| File: | build/source/clang/lib/Sema/SemaAccess.cpp |
| Warning: | line 1260, column 34 Access to field 'Base' results in a dereference of a null pointer (loaded from variable 'constrainingBase') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file provides Sema routines for C++ access control semantics. | |||
| 10 | // | |||
| 11 | //===----------------------------------------------------------------------===// | |||
| 12 | ||||
| 13 | #include "clang/Basic/Specifiers.h" | |||
| 14 | #include "clang/Sema/SemaInternal.h" | |||
| 15 | #include "clang/AST/ASTContext.h" | |||
| 16 | #include "clang/AST/CXXInheritance.h" | |||
| 17 | #include "clang/AST/DeclCXX.h" | |||
| 18 | #include "clang/AST/DeclFriend.h" | |||
| 19 | #include "clang/AST/DeclObjC.h" | |||
| 20 | #include "clang/AST/DependentDiagnostic.h" | |||
| 21 | #include "clang/AST/ExprCXX.h" | |||
| 22 | #include "clang/Sema/DelayedDiagnostic.h" | |||
| 23 | #include "clang/Sema/Initialization.h" | |||
| 24 | #include "clang/Sema/Lookup.h" | |||
| 25 | ||||
| 26 | using namespace clang; | |||
| 27 | using namespace sema; | |||
| 28 | ||||
| 29 | /// A copy of Sema's enum without AR_delayed. | |||
| 30 | enum AccessResult { | |||
| 31 | AR_accessible, | |||
| 32 | AR_inaccessible, | |||
| 33 | AR_dependent | |||
| 34 | }; | |||
| 35 | ||||
| 36 | /// SetMemberAccessSpecifier - Set the access specifier of a member. | |||
| 37 | /// Returns true on error (when the previous member decl access specifier | |||
| 38 | /// is different from the new member decl access specifier). | |||
| 39 | bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl, | |||
| 40 | NamedDecl *PrevMemberDecl, | |||
| 41 | AccessSpecifier LexicalAS) { | |||
| 42 | if (!PrevMemberDecl) { | |||
| 43 | // Use the lexical access specifier. | |||
| 44 | MemberDecl->setAccess(LexicalAS); | |||
| 45 | return false; | |||
| 46 | } | |||
| 47 | ||||
| 48 | // C++ [class.access.spec]p3: When a member is redeclared its access | |||
| 49 | // specifier must be same as its initial declaration. | |||
| 50 | if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) { | |||
| 51 | Diag(MemberDecl->getLocation(), | |||
| 52 | diag::err_class_redeclared_with_different_access) | |||
| 53 | << MemberDecl << LexicalAS; | |||
| 54 | Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration) | |||
| 55 | << PrevMemberDecl << PrevMemberDecl->getAccess(); | |||
| 56 | ||||
| 57 | MemberDecl->setAccess(LexicalAS); | |||
| 58 | return true; | |||
| 59 | } | |||
| 60 | ||||
| 61 | MemberDecl->setAccess(PrevMemberDecl->getAccess()); | |||
| 62 | return false; | |||
| 63 | } | |||
| 64 | ||||
| 65 | static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) { | |||
| 66 | DeclContext *DC = D->getDeclContext(); | |||
| 67 | ||||
| 68 | // This can only happen at top: enum decls only "publish" their | |||
| 69 | // immediate members. | |||
| 70 | if (isa<EnumDecl>(DC)) | |||
| 71 | DC = cast<EnumDecl>(DC)->getDeclContext(); | |||
| 72 | ||||
| 73 | CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC); | |||
| 74 | while (DeclaringClass->isAnonymousStructOrUnion()) | |||
| 75 | DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext()); | |||
| 76 | return DeclaringClass; | |||
| 77 | } | |||
| 78 | ||||
| 79 | namespace { | |||
| 80 | struct EffectiveContext { | |||
| 81 | EffectiveContext() : Inner(nullptr), Dependent(false) {} | |||
| 82 | ||||
| 83 | explicit EffectiveContext(DeclContext *DC) | |||
| 84 | : Inner(DC), | |||
| 85 | Dependent(DC->isDependentContext()) { | |||
| 86 | ||||
| 87 | // An implicit deduction guide is semantically in the context enclosing the | |||
| 88 | // class template, but for access purposes behaves like the constructor | |||
| 89 | // from which it was produced. | |||
| 90 | if (auto *DGD = dyn_cast<CXXDeductionGuideDecl>(DC)) { | |||
| 91 | if (DGD->isImplicit()) { | |||
| 92 | DC = DGD->getCorrespondingConstructor(); | |||
| 93 | if (!DC) { | |||
| 94 | // The copy deduction candidate doesn't have a corresponding | |||
| 95 | // constructor. | |||
| 96 | DC = cast<DeclContext>(DGD->getDeducedTemplate()->getTemplatedDecl()); | |||
| 97 | } | |||
| 98 | } | |||
| 99 | } | |||
| 100 | ||||
| 101 | // C++11 [class.access.nest]p1: | |||
| 102 | // A nested class is a member and as such has the same access | |||
| 103 | // rights as any other member. | |||
| 104 | // C++11 [class.access]p2: | |||
| 105 | // A member of a class can also access all the names to which | |||
| 106 | // the class has access. A local class of a member function | |||
| 107 | // may access the same names that the member function itself | |||
| 108 | // may access. | |||
| 109 | // This almost implies that the privileges of nesting are transitive. | |||
| 110 | // Technically it says nothing about the local classes of non-member | |||
| 111 | // functions (which can gain privileges through friendship), but we | |||
| 112 | // take that as an oversight. | |||
| 113 | while (true) { | |||
| 114 | // We want to add canonical declarations to the EC lists for | |||
| 115 | // simplicity of checking, but we need to walk up through the | |||
| 116 | // actual current DC chain. Otherwise, something like a local | |||
| 117 | // extern or friend which happens to be the canonical | |||
| 118 | // declaration will really mess us up. | |||
| 119 | ||||
| 120 | if (isa<CXXRecordDecl>(DC)) { | |||
| 121 | CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); | |||
| 122 | Records.push_back(Record->getCanonicalDecl()); | |||
| 123 | DC = Record->getDeclContext(); | |||
| 124 | } else if (isa<FunctionDecl>(DC)) { | |||
| 125 | FunctionDecl *Function = cast<FunctionDecl>(DC); | |||
| 126 | Functions.push_back(Function->getCanonicalDecl()); | |||
| 127 | if (Function->getFriendObjectKind()) | |||
| 128 | DC = Function->getLexicalDeclContext(); | |||
| 129 | else | |||
| 130 | DC = Function->getDeclContext(); | |||
| 131 | } else if (DC->isFileContext()) { | |||
| 132 | break; | |||
| 133 | } else { | |||
| 134 | DC = DC->getParent(); | |||
| 135 | } | |||
| 136 | } | |||
| 137 | } | |||
| 138 | ||||
| 139 | bool isDependent() const { return Dependent; } | |||
| 140 | ||||
| 141 | bool includesClass(const CXXRecordDecl *R) const { | |||
| 142 | R = R->getCanonicalDecl(); | |||
| 143 | return llvm::is_contained(Records, R); | |||
| 144 | } | |||
| 145 | ||||
| 146 | /// Retrieves the innermost "useful" context. Can be null if we're | |||
| 147 | /// doing access-control without privileges. | |||
| 148 | DeclContext *getInnerContext() const { | |||
| 149 | return Inner; | |||
| 150 | } | |||
| 151 | ||||
| 152 | typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator; | |||
| 153 | ||||
| 154 | DeclContext *Inner; | |||
| 155 | SmallVector<FunctionDecl*, 4> Functions; | |||
| 156 | SmallVector<CXXRecordDecl*, 4> Records; | |||
| 157 | bool Dependent; | |||
| 158 | }; | |||
| 159 | ||||
| 160 | /// Like sema::AccessedEntity, but kindly lets us scribble all over | |||
| 161 | /// it. | |||
| 162 | struct AccessTarget : public AccessedEntity { | |||
| 163 | AccessTarget(const AccessedEntity &Entity) | |||
| 164 | : AccessedEntity(Entity) { | |||
| 165 | initialize(); | |||
| 166 | } | |||
| 167 | ||||
| 168 | AccessTarget(ASTContext &Context, | |||
| 169 | MemberNonce _, | |||
| 170 | CXXRecordDecl *NamingClass, | |||
| 171 | DeclAccessPair FoundDecl, | |||
| 172 | QualType BaseObjectType) | |||
| 173 | : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass, | |||
| 174 | FoundDecl, BaseObjectType) { | |||
| 175 | initialize(); | |||
| 176 | } | |||
| 177 | ||||
| 178 | AccessTarget(ASTContext &Context, | |||
| 179 | BaseNonce _, | |||
| 180 | CXXRecordDecl *BaseClass, | |||
| 181 | CXXRecordDecl *DerivedClass, | |||
| 182 | AccessSpecifier Access) | |||
| 183 | : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass, | |||
| 184 | Access) { | |||
| 185 | initialize(); | |||
| 186 | } | |||
| 187 | ||||
| 188 | bool isInstanceMember() const { | |||
| 189 | return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember()); | |||
| 190 | } | |||
| 191 | ||||
| 192 | bool hasInstanceContext() const { | |||
| 193 | return HasInstanceContext; | |||
| 194 | } | |||
| 195 | ||||
| 196 | class SavedInstanceContext { | |||
| 197 | public: | |||
| 198 | SavedInstanceContext(SavedInstanceContext &&S) | |||
| 199 | : Target(S.Target), Has(S.Has) { | |||
| 200 | S.Target = nullptr; | |||
| 201 | } | |||
| 202 | ~SavedInstanceContext() { | |||
| 203 | if (Target) | |||
| 204 | Target->HasInstanceContext = Has; | |||
| 205 | } | |||
| 206 | ||||
| 207 | private: | |||
| 208 | friend struct AccessTarget; | |||
| 209 | explicit SavedInstanceContext(AccessTarget &Target) | |||
| 210 | : Target(&Target), Has(Target.HasInstanceContext) {} | |||
| 211 | AccessTarget *Target; | |||
| 212 | bool Has; | |||
| 213 | }; | |||
| 214 | ||||
| 215 | SavedInstanceContext saveInstanceContext() { | |||
| 216 | return SavedInstanceContext(*this); | |||
| 217 | } | |||
| 218 | ||||
| 219 | void suppressInstanceContext() { | |||
| 220 | HasInstanceContext = false; | |||
| 221 | } | |||
| 222 | ||||
| 223 | const CXXRecordDecl *resolveInstanceContext(Sema &S) const { | |||
| 224 | assert(HasInstanceContext)(static_cast <bool> (HasInstanceContext) ? void (0) : __assert_fail ("HasInstanceContext", "clang/lib/Sema/SemaAccess.cpp", 224, __extension__ __PRETTY_FUNCTION__)); | |||
| 225 | if (CalculatedInstanceContext) | |||
| 226 | return InstanceContext; | |||
| 227 | ||||
| 228 | CalculatedInstanceContext = true; | |||
| 229 | DeclContext *IC = S.computeDeclContext(getBaseObjectType()); | |||
| 230 | InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl() | |||
| 231 | : nullptr); | |||
| 232 | return InstanceContext; | |||
| 233 | } | |||
| 234 | ||||
| 235 | const CXXRecordDecl *getDeclaringClass() const { | |||
| 236 | return DeclaringClass; | |||
| 237 | } | |||
| 238 | ||||
| 239 | /// The "effective" naming class is the canonical non-anonymous | |||
| 240 | /// class containing the actual naming class. | |||
| 241 | const CXXRecordDecl *getEffectiveNamingClass() const { | |||
| 242 | const CXXRecordDecl *namingClass = getNamingClass(); | |||
| 243 | while (namingClass->isAnonymousStructOrUnion()) | |||
| 244 | namingClass = cast<CXXRecordDecl>(namingClass->getParent()); | |||
| 245 | return namingClass->getCanonicalDecl(); | |||
| 246 | } | |||
| 247 | ||||
| 248 | private: | |||
| 249 | void initialize() { | |||
| 250 | HasInstanceContext = (isMemberAccess() && | |||
| 251 | !getBaseObjectType().isNull() && | |||
| 252 | getTargetDecl()->isCXXInstanceMember()); | |||
| 253 | CalculatedInstanceContext = false; | |||
| 254 | InstanceContext = nullptr; | |||
| 255 | ||||
| 256 | if (isMemberAccess()) | |||
| 257 | DeclaringClass = FindDeclaringClass(getTargetDecl()); | |||
| 258 | else | |||
| 259 | DeclaringClass = getBaseClass(); | |||
| 260 | DeclaringClass = DeclaringClass->getCanonicalDecl(); | |||
| 261 | } | |||
| 262 | ||||
| 263 | bool HasInstanceContext : 1; | |||
| 264 | mutable bool CalculatedInstanceContext : 1; | |||
| 265 | mutable const CXXRecordDecl *InstanceContext; | |||
| 266 | const CXXRecordDecl *DeclaringClass; | |||
| 267 | }; | |||
| 268 | ||||
| 269 | } | |||
| 270 | ||||
| 271 | /// Checks whether one class might instantiate to the other. | |||
| 272 | static bool MightInstantiateTo(const CXXRecordDecl *From, | |||
| 273 | const CXXRecordDecl *To) { | |||
| 274 | // Declaration names are always preserved by instantiation. | |||
| 275 | if (From->getDeclName() != To->getDeclName()) | |||
| 276 | return false; | |||
| 277 | ||||
| 278 | const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext(); | |||
| 279 | const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext(); | |||
| 280 | if (FromDC == ToDC) return true; | |||
| 281 | if (FromDC->isFileContext() || ToDC->isFileContext()) return false; | |||
| 282 | ||||
| 283 | // Be conservative. | |||
| 284 | return true; | |||
| 285 | } | |||
| 286 | ||||
| 287 | /// Checks whether one class is derived from another, inclusively. | |||
| 288 | /// Properly indicates when it couldn't be determined due to | |||
| 289 | /// dependence. | |||
| 290 | /// | |||
| 291 | /// This should probably be donated to AST or at least Sema. | |||
| 292 | static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived, | |||
| 293 | const CXXRecordDecl *Target) { | |||
| 294 | assert(Derived->getCanonicalDecl() == Derived)(static_cast <bool> (Derived->getCanonicalDecl() == Derived ) ? void (0) : __assert_fail ("Derived->getCanonicalDecl() == Derived" , "clang/lib/Sema/SemaAccess.cpp", 294, __extension__ __PRETTY_FUNCTION__ )); | |||
| 295 | assert(Target->getCanonicalDecl() == Target)(static_cast <bool> (Target->getCanonicalDecl() == Target ) ? void (0) : __assert_fail ("Target->getCanonicalDecl() == Target" , "clang/lib/Sema/SemaAccess.cpp", 295, __extension__ __PRETTY_FUNCTION__ )); | |||
| 296 | ||||
| 297 | if (Derived == Target) return AR_accessible; | |||
| 298 | ||||
| 299 | bool CheckDependent = Derived->isDependentContext(); | |||
| 300 | if (CheckDependent && MightInstantiateTo(Derived, Target)) | |||
| 301 | return AR_dependent; | |||
| 302 | ||||
| 303 | AccessResult OnFailure = AR_inaccessible; | |||
| 304 | SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack | |||
| 305 | ||||
| 306 | while (true) { | |||
| 307 | if (Derived->isDependentContext() && !Derived->hasDefinition() && | |||
| 308 | !Derived->isLambda()) | |||
| 309 | return AR_dependent; | |||
| 310 | ||||
| 311 | for (const auto &I : Derived->bases()) { | |||
| 312 | const CXXRecordDecl *RD; | |||
| 313 | ||||
| 314 | QualType T = I.getType(); | |||
| 315 | if (const RecordType *RT = T->getAs<RecordType>()) { | |||
| 316 | RD = cast<CXXRecordDecl>(RT->getDecl()); | |||
| 317 | } else if (const InjectedClassNameType *IT | |||
| 318 | = T->getAs<InjectedClassNameType>()) { | |||
| 319 | RD = IT->getDecl(); | |||
| 320 | } else { | |||
| 321 | assert(T->isDependentType() && "non-dependent base wasn't a record?")(static_cast <bool> (T->isDependentType() && "non-dependent base wasn't a record?") ? void (0) : __assert_fail ("T->isDependentType() && \"non-dependent base wasn't a record?\"" , "clang/lib/Sema/SemaAccess.cpp", 321, __extension__ __PRETTY_FUNCTION__ )); | |||
| 322 | OnFailure = AR_dependent; | |||
| 323 | continue; | |||
| 324 | } | |||
| 325 | ||||
| 326 | RD = RD->getCanonicalDecl(); | |||
| 327 | if (RD == Target) return AR_accessible; | |||
| 328 | if (CheckDependent && MightInstantiateTo(RD, Target)) | |||
| 329 | OnFailure = AR_dependent; | |||
| 330 | ||||
| 331 | Queue.push_back(RD); | |||
| 332 | } | |||
| 333 | ||||
| 334 | if (Queue.empty()) break; | |||
| 335 | ||||
| 336 | Derived = Queue.pop_back_val(); | |||
| 337 | } | |||
| 338 | ||||
| 339 | return OnFailure; | |||
| 340 | } | |||
| 341 | ||||
| 342 | ||||
| 343 | static bool MightInstantiateTo(Sema &S, DeclContext *Context, | |||
| 344 | DeclContext *Friend) { | |||
| 345 | if (Friend == Context) | |||
| 346 | return true; | |||
| 347 | ||||
| 348 | assert(!Friend->isDependentContext() &&(static_cast <bool> (!Friend->isDependentContext() && "can't handle friends with dependent contexts here") ? void ( 0) : __assert_fail ("!Friend->isDependentContext() && \"can't handle friends with dependent contexts here\"" , "clang/lib/Sema/SemaAccess.cpp", 349, __extension__ __PRETTY_FUNCTION__ )) | |||
| 349 | "can't handle friends with dependent contexts here")(static_cast <bool> (!Friend->isDependentContext() && "can't handle friends with dependent contexts here") ? void ( 0) : __assert_fail ("!Friend->isDependentContext() && \"can't handle friends with dependent contexts here\"" , "clang/lib/Sema/SemaAccess.cpp", 349, __extension__ __PRETTY_FUNCTION__ )); | |||
| 350 | ||||
| 351 | if (!Context->isDependentContext()) | |||
| 352 | return false; | |||
| 353 | ||||
| 354 | if (Friend->isFileContext()) | |||
| 355 | return false; | |||
| 356 | ||||
| 357 | // TODO: this is very conservative | |||
| 358 | return true; | |||
| 359 | } | |||
| 360 | ||||
| 361 | // Asks whether the type in 'context' can ever instantiate to the type | |||
| 362 | // in 'friend'. | |||
| 363 | static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) { | |||
| 364 | if (Friend == Context) | |||
| 365 | return true; | |||
| 366 | ||||
| 367 | if (!Friend->isDependentType() && !Context->isDependentType()) | |||
| 368 | return false; | |||
| 369 | ||||
| 370 | // TODO: this is very conservative. | |||
| 371 | return true; | |||
| 372 | } | |||
| 373 | ||||
| 374 | static bool MightInstantiateTo(Sema &S, | |||
| 375 | FunctionDecl *Context, | |||
| 376 | FunctionDecl *Friend) { | |||
| 377 | if (Context->getDeclName() != Friend->getDeclName()) | |||
| 378 | return false; | |||
| 379 | ||||
| 380 | if (!MightInstantiateTo(S, | |||
| 381 | Context->getDeclContext(), | |||
| 382 | Friend->getDeclContext())) | |||
| 383 | return false; | |||
| 384 | ||||
| 385 | CanQual<FunctionProtoType> FriendTy | |||
| 386 | = S.Context.getCanonicalType(Friend->getType()) | |||
| 387 | ->getAs<FunctionProtoType>(); | |||
| 388 | CanQual<FunctionProtoType> ContextTy | |||
| 389 | = S.Context.getCanonicalType(Context->getType()) | |||
| 390 | ->getAs<FunctionProtoType>(); | |||
| 391 | ||||
| 392 | // There isn't any way that I know of to add qualifiers | |||
| 393 | // during instantiation. | |||
| 394 | if (FriendTy.getQualifiers() != ContextTy.getQualifiers()) | |||
| 395 | return false; | |||
| 396 | ||||
| 397 | if (FriendTy->getNumParams() != ContextTy->getNumParams()) | |||
| 398 | return false; | |||
| 399 | ||||
| 400 | if (!MightInstantiateTo(S, ContextTy->getReturnType(), | |||
| 401 | FriendTy->getReturnType())) | |||
| 402 | return false; | |||
| 403 | ||||
| 404 | for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I) | |||
| 405 | if (!MightInstantiateTo(S, ContextTy->getParamType(I), | |||
| 406 | FriendTy->getParamType(I))) | |||
| 407 | return false; | |||
| 408 | ||||
| 409 | return true; | |||
| 410 | } | |||
| 411 | ||||
| 412 | static bool MightInstantiateTo(Sema &S, | |||
| 413 | FunctionTemplateDecl *Context, | |||
| 414 | FunctionTemplateDecl *Friend) { | |||
| 415 | return MightInstantiateTo(S, | |||
| 416 | Context->getTemplatedDecl(), | |||
| 417 | Friend->getTemplatedDecl()); | |||
| 418 | } | |||
| 419 | ||||
| 420 | static AccessResult MatchesFriend(Sema &S, | |||
| 421 | const EffectiveContext &EC, | |||
| 422 | const CXXRecordDecl *Friend) { | |||
| 423 | if (EC.includesClass(Friend)) | |||
| 424 | return AR_accessible; | |||
| 425 | ||||
| 426 | if (EC.isDependent()) { | |||
| 427 | for (const CXXRecordDecl *Context : EC.Records) { | |||
| 428 | if (MightInstantiateTo(Context, Friend)) | |||
| 429 | return AR_dependent; | |||
| 430 | } | |||
| 431 | } | |||
| 432 | ||||
| 433 | return AR_inaccessible; | |||
| 434 | } | |||
| 435 | ||||
| 436 | static AccessResult MatchesFriend(Sema &S, | |||
| 437 | const EffectiveContext &EC, | |||
| 438 | CanQualType Friend) { | |||
| 439 | if (const RecordType *RT = Friend->getAs<RecordType>()) | |||
| 440 | return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl())); | |||
| 441 | ||||
| 442 | // TODO: we can do better than this | |||
| 443 | if (Friend->isDependentType()) | |||
| 444 | return AR_dependent; | |||
| 445 | ||||
| 446 | return AR_inaccessible; | |||
| 447 | } | |||
| 448 | ||||
| 449 | /// Determines whether the given friend class template matches | |||
| 450 | /// anything in the effective context. | |||
| 451 | static AccessResult MatchesFriend(Sema &S, | |||
| 452 | const EffectiveContext &EC, | |||
| 453 | ClassTemplateDecl *Friend) { | |||
| 454 | AccessResult OnFailure = AR_inaccessible; | |||
| 455 | ||||
| 456 | // Check whether the friend is the template of a class in the | |||
| 457 | // context chain. | |||
| 458 | for (SmallVectorImpl<CXXRecordDecl*>::const_iterator | |||
| 459 | I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) { | |||
| 460 | CXXRecordDecl *Record = *I; | |||
| 461 | ||||
| 462 | // Figure out whether the current class has a template: | |||
| 463 | ClassTemplateDecl *CTD; | |||
| 464 | ||||
| 465 | // A specialization of the template... | |||
| 466 | if (isa<ClassTemplateSpecializationDecl>(Record)) { | |||
| 467 | CTD = cast<ClassTemplateSpecializationDecl>(Record) | |||
| 468 | ->getSpecializedTemplate(); | |||
| 469 | ||||
| 470 | // ... or the template pattern itself. | |||
| 471 | } else { | |||
| 472 | CTD = Record->getDescribedClassTemplate(); | |||
| 473 | if (!CTD) continue; | |||
| 474 | } | |||
| 475 | ||||
| 476 | // It's a match. | |||
| 477 | if (Friend == CTD->getCanonicalDecl()) | |||
| 478 | return AR_accessible; | |||
| 479 | ||||
| 480 | // If the context isn't dependent, it can't be a dependent match. | |||
| 481 | if (!EC.isDependent()) | |||
| 482 | continue; | |||
| 483 | ||||
| 484 | // If the template names don't match, it can't be a dependent | |||
| 485 | // match. | |||
| 486 | if (CTD->getDeclName() != Friend->getDeclName()) | |||
| 487 | continue; | |||
| 488 | ||||
| 489 | // If the class's context can't instantiate to the friend's | |||
| 490 | // context, it can't be a dependent match. | |||
| 491 | if (!MightInstantiateTo(S, CTD->getDeclContext(), | |||
| 492 | Friend->getDeclContext())) | |||
| 493 | continue; | |||
| 494 | ||||
| 495 | // Otherwise, it's a dependent match. | |||
| 496 | OnFailure = AR_dependent; | |||
| 497 | } | |||
| 498 | ||||
| 499 | return OnFailure; | |||
| 500 | } | |||
| 501 | ||||
| 502 | /// Determines whether the given friend function matches anything in | |||
| 503 | /// the effective context. | |||
| 504 | static AccessResult MatchesFriend(Sema &S, | |||
| 505 | const EffectiveContext &EC, | |||
| 506 | FunctionDecl *Friend) { | |||
| 507 | AccessResult OnFailure = AR_inaccessible; | |||
| 508 | ||||
| 509 | for (SmallVectorImpl<FunctionDecl*>::const_iterator | |||
| 510 | I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) { | |||
| 511 | if (Friend == *I) | |||
| 512 | return AR_accessible; | |||
| 513 | ||||
| 514 | if (EC.isDependent() && MightInstantiateTo(S, *I, Friend)) | |||
| 515 | OnFailure = AR_dependent; | |||
| 516 | } | |||
| 517 | ||||
| 518 | return OnFailure; | |||
| 519 | } | |||
| 520 | ||||
| 521 | /// Determines whether the given friend function template matches | |||
| 522 | /// anything in the effective context. | |||
| 523 | static AccessResult MatchesFriend(Sema &S, | |||
| 524 | const EffectiveContext &EC, | |||
| 525 | FunctionTemplateDecl *Friend) { | |||
| 526 | if (EC.Functions.empty()) return AR_inaccessible; | |||
| 527 | ||||
| 528 | AccessResult OnFailure = AR_inaccessible; | |||
| 529 | ||||
| 530 | for (SmallVectorImpl<FunctionDecl*>::const_iterator | |||
| 531 | I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) { | |||
| 532 | ||||
| 533 | FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate(); | |||
| 534 | if (!FTD) | |||
| 535 | FTD = (*I)->getDescribedFunctionTemplate(); | |||
| 536 | if (!FTD) | |||
| 537 | continue; | |||
| 538 | ||||
| 539 | FTD = FTD->getCanonicalDecl(); | |||
| 540 | ||||
| 541 | if (Friend == FTD) | |||
| 542 | return AR_accessible; | |||
| 543 | ||||
| 544 | if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend)) | |||
| 545 | OnFailure = AR_dependent; | |||
| 546 | } | |||
| 547 | ||||
| 548 | return OnFailure; | |||
| 549 | } | |||
| 550 | ||||
| 551 | /// Determines whether the given friend declaration matches anything | |||
| 552 | /// in the effective context. | |||
| 553 | static AccessResult MatchesFriend(Sema &S, | |||
| 554 | const EffectiveContext &EC, | |||
| 555 | FriendDecl *FriendD) { | |||
| 556 | // Whitelist accesses if there's an invalid or unsupported friend | |||
| 557 | // declaration. | |||
| 558 | if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend()) | |||
| 559 | return AR_accessible; | |||
| 560 | ||||
| 561 | if (TypeSourceInfo *T = FriendD->getFriendType()) | |||
| 562 | return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified()); | |||
| 563 | ||||
| 564 | NamedDecl *Friend | |||
| 565 | = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl()); | |||
| 566 | ||||
| 567 | // FIXME: declarations with dependent or templated scope. | |||
| 568 | ||||
| 569 | if (isa<ClassTemplateDecl>(Friend)) | |||
| 570 | return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend)); | |||
| 571 | ||||
| 572 | if (isa<FunctionTemplateDecl>(Friend)) | |||
| 573 | return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend)); | |||
| 574 | ||||
| 575 | if (isa<CXXRecordDecl>(Friend)) | |||
| 576 | return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend)); | |||
| 577 | ||||
| 578 | assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind")(static_cast <bool> (isa<FunctionDecl>(Friend) && "unknown friend decl kind") ? void (0) : __assert_fail ("isa<FunctionDecl>(Friend) && \"unknown friend decl kind\"" , "clang/lib/Sema/SemaAccess.cpp", 578, __extension__ __PRETTY_FUNCTION__ )); | |||
| 579 | return MatchesFriend(S, EC, cast<FunctionDecl>(Friend)); | |||
| 580 | } | |||
| 581 | ||||
| 582 | static AccessResult GetFriendKind(Sema &S, | |||
| 583 | const EffectiveContext &EC, | |||
| 584 | const CXXRecordDecl *Class) { | |||
| 585 | AccessResult OnFailure = AR_inaccessible; | |||
| 586 | ||||
| 587 | // Okay, check friends. | |||
| 588 | for (auto *Friend : Class->friends()) { | |||
| 589 | switch (MatchesFriend(S, EC, Friend)) { | |||
| 590 | case AR_accessible: | |||
| 591 | return AR_accessible; | |||
| 592 | ||||
| 593 | case AR_inaccessible: | |||
| 594 | continue; | |||
| 595 | ||||
| 596 | case AR_dependent: | |||
| 597 | OnFailure = AR_dependent; | |||
| 598 | break; | |||
| 599 | } | |||
| 600 | } | |||
| 601 | ||||
| 602 | // That's it, give up. | |||
| 603 | return OnFailure; | |||
| 604 | } | |||
| 605 | ||||
| 606 | namespace { | |||
| 607 | ||||
| 608 | /// A helper class for checking for a friend which will grant access | |||
| 609 | /// to a protected instance member. | |||
| 610 | struct ProtectedFriendContext { | |||
| 611 | Sema &S; | |||
| 612 | const EffectiveContext &EC; | |||
| 613 | const CXXRecordDecl *NamingClass; | |||
| 614 | bool CheckDependent; | |||
| 615 | bool EverDependent; | |||
| 616 | ||||
| 617 | /// The path down to the current base class. | |||
| 618 | SmallVector<const CXXRecordDecl*, 20> CurPath; | |||
| 619 | ||||
| 620 | ProtectedFriendContext(Sema &S, const EffectiveContext &EC, | |||
| 621 | const CXXRecordDecl *InstanceContext, | |||
| 622 | const CXXRecordDecl *NamingClass) | |||
| 623 | : S(S), EC(EC), NamingClass(NamingClass), | |||
| 624 | CheckDependent(InstanceContext->isDependentContext() || | |||
| 625 | NamingClass->isDependentContext()), | |||
| 626 | EverDependent(false) {} | |||
| 627 | ||||
| 628 | /// Check classes in the current path for friendship, starting at | |||
| 629 | /// the given index. | |||
| 630 | bool checkFriendshipAlongPath(unsigned I) { | |||
| 631 | assert(I < CurPath.size())(static_cast <bool> (I < CurPath.size()) ? void (0) : __assert_fail ("I < CurPath.size()", "clang/lib/Sema/SemaAccess.cpp" , 631, __extension__ __PRETTY_FUNCTION__)); | |||
| 632 | for (unsigned E = CurPath.size(); I != E; ++I) { | |||
| 633 | switch (GetFriendKind(S, EC, CurPath[I])) { | |||
| 634 | case AR_accessible: return true; | |||
| 635 | case AR_inaccessible: continue; | |||
| 636 | case AR_dependent: EverDependent = true; continue; | |||
| 637 | } | |||
| 638 | } | |||
| 639 | return false; | |||
| 640 | } | |||
| 641 | ||||
| 642 | /// Perform a search starting at the given class. | |||
| 643 | /// | |||
| 644 | /// PrivateDepth is the index of the last (least derived) class | |||
| 645 | /// along the current path such that a notional public member of | |||
| 646 | /// the final class in the path would have access in that class. | |||
| 647 | bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) { | |||
| 648 | // If we ever reach the naming class, check the current path for | |||
| 649 | // friendship. We can also stop recursing because we obviously | |||
| 650 | // won't find the naming class there again. | |||
| 651 | if (Cur == NamingClass) | |||
| 652 | return checkFriendshipAlongPath(PrivateDepth); | |||
| 653 | ||||
| 654 | if (CheckDependent && MightInstantiateTo(Cur, NamingClass)) | |||
| 655 | EverDependent = true; | |||
| 656 | ||||
| 657 | // Recurse into the base classes. | |||
| 658 | for (const auto &I : Cur->bases()) { | |||
| 659 | // If this is private inheritance, then a public member of the | |||
| 660 | // base will not have any access in classes derived from Cur. | |||
| 661 | unsigned BasePrivateDepth = PrivateDepth; | |||
| 662 | if (I.getAccessSpecifier() == AS_private) | |||
| 663 | BasePrivateDepth = CurPath.size() - 1; | |||
| 664 | ||||
| 665 | const CXXRecordDecl *RD; | |||
| 666 | ||||
| 667 | QualType T = I.getType(); | |||
| 668 | if (const RecordType *RT = T->getAs<RecordType>()) { | |||
| 669 | RD = cast<CXXRecordDecl>(RT->getDecl()); | |||
| 670 | } else if (const InjectedClassNameType *IT | |||
| 671 | = T->getAs<InjectedClassNameType>()) { | |||
| 672 | RD = IT->getDecl(); | |||
| 673 | } else { | |||
| 674 | assert(T->isDependentType() && "non-dependent base wasn't a record?")(static_cast <bool> (T->isDependentType() && "non-dependent base wasn't a record?") ? void (0) : __assert_fail ("T->isDependentType() && \"non-dependent base wasn't a record?\"" , "clang/lib/Sema/SemaAccess.cpp", 674, __extension__ __PRETTY_FUNCTION__ )); | |||
| 675 | EverDependent = true; | |||
| 676 | continue; | |||
| 677 | } | |||
| 678 | ||||
| 679 | // Recurse. We don't need to clean up if this returns true. | |||
| 680 | CurPath.push_back(RD); | |||
| 681 | if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth)) | |||
| 682 | return true; | |||
| 683 | CurPath.pop_back(); | |||
| 684 | } | |||
| 685 | ||||
| 686 | return false; | |||
| 687 | } | |||
| 688 | ||||
| 689 | bool findFriendship(const CXXRecordDecl *Cur) { | |||
| 690 | assert(CurPath.empty())(static_cast <bool> (CurPath.empty()) ? void (0) : __assert_fail ("CurPath.empty()", "clang/lib/Sema/SemaAccess.cpp", 690, __extension__ __PRETTY_FUNCTION__)); | |||
| 691 | CurPath.push_back(Cur); | |||
| 692 | return findFriendship(Cur, 0); | |||
| 693 | } | |||
| 694 | }; | |||
| 695 | } | |||
| 696 | ||||
| 697 | /// Search for a class P that EC is a friend of, under the constraint | |||
| 698 | /// InstanceContext <= P | |||
| 699 | /// if InstanceContext exists, or else | |||
| 700 | /// NamingClass <= P | |||
| 701 | /// and with the additional restriction that a protected member of | |||
| 702 | /// NamingClass would have some natural access in P, which implicitly | |||
| 703 | /// imposes the constraint that P <= NamingClass. | |||
| 704 | /// | |||
| 705 | /// This isn't quite the condition laid out in the standard. | |||
| 706 | /// Instead of saying that a notional protected member of NamingClass | |||
| 707 | /// would have to have some natural access in P, it says the actual | |||
| 708 | /// target has to have some natural access in P, which opens up the | |||
| 709 | /// possibility that the target (which is not necessarily a member | |||
| 710 | /// of NamingClass) might be more accessible along some path not | |||
| 711 | /// passing through it. That's really a bad idea, though, because it | |||
| 712 | /// introduces two problems: | |||
| 713 | /// - Most importantly, it breaks encapsulation because you can | |||
| 714 | /// access a forbidden base class's members by directly subclassing | |||
| 715 | /// it elsewhere. | |||
| 716 | /// - It also makes access substantially harder to compute because it | |||
| 717 | /// breaks the hill-climbing algorithm: knowing that the target is | |||
| 718 | /// accessible in some base class would no longer let you change | |||
| 719 | /// the question solely to whether the base class is accessible, | |||
| 720 | /// because the original target might have been more accessible | |||
| 721 | /// because of crazy subclassing. | |||
| 722 | /// So we don't implement that. | |||
| 723 | static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC, | |||
| 724 | const CXXRecordDecl *InstanceContext, | |||
| 725 | const CXXRecordDecl *NamingClass) { | |||
| 726 | assert(InstanceContext == nullptr ||(static_cast <bool> (InstanceContext == nullptr || InstanceContext ->getCanonicalDecl() == InstanceContext) ? void (0) : __assert_fail ("InstanceContext == nullptr || InstanceContext->getCanonicalDecl() == InstanceContext" , "clang/lib/Sema/SemaAccess.cpp", 727, __extension__ __PRETTY_FUNCTION__ )) | |||
| 727 | InstanceContext->getCanonicalDecl() == InstanceContext)(static_cast <bool> (InstanceContext == nullptr || InstanceContext ->getCanonicalDecl() == InstanceContext) ? void (0) : __assert_fail ("InstanceContext == nullptr || InstanceContext->getCanonicalDecl() == InstanceContext" , "clang/lib/Sema/SemaAccess.cpp", 727, __extension__ __PRETTY_FUNCTION__ )); | |||
| 728 | assert(NamingClass->getCanonicalDecl() == NamingClass)(static_cast <bool> (NamingClass->getCanonicalDecl() == NamingClass) ? void (0) : __assert_fail ("NamingClass->getCanonicalDecl() == NamingClass" , "clang/lib/Sema/SemaAccess.cpp", 728, __extension__ __PRETTY_FUNCTION__ )); | |||
| 729 | ||||
| 730 | // If we don't have an instance context, our constraints give us | |||
| 731 | // that NamingClass <= P <= NamingClass, i.e. P == NamingClass. | |||
| 732 | // This is just the usual friendship check. | |||
| 733 | if (!InstanceContext) return GetFriendKind(S, EC, NamingClass); | |||
| 734 | ||||
| 735 | ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass); | |||
| 736 | if (PRC.findFriendship(InstanceContext)) return AR_accessible; | |||
| 737 | if (PRC.EverDependent) return AR_dependent; | |||
| 738 | return AR_inaccessible; | |||
| 739 | } | |||
| 740 | ||||
| 741 | static AccessResult HasAccess(Sema &S, | |||
| 742 | const EffectiveContext &EC, | |||
| 743 | const CXXRecordDecl *NamingClass, | |||
| 744 | AccessSpecifier Access, | |||
| 745 | const AccessTarget &Target) { | |||
| 746 | assert(NamingClass->getCanonicalDecl() == NamingClass &&(static_cast <bool> (NamingClass->getCanonicalDecl() == NamingClass && "declaration should be canonicalized before being passed here" ) ? void (0) : __assert_fail ("NamingClass->getCanonicalDecl() == NamingClass && \"declaration should be canonicalized before being passed here\"" , "clang/lib/Sema/SemaAccess.cpp", 747, __extension__ __PRETTY_FUNCTION__ )) | |||
| 747 | "declaration should be canonicalized before being passed here")(static_cast <bool> (NamingClass->getCanonicalDecl() == NamingClass && "declaration should be canonicalized before being passed here" ) ? void (0) : __assert_fail ("NamingClass->getCanonicalDecl() == NamingClass && \"declaration should be canonicalized before being passed here\"" , "clang/lib/Sema/SemaAccess.cpp", 747, __extension__ __PRETTY_FUNCTION__ )); | |||
| 748 | ||||
| 749 | if (Access == AS_public) return AR_accessible; | |||
| 750 | assert(Access == AS_private || Access == AS_protected)(static_cast <bool> (Access == AS_private || Access == AS_protected ) ? void (0) : __assert_fail ("Access == AS_private || Access == AS_protected" , "clang/lib/Sema/SemaAccess.cpp", 750, __extension__ __PRETTY_FUNCTION__ )); | |||
| 751 | ||||
| 752 | AccessResult OnFailure = AR_inaccessible; | |||
| 753 | ||||
| 754 | for (EffectiveContext::record_iterator | |||
| 755 | I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) { | |||
| 756 | // All the declarations in EC have been canonicalized, so pointer | |||
| 757 | // equality from this point on will work fine. | |||
| 758 | const CXXRecordDecl *ECRecord = *I; | |||
| 759 | ||||
| 760 | // [B2] and [M2] | |||
| 761 | if (Access == AS_private) { | |||
| 762 | if (ECRecord == NamingClass) | |||
| 763 | return AR_accessible; | |||
| 764 | ||||
| 765 | if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass)) | |||
| 766 | OnFailure = AR_dependent; | |||
| 767 | ||||
| 768 | // [B3] and [M3] | |||
| 769 | } else { | |||
| 770 | assert(Access == AS_protected)(static_cast <bool> (Access == AS_protected) ? void (0) : __assert_fail ("Access == AS_protected", "clang/lib/Sema/SemaAccess.cpp" , 770, __extension__ __PRETTY_FUNCTION__)); | |||
| 771 | switch (IsDerivedFromInclusive(ECRecord, NamingClass)) { | |||
| 772 | case AR_accessible: break; | |||
| 773 | case AR_inaccessible: continue; | |||
| 774 | case AR_dependent: OnFailure = AR_dependent; continue; | |||
| 775 | } | |||
| 776 | ||||
| 777 | // C++ [class.protected]p1: | |||
| 778 | // An additional access check beyond those described earlier in | |||
| 779 | // [class.access] is applied when a non-static data member or | |||
| 780 | // non-static member function is a protected member of its naming | |||
| 781 | // class. As described earlier, access to a protected member is | |||
| 782 | // granted because the reference occurs in a friend or member of | |||
| 783 | // some class C. If the access is to form a pointer to member, | |||
| 784 | // the nested-name-specifier shall name C or a class derived from | |||
| 785 | // C. All other accesses involve a (possibly implicit) object | |||
| 786 | // expression. In this case, the class of the object expression | |||
| 787 | // shall be C or a class derived from C. | |||
| 788 | // | |||
| 789 | // We interpret this as a restriction on [M3]. | |||
| 790 | ||||
| 791 | // In this part of the code, 'C' is just our context class ECRecord. | |||
| 792 | ||||
| 793 | // These rules are different if we don't have an instance context. | |||
| 794 | if (!Target.hasInstanceContext()) { | |||
| 795 | // If it's not an instance member, these restrictions don't apply. | |||
| 796 | if (!Target.isInstanceMember()) return AR_accessible; | |||
| 797 | ||||
| 798 | // If it's an instance member, use the pointer-to-member rule | |||
| 799 | // that the naming class has to be derived from the effective | |||
| 800 | // context. | |||
| 801 | ||||
| 802 | // Emulate a MSVC bug where the creation of pointer-to-member | |||
| 803 | // to protected member of base class is allowed but only from | |||
| 804 | // static member functions. | |||
| 805 | if (S.getLangOpts().MSVCCompat && !EC.Functions.empty()) | |||
| 806 | if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front())) | |||
| 807 | if (MD->isStatic()) return AR_accessible; | |||
| 808 | ||||
| 809 | // Despite the standard's confident wording, there is a case | |||
| 810 | // where you can have an instance member that's neither in a | |||
| 811 | // pointer-to-member expression nor in a member access: when | |||
| 812 | // it names a field in an unevaluated context that can't be an | |||
| 813 | // implicit member. Pending clarification, we just apply the | |||
| 814 | // same naming-class restriction here. | |||
| 815 | // FIXME: we're probably not correctly adding the | |||
| 816 | // protected-member restriction when we retroactively convert | |||
| 817 | // an expression to being evaluated. | |||
| 818 | ||||
| 819 | // We know that ECRecord derives from NamingClass. The | |||
| 820 | // restriction says to check whether NamingClass derives from | |||
| 821 | // ECRecord, but that's not really necessary: two distinct | |||
| 822 | // classes can't be recursively derived from each other. So | |||
| 823 | // along this path, we just need to check whether the classes | |||
| 824 | // are equal. | |||
| 825 | if (NamingClass == ECRecord) return AR_accessible; | |||
| 826 | ||||
| 827 | // Otherwise, this context class tells us nothing; on to the next. | |||
| 828 | continue; | |||
| 829 | } | |||
| 830 | ||||
| 831 | assert(Target.isInstanceMember())(static_cast <bool> (Target.isInstanceMember()) ? void ( 0) : __assert_fail ("Target.isInstanceMember()", "clang/lib/Sema/SemaAccess.cpp" , 831, __extension__ __PRETTY_FUNCTION__)); | |||
| 832 | ||||
| 833 | const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S); | |||
| 834 | if (!InstanceContext) { | |||
| 835 | OnFailure = AR_dependent; | |||
| 836 | continue; | |||
| 837 | } | |||
| 838 | ||||
| 839 | switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) { | |||
| 840 | case AR_accessible: return AR_accessible; | |||
| 841 | case AR_inaccessible: continue; | |||
| 842 | case AR_dependent: OnFailure = AR_dependent; continue; | |||
| 843 | } | |||
| 844 | } | |||
| 845 | } | |||
| 846 | ||||
| 847 | // [M3] and [B3] say that, if the target is protected in N, we grant | |||
| 848 | // access if the access occurs in a friend or member of some class P | |||
| 849 | // that's a subclass of N and where the target has some natural | |||
| 850 | // access in P. The 'member' aspect is easy to handle because P | |||
| 851 | // would necessarily be one of the effective-context records, and we | |||
| 852 | // address that above. The 'friend' aspect is completely ridiculous | |||
| 853 | // to implement because there are no restrictions at all on P | |||
| 854 | // *unless* the [class.protected] restriction applies. If it does, | |||
| 855 | // however, we should ignore whether the naming class is a friend, | |||
| 856 | // and instead rely on whether any potential P is a friend. | |||
| 857 | if (Access == AS_protected && Target.isInstanceMember()) { | |||
| 858 | // Compute the instance context if possible. | |||
| 859 | const CXXRecordDecl *InstanceContext = nullptr; | |||
| 860 | if (Target.hasInstanceContext()) { | |||
| 861 | InstanceContext = Target.resolveInstanceContext(S); | |||
| 862 | if (!InstanceContext) return AR_dependent; | |||
| 863 | } | |||
| 864 | ||||
| 865 | switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) { | |||
| 866 | case AR_accessible: return AR_accessible; | |||
| 867 | case AR_inaccessible: return OnFailure; | |||
| 868 | case AR_dependent: return AR_dependent; | |||
| 869 | } | |||
| 870 | llvm_unreachable("impossible friendship kind")::llvm::llvm_unreachable_internal("impossible friendship kind" , "clang/lib/Sema/SemaAccess.cpp", 870); | |||
| 871 | } | |||
| 872 | ||||
| 873 | switch (GetFriendKind(S, EC, NamingClass)) { | |||
| 874 | case AR_accessible: return AR_accessible; | |||
| 875 | case AR_inaccessible: return OnFailure; | |||
| 876 | case AR_dependent: return AR_dependent; | |||
| 877 | } | |||
| 878 | ||||
| 879 | // Silence bogus warnings | |||
| 880 | llvm_unreachable("impossible friendship kind")::llvm::llvm_unreachable_internal("impossible friendship kind" , "clang/lib/Sema/SemaAccess.cpp", 880); | |||
| 881 | } | |||
| 882 | ||||
| 883 | /// Finds the best path from the naming class to the declaring class, | |||
| 884 | /// taking friend declarations into account. | |||
| 885 | /// | |||
| 886 | /// C++0x [class.access.base]p5: | |||
| 887 | /// A member m is accessible at the point R when named in class N if | |||
| 888 | /// [M1] m as a member of N is public, or | |||
| 889 | /// [M2] m as a member of N is private, and R occurs in a member or | |||
| 890 | /// friend of class N, or | |||
| 891 | /// [M3] m as a member of N is protected, and R occurs in a member or | |||
| 892 | /// friend of class N, or in a member or friend of a class P | |||
| 893 | /// derived from N, where m as a member of P is public, private, | |||
| 894 | /// or protected, or | |||
| 895 | /// [M4] there exists a base class B of N that is accessible at R, and | |||
| 896 | /// m is accessible at R when named in class B. | |||
| 897 | /// | |||
| 898 | /// C++0x [class.access.base]p4: | |||
| 899 | /// A base class B of N is accessible at R, if | |||
| 900 | /// [B1] an invented public member of B would be a public member of N, or | |||
| 901 | /// [B2] R occurs in a member or friend of class N, and an invented public | |||
| 902 | /// member of B would be a private or protected member of N, or | |||
| 903 | /// [B3] R occurs in a member or friend of a class P derived from N, and an | |||
| 904 | /// invented public member of B would be a private or protected member | |||
| 905 | /// of P, or | |||
| 906 | /// [B4] there exists a class S such that B is a base class of S accessible | |||
| 907 | /// at R and S is a base class of N accessible at R. | |||
| 908 | /// | |||
| 909 | /// Along a single inheritance path we can restate both of these | |||
| 910 | /// iteratively: | |||
| 911 | /// | |||
| 912 | /// First, we note that M1-4 are equivalent to B1-4 if the member is | |||
| 913 | /// treated as a notional base of its declaring class with inheritance | |||
| 914 | /// access equivalent to the member's access. Therefore we need only | |||
| 915 | /// ask whether a class B is accessible from a class N in context R. | |||
| 916 | /// | |||
| 917 | /// Let B_1 .. B_n be the inheritance path in question (i.e. where | |||
| 918 | /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of | |||
| 919 | /// B_i). For i in 1..n, we will calculate ACAB(i), the access to the | |||
| 920 | /// closest accessible base in the path: | |||
| 921 | /// Access(a, b) = (* access on the base specifier from a to b *) | |||
| 922 | /// Merge(a, forbidden) = forbidden | |||
| 923 | /// Merge(a, private) = forbidden | |||
| 924 | /// Merge(a, b) = min(a,b) | |||
| 925 | /// Accessible(c, forbidden) = false | |||
| 926 | /// Accessible(c, private) = (R is c) || IsFriend(c, R) | |||
| 927 | /// Accessible(c, protected) = (R derived from c) || IsFriend(c, R) | |||
| 928 | /// Accessible(c, public) = true | |||
| 929 | /// ACAB(n) = public | |||
| 930 | /// ACAB(i) = | |||
| 931 | /// let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in | |||
| 932 | /// if Accessible(B_i, AccessToBase) then public else AccessToBase | |||
| 933 | /// | |||
| 934 | /// B is an accessible base of N at R iff ACAB(1) = public. | |||
| 935 | /// | |||
| 936 | /// \param FinalAccess the access of the "final step", or AS_public if | |||
| 937 | /// there is no final step. | |||
| 938 | /// \return null if friendship is dependent | |||
| 939 | static CXXBasePath *FindBestPath(Sema &S, | |||
| 940 | const EffectiveContext &EC, | |||
| 941 | AccessTarget &Target, | |||
| 942 | AccessSpecifier FinalAccess, | |||
| 943 | CXXBasePaths &Paths) { | |||
| 944 | // Derive the paths to the desired base. | |||
| 945 | const CXXRecordDecl *Derived = Target.getNamingClass(); | |||
| 946 | const CXXRecordDecl *Base = Target.getDeclaringClass(); | |||
| 947 | ||||
| 948 | // FIXME: fail correctly when there are dependent paths. | |||
| 949 | bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base), | |||
| 950 | Paths); | |||
| 951 | assert(isDerived && "derived class not actually derived from base")(static_cast <bool> (isDerived && "derived class not actually derived from base" ) ? void (0) : __assert_fail ("isDerived && \"derived class not actually derived from base\"" , "clang/lib/Sema/SemaAccess.cpp", 951, __extension__ __PRETTY_FUNCTION__ )); | |||
| 952 | (void) isDerived; | |||
| 953 | ||||
| 954 | CXXBasePath *BestPath = nullptr; | |||
| 955 | ||||
| 956 | assert(FinalAccess != AS_none && "forbidden access after declaring class")(static_cast <bool> (FinalAccess != AS_none && "forbidden access after declaring class" ) ? void (0) : __assert_fail ("FinalAccess != AS_none && \"forbidden access after declaring class\"" , "clang/lib/Sema/SemaAccess.cpp", 956, __extension__ __PRETTY_FUNCTION__ )); | |||
| 957 | ||||
| 958 | bool AnyDependent = false; | |||
| 959 | ||||
| 960 | // Derive the friend-modified access along each path. | |||
| 961 | for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end(); | |||
| 962 | PI != PE; ++PI) { | |||
| 963 | AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext(); | |||
| 964 | ||||
| 965 | // Walk through the path backwards. | |||
| 966 | AccessSpecifier PathAccess = FinalAccess; | |||
| 967 | CXXBasePath::iterator I = PI->end(), E = PI->begin(); | |||
| 968 | while (I != E) { | |||
| 969 | --I; | |||
| 970 | ||||
| 971 | assert(PathAccess != AS_none)(static_cast <bool> (PathAccess != AS_none) ? void (0) : __assert_fail ("PathAccess != AS_none", "clang/lib/Sema/SemaAccess.cpp" , 971, __extension__ __PRETTY_FUNCTION__)); | |||
| 972 | ||||
| 973 | // If the declaration is a private member of a base class, there | |||
| 974 | // is no level of friendship in derived classes that can make it | |||
| 975 | // accessible. | |||
| 976 | if (PathAccess == AS_private) { | |||
| 977 | PathAccess = AS_none; | |||
| 978 | break; | |||
| 979 | } | |||
| 980 | ||||
| 981 | const CXXRecordDecl *NC = I->Class->getCanonicalDecl(); | |||
| 982 | ||||
| 983 | AccessSpecifier BaseAccess = I->Base->getAccessSpecifier(); | |||
| 984 | PathAccess = std::max(PathAccess, BaseAccess); | |||
| 985 | ||||
| 986 | switch (HasAccess(S, EC, NC, PathAccess, Target)) { | |||
| 987 | case AR_inaccessible: break; | |||
| 988 | case AR_accessible: | |||
| 989 | PathAccess = AS_public; | |||
| 990 | ||||
| 991 | // Future tests are not against members and so do not have | |||
| 992 | // instance context. | |||
| 993 | Target.suppressInstanceContext(); | |||
| 994 | break; | |||
| 995 | case AR_dependent: | |||
| 996 | AnyDependent = true; | |||
| 997 | goto Next; | |||
| 998 | } | |||
| 999 | } | |||
| 1000 | ||||
| 1001 | // Note that we modify the path's Access field to the | |||
| 1002 | // friend-modified access. | |||
| 1003 | if (BestPath == nullptr || PathAccess < BestPath->Access) { | |||
| 1004 | BestPath = &*PI; | |||
| 1005 | BestPath->Access = PathAccess; | |||
| 1006 | ||||
| 1007 | // Short-circuit if we found a public path. | |||
| 1008 | if (BestPath->Access == AS_public) | |||
| 1009 | return BestPath; | |||
| 1010 | } | |||
| 1011 | ||||
| 1012 | Next: ; | |||
| 1013 | } | |||
| 1014 | ||||
| 1015 | assert((!BestPath || BestPath->Access != AS_public) &&(static_cast <bool> ((!BestPath || BestPath->Access != AS_public) && "fell out of loop with public path") ? void (0) : __assert_fail ("(!BestPath || BestPath->Access != AS_public) && \"fell out of loop with public path\"" , "clang/lib/Sema/SemaAccess.cpp", 1016, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1016 | "fell out of loop with public path")(static_cast <bool> ((!BestPath || BestPath->Access != AS_public) && "fell out of loop with public path") ? void (0) : __assert_fail ("(!BestPath || BestPath->Access != AS_public) && \"fell out of loop with public path\"" , "clang/lib/Sema/SemaAccess.cpp", 1016, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1017 | ||||
| 1018 | // We didn't find a public path, but at least one path was subject | |||
| 1019 | // to dependent friendship, so delay the check. | |||
| 1020 | if (AnyDependent) | |||
| 1021 | return nullptr; | |||
| 1022 | ||||
| 1023 | return BestPath; | |||
| 1024 | } | |||
| 1025 | ||||
| 1026 | /// Given that an entity has protected natural access, check whether | |||
| 1027 | /// access might be denied because of the protected member access | |||
| 1028 | /// restriction. | |||
| 1029 | /// | |||
| 1030 | /// \return true if a note was emitted | |||
| 1031 | static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC, | |||
| 1032 | AccessTarget &Target) { | |||
| 1033 | // Only applies to instance accesses. | |||
| 1034 | if (!Target.isInstanceMember()) | |||
| 1035 | return false; | |||
| 1036 | ||||
| 1037 | assert(Target.isMemberAccess())(static_cast <bool> (Target.isMemberAccess()) ? void (0 ) : __assert_fail ("Target.isMemberAccess()", "clang/lib/Sema/SemaAccess.cpp" , 1037, __extension__ __PRETTY_FUNCTION__)); | |||
| 1038 | ||||
| 1039 | const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass(); | |||
| 1040 | ||||
| 1041 | for (EffectiveContext::record_iterator | |||
| 1042 | I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) { | |||
| 1043 | const CXXRecordDecl *ECRecord = *I; | |||
| 1044 | switch (IsDerivedFromInclusive(ECRecord, NamingClass)) { | |||
| 1045 | case AR_accessible: break; | |||
| 1046 | case AR_inaccessible: continue; | |||
| 1047 | case AR_dependent: continue; | |||
| 1048 | } | |||
| 1049 | ||||
| 1050 | // The effective context is a subclass of the declaring class. | |||
| 1051 | // Check whether the [class.protected] restriction is limiting | |||
| 1052 | // access. | |||
| 1053 | ||||
| 1054 | // To get this exactly right, this might need to be checked more | |||
| 1055 | // holistically; it's not necessarily the case that gaining | |||
| 1056 | // access here would grant us access overall. | |||
| 1057 | ||||
| 1058 | NamedDecl *D = Target.getTargetDecl(); | |||
| 1059 | ||||
| 1060 | // If we don't have an instance context, [class.protected] says the | |||
| 1061 | // naming class has to equal the context class. | |||
| 1062 | if (!Target.hasInstanceContext()) { | |||
| 1063 | // If it does, the restriction doesn't apply. | |||
| 1064 | if (NamingClass == ECRecord) continue; | |||
| 1065 | ||||
| 1066 | // TODO: it would be great to have a fixit here, since this is | |||
| 1067 | // such an obvious error. | |||
| 1068 | S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject) | |||
| 1069 | << S.Context.getTypeDeclType(ECRecord); | |||
| 1070 | return true; | |||
| 1071 | } | |||
| 1072 | ||||
| 1073 | const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S); | |||
| 1074 | assert(InstanceContext && "diagnosing dependent access")(static_cast <bool> (InstanceContext && "diagnosing dependent access" ) ? void (0) : __assert_fail ("InstanceContext && \"diagnosing dependent access\"" , "clang/lib/Sema/SemaAccess.cpp", 1074, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1075 | ||||
| 1076 | switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) { | |||
| 1077 | case AR_accessible: continue; | |||
| 1078 | case AR_dependent: continue; | |||
| 1079 | case AR_inaccessible: | |||
| 1080 | break; | |||
| 1081 | } | |||
| 1082 | ||||
| 1083 | // Okay, the restriction seems to be what's limiting us. | |||
| 1084 | ||||
| 1085 | // Use a special diagnostic for constructors and destructors. | |||
| 1086 | if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) || | |||
| 1087 | (isa<FunctionTemplateDecl>(D) && | |||
| 1088 | isa<CXXConstructorDecl>( | |||
| 1089 | cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) { | |||
| 1090 | return S.Diag(D->getLocation(), | |||
| 1091 | diag::note_access_protected_restricted_ctordtor) | |||
| 1092 | << isa<CXXDestructorDecl>(D->getAsFunction()); | |||
| 1093 | } | |||
| 1094 | ||||
| 1095 | // Otherwise, use the generic diagnostic. | |||
| 1096 | return S.Diag(D->getLocation(), | |||
| 1097 | diag::note_access_protected_restricted_object) | |||
| 1098 | << S.Context.getTypeDeclType(ECRecord); | |||
| 1099 | } | |||
| 1100 | ||||
| 1101 | return false; | |||
| 1102 | } | |||
| 1103 | ||||
| 1104 | /// We are unable to access a given declaration due to its direct | |||
| 1105 | /// access control; diagnose that. | |||
| 1106 | static void diagnoseBadDirectAccess(Sema &S, | |||
| 1107 | const EffectiveContext &EC, | |||
| 1108 | AccessTarget &entity) { | |||
| 1109 | assert(entity.isMemberAccess())(static_cast <bool> (entity.isMemberAccess()) ? void (0 ) : __assert_fail ("entity.isMemberAccess()", "clang/lib/Sema/SemaAccess.cpp" , 1109, __extension__ __PRETTY_FUNCTION__)); | |||
| 1110 | NamedDecl *D = entity.getTargetDecl(); | |||
| 1111 | ||||
| 1112 | if (D->getAccess() == AS_protected && | |||
| 1113 | TryDiagnoseProtectedAccess(S, EC, entity)) | |||
| 1114 | return; | |||
| 1115 | ||||
| 1116 | // Find an original declaration. | |||
| 1117 | while (D->isOutOfLine()) { | |||
| 1118 | NamedDecl *PrevDecl = nullptr; | |||
| 1119 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) | |||
| 1120 | PrevDecl = VD->getPreviousDecl(); | |||
| 1121 | else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) | |||
| 1122 | PrevDecl = FD->getPreviousDecl(); | |||
| 1123 | else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) | |||
| 1124 | PrevDecl = TND->getPreviousDecl(); | |||
| 1125 | else if (TagDecl *TD = dyn_cast<TagDecl>(D)) { | |||
| 1126 | if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName()) | |||
| 1127 | break; | |||
| 1128 | PrevDecl = TD->getPreviousDecl(); | |||
| 1129 | } | |||
| 1130 | if (!PrevDecl) break; | |||
| 1131 | D = PrevDecl; | |||
| 1132 | } | |||
| 1133 | ||||
| 1134 | CXXRecordDecl *DeclaringClass = FindDeclaringClass(D); | |||
| 1135 | Decl *ImmediateChild; | |||
| 1136 | if (D->getDeclContext() == DeclaringClass) | |||
| 1137 | ImmediateChild = D; | |||
| 1138 | else { | |||
| 1139 | DeclContext *DC = D->getDeclContext(); | |||
| 1140 | while (DC->getParent() != DeclaringClass) | |||
| 1141 | DC = DC->getParent(); | |||
| 1142 | ImmediateChild = cast<Decl>(DC); | |||
| 1143 | } | |||
| 1144 | ||||
| 1145 | // Check whether there's an AccessSpecDecl preceding this in the | |||
| 1146 | // chain of the DeclContext. | |||
| 1147 | bool isImplicit = true; | |||
| 1148 | for (const auto *I : DeclaringClass->decls()) { | |||
| 1149 | if (I == ImmediateChild) break; | |||
| 1150 | if (isa<AccessSpecDecl>(I)) { | |||
| 1151 | isImplicit = false; | |||
| 1152 | break; | |||
| 1153 | } | |||
| 1154 | } | |||
| 1155 | ||||
| 1156 | S.Diag(D->getLocation(), diag::note_access_natural) | |||
| 1157 | << (unsigned) (D->getAccess() == AS_protected) | |||
| 1158 | << isImplicit; | |||
| 1159 | } | |||
| 1160 | ||||
| 1161 | /// Diagnose the path which caused the given declaration or base class | |||
| 1162 | /// to become inaccessible. | |||
| 1163 | static void DiagnoseAccessPath(Sema &S, | |||
| 1164 | const EffectiveContext &EC, | |||
| 1165 | AccessTarget &entity) { | |||
| 1166 | // Save the instance context to preserve invariants. | |||
| 1167 | AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext(); | |||
| 1168 | ||||
| 1169 | // This basically repeats the main algorithm but keeps some more | |||
| 1170 | // information. | |||
| 1171 | ||||
| 1172 | // The natural access so far. | |||
| 1173 | AccessSpecifier accessSoFar = AS_public; | |||
| 1174 | ||||
| 1175 | // Check whether we have special rights to the declaring class. | |||
| 1176 | if (entity.isMemberAccess()) { | |||
| 1177 | NamedDecl *D = entity.getTargetDecl(); | |||
| 1178 | accessSoFar = D->getAccess(); | |||
| 1179 | const CXXRecordDecl *declaringClass = entity.getDeclaringClass(); | |||
| 1180 | ||||
| 1181 | switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) { | |||
| 1182 | // If the declaration is accessible when named in its declaring | |||
| 1183 | // class, then we must be constrained by the path. | |||
| 1184 | case AR_accessible: | |||
| 1185 | accessSoFar = AS_public; | |||
| 1186 | entity.suppressInstanceContext(); | |||
| 1187 | break; | |||
| 1188 | ||||
| 1189 | case AR_inaccessible: | |||
| 1190 | if (accessSoFar == AS_private || | |||
| 1191 | declaringClass == entity.getEffectiveNamingClass()) | |||
| 1192 | return diagnoseBadDirectAccess(S, EC, entity); | |||
| 1193 | break; | |||
| 1194 | ||||
| 1195 | case AR_dependent: | |||
| 1196 | llvm_unreachable("cannot diagnose dependent access")::llvm::llvm_unreachable_internal("cannot diagnose dependent access" , "clang/lib/Sema/SemaAccess.cpp", 1196); | |||
| 1197 | } | |||
| 1198 | } | |||
| 1199 | ||||
| 1200 | CXXBasePaths paths; | |||
| 1201 | CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths); | |||
| 1202 | assert(path.Access != AS_public)(static_cast <bool> (path.Access != AS_public) ? void ( 0) : __assert_fail ("path.Access != AS_public", "clang/lib/Sema/SemaAccess.cpp" , 1202, __extension__ __PRETTY_FUNCTION__)); | |||
| 1203 | ||||
| 1204 | CXXBasePath::iterator i = path.end(), e = path.begin(); | |||
| 1205 | CXXBasePath::iterator constrainingBase = i; | |||
| 1206 | while (i != e) { | |||
| 1207 | --i; | |||
| 1208 | ||||
| 1209 | assert(accessSoFar != AS_none && accessSoFar != AS_private)(static_cast <bool> (accessSoFar != AS_none && accessSoFar != AS_private) ? void (0) : __assert_fail ("accessSoFar != AS_none && accessSoFar != AS_private" , "clang/lib/Sema/SemaAccess.cpp", 1209, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1210 | ||||
| 1211 | // Is the entity accessible when named in the deriving class, as | |||
| 1212 | // modified by the base specifier? | |||
| 1213 | const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl(); | |||
| 1214 | const CXXBaseSpecifier *base = i->Base; | |||
| 1215 | ||||
| 1216 | // If the access to this base is worse than the access we have to | |||
| 1217 | // the declaration, remember it. | |||
| 1218 | AccessSpecifier baseAccess = base->getAccessSpecifier(); | |||
| 1219 | if (baseAccess > accessSoFar) { | |||
| 1220 | constrainingBase = i; | |||
| 1221 | accessSoFar = baseAccess; | |||
| 1222 | } | |||
| 1223 | ||||
| 1224 | switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) { | |||
| 1225 | case AR_inaccessible: break; | |||
| 1226 | case AR_accessible: | |||
| 1227 | accessSoFar = AS_public; | |||
| 1228 | entity.suppressInstanceContext(); | |||
| 1229 | constrainingBase = nullptr; | |||
| 1230 | break; | |||
| 1231 | case AR_dependent: | |||
| 1232 | llvm_unreachable("cannot diagnose dependent access")::llvm::llvm_unreachable_internal("cannot diagnose dependent access" , "clang/lib/Sema/SemaAccess.cpp", 1232); | |||
| 1233 | } | |||
| 1234 | ||||
| 1235 | // If this was private inheritance, but we don't have access to | |||
| 1236 | // the deriving class, we're done. | |||
| 1237 | if (accessSoFar
| |||
| 1238 | assert(baseAccess == AS_private)(static_cast <bool> (baseAccess == AS_private) ? void ( 0) : __assert_fail ("baseAccess == AS_private", "clang/lib/Sema/SemaAccess.cpp" , 1238, __extension__ __PRETTY_FUNCTION__)); | |||
| 1239 | assert(constrainingBase == i)(static_cast <bool> (constrainingBase == i) ? void (0) : __assert_fail ("constrainingBase == i", "clang/lib/Sema/SemaAccess.cpp" , 1239, __extension__ __PRETTY_FUNCTION__)); | |||
| 1240 | break; | |||
| 1241 | } | |||
| 1242 | } | |||
| 1243 | ||||
| 1244 | // If we don't have a constraining base, the access failure must be | |||
| 1245 | // due to the original declaration. | |||
| 1246 | if (constrainingBase == path.end()) | |||
| 1247 | return diagnoseBadDirectAccess(S, EC, entity); | |||
| 1248 | ||||
| 1249 | // We're constrained by inheritance, but we want to say | |||
| 1250 | // "declared private here" if we're diagnosing a hierarchy | |||
| 1251 | // conversion and this is the final step. | |||
| 1252 | unsigned diagnostic; | |||
| 1253 | if (entity.isMemberAccess() || | |||
| 1254 | constrainingBase + 1 != path.end()) { | |||
| 1255 | diagnostic = diag::note_access_constrained_by_path; | |||
| 1256 | } else { | |||
| 1257 | diagnostic = diag::note_access_natural; | |||
| 1258 | } | |||
| 1259 | ||||
| 1260 | const CXXBaseSpecifier *base = constrainingBase->Base; | |||
| ||||
| 1261 | ||||
| 1262 | S.Diag(base->getSourceRange().getBegin(), diagnostic) | |||
| 1263 | << base->getSourceRange() | |||
| 1264 | << (base->getAccessSpecifier() == AS_protected) | |||
| 1265 | << (base->getAccessSpecifierAsWritten() == AS_none); | |||
| 1266 | ||||
| 1267 | if (entity.isMemberAccess()) | |||
| 1268 | S.Diag(entity.getTargetDecl()->getLocation(), | |||
| 1269 | diag::note_member_declared_at); | |||
| 1270 | } | |||
| 1271 | ||||
| 1272 | static void DiagnoseBadAccess(Sema &S, SourceLocation Loc, | |||
| 1273 | const EffectiveContext &EC, | |||
| 1274 | AccessTarget &Entity) { | |||
| 1275 | const CXXRecordDecl *NamingClass = Entity.getNamingClass(); | |||
| 1276 | const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass(); | |||
| 1277 | NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr); | |||
| 1278 | ||||
| 1279 | S.Diag(Loc, Entity.getDiag()) | |||
| 1280 | << (Entity.getAccess() == AS_protected) | |||
| 1281 | << (D
| |||
| 1282 | << S.Context.getTypeDeclType(NamingClass) | |||
| 1283 | << S.Context.getTypeDeclType(DeclaringClass); | |||
| 1284 | DiagnoseAccessPath(S, EC, Entity); | |||
| 1285 | } | |||
| 1286 | ||||
| 1287 | /// MSVC has a bug where if during an using declaration name lookup, | |||
| 1288 | /// the declaration found is unaccessible (private) and that declaration | |||
| 1289 | /// was bring into scope via another using declaration whose target | |||
| 1290 | /// declaration is accessible (public) then no error is generated. | |||
| 1291 | /// Example: | |||
| 1292 | /// class A { | |||
| 1293 | /// public: | |||
| 1294 | /// int f(); | |||
| 1295 | /// }; | |||
| 1296 | /// class B : public A { | |||
| 1297 | /// private: | |||
| 1298 | /// using A::f; | |||
| 1299 | /// }; | |||
| 1300 | /// class C : public B { | |||
| 1301 | /// private: | |||
| 1302 | /// using B::f; | |||
| 1303 | /// }; | |||
| 1304 | /// | |||
| 1305 | /// Here, B::f is private so this should fail in Standard C++, but | |||
| 1306 | /// because B::f refers to A::f which is public MSVC accepts it. | |||
| 1307 | static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S, | |||
| 1308 | SourceLocation AccessLoc, | |||
| 1309 | AccessTarget &Entity) { | |||
| 1310 | if (UsingShadowDecl *Shadow = | |||
| 1311 | dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) | |||
| 1312 | if (UsingDecl *UD = dyn_cast<UsingDecl>(Shadow->getIntroducer())) { | |||
| 1313 | const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl(); | |||
| 1314 | if (Entity.getTargetDecl()->getAccess() == AS_private && | |||
| 1315 | (OrigDecl->getAccess() == AS_public || | |||
| 1316 | OrigDecl->getAccess() == AS_protected)) { | |||
| 1317 | S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible) | |||
| 1318 | << UD->getQualifiedNameAsString() | |||
| 1319 | << OrigDecl->getQualifiedNameAsString(); | |||
| 1320 | return true; | |||
| 1321 | } | |||
| 1322 | } | |||
| 1323 | return false; | |||
| 1324 | } | |||
| 1325 | ||||
| 1326 | /// Determines whether the accessed entity is accessible. Public members | |||
| 1327 | /// have been weeded out by this point. | |||
| 1328 | static AccessResult IsAccessible(Sema &S, | |||
| 1329 | const EffectiveContext &EC, | |||
| 1330 | AccessTarget &Entity) { | |||
| 1331 | // Determine the actual naming class. | |||
| 1332 | const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass(); | |||
| 1333 | ||||
| 1334 | AccessSpecifier UnprivilegedAccess = Entity.getAccess(); | |||
| 1335 | assert(UnprivilegedAccess != AS_public && "public access not weeded out")(static_cast <bool> (UnprivilegedAccess != AS_public && "public access not weeded out") ? void (0) : __assert_fail ( "UnprivilegedAccess != AS_public && \"public access not weeded out\"" , "clang/lib/Sema/SemaAccess.cpp", 1335, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1336 | ||||
| 1337 | // Before we try to recalculate access paths, try to white-list | |||
| 1338 | // accesses which just trade in on the final step, i.e. accesses | |||
| 1339 | // which don't require [M4] or [B4]. These are by far the most | |||
| 1340 | // common forms of privileged access. | |||
| 1341 | if (UnprivilegedAccess != AS_none) { | |||
| 1342 | switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) { | |||
| 1343 | case AR_dependent: | |||
| 1344 | // This is actually an interesting policy decision. We don't | |||
| 1345 | // *have* to delay immediately here: we can do the full access | |||
| 1346 | // calculation in the hope that friendship on some intermediate | |||
| 1347 | // class will make the declaration accessible non-dependently. | |||
| 1348 | // But that's not cheap, and odds are very good (note: assertion | |||
| 1349 | // made without data) that the friend declaration will determine | |||
| 1350 | // access. | |||
| 1351 | return AR_dependent; | |||
| 1352 | ||||
| 1353 | case AR_accessible: return AR_accessible; | |||
| 1354 | case AR_inaccessible: break; | |||
| 1355 | } | |||
| 1356 | } | |||
| 1357 | ||||
| 1358 | AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext(); | |||
| 1359 | ||||
| 1360 | // We lower member accesses to base accesses by pretending that the | |||
| 1361 | // member is a base class of its declaring class. | |||
| 1362 | AccessSpecifier FinalAccess; | |||
| 1363 | ||||
| 1364 | if (Entity.isMemberAccess()) { | |||
| 1365 | // Determine if the declaration is accessible from EC when named | |||
| 1366 | // in its declaring class. | |||
| 1367 | NamedDecl *Target = Entity.getTargetDecl(); | |||
| 1368 | const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass(); | |||
| 1369 | ||||
| 1370 | FinalAccess = Target->getAccess(); | |||
| 1371 | switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) { | |||
| 1372 | case AR_accessible: | |||
| 1373 | // Target is accessible at EC when named in its declaring class. | |||
| 1374 | // We can now hill-climb and simply check whether the declaring | |||
| 1375 | // class is accessible as a base of the naming class. This is | |||
| 1376 | // equivalent to checking the access of a notional public | |||
| 1377 | // member with no instance context. | |||
| 1378 | FinalAccess = AS_public; | |||
| 1379 | Entity.suppressInstanceContext(); | |||
| 1380 | break; | |||
| 1381 | case AR_inaccessible: break; | |||
| 1382 | case AR_dependent: return AR_dependent; // see above | |||
| 1383 | } | |||
| 1384 | ||||
| 1385 | if (DeclaringClass == NamingClass) | |||
| 1386 | return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible); | |||
| 1387 | } else { | |||
| 1388 | FinalAccess = AS_public; | |||
| 1389 | } | |||
| 1390 | ||||
| 1391 | assert(Entity.getDeclaringClass() != NamingClass)(static_cast <bool> (Entity.getDeclaringClass() != NamingClass ) ? void (0) : __assert_fail ("Entity.getDeclaringClass() != NamingClass" , "clang/lib/Sema/SemaAccess.cpp", 1391, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1392 | ||||
| 1393 | // Append the declaration's access if applicable. | |||
| 1394 | CXXBasePaths Paths; | |||
| 1395 | CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths); | |||
| 1396 | if (!Path) | |||
| 1397 | return AR_dependent; | |||
| 1398 | ||||
| 1399 | assert(Path->Access <= UnprivilegedAccess &&(static_cast <bool> (Path->Access <= UnprivilegedAccess && "access along best path worse than direct?") ? void (0) : __assert_fail ("Path->Access <= UnprivilegedAccess && \"access along best path worse than direct?\"" , "clang/lib/Sema/SemaAccess.cpp", 1400, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1400 | "access along best path worse than direct?")(static_cast <bool> (Path->Access <= UnprivilegedAccess && "access along best path worse than direct?") ? void (0) : __assert_fail ("Path->Access <= UnprivilegedAccess && \"access along best path worse than direct?\"" , "clang/lib/Sema/SemaAccess.cpp", 1400, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1401 | if (Path->Access == AS_public) | |||
| 1402 | return AR_accessible; | |||
| 1403 | return AR_inaccessible; | |||
| 1404 | } | |||
| 1405 | ||||
| 1406 | static void DelayDependentAccess(Sema &S, | |||
| 1407 | const EffectiveContext &EC, | |||
| 1408 | SourceLocation Loc, | |||
| 1409 | const AccessTarget &Entity) { | |||
| 1410 | assert(EC.isDependent() && "delaying non-dependent access")(static_cast <bool> (EC.isDependent() && "delaying non-dependent access" ) ? void (0) : __assert_fail ("EC.isDependent() && \"delaying non-dependent access\"" , "clang/lib/Sema/SemaAccess.cpp", 1410, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1411 | DeclContext *DC = EC.getInnerContext(); | |||
| 1412 | assert(DC->isDependentContext() && "delaying non-dependent access")(static_cast <bool> (DC->isDependentContext() && "delaying non-dependent access") ? void (0) : __assert_fail ( "DC->isDependentContext() && \"delaying non-dependent access\"" , "clang/lib/Sema/SemaAccess.cpp", 1412, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1413 | DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access, | |||
| 1414 | Loc, | |||
| 1415 | Entity.isMemberAccess(), | |||
| 1416 | Entity.getAccess(), | |||
| 1417 | Entity.getTargetDecl(), | |||
| 1418 | Entity.getNamingClass(), | |||
| 1419 | Entity.getBaseObjectType(), | |||
| 1420 | Entity.getDiag()); | |||
| 1421 | } | |||
| 1422 | ||||
| 1423 | /// Checks access to an entity from the given effective context. | |||
| 1424 | static AccessResult CheckEffectiveAccess(Sema &S, | |||
| 1425 | const EffectiveContext &EC, | |||
| 1426 | SourceLocation Loc, | |||
| 1427 | AccessTarget &Entity) { | |||
| 1428 | assert(Entity.getAccess() != AS_public && "called for public access!")(static_cast <bool> (Entity.getAccess() != AS_public && "called for public access!") ? void (0) : __assert_fail ("Entity.getAccess() != AS_public && \"called for public access!\"" , "clang/lib/Sema/SemaAccess.cpp", 1428, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1429 | ||||
| 1430 | switch (IsAccessible(S, EC, Entity)) { | |||
| 1431 | case AR_dependent: | |||
| 1432 | DelayDependentAccess(S, EC, Loc, Entity); | |||
| 1433 | return AR_dependent; | |||
| 1434 | ||||
| 1435 | case AR_inaccessible: | |||
| 1436 | if (S.getLangOpts().MSVCCompat && | |||
| 1437 | IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity)) | |||
| 1438 | return AR_accessible; | |||
| 1439 | if (!Entity.isQuiet()) | |||
| 1440 | DiagnoseBadAccess(S, Loc, EC, Entity); | |||
| 1441 | return AR_inaccessible; | |||
| 1442 | ||||
| 1443 | case AR_accessible: | |||
| 1444 | return AR_accessible; | |||
| 1445 | } | |||
| 1446 | ||||
| 1447 | // silence unnecessary warning | |||
| 1448 | llvm_unreachable("invalid access result")::llvm::llvm_unreachable_internal("invalid access result", "clang/lib/Sema/SemaAccess.cpp" , 1448); | |||
| 1449 | } | |||
| 1450 | ||||
| 1451 | static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc, | |||
| 1452 | AccessTarget &Entity) { | |||
| 1453 | // If the access path is public, it's accessible everywhere. | |||
| 1454 | if (Entity.getAccess() == AS_public) | |||
| 1455 | return Sema::AR_accessible; | |||
| 1456 | ||||
| 1457 | // If we're currently parsing a declaration, we may need to delay | |||
| 1458 | // access control checking, because our effective context might be | |||
| 1459 | // different based on what the declaration comes out as. | |||
| 1460 | // | |||
| 1461 | // For example, we might be parsing a declaration with a scope | |||
| 1462 | // specifier, like this: | |||
| 1463 | // A::private_type A::foo() { ... } | |||
| 1464 | // | |||
| 1465 | // Or we might be parsing something that will turn out to be a friend: | |||
| 1466 | // void foo(A::private_type); | |||
| 1467 | // void B::foo(A::private_type); | |||
| 1468 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { | |||
| 1469 | S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity)); | |||
| 1470 | return Sema::AR_delayed; | |||
| 1471 | } | |||
| 1472 | ||||
| 1473 | EffectiveContext EC(S.CurContext); | |||
| 1474 | switch (CheckEffectiveAccess(S, EC, Loc, Entity)) { | |||
| 1475 | case AR_accessible: return Sema::AR_accessible; | |||
| 1476 | case AR_inaccessible: return Sema::AR_inaccessible; | |||
| 1477 | case AR_dependent: return Sema::AR_dependent; | |||
| 1478 | } | |||
| 1479 | llvm_unreachable("invalid access result")::llvm::llvm_unreachable_internal("invalid access result", "clang/lib/Sema/SemaAccess.cpp" , 1479); | |||
| 1480 | } | |||
| 1481 | ||||
| 1482 | void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) { | |||
| 1483 | // Access control for names used in the declarations of functions | |||
| 1484 | // and function templates should normally be evaluated in the context | |||
| 1485 | // of the declaration, just in case it's a friend of something. | |||
| 1486 | // However, this does not apply to local extern declarations. | |||
| 1487 | ||||
| 1488 | DeclContext *DC = D->getDeclContext(); | |||
| 1489 | if (D->isLocalExternDecl()) { | |||
| 1490 | DC = D->getLexicalDeclContext(); | |||
| 1491 | } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) { | |||
| 1492 | DC = FN; | |||
| 1493 | } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) { | |||
| 1494 | if (isa<DeclContext>(TD->getTemplatedDecl())) | |||
| 1495 | DC = cast<DeclContext>(TD->getTemplatedDecl()); | |||
| 1496 | } else if (auto *RD = dyn_cast<RequiresExprBodyDecl>(D)) { | |||
| 1497 | DC = RD; | |||
| 1498 | } | |||
| 1499 | ||||
| 1500 | EffectiveContext EC(DC); | |||
| 1501 | ||||
| 1502 | AccessTarget Target(DD.getAccessData()); | |||
| 1503 | ||||
| 1504 | if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible) | |||
| 1505 | DD.Triggered = true; | |||
| 1506 | } | |||
| 1507 | ||||
| 1508 | void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD, | |||
| 1509 | const MultiLevelTemplateArgumentList &TemplateArgs) { | |||
| 1510 | SourceLocation Loc = DD.getAccessLoc(); | |||
| 1511 | AccessSpecifier Access = DD.getAccess(); | |||
| 1512 | ||||
| 1513 | Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(), | |||
| 1514 | TemplateArgs); | |||
| 1515 | if (!NamingD) return; | |||
| 1516 | Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(), | |||
| 1517 | TemplateArgs); | |||
| 1518 | if (!TargetD) return; | |||
| 1519 | ||||
| 1520 | if (DD.isAccessToMember()) { | |||
| 1521 | CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD); | |||
| 1522 | NamedDecl *TargetDecl = cast<NamedDecl>(TargetD); | |||
| 1523 | QualType BaseObjectType = DD.getAccessBaseObjectType(); | |||
| 1524 | if (!BaseObjectType.isNull()) { | |||
| 1525 | BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc, | |||
| 1526 | DeclarationName()); | |||
| 1527 | if (BaseObjectType.isNull()) return; | |||
| 1528 | } | |||
| 1529 | ||||
| 1530 | AccessTarget Entity(Context, | |||
| 1531 | AccessTarget::Member, | |||
| 1532 | NamingClass, | |||
| 1533 | DeclAccessPair::make(TargetDecl, Access), | |||
| 1534 | BaseObjectType); | |||
| 1535 | Entity.setDiag(DD.getDiagnostic()); | |||
| 1536 | CheckAccess(*this, Loc, Entity); | |||
| 1537 | } else { | |||
| 1538 | AccessTarget Entity(Context, | |||
| 1539 | AccessTarget::Base, | |||
| 1540 | cast<CXXRecordDecl>(TargetD), | |||
| 1541 | cast<CXXRecordDecl>(NamingD), | |||
| 1542 | Access); | |||
| 1543 | Entity.setDiag(DD.getDiagnostic()); | |||
| 1544 | CheckAccess(*this, Loc, Entity); | |||
| 1545 | } | |||
| 1546 | } | |||
| 1547 | ||||
| 1548 | Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E, | |||
| 1549 | DeclAccessPair Found) { | |||
| 1550 | if (!getLangOpts().AccessControl || | |||
| 1551 | !E->getNamingClass() || | |||
| 1552 | Found.getAccess() == AS_public) | |||
| 1553 | return AR_accessible; | |||
| 1554 | ||||
| 1555 | AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(), | |||
| 1556 | Found, QualType()); | |||
| 1557 | Entity.setDiag(diag::err_access) << E->getSourceRange(); | |||
| 1558 | ||||
| 1559 | return CheckAccess(*this, E->getNameLoc(), Entity); | |||
| 1560 | } | |||
| 1561 | ||||
| 1562 | /// Perform access-control checking on a previously-unresolved member | |||
| 1563 | /// access which has now been resolved to a member. | |||
| 1564 | Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E, | |||
| 1565 | DeclAccessPair Found) { | |||
| 1566 | if (!getLangOpts().AccessControl || | |||
| 1567 | Found.getAccess() == AS_public) | |||
| 1568 | return AR_accessible; | |||
| 1569 | ||||
| 1570 | QualType BaseType = E->getBaseType(); | |||
| 1571 | if (E->isArrow()) | |||
| 1572 | BaseType = BaseType->castAs<PointerType>()->getPointeeType(); | |||
| 1573 | ||||
| 1574 | AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(), | |||
| 1575 | Found, BaseType); | |||
| 1576 | Entity.setDiag(diag::err_access) << E->getSourceRange(); | |||
| 1577 | ||||
| 1578 | return CheckAccess(*this, E->getMemberLoc(), Entity); | |||
| 1579 | } | |||
| 1580 | ||||
| 1581 | /// Is the given member accessible for the purposes of deciding whether to | |||
| 1582 | /// define a special member function as deleted? | |||
| 1583 | bool Sema::isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass, | |||
| 1584 | DeclAccessPair Found, | |||
| 1585 | QualType ObjectType, | |||
| 1586 | SourceLocation Loc, | |||
| 1587 | const PartialDiagnostic &Diag) { | |||
| 1588 | // Fast path. | |||
| 1589 | if (Found.getAccess() == AS_public || !getLangOpts().AccessControl) | |||
| 1590 | return true; | |||
| 1591 | ||||
| 1592 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, | |||
| 1593 | ObjectType); | |||
| 1594 | ||||
| 1595 | // Suppress diagnostics. | |||
| 1596 | Entity.setDiag(Diag); | |||
| 1597 | ||||
| 1598 | switch (CheckAccess(*this, Loc, Entity)) { | |||
| 1599 | case AR_accessible: return true; | |||
| 1600 | case AR_inaccessible: return false; | |||
| 1601 | case AR_dependent: llvm_unreachable("dependent for =delete computation")::llvm::llvm_unreachable_internal("dependent for =delete computation" , "clang/lib/Sema/SemaAccess.cpp", 1601); | |||
| 1602 | case AR_delayed: llvm_unreachable("cannot delay =delete computation")::llvm::llvm_unreachable_internal("cannot delay =delete computation" , "clang/lib/Sema/SemaAccess.cpp", 1602); | |||
| 1603 | } | |||
| 1604 | llvm_unreachable("bad access result")::llvm::llvm_unreachable_internal("bad access result", "clang/lib/Sema/SemaAccess.cpp" , 1604); | |||
| 1605 | } | |||
| 1606 | ||||
| 1607 | Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc, | |||
| 1608 | CXXDestructorDecl *Dtor, | |||
| 1609 | const PartialDiagnostic &PDiag, | |||
| 1610 | QualType ObjectTy) { | |||
| 1611 | if (!getLangOpts().AccessControl) | |||
| 1612 | return AR_accessible; | |||
| 1613 | ||||
| 1614 | // There's never a path involved when checking implicit destructor access. | |||
| 1615 | AccessSpecifier Access = Dtor->getAccess(); | |||
| 1616 | if (Access == AS_public) | |||
| 1617 | return AR_accessible; | |||
| 1618 | ||||
| 1619 | CXXRecordDecl *NamingClass = Dtor->getParent(); | |||
| 1620 | if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass); | |||
| 1621 | ||||
| 1622 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, | |||
| 1623 | DeclAccessPair::make(Dtor, Access), | |||
| 1624 | ObjectTy); | |||
| 1625 | Entity.setDiag(PDiag); // TODO: avoid copy | |||
| 1626 | ||||
| 1627 | return CheckAccess(*this, Loc, Entity); | |||
| 1628 | } | |||
| 1629 | ||||
| 1630 | /// Checks access to a constructor. | |||
| 1631 | Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc, | |||
| 1632 | CXXConstructorDecl *Constructor, | |||
| 1633 | DeclAccessPair Found, | |||
| 1634 | const InitializedEntity &Entity, | |||
| 1635 | bool IsCopyBindingRefToTemp) { | |||
| 1636 | if (!getLangOpts().AccessControl || Found.getAccess() == AS_public) | |||
| 1637 | return AR_accessible; | |||
| 1638 | ||||
| 1639 | PartialDiagnostic PD(PDiag()); | |||
| 1640 | switch (Entity.getKind()) { | |||
| 1641 | default: | |||
| 1642 | PD = PDiag(IsCopyBindingRefToTemp | |||
| 1643 | ? diag::ext_rvalue_to_reference_access_ctor | |||
| 1644 | : diag::err_access_ctor); | |||
| 1645 | ||||
| 1646 | break; | |||
| 1647 | ||||
| 1648 | case InitializedEntity::EK_Base: | |||
| 1649 | PD = PDiag(diag::err_access_base_ctor); | |||
| 1650 | PD << Entity.isInheritedVirtualBase() | |||
| 1651 | << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor); | |||
| 1652 | break; | |||
| 1653 | ||||
| 1654 | case InitializedEntity::EK_Member: | |||
| 1655 | case InitializedEntity::EK_ParenAggInitMember: { | |||
| 1656 | const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl()); | |||
| 1657 | PD = PDiag(diag::err_access_field_ctor); | |||
| 1658 | PD << Field->getType() << getSpecialMember(Constructor); | |||
| 1659 | break; | |||
| 1660 | } | |||
| 1661 | ||||
| 1662 | case InitializedEntity::EK_LambdaCapture: { | |||
| 1663 | StringRef VarName = Entity.getCapturedVarName(); | |||
| 1664 | PD = PDiag(diag::err_access_lambda_capture); | |||
| 1665 | PD << VarName << Entity.getType() << getSpecialMember(Constructor); | |||
| 1666 | break; | |||
| 1667 | } | |||
| 1668 | ||||
| 1669 | } | |||
| 1670 | ||||
| 1671 | return CheckConstructorAccess(UseLoc, Constructor, Found, Entity, PD); | |||
| 1672 | } | |||
| 1673 | ||||
| 1674 | /// Checks access to a constructor. | |||
| 1675 | Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc, | |||
| 1676 | CXXConstructorDecl *Constructor, | |||
| 1677 | DeclAccessPair Found, | |||
| 1678 | const InitializedEntity &Entity, | |||
| 1679 | const PartialDiagnostic &PD) { | |||
| 1680 | if (!getLangOpts().AccessControl || | |||
| 1681 | Found.getAccess() == AS_public) | |||
| 1682 | return AR_accessible; | |||
| 1683 | ||||
| 1684 | CXXRecordDecl *NamingClass = Constructor->getParent(); | |||
| 1685 | ||||
| 1686 | // Initializing a base sub-object is an instance method call on an | |||
| 1687 | // object of the derived class. Otherwise, we have an instance method | |||
| 1688 | // call on an object of the constructed type. | |||
| 1689 | // | |||
| 1690 | // FIXME: If we have a parent, we're initializing the base class subobject | |||
| 1691 | // in aggregate initialization. It's not clear whether the object class | |||
| 1692 | // should be the base class or the derived class in that case. | |||
| 1693 | CXXRecordDecl *ObjectClass; | |||
| 1694 | if ((Entity.getKind() == InitializedEntity::EK_Base || | |||
| 1695 | Entity.getKind() == InitializedEntity::EK_Delegating) && | |||
| 1696 | !Entity.getParent()) { | |||
| 1697 | ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent(); | |||
| 1698 | } else if (auto *Shadow = | |||
| 1699 | dyn_cast<ConstructorUsingShadowDecl>(Found.getDecl())) { | |||
| 1700 | // If we're using an inheriting constructor to construct an object, | |||
| 1701 | // the object class is the derived class, not the base class. | |||
| 1702 | ObjectClass = Shadow->getParent(); | |||
| 1703 | } else { | |||
| 1704 | ObjectClass = NamingClass; | |||
| 1705 | } | |||
| 1706 | ||||
| 1707 | AccessTarget AccessEntity( | |||
| 1708 | Context, AccessTarget::Member, NamingClass, | |||
| 1709 | DeclAccessPair::make(Constructor, Found.getAccess()), | |||
| 1710 | Context.getTypeDeclType(ObjectClass)); | |||
| 1711 | AccessEntity.setDiag(PD); | |||
| 1712 | ||||
| 1713 | return CheckAccess(*this, UseLoc, AccessEntity); | |||
| 1714 | } | |||
| 1715 | ||||
| 1716 | /// Checks access to an overloaded operator new or delete. | |||
| 1717 | Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc, | |||
| 1718 | SourceRange PlacementRange, | |||
| 1719 | CXXRecordDecl *NamingClass, | |||
| 1720 | DeclAccessPair Found, | |||
| 1721 | bool Diagnose) { | |||
| 1722 | if (!getLangOpts().AccessControl || | |||
| 1723 | !NamingClass || | |||
| 1724 | Found.getAccess() == AS_public) | |||
| 1725 | return AR_accessible; | |||
| 1726 | ||||
| 1727 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, | |||
| 1728 | QualType()); | |||
| 1729 | if (Diagnose) | |||
| 1730 | Entity.setDiag(diag::err_access) | |||
| 1731 | << PlacementRange; | |||
| 1732 | ||||
| 1733 | return CheckAccess(*this, OpLoc, Entity); | |||
| 1734 | } | |||
| 1735 | ||||
| 1736 | /// Checks access to a member. | |||
| 1737 | Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc, | |||
| 1738 | CXXRecordDecl *NamingClass, | |||
| 1739 | DeclAccessPair Found) { | |||
| 1740 | if (!getLangOpts().AccessControl || | |||
| 1741 | !NamingClass || | |||
| 1742 | Found.getAccess() == AS_public) | |||
| 1743 | return AR_accessible; | |||
| 1744 | ||||
| 1745 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, | |||
| 1746 | Found, QualType()); | |||
| 1747 | ||||
| 1748 | return CheckAccess(*this, UseLoc, Entity); | |||
| 1749 | } | |||
| 1750 | ||||
| 1751 | /// Checks implicit access to a member in a structured binding. | |||
| 1752 | Sema::AccessResult | |||
| 1753 | Sema::CheckStructuredBindingMemberAccess(SourceLocation UseLoc, | |||
| 1754 | CXXRecordDecl *DecomposedClass, | |||
| 1755 | DeclAccessPair Field) { | |||
| 1756 | if (!getLangOpts().AccessControl || | |||
| 1757 | Field.getAccess() == AS_public) | |||
| 1758 | return AR_accessible; | |||
| 1759 | ||||
| 1760 | AccessTarget Entity(Context, AccessTarget::Member, DecomposedClass, Field, | |||
| 1761 | Context.getRecordType(DecomposedClass)); | |||
| 1762 | Entity.setDiag(diag::err_decomp_decl_inaccessible_field); | |||
| 1763 | ||||
| 1764 | return CheckAccess(*this, UseLoc, Entity); | |||
| 1765 | } | |||
| 1766 | ||||
| 1767 | Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc, | |||
| 1768 | Expr *ObjectExpr, | |||
| 1769 | const SourceRange &Range, | |||
| 1770 | DeclAccessPair Found) { | |||
| 1771 | if (!getLangOpts().AccessControl || Found.getAccess() == AS_public) | |||
| 1772 | return AR_accessible; | |||
| 1773 | ||||
| 1774 | const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>(); | |||
| 1775 | CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl()); | |||
| 1776 | ||||
| 1777 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, | |||
| 1778 | ObjectExpr->getType()); | |||
| 1779 | Entity.setDiag(diag::err_access) << ObjectExpr->getSourceRange() << Range; | |||
| 1780 | ||||
| 1781 | return CheckAccess(*this, OpLoc, Entity); | |||
| 1782 | } | |||
| 1783 | ||||
| 1784 | /// Checks access to an overloaded member operator, including | |||
| 1785 | /// conversion operators. | |||
| 1786 | Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc, | |||
| 1787 | Expr *ObjectExpr, | |||
| 1788 | Expr *ArgExpr, | |||
| 1789 | DeclAccessPair Found) { | |||
| 1790 | return CheckMemberOperatorAccess( | |||
| 1791 | OpLoc, ObjectExpr, ArgExpr ? ArgExpr->getSourceRange() : SourceRange(), | |||
| 1792 | Found); | |||
| 1793 | } | |||
| 1794 | ||||
| 1795 | Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc, | |||
| 1796 | Expr *ObjectExpr, | |||
| 1797 | ArrayRef<Expr *> ArgExprs, | |||
| 1798 | DeclAccessPair FoundDecl) { | |||
| 1799 | SourceRange R; | |||
| 1800 | if (!ArgExprs.empty()) { | |||
| 1801 | R = SourceRange(ArgExprs.front()->getBeginLoc(), | |||
| 1802 | ArgExprs.back()->getEndLoc()); | |||
| 1803 | } | |||
| 1804 | ||||
| 1805 | return CheckMemberOperatorAccess(OpLoc, ObjectExpr, R, FoundDecl); | |||
| 1806 | } | |||
| 1807 | ||||
| 1808 | /// Checks access to the target of a friend declaration. | |||
| 1809 | Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) { | |||
| 1810 | assert(isa<CXXMethodDecl>(target->getAsFunction()))(static_cast <bool> (isa<CXXMethodDecl>(target-> getAsFunction())) ? void (0) : __assert_fail ("isa<CXXMethodDecl>(target->getAsFunction())" , "clang/lib/Sema/SemaAccess.cpp", 1810, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1811 | ||||
| 1812 | // Friendship lookup is a redeclaration lookup, so there's never an | |||
| 1813 | // inheritance path modifying access. | |||
| 1814 | AccessSpecifier access = target->getAccess(); | |||
| 1815 | ||||
| 1816 | if (!getLangOpts().AccessControl || access == AS_public) | |||
| 1817 | return AR_accessible; | |||
| 1818 | ||||
| 1819 | CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction()); | |||
| 1820 | ||||
| 1821 | AccessTarget entity(Context, AccessTarget::Member, | |||
| 1822 | cast<CXXRecordDecl>(target->getDeclContext()), | |||
| 1823 | DeclAccessPair::make(target, access), | |||
| 1824 | /*no instance context*/ QualType()); | |||
| 1825 | entity.setDiag(diag::err_access_friend_function) | |||
| 1826 | << (method->getQualifier() ? method->getQualifierLoc().getSourceRange() | |||
| 1827 | : method->getNameInfo().getSourceRange()); | |||
| 1828 | ||||
| 1829 | // We need to bypass delayed-diagnostics because we might be called | |||
| 1830 | // while the ParsingDeclarator is active. | |||
| 1831 | EffectiveContext EC(CurContext); | |||
| 1832 | switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) { | |||
| 1833 | case ::AR_accessible: return Sema::AR_accessible; | |||
| 1834 | case ::AR_inaccessible: return Sema::AR_inaccessible; | |||
| 1835 | case ::AR_dependent: return Sema::AR_dependent; | |||
| 1836 | } | |||
| 1837 | llvm_unreachable("invalid access result")::llvm::llvm_unreachable_internal("invalid access result", "clang/lib/Sema/SemaAccess.cpp" , 1837); | |||
| 1838 | } | |||
| 1839 | ||||
| 1840 | Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr, | |||
| 1841 | DeclAccessPair Found) { | |||
| 1842 | if (!getLangOpts().AccessControl || | |||
| 1843 | Found.getAccess() == AS_none || | |||
| 1844 | Found.getAccess() == AS_public) | |||
| 1845 | return AR_accessible; | |||
| 1846 | ||||
| 1847 | OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression; | |||
| 1848 | CXXRecordDecl *NamingClass = Ovl->getNamingClass(); | |||
| 1849 | ||||
| 1850 | AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found, | |||
| 1851 | /*no instance context*/ QualType()); | |||
| 1852 | Entity.setDiag(diag::err_access) | |||
| 1853 | << Ovl->getSourceRange(); | |||
| 1854 | ||||
| 1855 | return CheckAccess(*this, Ovl->getNameLoc(), Entity); | |||
| 1856 | } | |||
| 1857 | ||||
| 1858 | /// Checks access for a hierarchy conversion. | |||
| 1859 | /// | |||
| 1860 | /// \param ForceCheck true if this check should be performed even if access | |||
| 1861 | /// control is disabled; some things rely on this for semantics | |||
| 1862 | /// \param ForceUnprivileged true if this check should proceed as if the | |||
| 1863 | /// context had no special privileges | |||
| 1864 | Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc, | |||
| 1865 | QualType Base, | |||
| 1866 | QualType Derived, | |||
| 1867 | const CXXBasePath &Path, | |||
| 1868 | unsigned DiagID, | |||
| 1869 | bool ForceCheck, | |||
| 1870 | bool ForceUnprivileged) { | |||
| 1871 | if (!ForceCheck && !getLangOpts().AccessControl) | |||
| ||||
| 1872 | return AR_accessible; | |||
| 1873 | ||||
| 1874 | if (Path.Access == AS_public) | |||
| 1875 | return AR_accessible; | |||
| 1876 | ||||
| 1877 | CXXRecordDecl *BaseD, *DerivedD; | |||
| 1878 | BaseD = cast<CXXRecordDecl>(Base->castAs<RecordType>()->getDecl()); | |||
| 1879 | DerivedD = cast<CXXRecordDecl>(Derived->castAs<RecordType>()->getDecl()); | |||
| 1880 | ||||
| 1881 | AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD, | |||
| 1882 | Path.Access); | |||
| 1883 | if (DiagID) | |||
| 1884 | Entity.setDiag(DiagID) << Derived << Base; | |||
| 1885 | ||||
| 1886 | if (ForceUnprivileged) { | |||
| 1887 | switch (CheckEffectiveAccess(*this, EffectiveContext(), | |||
| 1888 | AccessLoc, Entity)) { | |||
| 1889 | case ::AR_accessible: return Sema::AR_accessible; | |||
| 1890 | case ::AR_inaccessible: return Sema::AR_inaccessible; | |||
| 1891 | case ::AR_dependent: return Sema::AR_dependent; | |||
| 1892 | } | |||
| 1893 | llvm_unreachable("unexpected result from CheckEffectiveAccess")::llvm::llvm_unreachable_internal("unexpected result from CheckEffectiveAccess" , "clang/lib/Sema/SemaAccess.cpp", 1893); | |||
| 1894 | } | |||
| 1895 | return CheckAccess(*this, AccessLoc, Entity); | |||
| 1896 | } | |||
| 1897 | ||||
| 1898 | /// Checks access to all the declarations in the given result set. | |||
| 1899 | void Sema::CheckLookupAccess(const LookupResult &R) { | |||
| 1900 | assert(getLangOpts().AccessControl(static_cast <bool> (getLangOpts().AccessControl && "performing access check without access control") ? void (0) : __assert_fail ("getLangOpts().AccessControl && \"performing access check without access control\"" , "clang/lib/Sema/SemaAccess.cpp", 1901, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1901 | && "performing access check without access control")(static_cast <bool> (getLangOpts().AccessControl && "performing access check without access control") ? void (0) : __assert_fail ("getLangOpts().AccessControl && \"performing access check without access control\"" , "clang/lib/Sema/SemaAccess.cpp", 1901, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1902 | assert(R.getNamingClass() && "performing access check without naming class")(static_cast <bool> (R.getNamingClass() && "performing access check without naming class" ) ? void (0) : __assert_fail ("R.getNamingClass() && \"performing access check without naming class\"" , "clang/lib/Sema/SemaAccess.cpp", 1902, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1903 | ||||
| 1904 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { | |||
| 1905 | if (I.getAccess() != AS_public) { | |||
| 1906 | AccessTarget Entity(Context, AccessedEntity::Member, | |||
| 1907 | R.getNamingClass(), I.getPair(), | |||
| 1908 | R.getBaseObjectType()); | |||
| 1909 | Entity.setDiag(diag::err_access); | |||
| 1910 | CheckAccess(*this, R.getNameLoc(), Entity); | |||
| 1911 | } | |||
| 1912 | } | |||
| 1913 | } | |||
| 1914 | ||||
| 1915 | /// Checks access to Target from the given class. The check will take access | |||
| 1916 | /// specifiers into account, but no member access expressions and such. | |||
| 1917 | /// | |||
| 1918 | /// \param Target the declaration to check if it can be accessed | |||
| 1919 | /// \param NamingClass the class in which the lookup was started. | |||
| 1920 | /// \param BaseType type of the left side of member access expression. | |||
| 1921 | /// \p BaseType and \p NamingClass are used for C++ access control. | |||
| 1922 | /// Depending on the lookup case, they should be set to the following: | |||
| 1923 | /// - lhs.target (member access without a qualifier): | |||
| 1924 | /// \p BaseType and \p NamingClass are both the type of 'lhs'. | |||
| 1925 | /// - lhs.X::target (member access with a qualifier): | |||
| 1926 | /// BaseType is the type of 'lhs', NamingClass is 'X' | |||
| 1927 | /// - X::target (qualified lookup without member access): | |||
| 1928 | /// BaseType is null, NamingClass is 'X'. | |||
| 1929 | /// - target (unqualified lookup). | |||
| 1930 | /// BaseType is null, NamingClass is the parent class of 'target'. | |||
| 1931 | /// \return true if the Target is accessible from the Class, false otherwise. | |||
| 1932 | bool Sema::IsSimplyAccessible(NamedDecl *Target, CXXRecordDecl *NamingClass, | |||
| 1933 | QualType BaseType) { | |||
| 1934 | // Perform the C++ accessibility checks first. | |||
| 1935 | if (Target->isCXXClassMember() && NamingClass) { | |||
| 1936 | if (!getLangOpts().CPlusPlus) | |||
| 1937 | return false; | |||
| 1938 | // The unprivileged access is AS_none as we don't know how the member was | |||
| 1939 | // accessed, which is described by the access in DeclAccessPair. | |||
| 1940 | // `IsAccessible` will examine the actual access of Target (i.e. | |||
| 1941 | // Decl->getAccess()) when calculating the access. | |||
| 1942 | AccessTarget Entity(Context, AccessedEntity::Member, NamingClass, | |||
| 1943 | DeclAccessPair::make(Target, AS_none), BaseType); | |||
| 1944 | EffectiveContext EC(CurContext); | |||
| 1945 | return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible; | |||
| 1946 | } | |||
| 1947 | ||||
| 1948 | if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Target)) { | |||
| 1949 | // @public and @package ivars are always accessible. | |||
| 1950 | if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public || | |||
| 1951 | Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package) | |||
| 1952 | return true; | |||
| 1953 | ||||
| 1954 | // If we are inside a class or category implementation, determine the | |||
| 1955 | // interface we're in. | |||
| 1956 | ObjCInterfaceDecl *ClassOfMethodDecl = nullptr; | |||
| 1957 | if (ObjCMethodDecl *MD = getCurMethodDecl()) | |||
| 1958 | ClassOfMethodDecl = MD->getClassInterface(); | |||
| 1959 | else if (FunctionDecl *FD = getCurFunctionDecl()) { | |||
| 1960 | if (ObjCImplDecl *Impl | |||
| 1961 | = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) { | |||
| 1962 | if (ObjCImplementationDecl *IMPD | |||
| 1963 | = dyn_cast<ObjCImplementationDecl>(Impl)) | |||
| 1964 | ClassOfMethodDecl = IMPD->getClassInterface(); | |||
| 1965 | else if (ObjCCategoryImplDecl* CatImplClass | |||
| 1966 | = dyn_cast<ObjCCategoryImplDecl>(Impl)) | |||
| 1967 | ClassOfMethodDecl = CatImplClass->getClassInterface(); | |||
| 1968 | } | |||
| 1969 | } | |||
| 1970 | ||||
| 1971 | // If we're not in an interface, this ivar is inaccessible. | |||
| 1972 | if (!ClassOfMethodDecl) | |||
| 1973 | return false; | |||
| 1974 | ||||
| 1975 | // If we're inside the same interface that owns the ivar, we're fine. | |||
| 1976 | if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface())) | |||
| 1977 | return true; | |||
| 1978 | ||||
| 1979 | // If the ivar is private, it's inaccessible. | |||
| 1980 | if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private) | |||
| 1981 | return false; | |||
| 1982 | ||||
| 1983 | return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl); | |||
| 1984 | } | |||
| 1985 | ||||
| 1986 | return true; | |||
| 1987 | } |