Bug Summary

File:build-llvm/tools/clang/include/clang/AST/Attrs.inc
Warning:line 9616, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Sema.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp

1//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the actions class which performs semantic analysis and
10// builds an AST out of a parse stream.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTDiagnostic.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclFriend.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/PrettyDeclStackTrace.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Basic/DiagnosticOptions.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/CXXFieldCollector.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "clang/Sema/ExternalSemaSource.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/MultiplexExternalSemaSource.h"
33#include "clang/Sema/ObjCMethodList.h"
34#include "clang/Sema/Scope.h"
35#include "clang/Sema/ScopeInfo.h"
36#include "clang/Sema/SemaConsumer.h"
37#include "clang/Sema/SemaInternal.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "clang/Sema/TemplateInstCallback.h"
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/Support/TimeProfiler.h"
43
44using namespace clang;
45using namespace sema;
46
47SourceLocation Sema::getLocForEndOfToken(SourceLocation Loc, unsigned Offset) {
48 return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts);
49}
50
51ModuleLoader &Sema::getModuleLoader() const { return PP.getModuleLoader(); }
52
53PrintingPolicy Sema::getPrintingPolicy(const ASTContext &Context,
54 const Preprocessor &PP) {
55 PrintingPolicy Policy = Context.getPrintingPolicy();
56 // In diagnostics, we print _Bool as bool if the latter is defined as the
57 // former.
58 Policy.Bool = Context.getLangOpts().Bool;
59 if (!Policy.Bool) {
60 if (const MacroInfo *BoolMacro = PP.getMacroInfo(Context.getBoolName())) {
61 Policy.Bool = BoolMacro->isObjectLike() &&
62 BoolMacro->getNumTokens() == 1 &&
63 BoolMacro->getReplacementToken(0).is(tok::kw__Bool);
64 }
65 }
66
67 return Policy;
68}
69
70void Sema::ActOnTranslationUnitScope(Scope *S) {
71 TUScope = S;
72 PushDeclContext(S, Context.getTranslationUnitDecl());
73}
74
75namespace clang {
76namespace sema {
77
78class SemaPPCallbacks : public PPCallbacks {
79 Sema *S = nullptr;
80 llvm::SmallVector<SourceLocation, 8> IncludeStack;
81
82public:
83 void set(Sema &S) { this->S = &S; }
84
85 void reset() { S = nullptr; }
86
87 virtual void FileChanged(SourceLocation Loc, FileChangeReason Reason,
88 SrcMgr::CharacteristicKind FileType,
89 FileID PrevFID) override {
90 if (!S)
91 return;
92 switch (Reason) {
93 case EnterFile: {
94 SourceManager &SM = S->getSourceManager();
95 SourceLocation IncludeLoc = SM.getIncludeLoc(SM.getFileID(Loc));
96 if (IncludeLoc.isValid()) {
97 if (llvm::timeTraceProfilerEnabled()) {
98 const FileEntry *FE = SM.getFileEntryForID(SM.getFileID(Loc));
99 llvm::timeTraceProfilerBegin(
100 "Source", FE != nullptr ? FE->getName() : StringRef("<unknown>"));
101 }
102
103 IncludeStack.push_back(IncludeLoc);
104 S->DiagnoseNonDefaultPragmaPack(
105 Sema::PragmaPackDiagnoseKind::NonDefaultStateAtInclude, IncludeLoc);
106 }
107 break;
108 }
109 case ExitFile:
110 if (!IncludeStack.empty()) {
111 if (llvm::timeTraceProfilerEnabled())
112 llvm::timeTraceProfilerEnd();
113
114 S->DiagnoseNonDefaultPragmaPack(
115 Sema::PragmaPackDiagnoseKind::ChangedStateAtExit,
116 IncludeStack.pop_back_val());
117 }
118 break;
119 default:
120 break;
121 }
122 }
123};
124
125} // end namespace sema
126} // end namespace clang
127
128Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
129 TranslationUnitKind TUKind, CodeCompleteConsumer *CodeCompleter)
130 : ExternalSource(nullptr), isMultiplexExternalSource(false),
131 FPFeatures(pp.getLangOpts()), LangOpts(pp.getLangOpts()), PP(pp),
132 Context(ctxt), Consumer(consumer), Diags(PP.getDiagnostics()),
133 SourceMgr(PP.getSourceManager()), CollectStats(false),
134 CodeCompleter(CodeCompleter), CurContext(nullptr),
135 OriginalLexicalContext(nullptr), MSStructPragmaOn(false),
136 MSPointerToMemberRepresentationMethod(
137 LangOpts.getMSPointerToMemberRepresentationMethod()),
138 VtorDispStack(MSVtorDispAttr::Mode(LangOpts.VtorDispMode)), PackStack(0),
139 DataSegStack(nullptr), BSSSegStack(nullptr), ConstSegStack(nullptr),
140 CodeSegStack(nullptr), CurInitSeg(nullptr), VisContext(nullptr),
141 PragmaAttributeCurrentTargetDecl(nullptr),
142 IsBuildingRecoveryCallExpr(false), Cleanup{}, LateTemplateParser(nullptr),
143 LateTemplateParserCleanup(nullptr), OpaqueParser(nullptr), IdResolver(pp),
144 StdExperimentalNamespaceCache(nullptr), StdInitializerList(nullptr),
145 StdCoroutineTraitsCache(nullptr), CXXTypeInfoDecl(nullptr),
146 MSVCGuidDecl(nullptr), NSNumberDecl(nullptr), NSValueDecl(nullptr),
147 NSStringDecl(nullptr), StringWithUTF8StringMethod(nullptr),
148 ValueWithBytesObjCTypeMethod(nullptr), NSArrayDecl(nullptr),
149 ArrayWithObjectsMethod(nullptr), NSDictionaryDecl(nullptr),
150 DictionaryWithObjectsMethod(nullptr), GlobalNewDeleteDeclared(false),
151 TUKind(TUKind), NumSFINAEErrors(0),
152 FullyCheckedComparisonCategories(
153 static_cast<unsigned>(ComparisonCategoryType::Last) + 1),
154 AccessCheckingSFINAE(false), InNonInstantiationSFINAEContext(false),
155 NonInstantiationEntries(0), ArgumentPackSubstitutionIndex(-1),
156 CurrentInstantiationScope(nullptr), DisableTypoCorrection(false),
157 TyposCorrected(0), AnalysisWarnings(*this),
158 ThreadSafetyDeclCache(nullptr), VarDataSharingAttributesStack(nullptr),
159 CurScope(nullptr), Ident_super(nullptr), Ident___float128(nullptr) {
160 TUScope = nullptr;
161
162 LoadedExternalKnownNamespaces = false;
163 for (unsigned I = 0; I != NSAPI::NumNSNumberLiteralMethods; ++I)
164 NSNumberLiteralMethods[I] = nullptr;
165
166 if (getLangOpts().ObjC)
167 NSAPIObj.reset(new NSAPI(Context));
168
169 if (getLangOpts().CPlusPlus)
170 FieldCollector.reset(new CXXFieldCollector());
171
172 // Tell diagnostics how to render things from the AST library.
173 Diags.SetArgToStringFn(&FormatASTNodeDiagnosticArgument, &Context);
174
175 ExprEvalContexts.emplace_back(
176 ExpressionEvaluationContext::PotentiallyEvaluated, 0, CleanupInfo{},
177 nullptr, ExpressionEvaluationContextRecord::EK_Other);
178
179 // Initialization of data sharing attributes stack for OpenMP
180 InitDataSharingAttributesStack();
181
182 std::unique_ptr<sema::SemaPPCallbacks> Callbacks =
183 llvm::make_unique<sema::SemaPPCallbacks>();
184 SemaPPCallbackHandler = Callbacks.get();
185 PP.addPPCallbacks(std::move(Callbacks));
186 SemaPPCallbackHandler->set(*this);
187}
188
189void Sema::addImplicitTypedef(StringRef Name, QualType T) {
190 DeclarationName DN = &Context.Idents.get(Name);
191 if (IdResolver.begin(DN) == IdResolver.end())
192 PushOnScopeChains(Context.buildImplicitTypedef(T, Name), TUScope);
193}
194
195void Sema::Initialize() {
196 if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
197 SC->InitializeSema(*this);
198
199 // Tell the external Sema source about this Sema object.
200 if (ExternalSemaSource *ExternalSema
201 = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
202 ExternalSema->InitializeSema(*this);
203
204 // This needs to happen after ExternalSemaSource::InitializeSema(this) or we
205 // will not be able to merge any duplicate __va_list_tag decls correctly.
206 VAListTagName = PP.getIdentifierInfo("__va_list_tag");
207
208 if (!TUScope)
209 return;
210
211 // Initialize predefined 128-bit integer types, if needed.
212 if (Context.getTargetInfo().hasInt128Type()) {
213 // If either of the 128-bit integer types are unavailable to name lookup,
214 // define them now.
215 DeclarationName Int128 = &Context.Idents.get("__int128_t");
216 if (IdResolver.begin(Int128) == IdResolver.end())
217 PushOnScopeChains(Context.getInt128Decl(), TUScope);
218
219 DeclarationName UInt128 = &Context.Idents.get("__uint128_t");
220 if (IdResolver.begin(UInt128) == IdResolver.end())
221 PushOnScopeChains(Context.getUInt128Decl(), TUScope);
222 }
223
224
225 // Initialize predefined Objective-C types:
226 if (getLangOpts().ObjC) {
227 // If 'SEL' does not yet refer to any declarations, make it refer to the
228 // predefined 'SEL'.
229 DeclarationName SEL = &Context.Idents.get("SEL");
230 if (IdResolver.begin(SEL) == IdResolver.end())
231 PushOnScopeChains(Context.getObjCSelDecl(), TUScope);
232
233 // If 'id' does not yet refer to any declarations, make it refer to the
234 // predefined 'id'.
235 DeclarationName Id = &Context.Idents.get("id");
236 if (IdResolver.begin(Id) == IdResolver.end())
237 PushOnScopeChains(Context.getObjCIdDecl(), TUScope);
238
239 // Create the built-in typedef for 'Class'.
240 DeclarationName Class = &Context.Idents.get("Class");
241 if (IdResolver.begin(Class) == IdResolver.end())
242 PushOnScopeChains(Context.getObjCClassDecl(), TUScope);
243
244 // Create the built-in forward declaratino for 'Protocol'.
245 DeclarationName Protocol = &Context.Idents.get("Protocol");
246 if (IdResolver.begin(Protocol) == IdResolver.end())
247 PushOnScopeChains(Context.getObjCProtocolDecl(), TUScope);
248 }
249
250 // Create the internal type for the *StringMakeConstantString builtins.
251 DeclarationName ConstantString = &Context.Idents.get("__NSConstantString");
252 if (IdResolver.begin(ConstantString) == IdResolver.end())
253 PushOnScopeChains(Context.getCFConstantStringDecl(), TUScope);
254
255 // Initialize Microsoft "predefined C++ types".
256 if (getLangOpts().MSVCCompat) {
257 if (getLangOpts().CPlusPlus &&
258 IdResolver.begin(&Context.Idents.get("type_info")) == IdResolver.end())
259 PushOnScopeChains(Context.buildImplicitRecord("type_info", TTK_Class),
260 TUScope);
261
262 addImplicitTypedef("size_t", Context.getSizeType());
263 }
264
265 // Initialize predefined OpenCL types and supported extensions and (optional)
266 // core features.
267 if (getLangOpts().OpenCL) {
268 getOpenCLOptions().addSupport(
269 Context.getTargetInfo().getSupportedOpenCLOpts());
270 getOpenCLOptions().enableSupportedCore(getLangOpts());
271 addImplicitTypedef("sampler_t", Context.OCLSamplerTy);
272 addImplicitTypedef("event_t", Context.OCLEventTy);
273 if (getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) {
274 addImplicitTypedef("clk_event_t", Context.OCLClkEventTy);
275 addImplicitTypedef("queue_t", Context.OCLQueueTy);
276 addImplicitTypedef("reserve_id_t", Context.OCLReserveIDTy);
277 addImplicitTypedef("atomic_int", Context.getAtomicType(Context.IntTy));
278 addImplicitTypedef("atomic_uint",
279 Context.getAtomicType(Context.UnsignedIntTy));
280 auto AtomicLongT = Context.getAtomicType(Context.LongTy);
281 addImplicitTypedef("atomic_long", AtomicLongT);
282 auto AtomicULongT = Context.getAtomicType(Context.UnsignedLongTy);
283 addImplicitTypedef("atomic_ulong", AtomicULongT);
284 addImplicitTypedef("atomic_float",
285 Context.getAtomicType(Context.FloatTy));
286 auto AtomicDoubleT = Context.getAtomicType(Context.DoubleTy);
287 addImplicitTypedef("atomic_double", AtomicDoubleT);
288 // OpenCLC v2.0, s6.13.11.6 requires that atomic_flag is implemented as
289 // 32-bit integer and OpenCLC v2.0, s6.1.1 int is always 32-bit wide.
290 addImplicitTypedef("atomic_flag", Context.getAtomicType(Context.IntTy));
291 auto AtomicIntPtrT = Context.getAtomicType(Context.getIntPtrType());
292 addImplicitTypedef("atomic_intptr_t", AtomicIntPtrT);
293 auto AtomicUIntPtrT = Context.getAtomicType(Context.getUIntPtrType());
294 addImplicitTypedef("atomic_uintptr_t", AtomicUIntPtrT);
295 auto AtomicSizeT = Context.getAtomicType(Context.getSizeType());
296 addImplicitTypedef("atomic_size_t", AtomicSizeT);
297 auto AtomicPtrDiffT = Context.getAtomicType(Context.getPointerDiffType());
298 addImplicitTypedef("atomic_ptrdiff_t", AtomicPtrDiffT);
299
300 // OpenCL v2.0 s6.13.11.6:
301 // - The atomic_long and atomic_ulong types are supported if the
302 // cl_khr_int64_base_atomics and cl_khr_int64_extended_atomics
303 // extensions are supported.
304 // - The atomic_double type is only supported if double precision
305 // is supported and the cl_khr_int64_base_atomics and
306 // cl_khr_int64_extended_atomics extensions are supported.
307 // - If the device address space is 64-bits, the data types
308 // atomic_intptr_t, atomic_uintptr_t, atomic_size_t and
309 // atomic_ptrdiff_t are supported if the cl_khr_int64_base_atomics and
310 // cl_khr_int64_extended_atomics extensions are supported.
311 std::vector<QualType> Atomic64BitTypes;
312 Atomic64BitTypes.push_back(AtomicLongT);
313 Atomic64BitTypes.push_back(AtomicULongT);
314 Atomic64BitTypes.push_back(AtomicDoubleT);
315 if (Context.getTypeSize(AtomicSizeT) == 64) {
316 Atomic64BitTypes.push_back(AtomicSizeT);
317 Atomic64BitTypes.push_back(AtomicIntPtrT);
318 Atomic64BitTypes.push_back(AtomicUIntPtrT);
319 Atomic64BitTypes.push_back(AtomicPtrDiffT);
320 }
321 for (auto &I : Atomic64BitTypes)
322 setOpenCLExtensionForType(I,
323 "cl_khr_int64_base_atomics cl_khr_int64_extended_atomics");
324
325 setOpenCLExtensionForType(AtomicDoubleT, "cl_khr_fp64");
326 }
327
328 setOpenCLExtensionForType(Context.DoubleTy, "cl_khr_fp64");
329
330#define GENERIC_IMAGE_TYPE_EXT(Type, Id, Ext)setOpenCLExtensionForType(Context.Id, Ext); \
331 setOpenCLExtensionForType(Context.Id, Ext);
332#include "clang/Basic/OpenCLImageTypes.def"
333#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
334 addImplicitTypedef(#ExtType, Context.Id##Ty); \
335 setOpenCLExtensionForType(Context.Id##Ty, #Ext);
336#include "clang/Basic/OpenCLExtensionTypes.def"
337 };
338
339 if (Context.getTargetInfo().hasBuiltinMSVaList()) {
340 DeclarationName MSVaList = &Context.Idents.get("__builtin_ms_va_list");
341 if (IdResolver.begin(MSVaList) == IdResolver.end())
342 PushOnScopeChains(Context.getBuiltinMSVaListDecl(), TUScope);
343 }
344
345 DeclarationName BuiltinVaList = &Context.Idents.get("__builtin_va_list");
346 if (IdResolver.begin(BuiltinVaList) == IdResolver.end())
347 PushOnScopeChains(Context.getBuiltinVaListDecl(), TUScope);
348}
349
350Sema::~Sema() {
351 if (VisContext) FreeVisContext();
352
353 // Kill all the active scopes.
354 for (sema::FunctionScopeInfo *FSI : FunctionScopes)
355 delete FSI;
356
357 // Tell the SemaConsumer to forget about us; we're going out of scope.
358 if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer))
359 SC->ForgetSema();
360
361 // Detach from the external Sema source.
362 if (ExternalSemaSource *ExternalSema
363 = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
364 ExternalSema->ForgetSema();
365
366 // If Sema's ExternalSource is the multiplexer - we own it.
367 if (isMultiplexExternalSource)
368 delete ExternalSource;
369
370 threadSafety::threadSafetyCleanup(ThreadSafetyDeclCache);
371
372 // Destroys data sharing attributes stack for OpenMP
373 DestroyDataSharingAttributesStack();
374
375 // Detach from the PP callback handler which outlives Sema since it's owned
376 // by the preprocessor.
377 SemaPPCallbackHandler->reset();
378
379 assert(DelayedTypos.empty() && "Uncorrected typos!")((DelayedTypos.empty() && "Uncorrected typos!") ? static_cast
<void> (0) : __assert_fail ("DelayedTypos.empty() && \"Uncorrected typos!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 379, __PRETTY_FUNCTION__))
;
380}
381
382/// makeUnavailableInSystemHeader - There is an error in the current
383/// context. If we're still in a system header, and we can plausibly
384/// make the relevant declaration unavailable instead of erroring, do
385/// so and return true.
386bool Sema::makeUnavailableInSystemHeader(SourceLocation loc,
387 UnavailableAttr::ImplicitReason reason) {
388 // If we're not in a function, it's an error.
389 FunctionDecl *fn = dyn_cast<FunctionDecl>(CurContext);
390 if (!fn) return false;
1
Taking false branch
391
392 // If we're in template instantiation, it's an error.
393 if (inTemplateInstantiation())
2
Taking false branch
394 return false;
395
396 // If that function's not in a system header, it's an error.
397 if (!Context.getSourceManager().isInSystemHeader(loc))
3
Taking false branch
398 return false;
399
400 // If the function is already unavailable, it's not an error.
401 if (fn->hasAttr<UnavailableAttr>()) return true;
4
Taking false branch
402
403 fn->addAttr(UnavailableAttr::CreateImplicit(Context, "", reason, loc));
5
Calling 'UnavailableAttr::CreateImplicit'
404 return true;
405}
406
407ASTMutationListener *Sema::getASTMutationListener() const {
408 return getASTConsumer().GetASTMutationListener();
409}
410
411///Registers an external source. If an external source already exists,
412/// creates a multiplex external source and appends to it.
413///
414///\param[in] E - A non-null external sema source.
415///
416void Sema::addExternalSource(ExternalSemaSource *E) {
417 assert(E && "Cannot use with NULL ptr")((E && "Cannot use with NULL ptr") ? static_cast<void
> (0) : __assert_fail ("E && \"Cannot use with NULL ptr\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 417, __PRETTY_FUNCTION__))
;
418
419 if (!ExternalSource) {
420 ExternalSource = E;
421 return;
422 }
423
424 if (isMultiplexExternalSource)
425 static_cast<MultiplexExternalSemaSource*>(ExternalSource)->addSource(*E);
426 else {
427 ExternalSource = new MultiplexExternalSemaSource(*ExternalSource, *E);
428 isMultiplexExternalSource = true;
429 }
430}
431
432/// Print out statistics about the semantic analysis.
433void Sema::PrintStats() const {
434 llvm::errs() << "\n*** Semantic Analysis Stats:\n";
435 llvm::errs() << NumSFINAEErrors << " SFINAE diagnostics trapped.\n";
436
437 BumpAlloc.PrintStats();
438 AnalysisWarnings.PrintStats();
439}
440
441void Sema::diagnoseNullableToNonnullConversion(QualType DstType,
442 QualType SrcType,
443 SourceLocation Loc) {
444 Optional<NullabilityKind> ExprNullability = SrcType->getNullability(Context);
445 if (!ExprNullability || *ExprNullability != NullabilityKind::Nullable)
446 return;
447
448 Optional<NullabilityKind> TypeNullability = DstType->getNullability(Context);
449 if (!TypeNullability || *TypeNullability != NullabilityKind::NonNull)
450 return;
451
452 Diag(Loc, diag::warn_nullability_lost) << SrcType << DstType;
453}
454
455void Sema::diagnoseZeroToNullptrConversion(CastKind Kind, const Expr* E) {
456 if (Diags.isIgnored(diag::warn_zero_as_null_pointer_constant,
457 E->getBeginLoc()))
458 return;
459 // nullptr only exists from C++11 on, so don't warn on its absence earlier.
460 if (!getLangOpts().CPlusPlus11)
461 return;
462
463 if (Kind != CK_NullToPointer && Kind != CK_NullToMemberPointer)
464 return;
465 if (E->IgnoreParenImpCasts()->getType()->isNullPtrType())
466 return;
467
468 // If it is a macro from system header, and if the macro name is not "NULL",
469 // do not warn.
470 SourceLocation MaybeMacroLoc = E->getBeginLoc();
471 if (Diags.getSuppressSystemWarnings() &&
472 SourceMgr.isInSystemMacro(MaybeMacroLoc) &&
473 !findMacroSpelling(MaybeMacroLoc, "NULL"))
474 return;
475
476 Diag(E->getBeginLoc(), diag::warn_zero_as_null_pointer_constant)
477 << FixItHint::CreateReplacement(E->getSourceRange(), "nullptr");
478}
479
480/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
481/// If there is already an implicit cast, merge into the existing one.
482/// The result is of the given category.
483ExprResult Sema::ImpCastExprToType(Expr *E, QualType Ty,
484 CastKind Kind, ExprValueKind VK,
485 const CXXCastPath *BasePath,
486 CheckedConversionKind CCK) {
487#ifndef NDEBUG
488 if (VK == VK_RValue && !E->isRValue()) {
489 switch (Kind) {
490 default:
491 llvm_unreachable("can't implicitly cast lvalue to rvalue with this cast "::llvm::llvm_unreachable_internal("can't implicitly cast lvalue to rvalue with this cast "
"kind", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 492)
492 "kind")::llvm::llvm_unreachable_internal("can't implicitly cast lvalue to rvalue with this cast "
"kind", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 492)
;
493 case CK_LValueToRValue:
494 case CK_ArrayToPointerDecay:
495 case CK_FunctionToPointerDecay:
496 case CK_ToVoid:
497 case CK_NonAtomicToAtomic:
498 break;
499 }
500 }
501 assert((VK == VK_RValue || !E->isRValue()) && "can't cast rvalue to lvalue")(((VK == VK_RValue || !E->isRValue()) && "can't cast rvalue to lvalue"
) ? static_cast<void> (0) : __assert_fail ("(VK == VK_RValue || !E->isRValue()) && \"can't cast rvalue to lvalue\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 501, __PRETTY_FUNCTION__))
;
502#endif
503
504 diagnoseNullableToNonnullConversion(Ty, E->getType(), E->getBeginLoc());
505 diagnoseZeroToNullptrConversion(Kind, E);
506
507 QualType ExprTy = Context.getCanonicalType(E->getType());
508 QualType TypeTy = Context.getCanonicalType(Ty);
509
510 if (ExprTy == TypeTy)
511 return E;
512
513 // C++1z [conv.array]: The temporary materialization conversion is applied.
514 // We also use this to fuel C++ DR1213, which applies to C++11 onwards.
515 if (Kind == CK_ArrayToPointerDecay && getLangOpts().CPlusPlus &&
516 E->getValueKind() == VK_RValue) {
517 // The temporary is an lvalue in C++98 and an xvalue otherwise.
518 ExprResult Materialized = CreateMaterializeTemporaryExpr(
519 E->getType(), E, !getLangOpts().CPlusPlus11);
520 if (Materialized.isInvalid())
521 return ExprError();
522 E = Materialized.get();
523 }
524
525 if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
526 if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) {
527 ImpCast->setType(Ty);
528 ImpCast->setValueKind(VK);
529 return E;
530 }
531 }
532
533 return ImplicitCastExpr::Create(Context, Ty, Kind, E, BasePath, VK);
534}
535
536/// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
537/// to the conversion from scalar type ScalarTy to the Boolean type.
538CastKind Sema::ScalarTypeToBooleanCastKind(QualType ScalarTy) {
539 switch (ScalarTy->getScalarTypeKind()) {
540 case Type::STK_Bool: return CK_NoOp;
541 case Type::STK_CPointer: return CK_PointerToBoolean;
542 case Type::STK_BlockPointer: return CK_PointerToBoolean;
543 case Type::STK_ObjCObjectPointer: return CK_PointerToBoolean;
544 case Type::STK_MemberPointer: return CK_MemberPointerToBoolean;
545 case Type::STK_Integral: return CK_IntegralToBoolean;
546 case Type::STK_Floating: return CK_FloatingToBoolean;
547 case Type::STK_IntegralComplex: return CK_IntegralComplexToBoolean;
548 case Type::STK_FloatingComplex: return CK_FloatingComplexToBoolean;
549 case Type::STK_FixedPoint: return CK_FixedPointToBoolean;
550 }
551 llvm_unreachable("unknown scalar type kind")::llvm::llvm_unreachable_internal("unknown scalar type kind",
"/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 551)
;
552}
553
554/// Used to prune the decls of Sema's UnusedFileScopedDecls vector.
555static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) {
556 if (D->getMostRecentDecl()->isUsed())
557 return true;
558
559 if (D->isExternallyVisible())
560 return true;
561
562 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
563 // If this is a function template and none of its specializations is used,
564 // we should warn.
565 if (FunctionTemplateDecl *Template = FD->getDescribedFunctionTemplate())
566 for (const auto *Spec : Template->specializations())
567 if (ShouldRemoveFromUnused(SemaRef, Spec))
568 return true;
569
570 // UnusedFileScopedDecls stores the first declaration.
571 // The declaration may have become definition so check again.
572 const FunctionDecl *DeclToCheck;
573 if (FD->hasBody(DeclToCheck))
574 return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
575
576 // Later redecls may add new information resulting in not having to warn,
577 // so check again.
578 DeclToCheck = FD->getMostRecentDecl();
579 if (DeclToCheck != FD)
580 return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
581 }
582
583 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
584 // If a variable usable in constant expressions is referenced,
585 // don't warn if it isn't used: if the value of a variable is required
586 // for the computation of a constant expression, it doesn't make sense to
587 // warn even if the variable isn't odr-used. (isReferenced doesn't
588 // precisely reflect that, but it's a decent approximation.)
589 if (VD->isReferenced() &&
590 VD->isUsableInConstantExpressions(SemaRef->Context))
591 return true;
592
593 if (VarTemplateDecl *Template = VD->getDescribedVarTemplate())
594 // If this is a variable template and none of its specializations is used,
595 // we should warn.
596 for (const auto *Spec : Template->specializations())
597 if (ShouldRemoveFromUnused(SemaRef, Spec))
598 return true;
599
600 // UnusedFileScopedDecls stores the first declaration.
601 // The declaration may have become definition so check again.
602 const VarDecl *DeclToCheck = VD->getDefinition();
603 if (DeclToCheck)
604 return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
605
606 // Later redecls may add new information resulting in not having to warn,
607 // so check again.
608 DeclToCheck = VD->getMostRecentDecl();
609 if (DeclToCheck != VD)
610 return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck);
611 }
612
613 return false;
614}
615
616static bool isFunctionOrVarDeclExternC(NamedDecl *ND) {
617 if (auto *FD = dyn_cast<FunctionDecl>(ND))
618 return FD->isExternC();
619 return cast<VarDecl>(ND)->isExternC();
620}
621
622/// Determine whether ND is an external-linkage function or variable whose
623/// type has no linkage.
624bool Sema::isExternalWithNoLinkageType(ValueDecl *VD) {
625 // Note: it's not quite enough to check whether VD has UniqueExternalLinkage,
626 // because we also want to catch the case where its type has VisibleNoLinkage,
627 // which does not affect the linkage of VD.
628 return getLangOpts().CPlusPlus && VD->hasExternalFormalLinkage() &&
629 !isExternalFormalLinkage(VD->getType()->getLinkage()) &&
630 !isFunctionOrVarDeclExternC(VD);
631}
632
633/// Obtains a sorted list of functions and variables that are undefined but
634/// ODR-used.
635void Sema::getUndefinedButUsed(
636 SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined) {
637 for (const auto &UndefinedUse : UndefinedButUsed) {
638 NamedDecl *ND = UndefinedUse.first;
639
640 // Ignore attributes that have become invalid.
641 if (ND->isInvalidDecl()) continue;
642
643 // __attribute__((weakref)) is basically a definition.
644 if (ND->hasAttr<WeakRefAttr>()) continue;
645
646 if (isa<CXXDeductionGuideDecl>(ND))
647 continue;
648
649 if (ND->hasAttr<DLLImportAttr>() || ND->hasAttr<DLLExportAttr>()) {
650 // An exported function will always be emitted when defined, so even if
651 // the function is inline, it doesn't have to be emitted in this TU. An
652 // imported function implies that it has been exported somewhere else.
653 continue;
654 }
655
656 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
657 if (FD->isDefined())
658 continue;
659 if (FD->isExternallyVisible() &&
660 !isExternalWithNoLinkageType(FD) &&
661 !FD->getMostRecentDecl()->isInlined() &&
662 !FD->hasAttr<ExcludeFromExplicitInstantiationAttr>())
663 continue;
664 if (FD->getBuiltinID())
665 continue;
666 } else {
667 auto *VD = cast<VarDecl>(ND);
668 if (VD->hasDefinition() != VarDecl::DeclarationOnly)
669 continue;
670 if (VD->isExternallyVisible() &&
671 !isExternalWithNoLinkageType(VD) &&
672 !VD->getMostRecentDecl()->isInline() &&
673 !VD->hasAttr<ExcludeFromExplicitInstantiationAttr>())
674 continue;
675
676 // Skip VarDecls that lack formal definitions but which we know are in
677 // fact defined somewhere.
678 if (VD->isKnownToBeDefined())
679 continue;
680 }
681
682 Undefined.push_back(std::make_pair(ND, UndefinedUse.second));
683 }
684}
685
686/// checkUndefinedButUsed - Check for undefined objects with internal linkage
687/// or that are inline.
688static void checkUndefinedButUsed(Sema &S) {
689 if (S.UndefinedButUsed.empty()) return;
690
691 // Collect all the still-undefined entities with internal linkage.
692 SmallVector<std::pair<NamedDecl *, SourceLocation>, 16> Undefined;
693 S.getUndefinedButUsed(Undefined);
694 if (Undefined.empty()) return;
695
696 for (auto Undef : Undefined) {
697 ValueDecl *VD = cast<ValueDecl>(Undef.first);
698 SourceLocation UseLoc = Undef.second;
699
700 if (S.isExternalWithNoLinkageType(VD)) {
701 // C++ [basic.link]p8:
702 // A type without linkage shall not be used as the type of a variable
703 // or function with external linkage unless
704 // -- the entity has C language linkage
705 // -- the entity is not odr-used or is defined in the same TU
706 //
707 // As an extension, accept this in cases where the type is externally
708 // visible, since the function or variable actually can be defined in
709 // another translation unit in that case.
710 S.Diag(VD->getLocation(), isExternallyVisible(VD->getType()->getLinkage())
711 ? diag::ext_undefined_internal_type
712 : diag::err_undefined_internal_type)
713 << isa<VarDecl>(VD) << VD;
714 } else if (!VD->isExternallyVisible()) {
715 // FIXME: We can promote this to an error. The function or variable can't
716 // be defined anywhere else, so the program must necessarily violate the
717 // one definition rule.
718 S.Diag(VD->getLocation(), diag::warn_undefined_internal)
719 << isa<VarDecl>(VD) << VD;
720 } else if (auto *FD = dyn_cast<FunctionDecl>(VD)) {
721 (void)FD;
722 assert(FD->getMostRecentDecl()->isInlined() &&((FD->getMostRecentDecl()->isInlined() && "used object requires definition but isn't inline or internal?"
) ? static_cast<void> (0) : __assert_fail ("FD->getMostRecentDecl()->isInlined() && \"used object requires definition but isn't inline or internal?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 723, __PRETTY_FUNCTION__))
723 "used object requires definition but isn't inline or internal?")((FD->getMostRecentDecl()->isInlined() && "used object requires definition but isn't inline or internal?"
) ? static_cast<void> (0) : __assert_fail ("FD->getMostRecentDecl()->isInlined() && \"used object requires definition but isn't inline or internal?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 723, __PRETTY_FUNCTION__))
;
724 // FIXME: This is ill-formed; we should reject.
725 S.Diag(VD->getLocation(), diag::warn_undefined_inline) << VD;
726 } else {
727 assert(cast<VarDecl>(VD)->getMostRecentDecl()->isInline() &&((cast<VarDecl>(VD)->getMostRecentDecl()->isInline
() && "used var requires definition but isn't inline or internal?"
) ? static_cast<void> (0) : __assert_fail ("cast<VarDecl>(VD)->getMostRecentDecl()->isInline() && \"used var requires definition but isn't inline or internal?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 728, __PRETTY_FUNCTION__))
728 "used var requires definition but isn't inline or internal?")((cast<VarDecl>(VD)->getMostRecentDecl()->isInline
() && "used var requires definition but isn't inline or internal?"
) ? static_cast<void> (0) : __assert_fail ("cast<VarDecl>(VD)->getMostRecentDecl()->isInline() && \"used var requires definition but isn't inline or internal?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 728, __PRETTY_FUNCTION__))
;
729 S.Diag(VD->getLocation(), diag::err_undefined_inline_var) << VD;
730 }
731 if (UseLoc.isValid())
732 S.Diag(UseLoc, diag::note_used_here);
733 }
734
735 S.UndefinedButUsed.clear();
736}
737
738void Sema::LoadExternalWeakUndeclaredIdentifiers() {
739 if (!ExternalSource)
740 return;
741
742 SmallVector<std::pair<IdentifierInfo *, WeakInfo>, 4> WeakIDs;
743 ExternalSource->ReadWeakUndeclaredIdentifiers(WeakIDs);
744 for (auto &WeakID : WeakIDs)
745 WeakUndeclaredIdentifiers.insert(WeakID);
746}
747
748
749typedef llvm::DenseMap<const CXXRecordDecl*, bool> RecordCompleteMap;
750
751/// Returns true, if all methods and nested classes of the given
752/// CXXRecordDecl are defined in this translation unit.
753///
754/// Should only be called from ActOnEndOfTranslationUnit so that all
755/// definitions are actually read.
756static bool MethodsAndNestedClassesComplete(const CXXRecordDecl *RD,
757 RecordCompleteMap &MNCComplete) {
758 RecordCompleteMap::iterator Cache = MNCComplete.find(RD);
759 if (Cache != MNCComplete.end())
760 return Cache->second;
761 if (!RD->isCompleteDefinition())
762 return false;
763 bool Complete = true;
764 for (DeclContext::decl_iterator I = RD->decls_begin(),
765 E = RD->decls_end();
766 I != E && Complete; ++I) {
767 if (const CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(*I))
768 Complete = M->isDefined() || M->isDefaulted() ||
769 (M->isPure() && !isa<CXXDestructorDecl>(M));
770 else if (const FunctionTemplateDecl *F = dyn_cast<FunctionTemplateDecl>(*I))
771 // If the template function is marked as late template parsed at this
772 // point, it has not been instantiated and therefore we have not
773 // performed semantic analysis on it yet, so we cannot know if the type
774 // can be considered complete.
775 Complete = !F->getTemplatedDecl()->isLateTemplateParsed() &&
776 F->getTemplatedDecl()->isDefined();
777 else if (const CXXRecordDecl *R = dyn_cast<CXXRecordDecl>(*I)) {
778 if (R->isInjectedClassName())
779 continue;
780 if (R->hasDefinition())
781 Complete = MethodsAndNestedClassesComplete(R->getDefinition(),
782 MNCComplete);
783 else
784 Complete = false;
785 }
786 }
787 MNCComplete[RD] = Complete;
788 return Complete;
789}
790
791/// Returns true, if the given CXXRecordDecl is fully defined in this
792/// translation unit, i.e. all methods are defined or pure virtual and all
793/// friends, friend functions and nested classes are fully defined in this
794/// translation unit.
795///
796/// Should only be called from ActOnEndOfTranslationUnit so that all
797/// definitions are actually read.
798static bool IsRecordFullyDefined(const CXXRecordDecl *RD,
799 RecordCompleteMap &RecordsComplete,
800 RecordCompleteMap &MNCComplete) {
801 RecordCompleteMap::iterator Cache = RecordsComplete.find(RD);
802 if (Cache != RecordsComplete.end())
803 return Cache->second;
804 bool Complete = MethodsAndNestedClassesComplete(RD, MNCComplete);
805 for (CXXRecordDecl::friend_iterator I = RD->friend_begin(),
806 E = RD->friend_end();
807 I != E && Complete; ++I) {
808 // Check if friend classes and methods are complete.
809 if (TypeSourceInfo *TSI = (*I)->getFriendType()) {
810 // Friend classes are available as the TypeSourceInfo of the FriendDecl.
811 if (CXXRecordDecl *FriendD = TSI->getType()->getAsCXXRecordDecl())
812 Complete = MethodsAndNestedClassesComplete(FriendD, MNCComplete);
813 else
814 Complete = false;
815 } else {
816 // Friend functions are available through the NamedDecl of FriendDecl.
817 if (const FunctionDecl *FD =
818 dyn_cast<FunctionDecl>((*I)->getFriendDecl()))
819 Complete = FD->isDefined();
820 else
821 // This is a template friend, give up.
822 Complete = false;
823 }
824 }
825 RecordsComplete[RD] = Complete;
826 return Complete;
827}
828
829void Sema::emitAndClearUnusedLocalTypedefWarnings() {
830 if (ExternalSource)
831 ExternalSource->ReadUnusedLocalTypedefNameCandidates(
832 UnusedLocalTypedefNameCandidates);
833 for (const TypedefNameDecl *TD : UnusedLocalTypedefNameCandidates) {
834 if (TD->isReferenced())
835 continue;
836 Diag(TD->getLocation(), diag::warn_unused_local_typedef)
837 << isa<TypeAliasDecl>(TD) << TD->getDeclName();
838 }
839 UnusedLocalTypedefNameCandidates.clear();
840}
841
842/// This is called before the very first declaration in the translation unit
843/// is parsed. Note that the ASTContext may have already injected some
844/// declarations.
845void Sema::ActOnStartOfTranslationUnit() {
846 if (getLangOpts().ModulesTS &&
847 (getLangOpts().getCompilingModule() == LangOptions::CMK_ModuleInterface ||
848 getLangOpts().getCompilingModule() == LangOptions::CMK_None)) {
849 // We start in an implied global module fragment.
850 SourceLocation StartOfTU =
851 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
852 ActOnGlobalModuleFragmentDecl(StartOfTU);
853 ModuleScopes.back().ImplicitGlobalModuleFragment = true;
854 }
855}
856
857void Sema::ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind) {
858 // No explicit actions are required at the end of the global module fragment.
859 if (Kind == TUFragmentKind::Global)
860 return;
861
862 // Transfer late parsed template instantiations over to the pending template
863 // instantiation list. During normal compilation, the late template parser
864 // will be installed and instantiating these templates will succeed.
865 //
866 // If we are building a TU prefix for serialization, it is also safe to
867 // transfer these over, even though they are not parsed. The end of the TU
868 // should be outside of any eager template instantiation scope, so when this
869 // AST is deserialized, these templates will not be parsed until the end of
870 // the combined TU.
871 PendingInstantiations.insert(PendingInstantiations.end(),
872 LateParsedInstantiations.begin(),
873 LateParsedInstantiations.end());
874 LateParsedInstantiations.clear();
875
876 // If DefinedUsedVTables ends up marking any virtual member functions it
877 // might lead to more pending template instantiations, which we then need
878 // to instantiate.
879 DefineUsedVTables();
880
881 // C++: Perform implicit template instantiations.
882 //
883 // FIXME: When we perform these implicit instantiations, we do not
884 // carefully keep track of the point of instantiation (C++ [temp.point]).
885 // This means that name lookup that occurs within the template
886 // instantiation will always happen at the end of the translation unit,
887 // so it will find some names that are not required to be found. This is
888 // valid, but we could do better by diagnosing if an instantiation uses a
889 // name that was not visible at its first point of instantiation.
890 if (ExternalSource) {
891 // Load pending instantiations from the external source.
892 SmallVector<PendingImplicitInstantiation, 4> Pending;
893 ExternalSource->ReadPendingInstantiations(Pending);
894 for (auto PII : Pending)
895 if (auto Func = dyn_cast<FunctionDecl>(PII.first))
896 Func->setInstantiationIsPending(true);
897 PendingInstantiations.insert(PendingInstantiations.begin(),
898 Pending.begin(), Pending.end());
899 }
900
901 {
902 llvm::TimeTraceScope TimeScope("PerformPendingInstantiations",
903 StringRef(""));
904 PerformPendingInstantiations();
905 }
906
907 assert(LateParsedInstantiations.empty() &&((LateParsedInstantiations.empty() && "end of TU template instantiation should not create more "
"late-parsed templates") ? static_cast<void> (0) : __assert_fail
("LateParsedInstantiations.empty() && \"end of TU template instantiation should not create more \" \"late-parsed templates\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 909, __PRETTY_FUNCTION__))
908 "end of TU template instantiation should not create more "((LateParsedInstantiations.empty() && "end of TU template instantiation should not create more "
"late-parsed templates") ? static_cast<void> (0) : __assert_fail
("LateParsedInstantiations.empty() && \"end of TU template instantiation should not create more \" \"late-parsed templates\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 909, __PRETTY_FUNCTION__))
909 "late-parsed templates")((LateParsedInstantiations.empty() && "end of TU template instantiation should not create more "
"late-parsed templates") ? static_cast<void> (0) : __assert_fail
("LateParsedInstantiations.empty() && \"end of TU template instantiation should not create more \" \"late-parsed templates\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 909, __PRETTY_FUNCTION__))
;
910}
911
912/// ActOnEndOfTranslationUnit - This is called at the very end of the
913/// translation unit when EOF is reached and all but the top-level scope is
914/// popped.
915void Sema::ActOnEndOfTranslationUnit() {
916 assert(DelayedDiagnostics.getCurrentPool() == nullptr((DelayedDiagnostics.getCurrentPool() == nullptr && "reached end of translation unit with a pool attached?"
) ? static_cast<void> (0) : __assert_fail ("DelayedDiagnostics.getCurrentPool() == nullptr && \"reached end of translation unit with a pool attached?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 917, __PRETTY_FUNCTION__))
917 && "reached end of translation unit with a pool attached?")((DelayedDiagnostics.getCurrentPool() == nullptr && "reached end of translation unit with a pool attached?"
) ? static_cast<void> (0) : __assert_fail ("DelayedDiagnostics.getCurrentPool() == nullptr && \"reached end of translation unit with a pool attached?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 917, __PRETTY_FUNCTION__))
;
918
919 // If code completion is enabled, don't perform any end-of-translation-unit
920 // work.
921 if (PP.isCodeCompletionEnabled())
922 return;
923
924 // Complete translation units and modules define vtables and perform implicit
925 // instantiations. PCH files do not.
926 if (TUKind != TU_Prefix) {
927 DiagnoseUseOfUnimplementedSelectors();
928
929 ActOnEndOfTranslationUnitFragment(
930 !ModuleScopes.empty() && ModuleScopes.back().Module->Kind ==
931 Module::PrivateModuleFragment
932 ? TUFragmentKind::Private
933 : TUFragmentKind::Normal);
934
935 if (LateTemplateParserCleanup)
936 LateTemplateParserCleanup(OpaqueParser);
937
938 CheckDelayedMemberExceptionSpecs();
939 } else {
940 // If we are building a TU prefix for serialization, it is safe to transfer
941 // these over, even though they are not parsed. The end of the TU should be
942 // outside of any eager template instantiation scope, so when this AST is
943 // deserialized, these templates will not be parsed until the end of the
944 // combined TU.
945 PendingInstantiations.insert(PendingInstantiations.end(),
946 LateParsedInstantiations.begin(),
947 LateParsedInstantiations.end());
948 LateParsedInstantiations.clear();
949 }
950
951 DiagnoseUnterminatedPragmaPack();
952 DiagnoseUnterminatedPragmaAttribute();
953
954 // All delayed member exception specs should be checked or we end up accepting
955 // incompatible declarations.
956 assert(DelayedOverridingExceptionSpecChecks.empty())((DelayedOverridingExceptionSpecChecks.empty()) ? static_cast
<void> (0) : __assert_fail ("DelayedOverridingExceptionSpecChecks.empty()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 956, __PRETTY_FUNCTION__))
;
957 assert(DelayedEquivalentExceptionSpecChecks.empty())((DelayedEquivalentExceptionSpecChecks.empty()) ? static_cast
<void> (0) : __assert_fail ("DelayedEquivalentExceptionSpecChecks.empty()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 957, __PRETTY_FUNCTION__))
;
958
959 // All dllexport classes should have been processed already.
960 assert(DelayedDllExportClasses.empty())((DelayedDllExportClasses.empty()) ? static_cast<void> (
0) : __assert_fail ("DelayedDllExportClasses.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 960, __PRETTY_FUNCTION__))
;
961
962 // Remove file scoped decls that turned out to be used.
963 UnusedFileScopedDecls.erase(
964 std::remove_if(UnusedFileScopedDecls.begin(nullptr, true),
965 UnusedFileScopedDecls.end(),
966 [this](const DeclaratorDecl *DD) {
967 return ShouldRemoveFromUnused(this, DD);
968 }),
969 UnusedFileScopedDecls.end());
970
971 if (TUKind == TU_Prefix) {
972 // Translation unit prefixes don't need any of the checking below.
973 if (!PP.isIncrementalProcessingEnabled())
974 TUScope = nullptr;
975 return;
976 }
977
978 // Check for #pragma weak identifiers that were never declared
979 LoadExternalWeakUndeclaredIdentifiers();
980 for (auto WeakID : WeakUndeclaredIdentifiers) {
981 if (WeakID.second.getUsed())
982 continue;
983
984 Decl *PrevDecl = LookupSingleName(TUScope, WeakID.first, SourceLocation(),
985 LookupOrdinaryName);
986 if (PrevDecl != nullptr &&
987 !(isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl)))
988 Diag(WeakID.second.getLocation(), diag::warn_attribute_wrong_decl_type)
989 << "'weak'" << ExpectedVariableOrFunction;
990 else
991 Diag(WeakID.second.getLocation(), diag::warn_weak_identifier_undeclared)
992 << WeakID.first;
993 }
994
995 if (LangOpts.CPlusPlus11 &&
996 !Diags.isIgnored(diag::warn_delegating_ctor_cycle, SourceLocation()))
997 CheckDelegatingCtorCycles();
998
999 if (!Diags.hasErrorOccurred()) {
1000 if (ExternalSource)
1001 ExternalSource->ReadUndefinedButUsed(UndefinedButUsed);
1002 checkUndefinedButUsed(*this);
1003 }
1004
1005 // A global-module-fragment is only permitted within a module unit.
1006 bool DiagnosedMissingModuleDeclaration = false;
1007 if (!ModuleScopes.empty() &&
1008 ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment &&
1009 !ModuleScopes.back().ImplicitGlobalModuleFragment) {
1010 Diag(ModuleScopes.back().BeginLoc,
1011 diag::err_module_declaration_missing_after_global_module_introducer);
1012 DiagnosedMissingModuleDeclaration = true;
1013 }
1014
1015 if (TUKind == TU_Module) {
1016 // If we are building a module interface unit, we need to have seen the
1017 // module declaration by now.
1018 if (getLangOpts().getCompilingModule() ==
1019 LangOptions::CMK_ModuleInterface &&
1020 (ModuleScopes.empty() ||
1021 !ModuleScopes.back().Module->isModulePurview()) &&
1022 !DiagnosedMissingModuleDeclaration) {
1023 // FIXME: Make a better guess as to where to put the module declaration.
1024 Diag(getSourceManager().getLocForStartOfFile(
1025 getSourceManager().getMainFileID()),
1026 diag::err_module_declaration_missing);
1027 }
1028
1029 // If we are building a module, resolve all of the exported declarations
1030 // now.
1031 if (Module *CurrentModule = PP.getCurrentModule()) {
1032 ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap();
1033
1034 SmallVector<Module *, 2> Stack;
1035 Stack.push_back(CurrentModule);
1036 while (!Stack.empty()) {
1037 Module *Mod = Stack.pop_back_val();
1038
1039 // Resolve the exported declarations and conflicts.
1040 // FIXME: Actually complain, once we figure out how to teach the
1041 // diagnostic client to deal with complaints in the module map at this
1042 // point.
1043 ModMap.resolveExports(Mod, /*Complain=*/false);
1044 ModMap.resolveUses(Mod, /*Complain=*/false);
1045 ModMap.resolveConflicts(Mod, /*Complain=*/false);
1046
1047 // Queue the submodules, so their exports will also be resolved.
1048 Stack.append(Mod->submodule_begin(), Mod->submodule_end());
1049 }
1050 }
1051
1052 // Warnings emitted in ActOnEndOfTranslationUnit() should be emitted for
1053 // modules when they are built, not every time they are used.
1054 emitAndClearUnusedLocalTypedefWarnings();
1055 }
1056
1057 // C99 6.9.2p2:
1058 // A declaration of an identifier for an object that has file
1059 // scope without an initializer, and without a storage-class
1060 // specifier or with the storage-class specifier static,
1061 // constitutes a tentative definition. If a translation unit
1062 // contains one or more tentative definitions for an identifier,
1063 // and the translation unit contains no external definition for
1064 // that identifier, then the behavior is exactly as if the
1065 // translation unit contains a file scope declaration of that
1066 // identifier, with the composite type as of the end of the
1067 // translation unit, with an initializer equal to 0.
1068 llvm::SmallSet<VarDecl *, 32> Seen;
1069 for (TentativeDefinitionsType::iterator
1070 T = TentativeDefinitions.begin(ExternalSource),
1071 TEnd = TentativeDefinitions.end();
1072 T != TEnd; ++T) {
1073 VarDecl *VD = (*T)->getActingDefinition();
1074
1075 // If the tentative definition was completed, getActingDefinition() returns
1076 // null. If we've already seen this variable before, insert()'s second
1077 // return value is false.
1078 if (!VD || VD->isInvalidDecl() || !Seen.insert(VD).second)
1079 continue;
1080
1081 if (const IncompleteArrayType *ArrayT
1082 = Context.getAsIncompleteArrayType(VD->getType())) {
1083 // Set the length of the array to 1 (C99 6.9.2p5).
1084 Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
1085 llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true);
1086 QualType T = Context.getConstantArrayType(ArrayT->getElementType(),
1087 One, ArrayType::Normal, 0);
1088 VD->setType(T);
1089 } else if (RequireCompleteType(VD->getLocation(), VD->getType(),
1090 diag::err_tentative_def_incomplete_type))
1091 VD->setInvalidDecl();
1092
1093 // No initialization is performed for a tentative definition.
1094 CheckCompleteVariableDeclaration(VD);
1095
1096 // Notify the consumer that we've completed a tentative definition.
1097 if (!VD->isInvalidDecl())
1098 Consumer.CompleteTentativeDefinition(VD);
1099 }
1100
1101 // If there were errors, disable 'unused' warnings since they will mostly be
1102 // noise. Don't warn for a use from a module: either we should warn on all
1103 // file-scope declarations in modules or not at all, but whether the
1104 // declaration is used is immaterial.
1105 if (!Diags.hasErrorOccurred() && TUKind != TU_Module) {
1106 // Output warning for unused file scoped decls.
1107 for (UnusedFileScopedDeclsType::iterator
1108 I = UnusedFileScopedDecls.begin(ExternalSource),
1109 E = UnusedFileScopedDecls.end(); I != E; ++I) {
1110 if (ShouldRemoveFromUnused(this, *I))
1111 continue;
1112
1113 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1114 const FunctionDecl *DiagD;
1115 if (!FD->hasBody(DiagD))
1116 DiagD = FD;
1117 if (DiagD->isDeleted())
1118 continue; // Deleted functions are supposed to be unused.
1119 if (DiagD->isReferenced()) {
1120 if (isa<CXXMethodDecl>(DiagD))
1121 Diag(DiagD->getLocation(), diag::warn_unneeded_member_function)
1122 << DiagD->getDeclName();
1123 else {
1124 if (FD->getStorageClass() == SC_Static &&
1125 !FD->isInlineSpecified() &&
1126 !SourceMgr.isInMainFile(
1127 SourceMgr.getExpansionLoc(FD->getLocation())))
1128 Diag(DiagD->getLocation(),
1129 diag::warn_unneeded_static_internal_decl)
1130 << DiagD->getDeclName();
1131 else
1132 Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
1133 << /*function*/0 << DiagD->getDeclName();
1134 }
1135 } else {
1136 if (FD->getDescribedFunctionTemplate())
1137 Diag(DiagD->getLocation(), diag::warn_unused_template)
1138 << /*function*/0 << DiagD->getDeclName();
1139 else
1140 Diag(DiagD->getLocation(),
1141 isa<CXXMethodDecl>(DiagD) ? diag::warn_unused_member_function
1142 : diag::warn_unused_function)
1143 << DiagD->getDeclName();
1144 }
1145 } else {
1146 const VarDecl *DiagD = cast<VarDecl>(*I)->getDefinition();
1147 if (!DiagD)
1148 DiagD = cast<VarDecl>(*I);
1149 if (DiagD->isReferenced()) {
1150 Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl)
1151 << /*variable*/1 << DiagD->getDeclName();
1152 } else if (DiagD->getType().isConstQualified()) {
1153 const SourceManager &SM = SourceMgr;
1154 if (SM.getMainFileID() != SM.getFileID(DiagD->getLocation()) ||
1155 !PP.getLangOpts().IsHeaderFile)
1156 Diag(DiagD->getLocation(), diag::warn_unused_const_variable)
1157 << DiagD->getDeclName();
1158 } else {
1159 if (DiagD->getDescribedVarTemplate())
1160 Diag(DiagD->getLocation(), diag::warn_unused_template)
1161 << /*variable*/1 << DiagD->getDeclName();
1162 else
1163 Diag(DiagD->getLocation(), diag::warn_unused_variable)
1164 << DiagD->getDeclName();
1165 }
1166 }
1167 }
1168
1169 emitAndClearUnusedLocalTypedefWarnings();
1170 }
1171
1172 if (!Diags.isIgnored(diag::warn_unused_private_field, SourceLocation())) {
1173 // FIXME: Load additional unused private field candidates from the external
1174 // source.
1175 RecordCompleteMap RecordsComplete;
1176 RecordCompleteMap MNCComplete;
1177 for (NamedDeclSetType::iterator I = UnusedPrivateFields.begin(),
1178 E = UnusedPrivateFields.end(); I != E; ++I) {
1179 const NamedDecl *D = *I;
1180 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
1181 if (RD && !RD->isUnion() &&
1182 IsRecordFullyDefined(RD, RecordsComplete, MNCComplete)) {
1183 Diag(D->getLocation(), diag::warn_unused_private_field)
1184 << D->getDeclName();
1185 }
1186 }
1187 }
1188
1189 if (!Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) {
1190 if (ExternalSource)
1191 ExternalSource->ReadMismatchingDeleteExpressions(DeleteExprs);
1192 for (const auto &DeletedFieldInfo : DeleteExprs) {
1193 for (const auto &DeleteExprLoc : DeletedFieldInfo.second) {
1194 AnalyzeDeleteExprMismatch(DeletedFieldInfo.first, DeleteExprLoc.first,
1195 DeleteExprLoc.second);
1196 }
1197 }
1198 }
1199
1200 // Check we've noticed that we're no longer parsing the initializer for every
1201 // variable. If we miss cases, then at best we have a performance issue and
1202 // at worst a rejects-valid bug.
1203 assert(ParsingInitForAutoVars.empty() &&((ParsingInitForAutoVars.empty() && "Didn't unmark var as having its initializer parsed"
) ? static_cast<void> (0) : __assert_fail ("ParsingInitForAutoVars.empty() && \"Didn't unmark var as having its initializer parsed\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1204, __PRETTY_FUNCTION__))
1204 "Didn't unmark var as having its initializer parsed")((ParsingInitForAutoVars.empty() && "Didn't unmark var as having its initializer parsed"
) ? static_cast<void> (0) : __assert_fail ("ParsingInitForAutoVars.empty() && \"Didn't unmark var as having its initializer parsed\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1204, __PRETTY_FUNCTION__))
;
1205
1206 if (!PP.isIncrementalProcessingEnabled())
1207 TUScope = nullptr;
1208}
1209
1210
1211//===----------------------------------------------------------------------===//
1212// Helper functions.
1213//===----------------------------------------------------------------------===//
1214
1215DeclContext *Sema::getFunctionLevelDeclContext() {
1216 DeclContext *DC = CurContext;
1217
1218 while (true) {
1219 if (isa<BlockDecl>(DC) || isa<EnumDecl>(DC) || isa<CapturedDecl>(DC)) {
1220 DC = DC->getParent();
1221 } else if (isa<CXXMethodDecl>(DC) &&
1222 cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
1223 cast<CXXRecordDecl>(DC->getParent())->isLambda()) {
1224 DC = DC->getParent()->getParent();
1225 }
1226 else break;
1227 }
1228
1229 return DC;
1230}
1231
1232/// getCurFunctionDecl - If inside of a function body, this returns a pointer
1233/// to the function decl for the function being parsed. If we're currently
1234/// in a 'block', this returns the containing context.
1235FunctionDecl *Sema::getCurFunctionDecl() {
1236 DeclContext *DC = getFunctionLevelDeclContext();
1237 return dyn_cast<FunctionDecl>(DC);
1238}
1239
1240ObjCMethodDecl *Sema::getCurMethodDecl() {
1241 DeclContext *DC = getFunctionLevelDeclContext();
1242 while (isa<RecordDecl>(DC))
1243 DC = DC->getParent();
1244 return dyn_cast<ObjCMethodDecl>(DC);
1245}
1246
1247NamedDecl *Sema::getCurFunctionOrMethodDecl() {
1248 DeclContext *DC = getFunctionLevelDeclContext();
1249 if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
1250 return cast<NamedDecl>(DC);
1251 return nullptr;
1252}
1253
1254void Sema::EmitCurrentDiagnostic(unsigned DiagID) {
1255 // FIXME: It doesn't make sense to me that DiagID is an incoming argument here
1256 // and yet we also use the current diag ID on the DiagnosticsEngine. This has
1257 // been made more painfully obvious by the refactor that introduced this
1258 // function, but it is possible that the incoming argument can be
1259 // eliminated. If it truly cannot be (for example, there is some reentrancy
1260 // issue I am not seeing yet), then there should at least be a clarifying
1261 // comment somewhere.
1262 if (Optional<TemplateDeductionInfo*> Info = isSFINAEContext()) {
1263 switch (DiagnosticIDs::getDiagnosticSFINAEResponse(
1264 Diags.getCurrentDiagID())) {
1265 case DiagnosticIDs::SFINAE_Report:
1266 // We'll report the diagnostic below.
1267 break;
1268
1269 case DiagnosticIDs::SFINAE_SubstitutionFailure:
1270 // Count this failure so that we know that template argument deduction
1271 // has failed.
1272 ++NumSFINAEErrors;
1273
1274 // Make a copy of this suppressed diagnostic and store it with the
1275 // template-deduction information.
1276 if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
1277 Diagnostic DiagInfo(&Diags);
1278 (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
1279 PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
1280 }
1281
1282 Diags.setLastDiagnosticIgnored();
1283 Diags.Clear();
1284 return;
1285
1286 case DiagnosticIDs::SFINAE_AccessControl: {
1287 // Per C++ Core Issue 1170, access control is part of SFINAE.
1288 // Additionally, the AccessCheckingSFINAE flag can be used to temporarily
1289 // make access control a part of SFINAE for the purposes of checking
1290 // type traits.
1291 if (!AccessCheckingSFINAE && !getLangOpts().CPlusPlus11)
1292 break;
1293
1294 SourceLocation Loc = Diags.getCurrentDiagLoc();
1295
1296 // Suppress this diagnostic.
1297 ++NumSFINAEErrors;
1298
1299 // Make a copy of this suppressed diagnostic and store it with the
1300 // template-deduction information.
1301 if (*Info && !(*Info)->hasSFINAEDiagnostic()) {
1302 Diagnostic DiagInfo(&Diags);
1303 (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(),
1304 PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
1305 }
1306
1307 Diags.setLastDiagnosticIgnored();
1308 Diags.Clear();
1309
1310 // Now the diagnostic state is clear, produce a C++98 compatibility
1311 // warning.
1312 Diag(Loc, diag::warn_cxx98_compat_sfinae_access_control);
1313
1314 // The last diagnostic which Sema produced was ignored. Suppress any
1315 // notes attached to it.
1316 Diags.setLastDiagnosticIgnored();
1317 return;
1318 }
1319
1320 case DiagnosticIDs::SFINAE_Suppress:
1321 // Make a copy of this suppressed diagnostic and store it with the
1322 // template-deduction information;
1323 if (*Info) {
1324 Diagnostic DiagInfo(&Diags);
1325 (*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(),
1326 PartialDiagnostic(DiagInfo, Context.getDiagAllocator()));
1327 }
1328
1329 // Suppress this diagnostic.
1330 Diags.setLastDiagnosticIgnored();
1331 Diags.Clear();
1332 return;
1333 }
1334 }
1335
1336 // Copy the diagnostic printing policy over the ASTContext printing policy.
1337 // TODO: Stop doing that. See: https://reviews.llvm.org/D45093#1090292
1338 Context.setPrintingPolicy(getPrintingPolicy());
1339
1340 // Emit the diagnostic.
1341 if (!Diags.EmitCurrentDiagnostic())
1342 return;
1343
1344 // If this is not a note, and we're in a template instantiation
1345 // that is different from the last template instantiation where
1346 // we emitted an error, print a template instantiation
1347 // backtrace.
1348 if (!DiagnosticIDs::isBuiltinNote(DiagID))
1349 PrintContextStack();
1350}
1351
1352Sema::SemaDiagnosticBuilder
1353Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) {
1354 SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID()));
1355 PD.Emit(Builder);
1356
1357 return Builder;
1358}
1359
1360// Print notes showing how we can reach FD starting from an a priori
1361// known-callable function.
1362static void emitCallStackNotes(Sema &S, FunctionDecl *FD) {
1363 auto FnIt = S.DeviceKnownEmittedFns.find(FD);
1364 while (FnIt != S.DeviceKnownEmittedFns.end()) {
1365 DiagnosticBuilder Builder(
1366 S.Diags.Report(FnIt->second.Loc, diag::note_called_by));
1367 Builder << FnIt->second.FD;
1368 Builder.setForceEmit();
1369
1370 FnIt = S.DeviceKnownEmittedFns.find(FnIt->second.FD);
1371 }
1372}
1373
1374// Emit any deferred diagnostics for FD and erase them from the map in which
1375// they're stored.
1376static void emitDeferredDiags(Sema &S, FunctionDecl *FD) {
1377 auto It = S.DeviceDeferredDiags.find(FD);
1378 if (It == S.DeviceDeferredDiags.end())
1379 return;
1380 bool HasWarningOrError = false;
1381 for (PartialDiagnosticAt &PDAt : It->second) {
1382 const SourceLocation &Loc = PDAt.first;
1383 const PartialDiagnostic &PD = PDAt.second;
1384 HasWarningOrError |= S.getDiagnostics().getDiagnosticLevel(
1385 PD.getDiagID(), Loc) >= DiagnosticsEngine::Warning;
1386 DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID()));
1387 Builder.setForceEmit();
1388 PD.Emit(Builder);
1389 }
1390 S.DeviceDeferredDiags.erase(It);
1391
1392 // FIXME: Should this be called after every warning/error emitted in the loop
1393 // above, instead of just once per function? That would be consistent with
1394 // how we handle immediate errors, but it also seems like a bit much.
1395 if (HasWarningOrError)
1396 emitCallStackNotes(S, FD);
1397}
1398
1399// In CUDA, there are some constructs which may appear in semantically-valid
1400// code, but trigger errors if we ever generate code for the function in which
1401// they appear. Essentially every construct you're not allowed to use on the
1402// device falls into this category, because you are allowed to use these
1403// constructs in a __host__ __device__ function, but only if that function is
1404// never codegen'ed on the device.
1405//
1406// To handle semantic checking for these constructs, we keep track of the set of
1407// functions we know will be emitted, either because we could tell a priori that
1408// they would be emitted, or because they were transitively called by a
1409// known-emitted function.
1410//
1411// We also keep a partial call graph of which not-known-emitted functions call
1412// which other not-known-emitted functions.
1413//
1414// When we see something which is illegal if the current function is emitted
1415// (usually by way of CUDADiagIfDeviceCode, CUDADiagIfHostCode, or
1416// CheckCUDACall), we first check if the current function is known-emitted. If
1417// so, we immediately output the diagnostic.
1418//
1419// Otherwise, we "defer" the diagnostic. It sits in Sema::DeviceDeferredDiags
1420// until we discover that the function is known-emitted, at which point we take
1421// it out of this map and emit the diagnostic.
1422
1423Sema::DeviceDiagBuilder::DeviceDiagBuilder(Kind K, SourceLocation Loc,
1424 unsigned DiagID, FunctionDecl *Fn,
1425 Sema &S)
1426 : S(S), Loc(Loc), DiagID(DiagID), Fn(Fn),
1427 ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) {
1428 switch (K) {
1429 case K_Nop:
1430 break;
1431 case K_Immediate:
1432 case K_ImmediateWithCallStack:
1433 ImmediateDiag.emplace(S.Diag(Loc, DiagID));
1434 break;
1435 case K_Deferred:
1436 assert(Fn && "Must have a function to attach the deferred diag to.")((Fn && "Must have a function to attach the deferred diag to."
) ? static_cast<void> (0) : __assert_fail ("Fn && \"Must have a function to attach the deferred diag to.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1436, __PRETTY_FUNCTION__))
;
1437 auto &Diags = S.DeviceDeferredDiags[Fn];
1438 PartialDiagId.emplace(Diags.size());
1439 Diags.emplace_back(Loc, S.PDiag(DiagID));
1440 break;
1441 }
1442}
1443
1444Sema::DeviceDiagBuilder::DeviceDiagBuilder(DeviceDiagBuilder &&D)
1445 : S(D.S), Loc(D.Loc), DiagID(D.DiagID), Fn(D.Fn),
1446 ShowCallStack(D.ShowCallStack), ImmediateDiag(D.ImmediateDiag),
1447 PartialDiagId(D.PartialDiagId) {
1448 // Clean the previous diagnostics.
1449 D.ShowCallStack = false;
1450 D.ImmediateDiag.reset();
1451 D.PartialDiagId.reset();
1452}
1453
1454Sema::DeviceDiagBuilder::~DeviceDiagBuilder() {
1455 if (ImmediateDiag) {
1456 // Emit our diagnostic and, if it was a warning or error, output a callstack
1457 // if Fn isn't a priori known-emitted.
1458 bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel(
1459 DiagID, Loc) >= DiagnosticsEngine::Warning;
1460 ImmediateDiag.reset(); // Emit the immediate diag.
1461 if (IsWarningOrError && ShowCallStack)
1462 emitCallStackNotes(S, Fn);
1463 } else {
1464 assert((!PartialDiagId || ShowCallStack) &&(((!PartialDiagId || ShowCallStack) && "Must always show call stack for deferred diags."
) ? static_cast<void> (0) : __assert_fail ("(!PartialDiagId || ShowCallStack) && \"Must always show call stack for deferred diags.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1465, __PRETTY_FUNCTION__))
1465 "Must always show call stack for deferred diags.")(((!PartialDiagId || ShowCallStack) && "Must always show call stack for deferred diags."
) ? static_cast<void> (0) : __assert_fail ("(!PartialDiagId || ShowCallStack) && \"Must always show call stack for deferred diags.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1465, __PRETTY_FUNCTION__))
;
1466 }
1467}
1468
1469// Indicate that this function (and thus everything it transtively calls) will
1470// be codegen'ed, and emit any deferred diagnostics on this function and its
1471// (transitive) callees.
1472void Sema::markKnownEmitted(
1473 Sema &S, FunctionDecl *OrigCaller, FunctionDecl *OrigCallee,
1474 SourceLocation OrigLoc,
1475 const llvm::function_ref<bool(Sema &, FunctionDecl *)> IsKnownEmitted) {
1476 // Nothing to do if we already know that FD is emitted.
1477 if (IsKnownEmitted(S, OrigCallee)) {
1478 assert(!S.DeviceCallGraph.count(OrigCallee))((!S.DeviceCallGraph.count(OrigCallee)) ? static_cast<void
> (0) : __assert_fail ("!S.DeviceCallGraph.count(OrigCallee)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1478, __PRETTY_FUNCTION__))
;
1479 return;
1480 }
1481
1482 // We've just discovered that OrigCallee is known-emitted. Walk our call
1483 // graph to see what else we can now discover also must be emitted.
1484
1485 struct CallInfo {
1486 FunctionDecl *Caller;
1487 FunctionDecl *Callee;
1488 SourceLocation Loc;
1489 };
1490 llvm::SmallVector<CallInfo, 4> Worklist = {{OrigCaller, OrigCallee, OrigLoc}};
1491 llvm::SmallSet<CanonicalDeclPtr<FunctionDecl>, 4> Seen;
1492 Seen.insert(OrigCallee);
1493 while (!Worklist.empty()) {
1494 CallInfo C = Worklist.pop_back_val();
1495 assert(!IsKnownEmitted(S, C.Callee) &&((!IsKnownEmitted(S, C.Callee) && "Worklist should not contain known-emitted functions."
) ? static_cast<void> (0) : __assert_fail ("!IsKnownEmitted(S, C.Callee) && \"Worklist should not contain known-emitted functions.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1496, __PRETTY_FUNCTION__))
1496 "Worklist should not contain known-emitted functions.")((!IsKnownEmitted(S, C.Callee) && "Worklist should not contain known-emitted functions."
) ? static_cast<void> (0) : __assert_fail ("!IsKnownEmitted(S, C.Callee) && \"Worklist should not contain known-emitted functions.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1496, __PRETTY_FUNCTION__))
;
1497 S.DeviceKnownEmittedFns[C.Callee] = {C.Caller, C.Loc};
1498 emitDeferredDiags(S, C.Callee);
1499
1500 // If this is a template instantiation, explore its callgraph as well:
1501 // Non-dependent calls are part of the template's callgraph, while dependent
1502 // calls are part of to the instantiation's call graph.
1503 if (auto *Templ = C.Callee->getPrimaryTemplate()) {
1504 FunctionDecl *TemplFD = Templ->getAsFunction();
1505 if (!Seen.count(TemplFD) && !S.DeviceKnownEmittedFns.count(TemplFD)) {
1506 Seen.insert(TemplFD);
1507 Worklist.push_back(
1508 {/* Caller = */ C.Caller, /* Callee = */ TemplFD, C.Loc});
1509 }
1510 }
1511
1512 // Add all functions called by Callee to our worklist.
1513 auto CGIt = S.DeviceCallGraph.find(C.Callee);
1514 if (CGIt == S.DeviceCallGraph.end())
1515 continue;
1516
1517 for (std::pair<CanonicalDeclPtr<FunctionDecl>, SourceLocation> FDLoc :
1518 CGIt->second) {
1519 FunctionDecl *NewCallee = FDLoc.first;
1520 SourceLocation CallLoc = FDLoc.second;
1521 if (Seen.count(NewCallee) || IsKnownEmitted(S, NewCallee))
1522 continue;
1523 Seen.insert(NewCallee);
1524 Worklist.push_back(
1525 {/* Caller = */ C.Callee, /* Callee = */ NewCallee, CallLoc});
1526 }
1527
1528 // C.Callee is now known-emitted, so we no longer need to maintain its list
1529 // of callees in DeviceCallGraph.
1530 S.DeviceCallGraph.erase(CGIt);
1531 }
1532}
1533
1534Sema::DeviceDiagBuilder Sema::targetDiag(SourceLocation Loc, unsigned DiagID) {
1535 if (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)
1536 return diagIfOpenMPDeviceCode(Loc, DiagID);
1537 if (getLangOpts().CUDA)
1538 return getLangOpts().CUDAIsDevice ? CUDADiagIfDeviceCode(Loc, DiagID)
1539 : CUDADiagIfHostCode(Loc, DiagID);
1540 return DeviceDiagBuilder(DeviceDiagBuilder::K_Immediate, Loc, DiagID,
1541 getCurFunctionDecl(), *this);
1542}
1543
1544/// Looks through the macro-expansion chain for the given
1545/// location, looking for a macro expansion with the given name.
1546/// If one is found, returns true and sets the location to that
1547/// expansion loc.
1548bool Sema::findMacroSpelling(SourceLocation &locref, StringRef name) {
1549 SourceLocation loc = locref;
1550 if (!loc.isMacroID()) return false;
1551
1552 // There's no good way right now to look at the intermediate
1553 // expansions, so just jump to the expansion location.
1554 loc = getSourceManager().getExpansionLoc(loc);
1555
1556 // If that's written with the name, stop here.
1557 SmallVector<char, 16> buffer;
1558 if (getPreprocessor().getSpelling(loc, buffer) == name) {
1559 locref = loc;
1560 return true;
1561 }
1562 return false;
1563}
1564
1565/// Determines the active Scope associated with the given declaration
1566/// context.
1567///
1568/// This routine maps a declaration context to the active Scope object that
1569/// represents that declaration context in the parser. It is typically used
1570/// from "scope-less" code (e.g., template instantiation, lazy creation of
1571/// declarations) that injects a name for name-lookup purposes and, therefore,
1572/// must update the Scope.
1573///
1574/// \returns The scope corresponding to the given declaraion context, or NULL
1575/// if no such scope is open.
1576Scope *Sema::getScopeForContext(DeclContext *Ctx) {
1577
1578 if (!Ctx)
1579 return nullptr;
1580
1581 Ctx = Ctx->getPrimaryContext();
1582 for (Scope *S = getCurScope(); S; S = S->getParent()) {
1583 // Ignore scopes that cannot have declarations. This is important for
1584 // out-of-line definitions of static class members.
1585 if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope))
1586 if (DeclContext *Entity = S->getEntity())
1587 if (Ctx == Entity->getPrimaryContext())
1588 return S;
1589 }
1590
1591 return nullptr;
1592}
1593
1594/// Enter a new function scope
1595void Sema::PushFunctionScope() {
1596 if (FunctionScopes.empty() && CachedFunctionScope) {
1597 // Use CachedFunctionScope to avoid allocating memory when possible.
1598 CachedFunctionScope->Clear();
1599 FunctionScopes.push_back(CachedFunctionScope.release());
1600 } else {
1601 FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics()));
1602 }
1603 if (LangOpts.OpenMP)
1604 pushOpenMPFunctionRegion();
1605}
1606
1607void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) {
1608 FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(),
1609 BlockScope, Block));
1610}
1611
1612LambdaScopeInfo *Sema::PushLambdaScope() {
1613 LambdaScopeInfo *const LSI = new LambdaScopeInfo(getDiagnostics());
1614 FunctionScopes.push_back(LSI);
1615 return LSI;
1616}
1617
1618void Sema::RecordParsingTemplateParameterDepth(unsigned Depth) {
1619 if (LambdaScopeInfo *const LSI = getCurLambda()) {
1620 LSI->AutoTemplateParameterDepth = Depth;
1621 return;
1622 }
1623 llvm_unreachable(::llvm::llvm_unreachable_internal("Remove assertion if intentionally called in a non-lambda context."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1624)
1624 "Remove assertion if intentionally called in a non-lambda context.")::llvm::llvm_unreachable_internal("Remove assertion if intentionally called in a non-lambda context."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1624)
;
1625}
1626
1627// Check that the type of the VarDecl has an accessible copy constructor and
1628// resolve its destructor's exception specification.
1629static void checkEscapingByref(VarDecl *VD, Sema &S) {
1630 QualType T = VD->getType();
1631 EnterExpressionEvaluationContext scope(
1632 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1633 SourceLocation Loc = VD->getLocation();
1634 Expr *VarRef =
1635 new (S.Context) DeclRefExpr(S.Context, VD, false, T, VK_LValue, Loc);
1636 ExprResult Result = S.PerformMoveOrCopyInitialization(
1637 InitializedEntity::InitializeBlock(Loc, T, false), VD, VD->getType(),
1638 VarRef, /*AllowNRVO=*/true);
1639 if (!Result.isInvalid()) {
1640 Result = S.MaybeCreateExprWithCleanups(Result);
1641 Expr *Init = Result.getAs<Expr>();
1642 S.Context.setBlockVarCopyInit(VD, Init, S.canThrow(Init));
1643 }
1644
1645 // The destructor's exception specification is needed when IRGen generates
1646 // block copy/destroy functions. Resolve it here.
1647 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1648 if (CXXDestructorDecl *DD = RD->getDestructor()) {
1649 auto *FPT = DD->getType()->getAs<FunctionProtoType>();
1650 S.ResolveExceptionSpec(Loc, FPT);
1651 }
1652}
1653
1654static void markEscapingByrefs(const FunctionScopeInfo &FSI, Sema &S) {
1655 // Set the EscapingByref flag of __block variables captured by
1656 // escaping blocks.
1657 for (const BlockDecl *BD : FSI.Blocks) {
1658 if (BD->doesNotEscape())
1659 continue;
1660 for (const BlockDecl::Capture &BC : BD->captures()) {
1661 VarDecl *VD = BC.getVariable();
1662 if (VD->hasAttr<BlocksAttr>())
1663 VD->setEscapingByref();
1664 }
1665 }
1666
1667 for (VarDecl *VD : FSI.ByrefBlockVars) {
1668 // __block variables might require us to capture a copy-initializer.
1669 if (!VD->isEscapingByref())
1670 continue;
1671 // It's currently invalid to ever have a __block variable with an
1672 // array type; should we diagnose that here?
1673 // Regardless, we don't want to ignore array nesting when
1674 // constructing this copy.
1675 if (VD->getType()->isStructureOrClassType())
1676 checkEscapingByref(VD, S);
1677 }
1678}
1679
1680/// Pop a function (or block or lambda or captured region) scope from the stack.
1681///
1682/// \param WP The warning policy to use for CFG-based warnings, or null if such
1683/// warnings should not be produced.
1684/// \param D The declaration corresponding to this function scope, if producing
1685/// CFG-based warnings.
1686/// \param BlockType The type of the block expression, if D is a BlockDecl.
1687Sema::PoppedFunctionScopePtr
1688Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP,
1689 const Decl *D, QualType BlockType) {
1690 assert(!FunctionScopes.empty() && "mismatched push/pop!")((!FunctionScopes.empty() && "mismatched push/pop!") ?
static_cast<void> (0) : __assert_fail ("!FunctionScopes.empty() && \"mismatched push/pop!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1690, __PRETTY_FUNCTION__))
;
1691
1692 markEscapingByrefs(*FunctionScopes.back(), *this);
1693
1694 PoppedFunctionScopePtr Scope(FunctionScopes.pop_back_val(),
1695 PoppedFunctionScopeDeleter(this));
1696
1697 if (LangOpts.OpenMP)
1698 popOpenMPFunctionRegion(Scope.get());
1699
1700 // Issue any analysis-based warnings.
1701 if (WP && D)
1702 AnalysisWarnings.IssueWarnings(*WP, Scope.get(), D, BlockType);
1703 else
1704 for (const auto &PUD : Scope->PossiblyUnreachableDiags)
1705 Diag(PUD.Loc, PUD.PD);
1706
1707 return Scope;
1708}
1709
1710void Sema::PoppedFunctionScopeDeleter::
1711operator()(sema::FunctionScopeInfo *Scope) const {
1712 // Stash the function scope for later reuse if it's for a normal function.
1713 if (Scope->isPlainFunction() && !Self->CachedFunctionScope)
1714 Self->CachedFunctionScope.reset(Scope);
1715 else
1716 delete Scope;
1717}
1718
1719void Sema::PushCompoundScope(bool IsStmtExpr) {
1720 getCurFunction()->CompoundScopes.push_back(CompoundScopeInfo(IsStmtExpr));
1721}
1722
1723void Sema::PopCompoundScope() {
1724 FunctionScopeInfo *CurFunction = getCurFunction();
1725 assert(!CurFunction->CompoundScopes.empty() && "mismatched push/pop")((!CurFunction->CompoundScopes.empty() && "mismatched push/pop"
) ? static_cast<void> (0) : __assert_fail ("!CurFunction->CompoundScopes.empty() && \"mismatched push/pop\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1725, __PRETTY_FUNCTION__))
;
1726
1727 CurFunction->CompoundScopes.pop_back();
1728}
1729
1730/// Determine whether any errors occurred within this function/method/
1731/// block.
1732bool Sema::hasAnyUnrecoverableErrorsInThisFunction() const {
1733 return getCurFunction()->ErrorTrap.hasUnrecoverableErrorOccurred();
1734}
1735
1736void Sema::setFunctionHasBranchIntoScope() {
1737 if (!FunctionScopes.empty())
1738 FunctionScopes.back()->setHasBranchIntoScope();
1739}
1740
1741void Sema::setFunctionHasBranchProtectedScope() {
1742 if (!FunctionScopes.empty())
1743 FunctionScopes.back()->setHasBranchProtectedScope();
1744}
1745
1746void Sema::setFunctionHasIndirectGoto() {
1747 if (!FunctionScopes.empty())
1748 FunctionScopes.back()->setHasIndirectGoto();
1749}
1750
1751BlockScopeInfo *Sema::getCurBlock() {
1752 if (FunctionScopes.empty())
1753 return nullptr;
1754
1755 auto CurBSI = dyn_cast<BlockScopeInfo>(FunctionScopes.back());
1756 if (CurBSI && CurBSI->TheDecl &&
1757 !CurBSI->TheDecl->Encloses(CurContext)) {
1758 // We have switched contexts due to template instantiation.
1759 assert(!CodeSynthesisContexts.empty())((!CodeSynthesisContexts.empty()) ? static_cast<void> (
0) : __assert_fail ("!CodeSynthesisContexts.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1759, __PRETTY_FUNCTION__))
;
1760 return nullptr;
1761 }
1762
1763 return CurBSI;
1764}
1765
1766FunctionScopeInfo *Sema::getEnclosingFunction() const {
1767 if (FunctionScopes.empty())
1768 return nullptr;
1769
1770 for (int e = FunctionScopes.size() - 1; e >= 0; --e) {
1771 if (isa<sema::BlockScopeInfo>(FunctionScopes[e]))
1772 continue;
1773 return FunctionScopes[e];
1774 }
1775 return nullptr;
1776}
1777
1778LambdaScopeInfo *Sema::getCurLambda(bool IgnoreNonLambdaCapturingScope) {
1779 if (FunctionScopes.empty())
1780 return nullptr;
1781
1782 auto I = FunctionScopes.rbegin();
1783 if (IgnoreNonLambdaCapturingScope) {
1784 auto E = FunctionScopes.rend();
1785 while (I != E && isa<CapturingScopeInfo>(*I) && !isa<LambdaScopeInfo>(*I))
1786 ++I;
1787 if (I == E)
1788 return nullptr;
1789 }
1790 auto *CurLSI = dyn_cast<LambdaScopeInfo>(*I);
1791 if (CurLSI && CurLSI->Lambda &&
1792 !CurLSI->Lambda->Encloses(CurContext)) {
1793 // We have switched contexts due to template instantiation.
1794 assert(!CodeSynthesisContexts.empty())((!CodeSynthesisContexts.empty()) ? static_cast<void> (
0) : __assert_fail ("!CodeSynthesisContexts.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1794, __PRETTY_FUNCTION__))
;
1795 return nullptr;
1796 }
1797
1798 return CurLSI;
1799}
1800// We have a generic lambda if we parsed auto parameters, or we have
1801// an associated template parameter list.
1802LambdaScopeInfo *Sema::getCurGenericLambda() {
1803 if (LambdaScopeInfo *LSI = getCurLambda()) {
1804 return (LSI->TemplateParams.size() ||
1805 LSI->GLTemplateParameterList) ? LSI : nullptr;
1806 }
1807 return nullptr;
1808}
1809
1810
1811void Sema::ActOnComment(SourceRange Comment) {
1812 if (!LangOpts.RetainCommentsFromSystemHeaders &&
1813 SourceMgr.isInSystemHeader(Comment.getBegin()))
1814 return;
1815 RawComment RC(SourceMgr, Comment, LangOpts.CommentOpts, false);
1816 if (RC.isAlmostTrailingComment()) {
1817 SourceRange MagicMarkerRange(Comment.getBegin(),
1818 Comment.getBegin().getLocWithOffset(3));
1819 StringRef MagicMarkerText;
1820 switch (RC.getKind()) {
1821 case RawComment::RCK_OrdinaryBCPL:
1822 MagicMarkerText = "///<";
1823 break;
1824 case RawComment::RCK_OrdinaryC:
1825 MagicMarkerText = "/**<";
1826 break;
1827 default:
1828 llvm_unreachable("if this is an almost Doxygen comment, "::llvm::llvm_unreachable_internal("if this is an almost Doxygen comment, "
"it should be ordinary", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1829)
1829 "it should be ordinary")::llvm::llvm_unreachable_internal("if this is an almost Doxygen comment, "
"it should be ordinary", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/Sema/Sema.cpp"
, 1829)
;
1830 }
1831 Diag(Comment.getBegin(), diag::warn_not_a_doxygen_trailing_member_comment) <<
1832 FixItHint::CreateReplacement(MagicMarkerRange, MagicMarkerText);
1833 }
1834 Context.addComment(RC);
1835}
1836
1837// Pin this vtable to this file.
1838ExternalSemaSource::~ExternalSemaSource() {}
1839
1840void ExternalSemaSource::ReadMethodPool(Selector Sel) { }
1841void ExternalSemaSource::updateOutOfDateSelector(Selector Sel) { }
1842
1843void ExternalSemaSource::ReadKnownNamespaces(
1844 SmallVectorImpl<NamespaceDecl *> &Namespaces) {
1845}
1846
1847void ExternalSemaSource::ReadUndefinedButUsed(
1848 llvm::MapVector<NamedDecl *, SourceLocation> &Undefined) {}
1849
1850void ExternalSemaSource::ReadMismatchingDeleteExpressions(llvm::MapVector<
1851 FieldDecl *, llvm::SmallVector<std::pair<SourceLocation, bool>, 4>> &) {}
1852
1853/// Figure out if an expression could be turned into a call.
1854///
1855/// Use this when trying to recover from an error where the programmer may have
1856/// written just the name of a function instead of actually calling it.
1857///
1858/// \param E - The expression to examine.
1859/// \param ZeroArgCallReturnTy - If the expression can be turned into a call
1860/// with no arguments, this parameter is set to the type returned by such a
1861/// call; otherwise, it is set to an empty QualType.
1862/// \param OverloadSet - If the expression is an overloaded function
1863/// name, this parameter is populated with the decls of the various overloads.
1864bool Sema::tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
1865 UnresolvedSetImpl &OverloadSet) {
1866 ZeroArgCallReturnTy = QualType();
1867 OverloadSet.clear();
1868
1869 const OverloadExpr *Overloads = nullptr;
1870 bool IsMemExpr = false;
1871 if (E.getType() == Context.OverloadTy) {
1872 OverloadExpr::FindResult FR = OverloadExpr::find(const_cast<Expr*>(&E));
1873
1874 // Ignore overloads that are pointer-to-member constants.
1875 if (FR.HasFormOfMemberPointer)
1876 return false;
1877
1878 Overloads = FR.Expression;
1879 } else if (E.getType() == Context.BoundMemberTy) {
1880 Overloads = dyn_cast<UnresolvedMemberExpr>(E.IgnoreParens());
1881 IsMemExpr = true;
1882 }
1883
1884 bool Ambiguous = false;
1885 bool IsMV = false;
1886
1887 if (Overloads) {
1888 for (OverloadExpr::decls_iterator it = Overloads->decls_begin(),
1889 DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) {
1890 OverloadSet.addDecl(*it);
1891
1892 // Check whether the function is a non-template, non-member which takes no
1893 // arguments.
1894 if (IsMemExpr)
1895 continue;
1896 if (const FunctionDecl *OverloadDecl
1897 = dyn_cast<FunctionDecl>((*it)->getUnderlyingDecl())) {
1898 if (OverloadDecl->getMinRequiredArguments() == 0) {
1899 if (!ZeroArgCallReturnTy.isNull() && !Ambiguous &&
1900 (!IsMV || !(OverloadDecl->isCPUDispatchMultiVersion() ||
1901 OverloadDecl->isCPUSpecificMultiVersion()))) {
1902 ZeroArgCallReturnTy = QualType();
1903 Ambiguous = true;
1904 } else {
1905 ZeroArgCallReturnTy = OverloadDecl->getReturnType();
1906 IsMV = OverloadDecl->isCPUDispatchMultiVersion() ||
1907 OverloadDecl->isCPUSpecificMultiVersion();
1908 }
1909 }
1910 }
1911 }
1912
1913 // If it's not a member, use better machinery to try to resolve the call
1914 if (!IsMemExpr)
1915 return !ZeroArgCallReturnTy.isNull();
1916 }
1917
1918 // Attempt to call the member with no arguments - this will correctly handle
1919 // member templates with defaults/deduction of template arguments, overloads
1920 // with default arguments, etc.
1921 if (IsMemExpr && !E.isTypeDependent()) {
1922 bool Suppress = getDiagnostics().getSuppressAllDiagnostics();
1923 getDiagnostics().setSuppressAllDiagnostics(true);
1924 ExprResult R = BuildCallToMemberFunction(nullptr, &E, SourceLocation(),
1925 None, SourceLocation());
1926 getDiagnostics().setSuppressAllDiagnostics(Suppress);
1927 if (R.isUsable()) {
1928 ZeroArgCallReturnTy = R.get()->getType();
1929 return true;
1930 }
1931 return false;
1932 }
1933
1934 if (const DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E.IgnoreParens())) {
1935 if (const FunctionDecl *Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) {
1936 if (Fun->getMinRequiredArguments() == 0)
1937 ZeroArgCallReturnTy = Fun->getReturnType();
1938 return true;
1939 }
1940 }
1941
1942 // We don't have an expression that's convenient to get a FunctionDecl from,
1943 // but we can at least check if the type is "function of 0 arguments".
1944 QualType ExprTy = E.getType();
1945 const FunctionType *FunTy = nullptr;
1946 QualType PointeeTy = ExprTy->getPointeeType();
1947 if (!PointeeTy.isNull())
1948 FunTy = PointeeTy->getAs<FunctionType>();
1949 if (!FunTy)
1950 FunTy = ExprTy->getAs<FunctionType>();
1951
1952 if (const FunctionProtoType *FPT =
1953 dyn_cast_or_null<FunctionProtoType>(FunTy)) {
1954 if (FPT->getNumParams() == 0)
1955 ZeroArgCallReturnTy = FunTy->getReturnType();
1956 return true;
1957 }
1958 return false;
1959}
1960
1961/// Give notes for a set of overloads.
1962///
1963/// A companion to tryExprAsCall. In cases when the name that the programmer
1964/// wrote was an overloaded function, we may be able to make some guesses about
1965/// plausible overloads based on their return types; such guesses can be handed
1966/// off to this method to be emitted as notes.
1967///
1968/// \param Overloads - The overloads to note.
1969/// \param FinalNoteLoc - If we've suppressed printing some overloads due to
1970/// -fshow-overloads=best, this is the location to attach to the note about too
1971/// many candidates. Typically this will be the location of the original
1972/// ill-formed expression.
1973static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads,
1974 const SourceLocation FinalNoteLoc) {
1975 int ShownOverloads = 0;
1976 int SuppressedOverloads = 0;
1977 for (UnresolvedSetImpl::iterator It = Overloads.begin(),
1978 DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
1979 // FIXME: Magic number for max shown overloads stolen from
1980 // OverloadCandidateSet::NoteCandidates.
1981 if (ShownOverloads >= 4 && S.Diags.getShowOverloads() == Ovl_Best) {
1982 ++SuppressedOverloads;
1983 continue;
1984 }
1985
1986 NamedDecl *Fn = (*It)->getUnderlyingDecl();
1987 // Don't print overloads for non-default multiversioned functions.
1988 if (const auto *FD = Fn->getAsFunction()) {
1989 if (FD->isMultiVersion() && FD->hasAttr<TargetAttr>() &&
1990 !FD->getAttr<TargetAttr>()->isDefaultVersion())
1991 continue;
1992 }
1993 S.Diag(Fn->getLocation(), diag::note_possible_target_of_call);
1994 ++ShownOverloads;
1995 }
1996
1997 if (SuppressedOverloads)
1998 S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates)
1999 << SuppressedOverloads;
2000}
2001
2002static void notePlausibleOverloads(Sema &S, SourceLocation Loc,
2003 const UnresolvedSetImpl &Overloads,
2004 bool (*IsPlausibleResult)(QualType)) {
2005 if (!IsPlausibleResult)
2006 return noteOverloads(S, Overloads, Loc);
2007
2008 UnresolvedSet<2> PlausibleOverloads;
2009 for (OverloadExpr::decls_iterator It = Overloads.begin(),
2010 DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
2011 const FunctionDecl *OverloadDecl = cast<FunctionDecl>(*It);
2012 QualType OverloadResultTy = OverloadDecl->getReturnType();
2013 if (IsPlausibleResult(OverloadResultTy))
2014 PlausibleOverloads.addDecl(It.getDecl());
2015 }
2016 noteOverloads(S, PlausibleOverloads, Loc);
2017}
2018
2019/// Determine whether the given expression can be called by just
2020/// putting parentheses after it. Notably, expressions with unary
2021/// operators can't be because the unary operator will start parsing
2022/// outside the call.
2023static bool IsCallableWithAppend(Expr *E) {
2024 E = E->IgnoreImplicit();
2025 return (!isa<CStyleCastExpr>(E) &&
2026 !isa<UnaryOperator>(E) &&
2027 !isa<BinaryOperator>(E) &&
2028 !isa<CXXOperatorCallExpr>(E));
2029}
2030
2031static bool IsCPUDispatchCPUSpecificMultiVersion(const Expr *E) {
2032 if (const auto *UO = dyn_cast<UnaryOperator>(E))
2033 E = UO->getSubExpr();
2034
2035 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
2036 if (ULE->getNumDecls() == 0)
2037 return false;
2038
2039 const NamedDecl *ND = *ULE->decls_begin();
2040 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2041 return FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion();
2042 }
2043 return false;
2044}
2045
2046bool Sema::tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
2047 bool ForceComplain,
2048 bool (*IsPlausibleResult)(QualType)) {
2049 SourceLocation Loc = E.get()->getExprLoc();
2050 SourceRange Range = E.get()->getSourceRange();
2051
2052 QualType ZeroArgCallTy;
2053 UnresolvedSet<4> Overloads;
2054 if (tryExprAsCall(*E.get(), ZeroArgCallTy, Overloads) &&
2055 !ZeroArgCallTy.isNull() &&
2056 (!IsPlausibleResult || IsPlausibleResult(ZeroArgCallTy))) {
2057 // At this point, we know E is potentially callable with 0
2058 // arguments and that it returns something of a reasonable type,
2059 // so we can emit a fixit and carry on pretending that E was
2060 // actually a CallExpr.
2061 SourceLocation ParenInsertionLoc = getLocForEndOfToken(Range.getEnd());
2062 bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get());
2063 Diag(Loc, PD) << /*zero-arg*/ 1 << IsMV << Range
2064 << (IsCallableWithAppend(E.get())
2065 ? FixItHint::CreateInsertion(ParenInsertionLoc, "()")
2066 : FixItHint());
2067 if (!IsMV)
2068 notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
2069
2070 // FIXME: Try this before emitting the fixit, and suppress diagnostics
2071 // while doing so.
2072 E = BuildCallExpr(nullptr, E.get(), Range.getEnd(), None,
2073 Range.getEnd().getLocWithOffset(1));
2074 return true;
2075 }
2076
2077 if (!ForceComplain) return false;
2078
2079 bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get());
2080 Diag(Loc, PD) << /*not zero-arg*/ 0 << IsMV << Range;
2081 if (!IsMV)
2082 notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult);
2083 E = ExprError();
2084 return true;
2085}
2086
2087IdentifierInfo *Sema::getSuperIdentifier() const {
2088 if (!Ident_super)
2089 Ident_super = &Context.Idents.get("super");
2090 return Ident_super;
2091}
2092
2093IdentifierInfo *Sema::getFloat128Identifier() const {
2094 if (!Ident___float128)
2095 Ident___float128 = &Context.Idents.get("__float128");
2096 return Ident___float128;
2097}
2098
2099void Sema::PushCapturedRegionScope(Scope *S, CapturedDecl *CD, RecordDecl *RD,
2100 CapturedRegionKind K) {
2101 CapturingScopeInfo *CSI = new CapturedRegionScopeInfo(
2102 getDiagnostics(), S, CD, RD, CD->getContextParam(), K,
2103 (getLangOpts().OpenMP && K == CR_OpenMP) ? getOpenMPNestingLevel() : 0);
2104 CSI->ReturnType = Context.VoidTy;
2105 FunctionScopes.push_back(CSI);
2106}
2107
2108CapturedRegionScopeInfo *Sema::getCurCapturedRegion() {
2109 if (FunctionScopes.empty())
2110 return nullptr;
2111
2112 return dyn_cast<CapturedRegionScopeInfo>(FunctionScopes.back());
2113}
2114
2115const llvm::MapVector<FieldDecl *, Sema::DeleteLocs> &
2116Sema::getMismatchingDeleteExpressions() const {
2117 return DeleteExprs;
2118}
2119
2120void Sema::setOpenCLExtensionForType(QualType T, llvm::StringRef ExtStr) {
2121 if (ExtStr.empty())
2122 return;
2123 llvm::SmallVector<StringRef, 1> Exts;
2124 ExtStr.split(Exts, " ", /* limit */ -1, /* keep empty */ false);
2125 auto CanT = T.getCanonicalType().getTypePtr();
2126 for (auto &I : Exts)
2127 OpenCLTypeExtMap[CanT].insert(I.str());
2128}
2129
2130void Sema::setOpenCLExtensionForDecl(Decl *FD, StringRef ExtStr) {
2131 llvm::SmallVector<StringRef, 1> Exts;
2132 ExtStr.split(Exts, " ", /* limit */ -1, /* keep empty */ false);
2133 if (Exts.empty())
2134 return;
2135 for (auto &I : Exts)
2136 OpenCLDeclExtMap[FD].insert(I.str());
2137}
2138
2139void Sema::setCurrentOpenCLExtensionForType(QualType T) {
2140 if (CurrOpenCLExtension.empty())
2141 return;
2142 setOpenCLExtensionForType(T, CurrOpenCLExtension);
2143}
2144
2145void Sema::setCurrentOpenCLExtensionForDecl(Decl *D) {
2146 if (CurrOpenCLExtension.empty())
2147 return;
2148 setOpenCLExtensionForDecl(D, CurrOpenCLExtension);
2149}
2150
2151std::string Sema::getOpenCLExtensionsFromDeclExtMap(FunctionDecl *FD) {
2152 if (!OpenCLDeclExtMap.empty())
2153 return getOpenCLExtensionsFromExtMap(FD, OpenCLDeclExtMap);
2154
2155 return "";
2156}
2157
2158std::string Sema::getOpenCLExtensionsFromTypeExtMap(FunctionType *FT) {
2159 if (!OpenCLTypeExtMap.empty())
2160 return getOpenCLExtensionsFromExtMap(FT, OpenCLTypeExtMap);
2161
2162 return "";
2163}
2164
2165template <typename T, typename MapT>
2166std::string Sema::getOpenCLExtensionsFromExtMap(T *FDT, MapT &Map) {
2167 std::string ExtensionNames = "";
2168 auto Loc = Map.find(FDT);
2169
2170 for (auto const& I : Loc->second) {
2171 ExtensionNames += I;
2172 ExtensionNames += " ";
2173 }
2174 ExtensionNames.pop_back();
2175
2176 return ExtensionNames;
2177}
2178
2179bool Sema::isOpenCLDisabledDecl(Decl *FD) {
2180 auto Loc = OpenCLDeclExtMap.find(FD);
2181 if (Loc == OpenCLDeclExtMap.end())
2182 return false;
2183 for (auto &I : Loc->second) {
2184 if (!getOpenCLOptions().isEnabled(I))
2185 return true;
2186 }
2187 return false;
2188}
2189
2190template <typename T, typename DiagLocT, typename DiagInfoT, typename MapT>
2191bool Sema::checkOpenCLDisabledTypeOrDecl(T D, DiagLocT DiagLoc,
2192 DiagInfoT DiagInfo, MapT &Map,
2193 unsigned Selector,
2194 SourceRange SrcRange) {
2195 auto Loc = Map.find(D);
2196 if (Loc == Map.end())
2197 return false;
2198 bool Disabled = false;
2199 for (auto &I : Loc->second) {
2200 if (I != CurrOpenCLExtension && !getOpenCLOptions().isEnabled(I)) {
2201 Diag(DiagLoc, diag::err_opencl_requires_extension) << Selector << DiagInfo
2202 << I << SrcRange;
2203 Disabled = true;
2204 }
2205 }
2206 return Disabled;
2207}
2208
2209bool Sema::checkOpenCLDisabledTypeDeclSpec(const DeclSpec &DS, QualType QT) {
2210 // Check extensions for declared types.
2211 Decl *Decl = nullptr;
2212 if (auto TypedefT = dyn_cast<TypedefType>(QT.getTypePtr()))
2213 Decl = TypedefT->getDecl();
2214 if (auto TagT = dyn_cast<TagType>(QT.getCanonicalType().getTypePtr()))
2215 Decl = TagT->getDecl();
2216 auto Loc = DS.getTypeSpecTypeLoc();
2217
2218 // Check extensions for vector types.
2219 // e.g. double4 is not allowed when cl_khr_fp64 is absent.
2220 if (QT->isExtVectorType()) {
2221 auto TypePtr = QT->castAs<ExtVectorType>()->getElementType().getTypePtr();
2222 return checkOpenCLDisabledTypeOrDecl(TypePtr, Loc, QT, OpenCLTypeExtMap);
2223 }
2224
2225 if (checkOpenCLDisabledTypeOrDecl(Decl, Loc, QT, OpenCLDeclExtMap))
2226 return true;
2227
2228 // Check extensions for builtin types.
2229 return checkOpenCLDisabledTypeOrDecl(QT.getCanonicalType().getTypePtr(), Loc,
2230 QT, OpenCLTypeExtMap);
2231}
2232
2233bool Sema::checkOpenCLDisabledDecl(const NamedDecl &D, const Expr &E) {
2234 IdentifierInfo *FnName = D.getIdentifier();
2235 return checkOpenCLDisabledTypeOrDecl(&D, E.getBeginLoc(), FnName,
2236 OpenCLDeclExtMap, 1, D.getSourceRange());
2237}

/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc

1/*===- TableGen'erated file -------------------------------------*- C++ -*-===*\
2|* *|
3|* Attribute classes' definitions *|
4|* *|
5|* Automatically generated file, do not edit! *|
6|* *|
7\*===----------------------------------------------------------------------===*/
8
9#ifndef LLVM_CLANG_ATTR_CLASSES_INC
10#define LLVM_CLANG_ATTR_CLASSES_INC
11
12class AArch64VectorPcsAttr : public InheritableAttr {
13public:
14 static AArch64VectorPcsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
15 auto *A = new (Ctx) AArch64VectorPcsAttr(Loc, Ctx, 0);
16 A->setImplicit(true);
17 return A;
18 }
19
20 AArch64VectorPcsAttr(SourceRange R, ASTContext &Ctx
21 , unsigned SI
22 )
23 : InheritableAttr(attr::AArch64VectorPcs, R, SI, false, false)
24 {
25 }
26
27 AArch64VectorPcsAttr *clone(ASTContext &C) const;
28 void printPretty(raw_ostream &OS,
29 const PrintingPolicy &Policy) const;
30 const char *getSpelling() const;
31
32
33 static bool classof(const Attr *A) { return A->getKind() == attr::AArch64VectorPcs; }
34};
35
36class AMDGPUFlatWorkGroupSizeAttr : public InheritableAttr {
37Expr * min;
38
39Expr * max;
40
41public:
42 static AMDGPUFlatWorkGroupSizeAttr *CreateImplicit(ASTContext &Ctx, Expr * Min, Expr * Max, SourceRange Loc = SourceRange()) {
43 auto *A = new (Ctx) AMDGPUFlatWorkGroupSizeAttr(Loc, Ctx, Min, Max, 0);
44 A->setImplicit(true);
45 return A;
46 }
47
48 AMDGPUFlatWorkGroupSizeAttr(SourceRange R, ASTContext &Ctx
49 , Expr * Min
50 , Expr * Max
51 , unsigned SI
52 )
53 : InheritableAttr(attr::AMDGPUFlatWorkGroupSize, R, SI, false, false)
54 , min(Min)
55 , max(Max)
56 {
57 }
58
59 AMDGPUFlatWorkGroupSizeAttr *clone(ASTContext &C) const;
60 void printPretty(raw_ostream &OS,
61 const PrintingPolicy &Policy) const;
62 const char *getSpelling() const;
63 Expr * getMin() const {
64 return min;
65 }
66
67 Expr * getMax() const {
68 return max;
69 }
70
71
72
73 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUFlatWorkGroupSize; }
74};
75
76class AMDGPUNumSGPRAttr : public InheritableAttr {
77unsigned numSGPR;
78
79public:
80 static AMDGPUNumSGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumSGPR, SourceRange Loc = SourceRange()) {
81 auto *A = new (Ctx) AMDGPUNumSGPRAttr(Loc, Ctx, NumSGPR, 0);
82 A->setImplicit(true);
83 return A;
84 }
85
86 AMDGPUNumSGPRAttr(SourceRange R, ASTContext &Ctx
87 , unsigned NumSGPR
88 , unsigned SI
89 )
90 : InheritableAttr(attr::AMDGPUNumSGPR, R, SI, false, false)
91 , numSGPR(NumSGPR)
92 {
93 }
94
95 AMDGPUNumSGPRAttr *clone(ASTContext &C) const;
96 void printPretty(raw_ostream &OS,
97 const PrintingPolicy &Policy) const;
98 const char *getSpelling() const;
99 unsigned getNumSGPR() const {
100 return numSGPR;
101 }
102
103
104
105 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumSGPR; }
106};
107
108class AMDGPUNumVGPRAttr : public InheritableAttr {
109unsigned numVGPR;
110
111public:
112 static AMDGPUNumVGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumVGPR, SourceRange Loc = SourceRange()) {
113 auto *A = new (Ctx) AMDGPUNumVGPRAttr(Loc, Ctx, NumVGPR, 0);
114 A->setImplicit(true);
115 return A;
116 }
117
118 AMDGPUNumVGPRAttr(SourceRange R, ASTContext &Ctx
119 , unsigned NumVGPR
120 , unsigned SI
121 )
122 : InheritableAttr(attr::AMDGPUNumVGPR, R, SI, false, false)
123 , numVGPR(NumVGPR)
124 {
125 }
126
127 AMDGPUNumVGPRAttr *clone(ASTContext &C) const;
128 void printPretty(raw_ostream &OS,
129 const PrintingPolicy &Policy) const;
130 const char *getSpelling() const;
131 unsigned getNumVGPR() const {
132 return numVGPR;
133 }
134
135
136
137 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumVGPR; }
138};
139
140class AMDGPUWavesPerEUAttr : public InheritableAttr {
141Expr * min;
142
143Expr * max;
144
145public:
146 static AMDGPUWavesPerEUAttr *CreateImplicit(ASTContext &Ctx, Expr * Min, Expr * Max, SourceRange Loc = SourceRange()) {
147 auto *A = new (Ctx) AMDGPUWavesPerEUAttr(Loc, Ctx, Min, Max, 0);
148 A->setImplicit(true);
149 return A;
150 }
151
152 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
153 , Expr * Min
154 , Expr * Max
155 , unsigned SI
156 )
157 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
158 , min(Min)
159 , max(Max)
160 {
161 }
162
163 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
164 , Expr * Min
165 , unsigned SI
166 )
167 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
168 , min(Min)
169 , max()
170 {
171 }
172
173 AMDGPUWavesPerEUAttr *clone(ASTContext &C) const;
174 void printPretty(raw_ostream &OS,
175 const PrintingPolicy &Policy) const;
176 const char *getSpelling() const;
177 Expr * getMin() const {
178 return min;
179 }
180
181 Expr * getMax() const {
182 return max;
183 }
184
185
186
187 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUWavesPerEU; }
188};
189
190class ARMInterruptAttr : public InheritableAttr {
191public:
192 enum InterruptType {
193 IRQ,
194 FIQ,
195 SWI,
196 ABORT,
197 UNDEF,
198 Generic
199 };
200private:
201 InterruptType interrupt;
202
203public:
204 static ARMInterruptAttr *CreateImplicit(ASTContext &Ctx, InterruptType Interrupt, SourceRange Loc = SourceRange()) {
205 auto *A = new (Ctx) ARMInterruptAttr(Loc, Ctx, Interrupt, 0);
206 A->setImplicit(true);
207 return A;
208 }
209
210 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
211 , InterruptType Interrupt
212 , unsigned SI
213 )
214 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
215 , interrupt(Interrupt)
216 {
217 }
218
219 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
220 , unsigned SI
221 )
222 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
223 , interrupt(InterruptType(0))
224 {
225 }
226
227 ARMInterruptAttr *clone(ASTContext &C) const;
228 void printPretty(raw_ostream &OS,
229 const PrintingPolicy &Policy) const;
230 const char *getSpelling() const;
231 InterruptType getInterrupt() const {
232 return interrupt;
233 }
234
235 static bool ConvertStrToInterruptType(StringRef Val, InterruptType &Out) {
236 Optional<InterruptType> R = llvm::StringSwitch<Optional<InterruptType>>(Val)
237 .Case("IRQ", ARMInterruptAttr::IRQ)
238 .Case("FIQ", ARMInterruptAttr::FIQ)
239 .Case("SWI", ARMInterruptAttr::SWI)
240 .Case("ABORT", ARMInterruptAttr::ABORT)
241 .Case("UNDEF", ARMInterruptAttr::UNDEF)
242 .Case("", ARMInterruptAttr::Generic)
243 .Default(Optional<InterruptType>());
244 if (R) {
245 Out = *R;
246 return true;
247 }
248 return false;
249 }
250
251 static const char *ConvertInterruptTypeToStr(InterruptType Val) {
252 switch(Val) {
253 case ARMInterruptAttr::IRQ: return "IRQ";
254 case ARMInterruptAttr::FIQ: return "FIQ";
255 case ARMInterruptAttr::SWI: return "SWI";
256 case ARMInterruptAttr::ABORT: return "ABORT";
257 case ARMInterruptAttr::UNDEF: return "UNDEF";
258 case ARMInterruptAttr::Generic: return "";
259 }
260 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 260)
;
261 }
262
263
264 static bool classof(const Attr *A) { return A->getKind() == attr::ARMInterrupt; }
265};
266
267class AVRInterruptAttr : public InheritableAttr {
268public:
269 static AVRInterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
270 auto *A = new (Ctx) AVRInterruptAttr(Loc, Ctx, 0);
271 A->setImplicit(true);
272 return A;
273 }
274
275 AVRInterruptAttr(SourceRange R, ASTContext &Ctx
276 , unsigned SI
277 )
278 : InheritableAttr(attr::AVRInterrupt, R, SI, false, false)
279 {
280 }
281
282 AVRInterruptAttr *clone(ASTContext &C) const;
283 void printPretty(raw_ostream &OS,
284 const PrintingPolicy &Policy) const;
285 const char *getSpelling() const;
286
287
288 static bool classof(const Attr *A) { return A->getKind() == attr::AVRInterrupt; }
289};
290
291class AVRSignalAttr : public InheritableAttr {
292public:
293 static AVRSignalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
294 auto *A = new (Ctx) AVRSignalAttr(Loc, Ctx, 0);
295 A->setImplicit(true);
296 return A;
297 }
298
299 AVRSignalAttr(SourceRange R, ASTContext &Ctx
300 , unsigned SI
301 )
302 : InheritableAttr(attr::AVRSignal, R, SI, false, false)
303 {
304 }
305
306 AVRSignalAttr *clone(ASTContext &C) const;
307 void printPretty(raw_ostream &OS,
308 const PrintingPolicy &Policy) const;
309 const char *getSpelling() const;
310
311
312 static bool classof(const Attr *A) { return A->getKind() == attr::AVRSignal; }
313};
314
315class AbiTagAttr : public Attr {
316 unsigned tags_Size;
317 StringRef *tags_;
318
319public:
320 static AbiTagAttr *CreateImplicit(ASTContext &Ctx, StringRef *Tags, unsigned TagsSize, SourceRange Loc = SourceRange()) {
321 auto *A = new (Ctx) AbiTagAttr(Loc, Ctx, Tags, TagsSize, 0);
322 A->setImplicit(true);
323 return A;
324 }
325
326 AbiTagAttr(SourceRange R, ASTContext &Ctx
327 , StringRef *Tags, unsigned TagsSize
328 , unsigned SI
329 )
330 : Attr(attr::AbiTag, R, SI, false)
331 , tags_Size(TagsSize), tags_(new (Ctx, 16) StringRef[tags_Size])
332 {
333 for (size_t I = 0, E = tags_Size; I != E;
334 ++I) {
335 StringRef Ref = Tags[I];
336 if (!Ref.empty()) {
337 char *Mem = new (Ctx, 1) char[Ref.size()];
338 std::memcpy(Mem, Ref.data(), Ref.size());
339 tags_[I] = StringRef(Mem, Ref.size());
340 }
341 }
342 }
343
344 AbiTagAttr(SourceRange R, ASTContext &Ctx
345 , unsigned SI
346 )
347 : Attr(attr::AbiTag, R, SI, false)
348 , tags_Size(0), tags_(nullptr)
349 {
350 }
351
352 AbiTagAttr *clone(ASTContext &C) const;
353 void printPretty(raw_ostream &OS,
354 const PrintingPolicy &Policy) const;
355 const char *getSpelling() const;
356 typedef StringRef* tags_iterator;
357 tags_iterator tags_begin() const { return tags_; }
358 tags_iterator tags_end() const { return tags_ + tags_Size; }
359 unsigned tags_size() const { return tags_Size; }
360 llvm::iterator_range<tags_iterator> tags() const { return llvm::make_range(tags_begin(), tags_end()); }
361
362
363
364
365 static bool classof(const Attr *A) { return A->getKind() == attr::AbiTag; }
366};
367
368class AcquireCapabilityAttr : public InheritableAttr {
369 unsigned args_Size;
370 Expr * *args_;
371
372public:
373 enum Spelling {
374 GNU_acquire_capability = 0,
375 CXX11_clang_acquire_capability = 1,
376 GNU_acquire_shared_capability = 2,
377 CXX11_clang_acquire_shared_capability = 3,
378 GNU_exclusive_lock_function = 4,
379 GNU_shared_lock_function = 5
380 };
381
382 static AcquireCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
383 auto *A = new (Ctx) AcquireCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
384 A->setImplicit(true);
385 return A;
386 }
387
388 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
389 , Expr * *Args, unsigned ArgsSize
390 , unsigned SI
391 )
392 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
393 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
394 {
395 std::copy(Args, Args + args_Size, args_);
396 }
397
398 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
399 , unsigned SI
400 )
401 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
402 , args_Size(0), args_(nullptr)
403 {
404 }
405
406 AcquireCapabilityAttr *clone(ASTContext &C) const;
407 void printPretty(raw_ostream &OS,
408 const PrintingPolicy &Policy) const;
409 const char *getSpelling() const;
410 Spelling getSemanticSpelling() const {
411 switch (SpellingListIndex) {
412 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 412)
;
413 case 0: return GNU_acquire_capability;
414 case 1: return CXX11_clang_acquire_capability;
415 case 2: return GNU_acquire_shared_capability;
416 case 3: return CXX11_clang_acquire_shared_capability;
417 case 4: return GNU_exclusive_lock_function;
418 case 5: return GNU_shared_lock_function;
419 }
420 }
421 bool isShared() const { return SpellingListIndex == 2 ||
422 SpellingListIndex == 3 ||
423 SpellingListIndex == 5; }
424 typedef Expr ** args_iterator;
425 args_iterator args_begin() const { return args_; }
426 args_iterator args_end() const { return args_ + args_Size; }
427 unsigned args_size() const { return args_Size; }
428 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
429
430
431
432
433 static bool classof(const Attr *A) { return A->getKind() == attr::AcquireCapability; }
434};
435
436class AcquiredAfterAttr : public InheritableAttr {
437 unsigned args_Size;
438 Expr * *args_;
439
440public:
441 static AcquiredAfterAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
442 auto *A = new (Ctx) AcquiredAfterAttr(Loc, Ctx, Args, ArgsSize, 0);
443 A->setImplicit(true);
444 return A;
445 }
446
447 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
448 , Expr * *Args, unsigned ArgsSize
449 , unsigned SI
450 )
451 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
452 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
453 {
454 std::copy(Args, Args + args_Size, args_);
455 }
456
457 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
458 , unsigned SI
459 )
460 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
461 , args_Size(0), args_(nullptr)
462 {
463 }
464
465 AcquiredAfterAttr *clone(ASTContext &C) const;
466 void printPretty(raw_ostream &OS,
467 const PrintingPolicy &Policy) const;
468 const char *getSpelling() const;
469 typedef Expr ** args_iterator;
470 args_iterator args_begin() const { return args_; }
471 args_iterator args_end() const { return args_ + args_Size; }
472 unsigned args_size() const { return args_Size; }
473 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
474
475
476
477
478 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredAfter; }
479};
480
481class AcquiredBeforeAttr : public InheritableAttr {
482 unsigned args_Size;
483 Expr * *args_;
484
485public:
486 static AcquiredBeforeAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
487 auto *A = new (Ctx) AcquiredBeforeAttr(Loc, Ctx, Args, ArgsSize, 0);
488 A->setImplicit(true);
489 return A;
490 }
491
492 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
493 , Expr * *Args, unsigned ArgsSize
494 , unsigned SI
495 )
496 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
497 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
498 {
499 std::copy(Args, Args + args_Size, args_);
500 }
501
502 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
503 , unsigned SI
504 )
505 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
506 , args_Size(0), args_(nullptr)
507 {
508 }
509
510 AcquiredBeforeAttr *clone(ASTContext &C) const;
511 void printPretty(raw_ostream &OS,
512 const PrintingPolicy &Policy) const;
513 const char *getSpelling() const;
514 typedef Expr ** args_iterator;
515 args_iterator args_begin() const { return args_; }
516 args_iterator args_end() const { return args_ + args_Size; }
517 unsigned args_size() const { return args_Size; }
518 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
519
520
521
522
523 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredBefore; }
524};
525
526class AddressSpaceAttr : public TypeAttr {
527int addressSpace;
528
529public:
530 static AddressSpaceAttr *CreateImplicit(ASTContext &Ctx, int AddressSpace, SourceRange Loc = SourceRange()) {
531 auto *A = new (Ctx) AddressSpaceAttr(Loc, Ctx, AddressSpace, 0);
532 A->setImplicit(true);
533 return A;
534 }
535
536 AddressSpaceAttr(SourceRange R, ASTContext &Ctx
537 , int AddressSpace
538 , unsigned SI
539 )
540 : TypeAttr(attr::AddressSpace, R, SI, false)
541 , addressSpace(AddressSpace)
542 {
543 }
544
545 AddressSpaceAttr *clone(ASTContext &C) const;
546 void printPretty(raw_ostream &OS,
547 const PrintingPolicy &Policy) const;
548 const char *getSpelling() const;
549 int getAddressSpace() const {
550 return addressSpace;
551 }
552
553
554
555 static bool classof(const Attr *A) { return A->getKind() == attr::AddressSpace; }
556};
557
558class AliasAttr : public Attr {
559unsigned aliaseeLength;
560char *aliasee;
561
562public:
563 static AliasAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Aliasee, SourceRange Loc = SourceRange()) {
564 auto *A = new (Ctx) AliasAttr(Loc, Ctx, Aliasee, 0);
565 A->setImplicit(true);
566 return A;
567 }
568
569 AliasAttr(SourceRange R, ASTContext &Ctx
570 , llvm::StringRef Aliasee
571 , unsigned SI
572 )
573 : Attr(attr::Alias, R, SI, false)
574 , aliaseeLength(Aliasee.size()),aliasee(new (Ctx, 1) char[aliaseeLength])
575 {
576 if (!Aliasee.empty())
577 std::memcpy(aliasee, Aliasee.data(), aliaseeLength);
578 }
579
580 AliasAttr *clone(ASTContext &C) const;
581 void printPretty(raw_ostream &OS,
582 const PrintingPolicy &Policy) const;
583 const char *getSpelling() const;
584 llvm::StringRef getAliasee() const {
585 return llvm::StringRef(aliasee, aliaseeLength);
586 }
587 unsigned getAliaseeLength() const {
588 return aliaseeLength;
589 }
590 void setAliasee(ASTContext &C, llvm::StringRef S) {
591 aliaseeLength = S.size();
592 this->aliasee = new (C, 1) char [aliaseeLength];
593 if (!S.empty())
594 std::memcpy(this->aliasee, S.data(), aliaseeLength);
595 }
596
597
598
599 static bool classof(const Attr *A) { return A->getKind() == attr::Alias; }
600};
601
602class AlignMac68kAttr : public InheritableAttr {
603public:
604 static AlignMac68kAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
605 auto *A = new (Ctx) AlignMac68kAttr(Loc, Ctx, 0);
606 A->setImplicit(true);
607 return A;
608 }
609
610 AlignMac68kAttr(SourceRange R, ASTContext &Ctx
611 , unsigned SI
612 )
613 : InheritableAttr(attr::AlignMac68k, R, SI, false, false)
614 {
615 }
616
617 AlignMac68kAttr *clone(ASTContext &C) const;
618 void printPretty(raw_ostream &OS,
619 const PrintingPolicy &Policy) const;
620 const char *getSpelling() const;
621
622
623 static bool classof(const Attr *A) { return A->getKind() == attr::AlignMac68k; }
624};
625
626class AlignValueAttr : public Attr {
627Expr * alignment;
628
629public:
630 static AlignValueAttr *CreateImplicit(ASTContext &Ctx, Expr * Alignment, SourceRange Loc = SourceRange()) {
631 auto *A = new (Ctx) AlignValueAttr(Loc, Ctx, Alignment, 0);
632 A->setImplicit(true);
633 return A;
634 }
635
636 AlignValueAttr(SourceRange R, ASTContext &Ctx
637 , Expr * Alignment
638 , unsigned SI
639 )
640 : Attr(attr::AlignValue, R, SI, false)
641 , alignment(Alignment)
642 {
643 }
644
645 AlignValueAttr *clone(ASTContext &C) const;
646 void printPretty(raw_ostream &OS,
647 const PrintingPolicy &Policy) const;
648 const char *getSpelling() const;
649 Expr * getAlignment() const {
650 return alignment;
651 }
652
653
654
655 static bool classof(const Attr *A) { return A->getKind() == attr::AlignValue; }
656};
657
658class AlignedAttr : public InheritableAttr {
659bool isalignmentExpr;
660union {
661Expr *alignmentExpr;
662TypeSourceInfo *alignmentType;
663};
664
665public:
666 enum Spelling {
667 GNU_aligned = 0,
668 CXX11_gnu_aligned = 1,
669 Declspec_align = 2,
670 Keyword_alignas = 3,
671 Keyword_Alignas = 4
672 };
673
674 static AlignedAttr *CreateImplicit(ASTContext &Ctx, Spelling S, bool IsAlignmentExpr, void *Alignment, SourceRange Loc = SourceRange()) {
675 auto *A = new (Ctx) AlignedAttr(Loc, Ctx, IsAlignmentExpr, Alignment, S);
676 A->setImplicit(true);
677 return A;
678 }
679
680 AlignedAttr(SourceRange R, ASTContext &Ctx
681 , bool IsAlignmentExpr, void *Alignment
682 , unsigned SI
683 )
684 : InheritableAttr(attr::Aligned, R, SI, false, false)
685 , isalignmentExpr(IsAlignmentExpr)
686 {
687 if (isalignmentExpr)
688 alignmentExpr = reinterpret_cast<Expr *>(Alignment);
689 else
690 alignmentType = reinterpret_cast<TypeSourceInfo *>(Alignment);
691 }
692
693 AlignedAttr(SourceRange R, ASTContext &Ctx
694 , unsigned SI
695 )
696 : InheritableAttr(attr::Aligned, R, SI, false, false)
697 , isalignmentExpr(false)
698 {
699 }
700
701 AlignedAttr *clone(ASTContext &C) const;
702 void printPretty(raw_ostream &OS,
703 const PrintingPolicy &Policy) const;
704 const char *getSpelling() const;
705 Spelling getSemanticSpelling() const {
706 switch (SpellingListIndex) {
707 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 707)
;
708 case 0: return GNU_aligned;
709 case 1: return CXX11_gnu_aligned;
710 case 2: return Declspec_align;
711 case 3: return Keyword_alignas;
712 case 4: return Keyword_Alignas;
713 }
714 }
715 bool isGNU() const { return SpellingListIndex == 0 ||
716 SpellingListIndex == 1; }
717 bool isC11() const { return SpellingListIndex == 4; }
718 bool isAlignas() const { return SpellingListIndex == 3 ||
719 SpellingListIndex == 4; }
720 bool isDeclspec() const { return SpellingListIndex == 2; }
721 bool isAlignmentDependent() const;
722 unsigned getAlignment(ASTContext &Ctx) const;
723 bool isAlignmentExpr() const {
724 return isalignmentExpr;
725 }
726 Expr *getAlignmentExpr() const {
727 assert(isalignmentExpr)((isalignmentExpr) ? static_cast<void> (0) : __assert_fail
("isalignmentExpr", "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 727, __PRETTY_FUNCTION__))
;
728 return alignmentExpr;
729 }
730 TypeSourceInfo *getAlignmentType() const {
731 assert(!isalignmentExpr)((!isalignmentExpr) ? static_cast<void> (0) : __assert_fail
("!isalignmentExpr", "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 731, __PRETTY_FUNCTION__))
;
732 return alignmentType;
733 }
734
735
736
737 static bool classof(const Attr *A) { return A->getKind() == attr::Aligned; }
738};
739
740class AllocAlignAttr : public InheritableAttr {
741ParamIdx paramIndex;
742
743public:
744 static AllocAlignAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ParamIndex, SourceRange Loc = SourceRange()) {
745 auto *A = new (Ctx) AllocAlignAttr(Loc, Ctx, ParamIndex, 0);
746 A->setImplicit(true);
747 return A;
748 }
749
750 AllocAlignAttr(SourceRange R, ASTContext &Ctx
751 , ParamIdx ParamIndex
752 , unsigned SI
753 )
754 : InheritableAttr(attr::AllocAlign, R, SI, false, false)
755 , paramIndex(ParamIndex)
756 {
757 }
758
759 AllocAlignAttr *clone(ASTContext &C) const;
760 void printPretty(raw_ostream &OS,
761 const PrintingPolicy &Policy) const;
762 const char *getSpelling() const;
763 ParamIdx getParamIndex() const {
764 return paramIndex;
765 }
766
767
768
769 static bool classof(const Attr *A) { return A->getKind() == attr::AllocAlign; }
770};
771
772class AllocSizeAttr : public InheritableAttr {
773ParamIdx elemSizeParam;
774
775ParamIdx numElemsParam;
776
777public:
778 static AllocSizeAttr *CreateImplicit(ASTContext &Ctx, ParamIdx ElemSizeParam, ParamIdx NumElemsParam, SourceRange Loc = SourceRange()) {
779 auto *A = new (Ctx) AllocSizeAttr(Loc, Ctx, ElemSizeParam, NumElemsParam, 0);
780 A->setImplicit(true);
781 return A;
782 }
783
784 AllocSizeAttr(SourceRange R, ASTContext &Ctx
785 , ParamIdx ElemSizeParam
786 , ParamIdx NumElemsParam
787 , unsigned SI
788 )
789 : InheritableAttr(attr::AllocSize, R, SI, false, false)
790 , elemSizeParam(ElemSizeParam)
791 , numElemsParam(NumElemsParam)
792 {
793 }
794
795 AllocSizeAttr(SourceRange R, ASTContext &Ctx
796 , ParamIdx ElemSizeParam
797 , unsigned SI
798 )
799 : InheritableAttr(attr::AllocSize, R, SI, false, false)
800 , elemSizeParam(ElemSizeParam)
801 , numElemsParam()
802 {
803 }
804
805 AllocSizeAttr *clone(ASTContext &C) const;
806 void printPretty(raw_ostream &OS,
807 const PrintingPolicy &Policy) const;
808 const char *getSpelling() const;
809 ParamIdx getElemSizeParam() const {
810 return elemSizeParam;
811 }
812
813 ParamIdx getNumElemsParam() const {
814 return numElemsParam;
815 }
816
817
818
819 static bool classof(const Attr *A) { return A->getKind() == attr::AllocSize; }
820};
821
822class AlwaysDestroyAttr : public InheritableAttr {
823public:
824 static AlwaysDestroyAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
825 auto *A = new (Ctx) AlwaysDestroyAttr(Loc, Ctx, 0);
826 A->setImplicit(true);
827 return A;
828 }
829
830 AlwaysDestroyAttr(SourceRange R, ASTContext &Ctx
831 , unsigned SI
832 )
833 : InheritableAttr(attr::AlwaysDestroy, R, SI, false, false)
834 {
835 }
836
837 AlwaysDestroyAttr *clone(ASTContext &C) const;
838 void printPretty(raw_ostream &OS,
839 const PrintingPolicy &Policy) const;
840 const char *getSpelling() const;
841
842
843 static bool classof(const Attr *A) { return A->getKind() == attr::AlwaysDestroy; }
844};
845
846class AlwaysInlineAttr : public InheritableAttr {
847public:
848 enum Spelling {
849 GNU_always_inline = 0,
850 CXX11_gnu_always_inline = 1,
851 Keyword_forceinline = 2
852 };
853
854 static AlwaysInlineAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
855 auto *A = new (Ctx) AlwaysInlineAttr(Loc, Ctx, S);
856 A->setImplicit(true);
857 return A;
858 }
859
860 AlwaysInlineAttr(SourceRange R, ASTContext &Ctx
861 , unsigned SI
862 )
863 : InheritableAttr(attr::AlwaysInline, R, SI, false, false)
864 {
865 }
866
867 AlwaysInlineAttr *clone(ASTContext &C) const;
868 void printPretty(raw_ostream &OS,
869 const PrintingPolicy &Policy) const;
870 const char *getSpelling() const;
871 Spelling getSemanticSpelling() const {
872 switch (SpellingListIndex) {
873 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 873)
;
874 case 0: return GNU_always_inline;
875 case 1: return CXX11_gnu_always_inline;
876 case 2: return Keyword_forceinline;
877 }
878 }
879
880
881 static bool classof(const Attr *A) { return A->getKind() == attr::AlwaysInline; }
882};
883
884class AnalyzerNoReturnAttr : public InheritableAttr {
885public:
886 static AnalyzerNoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
887 auto *A = new (Ctx) AnalyzerNoReturnAttr(Loc, Ctx, 0);
888 A->setImplicit(true);
889 return A;
890 }
891
892 AnalyzerNoReturnAttr(SourceRange R, ASTContext &Ctx
893 , unsigned SI
894 )
895 : InheritableAttr(attr::AnalyzerNoReturn, R, SI, false, false)
896 {
897 }
898
899 AnalyzerNoReturnAttr *clone(ASTContext &C) const;
900 void printPretty(raw_ostream &OS,
901 const PrintingPolicy &Policy) const;
902 const char *getSpelling() const;
903
904
905 static bool classof(const Attr *A) { return A->getKind() == attr::AnalyzerNoReturn; }
906};
907
908class AnnotateAttr : public InheritableParamAttr {
909unsigned annotationLength;
910char *annotation;
911
912public:
913 static AnnotateAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Annotation, SourceRange Loc = SourceRange()) {
914 auto *A = new (Ctx) AnnotateAttr(Loc, Ctx, Annotation, 0);
915 A->setImplicit(true);
916 return A;
917 }
918
919 AnnotateAttr(SourceRange R, ASTContext &Ctx
920 , llvm::StringRef Annotation
921 , unsigned SI
922 )
923 : InheritableParamAttr(attr::Annotate, R, SI, false, false)
924 , annotationLength(Annotation.size()),annotation(new (Ctx, 1) char[annotationLength])
925 {
926 if (!Annotation.empty())
927 std::memcpy(annotation, Annotation.data(), annotationLength);
928 }
929
930 AnnotateAttr *clone(ASTContext &C) const;
931 void printPretty(raw_ostream &OS,
932 const PrintingPolicy &Policy) const;
933 const char *getSpelling() const;
934 llvm::StringRef getAnnotation() const {
935 return llvm::StringRef(annotation, annotationLength);
936 }
937 unsigned getAnnotationLength() const {
938 return annotationLength;
939 }
940 void setAnnotation(ASTContext &C, llvm::StringRef S) {
941 annotationLength = S.size();
942 this->annotation = new (C, 1) char [annotationLength];
943 if (!S.empty())
944 std::memcpy(this->annotation, S.data(), annotationLength);
945 }
946
947
948
949 static bool classof(const Attr *A) { return A->getKind() == attr::Annotate; }
950};
951
952class AnyX86InterruptAttr : public InheritableAttr {
953public:
954 static AnyX86InterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
955 auto *A = new (Ctx) AnyX86InterruptAttr(Loc, Ctx, 0);
956 A->setImplicit(true);
957 return A;
958 }
959
960 AnyX86InterruptAttr(SourceRange R, ASTContext &Ctx
961 , unsigned SI
962 )
963 : InheritableAttr(attr::AnyX86Interrupt, R, SI, false, false)
964 {
965 }
966
967 AnyX86InterruptAttr *clone(ASTContext &C) const;
968 void printPretty(raw_ostream &OS,
969 const PrintingPolicy &Policy) const;
970 const char *getSpelling() const;
971
972
973 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86Interrupt; }
974};
975
976class AnyX86NoCallerSavedRegistersAttr : public InheritableAttr {
977public:
978 static AnyX86NoCallerSavedRegistersAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
979 auto *A = new (Ctx) AnyX86NoCallerSavedRegistersAttr(Loc, Ctx, 0);
980 A->setImplicit(true);
981 return A;
982 }
983
984 AnyX86NoCallerSavedRegistersAttr(SourceRange R, ASTContext &Ctx
985 , unsigned SI
986 )
987 : InheritableAttr(attr::AnyX86NoCallerSavedRegisters, R, SI, false, false)
988 {
989 }
990
991 AnyX86NoCallerSavedRegistersAttr *clone(ASTContext &C) const;
992 void printPretty(raw_ostream &OS,
993 const PrintingPolicy &Policy) const;
994 const char *getSpelling() const;
995
996
997 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCallerSavedRegisters; }
998};
999
1000class AnyX86NoCfCheckAttr : public InheritableAttr {
1001public:
1002 static AnyX86NoCfCheckAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1003 auto *A = new (Ctx) AnyX86NoCfCheckAttr(Loc, Ctx, 0);
1004 A->setImplicit(true);
1005 return A;
1006 }
1007
1008 AnyX86NoCfCheckAttr(SourceRange R, ASTContext &Ctx
1009 , unsigned SI
1010 )
1011 : InheritableAttr(attr::AnyX86NoCfCheck, R, SI, false, false)
1012 {
1013 }
1014
1015 AnyX86NoCfCheckAttr *clone(ASTContext &C) const;
1016 void printPretty(raw_ostream &OS,
1017 const PrintingPolicy &Policy) const;
1018 const char *getSpelling() const;
1019
1020
1021 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCfCheck; }
1022};
1023
1024class ArcWeakrefUnavailableAttr : public InheritableAttr {
1025public:
1026 static ArcWeakrefUnavailableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1027 auto *A = new (Ctx) ArcWeakrefUnavailableAttr(Loc, Ctx, 0);
1028 A->setImplicit(true);
1029 return A;
1030 }
1031
1032 ArcWeakrefUnavailableAttr(SourceRange R, ASTContext &Ctx
1033 , unsigned SI
1034 )
1035 : InheritableAttr(attr::ArcWeakrefUnavailable, R, SI, false, false)
1036 {
1037 }
1038
1039 ArcWeakrefUnavailableAttr *clone(ASTContext &C) const;
1040 void printPretty(raw_ostream &OS,
1041 const PrintingPolicy &Policy) const;
1042 const char *getSpelling() const;
1043
1044
1045 static bool classof(const Attr *A) { return A->getKind() == attr::ArcWeakrefUnavailable; }
1046};
1047
1048class ArgumentWithTypeTagAttr : public InheritableAttr {
1049IdentifierInfo * argumentKind;
1050
1051ParamIdx argumentIdx;
1052
1053ParamIdx typeTagIdx;
1054
1055bool isPointer;
1056
1057public:
1058 enum Spelling {
1059 GNU_argument_with_type_tag = 0,
1060 CXX11_clang_argument_with_type_tag = 1,
1061 C2x_clang_argument_with_type_tag = 2,
1062 GNU_pointer_with_type_tag = 3,
1063 CXX11_clang_pointer_with_type_tag = 4,
1064 C2x_clang_pointer_with_type_tag = 5
1065 };
1066
1067 static ArgumentWithTypeTagAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * ArgumentKind, ParamIdx ArgumentIdx, ParamIdx TypeTagIdx, bool IsPointer, SourceRange Loc = SourceRange()) {
1068 auto *A = new (Ctx) ArgumentWithTypeTagAttr(Loc, Ctx, ArgumentKind, ArgumentIdx, TypeTagIdx, IsPointer, S);
1069 A->setImplicit(true);
1070 return A;
1071 }
1072
1073 static ArgumentWithTypeTagAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * ArgumentKind, ParamIdx ArgumentIdx, ParamIdx TypeTagIdx, SourceRange Loc = SourceRange()) {
1074 auto *A = new (Ctx) ArgumentWithTypeTagAttr(Loc, Ctx, ArgumentKind, ArgumentIdx, TypeTagIdx, S);
1075 A->setImplicit(true);
1076 return A;
1077 }
1078
1079 ArgumentWithTypeTagAttr(SourceRange R, ASTContext &Ctx
1080 , IdentifierInfo * ArgumentKind
1081 , ParamIdx ArgumentIdx
1082 , ParamIdx TypeTagIdx
1083 , bool IsPointer
1084 , unsigned SI
1085 )
1086 : InheritableAttr(attr::ArgumentWithTypeTag, R, SI, false, false)
1087 , argumentKind(ArgumentKind)
1088 , argumentIdx(ArgumentIdx)
1089 , typeTagIdx(TypeTagIdx)
1090 , isPointer(IsPointer)
1091 {
1092 }
1093
1094 ArgumentWithTypeTagAttr(SourceRange R, ASTContext &Ctx
1095 , IdentifierInfo * ArgumentKind
1096 , ParamIdx ArgumentIdx
1097 , ParamIdx TypeTagIdx
1098 , unsigned SI
1099 )
1100 : InheritableAttr(attr::ArgumentWithTypeTag, R, SI, false, false)
1101 , argumentKind(ArgumentKind)
1102 , argumentIdx(ArgumentIdx)
1103 , typeTagIdx(TypeTagIdx)
1104 , isPointer()
1105 {
1106 }
1107
1108 ArgumentWithTypeTagAttr *clone(ASTContext &C) const;
1109 void printPretty(raw_ostream &OS,
1110 const PrintingPolicy &Policy) const;
1111 const char *getSpelling() const;
1112 Spelling getSemanticSpelling() const {
1113 switch (SpellingListIndex) {
1114 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 1114)
;
1115 case 0: return GNU_argument_with_type_tag;
1116 case 1: return CXX11_clang_argument_with_type_tag;
1117 case 2: return C2x_clang_argument_with_type_tag;
1118 case 3: return GNU_pointer_with_type_tag;
1119 case 4: return CXX11_clang_pointer_with_type_tag;
1120 case 5: return C2x_clang_pointer_with_type_tag;
1121 }
1122 }
1123 IdentifierInfo * getArgumentKind() const {
1124 return argumentKind;
1125 }
1126
1127 ParamIdx getArgumentIdx() const {
1128 return argumentIdx;
1129 }
1130
1131 ParamIdx getTypeTagIdx() const {
1132 return typeTagIdx;
1133 }
1134
1135 bool getIsPointer() const {
1136 return isPointer;
1137 }
1138
1139
1140
1141 static bool classof(const Attr *A) { return A->getKind() == attr::ArgumentWithTypeTag; }
1142};
1143
1144class ArtificialAttr : public InheritableAttr {
1145public:
1146 static ArtificialAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1147 auto *A = new (Ctx) ArtificialAttr(Loc, Ctx, 0);
1148 A->setImplicit(true);
1149 return A;
1150 }
1151
1152 ArtificialAttr(SourceRange R, ASTContext &Ctx
1153 , unsigned SI
1154 )
1155 : InheritableAttr(attr::Artificial, R, SI, false, false)
1156 {
1157 }
1158
1159 ArtificialAttr *clone(ASTContext &C) const;
1160 void printPretty(raw_ostream &OS,
1161 const PrintingPolicy &Policy) const;
1162 const char *getSpelling() const;
1163
1164
1165 static bool classof(const Attr *A) { return A->getKind() == attr::Artificial; }
1166};
1167
1168class AsmLabelAttr : public InheritableAttr {
1169unsigned labelLength;
1170char *label;
1171
1172public:
1173 static AsmLabelAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Label, SourceRange Loc = SourceRange()) {
1174 auto *A = new (Ctx) AsmLabelAttr(Loc, Ctx, Label, 0);
1175 A->setImplicit(true);
1176 return A;
1177 }
1178
1179 AsmLabelAttr(SourceRange R, ASTContext &Ctx
1180 , llvm::StringRef Label
1181 , unsigned SI
1182 )
1183 : InheritableAttr(attr::AsmLabel, R, SI, false, false)
1184 , labelLength(Label.size()),label(new (Ctx, 1) char[labelLength])
1185 {
1186 if (!Label.empty())
1187 std::memcpy(label, Label.data(), labelLength);
1188 }
1189
1190 AsmLabelAttr *clone(ASTContext &C) const;
1191 void printPretty(raw_ostream &OS,
1192 const PrintingPolicy &Policy) const;
1193 const char *getSpelling() const;
1194 llvm::StringRef getLabel() const {
1195 return llvm::StringRef(label, labelLength);
1196 }
1197 unsigned getLabelLength() const {
1198 return labelLength;
1199 }
1200 void setLabel(ASTContext &C, llvm::StringRef S) {
1201 labelLength = S.size();
1202 this->label = new (C, 1) char [labelLength];
1203 if (!S.empty())
1204 std::memcpy(this->label, S.data(), labelLength);
1205 }
1206
1207
1208
1209 static bool classof(const Attr *A) { return A->getKind() == attr::AsmLabel; }
1210};
1211
1212class AssertCapabilityAttr : public InheritableAttr {
1213 unsigned args_Size;
1214 Expr * *args_;
1215
1216public:
1217 enum Spelling {
1218 GNU_assert_capability = 0,
1219 CXX11_clang_assert_capability = 1,
1220 GNU_assert_shared_capability = 2,
1221 CXX11_clang_assert_shared_capability = 3
1222 };
1223
1224 static AssertCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
1225 auto *A = new (Ctx) AssertCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
1226 A->setImplicit(true);
1227 return A;
1228 }
1229
1230 AssertCapabilityAttr(SourceRange R, ASTContext &Ctx
1231 , Expr * *Args, unsigned ArgsSize
1232 , unsigned SI
1233 )
1234 : InheritableAttr(attr::AssertCapability, R, SI, true, true)
1235 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
1236 {
1237 std::copy(Args, Args + args_Size, args_);
1238 }
1239
1240 AssertCapabilityAttr(SourceRange R, ASTContext &Ctx
1241 , unsigned SI
1242 )
1243 : InheritableAttr(attr::AssertCapability, R, SI, true, true)
1244 , args_Size(0), args_(nullptr)
1245 {
1246 }
1247
1248 AssertCapabilityAttr *clone(ASTContext &C) const;
1249 void printPretty(raw_ostream &OS,
1250 const PrintingPolicy &Policy) const;
1251 const char *getSpelling() const;
1252 Spelling getSemanticSpelling() const {
1253 switch (SpellingListIndex) {
1254 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 1254)
;
1255 case 0: return GNU_assert_capability;
1256 case 1: return CXX11_clang_assert_capability;
1257 case 2: return GNU_assert_shared_capability;
1258 case 3: return CXX11_clang_assert_shared_capability;
1259 }
1260 }
1261 bool isShared() const { return SpellingListIndex == 2 ||
1262 SpellingListIndex == 3; }
1263 typedef Expr ** args_iterator;
1264 args_iterator args_begin() const { return args_; }
1265 args_iterator args_end() const { return args_ + args_Size; }
1266 unsigned args_size() const { return args_Size; }
1267 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
1268
1269
1270
1271
1272 static bool classof(const Attr *A) { return A->getKind() == attr::AssertCapability; }
1273};
1274
1275class AssertExclusiveLockAttr : public InheritableAttr {
1276 unsigned args_Size;
1277 Expr * *args_;
1278
1279public:
1280 static AssertExclusiveLockAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
1281 auto *A = new (Ctx) AssertExclusiveLockAttr(Loc, Ctx, Args, ArgsSize, 0);
1282 A->setImplicit(true);
1283 return A;
1284 }
1285
1286 AssertExclusiveLockAttr(SourceRange R, ASTContext &Ctx
1287 , Expr * *Args, unsigned ArgsSize
1288 , unsigned SI
1289 )
1290 : InheritableAttr(attr::AssertExclusiveLock, R, SI, true, true)
1291 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
1292 {
1293 std::copy(Args, Args + args_Size, args_);
1294 }
1295
1296 AssertExclusiveLockAttr(SourceRange R, ASTContext &Ctx
1297 , unsigned SI
1298 )
1299 : InheritableAttr(attr::AssertExclusiveLock, R, SI, true, true)
1300 , args_Size(0), args_(nullptr)
1301 {
1302 }
1303
1304 AssertExclusiveLockAttr *clone(ASTContext &C) const;
1305 void printPretty(raw_ostream &OS,
1306 const PrintingPolicy &Policy) const;
1307 const char *getSpelling() const;
1308 typedef Expr ** args_iterator;
1309 args_iterator args_begin() const { return args_; }
1310 args_iterator args_end() const { return args_ + args_Size; }
1311 unsigned args_size() const { return args_Size; }
1312 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
1313
1314
1315
1316
1317 static bool classof(const Attr *A) { return A->getKind() == attr::AssertExclusiveLock; }
1318};
1319
1320class AssertSharedLockAttr : public InheritableAttr {
1321 unsigned args_Size;
1322 Expr * *args_;
1323
1324public:
1325 static AssertSharedLockAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
1326 auto *A = new (Ctx) AssertSharedLockAttr(Loc, Ctx, Args, ArgsSize, 0);
1327 A->setImplicit(true);
1328 return A;
1329 }
1330
1331 AssertSharedLockAttr(SourceRange R, ASTContext &Ctx
1332 , Expr * *Args, unsigned ArgsSize
1333 , unsigned SI
1334 )
1335 : InheritableAttr(attr::AssertSharedLock, R, SI, true, true)
1336 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
1337 {
1338 std::copy(Args, Args + args_Size, args_);
1339 }
1340
1341 AssertSharedLockAttr(SourceRange R, ASTContext &Ctx
1342 , unsigned SI
1343 )
1344 : InheritableAttr(attr::AssertSharedLock, R, SI, true, true)
1345 , args_Size(0), args_(nullptr)
1346 {
1347 }
1348
1349 AssertSharedLockAttr *clone(ASTContext &C) const;
1350 void printPretty(raw_ostream &OS,
1351 const PrintingPolicy &Policy) const;
1352 const char *getSpelling() const;
1353 typedef Expr ** args_iterator;
1354 args_iterator args_begin() const { return args_; }
1355 args_iterator args_end() const { return args_ + args_Size; }
1356 unsigned args_size() const { return args_Size; }
1357 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
1358
1359
1360
1361
1362 static bool classof(const Attr *A) { return A->getKind() == attr::AssertSharedLock; }
1363};
1364
1365class AssumeAlignedAttr : public InheritableAttr {
1366Expr * alignment;
1367
1368Expr * offset;
1369
1370public:
1371 static AssumeAlignedAttr *CreateImplicit(ASTContext &Ctx, Expr * Alignment, Expr * Offset, SourceRange Loc = SourceRange()) {
1372 auto *A = new (Ctx) AssumeAlignedAttr(Loc, Ctx, Alignment, Offset, 0);
1373 A->setImplicit(true);
1374 return A;
1375 }
1376
1377 AssumeAlignedAttr(SourceRange R, ASTContext &Ctx
1378 , Expr * Alignment
1379 , Expr * Offset
1380 , unsigned SI
1381 )
1382 : InheritableAttr(attr::AssumeAligned, R, SI, false, false)
1383 , alignment(Alignment)
1384 , offset(Offset)
1385 {
1386 }
1387
1388 AssumeAlignedAttr(SourceRange R, ASTContext &Ctx
1389 , Expr * Alignment
1390 , unsigned SI
1391 )
1392 : InheritableAttr(attr::AssumeAligned, R, SI, false, false)
1393 , alignment(Alignment)
1394 , offset()
1395 {
1396 }
1397
1398 AssumeAlignedAttr *clone(ASTContext &C) const;
1399 void printPretty(raw_ostream &OS,
1400 const PrintingPolicy &Policy) const;
1401 const char *getSpelling() const;
1402 Expr * getAlignment() const {
1403 return alignment;
1404 }
1405
1406 Expr * getOffset() const {
1407 return offset;
1408 }
1409
1410
1411
1412 static bool classof(const Attr *A) { return A->getKind() == attr::AssumeAligned; }
1413};
1414
1415class AvailabilityAttr : public InheritableAttr {
1416IdentifierInfo * platform;
1417
1418VersionTuple introduced;
1419
1420
1421VersionTuple deprecated;
1422
1423
1424VersionTuple obsoleted;
1425
1426
1427bool unavailable;
1428
1429unsigned messageLength;
1430char *message;
1431
1432bool strict;
1433
1434unsigned replacementLength;
1435char *replacement;
1436
1437int priority;
1438
1439public:
1440 static AvailabilityAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * Platform, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool Unavailable, llvm::StringRef Message, bool Strict, llvm::StringRef Replacement, int Priority, SourceRange Loc = SourceRange()) {
1441 auto *A = new (Ctx) AvailabilityAttr(Loc, Ctx, Platform, Introduced, Deprecated, Obsoleted, Unavailable, Message, Strict, Replacement, Priority, 0);
1442 A->setImplicit(true);
1443 return A;
1444 }
1445
1446 AvailabilityAttr(SourceRange R, ASTContext &Ctx
1447 , IdentifierInfo * Platform
1448 , VersionTuple Introduced
1449 , VersionTuple Deprecated
1450 , VersionTuple Obsoleted
1451 , bool Unavailable
1452 , llvm::StringRef Message
1453 , bool Strict
1454 , llvm::StringRef Replacement
1455 , int Priority
1456 , unsigned SI
1457 )
1458 : InheritableAttr(attr::Availability, R, SI, false, true)
1459 , platform(Platform)
1460 , introduced(Introduced)
1461 , deprecated(Deprecated)
1462 , obsoleted(Obsoleted)
1463 , unavailable(Unavailable)
1464 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
1465 , strict(Strict)
1466 , replacementLength(Replacement.size()),replacement(new (Ctx, 1) char[replacementLength])
1467 , priority(Priority)
1468 {
1469 if (!Message.empty())
1470 std::memcpy(message, Message.data(), messageLength);
1471 if (!Replacement.empty())
1472 std::memcpy(replacement, Replacement.data(), replacementLength);
1473 }
1474
1475 AvailabilityAttr *clone(ASTContext &C) const;
1476 void printPretty(raw_ostream &OS,
1477 const PrintingPolicy &Policy) const;
1478 const char *getSpelling() const;
1479 IdentifierInfo * getPlatform() const {
1480 return platform;
1481 }
1482
1483 VersionTuple getIntroduced() const {
1484 return introduced;
1485 }
1486 void setIntroduced(ASTContext &C, VersionTuple V) {
1487 introduced = V;
1488 }
1489
1490 VersionTuple getDeprecated() const {
1491 return deprecated;
1492 }
1493 void setDeprecated(ASTContext &C, VersionTuple V) {
1494 deprecated = V;
1495 }
1496
1497 VersionTuple getObsoleted() const {
1498 return obsoleted;
1499 }
1500 void setObsoleted(ASTContext &C, VersionTuple V) {
1501 obsoleted = V;
1502 }
1503
1504 bool getUnavailable() const {
1505 return unavailable;
1506 }
1507
1508 llvm::StringRef getMessage() const {
1509 return llvm::StringRef(message, messageLength);
1510 }
1511 unsigned getMessageLength() const {
1512 return messageLength;
1513 }
1514 void setMessage(ASTContext &C, llvm::StringRef S) {
1515 messageLength = S.size();
1516 this->message = new (C, 1) char [messageLength];
1517 if (!S.empty())
1518 std::memcpy(this->message, S.data(), messageLength);
1519 }
1520
1521 bool getStrict() const {
1522 return strict;
1523 }
1524
1525 llvm::StringRef getReplacement() const {
1526 return llvm::StringRef(replacement, replacementLength);
1527 }
1528 unsigned getReplacementLength() const {
1529 return replacementLength;
1530 }
1531 void setReplacement(ASTContext &C, llvm::StringRef S) {
1532 replacementLength = S.size();
1533 this->replacement = new (C, 1) char [replacementLength];
1534 if (!S.empty())
1535 std::memcpy(this->replacement, S.data(), replacementLength);
1536 }
1537
1538 int getPriority() const {
1539 return priority;
1540 }
1541
1542static llvm::StringRef getPrettyPlatformName(llvm::StringRef Platform) {
1543 return llvm::StringSwitch<llvm::StringRef>(Platform)
1544 .Case("android", "Android")
1545 .Case("ios", "iOS")
1546 .Case("macos", "macOS")
1547 .Case("tvos", "tvOS")
1548 .Case("watchos", "watchOS")
1549 .Case("ios_app_extension", "iOS (App Extension)")
1550 .Case("macos_app_extension", "macOS (App Extension)")
1551 .Case("tvos_app_extension", "tvOS (App Extension)")
1552 .Case("watchos_app_extension", "watchOS (App Extension)")
1553 .Case("swift", "Swift")
1554 .Default(llvm::StringRef());
1555}
1556static llvm::StringRef getPlatformNameSourceSpelling(llvm::StringRef Platform) {
1557 return llvm::StringSwitch<llvm::StringRef>(Platform)
1558 .Case("ios", "iOS")
1559 .Case("macos", "macOS")
1560 .Case("tvos", "tvOS")
1561 .Case("watchos", "watchOS")
1562 .Case("ios_app_extension", "iOSApplicationExtension")
1563 .Case("macos_app_extension", "macOSApplicationExtension")
1564 .Case("tvos_app_extension", "tvOSApplicationExtension")
1565 .Case("watchos_app_extension", "watchOSApplicationExtension")
1566 .Default(Platform);
1567}
1568static llvm::StringRef canonicalizePlatformName(llvm::StringRef Platform) {
1569 return llvm::StringSwitch<llvm::StringRef>(Platform)
1570 .Case("iOS", "ios")
1571 .Case("macOS", "macos")
1572 .Case("tvOS", "tvos")
1573 .Case("watchOS", "watchos")
1574 .Case("iOSApplicationExtension", "ios_app_extension")
1575 .Case("macOSApplicationExtension", "macos_app_extension")
1576 .Case("tvOSApplicationExtension", "tvos_app_extension")
1577 .Case("watchOSApplicationExtension", "watchos_app_extension")
1578 .Default(Platform);
1579}
1580
1581 static bool classof(const Attr *A) { return A->getKind() == attr::Availability; }
1582};
1583
1584class BlocksAttr : public InheritableAttr {
1585public:
1586 enum BlockType {
1587 ByRef
1588 };
1589private:
1590 BlockType type;
1591
1592public:
1593 static BlocksAttr *CreateImplicit(ASTContext &Ctx, BlockType Type, SourceRange Loc = SourceRange()) {
1594 auto *A = new (Ctx) BlocksAttr(Loc, Ctx, Type, 0);
1595 A->setImplicit(true);
1596 return A;
1597 }
1598
1599 BlocksAttr(SourceRange R, ASTContext &Ctx
1600 , BlockType Type
1601 , unsigned SI
1602 )
1603 : InheritableAttr(attr::Blocks, R, SI, false, false)
1604 , type(Type)
1605 {
1606 }
1607
1608 BlocksAttr *clone(ASTContext &C) const;
1609 void printPretty(raw_ostream &OS,
1610 const PrintingPolicy &Policy) const;
1611 const char *getSpelling() const;
1612 BlockType getType() const {
1613 return type;
1614 }
1615
1616 static bool ConvertStrToBlockType(StringRef Val, BlockType &Out) {
1617 Optional<BlockType> R = llvm::StringSwitch<Optional<BlockType>>(Val)
1618 .Case("byref", BlocksAttr::ByRef)
1619 .Default(Optional<BlockType>());
1620 if (R) {
1621 Out = *R;
1622 return true;
1623 }
1624 return false;
1625 }
1626
1627 static const char *ConvertBlockTypeToStr(BlockType Val) {
1628 switch(Val) {
1629 case BlocksAttr::ByRef: return "byref";
1630 }
1631 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 1631)
;
1632 }
1633
1634
1635 static bool classof(const Attr *A) { return A->getKind() == attr::Blocks; }
1636};
1637
1638class C11NoReturnAttr : public InheritableAttr {
1639public:
1640 static C11NoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1641 auto *A = new (Ctx) C11NoReturnAttr(Loc, Ctx, 0);
1642 A->setImplicit(true);
1643 return A;
1644 }
1645
1646 C11NoReturnAttr(SourceRange R, ASTContext &Ctx
1647 , unsigned SI
1648 )
1649 : InheritableAttr(attr::C11NoReturn, R, SI, false, false)
1650 {
1651 }
1652
1653 C11NoReturnAttr *clone(ASTContext &C) const;
1654 void printPretty(raw_ostream &OS,
1655 const PrintingPolicy &Policy) const;
1656 const char *getSpelling() const;
1657
1658
1659 static bool classof(const Attr *A) { return A->getKind() == attr::C11NoReturn; }
1660};
1661
1662class CDeclAttr : public InheritableAttr {
1663public:
1664 static CDeclAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1665 auto *A = new (Ctx) CDeclAttr(Loc, Ctx, 0);
1666 A->setImplicit(true);
1667 return A;
1668 }
1669
1670 CDeclAttr(SourceRange R, ASTContext &Ctx
1671 , unsigned SI
1672 )
1673 : InheritableAttr(attr::CDecl, R, SI, false, false)
1674 {
1675 }
1676
1677 CDeclAttr *clone(ASTContext &C) const;
1678 void printPretty(raw_ostream &OS,
1679 const PrintingPolicy &Policy) const;
1680 const char *getSpelling() const;
1681
1682
1683 static bool classof(const Attr *A) { return A->getKind() == attr::CDecl; }
1684};
1685
1686class CFAuditedTransferAttr : public InheritableAttr {
1687public:
1688 static CFAuditedTransferAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1689 auto *A = new (Ctx) CFAuditedTransferAttr(Loc, Ctx, 0);
1690 A->setImplicit(true);
1691 return A;
1692 }
1693
1694 CFAuditedTransferAttr(SourceRange R, ASTContext &Ctx
1695 , unsigned SI
1696 )
1697 : InheritableAttr(attr::CFAuditedTransfer, R, SI, false, false)
1698 {
1699 }
1700
1701 CFAuditedTransferAttr *clone(ASTContext &C) const;
1702 void printPretty(raw_ostream &OS,
1703 const PrintingPolicy &Policy) const;
1704 const char *getSpelling() const;
1705
1706
1707 static bool classof(const Attr *A) { return A->getKind() == attr::CFAuditedTransfer; }
1708};
1709
1710class CFConsumedAttr : public InheritableParamAttr {
1711public:
1712 static CFConsumedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1713 auto *A = new (Ctx) CFConsumedAttr(Loc, Ctx, 0);
1714 A->setImplicit(true);
1715 return A;
1716 }
1717
1718 CFConsumedAttr(SourceRange R, ASTContext &Ctx
1719 , unsigned SI
1720 )
1721 : InheritableParamAttr(attr::CFConsumed, R, SI, false, false)
1722 {
1723 }
1724
1725 CFConsumedAttr *clone(ASTContext &C) const;
1726 void printPretty(raw_ostream &OS,
1727 const PrintingPolicy &Policy) const;
1728 const char *getSpelling() const;
1729
1730
1731 static bool classof(const Attr *A) { return A->getKind() == attr::CFConsumed; }
1732};
1733
1734class CFReturnsNotRetainedAttr : public InheritableAttr {
1735public:
1736 static CFReturnsNotRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1737 auto *A = new (Ctx) CFReturnsNotRetainedAttr(Loc, Ctx, 0);
1738 A->setImplicit(true);
1739 return A;
1740 }
1741
1742 CFReturnsNotRetainedAttr(SourceRange R, ASTContext &Ctx
1743 , unsigned SI
1744 )
1745 : InheritableAttr(attr::CFReturnsNotRetained, R, SI, false, false)
1746 {
1747 }
1748
1749 CFReturnsNotRetainedAttr *clone(ASTContext &C) const;
1750 void printPretty(raw_ostream &OS,
1751 const PrintingPolicy &Policy) const;
1752 const char *getSpelling() const;
1753
1754
1755 static bool classof(const Attr *A) { return A->getKind() == attr::CFReturnsNotRetained; }
1756};
1757
1758class CFReturnsRetainedAttr : public InheritableAttr {
1759public:
1760 static CFReturnsRetainedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1761 auto *A = new (Ctx) CFReturnsRetainedAttr(Loc, Ctx, 0);
1762 A->setImplicit(true);
1763 return A;
1764 }
1765
1766 CFReturnsRetainedAttr(SourceRange R, ASTContext &Ctx
1767 , unsigned SI
1768 )
1769 : InheritableAttr(attr::CFReturnsRetained, R, SI, false, false)
1770 {
1771 }
1772
1773 CFReturnsRetainedAttr *clone(ASTContext &C) const;
1774 void printPretty(raw_ostream &OS,
1775 const PrintingPolicy &Policy) const;
1776 const char *getSpelling() const;
1777
1778
1779 static bool classof(const Attr *A) { return A->getKind() == attr::CFReturnsRetained; }
1780};
1781
1782class CFUnknownTransferAttr : public InheritableAttr {
1783public:
1784 static CFUnknownTransferAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1785 auto *A = new (Ctx) CFUnknownTransferAttr(Loc, Ctx, 0);
1786 A->setImplicit(true);
1787 return A;
1788 }
1789
1790 CFUnknownTransferAttr(SourceRange R, ASTContext &Ctx
1791 , unsigned SI
1792 )
1793 : InheritableAttr(attr::CFUnknownTransfer, R, SI, false, false)
1794 {
1795 }
1796
1797 CFUnknownTransferAttr *clone(ASTContext &C) const;
1798 void printPretty(raw_ostream &OS,
1799 const PrintingPolicy &Policy) const;
1800 const char *getSpelling() const;
1801
1802
1803 static bool classof(const Attr *A) { return A->getKind() == attr::CFUnknownTransfer; }
1804};
1805
1806class CPUDispatchAttr : public InheritableAttr {
1807 unsigned cpus_Size;
1808 IdentifierInfo * *cpus_;
1809
1810public:
1811 static CPUDispatchAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * *Cpus, unsigned CpusSize, SourceRange Loc = SourceRange()) {
1812 auto *A = new (Ctx) CPUDispatchAttr(Loc, Ctx, Cpus, CpusSize, 0);
1813 A->setImplicit(true);
1814 return A;
1815 }
1816
1817 CPUDispatchAttr(SourceRange R, ASTContext &Ctx
1818 , IdentifierInfo * *Cpus, unsigned CpusSize
1819 , unsigned SI
1820 )
1821 : InheritableAttr(attr::CPUDispatch, R, SI, false, false)
1822 , cpus_Size(CpusSize), cpus_(new (Ctx, 16) IdentifierInfo *[cpus_Size])
1823 {
1824 std::copy(Cpus, Cpus + cpus_Size, cpus_);
1825 }
1826
1827 CPUDispatchAttr(SourceRange R, ASTContext &Ctx
1828 , unsigned SI
1829 )
1830 : InheritableAttr(attr::CPUDispatch, R, SI, false, false)
1831 , cpus_Size(0), cpus_(nullptr)
1832 {
1833 }
1834
1835 CPUDispatchAttr *clone(ASTContext &C) const;
1836 void printPretty(raw_ostream &OS,
1837 const PrintingPolicy &Policy) const;
1838 const char *getSpelling() const;
1839 typedef IdentifierInfo ** cpus_iterator;
1840 cpus_iterator cpus_begin() const { return cpus_; }
1841 cpus_iterator cpus_end() const { return cpus_ + cpus_Size; }
1842 unsigned cpus_size() const { return cpus_Size; }
1843 llvm::iterator_range<cpus_iterator> cpus() const { return llvm::make_range(cpus_begin(), cpus_end()); }
1844
1845
1846
1847
1848 static bool classof(const Attr *A) { return A->getKind() == attr::CPUDispatch; }
1849};
1850
1851class CPUSpecificAttr : public InheritableAttr {
1852 unsigned cpus_Size;
1853 IdentifierInfo * *cpus_;
1854
1855public:
1856 static CPUSpecificAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * *Cpus, unsigned CpusSize, SourceRange Loc = SourceRange()) {
1857 auto *A = new (Ctx) CPUSpecificAttr(Loc, Ctx, Cpus, CpusSize, 0);
1858 A->setImplicit(true);
1859 return A;
1860 }
1861
1862 CPUSpecificAttr(SourceRange R, ASTContext &Ctx
1863 , IdentifierInfo * *Cpus, unsigned CpusSize
1864 , unsigned SI
1865 )
1866 : InheritableAttr(attr::CPUSpecific, R, SI, false, false)
1867 , cpus_Size(CpusSize), cpus_(new (Ctx, 16) IdentifierInfo *[cpus_Size])
1868 {
1869 std::copy(Cpus, Cpus + cpus_Size, cpus_);
1870 }
1871
1872 CPUSpecificAttr(SourceRange R, ASTContext &Ctx
1873 , unsigned SI
1874 )
1875 : InheritableAttr(attr::CPUSpecific, R, SI, false, false)
1876 , cpus_Size(0), cpus_(nullptr)
1877 {
1878 }
1879
1880 CPUSpecificAttr *clone(ASTContext &C) const;
1881 void printPretty(raw_ostream &OS,
1882 const PrintingPolicy &Policy) const;
1883 const char *getSpelling() const;
1884 typedef IdentifierInfo ** cpus_iterator;
1885 cpus_iterator cpus_begin() const { return cpus_; }
1886 cpus_iterator cpus_end() const { return cpus_ + cpus_Size; }
1887 unsigned cpus_size() const { return cpus_Size; }
1888 llvm::iterator_range<cpus_iterator> cpus() const { return llvm::make_range(cpus_begin(), cpus_end()); }
1889
1890
1891
1892 IdentifierInfo *getCPUName(unsigned Index) const {
1893 return *(cpus_begin() + Index);
1894 }
1895
1896
1897 static bool classof(const Attr *A) { return A->getKind() == attr::CPUSpecific; }
1898};
1899
1900class CUDAConstantAttr : public InheritableAttr {
1901public:
1902 static CUDAConstantAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1903 auto *A = new (Ctx) CUDAConstantAttr(Loc, Ctx, 0);
1904 A->setImplicit(true);
1905 return A;
1906 }
1907
1908 CUDAConstantAttr(SourceRange R, ASTContext &Ctx
1909 , unsigned SI
1910 )
1911 : InheritableAttr(attr::CUDAConstant, R, SI, false, false)
1912 {
1913 }
1914
1915 CUDAConstantAttr *clone(ASTContext &C) const;
1916 void printPretty(raw_ostream &OS,
1917 const PrintingPolicy &Policy) const;
1918 const char *getSpelling() const;
1919
1920
1921 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAConstant; }
1922};
1923
1924class CUDADeviceAttr : public InheritableAttr {
1925public:
1926 static CUDADeviceAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1927 auto *A = new (Ctx) CUDADeviceAttr(Loc, Ctx, 0);
1928 A->setImplicit(true);
1929 return A;
1930 }
1931
1932 CUDADeviceAttr(SourceRange R, ASTContext &Ctx
1933 , unsigned SI
1934 )
1935 : InheritableAttr(attr::CUDADevice, R, SI, false, false)
1936 {
1937 }
1938
1939 CUDADeviceAttr *clone(ASTContext &C) const;
1940 void printPretty(raw_ostream &OS,
1941 const PrintingPolicy &Policy) const;
1942 const char *getSpelling() const;
1943
1944
1945 static bool classof(const Attr *A) { return A->getKind() == attr::CUDADevice; }
1946};
1947
1948class CUDAGlobalAttr : public InheritableAttr {
1949public:
1950 static CUDAGlobalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1951 auto *A = new (Ctx) CUDAGlobalAttr(Loc, Ctx, 0);
1952 A->setImplicit(true);
1953 return A;
1954 }
1955
1956 CUDAGlobalAttr(SourceRange R, ASTContext &Ctx
1957 , unsigned SI
1958 )
1959 : InheritableAttr(attr::CUDAGlobal, R, SI, false, false)
1960 {
1961 }
1962
1963 CUDAGlobalAttr *clone(ASTContext &C) const;
1964 void printPretty(raw_ostream &OS,
1965 const PrintingPolicy &Policy) const;
1966 const char *getSpelling() const;
1967
1968
1969 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAGlobal; }
1970};
1971
1972class CUDAHostAttr : public InheritableAttr {
1973public:
1974 static CUDAHostAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1975 auto *A = new (Ctx) CUDAHostAttr(Loc, Ctx, 0);
1976 A->setImplicit(true);
1977 return A;
1978 }
1979
1980 CUDAHostAttr(SourceRange R, ASTContext &Ctx
1981 , unsigned SI
1982 )
1983 : InheritableAttr(attr::CUDAHost, R, SI, false, false)
1984 {
1985 }
1986
1987 CUDAHostAttr *clone(ASTContext &C) const;
1988 void printPretty(raw_ostream &OS,
1989 const PrintingPolicy &Policy) const;
1990 const char *getSpelling() const;
1991
1992
1993 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAHost; }
1994};
1995
1996class CUDAInvalidTargetAttr : public InheritableAttr {
1997public:
1998 static CUDAInvalidTargetAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1999 auto *A = new (Ctx) CUDAInvalidTargetAttr(Loc, Ctx, 0);
2000 A->setImplicit(true);
2001 return A;
2002 }
2003
2004 CUDAInvalidTargetAttr(SourceRange R, ASTContext &Ctx
2005 , unsigned SI
2006 )
2007 : InheritableAttr(attr::CUDAInvalidTarget, R, SI, false, false)
2008 {
2009 }
2010
2011 CUDAInvalidTargetAttr *clone(ASTContext &C) const;
2012 void printPretty(raw_ostream &OS,
2013 const PrintingPolicy &Policy) const;
2014 const char *getSpelling() const;
2015
2016
2017 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAInvalidTarget; }
2018};
2019
2020class CUDALaunchBoundsAttr : public InheritableAttr {
2021Expr * maxThreads;
2022
2023Expr * minBlocks;
2024
2025public:
2026 static CUDALaunchBoundsAttr *CreateImplicit(ASTContext &Ctx, Expr * MaxThreads, Expr * MinBlocks, SourceRange Loc = SourceRange()) {
2027 auto *A = new (Ctx) CUDALaunchBoundsAttr(Loc, Ctx, MaxThreads, MinBlocks, 0);
2028 A->setImplicit(true);
2029 return A;
2030 }
2031
2032 CUDALaunchBoundsAttr(SourceRange R, ASTContext &Ctx
2033 , Expr * MaxThreads
2034 , Expr * MinBlocks
2035 , unsigned SI
2036 )
2037 : InheritableAttr(attr::CUDALaunchBounds, R, SI, false, false)
2038 , maxThreads(MaxThreads)
2039 , minBlocks(MinBlocks)
2040 {
2041 }
2042
2043 CUDALaunchBoundsAttr(SourceRange R, ASTContext &Ctx
2044 , Expr * MaxThreads
2045 , unsigned SI
2046 )
2047 : InheritableAttr(attr::CUDALaunchBounds, R, SI, false, false)
2048 , maxThreads(MaxThreads)
2049 , minBlocks()
2050 {
2051 }
2052
2053 CUDALaunchBoundsAttr *clone(ASTContext &C) const;
2054 void printPretty(raw_ostream &OS,
2055 const PrintingPolicy &Policy) const;
2056 const char *getSpelling() const;
2057 Expr * getMaxThreads() const {
2058 return maxThreads;
2059 }
2060
2061 Expr * getMinBlocks() const {
2062 return minBlocks;
2063 }
2064
2065
2066
2067 static bool classof(const Attr *A) { return A->getKind() == attr::CUDALaunchBounds; }
2068};
2069
2070class CUDASharedAttr : public InheritableAttr {
2071public:
2072 static CUDASharedAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2073 auto *A = new (Ctx) CUDASharedAttr(Loc, Ctx, 0);
2074 A->setImplicit(true);
2075 return A;
2076 }
2077
2078 CUDASharedAttr(SourceRange R, ASTContext &Ctx
2079 , unsigned SI
2080 )
2081 : InheritableAttr(attr::CUDAShared, R, SI, false, false)
2082 {
2083 }
2084
2085 CUDASharedAttr *clone(ASTContext &C) const;
2086 void printPretty(raw_ostream &OS,
2087 const PrintingPolicy &Policy) const;
2088 const char *getSpelling() const;
2089
2090
2091 static bool classof(const Attr *A) { return A->getKind() == attr::CUDAShared; }
2092};
2093
2094class CXX11NoReturnAttr : public InheritableAttr {
2095public:
2096 static CXX11NoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2097 auto *A = new (Ctx) CXX11NoReturnAttr(Loc, Ctx, 0);
2098 A->setImplicit(true);
2099 return A;
2100 }
2101
2102 CXX11NoReturnAttr(SourceRange R, ASTContext &Ctx
2103 , unsigned SI
2104 )
2105 : InheritableAttr(attr::CXX11NoReturn, R, SI, false, false)
2106 {
2107 }
2108
2109 CXX11NoReturnAttr *clone(ASTContext &C) const;
2110 void printPretty(raw_ostream &OS,
2111 const PrintingPolicy &Policy) const;
2112 const char *getSpelling() const;
2113
2114
2115 static bool classof(const Attr *A) { return A->getKind() == attr::CXX11NoReturn; }
2116};
2117
2118class CallableWhenAttr : public InheritableAttr {
2119public:
2120 enum ConsumedState {
2121 Unknown,
2122 Consumed,
2123 Unconsumed
2124 };
2125private:
2126 unsigned callableStates_Size;
2127 ConsumedState *callableStates_;
2128
2129public:
2130 static CallableWhenAttr *CreateImplicit(ASTContext &Ctx, ConsumedState *CallableStates, unsigned CallableStatesSize, SourceRange Loc = SourceRange()) {
2131 auto *A = new (Ctx) CallableWhenAttr(Loc, Ctx, CallableStates, CallableStatesSize, 0);
2132 A->setImplicit(true);
2133 return A;
2134 }
2135
2136 CallableWhenAttr(SourceRange R, ASTContext &Ctx
2137 , ConsumedState *CallableStates, unsigned CallableStatesSize
2138 , unsigned SI
2139 )
2140 : InheritableAttr(attr::CallableWhen, R, SI, false, false)
2141 , callableStates_Size(CallableStatesSize), callableStates_(new (Ctx, 16) ConsumedState[callableStates_Size])
2142 {
2143 std::copy(CallableStates, CallableStates + callableStates_Size, callableStates_);
2144 }
2145
2146 CallableWhenAttr(SourceRange R, ASTContext &Ctx
2147 , unsigned SI
2148 )
2149 : InheritableAttr(attr::CallableWhen, R, SI, false, false)
2150 , callableStates_Size(0), callableStates_(nullptr)
2151 {
2152 }
2153
2154 CallableWhenAttr *clone(ASTContext &C) const;
2155 void printPretty(raw_ostream &OS,
2156 const PrintingPolicy &Policy) const;
2157 const char *getSpelling() const;
2158 typedef ConsumedState* callableStates_iterator;
2159 callableStates_iterator callableStates_begin() const { return callableStates_; }
2160 callableStates_iterator callableStates_end() const { return callableStates_ + callableStates_Size; }
2161 unsigned callableStates_size() const { return callableStates_Size; }
2162 llvm::iterator_range<callableStates_iterator> callableStates() const { return llvm::make_range(callableStates_begin(), callableStates_end()); }
2163
2164
2165 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
2166 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
2167 .Case("unknown", CallableWhenAttr::Unknown)
2168 .Case("consumed", CallableWhenAttr::Consumed)
2169 .Case("unconsumed", CallableWhenAttr::Unconsumed)
2170 .Default(Optional<ConsumedState>());
2171 if (R) {
2172 Out = *R;
2173 return true;
2174 }
2175 return false;
2176 }
2177
2178 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
2179 switch(Val) {
2180 case CallableWhenAttr::Unknown: return "unknown";
2181 case CallableWhenAttr::Consumed: return "consumed";
2182 case CallableWhenAttr::Unconsumed: return "unconsumed";
2183 }
2184 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2184)
;
2185 }
2186
2187
2188 static bool classof(const Attr *A) { return A->getKind() == attr::CallableWhen; }
2189};
2190
2191class CallbackAttr : public InheritableAttr {
2192 unsigned encoding_Size;
2193 int *encoding_;
2194
2195public:
2196 static CallbackAttr *CreateImplicit(ASTContext &Ctx, int *Encoding, unsigned EncodingSize, SourceRange Loc = SourceRange()) {
2197 auto *A = new (Ctx) CallbackAttr(Loc, Ctx, Encoding, EncodingSize, 0);
2198 A->setImplicit(true);
2199 return A;
2200 }
2201
2202 CallbackAttr(SourceRange R, ASTContext &Ctx
2203 , int *Encoding, unsigned EncodingSize
2204 , unsigned SI
2205 )
2206 : InheritableAttr(attr::Callback, R, SI, false, false)
2207 , encoding_Size(EncodingSize), encoding_(new (Ctx, 16) int[encoding_Size])
2208 {
2209 std::copy(Encoding, Encoding + encoding_Size, encoding_);
2210 }
2211
2212 CallbackAttr(SourceRange R, ASTContext &Ctx
2213 , unsigned SI
2214 )
2215 : InheritableAttr(attr::Callback, R, SI, false, false)
2216 , encoding_Size(0), encoding_(nullptr)
2217 {
2218 }
2219
2220 CallbackAttr *clone(ASTContext &C) const;
2221 void printPretty(raw_ostream &OS,
2222 const PrintingPolicy &Policy) const;
2223 const char *getSpelling() const;
2224 typedef int* encoding_iterator;
2225 encoding_iterator encoding_begin() const { return encoding_; }
2226 encoding_iterator encoding_end() const { return encoding_ + encoding_Size; }
2227 unsigned encoding_size() const { return encoding_Size; }
2228 llvm::iterator_range<encoding_iterator> encoding() const { return llvm::make_range(encoding_begin(), encoding_end()); }
2229
2230
2231
2232
2233 static bool classof(const Attr *A) { return A->getKind() == attr::Callback; }
2234};
2235
2236class CapabilityAttr : public InheritableAttr {
2237unsigned nameLength;
2238char *name;
2239
2240public:
2241 enum Spelling {
2242 GNU_capability = 0,
2243 CXX11_clang_capability = 1,
2244 GNU_shared_capability = 2,
2245 CXX11_clang_shared_capability = 3
2246 };
2247
2248 static CapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
2249 auto *A = new (Ctx) CapabilityAttr(Loc, Ctx, Name, S);
2250 A->setImplicit(true);
2251 return A;
2252 }
2253
2254 CapabilityAttr(SourceRange R, ASTContext &Ctx
2255 , llvm::StringRef Name
2256 , unsigned SI
2257 )
2258 : InheritableAttr(attr::Capability, R, SI, false, false)
2259 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
2260 {
2261 if (!Name.empty())
2262 std::memcpy(name, Name.data(), nameLength);
2263 }
2264
2265 CapabilityAttr *clone(ASTContext &C) const;
2266 void printPretty(raw_ostream &OS,
2267 const PrintingPolicy &Policy) const;
2268 const char *getSpelling() const;
2269 Spelling getSemanticSpelling() const {
2270 switch (SpellingListIndex) {
2271 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2271)
;
2272 case 0: return GNU_capability;
2273 case 1: return CXX11_clang_capability;
2274 case 2: return GNU_shared_capability;
2275 case 3: return CXX11_clang_shared_capability;
2276 }
2277 }
2278 bool isShared() const { return SpellingListIndex == 2 ||
2279 SpellingListIndex == 3; }
2280 llvm::StringRef getName() const {
2281 return llvm::StringRef(name, nameLength);
2282 }
2283 unsigned getNameLength() const {
2284 return nameLength;
2285 }
2286 void setName(ASTContext &C, llvm::StringRef S) {
2287 nameLength = S.size();
2288 this->name = new (C, 1) char [nameLength];
2289 if (!S.empty())
2290 std::memcpy(this->name, S.data(), nameLength);
2291 }
2292
2293
2294 bool isMutex() const { return getName().equals_lower("mutex"); }
2295 bool isRole() const { return getName().equals_lower("role"); }
2296
2297
2298 static bool classof(const Attr *A) { return A->getKind() == attr::Capability; }
2299};
2300
2301class CapturedRecordAttr : public InheritableAttr {
2302public:
2303 static CapturedRecordAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2304 auto *A = new (Ctx) CapturedRecordAttr(Loc, Ctx, 0);
2305 A->setImplicit(true);
2306 return A;
2307 }
2308
2309 CapturedRecordAttr(SourceRange R, ASTContext &Ctx
2310 , unsigned SI
2311 )
2312 : InheritableAttr(attr::CapturedRecord, R, SI, false, false)
2313 {
2314 }
2315
2316 CapturedRecordAttr *clone(ASTContext &C) const;
2317 void printPretty(raw_ostream &OS,
2318 const PrintingPolicy &Policy) const;
2319 const char *getSpelling() const;
2320
2321
2322 static bool classof(const Attr *A) { return A->getKind() == attr::CapturedRecord; }
2323};
2324
2325class CarriesDependencyAttr : public InheritableParamAttr {
2326public:
2327 static CarriesDependencyAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2328 auto *A = new (Ctx) CarriesDependencyAttr(Loc, Ctx, 0);
2329 A->setImplicit(true);
2330 return A;
2331 }
2332
2333 CarriesDependencyAttr(SourceRange R, ASTContext &Ctx
2334 , unsigned SI
2335 )
2336 : InheritableParamAttr(attr::CarriesDependency, R, SI, false, false)
2337 {
2338 }
2339
2340 CarriesDependencyAttr *clone(ASTContext &C) const;
2341 void printPretty(raw_ostream &OS,
2342 const PrintingPolicy &Policy) const;
2343 const char *getSpelling() const;
2344
2345
2346 static bool classof(const Attr *A) { return A->getKind() == attr::CarriesDependency; }
2347};
2348
2349class CleanupAttr : public InheritableAttr {
2350FunctionDecl * functionDecl;
2351
2352public:
2353 static CleanupAttr *CreateImplicit(ASTContext &Ctx, FunctionDecl * FunctionDecl, SourceRange Loc = SourceRange()) {
2354 auto *A = new (Ctx) CleanupAttr(Loc, Ctx, FunctionDecl, 0);
2355 A->setImplicit(true);
2356 return A;
2357 }
2358
2359 CleanupAttr(SourceRange R, ASTContext &Ctx
2360 , FunctionDecl * FunctionDecl
2361 , unsigned SI
2362 )
2363 : InheritableAttr(attr::Cleanup, R, SI, false, false)
2364 , functionDecl(FunctionDecl)
2365 {
2366 }
2367
2368 CleanupAttr *clone(ASTContext &C) const;
2369 void printPretty(raw_ostream &OS,
2370 const PrintingPolicy &Policy) const;
2371 const char *getSpelling() const;
2372 FunctionDecl * getFunctionDecl() const {
2373 return functionDecl;
2374 }
2375
2376
2377
2378 static bool classof(const Attr *A) { return A->getKind() == attr::Cleanup; }
2379};
2380
2381class CodeSegAttr : public InheritableAttr {
2382unsigned nameLength;
2383char *name;
2384
2385public:
2386 static CodeSegAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Name, SourceRange Loc = SourceRange()) {
2387 auto *A = new (Ctx) CodeSegAttr(Loc, Ctx, Name, 0);
2388 A->setImplicit(true);
2389 return A;
2390 }
2391
2392 CodeSegAttr(SourceRange R, ASTContext &Ctx
2393 , llvm::StringRef Name
2394 , unsigned SI
2395 )
2396 : InheritableAttr(attr::CodeSeg, R, SI, false, false)
2397 , nameLength(Name.size()),name(new (Ctx, 1) char[nameLength])
2398 {
2399 if (!Name.empty())
2400 std::memcpy(name, Name.data(), nameLength);
2401 }
2402
2403 CodeSegAttr *clone(ASTContext &C) const;
2404 void printPretty(raw_ostream &OS,
2405 const PrintingPolicy &Policy) const;
2406 const char *getSpelling() const;
2407 llvm::StringRef getName() const {
2408 return llvm::StringRef(name, nameLength);
2409 }
2410 unsigned getNameLength() const {
2411 return nameLength;
2412 }
2413 void setName(ASTContext &C, llvm::StringRef S) {
2414 nameLength = S.size();
2415 this->name = new (C, 1) char [nameLength];
2416 if (!S.empty())
2417 std::memcpy(this->name, S.data(), nameLength);
2418 }
2419
2420
2421
2422 static bool classof(const Attr *A) { return A->getKind() == attr::CodeSeg; }
2423};
2424
2425class ColdAttr : public InheritableAttr {
2426public:
2427 static ColdAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2428 auto *A = new (Ctx) ColdAttr(Loc, Ctx, 0);
2429 A->setImplicit(true);
2430 return A;
2431 }
2432
2433 ColdAttr(SourceRange R, ASTContext &Ctx
2434 , unsigned SI
2435 )
2436 : InheritableAttr(attr::Cold, R, SI, false, false)
2437 {
2438 }
2439
2440 ColdAttr *clone(ASTContext &C) const;
2441 void printPretty(raw_ostream &OS,
2442 const PrintingPolicy &Policy) const;
2443 const char *getSpelling() const;
2444
2445
2446 static bool classof(const Attr *A) { return A->getKind() == attr::Cold; }
2447};
2448
2449class CommonAttr : public InheritableAttr {
2450public:
2451 static CommonAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2452 auto *A = new (Ctx) CommonAttr(Loc, Ctx, 0);
2453 A->setImplicit(true);
2454 return A;
2455 }
2456
2457 CommonAttr(SourceRange R, ASTContext &Ctx
2458 , unsigned SI
2459 )
2460 : InheritableAttr(attr::Common, R, SI, false, false)
2461 {
2462 }
2463
2464 CommonAttr *clone(ASTContext &C) const;
2465 void printPretty(raw_ostream &OS,
2466 const PrintingPolicy &Policy) const;
2467 const char *getSpelling() const;
2468
2469
2470 static bool classof(const Attr *A) { return A->getKind() == attr::Common; }
2471};
2472
2473class ConstAttr : public InheritableAttr {
2474public:
2475 static ConstAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2476 auto *A = new (Ctx) ConstAttr(Loc, Ctx, 0);
2477 A->setImplicit(true);
2478 return A;
2479 }
2480
2481 ConstAttr(SourceRange R, ASTContext &Ctx
2482 , unsigned SI
2483 )
2484 : InheritableAttr(attr::Const, R, SI, false, false)
2485 {
2486 }
2487
2488 ConstAttr *clone(ASTContext &C) const;
2489 void printPretty(raw_ostream &OS,
2490 const PrintingPolicy &Policy) const;
2491 const char *getSpelling() const;
2492
2493
2494 static bool classof(const Attr *A) { return A->getKind() == attr::Const; }
2495};
2496
2497class ConstructorAttr : public InheritableAttr {
2498int priority;
2499
2500public:
2501 static ConstructorAttr *CreateImplicit(ASTContext &Ctx, int Priority, SourceRange Loc = SourceRange()) {
2502 auto *A = new (Ctx) ConstructorAttr(Loc, Ctx, Priority, 0);
2503 A->setImplicit(true);
2504 return A;
2505 }
2506
2507 ConstructorAttr(SourceRange R, ASTContext &Ctx
2508 , int Priority
2509 , unsigned SI
2510 )
2511 : InheritableAttr(attr::Constructor, R, SI, false, false)
2512 , priority(Priority)
2513 {
2514 }
2515
2516 ConstructorAttr(SourceRange R, ASTContext &Ctx
2517 , unsigned SI
2518 )
2519 : InheritableAttr(attr::Constructor, R, SI, false, false)
2520 , priority()
2521 {
2522 }
2523
2524 ConstructorAttr *clone(ASTContext &C) const;
2525 void printPretty(raw_ostream &OS,
2526 const PrintingPolicy &Policy) const;
2527 const char *getSpelling() const;
2528 int getPriority() const {
2529 return priority;
2530 }
2531
2532 static const int DefaultPriority = 65535;
2533
2534
2535
2536 static bool classof(const Attr *A) { return A->getKind() == attr::Constructor; }
2537};
2538
2539class ConsumableAttr : public InheritableAttr {
2540public:
2541 enum ConsumedState {
2542 Unknown,
2543 Consumed,
2544 Unconsumed
2545 };
2546private:
2547 ConsumedState defaultState;
2548
2549public:
2550 static ConsumableAttr *CreateImplicit(ASTContext &Ctx, ConsumedState DefaultState, SourceRange Loc = SourceRange()) {
2551 auto *A = new (Ctx) ConsumableAttr(Loc, Ctx, DefaultState, 0);
2552 A->setImplicit(true);
2553 return A;
2554 }
2555
2556 ConsumableAttr(SourceRange R, ASTContext &Ctx
2557 , ConsumedState DefaultState
2558 , unsigned SI
2559 )
2560 : InheritableAttr(attr::Consumable, R, SI, false, false)
2561 , defaultState(DefaultState)
2562 {
2563 }
2564
2565 ConsumableAttr *clone(ASTContext &C) const;
2566 void printPretty(raw_ostream &OS,
2567 const PrintingPolicy &Policy) const;
2568 const char *getSpelling() const;
2569 ConsumedState getDefaultState() const {
2570 return defaultState;
2571 }
2572
2573 static bool ConvertStrToConsumedState(StringRef Val, ConsumedState &Out) {
2574 Optional<ConsumedState> R = llvm::StringSwitch<Optional<ConsumedState>>(Val)
2575 .Case("unknown", ConsumableAttr::Unknown)
2576 .Case("consumed", ConsumableAttr::Consumed)
2577 .Case("unconsumed", ConsumableAttr::Unconsumed)
2578 .Default(Optional<ConsumedState>());
2579 if (R) {
2580 Out = *R;
2581 return true;
2582 }
2583 return false;
2584 }
2585
2586 static const char *ConvertConsumedStateToStr(ConsumedState Val) {
2587 switch(Val) {
2588 case ConsumableAttr::Unknown: return "unknown";
2589 case ConsumableAttr::Consumed: return "consumed";
2590 case ConsumableAttr::Unconsumed: return "unconsumed";
2591 }
2592 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2592)
;
2593 }
2594
2595
2596 static bool classof(const Attr *A) { return A->getKind() == attr::Consumable; }
2597};
2598
2599class ConsumableAutoCastAttr : public InheritableAttr {
2600public:
2601 static ConsumableAutoCastAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2602 auto *A = new (Ctx) ConsumableAutoCastAttr(Loc, Ctx, 0);
2603 A->setImplicit(true);
2604 return A;
2605 }
2606
2607 ConsumableAutoCastAttr(SourceRange R, ASTContext &Ctx
2608 , unsigned SI
2609 )
2610 : InheritableAttr(attr::ConsumableAutoCast, R, SI, false, false)
2611 {
2612 }
2613
2614 ConsumableAutoCastAttr *clone(ASTContext &C) const;
2615 void printPretty(raw_ostream &OS,
2616 const PrintingPolicy &Policy) const;
2617 const char *getSpelling() const;
2618
2619
2620 static bool classof(const Attr *A) { return A->getKind() == attr::ConsumableAutoCast; }
2621};
2622
2623class ConsumableSetOnReadAttr : public InheritableAttr {
2624public:
2625 static ConsumableSetOnReadAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2626 auto *A = new (Ctx) ConsumableSetOnReadAttr(Loc, Ctx, 0);
2627 A->setImplicit(true);
2628 return A;
2629 }
2630
2631 ConsumableSetOnReadAttr(SourceRange R, ASTContext &Ctx
2632 , unsigned SI
2633 )
2634 : InheritableAttr(attr::ConsumableSetOnRead, R, SI, false, false)
2635 {
2636 }
2637
2638 ConsumableSetOnReadAttr *clone(ASTContext &C) const;
2639 void printPretty(raw_ostream &OS,
2640 const PrintingPolicy &Policy) const;
2641 const char *getSpelling() const;
2642
2643
2644 static bool classof(const Attr *A) { return A->getKind() == attr::ConsumableSetOnRead; }
2645};
2646
2647class ConvergentAttr : public InheritableAttr {
2648public:
2649 static ConvergentAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2650 auto *A = new (Ctx) ConvergentAttr(Loc, Ctx, 0);
2651 A->setImplicit(true);
2652 return A;
2653 }
2654
2655 ConvergentAttr(SourceRange R, ASTContext &Ctx
2656 , unsigned SI
2657 )
2658 : InheritableAttr(attr::Convergent, R, SI, false, false)
2659 {
2660 }
2661
2662 ConvergentAttr *clone(ASTContext &C) const;
2663 void printPretty(raw_ostream &OS,
2664 const PrintingPolicy &Policy) const;
2665 const char *getSpelling() const;
2666
2667
2668 static bool classof(const Attr *A) { return A->getKind() == attr::Convergent; }
2669};
2670
2671class DLLExportAttr : public InheritableAttr {
2672public:
2673 static DLLExportAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2674 auto *A = new (Ctx) DLLExportAttr(Loc, Ctx, 0);
2675 A->setImplicit(true);
2676 return A;
2677 }
2678
2679 DLLExportAttr(SourceRange R, ASTContext &Ctx
2680 , unsigned SI
2681 )
2682 : InheritableAttr(attr::DLLExport, R, SI, false, false)
2683 {
2684 }
2685
2686 DLLExportAttr *clone(ASTContext &C) const;
2687 void printPretty(raw_ostream &OS,
2688 const PrintingPolicy &Policy) const;
2689 const char *getSpelling() const;
2690
2691
2692 static bool classof(const Attr *A) { return A->getKind() == attr::DLLExport; }
2693};
2694
2695class DLLExportStaticLocalAttr : public InheritableAttr {
2696public:
2697 static DLLExportStaticLocalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2698 auto *A = new (Ctx) DLLExportStaticLocalAttr(Loc, Ctx, 0);
2699 A->setImplicit(true);
2700 return A;
2701 }
2702
2703 DLLExportStaticLocalAttr(SourceRange R, ASTContext &Ctx
2704 , unsigned SI
2705 )
2706 : InheritableAttr(attr::DLLExportStaticLocal, R, SI, false, false)
2707 {
2708 }
2709
2710 DLLExportStaticLocalAttr *clone(ASTContext &C) const;
2711 void printPretty(raw_ostream &OS,
2712 const PrintingPolicy &Policy) const;
2713 const char *getSpelling() const;
2714
2715
2716 static bool classof(const Attr *A) { return A->getKind() == attr::DLLExportStaticLocal; }
2717};
2718
2719class DLLImportAttr : public InheritableAttr {
2720public:
2721 static DLLImportAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2722 auto *A = new (Ctx) DLLImportAttr(Loc, Ctx, 0);
2723 A->setImplicit(true);
2724 return A;
2725 }
2726
2727 DLLImportAttr(SourceRange R, ASTContext &Ctx
2728 , unsigned SI
2729 )
2730 : InheritableAttr(attr::DLLImport, R, SI, false, false)
2731 {
2732 }
2733
2734 DLLImportAttr *clone(ASTContext &C) const;
2735 void printPretty(raw_ostream &OS,
2736 const PrintingPolicy &Policy) const;
2737 const char *getSpelling() const;
2738
2739private:
2740 bool PropagatedToBaseTemplate = false;
2741
2742public:
2743 void setPropagatedToBaseTemplate() { PropagatedToBaseTemplate = true; }
2744 bool wasPropagatedToBaseTemplate() { return PropagatedToBaseTemplate; }
2745
2746
2747 static bool classof(const Attr *A) { return A->getKind() == attr::DLLImport; }
2748};
2749
2750class DLLImportStaticLocalAttr : public InheritableAttr {
2751public:
2752 static DLLImportStaticLocalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
2753 auto *A = new (Ctx) DLLImportStaticLocalAttr(Loc, Ctx, 0);
2754 A->setImplicit(true);
2755 return A;
2756 }
2757
2758 DLLImportStaticLocalAttr(SourceRange R, ASTContext &Ctx
2759 , unsigned SI
2760 )
2761 : InheritableAttr(attr::DLLImportStaticLocal, R, SI, false, false)
2762 {
2763 }
2764
2765 DLLImportStaticLocalAttr *clone(ASTContext &C) const;
2766 void printPretty(raw_ostream &OS,
2767 const PrintingPolicy &Policy) const;
2768 const char *getSpelling() const;
2769
2770
2771 static bool classof(const Attr *A) { return A->getKind() == attr::DLLImportStaticLocal; }
2772};
2773
2774class DeprecatedAttr : public InheritableAttr {
2775unsigned messageLength;
2776char *message;
2777
2778unsigned replacementLength;
2779char *replacement;
2780
2781public:
2782 static DeprecatedAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Message, llvm::StringRef Replacement, SourceRange Loc = SourceRange()) {
2783 auto *A = new (Ctx) DeprecatedAttr(Loc, Ctx, Message, Replacement, 0);
2784 A->setImplicit(true);
2785 return A;
2786 }
2787
2788 DeprecatedAttr(SourceRange R, ASTContext &Ctx
2789 , llvm::StringRef Message
2790 , llvm::StringRef Replacement
2791 , unsigned SI
2792 )
2793 : InheritableAttr(attr::Deprecated, R, SI, false, false)
2794 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
2795 , replacementLength(Replacement.size()),replacement(new (Ctx, 1) char[replacementLength])
2796 {
2797 if (!Message.empty())
2798 std::memcpy(message, Message.data(), messageLength);
2799 if (!Replacement.empty())
2800 std::memcpy(replacement, Replacement.data(), replacementLength);
2801 }
2802
2803 DeprecatedAttr(SourceRange R, ASTContext &Ctx
2804 , unsigned SI
2805 )
2806 : InheritableAttr(attr::Deprecated, R, SI, false, false)
2807 , messageLength(0),message(nullptr)
2808 , replacementLength(0),replacement(nullptr)
2809 {
2810 }
2811
2812 DeprecatedAttr *clone(ASTContext &C) const;
2813 void printPretty(raw_ostream &OS,
2814 const PrintingPolicy &Policy) const;
2815 const char *getSpelling() const;
2816 llvm::StringRef getMessage() const {
2817 return llvm::StringRef(message, messageLength);
2818 }
2819 unsigned getMessageLength() const {
2820 return messageLength;
2821 }
2822 void setMessage(ASTContext &C, llvm::StringRef S) {
2823 messageLength = S.size();
2824 this->message = new (C, 1) char [messageLength];
2825 if (!S.empty())
2826 std::memcpy(this->message, S.data(), messageLength);
2827 }
2828
2829 llvm::StringRef getReplacement() const {
2830 return llvm::StringRef(replacement, replacementLength);
2831 }
2832 unsigned getReplacementLength() const {
2833 return replacementLength;
2834 }
2835 void setReplacement(ASTContext &C, llvm::StringRef S) {
2836 replacementLength = S.size();
2837 this->replacement = new (C, 1) char [replacementLength];
2838 if (!S.empty())
2839 std::memcpy(this->replacement, S.data(), replacementLength);
2840 }
2841
2842
2843
2844 static bool classof(const Attr *A) { return A->getKind() == attr::Deprecated; }
2845};
2846
2847class DestructorAttr : public InheritableAttr {
2848int priority;
2849
2850public:
2851 static DestructorAttr *CreateImplicit(ASTContext &Ctx, int Priority, SourceRange Loc = SourceRange()) {
2852 auto *A = new (Ctx) DestructorAttr(Loc, Ctx, Priority, 0);
2853 A->setImplicit(true);
2854 return A;
2855 }
2856
2857 DestructorAttr(SourceRange R, ASTContext &Ctx
2858 , int Priority
2859 , unsigned SI
2860 )
2861 : InheritableAttr(attr::Destructor, R, SI, false, false)
2862 , priority(Priority)
2863 {
2864 }
2865
2866 DestructorAttr(SourceRange R, ASTContext &Ctx
2867 , unsigned SI
2868 )
2869 : InheritableAttr(attr::Destructor, R, SI, false, false)
2870 , priority()
2871 {
2872 }
2873
2874 DestructorAttr *clone(ASTContext &C) const;
2875 void printPretty(raw_ostream &OS,
2876 const PrintingPolicy &Policy) const;
2877 const char *getSpelling() const;
2878 int getPriority() const {
2879 return priority;
2880 }
2881
2882 static const int DefaultPriority = 65535;
2883
2884
2885
2886 static bool classof(const Attr *A) { return A->getKind() == attr::Destructor; }
2887};
2888
2889class DiagnoseIfAttr : public InheritableAttr {
2890Expr * cond;
2891
2892unsigned messageLength;
2893char *message;
2894
2895public:
2896 enum DiagnosticType {
2897 DT_Error,
2898 DT_Warning
2899 };
2900private:
2901 DiagnosticType diagnosticType;
2902
2903bool argDependent;
2904
2905NamedDecl * parent;
2906
2907public:
2908 static DiagnoseIfAttr *CreateImplicit(ASTContext &Ctx, Expr * Cond, llvm::StringRef Message, DiagnosticType DiagnosticType, bool ArgDependent, NamedDecl * Parent, SourceRange Loc = SourceRange()) {
2909 auto *A = new (Ctx) DiagnoseIfAttr(Loc, Ctx, Cond, Message, DiagnosticType, ArgDependent, Parent, 0);
2910 A->setImplicit(true);
2911 return A;
2912 }
2913
2914 static DiagnoseIfAttr *CreateImplicit(ASTContext &Ctx, Expr * Cond, llvm::StringRef Message, DiagnosticType DiagnosticType, SourceRange Loc = SourceRange()) {
2915 auto *A = new (Ctx) DiagnoseIfAttr(Loc, Ctx, Cond, Message, DiagnosticType, 0);
2916 A->setImplicit(true);
2917 return A;
2918 }
2919
2920 DiagnoseIfAttr(SourceRange R, ASTContext &Ctx
2921 , Expr * Cond
2922 , llvm::StringRef Message
2923 , DiagnosticType DiagnosticType
2924 , bool ArgDependent
2925 , NamedDecl * Parent
2926 , unsigned SI
2927 )
2928 : InheritableAttr(attr::DiagnoseIf, R, SI, true, true)
2929 , cond(Cond)
2930 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
2931 , diagnosticType(DiagnosticType)
2932 , argDependent(ArgDependent)
2933 , parent(Parent)
2934 {
2935 if (!Message.empty())
2936 std::memcpy(message, Message.data(), messageLength);
2937 }
2938
2939 DiagnoseIfAttr(SourceRange R, ASTContext &Ctx
2940 , Expr * Cond
2941 , llvm::StringRef Message
2942 , DiagnosticType DiagnosticType
2943 , unsigned SI
2944 )
2945 : InheritableAttr(attr::DiagnoseIf, R, SI, true, true)
2946 , cond(Cond)
2947 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
2948 , diagnosticType(DiagnosticType)
2949 , argDependent()
2950 , parent()
2951 {
2952 if (!Message.empty())
2953 std::memcpy(message, Message.data(), messageLength);
2954 }
2955
2956 DiagnoseIfAttr *clone(ASTContext &C) const;
2957 void printPretty(raw_ostream &OS,
2958 const PrintingPolicy &Policy) const;
2959 const char *getSpelling() const;
2960 Expr * getCond() const {
2961 return cond;
2962 }
2963
2964 llvm::StringRef getMessage() const {
2965 return llvm::StringRef(message, messageLength);
2966 }
2967 unsigned getMessageLength() const {
2968 return messageLength;
2969 }
2970 void setMessage(ASTContext &C, llvm::StringRef S) {
2971 messageLength = S.size();
2972 this->message = new (C, 1) char [messageLength];
2973 if (!S.empty())
2974 std::memcpy(this->message, S.data(), messageLength);
2975 }
2976
2977 DiagnosticType getDiagnosticType() const {
2978 return diagnosticType;
2979 }
2980
2981 static bool ConvertStrToDiagnosticType(StringRef Val, DiagnosticType &Out) {
2982 Optional<DiagnosticType> R = llvm::StringSwitch<Optional<DiagnosticType>>(Val)
2983 .Case("error", DiagnoseIfAttr::DT_Error)
2984 .Case("warning", DiagnoseIfAttr::DT_Warning)
2985 .Default(Optional<DiagnosticType>());
2986 if (R) {
2987 Out = *R;
2988 return true;
2989 }
2990 return false;
2991 }
2992
2993 static const char *ConvertDiagnosticTypeToStr(DiagnosticType Val) {
2994 switch(Val) {
2995 case DiagnoseIfAttr::DT_Error: return "error";
2996 case DiagnoseIfAttr::DT_Warning: return "warning";
2997 }
2998 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 2998)
;
2999 }
3000 bool getArgDependent() const {
3001 return argDependent;
3002 }
3003
3004 NamedDecl * getParent() const {
3005 return parent;
3006 }
3007
3008
3009 bool isError() const { return diagnosticType == DT_Error; }
3010 bool isWarning() const { return diagnosticType == DT_Warning; }
3011
3012
3013 static bool classof(const Attr *A) { return A->getKind() == attr::DiagnoseIf; }
3014};
3015
3016class DisableTailCallsAttr : public InheritableAttr {
3017public:
3018 static DisableTailCallsAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3019 auto *A = new (Ctx) DisableTailCallsAttr(Loc, Ctx, 0);
3020 A->setImplicit(true);
3021 return A;
3022 }
3023
3024 DisableTailCallsAttr(SourceRange R, ASTContext &Ctx
3025 , unsigned SI
3026 )
3027 : InheritableAttr(attr::DisableTailCalls, R, SI, false, false)
3028 {
3029 }
3030
3031 DisableTailCallsAttr *clone(ASTContext &C) const;
3032 void printPretty(raw_ostream &OS,
3033 const PrintingPolicy &Policy) const;
3034 const char *getSpelling() const;
3035
3036
3037 static bool classof(const Attr *A) { return A->getKind() == attr::DisableTailCalls; }
3038};
3039
3040class EmptyBasesAttr : public InheritableAttr {
3041public:
3042 static EmptyBasesAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3043 auto *A = new (Ctx) EmptyBasesAttr(Loc, Ctx, 0);
3044 A->setImplicit(true);
3045 return A;
3046 }
3047
3048 EmptyBasesAttr(SourceRange R, ASTContext &Ctx
3049 , unsigned SI
3050 )
3051 : InheritableAttr(attr::EmptyBases, R, SI, false, false)
3052 {
3053 }
3054
3055 EmptyBasesAttr *clone(ASTContext &C) const;
3056 void printPretty(raw_ostream &OS,
3057 const PrintingPolicy &Policy) const;
3058 const char *getSpelling() const;
3059
3060
3061 static bool classof(const Attr *A) { return A->getKind() == attr::EmptyBases; }
3062};
3063
3064class EnableIfAttr : public InheritableAttr {
3065Expr * cond;
3066
3067unsigned messageLength;
3068char *message;
3069
3070public:
3071 static EnableIfAttr *CreateImplicit(ASTContext &Ctx, Expr * Cond, llvm::StringRef Message, SourceRange Loc = SourceRange()) {
3072 auto *A = new (Ctx) EnableIfAttr(Loc, Ctx, Cond, Message, 0);
3073 A->setImplicit(true);
3074 return A;
3075 }
3076
3077 EnableIfAttr(SourceRange R, ASTContext &Ctx
3078 , Expr * Cond
3079 , llvm::StringRef Message
3080 , unsigned SI
3081 )
3082 : InheritableAttr(attr::EnableIf, R, SI, false, false)
3083 , cond(Cond)
3084 , messageLength(Message.size()),message(new (Ctx, 1) char[messageLength])
3085 {
3086 if (!Message.empty())
3087 std::memcpy(message, Message.data(), messageLength);
3088 }
3089
3090 EnableIfAttr *clone(ASTContext &C) const;
3091 void printPretty(raw_ostream &OS,
3092 const PrintingPolicy &Policy) const;
3093 const char *getSpelling() const;
3094 Expr * getCond() const {
3095 return cond;
3096 }
3097
3098 llvm::StringRef getMessage() const {
3099 return llvm::StringRef(message, messageLength);
3100 }
3101 unsigned getMessageLength() const {
3102 return messageLength;
3103 }
3104 void setMessage(ASTContext &C, llvm::StringRef S) {
3105 messageLength = S.size();
3106 this->message = new (C, 1) char [messageLength];
3107 if (!S.empty())
3108 std::memcpy(this->message, S.data(), messageLength);
3109 }
3110
3111
3112
3113 static bool classof(const Attr *A) { return A->getKind() == attr::EnableIf; }
3114};
3115
3116class EnumExtensibilityAttr : public InheritableAttr {
3117public:
3118 enum Kind {
3119 Closed,
3120 Open
3121 };
3122private:
3123 Kind extensibility;
3124
3125public:
3126 static EnumExtensibilityAttr *CreateImplicit(ASTContext &Ctx, Kind Extensibility, SourceRange Loc = SourceRange()) {
3127 auto *A = new (Ctx) EnumExtensibilityAttr(Loc, Ctx, Extensibility, 0);
3128 A->setImplicit(true);
3129 return A;
3130 }
3131
3132 EnumExtensibilityAttr(SourceRange R, ASTContext &Ctx
3133 , Kind Extensibility
3134 , unsigned SI
3135 )
3136 : InheritableAttr(attr::EnumExtensibility, R, SI, false, false)
3137 , extensibility(Extensibility)
3138 {
3139 }
3140
3141 EnumExtensibilityAttr *clone(ASTContext &C) const;
3142 void printPretty(raw_ostream &OS,
3143 const PrintingPolicy &Policy) const;
3144 const char *getSpelling() const;
3145 Kind getExtensibility() const {
3146 return extensibility;
3147 }
3148
3149 static bool ConvertStrToKind(StringRef Val, Kind &Out) {
3150 Optional<Kind> R = llvm::StringSwitch<Optional<Kind>>(Val)
3151 .Case("closed", EnumExtensibilityAttr::Closed)
3152 .Case("open", EnumExtensibilityAttr::Open)
3153 .Default(Optional<Kind>());
3154 if (R) {
3155 Out = *R;
3156 return true;
3157 }
3158 return false;
3159 }
3160
3161 static const char *ConvertKindToStr(Kind Val) {
3162 switch(Val) {
3163 case EnumExtensibilityAttr::Closed: return "closed";
3164 case EnumExtensibilityAttr::Open: return "open";
3165 }
3166 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 3166)
;
3167 }
3168
3169
3170 static bool classof(const Attr *A) { return A->getKind() == attr::EnumExtensibility; }
3171};
3172
3173class ExcludeFromExplicitInstantiationAttr : public InheritableAttr {
3174public:
3175 static ExcludeFromExplicitInstantiationAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3176 auto *A = new (Ctx) ExcludeFromExplicitInstantiationAttr(Loc, Ctx, 0);
3177 A->setImplicit(true);
3178 return A;
3179 }
3180
3181 ExcludeFromExplicitInstantiationAttr(SourceRange R, ASTContext &Ctx
3182 , unsigned SI
3183 )
3184 : InheritableAttr(attr::ExcludeFromExplicitInstantiation, R, SI, false, false)
3185 {
3186 }
3187
3188 ExcludeFromExplicitInstantiationAttr *clone(ASTContext &C) const;
3189 void printPretty(raw_ostream &OS,
3190 const PrintingPolicy &Policy) const;
3191 const char *getSpelling() const;
3192
3193
3194 static bool classof(const Attr *A) { return A->getKind() == attr::ExcludeFromExplicitInstantiation; }
3195};
3196
3197class ExclusiveTrylockFunctionAttr : public InheritableAttr {
3198Expr * successValue;
3199
3200 unsigned args_Size;
3201 Expr * *args_;
3202
3203public:
3204 static ExclusiveTrylockFunctionAttr *CreateImplicit(ASTContext &Ctx, Expr * SuccessValue, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
3205 auto *A = new (Ctx) ExclusiveTrylockFunctionAttr(Loc, Ctx, SuccessValue, Args, ArgsSize, 0);
3206 A->setImplicit(true);
3207 return A;
3208 }
3209
3210 ExclusiveTrylockFunctionAttr(SourceRange R, ASTContext &Ctx
3211 , Expr * SuccessValue
3212 , Expr * *Args, unsigned ArgsSize
3213 , unsigned SI
3214 )
3215 : InheritableAttr(attr::ExclusiveTrylockFunction, R, SI, true, true)
3216 , successValue(SuccessValue)
3217 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
3218 {
3219 std::copy(Args, Args + args_Size, args_);
3220 }
3221
3222 ExclusiveTrylockFunctionAttr(SourceRange R, ASTContext &Ctx
3223 , Expr * SuccessValue
3224 , unsigned SI
3225 )
3226 : InheritableAttr(attr::ExclusiveTrylockFunction, R, SI, true, true)
3227 , successValue(SuccessValue)
3228 , args_Size(0), args_(nullptr)
3229 {
3230 }
3231
3232 ExclusiveTrylockFunctionAttr *clone(ASTContext &C) const;
3233 void printPretty(raw_ostream &OS,
3234 const PrintingPolicy &Policy) const;
3235 const char *getSpelling() const;
3236 Expr * getSuccessValue() const {
3237 return successValue;
3238 }
3239
3240 typedef Expr ** args_iterator;
3241 args_iterator args_begin() const { return args_; }
3242 args_iterator args_end() const { return args_ + args_Size; }
3243 unsigned args_size() const { return args_Size; }
3244 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
3245
3246
3247
3248
3249 static bool classof(const Attr *A) { return A->getKind() == attr::ExclusiveTrylockFunction; }
3250};
3251
3252class ExternalSourceSymbolAttr : public InheritableAttr {
3253unsigned languageLength;
3254char *language;
3255
3256unsigned definedInLength;
3257char *definedIn;
3258
3259bool generatedDeclaration;
3260
3261public:
3262 static ExternalSourceSymbolAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Language, llvm::StringRef DefinedIn, bool GeneratedDeclaration, SourceRange Loc = SourceRange()) {
3263 auto *A = new (Ctx) ExternalSourceSymbolAttr(Loc, Ctx, Language, DefinedIn, GeneratedDeclaration, 0);
3264 A->setImplicit(true);
3265 return A;
3266 }
3267
3268 ExternalSourceSymbolAttr(SourceRange R, ASTContext &Ctx
3269 , llvm::StringRef Language
3270 , llvm::StringRef DefinedIn
3271 , bool GeneratedDeclaration
3272 , unsigned SI
3273 )
3274 : InheritableAttr(attr::ExternalSourceSymbol, R, SI, false, false)
3275 , languageLength(Language.size()),language(new (Ctx, 1) char[languageLength])
3276 , definedInLength(DefinedIn.size()),definedIn(new (Ctx, 1) char[definedInLength])
3277 , generatedDeclaration(GeneratedDeclaration)
3278 {
3279 if (!Language.empty())
3280 std::memcpy(language, Language.data(), languageLength);
3281 if (!DefinedIn.empty())
3282 std::memcpy(definedIn, DefinedIn.data(), definedInLength);
3283 }
3284
3285 ExternalSourceSymbolAttr(SourceRange R, ASTContext &Ctx
3286 , unsigned SI
3287 )
3288 : InheritableAttr(attr::ExternalSourceSymbol, R, SI, false, false)
3289 , languageLength(0),language(nullptr)
3290 , definedInLength(0),definedIn(nullptr)
3291 , generatedDeclaration()
3292 {
3293 }
3294
3295 ExternalSourceSymbolAttr *clone(ASTContext &C) const;
3296 void printPretty(raw_ostream &OS,
3297 const PrintingPolicy &Policy) const;
3298 const char *getSpelling() const;
3299 llvm::StringRef getLanguage() const {
3300 return llvm::StringRef(language, languageLength);
3301 }
3302 unsigned getLanguageLength() const {
3303 return languageLength;
3304 }
3305 void setLanguage(ASTContext &C, llvm::StringRef S) {
3306 languageLength = S.size();
3307 this->language = new (C, 1) char [languageLength];
3308 if (!S.empty())
3309 std::memcpy(this->language, S.data(), languageLength);
3310 }
3311
3312 llvm::StringRef getDefinedIn() const {
3313 return llvm::StringRef(definedIn, definedInLength);
3314 }
3315 unsigned getDefinedInLength() const {
3316 return definedInLength;
3317 }
3318 void setDefinedIn(ASTContext &C, llvm::StringRef S) {
3319 definedInLength = S.size();
3320 this->definedIn = new (C, 1) char [definedInLength];
3321 if (!S.empty())
3322 std::memcpy(this->definedIn, S.data(), definedInLength);
3323 }
3324
3325 bool getGeneratedDeclaration() const {
3326 return generatedDeclaration;
3327 }
3328
3329
3330
3331 static bool classof(const Attr *A) { return A->getKind() == attr::ExternalSourceSymbol; }
3332};
3333
3334class FallThroughAttr : public StmtAttr {
3335public:
3336 static FallThroughAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3337 auto *A = new (Ctx) FallThroughAttr(Loc, Ctx, 0);
3338 A->setImplicit(true);
3339 return A;
3340 }
3341
3342 FallThroughAttr(SourceRange R, ASTContext &Ctx
3343 , unsigned SI
3344 )
3345 : StmtAttr(attr::FallThrough, R, SI, false)
3346 {
3347 }
3348
3349 FallThroughAttr *clone(ASTContext &C) const;
3350 void printPretty(raw_ostream &OS,
3351 const PrintingPolicy &Policy) const;
3352 const char *getSpelling() const;
3353
3354
3355 static bool classof(const Attr *A) { return A->getKind() == attr::FallThrough; }
3356};
3357
3358class FastCallAttr : public InheritableAttr {
3359public:
3360 static FastCallAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3361 auto *A = new (Ctx) FastCallAttr(Loc, Ctx, 0);
3362 A->setImplicit(true);
3363 return A;
3364 }
3365
3366 FastCallAttr(SourceRange R, ASTContext &Ctx
3367 , unsigned SI
3368 )
3369 : InheritableAttr(attr::FastCall, R, SI, false, false)
3370 {
3371 }
3372
3373 FastCallAttr *clone(ASTContext &C) const;
3374 void printPretty(raw_ostream &OS,
3375 const PrintingPolicy &Policy) const;
3376 const char *getSpelling() const;
3377
3378
3379 static bool classof(const Attr *A) { return A->getKind() == attr::FastCall; }
3380};
3381
3382class FinalAttr : public InheritableAttr {
3383public:
3384 enum Spelling {
3385 Keyword_final = 0,
3386 Keyword_sealed = 1
3387 };
3388
3389 static FinalAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
3390 auto *A = new (Ctx) FinalAttr(Loc, Ctx, S);
3391 A->setImplicit(true);
3392 return A;
3393 }
3394
3395 FinalAttr(SourceRange R, ASTContext &Ctx
3396 , unsigned SI
3397 )
3398 : InheritableAttr(attr::Final, R, SI, false, false)
3399 {
3400 }
3401
3402 FinalAttr *clone(ASTContext &C) const;
3403 void printPretty(raw_ostream &OS,
3404 const PrintingPolicy &Policy) const;
3405 const char *getSpelling() const;
3406 Spelling getSemanticSpelling() const {
3407 switch (SpellingListIndex) {
3408 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 3408)
;
3409 case 0: return Keyword_final;
3410 case 1: return Keyword_sealed;
3411 }
3412 }
3413 bool isSpelledAsSealed() const { return SpellingListIndex == 1; }
3414
3415
3416 static bool classof(const Attr *A) { return A->getKind() == attr::Final; }
3417};
3418
3419class FlagEnumAttr : public InheritableAttr {
3420public:
3421 static FlagEnumAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3422 auto *A = new (Ctx) FlagEnumAttr(Loc, Ctx, 0);
3423 A->setImplicit(true);
3424 return A;
3425 }
3426
3427 FlagEnumAttr(SourceRange R, ASTContext &Ctx
3428 , unsigned SI
3429 )
3430 : InheritableAttr(attr::FlagEnum, R, SI, false, false)
3431 {
3432 }
3433
3434 FlagEnumAttr *clone(ASTContext &C) const;
3435 void printPretty(raw_ostream &OS,
3436 const PrintingPolicy &Policy) const;
3437 const char *getSpelling() const;
3438
3439
3440 static bool classof(const Attr *A) { return A->getKind() == attr::FlagEnum; }
3441};
3442
3443class FlattenAttr : public InheritableAttr {
3444public:
3445 static FlattenAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3446 auto *A = new (Ctx) FlattenAttr(Loc, Ctx, 0);
3447 A->setImplicit(true);
3448 return A;
3449 }
3450
3451 FlattenAttr(SourceRange R, ASTContext &Ctx
3452 , unsigned SI
3453 )
3454 : InheritableAttr(attr::Flatten, R, SI, false, false)
3455 {
3456 }
3457
3458 FlattenAttr *clone(ASTContext &C) const;
3459 void printPretty(raw_ostream &OS,
3460 const PrintingPolicy &Policy) const;
3461 const char *getSpelling() const;
3462
3463
3464 static bool classof(const Attr *A) { return A->getKind() == attr::Flatten; }
3465};
3466
3467class FormatAttr : public InheritableAttr {
3468IdentifierInfo * type;
3469
3470int formatIdx;
3471
3472int firstArg;
3473
3474public:
3475 static FormatAttr *CreateImplicit(ASTContext &Ctx, IdentifierInfo * Type, int FormatIdx, int FirstArg, SourceRange Loc = SourceRange()) {
3476 auto *A = new (Ctx) FormatAttr(Loc, Ctx, Type, FormatIdx, FirstArg, 0);
3477 A->setImplicit(true);
3478 return A;
3479 }
3480
3481 FormatAttr(SourceRange R, ASTContext &Ctx
3482 , IdentifierInfo * Type
3483 , int FormatIdx
3484 , int FirstArg
3485 , unsigned SI
3486 )
3487 : InheritableAttr(attr::Format, R, SI, false, false)
3488 , type(Type)
3489 , formatIdx(FormatIdx)
3490 , firstArg(FirstArg)
3491 {
3492 }
3493
3494 FormatAttr *clone(ASTContext &C) const;
3495 void printPretty(raw_ostream &OS,
3496 const PrintingPolicy &Policy) const;
3497 const char *getSpelling() const;
3498 IdentifierInfo * getType() const {
3499 return type;
3500 }
3501
3502 int getFormatIdx() const {
3503 return formatIdx;
3504 }
3505
3506 int getFirstArg() const {
3507 return firstArg;
3508 }
3509
3510
3511
3512 static bool classof(const Attr *A) { return A->getKind() == attr::Format; }
3513};
3514
3515class FormatArgAttr : public InheritableAttr {
3516ParamIdx formatIdx;
3517
3518public:
3519 static FormatArgAttr *CreateImplicit(ASTContext &Ctx, ParamIdx FormatIdx, SourceRange Loc = SourceRange()) {
3520 auto *A = new (Ctx) FormatArgAttr(Loc, Ctx, FormatIdx, 0);
3521 A->setImplicit(true);
3522 return A;
3523 }
3524
3525 FormatArgAttr(SourceRange R, ASTContext &Ctx
3526 , ParamIdx FormatIdx
3527 , unsigned SI
3528 )
3529 : InheritableAttr(attr::FormatArg, R, SI, false, false)
3530 , formatIdx(FormatIdx)
3531 {
3532 }
3533
3534 FormatArgAttr *clone(ASTContext &C) const;
3535 void printPretty(raw_ostream &OS,
3536 const PrintingPolicy &Policy) const;
3537 const char *getSpelling() const;
3538 ParamIdx getFormatIdx() const {
3539 return formatIdx;
3540 }
3541
3542
3543
3544 static bool classof(const Attr *A) { return A->getKind() == attr::FormatArg; }
3545};
3546
3547class GNUInlineAttr : public InheritableAttr {
3548public:
3549 static GNUInlineAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3550 auto *A = new (Ctx) GNUInlineAttr(Loc, Ctx, 0);
3551 A->setImplicit(true);
3552 return A;
3553 }
3554
3555 GNUInlineAttr(SourceRange R, ASTContext &Ctx
3556 , unsigned SI
3557 )
3558 : InheritableAttr(attr::GNUInline, R, SI, false, false)
3559 {
3560 }
3561
3562 GNUInlineAttr *clone(ASTContext &C) const;
3563 void printPretty(raw_ostream &OS,
3564 const PrintingPolicy &Policy) const;
3565 const char *getSpelling() const;
3566
3567
3568 static bool classof(const Attr *A) { return A->getKind() == attr::GNUInline; }
3569};
3570
3571class GuardedByAttr : public InheritableAttr {
3572Expr * arg;
3573
3574public:
3575 static GuardedByAttr *CreateImplicit(ASTContext &Ctx, Expr * Arg, SourceRange Loc = SourceRange()) {
3576 auto *A = new (Ctx) GuardedByAttr(Loc, Ctx, Arg, 0);
3577 A->setImplicit(true);
3578 return A;
3579 }
3580
3581 GuardedByAttr(SourceRange R, ASTContext &Ctx
3582 , Expr * Arg
3583 , unsigned SI
3584 )
3585 : InheritableAttr(attr::GuardedBy, R, SI, true, true)
3586 , arg(Arg)
3587 {
3588 }
3589
3590 GuardedByAttr *clone(ASTContext &C) const;
3591 void printPretty(raw_ostream &OS,
3592 const PrintingPolicy &Policy) const;
3593 const char *getSpelling() const;
3594 Expr * getArg() const {
3595 return arg;
3596 }
3597
3598
3599
3600 static bool classof(const Attr *A) { return A->getKind() == attr::GuardedBy; }
3601};
3602
3603class GuardedVarAttr : public InheritableAttr {
3604public:
3605 static GuardedVarAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3606 auto *A = new (Ctx) GuardedVarAttr(Loc, Ctx, 0);
3607 A->setImplicit(true);
3608 return A;
3609 }
3610
3611 GuardedVarAttr(SourceRange R, ASTContext &Ctx
3612 , unsigned SI
3613 )
3614 : InheritableAttr(attr::GuardedVar, R, SI, false, false)
3615 {
3616 }
3617
3618 GuardedVarAttr *clone(ASTContext &C) const;
3619 void printPretty(raw_ostream &OS,
3620 const PrintingPolicy &Policy) const;
3621 const char *getSpelling() const;
3622
3623
3624 static bool classof(const Attr *A) { return A->getKind() == attr::GuardedVar; }
3625};
3626
3627class HotAttr : public InheritableAttr {
3628public:
3629 static HotAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3630 auto *A = new (Ctx) HotAttr(Loc, Ctx, 0);
3631 A->setImplicit(true);
3632 return A;
3633 }
3634
3635 HotAttr(SourceRange R, ASTContext &Ctx
3636 , unsigned SI
3637 )
3638 : InheritableAttr(attr::Hot, R, SI, false, false)
3639 {
3640 }
3641
3642 HotAttr *clone(ASTContext &C) const;
3643 void printPretty(raw_ostream &OS,
3644 const PrintingPolicy &Policy) const;
3645 const char *getSpelling() const;
3646
3647
3648 static bool classof(const Attr *A) { return A->getKind() == attr::Hot; }
3649};
3650
3651class IBActionAttr : public InheritableAttr {
3652public:
3653 static IBActionAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3654 auto *A = new (Ctx) IBActionAttr(Loc, Ctx, 0);
3655 A->setImplicit(true);
3656 return A;
3657 }
3658
3659 IBActionAttr(SourceRange R, ASTContext &Ctx
3660 , unsigned SI
3661 )
3662 : InheritableAttr(attr::IBAction, R, SI, false, false)
3663 {
3664 }
3665
3666 IBActionAttr *clone(ASTContext &C) const;
3667 void printPretty(raw_ostream &OS,
3668 const PrintingPolicy &Policy) const;
3669 const char *getSpelling() const;
3670
3671
3672 static bool classof(const Attr *A) { return A->getKind() == attr::IBAction; }
3673};
3674
3675class IBOutletAttr : public InheritableAttr {
3676public:
3677 static IBOutletAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3678 auto *A = new (Ctx) IBOutletAttr(Loc, Ctx, 0);
3679 A->setImplicit(true);
3680 return A;
3681 }
3682
3683 IBOutletAttr(SourceRange R, ASTContext &Ctx
3684 , unsigned SI
3685 )
3686 : InheritableAttr(attr::IBOutlet, R, SI, false, false)
3687 {
3688 }
3689
3690 IBOutletAttr *clone(ASTContext &C) const;
3691 void printPretty(raw_ostream &OS,
3692 const PrintingPolicy &Policy) const;
3693 const char *getSpelling() const;
3694
3695
3696 static bool classof(const Attr *A) { return A->getKind() == attr::IBOutlet; }
3697};
3698
3699class IBOutletCollectionAttr : public InheritableAttr {
3700TypeSourceInfo * interface_;
3701
3702public:
3703 static IBOutletCollectionAttr *CreateImplicit(ASTContext &Ctx, TypeSourceInfo * Interface, SourceRange Loc = SourceRange()) {
3704 auto *A = new (Ctx) IBOutletCollectionAttr(Loc, Ctx, Interface, 0);
3705 A->setImplicit(true);
3706 return A;
3707 }
3708
3709 IBOutletCollectionAttr(SourceRange R, ASTContext &Ctx
3710 , TypeSourceInfo * Interface
3711 , unsigned SI
3712 )
3713 : InheritableAttr(attr::IBOutletCollection, R, SI, false, false)
3714 , interface_(Interface)
3715 {
3716 }
3717
3718 IBOutletCollectionAttr(SourceRange R, ASTContext &Ctx
3719 , unsigned SI
3720 )
3721 : InheritableAttr(attr::IBOutletCollection, R, SI, false, false)
3722 , interface_()
3723 {
3724 }
3725
3726 IBOutletCollectionAttr *clone(ASTContext &C) const;
3727 void printPretty(raw_ostream &OS,
3728 const PrintingPolicy &Policy) const;
3729 const char *getSpelling() const;
3730 QualType getInterface() const {
3731 return interface_->getType();
3732 } TypeSourceInfo * getInterfaceLoc() const {
3733 return interface_;
3734 }
3735
3736
3737
3738 static bool classof(const Attr *A) { return A->getKind() == attr::IBOutletCollection; }
3739};
3740
3741class IFuncAttr : public Attr {
3742unsigned resolverLength;
3743char *resolver;
3744
3745public:
3746 static IFuncAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Resolver, SourceRange Loc = SourceRange()) {
3747 auto *A = new (Ctx) IFuncAttr(Loc, Ctx, Resolver, 0);
3748 A->setImplicit(true);
3749 return A;
3750 }
3751
3752 IFuncAttr(SourceRange R, ASTContext &Ctx
3753 , llvm::StringRef Resolver
3754 , unsigned SI
3755 )
3756 : Attr(attr::IFunc, R, SI, false)
3757 , resolverLength(Resolver.size()),resolver(new (Ctx, 1) char[resolverLength])
3758 {
3759 if (!Resolver.empty())
3760 std::memcpy(resolver, Resolver.data(), resolverLength);
3761 }
3762
3763 IFuncAttr *clone(ASTContext &C) const;
3764 void printPretty(raw_ostream &OS,
3765 const PrintingPolicy &Policy) const;
3766 const char *getSpelling() const;
3767 llvm::StringRef getResolver() const {
3768 return llvm::StringRef(resolver, resolverLength);
3769 }
3770 unsigned getResolverLength() const {
3771 return resolverLength;
3772 }
3773 void setResolver(ASTContext &C, llvm::StringRef S) {
3774 resolverLength = S.size();
3775 this->resolver = new (C, 1) char [resolverLength];
3776 if (!S.empty())
3777 std::memcpy(this->resolver, S.data(), resolverLength);
3778 }
3779
3780
3781
3782 static bool classof(const Attr *A) { return A->getKind() == attr::IFunc; }
3783};
3784
3785class InitPriorityAttr : public InheritableAttr {
3786unsigned priority;
3787
3788public:
3789 static InitPriorityAttr *CreateImplicit(ASTContext &Ctx, unsigned Priority, SourceRange Loc = SourceRange()) {
3790 auto *A = new (Ctx) InitPriorityAttr(Loc, Ctx, Priority, 0);
3791 A->setImplicit(true);
3792 return A;
3793 }
3794
3795 InitPriorityAttr(SourceRange R, ASTContext &Ctx
3796 , unsigned Priority
3797 , unsigned SI
3798 )
3799 : InheritableAttr(attr::InitPriority, R, SI, false, false)
3800 , priority(Priority)
3801 {
3802 }
3803
3804 InitPriorityAttr *clone(ASTContext &C) const;
3805 void printPretty(raw_ostream &OS,
3806 const PrintingPolicy &Policy) const;
3807 const char *getSpelling() const;
3808 unsigned getPriority() const {
3809 return priority;
3810 }
3811
3812
3813
3814 static bool classof(const Attr *A) { return A->getKind() == attr::InitPriority; }
3815};
3816
3817class InitSegAttr : public Attr {
3818unsigned sectionLength;
3819char *section;
3820
3821public:
3822 static InitSegAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Section, SourceRange Loc = SourceRange()) {
3823 auto *A = new (Ctx) InitSegAttr(Loc, Ctx, Section, 0);
3824 A->setImplicit(true);
3825 return A;
3826 }
3827
3828 InitSegAttr(SourceRange R, ASTContext &Ctx
3829 , llvm::StringRef Section
3830 , unsigned SI
3831 )
3832 : Attr(attr::InitSeg, R, SI, false)
3833 , sectionLength(Section.size()),section(new (Ctx, 1) char[sectionLength])
3834 {
3835 if (!Section.empty())
3836 std::memcpy(section, Section.data(), sectionLength);
3837 }
3838
3839 InitSegAttr *clone(ASTContext &C) const;
3840 void printPretty(raw_ostream &OS,
3841 const PrintingPolicy &Policy) const;
3842 const char *getSpelling() const;
3843 llvm::StringRef getSection() const {
3844 return llvm::StringRef(section, sectionLength);
3845 }
3846 unsigned getSectionLength() const {
3847 return sectionLength;
3848 }
3849 void setSection(ASTContext &C, llvm::StringRef S) {
3850 sectionLength = S.size();
3851 this->section = new (C, 1) char [sectionLength];
3852 if (!S.empty())
3853 std::memcpy(this->section, S.data(), sectionLength);
3854 }
3855
3856
3857 void printPrettyPragma(raw_ostream &OS, const PrintingPolicy &Policy) const {
3858 OS << " (" << getSection() << ')';
3859 }
3860
3861
3862 static bool classof(const Attr *A) { return A->getKind() == attr::InitSeg; }
3863};
3864
3865class IntelOclBiccAttr : public InheritableAttr {
3866public:
3867 static IntelOclBiccAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3868 auto *A = new (Ctx) IntelOclBiccAttr(Loc, Ctx, 0);
3869 A->setImplicit(true);
3870 return A;
3871 }
3872
3873 IntelOclBiccAttr(SourceRange R, ASTContext &Ctx
3874 , unsigned SI
3875 )
3876 : InheritableAttr(attr::IntelOclBicc, R, SI, false, false)
3877 {
3878 }
3879
3880 IntelOclBiccAttr *clone(ASTContext &C) const;
3881 void printPretty(raw_ostream &OS,
3882 const PrintingPolicy &Policy) const;
3883 const char *getSpelling() const;
3884
3885
3886 static bool classof(const Attr *A) { return A->getKind() == attr::IntelOclBicc; }
3887};
3888
3889class InternalLinkageAttr : public InheritableAttr {
3890public:
3891 static InternalLinkageAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3892 auto *A = new (Ctx) InternalLinkageAttr(Loc, Ctx, 0);
3893 A->setImplicit(true);
3894 return A;
3895 }
3896
3897 InternalLinkageAttr(SourceRange R, ASTContext &Ctx
3898 , unsigned SI
3899 )
3900 : InheritableAttr(attr::InternalLinkage, R, SI, false, false)
3901 {
3902 }
3903
3904 InternalLinkageAttr *clone(ASTContext &C) const;
3905 void printPretty(raw_ostream &OS,
3906 const PrintingPolicy &Policy) const;
3907 const char *getSpelling() const;
3908
3909
3910 static bool classof(const Attr *A) { return A->getKind() == attr::InternalLinkage; }
3911};
3912
3913class LTOVisibilityPublicAttr : public InheritableAttr {
3914public:
3915 static LTOVisibilityPublicAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3916 auto *A = new (Ctx) LTOVisibilityPublicAttr(Loc, Ctx, 0);
3917 A->setImplicit(true);
3918 return A;
3919 }
3920
3921 LTOVisibilityPublicAttr(SourceRange R, ASTContext &Ctx
3922 , unsigned SI
3923 )
3924 : InheritableAttr(attr::LTOVisibilityPublic, R, SI, false, false)
3925 {
3926 }
3927
3928 LTOVisibilityPublicAttr *clone(ASTContext &C) const;
3929 void printPretty(raw_ostream &OS,
3930 const PrintingPolicy &Policy) const;
3931 const char *getSpelling() const;
3932
3933
3934 static bool classof(const Attr *A) { return A->getKind() == attr::LTOVisibilityPublic; }
3935};
3936
3937class LayoutVersionAttr : public InheritableAttr {
3938unsigned version;
3939
3940public:
3941 static LayoutVersionAttr *CreateImplicit(ASTContext &Ctx, unsigned Version, SourceRange Loc = SourceRange()) {
3942 auto *A = new (Ctx) LayoutVersionAttr(Loc, Ctx, Version, 0);
3943 A->setImplicit(true);
3944 return A;
3945 }
3946
3947 LayoutVersionAttr(SourceRange R, ASTContext &Ctx
3948 , unsigned Version
3949 , unsigned SI
3950 )
3951 : InheritableAttr(attr::LayoutVersion, R, SI, false, false)
3952 , version(Version)
3953 {
3954 }
3955
3956 LayoutVersionAttr *clone(ASTContext &C) const;
3957 void printPretty(raw_ostream &OS,
3958 const PrintingPolicy &Policy) const;
3959 const char *getSpelling() const;
3960 unsigned getVersion() const {
3961 return version;
3962 }
3963
3964
3965
3966 static bool classof(const Attr *A) { return A->getKind() == attr::LayoutVersion; }
3967};
3968
3969class LifetimeBoundAttr : public InheritableAttr {
3970public:
3971 static LifetimeBoundAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
3972 auto *A = new (Ctx) LifetimeBoundAttr(Loc, Ctx, 0);
3973 A->setImplicit(true);
3974