Bug Summary

File:clang/lib/Sema/SemaCast.cpp
Warning:line 1349, column 14
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaCast.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-04-14-063029-18377-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp

1//===--- SemaCast.cpp - Semantic Analysis for Casts -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for cast expressions, including
10// 1) C-style casts like '(int) x'
11// 2) C++ functional casts like 'int(x)'
12// 3) C++ named casts like 'static_cast<int>(x)'
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTStructuralEquivalence.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/SemaInternal.h"
27#include "llvm/ADT/SmallVector.h"
28#include <set>
29using namespace clang;
30
31
32
33enum TryCastResult {
34 TC_NotApplicable, ///< The cast method is not applicable.
35 TC_Success, ///< The cast method is appropriate and successful.
36 TC_Extension, ///< The cast method is appropriate and accepted as a
37 ///< language extension.
38 TC_Failed ///< The cast method is appropriate, but failed. A
39 ///< diagnostic has been emitted.
40};
41
42static bool isValidCast(TryCastResult TCR) {
43 return TCR == TC_Success || TCR == TC_Extension;
44}
45
46enum CastType {
47 CT_Const, ///< const_cast
48 CT_Static, ///< static_cast
49 CT_Reinterpret, ///< reinterpret_cast
50 CT_Dynamic, ///< dynamic_cast
51 CT_CStyle, ///< (Type)expr
52 CT_Functional, ///< Type(expr)
53 CT_Addrspace ///< addrspace_cast
54};
55
56namespace {
57 struct CastOperation {
58 CastOperation(Sema &S, QualType destType, ExprResult src)
59 : Self(S), SrcExpr(src), DestType(destType),
60 ResultType(destType.getNonLValueExprType(S.Context)),
61 ValueKind(Expr::getValueKindForType(destType)),
62 Kind(CK_Dependent), IsARCUnbridgedCast(false) {
63
64 if (const BuiltinType *placeholder =
65 src.get()->getType()->getAsPlaceholderType()) {
66 PlaceholderKind = placeholder->getKind();
67 } else {
68 PlaceholderKind = (BuiltinType::Kind) 0;
69 }
70 }
71
72 Sema &Self;
73 ExprResult SrcExpr;
74 QualType DestType;
75 QualType ResultType;
76 ExprValueKind ValueKind;
77 CastKind Kind;
78 BuiltinType::Kind PlaceholderKind;
79 CXXCastPath BasePath;
80 bool IsARCUnbridgedCast;
81
82 SourceRange OpRange;
83 SourceRange DestRange;
84
85 // Top-level semantics-checking routines.
86 void CheckConstCast();
87 void CheckReinterpretCast();
88 void CheckStaticCast();
89 void CheckDynamicCast();
90 void CheckCXXCStyleCast(bool FunctionalCast, bool ListInitialization);
91 void CheckCStyleCast();
92 void CheckBuiltinBitCast();
93 void CheckAddrspaceCast();
94
95 void updatePartOfExplicitCastFlags(CastExpr *CE) {
96 // Walk down from the CE to the OrigSrcExpr, and mark all immediate
97 // ImplicitCastExpr's as being part of ExplicitCastExpr. The original CE
98 // (which is a ExplicitCastExpr), and the OrigSrcExpr are not touched.
99 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(CE->getSubExpr()); CE = ICE)
100 ICE->setIsPartOfExplicitCast(true);
101 }
102
103 /// Complete an apparently-successful cast operation that yields
104 /// the given expression.
105 ExprResult complete(CastExpr *castExpr) {
106 // If this is an unbridged cast, wrap the result in an implicit
107 // cast that yields the unbridged-cast placeholder type.
108 if (IsARCUnbridgedCast) {
109 castExpr = ImplicitCastExpr::Create(
110 Self.Context, Self.Context.ARCUnbridgedCastTy, CK_Dependent,
111 castExpr, nullptr, castExpr->getValueKind(),
112 Self.CurFPFeatureOverrides());
113 }
114 updatePartOfExplicitCastFlags(castExpr);
115 return castExpr;
116 }
117
118 // Internal convenience methods.
119
120 /// Try to handle the given placeholder expression kind. Return
121 /// true if the source expression has the appropriate placeholder
122 /// kind. A placeholder can only be claimed once.
123 bool claimPlaceholder(BuiltinType::Kind K) {
124 if (PlaceholderKind != K) return false;
125
126 PlaceholderKind = (BuiltinType::Kind) 0;
127 return true;
128 }
129
130 bool isPlaceholder() const {
131 return PlaceholderKind != 0;
132 }
133 bool isPlaceholder(BuiltinType::Kind K) const {
134 return PlaceholderKind == K;
135 }
136
137 // Language specific cast restrictions for address spaces.
138 void checkAddressSpaceCast(QualType SrcType, QualType DestType);
139
140 void checkCastAlign() {
141 Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange);
142 }
143
144 void checkObjCConversion(Sema::CheckedConversionKind CCK) {
145 assert(Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())((Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()
) ? static_cast<void> (0) : __assert_fail ("Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 145, __PRETTY_FUNCTION__))
;
146
147 Expr *src = SrcExpr.get();
148 if (Self.CheckObjCConversion(OpRange, DestType, src, CCK) ==
149 Sema::ACR_unbridged)
150 IsARCUnbridgedCast = true;
151 SrcExpr = src;
152 }
153
154 /// Check for and handle non-overload placeholder expressions.
155 void checkNonOverloadPlaceholders() {
156 if (!isPlaceholder() || isPlaceholder(BuiltinType::Overload))
157 return;
158
159 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
160 if (SrcExpr.isInvalid())
161 return;
162 PlaceholderKind = (BuiltinType::Kind) 0;
163 }
164 };
165
166 void CheckNoDeref(Sema &S, const QualType FromType, const QualType ToType,
167 SourceLocation OpLoc) {
168 if (const auto *PtrType = dyn_cast<PointerType>(FromType)) {
169 if (PtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
170 if (const auto *DestType = dyn_cast<PointerType>(ToType)) {
171 if (!DestType->getPointeeType()->hasAttr(attr::NoDeref)) {
172 S.Diag(OpLoc, diag::warn_noderef_to_dereferenceable_pointer);
173 }
174 }
175 }
176 }
177 }
178
179 struct CheckNoDerefRAII {
180 CheckNoDerefRAII(CastOperation &Op) : Op(Op) {}
181 ~CheckNoDerefRAII() {
182 if (!Op.SrcExpr.isInvalid())
183 CheckNoDeref(Op.Self, Op.SrcExpr.get()->getType(), Op.ResultType,
184 Op.OpRange.getBegin());
185 }
186
187 CastOperation &Op;
188 };
189}
190
191static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr,
192 QualType DestType);
193
194// The Try functions attempt a specific way of casting. If they succeed, they
195// return TC_Success. If their way of casting is not appropriate for the given
196// arguments, they return TC_NotApplicable and *may* set diag to a diagnostic
197// to emit if no other way succeeds. If their way of casting is appropriate but
198// fails, they return TC_Failed and *must* set diag; they can set it to 0 if
199// they emit a specialized diagnostic.
200// All diagnostics returned by these functions must expect the same three
201// arguments:
202// %0: Cast Type (a value from the CastType enumeration)
203// %1: Source Type
204// %2: Destination Type
205static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr,
206 QualType DestType, bool CStyle,
207 CastKind &Kind,
208 CXXCastPath &BasePath,
209 unsigned &msg);
210static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr,
211 QualType DestType, bool CStyle,
212 SourceRange OpRange,
213 unsigned &msg,
214 CastKind &Kind,
215 CXXCastPath &BasePath);
216static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType,
217 QualType DestType, bool CStyle,
218 SourceRange OpRange,
219 unsigned &msg,
220 CastKind &Kind,
221 CXXCastPath &BasePath);
222static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType,
223 CanQualType DestType, bool CStyle,
224 SourceRange OpRange,
225 QualType OrigSrcType,
226 QualType OrigDestType, unsigned &msg,
227 CastKind &Kind,
228 CXXCastPath &BasePath);
229static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr,
230 QualType SrcType,
231 QualType DestType,bool CStyle,
232 SourceRange OpRange,
233 unsigned &msg,
234 CastKind &Kind,
235 CXXCastPath &BasePath);
236
237static TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr,
238 QualType DestType,
239 Sema::CheckedConversionKind CCK,
240 SourceRange OpRange,
241 unsigned &msg, CastKind &Kind,
242 bool ListInitialization);
243static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
244 QualType DestType,
245 Sema::CheckedConversionKind CCK,
246 SourceRange OpRange,
247 unsigned &msg, CastKind &Kind,
248 CXXCastPath &BasePath,
249 bool ListInitialization);
250static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
251 QualType DestType, bool CStyle,
252 unsigned &msg);
253static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
254 QualType DestType, bool CStyle,
255 SourceRange OpRange, unsigned &msg,
256 CastKind &Kind);
257static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr,
258 QualType DestType, bool CStyle,
259 unsigned &msg, CastKind &Kind);
260
261/// ActOnCXXNamedCast - Parse
262/// {dynamic,static,reinterpret,const,addrspace}_cast's.
263ExprResult
264Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
265 SourceLocation LAngleBracketLoc, Declarator &D,
266 SourceLocation RAngleBracketLoc,
267 SourceLocation LParenLoc, Expr *E,
268 SourceLocation RParenLoc) {
269
270 assert(!D.isInvalidType())((!D.isInvalidType()) ? static_cast<void> (0) : __assert_fail
("!D.isInvalidType()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 270, __PRETTY_FUNCTION__))
;
1
'?' condition is true
271
272 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, E->getType());
273 if (D.isInvalidType())
2
Taking false branch
274 return ExprError();
275
276 if (getLangOpts().CPlusPlus) {
3
Assuming field 'CPlusPlus' is 0
4
Taking false branch
277 // Check that there are no default arguments (C++ only).
278 CheckExtraCXXDefaultArguments(D);
279 }
280
281 return BuildCXXNamedCast(OpLoc, Kind, TInfo, E,
5
Calling 'Sema::BuildCXXNamedCast'
282 SourceRange(LAngleBracketLoc, RAngleBracketLoc),
283 SourceRange(LParenLoc, RParenLoc));
284}
285
286ExprResult
287Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
288 TypeSourceInfo *DestTInfo, Expr *E,
289 SourceRange AngleBrackets, SourceRange Parens) {
290 ExprResult Ex = E;
291 QualType DestType = DestTInfo->getType();
292
293 // If the type is dependent, we won't do the semantic analysis now.
294 bool TypeDependent =
295 DestType->isDependentType() || Ex.get()->isTypeDependent();
6
Assuming the condition is false
296
297 CastOperation Op(*this, DestType, E);
298 Op.OpRange = SourceRange(OpLoc, Parens.getEnd());
299 Op.DestRange = AngleBrackets;
300
301 switch (Kind) {
7
Control jumps to 'case kw_static_cast:' at line 357
302 default: llvm_unreachable("Unknown C++ cast!")::llvm::llvm_unreachable_internal("Unknown C++ cast!", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 302)
;
303
304 case tok::kw_addrspace_cast:
305 if (!TypeDependent) {
306 Op.CheckAddrspaceCast();
307 if (Op.SrcExpr.isInvalid())
308 return ExprError();
309 }
310 return Op.complete(CXXAddrspaceCastExpr::Create(
311 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
312 DestTInfo, OpLoc, Parens.getEnd(), AngleBrackets));
313
314 case tok::kw_const_cast:
315 if (!TypeDependent) {
316 Op.CheckConstCast();
317 if (Op.SrcExpr.isInvalid())
318 return ExprError();
319 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
320 }
321 return Op.complete(CXXConstCastExpr::Create(Context, Op.ResultType,
322 Op.ValueKind, Op.SrcExpr.get(), DestTInfo,
323 OpLoc, Parens.getEnd(),
324 AngleBrackets));
325
326 case tok::kw_dynamic_cast: {
327 // dynamic_cast is not supported in C++ for OpenCL.
328 if (getLangOpts().OpenCLCPlusPlus) {
329 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
330 << "dynamic_cast");
331 }
332
333 if (!TypeDependent) {
334 Op.CheckDynamicCast();
335 if (Op.SrcExpr.isInvalid())
336 return ExprError();
337 }
338 return Op.complete(CXXDynamicCastExpr::Create(Context, Op.ResultType,
339 Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
340 &Op.BasePath, DestTInfo,
341 OpLoc, Parens.getEnd(),
342 AngleBrackets));
343 }
344 case tok::kw_reinterpret_cast: {
345 if (!TypeDependent) {
346 Op.CheckReinterpretCast();
347 if (Op.SrcExpr.isInvalid())
348 return ExprError();
349 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
350 }
351 return Op.complete(CXXReinterpretCastExpr::Create(Context, Op.ResultType,
352 Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
353 nullptr, DestTInfo, OpLoc,
354 Parens.getEnd(),
355 AngleBrackets));
356 }
357 case tok::kw_static_cast: {
358 if (!TypeDependent) {
8
Assuming 'TypeDependent' is false
9
Taking true branch
359 Op.CheckStaticCast();
10
Calling 'CastOperation::CheckStaticCast'
360 if (Op.SrcExpr.isInvalid())
361 return ExprError();
362 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
363 }
364
365 return Op.complete(CXXStaticCastExpr::Create(
366 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
367 &Op.BasePath, DestTInfo, CurFPFeatureOverrides(), OpLoc,
368 Parens.getEnd(), AngleBrackets));
369 }
370 }
371}
372
373ExprResult Sema::ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &D,
374 ExprResult Operand,
375 SourceLocation RParenLoc) {
376 assert(!D.isInvalidType())((!D.isInvalidType()) ? static_cast<void> (0) : __assert_fail
("!D.isInvalidType()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 376, __PRETTY_FUNCTION__))
;
377
378 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, Operand.get()->getType());
379 if (D.isInvalidType())
380 return ExprError();
381
382 return BuildBuiltinBitCastExpr(KWLoc, TInfo, Operand.get(), RParenLoc);
383}
384
385ExprResult Sema::BuildBuiltinBitCastExpr(SourceLocation KWLoc,
386 TypeSourceInfo *TSI, Expr *Operand,
387 SourceLocation RParenLoc) {
388 CastOperation Op(*this, TSI->getType(), Operand);
389 Op.OpRange = SourceRange(KWLoc, RParenLoc);
390 TypeLoc TL = TSI->getTypeLoc();
391 Op.DestRange = SourceRange(TL.getBeginLoc(), TL.getEndLoc());
392
393 if (!Operand->isTypeDependent() && !TSI->getType()->isDependentType()) {
394 Op.CheckBuiltinBitCast();
395 if (Op.SrcExpr.isInvalid())
396 return ExprError();
397 }
398
399 BuiltinBitCastExpr *BCE =
400 new (Context) BuiltinBitCastExpr(Op.ResultType, Op.ValueKind, Op.Kind,
401 Op.SrcExpr.get(), TSI, KWLoc, RParenLoc);
402 return Op.complete(BCE);
403}
404
405/// Try to diagnose a failed overloaded cast. Returns true if
406/// diagnostics were emitted.
407static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT,
408 SourceRange range, Expr *src,
409 QualType destType,
410 bool listInitialization) {
411 switch (CT) {
412 // These cast kinds don't consider user-defined conversions.
413 case CT_Const:
414 case CT_Reinterpret:
415 case CT_Dynamic:
416 case CT_Addrspace:
417 return false;
418
419 // These do.
420 case CT_Static:
421 case CT_CStyle:
422 case CT_Functional:
423 break;
424 }
425
426 QualType srcType = src->getType();
427 if (!destType->isRecordType() && !srcType->isRecordType())
428 return false;
429
430 InitializedEntity entity = InitializedEntity::InitializeTemporary(destType);
431 InitializationKind initKind
432 = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(),
433 range, listInitialization)
434 : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range,
435 listInitialization)
436 : InitializationKind::CreateCast(/*type range?*/ range);
437 InitializationSequence sequence(S, entity, initKind, src);
438
439 assert(sequence.Failed() && "initialization succeeded on second try?")((sequence.Failed() && "initialization succeeded on second try?"
) ? static_cast<void> (0) : __assert_fail ("sequence.Failed() && \"initialization succeeded on second try?\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 439, __PRETTY_FUNCTION__))
;
440 switch (sequence.getFailureKind()) {
441 default: return false;
442
443 case InitializationSequence::FK_ConstructorOverloadFailed:
444 case InitializationSequence::FK_UserConversionOverloadFailed:
445 break;
446 }
447
448 OverloadCandidateSet &candidates = sequence.getFailedCandidateSet();
449
450 unsigned msg = 0;
451 OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates;
452
453 switch (sequence.getFailedOverloadResult()) {
454 case OR_Success: llvm_unreachable("successful failed overload")::llvm::llvm_unreachable_internal("successful failed overload"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 454)
;
455 case OR_No_Viable_Function:
456 if (candidates.empty())
457 msg = diag::err_ovl_no_conversion_in_cast;
458 else
459 msg = diag::err_ovl_no_viable_conversion_in_cast;
460 howManyCandidates = OCD_AllCandidates;
461 break;
462
463 case OR_Ambiguous:
464 msg = diag::err_ovl_ambiguous_conversion_in_cast;
465 howManyCandidates = OCD_AmbiguousCandidates;
466 break;
467
468 case OR_Deleted:
469 msg = diag::err_ovl_deleted_conversion_in_cast;
470 howManyCandidates = OCD_ViableCandidates;
471 break;
472 }
473
474 candidates.NoteCandidates(
475 PartialDiagnosticAt(range.getBegin(),
476 S.PDiag(msg) << CT << srcType << destType << range
477 << src->getSourceRange()),
478 S, howManyCandidates, src);
479
480 return true;
481}
482
483/// Diagnose a failed cast.
484static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType,
485 SourceRange opRange, Expr *src, QualType destType,
486 bool listInitialization) {
487 if (msg == diag::err_bad_cxx_cast_generic &&
488 tryDiagnoseOverloadedCast(S, castType, opRange, src, destType,
489 listInitialization))
490 return;
491
492 S.Diag(opRange.getBegin(), msg) << castType
493 << src->getType() << destType << opRange << src->getSourceRange();
494
495 // Detect if both types are (ptr to) class, and note any incompleteness.
496 int DifferentPtrness = 0;
497 QualType From = destType;
498 if (auto Ptr = From->getAs<PointerType>()) {
499 From = Ptr->getPointeeType();
500 DifferentPtrness++;
501 }
502 QualType To = src->getType();
503 if (auto Ptr = To->getAs<PointerType>()) {
504 To = Ptr->getPointeeType();
505 DifferentPtrness--;
506 }
507 if (!DifferentPtrness) {
508 auto RecFrom = From->getAs<RecordType>();
509 auto RecTo = To->getAs<RecordType>();
510 if (RecFrom && RecTo) {
511 auto DeclFrom = RecFrom->getAsCXXRecordDecl();
512 if (!DeclFrom->isCompleteDefinition())
513 S.Diag(DeclFrom->getLocation(), diag::note_type_incomplete) << DeclFrom;
514 auto DeclTo = RecTo->getAsCXXRecordDecl();
515 if (!DeclTo->isCompleteDefinition())
516 S.Diag(DeclTo->getLocation(), diag::note_type_incomplete) << DeclTo;
517 }
518 }
519}
520
521namespace {
522/// The kind of unwrapping we did when determining whether a conversion casts
523/// away constness.
524enum CastAwayConstnessKind {
525 /// The conversion does not cast away constness.
526 CACK_None = 0,
527 /// We unwrapped similar types.
528 CACK_Similar = 1,
529 /// We unwrapped dissimilar types with similar representations (eg, a pointer
530 /// versus an Objective-C object pointer).
531 CACK_SimilarKind = 2,
532 /// We unwrapped representationally-unrelated types, such as a pointer versus
533 /// a pointer-to-member.
534 CACK_Incoherent = 3,
535};
536}
537
538/// Unwrap one level of types for CastsAwayConstness.
539///
540/// Like Sema::UnwrapSimilarTypes, this removes one level of indirection from
541/// both types, provided that they're both pointer-like or array-like. Unlike
542/// the Sema function, doesn't care if the unwrapped pieces are related.
543///
544/// This function may remove additional levels as necessary for correctness:
545/// the resulting T1 is unwrapped sufficiently that it is never an array type,
546/// so that its qualifiers can be directly compared to those of T2 (which will
547/// have the combined set of qualifiers from all indermediate levels of T2),
548/// as (effectively) required by [expr.const.cast]p7 replacing T1's qualifiers
549/// with those from T2.
550static CastAwayConstnessKind
551unwrapCastAwayConstnessLevel(ASTContext &Context, QualType &T1, QualType &T2) {
552 enum { None, Ptr, MemPtr, BlockPtr, Array };
553 auto Classify = [](QualType T) {
554 if (T->isAnyPointerType()) return Ptr;
555 if (T->isMemberPointerType()) return MemPtr;
556 if (T->isBlockPointerType()) return BlockPtr;
557 // We somewhat-arbitrarily don't look through VLA types here. This is at
558 // least consistent with the behavior of UnwrapSimilarTypes.
559 if (T->isConstantArrayType() || T->isIncompleteArrayType()) return Array;
560 return None;
561 };
562
563 auto Unwrap = [&](QualType T) {
564 if (auto *AT = Context.getAsArrayType(T))
565 return AT->getElementType();
566 return T->getPointeeType();
567 };
568
569 CastAwayConstnessKind Kind;
570
571 if (T2->isReferenceType()) {
572 // Special case: if the destination type is a reference type, unwrap it as
573 // the first level. (The source will have been an lvalue expression in this
574 // case, so there is no corresponding "reference to" in T1 to remove.) This
575 // simulates removing a "pointer to" from both sides.
576 T2 = T2->getPointeeType();
577 Kind = CastAwayConstnessKind::CACK_Similar;
578 } else if (Context.UnwrapSimilarTypes(T1, T2)) {
579 Kind = CastAwayConstnessKind::CACK_Similar;
580 } else {
581 // Try unwrapping mismatching levels.
582 int T1Class = Classify(T1);
583 if (T1Class == None)
584 return CastAwayConstnessKind::CACK_None;
585
586 int T2Class = Classify(T2);
587 if (T2Class == None)
588 return CastAwayConstnessKind::CACK_None;
589
590 T1 = Unwrap(T1);
591 T2 = Unwrap(T2);
592 Kind = T1Class == T2Class ? CastAwayConstnessKind::CACK_SimilarKind
593 : CastAwayConstnessKind::CACK_Incoherent;
594 }
595
596 // We've unwrapped at least one level. If the resulting T1 is a (possibly
597 // multidimensional) array type, any qualifier on any matching layer of
598 // T2 is considered to correspond to T1. Decompose down to the element
599 // type of T1 so that we can compare properly.
600 while (true) {
601 Context.UnwrapSimilarArrayTypes(T1, T2);
602
603 if (Classify(T1) != Array)
604 break;
605
606 auto T2Class = Classify(T2);
607 if (T2Class == None)
608 break;
609
610 if (T2Class != Array)
611 Kind = CastAwayConstnessKind::CACK_Incoherent;
612 else if (Kind != CastAwayConstnessKind::CACK_Incoherent)
613 Kind = CastAwayConstnessKind::CACK_SimilarKind;
614
615 T1 = Unwrap(T1);
616 T2 = Unwrap(T2).withCVRQualifiers(T2.getCVRQualifiers());
617 }
618
619 return Kind;
620}
621
622/// Check if the pointer conversion from SrcType to DestType casts away
623/// constness as defined in C++ [expr.const.cast]. This is used by the cast
624/// checkers. Both arguments must denote pointer (possibly to member) types.
625///
626/// \param CheckCVR Whether to check for const/volatile/restrict qualifiers.
627/// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers.
628static CastAwayConstnessKind
629CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType,
630 bool CheckCVR, bool CheckObjCLifetime,
631 QualType *TheOffendingSrcType = nullptr,
632 QualType *TheOffendingDestType = nullptr,
633 Qualifiers *CastAwayQualifiers = nullptr) {
634 // If the only checking we care about is for Objective-C lifetime qualifiers,
635 // and we're not in ObjC mode, there's nothing to check.
636 if (!CheckCVR && CheckObjCLifetime && !Self.Context.getLangOpts().ObjC)
637 return CastAwayConstnessKind::CACK_None;
638
639 if (!DestType->isReferenceType()) {
640 assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() ||(((SrcType->isAnyPointerType() || SrcType->isMemberPointerType
() || SrcType->isBlockPointerType()) && "Source type is not pointer or pointer to member."
) ? static_cast<void> (0) : __assert_fail ("(SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || SrcType->isBlockPointerType()) && \"Source type is not pointer or pointer to member.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 642, __PRETTY_FUNCTION__))
641 SrcType->isBlockPointerType()) &&(((SrcType->isAnyPointerType() || SrcType->isMemberPointerType
() || SrcType->isBlockPointerType()) && "Source type is not pointer or pointer to member."
) ? static_cast<void> (0) : __assert_fail ("(SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || SrcType->isBlockPointerType()) && \"Source type is not pointer or pointer to member.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 642, __PRETTY_FUNCTION__))
642 "Source type is not pointer or pointer to member.")(((SrcType->isAnyPointerType() || SrcType->isMemberPointerType
() || SrcType->isBlockPointerType()) && "Source type is not pointer or pointer to member."
) ? static_cast<void> (0) : __assert_fail ("(SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || SrcType->isBlockPointerType()) && \"Source type is not pointer or pointer to member.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 642, __PRETTY_FUNCTION__))
;
643 assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() ||(((DestType->isAnyPointerType() || DestType->isMemberPointerType
() || DestType->isBlockPointerType()) && "Destination type is not pointer or pointer to member."
) ? static_cast<void> (0) : __assert_fail ("(DestType->isAnyPointerType() || DestType->isMemberPointerType() || DestType->isBlockPointerType()) && \"Destination type is not pointer or pointer to member.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 645, __PRETTY_FUNCTION__))
644 DestType->isBlockPointerType()) &&(((DestType->isAnyPointerType() || DestType->isMemberPointerType
() || DestType->isBlockPointerType()) && "Destination type is not pointer or pointer to member."
) ? static_cast<void> (0) : __assert_fail ("(DestType->isAnyPointerType() || DestType->isMemberPointerType() || DestType->isBlockPointerType()) && \"Destination type is not pointer or pointer to member.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 645, __PRETTY_FUNCTION__))
645 "Destination type is not pointer or pointer to member.")(((DestType->isAnyPointerType() || DestType->isMemberPointerType
() || DestType->isBlockPointerType()) && "Destination type is not pointer or pointer to member."
) ? static_cast<void> (0) : __assert_fail ("(DestType->isAnyPointerType() || DestType->isMemberPointerType() || DestType->isBlockPointerType()) && \"Destination type is not pointer or pointer to member.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 645, __PRETTY_FUNCTION__))
;
646 }
647
648 QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType),
649 UnwrappedDestType = Self.Context.getCanonicalType(DestType);
650
651 // Find the qualifiers. We only care about cvr-qualifiers for the
652 // purpose of this check, because other qualifiers (address spaces,
653 // Objective-C GC, etc.) are part of the type's identity.
654 QualType PrevUnwrappedSrcType = UnwrappedSrcType;
655 QualType PrevUnwrappedDestType = UnwrappedDestType;
656 auto WorstKind = CastAwayConstnessKind::CACK_Similar;
657 bool AllConstSoFar = true;
658 while (auto Kind = unwrapCastAwayConstnessLevel(
659 Self.Context, UnwrappedSrcType, UnwrappedDestType)) {
660 // Track the worst kind of unwrap we needed to do before we found a
661 // problem.
662 if (Kind > WorstKind)
663 WorstKind = Kind;
664
665 // Determine the relevant qualifiers at this level.
666 Qualifiers SrcQuals, DestQuals;
667 Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals);
668 Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals);
669
670 // We do not meaningfully track object const-ness of Objective-C object
671 // types. Remove const from the source type if either the source or
672 // the destination is an Objective-C object type.
673 if (UnwrappedSrcType->isObjCObjectType() ||
674 UnwrappedDestType->isObjCObjectType())
675 SrcQuals.removeConst();
676
677 if (CheckCVR) {
678 Qualifiers SrcCvrQuals =
679 Qualifiers::fromCVRMask(SrcQuals.getCVRQualifiers());
680 Qualifiers DestCvrQuals =
681 Qualifiers::fromCVRMask(DestQuals.getCVRQualifiers());
682
683 if (SrcCvrQuals != DestCvrQuals) {
684 if (CastAwayQualifiers)
685 *CastAwayQualifiers = SrcCvrQuals - DestCvrQuals;
686
687 // If we removed a cvr-qualifier, this is casting away 'constness'.
688 if (!DestCvrQuals.compatiblyIncludes(SrcCvrQuals)) {
689 if (TheOffendingSrcType)
690 *TheOffendingSrcType = PrevUnwrappedSrcType;
691 if (TheOffendingDestType)
692 *TheOffendingDestType = PrevUnwrappedDestType;
693 return WorstKind;
694 }
695
696 // If any prior level was not 'const', this is also casting away
697 // 'constness'. We noted the outermost type missing a 'const' already.
698 if (!AllConstSoFar)
699 return WorstKind;
700 }
701 }
702
703 if (CheckObjCLifetime &&
704 !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals))
705 return WorstKind;
706
707 // If we found our first non-const-qualified type, this may be the place
708 // where things start to go wrong.
709 if (AllConstSoFar && !DestQuals.hasConst()) {
710 AllConstSoFar = false;
711 if (TheOffendingSrcType)
712 *TheOffendingSrcType = PrevUnwrappedSrcType;
713 if (TheOffendingDestType)
714 *TheOffendingDestType = PrevUnwrappedDestType;
715 }
716
717 PrevUnwrappedSrcType = UnwrappedSrcType;
718 PrevUnwrappedDestType = UnwrappedDestType;
719 }
720
721 return CastAwayConstnessKind::CACK_None;
722}
723
724static TryCastResult getCastAwayConstnessCastKind(CastAwayConstnessKind CACK,
725 unsigned &DiagID) {
726 switch (CACK) {
727 case CastAwayConstnessKind::CACK_None:
728 llvm_unreachable("did not cast away constness")::llvm::llvm_unreachable_internal("did not cast away constness"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 728)
;
729
730 case CastAwayConstnessKind::CACK_Similar:
731 // FIXME: Accept these as an extension too?
732 case CastAwayConstnessKind::CACK_SimilarKind:
733 DiagID = diag::err_bad_cxx_cast_qualifiers_away;
734 return TC_Failed;
735
736 case CastAwayConstnessKind::CACK_Incoherent:
737 DiagID = diag::ext_bad_cxx_cast_qualifiers_away_incoherent;
738 return TC_Extension;
739 }
740
741 llvm_unreachable("unexpected cast away constness kind")::llvm::llvm_unreachable_internal("unexpected cast away constness kind"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 741)
;
742}
743
744/// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid.
745/// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime-
746/// checked downcasts in class hierarchies.
747void CastOperation::CheckDynamicCast() {
748 CheckNoDerefRAII NoderefCheck(*this);
749
750 if (ValueKind == VK_RValue)
751 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
752 else if (isPlaceholder())
753 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
754 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
755 return;
756
757 QualType OrigSrcType = SrcExpr.get()->getType();
758 QualType DestType = Self.Context.getCanonicalType(this->DestType);
759
760 // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type,
761 // or "pointer to cv void".
762
763 QualType DestPointee;
764 const PointerType *DestPointer = DestType->getAs<PointerType>();
765 const ReferenceType *DestReference = nullptr;
766 if (DestPointer) {
767 DestPointee = DestPointer->getPointeeType();
768 } else if ((DestReference = DestType->getAs<ReferenceType>())) {
769 DestPointee = DestReference->getPointeeType();
770 } else {
771 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr)
772 << this->DestType << DestRange;
773 SrcExpr = ExprError();
774 return;
775 }
776
777 const RecordType *DestRecord = DestPointee->getAs<RecordType>();
778 if (DestPointee->isVoidType()) {
779 assert(DestPointer && "Reference to void is not possible")((DestPointer && "Reference to void is not possible")
? static_cast<void> (0) : __assert_fail ("DestPointer && \"Reference to void is not possible\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 779, __PRETTY_FUNCTION__))
;
780 } else if (DestRecord) {
781 if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee,
782 diag::err_bad_cast_incomplete,
783 DestRange)) {
784 SrcExpr = ExprError();
785 return;
786 }
787 } else {
788 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
789 << DestPointee.getUnqualifiedType() << DestRange;
790 SrcExpr = ExprError();
791 return;
792 }
793
794 // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to
795 // complete class type, [...]. If T is an lvalue reference type, v shall be
796 // an lvalue of a complete class type, [...]. If T is an rvalue reference
797 // type, v shall be an expression having a complete class type, [...]
798 QualType SrcType = Self.Context.getCanonicalType(OrigSrcType);
799 QualType SrcPointee;
800 if (DestPointer) {
801 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
802 SrcPointee = SrcPointer->getPointeeType();
803 } else {
804 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr)
805 << OrigSrcType << this->DestType << SrcExpr.get()->getSourceRange();
806 SrcExpr = ExprError();
807 return;
808 }
809 } else if (DestReference->isLValueReferenceType()) {
810 if (!SrcExpr.get()->isLValue()) {
811 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue)
812 << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
813 }
814 SrcPointee = SrcType;
815 } else {
816 // If we're dynamic_casting from a prvalue to an rvalue reference, we need
817 // to materialize the prvalue before we bind the reference to it.
818 if (SrcExpr.get()->isRValue())
819 SrcExpr = Self.CreateMaterializeTemporaryExpr(
820 SrcType, SrcExpr.get(), /*IsLValueReference*/ false);
821 SrcPointee = SrcType;
822 }
823
824 const RecordType *SrcRecord = SrcPointee->getAs<RecordType>();
825 if (SrcRecord) {
826 if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee,
827 diag::err_bad_cast_incomplete,
828 SrcExpr.get())) {
829 SrcExpr = ExprError();
830 return;
831 }
832 } else {
833 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
834 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
835 SrcExpr = ExprError();
836 return;
837 }
838
839 assert((DestPointer || DestReference) &&(((DestPointer || DestReference) && "Bad destination non-ptr/ref slipped through."
) ? static_cast<void> (0) : __assert_fail ("(DestPointer || DestReference) && \"Bad destination non-ptr/ref slipped through.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 840, __PRETTY_FUNCTION__))
840 "Bad destination non-ptr/ref slipped through.")(((DestPointer || DestReference) && "Bad destination non-ptr/ref slipped through."
) ? static_cast<void> (0) : __assert_fail ("(DestPointer || DestReference) && \"Bad destination non-ptr/ref slipped through.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 840, __PRETTY_FUNCTION__))
;
841 assert((DestRecord || DestPointee->isVoidType()) &&(((DestRecord || DestPointee->isVoidType()) && "Bad destination pointee slipped through."
) ? static_cast<void> (0) : __assert_fail ("(DestRecord || DestPointee->isVoidType()) && \"Bad destination pointee slipped through.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 842, __PRETTY_FUNCTION__))
842 "Bad destination pointee slipped through.")(((DestRecord || DestPointee->isVoidType()) && "Bad destination pointee slipped through."
) ? static_cast<void> (0) : __assert_fail ("(DestRecord || DestPointee->isVoidType()) && \"Bad destination pointee slipped through.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 842, __PRETTY_FUNCTION__))
;
843 assert(SrcRecord && "Bad source pointee slipped through.")((SrcRecord && "Bad source pointee slipped through.")
? static_cast<void> (0) : __assert_fail ("SrcRecord && \"Bad source pointee slipped through.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 843, __PRETTY_FUNCTION__))
;
844
845 // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness.
846 if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) {
847 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away)
848 << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
849 SrcExpr = ExprError();
850 return;
851 }
852
853 // C++ 5.2.7p3: If the type of v is the same as the required result type,
854 // [except for cv].
855 if (DestRecord == SrcRecord) {
856 Kind = CK_NoOp;
857 return;
858 }
859
860 // C++ 5.2.7p5
861 // Upcasts are resolved statically.
862 if (DestRecord &&
863 Self.IsDerivedFrom(OpRange.getBegin(), SrcPointee, DestPointee)) {
864 if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee,
865 OpRange.getBegin(), OpRange,
866 &BasePath)) {
867 SrcExpr = ExprError();
868 return;
869 }
870
871 Kind = CK_DerivedToBase;
872 return;
873 }
874
875 // C++ 5.2.7p6: Otherwise, v shall be [polymorphic].
876 const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition();
877 assert(SrcDecl && "Definition missing")((SrcDecl && "Definition missing") ? static_cast<void
> (0) : __assert_fail ("SrcDecl && \"Definition missing\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 877, __PRETTY_FUNCTION__))
;
878 if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) {
879 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic)
880 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
881 SrcExpr = ExprError();
882 }
883
884 // dynamic_cast is not available with -fno-rtti.
885 // As an exception, dynamic_cast to void* is available because it doesn't
886 // use RTTI.
887 if (!Self.getLangOpts().RTTI && !DestPointee->isVoidType()) {
888 Self.Diag(OpRange.getBegin(), diag::err_no_dynamic_cast_with_fno_rtti);
889 SrcExpr = ExprError();
890 return;
891 }
892
893 // Warns when dynamic_cast is used with RTTI data disabled.
894 if (!Self.getLangOpts().RTTIData) {
895 bool MicrosoftABI =
896 Self.getASTContext().getTargetInfo().getCXXABI().isMicrosoft();
897 bool isClangCL = Self.getDiagnostics().getDiagnosticOptions().getFormat() ==
898 DiagnosticOptions::MSVC;
899 if (MicrosoftABI || !DestPointee->isVoidType())
900 Self.Diag(OpRange.getBegin(),
901 diag::warn_no_dynamic_cast_with_rtti_disabled)
902 << isClangCL;
903 }
904
905 // Done. Everything else is run-time checks.
906 Kind = CK_Dynamic;
907}
908
909/// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid.
910/// Refer to C++ 5.2.11 for details. const_cast is typically used in code
911/// like this:
912/// const char *str = "literal";
913/// legacy_function(const_cast\<char*\>(str));
914void CastOperation::CheckConstCast() {
915 CheckNoDerefRAII NoderefCheck(*this);
916
917 if (ValueKind == VK_RValue)
918 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
919 else if (isPlaceholder())
920 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
921 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
922 return;
923
924 unsigned msg = diag::err_bad_cxx_cast_generic;
925 auto TCR = TryConstCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg);
926 if (TCR != TC_Success && msg != 0) {
927 Self.Diag(OpRange.getBegin(), msg) << CT_Const
928 << SrcExpr.get()->getType() << DestType << OpRange;
929 }
930 if (!isValidCast(TCR))
931 SrcExpr = ExprError();
932}
933
934void CastOperation::CheckAddrspaceCast() {
935 unsigned msg = diag::err_bad_cxx_cast_generic;
936 auto TCR =
937 TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg, Kind);
938 if (TCR != TC_Success && msg != 0) {
939 Self.Diag(OpRange.getBegin(), msg)
940 << CT_Addrspace << SrcExpr.get()->getType() << DestType << OpRange;
941 }
942 if (!isValidCast(TCR))
943 SrcExpr = ExprError();
944}
945
946/// Check that a reinterpret_cast\<DestType\>(SrcExpr) is not used as upcast
947/// or downcast between respective pointers or references.
948static void DiagnoseReinterpretUpDownCast(Sema &Self, const Expr *SrcExpr,
949 QualType DestType,
950 SourceRange OpRange) {
951 QualType SrcType = SrcExpr->getType();
952 // When casting from pointer or reference, get pointee type; use original
953 // type otherwise.
954 const CXXRecordDecl *SrcPointeeRD = SrcType->getPointeeCXXRecordDecl();
955 const CXXRecordDecl *SrcRD =
956 SrcPointeeRD ? SrcPointeeRD : SrcType->getAsCXXRecordDecl();
957
958 // Examining subobjects for records is only possible if the complete and
959 // valid definition is available. Also, template instantiation is not
960 // allowed here.
961 if (!SrcRD || !SrcRD->isCompleteDefinition() || SrcRD->isInvalidDecl())
962 return;
963
964 const CXXRecordDecl *DestRD = DestType->getPointeeCXXRecordDecl();
965
966 if (!DestRD || !DestRD->isCompleteDefinition() || DestRD->isInvalidDecl())
967 return;
968
969 enum {
970 ReinterpretUpcast,
971 ReinterpretDowncast
972 } ReinterpretKind;
973
974 CXXBasePaths BasePaths;
975
976 if (SrcRD->isDerivedFrom(DestRD, BasePaths))
977 ReinterpretKind = ReinterpretUpcast;
978 else if (DestRD->isDerivedFrom(SrcRD, BasePaths))
979 ReinterpretKind = ReinterpretDowncast;
980 else
981 return;
982
983 bool VirtualBase = true;
984 bool NonZeroOffset = false;
985 for (CXXBasePaths::const_paths_iterator I = BasePaths.begin(),
986 E = BasePaths.end();
987 I != E; ++I) {
988 const CXXBasePath &Path = *I;
989 CharUnits Offset = CharUnits::Zero();
990 bool IsVirtual = false;
991 for (CXXBasePath::const_iterator IElem = Path.begin(), EElem = Path.end();
992 IElem != EElem; ++IElem) {
993 IsVirtual = IElem->Base->isVirtual();
994 if (IsVirtual)
995 break;
996 const CXXRecordDecl *BaseRD = IElem->Base->getType()->getAsCXXRecordDecl();
997 assert(BaseRD && "Base type should be a valid unqualified class type")((BaseRD && "Base type should be a valid unqualified class type"
) ? static_cast<void> (0) : __assert_fail ("BaseRD && \"Base type should be a valid unqualified class type\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 997, __PRETTY_FUNCTION__))
;
998 // Don't check if any base has invalid declaration or has no definition
999 // since it has no layout info.
1000 const CXXRecordDecl *Class = IElem->Class,
1001 *ClassDefinition = Class->getDefinition();
1002 if (Class->isInvalidDecl() || !ClassDefinition ||
1003 !ClassDefinition->isCompleteDefinition())
1004 return;
1005
1006 const ASTRecordLayout &DerivedLayout =
1007 Self.Context.getASTRecordLayout(Class);
1008 Offset += DerivedLayout.getBaseClassOffset(BaseRD);
1009 }
1010 if (!IsVirtual) {
1011 // Don't warn if any path is a non-virtually derived base at offset zero.
1012 if (Offset.isZero())
1013 return;
1014 // Offset makes sense only for non-virtual bases.
1015 else
1016 NonZeroOffset = true;
1017 }
1018 VirtualBase = VirtualBase && IsVirtual;
1019 }
1020
1021 (void) NonZeroOffset; // Silence set but not used warning.
1022 assert((VirtualBase || NonZeroOffset) &&(((VirtualBase || NonZeroOffset) && "Should have returned if has non-virtual base with zero offset"
) ? static_cast<void> (0) : __assert_fail ("(VirtualBase || NonZeroOffset) && \"Should have returned if has non-virtual base with zero offset\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 1023, __PRETTY_FUNCTION__))
1023 "Should have returned if has non-virtual base with zero offset")(((VirtualBase || NonZeroOffset) && "Should have returned if has non-virtual base with zero offset"
) ? static_cast<void> (0) : __assert_fail ("(VirtualBase || NonZeroOffset) && \"Should have returned if has non-virtual base with zero offset\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 1023, __PRETTY_FUNCTION__))
;
1024
1025 QualType BaseType =
1026 ReinterpretKind == ReinterpretUpcast? DestType : SrcType;
1027 QualType DerivedType =
1028 ReinterpretKind == ReinterpretUpcast? SrcType : DestType;
1029
1030 SourceLocation BeginLoc = OpRange.getBegin();
1031 Self.Diag(BeginLoc, diag::warn_reinterpret_different_from_static)
1032 << DerivedType << BaseType << !VirtualBase << int(ReinterpretKind)
1033 << OpRange;
1034 Self.Diag(BeginLoc, diag::note_reinterpret_updowncast_use_static)
1035 << int(ReinterpretKind)
1036 << FixItHint::CreateReplacement(BeginLoc, "static_cast");
1037}
1038
1039static bool argTypeIsABIEquivalent(QualType SrcType, QualType DestType,
1040 ASTContext &Context) {
1041 if (SrcType->isPointerType() && DestType->isPointerType())
1042 return true;
1043
1044 // Allow integral type mismatch if their size are equal.
1045 if (SrcType->isIntegralType(Context) && DestType->isIntegralType(Context))
1046 if (Context.getTypeInfoInChars(SrcType).Width ==
1047 Context.getTypeInfoInChars(DestType).Width)
1048 return true;
1049
1050 return Context.hasSameUnqualifiedType(SrcType, DestType);
1051}
1052
1053static bool checkCastFunctionType(Sema &Self, const ExprResult &SrcExpr,
1054 QualType DestType) {
1055 if (Self.Diags.isIgnored(diag::warn_cast_function_type,
1056 SrcExpr.get()->getExprLoc()))
1057 return true;
1058
1059 QualType SrcType = SrcExpr.get()->getType();
1060 const FunctionType *SrcFTy = nullptr;
1061 const FunctionType *DstFTy = nullptr;
1062 if (((SrcType->isBlockPointerType() || SrcType->isFunctionPointerType()) &&
1063 DestType->isFunctionPointerType()) ||
1064 (SrcType->isMemberFunctionPointerType() &&
1065 DestType->isMemberFunctionPointerType())) {
1066 SrcFTy = SrcType->getPointeeType()->castAs<FunctionType>();
1067 DstFTy = DestType->getPointeeType()->castAs<FunctionType>();
1068 } else if (SrcType->isFunctionType() && DestType->isFunctionReferenceType()) {
1069 SrcFTy = SrcType->castAs<FunctionType>();
1070 DstFTy = DestType.getNonReferenceType()->castAs<FunctionType>();
1071 } else {
1072 return true;
1073 }
1074 assert(SrcFTy && DstFTy)((SrcFTy && DstFTy) ? static_cast<void> (0) : __assert_fail
("SrcFTy && DstFTy", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 1074, __PRETTY_FUNCTION__))
;
1075
1076 auto IsVoidVoid = [](const FunctionType *T) {
1077 if (!T->getReturnType()->isVoidType())
1078 return false;
1079 if (const auto *PT = T->getAs<FunctionProtoType>())
1080 return !PT->isVariadic() && PT->getNumParams() == 0;
1081 return false;
1082 };
1083
1084 // Skip if either function type is void(*)(void)
1085 if (IsVoidVoid(SrcFTy) || IsVoidVoid(DstFTy))
1086 return true;
1087
1088 // Check return type.
1089 if (!argTypeIsABIEquivalent(SrcFTy->getReturnType(), DstFTy->getReturnType(),
1090 Self.Context))
1091 return false;
1092
1093 // Check if either has unspecified number of parameters
1094 if (SrcFTy->isFunctionNoProtoType() || DstFTy->isFunctionNoProtoType())
1095 return true;
1096
1097 // Check parameter types.
1098
1099 const auto *SrcFPTy = cast<FunctionProtoType>(SrcFTy);
1100 const auto *DstFPTy = cast<FunctionProtoType>(DstFTy);
1101
1102 // In a cast involving function types with a variable argument list only the
1103 // types of initial arguments that are provided are considered.
1104 unsigned NumParams = SrcFPTy->getNumParams();
1105 unsigned DstNumParams = DstFPTy->getNumParams();
1106 if (NumParams > DstNumParams) {
1107 if (!DstFPTy->isVariadic())
1108 return false;
1109 NumParams = DstNumParams;
1110 } else if (NumParams < DstNumParams) {
1111 if (!SrcFPTy->isVariadic())
1112 return false;
1113 }
1114
1115 for (unsigned i = 0; i < NumParams; ++i)
1116 if (!argTypeIsABIEquivalent(SrcFPTy->getParamType(i),
1117 DstFPTy->getParamType(i), Self.Context))
1118 return false;
1119
1120 return true;
1121}
1122
1123/// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is
1124/// valid.
1125/// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code
1126/// like this:
1127/// char *bytes = reinterpret_cast\<char*\>(int_ptr);
1128void CastOperation::CheckReinterpretCast() {
1129 if (ValueKind == VK_RValue && !isPlaceholder(BuiltinType::Overload))
1130 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
1131 else
1132 checkNonOverloadPlaceholders();
1133 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1134 return;
1135
1136 unsigned msg = diag::err_bad_cxx_cast_generic;
1137 TryCastResult tcr =
1138 TryReinterpretCast(Self, SrcExpr, DestType,
1139 /*CStyle*/false, OpRange, msg, Kind);
1140 if (tcr != TC_Success && msg != 0) {
1141 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1142 return;
1143 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1144 //FIXME: &f<int>; is overloaded and resolvable
1145 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload)
1146 << OverloadExpr::find(SrcExpr.get()).Expression->getName()
1147 << DestType << OpRange;
1148 Self.NoteAllOverloadCandidates(SrcExpr.get());
1149
1150 } else {
1151 diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(),
1152 DestType, /*listInitialization=*/false);
1153 }
1154 }
1155
1156 if (isValidCast(tcr)) {
1157 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
1158 checkObjCConversion(Sema::CCK_OtherCast);
1159 DiagnoseReinterpretUpDownCast(Self, SrcExpr.get(), DestType, OpRange);
1160
1161 if (!checkCastFunctionType(Self, SrcExpr, DestType))
1162 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type)
1163 << SrcExpr.get()->getType() << DestType << OpRange;
1164 } else {
1165 SrcExpr = ExprError();
1166 }
1167}
1168
1169
1170/// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid.
1171/// Refer to C++ 5.2.9 for details. Static casts are mostly used for making
1172/// implicit conversions explicit and getting rid of data loss warnings.
1173void CastOperation::CheckStaticCast() {
1174 CheckNoDerefRAII NoderefCheck(*this);
1175
1176 if (isPlaceholder()) {
11
Taking false branch
1177 checkNonOverloadPlaceholders();
1178 if (SrcExpr.isInvalid())
1179 return;
1180 }
1181
1182 // This test is outside everything else because it's the only case where
1183 // a non-lvalue-reference target type does not lead to decay.
1184 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
1185 if (DestType->isVoidType()) {
12
Taking false branch
1186 Kind = CK_ToVoid;
1187
1188 if (claimPlaceholder(BuiltinType::Overload)) {
1189 Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr,
1190 false, // Decay Function to ptr
1191 true, // Complain
1192 OpRange, DestType, diag::err_bad_static_cast_overload);
1193 if (SrcExpr.isInvalid())
1194 return;
1195 }
1196
1197 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
1198 return;
1199 }
1200
1201 if (ValueKind == VK_RValue && !DestType->isRecordType() &&
13
Assuming field 'ValueKind' is not equal to VK_RValue
1202 !isPlaceholder(BuiltinType::Overload)) {
1203 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
1204 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1205 return;
1206 }
1207
1208 unsigned msg = diag::err_bad_cxx_cast_generic;
1209 TryCastResult tcr
1210 = TryStaticCast(Self, SrcExpr, DestType, Sema::CCK_OtherCast, OpRange, msg,
14
Calling 'TryStaticCast'
1211 Kind, BasePath, /*ListInitialization=*/false);
1212 if (tcr != TC_Success && msg != 0) {
1213 if (SrcExpr.isInvalid())
1214 return;
1215 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1216 OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression;
1217 Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload)
1218 << oe->getName() << DestType << OpRange
1219 << oe->getQualifierLoc().getSourceRange();
1220 Self.NoteAllOverloadCandidates(SrcExpr.get());
1221 } else {
1222 diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType,
1223 /*listInitialization=*/false);
1224 }
1225 }
1226
1227 if (isValidCast(tcr)) {
1228 if (Kind == CK_BitCast)
1229 checkCastAlign();
1230 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
1231 checkObjCConversion(Sema::CCK_OtherCast);
1232 } else {
1233 SrcExpr = ExprError();
1234 }
1235}
1236
1237static bool IsAddressSpaceConversion(QualType SrcType, QualType DestType) {
1238 auto *SrcPtrType = SrcType->getAs<PointerType>();
1239 if (!SrcPtrType)
1240 return false;
1241 auto *DestPtrType = DestType->getAs<PointerType>();
1242 if (!DestPtrType)
1243 return false;
1244 return SrcPtrType->getPointeeType().getAddressSpace() !=
1245 DestPtrType->getPointeeType().getAddressSpace();
1246}
1247
1248/// TryStaticCast - Check if a static cast can be performed, and do so if
1249/// possible. If @p CStyle, ignore access restrictions on hierarchy casting
1250/// and casting away constness.
1251static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
1252 QualType DestType,
1253 Sema::CheckedConversionKind CCK,
1254 SourceRange OpRange, unsigned &msg,
1255 CastKind &Kind, CXXCastPath &BasePath,
1256 bool ListInitialization) {
1257 // Determine whether we have the semantics of a C-style cast.
1258 bool CStyle
1259 = (CCK
14.1
'CCK' is not equal to CCK_CStyleCast
14.1
'CCK' is not equal to CCK_CStyleCast
== Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast);
1260
1261 // The order the tests is not entirely arbitrary. There is one conversion
1262 // that can be handled in two different ways. Given:
1263 // struct A {};
1264 // struct B : public A {
1265 // B(); B(const A&);
1266 // };
1267 // const A &a = B();
1268 // the cast static_cast<const B&>(a) could be seen as either a static
1269 // reference downcast, or an explicit invocation of the user-defined
1270 // conversion using B's conversion constructor.
1271 // DR 427 specifies that the downcast is to be applied here.
1272
1273 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
1274 // Done outside this function.
1275
1276 TryCastResult tcr;
1277
1278 // C++ 5.2.9p5, reference downcast.
1279 // See the function for details.
1280 // DR 427 specifies that this is to be applied before paragraph 2.
1281 tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle,
1282 OpRange, msg, Kind, BasePath);
1283 if (tcr
14.2
'tcr' is equal to TC_NotApplicable
14.2
'tcr' is equal to TC_NotApplicable
!= TC_NotApplicable)
15
Taking false branch
1284 return tcr;
1285
1286 // C++11 [expr.static.cast]p3:
1287 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2
1288 // T2" if "cv2 T2" is reference-compatible with "cv1 T1".
1289 tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind,
1290 BasePath, msg);
1291 if (tcr
15.1
'tcr' is equal to TC_NotApplicable
15.1
'tcr' is equal to TC_NotApplicable
!= TC_NotApplicable)
16
Taking false branch
1292 return tcr;
1293
1294 // C++ 5.2.9p2: An expression e can be explicitly converted to a type T
1295 // [...] if the declaration "T t(e);" is well-formed, [...].
1296 tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg,
1297 Kind, ListInitialization);
1298 if (SrcExpr.isInvalid())
17
Assuming the condition is false
18
Taking false branch
1299 return TC_Failed;
1300 if (tcr
18.1
'tcr' is equal to TC_NotApplicable
18.1
'tcr' is equal to TC_NotApplicable
!= TC_NotApplicable)
19
Taking false branch
1301 return tcr;
1302
1303 // C++ 5.2.9p6: May apply the reverse of any standard conversion, except
1304 // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean
1305 // conversions, subject to further restrictions.
1306 // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal
1307 // of qualification conversions impossible.
1308 // In the CStyle case, the earlier attempt to const_cast should have taken
1309 // care of reverse qualification conversions.
1310
1311 QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType());
1312
1313 // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly
1314 // converted to an integral type. [...] A value of a scoped enumeration type
1315 // can also be explicitly converted to a floating-point type [...].
1316 if (const EnumType *Enum
20.1
'Enum' is null
20.1
'Enum' is null
= SrcType->getAs<EnumType>()) {
20
Assuming the object is not a 'EnumType'
21
Taking false branch
1317 if (Enum->getDecl()->isScoped()) {
1318 if (DestType->isBooleanType()) {
1319 Kind = CK_IntegralToBoolean;
1320 return TC_Success;
1321 } else if (DestType->isIntegralType(Self.Context)) {
1322 Kind = CK_IntegralCast;
1323 return TC_Success;
1324 } else if (DestType->isRealFloatingType()) {
1325 Kind = CK_IntegralToFloating;
1326 return TC_Success;
1327 }
1328 }
1329 }
1330
1331 // Reverse integral promotion/conversion. All such conversions are themselves
1332 // again integral promotions or conversions and are thus already handled by
1333 // p2 (TryDirectInitialization above).
1334 // (Note: any data loss warnings should be suppressed.)
1335 // The exception is the reverse of enum->integer, i.e. integer->enum (and
1336 // enum->enum). See also C++ 5.2.9p7.
1337 // The same goes for reverse floating point promotion/conversion and
1338 // floating-integral conversions. Again, only floating->enum is relevant.
1339 if (DestType->isEnumeralType()) {
22
Calling 'Type::isEnumeralType'
25
Returning from 'Type::isEnumeralType'
26
Taking true branch
1340 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
27
Assuming the condition is false
28
Taking false branch
1341 diag::err_bad_cast_incomplete)) {
1342 SrcExpr = ExprError();
1343 return TC_Failed;
1344 }
1345 if (SrcType->isIntegralOrEnumerationType()) {
29
Calling 'Type::isIntegralOrEnumerationType'
39
Returning from 'Type::isIntegralOrEnumerationType'
40
Taking true branch
1346 // [expr.static.cast]p10 If the enumeration type has a fixed underlying
1347 // type, the value is first converted to that type by integral conversion
1348 const EnumType *Enum = DestType->getAs<EnumType>();
41
Assuming the object is not a 'EnumType'
42
'Enum' initialized to a null pointer value
1349 Kind = Enum->getDecl()->isFixed() &&
43
Called C++ object pointer is null
1350 Enum->getDecl()->getIntegerType()->isBooleanType()
1351 ? CK_IntegralToBoolean
1352 : CK_IntegralCast;
1353 return TC_Success;
1354 } else if (SrcType->isRealFloatingType()) {
1355 Kind = CK_FloatingToIntegral;
1356 return TC_Success;
1357 }
1358 }
1359
1360 // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast.
1361 // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance.
1362 tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg,
1363 Kind, BasePath);
1364 if (tcr != TC_NotApplicable)
1365 return tcr;
1366
1367 // Reverse member pointer conversion. C++ 4.11 specifies member pointer
1368 // conversion. C++ 5.2.9p9 has additional information.
1369 // DR54's access restrictions apply here also.
1370 tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle,
1371 OpRange, msg, Kind, BasePath);
1372 if (tcr != TC_NotApplicable)
1373 return tcr;
1374
1375 // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to
1376 // void*. C++ 5.2.9p10 specifies additional restrictions, which really is
1377 // just the usual constness stuff.
1378 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
1379 QualType SrcPointee = SrcPointer->getPointeeType();
1380 if (SrcPointee->isVoidType()) {
1381 if (const PointerType *DestPointer = DestType->getAs<PointerType>()) {
1382 QualType DestPointee = DestPointer->getPointeeType();
1383 if (DestPointee->isIncompleteOrObjectType()) {
1384 // This is definitely the intended conversion, but it might fail due
1385 // to a qualifier violation. Note that we permit Objective-C lifetime
1386 // and GC qualifier mismatches here.
1387 if (!CStyle) {
1388 Qualifiers DestPointeeQuals = DestPointee.getQualifiers();
1389 Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers();
1390 DestPointeeQuals.removeObjCGCAttr();
1391 DestPointeeQuals.removeObjCLifetime();
1392 SrcPointeeQuals.removeObjCGCAttr();
1393 SrcPointeeQuals.removeObjCLifetime();
1394 if (DestPointeeQuals != SrcPointeeQuals &&
1395 !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals)) {
1396 msg = diag::err_bad_cxx_cast_qualifiers_away;
1397 return TC_Failed;
1398 }
1399 }
1400 Kind = IsAddressSpaceConversion(SrcType, DestType)
1401 ? CK_AddressSpaceConversion
1402 : CK_BitCast;
1403 return TC_Success;
1404 }
1405
1406 // Microsoft permits static_cast from 'pointer-to-void' to
1407 // 'pointer-to-function'.
1408 if (!CStyle && Self.getLangOpts().MSVCCompat &&
1409 DestPointee->isFunctionType()) {
1410 Self.Diag(OpRange.getBegin(), diag::ext_ms_cast_fn_obj) << OpRange;
1411 Kind = CK_BitCast;
1412 return TC_Success;
1413 }
1414 }
1415 else if (DestType->isObjCObjectPointerType()) {
1416 // allow both c-style cast and static_cast of objective-c pointers as
1417 // they are pervasive.
1418 Kind = CK_CPointerToObjCPointerCast;
1419 return TC_Success;
1420 }
1421 else if (CStyle && DestType->isBlockPointerType()) {
1422 // allow c-style cast of void * to block pointers.
1423 Kind = CK_AnyPointerToBlockPointerCast;
1424 return TC_Success;
1425 }
1426 }
1427 }
1428 // Allow arbitrary objective-c pointer conversion with static casts.
1429 if (SrcType->isObjCObjectPointerType() &&
1430 DestType->isObjCObjectPointerType()) {
1431 Kind = CK_BitCast;
1432 return TC_Success;
1433 }
1434 // Allow ns-pointer to cf-pointer conversion in either direction
1435 // with static casts.
1436 if (!CStyle &&
1437 Self.CheckTollFreeBridgeStaticCast(DestType, SrcExpr.get(), Kind))
1438 return TC_Success;
1439
1440 // See if it looks like the user is trying to convert between
1441 // related record types, and select a better diagnostic if so.
1442 if (auto SrcPointer = SrcType->getAs<PointerType>())
1443 if (auto DestPointer = DestType->getAs<PointerType>())
1444 if (SrcPointer->getPointeeType()->getAs<RecordType>() &&
1445 DestPointer->getPointeeType()->getAs<RecordType>())
1446 msg = diag::err_bad_cxx_cast_unrelated_class;
1447
1448 // We tried everything. Everything! Nothing works! :-(
1449 return TC_NotApplicable;
1450}
1451
1452/// Tests whether a conversion according to N2844 is valid.
1453TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr,
1454 QualType DestType, bool CStyle,
1455 CastKind &Kind, CXXCastPath &BasePath,
1456 unsigned &msg) {
1457 // C++11 [expr.static.cast]p3:
1458 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to
1459 // cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1".
1460 const RValueReferenceType *R = DestType->getAs<RValueReferenceType>();
1461 if (!R)
1462 return TC_NotApplicable;
1463
1464 if (!SrcExpr->isGLValue())
1465 return TC_NotApplicable;
1466
1467 // Because we try the reference downcast before this function, from now on
1468 // this is the only cast possibility, so we issue an error if we fail now.
1469 // FIXME: Should allow casting away constness if CStyle.
1470 QualType FromType = SrcExpr->getType();
1471 QualType ToType = R->getPointeeType();
1472 if (CStyle) {
1473 FromType = FromType.getUnqualifiedType();
1474 ToType = ToType.getUnqualifiedType();
1475 }
1476
1477 Sema::ReferenceConversions RefConv;
1478 Sema::ReferenceCompareResult RefResult = Self.CompareReferenceRelationship(
1479 SrcExpr->getBeginLoc(), ToType, FromType, &RefConv);
1480 if (RefResult != Sema::Ref_Compatible) {
1481 if (CStyle || RefResult == Sema::Ref_Incompatible)
1482 return TC_NotApplicable;
1483 // Diagnose types which are reference-related but not compatible here since
1484 // we can provide better diagnostics. In these cases forwarding to
1485 // [expr.static.cast]p4 should never result in a well-formed cast.
1486 msg = SrcExpr->isLValue() ? diag::err_bad_lvalue_to_rvalue_cast
1487 : diag::err_bad_rvalue_to_rvalue_cast;
1488 return TC_Failed;
1489 }
1490
1491 if (RefConv & Sema::ReferenceConversions::DerivedToBase) {
1492 Kind = CK_DerivedToBase;
1493 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1494 /*DetectVirtual=*/true);
1495 if (!Self.IsDerivedFrom(SrcExpr->getBeginLoc(), SrcExpr->getType(),
1496 R->getPointeeType(), Paths))
1497 return TC_NotApplicable;
1498
1499 Self.BuildBasePathArray(Paths, BasePath);
1500 } else
1501 Kind = CK_NoOp;
1502
1503 return TC_Success;
1504}
1505
1506/// Tests whether a conversion according to C++ 5.2.9p5 is valid.
1507TryCastResult
1508TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType,
1509 bool CStyle, SourceRange OpRange,
1510 unsigned &msg, CastKind &Kind,
1511 CXXCastPath &BasePath) {
1512 // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be
1513 // cast to type "reference to cv2 D", where D is a class derived from B,
1514 // if a valid standard conversion from "pointer to D" to "pointer to B"
1515 // exists, cv2 >= cv1, and B is not a virtual base class of D.
1516 // In addition, DR54 clarifies that the base must be accessible in the
1517 // current context. Although the wording of DR54 only applies to the pointer
1518 // variant of this rule, the intent is clearly for it to apply to the this
1519 // conversion as well.
1520
1521 const ReferenceType *DestReference = DestType->getAs<ReferenceType>();
1522 if (!DestReference) {
1523 return TC_NotApplicable;
1524 }
1525 bool RValueRef = DestReference->isRValueReferenceType();
1526 if (!RValueRef && !SrcExpr->isLValue()) {
1527 // We know the left side is an lvalue reference, so we can suggest a reason.
1528 msg = diag::err_bad_cxx_cast_rvalue;
1529 return TC_NotApplicable;
1530 }
1531
1532 QualType DestPointee = DestReference->getPointeeType();
1533
1534 // FIXME: If the source is a prvalue, we should issue a warning (because the
1535 // cast always has undefined behavior), and for AST consistency, we should
1536 // materialize a temporary.
1537 return TryStaticDowncast(Self,
1538 Self.Context.getCanonicalType(SrcExpr->getType()),
1539 Self.Context.getCanonicalType(DestPointee), CStyle,
1540 OpRange, SrcExpr->getType(), DestType, msg, Kind,
1541 BasePath);
1542}
1543
1544/// Tests whether a conversion according to C++ 5.2.9p8 is valid.
1545TryCastResult
1546TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType,
1547 bool CStyle, SourceRange OpRange,
1548 unsigned &msg, CastKind &Kind,
1549 CXXCastPath &BasePath) {
1550 // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class
1551 // type, can be converted to an rvalue of type "pointer to cv2 D", where D
1552 // is a class derived from B, if a valid standard conversion from "pointer
1553 // to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base
1554 // class of D.
1555 // In addition, DR54 clarifies that the base must be accessible in the
1556 // current context.
1557
1558 const PointerType *DestPointer = DestType->getAs<PointerType>();
1559 if (!DestPointer) {
1560 return TC_NotApplicable;
1561 }
1562
1563 const PointerType *SrcPointer = SrcType->getAs<PointerType>();
1564 if (!SrcPointer) {
1565 msg = diag::err_bad_static_cast_pointer_nonpointer;
1566 return TC_NotApplicable;
1567 }
1568
1569 return TryStaticDowncast(Self,
1570 Self.Context.getCanonicalType(SrcPointer->getPointeeType()),
1571 Self.Context.getCanonicalType(DestPointer->getPointeeType()),
1572 CStyle, OpRange, SrcType, DestType, msg, Kind,
1573 BasePath);
1574}
1575
1576/// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and
1577/// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to
1578/// DestType is possible and allowed.
1579TryCastResult
1580TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType,
1581 bool CStyle, SourceRange OpRange, QualType OrigSrcType,
1582 QualType OrigDestType, unsigned &msg,
1583 CastKind &Kind, CXXCastPath &BasePath) {
1584 // We can only work with complete types. But don't complain if it doesn't work
1585 if (!Self.isCompleteType(OpRange.getBegin(), SrcType) ||
1586 !Self.isCompleteType(OpRange.getBegin(), DestType))
1587 return TC_NotApplicable;
1588
1589 // Downcast can only happen in class hierarchies, so we need classes.
1590 if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) {
1591 return TC_NotApplicable;
1592 }
1593
1594 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1595 /*DetectVirtual=*/true);
1596 if (!Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths)) {
1597 return TC_NotApplicable;
1598 }
1599
1600 // Target type does derive from source type. Now we're serious. If an error
1601 // appears now, it's not ignored.
1602 // This may not be entirely in line with the standard. Take for example:
1603 // struct A {};
1604 // struct B : virtual A {
1605 // B(A&);
1606 // };
1607 //
1608 // void f()
1609 // {
1610 // (void)static_cast<const B&>(*((A*)0));
1611 // }
1612 // As far as the standard is concerned, p5 does not apply (A is virtual), so
1613 // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid.
1614 // However, both GCC and Comeau reject this example, and accepting it would
1615 // mean more complex code if we're to preserve the nice error message.
1616 // FIXME: Being 100% compliant here would be nice to have.
1617
1618 // Must preserve cv, as always, unless we're in C-style mode.
1619 if (!CStyle && !DestType.isAtLeastAsQualifiedAs(SrcType)) {
1620 msg = diag::err_bad_cxx_cast_qualifiers_away;
1621 return TC_Failed;
1622 }
1623
1624 if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) {
1625 // This code is analoguous to that in CheckDerivedToBaseConversion, except
1626 // that it builds the paths in reverse order.
1627 // To sum up: record all paths to the base and build a nice string from
1628 // them. Use it to spice up the error message.
1629 if (!Paths.isRecordingPaths()) {
1630 Paths.clear();
1631 Paths.setRecordingPaths(true);
1632 Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths);
1633 }
1634 std::string PathDisplayStr;
1635 std::set<unsigned> DisplayedPaths;
1636 for (clang::CXXBasePath &Path : Paths) {
1637 if (DisplayedPaths.insert(Path.back().SubobjectNumber).second) {
1638 // We haven't displayed a path to this particular base
1639 // class subobject yet.
1640 PathDisplayStr += "\n ";
1641 for (CXXBasePathElement &PE : llvm::reverse(Path))
1642 PathDisplayStr += PE.Base->getType().getAsString() + " -> ";
1643 PathDisplayStr += QualType(DestType).getAsString();
1644 }
1645 }
1646
1647 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast)
1648 << QualType(SrcType).getUnqualifiedType()
1649 << QualType(DestType).getUnqualifiedType()
1650 << PathDisplayStr << OpRange;
1651 msg = 0;
1652 return TC_Failed;
1653 }
1654
1655 if (Paths.getDetectedVirtual() != nullptr) {
1656 QualType VirtualBase(Paths.getDetectedVirtual(), 0);
1657 Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual)
1658 << OrigSrcType << OrigDestType << VirtualBase << OpRange;
1659 msg = 0;
1660 return TC_Failed;
1661 }
1662
1663 if (!CStyle) {
1664 switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
1665 SrcType, DestType,
1666 Paths.front(),
1667 diag::err_downcast_from_inaccessible_base)) {
1668 case Sema::AR_accessible:
1669 case Sema::AR_delayed: // be optimistic
1670 case Sema::AR_dependent: // be optimistic
1671 break;
1672
1673 case Sema::AR_inaccessible:
1674 msg = 0;
1675 return TC_Failed;
1676 }
1677 }
1678
1679 Self.BuildBasePathArray(Paths, BasePath);
1680 Kind = CK_BaseToDerived;
1681 return TC_Success;
1682}
1683
1684/// TryStaticMemberPointerUpcast - Tests whether a conversion according to
1685/// C++ 5.2.9p9 is valid:
1686///
1687/// An rvalue of type "pointer to member of D of type cv1 T" can be
1688/// converted to an rvalue of type "pointer to member of B of type cv2 T",
1689/// where B is a base class of D [...].
1690///
1691TryCastResult
1692TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType,
1693 QualType DestType, bool CStyle,
1694 SourceRange OpRange,
1695 unsigned &msg, CastKind &Kind,
1696 CXXCastPath &BasePath) {
1697 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>();
1698 if (!DestMemPtr)
1699 return TC_NotApplicable;
1700
1701 bool WasOverloadedFunction = false;
1702 DeclAccessPair FoundOverload;
1703 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1704 if (FunctionDecl *Fn
1705 = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false,
1706 FoundOverload)) {
1707 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
1708 SrcType = Self.Context.getMemberPointerType(Fn->getType(),
1709 Self.Context.getTypeDeclType(M->getParent()).getTypePtr());
1710 WasOverloadedFunction = true;
1711 }
1712 }
1713
1714 const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>();
1715 if (!SrcMemPtr) {
1716 msg = diag::err_bad_static_cast_member_pointer_nonmp;
1717 return TC_NotApplicable;
1718 }
1719
1720 // Lock down the inheritance model right now in MS ABI, whether or not the
1721 // pointee types are the same.
1722 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1723 (void)Self.isCompleteType(OpRange.getBegin(), SrcType);
1724 (void)Self.isCompleteType(OpRange.getBegin(), DestType);
1725 }
1726
1727 // T == T, modulo cv
1728 if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(),
1729 DestMemPtr->getPointeeType()))
1730 return TC_NotApplicable;
1731
1732 // B base of D
1733 QualType SrcClass(SrcMemPtr->getClass(), 0);
1734 QualType DestClass(DestMemPtr->getClass(), 0);
1735 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1736 /*DetectVirtual=*/true);
1737 if (!Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths))
1738 return TC_NotApplicable;
1739
1740 // B is a base of D. But is it an allowed base? If not, it's a hard error.
1741 if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) {
1742 Paths.clear();
1743 Paths.setRecordingPaths(true);
1744 bool StillOkay =
1745 Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths);
1746 assert(StillOkay)((StillOkay) ? static_cast<void> (0) : __assert_fail ("StillOkay"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 1746, __PRETTY_FUNCTION__))
;
1747 (void)StillOkay;
1748 std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths);
1749 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv)
1750 << 1 << SrcClass << DestClass << PathDisplayStr << OpRange;
1751 msg = 0;
1752 return TC_Failed;
1753 }
1754
1755 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1756 Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual)
1757 << SrcClass << DestClass << QualType(VBase, 0) << OpRange;
1758 msg = 0;
1759 return TC_Failed;
1760 }
1761
1762 if (!CStyle) {
1763 switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
1764 DestClass, SrcClass,
1765 Paths.front(),
1766 diag::err_upcast_to_inaccessible_base)) {
1767 case Sema::AR_accessible:
1768 case Sema::AR_delayed:
1769 case Sema::AR_dependent:
1770 // Optimistically assume that the delayed and dependent cases
1771 // will work out.
1772 break;
1773
1774 case Sema::AR_inaccessible:
1775 msg = 0;
1776 return TC_Failed;
1777 }
1778 }
1779
1780 if (WasOverloadedFunction) {
1781 // Resolve the address of the overloaded function again, this time
1782 // allowing complaints if something goes wrong.
1783 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
1784 DestType,
1785 true,
1786 FoundOverload);
1787 if (!Fn) {
1788 msg = 0;
1789 return TC_Failed;
1790 }
1791
1792 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn);
1793 if (!SrcExpr.isUsable()) {
1794 msg = 0;
1795 return TC_Failed;
1796 }
1797 }
1798
1799 Self.BuildBasePathArray(Paths, BasePath);
1800 Kind = CK_DerivedToBaseMemberPointer;
1801 return TC_Success;
1802}
1803
1804/// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2
1805/// is valid:
1806///
1807/// An expression e can be explicitly converted to a type T using a
1808/// @c static_cast if the declaration "T t(e);" is well-formed [...].
1809TryCastResult
1810TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType,
1811 Sema::CheckedConversionKind CCK,
1812 SourceRange OpRange, unsigned &msg,
1813 CastKind &Kind, bool ListInitialization) {
1814 if (DestType->isRecordType()) {
1815 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
1816 diag::err_bad_cast_incomplete) ||
1817 Self.RequireNonAbstractType(OpRange.getBegin(), DestType,
1818 diag::err_allocation_of_abstract_type)) {
1819 msg = 0;
1820 return TC_Failed;
1821 }
1822 }
1823
1824 InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType);
1825 InitializationKind InitKind
1826 = (CCK == Sema::CCK_CStyleCast)
1827 ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange,
1828 ListInitialization)
1829 : (CCK == Sema::CCK_FunctionalCast)
1830 ? InitializationKind::CreateFunctionalCast(OpRange, ListInitialization)
1831 : InitializationKind::CreateCast(OpRange);
1832 Expr *SrcExprRaw = SrcExpr.get();
1833 // FIXME: Per DR242, we should check for an implicit conversion sequence
1834 // or for a constructor that could be invoked by direct-initialization
1835 // here, not for an initialization sequence.
1836 InitializationSequence InitSeq(Self, Entity, InitKind, SrcExprRaw);
1837
1838 // At this point of CheckStaticCast, if the destination is a reference,
1839 // or the expression is an overload expression this has to work.
1840 // There is no other way that works.
1841 // On the other hand, if we're checking a C-style cast, we've still got
1842 // the reinterpret_cast way.
1843 bool CStyle
1844 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast);
1845 if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType()))
1846 return TC_NotApplicable;
1847
1848 ExprResult Result = InitSeq.Perform(Self, Entity, InitKind, SrcExprRaw);
1849 if (Result.isInvalid()) {
1850 msg = 0;
1851 return TC_Failed;
1852 }
1853
1854 if (InitSeq.isConstructorInitialization())
1855 Kind = CK_ConstructorConversion;
1856 else
1857 Kind = CK_NoOp;
1858
1859 SrcExpr = Result;
1860 return TC_Success;
1861}
1862
1863/// TryConstCast - See if a const_cast from source to destination is allowed,
1864/// and perform it if it is.
1865static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
1866 QualType DestType, bool CStyle,
1867 unsigned &msg) {
1868 DestType = Self.Context.getCanonicalType(DestType);
1869 QualType SrcType = SrcExpr.get()->getType();
1870 bool NeedToMaterializeTemporary = false;
1871
1872 if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) {
1873 // C++11 5.2.11p4:
1874 // if a pointer to T1 can be explicitly converted to the type "pointer to
1875 // T2" using a const_cast, then the following conversions can also be
1876 // made:
1877 // -- an lvalue of type T1 can be explicitly converted to an lvalue of
1878 // type T2 using the cast const_cast<T2&>;
1879 // -- a glvalue of type T1 can be explicitly converted to an xvalue of
1880 // type T2 using the cast const_cast<T2&&>; and
1881 // -- if T1 is a class type, a prvalue of type T1 can be explicitly
1882 // converted to an xvalue of type T2 using the cast const_cast<T2&&>.
1883
1884 if (isa<LValueReferenceType>(DestTypeTmp) && !SrcExpr.get()->isLValue()) {
1885 // Cannot const_cast non-lvalue to lvalue reference type. But if this
1886 // is C-style, static_cast might find a way, so we simply suggest a
1887 // message and tell the parent to keep searching.
1888 msg = diag::err_bad_cxx_cast_rvalue;
1889 return TC_NotApplicable;
1890 }
1891
1892 if (isa<RValueReferenceType>(DestTypeTmp) && SrcExpr.get()->isRValue()) {
1893 if (!SrcType->isRecordType()) {
1894 // Cannot const_cast non-class prvalue to rvalue reference type. But if
1895 // this is C-style, static_cast can do this.
1896 msg = diag::err_bad_cxx_cast_rvalue;
1897 return TC_NotApplicable;
1898 }
1899
1900 // Materialize the class prvalue so that the const_cast can bind a
1901 // reference to it.
1902 NeedToMaterializeTemporary = true;
1903 }
1904
1905 // It's not completely clear under the standard whether we can
1906 // const_cast bit-field gl-values. Doing so would not be
1907 // intrinsically complicated, but for now, we say no for
1908 // consistency with other compilers and await the word of the
1909 // committee.
1910 if (SrcExpr.get()->refersToBitField()) {
1911 msg = diag::err_bad_cxx_cast_bitfield;
1912 return TC_NotApplicable;
1913 }
1914
1915 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
1916 SrcType = Self.Context.getPointerType(SrcType);
1917 }
1918
1919 // C++ 5.2.11p5: For a const_cast involving pointers to data members [...]
1920 // the rules for const_cast are the same as those used for pointers.
1921
1922 if (!DestType->isPointerType() &&
1923 !DestType->isMemberPointerType() &&
1924 !DestType->isObjCObjectPointerType()) {
1925 // Cannot cast to non-pointer, non-reference type. Note that, if DestType
1926 // was a reference type, we converted it to a pointer above.
1927 // The status of rvalue references isn't entirely clear, but it looks like
1928 // conversion to them is simply invalid.
1929 // C++ 5.2.11p3: For two pointer types [...]
1930 if (!CStyle)
1931 msg = diag::err_bad_const_cast_dest;
1932 return TC_NotApplicable;
1933 }
1934 if (DestType->isFunctionPointerType() ||
1935 DestType->isMemberFunctionPointerType()) {
1936 // Cannot cast direct function pointers.
1937 // C++ 5.2.11p2: [...] where T is any object type or the void type [...]
1938 // T is the ultimate pointee of source and target type.
1939 if (!CStyle)
1940 msg = diag::err_bad_const_cast_dest;
1941 return TC_NotApplicable;
1942 }
1943
1944 // C++ [expr.const.cast]p3:
1945 // "For two similar types T1 and T2, [...]"
1946 //
1947 // We only allow a const_cast to change cvr-qualifiers, not other kinds of
1948 // type qualifiers. (Likewise, we ignore other changes when determining
1949 // whether a cast casts away constness.)
1950 if (!Self.Context.hasCvrSimilarType(SrcType, DestType))
1951 return TC_NotApplicable;
1952
1953 if (NeedToMaterializeTemporary)
1954 // This is a const_cast from a class prvalue to an rvalue reference type.
1955 // Materialize a temporary to store the result of the conversion.
1956 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcExpr.get()->getType(),
1957 SrcExpr.get(),
1958 /*IsLValueReference*/ false);
1959
1960 return TC_Success;
1961}
1962
1963// Checks for undefined behavior in reinterpret_cast.
1964// The cases that is checked for is:
1965// *reinterpret_cast<T*>(&a)
1966// reinterpret_cast<T&>(a)
1967// where accessing 'a' as type 'T' will result in undefined behavior.
1968void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
1969 bool IsDereference,
1970 SourceRange Range) {
1971 unsigned DiagID = IsDereference ?
1972 diag::warn_pointer_indirection_from_incompatible_type :
1973 diag::warn_undefined_reinterpret_cast;
1974
1975 if (Diags.isIgnored(DiagID, Range.getBegin()))
1976 return;
1977
1978 QualType SrcTy, DestTy;
1979 if (IsDereference) {
1980 if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) {
1981 return;
1982 }
1983 SrcTy = SrcType->getPointeeType();
1984 DestTy = DestType->getPointeeType();
1985 } else {
1986 if (!DestType->getAs<ReferenceType>()) {
1987 return;
1988 }
1989 SrcTy = SrcType;
1990 DestTy = DestType->getPointeeType();
1991 }
1992
1993 // Cast is compatible if the types are the same.
1994 if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) {
1995 return;
1996 }
1997 // or one of the types is a char or void type
1998 if (DestTy->isAnyCharacterType() || DestTy->isVoidType() ||
1999 SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) {
2000 return;
2001 }
2002 // or one of the types is a tag type.
2003 if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) {
2004 return;
2005 }
2006
2007 // FIXME: Scoped enums?
2008 if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) ||
2009 (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) {
2010 if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) {
2011 return;
2012 }
2013 }
2014
2015 Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range;
2016}
2017
2018static void DiagnoseCastOfObjCSEL(Sema &Self, const ExprResult &SrcExpr,
2019 QualType DestType) {
2020 QualType SrcType = SrcExpr.get()->getType();
2021 if (Self.Context.hasSameType(SrcType, DestType))
2022 return;
2023 if (const PointerType *SrcPtrTy = SrcType->getAs<PointerType>())
2024 if (SrcPtrTy->isObjCSelType()) {
2025 QualType DT = DestType;
2026 if (isa<PointerType>(DestType))
2027 DT = DestType->getPointeeType();
2028 if (!DT.getUnqualifiedType()->isVoidType())
2029 Self.Diag(SrcExpr.get()->getExprLoc(),
2030 diag::warn_cast_pointer_from_sel)
2031 << SrcType << DestType << SrcExpr.get()->getSourceRange();
2032 }
2033}
2034
2035/// Diagnose casts that change the calling convention of a pointer to a function
2036/// defined in the current TU.
2037static void DiagnoseCallingConvCast(Sema &Self, const ExprResult &SrcExpr,
2038 QualType DstType, SourceRange OpRange) {
2039 // Check if this cast would change the calling convention of a function
2040 // pointer type.
2041 QualType SrcType = SrcExpr.get()->getType();
2042 if (Self.Context.hasSameType(SrcType, DstType) ||
2043 !SrcType->isFunctionPointerType() || !DstType->isFunctionPointerType())
2044 return;
2045 const auto *SrcFTy =
2046 SrcType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>();
2047 const auto *DstFTy =
2048 DstType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>();
2049 CallingConv SrcCC = SrcFTy->getCallConv();
2050 CallingConv DstCC = DstFTy->getCallConv();
2051 if (SrcCC == DstCC)
2052 return;
2053
2054 // We have a calling convention cast. Check if the source is a pointer to a
2055 // known, specific function that has already been defined.
2056 Expr *Src = SrcExpr.get()->IgnoreParenImpCasts();
2057 if (auto *UO = dyn_cast<UnaryOperator>(Src))
2058 if (UO->getOpcode() == UO_AddrOf)
2059 Src = UO->getSubExpr()->IgnoreParenImpCasts();
2060 auto *DRE = dyn_cast<DeclRefExpr>(Src);
2061 if (!DRE)
2062 return;
2063 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
2064 if (!FD)
2065 return;
2066
2067 // Only warn if we are casting from the default convention to a non-default
2068 // convention. This can happen when the programmer forgot to apply the calling
2069 // convention to the function declaration and then inserted this cast to
2070 // satisfy the type system.
2071 CallingConv DefaultCC = Self.getASTContext().getDefaultCallingConvention(
2072 FD->isVariadic(), FD->isCXXInstanceMember());
2073 if (DstCC == DefaultCC || SrcCC != DefaultCC)
2074 return;
2075
2076 // Diagnose this cast, as it is probably bad.
2077 StringRef SrcCCName = FunctionType::getNameForCallConv(SrcCC);
2078 StringRef DstCCName = FunctionType::getNameForCallConv(DstCC);
2079 Self.Diag(OpRange.getBegin(), diag::warn_cast_calling_conv)
2080 << SrcCCName << DstCCName << OpRange;
2081
2082 // The checks above are cheaper than checking if the diagnostic is enabled.
2083 // However, it's worth checking if the warning is enabled before we construct
2084 // a fixit.
2085 if (Self.Diags.isIgnored(diag::warn_cast_calling_conv, OpRange.getBegin()))
2086 return;
2087
2088 // Try to suggest a fixit to change the calling convention of the function
2089 // whose address was taken. Try to use the latest macro for the convention.
2090 // For example, users probably want to write "WINAPI" instead of "__stdcall"
2091 // to match the Windows header declarations.
2092 SourceLocation NameLoc = FD->getFirstDecl()->getNameInfo().getLoc();
2093 Preprocessor &PP = Self.getPreprocessor();
2094 SmallVector<TokenValue, 6> AttrTokens;
2095 SmallString<64> CCAttrText;
2096 llvm::raw_svector_ostream OS(CCAttrText);
2097 if (Self.getLangOpts().MicrosoftExt) {
2098 // __stdcall or __vectorcall
2099 OS << "__" << DstCCName;
2100 IdentifierInfo *II = PP.getIdentifierInfo(OS.str());
2101 AttrTokens.push_back(II->isKeyword(Self.getLangOpts())
2102 ? TokenValue(II->getTokenID())
2103 : TokenValue(II));
2104 } else {
2105 // __attribute__((stdcall)) or __attribute__((vectorcall))
2106 OS << "__attribute__((" << DstCCName << "))";
2107 AttrTokens.push_back(tok::kw___attribute);
2108 AttrTokens.push_back(tok::l_paren);
2109 AttrTokens.push_back(tok::l_paren);
2110 IdentifierInfo *II = PP.getIdentifierInfo(DstCCName);
2111 AttrTokens.push_back(II->isKeyword(Self.getLangOpts())
2112 ? TokenValue(II->getTokenID())
2113 : TokenValue(II));
2114 AttrTokens.push_back(tok::r_paren);
2115 AttrTokens.push_back(tok::r_paren);
2116 }
2117 StringRef AttrSpelling = PP.getLastMacroWithSpelling(NameLoc, AttrTokens);
2118 if (!AttrSpelling.empty())
2119 CCAttrText = AttrSpelling;
2120 OS << ' ';
2121 Self.Diag(NameLoc, diag::note_change_calling_conv_fixit)
2122 << FD << DstCCName << FixItHint::CreateInsertion(NameLoc, CCAttrText);
2123}
2124
2125static void checkIntToPointerCast(bool CStyle, const SourceRange &OpRange,
2126 const Expr *SrcExpr, QualType DestType,
2127 Sema &Self) {
2128 QualType SrcType = SrcExpr->getType();
2129
2130 // Not warning on reinterpret_cast, boolean, constant expressions, etc
2131 // are not explicit design choices, but consistent with GCC's behavior.
2132 // Feel free to modify them if you've reason/evidence for an alternative.
2133 if (CStyle && SrcType->isIntegralType(Self.Context)
2134 && !SrcType->isBooleanType()
2135 && !SrcType->isEnumeralType()
2136 && !SrcExpr->isIntegerConstantExpr(Self.Context)
2137 && Self.Context.getTypeSize(DestType) >
2138 Self.Context.getTypeSize(SrcType)) {
2139 // Separate between casts to void* and non-void* pointers.
2140 // Some APIs use (abuse) void* for something like a user context,
2141 // and often that value is an integer even if it isn't a pointer itself.
2142 // Having a separate warning flag allows users to control the warning
2143 // for their workflow.
2144 unsigned Diag = DestType->isVoidPointerType() ?
2145 diag::warn_int_to_void_pointer_cast
2146 : diag::warn_int_to_pointer_cast;
2147 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
2148 }
2149}
2150
2151static bool fixOverloadedReinterpretCastExpr(Sema &Self, QualType DestType,
2152 ExprResult &Result) {
2153 // We can only fix an overloaded reinterpret_cast if
2154 // - it is a template with explicit arguments that resolves to an lvalue
2155 // unambiguously, or
2156 // - it is the only function in an overload set that may have its address
2157 // taken.
2158
2159 Expr *E = Result.get();
2160 // TODO: what if this fails because of DiagnoseUseOfDecl or something
2161 // like it?
2162 if (Self.ResolveAndFixSingleFunctionTemplateSpecialization(
2163 Result,
2164 Expr::getValueKindForType(DestType) == VK_RValue // Convert Fun to Ptr
2165 ) &&
2166 Result.isUsable())
2167 return true;
2168
2169 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
2170 // preserves Result.
2171 Result = E;
2172 if (!Self.resolveAndFixAddressOfSingleOverloadCandidate(
2173 Result, /*DoFunctionPointerConversion=*/true))
2174 return false;
2175 return Result.isUsable();
2176}
2177
2178static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
2179 QualType DestType, bool CStyle,
2180 SourceRange OpRange,
2181 unsigned &msg,
2182 CastKind &Kind) {
2183 bool IsLValueCast = false;
2184
2185 DestType = Self.Context.getCanonicalType(DestType);
2186 QualType SrcType = SrcExpr.get()->getType();
2187
2188 // Is the source an overloaded name? (i.e. &foo)
2189 // If so, reinterpret_cast generally can not help us here (13.4, p1, bullet 5)
2190 if (SrcType == Self.Context.OverloadTy) {
2191 ExprResult FixedExpr = SrcExpr;
2192 if (!fixOverloadedReinterpretCastExpr(Self, DestType, FixedExpr))
2193 return TC_NotApplicable;
2194
2195 assert(FixedExpr.isUsable() && "Invalid result fixing overloaded expr")((FixedExpr.isUsable() && "Invalid result fixing overloaded expr"
) ? static_cast<void> (0) : __assert_fail ("FixedExpr.isUsable() && \"Invalid result fixing overloaded expr\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2195, __PRETTY_FUNCTION__))
;
2196 SrcExpr = FixedExpr;
2197 SrcType = SrcExpr.get()->getType();
2198 }
2199
2200 if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) {
2201 if (!SrcExpr.get()->isGLValue()) {
2202 // Cannot cast non-glvalue to (lvalue or rvalue) reference type. See the
2203 // similar comment in const_cast.
2204 msg = diag::err_bad_cxx_cast_rvalue;
2205 return TC_NotApplicable;
2206 }
2207
2208 if (!CStyle) {
2209 Self.CheckCompatibleReinterpretCast(SrcType, DestType,
2210 /*IsDereference=*/false, OpRange);
2211 }
2212
2213 // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the
2214 // same effect as the conversion *reinterpret_cast<T*>(&x) with the
2215 // built-in & and * operators.
2216
2217 const char *inappropriate = nullptr;
2218 switch (SrcExpr.get()->getObjectKind()) {
2219 case OK_Ordinary:
2220 break;
2221 case OK_BitField:
2222 msg = diag::err_bad_cxx_cast_bitfield;
2223 return TC_NotApplicable;
2224 // FIXME: Use a specific diagnostic for the rest of these cases.
2225 case OK_VectorComponent: inappropriate = "vector element"; break;
2226 case OK_MatrixComponent:
2227 inappropriate = "matrix element";
2228 break;
2229 case OK_ObjCProperty: inappropriate = "property expression"; break;
2230 case OK_ObjCSubscript: inappropriate = "container subscripting expression";
2231 break;
2232 }
2233 if (inappropriate) {
2234 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference)
2235 << inappropriate << DestType
2236 << OpRange << SrcExpr.get()->getSourceRange();
2237 msg = 0; SrcExpr = ExprError();
2238 return TC_NotApplicable;
2239 }
2240
2241 // This code does this transformation for the checked types.
2242 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
2243 SrcType = Self.Context.getPointerType(SrcType);
2244
2245 IsLValueCast = true;
2246 }
2247
2248 // Canonicalize source for comparison.
2249 SrcType = Self.Context.getCanonicalType(SrcType);
2250
2251 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(),
2252 *SrcMemPtr = SrcType->getAs<MemberPointerType>();
2253 if (DestMemPtr && SrcMemPtr) {
2254 // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1"
2255 // can be explicitly converted to an rvalue of type "pointer to member
2256 // of Y of type T2" if T1 and T2 are both function types or both object
2257 // types.
2258 if (DestMemPtr->isMemberFunctionPointer() !=
2259 SrcMemPtr->isMemberFunctionPointer())
2260 return TC_NotApplicable;
2261
2262 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2263 // We need to determine the inheritance model that the class will use if
2264 // haven't yet.
2265 (void)Self.isCompleteType(OpRange.getBegin(), SrcType);
2266 (void)Self.isCompleteType(OpRange.getBegin(), DestType);
2267 }
2268
2269 // Don't allow casting between member pointers of different sizes.
2270 if (Self.Context.getTypeSize(DestMemPtr) !=
2271 Self.Context.getTypeSize(SrcMemPtr)) {
2272 msg = diag::err_bad_cxx_cast_member_pointer_size;
2273 return TC_Failed;
2274 }
2275
2276 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away
2277 // constness.
2278 // A reinterpret_cast followed by a const_cast can, though, so in C-style,
2279 // we accept it.
2280 if (auto CACK =
2281 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
2282 /*CheckObjCLifetime=*/CStyle))
2283 return getCastAwayConstnessCastKind(CACK, msg);
2284
2285 // A valid member pointer cast.
2286 assert(!IsLValueCast)((!IsLValueCast) ? static_cast<void> (0) : __assert_fail
("!IsLValueCast", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2286, __PRETTY_FUNCTION__))
;
2287 Kind = CK_ReinterpretMemberPointer;
2288 return TC_Success;
2289 }
2290
2291 // See below for the enumeral issue.
2292 if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) {
2293 // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral
2294 // type large enough to hold it. A value of std::nullptr_t can be
2295 // converted to an integral type; the conversion has the same meaning
2296 // and validity as a conversion of (void*)0 to the integral type.
2297 if (Self.Context.getTypeSize(SrcType) >
2298 Self.Context.getTypeSize(DestType)) {
2299 msg = diag::err_bad_reinterpret_cast_small_int;
2300 return TC_Failed;
2301 }
2302 Kind = CK_PointerToIntegral;
2303 return TC_Success;
2304 }
2305
2306 // Allow reinterpret_casts between vectors of the same size and
2307 // between vectors and integers of the same size.
2308 bool destIsVector = DestType->isVectorType();
2309 bool srcIsVector = SrcType->isVectorType();
2310 if (srcIsVector || destIsVector) {
2311 // Allow bitcasting between SVE VLATs and VLSTs, and vice-versa.
2312 if (Self.isValidSveBitcast(SrcType, DestType)) {
2313 Kind = CK_BitCast;
2314 return TC_Success;
2315 }
2316
2317 // The non-vector type, if any, must have integral type. This is
2318 // the same rule that C vector casts use; note, however, that enum
2319 // types are not integral in C++.
2320 if ((!destIsVector && !DestType->isIntegralType(Self.Context)) ||
2321 (!srcIsVector && !SrcType->isIntegralType(Self.Context)))
2322 return TC_NotApplicable;
2323
2324 // The size we want to consider is eltCount * eltSize.
2325 // That's exactly what the lax-conversion rules will check.
2326 if (Self.areLaxCompatibleVectorTypes(SrcType, DestType)) {
2327 Kind = CK_BitCast;
2328 return TC_Success;
2329 }
2330
2331 // Otherwise, pick a reasonable diagnostic.
2332 if (!destIsVector)
2333 msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size;
2334 else if (!srcIsVector)
2335 msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size;
2336 else
2337 msg = diag::err_bad_cxx_cast_vector_to_vector_different_size;
2338
2339 return TC_Failed;
2340 }
2341
2342 if (SrcType == DestType) {
2343 // C++ 5.2.10p2 has a note that mentions that, subject to all other
2344 // restrictions, a cast to the same type is allowed so long as it does not
2345 // cast away constness. In C++98, the intent was not entirely clear here,
2346 // since all other paragraphs explicitly forbid casts to the same type.
2347 // C++11 clarifies this case with p2.
2348 //
2349 // The only allowed types are: integral, enumeration, pointer, or
2350 // pointer-to-member types. We also won't restrict Obj-C pointers either.
2351 Kind = CK_NoOp;
2352 TryCastResult Result = TC_NotApplicable;
2353 if (SrcType->isIntegralOrEnumerationType() ||
2354 SrcType->isAnyPointerType() ||
2355 SrcType->isMemberPointerType() ||
2356 SrcType->isBlockPointerType()) {
2357 Result = TC_Success;
2358 }
2359 return Result;
2360 }
2361
2362 bool destIsPtr = DestType->isAnyPointerType() ||
2363 DestType->isBlockPointerType();
2364 bool srcIsPtr = SrcType->isAnyPointerType() ||
2365 SrcType->isBlockPointerType();
2366 if (!destIsPtr && !srcIsPtr) {
2367 // Except for std::nullptr_t->integer and lvalue->reference, which are
2368 // handled above, at least one of the two arguments must be a pointer.
2369 return TC_NotApplicable;
2370 }
2371
2372 if (DestType->isIntegralType(Self.Context)) {
2373 assert(srcIsPtr && "One type must be a pointer")((srcIsPtr && "One type must be a pointer") ? static_cast
<void> (0) : __assert_fail ("srcIsPtr && \"One type must be a pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2373, __PRETTY_FUNCTION__))
;
2374 // C++ 5.2.10p4: A pointer can be explicitly converted to any integral
2375 // type large enough to hold it; except in Microsoft mode, where the
2376 // integral type size doesn't matter (except we don't allow bool).
2377 if ((Self.Context.getTypeSize(SrcType) >
2378 Self.Context.getTypeSize(DestType))) {
2379 bool MicrosoftException =
2380 Self.getLangOpts().MicrosoftExt && !DestType->isBooleanType();
2381 if (MicrosoftException) {
2382 unsigned Diag = SrcType->isVoidPointerType()
2383 ? diag::warn_void_pointer_to_int_cast
2384 : diag::warn_pointer_to_int_cast;
2385 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
2386 } else {
2387 msg = diag::err_bad_reinterpret_cast_small_int;
2388 return TC_Failed;
2389 }
2390 }
2391 Kind = CK_PointerToIntegral;
2392 return TC_Success;
2393 }
2394
2395 if (SrcType->isIntegralOrEnumerationType()) {
2396 assert(destIsPtr && "One type must be a pointer")((destIsPtr && "One type must be a pointer") ? static_cast
<void> (0) : __assert_fail ("destIsPtr && \"One type must be a pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2396, __PRETTY_FUNCTION__))
;
2397 checkIntToPointerCast(CStyle, OpRange, SrcExpr.get(), DestType, Self);
2398 // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly
2399 // converted to a pointer.
2400 // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not
2401 // necessarily converted to a null pointer value.]
2402 Kind = CK_IntegralToPointer;
2403 return TC_Success;
2404 }
2405
2406 if (!destIsPtr || !srcIsPtr) {
2407 // With the valid non-pointer conversions out of the way, we can be even
2408 // more stringent.
2409 return TC_NotApplicable;
2410 }
2411
2412 // Cannot convert between block pointers and Objective-C object pointers.
2413 if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) ||
2414 (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType()))
2415 return TC_NotApplicable;
2416
2417 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness.
2418 // The C-style cast operator can.
2419 TryCastResult SuccessResult = TC_Success;
2420 if (auto CACK =
2421 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
2422 /*CheckObjCLifetime=*/CStyle))
2423 SuccessResult = getCastAwayConstnessCastKind(CACK, msg);
2424
2425 if (IsAddressSpaceConversion(SrcType, DestType)) {
2426 Kind = CK_AddressSpaceConversion;
2427 assert(SrcType->isPointerType() && DestType->isPointerType())((SrcType->isPointerType() && DestType->isPointerType
()) ? static_cast<void> (0) : __assert_fail ("SrcType->isPointerType() && DestType->isPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2427, __PRETTY_FUNCTION__))
;
2428 if (!CStyle &&
2429 !DestType->getPointeeType().getQualifiers().isAddressSpaceSupersetOf(
2430 SrcType->getPointeeType().getQualifiers())) {
2431 SuccessResult = TC_Failed;
2432 }
2433 } else if (IsLValueCast) {
2434 Kind = CK_LValueBitCast;
2435 } else if (DestType->isObjCObjectPointerType()) {
2436 Kind = Self.PrepareCastToObjCObjectPointer(SrcExpr);
2437 } else if (DestType->isBlockPointerType()) {
2438 if (!SrcType->isBlockPointerType()) {
2439 Kind = CK_AnyPointerToBlockPointerCast;
2440 } else {
2441 Kind = CK_BitCast;
2442 }
2443 } else {
2444 Kind = CK_BitCast;
2445 }
2446
2447 // Any pointer can be cast to an Objective-C pointer type with a C-style
2448 // cast.
2449 if (CStyle && DestType->isObjCObjectPointerType()) {
2450 return SuccessResult;
2451 }
2452 if (CStyle)
2453 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
2454
2455 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange);
2456
2457 // Not casting away constness, so the only remaining check is for compatible
2458 // pointer categories.
2459
2460 if (SrcType->isFunctionPointerType()) {
2461 if (DestType->isFunctionPointerType()) {
2462 // C++ 5.2.10p6: A pointer to a function can be explicitly converted to
2463 // a pointer to a function of a different type.
2464 return SuccessResult;
2465 }
2466
2467 // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to
2468 // an object type or vice versa is conditionally-supported.
2469 // Compilers support it in C++03 too, though, because it's necessary for
2470 // casting the return value of dlsym() and GetProcAddress().
2471 // FIXME: Conditionally-supported behavior should be configurable in the
2472 // TargetInfo or similar.
2473 Self.Diag(OpRange.getBegin(),
2474 Self.getLangOpts().CPlusPlus11 ?
2475 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
2476 << OpRange;
2477 return SuccessResult;
2478 }
2479
2480 if (DestType->isFunctionPointerType()) {
2481 // See above.
2482 Self.Diag(OpRange.getBegin(),
2483 Self.getLangOpts().CPlusPlus11 ?
2484 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
2485 << OpRange;
2486 return SuccessResult;
2487 }
2488
2489 // Diagnose address space conversion in nested pointers.
2490 QualType DestPtee = DestType->getPointeeType().isNull()
2491 ? DestType->getPointeeType()
2492 : DestType->getPointeeType()->getPointeeType();
2493 QualType SrcPtee = SrcType->getPointeeType().isNull()
2494 ? SrcType->getPointeeType()
2495 : SrcType->getPointeeType()->getPointeeType();
2496 while (!DestPtee.isNull() && !SrcPtee.isNull()) {
2497 if (DestPtee.getAddressSpace() != SrcPtee.getAddressSpace()) {
2498 Self.Diag(OpRange.getBegin(),
2499 diag::warn_bad_cxx_cast_nested_pointer_addr_space)
2500 << CStyle << SrcType << DestType << SrcExpr.get()->getSourceRange();
2501 break;
2502 }
2503 DestPtee = DestPtee->getPointeeType();
2504 SrcPtee = SrcPtee->getPointeeType();
2505 }
2506
2507 // C++ 5.2.10p7: A pointer to an object can be explicitly converted to
2508 // a pointer to an object of different type.
2509 // Void pointers are not specified, but supported by every compiler out there.
2510 // So we finish by allowing everything that remains - it's got to be two
2511 // object pointers.
2512 return SuccessResult;
2513}
2514
2515static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr,
2516 QualType DestType, bool CStyle,
2517 unsigned &msg, CastKind &Kind) {
2518 if (!Self.getLangOpts().OpenCL)
2519 // FIXME: As compiler doesn't have any information about overlapping addr
2520 // spaces at the moment we have to be permissive here.
2521 return TC_NotApplicable;
2522 // Even though the logic below is general enough and can be applied to
2523 // non-OpenCL mode too, we fast-path above because no other languages
2524 // define overlapping address spaces currently.
2525 auto SrcType = SrcExpr.get()->getType();
2526 // FIXME: Should this be generalized to references? The reference parameter
2527 // however becomes a reference pointee type here and therefore rejected.
2528 // Perhaps this is the right behavior though according to C++.
2529 auto SrcPtrType = SrcType->getAs<PointerType>();
2530 if (!SrcPtrType)
2531 return TC_NotApplicable;
2532 auto DestPtrType = DestType->getAs<PointerType>();
2533 if (!DestPtrType)
2534 return TC_NotApplicable;
2535 auto SrcPointeeType = SrcPtrType->getPointeeType();
2536 auto DestPointeeType = DestPtrType->getPointeeType();
2537 if (!DestPointeeType.isAddressSpaceOverlapping(SrcPointeeType)) {
2538 msg = diag::err_bad_cxx_cast_addr_space_mismatch;
2539 return TC_Failed;
2540 }
2541 auto SrcPointeeTypeWithoutAS =
2542 Self.Context.removeAddrSpaceQualType(SrcPointeeType.getCanonicalType());
2543 auto DestPointeeTypeWithoutAS =
2544 Self.Context.removeAddrSpaceQualType(DestPointeeType.getCanonicalType());
2545 if (Self.Context.hasSameType(SrcPointeeTypeWithoutAS,
2546 DestPointeeTypeWithoutAS)) {
2547 Kind = SrcPointeeType.getAddressSpace() == DestPointeeType.getAddressSpace()
2548 ? CK_NoOp
2549 : CK_AddressSpaceConversion;
2550 return TC_Success;
2551 } else {
2552 return TC_NotApplicable;
2553 }
2554}
2555
2556void CastOperation::checkAddressSpaceCast(QualType SrcType, QualType DestType) {
2557 // In OpenCL only conversions between pointers to objects in overlapping
2558 // addr spaces are allowed. v2.0 s6.5.5 - Generic addr space overlaps
2559 // with any named one, except for constant.
2560
2561 // Converting the top level pointee addrspace is permitted for compatible
2562 // addrspaces (such as 'generic int *' to 'local int *' or vice versa), but
2563 // if any of the nested pointee addrspaces differ, we emit a warning
2564 // regardless of addrspace compatibility. This makes
2565 // local int ** p;
2566 // return (generic int **) p;
2567 // warn even though local -> generic is permitted.
2568 if (Self.getLangOpts().OpenCL) {
2569 const Type *DestPtr, *SrcPtr;
2570 bool Nested = false;
2571 unsigned DiagID = diag::err_typecheck_incompatible_address_space;
2572 DestPtr = Self.getASTContext().getCanonicalType(DestType.getTypePtr()),
2573 SrcPtr = Self.getASTContext().getCanonicalType(SrcType.getTypePtr());
2574
2575 while (isa<PointerType>(DestPtr) && isa<PointerType>(SrcPtr)) {
2576 const PointerType *DestPPtr = cast<PointerType>(DestPtr);
2577 const PointerType *SrcPPtr = cast<PointerType>(SrcPtr);
2578 QualType DestPPointee = DestPPtr->getPointeeType();
2579 QualType SrcPPointee = SrcPPtr->getPointeeType();
2580 if (Nested
2581 ? DestPPointee.getAddressSpace() != SrcPPointee.getAddressSpace()
2582 : !DestPPointee.isAddressSpaceOverlapping(SrcPPointee)) {
2583 Self.Diag(OpRange.getBegin(), DiagID)
2584 << SrcType << DestType << Sema::AA_Casting
2585 << SrcExpr.get()->getSourceRange();
2586 if (!Nested)
2587 SrcExpr = ExprError();
2588 return;
2589 }
2590
2591 DestPtr = DestPPtr->getPointeeType().getTypePtr();
2592 SrcPtr = SrcPPtr->getPointeeType().getTypePtr();
2593 Nested = true;
2594 DiagID = diag::ext_nested_pointer_qualifier_mismatch;
2595 }
2596 }
2597}
2598
2599void CastOperation::CheckCXXCStyleCast(bool FunctionalStyle,
2600 bool ListInitialization) {
2601 assert(Self.getLangOpts().CPlusPlus)((Self.getLangOpts().CPlusPlus) ? static_cast<void> (0)
: __assert_fail ("Self.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2601, __PRETTY_FUNCTION__))
;
2602
2603 // Handle placeholders.
2604 if (isPlaceholder()) {
2605 // C-style casts can resolve __unknown_any types.
2606 if (claimPlaceholder(BuiltinType::UnknownAny)) {
2607 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
2608 SrcExpr.get(), Kind,
2609 ValueKind, BasePath);
2610 return;
2611 }
2612
2613 checkNonOverloadPlaceholders();
2614 if (SrcExpr.isInvalid())
2615 return;
2616 }
2617
2618 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
2619 // This test is outside everything else because it's the only case where
2620 // a non-lvalue-reference target type does not lead to decay.
2621 if (DestType->isVoidType()) {
2622 Kind = CK_ToVoid;
2623
2624 if (claimPlaceholder(BuiltinType::Overload)) {
2625 Self.ResolveAndFixSingleFunctionTemplateSpecialization(
2626 SrcExpr, /* Decay Function to ptr */ false,
2627 /* Complain */ true, DestRange, DestType,
2628 diag::err_bad_cstyle_cast_overload);
2629 if (SrcExpr.isInvalid())
2630 return;
2631 }
2632
2633 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
2634 return;
2635 }
2636
2637 // If the type is dependent, we won't do any other semantic analysis now.
2638 if (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() ||
2639 SrcExpr.get()->isValueDependent()) {
2640 assert(Kind == CK_Dependent)((Kind == CK_Dependent) ? static_cast<void> (0) : __assert_fail
("Kind == CK_Dependent", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2640, __PRETTY_FUNCTION__))
;
2641 return;
2642 }
2643
2644 if (ValueKind == VK_RValue && !DestType->isRecordType() &&
2645 !isPlaceholder(BuiltinType::Overload)) {
2646 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
2647 if (SrcExpr.isInvalid())
2648 return;
2649 }
2650
2651 // AltiVec vector initialization with a single literal.
2652 if (const VectorType *vecTy = DestType->getAs<VectorType>())
2653 if (vecTy->getVectorKind() == VectorType::AltiVecVector
2654 && (SrcExpr.get()->getType()->isIntegerType()
2655 || SrcExpr.get()->getType()->isFloatingType())) {
2656 Kind = CK_VectorSplat;
2657 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get());
2658 return;
2659 }
2660
2661 // C++ [expr.cast]p5: The conversions performed by
2662 // - a const_cast,
2663 // - a static_cast,
2664 // - a static_cast followed by a const_cast,
2665 // - a reinterpret_cast, or
2666 // - a reinterpret_cast followed by a const_cast,
2667 // can be performed using the cast notation of explicit type conversion.
2668 // [...] If a conversion can be interpreted in more than one of the ways
2669 // listed above, the interpretation that appears first in the list is used,
2670 // even if a cast resulting from that interpretation is ill-formed.
2671 // In plain language, this means trying a const_cast ...
2672 // Note that for address space we check compatibility after const_cast.
2673 unsigned msg = diag::err_bad_cxx_cast_generic;
2674 TryCastResult tcr = TryConstCast(Self, SrcExpr, DestType,
2675 /*CStyle*/ true, msg);
2676 if (SrcExpr.isInvalid())
2677 return;
2678 if (isValidCast(tcr))
2679 Kind = CK_NoOp;
2680
2681 Sema::CheckedConversionKind CCK =
2682 FunctionalStyle ? Sema::CCK_FunctionalCast : Sema::CCK_CStyleCast;
2683 if (tcr == TC_NotApplicable) {
2684 tcr = TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ true, msg,
2685 Kind);
2686 if (SrcExpr.isInvalid())
2687 return;
2688
2689 if (tcr == TC_NotApplicable) {
2690 // ... or if that is not possible, a static_cast, ignoring const and
2691 // addr space, ...
2692 tcr = TryStaticCast(Self, SrcExpr, DestType, CCK, OpRange, msg, Kind,
2693 BasePath, ListInitialization);
2694 if (SrcExpr.isInvalid())
2695 return;
2696
2697 if (tcr == TC_NotApplicable) {
2698 // ... and finally a reinterpret_cast, ignoring const and addr space.
2699 tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/ true,
2700 OpRange, msg, Kind);
2701 if (SrcExpr.isInvalid())
2702 return;
2703 }
2704 }
2705 }
2706
2707 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
2708 isValidCast(tcr))
2709 checkObjCConversion(CCK);
2710
2711 if (tcr != TC_Success && msg != 0) {
2712 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
2713 DeclAccessPair Found;
2714 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
2715 DestType,
2716 /*Complain*/ true,
2717 Found);
2718 if (Fn) {
2719 // If DestType is a function type (not to be confused with the function
2720 // pointer type), it will be possible to resolve the function address,
2721 // but the type cast should be considered as failure.
2722 OverloadExpr *OE = OverloadExpr::find(SrcExpr.get()).Expression;
2723 Self.Diag(OpRange.getBegin(), diag::err_bad_cstyle_cast_overload)
2724 << OE->getName() << DestType << OpRange
2725 << OE->getQualifierLoc().getSourceRange();
2726 Self.NoteAllOverloadCandidates(SrcExpr.get());
2727 }
2728 } else {
2729 diagnoseBadCast(Self, msg, (FunctionalStyle ? CT_Functional : CT_CStyle),
2730 OpRange, SrcExpr.get(), DestType, ListInitialization);
2731 }
2732 }
2733
2734 if (isValidCast(tcr)) {
2735 if (Kind == CK_BitCast)
2736 checkCastAlign();
2737
2738 if (!checkCastFunctionType(Self, SrcExpr, DestType))
2739 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type)
2740 << SrcExpr.get()->getType() << DestType << OpRange;
2741
2742 } else {
2743 SrcExpr = ExprError();
2744 }
2745}
2746
2747/// DiagnoseBadFunctionCast - Warn whenever a function call is cast to a
2748/// non-matching type. Such as enum function call to int, int call to
2749/// pointer; etc. Cast to 'void' is an exception.
2750static void DiagnoseBadFunctionCast(Sema &Self, const ExprResult &SrcExpr,
2751 QualType DestType) {
2752 if (Self.Diags.isIgnored(diag::warn_bad_function_cast,
2753 SrcExpr.get()->getExprLoc()))
2754 return;
2755
2756 if (!isa<CallExpr>(SrcExpr.get()))
2757 return;
2758
2759 QualType SrcType = SrcExpr.get()->getType();
2760 if (DestType.getUnqualifiedType()->isVoidType())
2761 return;
2762 if ((SrcType->isAnyPointerType() || SrcType->isBlockPointerType())
2763 && (DestType->isAnyPointerType() || DestType->isBlockPointerType()))
2764 return;
2765 if (SrcType->isIntegerType() && DestType->isIntegerType() &&
2766 (SrcType->isBooleanType() == DestType->isBooleanType()) &&
2767 (SrcType->isEnumeralType() == DestType->isEnumeralType()))
2768 return;
2769 if (SrcType->isRealFloatingType() && DestType->isRealFloatingType())
2770 return;
2771 if (SrcType->isEnumeralType() && DestType->isEnumeralType())
2772 return;
2773 if (SrcType->isComplexType() && DestType->isComplexType())
2774 return;
2775 if (SrcType->isComplexIntegerType() && DestType->isComplexIntegerType())
2776 return;
2777 if (SrcType->isFixedPointType() && DestType->isFixedPointType())
2778 return;
2779
2780 Self.Diag(SrcExpr.get()->getExprLoc(),
2781 diag::warn_bad_function_cast)
2782 << SrcType << DestType << SrcExpr.get()->getSourceRange();
2783}
2784
2785/// Check the semantics of a C-style cast operation, in C.
2786void CastOperation::CheckCStyleCast() {
2787 assert(!Self.getLangOpts().CPlusPlus)((!Self.getLangOpts().CPlusPlus) ? static_cast<void> (0
) : __assert_fail ("!Self.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2787, __PRETTY_FUNCTION__))
;
2788
2789 // C-style casts can resolve __unknown_any types.
2790 if (claimPlaceholder(BuiltinType::UnknownAny)) {
2791 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
2792 SrcExpr.get(), Kind,
2793 ValueKind, BasePath);
2794 return;
2795 }
2796
2797 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2798 // type needs to be scalar.
2799 if (DestType->isVoidType()) {
2800 // We don't necessarily do lvalue-to-rvalue conversions on this.
2801 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
2802 if (SrcExpr.isInvalid())
2803 return;
2804
2805 // Cast to void allows any expr type.
2806 Kind = CK_ToVoid;
2807 return;
2808 }
2809
2810 // If the type is dependent, we won't do any other semantic analysis now.
2811 if (Self.getASTContext().isDependenceAllowed() &&
2812 (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() ||
2813 SrcExpr.get()->isValueDependent())) {
2814 assert((DestType->containsErrors() || SrcExpr.get()->containsErrors() ||(((DestType->containsErrors() || SrcExpr.get()->containsErrors
() || SrcExpr.get()->containsErrors()) && "should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("(DestType->containsErrors() || SrcExpr.get()->containsErrors() || SrcExpr.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2816, __PRETTY_FUNCTION__))
2815 SrcExpr.get()->containsErrors()) &&(((DestType->containsErrors() || SrcExpr.get()->containsErrors
() || SrcExpr.get()->containsErrors()) && "should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("(DestType->containsErrors() || SrcExpr.get()->containsErrors() || SrcExpr.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2816, __PRETTY_FUNCTION__))
2816 "should only occur in error-recovery path.")(((DestType->containsErrors() || SrcExpr.get()->containsErrors
() || SrcExpr.get()->containsErrors()) && "should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("(DestType->containsErrors() || SrcExpr.get()->containsErrors() || SrcExpr.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2816, __PRETTY_FUNCTION__))
;
2817 assert(Kind == CK_Dependent)((Kind == CK_Dependent) ? static_cast<void> (0) : __assert_fail
("Kind == CK_Dependent", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2817, __PRETTY_FUNCTION__))
;
2818 return;
2819 }
2820
2821 // Overloads are allowed with C extensions, so we need to support them.
2822 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
2823 DeclAccessPair DAP;
2824 if (FunctionDecl *FD = Self.ResolveAddressOfOverloadedFunction(
2825 SrcExpr.get(), DestType, /*Complain=*/true, DAP))
2826 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr.get(), DAP, FD);
2827 else
2828 return;
2829 assert(SrcExpr.isUsable())((SrcExpr.isUsable()) ? static_cast<void> (0) : __assert_fail
("SrcExpr.isUsable()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2829, __PRETTY_FUNCTION__))
;
2830 }
2831 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
2832 if (SrcExpr.isInvalid())
2833 return;
2834 QualType SrcType = SrcExpr.get()->getType();
2835
2836 assert(!SrcType->isPlaceholderType())((!SrcType->isPlaceholderType()) ? static_cast<void>
(0) : __assert_fail ("!SrcType->isPlaceholderType()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 2836, __PRETTY_FUNCTION__))
;
2837
2838 checkAddressSpaceCast(SrcType, DestType);
2839 if (SrcExpr.isInvalid())
2840 return;
2841
2842 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
2843 diag::err_typecheck_cast_to_incomplete)) {
2844 SrcExpr = ExprError();
2845 return;
2846 }
2847
2848 // Allow casting a sizeless built-in type to itself.
2849 if (DestType->isSizelessBuiltinType() &&
2850 Self.Context.hasSameUnqualifiedType(DestType, SrcType)) {
2851 Kind = CK_NoOp;
2852 return;
2853 }
2854
2855 // Allow bitcasting between compatible SVE vector types.
2856 if ((SrcType->isVectorType() || DestType->isVectorType()) &&
2857 Self.isValidSveBitcast(SrcType, DestType)) {
2858 Kind = CK_BitCast;
2859 return;
2860 }
2861
2862 if (!DestType->isScalarType() && !DestType->isVectorType() &&
2863 !DestType->isMatrixType()) {
2864 const RecordType *DestRecordTy = DestType->getAs<RecordType>();
2865
2866 if (DestRecordTy && Self.Context.hasSameUnqualifiedType(DestType, SrcType)){
2867 // GCC struct/union extension: allow cast to self.
2868 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_nonscalar)
2869 << DestType << SrcExpr.get()->getSourceRange();
2870 Kind = CK_NoOp;
2871 return;
2872 }
2873
2874 // GCC's cast to union extension.
2875 if (DestRecordTy && DestRecordTy->getDecl()->isUnion()) {
2876 RecordDecl *RD = DestRecordTy->getDecl();
2877 if (CastExpr::getTargetFieldForToUnionCast(RD, SrcType)) {
2878 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_to_union)
2879 << SrcExpr.get()->getSourceRange();
2880 Kind = CK_ToUnion;
2881 return;
2882 } else {
2883 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2884 << SrcType << SrcExpr.get()->getSourceRange();
2885 SrcExpr = ExprError();
2886 return;
2887 }
2888 }
2889
2890 // OpenCL v2.0 s6.13.10 - Allow casts from '0' to event_t type.
2891 if (Self.getLangOpts().OpenCL && DestType->isEventT()) {
2892 Expr::EvalResult Result;
2893 if (SrcExpr.get()->EvaluateAsInt(Result, Self.Context)) {
2894 llvm::APSInt CastInt = Result.Val.getInt();
2895 if (0 == CastInt) {
2896 Kind = CK_ZeroToOCLOpaqueType;
2897 return;
2898 }
2899 Self.Diag(OpRange.getBegin(),
2900 diag::err_opencl_cast_non_zero_to_event_t)
2901 << CastInt.toString(10) << SrcExpr.get()->getSourceRange();
2902 SrcExpr = ExprError();
2903 return;
2904 }
2905 }
2906
2907 // Reject any other conversions to non-scalar types.
2908 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cond_expect_scalar)
2909 << DestType << SrcExpr.get()->getSourceRange();
2910 SrcExpr = ExprError();
2911 return;
2912 }
2913
2914 // The type we're casting to is known to be a scalar, a vector, or a matrix.
2915
2916 // Require the operand to be a scalar, a vector, or a matrix.
2917 if (!SrcType->isScalarType() && !SrcType->isVectorType() &&
2918 !SrcType->isMatrixType()) {
2919 Self.Diag(SrcExpr.get()->getExprLoc(),
2920 diag::err_typecheck_expect_scalar_operand)
2921 << SrcType << SrcExpr.get()->getSourceRange();
2922 SrcExpr = ExprError();
2923 return;
2924 }
2925
2926 if (DestType->isExtVectorType()) {
2927 SrcExpr = Self.CheckExtVectorCast(OpRange, DestType, SrcExpr.get(), Kind);
2928 return;
2929 }
2930
2931 if (DestType->getAs<MatrixType>() || SrcType->getAs<MatrixType>()) {
2932 if (Self.CheckMatrixCast(OpRange, DestType, SrcType, Kind))
2933 SrcExpr = ExprError();
2934 return;
2935 }
2936
2937 if (const VectorType *DestVecTy = DestType->getAs<VectorType>()) {
2938 if (DestVecTy->getVectorKind() == VectorType::AltiVecVector &&
2939 (SrcType->isIntegerType() || SrcType->isFloatingType())) {
2940 Kind = CK_VectorSplat;
2941 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get());
2942 } else if (Self.CheckVectorCast(OpRange, DestType, SrcType, Kind)) {
2943 SrcExpr = ExprError();
2944 }
2945 return;
2946 }
2947
2948 if (SrcType->isVectorType()) {
2949 if (Self.CheckVectorCast(OpRange, SrcType, DestType, Kind))
2950 SrcExpr = ExprError();
2951 return;
2952 }
2953
2954 // The source and target types are both scalars, i.e.
2955 // - arithmetic types (fundamental, enum, and complex)
2956 // - all kinds of pointers
2957 // Note that member pointers were filtered out with C++, above.
2958
2959 if (isa<ObjCSelectorExpr>(SrcExpr.get())) {
2960 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_selector_expr);
2961 SrcExpr = ExprError();
2962 return;
2963 }
2964
2965 // Can't cast to or from bfloat
2966 if (DestType->isBFloat16Type() && !SrcType->isBFloat16Type()) {
2967 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_to_bfloat16)
2968 << SrcExpr.get()->getSourceRange();
2969 SrcExpr = ExprError();
2970 return;
2971 }
2972 if (SrcType->isBFloat16Type() && !DestType->isBFloat16Type()) {
2973 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_from_bfloat16)
2974 << SrcExpr.get()->getSourceRange();
2975 SrcExpr = ExprError();
2976 return;
2977 }
2978
2979 // If either type is a pointer, the other type has to be either an
2980 // integer or a pointer.
2981 if (!DestType->isArithmeticType()) {
2982 if (!SrcType->isIntegralType(Self.Context) && SrcType->isArithmeticType()) {
2983 Self.Diag(SrcExpr.get()->getExprLoc(),
2984 diag::err_cast_pointer_from_non_pointer_int)
2985 << SrcType << SrcExpr.get()->getSourceRange();
2986 SrcExpr = ExprError();
2987 return;
2988 }
2989 checkIntToPointerCast(/* CStyle */ true, OpRange, SrcExpr.get(), DestType,
2990 Self);
2991 } else if (!SrcType->isArithmeticType()) {
2992 if (!DestType->isIntegralType(Self.Context) &&
2993 DestType->isArithmeticType()) {
2994 Self.Diag(SrcExpr.get()->getBeginLoc(),
2995 diag::err_cast_pointer_to_non_pointer_int)
2996 << DestType << SrcExpr.get()->getSourceRange();
2997 SrcExpr = ExprError();
2998 return;
2999 }
3000
3001 if ((Self.Context.getTypeSize(SrcType) >
3002 Self.Context.getTypeSize(DestType)) &&
3003 !DestType->isBooleanType()) {
3004 // C 6.3.2.3p6: Any pointer type may be converted to an integer type.
3005 // Except as previously specified, the result is implementation-defined.
3006 // If the result cannot be represented in the integer type, the behavior
3007 // is undefined. The result need not be in the range of values of any
3008 // integer type.
3009 unsigned Diag;
3010 if (SrcType->isVoidPointerType())
3011 Diag = DestType->isEnumeralType() ? diag::warn_void_pointer_to_enum_cast
3012 : diag::warn_void_pointer_to_int_cast;
3013 else if (DestType->isEnumeralType())
3014 Diag = diag::warn_pointer_to_enum_cast;
3015 else
3016 Diag = diag::warn_pointer_to_int_cast;
3017 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
3018 }
3019 }
3020
3021 if (Self.getLangOpts().OpenCL && !Self.getOpenCLOptions().isAvailableOption(
3022 "cl_khr_fp16", Self.getLangOpts())) {
3023 if (DestType->isHalfType()) {
3024 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::err_opencl_cast_to_half)
3025 << DestType << SrcExpr.get()->getSourceRange();
3026 SrcExpr = ExprError();
3027 return;
3028 }
3029 }
3030
3031 // ARC imposes extra restrictions on casts.
3032 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) {
3033 checkObjCConversion(Sema::CCK_CStyleCast);
3034 if (SrcExpr.isInvalid())
3035 return;
3036
3037 const PointerType *CastPtr = DestType->getAs<PointerType>();
3038 if (Self.getLangOpts().ObjCAutoRefCount && CastPtr) {
3039 if (const PointerType *ExprPtr = SrcType->getAs<PointerType>()) {
3040 Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
3041 Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
3042 if (CastPtr->getPointeeType()->isObjCLifetimeType() &&
3043 ExprPtr->getPointeeType()->isObjCLifetimeType() &&
3044 !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
3045 Self.Diag(SrcExpr.get()->getBeginLoc(),
3046 diag::err_typecheck_incompatible_ownership)
3047 << SrcType << DestType << Sema::AA_Casting
3048 << SrcExpr.get()->getSourceRange();
3049 return;
3050 }
3051 }
3052 }
3053 else if (!Self.CheckObjCARCUnavailableWeakConversion(DestType, SrcType)) {
3054 Self.Diag(SrcExpr.get()->getBeginLoc(),
3055 diag::err_arc_convesion_of_weak_unavailable)
3056 << 1 << SrcType << DestType << SrcExpr.get()->getSourceRange();
3057 SrcExpr = ExprError();
3058 return;
3059 }
3060 }
3061
3062 if (!checkCastFunctionType(Self, SrcExpr, DestType))
3063 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type)
3064 << SrcType << DestType << OpRange;
3065
3066 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
3067 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange);
3068 DiagnoseBadFunctionCast(Self, SrcExpr, DestType);
3069 Kind = Self.PrepareScalarCast(SrcExpr, DestType);
3070 if (SrcExpr.isInvalid())
3071 return;
3072
3073 if (Kind == CK_BitCast)
3074 checkCastAlign();
3075}
3076
3077void CastOperation::CheckBuiltinBitCast() {
3078 QualType SrcType = SrcExpr.get()->getType();
3079
3080 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
3081 diag::err_typecheck_cast_to_incomplete) ||
3082 Self.RequireCompleteType(OpRange.getBegin(), SrcType,
3083 diag::err_incomplete_type)) {
3084 SrcExpr = ExprError();
3085 return;
3086 }
3087
3088 if (SrcExpr.get()->isRValue())
3089 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcType, SrcExpr.get(),
3090 /*IsLValueReference=*/false);
3091
3092 CharUnits DestSize = Self.Context.getTypeSizeInChars(DestType);
3093 CharUnits SourceSize = Self.Context.getTypeSizeInChars(SrcType);
3094 if (DestSize != SourceSize) {
3095 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_type_size_mismatch)
3096 << (int)SourceSize.getQuantity() << (int)DestSize.getQuantity();
3097 SrcExpr = ExprError();
3098 return;
3099 }
3100
3101 if (!DestType.isTriviallyCopyableType(Self.Context)) {
3102 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable)
3103 << 1;
3104 SrcExpr = ExprError();
3105 return;
3106 }
3107
3108 if (!SrcType.isTriviallyCopyableType(Self.Context)) {
3109 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable)
3110 << 0;
3111 SrcExpr = ExprError();
3112 return;
3113 }
3114
3115 Kind = CK_LValueToRValueBitCast;
3116}
3117
3118/// DiagnoseCastQual - Warn whenever casts discards a qualifiers, be it either
3119/// const, volatile or both.
3120static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr,
3121 QualType DestType) {
3122 if (SrcExpr.isInvalid())
3123 return;
3124
3125 QualType SrcType = SrcExpr.get()->getType();
3126 if (!((SrcType->isAnyPointerType() && DestType->isAnyPointerType()) ||
3127 DestType->isLValueReferenceType()))
3128 return;
3129
3130 QualType TheOffendingSrcType, TheOffendingDestType;
3131 Qualifiers CastAwayQualifiers;
3132 if (CastsAwayConstness(Self, SrcType, DestType, true, false,
3133 &TheOffendingSrcType, &TheOffendingDestType,
3134 &CastAwayQualifiers) !=
3135 CastAwayConstnessKind::CACK_Similar)
3136 return;
3137
3138 // FIXME: 'restrict' is not properly handled here.
3139 int qualifiers = -1;
3140 if (CastAwayQualifiers.hasConst() && CastAwayQualifiers.hasVolatile()) {
3141 qualifiers = 0;
3142 } else if (CastAwayQualifiers.hasConst()) {
3143 qualifiers = 1;
3144 } else if (CastAwayQualifiers.hasVolatile()) {
3145 qualifiers = 2;
3146 }
3147 // This is a variant of int **x; const int **y = (const int **)x;
3148 if (qualifiers == -1)
3149 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual2)
3150 << SrcType << DestType;
3151 else
3152 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual)
3153 << TheOffendingSrcType << TheOffendingDestType << qualifiers;
3154}
3155
3156ExprResult Sema::BuildCStyleCastExpr(SourceLocation LPLoc,
3157 TypeSourceInfo *CastTypeInfo,
3158 SourceLocation RPLoc,
3159 Expr *CastExpr) {
3160 CastOperation Op(*this, CastTypeInfo->getType(), CastExpr);
3161 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
3162 Op.OpRange = SourceRange(LPLoc, CastExpr->getEndLoc());
3163
3164 if (getLangOpts().CPlusPlus) {
3165 Op.CheckCXXCStyleCast(/*FunctionalCast=*/ false,
3166 isa<InitListExpr>(CastExpr));
3167 } else {
3168 Op.CheckCStyleCast();
3169 }
3170
3171 if (Op.SrcExpr.isInvalid())
3172 return ExprError();
3173
3174 // -Wcast-qual
3175 DiagnoseCastQual(Op.Self, Op.SrcExpr, Op.DestType);
3176
3177 return Op.complete(CStyleCastExpr::Create(
3178 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
3179 &Op.BasePath, CurFPFeatureOverrides(), CastTypeInfo, LPLoc, RPLoc));
3180}
3181
3182ExprResult Sema::BuildCXXFunctionalCastExpr(TypeSourceInfo *CastTypeInfo,
3183 QualType Type,
3184 SourceLocation LPLoc,
3185 Expr *CastExpr,
3186 SourceLocation RPLoc) {
3187 assert(LPLoc.isValid() && "List-initialization shouldn't get here.")((LPLoc.isValid() && "List-initialization shouldn't get here."
) ? static_cast<void> (0) : __assert_fail ("LPLoc.isValid() && \"List-initialization shouldn't get here.\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/lib/Sema/SemaCast.cpp"
, 3187, __PRETTY_FUNCTION__))
;
3188 CastOperation Op(*this, Type, CastExpr);
3189 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
3190 Op.OpRange = SourceRange(Op.DestRange.getBegin(), CastExpr->getEndLoc());
3191
3192 Op.CheckCXXCStyleCast(/*FunctionalCast=*/true, /*ListInit=*/false);
3193 if (Op.SrcExpr.isInvalid())
3194 return ExprError();
3195
3196 auto *SubExpr = Op.SrcExpr.get();
3197 if (auto *BindExpr = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
3198 SubExpr = BindExpr->getSubExpr();
3199 if (auto *ConstructExpr = dyn_cast<CXXConstructExpr>(SubExpr))
3200 ConstructExpr->setParenOrBraceRange(SourceRange(LPLoc, RPLoc));
3201
3202 return Op.complete(CXXFunctionalCastExpr::Create(
3203 Context, Op.ResultType, Op.ValueKind, CastTypeInfo, Op.Kind,
3204 Op.SrcExpr.get(), &Op.BasePath, CurFPFeatureOverrides(), LPLoc, RPLoc));
3205}

/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132
133using CanQualType = CanQual<Type>;
134
135// Provide forward declarations for all of the *Type classes.
136#define TYPE(Class, Base) class Class##Type;
137#include "clang/AST/TypeNodes.inc"
138
139/// The collection of all-type qualifiers we support.
140/// Clang supports five independent qualifiers:
141/// * C99: const, volatile, and restrict
142/// * MS: __unaligned
143/// * Embedded C (TR18037): address spaces
144/// * Objective C: the GC attributes (none, weak, or strong)
145class Qualifiers {
146public:
147 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
148 Const = 0x1,
149 Restrict = 0x2,
150 Volatile = 0x4,
151 CVRMask = Const | Volatile | Restrict
152 };
153
154 enum GC {
155 GCNone = 0,
156 Weak,
157 Strong
158 };
159
160 enum ObjCLifetime {
161 /// There is no lifetime qualification on this type.
162 OCL_None,
163
164 /// This object can be modified without requiring retains or
165 /// releases.
166 OCL_ExplicitNone,
167
168 /// Assigning into this object requires the old value to be
169 /// released and the new value to be retained. The timing of the
170 /// release of the old value is inexact: it may be moved to
171 /// immediately after the last known point where the value is
172 /// live.
173 OCL_Strong,
174
175 /// Reading or writing from this object requires a barrier call.
176 OCL_Weak,
177
178 /// Assigning into this object requires a lifetime extension.
179 OCL_Autoreleasing
180 };
181
182 enum {
183 /// The maximum supported address space number.
184 /// 23 bits should be enough for anyone.
185 MaxAddressSpace = 0x7fffffu,
186
187 /// The width of the "fast" qualifier mask.
188 FastWidth = 3,
189
190 /// The fast qualifier mask.
191 FastMask = (1 << FastWidth) - 1
192 };
193
194 /// Returns the common set of qualifiers while removing them from
195 /// the given sets.
196 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
197 // If both are only CVR-qualified, bit operations are sufficient.
198 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
199 Qualifiers Q;
200 Q.Mask = L.Mask & R.Mask;
201 L.Mask &= ~Q.Mask;
202 R.Mask &= ~Q.Mask;
203 return Q;
204 }
205
206 Qualifiers Q;
207 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
208 Q.addCVRQualifiers(CommonCRV);
209 L.removeCVRQualifiers(CommonCRV);
210 R.removeCVRQualifiers(CommonCRV);
211
212 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
213 Q.setObjCGCAttr(L.getObjCGCAttr());
214 L.removeObjCGCAttr();
215 R.removeObjCGCAttr();
216 }
217
218 if (L.getObjCLifetime() == R.getObjCLifetime()) {
219 Q.setObjCLifetime(L.getObjCLifetime());
220 L.removeObjCLifetime();
221 R.removeObjCLifetime();
222 }
223
224 if (L.getAddressSpace() == R.getAddressSpace()) {
225 Q.setAddressSpace(L.getAddressSpace());
226 L.removeAddressSpace();
227 R.removeAddressSpace();
228 }
229 return Q;
230 }
231
232 static Qualifiers fromFastMask(unsigned Mask) {
233 Qualifiers Qs;
234 Qs.addFastQualifiers(Mask);
235 return Qs;
236 }
237
238 static Qualifiers fromCVRMask(unsigned CVR) {
239 Qualifiers Qs;
240 Qs.addCVRQualifiers(CVR);
241 return Qs;
242 }
243
244 static Qualifiers fromCVRUMask(unsigned CVRU) {
245 Qualifiers Qs;
246 Qs.addCVRUQualifiers(CVRU);
247 return Qs;
248 }
249
250 // Deserialize qualifiers from an opaque representation.
251 static Qualifiers fromOpaqueValue(unsigned opaque) {
252 Qualifiers Qs;
253 Qs.Mask = opaque;
254 return Qs;
255 }
256
257 // Serialize these qualifiers into an opaque representation.
258 unsigned getAsOpaqueValue() const {
259 return Mask;
260 }
261
262 bool hasConst() const { return Mask & Const; }
263 bool hasOnlyConst() const { return Mask == Const; }
264 void removeConst() { Mask &= ~Const; }
265 void addConst() { Mask |= Const; }
266
267 bool hasVolatile() const { return Mask & Volatile; }
268 bool hasOnlyVolatile() const { return Mask == Volatile; }
269 void removeVolatile() { Mask &= ~Volatile; }
270 void addVolatile() { Mask |= Volatile; }
271
272 bool hasRestrict() const { return Mask & Restrict; }
273 bool hasOnlyRestrict() const { return Mask == Restrict; }
274 void removeRestrict() { Mask &= ~Restrict; }
275 void addRestrict() { Mask |= Restrict; }
276
277 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
278 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
279 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
280
281 void setCVRQualifiers(unsigned mask) {
282 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 282, __PRETTY_FUNCTION__))
;
283 Mask = (Mask & ~CVRMask) | mask;
284 }
285 void removeCVRQualifiers(unsigned mask) {
286 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 286, __PRETTY_FUNCTION__))
;
287 Mask &= ~mask;
288 }
289 void removeCVRQualifiers() {
290 removeCVRQualifiers(CVRMask);
291 }
292 void addCVRQualifiers(unsigned mask) {
293 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 293, __PRETTY_FUNCTION__))
;
294 Mask |= mask;
295 }
296 void addCVRUQualifiers(unsigned mask) {
297 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 297, __PRETTY_FUNCTION__))
;
298 Mask |= mask;
299 }
300
301 bool hasUnaligned() const { return Mask & UMask; }
302 void setUnaligned(bool flag) {
303 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
304 }
305 void removeUnaligned() { Mask &= ~UMask; }
306 void addUnaligned() { Mask |= UMask; }
307
308 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
309 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
310 void setObjCGCAttr(GC type) {
311 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
312 }
313 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
314 void addObjCGCAttr(GC type) {
315 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 315, __PRETTY_FUNCTION__))
;
316 setObjCGCAttr(type);
317 }
318 Qualifiers withoutObjCGCAttr() const {
319 Qualifiers qs = *this;
320 qs.removeObjCGCAttr();
321 return qs;
322 }
323 Qualifiers withoutObjCLifetime() const {
324 Qualifiers qs = *this;
325 qs.removeObjCLifetime();
326 return qs;
327 }
328 Qualifiers withoutAddressSpace() const {
329 Qualifiers qs = *this;
330 qs.removeAddressSpace();
331 return qs;
332 }
333
334 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
335 ObjCLifetime getObjCLifetime() const {
336 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
337 }
338 void setObjCLifetime(ObjCLifetime type) {
339 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
340 }
341 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
342 void addObjCLifetime(ObjCLifetime type) {
343 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 343, __PRETTY_FUNCTION__))
;
344 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 344, __PRETTY_FUNCTION__))
;
345 Mask |= (type << LifetimeShift);
346 }
347
348 /// True if the lifetime is neither None or ExplicitNone.
349 bool hasNonTrivialObjCLifetime() const {
350 ObjCLifetime lifetime = getObjCLifetime();
351 return (lifetime > OCL_ExplicitNone);
352 }
353
354 /// True if the lifetime is either strong or weak.
355 bool hasStrongOrWeakObjCLifetime() const {
356 ObjCLifetime lifetime = getObjCLifetime();
357 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
358 }
359
360 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
361 LangAS getAddressSpace() const {
362 return static_cast<LangAS>(Mask >> AddressSpaceShift);
363 }
364 bool hasTargetSpecificAddressSpace() const {
365 return isTargetAddressSpace(getAddressSpace());
366 }
367 /// Get the address space attribute value to be printed by diagnostics.
368 unsigned getAddressSpaceAttributePrintValue() const {
369 auto Addr = getAddressSpace();
370 // This function is not supposed to be used with language specific
371 // address spaces. If that happens, the diagnostic message should consider
372 // printing the QualType instead of the address space value.
373 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 373, __PRETTY_FUNCTION__))
;
374 if (Addr != LangAS::Default)
375 return toTargetAddressSpace(Addr);
376 // TODO: The diagnostic messages where Addr may be 0 should be fixed
377 // since it cannot differentiate the situation where 0 denotes the default
378 // address space or user specified __attribute__((address_space(0))).
379 return 0;
380 }
381 void setAddressSpace(LangAS space) {
382 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 382, __PRETTY_FUNCTION__))
;
383 Mask = (Mask & ~AddressSpaceMask)
384 | (((uint32_t) space) << AddressSpaceShift);
385 }
386 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
387 void addAddressSpace(LangAS space) {
388 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 388, __PRETTY_FUNCTION__))
;
389 setAddressSpace(space);
390 }
391
392 // Fast qualifiers are those that can be allocated directly
393 // on a QualType object.
394 bool hasFastQualifiers() const { return getFastQualifiers(); }
395 unsigned getFastQualifiers() const { return Mask & FastMask; }
396 void setFastQualifiers(unsigned mask) {
397 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 397, __PRETTY_FUNCTION__))
;
398 Mask = (Mask & ~FastMask) | mask;
399 }
400 void removeFastQualifiers(unsigned mask) {
401 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 401, __PRETTY_FUNCTION__))
;
402 Mask &= ~mask;
403 }
404 void removeFastQualifiers() {
405 removeFastQualifiers(FastMask);
406 }
407 void addFastQualifiers(unsigned mask) {
408 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 408, __PRETTY_FUNCTION__))
;
409 Mask |= mask;
410 }
411
412 /// Return true if the set contains any qualifiers which require an ExtQuals
413 /// node to be allocated.
414 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
415 Qualifiers getNonFastQualifiers() const {
416 Qualifiers Quals = *this;
417 Quals.setFastQualifiers(0);
418 return Quals;
419 }
420
421 /// Return true if the set contains any qualifiers.
422 bool hasQualifiers() const { return Mask; }
423 bool empty() const { return !Mask; }
424
425 /// Add the qualifiers from the given set to this set.
426 void addQualifiers(Qualifiers Q) {
427 // If the other set doesn't have any non-boolean qualifiers, just
428 // bit-or it in.
429 if (!(Q.Mask & ~CVRMask))
430 Mask |= Q.Mask;
431 else {
432 Mask |= (Q.Mask & CVRMask);
433 if (Q.hasAddressSpace())
434 addAddressSpace(Q.getAddressSpace());
435 if (Q.hasObjCGCAttr())
436 addObjCGCAttr(Q.getObjCGCAttr());
437 if (Q.hasObjCLifetime())
438 addObjCLifetime(Q.getObjCLifetime());
439 }
440 }
441
442 /// Remove the qualifiers from the given set from this set.
443 void removeQualifiers(Qualifiers Q) {
444 // If the other set doesn't have any non-boolean qualifiers, just
445 // bit-and the inverse in.
446 if (!(Q.Mask & ~CVRMask))
447 Mask &= ~Q.Mask;
448 else {
449 Mask &= ~(Q.Mask & CVRMask);
450 if (getObjCGCAttr() == Q.getObjCGCAttr())
451 removeObjCGCAttr();
452 if (getObjCLifetime() == Q.getObjCLifetime())
453 removeObjCLifetime();
454 if (getAddressSpace() == Q.getAddressSpace())
455 removeAddressSpace();
456 }
457 }
458
459 /// Add the qualifiers from the given set to this set, given that
460 /// they don't conflict.
461 void addConsistentQualifiers(Qualifiers qs) {
462 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 463, __PRETTY_FUNCTION__))
463 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 463, __PRETTY_FUNCTION__))
;
464 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 465, __PRETTY_FUNCTION__))
465 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 465, __PRETTY_FUNCTION__))
;
466 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 467, __PRETTY_FUNCTION__))
467 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 467, __PRETTY_FUNCTION__))
;
468 Mask |= qs.Mask;
469 }
470
471 /// Returns true if address space A is equal to or a superset of B.
472 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
473 /// overlapping address spaces.
474 /// CL1.1 or CL1.2:
475 /// every address space is a superset of itself.
476 /// CL2.0 adds:
477 /// __generic is a superset of any address space except for __constant.
478 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
479 // Address spaces must match exactly.
480 return A == B ||
481 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
482 // for __constant can be used as __generic.
483 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
484 // We also define global_device and global_host address spaces,
485 // to distinguish global pointers allocated on host from pointers
486 // allocated on device, which are a subset of __global.
487 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
488 B == LangAS::opencl_global_host)) ||
489 // Consider pointer size address spaces to be equivalent to default.
490 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
491 (isPtrSizeAddressSpace(B) || B == LangAS::Default));
492 }
493
494 /// Returns true if the address space in these qualifiers is equal to or
495 /// a superset of the address space in the argument qualifiers.
496 bool isAddressSpaceSupersetOf(Qualifiers other) const {
497 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
498 }
499
500 /// Determines if these qualifiers compatibly include another set.
501 /// Generally this answers the question of whether an object with the other
502 /// qualifiers can be safely used as an object with these qualifiers.
503 bool compatiblyIncludes(Qualifiers other) const {
504 return isAddressSpaceSupersetOf(other) &&
505 // ObjC GC qualifiers can match, be added, or be removed, but can't
506 // be changed.
507 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
508 !other.hasObjCGCAttr()) &&
509 // ObjC lifetime qualifiers must match exactly.
510 getObjCLifetime() == other.getObjCLifetime() &&
511 // CVR qualifiers may subset.
512 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
513 // U qualifier may superset.
514 (!other.hasUnaligned() || hasUnaligned());
515 }
516
517 /// Determines if these qualifiers compatibly include another set of
518 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
519 ///
520 /// One set of Objective-C lifetime qualifiers compatibly includes the other
521 /// if the lifetime qualifiers match, or if both are non-__weak and the
522 /// including set also contains the 'const' qualifier, or both are non-__weak
523 /// and one is None (which can only happen in non-ARC modes).
524 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
525 if (getObjCLifetime() == other.getObjCLifetime())
526 return true;
527
528 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
529 return false;
530
531 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
532 return true;
533
534 return hasConst();
535 }
536
537 /// Determine whether this set of qualifiers is a strict superset of
538 /// another set of qualifiers, not considering qualifier compatibility.
539 bool isStrictSupersetOf(Qualifiers Other) const;
540
541 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
542 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
543
544 explicit operator bool() const { return hasQualifiers(); }
545
546 Qualifiers &operator+=(Qualifiers R) {
547 addQualifiers(R);
548 return *this;
549 }
550
551 // Union two qualifier sets. If an enumerated qualifier appears
552 // in both sets, use the one from the right.
553 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
554 L += R;
555 return L;
556 }
557
558 Qualifiers &operator-=(Qualifiers R) {
559 removeQualifiers(R);
560 return *this;
561 }
562
563 /// Compute the difference between two qualifier sets.
564 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
565 L -= R;
566 return L;
567 }
568
569 std::string getAsString() const;
570 std::string getAsString(const PrintingPolicy &Policy) const;
571
572 static std::string getAddrSpaceAsString(LangAS AS);
573
574 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
575 void print(raw_ostream &OS, const PrintingPolicy &Policy,
576 bool appendSpaceIfNonEmpty = false) const;
577
578 void Profile(llvm::FoldingSetNodeID &ID) const {
579 ID.AddInteger(Mask);
580 }
581
582private:
583 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
584 // |C R V|U|GCAttr|Lifetime|AddressSpace|
585 uint32_t Mask = 0;
586
587 static const uint32_t UMask = 0x8;
588 static const uint32_t UShift = 3;
589 static const uint32_t GCAttrMask = 0x30;
590 static const uint32_t GCAttrShift = 4;
591 static const uint32_t LifetimeMask = 0x1C0;
592 static const uint32_t LifetimeShift = 6;
593 static const uint32_t AddressSpaceMask =
594 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
595 static const uint32_t AddressSpaceShift = 9;
596};
597
598/// A std::pair-like structure for storing a qualified type split
599/// into its local qualifiers and its locally-unqualified type.
600struct SplitQualType {
601 /// The locally-unqualified type.
602 const Type *Ty = nullptr;
603
604 /// The local qualifiers.
605 Qualifiers Quals;
606
607 SplitQualType() = default;
608 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
609
610 SplitQualType getSingleStepDesugaredType() const; // end of this file
611
612 // Make std::tie work.
613 std::pair<const Type *,Qualifiers> asPair() const {
614 return std::pair<const Type *, Qualifiers>(Ty, Quals);
615 }
616
617 friend bool operator==(SplitQualType a, SplitQualType b) {
618 return a.Ty == b.Ty && a.Quals == b.Quals;
619 }
620 friend bool operator!=(SplitQualType a, SplitQualType b) {
621 return a.Ty != b.Ty || a.Quals != b.Quals;
622 }
623};
624
625/// The kind of type we are substituting Objective-C type arguments into.
626///
627/// The kind of substitution affects the replacement of type parameters when
628/// no concrete type information is provided, e.g., when dealing with an
629/// unspecialized type.
630enum class ObjCSubstitutionContext {
631 /// An ordinary type.
632 Ordinary,
633
634 /// The result type of a method or function.
635 Result,
636
637 /// The parameter type of a method or function.
638 Parameter,
639
640 /// The type of a property.
641 Property,
642
643 /// The superclass of a type.
644 Superclass,
645};
646
647/// A (possibly-)qualified type.
648///
649/// For efficiency, we don't store CV-qualified types as nodes on their
650/// own: instead each reference to a type stores the qualifiers. This
651/// greatly reduces the number of nodes we need to allocate for types (for
652/// example we only need one for 'int', 'const int', 'volatile int',
653/// 'const volatile int', etc).
654///
655/// As an added efficiency bonus, instead of making this a pair, we
656/// just store the two bits we care about in the low bits of the
657/// pointer. To handle the packing/unpacking, we make QualType be a
658/// simple wrapper class that acts like a smart pointer. A third bit
659/// indicates whether there are extended qualifiers present, in which
660/// case the pointer points to a special structure.
661class QualType {
662 friend class QualifierCollector;
663
664 // Thankfully, these are efficiently composable.
665 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
666 Qualifiers::FastWidth> Value;
667
668 const ExtQuals *getExtQualsUnsafe() const {
669 return Value.getPointer().get<const ExtQuals*>();
670 }
671
672 const Type *getTypePtrUnsafe() const {
673 return Value.getPointer().get<const Type*>();
674 }
675
676 const ExtQualsTypeCommonBase *getCommonPtr() const {
677 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 677, __PRETTY_FUNCTION__))
;
678 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
679 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
680 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
681 }
682
683public:
684 QualType() = default;
685 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
686 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
687
688 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
689 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
690
691 /// Retrieves a pointer to the underlying (unqualified) type.
692 ///
693 /// This function requires that the type not be NULL. If the type might be
694 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
695 const Type *getTypePtr() const;
696
697 const Type *getTypePtrOrNull() const;
698
699 /// Retrieves a pointer to the name of the base type.
700 const IdentifierInfo *getBaseTypeIdentifier() const;
701
702 /// Divides a QualType into its unqualified type and a set of local
703 /// qualifiers.
704 SplitQualType split() const;
705
706 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
707
708 static QualType getFromOpaquePtr(const void *Ptr) {
709 QualType T;
710 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
711 return T;
712 }
713
714 const Type &operator*() const {
715 return *getTypePtr();
716 }
717
718 const Type *operator->() const {
719 return getTypePtr();
720 }
721
722 bool isCanonical() const;
723 bool isCanonicalAsParam() const;
724
725 /// Return true if this QualType doesn't point to a type yet.
726 bool isNull() const {
727 return Value.getPointer().isNull();
728 }
729
730 /// Determine whether this particular QualType instance has the
731 /// "const" qualifier set, without looking through typedefs that may have
732 /// added "const" at a different level.
733 bool isLocalConstQualified() const {
734 return (getLocalFastQualifiers() & Qualifiers::Const);
735 }
736
737 /// Determine whether this type is const-qualified.
738 bool isConstQualified() const;
739
740 /// Determine whether this particular QualType instance has the
741 /// "restrict" qualifier set, without looking through typedefs that may have
742 /// added "restrict" at a different level.
743 bool isLocalRestrictQualified() const {
744 return (getLocalFastQualifiers() & Qualifiers::Restrict);
745 }
746
747 /// Determine whether this type is restrict-qualified.
748 bool isRestrictQualified() const;
749
750 /// Determine whether this particular QualType instance has the
751 /// "volatile" qualifier set, without looking through typedefs that may have
752 /// added "volatile" at a different level.
753 bool isLocalVolatileQualified() const {
754 return (getLocalFastQualifiers() & Qualifiers::Volatile);
755 }
756
757 /// Determine whether this type is volatile-qualified.
758 bool isVolatileQualified() const;
759
760 /// Determine whether this particular QualType instance has any
761 /// qualifiers, without looking through any typedefs that might add
762 /// qualifiers at a different level.
763 bool hasLocalQualifiers() const {
764 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
765 }
766
767 /// Determine whether this type has any qualifiers.
768 bool hasQualifiers() const;
769
770 /// Determine whether this particular QualType instance has any
771 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
772 /// instance.
773 bool hasLocalNonFastQualifiers() const {
774 return Value.getPointer().is<const ExtQuals*>();
775 }
776
777 /// Retrieve the set of qualifiers local to this particular QualType
778 /// instance, not including any qualifiers acquired through typedefs or
779 /// other sugar.
780 Qualifiers getLocalQualifiers() const;
781
782 /// Retrieve the set of qualifiers applied to this type.
783 Qualifiers getQualifiers() const;
784
785 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
786 /// local to this particular QualType instance, not including any qualifiers
787 /// acquired through typedefs or other sugar.
788 unsigned getLocalCVRQualifiers() const {
789 return getLocalFastQualifiers();
790 }
791
792 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
793 /// applied to this type.
794 unsigned getCVRQualifiers() const;
795
796 bool isConstant(const ASTContext& Ctx) const {
797 return QualType::isConstant(*this, Ctx);
798 }
799
800 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
801 bool isPODType(const ASTContext &Context) const;
802
803 /// Return true if this is a POD type according to the rules of the C++98
804 /// standard, regardless of the current compilation's language.
805 bool isCXX98PODType(const ASTContext &Context) const;
806
807 /// Return true if this is a POD type according to the more relaxed rules
808 /// of the C++11 standard, regardless of the current compilation's language.
809 /// (C++0x [basic.types]p9). Note that, unlike
810 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
811 bool isCXX11PODType(const ASTContext &Context) const;
812
813 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
814 bool isTrivialType(const ASTContext &Context) const;
815
816 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
817 bool isTriviallyCopyableType(const ASTContext &Context) const;
818
819
820 /// Returns true if it is a class and it might be dynamic.
821 bool mayBeDynamicClass() const;
822
823 /// Returns true if it is not a class or if the class might not be dynamic.
824 bool mayBeNotDynamicClass() const;
825
826 // Don't promise in the API that anything besides 'const' can be
827 // easily added.
828
829 /// Add the `const` type qualifier to this QualType.
830 void addConst() {
831 addFastQualifiers(Qualifiers::Const);
832 }
833 QualType withConst() const {
834 return withFastQualifiers(Qualifiers::Const);
835 }
836
837 /// Add the `volatile` type qualifier to this QualType.
838 void addVolatile() {
839 addFastQualifiers(Qualifiers::Volatile);
840 }
841 QualType withVolatile() const {
842 return withFastQualifiers(Qualifiers::Volatile);
843 }
844
845 /// Add the `restrict` qualifier to this QualType.
846 void addRestrict() {
847 addFastQualifiers(Qualifiers::Restrict);
848 }
849 QualType withRestrict() const {
850 return withFastQualifiers(Qualifiers::Restrict);
851 }
852
853 QualType withCVRQualifiers(unsigned CVR) const {
854 return withFastQualifiers(CVR);
855 }
856
857 void addFastQualifiers(unsigned TQs) {
858 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 859, __PRETTY_FUNCTION__))
859 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 859, __PRETTY_FUNCTION__))
;
860 Value.setInt(Value.getInt() | TQs);
861 }
862
863 void removeLocalConst();
864 void removeLocalVolatile();
865 void removeLocalRestrict();
866 void removeLocalCVRQualifiers(unsigned Mask);
867
868 void removeLocalFastQualifiers() { Value.setInt(0); }
869 void removeLocalFastQualifiers(unsigned Mask) {
870 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 870, __PRETTY_FUNCTION__))
;
871 Value.setInt(Value.getInt() & ~Mask);
872 }
873
874 // Creates a type with the given qualifiers in addition to any
875 // qualifiers already on this type.
876 QualType withFastQualifiers(unsigned TQs) const {
877 QualType T = *this;
878 T.addFastQualifiers(TQs);
879 return T;
880 }
881
882 // Creates a type with exactly the given fast qualifiers, removing
883 // any existing fast qualifiers.
884 QualType withExactLocalFastQualifiers(unsigned TQs) const {
885 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
886 }
887
888 // Removes fast qualifiers, but leaves any extended qualifiers in place.
889 QualType withoutLocalFastQualifiers() const {
890 QualType T = *this;
891 T.removeLocalFastQualifiers();
892 return T;
893 }
894
895 QualType getCanonicalType() const;
896
897 /// Return this type with all of the instance-specific qualifiers
898 /// removed, but without removing any qualifiers that may have been applied
899 /// through typedefs.
900 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
901
902 /// Retrieve the unqualified variant of the given type,
903 /// removing as little sugar as possible.
904 ///
905 /// This routine looks through various kinds of sugar to find the
906 /// least-desugared type that is unqualified. For example, given:
907 ///
908 /// \code
909 /// typedef int Integer;
910 /// typedef const Integer CInteger;
911 /// typedef CInteger DifferenceType;
912 /// \endcode
913 ///
914 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
915 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
916 ///
917 /// The resulting type might still be qualified if it's sugar for an array
918 /// type. To strip qualifiers even from within a sugared array type, use
919 /// ASTContext::getUnqualifiedArrayType.
920 inline QualType getUnqualifiedType() const;
921
922 /// Retrieve the unqualified variant of the given type, removing as little
923 /// sugar as possible.
924 ///
925 /// Like getUnqualifiedType(), but also returns the set of
926 /// qualifiers that were built up.
927 ///
928 /// The resulting type might still be qualified if it's sugar for an array
929 /// type. To strip qualifiers even from within a sugared array type, use
930 /// ASTContext::getUnqualifiedArrayType.
931 inline SplitQualType getSplitUnqualifiedType() const;
932
933 /// Determine whether this type is more qualified than the other
934 /// given type, requiring exact equality for non-CVR qualifiers.
935 bool isMoreQualifiedThan(QualType Other) const;
936
937 /// Determine whether this type is at least as qualified as the other
938 /// given type, requiring exact equality for non-CVR qualifiers.
939 bool isAtLeastAsQualifiedAs(QualType Other) const;
940
941 QualType getNonReferenceType() const;
942
943 /// Determine the type of a (typically non-lvalue) expression with the
944 /// specified result type.
945 ///
946 /// This routine should be used for expressions for which the return type is
947 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
948 /// an lvalue. It removes a top-level reference (since there are no
949 /// expressions of reference type) and deletes top-level cvr-qualifiers
950 /// from non-class types (in C++) or all types (in C).
951 QualType getNonLValueExprType(const ASTContext &Context) const;
952
953 /// Remove an outer pack expansion type (if any) from this type. Used as part
954 /// of converting the type of a declaration to the type of an expression that
955 /// references that expression. It's meaningless for an expression to have a
956 /// pack expansion type.
957 QualType getNonPackExpansionType() const;
958
959 /// Return the specified type with any "sugar" removed from
960 /// the type. This takes off typedefs, typeof's etc. If the outer level of
961 /// the type is already concrete, it returns it unmodified. This is similar
962 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
963 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
964 /// concrete.
965 ///
966 /// Qualifiers are left in place.
967 QualType getDesugaredType(const ASTContext &Context) const {
968 return getDesugaredType(*this, Context);
969 }
970
971 SplitQualType getSplitDesugaredType() const {
972 return getSplitDesugaredType(*this);
973 }
974
975 /// Return the specified type with one level of "sugar" removed from
976 /// the type.
977 ///
978 /// This routine takes off the first typedef, typeof, etc. If the outer level
979 /// of the type is already concrete, it returns it unmodified.
980 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
981 return getSingleStepDesugaredTypeImpl(*this, Context);
982 }
983
984 /// Returns the specified type after dropping any
985 /// outer-level parentheses.
986 QualType IgnoreParens() const {
987 if (isa<ParenType>(*this))
988 return QualType::IgnoreParens(*this);
989 return *this;
990 }
991
992 /// Indicate whether the specified types and qualifiers are identical.
993 friend bool operator==(const QualType &LHS, const QualType &RHS) {
994 return LHS.Value == RHS.Value;
995 }
996 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
997 return LHS.Value != RHS.Value;
998 }
999 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1000 return LHS.Value < RHS.Value;
1001 }
1002
1003 static std::string getAsString(SplitQualType split,
1004 const PrintingPolicy &Policy) {
1005 return getAsString(split.Ty, split.Quals, Policy);
1006 }
1007 static std::string getAsString(const Type *ty, Qualifiers qs,
1008 const PrintingPolicy &Policy);
1009
1010 std::string getAsString() const;
1011 std::string getAsString(const PrintingPolicy &Policy) const;
1012
1013 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1014 const Twine &PlaceHolder = Twine(),
1015 unsigned Indentation = 0) const;
1016
1017 static void print(SplitQualType split, raw_ostream &OS,
1018 const PrintingPolicy &policy, const Twine &PlaceHolder,
1019 unsigned Indentation = 0) {
1020 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1021 }
1022
1023 static void print(const Type *ty, Qualifiers qs,
1024 raw_ostream &OS, const PrintingPolicy &policy,
1025 const Twine &PlaceHolder,
1026 unsigned Indentation = 0);
1027
1028 void getAsStringInternal(std::string &Str,
1029 const PrintingPolicy &Policy) const;
1030
1031 static void getAsStringInternal(SplitQualType split, std::string &out,
1032 const PrintingPolicy &policy) {
1033 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1034 }
1035
1036 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1037 std::string &out,
1038 const PrintingPolicy &policy);
1039
1040 class StreamedQualTypeHelper {
1041 const QualType &T;
1042 const PrintingPolicy &Policy;
1043 const Twine &PlaceHolder;
1044 unsigned Indentation;
1045
1046 public:
1047 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1048 const Twine &PlaceHolder, unsigned Indentation)
1049 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1050 Indentation(Indentation) {}
1051
1052 friend raw_ostream &operator<<(raw_ostream &OS,
1053 const StreamedQualTypeHelper &SQT) {
1054 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1055 return OS;
1056 }
1057 };
1058
1059 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1060 const Twine &PlaceHolder = Twine(),
1061 unsigned Indentation = 0) const {
1062 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1063 }
1064
1065 void dump(const char *s) const;
1066 void dump() const;
1067 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1068
1069 void Profile(llvm::FoldingSetNodeID &ID) const {
1070 ID.AddPointer(getAsOpaquePtr());
1071 }
1072
1073 /// Check if this type has any address space qualifier.
1074 inline bool hasAddressSpace() const;
1075
1076 /// Return the address space of this type.
1077 inline LangAS getAddressSpace() const;
1078
1079 /// Returns true if address space qualifiers overlap with T address space
1080 /// qualifiers.
1081 /// OpenCL C defines conversion rules for pointers to different address spaces
1082 /// and notion of overlapping address spaces.
1083 /// CL1.1 or CL1.2:
1084 /// address spaces overlap iff they are they same.
1085 /// OpenCL C v2.0 s6.5.5 adds:
1086 /// __generic overlaps with any address space except for __constant.
1087 bool isAddressSpaceOverlapping(QualType T) const {
1088 Qualifiers Q = getQualifiers();
1089 Qualifiers TQ = T.getQualifiers();
1090 // Address spaces overlap if at least one of them is a superset of another
1091 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1092 }
1093
1094 /// Returns gc attribute of this type.
1095 inline Qualifiers::GC getObjCGCAttr() const;
1096
1097 /// true when Type is objc's weak.
1098 bool isObjCGCWeak() const {
1099 return getObjCGCAttr() == Qualifiers::Weak;
1100 }
1101
1102 /// true when Type is objc's strong.
1103 bool isObjCGCStrong() const {
1104 return getObjCGCAttr() == Qualifiers::Strong;
1105 }
1106
1107 /// Returns lifetime attribute of this type.
1108 Qualifiers::ObjCLifetime getObjCLifetime() const {
1109 return getQualifiers().getObjCLifetime();
1110 }
1111
1112 bool hasNonTrivialObjCLifetime() const {
1113 return getQualifiers().hasNonTrivialObjCLifetime();
1114 }
1115
1116 bool hasStrongOrWeakObjCLifetime() const {
1117 return getQualifiers().hasStrongOrWeakObjCLifetime();
1118 }
1119
1120 // true when Type is objc's weak and weak is enabled but ARC isn't.
1121 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1122
1123 enum PrimitiveDefaultInitializeKind {
1124 /// The type does not fall into any of the following categories. Note that
1125 /// this case is zero-valued so that values of this enum can be used as a
1126 /// boolean condition for non-triviality.
1127 PDIK_Trivial,
1128
1129 /// The type is an Objective-C retainable pointer type that is qualified
1130 /// with the ARC __strong qualifier.
1131 PDIK_ARCStrong,
1132
1133 /// The type is an Objective-C retainable pointer type that is qualified
1134 /// with the ARC __weak qualifier.
1135 PDIK_ARCWeak,
1136
1137 /// The type is a struct containing a field whose type is not PCK_Trivial.
1138 PDIK_Struct
1139 };
1140
1141 /// Functions to query basic properties of non-trivial C struct types.
1142
1143 /// Check if this is a non-trivial type that would cause a C struct
1144 /// transitively containing this type to be non-trivial to default initialize
1145 /// and return the kind.
1146 PrimitiveDefaultInitializeKind
1147 isNonTrivialToPrimitiveDefaultInitialize() const;
1148
1149 enum PrimitiveCopyKind {
1150 /// The type does not fall into any of the following categories. Note that
1151 /// this case is zero-valued so that values of this enum can be used as a
1152 /// boolean condition for non-triviality.
1153 PCK_Trivial,
1154
1155 /// The type would be trivial except that it is volatile-qualified. Types
1156 /// that fall into one of the other non-trivial cases may additionally be
1157 /// volatile-qualified.
1158 PCK_VolatileTrivial,
1159
1160 /// The type is an Objective-C retainable pointer type that is qualified
1161 /// with the ARC __strong qualifier.
1162 PCK_ARCStrong,
1163
1164 /// The type is an Objective-C retainable pointer type that is qualified
1165 /// with the ARC __weak qualifier.
1166 PCK_ARCWeak,
1167
1168 /// The type is a struct containing a field whose type is neither
1169 /// PCK_Trivial nor PCK_VolatileTrivial.
1170 /// Note that a C++ struct type does not necessarily match this; C++ copying
1171 /// semantics are too complex to express here, in part because they depend
1172 /// on the exact constructor or assignment operator that is chosen by
1173 /// overload resolution to do the copy.
1174 PCK_Struct
1175 };
1176
1177 /// Check if this is a non-trivial type that would cause a C struct
1178 /// transitively containing this type to be non-trivial to copy and return the
1179 /// kind.
1180 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1181
1182 /// Check if this is a non-trivial type that would cause a C struct
1183 /// transitively containing this type to be non-trivial to destructively
1184 /// move and return the kind. Destructive move in this context is a C++-style
1185 /// move in which the source object is placed in a valid but unspecified state
1186 /// after it is moved, as opposed to a truly destructive move in which the
1187 /// source object is placed in an uninitialized state.
1188 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1189
1190 enum DestructionKind {
1191 DK_none,
1192 DK_cxx_destructor,
1193 DK_objc_strong_lifetime,
1194 DK_objc_weak_lifetime,
1195 DK_nontrivial_c_struct
1196 };
1197
1198 /// Returns a nonzero value if objects of this type require
1199 /// non-trivial work to clean up after. Non-zero because it's
1200 /// conceivable that qualifiers (objc_gc(weak)?) could make
1201 /// something require destruction.
1202 DestructionKind isDestructedType() const {
1203 return isDestructedTypeImpl(*this);
1204 }
1205
1206 /// Check if this is or contains a C union that is non-trivial to
1207 /// default-initialize, which is a union that has a member that is non-trivial
1208 /// to default-initialize. If this returns true,
1209 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1210 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1211
1212 /// Check if this is or contains a C union that is non-trivial to destruct,
1213 /// which is a union that has a member that is non-trivial to destruct. If
1214 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1215 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1216
1217 /// Check if this is or contains a C union that is non-trivial to copy, which
1218 /// is a union that has a member that is non-trivial to copy. If this returns
1219 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1220 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1221
1222 /// Determine whether expressions of the given type are forbidden
1223 /// from being lvalues in C.
1224 ///
1225 /// The expression types that are forbidden to be lvalues are:
1226 /// - 'void', but not qualified void
1227 /// - function types
1228 ///
1229 /// The exact rule here is C99 6.3.2.1:
1230 /// An lvalue is an expression with an object type or an incomplete
1231 /// type other than void.
1232 bool isCForbiddenLValueType() const;
1233
1234 /// Substitute type arguments for the Objective-C type parameters used in the
1235 /// subject type.
1236 ///
1237 /// \param ctx ASTContext in which the type exists.
1238 ///
1239 /// \param typeArgs The type arguments that will be substituted for the
1240 /// Objective-C type parameters in the subject type, which are generally
1241 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1242 /// parameters will be replaced with their bounds or id/Class, as appropriate
1243 /// for the context.
1244 ///
1245 /// \param context The context in which the subject type was written.
1246 ///
1247 /// \returns the resulting type.
1248 QualType substObjCTypeArgs(ASTContext &ctx,
1249 ArrayRef<QualType> typeArgs,
1250 ObjCSubstitutionContext context) const;
1251
1252 /// Substitute type arguments from an object type for the Objective-C type
1253 /// parameters used in the subject type.
1254 ///
1255 /// This operation combines the computation of type arguments for
1256 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1257 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1258 /// callers that need to perform a single substitution in isolation.
1259 ///
1260 /// \param objectType The type of the object whose member type we're
1261 /// substituting into. For example, this might be the receiver of a message
1262 /// or the base of a property access.
1263 ///
1264 /// \param dc The declaration context from which the subject type was
1265 /// retrieved, which indicates (for example) which type parameters should
1266 /// be substituted.
1267 ///
1268 /// \param context The context in which the subject type was written.
1269 ///
1270 /// \returns the subject type after replacing all of the Objective-C type
1271 /// parameters with their corresponding arguments.
1272 QualType substObjCMemberType(QualType objectType,
1273 const DeclContext *dc,
1274 ObjCSubstitutionContext context) const;
1275
1276 /// Strip Objective-C "__kindof" types from the given type.
1277 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1278
1279 /// Remove all qualifiers including _Atomic.
1280 QualType getAtomicUnqualifiedType() const;
1281
1282private:
1283 // These methods are implemented in a separate translation unit;
1284 // "static"-ize them to avoid creating temporary QualTypes in the
1285 // caller.
1286 static bool isConstant(QualType T, const ASTContext& Ctx);
1287 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1288 static SplitQualType getSplitDesugaredType(QualType T);
1289 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1290 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1291 const ASTContext &C);
1292 static QualType IgnoreParens(QualType T);
1293 static DestructionKind isDestructedTypeImpl(QualType type);
1294
1295 /// Check if \param RD is or contains a non-trivial C union.
1296 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1297 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1298 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1299};
1300
1301} // namespace clang
1302
1303namespace llvm {
1304
1305/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1306/// to a specific Type class.
1307template<> struct simplify_type< ::clang::QualType> {
1308 using SimpleType = const ::clang::Type *;
1309
1310 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1311 return Val.getTypePtr();
1312 }
1313};
1314
1315// Teach SmallPtrSet that QualType is "basically a pointer".
1316template<>
1317struct PointerLikeTypeTraits<clang::QualType> {
1318 static inline void *getAsVoidPointer(clang::QualType P) {
1319 return P.getAsOpaquePtr();
1320 }
1321
1322 static inline clang::QualType getFromVoidPointer(void *P) {
1323 return clang::QualType::getFromOpaquePtr(P);
1324 }
1325
1326 // Various qualifiers go in low bits.
1327 static constexpr int NumLowBitsAvailable = 0;
1328};
1329
1330} // namespace llvm
1331
1332namespace clang {
1333
1334/// Base class that is common to both the \c ExtQuals and \c Type
1335/// classes, which allows \c QualType to access the common fields between the
1336/// two.
1337class ExtQualsTypeCommonBase {
1338 friend class ExtQuals;
1339 friend class QualType;
1340 friend class Type;
1341
1342 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1343 /// a self-referential pointer (for \c Type).
1344 ///
1345 /// This pointer allows an efficient mapping from a QualType to its
1346 /// underlying type pointer.
1347 const Type *const BaseType;
1348
1349 /// The canonical type of this type. A QualType.
1350 QualType CanonicalType;
1351
1352 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1353 : BaseType(baseType), CanonicalType(canon) {}
1354};
1355
1356/// We can encode up to four bits in the low bits of a
1357/// type pointer, but there are many more type qualifiers that we want
1358/// to be able to apply to an arbitrary type. Therefore we have this
1359/// struct, intended to be heap-allocated and used by QualType to
1360/// store qualifiers.
1361///
1362/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1363/// in three low bits on the QualType pointer; a fourth bit records whether
1364/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1365/// Objective-C GC attributes) are much more rare.
1366class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1367 // NOTE: changing the fast qualifiers should be straightforward as
1368 // long as you don't make 'const' non-fast.
1369 // 1. Qualifiers:
1370 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1371 // Fast qualifiers must occupy the low-order bits.
1372 // b) Update Qualifiers::FastWidth and FastMask.
1373 // 2. QualType:
1374 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1375 // b) Update remove{Volatile,Restrict}, defined near the end of
1376 // this header.
1377 // 3. ASTContext:
1378 // a) Update get{Volatile,Restrict}Type.
1379
1380 /// The immutable set of qualifiers applied by this node. Always contains
1381 /// extended qualifiers.
1382 Qualifiers Quals;
1383
1384 ExtQuals *this_() { return this; }
1385
1386public:
1387 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1388 : ExtQualsTypeCommonBase(baseType,
1389 canon.isNull() ? QualType(this_(), 0) : canon),
1390 Quals(quals) {
1391 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1392, __PRETTY_FUNCTION__))
1392 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1392, __PRETTY_FUNCTION__))
;
1393 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1394, __PRETTY_FUNCTION__))
1394 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1394, __PRETTY_FUNCTION__))
;
1395 }
1396
1397 Qualifiers getQualifiers() const { return Quals; }
1398
1399 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1400 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1401
1402 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1403 Qualifiers::ObjCLifetime getObjCLifetime() const {
1404 return Quals.getObjCLifetime();
1405 }
1406
1407 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1408 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1409
1410 const Type *getBaseType() const { return BaseType; }
1411
1412public:
1413 void Profile(llvm::FoldingSetNodeID &ID) const {
1414 Profile(ID, getBaseType(), Quals);
1415 }
1416
1417 static void Profile(llvm::FoldingSetNodeID &ID,
1418 const Type *BaseType,
1419 Qualifiers Quals) {
1420 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1420, __PRETTY_FUNCTION__))
;
1421 ID.AddPointer(BaseType);
1422 Quals.Profile(ID);
1423 }
1424};
1425
1426/// The kind of C++11 ref-qualifier associated with a function type.
1427/// This determines whether a member function's "this" object can be an
1428/// lvalue, rvalue, or neither.
1429enum RefQualifierKind {
1430 /// No ref-qualifier was provided.
1431 RQ_None = 0,
1432
1433 /// An lvalue ref-qualifier was provided (\c &).
1434 RQ_LValue,
1435
1436 /// An rvalue ref-qualifier was provided (\c &&).
1437 RQ_RValue
1438};
1439
1440/// Which keyword(s) were used to create an AutoType.
1441enum class AutoTypeKeyword {
1442 /// auto
1443 Auto,
1444
1445 /// decltype(auto)
1446 DecltypeAuto,
1447
1448 /// __auto_type (GNU extension)
1449 GNUAutoType
1450};
1451
1452/// The base class of the type hierarchy.
1453///
1454/// A central concept with types is that each type always has a canonical
1455/// type. A canonical type is the type with any typedef names stripped out
1456/// of it or the types it references. For example, consider:
1457///
1458/// typedef int foo;
1459/// typedef foo* bar;
1460/// 'int *' 'foo *' 'bar'
1461///
1462/// There will be a Type object created for 'int'. Since int is canonical, its
1463/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1464/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1465/// there is a PointerType that represents 'int*', which, like 'int', is
1466/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1467/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1468/// is also 'int*'.
1469///
1470/// Non-canonical types are useful for emitting diagnostics, without losing
1471/// information about typedefs being used. Canonical types are useful for type
1472/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1473/// about whether something has a particular form (e.g. is a function type),
1474/// because they implicitly, recursively, strip all typedefs out of a type.
1475///
1476/// Types, once created, are immutable.
1477///
1478class alignas(8) Type : public ExtQualsTypeCommonBase {
1479public:
1480 enum TypeClass {
1481#define TYPE(Class, Base) Class,
1482#define LAST_TYPE(Class) TypeLast = Class
1483#define ABSTRACT_TYPE(Class, Base)
1484#include "clang/AST/TypeNodes.inc"
1485 };
1486
1487private:
1488 /// Bitfields required by the Type class.
1489 class TypeBitfields {
1490 friend class Type;
1491 template <class T> friend class TypePropertyCache;
1492
1493 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1494 unsigned TC : 8;
1495
1496 /// Store information on the type dependency.
1497 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1498
1499 /// True if the cache (i.e. the bitfields here starting with
1500 /// 'Cache') is valid.
1501 mutable unsigned CacheValid : 1;
1502
1503 /// Linkage of this type.
1504 mutable unsigned CachedLinkage : 3;
1505
1506 /// Whether this type involves and local or unnamed types.
1507 mutable unsigned CachedLocalOrUnnamed : 1;
1508
1509 /// Whether this type comes from an AST file.
1510 mutable unsigned FromAST : 1;
1511
1512 bool isCacheValid() const {
1513 return CacheValid;
1514 }
1515
1516 Linkage getLinkage() const {
1517 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1517, __PRETTY_FUNCTION__))
;
1518 return static_cast<Linkage>(CachedLinkage);
1519 }
1520
1521 bool hasLocalOrUnnamedType() const {
1522 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 1522, __PRETTY_FUNCTION__))
;
1523 return CachedLocalOrUnnamed;
1524 }
1525 };
1526 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1527
1528protected:
1529 // These classes allow subclasses to somewhat cleanly pack bitfields
1530 // into Type.
1531
1532 class ArrayTypeBitfields {
1533 friend class ArrayType;
1534
1535 unsigned : NumTypeBits;
1536
1537 /// CVR qualifiers from declarations like
1538 /// 'int X[static restrict 4]'. For function parameters only.
1539 unsigned IndexTypeQuals : 3;
1540
1541 /// Storage class qualifiers from declarations like
1542 /// 'int X[static restrict 4]'. For function parameters only.
1543 /// Actually an ArrayType::ArraySizeModifier.
1544 unsigned SizeModifier : 3;
1545 };
1546
1547 class ConstantArrayTypeBitfields {
1548 friend class ConstantArrayType;
1549
1550 unsigned : NumTypeBits + 3 + 3;
1551
1552 /// Whether we have a stored size expression.
1553 unsigned HasStoredSizeExpr : 1;
1554 };
1555
1556 class BuiltinTypeBitfields {
1557 friend class BuiltinType;
1558
1559 unsigned : NumTypeBits;
1560
1561 /// The kind (BuiltinType::Kind) of builtin type this is.
1562 unsigned Kind : 8;
1563 };
1564
1565 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1566 /// Only common bits are stored here. Additional uncommon bits are stored
1567 /// in a trailing object after FunctionProtoType.
1568 class FunctionTypeBitfields {
1569 friend class FunctionProtoType;
1570 friend class FunctionType;
1571
1572 unsigned : NumTypeBits;
1573
1574 /// Extra information which affects how the function is called, like
1575 /// regparm and the calling convention.
1576 unsigned ExtInfo : 13;
1577
1578 /// The ref-qualifier associated with a \c FunctionProtoType.
1579 ///
1580 /// This is a value of type \c RefQualifierKind.
1581 unsigned RefQualifier : 2;
1582
1583 /// Used only by FunctionProtoType, put here to pack with the
1584 /// other bitfields.
1585 /// The qualifiers are part of FunctionProtoType because...
1586 ///
1587 /// C++ 8.3.5p4: The return type, the parameter type list and the
1588 /// cv-qualifier-seq, [...], are part of the function type.
1589 unsigned FastTypeQuals : Qualifiers::FastWidth;
1590 /// Whether this function has extended Qualifiers.
1591 unsigned HasExtQuals : 1;
1592
1593 /// The number of parameters this function has, not counting '...'.
1594 /// According to [implimits] 8 bits should be enough here but this is
1595 /// somewhat easy to exceed with metaprogramming and so we would like to
1596 /// keep NumParams as wide as reasonably possible.
1597 unsigned NumParams : 16;
1598
1599 /// The type of exception specification this function has.
1600 unsigned ExceptionSpecType : 4;
1601
1602 /// Whether this function has extended parameter information.
1603 unsigned HasExtParameterInfos : 1;
1604
1605 /// Whether the function is variadic.
1606 unsigned Variadic : 1;
1607
1608 /// Whether this function has a trailing return type.
1609 unsigned HasTrailingReturn : 1;
1610 };
1611
1612 class ObjCObjectTypeBitfields {
1613 friend class ObjCObjectType;
1614
1615 unsigned : NumTypeBits;
1616
1617 /// The number of type arguments stored directly on this object type.
1618 unsigned NumTypeArgs : 7;
1619
1620 /// The number of protocols stored directly on this object type.
1621 unsigned NumProtocols : 6;
1622
1623 /// Whether this is a "kindof" type.
1624 unsigned IsKindOf : 1;
1625 };
1626
1627 class ReferenceTypeBitfields {
1628 friend class ReferenceType;
1629
1630 unsigned : NumTypeBits;
1631
1632 /// True if the type was originally spelled with an lvalue sigil.
1633 /// This is never true of rvalue references but can also be false
1634 /// on lvalue references because of C++0x [dcl.typedef]p9,
1635 /// as follows:
1636 ///
1637 /// typedef int &ref; // lvalue, spelled lvalue
1638 /// typedef int &&rvref; // rvalue
1639 /// ref &a; // lvalue, inner ref, spelled lvalue
1640 /// ref &&a; // lvalue, inner ref
1641 /// rvref &a; // lvalue, inner ref, spelled lvalue
1642 /// rvref &&a; // rvalue, inner ref
1643 unsigned SpelledAsLValue : 1;
1644
1645 /// True if the inner type is a reference type. This only happens
1646 /// in non-canonical forms.
1647 unsigned InnerRef : 1;
1648 };
1649
1650 class TypeWithKeywordBitfields {
1651 friend class TypeWithKeyword;
1652
1653 unsigned : NumTypeBits;
1654
1655 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1656 unsigned Keyword : 8;
1657 };
1658
1659 enum { NumTypeWithKeywordBits = 8 };
1660
1661 class ElaboratedTypeBitfields {
1662 friend class ElaboratedType;
1663
1664 unsigned : NumTypeBits;
1665 unsigned : NumTypeWithKeywordBits;
1666
1667 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1668 unsigned HasOwnedTagDecl : 1;
1669 };
1670
1671 class VectorTypeBitfields {
1672 friend class VectorType;
1673 friend class DependentVectorType;
1674
1675 unsigned : NumTypeBits;
1676
1677 /// The kind of vector, either a generic vector type or some
1678 /// target-specific vector type such as for AltiVec or Neon.
1679 unsigned VecKind : 3;
1680 /// The number of elements in the vector.
1681 uint32_t NumElements;
1682 };
1683
1684 class AttributedTypeBitfields {
1685 friend class AttributedType;
1686
1687 unsigned : NumTypeBits;
1688
1689 /// An AttributedType::Kind
1690 unsigned AttrKind : 32 - NumTypeBits;
1691 };
1692
1693 class AutoTypeBitfields {
1694 friend class AutoType;
1695
1696 unsigned : NumTypeBits;
1697
1698 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1699 /// or '__auto_type'? AutoTypeKeyword value.
1700 unsigned Keyword : 2;
1701
1702 /// The number of template arguments in the type-constraints, which is
1703 /// expected to be able to hold at least 1024 according to [implimits].
1704 /// However as this limit is somewhat easy to hit with template
1705 /// metaprogramming we'd prefer to keep it as large as possible.
1706 /// At the moment it has been left as a non-bitfield since this type
1707 /// safely fits in 64 bits as an unsigned, so there is no reason to
1708 /// introduce the performance impact of a bitfield.
1709 unsigned NumArgs;
1710 };
1711
1712 class SubstTemplateTypeParmPackTypeBitfields {
1713 friend class SubstTemplateTypeParmPackType;
1714
1715 unsigned : NumTypeBits;
1716
1717 /// The number of template arguments in \c Arguments, which is
1718 /// expected to be able to hold at least 1024 according to [implimits].
1719 /// However as this limit is somewhat easy to hit with template
1720 /// metaprogramming we'd prefer to keep it as large as possible.
1721 /// At the moment it has been left as a non-bitfield since this type
1722 /// safely fits in 64 bits as an unsigned, so there is no reason to
1723 /// introduce the performance impact of a bitfield.
1724 unsigned NumArgs;
1725 };
1726
1727 class TemplateSpecializationTypeBitfields {
1728 friend class TemplateSpecializationType;
1729
1730 unsigned : NumTypeBits;
1731
1732 /// Whether this template specialization type is a substituted type alias.
1733 unsigned TypeAlias : 1;
1734
1735 /// The number of template arguments named in this class template
1736 /// specialization, which is expected to be able to hold at least 1024
1737 /// according to [implimits]. However, as this limit is somewhat easy to
1738 /// hit with template metaprogramming we'd prefer to keep it as large
1739 /// as possible. At the moment it has been left as a non-bitfield since
1740 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1741 /// to introduce the performance impact of a bitfield.
1742 unsigned NumArgs;
1743 };
1744
1745 class DependentTemplateSpecializationTypeBitfields {
1746 friend class DependentTemplateSpecializationType;
1747
1748 unsigned : NumTypeBits;
1749 unsigned : NumTypeWithKeywordBits;
1750
1751 /// The number of template arguments named in this class template
1752 /// specialization, which is expected to be able to hold at least 1024
1753 /// according to [implimits]. However, as this limit is somewhat easy to
1754 /// hit with template metaprogramming we'd prefer to keep it as large
1755 /// as possible. At the moment it has been left as a non-bitfield since
1756 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1757 /// to introduce the performance impact of a bitfield.
1758 unsigned NumArgs;
1759 };
1760
1761 class PackExpansionTypeBitfields {
1762 friend class PackExpansionType;
1763
1764 unsigned : NumTypeBits;
1765
1766 /// The number of expansions that this pack expansion will
1767 /// generate when substituted (+1), which is expected to be able to
1768 /// hold at least 1024 according to [implimits]. However, as this limit
1769 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1770 /// keep it as large as possible. At the moment it has been left as a
1771 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1772 /// there is no reason to introduce the performance impact of a bitfield.
1773 ///
1774 /// This field will only have a non-zero value when some of the parameter
1775 /// packs that occur within the pattern have been substituted but others
1776 /// have not.
1777 unsigned NumExpansions;
1778 };
1779
1780 union {
1781 TypeBitfields TypeBits;
1782 ArrayTypeBitfields ArrayTypeBits;
1783 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1784 AttributedTypeBitfields AttributedTypeBits;
1785 AutoTypeBitfields AutoTypeBits;
1786 BuiltinTypeBitfields BuiltinTypeBits;
1787 FunctionTypeBitfields FunctionTypeBits;
1788 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1789 ReferenceTypeBitfields ReferenceTypeBits;
1790 TypeWithKeywordBitfields TypeWithKeywordBits;
1791 ElaboratedTypeBitfields ElaboratedTypeBits;
1792 VectorTypeBitfields VectorTypeBits;
1793 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1794 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1795 DependentTemplateSpecializationTypeBitfields
1796 DependentTemplateSpecializationTypeBits;
1797 PackExpansionTypeBitfields PackExpansionTypeBits;
1798 };
1799
1800private:
1801 template <class T> friend class TypePropertyCache;
1802
1803 /// Set whether this type comes from an AST file.
1804 void setFromAST(bool V = true) const {
1805 TypeBits.FromAST = V;
1806 }
1807
1808protected:
1809 friend class ASTContext;
1810
1811 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1812 : ExtQualsTypeCommonBase(this,
1813 canon.isNull() ? QualType(this_(), 0) : canon) {
1814 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1815 "changing bitfields changed sizeof(Type)!");
1816 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1817 "Insufficient alignment!");
1818 TypeBits.TC = tc;
1819 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1820 TypeBits.CacheValid = false;
1821 TypeBits.CachedLocalOrUnnamed = false;
1822 TypeBits.CachedLinkage = NoLinkage;
1823 TypeBits.FromAST = false;
1824 }
1825
1826 // silence VC++ warning C4355: 'this' : used in base member initializer list
1827 Type *this_() { return this; }
1828
1829 void setDependence(TypeDependence D) {
1830 TypeBits.Dependence = static_cast<unsigned>(D);
1831 }
1832
1833 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1834
1835public:
1836 friend class ASTReader;
1837 friend class ASTWriter;
1838 template <class T> friend class serialization::AbstractTypeReader;
1839 template <class T> friend class serialization::AbstractTypeWriter;
1840
1841 Type(const Type &) = delete;
1842 Type(Type &&) = delete;
1843 Type &operator=(const Type &) = delete;
1844 Type &operator=(Type &&) = delete;
1845
1846 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1847
1848 /// Whether this type comes from an AST file.
1849 bool isFromAST() const { return TypeBits.FromAST; }
1850
1851 /// Whether this type is or contains an unexpanded parameter
1852 /// pack, used to support C++0x variadic templates.
1853 ///
1854 /// A type that contains a parameter pack shall be expanded by the
1855 /// ellipsis operator at some point. For example, the typedef in the
1856 /// following example contains an unexpanded parameter pack 'T':
1857 ///
1858 /// \code
1859 /// template<typename ...T>
1860 /// struct X {
1861 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1862 /// };
1863 /// \endcode
1864 ///
1865 /// Note that this routine does not specify which
1866 bool containsUnexpandedParameterPack() const {
1867 return getDependence() & TypeDependence::UnexpandedPack;
1868 }
1869
1870 /// Determines if this type would be canonical if it had no further
1871 /// qualification.
1872 bool isCanonicalUnqualified() const {
1873 return CanonicalType == QualType(this, 0);
1874 }
1875
1876 /// Pull a single level of sugar off of this locally-unqualified type.
1877 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1878 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1879 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1880
1881 /// As an extension, we classify types as one of "sized" or "sizeless";
1882 /// every type is one or the other. Standard types are all sized;
1883 /// sizeless types are purely an extension.
1884 ///
1885 /// Sizeless types contain data with no specified size, alignment,
1886 /// or layout.
1887 bool isSizelessType() const;
1888 bool isSizelessBuiltinType() const;
1889
1890 /// Determines if this is a sizeless type supported by the
1891 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1892 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1893 bool isVLSTBuiltinType() const;
1894
1895 /// Returns the representative type for the element of an SVE builtin type.
1896 /// This is used to represent fixed-length SVE vectors created with the
1897 /// 'arm_sve_vector_bits' type attribute as VectorType.
1898 QualType getSveEltType(const ASTContext &Ctx) const;
1899
1900 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1901 /// object types, function types, and incomplete types.
1902
1903 /// Return true if this is an incomplete type.
1904 /// A type that can describe objects, but which lacks information needed to
1905 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1906 /// routine will need to determine if the size is actually required.
1907 ///
1908 /// Def If non-null, and the type refers to some kind of declaration
1909 /// that can be completed (such as a C struct, C++ class, or Objective-C
1910 /// class), will be set to the declaration.
1911 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1912
1913 /// Return true if this is an incomplete or object
1914 /// type, in other words, not a function type.
1915 bool isIncompleteOrObjectType() const {
1916 return !isFunctionType();
1917 }
1918
1919 /// Determine whether this type is an object type.
1920 bool isObjectType() const {
1921 // C++ [basic.types]p8:
1922 // An object type is a (possibly cv-qualified) type that is not a
1923 // function type, not a reference type, and not a void type.
1924 return !isReferenceType() && !isFunctionType() && !isVoidType();
1925 }
1926
1927 /// Return true if this is a literal type
1928 /// (C++11 [basic.types]p10)
1929 bool isLiteralType(const ASTContext &Ctx) const;
1930
1931 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1932 bool isStructuralType() const;
1933
1934 /// Test if this type is a standard-layout type.
1935 /// (C++0x [basic.type]p9)
1936 bool isStandardLayoutType() const;
1937
1938 /// Helper methods to distinguish type categories. All type predicates
1939 /// operate on the canonical type, ignoring typedefs and qualifiers.
1940
1941 /// Returns true if the type is a builtin type.
1942 bool isBuiltinType() const;
1943
1944 /// Test for a particular builtin type.
1945 bool isSpecificBuiltinType(unsigned K) const;
1946
1947 /// Test for a type which does not represent an actual type-system type but
1948 /// is instead used as a placeholder for various convenient purposes within
1949 /// Clang. All such types are BuiltinTypes.
1950 bool isPlaceholderType() const;
1951 const BuiltinType *getAsPlaceholderType() const;
1952
1953 /// Test for a specific placeholder type.
1954 bool isSpecificPlaceholderType(unsigned K) const;
1955
1956 /// Test for a placeholder type other than Overload; see
1957 /// BuiltinType::isNonOverloadPlaceholderType.
1958 bool isNonOverloadPlaceholderType() const;
1959
1960 /// isIntegerType() does *not* include complex integers (a GCC extension).
1961 /// isComplexIntegerType() can be used to test for complex integers.
1962 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1963 bool isEnumeralType() const;
1964
1965 /// Determine whether this type is a scoped enumeration type.
1966 bool isScopedEnumeralType() const;
1967 bool isBooleanType() const;
1968 bool isCharType() const;
1969 bool isWideCharType() const;
1970 bool isChar8Type() const;
1971 bool isChar16Type() const;
1972 bool isChar32Type() const;
1973 bool isAnyCharacterType() const;
1974 bool isIntegralType(const ASTContext &Ctx) const;
1975
1976 /// Determine whether this type is an integral or enumeration type.
1977 bool isIntegralOrEnumerationType() const;
1978
1979 /// Determine whether this type is an integral or unscoped enumeration type.
1980 bool isIntegralOrUnscopedEnumerationType() const;
1981 bool isUnscopedEnumerationType() const;
1982
1983 /// Floating point categories.
1984 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1985 /// isComplexType() does *not* include complex integers (a GCC extension).
1986 /// isComplexIntegerType() can be used to test for complex integers.
1987 bool isComplexType() const; // C99 6.2.5p11 (complex)
1988 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1989 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1990 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1991 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1992 bool isBFloat16Type() const;
1993 bool isFloat128Type() const;
1994 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1995 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1996 bool isVoidType() const; // C99 6.2.5p19
1997 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1998 bool isAggregateType() const;
1999 bool isFundamentalType() const;
2000 bool isCompoundType() const;
2001
2002 // Type Predicates: Check to see if this type is structurally the specified
2003 // type, ignoring typedefs and qualifiers.
2004 bool isFunctionType() const;
2005 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2006 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2007 bool isPointerType() const;
2008 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2009 bool isBlockPointerType() const;
2010 bool isVoidPointerType() const;
2011 bool isReferenceType() const;
2012 bool isLValueReferenceType() const;
2013 bool isRValueReferenceType() const;
2014 bool isObjectPointerType() const;
2015 bool isFunctionPointerType() const;
2016 bool isFunctionReferenceType() const;
2017 bool isMemberPointerType() const;
2018 bool isMemberFunctionPointerType() const;
2019 bool isMemberDataPointerType() const;
2020 bool isArrayType() const;
2021 bool isConstantArrayType() const;
2022 bool isIncompleteArrayType() const;
2023 bool isVariableArrayType() const;
2024 bool isDependentSizedArrayType() const;
2025 bool isRecordType() const;
2026 bool isClassType() const;
2027 bool isStructureType() const;
2028 bool isObjCBoxableRecordType() const;
2029 bool isInterfaceType() const;
2030 bool isStructureOrClassType() const;
2031 bool isUnionType() const;
2032 bool isComplexIntegerType() const; // GCC _Complex integer type.
2033 bool isVectorType() const; // GCC vector type.
2034 bool isExtVectorType() const; // Extended vector type.
2035 bool isMatrixType() const; // Matrix type.
2036 bool isConstantMatrixType() const; // Constant matrix type.
2037 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2038 bool isObjCObjectPointerType() const; // pointer to ObjC object
2039 bool isObjCRetainableType() const; // ObjC object or block pointer
2040 bool isObjCLifetimeType() const; // (array of)* retainable type
2041 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2042 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2043 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2044 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2045 // for the common case.
2046 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2047 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2048 bool isObjCQualifiedIdType() const; // id<foo>
2049 bool isObjCQualifiedClassType() const; // Class<foo>
2050 bool isObjCObjectOrInterfaceType() const;
2051 bool isObjCIdType() const; // id
2052 bool isDecltypeType() const;
2053 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2054 /// qualifier?
2055 ///
2056 /// This approximates the answer to the following question: if this
2057 /// translation unit were compiled in ARC, would this type be qualified
2058 /// with __unsafe_unretained?
2059 bool isObjCInertUnsafeUnretainedType() const {
2060 return hasAttr(attr::ObjCInertUnsafeUnretained);
2061 }
2062
2063 /// Whether the type is Objective-C 'id' or a __kindof type of an
2064 /// object type, e.g., __kindof NSView * or __kindof id
2065 /// <NSCopying>.
2066 ///
2067 /// \param bound Will be set to the bound on non-id subtype types,
2068 /// which will be (possibly specialized) Objective-C class type, or
2069 /// null for 'id.
2070 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2071 const ObjCObjectType *&bound) const;
2072
2073 bool isObjCClassType() const; // Class
2074
2075 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2076 /// Class type, e.g., __kindof Class <NSCopying>.
2077 ///
2078 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2079 /// here because Objective-C's type system cannot express "a class
2080 /// object for a subclass of NSFoo".
2081 bool isObjCClassOrClassKindOfType() const;
2082
2083 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2084 bool isObjCSelType() const; // Class
2085 bool isObjCBuiltinType() const; // 'id' or 'Class'
2086 bool isObjCARCBridgableType() const;
2087 bool isCARCBridgableType() const;
2088 bool isTemplateTypeParmType() const; // C++ template type parameter
2089 bool isNullPtrType() const; // C++11 std::nullptr_t
2090 bool isNothrowT() const; // C++ std::nothrow_t
2091 bool isAlignValT() const; // C++17 std::align_val_t
2092 bool isStdByteType() const; // C++17 std::byte
2093 bool isAtomicType() const; // C11 _Atomic()
2094 bool isUndeducedAutoType() const; // C++11 auto or
2095 // C++14 decltype(auto)
2096 bool isTypedefNameType() const; // typedef or alias template
2097
2098#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2099 bool is##Id##Type() const;
2100#include "clang/Basic/OpenCLImageTypes.def"
2101
2102 bool isImageType() const; // Any OpenCL image type
2103
2104 bool isSamplerT() const; // OpenCL sampler_t
2105 bool isEventT() const; // OpenCL event_t
2106 bool isClkEventT() const; // OpenCL clk_event_t
2107 bool isQueueT() const; // OpenCL queue_t
2108 bool isReserveIDT() const; // OpenCL reserve_id_t
2109
2110#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2111 bool is##Id##Type() const;
2112#include "clang/Basic/OpenCLExtensionTypes.def"
2113 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2114 bool isOCLIntelSubgroupAVCType() const;
2115 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2116
2117 bool isPipeType() const; // OpenCL pipe type
2118 bool isExtIntType() const; // Extended Int Type
2119 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2120
2121 /// Determines if this type, which must satisfy
2122 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2123 /// than implicitly __strong.
2124 bool isObjCARCImplicitlyUnretainedType() const;
2125
2126 /// Check if the type is the CUDA device builtin surface type.
2127 bool isCUDADeviceBuiltinSurfaceType() const;
2128 /// Check if the type is the CUDA device builtin texture type.
2129 bool isCUDADeviceBuiltinTextureType() const;
2130
2131 /// Return the implicit lifetime for this type, which must not be dependent.
2132 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2133
2134 enum ScalarTypeKind {
2135 STK_CPointer,
2136 STK_BlockPointer,
2137 STK_ObjCObjectPointer,
2138 STK_MemberPointer,
2139 STK_Bool,
2140 STK_Integral,
2141 STK_Floating,
2142 STK_IntegralComplex,
2143 STK_FloatingComplex,
2144 STK_FixedPoint
2145 };
2146
2147 /// Given that this is a scalar type, classify it.
2148 ScalarTypeKind getScalarTypeKind() const;
2149
2150 TypeDependence getDependence() const {
2151 return static_cast<TypeDependence>(TypeBits.Dependence);
2152 }
2153
2154 /// Whether this type is an error type.
2155 bool containsErrors() const {
2156 return getDependence() & TypeDependence::Error;
2157 }
2158
2159 /// Whether this type is a dependent type, meaning that its definition
2160 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2161 bool isDependentType() const {
2162 return getDependence() & TypeDependence::Dependent;
2163 }
2164
2165 /// Determine whether this type is an instantiation-dependent type,
2166 /// meaning that the type involves a template parameter (even if the
2167 /// definition does not actually depend on the type substituted for that
2168 /// template parameter).
2169 bool isInstantiationDependentType() const {
2170 return getDependence() & TypeDependence::Instantiation;
2171 }
2172
2173 /// Determine whether this type is an undeduced type, meaning that
2174 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2175 /// deduced.
2176 bool isUndeducedType() const;
2177
2178 /// Whether this type is a variably-modified type (C99 6.7.5).
2179 bool isVariablyModifiedType() const {
2180 return getDependence() & TypeDependence::VariablyModified;
2181 }
2182
2183 /// Whether this type involves a variable-length array type
2184 /// with a definite size.
2185 bool hasSizedVLAType() const;
2186
2187 /// Whether this type is or contains a local or unnamed type.
2188 bool hasUnnamedOrLocalType() const;
2189
2190 bool isOverloadableType() const;
2191
2192 /// Determine wither this type is a C++ elaborated-type-specifier.
2193 bool isElaboratedTypeSpecifier() const;
2194
2195 bool canDecayToPointerType() const;
2196
2197 /// Whether this type is represented natively as a pointer. This includes
2198 /// pointers, references, block pointers, and Objective-C interface,
2199 /// qualified id, and qualified interface types, as well as nullptr_t.
2200 bool hasPointerRepresentation() const;
2201
2202 /// Whether this type can represent an objective pointer type for the
2203 /// purpose of GC'ability
2204 bool hasObjCPointerRepresentation() const;
2205
2206 /// Determine whether this type has an integer representation
2207 /// of some sort, e.g., it is an integer type or a vector.
2208 bool hasIntegerRepresentation() const;
2209
2210 /// Determine whether this type has an signed integer representation
2211 /// of some sort, e.g., it is an signed integer type or a vector.
2212 bool hasSignedIntegerRepresentation() const;
2213
2214 /// Determine whether this type has an unsigned integer representation
2215 /// of some sort, e.g., it is an unsigned integer type or a vector.
2216 bool hasUnsignedIntegerRepresentation() const;
2217
2218 /// Determine whether this type has a floating-point representation
2219 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2220 bool hasFloatingRepresentation() const;
2221
2222 // Type Checking Functions: Check to see if this type is structurally the
2223 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2224 // the best type we can.
2225 const RecordType *getAsStructureType() const;
2226 /// NOTE: getAs*ArrayType are methods on ASTContext.
2227 const RecordType *getAsUnionType() const;
2228 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2229 const ObjCObjectType *getAsObjCInterfaceType() const;
2230
2231 // The following is a convenience method that returns an ObjCObjectPointerType
2232 // for object declared using an interface.
2233 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2234 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2235 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2236 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2237
2238 /// Retrieves the CXXRecordDecl that this type refers to, either
2239 /// because the type is a RecordType or because it is the injected-class-name
2240 /// type of a class template or class template partial specialization.
2241 CXXRecordDecl *getAsCXXRecordDecl() const;
2242
2243 /// Retrieves the RecordDecl this type refers to.
2244 RecordDecl *getAsRecordDecl() const;
2245
2246 /// Retrieves the TagDecl that this type refers to, either
2247 /// because the type is a TagType or because it is the injected-class-name
2248 /// type of a class template or class template partial specialization.
2249 TagDecl *getAsTagDecl() const;
2250
2251 /// If this is a pointer or reference to a RecordType, return the
2252 /// CXXRecordDecl that the type refers to.
2253 ///
2254 /// If this is not a pointer or reference, or the type being pointed to does
2255 /// not refer to a CXXRecordDecl, returns NULL.
2256 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2257
2258 /// Get the DeducedType whose type will be deduced for a variable with
2259 /// an initializer of this type. This looks through declarators like pointer
2260 /// types, but not through decltype or typedefs.
2261 DeducedType *getContainedDeducedType() const;
2262
2263 /// Get the AutoType whose type will be deduced for a variable with
2264 /// an initializer of this type. This looks through declarators like pointer
2265 /// types, but not through decltype or typedefs.
2266 AutoType *getContainedAutoType() const {
2267 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2268 }
2269
2270 /// Determine whether this type was written with a leading 'auto'
2271 /// corresponding to a trailing return type (possibly for a nested
2272 /// function type within a pointer to function type or similar).
2273 bool hasAutoForTrailingReturnType() const;
2274
2275 /// Member-template getAs<specific type>'. Look through sugar for
2276 /// an instance of \<specific type>. This scheme will eventually
2277 /// replace the specific getAsXXXX methods above.
2278 ///
2279 /// There are some specializations of this member template listed
2280 /// immediately following this class.
2281 template <typename T> const T *getAs() const;
2282
2283 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2284 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2285 /// This is used when you need to walk over sugar nodes that represent some
2286 /// kind of type adjustment from a type that was written as a \<specific type>
2287 /// to another type that is still canonically a \<specific type>.
2288 template <typename T> const T *getAsAdjusted() const;
2289
2290 /// A variant of getAs<> for array types which silently discards
2291 /// qualifiers from the outermost type.
2292 const ArrayType *getAsArrayTypeUnsafe() const;
2293
2294 /// Member-template castAs<specific type>. Look through sugar for
2295 /// the underlying instance of \<specific type>.
2296 ///
2297 /// This method has the same relationship to getAs<T> as cast<T> has
2298 /// to dyn_cast<T>; which is to say, the underlying type *must*
2299 /// have the intended type, and this method will never return null.
2300 template <typename T> const T *castAs() const;
2301
2302 /// A variant of castAs<> for array type which silently discards
2303 /// qualifiers from the outermost type.
2304 const ArrayType *castAsArrayTypeUnsafe() const;
2305
2306 /// Determine whether this type had the specified attribute applied to it
2307 /// (looking through top-level type sugar).
2308 bool hasAttr(attr::Kind AK) const;
2309
2310 /// Get the base element type of this type, potentially discarding type
2311 /// qualifiers. This should never be used when type qualifiers
2312 /// are meaningful.
2313 const Type *getBaseElementTypeUnsafe() const;
2314
2315 /// If this is an array type, return the element type of the array,
2316 /// potentially with type qualifiers missing.
2317 /// This should never be used when type qualifiers are meaningful.
2318 const Type *getArrayElementTypeNoTypeQual() const;
2319
2320 /// If this is a pointer type, return the pointee type.
2321 /// If this is an array type, return the array element type.
2322 /// This should never be used when type qualifiers are meaningful.
2323 const Type *getPointeeOrArrayElementType() const;
2324
2325 /// If this is a pointer, ObjC object pointer, or block
2326 /// pointer, this returns the respective pointee.
2327 QualType getPointeeType() const;
2328
2329 /// Return the specified type with any "sugar" removed from the type,
2330 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2331 const Type *getUnqualifiedDesugaredType() const;
2332
2333 /// More type predicates useful for type checking/promotion
2334 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2335
2336 /// Return true if this is an integer type that is
2337 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2338 /// or an enum decl which has a signed representation.
2339 bool isSignedIntegerType() const;
2340
2341 /// Return true if this is an integer type that is
2342 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2343 /// or an enum decl which has an unsigned representation.
2344 bool isUnsignedIntegerType() const;
2345
2346 /// Determines whether this is an integer type that is signed or an
2347 /// enumeration types whose underlying type is a signed integer type.
2348 bool isSignedIntegerOrEnumerationType() const;
2349
2350 /// Determines whether this is an integer type that is unsigned or an
2351 /// enumeration types whose underlying type is a unsigned integer type.
2352 bool isUnsignedIntegerOrEnumerationType() const;
2353
2354 /// Return true if this is a fixed point type according to
2355 /// ISO/IEC JTC1 SC22 WG14 N1169.
2356 bool isFixedPointType() const;
2357
2358 /// Return true if this is a fixed point or integer type.
2359 bool isFixedPointOrIntegerType() const;
2360
2361 /// Return true if this is a saturated fixed point type according to
2362 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2363 bool isSaturatedFixedPointType() const;
2364
2365 /// Return true if this is a saturated fixed point type according to
2366 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2367 bool isUnsaturatedFixedPointType() const;
2368
2369 /// Return true if this is a fixed point type that is signed according
2370 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2371 bool isSignedFixedPointType() const;
2372
2373 /// Return true if this is a fixed point type that is unsigned according
2374 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2375 bool isUnsignedFixedPointType() const;
2376
2377 /// Return true if this is not a variable sized type,
2378 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2379 /// incomplete types.
2380 bool isConstantSizeType() const;
2381
2382 /// Returns true if this type can be represented by some
2383 /// set of type specifiers.
2384 bool isSpecifierType() const;
2385
2386 /// Determine the linkage of this type.
2387 Linkage getLinkage() const;
2388
2389 /// Determine the visibility of this type.
2390 Visibility getVisibility() const {
2391 return getLinkageAndVisibility().getVisibility();
2392 }
2393
2394 /// Return true if the visibility was explicitly set is the code.
2395 bool isVisibilityExplicit() const {
2396 return getLinkageAndVisibility().isVisibilityExplicit();
2397 }
2398
2399 /// Determine the linkage and visibility of this type.
2400 LinkageInfo getLinkageAndVisibility() const;
2401
2402 /// True if the computed linkage is valid. Used for consistency
2403 /// checking. Should always return true.
2404 bool isLinkageValid() const;
2405
2406 /// Determine the nullability of the given type.
2407 ///
2408 /// Note that nullability is only captured as sugar within the type
2409 /// system, not as part of the canonical type, so nullability will
2410 /// be lost by canonicalization and desugaring.
2411 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2412
2413 /// Determine whether the given type can have a nullability
2414 /// specifier applied to it, i.e., if it is any kind of pointer type.
2415 ///
2416 /// \param ResultIfUnknown The value to return if we don't yet know whether
2417 /// this type can have nullability because it is dependent.
2418 bool canHaveNullability(bool ResultIfUnknown = true) const;
2419
2420 /// Retrieve the set of substitutions required when accessing a member
2421 /// of the Objective-C receiver type that is declared in the given context.
2422 ///
2423 /// \c *this is the type of the object we're operating on, e.g., the
2424 /// receiver for a message send or the base of a property access, and is
2425 /// expected to be of some object or object pointer type.
2426 ///
2427 /// \param dc The declaration context for which we are building up a
2428 /// substitution mapping, which should be an Objective-C class, extension,
2429 /// category, or method within.
2430 ///
2431 /// \returns an array of type arguments that can be substituted for
2432 /// the type parameters of the given declaration context in any type described
2433 /// within that context, or an empty optional to indicate that no
2434 /// substitution is required.
2435 Optional<ArrayRef<QualType>>
2436 getObjCSubstitutions(const DeclContext *dc) const;
2437
2438 /// Determines if this is an ObjC interface type that may accept type
2439 /// parameters.
2440 bool acceptsObjCTypeParams() const;
2441
2442 const char *getTypeClassName() const;
2443
2444 QualType getCanonicalTypeInternal() const {
2445 return CanonicalType;
2446 }
2447
2448 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2449 void dump() const;
2450 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2451};
2452
2453/// This will check for a TypedefType by removing any existing sugar
2454/// until it reaches a TypedefType or a non-sugared type.
2455template <> const TypedefType *Type::getAs() const;
2456
2457/// This will check for a TemplateSpecializationType by removing any
2458/// existing sugar until it reaches a TemplateSpecializationType or a
2459/// non-sugared type.
2460template <> const TemplateSpecializationType *Type::getAs() const;
2461
2462/// This will check for an AttributedType by removing any existing sugar
2463/// until it reaches an AttributedType or a non-sugared type.
2464template <> const AttributedType *Type::getAs() const;
2465
2466// We can do canonical leaf types faster, because we don't have to
2467// worry about preserving child type decoration.
2468#define TYPE(Class, Base)
2469#define LEAF_TYPE(Class) \
2470template <> inline const Class##Type *Type::getAs() const { \
2471 return dyn_cast<Class##Type>(CanonicalType); \
2472} \
2473template <> inline const Class##Type *Type::castAs() const { \
2474 return cast<Class##Type>(CanonicalType); \
2475}
2476#include "clang/AST/TypeNodes.inc"
2477
2478/// This class is used for builtin types like 'int'. Builtin
2479/// types are always canonical and have a literal name field.
2480class BuiltinType : public Type {
2481public:
2482 enum Kind {
2483// OpenCL image types
2484#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2485#include "clang/Basic/OpenCLImageTypes.def"
2486// OpenCL extension types
2487#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2488#include "clang/Basic/OpenCLExtensionTypes.def"
2489// SVE Types
2490#define SVE_TYPE(Name, Id, SingletonId) Id,
2491#include "clang/Basic/AArch64SVEACLETypes.def"
2492// PPC MMA Types
2493#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2494#include "clang/Basic/PPCTypes.def"
2495// RVV Types
2496#define RVV_TYPE(Name, Id, SingletonId) Id,
2497#include "clang/Basic/RISCVVTypes.def"
2498// All other builtin types
2499#define BUILTIN_TYPE(Id, SingletonId) Id,
2500#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2501#include "clang/AST/BuiltinTypes.def"
2502 };
2503
2504private:
2505 friend class ASTContext; // ASTContext creates these.
2506
2507 BuiltinType(Kind K)
2508 : Type(Builtin, QualType(),
2509 K == Dependent ? TypeDependence::DependentInstantiation
2510 : TypeDependence::None) {
2511 BuiltinTypeBits.Kind = K;
2512 }
2513
2514public:
2515 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2516 StringRef getName(const PrintingPolicy &Policy) const;
2517
2518 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2519 // The StringRef is null-terminated.
2520 StringRef str = getName(Policy);
2521 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-13~++20210413100635+64c24f493e5f/clang/include/clang/AST/Type.h"
, 2521, __PRETTY_FUNCTION__))
;
2522 return str.data();
2523 }
2524
2525 bool isSugared() const { return false; }
2526 QualType desugar() const { return QualType(this, 0); }
2527
2528 bool isInteger() const {
2529 return getKind() >= Bool && getKind() <= Int128;
2530 }
2531
2532 bool isSignedInteger() const {
2533 return getKind() >= Char_S && getKind() <= Int128;
2534 }
2535
2536 bool isUnsignedInteger() const {
2537 return getKind() >= Bool && getKind() <= UInt128;
2538 }
2539
2540 bool isFloatingPoint() const {
2541 return getKind() >= Half && getKind() <= Float128;
2542 }
2543
2544 /// Determines whether the given kind corresponds to a placeholder type.
2545 static bool isPlaceholderTypeKind(Kind K) {
2546 return K >= Overload;
2547 }
2548
2549 /// Determines whether this type is a placeholder type, i.e. a type
2550 /// which cannot appear in arbitrary positions in a fully-formed
2551 /// expression.
2552 bool isPlaceholderType() const {
2553 return isPlaceholderTypeKind(getKind());
2554 }
2555
2556 /// Determines whether this type is a placeholder type other than
2557 /// Overload. Most placeholder types require only syntactic
2558 /// information about their context in order to be resolved (e.g.
2559 /// whether it is a call expression), which means they can (and
2560 /// should) be resolved in an earlier "phase" of analysis.
2561 /// Overload expressions sometimes pick up further information
2562 /// from their context, like whether the context expects a
2563 /// specific function-pointer type, and so frequently need
2564 /// special treatment.
2565 bool isNonOverloadPlaceholderType() const {
2566 return getKind() > Overload;
2567 }
2568
2569 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2570};
2571
2572/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2573/// types (_Complex float etc) as well as the GCC integer complex extensions.
2574class ComplexType : public Type, public llvm::FoldingSetNode {
2575 friend class ASTContext; // ASTContext creates these.
2576
2577 QualType ElementType;
2578
2579 ComplexType(QualType Element, QualType CanonicalPtr)
2580 : Type(Complex, CanonicalPtr, Element->getDependence()),
2581 ElementType(Element) {}
2582
2583public:
2584 QualType getElementType() const { return ElementType; }
2585
2586 bool isSugared() const { return false; }
2587 QualType desugar() const { return QualType(this, 0); }
2588
2589 void Profile(llvm::FoldingSetNodeID &ID) {
2590 Profile(ID, getElementType());
2591 }
2592
2593 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2594 ID.AddPointer(Element.getAsOpaquePtr());
2595 }
2596
2597 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2598};
2599
2600/// Sugar for parentheses used when specifying types.
2601class ParenType : public Type, public llvm::FoldingSetNode {
2602 friend class ASTContext; // ASTContext creates these.
2603
2604 QualType Inner;
2605
2606 ParenType(QualType InnerType, QualType CanonType)
2607 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2608
2609public:
2610 QualType getInnerType() const { return Inner; }
2611
2612 bool isSugared() const { return true; }
2613 QualType desugar() const { return getInnerType(); }
2614
2615 void Profile(llvm::FoldingSetNodeID &ID) {
2616 Profile(ID, getInnerType());
2617 }
2618
2619 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2620 Inner.Profile(ID);
2621 }
2622
2623 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2624};
2625
2626/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2627class PointerType : public Type, public llvm::FoldingSetNode {
2628 friend class ASTContext; // ASTContext creates these.
2629
2630 QualType PointeeType;
2631
2632 PointerType(QualType Pointee, QualType CanonicalPtr)
2633 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2634 PointeeType(Pointee) {}
2635
2636public:
2637 QualType getPointeeType() const { return PointeeType; }
2638
2639 bool isSugared() const { return false; }
2640 QualType desugar() const { return QualType(this, 0); }
2641
2642 void Profile(llvm::FoldingSetNodeID &ID) {
2643 Profile(ID, getPointeeType());
2644 }
2645
2646 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2647 ID.AddPointer(Pointee.getAsOpaquePtr());
2648 }
2649
2650 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2651};
2652
2653/// Represents a type which was implicitly adjusted by the semantic
2654/// engine for arbitrary reasons. For example, array and function types can
2655/// decay, and function types can have their calling conventions adjusted.
2656class AdjustedType : public Type, public llvm::FoldingSetNode {
2657 QualType OriginalTy;
2658 QualType AdjustedTy;
2659
2660protected:
2661 friend class ASTContext; // ASTContext creates these.
2662
2663 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2664 QualType CanonicalPtr)
2665 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2666 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2667
2668public:
2669 QualType getOriginalType() const { return OriginalTy; }
2670 QualType getAdjustedType() const { return AdjustedTy; }
2671
2672 bool isSugared() const { return true; }
2673 QualType desugar() const { return AdjustedTy; }
2674
2675 void Profile(llvm::FoldingSetNodeID &ID) {
2676 Profile(ID, OriginalTy, AdjustedTy);
2677 }
2678
2679 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2680 ID.AddPointer(Orig.getAsOpaquePtr());
2681 ID.AddPointer(New.getAsOpaquePtr());
2682 }
2683