and can be scheduled with no resource conflicts.
654void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
655 if (DisableSchedCycles)
656 return;
657
658 // FIXME: Nodes such as CopyFromReg probably should not advance the current
659 // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
660 // has predecessors the cycle will be advanced when they are scheduled.
661 // But given the crude nature of modeling latency though such nodes, we
662 // currently need to treat these nodes like real instructions.
663 // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
664
665 unsigned ReadyCycle = SU->getHeight();
666
667 // Bump CurCycle to account for latency. We assume the latency of other
668 // available instructions may be hidden by the stall (not a full pipe stall).
669 // This updates the hazard recognizer's cycle before reserving resources for
670 // this instruction.
671 AdvanceToCycle(ReadyCycle);
672
673 // Calls are scheduled in their preceding cycle, so don't conflict with
674 // hazards from instructions after the call. EmitNode will reset the
675 // scoreboard state before emitting the call.
676 if (SU->isCall)
677 return;
678
679 // FIXME: For resource conflicts in very long non-pipelined stages, we
680 // should probably skip ahead here to avoid useless scoreboard checks.
681 int Stalls = 0;
682 while (true) {
683 ScheduleHazardRecognizer::HazardType HT =
684 HazardRec->getHazardType(SU, -Stalls);
685
686 if (HT == ScheduleHazardRecognizer::NoHazard)
687 break;
688
689 ++Stalls;
690 }
691 AdvanceToCycle(CurCycle + Stalls);
692}
693
694/// Record this SUnit in the HazardRecognizer.
695/// Does not update CurCycle.
696void ScheduleDAGRRList::EmitNode(SUnit *SU) {
697 if (!HazardRec->isEnabled())
698 return;
699
700 // Check for phys reg copy.
701 if (!SU->getNode())
702 return;
703
704 switch (SU->getNode()->getOpcode()) {
705 default:
706 assert(SU->getNode()->isMachineOpcode() &&(static_cast <bool> (SU->getNode()->isMachineOpcode
() && "This target-independent node should not be scheduled."
) ? void (0) : __assert_fail ("SU->getNode()->isMachineOpcode() && \"This target-independent node should not be scheduled.\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 707,
__extension__ __PRETTY_FUNCTION__))
707 "This target-independent node should not be scheduled.")(static_cast <bool> (SU->getNode()->isMachineOpcode
() && "This target-independent node should not be scheduled."
) ? void (0) : __assert_fail ("SU->getNode()->isMachineOpcode() && \"This target-independent node should not be scheduled.\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 707,
__extension__ __PRETTY_FUNCTION__))
;
708 break;
709 case ISD::MERGE_VALUES:
710 case ISD::TokenFactor:
711 case ISD::LIFETIME_START:
712 case ISD::LIFETIME_END:
713 case ISD::CopyToReg:
714 case ISD::CopyFromReg:
715 case ISD::EH_LABEL:
716 // Noops don't affect the scoreboard state. Copies are likely to be
717 // removed.
718 return;
719 case ISD::INLINEASM:
720 case ISD::INLINEASM_BR:
721 // For inline asm, clear the pipeline state.
722 HazardRec->Reset();
723 return;
724 }
725 if (SU->isCall) {
726 // Calls are scheduled with their preceding instructions. For bottom-up
727 // scheduling, clear the pipeline state before emitting.
728 HazardRec->Reset();
729 }
730
731 HazardRec->EmitInstruction(SU);
732}
733
734static void resetVRegCycle(SUnit *SU);
735
736/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
737/// count of its predecessors. If a predecessor pending count is zero, add it to
738/// the Available queue.
739void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
740 LLVM_DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "\n*** Scheduling [" <<
CurCycle << "]: "; } } while (false)
;
741 LLVM_DEBUG(dumpNode(*SU))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dumpNode(*SU); } } while (false)
;
742
743#ifndef NDEBUG
744 if (CurCycle < SU->getHeight())
745 LLVM_DEBUG(dbgs() << " Height [" << SU->getHeight()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Height [" << SU
->getHeight() << "] pipeline stall!\n"; } } while (false
)
746 << "] pipeline stall!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Height [" << SU
->getHeight() << "] pipeline stall!\n"; } } while (false
)
;
747#endif
748
749 // FIXME: Do not modify node height. It may interfere with
750 // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
751 // node its ready cycle can aid heuristics, and after scheduling it can
752 // indicate the scheduled cycle.
753 SU->setHeightToAtLeast(CurCycle);
754
755 // Reserve resources for the scheduled instruction.
756 EmitNode(SU);
757
758 Sequence.push_back(SU);
759
760 AvailableQueue->scheduledNode(SU);
761
762 // If HazardRec is disabled, and each inst counts as one cycle, then
763 // advance CurCycle before ReleasePredecessors to avoid useless pushes to
764 // PendingQueue for schedulers that implement HasReadyFilter.
765 if (!HazardRec->isEnabled() && AvgIPC < 2)
766 AdvanceToCycle(CurCycle + 1);
767
768 // Update liveness of predecessors before successors to avoid treating a
769 // two-address node as a live range def.
770 ReleasePredecessors(SU);
771
772 // Release all the implicit physical register defs that are live.
773 for (SDep &Succ : SU->Succs) {
774 // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node.
775 if (Succ.isAssignedRegDep() && LiveRegDefs[Succ.getReg()] == SU) {
776 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!")(static_cast <bool> (NumLiveRegs > 0 && "NumLiveRegs is already zero!"
) ? void (0) : __assert_fail ("NumLiveRegs > 0 && \"NumLiveRegs is already zero!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 776,
__extension__ __PRETTY_FUNCTION__))
;
777 --NumLiveRegs;
778 LiveRegDefs[Succ.getReg()] = nullptr;
779 LiveRegGens[Succ.getReg()] = nullptr;
780 releaseInterferences(Succ.getReg());
781 }
782 }
783 // Release the special call resource dependence, if this is the beginning
784 // of a call.
785 unsigned CallResource = TRI->getNumRegs();
786 if (LiveRegDefs[CallResource] == SU)
787 for (const SDNode *SUNode = SU->getNode(); SUNode;
788 SUNode = SUNode->getGluedNode()) {
789 if (SUNode->isMachineOpcode() &&
790 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
791 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!")(static_cast <bool> (NumLiveRegs > 0 && "NumLiveRegs is already zero!"
) ? void (0) : __assert_fail ("NumLiveRegs > 0 && \"NumLiveRegs is already zero!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 791,
__extension__ __PRETTY_FUNCTION__))
;
792 --NumLiveRegs;
793 LiveRegDefs[CallResource] = nullptr;
794 LiveRegGens[CallResource] = nullptr;
795 releaseInterferences(CallResource);
796 }
797 }
798
799 resetVRegCycle(SU);
800
801 SU->isScheduled = true;
802
803 // Conditions under which the scheduler should eagerly advance the cycle:
804 // (1) No available instructions
805 // (2) All pipelines full, so available instructions must have hazards.
806 //
807 // If HazardRec is disabled, the cycle was pre-advanced before calling
808 // ReleasePredecessors. In that case, IssueCount should remain 0.
809 //
810 // Check AvailableQueue after ReleasePredecessors in case of zero latency.
811 if (HazardRec->isEnabled() || AvgIPC > 1) {
812 if (SU->getNode() && SU->getNode()->isMachineOpcode())
813 ++IssueCount;
814 if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
815 || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
816 AdvanceToCycle(CurCycle + 1);
817 }
818}
819
820/// CapturePred - This does the opposite of ReleasePred. Since SU is being
821/// unscheduled, increase the succ left count of its predecessors. Remove
822/// them from AvailableQueue if necessary.
823void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
824 SUnit *PredSU = PredEdge->getSUnit();
825 if (PredSU->isAvailable) {
826 PredSU->isAvailable = false;
827 if (!PredSU->isPending)
828 AvailableQueue->remove(PredSU);
829 }
830
831 assert(PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&(static_cast <bool> (PredSU->NumSuccsLeft < std::
numeric_limits<unsigned>::max() && "NumSuccsLeft will overflow!"
) ? void (0) : __assert_fail ("PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() && \"NumSuccsLeft will overflow!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 832,
__extension__ __PRETTY_FUNCTION__))
832 "NumSuccsLeft will overflow!")(static_cast <bool> (PredSU->NumSuccsLeft < std::
numeric_limits<unsigned>::max() && "NumSuccsLeft will overflow!"
) ? void (0) : __assert_fail ("PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() && \"NumSuccsLeft will overflow!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 832,
__extension__ __PRETTY_FUNCTION__))
;
833 ++PredSU->NumSuccsLeft;
834}
835
836/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
837/// its predecessor states to reflect the change.
838void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
839 LLVM_DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "*** Unscheduling [" <<
SU->getHeight() << "]: "; } } while (false)
;
840 LLVM_DEBUG(dumpNode(*SU))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dumpNode(*SU); } } while (false)
;
841
842 for (SDep &Pred : SU->Preds) {
843 CapturePred(&Pred);
844 if (Pred.isAssignedRegDep() && SU == LiveRegGens[Pred.getReg()]){
845 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!")(static_cast <bool> (NumLiveRegs > 0 && "NumLiveRegs is already zero!"
) ? void (0) : __assert_fail ("NumLiveRegs > 0 && \"NumLiveRegs is already zero!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 845,
__extension__ __PRETTY_FUNCTION__))
;
846 assert(LiveRegDefs[Pred.getReg()] == Pred.getSUnit() &&(static_cast <bool> (LiveRegDefs[Pred.getReg()] == Pred
.getSUnit() && "Physical register dependency violated?"
) ? void (0) : __assert_fail ("LiveRegDefs[Pred.getReg()] == Pred.getSUnit() && \"Physical register dependency violated?\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 847,
__extension__ __PRETTY_FUNCTION__))
847 "Physical register dependency violated?")(static_cast <bool> (LiveRegDefs[Pred.getReg()] == Pred
.getSUnit() && "Physical register dependency violated?"
) ? void (0) : __assert_fail ("LiveRegDefs[Pred.getReg()] == Pred.getSUnit() && \"Physical register dependency violated?\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 847,
__extension__ __PRETTY_FUNCTION__))
;
848 --NumLiveRegs;
849 LiveRegDefs[Pred.getReg()] = nullptr;
850 LiveRegGens[Pred.getReg()] = nullptr;
851 releaseInterferences(Pred.getReg());
852 }
853 }
854
855 // Reclaim the special call resource dependence, if this is the beginning
856 // of a call.
857 unsigned CallResource = TRI->getNumRegs();
858 for (const SDNode *SUNode = SU->getNode(); SUNode;
859 SUNode = SUNode->getGluedNode()) {
860 if (SUNode->isMachineOpcode() &&
861 SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
862 SUnit *SeqEnd = CallSeqEndForStart[SU];
863 assert(SeqEnd && "Call sequence start/end must be known")(static_cast <bool> (SeqEnd && "Call sequence start/end must be known"
) ? void (0) : __assert_fail ("SeqEnd && \"Call sequence start/end must be known\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 863,
__extension__ __PRETTY_FUNCTION__))
;
864 assert(!LiveRegDefs[CallResource])(static_cast <bool> (!LiveRegDefs[CallResource]) ? void
(0) : __assert_fail ("!LiveRegDefs[CallResource]", "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 864, __extension__ __PRETTY_FUNCTION__))
;
865 assert(!LiveRegGens[CallResource])(static_cast <bool> (!LiveRegGens[CallResource]) ? void
(0) : __assert_fail ("!LiveRegGens[CallResource]", "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 865, __extension__ __PRETTY_FUNCTION__))
;
866 ++NumLiveRegs;
867 LiveRegDefs[CallResource] = SU;
868 LiveRegGens[CallResource] = SeqEnd;
869 }
870 }
871
872 // Release the special call resource dependence, if this is the end
873 // of a call.
874 if (LiveRegGens[CallResource] == SU)
875 for (const SDNode *SUNode = SU->getNode(); SUNode;
876 SUNode = SUNode->getGluedNode()) {
877 if (SUNode->isMachineOpcode() &&
878 SUNode->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
879 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!")(static_cast <bool> (NumLiveRegs > 0 && "NumLiveRegs is already zero!"
) ? void (0) : __assert_fail ("NumLiveRegs > 0 && \"NumLiveRegs is already zero!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 879,
__extension__ __PRETTY_FUNCTION__))
;
880 assert(LiveRegDefs[CallResource])(static_cast <bool> (LiveRegDefs[CallResource]) ? void (
0) : __assert_fail ("LiveRegDefs[CallResource]", "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 880, __extension__ __PRETTY_FUNCTION__))
;
881 assert(LiveRegGens[CallResource])(static_cast <bool> (LiveRegGens[CallResource]) ? void (
0) : __assert_fail ("LiveRegGens[CallResource]", "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 881, __extension__ __PRETTY_FUNCTION__))
;
882 --NumLiveRegs;
883 LiveRegDefs[CallResource] = nullptr;
884 LiveRegGens[CallResource] = nullptr;
885 releaseInterferences(CallResource);
886 }
887 }
888
889 for (auto &Succ : SU->Succs) {
890 if (Succ.isAssignedRegDep()) {
891 auto Reg = Succ.getReg();
892 if (!LiveRegDefs[Reg])
893 ++NumLiveRegs;
894 // This becomes the nearest def. Note that an earlier def may still be
895 // pending if this is a two-address node.
896 LiveRegDefs[Reg] = SU;
897
898 // Update LiveRegGen only if was empty before this unscheduling.
899 // This is to avoid incorrect updating LiveRegGen set in previous run.
900 if (!LiveRegGens[Reg]) {
901 // Find the successor with the lowest height.
902 LiveRegGens[Reg] = Succ.getSUnit();
903 for (auto &Succ2 : SU->Succs) {
904 if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
905 Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
906 LiveRegGens[Reg] = Succ2.getSUnit();
907 }
908 }
909 }
910 }
911 if (SU->getHeight() < MinAvailableCycle)
912 MinAvailableCycle = SU->getHeight();
913
914 SU->setHeightDirty();
915 SU->isScheduled = false;
916 SU->isAvailable = true;
917 if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
918 // Don't make available until backtracking is complete.
919 SU->isPending = true;
920 PendingQueue.push_back(SU);
921 }
922 else {
923 AvailableQueue->push(SU);
924 }
925 AvailableQueue->unscheduledNode(SU);
926}
927
928/// After backtracking, the hazard checker needs to be restored to a state
929/// corresponding the current cycle.
930void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
931 HazardRec->Reset();
932
933 unsigned LookAhead = std::min((unsigned)Sequence.size(),
934 HazardRec->getMaxLookAhead());
935 if (LookAhead == 0)
936 return;
937
938 std::vector<SUnit *>::const_iterator I = (Sequence.end() - LookAhead);
939 unsigned HazardCycle = (*I)->getHeight();
940 for (auto E = Sequence.end(); I != E; ++I) {
941 SUnit *SU = *I;
942 for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
943 HazardRec->RecedeCycle();
944 }
945 EmitNode(SU);
946 }
947}
948
949/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
950/// BTCycle in order to schedule a specific node.
951void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
952 SUnit *OldSU = Sequence.back();
953 while (true) {
954 Sequence.pop_back();
955 // FIXME: use ready cycle instead of height
956 CurCycle = OldSU->getHeight();
957 UnscheduleNodeBottomUp(OldSU);
958 AvailableQueue->setCurCycle(CurCycle);
959 if (OldSU == BtSU)
960 break;
961 OldSU = Sequence.back();
962 }
963
964 assert(!SU->isSucc(OldSU) && "Something is wrong!")(static_cast <bool> (!SU->isSucc(OldSU) && "Something is wrong!"
) ? void (0) : __assert_fail ("!SU->isSucc(OldSU) && \"Something is wrong!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 964,
__extension__ __PRETTY_FUNCTION__))
;
965
966 RestoreHazardCheckerBottomUp();
967
968 ReleasePending();
969
970 ++NumBacktracks;
971}
972
973static bool isOperandOf(const SUnit *SU, SDNode *N) {
974 for (const SDNode *SUNode = SU->getNode(); SUNode;
975 SUNode = SUNode->getGluedNode()) {
976 if (SUNode->isOperandOf(N))
977 return true;
978 }
979 return false;
980}
981
982/// TryUnfold - Attempt to unfold
983SUnit *ScheduleDAGRRList::TryUnfoldSU(SUnit *SU) {
984 SDNode *N = SU->getNode();
985 // Use while over if to ease fall through.
986 SmallVector<SDNode *, 2> NewNodes;
987 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
988 return nullptr;
989
990 // unfolding an x86 DEC64m operation results in store, dec, load which
991 // can't be handled here so quit
992 if (NewNodes.size() == 3)
993 return nullptr;
994
995 assert(NewNodes.size() == 2 && "Expected a load folding node!")(static_cast <bool> (NewNodes.size() == 2 && "Expected a load folding node!"
) ? void (0) : __assert_fail ("NewNodes.size() == 2 && \"Expected a load folding node!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 995,
__extension__ __PRETTY_FUNCTION__))
;
996
997 N = NewNodes[1];
998 SDNode *LoadNode = NewNodes[0];
999 unsigned NumVals = N->getNumValues();
1000 unsigned OldNumVals = SU->getNode()->getNumValues();
1001
1002 // LoadNode may already exist. This can happen when there is another
1003 // load from the same location and producing the same type of value
1004 // but it has different alignment or volatileness.
1005 bool isNewLoad = true;
1006 SUnit *LoadSU;
1007 if (LoadNode->getNodeId() != -1) {
1008 LoadSU = &SUnits[LoadNode->getNodeId()];
1009 // If LoadSU has already been scheduled, we should clone it but
1010 // this would negate the benefit to unfolding so just return SU.
1011 if (LoadSU->isScheduled)
1012 return SU;
1013 isNewLoad = false;
1014 } else {
1015 LoadSU = CreateNewSUnit(LoadNode);
1016 LoadNode->setNodeId(LoadSU->NodeNum);
1017
1018 InitNumRegDefsLeft(LoadSU);
1019 computeLatency(LoadSU);
1020 }
1021
1022 bool isNewN = true;
1023 SUnit *NewSU;
1024 // This can only happen when isNewLoad is false.
1025 if (N->getNodeId() != -1) {
1026 NewSU = &SUnits[N->getNodeId()];
1027 // If NewSU has already been scheduled, we need to clone it, but this
1028 // negates the benefit to unfolding so just return SU.
1029 if (NewSU->isScheduled) {
1030 return SU;
1031 }
1032 isNewN = false;
1033 } else {
1034 NewSU = CreateNewSUnit(N);
1035 N->setNodeId(NewSU->NodeNum);
1036
1037 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1038 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1039 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1040 NewSU->isTwoAddress = true;
1041 break;
1042 }
1043 }
1044 if (MCID.isCommutable())
1045 NewSU->isCommutable = true;
1046
1047 InitNumRegDefsLeft(NewSU);
1048 computeLatency(NewSU);
1049 }
1050
1051 LLVM_DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Unfolding SU #" <<
SU->NodeNum << "\n"; } } while (false)
;
1052
1053 // Now that we are committed to unfolding replace DAG Uses.
1054 for (unsigned i = 0; i != NumVals; ++i)
1055 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
1056 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals - 1),
1057 SDValue(LoadNode, 1));
1058
1059 // Record all the edges to and from the old SU, by category.
1060 SmallVector<SDep, 4> ChainPreds;
1061 SmallVector<SDep, 4> ChainSuccs;
1062 SmallVector<SDep, 4> LoadPreds;
1063 SmallVector<SDep, 4> NodePreds;
1064 SmallVector<SDep, 4> NodeSuccs;
1065 for (SDep &Pred : SU->Preds) {
1066 if (Pred.isCtrl())
1067 ChainPreds.push_back(Pred);
1068 else if (isOperandOf(Pred.getSUnit(), LoadNode))
1069 LoadPreds.push_back(Pred);
1070 else
1071 NodePreds.push_back(Pred);
1072 }
1073 for (SDep &Succ : SU->Succs) {
1074 if (Succ.isCtrl())
1075 ChainSuccs.push_back(Succ);
1076 else
1077 NodeSuccs.push_back(Succ);
1078 }
1079
1080 // Now assign edges to the newly-created nodes.
1081 for (const SDep &Pred : ChainPreds) {
1082 RemovePred(SU, Pred);
1083 if (isNewLoad)
1084 AddPredQueued(LoadSU, Pred);
1085 }
1086 for (const SDep &Pred : LoadPreds) {
1087 RemovePred(SU, Pred);
1088 if (isNewLoad)
1089 AddPredQueued(LoadSU, Pred);
1090 }
1091 for (const SDep &Pred : NodePreds) {
1092 RemovePred(SU, Pred);
1093 AddPredQueued(NewSU, Pred);
1094 }
1095 for (SDep &D : NodeSuccs) {
1096 SUnit *SuccDep = D.getSUnit();
1097 D.setSUnit(SU);
1098 RemovePred(SuccDep, D);
1099 D.setSUnit(NewSU);
1100 AddPredQueued(SuccDep, D);
1101 // Balance register pressure.
1102 if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled &&
1103 !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1104 --NewSU->NumRegDefsLeft;
1105 }
1106 for (SDep &D : ChainSuccs) {
1107 SUnit *SuccDep = D.getSUnit();
1108 D.setSUnit(SU);
1109 RemovePred(SuccDep, D);
1110 if (isNewLoad) {
1111 D.setSUnit(LoadSU);
1112 AddPredQueued(SuccDep, D);
1113 }
1114 }
1115
1116 // Add a data dependency to reflect that NewSU reads the value defined
1117 // by LoadSU.
1118 SDep D(LoadSU, SDep::Data, 0);
1119 D.setLatency(LoadSU->Latency);
1120 AddPredQueued(NewSU, D);
1121
1122 if (isNewLoad)
1123 AvailableQueue->addNode(LoadSU);
1124 if (isNewN)
1125 AvailableQueue->addNode(NewSU);
1126
1127 ++NumUnfolds;
1128
1129 if (NewSU->NumSuccsLeft == 0)
1130 NewSU->isAvailable = true;
1131
1132 return NewSU;
1133}
1134
1135/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
1136/// successors to the newly created node.
1137SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
1138 SDNode *N = SU->getNode();
1139 if (!N)
1140 return nullptr;
1141
1142 LLVM_DEBUG(dbgs() << "Considering duplicating the SU\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Considering duplicating the SU\n"
; } } while (false)
;
1143 LLVM_DEBUG(dumpNode(*SU))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dumpNode(*SU); } } while (false)
;
1144
1145 if (N->getGluedNode() &&
1146 !TII->canCopyGluedNodeDuringSchedule(N)) {
1147 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it has incoming glue and the target does not "
"want to copy it\n"; } } while (false)
1148 dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it has incoming glue and the target does not "
"want to copy it\n"; } } while (false)
1149 << "Giving up because it has incoming glue and the target does not "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it has incoming glue and the target does not "
"want to copy it\n"; } } while (false)
1150 "want to copy it\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it has incoming glue and the target does not "
"want to copy it\n"; } } while (false)
;
1151 return nullptr;
1152 }
1153
1154 SUnit *NewSU;
1155 bool TryUnfold = false;
1156 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
1157 MVT VT = N->getSimpleValueType(i);
1158 if (VT == MVT::Glue) {
1159 LLVM_DEBUG(dbgs() << "Giving up because it has outgoing glue\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it has outgoing glue\n"
; } } while (false)
;
1160 return nullptr;
1161 } else if (VT == MVT::Other)
1162 TryUnfold = true;
1163 }
1164 for (const SDValue &Op : N->op_values()) {
1165 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
1166 if (VT == MVT::Glue && !TII->canCopyGluedNodeDuringSchedule(N)) {
1167 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it one of the operands is glue and "
"the target does not want to copy it\n"; } } while (false)
1168 dbgs() << "Giving up because it one of the operands is glue and "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it one of the operands is glue and "
"the target does not want to copy it\n"; } } while (false)
1169 "the target does not want to copy it\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Giving up because it one of the operands is glue and "
"the target does not want to copy it\n"; } } while (false)
;
1170 return nullptr;
1171 }
1172 }
1173
1174 // If possible unfold instruction.
1175 if (TryUnfold) {
1176 SUnit *UnfoldSU = TryUnfoldSU(SU);
1177 if (!UnfoldSU)
1178 return nullptr;
1179 SU = UnfoldSU;
1180 N = SU->getNode();
Value stored to 'N' is never read
1181 // If this can be scheduled don't bother duplicating and just return
1182 if (SU->NumSuccsLeft == 0)
1183 return SU;
1184 }
1185
1186 LLVM_DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Duplicating SU #" <<
SU->NodeNum << "\n"; } } while (false)
;
1187 NewSU = CreateClone(SU);
1188
1189 // New SUnit has the exact same predecessors.
1190 for (SDep &Pred : SU->Preds)
1191 if (!Pred.isArtificial())
1192 AddPredQueued(NewSU, Pred);
1193
1194 // Make sure the clone comes after the original. (InstrEmitter assumes
1195 // this ordering.)
1196 AddPredQueued(NewSU, SDep(SU, SDep::Artificial));
1197
1198 // Only copy scheduled successors. Cut them from old node's successor
1199 // list and move them over.
1200 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1201 for (SDep &Succ : SU->Succs) {
1202 if (Succ.isArtificial())
1203 continue;
1204 SUnit *SuccSU = Succ.getSUnit();
1205 if (SuccSU->isScheduled) {
1206 SDep D = Succ;
1207 D.setSUnit(NewSU);
1208 AddPredQueued(SuccSU, D);
1209 D.setSUnit(SU);
1210 DelDeps.emplace_back(SuccSU, D);
1211 }
1212 }
1213 for (const auto &[DelSU, DelD] : DelDeps)
1214 RemovePred(DelSU, DelD);
1215
1216 AvailableQueue->updateNode(SU);
1217 AvailableQueue->addNode(NewSU);
1218
1219 ++NumDups;
1220 return NewSU;
1221}
1222
1223/// InsertCopiesAndMoveSuccs - Insert register copies and move all
1224/// scheduled successors of the given SUnit to the last copy.
1225void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1226 const TargetRegisterClass *DestRC,
1227 const TargetRegisterClass *SrcRC,
1228 SmallVectorImpl<SUnit*> &Copies) {
1229 SUnit *CopyFromSU = CreateNewSUnit(nullptr);
1230 CopyFromSU->CopySrcRC = SrcRC;
1231 CopyFromSU->CopyDstRC = DestRC;
1232
1233 SUnit *CopyToSU = CreateNewSUnit(nullptr);
1234 CopyToSU->CopySrcRC = DestRC;
1235 CopyToSU->CopyDstRC = SrcRC;
1236
1237 // Only copy scheduled successors. Cut them from old node's successor
1238 // list and move them over.
1239 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1240 for (SDep &Succ : SU->Succs) {
1241 if (Succ.isArtificial())
1242 continue;
1243 SUnit *SuccSU = Succ.getSUnit();
1244 if (SuccSU->isScheduled) {
1245 SDep D = Succ;
1246 D.setSUnit(CopyToSU);
1247 AddPredQueued(SuccSU, D);
1248 DelDeps.emplace_back(SuccSU, Succ);
1249 }
1250 else {
1251 // Avoid scheduling the def-side copy before other successors. Otherwise,
1252 // we could introduce another physreg interference on the copy and
1253 // continue inserting copies indefinitely.
1254 AddPredQueued(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1255 }
1256 }
1257 for (const auto &[DelSU, DelD] : DelDeps)
1258 RemovePred(DelSU, DelD);
1259
1260 SDep FromDep(SU, SDep::Data, Reg);
1261 FromDep.setLatency(SU->Latency);
1262 AddPredQueued(CopyFromSU, FromDep);
1263 SDep ToDep(CopyFromSU, SDep::Data, 0);
1264 ToDep.setLatency(CopyFromSU->Latency);
1265 AddPredQueued(CopyToSU, ToDep);
1266
1267 AvailableQueue->updateNode(SU);
1268 AvailableQueue->addNode(CopyFromSU);
1269 AvailableQueue->addNode(CopyToSU);
1270 Copies.push_back(CopyFromSU);
1271 Copies.push_back(CopyToSU);
1272
1273 ++NumPRCopies;
1274}
1275
1276/// getPhysicalRegisterVT - Returns the ValueType of the physical register
1277/// definition of the specified node.
1278/// FIXME: Move to SelectionDAG?
1279static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1280 const TargetInstrInfo *TII) {
1281 unsigned NumRes;
1282 if (N->getOpcode() == ISD::CopyFromReg) {
1283 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
1284 NumRes = 1;
1285 } else {
1286 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1287 assert(!MCID.implicit_defs().empty() &&(static_cast <bool> (!MCID.implicit_defs().empty() &&
"Physical reg def must be in implicit def list!") ? void (0)
: __assert_fail ("!MCID.implicit_defs().empty() && \"Physical reg def must be in implicit def list!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1288
, __extension__ __PRETTY_FUNCTION__))
1288 "Physical reg def must be in implicit def list!")(static_cast <bool> (!MCID.implicit_defs().empty() &&
"Physical reg def must be in implicit def list!") ? void (0)
: __assert_fail ("!MCID.implicit_defs().empty() && \"Physical reg def must be in implicit def list!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1288
, __extension__ __PRETTY_FUNCTION__))
;
1289 NumRes = MCID.getNumDefs();
1290 for (MCPhysReg ImpDef : MCID.implicit_defs()) {
1291 if (Reg == ImpDef)
1292 break;
1293 ++NumRes;
1294 }
1295 }
1296 return N->getSimpleValueType(NumRes);
1297}
1298
1299/// CheckForLiveRegDef - Return true and update live register vector if the
1300/// specified register def of the specified SUnit clobbers any "live" registers.
1301static void CheckForLiveRegDef(SUnit *SU, unsigned Reg, SUnit **LiveRegDefs,
1302 SmallSet<unsigned, 4> &RegAdded,
1303 SmallVectorImpl<unsigned> &LRegs,
1304 const TargetRegisterInfo *TRI,
1305 const SDNode *Node = nullptr) {
1306 for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1307
1308 // Check if Ref is live.
1309 if (!LiveRegDefs[*AliasI]) continue;
1310
1311 // Allow multiple uses of the same def.
1312 if (LiveRegDefs[*AliasI] == SU) continue;
1313
1314 // Allow multiple uses of same def
1315 if (Node && LiveRegDefs[*AliasI]->getNode() == Node)
1316 continue;
1317
1318 // Add Reg to the set of interfering live regs.
1319 if (RegAdded.insert(*AliasI).second) {
1320 LRegs.push_back(*AliasI);
1321 }
1322 }
1323}
1324
1325/// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1326/// by RegMask, and add them to LRegs.
1327static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1328 ArrayRef<SUnit*> LiveRegDefs,
1329 SmallSet<unsigned, 4> &RegAdded,
1330 SmallVectorImpl<unsigned> &LRegs) {
1331 // Look at all live registers. Skip Reg0 and the special CallResource.
1332 for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1333 if (!LiveRegDefs[i]) continue;
1334 if (LiveRegDefs[i] == SU) continue;
1335 if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1336 if (RegAdded.insert(i).second)
1337 LRegs.push_back(i);
1338 }
1339}
1340
1341/// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1342static const uint32_t *getNodeRegMask(const SDNode *N) {
1343 for (const SDValue &Op : N->op_values())
1344 if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
1345 return RegOp->getRegMask();
1346 return nullptr;
1347}
1348
1349/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1350/// scheduling of the given node to satisfy live physical register dependencies.
1351/// If the specific node is the last one that's available to schedule, do
1352/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1353bool ScheduleDAGRRList::
1354DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1355 if (NumLiveRegs == 0)
1356 return false;
1357
1358 SmallSet<unsigned, 4> RegAdded;
1359 // If this node would clobber any "live" register, then it's not ready.
1360 //
1361 // If SU is the currently live definition of the same register that it uses,
1362 // then we are free to schedule it.
1363 for (SDep &Pred : SU->Preds) {
1364 if (Pred.isAssignedRegDep() && LiveRegDefs[Pred.getReg()] != SU)
1365 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs.get(),
1366 RegAdded, LRegs, TRI);
1367 }
1368
1369 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1370 if (Node->getOpcode() == ISD::INLINEASM ||
1371 Node->getOpcode() == ISD::INLINEASM_BR) {
1372 // Inline asm can clobber physical defs.
1373 unsigned NumOps = Node->getNumOperands();
1374 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1375 --NumOps; // Ignore the glue operand.
1376
1377 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1378 unsigned Flags =
1379 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1380 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1381
1382 ++i; // Skip the ID value.
1383 if (InlineAsm::isRegDefKind(Flags) ||
1384 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1385 InlineAsm::isClobberKind(Flags)) {
1386 // Check for def of register or earlyclobber register.
1387 for (; NumVals; --NumVals, ++i) {
1388 Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1389 if (Reg.isPhysical())
1390 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1391 }
1392 } else
1393 i += NumVals;
1394 }
1395 continue;
1396 }
1397
1398 if (Node->getOpcode() == ISD::CopyToReg) {
1399 Register Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1400 if (Reg.isPhysical()) {
1401 SDNode *SrcNode = Node->getOperand(2).getNode();
1402 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI,
1403 SrcNode);
1404 }
1405 }
1406
1407 if (!Node->isMachineOpcode())
1408 continue;
1409 // If we're in the middle of scheduling a call, don't begin scheduling
1410 // another call. Also, don't allow any physical registers to be live across
1411 // the call.
1412 if (Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
1413 // Check the special calling-sequence resource.
1414 unsigned CallResource = TRI->getNumRegs();
1415 if (LiveRegDefs[CallResource]) {
1416 SDNode *Gen = LiveRegGens[CallResource]->getNode();
1417 while (SDNode *Glued = Gen->getGluedNode())
1418 Gen = Glued;
1419 if (!IsChainDependent(Gen, Node, 0, TII) &&
1420 RegAdded.insert(CallResource).second)
1421 LRegs.push_back(CallResource);
1422 }
1423 }
1424 if (const uint32_t *RegMask = getNodeRegMask(Node))
1425 CheckForLiveRegDefMasked(SU, RegMask,
1426 ArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
1427 RegAdded, LRegs);
1428
1429 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1430 if (MCID.hasOptionalDef()) {
1431 // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit.
1432 // This operand can be either a def of CPSR, if the S bit is set; or a use
1433 // of %noreg. When the OptionalDef is set to a valid register, we need to
1434 // handle it in the same way as an ImplicitDef.
1435 for (unsigned i = 0; i < MCID.getNumDefs(); ++i)
1436 if (MCID.operands()[i].isOptionalDef()) {
1437 const SDValue &OptionalDef = Node->getOperand(i - Node->getNumValues());
1438 Register Reg = cast<RegisterSDNode>(OptionalDef)->getReg();
1439 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1440 }
1441 }
1442 for (MCPhysReg Reg : MCID.implicit_defs())
1443 CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1444 }
1445
1446 return !LRegs.empty();
1447}
1448
1449void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1450 // Add the nodes that aren't ready back onto the available list.
1451 for (unsigned i = Interferences.size(); i > 0; --i) {
1452 SUnit *SU = Interferences[i-1];
1453 LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1454 if (Reg) {
1455 SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1456 if (!is_contained(LRegs, Reg))
1457 continue;
1458 }
1459 SU->isPending = false;
1460 // The interfering node may no longer be available due to backtracking.
1461 // Furthermore, it may have been made available again, in which case it is
1462 // now already in the AvailableQueue.
1463 if (SU->isAvailable && !SU->NodeQueueId) {
1464 LLVM_DEBUG(dbgs() << " Repushing SU #" << SU->NodeNum << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Repushing SU #" <<
SU->NodeNum << '\n'; } } while (false)
;
1465 AvailableQueue->push(SU);
1466 }
1467 if (i < Interferences.size())
1468 Interferences[i-1] = Interferences.back();
1469 Interferences.pop_back();
1470 LRegsMap.erase(LRegsPos);
1471 }
1472}
1473
1474/// Return a node that can be scheduled in this cycle. Requirements:
1475/// (1) Ready: latency has been satisfied
1476/// (2) No Hazards: resources are available
1477/// (3) No Interferences: may unschedule to break register interferences.
1478SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1479 SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
1480 auto FindAvailableNode = [&]() {
1481 while (CurSU) {
1482 SmallVector<unsigned, 4> LRegs;
1483 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1484 break;
1485 LLVM_DEBUG(dbgs() << " Interfering reg ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Interfering reg "; if
(LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource"
; else dbgs() << printReg(LRegs[0], TRI); dbgs() <<
" SU #" << CurSU->NodeNum << '\n'; } } while (
false)
1486 if (LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Interfering reg "; if
(LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource"
; else dbgs() << printReg(LRegs[0], TRI); dbgs() <<
" SU #" << CurSU->NodeNum << '\n'; } } while (
false)
1487 else dbgs() << printReg(LRegs[0], TRI);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Interfering reg "; if
(LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource"
; else dbgs() << printReg(LRegs[0], TRI); dbgs() <<
" SU #" << CurSU->NodeNum << '\n'; } } while (
false)
1488 dbgs() << " SU #" << CurSU->NodeNum << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Interfering reg "; if
(LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource"
; else dbgs() << printReg(LRegs[0], TRI); dbgs() <<
" SU #" << CurSU->NodeNum << '\n'; } } while (
false)
;
1489 auto [LRegsIter, LRegsInserted] = LRegsMap.try_emplace(CurSU, LRegs);
1490 if (LRegsInserted) {
1491 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
1492 Interferences.push_back(CurSU);
1493 }
1494 else {
1495 assert(CurSU->isPending && "Interferences are pending")(static_cast <bool> (CurSU->isPending && "Interferences are pending"
) ? void (0) : __assert_fail ("CurSU->isPending && \"Interferences are pending\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1495
, __extension__ __PRETTY_FUNCTION__))
;
1496 // Update the interference with current live regs.
1497 LRegsIter->second = LRegs;
1498 }
1499 CurSU = AvailableQueue->pop();
1500 }
1501 };
1502 FindAvailableNode();
1503 if (CurSU)
1504 return CurSU;
1505
1506 // We query the topological order in the loop body, so make sure outstanding
1507 // updates are applied before entering it (we only enter the loop if there
1508 // are some interferences). If we make changes to the ordering, we exit
1509 // the loop.
1510
1511 // All candidates are delayed due to live physical reg dependencies.
1512 // Try backtracking, code duplication, or inserting cross class copies
1513 // to resolve it.
1514 for (SUnit *TrySU : Interferences) {
1515 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1516
1517 // Try unscheduling up to the point where it's safe to schedule
1518 // this node.
1519 SUnit *BtSU = nullptr;
1520 unsigned LiveCycle = std::numeric_limits<unsigned>::max();
1521 for (unsigned Reg : LRegs) {
1522 if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1523 BtSU = LiveRegGens[Reg];
1524 LiveCycle = BtSU->getHeight();
1525 }
1526 }
1527 if (!WillCreateCycle(TrySU, BtSU)) {
1528 // BacktrackBottomUp mutates Interferences!
1529 BacktrackBottomUp(TrySU, BtSU);
1530
1531 // Force the current node to be scheduled before the node that
1532 // requires the physical reg dep.
1533 if (BtSU->isAvailable) {
1534 BtSU->isAvailable = false;
1535 if (!BtSU->isPending)
1536 AvailableQueue->remove(BtSU);
1537 }
1538 LLVM_DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "ARTIFICIAL edge from SU("
<< BtSU->NodeNum << ") to SU(" << TrySU
->NodeNum << ")\n"; } } while (false)
1539 << ") to SU(" << TrySU->NodeNum << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "ARTIFICIAL edge from SU("
<< BtSU->NodeNum << ") to SU(" << TrySU
->NodeNum << ")\n"; } } while (false)
;
1540 AddPredQueued(TrySU, SDep(BtSU, SDep::Artificial));
1541
1542 // If one or more successors has been unscheduled, then the current
1543 // node is no longer available.
1544 if (!TrySU->isAvailable || !TrySU->NodeQueueId) {
1545 LLVM_DEBUG(dbgs() << "TrySU not available; choosing node from queue\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "TrySU not available; choosing node from queue\n"
; } } while (false)
;
1546 CurSU = AvailableQueue->pop();
1547 } else {
1548 LLVM_DEBUG(dbgs() << "TrySU available\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "TrySU available\n"; } } while
(false)
;
1549 // Available and in AvailableQueue
1550 AvailableQueue->remove(TrySU);
1551 CurSU = TrySU;
1552 }
1553 FindAvailableNode();
1554 // Interferences has been mutated. We must break.
1555 break;
1556 }
1557 }
1558
1559 if (!CurSU) {
1560 // Can't backtrack. If it's too expensive to copy the value, then try
1561 // duplicate the nodes that produces these "too expensive to copy"
1562 // values to break the dependency. In case even that doesn't work,
1563 // insert cross class copies.
1564 // If it's not too expensive, i.e. cost != -1, issue copies.
1565 SUnit *TrySU = Interferences[0];
1566 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1567 assert(LRegs.size() == 1 && "Can't handle this yet!")(static_cast <bool> (LRegs.size() == 1 && "Can't handle this yet!"
) ? void (0) : __assert_fail ("LRegs.size() == 1 && \"Can't handle this yet!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1567
, __extension__ __PRETTY_FUNCTION__))
;
1568 unsigned Reg = LRegs[0];
1569 SUnit *LRDef = LiveRegDefs[Reg];
1570 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1571 const TargetRegisterClass *RC =
1572 TRI->getMinimalPhysRegClass(Reg, VT);
1573 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1574
1575 // If cross copy register class is the same as RC, then it must be possible
1576 // copy the value directly. Do not try duplicate the def.
1577 // If cross copy register class is not the same as RC, then it's possible to
1578 // copy the value but it require cross register class copies and it is
1579 // expensive.
1580 // If cross copy register class is null, then it's not possible to copy
1581 // the value at all.
1582 SUnit *NewDef = nullptr;
1583 if (DestRC != RC) {
1584 NewDef = CopyAndMoveSuccessors(LRDef);
1585 if (!DestRC && !NewDef)
1586 report_fatal_error("Can't handle live physical register dependency!");
1587 }
1588 if (!NewDef) {
1589 // Issue copies, these can be expensive cross register class copies.
1590 SmallVector<SUnit*, 2> Copies;
1591 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1592 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding an edge from SU #"
<< TrySU->NodeNum << " to SU #" << Copies
.front()->NodeNum << "\n"; } } while (false)
1593 << " to SU #" << Copies.front()->NodeNum << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding an edge from SU #"
<< TrySU->NodeNum << " to SU #" << Copies
.front()->NodeNum << "\n"; } } while (false)
;
1594 AddPredQueued(TrySU, SDep(Copies.front(), SDep::Artificial));
1595 NewDef = Copies.back();
1596 }
1597
1598 LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding an edge from SU #"
<< NewDef->NodeNum << " to SU #" << TrySU
->NodeNum << "\n"; } } while (false)
1599 << " to SU #" << TrySU->NodeNum << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding an edge from SU #"
<< NewDef->NodeNum << " to SU #" << TrySU
->NodeNum << "\n"; } } while (false)
;
1600 LiveRegDefs[Reg] = NewDef;
1601 AddPredQueued(NewDef, SDep(TrySU, SDep::Artificial));
1602 TrySU->isAvailable = false;
1603 CurSU = NewDef;
1604 }
1605 assert(CurSU && "Unable to resolve live physical register dependencies!")(static_cast <bool> (CurSU && "Unable to resolve live physical register dependencies!"
) ? void (0) : __assert_fail ("CurSU && \"Unable to resolve live physical register dependencies!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1605
, __extension__ __PRETTY_FUNCTION__))
;
1606 return CurSU;
1607}
1608
1609/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1610/// schedulers.
1611void ScheduleDAGRRList::ListScheduleBottomUp() {
1612 // Release any predecessors of the special Exit node.
1613 ReleasePredecessors(&ExitSU);
1614
1615 // Add root to Available queue.
1616 if (!SUnits.empty()) {
1617 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1618 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!")(static_cast <bool> (RootSU->Succs.empty() &&
"Graph root shouldn't have successors!") ? void (0) : __assert_fail
("RootSU->Succs.empty() && \"Graph root shouldn't have successors!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1618
, __extension__ __PRETTY_FUNCTION__))
;
1619 RootSU->isAvailable = true;
1620 AvailableQueue->push(RootSU);
1621 }
1622
1623 // While Available queue is not empty, grab the node with the highest
1624 // priority. If it is not ready put it back. Schedule the node.
1625 Sequence.reserve(SUnits.size());
1626 while (!AvailableQueue->empty() || !Interferences.empty()) {
1627 LLVM_DEBUG(dbgs() << "\nExamining Available:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "\nExamining Available:\n"
; AvailableQueue->dump(this); } } while (false)
1628 AvailableQueue->dump(this))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "\nExamining Available:\n"
; AvailableQueue->dump(this); } } while (false)
;
1629
1630 // Pick the best node to schedule taking all constraints into
1631 // consideration.
1632 SUnit *SU = PickNodeToScheduleBottomUp();
1633
1634 AdvancePastStalls(SU);
1635
1636 ScheduleNodeBottomUp(SU);
1637
1638 while (AvailableQueue->empty() && !PendingQueue.empty()) {
1639 // Advance the cycle to free resources. Skip ahead to the next ready SU.
1640 assert(MinAvailableCycle < std::numeric_limits<unsigned>::max() &&(static_cast <bool> (MinAvailableCycle < std::numeric_limits
<unsigned>::max() && "MinAvailableCycle uninitialized"
) ? void (0) : __assert_fail ("MinAvailableCycle < std::numeric_limits<unsigned>::max() && \"MinAvailableCycle uninitialized\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1641
, __extension__ __PRETTY_FUNCTION__))
1641 "MinAvailableCycle uninitialized")(static_cast <bool> (MinAvailableCycle < std::numeric_limits
<unsigned>::max() && "MinAvailableCycle uninitialized"
) ? void (0) : __assert_fail ("MinAvailableCycle < std::numeric_limits<unsigned>::max() && \"MinAvailableCycle uninitialized\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1641
, __extension__ __PRETTY_FUNCTION__))
;
1642 AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1643 }
1644 }
1645
1646 // Reverse the order if it is bottom up.
1647 std::reverse(Sequence.begin(), Sequence.end());
1648
1649#ifndef NDEBUG
1650 VerifyScheduledSequence(/*isBottomUp=*/true);
1651#endif
1652}
1653
1654namespace {
1655
1656class RegReductionPQBase;
1657
1658struct queue_sort {
1659 bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1660};
1661
1662#ifndef NDEBUG
1663template<class SF>
1664struct reverse_sort : public queue_sort {
1665 SF &SortFunc;
1666
1667 reverse_sort(SF &sf) : SortFunc(sf) {}
1668
1669 bool operator()(SUnit* left, SUnit* right) const {
1670 // reverse left/right rather than simply !SortFunc(left, right)
1671 // to expose different paths in the comparison logic.
1672 return SortFunc(right, left);
1673 }
1674};
1675#endif // NDEBUG
1676
1677/// bu_ls_rr_sort - Priority function for bottom up register pressure
1678// reduction scheduler.
1679struct bu_ls_rr_sort : public queue_sort {
1680 enum {
1681 IsBottomUp = true,
1682 HasReadyFilter = false
1683 };
1684
1685 RegReductionPQBase *SPQ;
1686
1687 bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1688
1689 bool operator()(SUnit* left, SUnit* right) const;
1690};
1691
1692// src_ls_rr_sort - Priority function for source order scheduler.
1693struct src_ls_rr_sort : public queue_sort {
1694 enum {
1695 IsBottomUp = true,
1696 HasReadyFilter = false
1697 };
1698
1699 RegReductionPQBase *SPQ;
1700
1701 src_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1702
1703 bool operator()(SUnit* left, SUnit* right) const;
1704};
1705
1706// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1707struct hybrid_ls_rr_sort : public queue_sort {
1708 enum {
1709 IsBottomUp = true,
1710 HasReadyFilter = false
1711 };
1712
1713 RegReductionPQBase *SPQ;
1714
1715 hybrid_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1716
1717 bool isReady(SUnit *SU, unsigned CurCycle) const;
1718
1719 bool operator()(SUnit* left, SUnit* right) const;
1720};
1721
1722// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1723// scheduler.
1724struct ilp_ls_rr_sort : public queue_sort {
1725 enum {
1726 IsBottomUp = true,
1727 HasReadyFilter = false
1728 };
1729
1730 RegReductionPQBase *SPQ;
1731
1732 ilp_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1733
1734 bool isReady(SUnit *SU, unsigned CurCycle) const;
1735
1736 bool operator()(SUnit* left, SUnit* right) const;
1737};
1738
1739class RegReductionPQBase : public SchedulingPriorityQueue {
1740protected:
1741 std::vector<SUnit *> Queue;
1742 unsigned CurQueueId = 0;
1743 bool TracksRegPressure;
1744 bool SrcOrder;
1745
1746 // SUnits - The SUnits for the current graph.
1747 std::vector<SUnit> *SUnits;
1748
1749 MachineFunction &MF;
1750 const TargetInstrInfo *TII;
1751 const TargetRegisterInfo *TRI;
1752 const TargetLowering *TLI;
1753 ScheduleDAGRRList *scheduleDAG = nullptr;
1754
1755 // SethiUllmanNumbers - The SethiUllman number for each node.
1756 std::vector<unsigned> SethiUllmanNumbers;
1757
1758 /// RegPressure - Tracking current reg pressure per register class.
1759 std::vector<unsigned> RegPressure;
1760
1761 /// RegLimit - Tracking the number of allocatable registers per register
1762 /// class.
1763 std::vector<unsigned> RegLimit;
1764
1765public:
1766 RegReductionPQBase(MachineFunction &mf,
1767 bool hasReadyFilter,
1768 bool tracksrp,
1769 bool srcorder,
1770 const TargetInstrInfo *tii,
1771 const TargetRegisterInfo *tri,
1772 const TargetLowering *tli)
1773 : SchedulingPriorityQueue(hasReadyFilter), TracksRegPressure(tracksrp),
1774 SrcOrder(srcorder), MF(mf), TII(tii), TRI(tri), TLI(tli) {
1775 if (TracksRegPressure) {
1776 unsigned NumRC = TRI->getNumRegClasses();
1777 RegLimit.resize(NumRC);
1778 RegPressure.resize(NumRC);
1779 std::fill(RegLimit.begin(), RegLimit.end(), 0);
1780 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1781 for (const TargetRegisterClass *RC : TRI->regclasses())
1782 RegLimit[RC->getID()] = tri->getRegPressureLimit(RC, MF);
1783 }
1784 }
1785
1786 void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1787 scheduleDAG = scheduleDag;
1788 }
1789
1790 ScheduleHazardRecognizer* getHazardRec() {
1791 return scheduleDAG->getHazardRec();
1792 }
1793
1794 void initNodes(std::vector<SUnit> &sunits) override;
1795
1796 void addNode(const SUnit *SU) override;
1797
1798 void updateNode(const SUnit *SU) override;
1799
1800 void releaseState() override {
1801 SUnits = nullptr;
1802 SethiUllmanNumbers.clear();
1803 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1804 }
1805
1806 unsigned getNodePriority(const SUnit *SU) const;
1807
1808 unsigned getNodeOrdering(const SUnit *SU) const {
1809 if (!SU->getNode()) return 0;
1810
1811 return SU->getNode()->getIROrder();
1812 }
1813
1814 bool empty() const override { return Queue.empty(); }
1815
1816 void push(SUnit *U) override {
1817 assert(!U->NodeQueueId && "Node in the queue already")(static_cast <bool> (!U->NodeQueueId && "Node in the queue already"
) ? void (0) : __assert_fail ("!U->NodeQueueId && \"Node in the queue already\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1817
, __extension__ __PRETTY_FUNCTION__))
;
1818 U->NodeQueueId = ++CurQueueId;
1819 Queue.push_back(U);
1820 }
1821
1822 void remove(SUnit *SU) override {
1823 assert(!Queue.empty() && "Queue is empty!")(static_cast <bool> (!Queue.empty() && "Queue is empty!"
) ? void (0) : __assert_fail ("!Queue.empty() && \"Queue is empty!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1823
, __extension__ __PRETTY_FUNCTION__))
;
1824 assert(SU->NodeQueueId != 0 && "Not in queue!")(static_cast <bool> (SU->NodeQueueId != 0 &&
"Not in queue!") ? void (0) : __assert_fail ("SU->NodeQueueId != 0 && \"Not in queue!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1824
, __extension__ __PRETTY_FUNCTION__))
;
1825 std::vector<SUnit *>::iterator I = llvm::find(Queue, SU);
1826 if (I != std::prev(Queue.end()))
1827 std::swap(*I, Queue.back());
1828 Queue.pop_back();
1829 SU->NodeQueueId = 0;
1830 }
1831
1832 bool tracksRegPressure() const override { return TracksRegPressure; }
1833
1834 void dumpRegPressure() const;
1835
1836 bool HighRegPressure(const SUnit *SU) const;
1837
1838 bool MayReduceRegPressure(SUnit *SU) const;
1839
1840 int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1841
1842 void scheduledNode(SUnit *SU) override;
1843
1844 void unscheduledNode(SUnit *SU) override;
1845
1846protected:
1847 bool canClobber(const SUnit *SU, const SUnit *Op);
1848 void AddPseudoTwoAddrDeps();
1849 void PrescheduleNodesWithMultipleUses();
1850 void CalculateSethiUllmanNumbers();
1851};
1852
1853template<class SF>
1854static SUnit *popFromQueueImpl(std::vector<SUnit *> &Q, SF &Picker) {
1855 unsigned BestIdx = 0;
1856 // Only compute the cost for the first 1000 items in the queue, to avoid
1857 // excessive compile-times for very large queues.
1858 for (unsigned I = 1, E = std::min(Q.size(), (decltype(Q.size()))1000); I != E;
1859 I++)
1860 if (Picker(Q[BestIdx], Q[I]))
1861 BestIdx = I;
1862 SUnit *V = Q[BestIdx];
1863 if (BestIdx + 1 != Q.size())
1864 std::swap(Q[BestIdx], Q.back());
1865 Q.pop_back();
1866 return V;
1867}
1868
1869template<class SF>
1870SUnit *popFromQueue(std::vector<SUnit *> &Q, SF &Picker, ScheduleDAG *DAG) {
1871#ifndef NDEBUG
1872 if (DAG->StressSched) {
1873 reverse_sort<SF> RPicker(Picker);
1874 return popFromQueueImpl(Q, RPicker);
1875 }
1876#endif
1877 (void)DAG;
1878 return popFromQueueImpl(Q, Picker);
1879}
1880
1881//===----------------------------------------------------------------------===//
1882// RegReductionPriorityQueue Definition
1883//===----------------------------------------------------------------------===//
1884//
1885// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1886// to reduce register pressure.
1887//
1888template<class SF>
1889class RegReductionPriorityQueue : public RegReductionPQBase {
1890 SF Picker;
1891
1892public:
1893 RegReductionPriorityQueue(MachineFunction &mf,
1894 bool tracksrp,
1895 bool srcorder,
1896 const TargetInstrInfo *tii,
1897 const TargetRegisterInfo *tri,
1898 const TargetLowering *tli)
1899 : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1900 tii, tri, tli),
1901 Picker(this) {}
1902
1903 bool isBottomUp() const override { return SF::IsBottomUp; }
1904
1905 bool isReady(SUnit *U) const override {
1906 return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1907 }
1908
1909 SUnit *pop() override {
1910 if (Queue.empty()) return nullptr;
1911
1912 SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1913 V->NodeQueueId = 0;
1914 return V;
1915 }
1916
1917#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1918 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump(ScheduleDAG *DAG) const override {
1919 // Emulate pop() without clobbering NodeQueueIds.
1920 std::vector<SUnit *> DumpQueue = Queue;
1921 SF DumpPicker = Picker;
1922 while (!DumpQueue.empty()) {
1923 SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1924 dbgs() << "Height " << SU->getHeight() << ": ";
1925 DAG->dumpNode(*SU);
1926 }
1927 }
1928#endif
1929};
1930
1931using BURegReductionPriorityQueue = RegReductionPriorityQueue<bu_ls_rr_sort>;
1932using SrcRegReductionPriorityQueue = RegReductionPriorityQueue<src_ls_rr_sort>;
1933using HybridBURRPriorityQueue = RegReductionPriorityQueue<hybrid_ls_rr_sort>;
1934using ILPBURRPriorityQueue = RegReductionPriorityQueue<ilp_ls_rr_sort>;
1935
1936} // end anonymous namespace
1937
1938//===----------------------------------------------------------------------===//
1939// Static Node Priority for Register Pressure Reduction
1940//===----------------------------------------------------------------------===//
1941
1942// Check for special nodes that bypass scheduling heuristics.
1943// Currently this pushes TokenFactor nodes down, but may be used for other
1944// pseudo-ops as well.
1945//
1946// Return -1 to schedule right above left, 1 for left above right.
1947// Return 0 if no bias exists.
1948static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1949 bool LSchedLow = left->isScheduleLow;
1950 bool RSchedLow = right->isScheduleLow;
1951 if (LSchedLow != RSchedLow)
1952 return LSchedLow < RSchedLow ? 1 : -1;
1953 return 0;
1954}
1955
1956/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1957/// Smaller number is the higher priority.
1958static unsigned
1959CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1960 if (SUNumbers[SU->NodeNum] != 0)
1961 return SUNumbers[SU->NodeNum];
1962
1963 // Use WorkList to avoid stack overflow on excessively large IRs.
1964 struct WorkState {
1965 WorkState(const SUnit *SU) : SU(SU) {}
1966 const SUnit *SU;
1967 unsigned PredsProcessed = 0;
1968 };
1969
1970 SmallVector<WorkState, 16> WorkList;
1971 WorkList.push_back(SU);
1972 while (!WorkList.empty()) {
1973 auto &Temp = WorkList.back();
1974 auto *TempSU = Temp.SU;
1975 bool AllPredsKnown = true;
1976 // Try to find a non-evaluated pred and push it into the processing stack.
1977 for (unsigned P = Temp.PredsProcessed; P < TempSU->Preds.size(); ++P) {
1978 auto &Pred = TempSU->Preds[P];
1979 if (Pred.isCtrl()) continue; // ignore chain preds
1980 SUnit *PredSU = Pred.getSUnit();
1981 if (SUNumbers[PredSU->NodeNum] == 0) {
1982#ifndef NDEBUG
1983 // In debug mode, check that we don't have such element in the stack.
1984 for (auto It : WorkList)
1985 assert(It.SU != PredSU && "Trying to push an element twice?")(static_cast <bool> (It.SU != PredSU && "Trying to push an element twice?"
) ? void (0) : __assert_fail ("It.SU != PredSU && \"Trying to push an element twice?\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 1985
, __extension__ __PRETTY_FUNCTION__))
;
1986#endif
1987 // Next time start processing this one starting from the next pred.
1988 Temp.PredsProcessed = P + 1;
1989 WorkList.push_back(PredSU);
1990 AllPredsKnown = false;
1991 break;
1992 }
1993 }
1994
1995 if (!AllPredsKnown)
1996 continue;
1997
1998 // Once all preds are known, we can calculate the answer for this one.
1999 unsigned SethiUllmanNumber = 0;
2000 unsigned Extra = 0;
2001 for (const SDep &Pred : TempSU->Preds) {
2002 if (Pred.isCtrl()) continue; // ignore chain preds
2003 SUnit *PredSU = Pred.getSUnit();
2004 unsigned PredSethiUllman = SUNumbers[PredSU->NodeNum];
2005 assert(PredSethiUllman > 0 && "We should have evaluated this pred!")(static_cast <bool> (PredSethiUllman > 0 && "We should have evaluated this pred!"
) ? void (0) : __assert_fail ("PredSethiUllman > 0 && \"We should have evaluated this pred!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 2005
, __extension__ __PRETTY_FUNCTION__))
;
2006 if (PredSethiUllman > SethiUllmanNumber) {
2007 SethiUllmanNumber = PredSethiUllman;
2008 Extra = 0;
2009 } else if (PredSethiUllman == SethiUllmanNumber)
2010 ++Extra;
2011 }
2012
2013 SethiUllmanNumber += Extra;
2014 if (SethiUllmanNumber == 0)
2015 SethiUllmanNumber = 1;
2016 SUNumbers[TempSU->NodeNum] = SethiUllmanNumber;
2017 WorkList.pop_back();
2018 }
2019
2020 assert(SUNumbers[SU->NodeNum] > 0 && "SethiUllman should never be zero!")(static_cast <bool> (SUNumbers[SU->NodeNum] > 0 &&
"SethiUllman should never be zero!") ? void (0) : __assert_fail
("SUNumbers[SU->NodeNum] > 0 && \"SethiUllman should never be zero!\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 2020
, __extension__ __PRETTY_FUNCTION__))
;
2021 return SUNumbers[SU->NodeNum];
2022}
2023
2024/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
2025/// scheduling units.
2026void RegReductionPQBase::CalculateSethiUllmanNumbers() {
2027 SethiUllmanNumbers.assign(SUnits->size(), 0);
2028
2029 for (const SUnit &SU : *SUnits)
2030 CalcNodeSethiUllmanNumber(&SU, SethiUllmanNumbers);
2031}
2032
2033void RegReductionPQBase::addNode(const SUnit *SU) {
2034 unsigned SUSize = SethiUllmanNumbers.size();
2035 if (SUnits->size() > SUSize)
2036 SethiUllmanNumbers.resize(SUSize*2, 0);
2037 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2038}
2039
2040void RegReductionPQBase::updateNode(const SUnit *SU) {
2041 SethiUllmanNumbers[SU->NodeNum] = 0;
2042 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2043}
2044
2045// Lower priority means schedule further down. For bottom-up scheduling, lower
2046// priority SUs are scheduled before higher priority SUs.
2047unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
2048 assert(SU->NodeNum < SethiUllmanNumbers.size())(static_cast <bool> (SU->NodeNum < SethiUllmanNumbers
.size()) ? void (0) : __assert_fail ("SU->NodeNum < SethiUllmanNumbers.size()"
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 2048
, __extension__ __PRETTY_FUNCTION__))
;
2049 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2050 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2051 // CopyToReg should be close to its uses to facilitate coalescing and
2052 // avoid spilling.
2053 return 0;
2054 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2055 Opc == TargetOpcode::SUBREG_TO_REG ||
2056 Opc == TargetOpcode::INSERT_SUBREG)
2057 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2058 // close to their uses to facilitate coalescing.
2059 return 0;
2060 if (SU->NumSuccs == 0 && SU->NumPreds != 0)
2061 // If SU does not have a register use, i.e. it doesn't produce a value
2062 // that would be consumed (e.g. store), then it terminates a chain of
2063 // computation. Give it a large SethiUllman number so it will be
2064 // scheduled right before its predecessors that it doesn't lengthen
2065 // their live ranges.
2066 return 0xffff;
2067 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2068 // If SU does not have a register def, schedule it close to its uses
2069 // because it does not lengthen any live ranges.
2070 return 0;
2071#if 1
2072 return SethiUllmanNumbers[SU->NodeNum];
2073#else
2074 unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
2075 if (SU->isCallOp) {
2076 // FIXME: This assumes all of the defs are used as call operands.
2077 int NP = (int)Priority - SU->getNode()->getNumValues();
2078 return (NP > 0) ? NP : 0;
2079 }
2080 return Priority;
2081#endif
2082}
2083
2084//===----------------------------------------------------------------------===//
2085// Register Pressure Tracking
2086//===----------------------------------------------------------------------===//
2087
2088#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2089LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void RegReductionPQBase::dumpRegPressure() const {
2090 for (const TargetRegisterClass *RC : TRI->regclasses()) {
2091 unsigned Id = RC->getID();
2092 unsigned RP = RegPressure[Id];
2093 if (!RP) continue;
2094 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << TRI->getRegClassName(RC
) << ": " << RP << " / " << RegLimit[
Id] << '\n'; } } while (false)
2095 << RegLimit[Id] << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << TRI->getRegClassName(RC
) << ": " << RP << " / " << RegLimit[
Id] << '\n'; } } while (false)
;
2096 }
2097}
2098#endif
2099
2100bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
2101 if (!TLI)
2102 return false;
2103
2104 for (const SDep &Pred : SU->Preds) {
2105 if (Pred.isCtrl())
2106 continue;
2107 SUnit *PredSU = Pred.getSUnit();
2108 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2109 // to cover the number of registers defined (they are all live).
2110 if (PredSU->NumRegDefsLeft == 0) {
2111 continue;
2112 }
2113 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2114 RegDefPos.IsValid(); RegDefPos.Advance()) {
2115 unsigned RCId, Cost;
2116 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2117
2118 if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
2119 return true;
2120 }
2121 }
2122 return false;
2123}
2124
2125bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
2126 const SDNode *N = SU->getNode();
2127
2128 if (!N->isMachineOpcode() || !SU->NumSuccs)
2129 return false;
2130
2131 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2132 for (unsigned i = 0; i != NumDefs; ++i) {
2133 MVT VT = N->getSimpleValueType(i);
2134 if (!N->hasAnyUseOfValue(i))
2135 continue;
2136 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2137 if (RegPressure[RCId] >= RegLimit[RCId])
2138 return true;
2139 }
2140 return false;
2141}
2142
2143// Compute the register pressure contribution by this instruction by count up
2144// for uses that are not live and down for defs. Only count register classes
2145// that are already under high pressure. As a side effect, compute the number of
2146// uses of registers that are already live.
2147//
2148// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
2149// so could probably be factored.
2150int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
2151 LiveUses = 0;
2152 int PDiff = 0;
2153 for (const SDep &Pred : SU->Preds) {
2154 if (Pred.isCtrl())
2155 continue;
2156 SUnit *PredSU = Pred.getSUnit();
2157 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2158 // to cover the number of registers defined (they are all live).
2159 if (PredSU->NumRegDefsLeft == 0) {
2160 if (PredSU->getNode()->isMachineOpcode())
2161 ++LiveUses;
2162 continue;
2163 }
2164 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2165 RegDefPos.IsValid(); RegDefPos.Advance()) {
2166 MVT VT = RegDefPos.GetValue();
2167 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2168 if (RegPressure[RCId] >= RegLimit[RCId])
2169 ++PDiff;
2170 }
2171 }
2172 const SDNode *N = SU->getNode();
2173
2174 if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2175 return PDiff;
2176
2177 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2178 for (unsigned i = 0; i != NumDefs; ++i) {
2179 MVT VT = N->getSimpleValueType(i);
2180 if (!N->hasAnyUseOfValue(i))
2181 continue;
2182 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2183 if (RegPressure[RCId] >= RegLimit[RCId])
2184 --PDiff;
2185 }
2186 return PDiff;
2187}
2188
2189void RegReductionPQBase::scheduledNode(SUnit *SU) {
2190 if (!TracksRegPressure)
2191 return;
2192
2193 if (!SU->getNode())
2194 return;
2195
2196 for (const SDep &Pred : SU->Preds) {
2197 if (Pred.isCtrl())
2198 continue;
2199 SUnit *PredSU = Pred.getSUnit();
2200 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2201 // to cover the number of registers defined (they are all live).
2202 if (PredSU->NumRegDefsLeft == 0) {
2203 continue;
2204 }
2205 // FIXME: The ScheduleDAG currently loses information about which of a
2206 // node's values is consumed by each dependence. Consequently, if the node
2207 // defines multiple register classes, we don't know which to pressurize
2208 // here. Instead the following loop consumes the register defs in an
2209 // arbitrary order. At least it handles the common case of clustered loads
2210 // to the same class. For precise liveness, each SDep needs to indicate the
2211 // result number. But that tightly couples the ScheduleDAG with the
2212 // SelectionDAG making updates tricky. A simpler hack would be to attach a
2213 // value type or register class to SDep.
2214 //
2215 // The most important aspect of register tracking is balancing the increase
2216 // here with the reduction further below. Note that this SU may use multiple
2217 // defs in PredSU. The can't be determined here, but we've already
2218 // compensated by reducing NumRegDefsLeft in PredSU during
2219 // ScheduleDAGSDNodes::AddSchedEdges.
2220 --PredSU->NumRegDefsLeft;
2221 unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2222 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2223 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2224 if (SkipRegDefs)
2225 continue;
2226
2227 unsigned RCId, Cost;
2228 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2229 RegPressure[RCId] += Cost;
2230 break;
2231 }
2232 }
2233
2234 // We should have this assert, but there may be dead SDNodes that never
2235 // materialize as SUnits, so they don't appear to generate liveness.
2236 //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2237 int SkipRegDefs = (int)SU->NumRegDefsLeft;
2238 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2239 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2240 if (SkipRegDefs > 0)
2241 continue;
2242 unsigned RCId, Cost;
2243 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2244 if (RegPressure[RCId] < Cost) {
2245 // Register pressure tracking is imprecise. This can happen. But we try
2246 // hard not to let it happen because it likely results in poor scheduling.
2247 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " SU(" << SU->NodeNum
<< ") has too many regdefs\n"; } } while (false)
2248 << ") has too many regdefs\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " SU(" << SU->NodeNum
<< ") has too many regdefs\n"; } } while (false)
;
2249 RegPressure[RCId] = 0;
2250 }
2251 else {
2252 RegPressure[RCId] -= Cost;
2253 }
2254 }
2255 LLVM_DEBUG(dumpRegPressure())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dumpRegPressure(); } } while (false)
;
2256}
2257
2258void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2259 if (!TracksRegPressure)
2260 return;
2261
2262 const SDNode *N = SU->getNode();
2263 if (!N) return;
2264
2265 if (!N->isMachineOpcode()) {
2266 if (N->getOpcode() != ISD::CopyToReg)
2267 return;
2268 } else {
2269 unsigned Opc = N->getMachineOpcode();
2270 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2271 Opc == TargetOpcode::INSERT_SUBREG ||
2272 Opc == TargetOpcode::SUBREG_TO_REG ||
2273 Opc == TargetOpcode::REG_SEQUENCE ||
2274 Opc == TargetOpcode::IMPLICIT_DEF)
2275 return;
2276 }
2277
2278 for (const SDep &Pred : SU->Preds) {
2279 if (Pred.isCtrl())
2280 continue;
2281 SUnit *PredSU = Pred.getSUnit();
2282 // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2283 // counts data deps.
2284 if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2285 continue;
2286 const SDNode *PN = PredSU->getNode();
2287 if (!PN->isMachineOpcode()) {
2288 if (PN->getOpcode() == ISD::CopyFromReg) {
2289 MVT VT = PN->getSimpleValueType(0);
2290 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2291 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2292 }
2293 continue;
2294 }
2295 unsigned POpc = PN->getMachineOpcode();
2296 if (POpc == TargetOpcode::IMPLICIT_DEF)
2297 continue;
2298 if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2299 POpc == TargetOpcode::INSERT_SUBREG ||
2300 POpc == TargetOpcode::SUBREG_TO_REG) {
2301 MVT VT = PN->getSimpleValueType(0);
2302 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2303 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2304 continue;
2305 }
2306 if (POpc == TargetOpcode::REG_SEQUENCE) {
2307 unsigned DstRCIdx =
2308 cast<ConstantSDNode>(PN->getOperand(0))->getZExtValue();
2309 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
2310 unsigned RCId = RC->getID();
2311 // REG_SEQUENCE is untyped, so getRepRegClassCostFor could not be used
2312 // here. Instead use the same constant as in GetCostForDef.
2313 RegPressure[RCId] += RegSequenceCost;
2314 continue;
2315 }
2316 unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2317 for (unsigned i = 0; i != NumDefs; ++i) {
2318 MVT VT = PN->getSimpleValueType(i);
2319 if (!PN->hasAnyUseOfValue(i))
2320 continue;
2321 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2322 if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2323 // Register pressure tracking is imprecise. This can happen.
2324 RegPressure[RCId] = 0;
2325 else
2326 RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2327 }
2328 }
2329
2330 // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2331 // may transfer data dependencies to CopyToReg.
2332 if (SU->NumSuccs && N->isMachineOpcode()) {
2333 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2334 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2335 MVT VT = N->getSimpleValueType(i);
2336 if (VT == MVT::Glue || VT == MVT::Other)
2337 continue;
2338 if (!N->hasAnyUseOfValue(i))
2339 continue;
2340 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2341 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2342 }
2343 }
2344
2345 LLVM_DEBUG(dumpRegPressure())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dumpRegPressure(); } } while (false)
;
2346}
2347
2348//===----------------------------------------------------------------------===//
2349// Dynamic Node Priority for Register Pressure Reduction
2350//===----------------------------------------------------------------------===//
2351
2352/// closestSucc - Returns the scheduled cycle of the successor which is
2353/// closest to the current cycle.
2354static unsigned closestSucc(const SUnit *SU) {
2355 unsigned MaxHeight = 0;
2356 for (const SDep &Succ : SU->Succs) {
2357 if (Succ.isCtrl()) continue; // ignore chain succs
2358 unsigned Height = Succ.getSUnit()->getHeight();
2359 // If there are bunch of CopyToRegs stacked up, they should be considered
2360 // to be at the same position.
2361 if (Succ.getSUnit()->getNode() &&
2362 Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2363 Height = closestSucc(Succ.getSUnit())+1;
2364 if (Height > MaxHeight)
2365 MaxHeight = Height;
2366 }
2367 return MaxHeight;
2368}
2369
2370/// calcMaxScratches - Returns an cost estimate of the worse case requirement
2371/// for scratch registers, i.e. number of data dependencies.
2372static unsigned calcMaxScratches(const SUnit *SU) {
2373 unsigned Scratches = 0;
2374 for (const SDep &Pred : SU->Preds) {
2375 if (Pred.isCtrl()) continue; // ignore chain preds
2376 Scratches++;
2377 }
2378 return Scratches;
2379}
2380
2381/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2382/// CopyFromReg from a virtual register.
2383static bool hasOnlyLiveInOpers(const SUnit *SU) {
2384 bool RetVal = false;
2385 for (const SDep &Pred : SU->Preds) {
2386 if (Pred.isCtrl()) continue;
2387 const SUnit *PredSU = Pred.getSUnit();
2388 if (PredSU->getNode() &&
2389 PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2390 Register Reg =
2391 cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2392 if (Reg.isVirtual()) {
2393 RetVal = true;
2394 continue;
2395 }
2396 }
2397 return false;
2398 }
2399 return RetVal;
2400}
2401
2402/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2403/// CopyToReg to a virtual register. This SU def is probably a liveout and
2404/// it has no other use. It should be scheduled closer to the terminator.
2405static bool hasOnlyLiveOutUses(const SUnit *SU) {
2406 bool RetVal = false;
2407 for (const SDep &Succ : SU->Succs) {
2408 if (Succ.isCtrl()) continue;
2409 const SUnit *SuccSU = Succ.getSUnit();
2410 if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2411 Register Reg =
2412 cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2413 if (Reg.isVirtual()) {
2414 RetVal = true;
2415 continue;
2416 }
2417 }
2418 return false;
2419 }
2420 return RetVal;
2421}
2422
2423// Set isVRegCycle for a node with only live in opers and live out uses. Also
2424// set isVRegCycle for its CopyFromReg operands.
2425//
2426// This is only relevant for single-block loops, in which case the VRegCycle
2427// node is likely an induction variable in which the operand and target virtual
2428// registers should be coalesced (e.g. pre/post increment values). Setting the
2429// isVRegCycle flag helps the scheduler prioritize other uses of the same
2430// CopyFromReg so that this node becomes the virtual register "kill". This
2431// avoids interference between the values live in and out of the block and
2432// eliminates a copy inside the loop.
2433static void initVRegCycle(SUnit *SU) {
2434 if (DisableSchedVRegCycle)
2435 return;
2436
2437 if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2438 return;
2439
2440 LLVM_DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "VRegCycle: SU(" <<
SU->NodeNum << ")\n"; } } while (false)
;
2441
2442 SU->isVRegCycle = true;
2443
2444 for (const SDep &Pred : SU->Preds) {
2445 if (Pred.isCtrl()) continue;
2446 Pred.getSUnit()->isVRegCycle = true;
2447 }
2448}
2449
2450// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2451// CopyFromReg operands. We should no longer penalize other uses of this VReg.
2452static void resetVRegCycle(SUnit *SU) {
2453 if (!SU->isVRegCycle)
2454 return;
2455
2456 for (const SDep &Pred : SU->Preds) {
2457 if (Pred.isCtrl()) continue; // ignore chain preds
2458 SUnit *PredSU = Pred.getSUnit();
2459 if (PredSU->isVRegCycle) {
2460 assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&(static_cast <bool> (PredSU->getNode()->getOpcode
() == ISD::CopyFromReg && "VRegCycle def must be CopyFromReg"
) ? void (0) : __assert_fail ("PredSU->getNode()->getOpcode() == ISD::CopyFromReg && \"VRegCycle def must be CopyFromReg\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 2461
, __extension__ __PRETTY_FUNCTION__))
2461 "VRegCycle def must be CopyFromReg")(static_cast <bool> (PredSU->getNode()->getOpcode
() == ISD::CopyFromReg && "VRegCycle def must be CopyFromReg"
) ? void (0) : __assert_fail ("PredSU->getNode()->getOpcode() == ISD::CopyFromReg && \"VRegCycle def must be CopyFromReg\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 2461
, __extension__ __PRETTY_FUNCTION__))
;
2462 Pred.getSUnit()->isVRegCycle = false;
2463 }
2464 }
2465}
2466
2467// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2468// means a node that defines the VRegCycle has not been scheduled yet.
2469static bool hasVRegCycleUse(const SUnit *SU) {
2470 // If this SU also defines the VReg, don't hoist it as a "use".
2471 if (SU->isVRegCycle)
2472 return false;
2473
2474 for (const SDep &Pred : SU->Preds) {
2475 if (Pred.isCtrl()) continue; // ignore chain preds
2476 if (Pred.getSUnit()->isVRegCycle &&
2477 Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2478 LLVM_DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " VReg cycle use: SU (" <<
SU->NodeNum << ")\n"; } } while (false)
;
2479 return true;
2480 }
2481 }
2482 return false;
2483}
2484
2485// Check for either a dependence (latency) or resource (hazard) stall.
2486//
2487// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2488static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2489 if ((int)SPQ->getCurCycle() < Height) return true;
2490 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2491 != ScheduleHazardRecognizer::NoHazard)
2492 return true;
2493 return false;
2494}
2495
2496// Return -1 if left has higher priority, 1 if right has higher priority.
2497// Return 0 if latency-based priority is equivalent.
2498static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2499 RegReductionPQBase *SPQ) {
2500 // Scheduling an instruction that uses a VReg whose postincrement has not yet
2501 // been scheduled will induce a copy. Model this as an extra cycle of latency.
2502 int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2503 int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2504 int LHeight = (int)left->getHeight() + LPenalty;
2505 int RHeight = (int)right->getHeight() + RPenalty;
2506
2507 bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2508 BUHasStall(left, LHeight, SPQ);
2509 bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2510 BUHasStall(right, RHeight, SPQ);
2511
2512 // If scheduling one of the node will cause a pipeline stall, delay it.
2513 // If scheduling either one of the node will cause a pipeline stall, sort
2514 // them according to their height.
2515 if (LStall) {
2516 if (!RStall)
2517 return 1;
2518 if (LHeight != RHeight)
2519 return LHeight > RHeight ? 1 : -1;
2520 } else if (RStall)
2521 return -1;
2522
2523 // If either node is scheduling for latency, sort them by height/depth
2524 // and latency.
2525 if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2526 right->SchedulingPref == Sched::ILP)) {
2527 // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2528 // is enabled, grouping instructions by cycle, then its height is already
2529 // covered so only its depth matters. We also reach this point if both stall
2530 // but have the same height.
2531 if (!SPQ->getHazardRec()->isEnabled()) {
2532 if (LHeight != RHeight)
2533 return LHeight > RHeight ? 1 : -1;
2534 }
2535 int LDepth = left->getDepth() - LPenalty;
2536 int RDepth = right->getDepth() - RPenalty;
2537 if (LDepth != RDepth) {
2538 LLVM_DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Comparing latency of SU ("
<< left->NodeNum << ") depth " << LDepth
<< " vs SU (" << right->NodeNum << ") depth "
<< RDepth << "\n"; } } while (false)
2539 << ") depth " << LDepth << " vs SU (" << right->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Comparing latency of SU ("
<< left->NodeNum << ") depth " << LDepth
<< " vs SU (" << right->NodeNum << ") depth "
<< RDepth << "\n"; } } while (false)
2540 << ") depth " << RDepth << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Comparing latency of SU ("
<< left->NodeNum << ") depth " << LDepth
<< " vs SU (" << right->NodeNum << ") depth "
<< RDepth << "\n"; } } while (false)
;
2541 return LDepth < RDepth ? 1 : -1;
2542 }
2543 if (left->Latency != right->Latency)
2544 return left->Latency > right->Latency ? 1 : -1;
2545 }
2546 return 0;
2547}
2548
2549static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2550 // Schedule physical register definitions close to their use. This is
2551 // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2552 // long as shortening physreg live ranges is generally good, we can defer
2553 // creating a subtarget hook.
2554 if (!DisableSchedPhysRegJoin) {
2555 bool LHasPhysReg = left->hasPhysRegDefs;
2556 bool RHasPhysReg = right->hasPhysRegDefs;
2557 if (LHasPhysReg != RHasPhysReg) {
2558 #ifndef NDEBUG
2559 static const char *const PhysRegMsg[] = { " has no physreg",
2560 " defines a physreg" };
2561 #endif
2562 LLVM_DEBUG(dbgs() << " SU (" << left->NodeNum << ") "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " SU (" << left->
NodeNum << ") " << PhysRegMsg[LHasPhysReg] <<
" SU(" << right->NodeNum << ") " << PhysRegMsg
[RHasPhysReg] << "\n"; } } while (false)
2563 << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " SU (" << left->
NodeNum << ") " << PhysRegMsg[LHasPhysReg] <<
" SU(" << right->NodeNum << ") " << PhysRegMsg
[RHasPhysReg] << "\n"; } } while (false)
2564 << ") " << PhysRegMsg[RHasPhysReg] << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " SU (" << left->
NodeNum << ") " << PhysRegMsg[LHasPhysReg] <<
" SU(" << right->NodeNum << ") " << PhysRegMsg
[RHasPhysReg] << "\n"; } } while (false)
;
2565 return LHasPhysReg < RHasPhysReg;
2566 }
2567 }
2568
2569 // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2570 unsigned LPriority = SPQ->getNodePriority(left);
2571 unsigned RPriority = SPQ->getNodePriority(right);
2572
2573 // Be really careful about hoisting call operands above previous calls.
2574 // Only allows it if it would reduce register pressure.
2575 if (left->isCall && right->isCallOp) {
2576 unsigned RNumVals = right->getNode()->getNumValues();
2577 RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2578 }
2579 if (right->isCall && left->isCallOp) {
2580 unsigned LNumVals = left->getNode()->getNumValues();
2581 LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2582 }
2583
2584 if (LPriority != RPriority)
2585 return LPriority > RPriority;
2586
2587 // One or both of the nodes are calls and their sethi-ullman numbers are the
2588 // same, then keep source order.
2589 if (left->isCall || right->isCall) {
2590 unsigned LOrder = SPQ->getNodeOrdering(left);
2591 unsigned ROrder = SPQ->getNodeOrdering(right);
2592
2593 // Prefer an ordering where the lower the non-zero order number, the higher
2594 // the preference.
2595 if ((LOrder || ROrder) && LOrder != ROrder)
2596 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2597 }
2598
2599 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2600 // e.g.
2601 // t1 = op t2, c1
2602 // t3 = op t4, c2
2603 //
2604 // and the following instructions are both ready.
2605 // t2 = op c3
2606 // t4 = op c4
2607 //
2608 // Then schedule t2 = op first.
2609 // i.e.
2610 // t4 = op c4
2611 // t2 = op c3
2612 // t1 = op t2, c1
2613 // t3 = op t4, c2
2614 //
2615 // This creates more short live intervals.
2616 unsigned LDist = closestSucc(left);
2617 unsigned RDist = closestSucc(right);
2618 if (LDist != RDist)
2619 return LDist < RDist;
2620
2621 // How many registers becomes live when the node is scheduled.
2622 unsigned LScratch = calcMaxScratches(left);
2623 unsigned RScratch = calcMaxScratches(right);
2624 if (LScratch != RScratch)
2625 return LScratch > RScratch;
2626
2627 // Comparing latency against a call makes little sense unless the node
2628 // is register pressure-neutral.
2629 if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2630 return (left->NodeQueueId > right->NodeQueueId);
2631
2632 // Do not compare latencies when one or both of the nodes are calls.
2633 if (!DisableSchedCycles &&
2634 !(left->isCall || right->isCall)) {
2635 int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2636 if (result != 0)
2637 return result > 0;
2638 }
2639 else {
2640 if (left->getHeight() != right->getHeight())
2641 return left->getHeight() > right->getHeight();
2642
2643 if (left->getDepth() != right->getDepth())
2644 return left->getDepth() < right->getDepth();
2645 }
2646
2647 assert(left->NodeQueueId && right->NodeQueueId &&(static_cast <bool> (left->NodeQueueId && right
->NodeQueueId && "NodeQueueId cannot be zero") ? void
(0) : __assert_fail ("left->NodeQueueId && right->NodeQueueId && \"NodeQueueId cannot be zero\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 2648
, __extension__ __PRETTY_FUNCTION__))
2648 "NodeQueueId cannot be zero")(static_cast <bool> (left->NodeQueueId && right
->NodeQueueId && "NodeQueueId cannot be zero") ? void
(0) : __assert_fail ("left->NodeQueueId && right->NodeQueueId && \"NodeQueueId cannot be zero\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 2648
, __extension__ __PRETTY_FUNCTION__))
;
2649 return (left->NodeQueueId > right->NodeQueueId);
2650}
2651
2652// Bottom up
2653bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2654 if (int res = checkSpecialNodes(left, right))
2655 return res > 0;
2656
2657 return BURRSort(left, right, SPQ);
2658}
2659
2660// Source order, otherwise bottom up.
2661bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2662 if (int res = checkSpecialNodes(left, right))
2663 return res > 0;
2664
2665 unsigned LOrder = SPQ->getNodeOrdering(left);
2666 unsigned ROrder = SPQ->getNodeOrdering(right);
2667
2668 // Prefer an ordering where the lower the non-zero order number, the higher
2669 // the preference.
2670 if ((LOrder || ROrder) && LOrder != ROrder)
2671 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2672
2673 return BURRSort(left, right, SPQ);
2674}
2675
2676// If the time between now and when the instruction will be ready can cover
2677// the spill code, then avoid adding it to the ready queue. This gives long
2678// stalls highest priority and allows hoisting across calls. It should also
2679// speed up processing the available queue.
2680bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2681 static const unsigned ReadyDelay = 3;
2682
2683 if (SPQ->MayReduceRegPressure(SU)) return true;
2684
2685 if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2686
2687 if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2688 != ScheduleHazardRecognizer::NoHazard)
2689 return false;
2690
2691 return true;
2692}
2693
2694// Return true if right should be scheduled with higher priority than left.
2695bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2696 if (int res = checkSpecialNodes(left, right))
2697 return res > 0;
2698
2699 if (left->isCall || right->isCall)
2700 // No way to compute latency of calls.
2701 return BURRSort(left, right, SPQ);
2702
2703 bool LHigh = SPQ->HighRegPressure(left);
2704 bool RHigh = SPQ->HighRegPressure(right);
2705 // Avoid causing spills. If register pressure is high, schedule for
2706 // register pressure reduction.
2707 if (LHigh && !RHigh) {
2708 LLVM_DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " pressure SU(" <<
left->NodeNum << ") > SU(" << right->NodeNum
<< ")\n"; } } while (false)
2709 << right->NodeNum << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " pressure SU(" <<
left->NodeNum << ") > SU(" << right->NodeNum
<< ")\n"; } } while (false)
;
2710 return true;
2711 }
2712 else if (!LHigh && RHigh) {
2713 LLVM_DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " pressure SU(" <<
right->NodeNum << ") > SU(" << left->NodeNum
<< ")\n"; } } while (false)
2714 << left->NodeNum << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " pressure SU(" <<
right->NodeNum << ") > SU(" << left->NodeNum
<< ")\n"; } } while (false)
;
2715 return false;
2716 }
2717 if (!LHigh && !RHigh) {
2718 int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2719 if (result != 0)
2720 return result > 0;
2721 }
2722 return BURRSort(left, right, SPQ);
2723}
2724
2725// Schedule as many instructions in each cycle as possible. So don't make an
2726// instruction available unless it is ready in the current cycle.
2727bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2728 if (SU->getHeight() > CurCycle) return false;
2729
2730 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2731 != ScheduleHazardRecognizer::NoHazard)
2732 return false;
2733
2734 return true;
2735}
2736
2737static bool canEnableCoalescing(SUnit *SU) {
2738 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2739 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2740 // CopyToReg should be close to its uses to facilitate coalescing and
2741 // avoid spilling.
2742 return true;
2743
2744 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2745 Opc == TargetOpcode::SUBREG_TO_REG ||
2746 Opc == TargetOpcode::INSERT_SUBREG)
2747 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2748 // close to their uses to facilitate coalescing.
2749 return true;
2750
2751 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2752 // If SU does not have a register def, schedule it close to its uses
2753 // because it does not lengthen any live ranges.
2754 return true;
2755
2756 return false;
2757}
2758
2759// list-ilp is currently an experimental scheduler that allows various
2760// heuristics to be enabled prior to the normal register reduction logic.
2761bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2762 if (int res = checkSpecialNodes(left, right))
2763 return res > 0;
2764
2765 if (left->isCall || right->isCall)
2766 // No way to compute latency of calls.
2767 return BURRSort(left, right, SPQ);
2768
2769 unsigned LLiveUses = 0, RLiveUses = 0;
2770 int LPDiff = 0, RPDiff = 0;
2771 if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2772 LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2773 RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2774 }
2775 if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2776 LLVM_DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "RegPressureDiff SU(" <<
left->NodeNum << "): " << LPDiff << " != SU("
<< right->NodeNum << "): " << RPDiff <<
"\n"; } } while (false)
2777 << "): " << LPDiff << " != SU(" << right->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "RegPressureDiff SU(" <<
left->NodeNum << "): " << LPDiff << " != SU("
<< right->NodeNum << "): " << RPDiff <<
"\n"; } } while (false)
2778 << "): " << RPDiff << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "RegPressureDiff SU(" <<
left->NodeNum << "): " << LPDiff << " != SU("
<< right->NodeNum << "): " << RPDiff <<
"\n"; } } while (false)
;
2779 return LPDiff > RPDiff;
2780 }
2781
2782 if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2783 bool LReduce = canEnableCoalescing(left);
2784 bool RReduce = canEnableCoalescing(right);
2785 if (LReduce && !RReduce) return false;
2786 if (RReduce && !LReduce) return true;
2787 }
2788
2789 if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2790 LLVM_DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUsesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Live uses SU(" << left
->NodeNum << "): " << LLiveUses << " != SU("
<< right->NodeNum << "): " << RLiveUses
<< "\n"; } } while (false)
2791 << " != SU(" << right->NodeNum << "): " << RLiveUsesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Live uses SU(" << left
->NodeNum << "): " << LLiveUses << " != SU("
<< right->NodeNum << "): " << RLiveUses
<< "\n"; } } while (false)
2792 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Live uses SU(" << left
->NodeNum << "): " << LLiveUses << " != SU("
<< right->NodeNum << "): " << RLiveUses
<< "\n"; } } while (false)
;
2793 return LLiveUses < RLiveUses;
2794 }
2795
2796 if (!DisableSchedStalls) {
2797 bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2798 bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2799 if (LStall != RStall)
2800 return left->getHeight() > right->getHeight();
2801 }
2802
2803 if (!DisableSchedCriticalPath) {
2804 int spread = (int)left->getDepth() - (int)right->getDepth();
2805 if (std::abs(spread) > MaxReorderWindow) {
2806 LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Depth of SU(" << left
->NodeNum << "): " << left->getDepth() <<
" != SU(" << right->NodeNum << "): " <<
right->getDepth() << "\n"; } } while (false)
2807 << left->getDepth() << " != SU(" << right->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Depth of SU(" << left
->NodeNum << "): " << left->getDepth() <<
" != SU(" << right->NodeNum << "): " <<
right->getDepth() << "\n"; } } while (false)
2808 << "): " << right->getDepth() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << "Depth of SU(" << left
->NodeNum << "): " << left->getDepth() <<
" != SU(" << right->NodeNum << "): " <<
right->getDepth() << "\n"; } } while (false)
;
2809 return left->getDepth() < right->getDepth();
2810 }
2811 }
2812
2813 if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2814 int spread = (int)left->getHeight() - (int)right->getHeight();
2815 if (std::abs(spread) > MaxReorderWindow)
2816 return left->getHeight() > right->getHeight();
2817 }
2818
2819 return BURRSort(left, right, SPQ);
2820}
2821
2822void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2823 SUnits = &sunits;
2824 // Add pseudo dependency edges for two-address nodes.
2825 if (!Disable2AddrHack)
2826 AddPseudoTwoAddrDeps();
2827 // Reroute edges to nodes with multiple uses.
2828 if (!TracksRegPressure && !SrcOrder)
2829 PrescheduleNodesWithMultipleUses();
2830 // Calculate node priorities.
2831 CalculateSethiUllmanNumbers();
2832
2833 // For single block loops, mark nodes that look like canonical IV increments.
2834 if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB))
2835 for (SUnit &SU : sunits)
2836 initVRegCycle(&SU);
2837}
2838
2839//===----------------------------------------------------------------------===//
2840// Preschedule for Register Pressure
2841//===----------------------------------------------------------------------===//
2842
2843bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2844 if (SU->isTwoAddress) {
2845 unsigned Opc = SU->getNode()->getMachineOpcode();
2846 const MCInstrDesc &MCID = TII->get(Opc);
2847 unsigned NumRes = MCID.getNumDefs();
2848 unsigned NumOps = MCID.getNumOperands() - NumRes;
2849 for (unsigned i = 0; i != NumOps; ++i) {
2850 if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2851 SDNode *DU = SU->getNode()->getOperand(i).getNode();
2852 if (DU->getNodeId() != -1 &&
2853 Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2854 return true;
2855 }
2856 }
2857 }
2858 return false;
2859}
2860
2861/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2862/// successor's explicit physregs whose definition can reach DepSU.
2863/// i.e. DepSU should not be scheduled above SU.
2864static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2865 ScheduleDAGRRList *scheduleDAG,
2866 const TargetInstrInfo *TII,
2867 const TargetRegisterInfo *TRI) {
2868 ArrayRef<MCPhysReg> ImpDefs =
2869 TII->get(SU->getNode()->getMachineOpcode()).implicit_defs();
2870 const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2871 if (ImpDefs.empty() && !RegMask)
2872 return false;
2873
2874 for (const SDep &Succ : SU->Succs) {
2875 SUnit *SuccSU = Succ.getSUnit();
2876 for (const SDep &SuccPred : SuccSU->Preds) {
2877 if (!SuccPred.isAssignedRegDep())
2878 continue;
2879
2880 if (RegMask &&
2881 MachineOperand::clobbersPhysReg(RegMask, SuccPred.getReg()) &&
2882 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2883 return true;
2884
2885 for (MCPhysReg ImpDef : ImpDefs) {
2886 // Return true if SU clobbers this physical register use and the
2887 // definition of the register reaches from DepSU. IsReachable queries
2888 // a topological forward sort of the DAG (following the successors).
2889 if (TRI->regsOverlap(ImpDef, SuccPred.getReg()) &&
2890 scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2891 return true;
2892 }
2893 }
2894 }
2895 return false;
2896}
2897
2898/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2899/// physical register defs.
2900static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2901 const TargetInstrInfo *TII,
2902 const TargetRegisterInfo *TRI) {
2903 SDNode *N = SuccSU->getNode();
2904 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2905 ArrayRef<MCPhysReg> ImpDefs = TII->get(N->getMachineOpcode()).implicit_defs();
2906 assert(!ImpDefs.empty() && "Caller should check hasPhysRegDefs")(static_cast <bool> (!ImpDefs.empty() && "Caller should check hasPhysRegDefs"
) ? void (0) : __assert_fail ("!ImpDefs.empty() && \"Caller should check hasPhysRegDefs\""
, "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp", 2906
, __extension__ __PRETTY_FUNCTION__))
;
2907 for (const SDNode *SUNode = SU->getNode(); SUNode;
2908 SUNode = SUNode->getGluedNode()) {
2909 if (!SUNode->isMachineOpcode())
2910 continue;
2911 ArrayRef<MCPhysReg> SUImpDefs =
2912 TII->get(SUNode->getMachineOpcode()).implicit_defs();
2913 const uint32_t *SURegMask = getNodeRegMask(SUNode);
2914 if (SUImpDefs.empty() && !SURegMask)
2915 continue;
2916 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2917 MVT VT = N->getSimpleValueType(i);
2918 if (VT == MVT::Glue || VT == MVT::Other)
2919 continue;
2920 if (!N->hasAnyUseOfValue(i))
2921 continue;
2922 MCPhysReg Reg = ImpDefs[i - NumDefs];
2923 if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2924 return true;
2925 for (MCPhysReg SUReg : SUImpDefs) {
2926 if (TRI->regsOverlap(Reg, SUReg))
2927 return true;
2928 }
2929 }
2930 }
2931 return false;
2932}
2933
2934/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2935/// are not handled well by the general register pressure reduction
2936/// heuristics. When presented with code like this:
2937///
2938/// N
2939/// / |
2940/// / |
2941/// U store
2942/// |
2943/// ...
2944///
2945/// the heuristics tend to push the store up, but since the
2946/// operand of the store has another use (U), this would increase
2947/// the length of that other use (the U->N edge).
2948///
2949/// This function transforms code like the above to route U's
2950/// dependence through the store when possible, like this:
2951///
2952/// N
2953/// ||
2954/// ||
2955/// store
2956/// |
2957/// U
2958/// |
2959/// ...
2960///
2961/// This results in the store being scheduled immediately
2962/// after N, which shortens the U->N live range, reducing
2963/// register pressure.
2964void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2965 // Visit all the nodes in topological order, working top-down.
2966 for (SUnit &SU : *SUnits) {
2967 // For now, only look at nodes with no data successors, such as stores.
2968 // These are especially important, due to the heuristics in
2969 // getNodePriority for nodes with no data successors.
2970 if (SU.NumSuccs != 0)
2971 continue;
2972 // For now, only look at nodes with exactly one data predecessor.
2973 if (SU.NumPreds != 1)
2974 continue;
2975 // Avoid prescheduling copies to virtual registers, which don't behave
2976 // like other nodes from the perspective of scheduling heuristics.
2977 if (SDNode *N = SU.getNode())
2978 if (N->getOpcode() == ISD::CopyToReg &&
2979 cast<RegisterSDNode>(N->getOperand(1))->getReg().isVirtual())
2980 continue;
2981
2982 SDNode *PredFrameSetup = nullptr;
2983 for (const SDep &Pred : SU.Preds)
2984 if (Pred.isCtrl() && Pred.getSUnit()) {
2985 // Find the predecessor which is not data dependence.
2986 SDNode *PredND = Pred.getSUnit()->getNode();
2987
2988 // If PredND is FrameSetup, we should not pre-scheduled the node,
2989 // or else, when bottom up scheduling, ADJCALLSTACKDOWN and
2990 // ADJCALLSTACKUP may hold CallResource too long and make other
2991 // calls can't be scheduled. If there's no other available node
2992 // to schedule, the schedular will try to rename the register by
2993 // creating copy to avoid the conflict which will fail because
2994 // CallResource is not a real physical register.
2995 if (PredND && PredND->isMachineOpcode() &&
2996 (PredND->getMachineOpcode() == TII->getCallFrameSetupOpcode())) {
2997 PredFrameSetup = PredND;
2998 break;
2999 }
3000 }
3001 // Skip the node has FrameSetup parent.
3002 if (PredFrameSetup != nullptr)
3003 continue;
3004
3005 // Locate the single data predecessor.
3006 SUnit *PredSU = nullptr;
3007 for (const SDep &Pred : SU.Preds)
3008 if (!Pred.isCtrl()) {
3009 PredSU = Pred.getSUnit();
3010 break;
3011 }
3012 assert(PredSU)(static_cast <bool> (PredSU) ? void (0) : __assert_fail
("PredSU", "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 3012, __extension__ __PRETTY_FUNCTION__))
;
3013
3014 // Don't rewrite edges that carry physregs, because that requires additional
3015 // support infrastructure.
3016 if (PredSU->hasPhysRegDefs)
3017 continue;
3018 // Short-circuit the case where SU is PredSU's only data successor.
3019 if (PredSU->NumSuccs == 1)
3020 continue;
3021 // Avoid prescheduling to copies from virtual registers, which don't behave
3022 // like other nodes from the perspective of scheduling heuristics.
3023 if (SDNode *N = SU.getNode())
3024 if (N->getOpcode() == ISD::CopyFromReg &&
3025 cast<RegisterSDNode>(N->getOperand(1))->getReg().isVirtual())
3026 continue;
3027
3028 // Perform checks on the successors of PredSU.
3029 for (const SDep &PredSucc : PredSU->Succs) {
3030 SUnit *PredSuccSU = PredSucc.getSUnit();
3031 if (PredSuccSU == &SU) continue;
3032 // If PredSU has another successor with no data successors, for
3033 // now don't attempt to choose either over the other.
3034 if (PredSuccSU->NumSuccs == 0)
3035 goto outer_loop_continue;
3036 // Don't break physical register dependencies.
3037 if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
3038 if (canClobberPhysRegDefs(PredSuccSU, &SU, TII, TRI))
3039 goto outer_loop_continue;
3040 // Don't introduce graph cycles.
3041 if (scheduleDAG->IsReachable(&SU, PredSuccSU))
3042 goto outer_loop_continue;
3043 }
3044
3045 // Ok, the transformation is safe and the heuristics suggest it is
3046 // profitable. Update the graph.
3047 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Prescheduling SU #" <<
SU.NodeNum << " next to PredSU #" << PredSU->
NodeNum << " to guide scheduling in the presence of multiple uses\n"
; } } while (false)
3048 dbgs() << " Prescheduling SU #" << SU.NodeNum << " next to PredSU #"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Prescheduling SU #" <<
SU.NodeNum << " next to PredSU #" << PredSU->
NodeNum << " to guide scheduling in the presence of multiple uses\n"
; } } while (false)
3049 << PredSU->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Prescheduling SU #" <<
SU.NodeNum << " next to PredSU #" << PredSU->
NodeNum << " to guide scheduling in the presence of multiple uses\n"
; } } while (false)
3050 << " to guide scheduling in the presence of multiple uses\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Prescheduling SU #" <<
SU.NodeNum << " next to PredSU #" << PredSU->
NodeNum << " to guide scheduling in the presence of multiple uses\n"
; } } while (false)
;
3051 for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
3052 SDep Edge = PredSU->Succs[i];
3053 assert(!Edge.isAssignedRegDep())(static_cast <bool> (!Edge.isAssignedRegDep()) ? void (
0) : __assert_fail ("!Edge.isAssignedRegDep()", "llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp"
, 3053, __extension__ __PRETTY_FUNCTION__))
;
3054 SUnit *SuccSU = Edge.getSUnit();
3055 if (SuccSU != &SU) {
3056 Edge.setSUnit(PredSU);
3057 scheduleDAG->RemovePred(SuccSU, Edge);
3058 scheduleDAG->AddPredQueued(&SU, Edge);
3059 Edge.setSUnit(&SU);
3060 scheduleDAG->AddPredQueued(SuccSU, Edge);
3061 --i;
3062 }
3063 }
3064 outer_loop_continue:;
3065 }
3066}
3067
3068/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
3069/// it as a def&use operand. Add a pseudo control edge from it to the other
3070/// node (if it won't create a cycle) so the two-address one will be scheduled
3071/// first (lower in the schedule). If both nodes are two-address, favor the
3072/// one that has a CopyToReg use (more likely to be a loop induction update).
3073/// If both are two-address, but one is commutable while the other is not
3074/// commutable, favor the one that's not commutable.
3075void RegReductionPQBase::AddPseudoTwoAddrDeps() {
3076 for (SUnit &SU : *SUnits) {
3077 if (!SU.isTwoAddress)
3078 continue;
3079
3080 SDNode *Node = SU.getNode();
3081 if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode())
3082 continue;
3083
3084 bool isLiveOut = hasOnlyLiveOutUses(&SU);
3085 unsigned Opc = Node->getMachineOpcode();
3086 const MCInstrDesc &MCID = TII->get(Opc);
3087 unsigned NumRes = MCID.getNumDefs();
3088 unsigned NumOps = MCID.getNumOperands() - NumRes;
3089 for (unsigned j = 0; j != NumOps; ++j) {
3090 if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
3091 continue;
3092 SDNode *DU = SU.getNode()->getOperand(j).getNode();
3093 if (DU->getNodeId() == -1)
3094 continue;
3095 const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
3096 if (!DUSU)
3097 continue;
3098 for (const SDep &Succ : DUSU->Succs) {
3099 if (Succ.isCtrl())
3100 continue;
3101 SUnit *SuccSU = Succ.getSUnit();
3102 if (SuccSU == &SU)
3103 continue;
3104 // Be conservative. Ignore if nodes aren't at roughly the same
3105 // depth and height.
3106 if (SuccSU->getHeight() < SU.getHeight() &&
3107 (SU.getHeight() - SuccSU->getHeight()) > 1)
3108 continue;
3109 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
3110 // constrains whatever is using the copy, instead of the copy
3111 // itself. In the case that the copy is coalesced, this
3112 // preserves the intent of the pseudo two-address heurietics.
3113 while (SuccSU->Succs.size() == 1 &&
3114 SuccSU->getNode()->isMachineOpcode() &&
3115 SuccSU->getNode()->getMachineOpcode() ==
3116 TargetOpcode::COPY_TO_REGCLASS)
3117 SuccSU = SuccSU->Succs.front().getSUnit();
3118 // Don't constrain non-instruction nodes.
3119 if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
3120 continue;
3121 // Don't constrain nodes with physical register defs if the
3122 // predecessor can clobber them.
3123 if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) {
3124 if (canClobberPhysRegDefs(SuccSU, &SU, TII, TRI))
3125 continue;
3126 }
3127 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
3128 // these may be coalesced away. We want them close to their uses.
3129 unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
3130 if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
3131 SuccOpc == TargetOpcode::INSERT_SUBREG ||
3132 SuccOpc == TargetOpcode::SUBREG_TO_REG)
3133 continue;
3134 if (!canClobberReachingPhysRegUse(SuccSU, &SU, scheduleDAG, TII, TRI) &&
3135 (!canClobber(SuccSU, DUSU) ||
3136 (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
3137 (!SU.isCommutable && SuccSU->isCommutable)) &&
3138 !scheduleDAG->IsReachable(SuccSU, &SU)) {
3139 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding a pseudo-two-addr edge from SU #"
<< SU.NodeNum << " to SU #" << SuccSU->
NodeNum << "\n"; } } while (false)
3140 << " Adding a pseudo-two-addr edge from SU #"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding a pseudo-two-addr edge from SU #"
<< SU.NodeNum << " to SU #" << SuccSU->
NodeNum << "\n"; } } while (false)
3141 << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pre-RA-sched")) { dbgs() << " Adding a pseudo-two-addr edge from SU #"
<< SU.NodeNum << " to SU #" << SuccSU->
NodeNum << "\n"; } } while (false)
;
3142 scheduleDAG->AddPredQueued(&SU, SDep(SuccSU, SDep::Artificial));
3143 }
3144 }
3145 }
3146 }
3147}
3148
3149//===----------------------------------------------------------------------===//
3150// Public Constructor Functions
3151//===----------------------------------------------------------------------===//
3152
3153ScheduleDAGSDNodes *
3154llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
3155 CodeGenOpt::Level OptLevel) {
3156 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3157 const TargetInstrInfo *TII = STI.getInstrInfo();
3158 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3159
3160 BURegReductionPriorityQueue *PQ =
3161 new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
3162 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3163 PQ->setScheduleDAG(SD);
3164 return SD;
3165}
3166
3167ScheduleDAGSDNodes *
3168llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
3169 CodeGenOpt::Level OptLevel) {
3170 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3171 const TargetInstrInfo *TII = STI.getInstrInfo();
3172 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3173
3174 SrcRegReductionPriorityQueue *PQ =
3175 new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
3176 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3177 PQ->setScheduleDAG(SD);
3178 return SD;
3179}
3180
3181ScheduleDAGSDNodes *
3182llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
3183 CodeGenOpt::Level OptLevel) {
3184 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3185 const TargetInstrInfo *TII = STI.getInstrInfo();
3186 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3187 const TargetLowering *TLI = IS->TLI;
3188
3189 HybridBURRPriorityQueue *PQ =
3190 new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3191
3192 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3193 PQ->setScheduleDAG(SD);
3194 return SD;
3195}
3196
3197ScheduleDAGSDNodes *
3198llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3199 CodeGenOpt::Level OptLevel) {
3200 const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3201 const TargetInstrInfo *TII = STI.getInstrInfo();
3202 const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3203 const TargetLowering *TLI = IS->TLI;
3204
3205 ILPBURRPriorityQueue *PQ =
3206 new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3207 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3208 PQ->setScheduleDAG(SD);
3209 return SD;
3210}