File: | build/source/llvm/include/llvm/CodeGen/SelectionDAGNodes.h |
Warning: | line 1138, column 10 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This implements routines for translating from LLVM IR into SelectionDAG IR. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "SelectionDAGBuilder.h" |
14 | #include "SDNodeDbgValue.h" |
15 | #include "llvm/ADT/APFloat.h" |
16 | #include "llvm/ADT/APInt.h" |
17 | #include "llvm/ADT/BitVector.h" |
18 | #include "llvm/ADT/STLExtras.h" |
19 | #include "llvm/ADT/SmallPtrSet.h" |
20 | #include "llvm/ADT/SmallSet.h" |
21 | #include "llvm/ADT/StringRef.h" |
22 | #include "llvm/ADT/Twine.h" |
23 | #include "llvm/Analysis/AliasAnalysis.h" |
24 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
25 | #include "llvm/Analysis/ConstantFolding.h" |
26 | #include "llvm/Analysis/Loads.h" |
27 | #include "llvm/Analysis/MemoryLocation.h" |
28 | #include "llvm/Analysis/TargetLibraryInfo.h" |
29 | #include "llvm/Analysis/ValueTracking.h" |
30 | #include "llvm/Analysis/VectorUtils.h" |
31 | #include "llvm/CodeGen/Analysis.h" |
32 | #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" |
33 | #include "llvm/CodeGen/CodeGenCommonISel.h" |
34 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
35 | #include "llvm/CodeGen/GCMetadata.h" |
36 | #include "llvm/CodeGen/MachineBasicBlock.h" |
37 | #include "llvm/CodeGen/MachineFrameInfo.h" |
38 | #include "llvm/CodeGen/MachineFunction.h" |
39 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
40 | #include "llvm/CodeGen/MachineInstrBundleIterator.h" |
41 | #include "llvm/CodeGen/MachineMemOperand.h" |
42 | #include "llvm/CodeGen/MachineModuleInfo.h" |
43 | #include "llvm/CodeGen/MachineOperand.h" |
44 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
45 | #include "llvm/CodeGen/RuntimeLibcalls.h" |
46 | #include "llvm/CodeGen/SelectionDAG.h" |
47 | #include "llvm/CodeGen/SelectionDAGTargetInfo.h" |
48 | #include "llvm/CodeGen/StackMaps.h" |
49 | #include "llvm/CodeGen/SwiftErrorValueTracking.h" |
50 | #include "llvm/CodeGen/TargetFrameLowering.h" |
51 | #include "llvm/CodeGen/TargetInstrInfo.h" |
52 | #include "llvm/CodeGen/TargetOpcodes.h" |
53 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
54 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
55 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
56 | #include "llvm/IR/Argument.h" |
57 | #include "llvm/IR/Attributes.h" |
58 | #include "llvm/IR/BasicBlock.h" |
59 | #include "llvm/IR/CFG.h" |
60 | #include "llvm/IR/CallingConv.h" |
61 | #include "llvm/IR/Constant.h" |
62 | #include "llvm/IR/ConstantRange.h" |
63 | #include "llvm/IR/Constants.h" |
64 | #include "llvm/IR/DataLayout.h" |
65 | #include "llvm/IR/DebugInfo.h" |
66 | #include "llvm/IR/DebugInfoMetadata.h" |
67 | #include "llvm/IR/DerivedTypes.h" |
68 | #include "llvm/IR/DiagnosticInfo.h" |
69 | #include "llvm/IR/EHPersonalities.h" |
70 | #include "llvm/IR/Function.h" |
71 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
72 | #include "llvm/IR/InlineAsm.h" |
73 | #include "llvm/IR/InstrTypes.h" |
74 | #include "llvm/IR/Instructions.h" |
75 | #include "llvm/IR/IntrinsicInst.h" |
76 | #include "llvm/IR/Intrinsics.h" |
77 | #include "llvm/IR/IntrinsicsAArch64.h" |
78 | #include "llvm/IR/IntrinsicsWebAssembly.h" |
79 | #include "llvm/IR/LLVMContext.h" |
80 | #include "llvm/IR/Metadata.h" |
81 | #include "llvm/IR/Module.h" |
82 | #include "llvm/IR/Operator.h" |
83 | #include "llvm/IR/PatternMatch.h" |
84 | #include "llvm/IR/Statepoint.h" |
85 | #include "llvm/IR/Type.h" |
86 | #include "llvm/IR/User.h" |
87 | #include "llvm/IR/Value.h" |
88 | #include "llvm/MC/MCContext.h" |
89 | #include "llvm/Support/AtomicOrdering.h" |
90 | #include "llvm/Support/Casting.h" |
91 | #include "llvm/Support/CommandLine.h" |
92 | #include "llvm/Support/Compiler.h" |
93 | #include "llvm/Support/Debug.h" |
94 | #include "llvm/Support/MathExtras.h" |
95 | #include "llvm/Support/raw_ostream.h" |
96 | #include "llvm/Target/TargetIntrinsicInfo.h" |
97 | #include "llvm/Target/TargetMachine.h" |
98 | #include "llvm/Target/TargetOptions.h" |
99 | #include "llvm/TargetParser/Triple.h" |
100 | #include "llvm/Transforms/Utils/Local.h" |
101 | #include <cstddef> |
102 | #include <iterator> |
103 | #include <limits> |
104 | #include <optional> |
105 | #include <tuple> |
106 | |
107 | using namespace llvm; |
108 | using namespace PatternMatch; |
109 | using namespace SwitchCG; |
110 | |
111 | #define DEBUG_TYPE"isel" "isel" |
112 | |
113 | /// LimitFloatPrecision - Generate low-precision inline sequences for |
114 | /// some float libcalls (6, 8 or 12 bits). |
115 | static unsigned LimitFloatPrecision; |
116 | |
117 | static cl::opt<bool> |
118 | InsertAssertAlign("insert-assert-align", cl::init(true), |
119 | cl::desc("Insert the experimental `assertalign` node."), |
120 | cl::ReallyHidden); |
121 | |
122 | static cl::opt<unsigned, true> |
123 | LimitFPPrecision("limit-float-precision", |
124 | cl::desc("Generate low-precision inline sequences " |
125 | "for some float libcalls"), |
126 | cl::location(LimitFloatPrecision), cl::Hidden, |
127 | cl::init(0)); |
128 | |
129 | static cl::opt<unsigned> SwitchPeelThreshold( |
130 | "switch-peel-threshold", cl::Hidden, cl::init(66), |
131 | cl::desc("Set the case probability threshold for peeling the case from a " |
132 | "switch statement. A value greater than 100 will void this " |
133 | "optimization")); |
134 | |
135 | // Limit the width of DAG chains. This is important in general to prevent |
136 | // DAG-based analysis from blowing up. For example, alias analysis and |
137 | // load clustering may not complete in reasonable time. It is difficult to |
138 | // recognize and avoid this situation within each individual analysis, and |
139 | // future analyses are likely to have the same behavior. Limiting DAG width is |
140 | // the safe approach and will be especially important with global DAGs. |
141 | // |
142 | // MaxParallelChains default is arbitrarily high to avoid affecting |
143 | // optimization, but could be lowered to improve compile time. Any ld-ld-st-st |
144 | // sequence over this should have been converted to llvm.memcpy by the |
145 | // frontend. It is easy to induce this behavior with .ll code such as: |
146 | // %buffer = alloca [4096 x i8] |
147 | // %data = load [4096 x i8]* %argPtr |
148 | // store [4096 x i8] %data, [4096 x i8]* %buffer |
149 | static const unsigned MaxParallelChains = 64; |
150 | |
151 | static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, |
152 | const SDValue *Parts, unsigned NumParts, |
153 | MVT PartVT, EVT ValueVT, const Value *V, |
154 | std::optional<CallingConv::ID> CC); |
155 | |
156 | /// getCopyFromParts - Create a value that contains the specified legal parts |
157 | /// combined into the value they represent. If the parts combine to a type |
158 | /// larger than ValueVT then AssertOp can be used to specify whether the extra |
159 | /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT |
160 | /// (ISD::AssertSext). |
161 | static SDValue |
162 | getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, |
163 | unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, |
164 | std::optional<CallingConv::ID> CC = std::nullopt, |
165 | std::optional<ISD::NodeType> AssertOp = std::nullopt) { |
166 | // Let the target assemble the parts if it wants to |
167 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
168 | if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, |
169 | PartVT, ValueVT, CC)) |
170 | return Val; |
171 | |
172 | if (ValueVT.isVector()) |
173 | return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, |
174 | CC); |
175 | |
176 | assert(NumParts > 0 && "No parts to assemble!")(static_cast <bool> (NumParts > 0 && "No parts to assemble!" ) ? void (0) : __assert_fail ("NumParts > 0 && \"No parts to assemble!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 176 , __extension__ __PRETTY_FUNCTION__)); |
177 | SDValue Val = Parts[0]; |
178 | |
179 | if (NumParts > 1) { |
180 | // Assemble the value from multiple parts. |
181 | if (ValueVT.isInteger()) { |
182 | unsigned PartBits = PartVT.getSizeInBits(); |
183 | unsigned ValueBits = ValueVT.getSizeInBits(); |
184 | |
185 | // Assemble the power of 2 part. |
186 | unsigned RoundParts = llvm::bit_floor(NumParts); |
187 | unsigned RoundBits = PartBits * RoundParts; |
188 | EVT RoundVT = RoundBits == ValueBits ? |
189 | ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); |
190 | SDValue Lo, Hi; |
191 | |
192 | EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); |
193 | |
194 | if (RoundParts > 2) { |
195 | Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, |
196 | PartVT, HalfVT, V); |
197 | Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, |
198 | RoundParts / 2, PartVT, HalfVT, V); |
199 | } else { |
200 | Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); |
201 | Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); |
202 | } |
203 | |
204 | if (DAG.getDataLayout().isBigEndian()) |
205 | std::swap(Lo, Hi); |
206 | |
207 | Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); |
208 | |
209 | if (RoundParts < NumParts) { |
210 | // Assemble the trailing non-power-of-2 part. |
211 | unsigned OddParts = NumParts - RoundParts; |
212 | EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); |
213 | Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, |
214 | OddVT, V, CC); |
215 | |
216 | // Combine the round and odd parts. |
217 | Lo = Val; |
218 | if (DAG.getDataLayout().isBigEndian()) |
219 | std::swap(Lo, Hi); |
220 | EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
221 | Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); |
222 | Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, |
223 | DAG.getConstant(Lo.getValueSizeInBits(), DL, |
224 | TLI.getShiftAmountTy( |
225 | TotalVT, DAG.getDataLayout()))); |
226 | Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); |
227 | Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); |
228 | } |
229 | } else if (PartVT.isFloatingPoint()) { |
230 | // FP split into multiple FP parts (for ppcf128) |
231 | assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&(static_cast <bool> (ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && "Unexpected split") ? void (0) : __assert_fail ("ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && \"Unexpected split\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 232 , __extension__ __PRETTY_FUNCTION__)) |
232 | "Unexpected split")(static_cast <bool> (ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && "Unexpected split") ? void (0) : __assert_fail ("ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && \"Unexpected split\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 232 , __extension__ __PRETTY_FUNCTION__)); |
233 | SDValue Lo, Hi; |
234 | Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); |
235 | Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); |
236 | if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) |
237 | std::swap(Lo, Hi); |
238 | Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); |
239 | } else { |
240 | // FP split into integer parts (soft fp) |
241 | assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&(static_cast <bool> (ValueVT.isFloatingPoint() && PartVT.isInteger() && !PartVT.isVector() && "Unexpected split" ) ? void (0) : __assert_fail ("ValueVT.isFloatingPoint() && PartVT.isInteger() && !PartVT.isVector() && \"Unexpected split\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 242 , __extension__ __PRETTY_FUNCTION__)) |
242 | !PartVT.isVector() && "Unexpected split")(static_cast <bool> (ValueVT.isFloatingPoint() && PartVT.isInteger() && !PartVT.isVector() && "Unexpected split" ) ? void (0) : __assert_fail ("ValueVT.isFloatingPoint() && PartVT.isInteger() && !PartVT.isVector() && \"Unexpected split\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 242 , __extension__ __PRETTY_FUNCTION__)); |
243 | EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); |
244 | Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); |
245 | } |
246 | } |
247 | |
248 | // There is now one part, held in Val. Correct it to match ValueVT. |
249 | // PartEVT is the type of the register class that holds the value. |
250 | // ValueVT is the type of the inline asm operation. |
251 | EVT PartEVT = Val.getValueType(); |
252 | |
253 | if (PartEVT == ValueVT) |
254 | return Val; |
255 | |
256 | if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && |
257 | ValueVT.bitsLT(PartEVT)) { |
258 | // For an FP value in an integer part, we need to truncate to the right |
259 | // width first. |
260 | PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); |
261 | Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); |
262 | } |
263 | |
264 | // Handle types that have the same size. |
265 | if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) |
266 | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
267 | |
268 | // Handle types with different sizes. |
269 | if (PartEVT.isInteger() && ValueVT.isInteger()) { |
270 | if (ValueVT.bitsLT(PartEVT)) { |
271 | // For a truncate, see if we have any information to |
272 | // indicate whether the truncated bits will always be |
273 | // zero or sign-extension. |
274 | if (AssertOp) |
275 | Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, |
276 | DAG.getValueType(ValueVT)); |
277 | return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); |
278 | } |
279 | return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); |
280 | } |
281 | |
282 | if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { |
283 | // FP_ROUND's are always exact here. |
284 | if (ValueVT.bitsLT(Val.getValueType())) |
285 | return DAG.getNode( |
286 | ISD::FP_ROUND, DL, ValueVT, Val, |
287 | DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); |
288 | |
289 | return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); |
290 | } |
291 | |
292 | // Handle MMX to a narrower integer type by bitcasting MMX to integer and |
293 | // then truncating. |
294 | if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && |
295 | ValueVT.bitsLT(PartEVT)) { |
296 | Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); |
297 | return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); |
298 | } |
299 | |
300 | report_fatal_error("Unknown mismatch in getCopyFromParts!"); |
301 | } |
302 | |
303 | static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, |
304 | const Twine &ErrMsg) { |
305 | const Instruction *I = dyn_cast_or_null<Instruction>(V); |
306 | if (!V) |
307 | return Ctx.emitError(ErrMsg); |
308 | |
309 | const char *AsmError = ", possible invalid constraint for vector type"; |
310 | if (const CallInst *CI = dyn_cast<CallInst>(I)) |
311 | if (CI->isInlineAsm()) |
312 | return Ctx.emitError(I, ErrMsg + AsmError); |
313 | |
314 | return Ctx.emitError(I, ErrMsg); |
315 | } |
316 | |
317 | /// getCopyFromPartsVector - Create a value that contains the specified legal |
318 | /// parts combined into the value they represent. If the parts combine to a |
319 | /// type larger than ValueVT then AssertOp can be used to specify whether the |
320 | /// extra bits are known to be zero (ISD::AssertZext) or sign extended from |
321 | /// ValueVT (ISD::AssertSext). |
322 | static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, |
323 | const SDValue *Parts, unsigned NumParts, |
324 | MVT PartVT, EVT ValueVT, const Value *V, |
325 | std::optional<CallingConv::ID> CallConv) { |
326 | assert(ValueVT.isVector() && "Not a vector value")(static_cast <bool> (ValueVT.isVector() && "Not a vector value" ) ? void (0) : __assert_fail ("ValueVT.isVector() && \"Not a vector value\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 326 , __extension__ __PRETTY_FUNCTION__)); |
327 | assert(NumParts > 0 && "No parts to assemble!")(static_cast <bool> (NumParts > 0 && "No parts to assemble!" ) ? void (0) : __assert_fail ("NumParts > 0 && \"No parts to assemble!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 327 , __extension__ __PRETTY_FUNCTION__)); |
328 | const bool IsABIRegCopy = CallConv.has_value(); |
329 | |
330 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
331 | SDValue Val = Parts[0]; |
332 | |
333 | // Handle a multi-element vector. |
334 | if (NumParts > 1) { |
335 | EVT IntermediateVT; |
336 | MVT RegisterVT; |
337 | unsigned NumIntermediates; |
338 | unsigned NumRegs; |
339 | |
340 | if (IsABIRegCopy) { |
341 | NumRegs = TLI.getVectorTypeBreakdownForCallingConv( |
342 | *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, |
343 | NumIntermediates, RegisterVT); |
344 | } else { |
345 | NumRegs = |
346 | TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, |
347 | NumIntermediates, RegisterVT); |
348 | } |
349 | |
350 | assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!")(static_cast <bool> (NumRegs == NumParts && "Part count doesn't match vector breakdown!" ) ? void (0) : __assert_fail ("NumRegs == NumParts && \"Part count doesn't match vector breakdown!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 350 , __extension__ __PRETTY_FUNCTION__)); |
351 | NumParts = NumRegs; // Silence a compiler warning. |
352 | assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!")(static_cast <bool> (RegisterVT == PartVT && "Part type doesn't match vector breakdown!" ) ? void (0) : __assert_fail ("RegisterVT == PartVT && \"Part type doesn't match vector breakdown!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 352 , __extension__ __PRETTY_FUNCTION__)); |
353 | assert(RegisterVT.getSizeInBits() ==(static_cast <bool> (RegisterVT.getSizeInBits() == Parts [0].getSimpleValueType().getSizeInBits() && "Part type sizes don't match!" ) ? void (0) : __assert_fail ("RegisterVT.getSizeInBits() == Parts[0].getSimpleValueType().getSizeInBits() && \"Part type sizes don't match!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 355 , __extension__ __PRETTY_FUNCTION__)) |
354 | Parts[0].getSimpleValueType().getSizeInBits() &&(static_cast <bool> (RegisterVT.getSizeInBits() == Parts [0].getSimpleValueType().getSizeInBits() && "Part type sizes don't match!" ) ? void (0) : __assert_fail ("RegisterVT.getSizeInBits() == Parts[0].getSimpleValueType().getSizeInBits() && \"Part type sizes don't match!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 355 , __extension__ __PRETTY_FUNCTION__)) |
355 | "Part type sizes don't match!")(static_cast <bool> (RegisterVT.getSizeInBits() == Parts [0].getSimpleValueType().getSizeInBits() && "Part type sizes don't match!" ) ? void (0) : __assert_fail ("RegisterVT.getSizeInBits() == Parts[0].getSimpleValueType().getSizeInBits() && \"Part type sizes don't match!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 355 , __extension__ __PRETTY_FUNCTION__)); |
356 | |
357 | // Assemble the parts into intermediate operands. |
358 | SmallVector<SDValue, 8> Ops(NumIntermediates); |
359 | if (NumIntermediates == NumParts) { |
360 | // If the register was not expanded, truncate or copy the value, |
361 | // as appropriate. |
362 | for (unsigned i = 0; i != NumParts; ++i) |
363 | Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, |
364 | PartVT, IntermediateVT, V, CallConv); |
365 | } else if (NumParts > 0) { |
366 | // If the intermediate type was expanded, build the intermediate |
367 | // operands from the parts. |
368 | assert(NumParts % NumIntermediates == 0 &&(static_cast <bool> (NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!") ? void (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 369 , __extension__ __PRETTY_FUNCTION__)) |
369 | "Must expand into a divisible number of parts!")(static_cast <bool> (NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!") ? void (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 369 , __extension__ __PRETTY_FUNCTION__)); |
370 | unsigned Factor = NumParts / NumIntermediates; |
371 | for (unsigned i = 0; i != NumIntermediates; ++i) |
372 | Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, |
373 | PartVT, IntermediateVT, V, CallConv); |
374 | } |
375 | |
376 | // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the |
377 | // intermediate operands. |
378 | EVT BuiltVectorTy = |
379 | IntermediateVT.isVector() |
380 | ? EVT::getVectorVT( |
381 | *DAG.getContext(), IntermediateVT.getScalarType(), |
382 | IntermediateVT.getVectorElementCount() * NumParts) |
383 | : EVT::getVectorVT(*DAG.getContext(), |
384 | IntermediateVT.getScalarType(), |
385 | NumIntermediates); |
386 | Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS |
387 | : ISD::BUILD_VECTOR, |
388 | DL, BuiltVectorTy, Ops); |
389 | } |
390 | |
391 | // There is now one part, held in Val. Correct it to match ValueVT. |
392 | EVT PartEVT = Val.getValueType(); |
393 | |
394 | if (PartEVT == ValueVT) |
395 | return Val; |
396 | |
397 | if (PartEVT.isVector()) { |
398 | // Vector/Vector bitcast. |
399 | if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) |
400 | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
401 | |
402 | // If the parts vector has more elements than the value vector, then we |
403 | // have a vector widening case (e.g. <2 x float> -> <4 x float>). |
404 | // Extract the elements we want. |
405 | if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { |
406 | assert((PartEVT.getVectorElementCount().getKnownMinValue() >(static_cast <bool> ((PartEVT.getVectorElementCount().getKnownMinValue () > ValueVT.getVectorElementCount().getKnownMinValue()) && (PartEVT.getVectorElementCount().isScalable() == ValueVT.getVectorElementCount ().isScalable()) && "Cannot narrow, it would be a lossy transformation" ) ? void (0) : __assert_fail ("(PartEVT.getVectorElementCount().getKnownMinValue() > ValueVT.getVectorElementCount().getKnownMinValue()) && (PartEVT.getVectorElementCount().isScalable() == ValueVT.getVectorElementCount().isScalable()) && \"Cannot narrow, it would be a lossy transformation\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 410 , __extension__ __PRETTY_FUNCTION__)) |
407 | ValueVT.getVectorElementCount().getKnownMinValue()) &&(static_cast <bool> ((PartEVT.getVectorElementCount().getKnownMinValue () > ValueVT.getVectorElementCount().getKnownMinValue()) && (PartEVT.getVectorElementCount().isScalable() == ValueVT.getVectorElementCount ().isScalable()) && "Cannot narrow, it would be a lossy transformation" ) ? void (0) : __assert_fail ("(PartEVT.getVectorElementCount().getKnownMinValue() > ValueVT.getVectorElementCount().getKnownMinValue()) && (PartEVT.getVectorElementCount().isScalable() == ValueVT.getVectorElementCount().isScalable()) && \"Cannot narrow, it would be a lossy transformation\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 410 , __extension__ __PRETTY_FUNCTION__)) |
408 | (PartEVT.getVectorElementCount().isScalable() ==(static_cast <bool> ((PartEVT.getVectorElementCount().getKnownMinValue () > ValueVT.getVectorElementCount().getKnownMinValue()) && (PartEVT.getVectorElementCount().isScalable() == ValueVT.getVectorElementCount ().isScalable()) && "Cannot narrow, it would be a lossy transformation" ) ? void (0) : __assert_fail ("(PartEVT.getVectorElementCount().getKnownMinValue() > ValueVT.getVectorElementCount().getKnownMinValue()) && (PartEVT.getVectorElementCount().isScalable() == ValueVT.getVectorElementCount().isScalable()) && \"Cannot narrow, it would be a lossy transformation\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 410 , __extension__ __PRETTY_FUNCTION__)) |
409 | ValueVT.getVectorElementCount().isScalable()) &&(static_cast <bool> ((PartEVT.getVectorElementCount().getKnownMinValue () > ValueVT.getVectorElementCount().getKnownMinValue()) && (PartEVT.getVectorElementCount().isScalable() == ValueVT.getVectorElementCount ().isScalable()) && "Cannot narrow, it would be a lossy transformation" ) ? void (0) : __assert_fail ("(PartEVT.getVectorElementCount().getKnownMinValue() > ValueVT.getVectorElementCount().getKnownMinValue()) && (PartEVT.getVectorElementCount().isScalable() == ValueVT.getVectorElementCount().isScalable()) && \"Cannot narrow, it would be a lossy transformation\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 410 , __extension__ __PRETTY_FUNCTION__)) |
410 | "Cannot narrow, it would be a lossy transformation")(static_cast <bool> ((PartEVT.getVectorElementCount().getKnownMinValue () > ValueVT.getVectorElementCount().getKnownMinValue()) && (PartEVT.getVectorElementCount().isScalable() == ValueVT.getVectorElementCount ().isScalable()) && "Cannot narrow, it would be a lossy transformation" ) ? void (0) : __assert_fail ("(PartEVT.getVectorElementCount().getKnownMinValue() > ValueVT.getVectorElementCount().getKnownMinValue()) && (PartEVT.getVectorElementCount().isScalable() == ValueVT.getVectorElementCount().isScalable()) && \"Cannot narrow, it would be a lossy transformation\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 410 , __extension__ __PRETTY_FUNCTION__)); |
411 | PartEVT = |
412 | EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), |
413 | ValueVT.getVectorElementCount()); |
414 | Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, |
415 | DAG.getVectorIdxConstant(0, DL)); |
416 | if (PartEVT == ValueVT) |
417 | return Val; |
418 | if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) |
419 | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
420 | } |
421 | |
422 | // Promoted vector extract |
423 | return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); |
424 | } |
425 | |
426 | // Trivial bitcast if the types are the same size and the destination |
427 | // vector type is legal. |
428 | if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && |
429 | TLI.isTypeLegal(ValueVT)) |
430 | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
431 | |
432 | if (ValueVT.getVectorNumElements() != 1) { |
433 | // Certain ABIs require that vectors are passed as integers. For vectors |
434 | // are the same size, this is an obvious bitcast. |
435 | if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { |
436 | return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
437 | } else if (ValueVT.bitsLT(PartEVT)) { |
438 | const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); |
439 | EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); |
440 | // Drop the extra bits. |
441 | Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); |
442 | return DAG.getBitcast(ValueVT, Val); |
443 | } |
444 | |
445 | diagnosePossiblyInvalidConstraint( |
446 | *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); |
447 | return DAG.getUNDEF(ValueVT); |
448 | } |
449 | |
450 | // Handle cases such as i8 -> <1 x i1> |
451 | EVT ValueSVT = ValueVT.getVectorElementType(); |
452 | if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { |
453 | unsigned ValueSize = ValueSVT.getSizeInBits(); |
454 | if (ValueSize == PartEVT.getSizeInBits()) { |
455 | Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); |
456 | } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { |
457 | // It's possible a scalar floating point type gets softened to integer and |
458 | // then promoted to a larger integer. If PartEVT is the larger integer |
459 | // we need to truncate it and then bitcast to the FP type. |
460 | assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types")(static_cast <bool> (ValueSVT.bitsLT(PartEVT) && "Unexpected types") ? void (0) : __assert_fail ("ValueSVT.bitsLT(PartEVT) && \"Unexpected types\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 460 , __extension__ __PRETTY_FUNCTION__)); |
461 | EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); |
462 | Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); |
463 | Val = DAG.getBitcast(ValueSVT, Val); |
464 | } else { |
465 | Val = ValueVT.isFloatingPoint() |
466 | ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) |
467 | : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); |
468 | } |
469 | } |
470 | |
471 | return DAG.getBuildVector(ValueVT, DL, Val); |
472 | } |
473 | |
474 | static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, |
475 | SDValue Val, SDValue *Parts, unsigned NumParts, |
476 | MVT PartVT, const Value *V, |
477 | std::optional<CallingConv::ID> CallConv); |
478 | |
479 | /// getCopyToParts - Create a series of nodes that contain the specified value |
480 | /// split into legal parts. If the parts contain more bits than Val, then, for |
481 | /// integers, ExtendKind can be used to specify how to generate the extra bits. |
482 | static void |
483 | getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, |
484 | unsigned NumParts, MVT PartVT, const Value *V, |
485 | std::optional<CallingConv::ID> CallConv = std::nullopt, |
486 | ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { |
487 | // Let the target split the parts if it wants to |
488 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
489 | if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, |
490 | CallConv)) |
491 | return; |
492 | EVT ValueVT = Val.getValueType(); |
493 | |
494 | // Handle the vector case separately. |
495 | if (ValueVT.isVector()) |
496 | return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, |
497 | CallConv); |
498 | |
499 | unsigned OrigNumParts = NumParts; |
500 | assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&(static_cast <bool> (DAG.getTargetLoweringInfo().isTypeLegal (PartVT) && "Copying to an illegal type!") ? void (0) : __assert_fail ("DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && \"Copying to an illegal type!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 501 , __extension__ __PRETTY_FUNCTION__)) |
501 | "Copying to an illegal type!")(static_cast <bool> (DAG.getTargetLoweringInfo().isTypeLegal (PartVT) && "Copying to an illegal type!") ? void (0) : __assert_fail ("DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && \"Copying to an illegal type!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 501 , __extension__ __PRETTY_FUNCTION__)); |
502 | |
503 | if (NumParts == 0) |
504 | return; |
505 | |
506 | assert(!ValueVT.isVector() && "Vector case handled elsewhere")(static_cast <bool> (!ValueVT.isVector() && "Vector case handled elsewhere" ) ? void (0) : __assert_fail ("!ValueVT.isVector() && \"Vector case handled elsewhere\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 506 , __extension__ __PRETTY_FUNCTION__)); |
507 | EVT PartEVT = PartVT; |
508 | if (PartEVT == ValueVT) { |
509 | assert(NumParts == 1 && "No-op copy with multiple parts!")(static_cast <bool> (NumParts == 1 && "No-op copy with multiple parts!" ) ? void (0) : __assert_fail ("NumParts == 1 && \"No-op copy with multiple parts!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 509 , __extension__ __PRETTY_FUNCTION__)); |
510 | Parts[0] = Val; |
511 | return; |
512 | } |
513 | |
514 | unsigned PartBits = PartVT.getSizeInBits(); |
515 | if (NumParts * PartBits > ValueVT.getSizeInBits()) { |
516 | // If the parts cover more bits than the value has, promote the value. |
517 | if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { |
518 | assert(NumParts == 1 && "Do not know what to promote to!")(static_cast <bool> (NumParts == 1 && "Do not know what to promote to!" ) ? void (0) : __assert_fail ("NumParts == 1 && \"Do not know what to promote to!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 518 , __extension__ __PRETTY_FUNCTION__)); |
519 | Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); |
520 | } else { |
521 | if (ValueVT.isFloatingPoint()) { |
522 | // FP values need to be bitcast, then extended if they are being put |
523 | // into a larger container. |
524 | ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); |
525 | Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); |
526 | } |
527 | assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&(static_cast <bool> ((PartVT.isInteger() || PartVT == MVT ::x86mmx) && ValueVT.isInteger() && "Unknown mismatch!" ) ? void (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 529 , __extension__ __PRETTY_FUNCTION__)) |
528 | ValueVT.isInteger() &&(static_cast <bool> ((PartVT.isInteger() || PartVT == MVT ::x86mmx) && ValueVT.isInteger() && "Unknown mismatch!" ) ? void (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 529 , __extension__ __PRETTY_FUNCTION__)) |
529 | "Unknown mismatch!")(static_cast <bool> ((PartVT.isInteger() || PartVT == MVT ::x86mmx) && ValueVT.isInteger() && "Unknown mismatch!" ) ? void (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 529 , __extension__ __PRETTY_FUNCTION__)); |
530 | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
531 | Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); |
532 | if (PartVT == MVT::x86mmx) |
533 | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
534 | } |
535 | } else if (PartBits == ValueVT.getSizeInBits()) { |
536 | // Different types of the same size. |
537 | assert(NumParts == 1 && PartEVT != ValueVT)(static_cast <bool> (NumParts == 1 && PartEVT != ValueVT) ? void (0) : __assert_fail ("NumParts == 1 && PartEVT != ValueVT" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 537 , __extension__ __PRETTY_FUNCTION__)); |
538 | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
539 | } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { |
540 | // If the parts cover less bits than value has, truncate the value. |
541 | assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&(static_cast <bool> ((PartVT.isInteger() || PartVT == MVT ::x86mmx) && ValueVT.isInteger() && "Unknown mismatch!" ) ? void (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 543 , __extension__ __PRETTY_FUNCTION__)) |
542 | ValueVT.isInteger() &&(static_cast <bool> ((PartVT.isInteger() || PartVT == MVT ::x86mmx) && ValueVT.isInteger() && "Unknown mismatch!" ) ? void (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 543 , __extension__ __PRETTY_FUNCTION__)) |
543 | "Unknown mismatch!")(static_cast <bool> ((PartVT.isInteger() || PartVT == MVT ::x86mmx) && ValueVT.isInteger() && "Unknown mismatch!" ) ? void (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 543 , __extension__ __PRETTY_FUNCTION__)); |
544 | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
545 | Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); |
546 | if (PartVT == MVT::x86mmx) |
547 | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
548 | } |
549 | |
550 | // The value may have changed - recompute ValueVT. |
551 | ValueVT = Val.getValueType(); |
552 | assert(NumParts * PartBits == ValueVT.getSizeInBits() &&(static_cast <bool> (NumParts * PartBits == ValueVT.getSizeInBits () && "Failed to tile the value with PartVT!") ? void (0) : __assert_fail ("NumParts * PartBits == ValueVT.getSizeInBits() && \"Failed to tile the value with PartVT!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 553 , __extension__ __PRETTY_FUNCTION__)) |
553 | "Failed to tile the value with PartVT!")(static_cast <bool> (NumParts * PartBits == ValueVT.getSizeInBits () && "Failed to tile the value with PartVT!") ? void (0) : __assert_fail ("NumParts * PartBits == ValueVT.getSizeInBits() && \"Failed to tile the value with PartVT!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 553 , __extension__ __PRETTY_FUNCTION__)); |
554 | |
555 | if (NumParts == 1) { |
556 | if (PartEVT != ValueVT) { |
557 | diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, |
558 | "scalar-to-vector conversion failed"); |
559 | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
560 | } |
561 | |
562 | Parts[0] = Val; |
563 | return; |
564 | } |
565 | |
566 | // Expand the value into multiple parts. |
567 | if (NumParts & (NumParts - 1)) { |
568 | // The number of parts is not a power of 2. Split off and copy the tail. |
569 | assert(PartVT.isInteger() && ValueVT.isInteger() &&(static_cast <bool> (PartVT.isInteger() && ValueVT .isInteger() && "Do not know what to expand to!") ? void (0) : __assert_fail ("PartVT.isInteger() && ValueVT.isInteger() && \"Do not know what to expand to!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 570 , __extension__ __PRETTY_FUNCTION__)) |
570 | "Do not know what to expand to!")(static_cast <bool> (PartVT.isInteger() && ValueVT .isInteger() && "Do not know what to expand to!") ? void (0) : __assert_fail ("PartVT.isInteger() && ValueVT.isInteger() && \"Do not know what to expand to!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 570 , __extension__ __PRETTY_FUNCTION__)); |
571 | unsigned RoundParts = llvm::bit_floor(NumParts); |
572 | unsigned RoundBits = RoundParts * PartBits; |
573 | unsigned OddParts = NumParts - RoundParts; |
574 | SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, |
575 | DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); |
576 | |
577 | getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, |
578 | CallConv); |
579 | |
580 | if (DAG.getDataLayout().isBigEndian()) |
581 | // The odd parts were reversed by getCopyToParts - unreverse them. |
582 | std::reverse(Parts + RoundParts, Parts + NumParts); |
583 | |
584 | NumParts = RoundParts; |
585 | ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); |
586 | Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); |
587 | } |
588 | |
589 | // The number of parts is a power of 2. Repeatedly bisect the value using |
590 | // EXTRACT_ELEMENT. |
591 | Parts[0] = DAG.getNode(ISD::BITCAST, DL, |
592 | EVT::getIntegerVT(*DAG.getContext(), |
593 | ValueVT.getSizeInBits()), |
594 | Val); |
595 | |
596 | for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { |
597 | for (unsigned i = 0; i < NumParts; i += StepSize) { |
598 | unsigned ThisBits = StepSize * PartBits / 2; |
599 | EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); |
600 | SDValue &Part0 = Parts[i]; |
601 | SDValue &Part1 = Parts[i+StepSize/2]; |
602 | |
603 | Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, |
604 | ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); |
605 | Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, |
606 | ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); |
607 | |
608 | if (ThisBits == PartBits && ThisVT != PartVT) { |
609 | Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); |
610 | Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); |
611 | } |
612 | } |
613 | } |
614 | |
615 | if (DAG.getDataLayout().isBigEndian()) |
616 | std::reverse(Parts, Parts + OrigNumParts); |
617 | } |
618 | |
619 | static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, |
620 | const SDLoc &DL, EVT PartVT) { |
621 | if (!PartVT.isVector()) |
622 | return SDValue(); |
623 | |
624 | EVT ValueVT = Val.getValueType(); |
625 | ElementCount PartNumElts = PartVT.getVectorElementCount(); |
626 | ElementCount ValueNumElts = ValueVT.getVectorElementCount(); |
627 | |
628 | // We only support widening vectors with equivalent element types and |
629 | // fixed/scalable properties. If a target needs to widen a fixed-length type |
630 | // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. |
631 | if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || |
632 | PartNumElts.isScalable() != ValueNumElts.isScalable() || |
633 | PartVT.getVectorElementType() != ValueVT.getVectorElementType()) |
634 | return SDValue(); |
635 | |
636 | // Widening a scalable vector to another scalable vector is done by inserting |
637 | // the vector into a larger undef one. |
638 | if (PartNumElts.isScalable()) |
639 | return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), |
640 | Val, DAG.getVectorIdxConstant(0, DL)); |
641 | |
642 | EVT ElementVT = PartVT.getVectorElementType(); |
643 | // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in |
644 | // undef elements. |
645 | SmallVector<SDValue, 16> Ops; |
646 | DAG.ExtractVectorElements(Val, Ops); |
647 | SDValue EltUndef = DAG.getUNDEF(ElementVT); |
648 | Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); |
649 | |
650 | // FIXME: Use CONCAT for 2x -> 4x. |
651 | return DAG.getBuildVector(PartVT, DL, Ops); |
652 | } |
653 | |
654 | /// getCopyToPartsVector - Create a series of nodes that contain the specified |
655 | /// value split into legal parts. |
656 | static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, |
657 | SDValue Val, SDValue *Parts, unsigned NumParts, |
658 | MVT PartVT, const Value *V, |
659 | std::optional<CallingConv::ID> CallConv) { |
660 | EVT ValueVT = Val.getValueType(); |
661 | assert(ValueVT.isVector() && "Not a vector")(static_cast <bool> (ValueVT.isVector() && "Not a vector" ) ? void (0) : __assert_fail ("ValueVT.isVector() && \"Not a vector\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 661 , __extension__ __PRETTY_FUNCTION__)); |
662 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
663 | const bool IsABIRegCopy = CallConv.has_value(); |
664 | |
665 | if (NumParts == 1) { |
666 | EVT PartEVT = PartVT; |
667 | if (PartEVT == ValueVT) { |
668 | // Nothing to do. |
669 | } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { |
670 | // Bitconvert vector->vector case. |
671 | Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); |
672 | } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { |
673 | Val = Widened; |
674 | } else if (PartVT.isVector() && |
675 | PartEVT.getVectorElementType().bitsGE( |
676 | ValueVT.getVectorElementType()) && |
677 | PartEVT.getVectorElementCount() == |
678 | ValueVT.getVectorElementCount()) { |
679 | |
680 | // Promoted vector extract |
681 | Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); |
682 | } else if (PartEVT.isVector() && |
683 | PartEVT.getVectorElementType() != |
684 | ValueVT.getVectorElementType() && |
685 | TLI.getTypeAction(*DAG.getContext(), ValueVT) == |
686 | TargetLowering::TypeWidenVector) { |
687 | // Combination of widening and promotion. |
688 | EVT WidenVT = |
689 | EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), |
690 | PartVT.getVectorElementCount()); |
691 | SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); |
692 | Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); |
693 | } else { |
694 | // Don't extract an integer from a float vector. This can happen if the |
695 | // FP type gets softened to integer and then promoted. The promotion |
696 | // prevents it from being picked up by the earlier bitcast case. |
697 | if (ValueVT.getVectorElementCount().isScalar() && |
698 | (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { |
699 | Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, |
700 | DAG.getVectorIdxConstant(0, DL)); |
701 | } else { |
702 | uint64_t ValueSize = ValueVT.getFixedSizeInBits(); |
703 | assert(PartVT.getFixedSizeInBits() > ValueSize &&(static_cast <bool> (PartVT.getFixedSizeInBits() > ValueSize && "lossy conversion of vector to scalar type") ? void (0) : __assert_fail ("PartVT.getFixedSizeInBits() > ValueSize && \"lossy conversion of vector to scalar type\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 704 , __extension__ __PRETTY_FUNCTION__)) |
704 | "lossy conversion of vector to scalar type")(static_cast <bool> (PartVT.getFixedSizeInBits() > ValueSize && "lossy conversion of vector to scalar type") ? void (0) : __assert_fail ("PartVT.getFixedSizeInBits() > ValueSize && \"lossy conversion of vector to scalar type\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 704 , __extension__ __PRETTY_FUNCTION__)); |
705 | EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); |
706 | Val = DAG.getBitcast(IntermediateType, Val); |
707 | Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); |
708 | } |
709 | } |
710 | |
711 | assert(Val.getValueType() == PartVT && "Unexpected vector part value type")(static_cast <bool> (Val.getValueType() == PartVT && "Unexpected vector part value type") ? void (0) : __assert_fail ("Val.getValueType() == PartVT && \"Unexpected vector part value type\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 711 , __extension__ __PRETTY_FUNCTION__)); |
712 | Parts[0] = Val; |
713 | return; |
714 | } |
715 | |
716 | // Handle a multi-element vector. |
717 | EVT IntermediateVT; |
718 | MVT RegisterVT; |
719 | unsigned NumIntermediates; |
720 | unsigned NumRegs; |
721 | if (IsABIRegCopy) { |
722 | NumRegs = TLI.getVectorTypeBreakdownForCallingConv( |
723 | *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, |
724 | RegisterVT); |
725 | } else { |
726 | NumRegs = |
727 | TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, |
728 | NumIntermediates, RegisterVT); |
729 | } |
730 | |
731 | assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!")(static_cast <bool> (NumRegs == NumParts && "Part count doesn't match vector breakdown!" ) ? void (0) : __assert_fail ("NumRegs == NumParts && \"Part count doesn't match vector breakdown!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 731 , __extension__ __PRETTY_FUNCTION__)); |
732 | NumParts = NumRegs; // Silence a compiler warning. |
733 | assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!")(static_cast <bool> (RegisterVT == PartVT && "Part type doesn't match vector breakdown!" ) ? void (0) : __assert_fail ("RegisterVT == PartVT && \"Part type doesn't match vector breakdown!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 733 , __extension__ __PRETTY_FUNCTION__)); |
734 | |
735 | assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&(static_cast <bool> (IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && "Mixing scalable and fixed vectors when copying in parts" ) ? void (0) : __assert_fail ("IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && \"Mixing scalable and fixed vectors when copying in parts\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 736 , __extension__ __PRETTY_FUNCTION__)) |
736 | "Mixing scalable and fixed vectors when copying in parts")(static_cast <bool> (IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && "Mixing scalable and fixed vectors when copying in parts" ) ? void (0) : __assert_fail ("IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && \"Mixing scalable and fixed vectors when copying in parts\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 736 , __extension__ __PRETTY_FUNCTION__)); |
737 | |
738 | std::optional<ElementCount> DestEltCnt; |
739 | |
740 | if (IntermediateVT.isVector()) |
741 | DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; |
742 | else |
743 | DestEltCnt = ElementCount::getFixed(NumIntermediates); |
744 | |
745 | EVT BuiltVectorTy = EVT::getVectorVT( |
746 | *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); |
747 | |
748 | if (ValueVT == BuiltVectorTy) { |
749 | // Nothing to do. |
750 | } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { |
751 | // Bitconvert vector->vector case. |
752 | Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); |
753 | } else { |
754 | if (BuiltVectorTy.getVectorElementType().bitsGT( |
755 | ValueVT.getVectorElementType())) { |
756 | // Integer promotion. |
757 | ValueVT = EVT::getVectorVT(*DAG.getContext(), |
758 | BuiltVectorTy.getVectorElementType(), |
759 | ValueVT.getVectorElementCount()); |
760 | Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); |
761 | } |
762 | |
763 | if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { |
764 | Val = Widened; |
765 | } |
766 | } |
767 | |
768 | assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type")(static_cast <bool> (Val.getValueType() == BuiltVectorTy && "Unexpected vector value type") ? void (0) : __assert_fail ("Val.getValueType() == BuiltVectorTy && \"Unexpected vector value type\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 768 , __extension__ __PRETTY_FUNCTION__)); |
769 | |
770 | // Split the vector into intermediate operands. |
771 | SmallVector<SDValue, 8> Ops(NumIntermediates); |
772 | for (unsigned i = 0; i != NumIntermediates; ++i) { |
773 | if (IntermediateVT.isVector()) { |
774 | // This does something sensible for scalable vectors - see the |
775 | // definition of EXTRACT_SUBVECTOR for further details. |
776 | unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); |
777 | Ops[i] = |
778 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, |
779 | DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); |
780 | } else { |
781 | Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, |
782 | DAG.getVectorIdxConstant(i, DL)); |
783 | } |
784 | } |
785 | |
786 | // Split the intermediate operands into legal parts. |
787 | if (NumParts == NumIntermediates) { |
788 | // If the register was not expanded, promote or copy the value, |
789 | // as appropriate. |
790 | for (unsigned i = 0; i != NumParts; ++i) |
791 | getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); |
792 | } else if (NumParts > 0) { |
793 | // If the intermediate type was expanded, split each the value into |
794 | // legal parts. |
795 | assert(NumIntermediates != 0 && "division by zero")(static_cast <bool> (NumIntermediates != 0 && "division by zero" ) ? void (0) : __assert_fail ("NumIntermediates != 0 && \"division by zero\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 795 , __extension__ __PRETTY_FUNCTION__)); |
796 | assert(NumParts % NumIntermediates == 0 &&(static_cast <bool> (NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!") ? void (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 797 , __extension__ __PRETTY_FUNCTION__)) |
797 | "Must expand into a divisible number of parts!")(static_cast <bool> (NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!") ? void (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 797 , __extension__ __PRETTY_FUNCTION__)); |
798 | unsigned Factor = NumParts / NumIntermediates; |
799 | for (unsigned i = 0; i != NumIntermediates; ++i) |
800 | getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, |
801 | CallConv); |
802 | } |
803 | } |
804 | |
805 | RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, |
806 | EVT valuevt, std::optional<CallingConv::ID> CC) |
807 | : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), |
808 | RegCount(1, regs.size()), CallConv(CC) {} |
809 | |
810 | RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, |
811 | const DataLayout &DL, unsigned Reg, Type *Ty, |
812 | std::optional<CallingConv::ID> CC) { |
813 | ComputeValueVTs(TLI, DL, Ty, ValueVTs); |
814 | |
815 | CallConv = CC; |
816 | |
817 | for (EVT ValueVT : ValueVTs) { |
818 | unsigned NumRegs = |
819 | isABIMangled() |
820 | ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) |
821 | : TLI.getNumRegisters(Context, ValueVT); |
822 | MVT RegisterVT = |
823 | isABIMangled() |
824 | ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) |
825 | : TLI.getRegisterType(Context, ValueVT); |
826 | for (unsigned i = 0; i != NumRegs; ++i) |
827 | Regs.push_back(Reg + i); |
828 | RegVTs.push_back(RegisterVT); |
829 | RegCount.push_back(NumRegs); |
830 | Reg += NumRegs; |
831 | } |
832 | } |
833 | |
834 | SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, |
835 | FunctionLoweringInfo &FuncInfo, |
836 | const SDLoc &dl, SDValue &Chain, |
837 | SDValue *Flag, const Value *V) const { |
838 | // A Value with type {} or [0 x %t] needs no registers. |
839 | if (ValueVTs.empty()) |
840 | return SDValue(); |
841 | |
842 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
843 | |
844 | // Assemble the legal parts into the final values. |
845 | SmallVector<SDValue, 4> Values(ValueVTs.size()); |
846 | SmallVector<SDValue, 8> Parts; |
847 | for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { |
848 | // Copy the legal parts from the registers. |
849 | EVT ValueVT = ValueVTs[Value]; |
850 | unsigned NumRegs = RegCount[Value]; |
851 | MVT RegisterVT = isABIMangled() |
852 | ? TLI.getRegisterTypeForCallingConv( |
853 | *DAG.getContext(), *CallConv, RegVTs[Value]) |
854 | : RegVTs[Value]; |
855 | |
856 | Parts.resize(NumRegs); |
857 | for (unsigned i = 0; i != NumRegs; ++i) { |
858 | SDValue P; |
859 | if (!Flag) { |
860 | P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); |
861 | } else { |
862 | P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); |
863 | *Flag = P.getValue(2); |
864 | } |
865 | |
866 | Chain = P.getValue(1); |
867 | Parts[i] = P; |
868 | |
869 | // If the source register was virtual and if we know something about it, |
870 | // add an assert node. |
871 | if (!Register::isVirtualRegister(Regs[Part + i]) || |
872 | !RegisterVT.isInteger()) |
873 | continue; |
874 | |
875 | const FunctionLoweringInfo::LiveOutInfo *LOI = |
876 | FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); |
877 | if (!LOI) |
878 | continue; |
879 | |
880 | unsigned RegSize = RegisterVT.getScalarSizeInBits(); |
881 | unsigned NumSignBits = LOI->NumSignBits; |
882 | unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); |
883 | |
884 | if (NumZeroBits == RegSize) { |
885 | // The current value is a zero. |
886 | // Explicitly express that as it would be easier for |
887 | // optimizations to kick in. |
888 | Parts[i] = DAG.getConstant(0, dl, RegisterVT); |
889 | continue; |
890 | } |
891 | |
892 | // FIXME: We capture more information than the dag can represent. For |
893 | // now, just use the tightest assertzext/assertsext possible. |
894 | bool isSExt; |
895 | EVT FromVT(MVT::Other); |
896 | if (NumZeroBits) { |
897 | FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); |
898 | isSExt = false; |
899 | } else if (NumSignBits > 1) { |
900 | FromVT = |
901 | EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); |
902 | isSExt = true; |
903 | } else { |
904 | continue; |
905 | } |
906 | // Add an assertion node. |
907 | assert(FromVT != MVT::Other)(static_cast <bool> (FromVT != MVT::Other) ? void (0) : __assert_fail ("FromVT != MVT::Other", "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp" , 907, __extension__ __PRETTY_FUNCTION__)); |
908 | Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, |
909 | RegisterVT, P, DAG.getValueType(FromVT)); |
910 | } |
911 | |
912 | Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, |
913 | RegisterVT, ValueVT, V, CallConv); |
914 | Part += NumRegs; |
915 | Parts.clear(); |
916 | } |
917 | |
918 | return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); |
919 | } |
920 | |
921 | void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, |
922 | const SDLoc &dl, SDValue &Chain, SDValue *Flag, |
923 | const Value *V, |
924 | ISD::NodeType PreferredExtendType) const { |
925 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
926 | ISD::NodeType ExtendKind = PreferredExtendType; |
927 | |
928 | // Get the list of the values's legal parts. |
929 | unsigned NumRegs = Regs.size(); |
930 | SmallVector<SDValue, 8> Parts(NumRegs); |
931 | for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { |
932 | unsigned NumParts = RegCount[Value]; |
933 | |
934 | MVT RegisterVT = isABIMangled() |
935 | ? TLI.getRegisterTypeForCallingConv( |
936 | *DAG.getContext(), *CallConv, RegVTs[Value]) |
937 | : RegVTs[Value]; |
938 | |
939 | if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) |
940 | ExtendKind = ISD::ZERO_EXTEND; |
941 | |
942 | getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], |
943 | NumParts, RegisterVT, V, CallConv, ExtendKind); |
944 | Part += NumParts; |
945 | } |
946 | |
947 | // Copy the parts into the registers. |
948 | SmallVector<SDValue, 8> Chains(NumRegs); |
949 | for (unsigned i = 0; i != NumRegs; ++i) { |
950 | SDValue Part; |
951 | if (!Flag) { |
952 | Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); |
953 | } else { |
954 | Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); |
955 | *Flag = Part.getValue(1); |
956 | } |
957 | |
958 | Chains[i] = Part.getValue(0); |
959 | } |
960 | |
961 | if (NumRegs == 1 || Flag) |
962 | // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is |
963 | // flagged to it. That is the CopyToReg nodes and the user are considered |
964 | // a single scheduling unit. If we create a TokenFactor and return it as |
965 | // chain, then the TokenFactor is both a predecessor (operand) of the |
966 | // user as well as a successor (the TF operands are flagged to the user). |
967 | // c1, f1 = CopyToReg |
968 | // c2, f2 = CopyToReg |
969 | // c3 = TokenFactor c1, c2 |
970 | // ... |
971 | // = op c3, ..., f2 |
972 | Chain = Chains[NumRegs-1]; |
973 | else |
974 | Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); |
975 | } |
976 | |
977 | void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, |
978 | unsigned MatchingIdx, const SDLoc &dl, |
979 | SelectionDAG &DAG, |
980 | std::vector<SDValue> &Ops) const { |
981 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
982 | |
983 | unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); |
984 | if (HasMatching) |
985 | Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); |
986 | else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { |
987 | // Put the register class of the virtual registers in the flag word. That |
988 | // way, later passes can recompute register class constraints for inline |
989 | // assembly as well as normal instructions. |
990 | // Don't do this for tied operands that can use the regclass information |
991 | // from the def. |
992 | const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
993 | const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); |
994 | Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); |
995 | } |
996 | |
997 | SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); |
998 | Ops.push_back(Res); |
999 | |
1000 | if (Code == InlineAsm::Kind_Clobber) { |
1001 | // Clobbers should always have a 1:1 mapping with registers, and may |
1002 | // reference registers that have illegal (e.g. vector) types. Hence, we |
1003 | // shouldn't try to apply any sort of splitting logic to them. |
1004 | assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&(static_cast <bool> (Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && "No 1:1 mapping from clobbers to regs?" ) ? void (0) : __assert_fail ("Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && \"No 1:1 mapping from clobbers to regs?\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1005 , __extension__ __PRETTY_FUNCTION__)) |
1005 | "No 1:1 mapping from clobbers to regs?")(static_cast <bool> (Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && "No 1:1 mapping from clobbers to regs?" ) ? void (0) : __assert_fail ("Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && \"No 1:1 mapping from clobbers to regs?\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1005 , __extension__ __PRETTY_FUNCTION__)); |
1006 | Register SP = TLI.getStackPointerRegisterToSaveRestore(); |
1007 | (void)SP; |
1008 | for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { |
1009 | Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); |
1010 | assert((static_cast <bool> ((Regs[I] != SP || DAG.getMachineFunction ().getFrameInfo().hasOpaqueSPAdjustment()) && "If we clobbered the stack pointer, MFI should know about it." ) ? void (0) : __assert_fail ("(Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && \"If we clobbered the stack pointer, MFI should know about it.\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1013 , __extension__ __PRETTY_FUNCTION__)) |
1011 | (Regs[I] != SP ||(static_cast <bool> ((Regs[I] != SP || DAG.getMachineFunction ().getFrameInfo().hasOpaqueSPAdjustment()) && "If we clobbered the stack pointer, MFI should know about it." ) ? void (0) : __assert_fail ("(Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && \"If we clobbered the stack pointer, MFI should know about it.\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1013 , __extension__ __PRETTY_FUNCTION__)) |
1012 | DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&(static_cast <bool> ((Regs[I] != SP || DAG.getMachineFunction ().getFrameInfo().hasOpaqueSPAdjustment()) && "If we clobbered the stack pointer, MFI should know about it." ) ? void (0) : __assert_fail ("(Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && \"If we clobbered the stack pointer, MFI should know about it.\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1013 , __extension__ __PRETTY_FUNCTION__)) |
1013 | "If we clobbered the stack pointer, MFI should know about it.")(static_cast <bool> ((Regs[I] != SP || DAG.getMachineFunction ().getFrameInfo().hasOpaqueSPAdjustment()) && "If we clobbered the stack pointer, MFI should know about it." ) ? void (0) : __assert_fail ("(Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && \"If we clobbered the stack pointer, MFI should know about it.\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1013 , __extension__ __PRETTY_FUNCTION__)); |
1014 | } |
1015 | return; |
1016 | } |
1017 | |
1018 | for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { |
1019 | MVT RegisterVT = RegVTs[Value]; |
1020 | unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], |
1021 | RegisterVT); |
1022 | for (unsigned i = 0; i != NumRegs; ++i) { |
1023 | assert(Reg < Regs.size() && "Mismatch in # registers expected")(static_cast <bool> (Reg < Regs.size() && "Mismatch in # registers expected" ) ? void (0) : __assert_fail ("Reg < Regs.size() && \"Mismatch in # registers expected\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1023 , __extension__ __PRETTY_FUNCTION__)); |
1024 | unsigned TheReg = Regs[Reg++]; |
1025 | Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); |
1026 | } |
1027 | } |
1028 | } |
1029 | |
1030 | SmallVector<std::pair<unsigned, TypeSize>, 4> |
1031 | RegsForValue::getRegsAndSizes() const { |
1032 | SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; |
1033 | unsigned I = 0; |
1034 | for (auto CountAndVT : zip_first(RegCount, RegVTs)) { |
1035 | unsigned RegCount = std::get<0>(CountAndVT); |
1036 | MVT RegisterVT = std::get<1>(CountAndVT); |
1037 | TypeSize RegisterSize = RegisterVT.getSizeInBits(); |
1038 | for (unsigned E = I + RegCount; I != E; ++I) |
1039 | OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); |
1040 | } |
1041 | return OutVec; |
1042 | } |
1043 | |
1044 | void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, |
1045 | AssumptionCache *ac, |
1046 | const TargetLibraryInfo *li) { |
1047 | AA = aa; |
1048 | AC = ac; |
1049 | GFI = gfi; |
1050 | LibInfo = li; |
1051 | Context = DAG.getContext(); |
1052 | LPadToCallSiteMap.clear(); |
1053 | SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); |
1054 | } |
1055 | |
1056 | void SelectionDAGBuilder::clear() { |
1057 | NodeMap.clear(); |
1058 | UnusedArgNodeMap.clear(); |
1059 | PendingLoads.clear(); |
1060 | PendingExports.clear(); |
1061 | PendingConstrainedFP.clear(); |
1062 | PendingConstrainedFPStrict.clear(); |
1063 | CurInst = nullptr; |
1064 | HasTailCall = false; |
1065 | SDNodeOrder = LowestSDNodeOrder; |
1066 | StatepointLowering.clear(); |
1067 | } |
1068 | |
1069 | void SelectionDAGBuilder::clearDanglingDebugInfo() { |
1070 | DanglingDebugInfoMap.clear(); |
1071 | } |
1072 | |
1073 | // Update DAG root to include dependencies on Pending chains. |
1074 | SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { |
1075 | SDValue Root = DAG.getRoot(); |
1076 | |
1077 | if (Pending.empty()) |
1078 | return Root; |
1079 | |
1080 | // Add current root to PendingChains, unless we already indirectly |
1081 | // depend on it. |
1082 | if (Root.getOpcode() != ISD::EntryToken) { |
1083 | unsigned i = 0, e = Pending.size(); |
1084 | for (; i != e; ++i) { |
1085 | assert(Pending[i].getNode()->getNumOperands() > 1)(static_cast <bool> (Pending[i].getNode()->getNumOperands () > 1) ? void (0) : __assert_fail ("Pending[i].getNode()->getNumOperands() > 1" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1085 , __extension__ __PRETTY_FUNCTION__)); |
1086 | if (Pending[i].getNode()->getOperand(0) == Root) |
1087 | break; // Don't add the root if we already indirectly depend on it. |
1088 | } |
1089 | |
1090 | if (i == e) |
1091 | Pending.push_back(Root); |
1092 | } |
1093 | |
1094 | if (Pending.size() == 1) |
1095 | Root = Pending[0]; |
1096 | else |
1097 | Root = DAG.getTokenFactor(getCurSDLoc(), Pending); |
1098 | |
1099 | DAG.setRoot(Root); |
1100 | Pending.clear(); |
1101 | return Root; |
1102 | } |
1103 | |
1104 | SDValue SelectionDAGBuilder::getMemoryRoot() { |
1105 | return updateRoot(PendingLoads); |
1106 | } |
1107 | |
1108 | SDValue SelectionDAGBuilder::getRoot() { |
1109 | // Chain up all pending constrained intrinsics together with all |
1110 | // pending loads, by simply appending them to PendingLoads and |
1111 | // then calling getMemoryRoot(). |
1112 | PendingLoads.reserve(PendingLoads.size() + |
1113 | PendingConstrainedFP.size() + |
1114 | PendingConstrainedFPStrict.size()); |
1115 | PendingLoads.append(PendingConstrainedFP.begin(), |
1116 | PendingConstrainedFP.end()); |
1117 | PendingLoads.append(PendingConstrainedFPStrict.begin(), |
1118 | PendingConstrainedFPStrict.end()); |
1119 | PendingConstrainedFP.clear(); |
1120 | PendingConstrainedFPStrict.clear(); |
1121 | return getMemoryRoot(); |
1122 | } |
1123 | |
1124 | SDValue SelectionDAGBuilder::getControlRoot() { |
1125 | // We need to emit pending fpexcept.strict constrained intrinsics, |
1126 | // so append them to the PendingExports list. |
1127 | PendingExports.append(PendingConstrainedFPStrict.begin(), |
1128 | PendingConstrainedFPStrict.end()); |
1129 | PendingConstrainedFPStrict.clear(); |
1130 | return updateRoot(PendingExports); |
1131 | } |
1132 | |
1133 | void SelectionDAGBuilder::visit(const Instruction &I) { |
1134 | // Set up outgoing PHI node register values before emitting the terminator. |
1135 | if (I.isTerminator()) { |
1136 | HandlePHINodesInSuccessorBlocks(I.getParent()); |
1137 | } |
1138 | |
1139 | // Add SDDbgValue nodes for any var locs here. Do so before updating |
1140 | // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. |
1141 | if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { |
1142 | // Add SDDbgValue nodes for any var locs here. Do so before updating |
1143 | // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. |
1144 | for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); |
1145 | It != End; ++It) { |
1146 | auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); |
1147 | dropDanglingDebugInfo(Var, It->Expr); |
1148 | SmallVector<Value *> Values(It->Values.location_ops()); |
1149 | if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, |
1150 | It->Values.hasArgList())) |
1151 | addDanglingDebugInfo(It, SDNodeOrder); |
1152 | } |
1153 | } |
1154 | |
1155 | // Increase the SDNodeOrder if dealing with a non-debug instruction. |
1156 | if (!isa<DbgInfoIntrinsic>(I)) |
1157 | ++SDNodeOrder; |
1158 | |
1159 | CurInst = &I; |
1160 | |
1161 | // Set inserted listener only if required. |
1162 | bool NodeInserted = false; |
1163 | std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; |
1164 | MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); |
1165 | if (PCSectionsMD) { |
1166 | InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( |
1167 | DAG, [&](SDNode *) { NodeInserted = true; }); |
1168 | } |
1169 | |
1170 | visit(I.getOpcode(), I); |
1171 | |
1172 | if (!I.isTerminator() && !HasTailCall && |
1173 | !isa<GCStatepointInst>(I)) // statepoints handle their exports internally |
1174 | CopyToExportRegsIfNeeded(&I); |
1175 | |
1176 | // Handle metadata. |
1177 | if (PCSectionsMD) { |
1178 | auto It = NodeMap.find(&I); |
1179 | if (It != NodeMap.end()) { |
1180 | DAG.addPCSections(It->second.getNode(), PCSectionsMD); |
1181 | } else if (NodeInserted) { |
1182 | // This should not happen; if it does, don't let it go unnoticed so we can |
1183 | // fix it. Relevant visit*() function is probably missing a setValue(). |
1184 | errs() << "warning: loosing !pcsections metadata [" |
1185 | << I.getModule()->getName() << "]\n"; |
1186 | LLVM_DEBUG(I.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { I.dump(); } } while (false); |
1187 | assert(false)(static_cast <bool> (false) ? void (0) : __assert_fail ( "false", "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp" , 1187, __extension__ __PRETTY_FUNCTION__)); |
1188 | } |
1189 | } |
1190 | |
1191 | CurInst = nullptr; |
1192 | } |
1193 | |
1194 | void SelectionDAGBuilder::visitPHI(const PHINode &) { |
1195 | llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!")::llvm::llvm_unreachable_internal("SelectionDAGBuilder shouldn't visit PHI nodes!" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1195 ); |
1196 | } |
1197 | |
1198 | void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { |
1199 | // Note: this doesn't use InstVisitor, because it has to work with |
1200 | // ConstantExpr's in addition to instructions. |
1201 | switch (Opcode) { |
1202 | default: llvm_unreachable("Unknown instruction type encountered!")::llvm::llvm_unreachable_internal("Unknown instruction type encountered!" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1202 ); |
1203 | // Build the switch statement using the Instruction.def file. |
1204 | #define HANDLE_INST(NUM, OPCODE, CLASS) \ |
1205 | case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; |
1206 | #include "llvm/IR/Instruction.def" |
1207 | } |
1208 | } |
1209 | |
1210 | static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, |
1211 | DILocalVariable *Variable, |
1212 | DebugLoc DL, unsigned Order, |
1213 | RawLocationWrapper Values, |
1214 | DIExpression *Expression) { |
1215 | if (!Values.hasArgList()) |
1216 | return false; |
1217 | // For variadic dbg_values we will now insert an undef. |
1218 | // FIXME: We can potentially recover these! |
1219 | SmallVector<SDDbgOperand, 2> Locs; |
1220 | for (const Value *V : Values.location_ops()) { |
1221 | auto *Undef = UndefValue::get(V->getType()); |
1222 | Locs.push_back(SDDbgOperand::fromConst(Undef)); |
1223 | } |
1224 | SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, |
1225 | /*IsIndirect=*/false, DL, Order, |
1226 | /*IsVariadic=*/true); |
1227 | DAG.AddDbgValue(SDV, /*isParameter=*/false); |
1228 | return true; |
1229 | } |
1230 | |
1231 | void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, |
1232 | unsigned Order) { |
1233 | if (!handleDanglingVariadicDebugInfo( |
1234 | DAG, |
1235 | const_cast<DILocalVariable *>(DAG.getFunctionVarLocs() |
1236 | ->getVariable(VarLoc->VariableID) |
1237 | .getVariable()), |
1238 | VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) { |
1239 | DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back( |
1240 | VarLoc, Order); |
1241 | } |
1242 | } |
1243 | |
1244 | void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, |
1245 | unsigned Order) { |
1246 | // We treat variadic dbg_values differently at this stage. |
1247 | if (!handleDanglingVariadicDebugInfo( |
1248 | DAG, DI->getVariable(), DI->getDebugLoc(), Order, |
1249 | DI->getWrappedLocation(), DI->getExpression())) { |
1250 | // TODO: Dangling debug info will eventually either be resolved or produce |
1251 | // an Undef DBG_VALUE. However in the resolution case, a gap may appear |
1252 | // between the original dbg.value location and its resolved DBG_VALUE, |
1253 | // which we should ideally fill with an extra Undef DBG_VALUE. |
1254 | assert(DI->getNumVariableLocationOps() == 1 &&(static_cast <bool> (DI->getNumVariableLocationOps() == 1 && "DbgValueInst without an ArgList should have a single location " "operand.") ? void (0) : __assert_fail ("DI->getNumVariableLocationOps() == 1 && \"DbgValueInst without an ArgList should have a single location \" \"operand.\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1256 , __extension__ __PRETTY_FUNCTION__)) |
1255 | "DbgValueInst without an ArgList should have a single location "(static_cast <bool> (DI->getNumVariableLocationOps() == 1 && "DbgValueInst without an ArgList should have a single location " "operand.") ? void (0) : __assert_fail ("DI->getNumVariableLocationOps() == 1 && \"DbgValueInst without an ArgList should have a single location \" \"operand.\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1256 , __extension__ __PRETTY_FUNCTION__)) |
1256 | "operand.")(static_cast <bool> (DI->getNumVariableLocationOps() == 1 && "DbgValueInst without an ArgList should have a single location " "operand.") ? void (0) : __assert_fail ("DI->getNumVariableLocationOps() == 1 && \"DbgValueInst without an ArgList should have a single location \" \"operand.\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1256 , __extension__ __PRETTY_FUNCTION__)); |
1257 | DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); |
1258 | } |
1259 | } |
1260 | |
1261 | void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, |
1262 | const DIExpression *Expr) { |
1263 | auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { |
1264 | DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); |
1265 | DIExpression *DanglingExpr = DDI.getExpression(); |
1266 | if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { |
1267 | LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Dropping dangling debug info for " << printDDI(DDI) << "\n"; } } while (false) |
1268 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Dropping dangling debug info for " << printDDI(DDI) << "\n"; } } while (false); |
1269 | return true; |
1270 | } |
1271 | return false; |
1272 | }; |
1273 | |
1274 | for (auto &DDIMI : DanglingDebugInfoMap) { |
1275 | DanglingDebugInfoVector &DDIV = DDIMI.second; |
1276 | |
1277 | // If debug info is to be dropped, run it through final checks to see |
1278 | // whether it can be salvaged. |
1279 | for (auto &DDI : DDIV) |
1280 | if (isMatchingDbgValue(DDI)) |
1281 | salvageUnresolvedDbgValue(DDI); |
1282 | |
1283 | erase_if(DDIV, isMatchingDbgValue); |
1284 | } |
1285 | } |
1286 | |
1287 | // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, |
1288 | // generate the debug data structures now that we've seen its definition. |
1289 | void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, |
1290 | SDValue Val) { |
1291 | auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); |
1292 | if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) |
1293 | return; |
1294 | |
1295 | DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; |
1296 | for (auto &DDI : DDIV) { |
1297 | DebugLoc DL = DDI.getDebugLoc(); |
1298 | unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); |
1299 | unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); |
1300 | DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); |
1301 | DIExpression *Expr = DDI.getExpression(); |
1302 | assert(Variable->isValidLocationForIntrinsic(DL) &&(static_cast <bool> (Variable->isValidLocationForIntrinsic (DL) && "Expected inlined-at fields to agree") ? void (0) : __assert_fail ("Variable->isValidLocationForIntrinsic(DL) && \"Expected inlined-at fields to agree\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1303 , __extension__ __PRETTY_FUNCTION__)) |
1303 | "Expected inlined-at fields to agree")(static_cast <bool> (Variable->isValidLocationForIntrinsic (DL) && "Expected inlined-at fields to agree") ? void (0) : __assert_fail ("Variable->isValidLocationForIntrinsic(DL) && \"Expected inlined-at fields to agree\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1303 , __extension__ __PRETTY_FUNCTION__)); |
1304 | SDDbgValue *SDV; |
1305 | if (Val.getNode()) { |
1306 | // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a |
1307 | // FuncArgumentDbgValue (it would be hoisted to the function entry, and if |
1308 | // we couldn't resolve it directly when examining the DbgValue intrinsic |
1309 | // in the first place we should not be more successful here). Unless we |
1310 | // have some test case that prove this to be correct we should avoid |
1311 | // calling EmitFuncArgumentDbgValue here. |
1312 | if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, |
1313 | FuncArgumentDbgValueKind::Value, Val)) { |
1314 | LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Resolve dangling debug info for " << printDDI(DDI) << "\n"; } } while (false) |
1315 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Resolve dangling debug info for " << printDDI(DDI) << "\n"; } } while (false); |
1316 | LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << " By mapping to:\n "; Val.dump (); } } while (false); |
1317 | // Increase the SDNodeOrder for the DbgValue here to make sure it is |
1318 | // inserted after the definition of Val when emitting the instructions |
1319 | // after ISel. An alternative could be to teach |
1320 | // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. |
1321 | LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " << ValSDNodeOrder << "\n"; } } while (false ) |
1322 | << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " << ValSDNodeOrder << "\n"; } } while (false ) |
1323 | << ValSDNodeOrder << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " << ValSDNodeOrder << "\n"; } } while (false ); |
1324 | SDV = getDbgValue(Val, Variable, Expr, DL, |
1325 | std::max(DbgSDNodeOrder, ValSDNodeOrder)); |
1326 | DAG.AddDbgValue(SDV, false); |
1327 | } else |
1328 | LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Resolved dangling debug info for " << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n" ; } } while (false) |
1329 | << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Resolved dangling debug info for " << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n" ; } } while (false); |
1330 | } else { |
1331 | LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"; } } while (false); |
1332 | auto Undef = UndefValue::get(V->getType()); |
1333 | auto SDV = |
1334 | DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); |
1335 | DAG.AddDbgValue(SDV, false); |
1336 | } |
1337 | } |
1338 | DDIV.clear(); |
1339 | } |
1340 | |
1341 | void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { |
1342 | // TODO: For the variadic implementation, instead of only checking the fail |
1343 | // state of `handleDebugValue`, we need know specifically which values were |
1344 | // invalid, so that we attempt to salvage only those values when processing |
1345 | // a DIArgList. |
1346 | Value *V = DDI.getVariableLocationOp(0); |
1347 | Value *OrigV = V; |
1348 | DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); |
1349 | DIExpression *Expr = DDI.getExpression(); |
1350 | DebugLoc DL = DDI.getDebugLoc(); |
1351 | unsigned SDOrder = DDI.getSDNodeOrder(); |
1352 | |
1353 | // Currently we consider only dbg.value intrinsics -- we tell the salvager |
1354 | // that DW_OP_stack_value is desired. |
1355 | bool StackValue = true; |
1356 | |
1357 | // Can this Value can be encoded without any further work? |
1358 | if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) |
1359 | return; |
1360 | |
1361 | // Attempt to salvage back through as many instructions as possible. Bail if |
1362 | // a non-instruction is seen, such as a constant expression or global |
1363 | // variable. FIXME: Further work could recover those too. |
1364 | while (isa<Instruction>(V)) { |
1365 | Instruction &VAsInst = *cast<Instruction>(V); |
1366 | // Temporary "0", awaiting real implementation. |
1367 | SmallVector<uint64_t, 16> Ops; |
1368 | SmallVector<Value *, 4> AdditionalValues; |
1369 | V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, |
1370 | AdditionalValues); |
1371 | // If we cannot salvage any further, and haven't yet found a suitable debug |
1372 | // expression, bail out. |
1373 | if (!V) |
1374 | break; |
1375 | |
1376 | // TODO: If AdditionalValues isn't empty, then the salvage can only be |
1377 | // represented with a DBG_VALUE_LIST, so we give up. When we have support |
1378 | // here for variadic dbg_values, remove that condition. |
1379 | if (!AdditionalValues.empty()) |
1380 | break; |
1381 | |
1382 | // New value and expr now represent this debuginfo. |
1383 | Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); |
1384 | |
1385 | // Some kind of simplification occurred: check whether the operand of the |
1386 | // salvaged debug expression can be encoded in this DAG. |
1387 | if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { |
1388 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" << *OrigV << "\nBy stripping back to:\n " << *V << "\n"; } } while (false) |
1389 | dbgs() << "Salvaged debug location info for:\n " << *Var << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" << *OrigV << "\nBy stripping back to:\n " << *V << "\n"; } } while (false) |
1390 | << *OrigV << "\nBy stripping back to:\n " << *V << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" << *OrigV << "\nBy stripping back to:\n " << *V << "\n"; } } while (false); |
1391 | return; |
1392 | } |
1393 | } |
1394 | |
1395 | // This was the final opportunity to salvage this debug information, and it |
1396 | // couldn't be done. Place an undef DBG_VALUE at this location to terminate |
1397 | // any earlier variable location. |
1398 | assert(OrigV && "V shouldn't be null")(static_cast <bool> (OrigV && "V shouldn't be null" ) ? void (0) : __assert_fail ("OrigV && \"V shouldn't be null\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1398 , __extension__ __PRETTY_FUNCTION__)); |
1399 | auto *Undef = UndefValue::get(OrigV->getType()); |
1400 | auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); |
1401 | DAG.AddDbgValue(SDV, false); |
1402 | LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) << "\n"; } } while (false) |
1403 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("isel")) { dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) << "\n"; } } while (false); |
1404 | } |
1405 | |
1406 | bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, |
1407 | DILocalVariable *Var, |
1408 | DIExpression *Expr, DebugLoc DbgLoc, |
1409 | unsigned Order, bool IsVariadic) { |
1410 | if (Values.empty()) |
1411 | return true; |
1412 | SmallVector<SDDbgOperand> LocationOps; |
1413 | SmallVector<SDNode *> Dependencies; |
1414 | for (const Value *V : Values) { |
1415 | // Constant value. |
1416 | if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || |
1417 | isa<ConstantPointerNull>(V)) { |
1418 | LocationOps.emplace_back(SDDbgOperand::fromConst(V)); |
1419 | continue; |
1420 | } |
1421 | |
1422 | // Look through IntToPtr constants. |
1423 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
1424 | if (CE->getOpcode() == Instruction::IntToPtr) { |
1425 | LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); |
1426 | continue; |
1427 | } |
1428 | |
1429 | // If the Value is a frame index, we can create a FrameIndex debug value |
1430 | // without relying on the DAG at all. |
1431 | if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
1432 | auto SI = FuncInfo.StaticAllocaMap.find(AI); |
1433 | if (SI != FuncInfo.StaticAllocaMap.end()) { |
1434 | LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); |
1435 | continue; |
1436 | } |
1437 | } |
1438 | |
1439 | // Do not use getValue() in here; we don't want to generate code at |
1440 | // this point if it hasn't been done yet. |
1441 | SDValue N = NodeMap[V]; |
1442 | if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. |
1443 | N = UnusedArgNodeMap[V]; |
1444 | if (N.getNode()) { |
1445 | // Only emit func arg dbg value for non-variadic dbg.values for now. |
1446 | if (!IsVariadic && |
1447 | EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, |
1448 | FuncArgumentDbgValueKind::Value, N)) |
1449 | return true; |
1450 | if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { |
1451 | // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can |
1452 | // describe stack slot locations. |
1453 | // |
1454 | // Consider "int x = 0; int *px = &x;". There are two kinds of |
1455 | // interesting debug values here after optimization: |
1456 | // |
1457 | // dbg.value(i32* %px, !"int *px", !DIExpression()), and |
1458 | // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) |
1459 | // |
1460 | // Both describe the direct values of their associated variables. |
1461 | Dependencies.push_back(N.getNode()); |
1462 | LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); |
1463 | continue; |
1464 | } |
1465 | LocationOps.emplace_back( |
1466 | SDDbgOperand::fromNode(N.getNode(), N.getResNo())); |
1467 | continue; |
1468 | } |
1469 | |
1470 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
1471 | // Special rules apply for the first dbg.values of parameter variables in a |
1472 | // function. Identify them by the fact they reference Argument Values, that |
1473 | // they're parameters, and they are parameters of the current function. We |
1474 | // need to let them dangle until they get an SDNode. |
1475 | bool IsParamOfFunc = |
1476 | isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); |
1477 | if (IsParamOfFunc) |
1478 | return false; |
1479 | |
1480 | // The value is not used in this block yet (or it would have an SDNode). |
1481 | // We still want the value to appear for the user if possible -- if it has |
1482 | // an associated VReg, we can refer to that instead. |
1483 | auto VMI = FuncInfo.ValueMap.find(V); |
1484 | if (VMI != FuncInfo.ValueMap.end()) { |
1485 | unsigned Reg = VMI->second; |
1486 | // If this is a PHI node, it may be split up into several MI PHI nodes |
1487 | // (in FunctionLoweringInfo::set). |
1488 | RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, |
1489 | V->getType(), std::nullopt); |
1490 | if (RFV.occupiesMultipleRegs()) { |
1491 | // FIXME: We could potentially support variadic dbg_values here. |
1492 | if (IsVariadic) |
1493 | return false; |
1494 | unsigned Offset = 0; |
1495 | unsigned BitsToDescribe = 0; |
1496 | if (auto VarSize = Var->getSizeInBits()) |
1497 | BitsToDescribe = *VarSize; |
1498 | if (auto Fragment = Expr->getFragmentInfo()) |
1499 | BitsToDescribe = Fragment->SizeInBits; |
1500 | for (const auto &RegAndSize : RFV.getRegsAndSizes()) { |
1501 | // Bail out if all bits are described already. |
1502 | if (Offset >= BitsToDescribe) |
1503 | break; |
1504 | // TODO: handle scalable vectors. |
1505 | unsigned RegisterSize = RegAndSize.second; |
1506 | unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) |
1507 | ? BitsToDescribe - Offset |
1508 | : RegisterSize; |
1509 | auto FragmentExpr = DIExpression::createFragmentExpression( |
1510 | Expr, Offset, FragmentSize); |
1511 | if (!FragmentExpr) |
1512 | continue; |
1513 | SDDbgValue *SDV = DAG.getVRegDbgValue( |
1514 | Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); |
1515 | DAG.AddDbgValue(SDV, false); |
1516 | Offset += RegisterSize; |
1517 | } |
1518 | return true; |
1519 | } |
1520 | // We can use simple vreg locations for variadic dbg_values as well. |
1521 | LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); |
1522 | continue; |
1523 | } |
1524 | // We failed to create a SDDbgOperand for V. |
1525 | return false; |
1526 | } |
1527 | |
1528 | // We have created a SDDbgOperand for each Value in Values. |
1529 | // Should use Order instead of SDNodeOrder? |
1530 | assert(!LocationOps.empty())(static_cast <bool> (!LocationOps.empty()) ? void (0) : __assert_fail ("!LocationOps.empty()", "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp" , 1530, __extension__ __PRETTY_FUNCTION__)); |
1531 | SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, |
1532 | /*IsIndirect=*/false, DbgLoc, |
1533 | SDNodeOrder, IsVariadic); |
1534 | DAG.AddDbgValue(SDV, /*isParameter=*/false); |
1535 | return true; |
1536 | } |
1537 | |
1538 | void SelectionDAGBuilder::resolveOrClearDbgInfo() { |
1539 | // Try to fixup any remaining dangling debug info -- and drop it if we can't. |
1540 | for (auto &Pair : DanglingDebugInfoMap) |
1541 | for (auto &DDI : Pair.second) |
1542 | salvageUnresolvedDbgValue(DDI); |
1543 | clearDanglingDebugInfo(); |
1544 | } |
1545 | |
1546 | /// getCopyFromRegs - If there was virtual register allocated for the value V |
1547 | /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. |
1548 | SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { |
1549 | DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); |
1550 | SDValue Result; |
1551 | |
1552 | if (It != FuncInfo.ValueMap.end()) { |
1553 | Register InReg = It->second; |
1554 | |
1555 | RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), |
1556 | DAG.getDataLayout(), InReg, Ty, |
1557 | std::nullopt); // This is not an ABI copy. |
1558 | SDValue Chain = DAG.getEntryNode(); |
1559 | Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, |
1560 | V); |
1561 | resolveDanglingDebugInfo(V, Result); |
1562 | } |
1563 | |
1564 | return Result; |
1565 | } |
1566 | |
1567 | /// getValue - Return an SDValue for the given Value. |
1568 | SDValue SelectionDAGBuilder::getValue(const Value *V) { |
1569 | // If we already have an SDValue for this value, use it. It's important |
1570 | // to do this first, so that we don't create a CopyFromReg if we already |
1571 | // have a regular SDValue. |
1572 | SDValue &N = NodeMap[V]; |
1573 | if (N.getNode()) return N; |
1574 | |
1575 | // If there's a virtual register allocated and initialized for this |
1576 | // value, use it. |
1577 | if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) |
1578 | return copyFromReg; |
1579 | |
1580 | // Otherwise create a new SDValue and remember it. |
1581 | SDValue Val = getValueImpl(V); |
1582 | NodeMap[V] = Val; |
1583 | resolveDanglingDebugInfo(V, Val); |
1584 | return Val; |
1585 | } |
1586 | |
1587 | /// getNonRegisterValue - Return an SDValue for the given Value, but |
1588 | /// don't look in FuncInfo.ValueMap for a virtual register. |
1589 | SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { |
1590 | // If we already have an SDValue for this value, use it. |
1591 | SDValue &N = NodeMap[V]; |
1592 | if (N.getNode()) { |
1593 | if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { |
1594 | // Remove the debug location from the node as the node is about to be used |
1595 | // in a location which may differ from the original debug location. This |
1596 | // is relevant to Constant and ConstantFP nodes because they can appear |
1597 | // as constant expressions inside PHI nodes. |
1598 | N->setDebugLoc(DebugLoc()); |
1599 | } |
1600 | return N; |
1601 | } |
1602 | |
1603 | // Otherwise create a new SDValue and remember it. |
1604 | SDValue Val = getValueImpl(V); |
1605 | NodeMap[V] = Val; |
1606 | resolveDanglingDebugInfo(V, Val); |
1607 | return Val; |
1608 | } |
1609 | |
1610 | /// getValueImpl - Helper function for getValue and getNonRegisterValue. |
1611 | /// Create an SDValue for the given value. |
1612 | SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { |
1613 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
1614 | |
1615 | if (const Constant *C = dyn_cast<Constant>(V)) { |
1616 | EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); |
1617 | |
1618 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) |
1619 | return DAG.getConstant(*CI, getCurSDLoc(), VT); |
1620 | |
1621 | if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
1622 | return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); |
1623 | |
1624 | if (isa<ConstantPointerNull>(C)) { |
1625 | unsigned AS = V->getType()->getPointerAddressSpace(); |
1626 | return DAG.getConstant(0, getCurSDLoc(), |
1627 | TLI.getPointerTy(DAG.getDataLayout(), AS)); |
1628 | } |
1629 | |
1630 | if (match(C, m_VScale())) |
1631 | return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); |
1632 | |
1633 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) |
1634 | return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); |
1635 | |
1636 | if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) |
1637 | return DAG.getUNDEF(VT); |
1638 | |
1639 | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
1640 | visit(CE->getOpcode(), *CE); |
1641 | SDValue N1 = NodeMap[V]; |
1642 | assert(N1.getNode() && "visit didn't populate the NodeMap!")(static_cast <bool> (N1.getNode() && "visit didn't populate the NodeMap!" ) ? void (0) : __assert_fail ("N1.getNode() && \"visit didn't populate the NodeMap!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1642 , __extension__ __PRETTY_FUNCTION__)); |
1643 | return N1; |
1644 | } |
1645 | |
1646 | if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { |
1647 | SmallVector<SDValue, 4> Constants; |
1648 | for (const Use &U : C->operands()) { |
1649 | SDNode *Val = getValue(U).getNode(); |
1650 | // If the operand is an empty aggregate, there are no values. |
1651 | if (!Val) continue; |
1652 | // Add each leaf value from the operand to the Constants list |
1653 | // to form a flattened list of all the values. |
1654 | for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) |
1655 | Constants.push_back(SDValue(Val, i)); |
1656 | } |
1657 | |
1658 | return DAG.getMergeValues(Constants, getCurSDLoc()); |
1659 | } |
1660 | |
1661 | if (const ConstantDataSequential *CDS = |
1662 | dyn_cast<ConstantDataSequential>(C)) { |
1663 | SmallVector<SDValue, 4> Ops; |
1664 | for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { |
1665 | SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); |
1666 | // Add each leaf value from the operand to the Constants list |
1667 | // to form a flattened list of all the values. |
1668 | for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) |
1669 | Ops.push_back(SDValue(Val, i)); |
1670 | } |
1671 | |
1672 | if (isa<ArrayType>(CDS->getType())) |
1673 | return DAG.getMergeValues(Ops, getCurSDLoc()); |
1674 | return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); |
1675 | } |
1676 | |
1677 | if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { |
1678 | assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&(static_cast <bool> ((isa<ConstantAggregateZero>( C) || isa<UndefValue>(C)) && "Unknown struct or array constant!" ) ? void (0) : __assert_fail ("(isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && \"Unknown struct or array constant!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1679 , __extension__ __PRETTY_FUNCTION__)) |
1679 | "Unknown struct or array constant!")(static_cast <bool> ((isa<ConstantAggregateZero>( C) || isa<UndefValue>(C)) && "Unknown struct or array constant!" ) ? void (0) : __assert_fail ("(isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && \"Unknown struct or array constant!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1679 , __extension__ __PRETTY_FUNCTION__)); |
1680 | |
1681 | SmallVector<EVT, 4> ValueVTs; |
1682 | ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); |
1683 | unsigned NumElts = ValueVTs.size(); |
1684 | if (NumElts == 0) |
1685 | return SDValue(); // empty struct |
1686 | SmallVector<SDValue, 4> Constants(NumElts); |
1687 | for (unsigned i = 0; i != NumElts; ++i) { |
1688 | EVT EltVT = ValueVTs[i]; |
1689 | if (isa<UndefValue>(C)) |
1690 | Constants[i] = DAG.getUNDEF(EltVT); |
1691 | else if (EltVT.isFloatingPoint()) |
1692 | Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); |
1693 | else |
1694 | Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); |
1695 | } |
1696 | |
1697 | return DAG.getMergeValues(Constants, getCurSDLoc()); |
1698 | } |
1699 | |
1700 | if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) |
1701 | return DAG.getBlockAddress(BA, VT); |
1702 | |
1703 | if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) |
1704 | return getValue(Equiv->getGlobalValue()); |
1705 | |
1706 | if (const auto *NC = dyn_cast<NoCFIValue>(C)) |
1707 | return getValue(NC->getGlobalValue()); |
1708 | |
1709 | VectorType *VecTy = cast<VectorType>(V->getType()); |
1710 | |
1711 | // Now that we know the number and type of the elements, get that number of |
1712 | // elements into the Ops array based on what kind of constant it is. |
1713 | if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { |
1714 | SmallVector<SDValue, 16> Ops; |
1715 | unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); |
1716 | for (unsigned i = 0; i != NumElements; ++i) |
1717 | Ops.push_back(getValue(CV->getOperand(i))); |
1718 | |
1719 | return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); |
1720 | } |
1721 | |
1722 | if (isa<ConstantAggregateZero>(C)) { |
1723 | EVT EltVT = |
1724 | TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); |
1725 | |
1726 | SDValue Op; |
1727 | if (EltVT.isFloatingPoint()) |
1728 | Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); |
1729 | else |
1730 | Op = DAG.getConstant(0, getCurSDLoc(), EltVT); |
1731 | |
1732 | return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); |
1733 | } |
1734 | |
1735 | llvm_unreachable("Unknown vector constant")::llvm::llvm_unreachable_internal("Unknown vector constant", "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp" , 1735); |
1736 | } |
1737 | |
1738 | // If this is a static alloca, generate it as the frameindex instead of |
1739 | // computation. |
1740 | if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
1741 | DenseMap<const AllocaInst*, int>::iterator SI = |
1742 | FuncInfo.StaticAllocaMap.find(AI); |
1743 | if (SI != FuncInfo.StaticAllocaMap.end()) |
1744 | return DAG.getFrameIndex( |
1745 | SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); |
1746 | } |
1747 | |
1748 | // If this is an instruction which fast-isel has deferred, select it now. |
1749 | if (const Instruction *Inst = dyn_cast<Instruction>(V)) { |
1750 | Register InReg = FuncInfo.InitializeRegForValue(Inst); |
1751 | |
1752 | RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, |
1753 | Inst->getType(), std::nullopt); |
1754 | SDValue Chain = DAG.getEntryNode(); |
1755 | return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); |
1756 | } |
1757 | |
1758 | if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) |
1759 | return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); |
1760 | |
1761 | if (const auto *BB = dyn_cast<BasicBlock>(V)) |
1762 | return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); |
1763 | |
1764 | llvm_unreachable("Can't get register for value!")::llvm::llvm_unreachable_internal("Can't get register for value!" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1764 ); |
1765 | } |
1766 | |
1767 | void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { |
1768 | auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); |
1769 | bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; |
1770 | bool IsCoreCLR = Pers == EHPersonality::CoreCLR; |
1771 | bool IsSEH = isAsynchronousEHPersonality(Pers); |
1772 | MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; |
1773 | if (!IsSEH) |
1774 | CatchPadMBB->setIsEHScopeEntry(); |
1775 | // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. |
1776 | if (IsMSVCCXX || IsCoreCLR) |
1777 | CatchPadMBB->setIsEHFuncletEntry(); |
1778 | } |
1779 | |
1780 | void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { |
1781 | // Update machine-CFG edge. |
1782 | MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; |
1783 | FuncInfo.MBB->addSuccessor(TargetMBB); |
1784 | TargetMBB->setIsEHCatchretTarget(true); |
1785 | DAG.getMachineFunction().setHasEHCatchret(true); |
1786 | |
1787 | auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); |
1788 | bool IsSEH = isAsynchronousEHPersonality(Pers); |
1789 | if (IsSEH) { |
1790 | // If this is not a fall-through branch or optimizations are switched off, |
1791 | // emit the branch. |
1792 | if (TargetMBB != NextBlock(FuncInfo.MBB) || |
1793 | TM.getOptLevel() == CodeGenOpt::None) |
1794 | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, |
1795 | getControlRoot(), DAG.getBasicBlock(TargetMBB))); |
1796 | return; |
1797 | } |
1798 | |
1799 | // Figure out the funclet membership for the catchret's successor. |
1800 | // This will be used by the FuncletLayout pass to determine how to order the |
1801 | // BB's. |
1802 | // A 'catchret' returns to the outer scope's color. |
1803 | Value *ParentPad = I.getCatchSwitchParentPad(); |
1804 | const BasicBlock *SuccessorColor; |
1805 | if (isa<ConstantTokenNone>(ParentPad)) |
1806 | SuccessorColor = &FuncInfo.Fn->getEntryBlock(); |
1807 | else |
1808 | SuccessorColor = cast<Instruction>(ParentPad)->getParent(); |
1809 | assert(SuccessorColor && "No parent funclet for catchret!")(static_cast <bool> (SuccessorColor && "No parent funclet for catchret!" ) ? void (0) : __assert_fail ("SuccessorColor && \"No parent funclet for catchret!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1809 , __extension__ __PRETTY_FUNCTION__)); |
1810 | MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; |
1811 | assert(SuccessorColorMBB && "No MBB for SuccessorColor!")(static_cast <bool> (SuccessorColorMBB && "No MBB for SuccessorColor!" ) ? void (0) : __assert_fail ("SuccessorColorMBB && \"No MBB for SuccessorColor!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1811 , __extension__ __PRETTY_FUNCTION__)); |
1812 | |
1813 | // Create the terminator node. |
1814 | SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, |
1815 | getControlRoot(), DAG.getBasicBlock(TargetMBB), |
1816 | DAG.getBasicBlock(SuccessorColorMBB)); |
1817 | DAG.setRoot(Ret); |
1818 | } |
1819 | |
1820 | void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { |
1821 | // Don't emit any special code for the cleanuppad instruction. It just marks |
1822 | // the start of an EH scope/funclet. |
1823 | FuncInfo.MBB->setIsEHScopeEntry(); |
1824 | auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); |
1825 | if (Pers != EHPersonality::Wasm_CXX) { |
1826 | FuncInfo.MBB->setIsEHFuncletEntry(); |
1827 | FuncInfo.MBB->setIsCleanupFuncletEntry(); |
1828 | } |
1829 | } |
1830 | |
1831 | // In wasm EH, even though a catchpad may not catch an exception if a tag does |
1832 | // not match, it is OK to add only the first unwind destination catchpad to the |
1833 | // successors, because there will be at least one invoke instruction within the |
1834 | // catch scope that points to the next unwind destination, if one exists, so |
1835 | // CFGSort cannot mess up with BB sorting order. |
1836 | // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic |
1837 | // call within them, and catchpads only consisting of 'catch (...)' have a |
1838 | // '__cxa_end_catch' call within them, both of which generate invokes in case |
1839 | // the next unwind destination exists, i.e., the next unwind destination is not |
1840 | // the caller.) |
1841 | // |
1842 | // Having at most one EH pad successor is also simpler and helps later |
1843 | // transformations. |
1844 | // |
1845 | // For example, |
1846 | // current: |
1847 | // invoke void @foo to ... unwind label %catch.dispatch |
1848 | // catch.dispatch: |
1849 | // %0 = catchswitch within ... [label %catch.start] unwind label %next |
1850 | // catch.start: |
1851 | // ... |
1852 | // ... in this BB or some other child BB dominated by this BB there will be an |
1853 | // invoke that points to 'next' BB as an unwind destination |
1854 | // |
1855 | // next: ; We don't need to add this to 'current' BB's successor |
1856 | // ... |
1857 | static void findWasmUnwindDestinations( |
1858 | FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, |
1859 | BranchProbability Prob, |
1860 | SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> |
1861 | &UnwindDests) { |
1862 | while (EHPadBB) { |
1863 | const Instruction *Pad = EHPadBB->getFirstNonPHI(); |
1864 | if (isa<CleanupPadInst>(Pad)) { |
1865 | // Stop on cleanup pads. |
1866 | UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); |
1867 | UnwindDests.back().first->setIsEHScopeEntry(); |
1868 | break; |
1869 | } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { |
1870 | // Add the catchpad handlers to the possible destinations. We don't |
1871 | // continue to the unwind destination of the catchswitch for wasm. |
1872 | for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { |
1873 | UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); |
1874 | UnwindDests.back().first->setIsEHScopeEntry(); |
1875 | } |
1876 | break; |
1877 | } else { |
1878 | continue; |
1879 | } |
1880 | } |
1881 | } |
1882 | |
1883 | /// When an invoke or a cleanupret unwinds to the next EH pad, there are |
1884 | /// many places it could ultimately go. In the IR, we have a single unwind |
1885 | /// destination, but in the machine CFG, we enumerate all the possible blocks. |
1886 | /// This function skips over imaginary basic blocks that hold catchswitch |
1887 | /// instructions, and finds all the "real" machine |
1888 | /// basic block destinations. As those destinations may not be successors of |
1889 | /// EHPadBB, here we also calculate the edge probability to those destinations. |
1890 | /// The passed-in Prob is the edge probability to EHPadBB. |
1891 | static void findUnwindDestinations( |
1892 | FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, |
1893 | BranchProbability Prob, |
1894 | SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> |
1895 | &UnwindDests) { |
1896 | EHPersonality Personality = |
1897 | classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); |
1898 | bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; |
1899 | bool IsCoreCLR = Personality == EHPersonality::CoreCLR; |
1900 | bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; |
1901 | bool IsSEH = isAsynchronousEHPersonality(Personality); |
1902 | |
1903 | if (IsWasmCXX) { |
1904 | findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); |
1905 | assert(UnwindDests.size() <= 1 &&(static_cast <bool> (UnwindDests.size() <= 1 && "There should be at most one unwind destination for wasm") ? void (0) : __assert_fail ("UnwindDests.size() <= 1 && \"There should be at most one unwind destination for wasm\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1906 , __extension__ __PRETTY_FUNCTION__)) |
1906 | "There should be at most one unwind destination for wasm")(static_cast <bool> (UnwindDests.size() <= 1 && "There should be at most one unwind destination for wasm") ? void (0) : __assert_fail ("UnwindDests.size() <= 1 && \"There should be at most one unwind destination for wasm\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 1906 , __extension__ __PRETTY_FUNCTION__)); |
1907 | return; |
1908 | } |
1909 | |
1910 | while (EHPadBB) { |
1911 | const Instruction *Pad = EHPadBB->getFirstNonPHI(); |
1912 | BasicBlock *NewEHPadBB = nullptr; |
1913 | if (isa<LandingPadInst>(Pad)) { |
1914 | // Stop on landingpads. They are not funclets. |
1915 | UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); |
1916 | break; |
1917 | } else if (isa<CleanupPadInst>(Pad)) { |
1918 | // Stop on cleanup pads. Cleanups are always funclet entries for all known |
1919 | // personalities. |
1920 | UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); |
1921 | UnwindDests.back().first->setIsEHScopeEntry(); |
1922 | UnwindDests.back().first->setIsEHFuncletEntry(); |
1923 | break; |
1924 | } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { |
1925 | // Add the catchpad handlers to the possible destinations. |
1926 | for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { |
1927 | UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); |
1928 | // For MSVC++ and the CLR, catchblocks are funclets and need prologues. |
1929 | if (IsMSVCCXX || IsCoreCLR) |
1930 | UnwindDests.back().first->setIsEHFuncletEntry(); |
1931 | if (!IsSEH) |
1932 | UnwindDests.back().first->setIsEHScopeEntry(); |
1933 | } |
1934 | NewEHPadBB = CatchSwitch->getUnwindDest(); |
1935 | } else { |
1936 | continue; |
1937 | } |
1938 | |
1939 | BranchProbabilityInfo *BPI = FuncInfo.BPI; |
1940 | if (BPI && NewEHPadBB) |
1941 | Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); |
1942 | EHPadBB = NewEHPadBB; |
1943 | } |
1944 | } |
1945 | |
1946 | void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { |
1947 | // Update successor info. |
1948 | SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; |
1949 | auto UnwindDest = I.getUnwindDest(); |
1950 | BranchProbabilityInfo *BPI = FuncInfo.BPI; |
1951 | BranchProbability UnwindDestProb = |
1952 | (BPI && UnwindDest) |
1953 | ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) |
1954 | : BranchProbability::getZero(); |
1955 | findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); |
1956 | for (auto &UnwindDest : UnwindDests) { |
1957 | UnwindDest.first->setIsEHPad(); |
1958 | addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); |
1959 | } |
1960 | FuncInfo.MBB->normalizeSuccProbs(); |
1961 | |
1962 | // Create the terminator node. |
1963 | SDValue Ret = |
1964 | DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); |
1965 | DAG.setRoot(Ret); |
1966 | } |
1967 | |
1968 | void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { |
1969 | report_fatal_error("visitCatchSwitch not yet implemented!"); |
1970 | } |
1971 | |
1972 | void SelectionDAGBuilder::visitRet(const ReturnInst &I) { |
1973 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
1974 | auto &DL = DAG.getDataLayout(); |
1975 | SDValue Chain = getControlRoot(); |
1976 | SmallVector<ISD::OutputArg, 8> Outs; |
1977 | SmallVector<SDValue, 8> OutVals; |
1978 | |
1979 | // Calls to @llvm.experimental.deoptimize don't generate a return value, so |
1980 | // lower |
1981 | // |
1982 | // %val = call <ty> @llvm.experimental.deoptimize() |
1983 | // ret <ty> %val |
1984 | // |
1985 | // differently. |
1986 | if (I.getParent()->getTerminatingDeoptimizeCall()) { |
1987 | LowerDeoptimizingReturn(); |
1988 | return; |
1989 | } |
1990 | |
1991 | if (!FuncInfo.CanLowerReturn) { |
1992 | unsigned DemoteReg = FuncInfo.DemoteRegister; |
1993 | const Function *F = I.getParent()->getParent(); |
1994 | |
1995 | // Emit a store of the return value through the virtual register. |
1996 | // Leave Outs empty so that LowerReturn won't try to load return |
1997 | // registers the usual way. |
1998 | SmallVector<EVT, 1> PtrValueVTs; |
1999 | ComputeValueVTs(TLI, DL, |
2000 | F->getReturnType()->getPointerTo( |
2001 | DAG.getDataLayout().getAllocaAddrSpace()), |
2002 | PtrValueVTs); |
2003 | |
2004 | SDValue RetPtr = |
2005 | DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); |
2006 | SDValue RetOp = getValue(I.getOperand(0)); |
2007 | |
2008 | SmallVector<EVT, 4> ValueVTs, MemVTs; |
2009 | SmallVector<uint64_t, 4> Offsets; |
2010 | ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, |
2011 | &Offsets); |
2012 | unsigned NumValues = ValueVTs.size(); |
2013 | |
2014 | SmallVector<SDValue, 4> Chains(NumValues); |
2015 | Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); |
2016 | for (unsigned i = 0; i != NumValues; ++i) { |
2017 | // An aggregate return value cannot wrap around the address space, so |
2018 | // offsets to its parts don't wrap either. |
2019 | SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, |
2020 | TypeSize::Fixed(Offsets[i])); |
2021 | |
2022 | SDValue Val = RetOp.getValue(RetOp.getResNo() + i); |
2023 | if (MemVTs[i] != ValueVTs[i]) |
2024 | Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); |
2025 | Chains[i] = DAG.getStore( |
2026 | Chain, getCurSDLoc(), Val, |
2027 | // FIXME: better loc info would be nice. |
2028 | Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), |
2029 | commonAlignment(BaseAlign, Offsets[i])); |
2030 | } |
2031 | |
2032 | Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), |
2033 | MVT::Other, Chains); |
2034 | } else if (I.getNumOperands() != 0) { |
2035 | SmallVector<EVT, 4> ValueVTs; |
2036 | ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); |
2037 | unsigned NumValues = ValueVTs.size(); |
2038 | if (NumValues) { |
2039 | SDValue RetOp = getValue(I.getOperand(0)); |
2040 | |
2041 | const Function *F = I.getParent()->getParent(); |
2042 | |
2043 | bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( |
2044 | I.getOperand(0)->getType(), F->getCallingConv(), |
2045 | /*IsVarArg*/ false, DL); |
2046 | |
2047 | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
2048 | if (F->getAttributes().hasRetAttr(Attribute::SExt)) |
2049 | ExtendKind = ISD::SIGN_EXTEND; |
2050 | else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) |
2051 | ExtendKind = ISD::ZERO_EXTEND; |
2052 | |
2053 | LLVMContext &Context = F->getContext(); |
2054 | bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); |
2055 | |
2056 | for (unsigned j = 0; j != NumValues; ++j) { |
2057 | EVT VT = ValueVTs[j]; |
2058 | |
2059 | if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) |
2060 | VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); |
2061 | |
2062 | CallingConv::ID CC = F->getCallingConv(); |
2063 | |
2064 | unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); |
2065 | MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); |
2066 | SmallVector<SDValue, 4> Parts(NumParts); |
2067 | getCopyToParts(DAG, getCurSDLoc(), |
2068 | SDValue(RetOp.getNode(), RetOp.getResNo() + j), |
2069 | &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); |
2070 | |
2071 | // 'inreg' on function refers to return value |
2072 | ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); |
2073 | if (RetInReg) |
2074 | Flags.setInReg(); |
2075 | |
2076 | if (I.getOperand(0)->getType()->isPointerTy()) { |
2077 | Flags.setPointer(); |
2078 | Flags.setPointerAddrSpace( |
2079 | cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); |
2080 | } |
2081 | |
2082 | if (NeedsRegBlock) { |
2083 | Flags.setInConsecutiveRegs(); |
2084 | if (j == NumValues - 1) |
2085 | Flags.setInConsecutiveRegsLast(); |
2086 | } |
2087 | |
2088 | // Propagate extension type if any |
2089 | if (ExtendKind == ISD::SIGN_EXTEND) |
2090 | Flags.setSExt(); |
2091 | else if (ExtendKind == ISD::ZERO_EXTEND) |
2092 | Flags.setZExt(); |
2093 | |
2094 | for (unsigned i = 0; i < NumParts; ++i) { |
2095 | Outs.push_back(ISD::OutputArg(Flags, |
2096 | Parts[i].getValueType().getSimpleVT(), |
2097 | VT, /*isfixed=*/true, 0, 0)); |
2098 | OutVals.push_back(Parts[i]); |
2099 | } |
2100 | } |
2101 | } |
2102 | } |
2103 | |
2104 | // Push in swifterror virtual register as the last element of Outs. This makes |
2105 | // sure swifterror virtual register will be returned in the swifterror |
2106 | // physical register. |
2107 | const Function *F = I.getParent()->getParent(); |
2108 | if (TLI.supportSwiftError() && |
2109 | F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { |
2110 | assert(SwiftError.getFunctionArg() && "Need a swift error argument")(static_cast <bool> (SwiftError.getFunctionArg() && "Need a swift error argument") ? void (0) : __assert_fail ("SwiftError.getFunctionArg() && \"Need a swift error argument\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2110 , __extension__ __PRETTY_FUNCTION__)); |
2111 | ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); |
2112 | Flags.setSwiftError(); |
2113 | Outs.push_back(ISD::OutputArg( |
2114 | Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), |
2115 | /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); |
2116 | // Create SDNode for the swifterror virtual register. |
2117 | OutVals.push_back( |
2118 | DAG.getRegister(SwiftError.getOrCreateVRegUseAt( |
2119 | &I, FuncInfo.MBB, SwiftError.getFunctionArg()), |
2120 | EVT(TLI.getPointerTy(DL)))); |
2121 | } |
2122 | |
2123 | bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); |
2124 | CallingConv::ID CallConv = |
2125 | DAG.getMachineFunction().getFunction().getCallingConv(); |
2126 | Chain = DAG.getTargetLoweringInfo().LowerReturn( |
2127 | Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); |
2128 | |
2129 | // Verify that the target's LowerReturn behaved as expected. |
2130 | assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&(static_cast <bool> (Chain.getNode() && Chain.getValueType () == MVT::Other && "LowerReturn didn't return a valid chain!" ) ? void (0) : __assert_fail ("Chain.getNode() && Chain.getValueType() == MVT::Other && \"LowerReturn didn't return a valid chain!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2131 , __extension__ __PRETTY_FUNCTION__)) |
2131 | "LowerReturn didn't return a valid chain!")(static_cast <bool> (Chain.getNode() && Chain.getValueType () == MVT::Other && "LowerReturn didn't return a valid chain!" ) ? void (0) : __assert_fail ("Chain.getNode() && Chain.getValueType() == MVT::Other && \"LowerReturn didn't return a valid chain!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2131 , __extension__ __PRETTY_FUNCTION__)); |
2132 | |
2133 | // Update the DAG with the new chain value resulting from return lowering. |
2134 | DAG.setRoot(Chain); |
2135 | } |
2136 | |
2137 | /// CopyToExportRegsIfNeeded - If the given value has virtual registers |
2138 | /// created for it, emit nodes to copy the value into the virtual |
2139 | /// registers. |
2140 | void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { |
2141 | // Skip empty types |
2142 | if (V->getType()->isEmptyTy()) |
2143 | return; |
2144 | |
2145 | DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); |
2146 | if (VMI != FuncInfo.ValueMap.end()) { |
2147 | assert((!V->use_empty() || isa<CallBrInst>(V)) &&(static_cast <bool> ((!V->use_empty() || isa<CallBrInst >(V)) && "Unused value assigned virtual registers!" ) ? void (0) : __assert_fail ("(!V->use_empty() || isa<CallBrInst>(V)) && \"Unused value assigned virtual registers!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2148 , __extension__ __PRETTY_FUNCTION__)) |
2148 | "Unused value assigned virtual registers!")(static_cast <bool> ((!V->use_empty() || isa<CallBrInst >(V)) && "Unused value assigned virtual registers!" ) ? void (0) : __assert_fail ("(!V->use_empty() || isa<CallBrInst>(V)) && \"Unused value assigned virtual registers!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2148 , __extension__ __PRETTY_FUNCTION__)); |
2149 | CopyValueToVirtualRegister(V, VMI->second); |
2150 | } |
2151 | } |
2152 | |
2153 | /// ExportFromCurrentBlock - If this condition isn't known to be exported from |
2154 | /// the current basic block, add it to ValueMap now so that we'll get a |
2155 | /// CopyTo/FromReg. |
2156 | void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { |
2157 | // No need to export constants. |
2158 | if (!isa<Instruction>(V) && !isa<Argument>(V)) return; |
2159 | |
2160 | // Already exported? |
2161 | if (FuncInfo.isExportedInst(V)) return; |
2162 | |
2163 | Register Reg = FuncInfo.InitializeRegForValue(V); |
2164 | CopyValueToVirtualRegister(V, Reg); |
2165 | } |
2166 | |
2167 | bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, |
2168 | const BasicBlock *FromBB) { |
2169 | // The operands of the setcc have to be in this block. We don't know |
2170 | // how to export them from some other block. |
2171 | if (const Instruction *VI = dyn_cast<Instruction>(V)) { |
2172 | // Can export from current BB. |
2173 | if (VI->getParent() == FromBB) |
2174 | return true; |
2175 | |
2176 | // Is already exported, noop. |
2177 | return FuncInfo.isExportedInst(V); |
2178 | } |
2179 | |
2180 | // If this is an argument, we can export it if the BB is the entry block or |
2181 | // if it is already exported. |
2182 | if (isa<Argument>(V)) { |
2183 | if (FromBB->isEntryBlock()) |
2184 | return true; |
2185 | |
2186 | // Otherwise, can only export this if it is already exported. |
2187 | return FuncInfo.isExportedInst(V); |
2188 | } |
2189 | |
2190 | // Otherwise, constants can always be exported. |
2191 | return true; |
2192 | } |
2193 | |
2194 | /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. |
2195 | BranchProbability |
2196 | SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, |
2197 | const MachineBasicBlock *Dst) const { |
2198 | BranchProbabilityInfo *BPI = FuncInfo.BPI; |
2199 | const BasicBlock *SrcBB = Src->getBasicBlock(); |
2200 | const BasicBlock *DstBB = Dst->getBasicBlock(); |
2201 | if (!BPI) { |
2202 | // If BPI is not available, set the default probability as 1 / N, where N is |
2203 | // the number of successors. |
2204 | auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); |
2205 | return BranchProbability(1, SuccSize); |
2206 | } |
2207 | return BPI->getEdgeProbability(SrcBB, DstBB); |
2208 | } |
2209 | |
2210 | void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, |
2211 | MachineBasicBlock *Dst, |
2212 | BranchProbability Prob) { |
2213 | if (!FuncInfo.BPI) |
2214 | Src->addSuccessorWithoutProb(Dst); |
2215 | else { |
2216 | if (Prob.isUnknown()) |
2217 | Prob = getEdgeProbability(Src, Dst); |
2218 | Src->addSuccessor(Dst, Prob); |
2219 | } |
2220 | } |
2221 | |
2222 | static bool InBlock(const Value *V, const BasicBlock *BB) { |
2223 | if (const Instruction *I = dyn_cast<Instruction>(V)) |
2224 | return I->getParent() == BB; |
2225 | return true; |
2226 | } |
2227 | |
2228 | /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. |
2229 | /// This function emits a branch and is used at the leaves of an OR or an |
2230 | /// AND operator tree. |
2231 | void |
2232 | SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, |
2233 | MachineBasicBlock *TBB, |
2234 | MachineBasicBlock *FBB, |
2235 | MachineBasicBlock *CurBB, |
2236 | MachineBasicBlock *SwitchBB, |
2237 | BranchProbability TProb, |
2238 | BranchProbability FProb, |
2239 | bool InvertCond) { |
2240 | const BasicBlock *BB = CurBB->getBasicBlock(); |
2241 | |
2242 | // If the leaf of the tree is a comparison, merge the condition into |
2243 | // the caseblock. |
2244 | if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { |
2245 | // The operands of the cmp have to be in this block. We don't know |
2246 | // how to export them from some other block. If this is the first block |
2247 | // of the sequence, no exporting is needed. |
2248 | if (CurBB == SwitchBB || |
2249 | (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && |
2250 | isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { |
2251 | ISD::CondCode Condition; |
2252 | if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { |
2253 | ICmpInst::Predicate Pred = |
2254 | InvertCond ? IC->getInversePredicate() : IC->getPredicate(); |
2255 | Condition = getICmpCondCode(Pred); |
2256 | } else { |
2257 | const FCmpInst *FC = cast<FCmpInst>(Cond); |
2258 | FCmpInst::Predicate Pred = |
2259 | InvertCond ? FC->getInversePredicate() : FC->getPredicate(); |
2260 | Condition = getFCmpCondCode(Pred); |
2261 | if (TM.Options.NoNaNsFPMath) |
2262 | Condition = getFCmpCodeWithoutNaN(Condition); |
2263 | } |
2264 | |
2265 | CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, |
2266 | TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); |
2267 | SL->SwitchCases.push_back(CB); |
2268 | return; |
2269 | } |
2270 | } |
2271 | |
2272 | // Create a CaseBlock record representing this branch. |
2273 | ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; |
2274 | CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), |
2275 | nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); |
2276 | SL->SwitchCases.push_back(CB); |
2277 | } |
2278 | |
2279 | void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, |
2280 | MachineBasicBlock *TBB, |
2281 | MachineBasicBlock *FBB, |
2282 | MachineBasicBlock *CurBB, |
2283 | MachineBasicBlock *SwitchBB, |
2284 | Instruction::BinaryOps Opc, |
2285 | BranchProbability TProb, |
2286 | BranchProbability FProb, |
2287 | bool InvertCond) { |
2288 | // Skip over not part of the tree and remember to invert op and operands at |
2289 | // next level. |
2290 | Value *NotCond; |
2291 | if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && |
2292 | InBlock(NotCond, CurBB->getBasicBlock())) { |
2293 | FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, |
2294 | !InvertCond); |
2295 | return; |
2296 | } |
2297 | |
2298 | const Instruction *BOp = dyn_cast<Instruction>(Cond); |
2299 | const Value *BOpOp0, *BOpOp1; |
2300 | // Compute the effective opcode for Cond, taking into account whether it needs |
2301 | // to be inverted, e.g. |
2302 | // and (not (or A, B)), C |
2303 | // gets lowered as |
2304 | // and (and (not A, not B), C) |
2305 | Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; |
2306 | if (BOp) { |
2307 | BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) |
2308 | ? Instruction::And |
2309 | : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) |
2310 | ? Instruction::Or |
2311 | : (Instruction::BinaryOps)0); |
2312 | if (InvertCond) { |
2313 | if (BOpc == Instruction::And) |
2314 | BOpc = Instruction::Or; |
2315 | else if (BOpc == Instruction::Or) |
2316 | BOpc = Instruction::And; |
2317 | } |
2318 | } |
2319 | |
2320 | // If this node is not part of the or/and tree, emit it as a branch. |
2321 | // Note that all nodes in the tree should have same opcode. |
2322 | bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); |
2323 | if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || |
2324 | !InBlock(BOpOp0, CurBB->getBasicBlock()) || |
2325 | !InBlock(BOpOp1, CurBB->getBasicBlock())) { |
2326 | EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, |
2327 | TProb, FProb, InvertCond); |
2328 | return; |
2329 | } |
2330 | |
2331 | // Create TmpBB after CurBB. |
2332 | MachineFunction::iterator BBI(CurBB); |
2333 | MachineFunction &MF = DAG.getMachineFunction(); |
2334 | MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); |
2335 | CurBB->getParent()->insert(++BBI, TmpBB); |
2336 | |
2337 | if (Opc == Instruction::Or) { |
2338 | // Codegen X | Y as: |
2339 | // BB1: |
2340 | // jmp_if_X TBB |
2341 | // jmp TmpBB |
2342 | // TmpBB: |
2343 | // jmp_if_Y TBB |
2344 | // jmp FBB |
2345 | // |
2346 | |
2347 | // We have flexibility in setting Prob for BB1 and Prob for TmpBB. |
2348 | // The requirement is that |
2349 | // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) |
2350 | // = TrueProb for original BB. |
2351 | // Assuming the original probabilities are A and B, one choice is to set |
2352 | // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to |
2353 | // A/(1+B) and 2B/(1+B). This choice assumes that |
2354 | // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. |
2355 | // Another choice is to assume TrueProb for BB1 equals to TrueProb for |
2356 | // TmpBB, but the math is more complicated. |
2357 | |
2358 | auto NewTrueProb = TProb / 2; |
2359 | auto NewFalseProb = TProb / 2 + FProb; |
2360 | // Emit the LHS condition. |
2361 | FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, |
2362 | NewFalseProb, InvertCond); |
2363 | |
2364 | // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). |
2365 | SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; |
2366 | BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); |
2367 | // Emit the RHS condition into TmpBB. |
2368 | FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], |
2369 | Probs[1], InvertCond); |
2370 | } else { |
2371 | assert(Opc == Instruction::And && "Unknown merge op!")(static_cast <bool> (Opc == Instruction::And && "Unknown merge op!") ? void (0) : __assert_fail ("Opc == Instruction::And && \"Unknown merge op!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2371 , __extension__ __PRETTY_FUNCTION__)); |
2372 | // Codegen X & Y as: |
2373 | // BB1: |
2374 | // jmp_if_X TmpBB |
2375 | // jmp FBB |
2376 | // TmpBB: |
2377 | // jmp_if_Y TBB |
2378 | // jmp FBB |
2379 | // |
2380 | // This requires creation of TmpBB after CurBB. |
2381 | |
2382 | // We have flexibility in setting Prob for BB1 and Prob for TmpBB. |
2383 | // The requirement is that |
2384 | // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) |
2385 | // = FalseProb for original BB. |
2386 | // Assuming the original probabilities are A and B, one choice is to set |
2387 | // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to |
2388 | // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == |
2389 | // TrueProb for BB1 * FalseProb for TmpBB. |
2390 | |
2391 | auto NewTrueProb = TProb + FProb / 2; |
2392 | auto NewFalseProb = FProb / 2; |
2393 | // Emit the LHS condition. |
2394 | FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, |
2395 | NewFalseProb, InvertCond); |
2396 | |
2397 | // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). |
2398 | SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; |
2399 | BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); |
2400 | // Emit the RHS condition into TmpBB. |
2401 | FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], |
2402 | Probs[1], InvertCond); |
2403 | } |
2404 | } |
2405 | |
2406 | /// If the set of cases should be emitted as a series of branches, return true. |
2407 | /// If we should emit this as a bunch of and/or'd together conditions, return |
2408 | /// false. |
2409 | bool |
2410 | SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { |
2411 | if (Cases.size() != 2) return true; |
2412 | |
2413 | // If this is two comparisons of the same values or'd or and'd together, they |
2414 | // will get folded into a single comparison, so don't emit two blocks. |
2415 | if ((Cases[0].CmpLHS == Cases[1].CmpLHS && |
2416 | Cases[0].CmpRHS == Cases[1].CmpRHS) || |
2417 | (Cases[0].CmpRHS == Cases[1].CmpLHS && |
2418 | Cases[0].CmpLHS == Cases[1].CmpRHS)) { |
2419 | return false; |
2420 | } |
2421 | |
2422 | // Handle: (X != null) | (Y != null) --> (X|Y) != 0 |
2423 | // Handle: (X == null) & (Y == null) --> (X|Y) == 0 |
2424 | if (Cases[0].CmpRHS == Cases[1].CmpRHS && |
2425 | Cases[0].CC == Cases[1].CC && |
2426 | isa<Constant>(Cases[0].CmpRHS) && |
2427 | cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { |
2428 | if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) |
2429 | return false; |
2430 | if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) |
2431 | return false; |
2432 | } |
2433 | |
2434 | return true; |
2435 | } |
2436 | |
2437 | void SelectionDAGBuilder::visitBr(const BranchInst &I) { |
2438 | MachineBasicBlock *BrMBB = FuncInfo.MBB; |
2439 | |
2440 | // Update machine-CFG edges. |
2441 | MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; |
2442 | |
2443 | if (I.isUnconditional()) { |
2444 | // Update machine-CFG edges. |
2445 | BrMBB->addSuccessor(Succ0MBB); |
2446 | |
2447 | // If this is not a fall-through branch or optimizations are switched off, |
2448 | // emit the branch. |
2449 | if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) |
2450 | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), |
2451 | MVT::Other, getControlRoot(), |
2452 | DAG.getBasicBlock(Succ0MBB))); |
2453 | |
2454 | return; |
2455 | } |
2456 | |
2457 | // If this condition is one of the special cases we handle, do special stuff |
2458 | // now. |
2459 | const Value *CondVal = I.getCondition(); |
2460 | MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; |
2461 | |
2462 | // If this is a series of conditions that are or'd or and'd together, emit |
2463 | // this as a sequence of branches instead of setcc's with and/or operations. |
2464 | // As long as jumps are not expensive (exceptions for multi-use logic ops, |
2465 | // unpredictable branches, and vector extracts because those jumps are likely |
2466 | // expensive for any target), this should improve performance. |
2467 | // For example, instead of something like: |
2468 | // cmp A, B |
2469 | // C = seteq |
2470 | // cmp D, E |
2471 | // F = setle |
2472 | // or C, F |
2473 | // jnz foo |
2474 | // Emit: |
2475 | // cmp A, B |
2476 | // je foo |
2477 | // cmp D, E |
2478 | // jle foo |
2479 | const Instruction *BOp = dyn_cast<Instruction>(CondVal); |
2480 | if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && |
2481 | BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { |
2482 | Value *Vec; |
2483 | const Value *BOp0, *BOp1; |
2484 | Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; |
2485 | if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) |
2486 | Opcode = Instruction::And; |
2487 | else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) |
2488 | Opcode = Instruction::Or; |
2489 | |
2490 | if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && |
2491 | match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { |
2492 | FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, |
2493 | getEdgeProbability(BrMBB, Succ0MBB), |
2494 | getEdgeProbability(BrMBB, Succ1MBB), |
2495 | /*InvertCond=*/false); |
2496 | // If the compares in later blocks need to use values not currently |
2497 | // exported from this block, export them now. This block should always |
2498 | // be the first entry. |
2499 | assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!")(static_cast <bool> (SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!") ? void (0) : __assert_fail ("SL->SwitchCases[0].ThisBB == BrMBB && \"Unexpected lowering!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2499 , __extension__ __PRETTY_FUNCTION__)); |
2500 | |
2501 | // Allow some cases to be rejected. |
2502 | if (ShouldEmitAsBranches(SL->SwitchCases)) { |
2503 | for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { |
2504 | ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); |
2505 | ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); |
2506 | } |
2507 | |
2508 | // Emit the branch for this block. |
2509 | visitSwitchCase(SL->SwitchCases[0], BrMBB); |
2510 | SL->SwitchCases.erase(SL->SwitchCases.begin()); |
2511 | return; |
2512 | } |
2513 | |
2514 | // Okay, we decided not to do this, remove any inserted MBB's and clear |
2515 | // SwitchCases. |
2516 | for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) |
2517 | FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); |
2518 | |
2519 | SL->SwitchCases.clear(); |
2520 | } |
2521 | } |
2522 | |
2523 | // Create a CaseBlock record representing this branch. |
2524 | CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), |
2525 | nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); |
2526 | |
2527 | // Use visitSwitchCase to actually insert the fast branch sequence for this |
2528 | // cond branch. |
2529 | visitSwitchCase(CB, BrMBB); |
2530 | } |
2531 | |
2532 | /// visitSwitchCase - Emits the necessary code to represent a single node in |
2533 | /// the binary search tree resulting from lowering a switch instruction. |
2534 | void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, |
2535 | MachineBasicBlock *SwitchBB) { |
2536 | SDValue Cond; |
2537 | SDValue CondLHS = getValue(CB.CmpLHS); |
2538 | SDLoc dl = CB.DL; |
2539 | |
2540 | if (CB.CC == ISD::SETTRUE) { |
2541 | // Branch or fall through to TrueBB. |
2542 | addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); |
2543 | SwitchBB->normalizeSuccProbs(); |
2544 | if (CB.TrueBB != NextBlock(SwitchBB)) { |
2545 | DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), |
2546 | DAG.getBasicBlock(CB.TrueBB))); |
2547 | } |
2548 | return; |
2549 | } |
2550 | |
2551 | auto &TLI = DAG.getTargetLoweringInfo(); |
2552 | EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); |
2553 | |
2554 | // Build the setcc now. |
2555 | if (!CB.CmpMHS) { |
2556 | // Fold "(X == true)" to X and "(X == false)" to !X to |
2557 | // handle common cases produced by branch lowering. |
2558 | if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && |
2559 | CB.CC == ISD::SETEQ) |
2560 | Cond = CondLHS; |
2561 | else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && |
2562 | CB.CC == ISD::SETEQ) { |
2563 | SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); |
2564 | Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); |
2565 | } else { |
2566 | SDValue CondRHS = getValue(CB.CmpRHS); |
2567 | |
2568 | // If a pointer's DAG type is larger than its memory type then the DAG |
2569 | // values are zero-extended. This breaks signed comparisons so truncate |
2570 | // back to the underlying type before doing the compare. |
2571 | if (CondLHS.getValueType() != MemVT) { |
2572 | CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); |
2573 | CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); |
2574 | } |
2575 | Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); |
2576 | } |
2577 | } else { |
2578 | assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now")(static_cast <bool> (CB.CC == ISD::SETLE && "Can handle only LE ranges now" ) ? void (0) : __assert_fail ("CB.CC == ISD::SETLE && \"Can handle only LE ranges now\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2578 , __extension__ __PRETTY_FUNCTION__)); |
2579 | |
2580 | const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); |
2581 | const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); |
2582 | |
2583 | SDValue CmpOp = getValue(CB.CmpMHS); |
2584 | EVT VT = CmpOp.getValueType(); |
2585 | |
2586 | if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { |
2587 | Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), |
2588 | ISD::SETLE); |
2589 | } else { |
2590 | SDValue SUB = DAG.getNode(ISD::SUB, dl, |
2591 | VT, CmpOp, DAG.getConstant(Low, dl, VT)); |
2592 | Cond = DAG.getSetCC(dl, MVT::i1, SUB, |
2593 | DAG.getConstant(High-Low, dl, VT), ISD::SETULE); |
2594 | } |
2595 | } |
2596 | |
2597 | // Update successor info |
2598 | addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); |
2599 | // TrueBB and FalseBB are always different unless the incoming IR is |
2600 | // degenerate. This only happens when running llc on weird IR. |
2601 | if (CB.TrueBB != CB.FalseBB) |
2602 | addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); |
2603 | SwitchBB->normalizeSuccProbs(); |
2604 | |
2605 | // If the lhs block is the next block, invert the condition so that we can |
2606 | // fall through to the lhs instead of the rhs block. |
2607 | if (CB.TrueBB == NextBlock(SwitchBB)) { |
2608 | std::swap(CB.TrueBB, CB.FalseBB); |
2609 | SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); |
2610 | Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); |
2611 | } |
2612 | |
2613 | SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, |
2614 | MVT::Other, getControlRoot(), Cond, |
2615 | DAG.getBasicBlock(CB.TrueBB)); |
2616 | |
2617 | setValue(CurInst, BrCond); |
2618 | |
2619 | // Insert the false branch. Do this even if it's a fall through branch, |
2620 | // this makes it easier to do DAG optimizations which require inverting |
2621 | // the branch condition. |
2622 | BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, |
2623 | DAG.getBasicBlock(CB.FalseBB)); |
2624 | |
2625 | DAG.setRoot(BrCond); |
2626 | } |
2627 | |
2628 | /// visitJumpTable - Emit JumpTable node in the current MBB |
2629 | void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { |
2630 | // Emit the code for the jump table |
2631 | assert(JT.Reg != -1U && "Should lower JT Header first!")(static_cast <bool> (JT.Reg != -1U && "Should lower JT Header first!" ) ? void (0) : __assert_fail ("JT.Reg != -1U && \"Should lower JT Header first!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2631 , __extension__ __PRETTY_FUNCTION__)); |
2632 | EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); |
2633 | SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), |
2634 | JT.Reg, PTy); |
2635 | SDValue Table = DAG.getJumpTable(JT.JTI, PTy); |
2636 | SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), |
2637 | MVT::Other, Index.getValue(1), |
2638 | Table, Index); |
2639 | DAG.setRoot(BrJumpTable); |
2640 | } |
2641 | |
2642 | /// visitJumpTableHeader - This function emits necessary code to produce index |
2643 | /// in the JumpTable from switch case. |
2644 | void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, |
2645 | JumpTableHeader &JTH, |
2646 | MachineBasicBlock *SwitchBB) { |
2647 | SDLoc dl = getCurSDLoc(); |
2648 | |
2649 | // Subtract the lowest switch case value from the value being switched on. |
2650 | SDValue SwitchOp = getValue(JTH.SValue); |
2651 | EVT VT = SwitchOp.getValueType(); |
2652 | SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, |
2653 | DAG.getConstant(JTH.First, dl, VT)); |
2654 | |
2655 | // The SDNode we just created, which holds the value being switched on minus |
2656 | // the smallest case value, needs to be copied to a virtual register so it |
2657 | // can be used as an index into the jump table in a subsequent basic block. |
2658 | // This value may be smaller or larger than the target's pointer type, and |
2659 | // therefore require extension or truncating. |
2660 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
2661 | SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); |
2662 | |
2663 | unsigned JumpTableReg = |
2664 | FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); |
2665 | SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, |
2666 | JumpTableReg, SwitchOp); |
2667 | JT.Reg = JumpTableReg; |
2668 | |
2669 | if (!JTH.FallthroughUnreachable) { |
2670 | // Emit the range check for the jump table, and branch to the default block |
2671 | // for the switch statement if the value being switched on exceeds the |
2672 | // largest case in the switch. |
2673 | SDValue CMP = DAG.getSetCC( |
2674 | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), |
2675 | Sub.getValueType()), |
2676 | Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); |
2677 | |
2678 | SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, |
2679 | MVT::Other, CopyTo, CMP, |
2680 | DAG.getBasicBlock(JT.Default)); |
2681 | |
2682 | // Avoid emitting unnecessary branches to the next block. |
2683 | if (JT.MBB != NextBlock(SwitchBB)) |
2684 | BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, |
2685 | DAG.getBasicBlock(JT.MBB)); |
2686 | |
2687 | DAG.setRoot(BrCond); |
2688 | } else { |
2689 | // Avoid emitting unnecessary branches to the next block. |
2690 | if (JT.MBB != NextBlock(SwitchBB)) |
2691 | DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, |
2692 | DAG.getBasicBlock(JT.MBB))); |
2693 | else |
2694 | DAG.setRoot(CopyTo); |
2695 | } |
2696 | } |
2697 | |
2698 | /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global |
2699 | /// variable if there exists one. |
2700 | static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, |
2701 | SDValue &Chain) { |
2702 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
2703 | EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); |
2704 | EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); |
2705 | MachineFunction &MF = DAG.getMachineFunction(); |
2706 | Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); |
2707 | MachineSDNode *Node = |
2708 | DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); |
2709 | if (Global) { |
2710 | MachinePointerInfo MPInfo(Global); |
2711 | auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | |
2712 | MachineMemOperand::MODereferenceable; |
2713 | MachineMemOperand *MemRef = MF.getMachineMemOperand( |
2714 | MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); |
2715 | DAG.setNodeMemRefs(Node, {MemRef}); |
2716 | } |
2717 | if (PtrTy != PtrMemTy) |
2718 | return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); |
2719 | return SDValue(Node, 0); |
2720 | } |
2721 | |
2722 | /// Codegen a new tail for a stack protector check ParentMBB which has had its |
2723 | /// tail spliced into a stack protector check success bb. |
2724 | /// |
2725 | /// For a high level explanation of how this fits into the stack protector |
2726 | /// generation see the comment on the declaration of class |
2727 | /// StackProtectorDescriptor. |
2728 | void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, |
2729 | MachineBasicBlock *ParentBB) { |
2730 | |
2731 | // First create the loads to the guard/stack slot for the comparison. |
2732 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
2733 | EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); |
2734 | EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); |
2735 | |
2736 | MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); |
2737 | int FI = MFI.getStackProtectorIndex(); |
2738 | |
2739 | SDValue Guard; |
2740 | SDLoc dl = getCurSDLoc(); |
2741 | SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); |
2742 | const Module &M = *ParentBB->getParent()->getFunction().getParent(); |
2743 | Align Align = |
2744 | DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); |
2745 | |
2746 | // Generate code to load the content of the guard slot. |
2747 | SDValue GuardVal = DAG.getLoad( |
2748 | PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, |
2749 | MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, |
2750 | MachineMemOperand::MOVolatile); |
2751 | |
2752 | if (TLI.useStackGuardXorFP()) |
2753 | GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); |
2754 | |
2755 | // Retrieve guard check function, nullptr if instrumentation is inlined. |
2756 | if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { |
2757 | // The target provides a guard check function to validate the guard value. |
2758 | // Generate a call to that function with the content of the guard slot as |
2759 | // argument. |
2760 | FunctionType *FnTy = GuardCheckFn->getFunctionType(); |
2761 | assert(FnTy->getNumParams() == 1 && "Invalid function signature")(static_cast <bool> (FnTy->getNumParams() == 1 && "Invalid function signature") ? void (0) : __assert_fail ("FnTy->getNumParams() == 1 && \"Invalid function signature\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2761 , __extension__ __PRETTY_FUNCTION__)); |
2762 | |
2763 | TargetLowering::ArgListTy Args; |
2764 | TargetLowering::ArgListEntry Entry; |
2765 | Entry.Node = GuardVal; |
2766 | Entry.Ty = FnTy->getParamType(0); |
2767 | if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) |
2768 | Entry.IsInReg = true; |
2769 | Args.push_back(Entry); |
2770 | |
2771 | TargetLowering::CallLoweringInfo CLI(DAG); |
2772 | CLI.setDebugLoc(getCurSDLoc()) |
2773 | .setChain(DAG.getEntryNode()) |
2774 | .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), |
2775 | getValue(GuardCheckFn), std::move(Args)); |
2776 | |
2777 | std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); |
2778 | DAG.setRoot(Result.second); |
2779 | return; |
2780 | } |
2781 | |
2782 | // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. |
2783 | // Otherwise, emit a volatile load to retrieve the stack guard value. |
2784 | SDValue Chain = DAG.getEntryNode(); |
2785 | if (TLI.useLoadStackGuardNode()) { |
2786 | Guard = getLoadStackGuard(DAG, dl, Chain); |
2787 | } else { |
2788 | const Value *IRGuard = TLI.getSDagStackGuard(M); |
2789 | SDValue GuardPtr = getValue(IRGuard); |
2790 | |
2791 | Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, |
2792 | MachinePointerInfo(IRGuard, 0), Align, |
2793 | MachineMemOperand::MOVolatile); |
2794 | } |
2795 | |
2796 | // Perform the comparison via a getsetcc. |
2797 | SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), |
2798 | *DAG.getContext(), |
2799 | Guard.getValueType()), |
2800 | Guard, GuardVal, ISD::SETNE); |
2801 | |
2802 | // If the guard/stackslot do not equal, branch to failure MBB. |
2803 | SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, |
2804 | MVT::Other, GuardVal.getOperand(0), |
2805 | Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); |
2806 | // Otherwise branch to success MBB. |
2807 | SDValue Br = DAG.getNode(ISD::BR, dl, |
2808 | MVT::Other, BrCond, |
2809 | DAG.getBasicBlock(SPD.getSuccessMBB())); |
2810 | |
2811 | DAG.setRoot(Br); |
2812 | } |
2813 | |
2814 | /// Codegen the failure basic block for a stack protector check. |
2815 | /// |
2816 | /// A failure stack protector machine basic block consists simply of a call to |
2817 | /// __stack_chk_fail(). |
2818 | /// |
2819 | /// For a high level explanation of how this fits into the stack protector |
2820 | /// generation see the comment on the declaration of class |
2821 | /// StackProtectorDescriptor. |
2822 | void |
2823 | SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { |
2824 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
2825 | TargetLowering::MakeLibCallOptions CallOptions; |
2826 | CallOptions.setDiscardResult(true); |
2827 | SDValue Chain = |
2828 | TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, |
2829 | std::nullopt, CallOptions, getCurSDLoc()) |
2830 | .second; |
2831 | // On PS4/PS5, the "return address" must still be within the calling |
2832 | // function, even if it's at the very end, so emit an explicit TRAP here. |
2833 | // Passing 'true' for doesNotReturn above won't generate the trap for us. |
2834 | if (TM.getTargetTriple().isPS()) |
2835 | Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); |
2836 | // WebAssembly needs an unreachable instruction after a non-returning call, |
2837 | // because the function return type can be different from __stack_chk_fail's |
2838 | // return type (void). |
2839 | if (TM.getTargetTriple().isWasm()) |
2840 | Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); |
2841 | |
2842 | DAG.setRoot(Chain); |
2843 | } |
2844 | |
2845 | /// visitBitTestHeader - This function emits necessary code to produce value |
2846 | /// suitable for "bit tests" |
2847 | void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, |
2848 | MachineBasicBlock *SwitchBB) { |
2849 | SDLoc dl = getCurSDLoc(); |
2850 | |
2851 | // Subtract the minimum value. |
2852 | SDValue SwitchOp = getValue(B.SValue); |
2853 | EVT VT = SwitchOp.getValueType(); |
2854 | SDValue RangeSub = |
2855 | DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); |
2856 | |
2857 | // Determine the type of the test operands. |
2858 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
2859 | bool UsePtrType = false; |
2860 | if (!TLI.isTypeLegal(VT)) { |
2861 | UsePtrType = true; |
2862 | } else { |
2863 | for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) |
2864 | if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { |
2865 | // Switch table case range are encoded into series of masks. |
2866 | // Just use pointer type, it's guaranteed to fit. |
2867 | UsePtrType = true; |
2868 | break; |
2869 | } |
2870 | } |
2871 | SDValue Sub = RangeSub; |
2872 | if (UsePtrType) { |
2873 | VT = TLI.getPointerTy(DAG.getDataLayout()); |
2874 | Sub = DAG.getZExtOrTrunc(Sub, dl, VT); |
2875 | } |
2876 | |
2877 | B.RegVT = VT.getSimpleVT(); |
2878 | B.Reg = FuncInfo.CreateReg(B.RegVT); |
2879 | SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); |
2880 | |
2881 | MachineBasicBlock* MBB = B.Cases[0].ThisBB; |
2882 | |
2883 | if (!B.FallthroughUnreachable) |
2884 | addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); |
2885 | addSuccessorWithProb(SwitchBB, MBB, B.Prob); |
2886 | SwitchBB->normalizeSuccProbs(); |
2887 | |
2888 | SDValue Root = CopyTo; |
2889 | if (!B.FallthroughUnreachable) { |
2890 | // Conditional branch to the default block. |
2891 | SDValue RangeCmp = DAG.getSetCC(dl, |
2892 | TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), |
2893 | RangeSub.getValueType()), |
2894 | RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), |
2895 | ISD::SETUGT); |
2896 | |
2897 | Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, |
2898 | DAG.getBasicBlock(B.Default)); |
2899 | } |
2900 | |
2901 | // Avoid emitting unnecessary branches to the next block. |
2902 | if (MBB != NextBlock(SwitchBB)) |
2903 | Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); |
2904 | |
2905 | DAG.setRoot(Root); |
2906 | } |
2907 | |
2908 | /// visitBitTestCase - this function produces one "bit test" |
2909 | void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, |
2910 | MachineBasicBlock* NextMBB, |
2911 | BranchProbability BranchProbToNext, |
2912 | unsigned Reg, |
2913 | BitTestCase &B, |
2914 | MachineBasicBlock *SwitchBB) { |
2915 | SDLoc dl = getCurSDLoc(); |
2916 | MVT VT = BB.RegVT; |
2917 | SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); |
2918 | SDValue Cmp; |
2919 | unsigned PopCount = llvm::popcount(B.Mask); |
2920 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
2921 | if (PopCount == 1) { |
2922 | // Testing for a single bit; just compare the shift count with what it |
2923 | // would need to be to shift a 1 bit in that position. |
2924 | Cmp = DAG.getSetCC( |
2925 | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), |
2926 | ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), |
2927 | ISD::SETEQ); |
2928 | } else if (PopCount == BB.Range) { |
2929 | // There is only one zero bit in the range, test for it directly. |
2930 | Cmp = DAG.getSetCC( |
2931 | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), |
2932 | ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); |
2933 | } else { |
2934 | // Make desired shift |
2935 | SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, |
2936 | DAG.getConstant(1, dl, VT), ShiftOp); |
2937 | |
2938 | // Emit bit tests and jumps |
2939 | SDValue AndOp = DAG.getNode(ISD::AND, dl, |
2940 | VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); |
2941 | Cmp = DAG.getSetCC( |
2942 | dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), |
2943 | AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); |
2944 | } |
2945 | |
2946 | // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. |
2947 | addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); |
2948 | // The branch probability from SwitchBB to NextMBB is BranchProbToNext. |
2949 | addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); |
2950 | // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is |
2951 | // one as they are relative probabilities (and thus work more like weights), |
2952 | // and hence we need to normalize them to let the sum of them become one. |
2953 | SwitchBB->normalizeSuccProbs(); |
2954 | |
2955 | SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, |
2956 | MVT::Other, getControlRoot(), |
2957 | Cmp, DAG.getBasicBlock(B.TargetBB)); |
2958 | |
2959 | // Avoid emitting unnecessary branches to the next block. |
2960 | if (NextMBB != NextBlock(SwitchBB)) |
2961 | BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, |
2962 | DAG.getBasicBlock(NextMBB)); |
2963 | |
2964 | DAG.setRoot(BrAnd); |
2965 | } |
2966 | |
2967 | void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { |
2968 | MachineBasicBlock *InvokeMBB = FuncInfo.MBB; |
2969 | |
2970 | // Retrieve successors. Look through artificial IR level blocks like |
2971 | // catchswitch for successors. |
2972 | MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; |
2973 | const BasicBlock *EHPadBB = I.getSuccessor(1); |
2974 | |
2975 | // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't |
2976 | // have to do anything here to lower funclet bundles. |
2977 | assert(!I.hasOperandBundlesOtherThan((static_cast <bool> (!I.hasOperandBundlesOtherThan( {LLVMContext ::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live , LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext ::OB_clang_arc_attachedcall}) && "Cannot lower invokes with arbitrary operand bundles yet!" ) ? void (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live, LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext::OB_clang_arc_attachedcall}) && \"Cannot lower invokes with arbitrary operand bundles yet!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2982 , __extension__ __PRETTY_FUNCTION__)) |
2978 | {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,(static_cast <bool> (!I.hasOperandBundlesOtherThan( {LLVMContext ::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live , LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext ::OB_clang_arc_attachedcall}) && "Cannot lower invokes with arbitrary operand bundles yet!" ) ? void (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live, LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext::OB_clang_arc_attachedcall}) && \"Cannot lower invokes with arbitrary operand bundles yet!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2982 , __extension__ __PRETTY_FUNCTION__)) |
2979 | LLVMContext::OB_gc_live, LLVMContext::OB_funclet,(static_cast <bool> (!I.hasOperandBundlesOtherThan( {LLVMContext ::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live , LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext ::OB_clang_arc_attachedcall}) && "Cannot lower invokes with arbitrary operand bundles yet!" ) ? void (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live, LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext::OB_clang_arc_attachedcall}) && \"Cannot lower invokes with arbitrary operand bundles yet!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2982 , __extension__ __PRETTY_FUNCTION__)) |
2980 | LLVMContext::OB_cfguardtarget,(static_cast <bool> (!I.hasOperandBundlesOtherThan( {LLVMContext ::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live , LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext ::OB_clang_arc_attachedcall}) && "Cannot lower invokes with arbitrary operand bundles yet!" ) ? void (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live, LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext::OB_clang_arc_attachedcall}) && \"Cannot lower invokes with arbitrary operand bundles yet!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2982 , __extension__ __PRETTY_FUNCTION__)) |
2981 | LLVMContext::OB_clang_arc_attachedcall}) &&(static_cast <bool> (!I.hasOperandBundlesOtherThan( {LLVMContext ::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live , LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext ::OB_clang_arc_attachedcall}) && "Cannot lower invokes with arbitrary operand bundles yet!" ) ? void (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live, LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext::OB_clang_arc_attachedcall}) && \"Cannot lower invokes with arbitrary operand bundles yet!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2982 , __extension__ __PRETTY_FUNCTION__)) |
2982 | "Cannot lower invokes with arbitrary operand bundles yet!")(static_cast <bool> (!I.hasOperandBundlesOtherThan( {LLVMContext ::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live , LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext ::OB_clang_arc_attachedcall}) && "Cannot lower invokes with arbitrary operand bundles yet!" ) ? void (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live, LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext::OB_clang_arc_attachedcall}) && \"Cannot lower invokes with arbitrary operand bundles yet!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2982 , __extension__ __PRETTY_FUNCTION__)); |
2983 | |
2984 | const Value *Callee(I.getCalledOperand()); |
2985 | const Function *Fn = dyn_cast<Function>(Callee); |
2986 | if (isa<InlineAsm>(Callee)) |
2987 | visitInlineAsm(I, EHPadBB); |
2988 | else if (Fn && Fn->isIntrinsic()) { |
2989 | switch (Fn->getIntrinsicID()) { |
2990 | default: |
2991 | llvm_unreachable("Cannot invoke this intrinsic")::llvm::llvm_unreachable_internal("Cannot invoke this intrinsic" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 2991 ); |
2992 | case Intrinsic::donothing: |
2993 | // Ignore invokes to @llvm.donothing: jump directly to the next BB. |
2994 | case Intrinsic::seh_try_begin: |
2995 | case Intrinsic::seh_scope_begin: |
2996 | case Intrinsic::seh_try_end: |
2997 | case Intrinsic::seh_scope_end: |
2998 | break; |
2999 | case Intrinsic::experimental_patchpoint_void: |
3000 | case Intrinsic::experimental_patchpoint_i64: |
3001 | visitPatchpoint(I, EHPadBB); |
3002 | break; |
3003 | case Intrinsic::experimental_gc_statepoint: |
3004 | LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); |
3005 | break; |
3006 | case Intrinsic::wasm_rethrow: { |
3007 | // This is usually done in visitTargetIntrinsic, but this intrinsic is |
3008 | // special because it can be invoked, so we manually lower it to a DAG |
3009 | // node here. |
3010 | SmallVector<SDValue, 8> Ops; |
3011 | Ops.push_back(getRoot()); // inchain |
3012 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
3013 | Ops.push_back( |
3014 | DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), |
3015 | TLI.getPointerTy(DAG.getDataLayout()))); |
3016 | SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain |
3017 | DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); |
3018 | break; |
3019 | } |
3020 | } |
3021 | } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { |
3022 | // Currently we do not lower any intrinsic calls with deopt operand bundles. |
3023 | // Eventually we will support lowering the @llvm.experimental.deoptimize |
3024 | // intrinsic, and right now there are no plans to support other intrinsics |
3025 | // with deopt state. |
3026 | LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); |
3027 | } else { |
3028 | LowerCallTo(I, getValue(Callee), false, false, EHPadBB); |
3029 | } |
3030 | |
3031 | // If the value of the invoke is used outside of its defining block, make it |
3032 | // available as a virtual register. |
3033 | // We already took care of the exported value for the statepoint instruction |
3034 | // during call to the LowerStatepoint. |
3035 | if (!isa<GCStatepointInst>(I)) { |
3036 | CopyToExportRegsIfNeeded(&I); |
3037 | } |
3038 | |
3039 | SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; |
3040 | BranchProbabilityInfo *BPI = FuncInfo.BPI; |
3041 | BranchProbability EHPadBBProb = |
3042 | BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) |
3043 | : BranchProbability::getZero(); |
3044 | findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); |
3045 | |
3046 | // Update successor info. |
3047 | addSuccessorWithProb(InvokeMBB, Return); |
3048 | for (auto &UnwindDest : UnwindDests) { |
3049 | UnwindDest.first->setIsEHPad(); |
3050 | addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); |
3051 | } |
3052 | InvokeMBB->normalizeSuccProbs(); |
3053 | |
3054 | // Drop into normal successor. |
3055 | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), |
3056 | DAG.getBasicBlock(Return))); |
3057 | } |
3058 | |
3059 | void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { |
3060 | MachineBasicBlock *CallBrMBB = FuncInfo.MBB; |
3061 | |
3062 | // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't |
3063 | // have to do anything here to lower funclet bundles. |
3064 | assert(!I.hasOperandBundlesOtherThan((static_cast <bool> (!I.hasOperandBundlesOtherThan( {LLVMContext ::OB_deopt, LLVMContext::OB_funclet}) && "Cannot lower callbrs with arbitrary operand bundles yet!" ) ? void (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && \"Cannot lower callbrs with arbitrary operand bundles yet!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3066 , __extension__ __PRETTY_FUNCTION__)) |
3065 | {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&(static_cast <bool> (!I.hasOperandBundlesOtherThan( {LLVMContext ::OB_deopt, LLVMContext::OB_funclet}) && "Cannot lower callbrs with arbitrary operand bundles yet!" ) ? void (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && \"Cannot lower callbrs with arbitrary operand bundles yet!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3066 , __extension__ __PRETTY_FUNCTION__)) |
3066 | "Cannot lower callbrs with arbitrary operand bundles yet!")(static_cast <bool> (!I.hasOperandBundlesOtherThan( {LLVMContext ::OB_deopt, LLVMContext::OB_funclet}) && "Cannot lower callbrs with arbitrary operand bundles yet!" ) ? void (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && \"Cannot lower callbrs with arbitrary operand bundles yet!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3066 , __extension__ __PRETTY_FUNCTION__)); |
3067 | |
3068 | assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr")(static_cast <bool> (I.isInlineAsm() && "Only know how to handle inlineasm callbr" ) ? void (0) : __assert_fail ("I.isInlineAsm() && \"Only know how to handle inlineasm callbr\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3068 , __extension__ __PRETTY_FUNCTION__)); |
3069 | visitInlineAsm(I); |
3070 | CopyToExportRegsIfNeeded(&I); |
3071 | |
3072 | // Retrieve successors. |
3073 | SmallPtrSet<BasicBlock *, 8> Dests; |
3074 | Dests.insert(I.getDefaultDest()); |
3075 | MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; |
3076 | |
3077 | // Update successor info. |
3078 | addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); |
3079 | for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { |
3080 | BasicBlock *Dest = I.getIndirectDest(i); |
3081 | MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; |
3082 | Target->setIsInlineAsmBrIndirectTarget(); |
3083 | Target->setMachineBlockAddressTaken(); |
3084 | Target->setLabelMustBeEmitted(); |
3085 | // Don't add duplicate machine successors. |
3086 | if (Dests.insert(Dest).second) |
3087 | addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); |
3088 | } |
3089 | CallBrMBB->normalizeSuccProbs(); |
3090 | |
3091 | // Drop into default successor. |
3092 | DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), |
3093 | MVT::Other, getControlRoot(), |
3094 | DAG.getBasicBlock(Return))); |
3095 | } |
3096 | |
3097 | void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { |
3098 | llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!")::llvm::llvm_unreachable_internal("SelectionDAGBuilder shouldn't visit resume instructions!" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3098 ); |
3099 | } |
3100 | |
3101 | void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { |
3102 | assert(FuncInfo.MBB->isEHPad() &&(static_cast <bool> (FuncInfo.MBB->isEHPad() && "Call to landingpad not in landing pad!") ? void (0) : __assert_fail ("FuncInfo.MBB->isEHPad() && \"Call to landingpad not in landing pad!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3103 , __extension__ __PRETTY_FUNCTION__)) |
3103 | "Call to landingpad not in landing pad!")(static_cast <bool> (FuncInfo.MBB->isEHPad() && "Call to landingpad not in landing pad!") ? void (0) : __assert_fail ("FuncInfo.MBB->isEHPad() && \"Call to landingpad not in landing pad!\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3103 , __extension__ __PRETTY_FUNCTION__)); |
3104 | |
3105 | // If there aren't registers to copy the values into (e.g., during SjLj |
3106 | // exceptions), then don't bother to create these DAG nodes. |
3107 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
3108 | const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); |
3109 | if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && |
3110 | TLI.getExceptionSelectorRegister(PersonalityFn) == 0) |
3111 | return; |
3112 | |
3113 | // If landingpad's return type is token type, we don't create DAG nodes |
3114 | // for its exception pointer and selector value. The extraction of exception |
3115 | // pointer or selector value from token type landingpads is not currently |
3116 | // supported. |
3117 | if (LP.getType()->isTokenTy()) |
3118 | return; |
3119 | |
3120 | SmallVector<EVT, 2> ValueVTs; |
3121 | SDLoc dl = getCurSDLoc(); |
3122 | ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); |
3123 | assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported")(static_cast <bool> (ValueVTs.size() == 2 && "Only two-valued landingpads are supported" ) ? void (0) : __assert_fail ("ValueVTs.size() == 2 && \"Only two-valued landingpads are supported\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3123 , __extension__ __PRETTY_FUNCTION__)); |
3124 | |
3125 | // Get the two live-in registers as SDValues. The physregs have already been |
3126 | // copied into virtual registers. |
3127 | SDValue Ops[2]; |
3128 | if (FuncInfo.ExceptionPointerVirtReg) { |
3129 | Ops[0] = DAG.getZExtOrTrunc( |
3130 | DAG.getCopyFromReg(DAG.getEntryNode(), dl, |
3131 | FuncInfo.ExceptionPointerVirtReg, |
3132 | TLI.getPointerTy(DAG.getDataLayout())), |
3133 | dl, ValueVTs[0]); |
3134 | } else { |
3135 | Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); |
3136 | } |
3137 | Ops[1] = DAG.getZExtOrTrunc( |
3138 | DAG.getCopyFromReg(DAG.getEntryNode(), dl, |
3139 | FuncInfo.ExceptionSelectorVirtReg, |
3140 | TLI.getPointerTy(DAG.getDataLayout())), |
3141 | dl, ValueVTs[1]); |
3142 | |
3143 | // Merge into one. |
3144 | SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, |
3145 | DAG.getVTList(ValueVTs), Ops); |
3146 | setValue(&LP, Res); |
3147 | } |
3148 | |
3149 | void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, |
3150 | MachineBasicBlock *Last) { |
3151 | // Update JTCases. |
3152 | for (JumpTableBlock &JTB : SL->JTCases) |
3153 | if (JTB.first.HeaderBB == First) |
3154 | JTB.first.HeaderBB = Last; |
3155 | |
3156 | // Update BitTestCases. |
3157 | for (BitTestBlock &BTB : SL->BitTestCases) |
3158 | if (BTB.Parent == First) |
3159 | BTB.Parent = Last; |
3160 | } |
3161 | |
3162 | void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { |
3163 | MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; |
3164 | |
3165 | // Update machine-CFG edges with unique successors. |
3166 | SmallSet<BasicBlock*, 32> Done; |
3167 | for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { |
3168 | BasicBlock *BB = I.getSuccessor(i); |
3169 | bool Inserted = Done.insert(BB).second; |
3170 | if (!Inserted) |
3171 | continue; |
3172 | |
3173 | MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; |
3174 | addSuccessorWithProb(IndirectBrMBB, Succ); |
3175 | } |
3176 | IndirectBrMBB->normalizeSuccProbs(); |
3177 | |
3178 | DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), |
3179 | MVT::Other, getControlRoot(), |
3180 | getValue(I.getAddress()))); |
3181 | } |
3182 | |
3183 | void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { |
3184 | if (!DAG.getTarget().Options.TrapUnreachable) |
3185 | return; |
3186 | |
3187 | // We may be able to ignore unreachable behind a noreturn call. |
3188 | if (DAG.getTarget().Options.NoTrapAfterNoreturn) { |
3189 | const BasicBlock &BB = *I.getParent(); |
3190 | if (&I != &BB.front()) { |
3191 | BasicBlock::const_iterator PredI = |
3192 | std::prev(BasicBlock::const_iterator(&I)); |
3193 | if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { |
3194 | if (Call->doesNotReturn()) |
3195 | return; |
3196 | } |
3197 | } |
3198 | } |
3199 | |
3200 | DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); |
3201 | } |
3202 | |
3203 | void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { |
3204 | SDNodeFlags Flags; |
3205 | if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) |
3206 | Flags.copyFMF(*FPOp); |
3207 | |
3208 | SDValue Op = getValue(I.getOperand(0)); |
3209 | SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), |
3210 | Op, Flags); |
3211 | setValue(&I, UnNodeValue); |
3212 | } |
3213 | |
3214 | void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { |
3215 | SDNodeFlags Flags; |
3216 | if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { |
3217 | Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); |
3218 | Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); |
3219 | } |
3220 | if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) |
3221 | Flags.setExact(ExactOp->isExact()); |
3222 | if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) |
3223 | Flags.copyFMF(*FPOp); |
3224 | |
3225 | SDValue Op1 = getValue(I.getOperand(0)); |
3226 | SDValue Op2 = getValue(I.getOperand(1)); |
3227 | SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), |
3228 | Op1, Op2, Flags); |
3229 | setValue(&I, BinNodeValue); |
3230 | } |
3231 | |
3232 | void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { |
3233 | SDValue Op1 = getValue(I.getOperand(0)); |
3234 | SDValue Op2 = getValue(I.getOperand(1)); |
3235 | |
3236 | EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( |
3237 | Op1.getValueType(), DAG.getDataLayout()); |
3238 | |
3239 | // Coerce the shift amount to the right type if we can. This exposes the |
3240 | // truncate or zext to optimization early. |
3241 | if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { |
3242 | assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&(static_cast <bool> (ShiftTy.getSizeInBits() >= Log2_32_Ceil (Op1.getValueSizeInBits()) && "Unexpected shift type" ) ? void (0) : __assert_fail ("ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && \"Unexpected shift type\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3243 , __extension__ __PRETTY_FUNCTION__)) |
3243 | "Unexpected shift type")(static_cast <bool> (ShiftTy.getSizeInBits() >= Log2_32_Ceil (Op1.getValueSizeInBits()) && "Unexpected shift type" ) ? void (0) : __assert_fail ("ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && \"Unexpected shift type\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3243 , __extension__ __PRETTY_FUNCTION__)); |
3244 | Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); |
3245 | } |
3246 | |
3247 | bool nuw = false; |
3248 | bool nsw = false; |
3249 | bool exact = false; |
3250 | |
3251 | if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { |
3252 | |
3253 | if (const OverflowingBinaryOperator *OFBinOp = |
3254 | dyn_cast<const OverflowingBinaryOperator>(&I)) { |
3255 | nuw = OFBinOp->hasNoUnsignedWrap(); |
3256 | nsw = OFBinOp->hasNoSignedWrap(); |
3257 | } |
3258 | if (const PossiblyExactOperator *ExactOp = |
3259 | dyn_cast<const PossiblyExactOperator>(&I)) |
3260 | exact = ExactOp->isExact(); |
3261 | } |
3262 | SDNodeFlags Flags; |
3263 | Flags.setExact(exact); |
3264 | Flags.setNoSignedWrap(nsw); |
3265 | Flags.setNoUnsignedWrap(nuw); |
3266 | SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, |
3267 | Flags); |
3268 | setValue(&I, Res); |
3269 | } |
3270 | |
3271 | void SelectionDAGBuilder::visitSDiv(const User &I) { |
3272 | SDValue Op1 = getValue(I.getOperand(0)); |
3273 | SDValue Op2 = getValue(I.getOperand(1)); |
3274 | |
3275 | SDNodeFlags Flags; |
3276 | Flags.setExact(isa<PossiblyExactOperator>(&I) && |
3277 | cast<PossiblyExactOperator>(&I)->isExact()); |
3278 | setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, |
3279 | Op2, Flags)); |
3280 | } |
3281 | |
3282 | void SelectionDAGBuilder::visitICmp(const User &I) { |
3283 | ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; |
3284 | if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) |
3285 | predicate = IC->getPredicate(); |
3286 | else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) |
3287 | predicate = ICmpInst::Predicate(IC->getPredicate()); |
3288 | SDValue Op1 = getValue(I.getOperand(0)); |
3289 | SDValue Op2 = getValue(I.getOperand(1)); |
3290 | ISD::CondCode Opcode = getICmpCondCode(predicate); |
3291 | |
3292 | auto &TLI = DAG.getTargetLoweringInfo(); |
3293 | EVT MemVT = |
3294 | TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); |
3295 | |
3296 | // If a pointer's DAG type is larger than its memory type then the DAG values |
3297 | // are zero-extended. This breaks signed comparisons so truncate back to the |
3298 | // underlying type before doing the compare. |
3299 | if (Op1.getValueType() != MemVT) { |
3300 | Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); |
3301 | Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); |
3302 | } |
3303 | |
3304 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3305 | I.getType()); |
3306 | setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); |
3307 | } |
3308 | |
3309 | void SelectionDAGBuilder::visitFCmp(const User &I) { |
3310 | FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; |
3311 | if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) |
3312 | predicate = FC->getPredicate(); |
3313 | else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) |
3314 | predicate = FCmpInst::Predicate(FC->getPredicate()); |
3315 | SDValue Op1 = getValue(I.getOperand(0)); |
3316 | SDValue Op2 = getValue(I.getOperand(1)); |
3317 | |
3318 | ISD::CondCode Condition = getFCmpCondCode(predicate); |
3319 | auto *FPMO = cast<FPMathOperator>(&I); |
3320 | if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) |
3321 | Condition = getFCmpCodeWithoutNaN(Condition); |
3322 | |
3323 | SDNodeFlags Flags; |
3324 | Flags.copyFMF(*FPMO); |
3325 | SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); |
3326 | |
3327 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3328 | I.getType()); |
3329 | setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); |
3330 | } |
3331 | |
3332 | // Check if the condition of the select has one use or two users that are both |
3333 | // selects with the same condition. |
3334 | static bool hasOnlySelectUsers(const Value *Cond) { |
3335 | return llvm::all_of(Cond->users(), [](const Value *V) { |
3336 | return isa<SelectInst>(V); |
3337 | }); |
3338 | } |
3339 | |
3340 | void SelectionDAGBuilder::visitSelect(const User &I) { |
3341 | SmallVector<EVT, 4> ValueVTs; |
3342 | ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), |
3343 | ValueVTs); |
3344 | unsigned NumValues = ValueVTs.size(); |
3345 | if (NumValues == 0) return; |
3346 | |
3347 | SmallVector<SDValue, 4> Values(NumValues); |
3348 | SDValue Cond = getValue(I.getOperand(0)); |
3349 | SDValue LHSVal = getValue(I.getOperand(1)); |
3350 | SDValue RHSVal = getValue(I.getOperand(2)); |
3351 | SmallVector<SDValue, 1> BaseOps(1, Cond); |
3352 | ISD::NodeType OpCode = |
3353 | Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; |
3354 | |
3355 | bool IsUnaryAbs = false; |
3356 | bool Negate = false; |
3357 | |
3358 | SDNodeFlags Flags; |
3359 | if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) |
3360 | Flags.copyFMF(*FPOp); |
3361 | |
3362 | // Min/max matching is only viable if all output VTs are the same. |
3363 | if (all_equal(ValueVTs)) { |
3364 | EVT VT = ValueVTs[0]; |
3365 | LLVMContext &Ctx = *DAG.getContext(); |
3366 | auto &TLI = DAG.getTargetLoweringInfo(); |
3367 | |
3368 | // We care about the legality of the operation after it has been type |
3369 | // legalized. |
3370 | while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) |
3371 | VT = TLI.getTypeToTransformTo(Ctx, VT); |
3372 | |
3373 | // If the vselect is legal, assume we want to leave this as a vector setcc + |
3374 | // vselect. Otherwise, if this is going to be scalarized, we want to see if |
3375 | // min/max is legal on the scalar type. |
3376 | bool UseScalarMinMax = VT.isVector() && |
3377 | !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); |
3378 | |
3379 | // ValueTracking's select pattern matching does not account for -0.0, |
3380 | // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that |
3381 | // -0.0 is less than +0.0. |
3382 | Value *LHS, *RHS; |
3383 | auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); |
3384 | ISD::NodeType Opc = ISD::DELETED_NODE; |
3385 | switch (SPR.Flavor) { |
3386 | case SPF_UMAX: Opc = ISD::UMAX; break; |
3387 | case SPF_UMIN: Opc = ISD::UMIN; break; |
3388 | case SPF_SMAX: Opc = ISD::SMAX; break; |
3389 | case SPF_SMIN: Opc = ISD::SMIN; break; |
3390 | case SPF_FMINNUM: |
3391 | switch (SPR.NaNBehavior) { |
3392 | case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?")::llvm::llvm_unreachable_internal("No NaN behavior for FP op?" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3392 ); |
3393 | case SPNB_RETURNS_NAN: break; |
3394 | case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; |
3395 | case SPNB_RETURNS_ANY: |
3396 | if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || |
3397 | (UseScalarMinMax && |
3398 | TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) |
3399 | Opc = ISD::FMINNUM; |
3400 | break; |
3401 | } |
3402 | break; |
3403 | case SPF_FMAXNUM: |
3404 | switch (SPR.NaNBehavior) { |
3405 | case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?")::llvm::llvm_unreachable_internal("No NaN behavior for FP op?" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3405 ); |
3406 | case SPNB_RETURNS_NAN: break; |
3407 | case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; |
3408 | case SPNB_RETURNS_ANY: |
3409 | if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || |
3410 | (UseScalarMinMax && |
3411 | TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) |
3412 | Opc = ISD::FMAXNUM; |
3413 | break; |
3414 | } |
3415 | break; |
3416 | case SPF_NABS: |
3417 | Negate = true; |
3418 | [[fallthrough]]; |
3419 | case SPF_ABS: |
3420 | IsUnaryAbs = true; |
3421 | Opc = ISD::ABS; |
3422 | break; |
3423 | default: break; |
3424 | } |
3425 | |
3426 | if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && |
3427 | (TLI.isOperationLegalOrCustom(Opc, VT) || |
3428 | (UseScalarMinMax && |
3429 | TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && |
3430 | // If the underlying comparison instruction is used by any other |
3431 | // instruction, the consumed instructions won't be destroyed, so it is |
3432 | // not profitable to convert to a min/max. |
3433 | hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { |
3434 | OpCode = Opc; |
3435 | LHSVal = getValue(LHS); |
3436 | RHSVal = getValue(RHS); |
3437 | BaseOps.clear(); |
3438 | } |
3439 | |
3440 | if (IsUnaryAbs) { |
3441 | OpCode = Opc; |
3442 | LHSVal = getValue(LHS); |
3443 | BaseOps.clear(); |
3444 | } |
3445 | } |
3446 | |
3447 | if (IsUnaryAbs) { |
3448 | for (unsigned i = 0; i != NumValues; ++i) { |
3449 | SDLoc dl = getCurSDLoc(); |
3450 | EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); |
3451 | Values[i] = |
3452 | DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); |
3453 | if (Negate) |
3454 | Values[i] = DAG.getNegative(Values[i], dl, VT); |
3455 | } |
3456 | } else { |
3457 | for (unsigned i = 0; i != NumValues; ++i) { |
3458 | SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); |
3459 | Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); |
3460 | Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); |
3461 | Values[i] = DAG.getNode( |
3462 | OpCode, getCurSDLoc(), |
3463 | LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); |
3464 | } |
3465 | } |
3466 | |
3467 | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), |
3468 | DAG.getVTList(ValueVTs), Values)); |
3469 | } |
3470 | |
3471 | void SelectionDAGBuilder::visitTrunc(const User &I) { |
3472 | // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). |
3473 | SDValue N = getValue(I.getOperand(0)); |
3474 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3475 | I.getType()); |
3476 | setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); |
3477 | } |
3478 | |
3479 | void SelectionDAGBuilder::visitZExt(const User &I) { |
3480 | // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). |
3481 | // ZExt also can't be a cast to bool for same reason. So, nothing much to do |
3482 | SDValue N = getValue(I.getOperand(0)); |
3483 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3484 | I.getType()); |
3485 | setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); |
3486 | } |
3487 | |
3488 | void SelectionDAGBuilder::visitSExt(const User &I) { |
3489 | // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). |
3490 | // SExt also can't be a cast to bool for same reason. So, nothing much to do |
3491 | SDValue N = getValue(I.getOperand(0)); |
3492 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3493 | I.getType()); |
3494 | setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); |
3495 | } |
3496 | |
3497 | void SelectionDAGBuilder::visitFPTrunc(const User &I) { |
3498 | // FPTrunc is never a no-op cast, no need to check |
3499 | SDValue N = getValue(I.getOperand(0)); |
3500 | SDLoc dl = getCurSDLoc(); |
3501 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
3502 | EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
3503 | setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, |
3504 | DAG.getTargetConstant( |
3505 | 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); |
3506 | } |
3507 | |
3508 | void SelectionDAGBuilder::visitFPExt(const User &I) { |
3509 | // FPExt is never a no-op cast, no need to check |
3510 | SDValue N = getValue(I.getOperand(0)); |
3511 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3512 | I.getType()); |
3513 | setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); |
3514 | } |
3515 | |
3516 | void SelectionDAGBuilder::visitFPToUI(const User &I) { |
3517 | // FPToUI is never a no-op cast, no need to check |
3518 | SDValue N = getValue(I.getOperand(0)); |
3519 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3520 | I.getType()); |
3521 | setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); |
3522 | } |
3523 | |
3524 | void SelectionDAGBuilder::visitFPToSI(const User &I) { |
3525 | // FPToSI is never a no-op cast, no need to check |
3526 | SDValue N = getValue(I.getOperand(0)); |
3527 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3528 | I.getType()); |
3529 | setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); |
3530 | } |
3531 | |
3532 | void SelectionDAGBuilder::visitUIToFP(const User &I) { |
3533 | // UIToFP is never a no-op cast, no need to check |
3534 | SDValue N = getValue(I.getOperand(0)); |
3535 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3536 | I.getType()); |
3537 | setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); |
3538 | } |
3539 | |
3540 | void SelectionDAGBuilder::visitSIToFP(const User &I) { |
3541 | // SIToFP is never a no-op cast, no need to check |
3542 | SDValue N = getValue(I.getOperand(0)); |
3543 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3544 | I.getType()); |
3545 | setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); |
3546 | } |
3547 | |
3548 | void SelectionDAGBuilder::visitPtrToInt(const User &I) { |
3549 | // What to do depends on the size of the integer and the size of the pointer. |
3550 | // We can either truncate, zero extend, or no-op, accordingly. |
3551 | SDValue N = getValue(I.getOperand(0)); |
3552 | auto &TLI = DAG.getTargetLoweringInfo(); |
3553 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3554 | I.getType()); |
3555 | EVT PtrMemVT = |
3556 | TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); |
3557 | N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); |
3558 | N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); |
3559 | setValue(&I, N); |
3560 | } |
3561 | |
3562 | void SelectionDAGBuilder::visitIntToPtr(const User &I) { |
3563 | // What to do depends on the size of the integer and the size of the pointer. |
3564 | // We can either truncate, zero extend, or no-op, accordingly. |
3565 | SDValue N = getValue(I.getOperand(0)); |
3566 | auto &TLI = DAG.getTargetLoweringInfo(); |
3567 | EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
3568 | EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); |
3569 | N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); |
3570 | N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); |
3571 | setValue(&I, N); |
3572 | } |
3573 | |
3574 | void SelectionDAGBuilder::visitBitCast(const User &I) { |
3575 | SDValue N = getValue(I.getOperand(0)); |
3576 | SDLoc dl = getCurSDLoc(); |
3577 | EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), |
3578 | I.getType()); |
3579 | |
3580 | // BitCast assures us that source and destination are the same size so this is |
3581 | // either a BITCAST or a no-op. |
3582 | if (DestVT != N.getValueType()) |
3583 | setValue(&I, DAG.getNode(ISD::BITCAST, dl, |
3584 | DestVT, N)); // convert types. |
3585 | // Check if the original LLVM IR Operand was a ConstantInt, because getValue() |
3586 | // might fold any kind of constant expression to an integer constant and that |
3587 | // is not what we are looking for. Only recognize a bitcast of a genuine |
3588 | // constant integer as an opaque constant. |
3589 | else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) |
3590 | setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, |
3591 | /*isOpaque*/true)); |
3592 | else |
3593 | setValue(&I, N); // noop cast. |
3594 | } |
3595 | |
3596 | void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { |
3597 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
3598 | const Value *SV = I.getOperand(0); |
3599 | SDValue N = getValue(SV); |
3600 | EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
3601 | |
3602 | unsigned SrcAS = SV->getType()->getPointerAddressSpace(); |
3603 | unsigned DestAS = I.getType()->getPointerAddressSpace(); |
3604 | |
3605 | if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) |
3606 | N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); |
3607 | |
3608 | setValue(&I, N); |
3609 | } |
3610 | |
3611 | void SelectionDAGBuilder::visitInsertElement(const User &I) { |
3612 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
3613 | SDValue InVec = getValue(I.getOperand(0)); |
3614 | SDValue InVal = getValue(I.getOperand(1)); |
3615 | SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), |
3616 | TLI.getVectorIdxTy(DAG.getDataLayout())); |
3617 | setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), |
3618 | TLI.getValueType(DAG.getDataLayout(), I.getType()), |
3619 | InVec, InVal, InIdx)); |
3620 | } |
3621 | |
3622 | void SelectionDAGBuilder::visitExtractElement(const User &I) { |
3623 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
3624 | SDValue InVec = getValue(I.getOperand(0)); |
3625 | SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), |
3626 | TLI.getVectorIdxTy(DAG.getDataLayout())); |
3627 | setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), |
3628 | TLI.getValueType(DAG.getDataLayout(), I.getType()), |
3629 | InVec, InIdx)); |
3630 | } |
3631 | |
3632 | void SelectionDAGBuilder::visitShuffleVector(const User &I) { |
3633 | SDValue Src1 = getValue(I.getOperand(0)); |
3634 | SDValue Src2 = getValue(I.getOperand(1)); |
3635 | ArrayRef<int> Mask; |
3636 | if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) |
3637 | Mask = SVI->getShuffleMask(); |
3638 | else |
3639 | Mask = cast<ConstantExpr>(I).getShuffleMask(); |
3640 | SDLoc DL = getCurSDLoc(); |
3641 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
3642 | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
3643 | EVT SrcVT = Src1.getValueType(); |
3644 | |
3645 | if (all_of(Mask, [](int Elem) { return Elem == 0; }) && |
3646 | VT.isScalableVector()) { |
3647 | // Canonical splat form of first element of first input vector. |
3648 | SDValue FirstElt = |
3649 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, |
3650 | DAG.getVectorIdxConstant(0, DL)); |
3651 | setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); |
3652 | return; |
3653 | } |
3654 | |
3655 | // For now, we only handle splats for scalable vectors. |
3656 | // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation |
3657 | // for targets that support a SPLAT_VECTOR for non-scalable vector types. |
3658 | assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle")(static_cast <bool> (!VT.isScalableVector() && "Unsupported scalable vector shuffle" ) ? void (0) : __assert_fail ("!VT.isScalableVector() && \"Unsupported scalable vector shuffle\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 3658 , __extension__ __PRETTY_FUNCTION__)); |
3659 | |
3660 | unsigned SrcNumElts = SrcVT.getVectorNumElements(); |
3661 | unsigned MaskNumElts = Mask.size(); |
3662 | |
3663 | if (SrcNumElts == MaskNumElts) { |
3664 | setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); |
3665 | return; |
3666 | } |
3667 | |
3668 | // Normalize the shuffle vector since mask and vector length don't match. |
3669 | if (SrcNumElts < MaskNumElts) { |
3670 | // Mask is longer than the source vectors. We can use concatenate vector to |
3671 | // make the mask and vectors lengths match. |
3672 | |
3673 | if (MaskNumElts % SrcNumElts == 0) { |
3674 | // Mask length is a multiple of the source vector length. |
3675 | // Check if the shuffle is some kind of concatenation of the input |
3676 | // vectors. |
3677 | unsigned NumConcat = MaskNumElts / SrcNumElts; |
3678 | bool IsConcat = true; |
3679 | SmallVector<int, 8> ConcatSrcs(NumConcat, -1); |
3680 | for (unsigned i = 0; i != MaskNumElts; ++i) { |
3681 | int Idx = Mask[i]; |
3682 | if (Idx < 0) |
3683 | continue; |
3684 | // Ensure the indices in each SrcVT sized piece are sequential and that |
3685 | // the same source is used for the whole piece. |
3686 | if ((Idx % SrcNumElts != (i % SrcNumElts)) || |
3687 | (ConcatSrcs[i / SrcNumElts] >= 0 && |
3688 | ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { |
3689 | IsConcat = false; |
3690 | break; |
3691 | } |
3692 | // Remember which source this index came from. |
3693 | ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; |
3694 | } |
3695 | |
3696 | // The shuffle is concatenating multiple vectors together. Just emit |
3697 | // a CONCAT_VECTORS operation. |
3698 | if (IsConcat) { |
3699 | SmallVector<SDValue, 8> ConcatOps; |
3700 | for (auto Src : ConcatSrcs) { |
3701 | if (Src < 0) |
3702 | ConcatOps.push_back(DAG.getUNDEF(SrcVT)); |
3703 | else if (Src == 0) |
3704 | ConcatOps.push_back(Src1); |
3705 | else |
3706 | ConcatOps.push_back(Src2); |
3707 | } |
3708 | setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); |
3709 | return; |
3710 | } |
3711 | } |
3712 | |
3713 | unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); |
3714 | unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; |
3715 | EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), |
3716 | PaddedMaskNumElts); |
3717 | |
3718 | // Pad both vectors with undefs to make them the same length as the mask. |
3719 | SDValue UndefVal = DAG.getUNDEF(SrcVT); |
3720 | |
3721 | SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); |
3722 | SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); |
3723 | MOps1[0] = Src1; |
3724 | MOps2[0] = Src2; |
3725 | |
3726 | Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); |
3727 | Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); |
3728 | |
3729 | // Readjust mask for new input vector length. |
3730 | SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); |
3731 | for (unsigned i = 0; i != MaskNumElts; ++i) { |
3732 | int Idx = Mask[i]; |
3733 | if (Idx >= (int)SrcNumElts) |
3734 | Idx -= SrcNumElts - PaddedMaskNumElts; |
3735 | MappedOps[i] = Idx; |
3736 | } |
3737 | |
3738 | SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); |
3739 | |
3740 | // If the concatenated vector was padded, extract a subvector with the |
3741 | // correct number of elements. |
3742 | if (MaskNumElts != PaddedMaskNumElts) |
3743 | Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, |
3744 | DAG.getVectorIdxConstant(0, DL)); |
3745 | |
3746 | setValue(&I, Result); |
3747 | return; |
3748 | } |
3749 | |
3750 | if (SrcNumElts > MaskNumElts) { |
3751 | // Analyze the access pattern of the vector to see if we can extract |
3752 | // two subvectors and do the shuffle. |
3753 | int StartIdx[2] = { -1, -1 }; // StartIdx to extract from |
3754 | bool CanExtract = true; |
3755 | for (int Idx : Mask) { |
3756 | unsigned Input = 0; |
3757 | if (Idx < 0) |
3758 | continue; |
3759 | |
3760 | if (Idx >= (int)SrcNumElts) { |
3761 | Input = 1; |
3762 | Idx -= SrcNumElts; |
3763 | } |
3764 | |
3765 | // If all the indices come from the same MaskNumElts sized portion of |
3766 | // the sources we can use extract. Also make sure the extract wouldn't |
3767 | // extract past the end of the source. |
3768 | int NewStartIdx = alignDown(Idx, MaskNumElts); |
3769 | if (NewStartIdx + MaskNumElts > SrcNumElts || |
3770 | (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) |
3771 | CanExtract = false; |
3772 | // Make sure we always update StartIdx as we use it to track if all |
3773 | // elements are undef. |
3774 | StartIdx[Input] = NewStartIdx; |
3775 | } |
3776 | |
3777 | if (StartIdx[0] < 0 && StartIdx[1] < 0) { |
3778 | setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. |
3779 | return; |
3780 | } |
3781 | if (CanExtract) { |
3782 | // Extract appropriate subvector and generate a vector shuffle |
3783 | for (unsigned Input = 0; Input < 2; ++Input) { |
3784 | SDValue &Src = Input == 0 ? Src1 : Src2; |
3785 | if (StartIdx[Input] < 0) |
3786 | Src = DAG.getUNDEF(VT); |
3787 | else { |
3788 | Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, |
3789 | DAG.getVectorIdxConstant(StartIdx[Input], DL)); |
3790 | } |
3791 | } |
3792 | |
3793 | // Calculate new mask. |
3794 | SmallVector<int, 8> MappedOps(Mask); |
3795 | for (int &Idx : MappedOps) { |
3796 | if (Idx >= (int)SrcNumElts) |
3797 | Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; |
3798 | else if (Idx >= 0) |
3799 | Idx -= StartIdx[0]; |
3800 | } |
3801 | |
3802 | setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); |
3803 | return; |
3804 | } |
3805 | } |
3806 | |
3807 | // We can't use either concat vectors or extract subvectors so fall back to |
3808 | // replacing the shuffle with extract and build vector. |
3809 | // to insert and build vector. |
3810 | EVT EltVT = VT.getVectorElementType(); |
3811 | SmallVector<SDValue,8> Ops; |
3812 | for (int Idx : Mask) { |
3813 | SDValue Res; |
3814 | |
3815 | if (Idx < 0) { |
3816 | Res = DAG.getUNDEF(EltVT); |
3817 | } else { |
3818 | SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; |
3819 | if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; |
3820 | |
3821 | Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, |
3822 | DAG.getVectorIdxConstant(Idx, DL)); |
3823 | } |
3824 | |
3825 | Ops.push_back(Res); |
3826 | } |
3827 | |
3828 | setValue(&I, DAG.getBuildVector(VT, DL, Ops)); |
3829 | } |
3830 | |
3831 | void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { |
3832 | ArrayRef<unsigned> Indices = I.getIndices(); |
3833 | const Value *Op0 = I.getOperand(0); |
3834 | const Value *Op1 = I.getOperand(1); |
3835 | Type *AggTy = I.getType(); |
3836 | Type *ValTy = Op1->getType(); |
3837 | bool IntoUndef = isa<UndefValue>(Op0); |
3838 | bool FromUndef = isa<UndefValue>(Op1); |
3839 | |
3840 | unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); |
3841 | |
3842 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
3843 | SmallVector<EVT, 4> AggValueVTs; |
3844 | ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); |
3845 | SmallVector<EVT, 4> ValValueVTs; |
3846 | ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); |
3847 | |
3848 | unsigned NumAggValues = AggValueVTs.size(); |
3849 | unsigned NumValValues = ValValueVTs.size(); |
3850 | SmallVector<SDValue, 4> Values(NumAggValues); |
3851 | |
3852 | // Ignore an insertvalue that produces an empty object |
3853 | if (!NumAggValues) { |
3854 | setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); |
3855 | return; |
3856 | } |
3857 | |
3858 | SDValue Agg = getValue(Op0); |
3859 | unsigned i = 0; |
3860 | // Copy the beginning value(s) from the original aggregate. |
3861 | for (; i != LinearIndex; ++i) |
3862 | Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
3863 | SDValue(Agg.getNode(), Agg.getResNo() + i); |
3864 | // Copy values from the inserted value(s). |
3865 | if (NumValValues) { |
3866 | SDValue Val = getValue(Op1); |
3867 | for (; i != LinearIndex + NumValValues; ++i) |
3868 | Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
3869 | SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); |
3870 | } |
3871 | // Copy remaining value(s) from the original aggregate. |
3872 | for (; i != NumAggValues; ++i) |
3873 | Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : |
3874 | SDValue(Agg.getNode(), Agg.getResNo() + i); |
3875 | |
3876 | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), |
3877 | DAG.getVTList(AggValueVTs), Values)); |
3878 | } |
3879 | |
3880 | void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { |
3881 | ArrayRef<unsigned> Indices = I.getIndices(); |
3882 | const Value *Op0 = I.getOperand(0); |
3883 | Type *AggTy = Op0->getType(); |
3884 | Type *ValTy = I.getType(); |
3885 | bool OutOfUndef = isa<UndefValue>(Op0); |
3886 | |
3887 | unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); |
3888 | |
3889 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
3890 | SmallVector<EVT, 4> ValValueVTs; |
3891 | ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); |
3892 | |
3893 | unsigned NumValValues = ValValueVTs.size(); |
3894 | |
3895 | // Ignore a extractvalue that produces an empty object |
3896 | if (!NumValValues) { |
3897 | setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); |
3898 | return; |
3899 | } |
3900 | |
3901 | SmallVector<SDValue, 4> Values(NumValValues); |
3902 | |
3903 | SDValue Agg = getValue(Op0); |
3904 | // Copy out the selected value(s). |
3905 | for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) |
3906 | Values[i - LinearIndex] = |
3907 | OutOfUndef ? |
3908 | DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : |
3909 | SDValue(Agg.getNode(), Agg.getResNo() + i); |
3910 | |
3911 | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), |
3912 | DAG.getVTList(ValValueVTs), Values)); |
3913 | } |
3914 | |
3915 | void SelectionDAGBuilder::visitGetElementPtr(const User &I) { |
3916 | Value *Op0 = I.getOperand(0); |
3917 | // Note that the pointer operand may be a vector of pointers. Take the scalar |
3918 | // element which holds a pointer. |
3919 | unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); |
3920 | SDValue N = getValue(Op0); |
3921 | SDLoc dl = getCurSDLoc(); |
3922 | auto &TLI = DAG.getTargetLoweringInfo(); |
3923 | |
3924 | // Normalize Vector GEP - all scalar operands should be converted to the |
3925 | // splat vector. |
3926 | bool IsVectorGEP = I.getType()->isVectorTy(); |
3927 | ElementCount VectorElementCount = |
3928 | IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() |
3929 | : ElementCount::getFixed(0); |
3930 | |
3931 | if (IsVectorGEP && !N.getValueType().isVector()) { |
3932 | LLVMContext &Context = *DAG.getContext(); |
3933 | EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); |
3934 | N = DAG.getSplat(VT, dl, N); |
3935 | } |
3936 | |
3937 | for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); |
3938 | GTI != E; ++GTI) { |
3939 | const Value *Idx = GTI.getOperand(); |
3940 | if (StructType *StTy = GTI.getStructTypeOrNull()) { |
3941 | unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); |
3942 | if (Field) { |
3943 | // N = N + Offset |
3944 | uint64_t Offset = |
3945 | DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); |
3946 | |
3947 | // In an inbounds GEP with an offset that is nonnegative even when |
3948 | // interpreted as signed, assume there is no unsigned overflow. |
3949 | SDNodeFlags Flags; |
3950 | if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) |
3951 | Flags.setNoUnsignedWrap(true); |
3952 | |
3953 | N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, |
3954 | DAG.getConstant(Offset, dl, N.getValueType()), Flags); |
3955 | } |
3956 | } else { |
3957 | // IdxSize is the width of the arithmetic according to IR semantics. |
3958 | // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth |
3959 | // (and fix up the result later). |
3960 | unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); |
3961 | MVT IdxTy = MVT::getIntegerVT(IdxSize); |
3962 | TypeSize ElementSize = |
3963 | DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); |
3964 | // We intentionally mask away the high bits here; ElementSize may not |
3965 | // fit in IdxTy. |
3966 | APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); |
3967 | bool ElementScalable = ElementSize.isScalable(); |
3968 | |
3969 | // If this is a scalar constant or a splat vector of constants, |
3970 | // handle it quickly. |
3971 | const auto *C = dyn_cast<Constant>(Idx); |
3972 | if (C && isa<VectorType>(C->getType())) |
3973 | C = C->getSplatValue(); |
3974 | |
3975 | const auto *CI = dyn_cast_or_null<ConstantInt>(C); |
3976 | if (CI && CI->isZero()) |
3977 | continue; |
3978 | if (CI && !ElementScalable) { |
3979 | APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); |
3980 | LLVMContext &Context = *DAG.getContext(); |
3981 | SDValue OffsVal; |
3982 | if (IsVectorGEP) |
3983 | OffsVal = DAG.getConstant( |
3984 | Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); |
3985 | else |
3986 | OffsVal = DAG.getConstant(Offs, dl, IdxTy); |
3987 | |
3988 | // In an inbounds GEP with an offset that is nonnegative even when |
3989 | // interpreted as signed, assume there is no unsigned overflow. |
3990 | SDNodeFlags Flags; |
3991 | if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) |
3992 | Flags.setNoUnsignedWrap(true); |
3993 | |
3994 | OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); |
3995 | |
3996 | N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); |
3997 | continue; |
3998 | } |
3999 | |
4000 | // N = N + Idx * ElementMul; |
4001 | SDValue IdxN = getValue(Idx); |
4002 | |
4003 | if (!IdxN.getValueType().isVector() && IsVectorGEP) { |
4004 | EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), |
4005 | VectorElementCount); |
4006 | IdxN = DAG.getSplat(VT, dl, IdxN); |
4007 | } |
4008 | |
4009 | // If the index is smaller or larger than intptr_t, truncate or extend |
4010 | // it. |
4011 | IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); |
4012 | |
4013 | if (ElementScalable) { |
4014 | EVT VScaleTy = N.getValueType().getScalarType(); |
4015 | SDValue VScale = DAG.getNode( |
4016 | ISD::VSCALE, dl, VScaleTy, |
4017 | DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); |
4018 | if (IsVectorGEP) |
4019 | VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); |
4020 | IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); |
4021 | } else { |
4022 | // If this is a multiply by a power of two, turn it into a shl |
4023 | // immediately. This is a very common case. |
4024 | if (ElementMul != 1) { |
4025 | if (ElementMul.isPowerOf2()) { |
4026 | unsigned Amt = ElementMul.logBase2(); |
4027 | IdxN = DAG.getNode(ISD::SHL, dl, |
4028 | N.getValueType(), IdxN, |
4029 | DAG.getConstant(Amt, dl, IdxN.getValueType())); |
4030 | } else { |
4031 | SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, |
4032 | IdxN.getValueType()); |
4033 | IdxN = DAG.getNode(ISD::MUL, dl, |
4034 | N.getValueType(), IdxN, Scale); |
4035 | } |
4036 | } |
4037 | } |
4038 | |
4039 | N = DAG.getNode(ISD::ADD, dl, |
4040 | N.getValueType(), N, IdxN); |
4041 | } |
4042 | } |
4043 | |
4044 | MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); |
4045 | MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); |
4046 | if (IsVectorGEP) { |
4047 | PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); |
4048 | PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); |
4049 | } |
4050 | |
4051 | if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) |
4052 | N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); |
4053 | |
4054 | setValue(&I, N); |
4055 | } |
4056 | |
4057 | void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { |
4058 | // If this is a fixed sized alloca in the entry block of the function, |
4059 | // allocate it statically on the stack. |
4060 | if (FuncInfo.StaticAllocaMap.count(&I)) |
4061 | return; // getValue will auto-populate this. |
4062 | |
4063 | SDLoc dl = getCurSDLoc(); |
4064 | Type *Ty = I.getAllocatedType(); |
4065 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4066 | auto &DL = DAG.getDataLayout(); |
4067 | TypeSize TySize = DL.getTypeAllocSize(Ty); |
4068 | MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); |
4069 | |
4070 | SDValue AllocSize = getValue(I.getArraySize()); |
4071 | |
4072 | EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); |
4073 | if (AllocSize.getValueType() != IntPtr) |
4074 | AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); |
4075 | |
4076 | if (TySize.isScalable()) |
4077 | AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, |
4078 | DAG.getVScale(dl, IntPtr, |
4079 | APInt(IntPtr.getScalarSizeInBits(), |
4080 | TySize.getKnownMinValue()))); |
4081 | else |
4082 | AllocSize = |
4083 | DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, |
4084 | DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); |
4085 | |
4086 | // Handle alignment. If the requested alignment is less than or equal to |
4087 | // the stack alignment, ignore it. If the size is greater than or equal to |
4088 | // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. |
4089 | Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); |
4090 | if (*Alignment <= StackAlign) |
4091 | Alignment = std::nullopt; |
4092 | |
4093 | const uint64_t StackAlignMask = StackAlign.value() - 1U; |
4094 | // Round the size of the allocation up to the stack alignment size |
4095 | // by add SA-1 to the size. This doesn't overflow because we're computing |
4096 | // an address inside an alloca. |
4097 | SDNodeFlags Flags; |
4098 | Flags.setNoUnsignedWrap(true); |
4099 | AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, |
4100 | DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); |
4101 | |
4102 | // Mask out the low bits for alignment purposes. |
4103 | AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, |
4104 | DAG.getConstant(~StackAlignMask, dl, IntPtr)); |
4105 | |
4106 | SDValue Ops[] = { |
4107 | getRoot(), AllocSize, |
4108 | DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; |
4109 | SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); |
4110 | SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); |
4111 | setValue(&I, DSA); |
4112 | DAG.setRoot(DSA.getValue(1)); |
4113 | |
4114 | assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects())(static_cast <bool> (FuncInfo.MF->getFrameInfo().hasVarSizedObjects ()) ? void (0) : __assert_fail ("FuncInfo.MF->getFrameInfo().hasVarSizedObjects()" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4114 , __extension__ __PRETTY_FUNCTION__)); |
4115 | } |
4116 | |
4117 | void SelectionDAGBuilder::visitLoad(const LoadInst &I) { |
4118 | if (I.isAtomic()) |
4119 | return visitAtomicLoad(I); |
4120 | |
4121 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4122 | const Value *SV = I.getOperand(0); |
4123 | if (TLI.supportSwiftError()) { |
4124 | // Swifterror values can come from either a function parameter with |
4125 | // swifterror attribute or an alloca with swifterror attribute. |
4126 | if (const Argument *Arg = dyn_cast<Argument>(SV)) { |
4127 | if (Arg->hasSwiftErrorAttr()) |
4128 | return visitLoadFromSwiftError(I); |
4129 | } |
4130 | |
4131 | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { |
4132 | if (Alloca->isSwiftError()) |
4133 | return visitLoadFromSwiftError(I); |
4134 | } |
4135 | } |
4136 | |
4137 | SDValue Ptr = getValue(SV); |
4138 | |
4139 | Type *Ty = I.getType(); |
4140 | SmallVector<EVT, 4> ValueVTs, MemVTs; |
4141 | SmallVector<uint64_t, 4> Offsets; |
4142 | ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); |
4143 | unsigned NumValues = ValueVTs.size(); |
4144 | if (NumValues == 0) |
4145 | return; |
4146 | |
4147 | Align Alignment = I.getAlign(); |
4148 | AAMDNodes AAInfo = I.getAAMetadata(); |
4149 | const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); |
4150 | bool isVolatile = I.isVolatile(); |
4151 | MachineMemOperand::Flags MMOFlags = |
4152 | TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); |
4153 | |
4154 | SDValue Root; |
4155 | bool ConstantMemory = false; |
4156 | if (isVolatile) |
4157 | // Serialize volatile loads with other side effects. |
4158 | Root = getRoot(); |
4159 | else if (NumValues > MaxParallelChains) |
4160 | Root = getMemoryRoot(); |
4161 | else if (AA && |
4162 | AA->pointsToConstantMemory(MemoryLocation( |
4163 | SV, |
4164 | LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), |
4165 | AAInfo))) { |
4166 | // Do not serialize (non-volatile) loads of constant memory with anything. |
4167 | Root = DAG.getEntryNode(); |
4168 | ConstantMemory = true; |
4169 | MMOFlags |= MachineMemOperand::MOInvariant; |
4170 | } else { |
4171 | // Do not serialize non-volatile loads against each other. |
4172 | Root = DAG.getRoot(); |
4173 | } |
4174 | |
4175 | SDLoc dl = getCurSDLoc(); |
4176 | |
4177 | if (isVolatile) |
4178 | Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); |
4179 | |
4180 | // An aggregate load cannot wrap around the address space, so offsets to its |
4181 | // parts don't wrap either. |
4182 | SDNodeFlags Flags; |
4183 | Flags.setNoUnsignedWrap(true); |
4184 | |
4185 | SmallVector<SDValue, 4> Values(NumValues); |
4186 | SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); |
4187 | EVT PtrVT = Ptr.getValueType(); |
4188 | |
4189 | unsigned ChainI = 0; |
4190 | for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { |
4191 | // Serializing loads here may result in excessive register pressure, and |
4192 | // TokenFactor places arbitrary choke points on the scheduler. SD scheduling |
4193 | // could recover a bit by hoisting nodes upward in the chain by recognizing |
4194 | // they are side-effect free or do not alias. The optimizer should really |
4195 | // avoid this case by converting large object/array copies to llvm.memcpy |
4196 | // (MaxParallelChains should always remain as failsafe). |
4197 | if (ChainI == MaxParallelChains) { |
4198 | assert(PendingLoads.empty() && "PendingLoads must be serialized first")(static_cast <bool> (PendingLoads.empty() && "PendingLoads must be serialized first" ) ? void (0) : __assert_fail ("PendingLoads.empty() && \"PendingLoads must be serialized first\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4198 , __extension__ __PRETTY_FUNCTION__)); |
4199 | SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
4200 | ArrayRef(Chains.data(), ChainI)); |
4201 | Root = Chain; |
4202 | ChainI = 0; |
4203 | } |
4204 | SDValue A = DAG.getNode(ISD::ADD, dl, |
4205 | PtrVT, Ptr, |
4206 | DAG.getConstant(Offsets[i], dl, PtrVT), |
4207 | Flags); |
4208 | |
4209 | SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, |
4210 | MachinePointerInfo(SV, Offsets[i]), Alignment, |
4211 | MMOFlags, AAInfo, Ranges); |
4212 | Chains[ChainI] = L.getValue(1); |
4213 | |
4214 | if (MemVTs[i] != ValueVTs[i]) |
4215 | L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); |
4216 | |
4217 | Values[i] = L; |
4218 | } |
4219 | |
4220 | if (!ConstantMemory) { |
4221 | SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
4222 | ArrayRef(Chains.data(), ChainI)); |
4223 | if (isVolatile) |
4224 | DAG.setRoot(Chain); |
4225 | else |
4226 | PendingLoads.push_back(Chain); |
4227 | } |
4228 | |
4229 | setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, |
4230 | DAG.getVTList(ValueVTs), Values)); |
4231 | } |
4232 | |
4233 | void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { |
4234 | assert(DAG.getTargetLoweringInfo().supportSwiftError() &&(static_cast <bool> (DAG.getTargetLoweringInfo().supportSwiftError () && "call visitStoreToSwiftError when backend supports swifterror" ) ? void (0) : __assert_fail ("DAG.getTargetLoweringInfo().supportSwiftError() && \"call visitStoreToSwiftError when backend supports swifterror\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4235 , __extension__ __PRETTY_FUNCTION__)) |
4235 | "call visitStoreToSwiftError when backend supports swifterror")(static_cast <bool> (DAG.getTargetLoweringInfo().supportSwiftError () && "call visitStoreToSwiftError when backend supports swifterror" ) ? void (0) : __assert_fail ("DAG.getTargetLoweringInfo().supportSwiftError() && \"call visitStoreToSwiftError when backend supports swifterror\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4235 , __extension__ __PRETTY_FUNCTION__)); |
4236 | |
4237 | SmallVector<EVT, 4> ValueVTs; |
4238 | SmallVector<uint64_t, 4> Offsets; |
4239 | const Value *SrcV = I.getOperand(0); |
4240 | ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), |
4241 | SrcV->getType(), ValueVTs, &Offsets); |
4242 | assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&(static_cast <bool> (ValueVTs.size() == 1 && Offsets [0] == 0 && "expect a single EVT for swifterror") ? void (0) : __assert_fail ("ValueVTs.size() == 1 && Offsets[0] == 0 && \"expect a single EVT for swifterror\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4243 , __extension__ __PRETTY_FUNCTION__)) |
4243 | "expect a single EVT for swifterror")(static_cast <bool> (ValueVTs.size() == 1 && Offsets [0] == 0 && "expect a single EVT for swifterror") ? void (0) : __assert_fail ("ValueVTs.size() == 1 && Offsets[0] == 0 && \"expect a single EVT for swifterror\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4243 , __extension__ __PRETTY_FUNCTION__)); |
4244 | |
4245 | SDValue Src = getValue(SrcV); |
4246 | // Create a virtual register, then update the virtual register. |
4247 | Register VReg = |
4248 | SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); |
4249 | // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue |
4250 | // Chain can be getRoot or getControlRoot. |
4251 | SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, |
4252 | SDValue(Src.getNode(), Src.getResNo())); |
4253 | DAG.setRoot(CopyNode); |
4254 | } |
4255 | |
4256 | void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { |
4257 | assert(DAG.getTargetLoweringInfo().supportSwiftError() &&(static_cast <bool> (DAG.getTargetLoweringInfo().supportSwiftError () && "call visitLoadFromSwiftError when backend supports swifterror" ) ? void (0) : __assert_fail ("DAG.getTargetLoweringInfo().supportSwiftError() && \"call visitLoadFromSwiftError when backend supports swifterror\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4258 , __extension__ __PRETTY_FUNCTION__)) |
4258 | "call visitLoadFromSwiftError when backend supports swifterror")(static_cast <bool> (DAG.getTargetLoweringInfo().supportSwiftError () && "call visitLoadFromSwiftError when backend supports swifterror" ) ? void (0) : __assert_fail ("DAG.getTargetLoweringInfo().supportSwiftError() && \"call visitLoadFromSwiftError when backend supports swifterror\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4258 , __extension__ __PRETTY_FUNCTION__)); |
4259 | |
4260 | assert(!I.isVolatile() &&(static_cast <bool> (!I.isVolatile() && !I.hasMetadata (LLVMContext::MD_nontemporal) && !I.hasMetadata(LLVMContext ::MD_invariant_load) && "Support volatile, non temporal, invariant for load_from_swift_error" ) ? void (0) : __assert_fail ("!I.isVolatile() && !I.hasMetadata(LLVMContext::MD_nontemporal) && !I.hasMetadata(LLVMContext::MD_invariant_load) && \"Support volatile, non temporal, invariant for load_from_swift_error\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4263 , __extension__ __PRETTY_FUNCTION__)) |
4261 | !I.hasMetadata(LLVMContext::MD_nontemporal) &&(static_cast <bool> (!I.isVolatile() && !I.hasMetadata (LLVMContext::MD_nontemporal) && !I.hasMetadata(LLVMContext ::MD_invariant_load) && "Support volatile, non temporal, invariant for load_from_swift_error" ) ? void (0) : __assert_fail ("!I.isVolatile() && !I.hasMetadata(LLVMContext::MD_nontemporal) && !I.hasMetadata(LLVMContext::MD_invariant_load) && \"Support volatile, non temporal, invariant for load_from_swift_error\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4263 , __extension__ __PRETTY_FUNCTION__)) |
4262 | !I.hasMetadata(LLVMContext::MD_invariant_load) &&(static_cast <bool> (!I.isVolatile() && !I.hasMetadata (LLVMContext::MD_nontemporal) && !I.hasMetadata(LLVMContext ::MD_invariant_load) && "Support volatile, non temporal, invariant for load_from_swift_error" ) ? void (0) : __assert_fail ("!I.isVolatile() && !I.hasMetadata(LLVMContext::MD_nontemporal) && !I.hasMetadata(LLVMContext::MD_invariant_load) && \"Support volatile, non temporal, invariant for load_from_swift_error\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4263 , __extension__ __PRETTY_FUNCTION__)) |
4263 | "Support volatile, non temporal, invariant for load_from_swift_error")(static_cast <bool> (!I.isVolatile() && !I.hasMetadata (LLVMContext::MD_nontemporal) && !I.hasMetadata(LLVMContext ::MD_invariant_load) && "Support volatile, non temporal, invariant for load_from_swift_error" ) ? void (0) : __assert_fail ("!I.isVolatile() && !I.hasMetadata(LLVMContext::MD_nontemporal) && !I.hasMetadata(LLVMContext::MD_invariant_load) && \"Support volatile, non temporal, invariant for load_from_swift_error\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4263 , __extension__ __PRETTY_FUNCTION__)); |
4264 | |
4265 | const Value *SV = I.getOperand(0); |
4266 | Type *Ty = I.getType(); |
4267 | assert((static_cast <bool> ((!AA || !AA->pointsToConstantMemory (MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout( ).getTypeStoreSize(Ty)), I.getAAMetadata()))) && "load_from_swift_error should not be constant memory" ) ? void (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), I.getAAMetadata()))) && \"load_from_swift_error should not be constant memory\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4272 , __extension__ __PRETTY_FUNCTION__)) |
4268 | (!AA ||(static_cast <bool> ((!AA || !AA->pointsToConstantMemory (MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout( ).getTypeStoreSize(Ty)), I.getAAMetadata()))) && "load_from_swift_error should not be constant memory" ) ? void (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), I.getAAMetadata()))) && \"load_from_swift_error should not be constant memory\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4272 , __extension__ __PRETTY_FUNCTION__)) |
4269 | !AA->pointsToConstantMemory(MemoryLocation((static_cast <bool> ((!AA || !AA->pointsToConstantMemory (MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout( ).getTypeStoreSize(Ty)), I.getAAMetadata()))) && "load_from_swift_error should not be constant memory" ) ? void (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), I.getAAMetadata()))) && \"load_from_swift_error should not be constant memory\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4272 , __extension__ __PRETTY_FUNCTION__)) |
4270 | SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),(static_cast <bool> ((!AA || !AA->pointsToConstantMemory (MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout( ).getTypeStoreSize(Ty)), I.getAAMetadata()))) && "load_from_swift_error should not be constant memory" ) ? void (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), I.getAAMetadata()))) && \"load_from_swift_error should not be constant memory\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4272 , __extension__ __PRETTY_FUNCTION__)) |
4271 | I.getAAMetadata()))) &&(static_cast <bool> ((!AA || !AA->pointsToConstantMemory (MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout( ).getTypeStoreSize(Ty)), I.getAAMetadata()))) && "load_from_swift_error should not be constant memory" ) ? void (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), I.getAAMetadata()))) && \"load_from_swift_error should not be constant memory\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4272 , __extension__ __PRETTY_FUNCTION__)) |
4272 | "load_from_swift_error should not be constant memory")(static_cast <bool> ((!AA || !AA->pointsToConstantMemory (MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout( ).getTypeStoreSize(Ty)), I.getAAMetadata()))) && "load_from_swift_error should not be constant memory" ) ? void (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), I.getAAMetadata()))) && \"load_from_swift_error should not be constant memory\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4272 , __extension__ __PRETTY_FUNCTION__)); |
4273 | |
4274 | SmallVector<EVT, 4> ValueVTs; |
4275 | SmallVector<uint64_t, 4> Offsets; |
4276 | ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, |
4277 | ValueVTs, &Offsets); |
4278 | assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&(static_cast <bool> (ValueVTs.size() == 1 && Offsets [0] == 0 && "expect a single EVT for swifterror") ? void (0) : __assert_fail ("ValueVTs.size() == 1 && Offsets[0] == 0 && \"expect a single EVT for swifterror\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4279 , __extension__ __PRETTY_FUNCTION__)) |
4279 | "expect a single EVT for swifterror")(static_cast <bool> (ValueVTs.size() == 1 && Offsets [0] == 0 && "expect a single EVT for swifterror") ? void (0) : __assert_fail ("ValueVTs.size() == 1 && Offsets[0] == 0 && \"expect a single EVT for swifterror\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4279 , __extension__ __PRETTY_FUNCTION__)); |
4280 | |
4281 | // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT |
4282 | SDValue L = DAG.getCopyFromReg( |
4283 | getRoot(), getCurSDLoc(), |
4284 | SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); |
4285 | |
4286 | setValue(&I, L); |
4287 | } |
4288 | |
4289 | void SelectionDAGBuilder::visitStore(const StoreInst &I) { |
4290 | if (I.isAtomic()) |
4291 | return visitAtomicStore(I); |
4292 | |
4293 | const Value *SrcV = I.getOperand(0); |
4294 | const Value *PtrV = I.getOperand(1); |
4295 | |
4296 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4297 | if (TLI.supportSwiftError()) { |
4298 | // Swifterror values can come from either a function parameter with |
4299 | // swifterror attribute or an alloca with swifterror attribute. |
4300 | if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { |
4301 | if (Arg->hasSwiftErrorAttr()) |
4302 | return visitStoreToSwiftError(I); |
4303 | } |
4304 | |
4305 | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { |
4306 | if (Alloca->isSwiftError()) |
4307 | return visitStoreToSwiftError(I); |
4308 | } |
4309 | } |
4310 | |
4311 | SmallVector<EVT, 4> ValueVTs, MemVTs; |
4312 | SmallVector<uint64_t, 4> Offsets; |
4313 | ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), |
4314 | SrcV->getType(), ValueVTs, &MemVTs, &Offsets); |
4315 | unsigned NumValues = ValueVTs.size(); |
4316 | if (NumValues == 0) |
4317 | return; |
4318 | |
4319 | // Get the lowered operands. Note that we do this after |
4320 | // checking if NumResults is zero, because with zero results |
4321 | // the operands won't have values in the map. |
4322 | SDValue Src = getValue(SrcV); |
4323 | SDValue Ptr = getValue(PtrV); |
4324 | |
4325 | SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); |
4326 | SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); |
4327 | SDLoc dl = getCurSDLoc(); |
4328 | Align Alignment = I.getAlign(); |
4329 | AAMDNodes AAInfo = I.getAAMetadata(); |
4330 | |
4331 | auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); |
4332 | |
4333 | // An aggregate load cannot wrap around the address space, so offsets to its |
4334 | // parts don't wrap either. |
4335 | SDNodeFlags Flags; |
4336 | Flags.setNoUnsignedWrap(true); |
4337 | |
4338 | unsigned ChainI = 0; |
4339 | for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { |
4340 | // See visitLoad comments. |
4341 | if (ChainI == MaxParallelChains) { |
4342 | SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
4343 | ArrayRef(Chains.data(), ChainI)); |
4344 | Root = Chain; |
4345 | ChainI = 0; |
4346 | } |
4347 | SDValue Add = |
4348 | DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); |
4349 | SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); |
4350 | if (MemVTs[i] != ValueVTs[i]) |
4351 | Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); |
4352 | SDValue St = |
4353 | DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), |
4354 | Alignment, MMOFlags, AAInfo); |
4355 | Chains[ChainI] = St; |
4356 | } |
4357 | |
4358 | SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
4359 | ArrayRef(Chains.data(), ChainI)); |
4360 | setValue(&I, StoreNode); |
4361 | DAG.setRoot(StoreNode); |
4362 | } |
4363 | |
4364 | void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, |
4365 | bool IsCompressing) { |
4366 | SDLoc sdl = getCurSDLoc(); |
4367 | |
4368 | auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, |
4369 | MaybeAlign &Alignment) { |
4370 | // llvm.masked.store.*(Src0, Ptr, alignment, Mask) |
4371 | Src0 = I.getArgOperand(0); |
4372 | Ptr = I.getArgOperand(1); |
4373 | Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); |
4374 | Mask = I.getArgOperand(3); |
4375 | }; |
4376 | auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, |
4377 | MaybeAlign &Alignment) { |
4378 | // llvm.masked.compressstore.*(Src0, Ptr, Mask) |
4379 | Src0 = I.getArgOperand(0); |
4380 | Ptr = I.getArgOperand(1); |
4381 | Mask = I.getArgOperand(2); |
4382 | Alignment = std::nullopt; |
4383 | }; |
4384 | |
4385 | Value *PtrOperand, *MaskOperand, *Src0Operand; |
4386 | MaybeAlign Alignment; |
4387 | if (IsCompressing) |
4388 | getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); |
4389 | else |
4390 | getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); |
4391 | |
4392 | SDValue Ptr = getValue(PtrOperand); |
4393 | SDValue Src0 = getValue(Src0Operand); |
4394 | SDValue Mask = getValue(MaskOperand); |
4395 | SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); |
4396 | |
4397 | EVT VT = Src0.getValueType(); |
4398 | if (!Alignment) |
4399 | Alignment = DAG.getEVTAlign(VT); |
4400 | |
4401 | MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( |
4402 | MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, |
4403 | MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); |
4404 | SDValue StoreNode = |
4405 | DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, |
4406 | ISD::UNINDEXED, false /* Truncating */, IsCompressing); |
4407 | DAG.setRoot(StoreNode); |
4408 | setValue(&I, StoreNode); |
4409 | } |
4410 | |
4411 | // Get a uniform base for the Gather/Scatter intrinsic. |
4412 | // The first argument of the Gather/Scatter intrinsic is a vector of pointers. |
4413 | // We try to represent it as a base pointer + vector of indices. |
4414 | // Usually, the vector of pointers comes from a 'getelementptr' instruction. |
4415 | // The first operand of the GEP may be a single pointer or a vector of pointers |
4416 | // Example: |
4417 | // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind |
4418 | // or |
4419 | // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind |
4420 | // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. |
4421 | // |
4422 | // When the first GEP operand is a single pointer - it is the uniform base we |
4423 | // are looking for. If first operand of the GEP is a splat vector - we |
4424 | // extract the splat value and use it as a uniform base. |
4425 | // In all other cases the function returns 'false'. |
4426 | static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, |
4427 | ISD::MemIndexType &IndexType, SDValue &Scale, |
4428 | SelectionDAGBuilder *SDB, const BasicBlock *CurBB, |
4429 | uint64_t ElemSize) { |
4430 | SelectionDAG& DAG = SDB->DAG; |
4431 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4432 | const DataLayout &DL = DAG.getDataLayout(); |
4433 | |
4434 | assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type")(static_cast <bool> (Ptr->getType()->isVectorTy() && "Unexpected pointer type") ? void (0) : __assert_fail ("Ptr->getType()->isVectorTy() && \"Unexpected pointer type\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4434 , __extension__ __PRETTY_FUNCTION__)); |
4435 | |
4436 | // Handle splat constant pointer. |
4437 | if (auto *C = dyn_cast<Constant>(Ptr)) { |
4438 | C = C->getSplatValue(); |
4439 | if (!C) |
4440 | return false; |
4441 | |
4442 | Base = SDB->getValue(C); |
4443 | |
4444 | ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); |
4445 | EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); |
4446 | Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); |
4447 | IndexType = ISD::SIGNED_SCALED; |
4448 | Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); |
4449 | return true; |
4450 | } |
4451 | |
4452 | const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); |
4453 | if (!GEP || GEP->getParent() != CurBB) |
4454 | return false; |
4455 | |
4456 | if (GEP->getNumOperands() != 2) |
4457 | return false; |
4458 | |
4459 | const Value *BasePtr = GEP->getPointerOperand(); |
4460 | const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); |
4461 | |
4462 | // Make sure the base is scalar and the index is a vector. |
4463 | if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) |
4464 | return false; |
4465 | |
4466 | uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); |
4467 | |
4468 | // Target may not support the required addressing mode. |
4469 | if (ScaleVal != 1 && |
4470 | !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize)) |
4471 | return false; |
4472 | |
4473 | Base = SDB->getValue(BasePtr); |
4474 | Index = SDB->getValue(IndexVal); |
4475 | IndexType = ISD::SIGNED_SCALED; |
4476 | |
4477 | Scale = |
4478 | DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); |
4479 | return true; |
4480 | } |
4481 | |
4482 | void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { |
4483 | SDLoc sdl = getCurSDLoc(); |
4484 | |
4485 | // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) |
4486 | const Value *Ptr = I.getArgOperand(1); |
4487 | SDValue Src0 = getValue(I.getArgOperand(0)); |
4488 | SDValue Mask = getValue(I.getArgOperand(3)); |
4489 | EVT VT = Src0.getValueType(); |
4490 | Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) |
4491 | ->getMaybeAlignValue() |
4492 | .value_or(DAG.getEVTAlign(VT.getScalarType())); |
4493 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4494 | |
4495 | SDValue Base; |
4496 | SDValue Index; |
4497 | ISD::MemIndexType IndexType; |
4498 | SDValue Scale; |
4499 | bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, |
4500 | I.getParent(), VT.getScalarStoreSize()); |
4501 | |
4502 | unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); |
4503 | MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( |
4504 | MachinePointerInfo(AS), MachineMemOperand::MOStore, |
4505 | // TODO: Make MachineMemOperands aware of scalable |
4506 | // vectors. |
4507 | MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); |
4508 | if (!UniformBase) { |
4509 | Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); |
4510 | Index = getValue(Ptr); |
4511 | IndexType = ISD::SIGNED_SCALED; |
4512 | Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); |
4513 | } |
4514 | |
4515 | EVT IdxVT = Index.getValueType(); |
4516 | EVT EltTy = IdxVT.getVectorElementType(); |
4517 | if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { |
4518 | EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); |
4519 | Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); |
4520 | } |
4521 | |
4522 | SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; |
4523 | SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, |
4524 | Ops, MMO, IndexType, false); |
4525 | DAG.setRoot(Scatter); |
4526 | setValue(&I, Scatter); |
4527 | } |
4528 | |
4529 | void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { |
4530 | SDLoc sdl = getCurSDLoc(); |
4531 | |
4532 | auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, |
4533 | MaybeAlign &Alignment) { |
4534 | // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) |
4535 | Ptr = I.getArgOperand(0); |
4536 | Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); |
4537 | Mask = I.getArgOperand(2); |
4538 | Src0 = I.getArgOperand(3); |
4539 | }; |
4540 | auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, |
4541 | MaybeAlign &Alignment) { |
4542 | // @llvm.masked.expandload.*(Ptr, Mask, Src0) |
4543 | Ptr = I.getArgOperand(0); |
4544 | Alignment = std::nullopt; |
4545 | Mask = I.getArgOperand(1); |
4546 | Src0 = I.getArgOperand(2); |
4547 | }; |
4548 | |
4549 | Value *PtrOperand, *MaskOperand, *Src0Operand; |
4550 | MaybeAlign Alignment; |
4551 | if (IsExpanding) |
4552 | getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); |
4553 | else |
4554 | getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); |
4555 | |
4556 | SDValue Ptr = getValue(PtrOperand); |
4557 | SDValue Src0 = getValue(Src0Operand); |
4558 | SDValue Mask = getValue(MaskOperand); |
4559 | SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); |
4560 | |
4561 | EVT VT = Src0.getValueType(); |
4562 | if (!Alignment) |
4563 | Alignment = DAG.getEVTAlign(VT); |
4564 | |
4565 | AAMDNodes AAInfo = I.getAAMetadata(); |
4566 | const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); |
4567 | |
4568 | // Do not serialize masked loads of constant memory with anything. |
4569 | MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); |
4570 | bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); |
4571 | |
4572 | SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); |
4573 | |
4574 | MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( |
4575 | MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, |
4576 | MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); |
4577 | |
4578 | SDValue Load = |
4579 | DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, |
4580 | ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); |
4581 | if (AddToChain) |
4582 | PendingLoads.push_back(Load.getValue(1)); |
4583 | setValue(&I, Load); |
4584 | } |
4585 | |
4586 | void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { |
4587 | SDLoc sdl = getCurSDLoc(); |
4588 | |
4589 | // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) |
4590 | const Value *Ptr = I.getArgOperand(0); |
4591 | SDValue Src0 = getValue(I.getArgOperand(3)); |
4592 | SDValue Mask = getValue(I.getArgOperand(2)); |
4593 | |
4594 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4595 | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
4596 | Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) |
4597 | ->getMaybeAlignValue() |
4598 | .value_or(DAG.getEVTAlign(VT.getScalarType())); |
4599 | |
4600 | const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); |
4601 | |
4602 | SDValue Root = DAG.getRoot(); |
4603 | SDValue Base; |
4604 | SDValue Index; |
4605 | ISD::MemIndexType IndexType; |
4606 | SDValue Scale; |
4607 | bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, |
4608 | I.getParent(), VT.getScalarStoreSize()); |
4609 | unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); |
4610 | MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( |
4611 | MachinePointerInfo(AS), MachineMemOperand::MOLoad, |
4612 | // TODO: Make MachineMemOperands aware of scalable |
4613 | // vectors. |
4614 | MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); |
4615 | |
4616 | if (!UniformBase) { |
4617 | Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); |
4618 | Index = getValue(Ptr); |
4619 | IndexType = ISD::SIGNED_SCALED; |
4620 | Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); |
4621 | } |
4622 | |
4623 | EVT IdxVT = Index.getValueType(); |
4624 | EVT EltTy = IdxVT.getVectorElementType(); |
4625 | if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { |
4626 | EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); |
4627 | Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); |
4628 | } |
4629 | |
4630 | SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; |
4631 | SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, |
4632 | Ops, MMO, IndexType, ISD::NON_EXTLOAD); |
4633 | |
4634 | PendingLoads.push_back(Gather.getValue(1)); |
4635 | setValue(&I, Gather); |
4636 | } |
4637 | |
4638 | void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { |
4639 | SDLoc dl = getCurSDLoc(); |
4640 | AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); |
4641 | AtomicOrdering FailureOrdering = I.getFailureOrdering(); |
4642 | SyncScope::ID SSID = I.getSyncScopeID(); |
4643 | |
4644 | SDValue InChain = getRoot(); |
4645 | |
4646 | MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); |
4647 | SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); |
4648 | |
4649 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4650 | auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); |
4651 | |
4652 | MachineFunction &MF = DAG.getMachineFunction(); |
4653 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
4654 | MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), |
4655 | DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, |
4656 | FailureOrdering); |
4657 | |
4658 | SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, |
4659 | dl, MemVT, VTs, InChain, |
4660 | getValue(I.getPointerOperand()), |
4661 | getValue(I.getCompareOperand()), |
4662 | getValue(I.getNewValOperand()), MMO); |
4663 | |
4664 | SDValue OutChain = L.getValue(2); |
4665 | |
4666 | setValue(&I, L); |
4667 | DAG.setRoot(OutChain); |
4668 | } |
4669 | |
4670 | void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { |
4671 | SDLoc dl = getCurSDLoc(); |
4672 | ISD::NodeType NT; |
4673 | switch (I.getOperation()) { |
4674 | default: llvm_unreachable("Unknown atomicrmw operation")::llvm::llvm_unreachable_internal("Unknown atomicrmw operation" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4674 ); |
4675 | case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; |
4676 | case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; |
4677 | case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; |
4678 | case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; |
4679 | case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; |
4680 | case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; |
4681 | case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; |
4682 | case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; |
4683 | case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; |
4684 | case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; |
4685 | case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; |
4686 | case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; |
4687 | case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; |
4688 | case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; |
4689 | case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; |
4690 | case AtomicRMWInst::UIncWrap: |
4691 | NT = ISD::ATOMIC_LOAD_UINC_WRAP; |
4692 | break; |
4693 | case AtomicRMWInst::UDecWrap: |
4694 | NT = ISD::ATOMIC_LOAD_UDEC_WRAP; |
4695 | break; |
4696 | } |
4697 | AtomicOrdering Ordering = I.getOrdering(); |
4698 | SyncScope::ID SSID = I.getSyncScopeID(); |
4699 | |
4700 | SDValue InChain = getRoot(); |
4701 | |
4702 | auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); |
4703 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4704 | auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); |
4705 | |
4706 | MachineFunction &MF = DAG.getMachineFunction(); |
4707 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
4708 | MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), |
4709 | DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); |
4710 | |
4711 | SDValue L = |
4712 | DAG.getAtomic(NT, dl, MemVT, InChain, |
4713 | getValue(I.getPointerOperand()), getValue(I.getValOperand()), |
4714 | MMO); |
4715 | |
4716 | SDValue OutChain = L.getValue(1); |
4717 | |
4718 | setValue(&I, L); |
4719 | DAG.setRoot(OutChain); |
4720 | } |
4721 | |
4722 | void SelectionDAGBuilder::visitFence(const FenceInst &I) { |
4723 | SDLoc dl = getCurSDLoc(); |
4724 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4725 | SDValue Ops[3]; |
4726 | Ops[0] = getRoot(); |
4727 | Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, |
4728 | TLI.getFenceOperandTy(DAG.getDataLayout())); |
4729 | Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, |
4730 | TLI.getFenceOperandTy(DAG.getDataLayout())); |
4731 | SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); |
4732 | setValue(&I, N); |
4733 | DAG.setRoot(N); |
4734 | } |
4735 | |
4736 | void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { |
4737 | SDLoc dl = getCurSDLoc(); |
4738 | AtomicOrdering Order = I.getOrdering(); |
4739 | SyncScope::ID SSID = I.getSyncScopeID(); |
4740 | |
4741 | SDValue InChain = getRoot(); |
4742 | |
4743 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4744 | EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); |
4745 | EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); |
4746 | |
4747 | if (!TLI.supportsUnalignedAtomics() && |
4748 | I.getAlign().value() < MemVT.getSizeInBits() / 8) |
4749 | report_fatal_error("Cannot generate unaligned atomic load"); |
4750 | |
4751 | auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); |
4752 | |
4753 | MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( |
4754 | MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), |
4755 | I.getAlign(), AAMDNodes(), nullptr, SSID, Order); |
4756 | |
4757 | InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); |
4758 | |
4759 | SDValue Ptr = getValue(I.getPointerOperand()); |
4760 | |
4761 | if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { |
4762 | // TODO: Once this is better exercised by tests, it should be merged with |
4763 | // the normal path for loads to prevent future divergence. |
4764 | SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); |
4765 | if (MemVT != VT) |
4766 | L = DAG.getPtrExtOrTrunc(L, dl, VT); |
4767 | |
4768 | setValue(&I, L); |
4769 | SDValue OutChain = L.getValue(1); |
4770 | if (!I.isUnordered()) |
4771 | DAG.setRoot(OutChain); |
4772 | else |
4773 | PendingLoads.push_back(OutChain); |
4774 | return; |
4775 | } |
4776 | |
4777 | SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, |
4778 | Ptr, MMO); |
4779 | |
4780 | SDValue OutChain = L.getValue(1); |
4781 | if (MemVT != VT) |
4782 | L = DAG.getPtrExtOrTrunc(L, dl, VT); |
4783 | |
4784 | setValue(&I, L); |
4785 | DAG.setRoot(OutChain); |
4786 | } |
4787 | |
4788 | void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { |
4789 | SDLoc dl = getCurSDLoc(); |
4790 | |
4791 | AtomicOrdering Ordering = I.getOrdering(); |
4792 | SyncScope::ID SSID = I.getSyncScopeID(); |
4793 | |
4794 | SDValue InChain = getRoot(); |
4795 | |
4796 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4797 | EVT MemVT = |
4798 | TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); |
4799 | |
4800 | if (!TLI.supportsUnalignedAtomics() && |
4801 | I.getAlign().value() < MemVT.getSizeInBits() / 8) |
4802 | report_fatal_error("Cannot generate unaligned atomic store"); |
4803 | |
4804 | auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); |
4805 | |
4806 | MachineFunction &MF = DAG.getMachineFunction(); |
4807 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
4808 | MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), |
4809 | I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); |
4810 | |
4811 | SDValue Val = getValue(I.getValueOperand()); |
4812 | if (Val.getValueType() != MemVT) |
4813 | Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); |
4814 | SDValue Ptr = getValue(I.getPointerOperand()); |
4815 | |
4816 | if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { |
4817 | // TODO: Once this is better exercised by tests, it should be merged with |
4818 | // the normal path for stores to prevent future divergence. |
4819 | SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); |
4820 | setValue(&I, S); |
4821 | DAG.setRoot(S); |
4822 | return; |
4823 | } |
4824 | SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, |
4825 | Ptr, Val, MMO); |
4826 | |
4827 | setValue(&I, OutChain); |
4828 | DAG.setRoot(OutChain); |
4829 | } |
4830 | |
4831 | /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC |
4832 | /// node. |
4833 | void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, |
4834 | unsigned Intrinsic) { |
4835 | // Ignore the callsite's attributes. A specific call site may be marked with |
4836 | // readnone, but the lowering code will expect the chain based on the |
4837 | // definition. |
4838 | const Function *F = I.getCalledFunction(); |
4839 | bool HasChain = !F->doesNotAccessMemory(); |
4840 | bool OnlyLoad = HasChain && F->onlyReadsMemory(); |
4841 | |
4842 | // Build the operand list. |
4843 | SmallVector<SDValue, 8> Ops; |
4844 | if (HasChain) { // If this intrinsic has side-effects, chainify it. |
4845 | if (OnlyLoad) { |
4846 | // We don't need to serialize loads against other loads. |
4847 | Ops.push_back(DAG.getRoot()); |
4848 | } else { |
4849 | Ops.push_back(getRoot()); |
4850 | } |
4851 | } |
4852 | |
4853 | // Info is set by getTgtMemIntrinsic |
4854 | TargetLowering::IntrinsicInfo Info; |
4855 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4856 | bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, |
4857 | DAG.getMachineFunction(), |
4858 | Intrinsic); |
4859 | |
4860 | // Add the intrinsic ID as an integer operand if it's not a target intrinsic. |
4861 | if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || |
4862 | Info.opc == ISD::INTRINSIC_W_CHAIN) |
4863 | Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), |
4864 | TLI.getPointerTy(DAG.getDataLayout()))); |
4865 | |
4866 | // Add all operands of the call to the operand list. |
4867 | for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { |
4868 | const Value *Arg = I.getArgOperand(i); |
4869 | if (!I.paramHasAttr(i, Attribute::ImmArg)) { |
4870 | Ops.push_back(getValue(Arg)); |
4871 | continue; |
4872 | } |
4873 | |
4874 | // Use TargetConstant instead of a regular constant for immarg. |
4875 | EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); |
4876 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { |
4877 | assert(CI->getBitWidth() <= 64 &&(static_cast <bool> (CI->getBitWidth() <= 64 && "large intrinsic immediates not handled") ? void (0) : __assert_fail ("CI->getBitWidth() <= 64 && \"large intrinsic immediates not handled\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4878 , __extension__ __PRETTY_FUNCTION__)) |
4878 | "large intrinsic immediates not handled")(static_cast <bool> (CI->getBitWidth() <= 64 && "large intrinsic immediates not handled") ? void (0) : __assert_fail ("CI->getBitWidth() <= 64 && \"large intrinsic immediates not handled\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 4878 , __extension__ __PRETTY_FUNCTION__)); |
4879 | Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); |
4880 | } else { |
4881 | Ops.push_back( |
4882 | DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); |
4883 | } |
4884 | } |
4885 | |
4886 | SmallVector<EVT, 4> ValueVTs; |
4887 | ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); |
4888 | |
4889 | if (HasChain) |
4890 | ValueVTs.push_back(MVT::Other); |
4891 | |
4892 | SDVTList VTs = DAG.getVTList(ValueVTs); |
4893 | |
4894 | // Propagate fast-math-flags from IR to node(s). |
4895 | SDNodeFlags Flags; |
4896 | if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) |
4897 | Flags.copyFMF(*FPMO); |
4898 | SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); |
4899 | |
4900 | // Create the node. |
4901 | SDValue Result; |
4902 | // In some cases, custom collection of operands from CallInst I may be needed. |
4903 | TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); |
4904 | if (IsTgtIntrinsic) { |
4905 | // This is target intrinsic that touches memory |
4906 | // |
4907 | // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic |
4908 | // didn't yield anything useful. |
4909 | MachinePointerInfo MPI; |
4910 | if (Info.ptrVal) |
4911 | MPI = MachinePointerInfo(Info.ptrVal, Info.offset); |
4912 | else if (Info.fallbackAddressSpace) |
4913 | MPI = MachinePointerInfo(*Info.fallbackAddressSpace); |
4914 | Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, |
4915 | Info.memVT, MPI, Info.align, Info.flags, |
4916 | Info.size, I.getAAMetadata()); |
4917 | } else if (!HasChain) { |
4918 | Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); |
4919 | } else if (!I.getType()->isVoidTy()) { |
4920 | Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); |
4921 | } else { |
4922 | Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); |
4923 | } |
4924 | |
4925 | if (HasChain) { |
4926 | SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); |
4927 | if (OnlyLoad) |
4928 | PendingLoads.push_back(Chain); |
4929 | else |
4930 | DAG.setRoot(Chain); |
4931 | } |
4932 | |
4933 | if (!I.getType()->isVoidTy()) { |
4934 | if (!isa<VectorType>(I.getType())) |
4935 | Result = lowerRangeToAssertZExt(DAG, I, Result); |
4936 | |
4937 | MaybeAlign Alignment = I.getRetAlign(); |
4938 | |
4939 | // Insert `assertalign` node if there's an alignment. |
4940 | if (InsertAssertAlign && Alignment) { |
4941 | Result = |
4942 | DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); |
4943 | } |
4944 | |
4945 | setValue(&I, Result); |
4946 | } |
4947 | } |
4948 | |
4949 | /// GetSignificand - Get the significand and build it into a floating-point |
4950 | /// number with exponent of 1: |
4951 | /// |
4952 | /// Op = (Op & 0x007fffff) | 0x3f800000; |
4953 | /// |
4954 | /// where Op is the hexadecimal representation of floating point value. |
4955 | static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { |
4956 | SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, |
4957 | DAG.getConstant(0x007fffff, dl, MVT::i32)); |
4958 | SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, |
4959 | DAG.getConstant(0x3f800000, dl, MVT::i32)); |
4960 | return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); |
4961 | } |
4962 | |
4963 | /// GetExponent - Get the exponent: |
4964 | /// |
4965 | /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); |
4966 | /// |
4967 | /// where Op is the hexadecimal representation of floating point value. |
4968 | static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, |
4969 | const TargetLowering &TLI, const SDLoc &dl) { |
4970 | SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, |
4971 | DAG.getConstant(0x7f800000, dl, MVT::i32)); |
4972 | SDValue t1 = DAG.getNode( |
4973 | ISD::SRL, dl, MVT::i32, t0, |
4974 | DAG.getConstant(23, dl, |
4975 | TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); |
4976 | SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, |
4977 | DAG.getConstant(127, dl, MVT::i32)); |
4978 | return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); |
4979 | } |
4980 | |
4981 | /// getF32Constant - Get 32-bit floating point constant. |
4982 | static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, |
4983 | const SDLoc &dl) { |
4984 | return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, |
4985 | MVT::f32); |
4986 | } |
4987 | |
4988 | static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, |
4989 | SelectionDAG &DAG) { |
4990 | // TODO: What fast-math-flags should be set on the floating-point nodes? |
4991 | |
4992 | // IntegerPartOfX = ((int32_t)(t0); |
4993 | SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); |
4994 | |
4995 | // FractionalPartOfX = t0 - (float)IntegerPartOfX; |
4996 | SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); |
4997 | SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); |
4998 | |
4999 | // IntegerPartOfX <<= 23; |
5000 | IntegerPartOfX = |
5001 | DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, |
5002 | DAG.getConstant(23, dl, |
5003 | DAG.getTargetLoweringInfo().getShiftAmountTy( |
5004 | MVT::i32, DAG.getDataLayout()))); |
5005 | |
5006 | SDValue TwoToFractionalPartOfX; |
5007 | if (LimitFloatPrecision <= 6) { |
5008 | // For floating-point precision of 6: |
5009 | // |
5010 | // TwoToFractionalPartOfX = |
5011 | // 0.997535578f + |
5012 | // (0.735607626f + 0.252464424f * x) * x; |
5013 | // |
5014 | // error 0.0144103317, which is 6 bits |
5015 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5016 | getF32Constant(DAG, 0x3e814304, dl)); |
5017 | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
5018 | getF32Constant(DAG, 0x3f3c50c8, dl)); |
5019 | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
5020 | TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
5021 | getF32Constant(DAG, 0x3f7f5e7e, dl)); |
5022 | } else if (LimitFloatPrecision <= 12) { |
5023 | // For floating-point precision of 12: |
5024 | // |
5025 | // TwoToFractionalPartOfX = |
5026 | // 0.999892986f + |
5027 | // (0.696457318f + |
5028 | // (0.224338339f + 0.792043434e-1f * x) * x) * x; |
5029 | // |
5030 | // error 0.000107046256, which is 13 to 14 bits |
5031 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5032 | getF32Constant(DAG, 0x3da235e3, dl)); |
5033 | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
5034 | getF32Constant(DAG, 0x3e65b8f3, dl)); |
5035 | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
5036 | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
5037 | getF32Constant(DAG, 0x3f324b07, dl)); |
5038 | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
5039 | TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
5040 | getF32Constant(DAG, 0x3f7ff8fd, dl)); |
5041 | } else { // LimitFloatPrecision <= 18 |
5042 | // For floating-point precision of 18: |
5043 | // |
5044 | // TwoToFractionalPartOfX = |
5045 | // 0.999999982f + |
5046 | // (0.693148872f + |
5047 | // (0.240227044f + |
5048 | // (0.554906021e-1f + |
5049 | // (0.961591928e-2f + |
5050 | // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; |
5051 | // error 2.47208000*10^(-7), which is better than 18 bits |
5052 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5053 | getF32Constant(DAG, 0x3924b03e, dl)); |
5054 | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
5055 | getF32Constant(DAG, 0x3ab24b87, dl)); |
5056 | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
5057 | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
5058 | getF32Constant(DAG, 0x3c1d8c17, dl)); |
5059 | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
5060 | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
5061 | getF32Constant(DAG, 0x3d634a1d, dl)); |
5062 | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
5063 | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
5064 | getF32Constant(DAG, 0x3e75fe14, dl)); |
5065 | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
5066 | SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, |
5067 | getF32Constant(DAG, 0x3f317234, dl)); |
5068 | SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); |
5069 | TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, |
5070 | getF32Constant(DAG, 0x3f800000, dl)); |
5071 | } |
5072 | |
5073 | // Add the exponent into the result in integer domain. |
5074 | SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); |
5075 | return DAG.getNode(ISD::BITCAST, dl, MVT::f32, |
5076 | DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); |
5077 | } |
5078 | |
5079 | /// expandExp - Lower an exp intrinsic. Handles the special sequences for |
5080 | /// limited-precision mode. |
5081 | static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, |
5082 | const TargetLowering &TLI, SDNodeFlags Flags) { |
5083 | if (Op.getValueType() == MVT::f32 && |
5084 | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
5085 | |
5086 | // Put the exponent in the right bit position for later addition to the |
5087 | // final result: |
5088 | // |
5089 | // t0 = Op * log2(e) |
5090 | |
5091 | // TODO: What fast-math-flags should be set here? |
5092 | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, |
5093 | DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); |
5094 | return getLimitedPrecisionExp2(t0, dl, DAG); |
5095 | } |
5096 | |
5097 | // No special expansion. |
5098 | return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); |
5099 | } |
5100 | |
5101 | /// expandLog - Lower a log intrinsic. Handles the special sequences for |
5102 | /// limited-precision mode. |
5103 | static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, |
5104 | const TargetLowering &TLI, SDNodeFlags Flags) { |
5105 | // TODO: What fast-math-flags should be set on the floating-point nodes? |
5106 | |
5107 | if (Op.getValueType() == MVT::f32 && |
5108 | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
5109 | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); |
5110 | |
5111 | // Scale the exponent by log(2). |
5112 | SDValue Exp = GetExponent(DAG, Op1, TLI, dl); |
5113 | SDValue LogOfExponent = |
5114 | DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, |
5115 | DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); |
5116 | |
5117 | // Get the significand and build it into a floating-point number with |
5118 | // exponent of 1. |
5119 | SDValue X = GetSignificand(DAG, Op1, dl); |
5120 | |
5121 | SDValue LogOfMantissa; |
5122 | if (LimitFloatPrecision <= 6) { |
5123 | // For floating-point precision of 6: |
5124 | // |
5125 | // LogofMantissa = |
5126 | // -1.1609546f + |
5127 | // (1.4034025f - 0.23903021f * x) * x; |
5128 | // |
5129 | // error 0.0034276066, which is better than 8 bits |
5130 | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5131 | getF32Constant(DAG, 0xbe74c456, dl)); |
5132 | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
5133 | getF32Constant(DAG, 0x3fb3a2b1, dl)); |
5134 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
5135 | LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
5136 | getF32Constant(DAG, 0x3f949a29, dl)); |
5137 | } else if (LimitFloatPrecision <= 12) { |
5138 | // For floating-point precision of 12: |
5139 | // |
5140 | // LogOfMantissa = |
5141 | // -1.7417939f + |
5142 | // (2.8212026f + |
5143 | // (-1.4699568f + |
5144 | // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; |
5145 | // |
5146 | // error 0.000061011436, which is 14 bits |
5147 | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5148 | getF32Constant(DAG, 0xbd67b6d6, dl)); |
5149 | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
5150 | getF32Constant(DAG, 0x3ee4f4b8, dl)); |
5151 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
5152 | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
5153 | getF32Constant(DAG, 0x3fbc278b, dl)); |
5154 | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
5155 | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
5156 | getF32Constant(DAG, 0x40348e95, dl)); |
5157 | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
5158 | LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
5159 | getF32Constant(DAG, 0x3fdef31a, dl)); |
5160 | } else { // LimitFloatPrecision <= 18 |
5161 | // For floating-point precision of 18: |
5162 | // |
5163 | // LogOfMantissa = |
5164 | // -2.1072184f + |
5165 | // (4.2372794f + |
5166 | // (-3.7029485f + |
5167 | // (2.2781945f + |
5168 | // (-0.87823314f + |
5169 | // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; |
5170 | // |
5171 | // error 0.0000023660568, which is better than 18 bits |
5172 | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5173 | getF32Constant(DAG, 0xbc91e5ac, dl)); |
5174 | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
5175 | getF32Constant(DAG, 0x3e4350aa, dl)); |
5176 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
5177 | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
5178 | getF32Constant(DAG, 0x3f60d3e3, dl)); |
5179 | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
5180 | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
5181 | getF32Constant(DAG, 0x4011cdf0, dl)); |
5182 | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
5183 | SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
5184 | getF32Constant(DAG, 0x406cfd1c, dl)); |
5185 | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
5186 | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
5187 | getF32Constant(DAG, 0x408797cb, dl)); |
5188 | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
5189 | LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, |
5190 | getF32Constant(DAG, 0x4006dcab, dl)); |
5191 | } |
5192 | |
5193 | return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); |
5194 | } |
5195 | |
5196 | // No special expansion. |
5197 | return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); |
5198 | } |
5199 | |
5200 | /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for |
5201 | /// limited-precision mode. |
5202 | static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, |
5203 | const TargetLowering &TLI, SDNodeFlags Flags) { |
5204 | // TODO: What fast-math-flags should be set on the floating-point nodes? |
5205 | |
5206 | if (Op.getValueType() == MVT::f32 && |
5207 | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
5208 | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); |
5209 | |
5210 | // Get the exponent. |
5211 | SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); |
5212 | |
5213 | // Get the significand and build it into a floating-point number with |
5214 | // exponent of 1. |
5215 | SDValue X = GetSignificand(DAG, Op1, dl); |
5216 | |
5217 | // Different possible minimax approximations of significand in |
5218 | // floating-point for various degrees of accuracy over [1,2]. |
5219 | SDValue Log2ofMantissa; |
5220 | if (LimitFloatPrecision <= 6) { |
5221 | // For floating-point precision of 6: |
5222 | // |
5223 | // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; |
5224 | // |
5225 | // error 0.0049451742, which is more than 7 bits |
5226 | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5227 | getF32Constant(DAG, 0xbeb08fe0, dl)); |
5228 | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
5229 | getF32Constant(DAG, 0x40019463, dl)); |
5230 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
5231 | Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
5232 | getF32Constant(DAG, 0x3fd6633d, dl)); |
5233 | } else if (LimitFloatPrecision <= 12) { |
5234 | // For floating-point precision of 12: |
5235 | // |
5236 | // Log2ofMantissa = |
5237 | // -2.51285454f + |
5238 | // (4.07009056f + |
5239 | // (-2.12067489f + |
5240 | // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; |
5241 | // |
5242 | // error 0.0000876136000, which is better than 13 bits |
5243 | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5244 | getF32Constant(DAG, 0xbda7262e, dl)); |
5245 | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
5246 | getF32Constant(DAG, 0x3f25280b, dl)); |
5247 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
5248 | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
5249 | getF32Constant(DAG, 0x4007b923, dl)); |
5250 | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
5251 | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
5252 | getF32Constant(DAG, 0x40823e2f, dl)); |
5253 | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
5254 | Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
5255 | getF32Constant(DAG, 0x4020d29c, dl)); |
5256 | } else { // LimitFloatPrecision <= 18 |
5257 | // For floating-point precision of 18: |
5258 | // |
5259 | // Log2ofMantissa = |
5260 | // -3.0400495f + |
5261 | // (6.1129976f + |
5262 | // (-5.3420409f + |
5263 | // (3.2865683f + |
5264 | // (-1.2669343f + |
5265 | // (0.27515199f - |
5266 | // 0.25691327e-1f * x) * x) * x) * x) * x) * x; |
5267 | // |
5268 | // error 0.0000018516, which is better than 18 bits |
5269 | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5270 | getF32Constant(DAG, 0xbcd2769e, dl)); |
5271 | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
5272 | getF32Constant(DAG, 0x3e8ce0b9, dl)); |
5273 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
5274 | SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
5275 | getF32Constant(DAG, 0x3fa22ae7, dl)); |
5276 | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
5277 | SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, |
5278 | getF32Constant(DAG, 0x40525723, dl)); |
5279 | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
5280 | SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, |
5281 | getF32Constant(DAG, 0x40aaf200, dl)); |
5282 | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
5283 | SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, |
5284 | getF32Constant(DAG, 0x40c39dad, dl)); |
5285 | SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); |
5286 | Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, |
5287 | getF32Constant(DAG, 0x4042902c, dl)); |
5288 | } |
5289 | |
5290 | return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); |
5291 | } |
5292 | |
5293 | // No special expansion. |
5294 | return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); |
5295 | } |
5296 | |
5297 | /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for |
5298 | /// limited-precision mode. |
5299 | static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, |
5300 | const TargetLowering &TLI, SDNodeFlags Flags) { |
5301 | // TODO: What fast-math-flags should be set on the floating-point nodes? |
5302 | |
5303 | if (Op.getValueType() == MVT::f32 && |
5304 | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
5305 | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); |
5306 | |
5307 | // Scale the exponent by log10(2) [0.30102999f]. |
5308 | SDValue Exp = GetExponent(DAG, Op1, TLI, dl); |
5309 | SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, |
5310 | getF32Constant(DAG, 0x3e9a209a, dl)); |
5311 | |
5312 | // Get the significand and build it into a floating-point number with |
5313 | // exponent of 1. |
5314 | SDValue X = GetSignificand(DAG, Op1, dl); |
5315 | |
5316 | SDValue Log10ofMantissa; |
5317 | if (LimitFloatPrecision <= 6) { |
5318 | // For floating-point precision of 6: |
5319 | // |
5320 | // Log10ofMantissa = |
5321 | // -0.50419619f + |
5322 | // (0.60948995f - 0.10380950f * x) * x; |
5323 | // |
5324 | // error 0.0014886165, which is 6 bits |
5325 | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5326 | getF32Constant(DAG, 0xbdd49a13, dl)); |
5327 | SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, |
5328 | getF32Constant(DAG, 0x3f1c0789, dl)); |
5329 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
5330 | Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, |
5331 | getF32Constant(DAG, 0x3f011300, dl)); |
5332 | } else if (LimitFloatPrecision <= 12) { |
5333 | // For floating-point precision of 12: |
5334 | // |
5335 | // Log10ofMantissa = |
5336 | // -0.64831180f + |
5337 | // (0.91751397f + |
5338 | // (-0.31664806f + 0.47637168e-1f * x) * x) * x; |
5339 | // |
5340 | // error 0.00019228036, which is better than 12 bits |
5341 | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5342 | getF32Constant(DAG, 0x3d431f31, dl)); |
5343 | SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, |
5344 | getF32Constant(DAG, 0x3ea21fb2, dl)); |
5345 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
5346 | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
5347 | getF32Constant(DAG, 0x3f6ae232, dl)); |
5348 | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
5349 | Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, |
5350 | getF32Constant(DAG, 0x3f25f7c3, dl)); |
5351 | } else { // LimitFloatPrecision <= 18 |
5352 | // For floating-point precision of 18: |
5353 | // |
5354 | // Log10ofMantissa = |
5355 | // -0.84299375f + |
5356 | // (1.5327582f + |
5357 | // (-1.0688956f + |
5358 | // (0.49102474f + |
5359 | // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; |
5360 | // |
5361 | // error 0.0000037995730, which is better than 18 bits |
5362 | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, |
5363 | getF32Constant(DAG, 0x3c5d51ce, dl)); |
5364 | SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, |
5365 | getF32Constant(DAG, 0x3e00685a, dl)); |
5366 | SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); |
5367 | SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, |
5368 | getF32Constant(DAG, 0x3efb6798, dl)); |
5369 | SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); |
5370 | SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, |
5371 | getF32Constant(DAG, 0x3f88d192, dl)); |
5372 | SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); |
5373 | SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, |
5374 | getF32Constant(DAG, 0x3fc4316c, dl)); |
5375 | SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); |
5376 | Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, |
5377 | getF32Constant(DAG, 0x3f57ce70, dl)); |
5378 | } |
5379 | |
5380 | return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); |
5381 | } |
5382 | |
5383 | // No special expansion. |
5384 | return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); |
5385 | } |
5386 | |
5387 | /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for |
5388 | /// limited-precision mode. |
5389 | static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, |
5390 | const TargetLowering &TLI, SDNodeFlags Flags) { |
5391 | if (Op.getValueType() == MVT::f32 && |
5392 | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) |
5393 | return getLimitedPrecisionExp2(Op, dl, DAG); |
5394 | |
5395 | // No special expansion. |
5396 | return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); |
5397 | } |
5398 | |
5399 | /// visitPow - Lower a pow intrinsic. Handles the special sequences for |
5400 | /// limited-precision mode with x == 10.0f. |
5401 | static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, |
5402 | SelectionDAG &DAG, const TargetLowering &TLI, |
5403 | SDNodeFlags Flags) { |
5404 | bool IsExp10 = false; |
5405 | if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && |
5406 | LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { |
5407 | if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { |
5408 | APFloat Ten(10.0f); |
5409 | IsExp10 = LHSC->isExactlyValue(Ten); |
5410 | } |
5411 | } |
5412 | |
5413 | // TODO: What fast-math-flags should be set on the FMUL node? |
5414 | if (IsExp10) { |
5415 | // Put the exponent in the right bit position for later addition to the |
5416 | // final result: |
5417 | // |
5418 | // #define LOG2OF10 3.3219281f |
5419 | // t0 = Op * LOG2OF10; |
5420 | SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, |
5421 | getF32Constant(DAG, 0x40549a78, dl)); |
5422 | return getLimitedPrecisionExp2(t0, dl, DAG); |
5423 | } |
5424 | |
5425 | // No special expansion. |
5426 | return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); |
5427 | } |
5428 | |
5429 | /// ExpandPowI - Expand a llvm.powi intrinsic. |
5430 | static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, |
5431 | SelectionDAG &DAG) { |
5432 | // If RHS is a constant, we can expand this out to a multiplication tree if |
5433 | // it's beneficial on the target, otherwise we end up lowering to a call to |
5434 | // __powidf2 (for example). |
5435 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { |
5436 | unsigned Val = RHSC->getSExtValue(); |
5437 | |
5438 | // powi(x, 0) -> 1.0 |
5439 | if (Val == 0) |
5440 | return DAG.getConstantFP(1.0, DL, LHS.getValueType()); |
5441 | |
5442 | if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( |
5443 | Val, DAG.shouldOptForSize())) { |
5444 | // Get the exponent as a positive value. |
5445 | if ((int)Val < 0) |
5446 | Val = -Val; |
5447 | // We use the simple binary decomposition method to generate the multiply |
5448 | // sequence. There are more optimal ways to do this (for example, |
5449 | // powi(x,15) generates one more multiply than it should), but this has |
5450 | // the benefit of being both really simple and much better than a libcall. |
5451 | SDValue Res; // Logically starts equal to 1.0 |
5452 | SDValue CurSquare = LHS; |
5453 | // TODO: Intrinsics should have fast-math-flags that propagate to these |
5454 | // nodes. |
5455 | while (Val) { |
5456 | if (Val & 1) { |
5457 | if (Res.getNode()) |
5458 | Res = |
5459 | DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); |
5460 | else |
5461 | Res = CurSquare; // 1.0*CurSquare. |
5462 | } |
5463 | |
5464 | CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), |
5465 | CurSquare, CurSquare); |
5466 | Val >>= 1; |
5467 | } |
5468 | |
5469 | // If the original was negative, invert the result, producing 1/(x*x*x). |
5470 | if (RHSC->getSExtValue() < 0) |
5471 | Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), |
5472 | DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); |
5473 | return Res; |
5474 | } |
5475 | } |
5476 | |
5477 | // Otherwise, expand to a libcall. |
5478 | return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); |
5479 | } |
5480 | |
5481 | static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, |
5482 | SDValue LHS, SDValue RHS, SDValue Scale, |
5483 | SelectionDAG &DAG, const TargetLowering &TLI) { |
5484 | EVT VT = LHS.getValueType(); |
5485 | bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; |
5486 | bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; |
5487 | LLVMContext &Ctx = *DAG.getContext(); |
5488 | |
5489 | // If the type is legal but the operation isn't, this node might survive all |
5490 | // the way to operation legalization. If we end up there and we do not have |
5491 | // the ability to widen the type (if VT*2 is not legal), we cannot expand the |
5492 | // node. |
5493 | |
5494 | // Coax the legalizer into expanding the node during type legalization instead |
5495 | // by bumping the size by one bit. This will force it to Promote, enabling the |
5496 | // early expansion and avoiding the need to expand later. |
5497 | |
5498 | // We don't have to do this if Scale is 0; that can always be expanded, unless |
5499 | // it's a saturating signed operation. Those can experience true integer |
5500 | // division overflow, a case which we must avoid. |
5501 | |
5502 | // FIXME: We wouldn't have to do this (or any of the early |
5503 | // expansion/promotion) if it was possible to expand a libcall of an |
5504 | // illegal type during operation legalization. But it's not, so things |
5505 | // get a bit hacky. |
5506 | unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); |
5507 | if ((ScaleInt > 0 || (Saturating && Signed)) && |
5508 | (TLI.isTypeLegal(VT) || |
5509 | (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { |
5510 | TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( |
5511 | Opcode, VT, ScaleInt); |
5512 | if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { |
5513 | EVT PromVT; |
5514 | if (VT.isScalarInteger()) |
5515 | PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); |
5516 | else if (VT.isVector()) { |
5517 | PromVT = VT.getVectorElementType(); |
5518 | PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); |
5519 | PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); |
5520 | } else |
5521 | llvm_unreachable("Wrong VT for DIVFIX?")::llvm::llvm_unreachable_internal("Wrong VT for DIVFIX?", "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp" , 5521); |
5522 | if (Signed) { |
5523 | LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); |
5524 | RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); |
5525 | } else { |
5526 | LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); |
5527 | RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); |
5528 | } |
5529 | EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); |
5530 | // For saturating operations, we need to shift up the LHS to get the |
5531 | // proper saturation width, and then shift down again afterwards. |
5532 | if (Saturating) |
5533 | LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, |
5534 | DAG.getConstant(1, DL, ShiftTy)); |
5535 | SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); |
5536 | if (Saturating) |
5537 | Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, |
5538 | DAG.getConstant(1, DL, ShiftTy)); |
5539 | return DAG.getZExtOrTrunc(Res, DL, VT); |
5540 | } |
5541 | } |
5542 | |
5543 | return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); |
5544 | } |
5545 | |
5546 | // getUnderlyingArgRegs - Find underlying registers used for a truncated, |
5547 | // bitcasted, or split argument. Returns a list of <Register, size in bits> |
5548 | static void |
5549 | getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, |
5550 | const SDValue &N) { |
5551 | switch (N.getOpcode()) { |
5552 | case ISD::CopyFromReg: { |
5553 | SDValue Op = N.getOperand(1); |
5554 | Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), |
5555 | Op.getValueType().getSizeInBits()); |
5556 | return; |
5557 | } |
5558 | case ISD::BITCAST: |
5559 | case ISD::AssertZext: |
5560 | case ISD::AssertSext: |
5561 | case ISD::TRUNCATE: |
5562 | getUnderlyingArgRegs(Regs, N.getOperand(0)); |
5563 | return; |
5564 | case ISD::BUILD_PAIR: |
5565 | case ISD::BUILD_VECTOR: |
5566 | case ISD::CONCAT_VECTORS: |
5567 | for (SDValue Op : N->op_values()) |
5568 | getUnderlyingArgRegs(Regs, Op); |
5569 | return; |
5570 | default: |
5571 | return; |
5572 | } |
5573 | } |
5574 | |
5575 | /// If the DbgValueInst is a dbg_value of a function argument, create the |
5576 | /// corresponding DBG_VALUE machine instruction for it now. At the end of |
5577 | /// instruction selection, they will be inserted to the entry BB. |
5578 | /// We don't currently support this for variadic dbg_values, as they shouldn't |
5579 | /// appear for function arguments or in the prologue. |
5580 | bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( |
5581 | const Value *V, DILocalVariable *Variable, DIExpression *Expr, |
5582 | DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { |
5583 | const Argument *Arg = dyn_cast<Argument>(V); |
5584 | if (!Arg) |
5585 | return false; |
5586 | |
5587 | MachineFunction &MF = DAG.getMachineFunction(); |
5588 | const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); |
5589 | |
5590 | // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind |
5591 | // we've been asked to pursue. |
5592 | auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, |
5593 | bool Indirect) { |
5594 | if (Reg.isVirtual() && MF.useDebugInstrRef()) { |
5595 | // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF |
5596 | // pointing at the VReg, which will be patched up later. |
5597 | auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); |
5598 | SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( |
5599 | /* Reg */ Reg, /* isDef */ false, /* isImp */ false, |
5600 | /* isKill */ false, /* isDead */ false, |
5601 | /* isUndef */ false, /* isEarlyClobber */ false, |
5602 | /* SubReg */ 0, /* isDebug */ true)}); |
5603 | |
5604 | auto *NewDIExpr = FragExpr; |
5605 | // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into |
5606 | // the DIExpression. |
5607 | if (Indirect) |
5608 | NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); |
5609 | SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); |
5610 | NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); |
5611 | return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); |
5612 | } else { |
5613 | // Create a completely standard DBG_VALUE. |
5614 | auto &Inst = TII->get(TargetOpcode::DBG_VALUE); |
5615 | return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); |
5616 | } |
5617 | }; |
5618 | |
5619 | if (Kind == FuncArgumentDbgValueKind::Value) { |
5620 | // ArgDbgValues are hoisted to the beginning of the entry block. So we |
5621 | // should only emit as ArgDbgValue if the dbg.value intrinsic is found in |
5622 | // the entry block. |
5623 | bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); |
5624 | if (!IsInEntryBlock) |
5625 | return false; |
5626 | |
5627 | // ArgDbgValues are hoisted to the beginning of the entry block. So we |
5628 | // should only emit as ArgDbgValue if the dbg.value intrinsic describes a |
5629 | // variable that also is a param. |
5630 | // |
5631 | // Although, if we are at the top of the entry block already, we can still |
5632 | // emit using ArgDbgValue. This might catch some situations when the |
5633 | // dbg.value refers to an argument that isn't used in the entry block, so |
5634 | // any CopyToReg node would be optimized out and the only way to express |
5635 | // this DBG_VALUE is by using the physical reg (or FI) as done in this |
5636 | // method. ArgDbgValues are hoisted to the beginning of the entry block. So |
5637 | // we should only emit as ArgDbgValue if the Variable is an argument to the |
5638 | // current function, and the dbg.value intrinsic is found in the entry |
5639 | // block. |
5640 | bool VariableIsFunctionInputArg = Variable->isParameter() && |
5641 | !DL->getInlinedAt(); |
5642 | bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; |
5643 | if (!IsInPrologue && !VariableIsFunctionInputArg) |
5644 | return false; |
5645 | |
5646 | // Here we assume that a function argument on IR level only can be used to |
5647 | // describe one input parameter on source level. If we for example have |
5648 | // source code like this |
5649 | // |
5650 | // struct A { long x, y; }; |
5651 | // void foo(struct A a, long b) { |
5652 | // ... |
5653 | // b = a.x; |
5654 | // ... |
5655 | // } |
5656 | // |
5657 | // and IR like this |
5658 | // |
5659 | // define void @foo(i32 %a1, i32 %a2, i32 %b) { |
5660 | // entry: |
5661 | // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment |
5662 | // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment |
5663 | // call void @llvm.dbg.value(metadata i32 %b, "b", |
5664 | // ... |
5665 | // call void @llvm.dbg.value(metadata i32 %a1, "b" |
5666 | // ... |
5667 | // |
5668 | // then the last dbg.value is describing a parameter "b" using a value that |
5669 | // is an argument. But since we already has used %a1 to describe a parameter |
5670 | // we should not handle that last dbg.value here (that would result in an |
5671 | // incorrect hoisting of the DBG_VALUE to the function entry). |
5672 | // Notice that we allow one dbg.value per IR level argument, to accommodate |
5673 | // for the situation with fragments above. |
5674 | if (VariableIsFunctionInputArg) { |
5675 | unsigned ArgNo = Arg->getArgNo(); |
5676 | if (ArgNo >= FuncInfo.DescribedArgs.size()) |
5677 | FuncInfo.DescribedArgs.resize(ArgNo + 1, false); |
5678 | else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) |
5679 | return false; |
5680 | FuncInfo.DescribedArgs.set(ArgNo); |
5681 | } |
5682 | } |
5683 | |
5684 | bool IsIndirect = false; |
5685 | std::optional<MachineOperand> Op; |
5686 | // Some arguments' frame index is recorded during argument lowering. |
5687 | int FI = FuncInfo.getArgumentFrameIndex(Arg); |
5688 | if (FI != std::numeric_limits<int>::max()) |
5689 | Op = MachineOperand::CreateFI(FI); |
5690 | |
5691 | SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; |
5692 | if (!Op && N.getNode()) { |
5693 | getUnderlyingArgRegs(ArgRegsAndSizes, N); |
5694 | Register Reg; |
5695 | if (ArgRegsAndSizes.size() == 1) |
5696 | Reg = ArgRegsAndSizes.front().first; |
5697 | |
5698 | if (Reg && Reg.isVirtual()) { |
5699 | MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
5700 | Register PR = RegInfo.getLiveInPhysReg(Reg); |
5701 | if (PR) |
5702 | Reg = PR; |
5703 | } |
5704 | if (Reg) { |
5705 | Op = MachineOperand::CreateReg(Reg, false); |
5706 | IsIndirect = Kind != FuncArgumentDbgValueKind::Value; |
5707 | } |
5708 | } |
5709 | |
5710 | if (!Op && N.getNode()) { |
5711 | // Check if frame index is available. |
5712 | SDValue LCandidate = peekThroughBitcasts(N); |
5713 | if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) |
5714 | if (FrameIndexSDNode *FINode = |
5715 | dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) |
5716 | Op = MachineOperand::CreateFI(FINode->getIndex()); |
5717 | } |
5718 | |
5719 | if (!Op) { |
5720 | // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg |
5721 | auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> |
5722 | SplitRegs) { |
5723 | unsigned Offset = 0; |
5724 | for (const auto &RegAndSize : SplitRegs) { |
5725 | // If the expression is already a fragment, the current register |
5726 | // offset+size might extend beyond the fragment. In this case, only |
5727 | // the register bits that are inside the fragment are relevant. |
5728 | int RegFragmentSizeInBits = RegAndSize.second; |
5729 | if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { |
5730 | uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; |
5731 | // The register is entirely outside the expression fragment, |
5732 | // so is irrelevant for debug info. |
5733 | if (Offset >= ExprFragmentSizeInBits) |
5734 | break; |
5735 | // The register is partially outside the expression fragment, only |
5736 | // the low bits within the fragment are relevant for debug info. |
5737 | if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { |
5738 | RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; |
5739 | } |
5740 | } |
5741 | |
5742 | auto FragmentExpr = DIExpression::createFragmentExpression( |
5743 | Expr, Offset, RegFragmentSizeInBits); |
5744 | Offset += RegAndSize.second; |
5745 | // If a valid fragment expression cannot be created, the variable's |
5746 | // correct value cannot be determined and so it is set as Undef. |
5747 | if (!FragmentExpr) { |
5748 | SDDbgValue *SDV = DAG.getConstantDbgValue( |
5749 | Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); |
5750 | DAG.AddDbgValue(SDV, false); |
5751 | continue; |
5752 | } |
5753 | MachineInstr *NewMI = |
5754 | MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, |
5755 | Kind != FuncArgumentDbgValueKind::Value); |
5756 | FuncInfo.ArgDbgValues.push_back(NewMI); |
5757 | } |
5758 | }; |
5759 | |
5760 | // Check if ValueMap has reg number. |
5761 | DenseMap<const Value *, Register>::const_iterator |
5762 | VMI = FuncInfo.ValueMap.find(V); |
5763 | if (VMI != FuncInfo.ValueMap.end()) { |
5764 | const auto &TLI = DAG.getTargetLoweringInfo(); |
5765 | RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, |
5766 | V->getType(), std::nullopt); |
5767 | if (RFV.occupiesMultipleRegs()) { |
5768 | splitMultiRegDbgValue(RFV.getRegsAndSizes()); |
5769 | return true; |
5770 | } |
5771 | |
5772 | Op = MachineOperand::CreateReg(VMI->second, false); |
5773 | IsIndirect = Kind != FuncArgumentDbgValueKind::Value; |
5774 | } else if (ArgRegsAndSizes.size() > 1) { |
5775 | // This was split due to the calling convention, and no virtual register |
5776 | // mapping exists for the value. |
5777 | splitMultiRegDbgValue(ArgRegsAndSizes); |
5778 | return true; |
5779 | } |
5780 | } |
5781 | |
5782 | if (!Op) |
5783 | return false; |
5784 | |
5785 | assert(Variable->isValidLocationForIntrinsic(DL) &&(static_cast <bool> (Variable->isValidLocationForIntrinsic (DL) && "Expected inlined-at fields to agree") ? void (0) : __assert_fail ("Variable->isValidLocationForIntrinsic(DL) && \"Expected inlined-at fields to agree\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 5786 , __extension__ __PRETTY_FUNCTION__)) |
5786 | "Expected inlined-at fields to agree")(static_cast <bool> (Variable->isValidLocationForIntrinsic (DL) && "Expected inlined-at fields to agree") ? void (0) : __assert_fail ("Variable->isValidLocationForIntrinsic(DL) && \"Expected inlined-at fields to agree\"" , "llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp", 5786 , __extension__ __PRETTY_FUNCTION__)); |
5787 | MachineInstr *NewMI = nullptr; |
5788 | |
5789 | if (Op->isReg()) |
5790 | NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); |
5791 | else |
5792 | NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, |
5793 | Variable, Expr); |
5794 | |
5795 | // Otherwise, use ArgDbgValues. |
5796 | FuncInfo.ArgDbgValues.push_back(NewMI); |
5797 | return true; |
5798 | } |
5799 | |
5800 | /// Return the appropriate SDDbgValue based on N. |
5801 | SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, |
5802 | DILocalVariable *Variable, |
5803 | DIExpression *Expr, |