Bug Summary

File:clang/lib/Sema/SemaCast.cpp
Warning:line 1360, column 14
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaCast.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-02-12-124252-137181-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/clang/lib/Sema/SemaCast.cpp

/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/clang/lib/Sema/SemaCast.cpp

1//===--- SemaCast.cpp - Semantic Analysis for Casts -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for cast expressions, including
10// 1) C-style casts like '(int) x'
11// 2) C++ functional casts like 'int(x)'
12// 3) C++ named casts like 'static_cast<int>(x)'
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTStructuralEquivalence.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/SemaInternal.h"
27#include "llvm/ADT/SmallVector.h"
28#include <set>
29using namespace clang;
30
31
32
33enum TryCastResult {
34 TC_NotApplicable, ///< The cast method is not applicable.
35 TC_Success, ///< The cast method is appropriate and successful.
36 TC_Extension, ///< The cast method is appropriate and accepted as a
37 ///< language extension.
38 TC_Failed ///< The cast method is appropriate, but failed. A
39 ///< diagnostic has been emitted.
40};
41
42static bool isValidCast(TryCastResult TCR) {
43 return TCR == TC_Success || TCR == TC_Extension;
44}
45
46enum CastType {
47 CT_Const, ///< const_cast
48 CT_Static, ///< static_cast
49 CT_Reinterpret, ///< reinterpret_cast
50 CT_Dynamic, ///< dynamic_cast
51 CT_CStyle, ///< (Type)expr
52 CT_Functional, ///< Type(expr)
53 CT_Addrspace ///< addrspace_cast
54};
55
56namespace {
57 struct CastOperation {
58 CastOperation(Sema &S, QualType destType, ExprResult src)
59 : Self(S), SrcExpr(src), DestType(destType),
60 ResultType(destType.getNonLValueExprType(S.Context)),
61 ValueKind(Expr::getValueKindForType(destType)),
62 Kind(CK_Dependent), IsARCUnbridgedCast(false) {
63
64 // C++ [expr.type]/8.2.2:
65 // If a pr-value initially has the type cv-T, where T is a
66 // cv-unqualified non-class, non-array type, the type of the
67 // expression is adjusted to T prior to any further analysis.
68 if (!S.Context.getLangOpts().ObjC && !DestType->isRecordType() &&
69 !DestType->isArrayType()) {
70 DestType = DestType.getUnqualifiedType();
71 }
72
73 if (const BuiltinType *placeholder =
74 src.get()->getType()->getAsPlaceholderType()) {
75 PlaceholderKind = placeholder->getKind();
76 } else {
77 PlaceholderKind = (BuiltinType::Kind) 0;
78 }
79 }
80
81 Sema &Self;
82 ExprResult SrcExpr;
83 QualType DestType;
84 QualType ResultType;
85 ExprValueKind ValueKind;
86 CastKind Kind;
87 BuiltinType::Kind PlaceholderKind;
88 CXXCastPath BasePath;
89 bool IsARCUnbridgedCast;
90
91 SourceRange OpRange;
92 SourceRange DestRange;
93
94 // Top-level semantics-checking routines.
95 void CheckConstCast();
96 void CheckReinterpretCast();
97 void CheckStaticCast();
98 void CheckDynamicCast();
99 void CheckCXXCStyleCast(bool FunctionalCast, bool ListInitialization);
100 void CheckCStyleCast();
101 void CheckBuiltinBitCast();
102 void CheckAddrspaceCast();
103
104 void updatePartOfExplicitCastFlags(CastExpr *CE) {
105 // Walk down from the CE to the OrigSrcExpr, and mark all immediate
106 // ImplicitCastExpr's as being part of ExplicitCastExpr. The original CE
107 // (which is a ExplicitCastExpr), and the OrigSrcExpr are not touched.
108 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(CE->getSubExpr()); CE = ICE)
109 ICE->setIsPartOfExplicitCast(true);
110 }
111
112 /// Complete an apparently-successful cast operation that yields
113 /// the given expression.
114 ExprResult complete(CastExpr *castExpr) {
115 // If this is an unbridged cast, wrap the result in an implicit
116 // cast that yields the unbridged-cast placeholder type.
117 if (IsARCUnbridgedCast) {
118 castExpr = ImplicitCastExpr::Create(
119 Self.Context, Self.Context.ARCUnbridgedCastTy, CK_Dependent,
120 castExpr, nullptr, castExpr->getValueKind(),
121 Self.CurFPFeatureOverrides());
122 }
123 updatePartOfExplicitCastFlags(castExpr);
124 return castExpr;
125 }
126
127 // Internal convenience methods.
128
129 /// Try to handle the given placeholder expression kind. Return
130 /// true if the source expression has the appropriate placeholder
131 /// kind. A placeholder can only be claimed once.
132 bool claimPlaceholder(BuiltinType::Kind K) {
133 if (PlaceholderKind != K) return false;
134
135 PlaceholderKind = (BuiltinType::Kind) 0;
136 return true;
137 }
138
139 bool isPlaceholder() const {
140 return PlaceholderKind != 0;
141 }
142 bool isPlaceholder(BuiltinType::Kind K) const {
143 return PlaceholderKind == K;
144 }
145
146 // Language specific cast restrictions for address spaces.
147 void checkAddressSpaceCast(QualType SrcType, QualType DestType);
148
149 void checkCastAlign() {
150 Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange);
151 }
152
153 void checkObjCConversion(Sema::CheckedConversionKind CCK) {
154 assert(Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())(static_cast <bool> (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers
()) ? void (0) : __assert_fail ("Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()"
, "clang/lib/Sema/SemaCast.cpp", 154, __extension__ __PRETTY_FUNCTION__
))
;
155
156 Expr *src = SrcExpr.get();
157 if (Self.CheckObjCConversion(OpRange, DestType, src, CCK) ==
158 Sema::ACR_unbridged)
159 IsARCUnbridgedCast = true;
160 SrcExpr = src;
161 }
162
163 /// Check for and handle non-overload placeholder expressions.
164 void checkNonOverloadPlaceholders() {
165 if (!isPlaceholder() || isPlaceholder(BuiltinType::Overload))
166 return;
167
168 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
169 if (SrcExpr.isInvalid())
170 return;
171 PlaceholderKind = (BuiltinType::Kind) 0;
172 }
173 };
174
175 void CheckNoDeref(Sema &S, const QualType FromType, const QualType ToType,
176 SourceLocation OpLoc) {
177 if (const auto *PtrType = dyn_cast<PointerType>(FromType)) {
178 if (PtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
179 if (const auto *DestType = dyn_cast<PointerType>(ToType)) {
180 if (!DestType->getPointeeType()->hasAttr(attr::NoDeref)) {
181 S.Diag(OpLoc, diag::warn_noderef_to_dereferenceable_pointer);
182 }
183 }
184 }
185 }
186 }
187
188 struct CheckNoDerefRAII {
189 CheckNoDerefRAII(CastOperation &Op) : Op(Op) {}
190 ~CheckNoDerefRAII() {
191 if (!Op.SrcExpr.isInvalid())
192 CheckNoDeref(Op.Self, Op.SrcExpr.get()->getType(), Op.ResultType,
193 Op.OpRange.getBegin());
194 }
195
196 CastOperation &Op;
197 };
198}
199
200static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr,
201 QualType DestType);
202
203// The Try functions attempt a specific way of casting. If they succeed, they
204// return TC_Success. If their way of casting is not appropriate for the given
205// arguments, they return TC_NotApplicable and *may* set diag to a diagnostic
206// to emit if no other way succeeds. If their way of casting is appropriate but
207// fails, they return TC_Failed and *must* set diag; they can set it to 0 if
208// they emit a specialized diagnostic.
209// All diagnostics returned by these functions must expect the same three
210// arguments:
211// %0: Cast Type (a value from the CastType enumeration)
212// %1: Source Type
213// %2: Destination Type
214static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr,
215 QualType DestType, bool CStyle,
216 CastKind &Kind,
217 CXXCastPath &BasePath,
218 unsigned &msg);
219static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr,
220 QualType DestType, bool CStyle,
221 SourceRange OpRange,
222 unsigned &msg,
223 CastKind &Kind,
224 CXXCastPath &BasePath);
225static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType,
226 QualType DestType, bool CStyle,
227 SourceRange OpRange,
228 unsigned &msg,
229 CastKind &Kind,
230 CXXCastPath &BasePath);
231static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType,
232 CanQualType DestType, bool CStyle,
233 SourceRange OpRange,
234 QualType OrigSrcType,
235 QualType OrigDestType, unsigned &msg,
236 CastKind &Kind,
237 CXXCastPath &BasePath);
238static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr,
239 QualType SrcType,
240 QualType DestType,bool CStyle,
241 SourceRange OpRange,
242 unsigned &msg,
243 CastKind &Kind,
244 CXXCastPath &BasePath);
245
246static TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr,
247 QualType DestType,
248 Sema::CheckedConversionKind CCK,
249 SourceRange OpRange,
250 unsigned &msg, CastKind &Kind,
251 bool ListInitialization);
252static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
253 QualType DestType,
254 Sema::CheckedConversionKind CCK,
255 SourceRange OpRange,
256 unsigned &msg, CastKind &Kind,
257 CXXCastPath &BasePath,
258 bool ListInitialization);
259static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
260 QualType DestType, bool CStyle,
261 unsigned &msg);
262static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
263 QualType DestType, bool CStyle,
264 SourceRange OpRange, unsigned &msg,
265 CastKind &Kind);
266static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr,
267 QualType DestType, bool CStyle,
268 unsigned &msg, CastKind &Kind);
269
270/// ActOnCXXNamedCast - Parse
271/// {dynamic,static,reinterpret,const,addrspace}_cast's.
272ExprResult
273Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
274 SourceLocation LAngleBracketLoc, Declarator &D,
275 SourceLocation RAngleBracketLoc,
276 SourceLocation LParenLoc, Expr *E,
277 SourceLocation RParenLoc) {
278
279 assert(!D.isInvalidType())(static_cast <bool> (!D.isInvalidType()) ? void (0) : __assert_fail
("!D.isInvalidType()", "clang/lib/Sema/SemaCast.cpp", 279, __extension__
__PRETTY_FUNCTION__))
;
280
281 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, E->getType());
282 if (D.isInvalidType())
283 return ExprError();
284
285 if (getLangOpts().CPlusPlus) {
286 // Check that there are no default arguments (C++ only).
287 CheckExtraCXXDefaultArguments(D);
288 }
289
290 return BuildCXXNamedCast(OpLoc, Kind, TInfo, E,
291 SourceRange(LAngleBracketLoc, RAngleBracketLoc),
292 SourceRange(LParenLoc, RParenLoc));
293}
294
295ExprResult
296Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
297 TypeSourceInfo *DestTInfo, Expr *E,
298 SourceRange AngleBrackets, SourceRange Parens) {
299 ExprResult Ex = E;
300 QualType DestType = DestTInfo->getType();
301
302 // If the type is dependent, we won't do the semantic analysis now.
303 bool TypeDependent =
304 DestType->isDependentType() || Ex.get()->isTypeDependent();
305
306 CastOperation Op(*this, DestType, E);
307 Op.OpRange = SourceRange(OpLoc, Parens.getEnd());
308 Op.DestRange = AngleBrackets;
309
310 switch (Kind) {
311 default: llvm_unreachable("Unknown C++ cast!")::llvm::llvm_unreachable_internal("Unknown C++ cast!", "clang/lib/Sema/SemaCast.cpp"
, 311)
;
312
313 case tok::kw_addrspace_cast:
314 if (!TypeDependent) {
315 Op.CheckAddrspaceCast();
316 if (Op.SrcExpr.isInvalid())
317 return ExprError();
318 }
319 return Op.complete(CXXAddrspaceCastExpr::Create(
320 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
321 DestTInfo, OpLoc, Parens.getEnd(), AngleBrackets));
322
323 case tok::kw_const_cast:
324 if (!TypeDependent) {
325 Op.CheckConstCast();
326 if (Op.SrcExpr.isInvalid())
327 return ExprError();
328 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
329 }
330 return Op.complete(CXXConstCastExpr::Create(Context, Op.ResultType,
331 Op.ValueKind, Op.SrcExpr.get(), DestTInfo,
332 OpLoc, Parens.getEnd(),
333 AngleBrackets));
334
335 case tok::kw_dynamic_cast: {
336 // dynamic_cast is not supported in C++ for OpenCL.
337 if (getLangOpts().OpenCLCPlusPlus) {
338 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
339 << "dynamic_cast");
340 }
341
342 if (!TypeDependent) {
343 Op.CheckDynamicCast();
344 if (Op.SrcExpr.isInvalid())
345 return ExprError();
346 }
347 return Op.complete(CXXDynamicCastExpr::Create(Context, Op.ResultType,
348 Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
349 &Op.BasePath, DestTInfo,
350 OpLoc, Parens.getEnd(),
351 AngleBrackets));
352 }
353 case tok::kw_reinterpret_cast: {
354 if (!TypeDependent) {
355 Op.CheckReinterpretCast();
356 if (Op.SrcExpr.isInvalid())
357 return ExprError();
358 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
359 }
360 return Op.complete(CXXReinterpretCastExpr::Create(Context, Op.ResultType,
361 Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
362 nullptr, DestTInfo, OpLoc,
363 Parens.getEnd(),
364 AngleBrackets));
365 }
366 case tok::kw_static_cast: {
367 if (!TypeDependent) {
368 Op.CheckStaticCast();
369 if (Op.SrcExpr.isInvalid())
370 return ExprError();
371 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
372 }
373
374 return Op.complete(CXXStaticCastExpr::Create(
375 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
376 &Op.BasePath, DestTInfo, CurFPFeatureOverrides(), OpLoc,
377 Parens.getEnd(), AngleBrackets));
378 }
379 }
380}
381
382ExprResult Sema::ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &D,
383 ExprResult Operand,
384 SourceLocation RParenLoc) {
385 assert(!D.isInvalidType())(static_cast <bool> (!D.isInvalidType()) ? void (0) : __assert_fail
("!D.isInvalidType()", "clang/lib/Sema/SemaCast.cpp", 385, __extension__
__PRETTY_FUNCTION__))
;
386
387 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, Operand.get()->getType());
388 if (D.isInvalidType())
389 return ExprError();
390
391 return BuildBuiltinBitCastExpr(KWLoc, TInfo, Operand.get(), RParenLoc);
392}
393
394ExprResult Sema::BuildBuiltinBitCastExpr(SourceLocation KWLoc,
395 TypeSourceInfo *TSI, Expr *Operand,
396 SourceLocation RParenLoc) {
397 CastOperation Op(*this, TSI->getType(), Operand);
398 Op.OpRange = SourceRange(KWLoc, RParenLoc);
399 TypeLoc TL = TSI->getTypeLoc();
400 Op.DestRange = SourceRange(TL.getBeginLoc(), TL.getEndLoc());
401
402 if (!Operand->isTypeDependent() && !TSI->getType()->isDependentType()) {
403 Op.CheckBuiltinBitCast();
404 if (Op.SrcExpr.isInvalid())
405 return ExprError();
406 }
407
408 BuiltinBitCastExpr *BCE =
409 new (Context) BuiltinBitCastExpr(Op.ResultType, Op.ValueKind, Op.Kind,
410 Op.SrcExpr.get(), TSI, KWLoc, RParenLoc);
411 return Op.complete(BCE);
412}
413
414/// Try to diagnose a failed overloaded cast. Returns true if
415/// diagnostics were emitted.
416static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT,
417 SourceRange range, Expr *src,
418 QualType destType,
419 bool listInitialization) {
420 switch (CT) {
421 // These cast kinds don't consider user-defined conversions.
422 case CT_Const:
423 case CT_Reinterpret:
424 case CT_Dynamic:
425 case CT_Addrspace:
426 return false;
427
428 // These do.
429 case CT_Static:
430 case CT_CStyle:
431 case CT_Functional:
432 break;
433 }
434
435 QualType srcType = src->getType();
436 if (!destType->isRecordType() && !srcType->isRecordType())
437 return false;
438
439 InitializedEntity entity = InitializedEntity::InitializeTemporary(destType);
440 InitializationKind initKind
441 = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(),
442 range, listInitialization)
443 : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range,
444 listInitialization)
445 : InitializationKind::CreateCast(/*type range?*/ range);
446 InitializationSequence sequence(S, entity, initKind, src);
447
448 assert(sequence.Failed() && "initialization succeeded on second try?")(static_cast <bool> (sequence.Failed() && "initialization succeeded on second try?"
) ? void (0) : __assert_fail ("sequence.Failed() && \"initialization succeeded on second try?\""
, "clang/lib/Sema/SemaCast.cpp", 448, __extension__ __PRETTY_FUNCTION__
))
;
449 switch (sequence.getFailureKind()) {
450 default: return false;
451
452 case InitializationSequence::FK_ConstructorOverloadFailed:
453 case InitializationSequence::FK_UserConversionOverloadFailed:
454 break;
455 }
456
457 OverloadCandidateSet &candidates = sequence.getFailedCandidateSet();
458
459 unsigned msg = 0;
460 OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates;
461
462 switch (sequence.getFailedOverloadResult()) {
463 case OR_Success: llvm_unreachable("successful failed overload")::llvm::llvm_unreachable_internal("successful failed overload"
, "clang/lib/Sema/SemaCast.cpp", 463)
;
464 case OR_No_Viable_Function:
465 if (candidates.empty())
466 msg = diag::err_ovl_no_conversion_in_cast;
467 else
468 msg = diag::err_ovl_no_viable_conversion_in_cast;
469 howManyCandidates = OCD_AllCandidates;
470 break;
471
472 case OR_Ambiguous:
473 msg = diag::err_ovl_ambiguous_conversion_in_cast;
474 howManyCandidates = OCD_AmbiguousCandidates;
475 break;
476
477 case OR_Deleted:
478 msg = diag::err_ovl_deleted_conversion_in_cast;
479 howManyCandidates = OCD_ViableCandidates;
480 break;
481 }
482
483 candidates.NoteCandidates(
484 PartialDiagnosticAt(range.getBegin(),
485 S.PDiag(msg) << CT << srcType << destType << range
486 << src->getSourceRange()),
487 S, howManyCandidates, src);
488
489 return true;
490}
491
492/// Diagnose a failed cast.
493static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType,
494 SourceRange opRange, Expr *src, QualType destType,
495 bool listInitialization) {
496 if (msg == diag::err_bad_cxx_cast_generic &&
497 tryDiagnoseOverloadedCast(S, castType, opRange, src, destType,
498 listInitialization))
499 return;
500
501 S.Diag(opRange.getBegin(), msg) << castType
502 << src->getType() << destType << opRange << src->getSourceRange();
503
504 // Detect if both types are (ptr to) class, and note any incompleteness.
505 int DifferentPtrness = 0;
506 QualType From = destType;
507 if (auto Ptr = From->getAs<PointerType>()) {
508 From = Ptr->getPointeeType();
509 DifferentPtrness++;
510 }
511 QualType To = src->getType();
512 if (auto Ptr = To->getAs<PointerType>()) {
513 To = Ptr->getPointeeType();
514 DifferentPtrness--;
515 }
516 if (!DifferentPtrness) {
517 auto RecFrom = From->getAs<RecordType>();
518 auto RecTo = To->getAs<RecordType>();
519 if (RecFrom && RecTo) {
520 auto DeclFrom = RecFrom->getAsCXXRecordDecl();
521 if (!DeclFrom->isCompleteDefinition())
522 S.Diag(DeclFrom->getLocation(), diag::note_type_incomplete) << DeclFrom;
523 auto DeclTo = RecTo->getAsCXXRecordDecl();
524 if (!DeclTo->isCompleteDefinition())
525 S.Diag(DeclTo->getLocation(), diag::note_type_incomplete) << DeclTo;
526 }
527 }
528}
529
530namespace {
531/// The kind of unwrapping we did when determining whether a conversion casts
532/// away constness.
533enum CastAwayConstnessKind {
534 /// The conversion does not cast away constness.
535 CACK_None = 0,
536 /// We unwrapped similar types.
537 CACK_Similar = 1,
538 /// We unwrapped dissimilar types with similar representations (eg, a pointer
539 /// versus an Objective-C object pointer).
540 CACK_SimilarKind = 2,
541 /// We unwrapped representationally-unrelated types, such as a pointer versus
542 /// a pointer-to-member.
543 CACK_Incoherent = 3,
544};
545}
546
547/// Unwrap one level of types for CastsAwayConstness.
548///
549/// Like Sema::UnwrapSimilarTypes, this removes one level of indirection from
550/// both types, provided that they're both pointer-like or array-like. Unlike
551/// the Sema function, doesn't care if the unwrapped pieces are related.
552///
553/// This function may remove additional levels as necessary for correctness:
554/// the resulting T1 is unwrapped sufficiently that it is never an array type,
555/// so that its qualifiers can be directly compared to those of T2 (which will
556/// have the combined set of qualifiers from all indermediate levels of T2),
557/// as (effectively) required by [expr.const.cast]p7 replacing T1's qualifiers
558/// with those from T2.
559static CastAwayConstnessKind
560unwrapCastAwayConstnessLevel(ASTContext &Context, QualType &T1, QualType &T2) {
561 enum { None, Ptr, MemPtr, BlockPtr, Array };
562 auto Classify = [](QualType T) {
563 if (T->isAnyPointerType()) return Ptr;
564 if (T->isMemberPointerType()) return MemPtr;
565 if (T->isBlockPointerType()) return BlockPtr;
566 // We somewhat-arbitrarily don't look through VLA types here. This is at
567 // least consistent with the behavior of UnwrapSimilarTypes.
568 if (T->isConstantArrayType() || T->isIncompleteArrayType()) return Array;
569 return None;
570 };
571
572 auto Unwrap = [&](QualType T) {
573 if (auto *AT = Context.getAsArrayType(T))
574 return AT->getElementType();
575 return T->getPointeeType();
576 };
577
578 CastAwayConstnessKind Kind;
579
580 if (T2->isReferenceType()) {
581 // Special case: if the destination type is a reference type, unwrap it as
582 // the first level. (The source will have been an lvalue expression in this
583 // case, so there is no corresponding "reference to" in T1 to remove.) This
584 // simulates removing a "pointer to" from both sides.
585 T2 = T2->getPointeeType();
586 Kind = CastAwayConstnessKind::CACK_Similar;
587 } else if (Context.UnwrapSimilarTypes(T1, T2)) {
588 Kind = CastAwayConstnessKind::CACK_Similar;
589 } else {
590 // Try unwrapping mismatching levels.
591 int T1Class = Classify(T1);
592 if (T1Class == None)
593 return CastAwayConstnessKind::CACK_None;
594
595 int T2Class = Classify(T2);
596 if (T2Class == None)
597 return CastAwayConstnessKind::CACK_None;
598
599 T1 = Unwrap(T1);
600 T2 = Unwrap(T2);
601 Kind = T1Class == T2Class ? CastAwayConstnessKind::CACK_SimilarKind
602 : CastAwayConstnessKind::CACK_Incoherent;
603 }
604
605 // We've unwrapped at least one level. If the resulting T1 is a (possibly
606 // multidimensional) array type, any qualifier on any matching layer of
607 // T2 is considered to correspond to T1. Decompose down to the element
608 // type of T1 so that we can compare properly.
609 while (true) {
610 Context.UnwrapSimilarArrayTypes(T1, T2);
611
612 if (Classify(T1) != Array)
613 break;
614
615 auto T2Class = Classify(T2);
616 if (T2Class == None)
617 break;
618
619 if (T2Class != Array)
620 Kind = CastAwayConstnessKind::CACK_Incoherent;
621 else if (Kind != CastAwayConstnessKind::CACK_Incoherent)
622 Kind = CastAwayConstnessKind::CACK_SimilarKind;
623
624 T1 = Unwrap(T1);
625 T2 = Unwrap(T2).withCVRQualifiers(T2.getCVRQualifiers());
626 }
627
628 return Kind;
629}
630
631/// Check if the pointer conversion from SrcType to DestType casts away
632/// constness as defined in C++ [expr.const.cast]. This is used by the cast
633/// checkers. Both arguments must denote pointer (possibly to member) types.
634///
635/// \param CheckCVR Whether to check for const/volatile/restrict qualifiers.
636/// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers.
637static CastAwayConstnessKind
638CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType,
639 bool CheckCVR, bool CheckObjCLifetime,
640 QualType *TheOffendingSrcType = nullptr,
641 QualType *TheOffendingDestType = nullptr,
642 Qualifiers *CastAwayQualifiers = nullptr) {
643 // If the only checking we care about is for Objective-C lifetime qualifiers,
644 // and we're not in ObjC mode, there's nothing to check.
645 if (!CheckCVR && CheckObjCLifetime && !Self.Context.getLangOpts().ObjC)
646 return CastAwayConstnessKind::CACK_None;
647
648 if (!DestType->isReferenceType()) {
649 assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() ||(static_cast <bool> ((SrcType->isAnyPointerType() ||
SrcType->isMemberPointerType() || SrcType->isBlockPointerType
()) && "Source type is not pointer or pointer to member."
) ? void (0) : __assert_fail ("(SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || SrcType->isBlockPointerType()) && \"Source type is not pointer or pointer to member.\""
, "clang/lib/Sema/SemaCast.cpp", 651, __extension__ __PRETTY_FUNCTION__
))
650 SrcType->isBlockPointerType()) &&(static_cast <bool> ((SrcType->isAnyPointerType() ||
SrcType->isMemberPointerType() || SrcType->isBlockPointerType
()) && "Source type is not pointer or pointer to member."
) ? void (0) : __assert_fail ("(SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || SrcType->isBlockPointerType()) && \"Source type is not pointer or pointer to member.\""
, "clang/lib/Sema/SemaCast.cpp", 651, __extension__ __PRETTY_FUNCTION__
))
651 "Source type is not pointer or pointer to member.")(static_cast <bool> ((SrcType->isAnyPointerType() ||
SrcType->isMemberPointerType() || SrcType->isBlockPointerType
()) && "Source type is not pointer or pointer to member."
) ? void (0) : __assert_fail ("(SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || SrcType->isBlockPointerType()) && \"Source type is not pointer or pointer to member.\""
, "clang/lib/Sema/SemaCast.cpp", 651, __extension__ __PRETTY_FUNCTION__
))
;
652 assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() ||(static_cast <bool> ((DestType->isAnyPointerType() ||
DestType->isMemberPointerType() || DestType->isBlockPointerType
()) && "Destination type is not pointer or pointer to member."
) ? void (0) : __assert_fail ("(DestType->isAnyPointerType() || DestType->isMemberPointerType() || DestType->isBlockPointerType()) && \"Destination type is not pointer or pointer to member.\""
, "clang/lib/Sema/SemaCast.cpp", 654, __extension__ __PRETTY_FUNCTION__
))
653 DestType->isBlockPointerType()) &&(static_cast <bool> ((DestType->isAnyPointerType() ||
DestType->isMemberPointerType() || DestType->isBlockPointerType
()) && "Destination type is not pointer or pointer to member."
) ? void (0) : __assert_fail ("(DestType->isAnyPointerType() || DestType->isMemberPointerType() || DestType->isBlockPointerType()) && \"Destination type is not pointer or pointer to member.\""
, "clang/lib/Sema/SemaCast.cpp", 654, __extension__ __PRETTY_FUNCTION__
))
654 "Destination type is not pointer or pointer to member.")(static_cast <bool> ((DestType->isAnyPointerType() ||
DestType->isMemberPointerType() || DestType->isBlockPointerType
()) && "Destination type is not pointer or pointer to member."
) ? void (0) : __assert_fail ("(DestType->isAnyPointerType() || DestType->isMemberPointerType() || DestType->isBlockPointerType()) && \"Destination type is not pointer or pointer to member.\""
, "clang/lib/Sema/SemaCast.cpp", 654, __extension__ __PRETTY_FUNCTION__
))
;
655 }
656
657 QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType),
658 UnwrappedDestType = Self.Context.getCanonicalType(DestType);
659
660 // Find the qualifiers. We only care about cvr-qualifiers for the
661 // purpose of this check, because other qualifiers (address spaces,
662 // Objective-C GC, etc.) are part of the type's identity.
663 QualType PrevUnwrappedSrcType = UnwrappedSrcType;
664 QualType PrevUnwrappedDestType = UnwrappedDestType;
665 auto WorstKind = CastAwayConstnessKind::CACK_Similar;
666 bool AllConstSoFar = true;
667 while (auto Kind = unwrapCastAwayConstnessLevel(
668 Self.Context, UnwrappedSrcType, UnwrappedDestType)) {
669 // Track the worst kind of unwrap we needed to do before we found a
670 // problem.
671 if (Kind > WorstKind)
672 WorstKind = Kind;
673
674 // Determine the relevant qualifiers at this level.
675 Qualifiers SrcQuals, DestQuals;
676 Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals);
677 Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals);
678
679 // We do not meaningfully track object const-ness of Objective-C object
680 // types. Remove const from the source type if either the source or
681 // the destination is an Objective-C object type.
682 if (UnwrappedSrcType->isObjCObjectType() ||
683 UnwrappedDestType->isObjCObjectType())
684 SrcQuals.removeConst();
685
686 if (CheckCVR) {
687 Qualifiers SrcCvrQuals =
688 Qualifiers::fromCVRMask(SrcQuals.getCVRQualifiers());
689 Qualifiers DestCvrQuals =
690 Qualifiers::fromCVRMask(DestQuals.getCVRQualifiers());
691
692 if (SrcCvrQuals != DestCvrQuals) {
693 if (CastAwayQualifiers)
694 *CastAwayQualifiers = SrcCvrQuals - DestCvrQuals;
695
696 // If we removed a cvr-qualifier, this is casting away 'constness'.
697 if (!DestCvrQuals.compatiblyIncludes(SrcCvrQuals)) {
698 if (TheOffendingSrcType)
699 *TheOffendingSrcType = PrevUnwrappedSrcType;
700 if (TheOffendingDestType)
701 *TheOffendingDestType = PrevUnwrappedDestType;
702 return WorstKind;
703 }
704
705 // If any prior level was not 'const', this is also casting away
706 // 'constness'. We noted the outermost type missing a 'const' already.
707 if (!AllConstSoFar)
708 return WorstKind;
709 }
710 }
711
712 if (CheckObjCLifetime &&
713 !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals))
714 return WorstKind;
715
716 // If we found our first non-const-qualified type, this may be the place
717 // where things start to go wrong.
718 if (AllConstSoFar && !DestQuals.hasConst()) {
719 AllConstSoFar = false;
720 if (TheOffendingSrcType)
721 *TheOffendingSrcType = PrevUnwrappedSrcType;
722 if (TheOffendingDestType)
723 *TheOffendingDestType = PrevUnwrappedDestType;
724 }
725
726 PrevUnwrappedSrcType = UnwrappedSrcType;
727 PrevUnwrappedDestType = UnwrappedDestType;
728 }
729
730 return CastAwayConstnessKind::CACK_None;
731}
732
733static TryCastResult getCastAwayConstnessCastKind(CastAwayConstnessKind CACK,
734 unsigned &DiagID) {
735 switch (CACK) {
736 case CastAwayConstnessKind::CACK_None:
737 llvm_unreachable("did not cast away constness")::llvm::llvm_unreachable_internal("did not cast away constness"
, "clang/lib/Sema/SemaCast.cpp", 737)
;
738
739 case CastAwayConstnessKind::CACK_Similar:
740 // FIXME: Accept these as an extension too?
741 case CastAwayConstnessKind::CACK_SimilarKind:
742 DiagID = diag::err_bad_cxx_cast_qualifiers_away;
743 return TC_Failed;
744
745 case CastAwayConstnessKind::CACK_Incoherent:
746 DiagID = diag::ext_bad_cxx_cast_qualifiers_away_incoherent;
747 return TC_Extension;
748 }
749
750 llvm_unreachable("unexpected cast away constness kind")::llvm::llvm_unreachable_internal("unexpected cast away constness kind"
, "clang/lib/Sema/SemaCast.cpp", 750)
;
751}
752
753/// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid.
754/// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime-
755/// checked downcasts in class hierarchies.
756void CastOperation::CheckDynamicCast() {
757 CheckNoDerefRAII NoderefCheck(*this);
758
759 if (ValueKind == VK_PRValue)
760 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
761 else if (isPlaceholder())
762 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
763 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
764 return;
765
766 QualType OrigSrcType = SrcExpr.get()->getType();
767 QualType DestType = Self.Context.getCanonicalType(this->DestType);
768
769 // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type,
770 // or "pointer to cv void".
771
772 QualType DestPointee;
773 const PointerType *DestPointer = DestType->getAs<PointerType>();
774 const ReferenceType *DestReference = nullptr;
775 if (DestPointer) {
776 DestPointee = DestPointer->getPointeeType();
777 } else if ((DestReference = DestType->getAs<ReferenceType>())) {
778 DestPointee = DestReference->getPointeeType();
779 } else {
780 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr)
781 << this->DestType << DestRange;
782 SrcExpr = ExprError();
783 return;
784 }
785
786 const RecordType *DestRecord = DestPointee->getAs<RecordType>();
787 if (DestPointee->isVoidType()) {
788 assert(DestPointer && "Reference to void is not possible")(static_cast <bool> (DestPointer && "Reference to void is not possible"
) ? void (0) : __assert_fail ("DestPointer && \"Reference to void is not possible\""
, "clang/lib/Sema/SemaCast.cpp", 788, __extension__ __PRETTY_FUNCTION__
))
;
789 } else if (DestRecord) {
790 if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee,
791 diag::err_bad_cast_incomplete,
792 DestRange)) {
793 SrcExpr = ExprError();
794 return;
795 }
796 } else {
797 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
798 << DestPointee.getUnqualifiedType() << DestRange;
799 SrcExpr = ExprError();
800 return;
801 }
802
803 // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to
804 // complete class type, [...]. If T is an lvalue reference type, v shall be
805 // an lvalue of a complete class type, [...]. If T is an rvalue reference
806 // type, v shall be an expression having a complete class type, [...]
807 QualType SrcType = Self.Context.getCanonicalType(OrigSrcType);
808 QualType SrcPointee;
809 if (DestPointer) {
810 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
811 SrcPointee = SrcPointer->getPointeeType();
812 } else {
813 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr)
814 << OrigSrcType << this->DestType << SrcExpr.get()->getSourceRange();
815 SrcExpr = ExprError();
816 return;
817 }
818 } else if (DestReference->isLValueReferenceType()) {
819 if (!SrcExpr.get()->isLValue()) {
820 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue)
821 << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
822 }
823 SrcPointee = SrcType;
824 } else {
825 // If we're dynamic_casting from a prvalue to an rvalue reference, we need
826 // to materialize the prvalue before we bind the reference to it.
827 if (SrcExpr.get()->isPRValue())
828 SrcExpr = Self.CreateMaterializeTemporaryExpr(
829 SrcType, SrcExpr.get(), /*IsLValueReference*/ false);
830 SrcPointee = SrcType;
831 }
832
833 const RecordType *SrcRecord = SrcPointee->getAs<RecordType>();
834 if (SrcRecord) {
835 if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee,
836 diag::err_bad_cast_incomplete,
837 SrcExpr.get())) {
838 SrcExpr = ExprError();
839 return;
840 }
841 } else {
842 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
843 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
844 SrcExpr = ExprError();
845 return;
846 }
847
848 assert((DestPointer || DestReference) &&(static_cast <bool> ((DestPointer || DestReference) &&
"Bad destination non-ptr/ref slipped through.") ? void (0) :
__assert_fail ("(DestPointer || DestReference) && \"Bad destination non-ptr/ref slipped through.\""
, "clang/lib/Sema/SemaCast.cpp", 849, __extension__ __PRETTY_FUNCTION__
))
849 "Bad destination non-ptr/ref slipped through.")(static_cast <bool> ((DestPointer || DestReference) &&
"Bad destination non-ptr/ref slipped through.") ? void (0) :
__assert_fail ("(DestPointer || DestReference) && \"Bad destination non-ptr/ref slipped through.\""
, "clang/lib/Sema/SemaCast.cpp", 849, __extension__ __PRETTY_FUNCTION__
))
;
850 assert((DestRecord || DestPointee->isVoidType()) &&(static_cast <bool> ((DestRecord || DestPointee->isVoidType
()) && "Bad destination pointee slipped through.") ? void
(0) : __assert_fail ("(DestRecord || DestPointee->isVoidType()) && \"Bad destination pointee slipped through.\""
, "clang/lib/Sema/SemaCast.cpp", 851, __extension__ __PRETTY_FUNCTION__
))
851 "Bad destination pointee slipped through.")(static_cast <bool> ((DestRecord || DestPointee->isVoidType
()) && "Bad destination pointee slipped through.") ? void
(0) : __assert_fail ("(DestRecord || DestPointee->isVoidType()) && \"Bad destination pointee slipped through.\""
, "clang/lib/Sema/SemaCast.cpp", 851, __extension__ __PRETTY_FUNCTION__
))
;
852 assert(SrcRecord && "Bad source pointee slipped through.")(static_cast <bool> (SrcRecord && "Bad source pointee slipped through."
) ? void (0) : __assert_fail ("SrcRecord && \"Bad source pointee slipped through.\""
, "clang/lib/Sema/SemaCast.cpp", 852, __extension__ __PRETTY_FUNCTION__
))
;
853
854 // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness.
855 if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) {
856 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away)
857 << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
858 SrcExpr = ExprError();
859 return;
860 }
861
862 // C++ 5.2.7p3: If the type of v is the same as the required result type,
863 // [except for cv].
864 if (DestRecord == SrcRecord) {
865 Kind = CK_NoOp;
866 return;
867 }
868
869 // C++ 5.2.7p5
870 // Upcasts are resolved statically.
871 if (DestRecord &&
872 Self.IsDerivedFrom(OpRange.getBegin(), SrcPointee, DestPointee)) {
873 if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee,
874 OpRange.getBegin(), OpRange,
875 &BasePath)) {
876 SrcExpr = ExprError();
877 return;
878 }
879
880 Kind = CK_DerivedToBase;
881 return;
882 }
883
884 // C++ 5.2.7p6: Otherwise, v shall be [polymorphic].
885 const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition();
886 assert(SrcDecl && "Definition missing")(static_cast <bool> (SrcDecl && "Definition missing"
) ? void (0) : __assert_fail ("SrcDecl && \"Definition missing\""
, "clang/lib/Sema/SemaCast.cpp", 886, __extension__ __PRETTY_FUNCTION__
))
;
887 if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) {
888 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic)
889 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
890 SrcExpr = ExprError();
891 }
892
893 // dynamic_cast is not available with -fno-rtti.
894 // As an exception, dynamic_cast to void* is available because it doesn't
895 // use RTTI.
896 if (!Self.getLangOpts().RTTI && !DestPointee->isVoidType()) {
897 Self.Diag(OpRange.getBegin(), diag::err_no_dynamic_cast_with_fno_rtti);
898 SrcExpr = ExprError();
899 return;
900 }
901
902 // Warns when dynamic_cast is used with RTTI data disabled.
903 if (!Self.getLangOpts().RTTIData) {
904 bool MicrosoftABI =
905 Self.getASTContext().getTargetInfo().getCXXABI().isMicrosoft();
906 bool isClangCL = Self.getDiagnostics().getDiagnosticOptions().getFormat() ==
907 DiagnosticOptions::MSVC;
908 if (MicrosoftABI || !DestPointee->isVoidType())
909 Self.Diag(OpRange.getBegin(),
910 diag::warn_no_dynamic_cast_with_rtti_disabled)
911 << isClangCL;
912 }
913
914 // Done. Everything else is run-time checks.
915 Kind = CK_Dynamic;
916}
917
918/// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid.
919/// Refer to C++ 5.2.11 for details. const_cast is typically used in code
920/// like this:
921/// const char *str = "literal";
922/// legacy_function(const_cast\<char*\>(str));
923void CastOperation::CheckConstCast() {
924 CheckNoDerefRAII NoderefCheck(*this);
925
926 if (ValueKind == VK_PRValue)
927 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
928 else if (isPlaceholder())
929 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
930 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
931 return;
932
933 unsigned msg = diag::err_bad_cxx_cast_generic;
934 auto TCR = TryConstCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg);
935 if (TCR != TC_Success && msg != 0) {
936 Self.Diag(OpRange.getBegin(), msg) << CT_Const
937 << SrcExpr.get()->getType() << DestType << OpRange;
938 }
939 if (!isValidCast(TCR))
940 SrcExpr = ExprError();
941}
942
943void CastOperation::CheckAddrspaceCast() {
944 unsigned msg = diag::err_bad_cxx_cast_generic;
945 auto TCR =
946 TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg, Kind);
947 if (TCR != TC_Success && msg != 0) {
948 Self.Diag(OpRange.getBegin(), msg)
949 << CT_Addrspace << SrcExpr.get()->getType() << DestType << OpRange;
950 }
951 if (!isValidCast(TCR))
952 SrcExpr = ExprError();
953}
954
955/// Check that a reinterpret_cast\<DestType\>(SrcExpr) is not used as upcast
956/// or downcast between respective pointers or references.
957static void DiagnoseReinterpretUpDownCast(Sema &Self, const Expr *SrcExpr,
958 QualType DestType,
959 SourceRange OpRange) {
960 QualType SrcType = SrcExpr->getType();
961 // When casting from pointer or reference, get pointee type; use original
962 // type otherwise.
963 const CXXRecordDecl *SrcPointeeRD = SrcType->getPointeeCXXRecordDecl();
964 const CXXRecordDecl *SrcRD =
965 SrcPointeeRD ? SrcPointeeRD : SrcType->getAsCXXRecordDecl();
966
967 // Examining subobjects for records is only possible if the complete and
968 // valid definition is available. Also, template instantiation is not
969 // allowed here.
970 if (!SrcRD || !SrcRD->isCompleteDefinition() || SrcRD->isInvalidDecl())
971 return;
972
973 const CXXRecordDecl *DestRD = DestType->getPointeeCXXRecordDecl();
974
975 if (!DestRD || !DestRD->isCompleteDefinition() || DestRD->isInvalidDecl())
976 return;
977
978 enum {
979 ReinterpretUpcast,
980 ReinterpretDowncast
981 } ReinterpretKind;
982
983 CXXBasePaths BasePaths;
984
985 if (SrcRD->isDerivedFrom(DestRD, BasePaths))
986 ReinterpretKind = ReinterpretUpcast;
987 else if (DestRD->isDerivedFrom(SrcRD, BasePaths))
988 ReinterpretKind = ReinterpretDowncast;
989 else
990 return;
991
992 bool VirtualBase = true;
993 bool NonZeroOffset = false;
994 for (CXXBasePaths::const_paths_iterator I = BasePaths.begin(),
995 E = BasePaths.end();
996 I != E; ++I) {
997 const CXXBasePath &Path = *I;
998 CharUnits Offset = CharUnits::Zero();
999 bool IsVirtual = false;
1000 for (CXXBasePath::const_iterator IElem = Path.begin(), EElem = Path.end();
1001 IElem != EElem; ++IElem) {
1002 IsVirtual = IElem->Base->isVirtual();
1003 if (IsVirtual)
1004 break;
1005 const CXXRecordDecl *BaseRD = IElem->Base->getType()->getAsCXXRecordDecl();
1006 assert(BaseRD && "Base type should be a valid unqualified class type")(static_cast <bool> (BaseRD && "Base type should be a valid unqualified class type"
) ? void (0) : __assert_fail ("BaseRD && \"Base type should be a valid unqualified class type\""
, "clang/lib/Sema/SemaCast.cpp", 1006, __extension__ __PRETTY_FUNCTION__
))
;
1007 // Don't check if any base has invalid declaration or has no definition
1008 // since it has no layout info.
1009 const CXXRecordDecl *Class = IElem->Class,
1010 *ClassDefinition = Class->getDefinition();
1011 if (Class->isInvalidDecl() || !ClassDefinition ||
1012 !ClassDefinition->isCompleteDefinition())
1013 return;
1014
1015 const ASTRecordLayout &DerivedLayout =
1016 Self.Context.getASTRecordLayout(Class);
1017 Offset += DerivedLayout.getBaseClassOffset(BaseRD);
1018 }
1019 if (!IsVirtual) {
1020 // Don't warn if any path is a non-virtually derived base at offset zero.
1021 if (Offset.isZero())
1022 return;
1023 // Offset makes sense only for non-virtual bases.
1024 else
1025 NonZeroOffset = true;
1026 }
1027 VirtualBase = VirtualBase && IsVirtual;
1028 }
1029
1030 (void) NonZeroOffset; // Silence set but not used warning.
1031 assert((VirtualBase || NonZeroOffset) &&(static_cast <bool> ((VirtualBase || NonZeroOffset) &&
"Should have returned if has non-virtual base with zero offset"
) ? void (0) : __assert_fail ("(VirtualBase || NonZeroOffset) && \"Should have returned if has non-virtual base with zero offset\""
, "clang/lib/Sema/SemaCast.cpp", 1032, __extension__ __PRETTY_FUNCTION__
))
1032 "Should have returned if has non-virtual base with zero offset")(static_cast <bool> ((VirtualBase || NonZeroOffset) &&
"Should have returned if has non-virtual base with zero offset"
) ? void (0) : __assert_fail ("(VirtualBase || NonZeroOffset) && \"Should have returned if has non-virtual base with zero offset\""
, "clang/lib/Sema/SemaCast.cpp", 1032, __extension__ __PRETTY_FUNCTION__
))
;
1033
1034 QualType BaseType =
1035 ReinterpretKind == ReinterpretUpcast? DestType : SrcType;
1036 QualType DerivedType =
1037 ReinterpretKind == ReinterpretUpcast? SrcType : DestType;
1038
1039 SourceLocation BeginLoc = OpRange.getBegin();
1040 Self.Diag(BeginLoc, diag::warn_reinterpret_different_from_static)
1041 << DerivedType << BaseType << !VirtualBase << int(ReinterpretKind)
1042 << OpRange;
1043 Self.Diag(BeginLoc, diag::note_reinterpret_updowncast_use_static)
1044 << int(ReinterpretKind)
1045 << FixItHint::CreateReplacement(BeginLoc, "static_cast");
1046}
1047
1048static bool argTypeIsABIEquivalent(QualType SrcType, QualType DestType,
1049 ASTContext &Context) {
1050 if (SrcType->isPointerType() && DestType->isPointerType())
1051 return true;
1052
1053 // Allow integral type mismatch if their size are equal.
1054 if (SrcType->isIntegralType(Context) && DestType->isIntegralType(Context))
1055 if (Context.getTypeInfoInChars(SrcType).Width ==
1056 Context.getTypeInfoInChars(DestType).Width)
1057 return true;
1058
1059 return Context.hasSameUnqualifiedType(SrcType, DestType);
1060}
1061
1062static bool checkCastFunctionType(Sema &Self, const ExprResult &SrcExpr,
1063 QualType DestType) {
1064 if (Self.Diags.isIgnored(diag::warn_cast_function_type,
1065 SrcExpr.get()->getExprLoc()))
1066 return true;
1067
1068 QualType SrcType = SrcExpr.get()->getType();
1069 const FunctionType *SrcFTy = nullptr;
1070 const FunctionType *DstFTy = nullptr;
1071 if (((SrcType->isBlockPointerType() || SrcType->isFunctionPointerType()) &&
1072 DestType->isFunctionPointerType()) ||
1073 (SrcType->isMemberFunctionPointerType() &&
1074 DestType->isMemberFunctionPointerType())) {
1075 SrcFTy = SrcType->getPointeeType()->castAs<FunctionType>();
1076 DstFTy = DestType->getPointeeType()->castAs<FunctionType>();
1077 } else if (SrcType->isFunctionType() && DestType->isFunctionReferenceType()) {
1078 SrcFTy = SrcType->castAs<FunctionType>();
1079 DstFTy = DestType.getNonReferenceType()->castAs<FunctionType>();
1080 } else {
1081 return true;
1082 }
1083 assert(SrcFTy && DstFTy)(static_cast <bool> (SrcFTy && DstFTy) ? void (
0) : __assert_fail ("SrcFTy && DstFTy", "clang/lib/Sema/SemaCast.cpp"
, 1083, __extension__ __PRETTY_FUNCTION__))
;
1084
1085 auto IsVoidVoid = [](const FunctionType *T) {
1086 if (!T->getReturnType()->isVoidType())
1087 return false;
1088 if (const auto *PT = T->getAs<FunctionProtoType>())
1089 return !PT->isVariadic() && PT->getNumParams() == 0;
1090 return false;
1091 };
1092
1093 // Skip if either function type is void(*)(void)
1094 if (IsVoidVoid(SrcFTy) || IsVoidVoid(DstFTy))
1095 return true;
1096
1097 // Check return type.
1098 if (!argTypeIsABIEquivalent(SrcFTy->getReturnType(), DstFTy->getReturnType(),
1099 Self.Context))
1100 return false;
1101
1102 // Check if either has unspecified number of parameters
1103 if (SrcFTy->isFunctionNoProtoType() || DstFTy->isFunctionNoProtoType())
1104 return true;
1105
1106 // Check parameter types.
1107
1108 const auto *SrcFPTy = cast<FunctionProtoType>(SrcFTy);
1109 const auto *DstFPTy = cast<FunctionProtoType>(DstFTy);
1110
1111 // In a cast involving function types with a variable argument list only the
1112 // types of initial arguments that are provided are considered.
1113 unsigned NumParams = SrcFPTy->getNumParams();
1114 unsigned DstNumParams = DstFPTy->getNumParams();
1115 if (NumParams > DstNumParams) {
1116 if (!DstFPTy->isVariadic())
1117 return false;
1118 NumParams = DstNumParams;
1119 } else if (NumParams < DstNumParams) {
1120 if (!SrcFPTy->isVariadic())
1121 return false;
1122 }
1123
1124 for (unsigned i = 0; i < NumParams; ++i)
1125 if (!argTypeIsABIEquivalent(SrcFPTy->getParamType(i),
1126 DstFPTy->getParamType(i), Self.Context))
1127 return false;
1128
1129 return true;
1130}
1131
1132/// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is
1133/// valid.
1134/// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code
1135/// like this:
1136/// char *bytes = reinterpret_cast\<char*\>(int_ptr);
1137void CastOperation::CheckReinterpretCast() {
1138 if (ValueKind == VK_PRValue && !isPlaceholder(BuiltinType::Overload))
1139 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
1140 else
1141 checkNonOverloadPlaceholders();
1142 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1143 return;
1144
1145 unsigned msg = diag::err_bad_cxx_cast_generic;
1146 TryCastResult tcr =
1147 TryReinterpretCast(Self, SrcExpr, DestType,
1148 /*CStyle*/false, OpRange, msg, Kind);
1149 if (tcr != TC_Success && msg != 0) {
1150 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1151 return;
1152 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1153 //FIXME: &f<int>; is overloaded and resolvable
1154 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload)
1155 << OverloadExpr::find(SrcExpr.get()).Expression->getName()
1156 << DestType << OpRange;
1157 Self.NoteAllOverloadCandidates(SrcExpr.get());
1158
1159 } else {
1160 diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(),
1161 DestType, /*listInitialization=*/false);
1162 }
1163 }
1164
1165 if (isValidCast(tcr)) {
1166 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
1167 checkObjCConversion(Sema::CCK_OtherCast);
1168 DiagnoseReinterpretUpDownCast(Self, SrcExpr.get(), DestType, OpRange);
1169
1170 if (!checkCastFunctionType(Self, SrcExpr, DestType))
1171 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type)
1172 << SrcExpr.get()->getType() << DestType << OpRange;
1173 } else {
1174 SrcExpr = ExprError();
1175 }
1176}
1177
1178
1179/// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid.
1180/// Refer to C++ 5.2.9 for details. Static casts are mostly used for making
1181/// implicit conversions explicit and getting rid of data loss warnings.
1182void CastOperation::CheckStaticCast() {
1183 CheckNoDerefRAII NoderefCheck(*this);
1184
1185 if (isPlaceholder()) {
1
Taking false branch
1186 checkNonOverloadPlaceholders();
1187 if (SrcExpr.isInvalid())
1188 return;
1189 }
1190
1191 // This test is outside everything else because it's the only case where
1192 // a non-lvalue-reference target type does not lead to decay.
1193 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
1194 if (DestType->isVoidType()) {
1195 Kind = CK_ToVoid;
1196
1197 if (claimPlaceholder(BuiltinType::Overload)) {
1198 Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr,
1199 false, // Decay Function to ptr
1200 true, // Complain
1201 OpRange, DestType, diag::err_bad_static_cast_overload);
1202 if (SrcExpr.isInvalid())
1203 return;
1204 }
1205
1206 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
1207 return;
1208 }
1209
1210 if (ValueKind == VK_PRValue && !DestType->isRecordType() &&
2
Assuming field 'ValueKind' is not equal to VK_PRValue
1211 !isPlaceholder(BuiltinType::Overload)) {
1212 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
1213 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1214 return;
1215 }
1216
1217 unsigned msg = diag::err_bad_cxx_cast_generic;
1218 TryCastResult tcr
1219 = TryStaticCast(Self, SrcExpr, DestType, Sema::CCK_OtherCast, OpRange, msg,
3
Calling 'TryStaticCast'
1220 Kind, BasePath, /*ListInitialization=*/false);
1221 if (tcr != TC_Success && msg != 0) {
1222 if (SrcExpr.isInvalid())
1223 return;
1224 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1225 OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression;
1226 Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload)
1227 << oe->getName() << DestType << OpRange
1228 << oe->getQualifierLoc().getSourceRange();
1229 Self.NoteAllOverloadCandidates(SrcExpr.get());
1230 } else {
1231 diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType,
1232 /*listInitialization=*/false);
1233 }
1234 }
1235
1236 if (isValidCast(tcr)) {
1237 if (Kind == CK_BitCast)
1238 checkCastAlign();
1239 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
1240 checkObjCConversion(Sema::CCK_OtherCast);
1241 } else {
1242 SrcExpr = ExprError();
1243 }
1244}
1245
1246static bool IsAddressSpaceConversion(QualType SrcType, QualType DestType) {
1247 auto *SrcPtrType = SrcType->getAs<PointerType>();
1248 if (!SrcPtrType)
1249 return false;
1250 auto *DestPtrType = DestType->getAs<PointerType>();
1251 if (!DestPtrType)
1252 return false;
1253 return SrcPtrType->getPointeeType().getAddressSpace() !=
1254 DestPtrType->getPointeeType().getAddressSpace();
1255}
1256
1257/// TryStaticCast - Check if a static cast can be performed, and do so if
1258/// possible. If @p CStyle, ignore access restrictions on hierarchy casting
1259/// and casting away constness.
1260static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
1261 QualType DestType,
1262 Sema::CheckedConversionKind CCK,
1263 SourceRange OpRange, unsigned &msg,
1264 CastKind &Kind, CXXCastPath &BasePath,
1265 bool ListInitialization) {
1266 // Determine whether we have the semantics of a C-style cast.
1267 bool CStyle
1268 = (CCK
3.1
'CCK' is not equal to CCK_CStyleCast
3.1
'CCK' is not equal to CCK_CStyleCast
3.1
'CCK' is not equal to CCK_CStyleCast
== Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast);
1269
1270 // The order the tests is not entirely arbitrary. There is one conversion
1271 // that can be handled in two different ways. Given:
1272 // struct A {};
1273 // struct B : public A {
1274 // B(); B(const A&);
1275 // };
1276 // const A &a = B();
1277 // the cast static_cast<const B&>(a) could be seen as either a static
1278 // reference downcast, or an explicit invocation of the user-defined
1279 // conversion using B's conversion constructor.
1280 // DR 427 specifies that the downcast is to be applied here.
1281
1282 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
1283 // Done outside this function.
1284
1285 TryCastResult tcr;
1286
1287 // C++ 5.2.9p5, reference downcast.
1288 // See the function for details.
1289 // DR 427 specifies that this is to be applied before paragraph 2.
1290 tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle,
1291 OpRange, msg, Kind, BasePath);
1292 if (tcr
3.2
'tcr' is equal to TC_NotApplicable
3.2
'tcr' is equal to TC_NotApplicable
3.2
'tcr' is equal to TC_NotApplicable
!= TC_NotApplicable)
4
Taking false branch
1293 return tcr;
1294
1295 // C++11 [expr.static.cast]p3:
1296 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2
1297 // T2" if "cv2 T2" is reference-compatible with "cv1 T1".
1298 tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind,
1299 BasePath, msg);
1300 if (tcr
4.1
'tcr' is equal to TC_NotApplicable
4.1
'tcr' is equal to TC_NotApplicable
4.1
'tcr' is equal to TC_NotApplicable
!= TC_NotApplicable)
5
Taking false branch
1301 return tcr;
1302
1303 // C++ 5.2.9p2: An expression e can be explicitly converted to a type T
1304 // [...] if the declaration "T t(e);" is well-formed, [...].
1305 tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg,
1306 Kind, ListInitialization);
1307 if (SrcExpr.isInvalid())
6
Assuming the condition is false
7
Taking false branch
1308 return TC_Failed;
1309 if (tcr
7.1
'tcr' is equal to TC_NotApplicable
7.1
'tcr' is equal to TC_NotApplicable
7.1
'tcr' is equal to TC_NotApplicable
!= TC_NotApplicable)
8
Taking false branch
1310 return tcr;
1311
1312 // C++ 5.2.9p6: May apply the reverse of any standard conversion, except
1313 // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean
1314 // conversions, subject to further restrictions.
1315 // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal
1316 // of qualification conversions impossible. (In C++20, adding an array bound
1317 // would be the reverse of a qualification conversion, but adding permission
1318 // to add an array bound in a static_cast is a wording oversight.)
1319 // In the CStyle case, the earlier attempt to const_cast should have taken
1320 // care of reverse qualification conversions.
1321
1322 QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType());
1323
1324 // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly
1325 // converted to an integral type. [...] A value of a scoped enumeration type
1326 // can also be explicitly converted to a floating-point type [...].
1327 if (const EnumType *Enum
9.1
'Enum' is null
9.1
'Enum' is null
9.1
'Enum' is null
= SrcType->getAs<EnumType>()) {
9
Assuming the object is not a 'EnumType'
10
Taking false branch
1328 if (Enum->getDecl()->isScoped()) {
1329 if (DestType->isBooleanType()) {
1330 Kind = CK_IntegralToBoolean;
1331 return TC_Success;
1332 } else if (DestType->isIntegralType(Self.Context)) {
1333 Kind = CK_IntegralCast;
1334 return TC_Success;
1335 } else if (DestType->isRealFloatingType()) {
1336 Kind = CK_IntegralToFloating;
1337 return TC_Success;
1338 }
1339 }
1340 }
1341
1342 // Reverse integral promotion/conversion. All such conversions are themselves
1343 // again integral promotions or conversions and are thus already handled by
1344 // p2 (TryDirectInitialization above).
1345 // (Note: any data loss warnings should be suppressed.)
1346 // The exception is the reverse of enum->integer, i.e. integer->enum (and
1347 // enum->enum). See also C++ 5.2.9p7.
1348 // The same goes for reverse floating point promotion/conversion and
1349 // floating-integral conversions. Again, only floating->enum is relevant.
1350 if (DestType->isEnumeralType()) {
11
Calling 'Type::isEnumeralType'
14
Returning from 'Type::isEnumeralType'
15
Taking true branch
1351 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
16
Assuming the condition is false
17
Taking false branch
1352 diag::err_bad_cast_incomplete)) {
1353 SrcExpr = ExprError();
1354 return TC_Failed;
1355 }
1356 if (SrcType->isIntegralOrEnumerationType()) {
18
Calling 'Type::isIntegralOrEnumerationType'
36
Returning from 'Type::isIntegralOrEnumerationType'
37
Taking true branch
1357 // [expr.static.cast]p10 If the enumeration type has a fixed underlying
1358 // type, the value is first converted to that type by integral conversion
1359 const EnumType *Enum = DestType->getAs<EnumType>();
38
Assuming the object is not a 'EnumType'
39
'Enum' initialized to a null pointer value
1360 Kind = Enum->getDecl()->isFixed() &&
40
Called C++ object pointer is null
1361 Enum->getDecl()->getIntegerType()->isBooleanType()
1362 ? CK_IntegralToBoolean
1363 : CK_IntegralCast;
1364 return TC_Success;
1365 } else if (SrcType->isRealFloatingType()) {
1366 Kind = CK_FloatingToIntegral;
1367 return TC_Success;
1368 }
1369 }
1370
1371 // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast.
1372 // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance.
1373 tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg,
1374 Kind, BasePath);
1375 if (tcr != TC_NotApplicable)
1376 return tcr;
1377
1378 // Reverse member pointer conversion. C++ 4.11 specifies member pointer
1379 // conversion. C++ 5.2.9p9 has additional information.
1380 // DR54's access restrictions apply here also.
1381 tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle,
1382 OpRange, msg, Kind, BasePath);
1383 if (tcr != TC_NotApplicable)
1384 return tcr;
1385
1386 // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to
1387 // void*. C++ 5.2.9p10 specifies additional restrictions, which really is
1388 // just the usual constness stuff.
1389 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
1390 QualType SrcPointee = SrcPointer->getPointeeType();
1391 if (SrcPointee->isVoidType()) {
1392 if (const PointerType *DestPointer = DestType->getAs<PointerType>()) {
1393 QualType DestPointee = DestPointer->getPointeeType();
1394 if (DestPointee->isIncompleteOrObjectType()) {
1395 // This is definitely the intended conversion, but it might fail due
1396 // to a qualifier violation. Note that we permit Objective-C lifetime
1397 // and GC qualifier mismatches here.
1398 if (!CStyle) {
1399 Qualifiers DestPointeeQuals = DestPointee.getQualifiers();
1400 Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers();
1401 DestPointeeQuals.removeObjCGCAttr();
1402 DestPointeeQuals.removeObjCLifetime();
1403 SrcPointeeQuals.removeObjCGCAttr();
1404 SrcPointeeQuals.removeObjCLifetime();
1405 if (DestPointeeQuals != SrcPointeeQuals &&
1406 !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals)) {
1407 msg = diag::err_bad_cxx_cast_qualifiers_away;
1408 return TC_Failed;
1409 }
1410 }
1411 Kind = IsAddressSpaceConversion(SrcType, DestType)
1412 ? CK_AddressSpaceConversion
1413 : CK_BitCast;
1414 return TC_Success;
1415 }
1416
1417 // Microsoft permits static_cast from 'pointer-to-void' to
1418 // 'pointer-to-function'.
1419 if (!CStyle && Self.getLangOpts().MSVCCompat &&
1420 DestPointee->isFunctionType()) {
1421 Self.Diag(OpRange.getBegin(), diag::ext_ms_cast_fn_obj) << OpRange;
1422 Kind = CK_BitCast;
1423 return TC_Success;
1424 }
1425 }
1426 else if (DestType->isObjCObjectPointerType()) {
1427 // allow both c-style cast and static_cast of objective-c pointers as
1428 // they are pervasive.
1429 Kind = CK_CPointerToObjCPointerCast;
1430 return TC_Success;
1431 }
1432 else if (CStyle && DestType->isBlockPointerType()) {
1433 // allow c-style cast of void * to block pointers.
1434 Kind = CK_AnyPointerToBlockPointerCast;
1435 return TC_Success;
1436 }
1437 }
1438 }
1439 // Allow arbitrary objective-c pointer conversion with static casts.
1440 if (SrcType->isObjCObjectPointerType() &&
1441 DestType->isObjCObjectPointerType()) {
1442 Kind = CK_BitCast;
1443 return TC_Success;
1444 }
1445 // Allow ns-pointer to cf-pointer conversion in either direction
1446 // with static casts.
1447 if (!CStyle &&
1448 Self.CheckTollFreeBridgeStaticCast(DestType, SrcExpr.get(), Kind))
1449 return TC_Success;
1450
1451 // See if it looks like the user is trying to convert between
1452 // related record types, and select a better diagnostic if so.
1453 if (auto SrcPointer = SrcType->getAs<PointerType>())
1454 if (auto DestPointer = DestType->getAs<PointerType>())
1455 if (SrcPointer->getPointeeType()->getAs<RecordType>() &&
1456 DestPointer->getPointeeType()->getAs<RecordType>())
1457 msg = diag::err_bad_cxx_cast_unrelated_class;
1458
1459 if (SrcType->isMatrixType() && DestType->isMatrixType()) {
1460 if (Self.CheckMatrixCast(OpRange, DestType, SrcType, Kind)) {
1461 SrcExpr = ExprError();
1462 return TC_Failed;
1463 }
1464 return TC_Success;
1465 }
1466
1467 // We tried everything. Everything! Nothing works! :-(
1468 return TC_NotApplicable;
1469}
1470
1471/// Tests whether a conversion according to N2844 is valid.
1472TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr,
1473 QualType DestType, bool CStyle,
1474 CastKind &Kind, CXXCastPath &BasePath,
1475 unsigned &msg) {
1476 // C++11 [expr.static.cast]p3:
1477 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to
1478 // cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1".
1479 const RValueReferenceType *R = DestType->getAs<RValueReferenceType>();
1480 if (!R)
1481 return TC_NotApplicable;
1482
1483 if (!SrcExpr->isGLValue())
1484 return TC_NotApplicable;
1485
1486 // Because we try the reference downcast before this function, from now on
1487 // this is the only cast possibility, so we issue an error if we fail now.
1488 // FIXME: Should allow casting away constness if CStyle.
1489 QualType FromType = SrcExpr->getType();
1490 QualType ToType = R->getPointeeType();
1491 if (CStyle) {
1492 FromType = FromType.getUnqualifiedType();
1493 ToType = ToType.getUnqualifiedType();
1494 }
1495
1496 Sema::ReferenceConversions RefConv;
1497 Sema::ReferenceCompareResult RefResult = Self.CompareReferenceRelationship(
1498 SrcExpr->getBeginLoc(), ToType, FromType, &RefConv);
1499 if (RefResult != Sema::Ref_Compatible) {
1500 if (CStyle || RefResult == Sema::Ref_Incompatible)
1501 return TC_NotApplicable;
1502 // Diagnose types which are reference-related but not compatible here since
1503 // we can provide better diagnostics. In these cases forwarding to
1504 // [expr.static.cast]p4 should never result in a well-formed cast.
1505 msg = SrcExpr->isLValue() ? diag::err_bad_lvalue_to_rvalue_cast
1506 : diag::err_bad_rvalue_to_rvalue_cast;
1507 return TC_Failed;
1508 }
1509
1510 if (RefConv & Sema::ReferenceConversions::DerivedToBase) {
1511 Kind = CK_DerivedToBase;
1512 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1513 /*DetectVirtual=*/true);
1514 if (!Self.IsDerivedFrom(SrcExpr->getBeginLoc(), SrcExpr->getType(),
1515 R->getPointeeType(), Paths))
1516 return TC_NotApplicable;
1517
1518 Self.BuildBasePathArray(Paths, BasePath);
1519 } else
1520 Kind = CK_NoOp;
1521
1522 return TC_Success;
1523}
1524
1525/// Tests whether a conversion according to C++ 5.2.9p5 is valid.
1526TryCastResult
1527TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType,
1528 bool CStyle, SourceRange OpRange,
1529 unsigned &msg, CastKind &Kind,
1530 CXXCastPath &BasePath) {
1531 // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be
1532 // cast to type "reference to cv2 D", where D is a class derived from B,
1533 // if a valid standard conversion from "pointer to D" to "pointer to B"
1534 // exists, cv2 >= cv1, and B is not a virtual base class of D.
1535 // In addition, DR54 clarifies that the base must be accessible in the
1536 // current context. Although the wording of DR54 only applies to the pointer
1537 // variant of this rule, the intent is clearly for it to apply to the this
1538 // conversion as well.
1539
1540 const ReferenceType *DestReference = DestType->getAs<ReferenceType>();
1541 if (!DestReference) {
1542 return TC_NotApplicable;
1543 }
1544 bool RValueRef = DestReference->isRValueReferenceType();
1545 if (!RValueRef && !SrcExpr->isLValue()) {
1546 // We know the left side is an lvalue reference, so we can suggest a reason.
1547 msg = diag::err_bad_cxx_cast_rvalue;
1548 return TC_NotApplicable;
1549 }
1550
1551 QualType DestPointee = DestReference->getPointeeType();
1552
1553 // FIXME: If the source is a prvalue, we should issue a warning (because the
1554 // cast always has undefined behavior), and for AST consistency, we should
1555 // materialize a temporary.
1556 return TryStaticDowncast(Self,
1557 Self.Context.getCanonicalType(SrcExpr->getType()),
1558 Self.Context.getCanonicalType(DestPointee), CStyle,
1559 OpRange, SrcExpr->getType(), DestType, msg, Kind,
1560 BasePath);
1561}
1562
1563/// Tests whether a conversion according to C++ 5.2.9p8 is valid.
1564TryCastResult
1565TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType,
1566 bool CStyle, SourceRange OpRange,
1567 unsigned &msg, CastKind &Kind,
1568 CXXCastPath &BasePath) {
1569 // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class
1570 // type, can be converted to an rvalue of type "pointer to cv2 D", where D
1571 // is a class derived from B, if a valid standard conversion from "pointer
1572 // to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base
1573 // class of D.
1574 // In addition, DR54 clarifies that the base must be accessible in the
1575 // current context.
1576
1577 const PointerType *DestPointer = DestType->getAs<PointerType>();
1578 if (!DestPointer) {
1579 return TC_NotApplicable;
1580 }
1581
1582 const PointerType *SrcPointer = SrcType->getAs<PointerType>();
1583 if (!SrcPointer) {
1584 msg = diag::err_bad_static_cast_pointer_nonpointer;
1585 return TC_NotApplicable;
1586 }
1587
1588 return TryStaticDowncast(Self,
1589 Self.Context.getCanonicalType(SrcPointer->getPointeeType()),
1590 Self.Context.getCanonicalType(DestPointer->getPointeeType()),
1591 CStyle, OpRange, SrcType, DestType, msg, Kind,
1592 BasePath);
1593}
1594
1595/// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and
1596/// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to
1597/// DestType is possible and allowed.
1598TryCastResult
1599TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType,
1600 bool CStyle, SourceRange OpRange, QualType OrigSrcType,
1601 QualType OrigDestType, unsigned &msg,
1602 CastKind &Kind, CXXCastPath &BasePath) {
1603 // We can only work with complete types. But don't complain if it doesn't work
1604 if (!Self.isCompleteType(OpRange.getBegin(), SrcType) ||
1605 !Self.isCompleteType(OpRange.getBegin(), DestType))
1606 return TC_NotApplicable;
1607
1608 // Downcast can only happen in class hierarchies, so we need classes.
1609 if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) {
1610 return TC_NotApplicable;
1611 }
1612
1613 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1614 /*DetectVirtual=*/true);
1615 if (!Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths)) {
1616 return TC_NotApplicable;
1617 }
1618
1619 // Target type does derive from source type. Now we're serious. If an error
1620 // appears now, it's not ignored.
1621 // This may not be entirely in line with the standard. Take for example:
1622 // struct A {};
1623 // struct B : virtual A {
1624 // B(A&);
1625 // };
1626 //
1627 // void f()
1628 // {
1629 // (void)static_cast<const B&>(*((A*)0));
1630 // }
1631 // As far as the standard is concerned, p5 does not apply (A is virtual), so
1632 // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid.
1633 // However, both GCC and Comeau reject this example, and accepting it would
1634 // mean more complex code if we're to preserve the nice error message.
1635 // FIXME: Being 100% compliant here would be nice to have.
1636
1637 // Must preserve cv, as always, unless we're in C-style mode.
1638 if (!CStyle && !DestType.isAtLeastAsQualifiedAs(SrcType)) {
1639 msg = diag::err_bad_cxx_cast_qualifiers_away;
1640 return TC_Failed;
1641 }
1642
1643 if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) {
1644 // This code is analoguous to that in CheckDerivedToBaseConversion, except
1645 // that it builds the paths in reverse order.
1646 // To sum up: record all paths to the base and build a nice string from
1647 // them. Use it to spice up the error message.
1648 if (!Paths.isRecordingPaths()) {
1649 Paths.clear();
1650 Paths.setRecordingPaths(true);
1651 Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths);
1652 }
1653 std::string PathDisplayStr;
1654 std::set<unsigned> DisplayedPaths;
1655 for (clang::CXXBasePath &Path : Paths) {
1656 if (DisplayedPaths.insert(Path.back().SubobjectNumber).second) {
1657 // We haven't displayed a path to this particular base
1658 // class subobject yet.
1659 PathDisplayStr += "\n ";
1660 for (CXXBasePathElement &PE : llvm::reverse(Path))
1661 PathDisplayStr += PE.Base->getType().getAsString() + " -> ";
1662 PathDisplayStr += QualType(DestType).getAsString();
1663 }
1664 }
1665
1666 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast)
1667 << QualType(SrcType).getUnqualifiedType()
1668 << QualType(DestType).getUnqualifiedType()
1669 << PathDisplayStr << OpRange;
1670 msg = 0;
1671 return TC_Failed;
1672 }
1673
1674 if (Paths.getDetectedVirtual() != nullptr) {
1675 QualType VirtualBase(Paths.getDetectedVirtual(), 0);
1676 Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual)
1677 << OrigSrcType << OrigDestType << VirtualBase << OpRange;
1678 msg = 0;
1679 return TC_Failed;
1680 }
1681
1682 if (!CStyle) {
1683 switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
1684 SrcType, DestType,
1685 Paths.front(),
1686 diag::err_downcast_from_inaccessible_base)) {
1687 case Sema::AR_accessible:
1688 case Sema::AR_delayed: // be optimistic
1689 case Sema::AR_dependent: // be optimistic
1690 break;
1691
1692 case Sema::AR_inaccessible:
1693 msg = 0;
1694 return TC_Failed;
1695 }
1696 }
1697
1698 Self.BuildBasePathArray(Paths, BasePath);
1699 Kind = CK_BaseToDerived;
1700 return TC_Success;
1701}
1702
1703/// TryStaticMemberPointerUpcast - Tests whether a conversion according to
1704/// C++ 5.2.9p9 is valid:
1705///
1706/// An rvalue of type "pointer to member of D of type cv1 T" can be
1707/// converted to an rvalue of type "pointer to member of B of type cv2 T",
1708/// where B is a base class of D [...].
1709///
1710TryCastResult
1711TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType,
1712 QualType DestType, bool CStyle,
1713 SourceRange OpRange,
1714 unsigned &msg, CastKind &Kind,
1715 CXXCastPath &BasePath) {
1716 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>();
1717 if (!DestMemPtr)
1718 return TC_NotApplicable;
1719
1720 bool WasOverloadedFunction = false;
1721 DeclAccessPair FoundOverload;
1722 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1723 if (FunctionDecl *Fn
1724 = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false,
1725 FoundOverload)) {
1726 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
1727 SrcType = Self.Context.getMemberPointerType(Fn->getType(),
1728 Self.Context.getTypeDeclType(M->getParent()).getTypePtr());
1729 WasOverloadedFunction = true;
1730 }
1731 }
1732
1733 const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>();
1734 if (!SrcMemPtr) {
1735 msg = diag::err_bad_static_cast_member_pointer_nonmp;
1736 return TC_NotApplicable;
1737 }
1738
1739 // Lock down the inheritance model right now in MS ABI, whether or not the
1740 // pointee types are the same.
1741 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1742 (void)Self.isCompleteType(OpRange.getBegin(), SrcType);
1743 (void)Self.isCompleteType(OpRange.getBegin(), DestType);
1744 }
1745
1746 // T == T, modulo cv
1747 if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(),
1748 DestMemPtr->getPointeeType()))
1749 return TC_NotApplicable;
1750
1751 // B base of D
1752 QualType SrcClass(SrcMemPtr->getClass(), 0);
1753 QualType DestClass(DestMemPtr->getClass(), 0);
1754 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1755 /*DetectVirtual=*/true);
1756 if (!Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths))
1757 return TC_NotApplicable;
1758
1759 // B is a base of D. But is it an allowed base? If not, it's a hard error.
1760 if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) {
1761 Paths.clear();
1762 Paths.setRecordingPaths(true);
1763 bool StillOkay =
1764 Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths);
1765 assert(StillOkay)(static_cast <bool> (StillOkay) ? void (0) : __assert_fail
("StillOkay", "clang/lib/Sema/SemaCast.cpp", 1765, __extension__
__PRETTY_FUNCTION__))
;
1766 (void)StillOkay;
1767 std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths);
1768 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv)
1769 << 1 << SrcClass << DestClass << PathDisplayStr << OpRange;
1770 msg = 0;
1771 return TC_Failed;
1772 }
1773
1774 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1775 Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual)
1776 << SrcClass << DestClass << QualType(VBase, 0) << OpRange;
1777 msg = 0;
1778 return TC_Failed;
1779 }
1780
1781 if (!CStyle) {
1782 switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
1783 DestClass, SrcClass,
1784 Paths.front(),
1785 diag::err_upcast_to_inaccessible_base)) {
1786 case Sema::AR_accessible:
1787 case Sema::AR_delayed:
1788 case Sema::AR_dependent:
1789 // Optimistically assume that the delayed and dependent cases
1790 // will work out.
1791 break;
1792
1793 case Sema::AR_inaccessible:
1794 msg = 0;
1795 return TC_Failed;
1796 }
1797 }
1798
1799 if (WasOverloadedFunction) {
1800 // Resolve the address of the overloaded function again, this time
1801 // allowing complaints if something goes wrong.
1802 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
1803 DestType,
1804 true,
1805 FoundOverload);
1806 if (!Fn) {
1807 msg = 0;
1808 return TC_Failed;
1809 }
1810
1811 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn);
1812 if (!SrcExpr.isUsable()) {
1813 msg = 0;
1814 return TC_Failed;
1815 }
1816 }
1817
1818 Self.BuildBasePathArray(Paths, BasePath);
1819 Kind = CK_DerivedToBaseMemberPointer;
1820 return TC_Success;
1821}
1822
1823/// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2
1824/// is valid:
1825///
1826/// An expression e can be explicitly converted to a type T using a
1827/// @c static_cast if the declaration "T t(e);" is well-formed [...].
1828TryCastResult
1829TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType,
1830 Sema::CheckedConversionKind CCK,
1831 SourceRange OpRange, unsigned &msg,
1832 CastKind &Kind, bool ListInitialization) {
1833 if (DestType->isRecordType()) {
1834 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
1835 diag::err_bad_cast_incomplete) ||
1836 Self.RequireNonAbstractType(OpRange.getBegin(), DestType,
1837 diag::err_allocation_of_abstract_type)) {
1838 msg = 0;
1839 return TC_Failed;
1840 }
1841 }
1842
1843 InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType);
1844 InitializationKind InitKind
1845 = (CCK == Sema::CCK_CStyleCast)
1846 ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange,
1847 ListInitialization)
1848 : (CCK == Sema::CCK_FunctionalCast)
1849 ? InitializationKind::CreateFunctionalCast(OpRange, ListInitialization)
1850 : InitializationKind::CreateCast(OpRange);
1851 Expr *SrcExprRaw = SrcExpr.get();
1852 // FIXME: Per DR242, we should check for an implicit conversion sequence
1853 // or for a constructor that could be invoked by direct-initialization
1854 // here, not for an initialization sequence.
1855 InitializationSequence InitSeq(Self, Entity, InitKind, SrcExprRaw);
1856
1857 // At this point of CheckStaticCast, if the destination is a reference,
1858 // or the expression is an overload expression this has to work.
1859 // There is no other way that works.
1860 // On the other hand, if we're checking a C-style cast, we've still got
1861 // the reinterpret_cast way.
1862 bool CStyle
1863 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast);
1864 if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType()))
1865 return TC_NotApplicable;
1866
1867 ExprResult Result = InitSeq.Perform(Self, Entity, InitKind, SrcExprRaw);
1868 if (Result.isInvalid()) {
1869 msg = 0;
1870 return TC_Failed;
1871 }
1872
1873 if (InitSeq.isConstructorInitialization())
1874 Kind = CK_ConstructorConversion;
1875 else
1876 Kind = CK_NoOp;
1877
1878 SrcExpr = Result;
1879 return TC_Success;
1880}
1881
1882/// TryConstCast - See if a const_cast from source to destination is allowed,
1883/// and perform it if it is.
1884static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
1885 QualType DestType, bool CStyle,
1886 unsigned &msg) {
1887 DestType = Self.Context.getCanonicalType(DestType);
1888 QualType SrcType = SrcExpr.get()->getType();
1889 bool NeedToMaterializeTemporary = false;
1890
1891 if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) {
1892 // C++11 5.2.11p4:
1893 // if a pointer to T1 can be explicitly converted to the type "pointer to
1894 // T2" using a const_cast, then the following conversions can also be
1895 // made:
1896 // -- an lvalue of type T1 can be explicitly converted to an lvalue of
1897 // type T2 using the cast const_cast<T2&>;
1898 // -- a glvalue of type T1 can be explicitly converted to an xvalue of
1899 // type T2 using the cast const_cast<T2&&>; and
1900 // -- if T1 is a class type, a prvalue of type T1 can be explicitly
1901 // converted to an xvalue of type T2 using the cast const_cast<T2&&>.
1902
1903 if (isa<LValueReferenceType>(DestTypeTmp) && !SrcExpr.get()->isLValue()) {
1904 // Cannot const_cast non-lvalue to lvalue reference type. But if this
1905 // is C-style, static_cast might find a way, so we simply suggest a
1906 // message and tell the parent to keep searching.
1907 msg = diag::err_bad_cxx_cast_rvalue;
1908 return TC_NotApplicable;
1909 }
1910
1911 if (isa<RValueReferenceType>(DestTypeTmp) && SrcExpr.get()->isPRValue()) {
1912 if (!SrcType->isRecordType()) {
1913 // Cannot const_cast non-class prvalue to rvalue reference type. But if
1914 // this is C-style, static_cast can do this.
1915 msg = diag::err_bad_cxx_cast_rvalue;
1916 return TC_NotApplicable;
1917 }
1918
1919 // Materialize the class prvalue so that the const_cast can bind a
1920 // reference to it.
1921 NeedToMaterializeTemporary = true;
1922 }
1923
1924 // It's not completely clear under the standard whether we can
1925 // const_cast bit-field gl-values. Doing so would not be
1926 // intrinsically complicated, but for now, we say no for
1927 // consistency with other compilers and await the word of the
1928 // committee.
1929 if (SrcExpr.get()->refersToBitField()) {
1930 msg = diag::err_bad_cxx_cast_bitfield;
1931 return TC_NotApplicable;
1932 }
1933
1934 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
1935 SrcType = Self.Context.getPointerType(SrcType);
1936 }
1937
1938 // C++ 5.2.11p5: For a const_cast involving pointers to data members [...]
1939 // the rules for const_cast are the same as those used for pointers.
1940
1941 if (!DestType->isPointerType() &&
1942 !DestType->isMemberPointerType() &&
1943 !DestType->isObjCObjectPointerType()) {
1944 // Cannot cast to non-pointer, non-reference type. Note that, if DestType
1945 // was a reference type, we converted it to a pointer above.
1946 // The status of rvalue references isn't entirely clear, but it looks like
1947 // conversion to them is simply invalid.
1948 // C++ 5.2.11p3: For two pointer types [...]
1949 if (!CStyle)
1950 msg = diag::err_bad_const_cast_dest;
1951 return TC_NotApplicable;
1952 }
1953 if (DestType->isFunctionPointerType() ||
1954 DestType->isMemberFunctionPointerType()) {
1955 // Cannot cast direct function pointers.
1956 // C++ 5.2.11p2: [...] where T is any object type or the void type [...]
1957 // T is the ultimate pointee of source and target type.
1958 if (!CStyle)
1959 msg = diag::err_bad_const_cast_dest;
1960 return TC_NotApplicable;
1961 }
1962
1963 // C++ [expr.const.cast]p3:
1964 // "For two similar types T1 and T2, [...]"
1965 //
1966 // We only allow a const_cast to change cvr-qualifiers, not other kinds of
1967 // type qualifiers. (Likewise, we ignore other changes when determining
1968 // whether a cast casts away constness.)
1969 if (!Self.Context.hasCvrSimilarType(SrcType, DestType))
1970 return TC_NotApplicable;
1971
1972 if (NeedToMaterializeTemporary)
1973 // This is a const_cast from a class prvalue to an rvalue reference type.
1974 // Materialize a temporary to store the result of the conversion.
1975 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcExpr.get()->getType(),
1976 SrcExpr.get(),
1977 /*IsLValueReference*/ false);
1978
1979 return TC_Success;
1980}
1981
1982// Checks for undefined behavior in reinterpret_cast.
1983// The cases that is checked for is:
1984// *reinterpret_cast<T*>(&a)
1985// reinterpret_cast<T&>(a)
1986// where accessing 'a' as type 'T' will result in undefined behavior.
1987void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
1988 bool IsDereference,
1989 SourceRange Range) {
1990 unsigned DiagID = IsDereference ?
1991 diag::warn_pointer_indirection_from_incompatible_type :
1992 diag::warn_undefined_reinterpret_cast;
1993
1994 if (Diags.isIgnored(DiagID, Range.getBegin()))
1995 return;
1996
1997 QualType SrcTy, DestTy;
1998 if (IsDereference) {
1999 if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) {
2000 return;
2001 }
2002 SrcTy = SrcType->getPointeeType();
2003 DestTy = DestType->getPointeeType();
2004 } else {
2005 if (!DestType->getAs<ReferenceType>()) {
2006 return;
2007 }
2008 SrcTy = SrcType;
2009 DestTy = DestType->getPointeeType();
2010 }
2011
2012 // Cast is compatible if the types are the same.
2013 if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) {
2014 return;
2015 }
2016 // or one of the types is a char or void type
2017 if (DestTy->isAnyCharacterType() || DestTy->isVoidType() ||
2018 SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) {
2019 return;
2020 }
2021 // or one of the types is a tag type.
2022 if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) {
2023 return;
2024 }
2025
2026 // FIXME: Scoped enums?
2027 if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) ||
2028 (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) {
2029 if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) {
2030 return;
2031 }
2032 }
2033
2034 Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range;
2035}
2036
2037static void DiagnoseCastOfObjCSEL(Sema &Self, const ExprResult &SrcExpr,
2038 QualType DestType) {
2039 QualType SrcType = SrcExpr.get()->getType();
2040 if (Self.Context.hasSameType(SrcType, DestType))
2041 return;
2042 if (const PointerType *SrcPtrTy = SrcType->getAs<PointerType>())
2043 if (SrcPtrTy->isObjCSelType()) {
2044 QualType DT = DestType;
2045 if (isa<PointerType>(DestType))
2046 DT = DestType->getPointeeType();
2047 if (!DT.getUnqualifiedType()->isVoidType())
2048 Self.Diag(SrcExpr.get()->getExprLoc(),
2049 diag::warn_cast_pointer_from_sel)
2050 << SrcType << DestType << SrcExpr.get()->getSourceRange();
2051 }
2052}
2053
2054/// Diagnose casts that change the calling convention of a pointer to a function
2055/// defined in the current TU.
2056static void DiagnoseCallingConvCast(Sema &Self, const ExprResult &SrcExpr,
2057 QualType DstType, SourceRange OpRange) {
2058 // Check if this cast would change the calling convention of a function
2059 // pointer type.
2060 QualType SrcType = SrcExpr.get()->getType();
2061 if (Self.Context.hasSameType(SrcType, DstType) ||
2062 !SrcType->isFunctionPointerType() || !DstType->isFunctionPointerType())
2063 return;
2064 const auto *SrcFTy =
2065 SrcType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>();
2066 const auto *DstFTy =
2067 DstType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>();
2068 CallingConv SrcCC = SrcFTy->getCallConv();
2069 CallingConv DstCC = DstFTy->getCallConv();
2070 if (SrcCC == DstCC)
2071 return;
2072
2073 // We have a calling convention cast. Check if the source is a pointer to a
2074 // known, specific function that has already been defined.
2075 Expr *Src = SrcExpr.get()->IgnoreParenImpCasts();
2076 if (auto *UO = dyn_cast<UnaryOperator>(Src))
2077 if (UO->getOpcode() == UO_AddrOf)
2078 Src = UO->getSubExpr()->IgnoreParenImpCasts();
2079 auto *DRE = dyn_cast<DeclRefExpr>(Src);
2080 if (!DRE)
2081 return;
2082 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
2083 if (!FD)
2084 return;
2085
2086 // Only warn if we are casting from the default convention to a non-default
2087 // convention. This can happen when the programmer forgot to apply the calling
2088 // convention to the function declaration and then inserted this cast to
2089 // satisfy the type system.
2090 CallingConv DefaultCC = Self.getASTContext().getDefaultCallingConvention(
2091 FD->isVariadic(), FD->isCXXInstanceMember());
2092 if (DstCC == DefaultCC || SrcCC != DefaultCC)
2093 return;
2094
2095 // Diagnose this cast, as it is probably bad.
2096 StringRef SrcCCName = FunctionType::getNameForCallConv(SrcCC);
2097 StringRef DstCCName = FunctionType::getNameForCallConv(DstCC);
2098 Self.Diag(OpRange.getBegin(), diag::warn_cast_calling_conv)
2099 << SrcCCName << DstCCName << OpRange;
2100
2101 // The checks above are cheaper than checking if the diagnostic is enabled.
2102 // However, it's worth checking if the warning is enabled before we construct
2103 // a fixit.
2104 if (Self.Diags.isIgnored(diag::warn_cast_calling_conv, OpRange.getBegin()))
2105 return;
2106
2107 // Try to suggest a fixit to change the calling convention of the function
2108 // whose address was taken. Try to use the latest macro for the convention.
2109 // For example, users probably want to write "WINAPI" instead of "__stdcall"
2110 // to match the Windows header declarations.
2111 SourceLocation NameLoc = FD->getFirstDecl()->getNameInfo().getLoc();
2112 Preprocessor &PP = Self.getPreprocessor();
2113 SmallVector<TokenValue, 6> AttrTokens;
2114 SmallString<64> CCAttrText;
2115 llvm::raw_svector_ostream OS(CCAttrText);
2116 if (Self.getLangOpts().MicrosoftExt) {
2117 // __stdcall or __vectorcall
2118 OS << "__" << DstCCName;
2119 IdentifierInfo *II = PP.getIdentifierInfo(OS.str());
2120 AttrTokens.push_back(II->isKeyword(Self.getLangOpts())
2121 ? TokenValue(II->getTokenID())
2122 : TokenValue(II));
2123 } else {
2124 // __attribute__((stdcall)) or __attribute__((vectorcall))
2125 OS << "__attribute__((" << DstCCName << "))";
2126 AttrTokens.push_back(tok::kw___attribute);
2127 AttrTokens.push_back(tok::l_paren);
2128 AttrTokens.push_back(tok::l_paren);
2129 IdentifierInfo *II = PP.getIdentifierInfo(DstCCName);
2130 AttrTokens.push_back(II->isKeyword(Self.getLangOpts())
2131 ? TokenValue(II->getTokenID())
2132 : TokenValue(II));
2133 AttrTokens.push_back(tok::r_paren);
2134 AttrTokens.push_back(tok::r_paren);
2135 }
2136 StringRef AttrSpelling = PP.getLastMacroWithSpelling(NameLoc, AttrTokens);
2137 if (!AttrSpelling.empty())
2138 CCAttrText = AttrSpelling;
2139 OS << ' ';
2140 Self.Diag(NameLoc, diag::note_change_calling_conv_fixit)
2141 << FD << DstCCName << FixItHint::CreateInsertion(NameLoc, CCAttrText);
2142}
2143
2144static void checkIntToPointerCast(bool CStyle, const SourceRange &OpRange,
2145 const Expr *SrcExpr, QualType DestType,
2146 Sema &Self) {
2147 QualType SrcType = SrcExpr->getType();
2148
2149 // Not warning on reinterpret_cast, boolean, constant expressions, etc
2150 // are not explicit design choices, but consistent with GCC's behavior.
2151 // Feel free to modify them if you've reason/evidence for an alternative.
2152 if (CStyle && SrcType->isIntegralType(Self.Context)
2153 && !SrcType->isBooleanType()
2154 && !SrcType->isEnumeralType()
2155 && !SrcExpr->isIntegerConstantExpr(Self.Context)
2156 && Self.Context.getTypeSize(DestType) >
2157 Self.Context.getTypeSize(SrcType)) {
2158 // Separate between casts to void* and non-void* pointers.
2159 // Some APIs use (abuse) void* for something like a user context,
2160 // and often that value is an integer even if it isn't a pointer itself.
2161 // Having a separate warning flag allows users to control the warning
2162 // for their workflow.
2163 unsigned Diag = DestType->isVoidPointerType() ?
2164 diag::warn_int_to_void_pointer_cast
2165 : diag::warn_int_to_pointer_cast;
2166 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
2167 }
2168}
2169
2170static bool fixOverloadedReinterpretCastExpr(Sema &Self, QualType DestType,
2171 ExprResult &Result) {
2172 // We can only fix an overloaded reinterpret_cast if
2173 // - it is a template with explicit arguments that resolves to an lvalue
2174 // unambiguously, or
2175 // - it is the only function in an overload set that may have its address
2176 // taken.
2177
2178 Expr *E = Result.get();
2179 // TODO: what if this fails because of DiagnoseUseOfDecl or something
2180 // like it?
2181 if (Self.ResolveAndFixSingleFunctionTemplateSpecialization(
2182 Result,
2183 Expr::getValueKindForType(DestType) ==
2184 VK_PRValue // Convert Fun to Ptr
2185 ) &&
2186 Result.isUsable())
2187 return true;
2188
2189 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
2190 // preserves Result.
2191 Result = E;
2192 if (!Self.resolveAndFixAddressOfSingleOverloadCandidate(
2193 Result, /*DoFunctionPointerConversion=*/true))
2194 return false;
2195 return Result.isUsable();
2196}
2197
2198static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
2199 QualType DestType, bool CStyle,
2200 SourceRange OpRange,
2201 unsigned &msg,
2202 CastKind &Kind) {
2203 bool IsLValueCast = false;
2204
2205 DestType = Self.Context.getCanonicalType(DestType);
2206 QualType SrcType = SrcExpr.get()->getType();
2207
2208 // Is the source an overloaded name? (i.e. &foo)
2209 // If so, reinterpret_cast generally can not help us here (13.4, p1, bullet 5)
2210 if (SrcType == Self.Context.OverloadTy) {
2211 ExprResult FixedExpr = SrcExpr;
2212 if (!fixOverloadedReinterpretCastExpr(Self, DestType, FixedExpr))
2213 return TC_NotApplicable;
2214
2215 assert(FixedExpr.isUsable() && "Invalid result fixing overloaded expr")(static_cast <bool> (FixedExpr.isUsable() && "Invalid result fixing overloaded expr"
) ? void (0) : __assert_fail ("FixedExpr.isUsable() && \"Invalid result fixing overloaded expr\""
, "clang/lib/Sema/SemaCast.cpp", 2215, __extension__ __PRETTY_FUNCTION__
))
;
2216 SrcExpr = FixedExpr;
2217 SrcType = SrcExpr.get()->getType();
2218 }
2219
2220 if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) {
2221 if (!SrcExpr.get()->isGLValue()) {
2222 // Cannot cast non-glvalue to (lvalue or rvalue) reference type. See the
2223 // similar comment in const_cast.
2224 msg = diag::err_bad_cxx_cast_rvalue;
2225 return TC_NotApplicable;
2226 }
2227
2228 if (!CStyle) {
2229 Self.CheckCompatibleReinterpretCast(SrcType, DestType,
2230 /*IsDereference=*/false, OpRange);
2231 }
2232
2233 // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the
2234 // same effect as the conversion *reinterpret_cast<T*>(&x) with the
2235 // built-in & and * operators.
2236
2237 const char *inappropriate = nullptr;
2238 switch (SrcExpr.get()->getObjectKind()) {
2239 case OK_Ordinary:
2240 break;
2241 case OK_BitField:
2242 msg = diag::err_bad_cxx_cast_bitfield;
2243 return TC_NotApplicable;
2244 // FIXME: Use a specific diagnostic for the rest of these cases.
2245 case OK_VectorComponent: inappropriate = "vector element"; break;
2246 case OK_MatrixComponent:
2247 inappropriate = "matrix element";
2248 break;
2249 case OK_ObjCProperty: inappropriate = "property expression"; break;
2250 case OK_ObjCSubscript: inappropriate = "container subscripting expression";
2251 break;
2252 }
2253 if (inappropriate) {
2254 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference)
2255 << inappropriate << DestType
2256 << OpRange << SrcExpr.get()->getSourceRange();
2257 msg = 0; SrcExpr = ExprError();
2258 return TC_NotApplicable;
2259 }
2260
2261 // This code does this transformation for the checked types.
2262 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
2263 SrcType = Self.Context.getPointerType(SrcType);
2264
2265 IsLValueCast = true;
2266 }
2267
2268 // Canonicalize source for comparison.
2269 SrcType = Self.Context.getCanonicalType(SrcType);
2270
2271 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(),
2272 *SrcMemPtr = SrcType->getAs<MemberPointerType>();
2273 if (DestMemPtr && SrcMemPtr) {
2274 // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1"
2275 // can be explicitly converted to an rvalue of type "pointer to member
2276 // of Y of type T2" if T1 and T2 are both function types or both object
2277 // types.
2278 if (DestMemPtr->isMemberFunctionPointer() !=
2279 SrcMemPtr->isMemberFunctionPointer())
2280 return TC_NotApplicable;
2281
2282 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2283 // We need to determine the inheritance model that the class will use if
2284 // haven't yet.
2285 (void)Self.isCompleteType(OpRange.getBegin(), SrcType);
2286 (void)Self.isCompleteType(OpRange.getBegin(), DestType);
2287 }
2288
2289 // Don't allow casting between member pointers of different sizes.
2290 if (Self.Context.getTypeSize(DestMemPtr) !=
2291 Self.Context.getTypeSize(SrcMemPtr)) {
2292 msg = diag::err_bad_cxx_cast_member_pointer_size;
2293 return TC_Failed;
2294 }
2295
2296 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away
2297 // constness.
2298 // A reinterpret_cast followed by a const_cast can, though, so in C-style,
2299 // we accept it.
2300 if (auto CACK =
2301 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
2302 /*CheckObjCLifetime=*/CStyle))
2303 return getCastAwayConstnessCastKind(CACK, msg);
2304
2305 // A valid member pointer cast.
2306 assert(!IsLValueCast)(static_cast <bool> (!IsLValueCast) ? void (0) : __assert_fail
("!IsLValueCast", "clang/lib/Sema/SemaCast.cpp", 2306, __extension__
__PRETTY_FUNCTION__))
;
2307 Kind = CK_ReinterpretMemberPointer;
2308 return TC_Success;
2309 }
2310
2311 // See below for the enumeral issue.
2312 if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) {
2313 // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral
2314 // type large enough to hold it. A value of std::nullptr_t can be
2315 // converted to an integral type; the conversion has the same meaning
2316 // and validity as a conversion of (void*)0 to the integral type.
2317 if (Self.Context.getTypeSize(SrcType) >
2318 Self.Context.getTypeSize(DestType)) {
2319 msg = diag::err_bad_reinterpret_cast_small_int;
2320 return TC_Failed;
2321 }
2322 Kind = CK_PointerToIntegral;
2323 return TC_Success;
2324 }
2325
2326 // Allow reinterpret_casts between vectors of the same size and
2327 // between vectors and integers of the same size.
2328 bool destIsVector = DestType->isVectorType();
2329 bool srcIsVector = SrcType->isVectorType();
2330 if (srcIsVector || destIsVector) {
2331 // Allow bitcasting between SVE VLATs and VLSTs, and vice-versa.
2332 if (Self.isValidSveBitcast(SrcType, DestType)) {
2333 Kind = CK_BitCast;
2334 return TC_Success;
2335 }
2336
2337 // The non-vector type, if any, must have integral type. This is
2338 // the same rule that C vector casts use; note, however, that enum
2339 // types are not integral in C++.
2340 if ((!destIsVector && !DestType->isIntegralType(Self.Context)) ||
2341 (!srcIsVector && !SrcType->isIntegralType(Self.Context)))
2342 return TC_NotApplicable;
2343
2344 // The size we want to consider is eltCount * eltSize.
2345 // That's exactly what the lax-conversion rules will check.
2346 if (Self.areLaxCompatibleVectorTypes(SrcType, DestType)) {
2347 Kind = CK_BitCast;
2348 return TC_Success;
2349 }
2350
2351 if (Self.LangOpts.OpenCL && !CStyle) {
2352 if (DestType->isExtVectorType() || SrcType->isExtVectorType()) {
2353 // FIXME: Allow for reinterpret cast between 3 and 4 element vectors
2354 if (Self.areVectorTypesSameSize(SrcType, DestType)) {
2355 Kind = CK_BitCast;
2356 return TC_Success;
2357 }
2358 }
2359 }
2360
2361 // Otherwise, pick a reasonable diagnostic.
2362 if (!destIsVector)
2363 msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size;
2364 else if (!srcIsVector)
2365 msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size;
2366 else
2367 msg = diag::err_bad_cxx_cast_vector_to_vector_different_size;
2368
2369 return TC_Failed;
2370 }
2371
2372 if (SrcType == DestType) {
2373 // C++ 5.2.10p2 has a note that mentions that, subject to all other
2374 // restrictions, a cast to the same type is allowed so long as it does not
2375 // cast away constness. In C++98, the intent was not entirely clear here,
2376 // since all other paragraphs explicitly forbid casts to the same type.
2377 // C++11 clarifies this case with p2.
2378 //
2379 // The only allowed types are: integral, enumeration, pointer, or
2380 // pointer-to-member types. We also won't restrict Obj-C pointers either.
2381 Kind = CK_NoOp;
2382 TryCastResult Result = TC_NotApplicable;
2383 if (SrcType->isIntegralOrEnumerationType() ||
2384 SrcType->isAnyPointerType() ||
2385 SrcType->isMemberPointerType() ||
2386 SrcType->isBlockPointerType()) {
2387 Result = TC_Success;
2388 }
2389 return Result;
2390 }
2391
2392 bool destIsPtr = DestType->isAnyPointerType() ||
2393 DestType->isBlockPointerType();
2394 bool srcIsPtr = SrcType->isAnyPointerType() ||
2395 SrcType->isBlockPointerType();
2396 if (!destIsPtr && !srcIsPtr) {
2397 // Except for std::nullptr_t->integer and lvalue->reference, which are
2398 // handled above, at least one of the two arguments must be a pointer.
2399 return TC_NotApplicable;
2400 }
2401
2402 if (DestType->isIntegralType(Self.Context)) {
2403 assert(srcIsPtr && "One type must be a pointer")(static_cast <bool> (srcIsPtr && "One type must be a pointer"
) ? void (0) : __assert_fail ("srcIsPtr && \"One type must be a pointer\""
, "clang/lib/Sema/SemaCast.cpp", 2403, __extension__ __PRETTY_FUNCTION__
))
;
2404 // C++ 5.2.10p4: A pointer can be explicitly converted to any integral
2405 // type large enough to hold it; except in Microsoft mode, where the
2406 // integral type size doesn't matter (except we don't allow bool).
2407 if ((Self.Context.getTypeSize(SrcType) >
2408 Self.Context.getTypeSize(DestType))) {
2409 bool MicrosoftException =
2410 Self.getLangOpts().MicrosoftExt && !DestType->isBooleanType();
2411 if (MicrosoftException) {
2412 unsigned Diag = SrcType->isVoidPointerType()
2413 ? diag::warn_void_pointer_to_int_cast
2414 : diag::warn_pointer_to_int_cast;
2415 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
2416 } else {
2417 msg = diag::err_bad_reinterpret_cast_small_int;
2418 return TC_Failed;
2419 }
2420 }
2421 Kind = CK_PointerToIntegral;
2422 return TC_Success;
2423 }
2424
2425 if (SrcType->isIntegralOrEnumerationType()) {
2426 assert(destIsPtr && "One type must be a pointer")(static_cast <bool> (destIsPtr && "One type must be a pointer"
) ? void (0) : __assert_fail ("destIsPtr && \"One type must be a pointer\""
, "clang/lib/Sema/SemaCast.cpp", 2426, __extension__ __PRETTY_FUNCTION__
))
;
2427 checkIntToPointerCast(CStyle, OpRange, SrcExpr.get(), DestType, Self);
2428 // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly
2429 // converted to a pointer.
2430 // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not
2431 // necessarily converted to a null pointer value.]
2432 Kind = CK_IntegralToPointer;
2433 return TC_Success;
2434 }
2435
2436 if (!destIsPtr || !srcIsPtr) {
2437 // With the valid non-pointer conversions out of the way, we can be even
2438 // more stringent.
2439 return TC_NotApplicable;
2440 }
2441
2442 // Cannot convert between block pointers and Objective-C object pointers.
2443 if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) ||
2444 (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType()))
2445 return TC_NotApplicable;
2446
2447 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness.
2448 // The C-style cast operator can.
2449 TryCastResult SuccessResult = TC_Success;
2450 if (auto CACK =
2451 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
2452 /*CheckObjCLifetime=*/CStyle))
2453 SuccessResult = getCastAwayConstnessCastKind(CACK, msg);
2454
2455 if (IsAddressSpaceConversion(SrcType, DestType)) {
2456 Kind = CK_AddressSpaceConversion;
2457 assert(SrcType->isPointerType() && DestType->isPointerType())(static_cast <bool> (SrcType->isPointerType() &&
DestType->isPointerType()) ? void (0) : __assert_fail ("SrcType->isPointerType() && DestType->isPointerType()"
, "clang/lib/Sema/SemaCast.cpp", 2457, __extension__ __PRETTY_FUNCTION__
))
;
2458 if (!CStyle &&
2459 !DestType->getPointeeType().getQualifiers().isAddressSpaceSupersetOf(
2460 SrcType->getPointeeType().getQualifiers())) {
2461 SuccessResult = TC_Failed;
2462 }
2463 } else if (IsLValueCast) {
2464 Kind = CK_LValueBitCast;
2465 } else if (DestType->isObjCObjectPointerType()) {
2466 Kind = Self.PrepareCastToObjCObjectPointer(SrcExpr);
2467 } else if (DestType->isBlockPointerType()) {
2468 if (!SrcType->isBlockPointerType()) {
2469 Kind = CK_AnyPointerToBlockPointerCast;
2470 } else {
2471 Kind = CK_BitCast;
2472 }
2473 } else {
2474 Kind = CK_BitCast;
2475 }
2476
2477 // Any pointer can be cast to an Objective-C pointer type with a C-style
2478 // cast.
2479 if (CStyle && DestType->isObjCObjectPointerType()) {
2480 return SuccessResult;
2481 }
2482 if (CStyle)
2483 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
2484
2485 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange);
2486
2487 // Not casting away constness, so the only remaining check is for compatible
2488 // pointer categories.
2489
2490 if (SrcType->isFunctionPointerType()) {
2491 if (DestType->isFunctionPointerType()) {
2492 // C++ 5.2.10p6: A pointer to a function can be explicitly converted to
2493 // a pointer to a function of a different type.
2494 return SuccessResult;
2495 }
2496
2497 // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to
2498 // an object type or vice versa is conditionally-supported.
2499 // Compilers support it in C++03 too, though, because it's necessary for
2500 // casting the return value of dlsym() and GetProcAddress().
2501 // FIXME: Conditionally-supported behavior should be configurable in the
2502 // TargetInfo or similar.
2503 Self.Diag(OpRange.getBegin(),
2504 Self.getLangOpts().CPlusPlus11 ?
2505 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
2506 << OpRange;
2507 return SuccessResult;
2508 }
2509
2510 if (DestType->isFunctionPointerType()) {
2511 // See above.
2512 Self.Diag(OpRange.getBegin(),
2513 Self.getLangOpts().CPlusPlus11 ?
2514 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
2515 << OpRange;
2516 return SuccessResult;
2517 }
2518
2519 // Diagnose address space conversion in nested pointers.
2520 QualType DestPtee = DestType->getPointeeType().isNull()
2521 ? DestType->getPointeeType()
2522 : DestType->getPointeeType()->getPointeeType();
2523 QualType SrcPtee = SrcType->getPointeeType().isNull()
2524 ? SrcType->getPointeeType()
2525 : SrcType->getPointeeType()->getPointeeType();
2526 while (!DestPtee.isNull() && !SrcPtee.isNull()) {
2527 if (DestPtee.getAddressSpace() != SrcPtee.getAddressSpace()) {
2528 Self.Diag(OpRange.getBegin(),
2529 diag::warn_bad_cxx_cast_nested_pointer_addr_space)
2530 << CStyle << SrcType << DestType << SrcExpr.get()->getSourceRange();
2531 break;
2532 }
2533 DestPtee = DestPtee->getPointeeType();
2534 SrcPtee = SrcPtee->getPointeeType();
2535 }
2536
2537 // C++ 5.2.10p7: A pointer to an object can be explicitly converted to
2538 // a pointer to an object of different type.
2539 // Void pointers are not specified, but supported by every compiler out there.
2540 // So we finish by allowing everything that remains - it's got to be two
2541 // object pointers.
2542 return SuccessResult;
2543}
2544
2545static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr,
2546 QualType DestType, bool CStyle,
2547 unsigned &msg, CastKind &Kind) {
2548 if (!Self.getLangOpts().OpenCL && !Self.getLangOpts().SYCLIsDevice)
2549 // FIXME: As compiler doesn't have any information about overlapping addr
2550 // spaces at the moment we have to be permissive here.
2551 return TC_NotApplicable;
2552 // Even though the logic below is general enough and can be applied to
2553 // non-OpenCL mode too, we fast-path above because no other languages
2554 // define overlapping address spaces currently.
2555 auto SrcType = SrcExpr.get()->getType();
2556 // FIXME: Should this be generalized to references? The reference parameter
2557 // however becomes a reference pointee type here and therefore rejected.
2558 // Perhaps this is the right behavior though according to C++.
2559 auto SrcPtrType = SrcType->getAs<PointerType>();
2560 if (!SrcPtrType)
2561 return TC_NotApplicable;
2562 auto DestPtrType = DestType->getAs<PointerType>();
2563 if (!DestPtrType)
2564 return TC_NotApplicable;
2565 auto SrcPointeeType = SrcPtrType->getPointeeType();
2566 auto DestPointeeType = DestPtrType->getPointeeType();
2567 if (!DestPointeeType.isAddressSpaceOverlapping(SrcPointeeType)) {
2568 msg = diag::err_bad_cxx_cast_addr_space_mismatch;
2569 return TC_Failed;
2570 }
2571 auto SrcPointeeTypeWithoutAS =
2572 Self.Context.removeAddrSpaceQualType(SrcPointeeType.getCanonicalType());
2573 auto DestPointeeTypeWithoutAS =
2574 Self.Context.removeAddrSpaceQualType(DestPointeeType.getCanonicalType());
2575 if (Self.Context.hasSameType(SrcPointeeTypeWithoutAS,
2576 DestPointeeTypeWithoutAS)) {
2577 Kind = SrcPointeeType.getAddressSpace() == DestPointeeType.getAddressSpace()
2578 ? CK_NoOp
2579 : CK_AddressSpaceConversion;
2580 return TC_Success;
2581 } else {
2582 return TC_NotApplicable;
2583 }
2584}
2585
2586void CastOperation::checkAddressSpaceCast(QualType SrcType, QualType DestType) {
2587 // In OpenCL only conversions between pointers to objects in overlapping
2588 // addr spaces are allowed. v2.0 s6.5.5 - Generic addr space overlaps
2589 // with any named one, except for constant.
2590
2591 // Converting the top level pointee addrspace is permitted for compatible
2592 // addrspaces (such as 'generic int *' to 'local int *' or vice versa), but
2593 // if any of the nested pointee addrspaces differ, we emit a warning
2594 // regardless of addrspace compatibility. This makes
2595 // local int ** p;
2596 // return (generic int **) p;
2597 // warn even though local -> generic is permitted.
2598 if (Self.getLangOpts().OpenCL) {
2599 const Type *DestPtr, *SrcPtr;
2600 bool Nested = false;
2601 unsigned DiagID = diag::err_typecheck_incompatible_address_space;
2602 DestPtr = Self.getASTContext().getCanonicalType(DestType.getTypePtr()),
2603 SrcPtr = Self.getASTContext().getCanonicalType(SrcType.getTypePtr());
2604
2605 while (isa<PointerType>(DestPtr) && isa<PointerType>(SrcPtr)) {
2606 const PointerType *DestPPtr = cast<PointerType>(DestPtr);
2607 const PointerType *SrcPPtr = cast<PointerType>(SrcPtr);
2608 QualType DestPPointee = DestPPtr->getPointeeType();
2609 QualType SrcPPointee = SrcPPtr->getPointeeType();
2610 if (Nested
2611 ? DestPPointee.getAddressSpace() != SrcPPointee.getAddressSpace()
2612 : !DestPPointee.isAddressSpaceOverlapping(SrcPPointee)) {
2613 Self.Diag(OpRange.getBegin(), DiagID)
2614 << SrcType << DestType << Sema::AA_Casting
2615 << SrcExpr.get()->getSourceRange();
2616 if (!Nested)
2617 SrcExpr = ExprError();
2618 return;
2619 }
2620
2621 DestPtr = DestPPtr->getPointeeType().getTypePtr();
2622 SrcPtr = SrcPPtr->getPointeeType().getTypePtr();
2623 Nested = true;
2624 DiagID = diag::ext_nested_pointer_qualifier_mismatch;
2625 }
2626 }
2627}
2628
2629bool Sema::ShouldSplatAltivecScalarInCast(const VectorType *VecTy) {
2630 bool SrcCompatXL = this->getLangOpts().getAltivecSrcCompat() ==
2631 LangOptions::AltivecSrcCompatKind::XL;
2632 VectorType::VectorKind VKind = VecTy->getVectorKind();
2633
2634 if ((VKind == VectorType::AltiVecVector) ||
2635 (SrcCompatXL && ((VKind == VectorType::AltiVecBool) ||
2636 (VKind == VectorType::AltiVecPixel)))) {
2637 return true;
2638 }
2639 return false;
2640}
2641
2642bool Sema::CheckAltivecInitFromScalar(SourceRange R, QualType VecTy,
2643 QualType SrcTy) {
2644 bool SrcCompatGCC = this->getLangOpts().getAltivecSrcCompat() ==
2645 LangOptions::AltivecSrcCompatKind::GCC;
2646 if (this->getLangOpts().AltiVec && SrcCompatGCC) {
2647 this->Diag(R.getBegin(),
2648 diag::err_invalid_conversion_between_vector_and_integer)
2649 << VecTy << SrcTy << R;
2650 return true;
2651 }
2652 return false;
2653}
2654
2655void CastOperation::CheckCXXCStyleCast(bool FunctionalStyle,
2656 bool ListInitialization) {
2657 assert(Self.getLangOpts().CPlusPlus)(static_cast <bool> (Self.getLangOpts().CPlusPlus) ? void
(0) : __assert_fail ("Self.getLangOpts().CPlusPlus", "clang/lib/Sema/SemaCast.cpp"
, 2657, __extension__ __PRETTY_FUNCTION__))
;
2658
2659 // Handle placeholders.
2660 if (isPlaceholder()) {
2661 // C-style casts can resolve __unknown_any types.
2662 if (claimPlaceholder(BuiltinType::UnknownAny)) {
2663 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
2664 SrcExpr.get(), Kind,
2665 ValueKind, BasePath);
2666 return;
2667 }
2668
2669 checkNonOverloadPlaceholders();
2670 if (SrcExpr.isInvalid())
2671 return;
2672 }
2673
2674 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
2675 // This test is outside everything else because it's the only case where
2676 // a non-lvalue-reference target type does not lead to decay.
2677 if (DestType->isVoidType()) {
2678 Kind = CK_ToVoid;
2679
2680 if (claimPlaceholder(BuiltinType::Overload)) {
2681 Self.ResolveAndFixSingleFunctionTemplateSpecialization(
2682 SrcExpr, /* Decay Function to ptr */ false,
2683 /* Complain */ true, DestRange, DestType,
2684 diag::err_bad_cstyle_cast_overload);
2685 if (SrcExpr.isInvalid())
2686 return;
2687 }
2688
2689 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
2690 return;
2691 }
2692
2693 // If the type is dependent, we won't do any other semantic analysis now.
2694 if (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() ||
2695 SrcExpr.get()->isValueDependent()) {
2696 assert(Kind == CK_Dependent)(static_cast <bool> (Kind == CK_Dependent) ? void (0) :
__assert_fail ("Kind == CK_Dependent", "clang/lib/Sema/SemaCast.cpp"
, 2696, __extension__ __PRETTY_FUNCTION__))
;
2697 return;
2698 }
2699
2700 if (ValueKind == VK_PRValue && !DestType->isRecordType() &&
2701 !isPlaceholder(BuiltinType::Overload)) {
2702 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
2703 if (SrcExpr.isInvalid())
2704 return;
2705 }
2706
2707 // AltiVec vector initialization with a single literal.
2708 if (const VectorType *vecTy = DestType->getAs<VectorType>()) {
2709 if (Self.CheckAltivecInitFromScalar(OpRange, DestType,
2710 SrcExpr.get()->getType())) {
2711 SrcExpr = ExprError();
2712 return;
2713 }
2714 if (Self.ShouldSplatAltivecScalarInCast(vecTy) &&
2715 (SrcExpr.get()->getType()->isIntegerType() ||
2716 SrcExpr.get()->getType()->isFloatingType())) {
2717 Kind = CK_VectorSplat;
2718 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get());
2719 return;
2720 }
2721 }
2722
2723 // C++ [expr.cast]p5: The conversions performed by
2724 // - a const_cast,
2725 // - a static_cast,
2726 // - a static_cast followed by a const_cast,
2727 // - a reinterpret_cast, or
2728 // - a reinterpret_cast followed by a const_cast,
2729 // can be performed using the cast notation of explicit type conversion.
2730 // [...] If a conversion can be interpreted in more than one of the ways
2731 // listed above, the interpretation that appears first in the list is used,
2732 // even if a cast resulting from that interpretation is ill-formed.
2733 // In plain language, this means trying a const_cast ...
2734 // Note that for address space we check compatibility after const_cast.
2735 unsigned msg = diag::err_bad_cxx_cast_generic;
2736 TryCastResult tcr = TryConstCast(Self, SrcExpr, DestType,
2737 /*CStyle*/ true, msg);
2738 if (SrcExpr.isInvalid())
2739 return;
2740 if (isValidCast(tcr))
2741 Kind = CK_NoOp;
2742
2743 Sema::CheckedConversionKind CCK =
2744 FunctionalStyle ? Sema::CCK_FunctionalCast : Sema::CCK_CStyleCast;
2745 if (tcr == TC_NotApplicable) {
2746 tcr = TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ true, msg,
2747 Kind);
2748 if (SrcExpr.isInvalid())
2749 return;
2750
2751 if (tcr == TC_NotApplicable) {
2752 // ... or if that is not possible, a static_cast, ignoring const and
2753 // addr space, ...
2754 tcr = TryStaticCast(Self, SrcExpr, DestType, CCK, OpRange, msg, Kind,
2755 BasePath, ListInitialization);
2756 if (SrcExpr.isInvalid())
2757 return;
2758
2759 if (tcr == TC_NotApplicable) {
2760 // ... and finally a reinterpret_cast, ignoring const and addr space.
2761 tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/ true,
2762 OpRange, msg, Kind);
2763 if (SrcExpr.isInvalid())
2764 return;
2765 }
2766 }
2767 }
2768
2769 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
2770 isValidCast(tcr))
2771 checkObjCConversion(CCK);
2772
2773 if (tcr != TC_Success && msg != 0) {
2774 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
2775 DeclAccessPair Found;
2776 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
2777 DestType,
2778 /*Complain*/ true,
2779 Found);
2780 if (Fn) {
2781 // If DestType is a function type (not to be confused with the function
2782 // pointer type), it will be possible to resolve the function address,
2783 // but the type cast should be considered as failure.
2784 OverloadExpr *OE = OverloadExpr::find(SrcExpr.get()).Expression;
2785 Self.Diag(OpRange.getBegin(), diag::err_bad_cstyle_cast_overload)
2786 << OE->getName() << DestType << OpRange
2787 << OE->getQualifierLoc().getSourceRange();
2788 Self.NoteAllOverloadCandidates(SrcExpr.get());
2789 }
2790 } else {
2791 diagnoseBadCast(Self, msg, (FunctionalStyle ? CT_Functional : CT_CStyle),
2792 OpRange, SrcExpr.get(), DestType, ListInitialization);
2793 }
2794 }
2795
2796 if (isValidCast(tcr)) {
2797 if (Kind == CK_BitCast)
2798 checkCastAlign();
2799
2800 if (!checkCastFunctionType(Self, SrcExpr, DestType))
2801 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type)
2802 << SrcExpr.get()->getType() << DestType << OpRange;
2803
2804 } else {
2805 SrcExpr = ExprError();
2806 }
2807}
2808
2809/// DiagnoseBadFunctionCast - Warn whenever a function call is cast to a
2810/// non-matching type. Such as enum function call to int, int call to
2811/// pointer; etc. Cast to 'void' is an exception.
2812static void DiagnoseBadFunctionCast(Sema &Self, const ExprResult &SrcExpr,
2813 QualType DestType) {
2814 if (Self.Diags.isIgnored(diag::warn_bad_function_cast,
2815 SrcExpr.get()->getExprLoc()))
2816 return;
2817
2818 if (!isa<CallExpr>(SrcExpr.get()))
2819 return;
2820
2821 QualType SrcType = SrcExpr.get()->getType();
2822 if (DestType.getUnqualifiedType()->isVoidType())
2823 return;
2824 if ((SrcType->isAnyPointerType() || SrcType->isBlockPointerType())
2825 && (DestType->isAnyPointerType() || DestType->isBlockPointerType()))
2826 return;
2827 if (SrcType->isIntegerType() && DestType->isIntegerType() &&
2828 (SrcType->isBooleanType() == DestType->isBooleanType()) &&
2829 (SrcType->isEnumeralType() == DestType->isEnumeralType()))
2830 return;
2831 if (SrcType->isRealFloatingType() && DestType->isRealFloatingType())
2832 return;
2833 if (SrcType->isEnumeralType() && DestType->isEnumeralType())
2834 return;
2835 if (SrcType->isComplexType() && DestType->isComplexType())
2836 return;
2837 if (SrcType->isComplexIntegerType() && DestType->isComplexIntegerType())
2838 return;
2839 if (SrcType->isFixedPointType() && DestType->isFixedPointType())
2840 return;
2841
2842 Self.Diag(SrcExpr.get()->getExprLoc(),
2843 diag::warn_bad_function_cast)
2844 << SrcType << DestType << SrcExpr.get()->getSourceRange();
2845}
2846
2847/// Check the semantics of a C-style cast operation, in C.
2848void CastOperation::CheckCStyleCast() {
2849 assert(!Self.getLangOpts().CPlusPlus)(static_cast <bool> (!Self.getLangOpts().CPlusPlus) ? void
(0) : __assert_fail ("!Self.getLangOpts().CPlusPlus", "clang/lib/Sema/SemaCast.cpp"
, 2849, __extension__ __PRETTY_FUNCTION__))
;
2850
2851 // C-style casts can resolve __unknown_any types.
2852 if (claimPlaceholder(BuiltinType::UnknownAny)) {
2853 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
2854 SrcExpr.get(), Kind,
2855 ValueKind, BasePath);
2856 return;
2857 }
2858
2859 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2860 // type needs to be scalar.
2861 if (DestType->isVoidType()) {
2862 // We don't necessarily do lvalue-to-rvalue conversions on this.
2863 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
2864 if (SrcExpr.isInvalid())
2865 return;
2866
2867 // Cast to void allows any expr type.
2868 Kind = CK_ToVoid;
2869 return;
2870 }
2871
2872 // If the type is dependent, we won't do any other semantic analysis now.
2873 if (Self.getASTContext().isDependenceAllowed() &&
2874 (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() ||
2875 SrcExpr.get()->isValueDependent())) {
2876 assert((DestType->containsErrors() || SrcExpr.get()->containsErrors() ||(static_cast <bool> ((DestType->containsErrors() || SrcExpr
.get()->containsErrors() || SrcExpr.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(DestType->containsErrors() || SrcExpr.get()->containsErrors() || SrcExpr.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaCast.cpp", 2878, __extension__ __PRETTY_FUNCTION__
))
2877 SrcExpr.get()->containsErrors()) &&(static_cast <bool> ((DestType->containsErrors() || SrcExpr
.get()->containsErrors() || SrcExpr.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(DestType->containsErrors() || SrcExpr.get()->containsErrors() || SrcExpr.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaCast.cpp", 2878, __extension__ __PRETTY_FUNCTION__
))
2878 "should only occur in error-recovery path.")(static_cast <bool> ((DestType->containsErrors() || SrcExpr
.get()->containsErrors() || SrcExpr.get()->containsErrors
()) && "should only occur in error-recovery path.") ?
void (0) : __assert_fail ("(DestType->containsErrors() || SrcExpr.get()->containsErrors() || SrcExpr.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "clang/lib/Sema/SemaCast.cpp", 2878, __extension__ __PRETTY_FUNCTION__
))
;
2879 assert(Kind == CK_Dependent)(static_cast <bool> (Kind == CK_Dependent) ? void (0) :
__assert_fail ("Kind == CK_Dependent", "clang/lib/Sema/SemaCast.cpp"
, 2879, __extension__ __PRETTY_FUNCTION__))
;
2880 return;
2881 }
2882
2883 // Overloads are allowed with C extensions, so we need to support them.
2884 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
2885 DeclAccessPair DAP;
2886 if (FunctionDecl *FD = Self.ResolveAddressOfOverloadedFunction(
2887 SrcExpr.get(), DestType, /*Complain=*/true, DAP))
2888 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr.get(), DAP, FD);
2889 else
2890 return;
2891 assert(SrcExpr.isUsable())(static_cast <bool> (SrcExpr.isUsable()) ? void (0) : __assert_fail
("SrcExpr.isUsable()", "clang/lib/Sema/SemaCast.cpp", 2891, __extension__
__PRETTY_FUNCTION__))
;
2892 }
2893 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
2894 if (SrcExpr.isInvalid())
2895 return;
2896 QualType SrcType = SrcExpr.get()->getType();
2897
2898 assert(!SrcType->isPlaceholderType())(static_cast <bool> (!SrcType->isPlaceholderType()) ?
void (0) : __assert_fail ("!SrcType->isPlaceholderType()"
, "clang/lib/Sema/SemaCast.cpp", 2898, __extension__ __PRETTY_FUNCTION__
))
;
2899
2900 checkAddressSpaceCast(SrcType, DestType);
2901 if (SrcExpr.isInvalid())
2902 return;
2903
2904 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
2905 diag::err_typecheck_cast_to_incomplete)) {
2906 SrcExpr = ExprError();
2907 return;
2908 }
2909
2910 // Allow casting a sizeless built-in type to itself.
2911 if (DestType->isSizelessBuiltinType() &&
2912 Self.Context.hasSameUnqualifiedType(DestType, SrcType)) {
2913 Kind = CK_NoOp;
2914 return;
2915 }
2916
2917 // Allow bitcasting between compatible SVE vector types.
2918 if ((SrcType->isVectorType() || DestType->isVectorType()) &&
2919 Self.isValidSveBitcast(SrcType, DestType)) {
2920 Kind = CK_BitCast;
2921 return;
2922 }
2923
2924 if (!DestType->isScalarType() && !DestType->isVectorType() &&
2925 !DestType->isMatrixType()) {
2926 const RecordType *DestRecordTy = DestType->getAs<RecordType>();
2927
2928 if (DestRecordTy && Self.Context.hasSameUnqualifiedType(DestType, SrcType)){
2929 // GCC struct/union extension: allow cast to self.
2930 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_nonscalar)
2931 << DestType << SrcExpr.get()->getSourceRange();
2932 Kind = CK_NoOp;
2933 return;
2934 }
2935
2936 // GCC's cast to union extension.
2937 if (DestRecordTy && DestRecordTy->getDecl()->isUnion()) {
2938 RecordDecl *RD = DestRecordTy->getDecl();
2939 if (CastExpr::getTargetFieldForToUnionCast(RD, SrcType)) {
2940 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_to_union)
2941 << SrcExpr.get()->getSourceRange();
2942 Kind = CK_ToUnion;
2943 return;
2944 } else {
2945 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2946 << SrcType << SrcExpr.get()->getSourceRange();
2947 SrcExpr = ExprError();
2948 return;
2949 }
2950 }
2951
2952 // OpenCL v2.0 s6.13.10 - Allow casts from '0' to event_t type.
2953 if (Self.getLangOpts().OpenCL && DestType->isEventT()) {
2954 Expr::EvalResult Result;
2955 if (SrcExpr.get()->EvaluateAsInt(Result, Self.Context)) {
2956 llvm::APSInt CastInt = Result.Val.getInt();
2957 if (0 == CastInt) {
2958 Kind = CK_ZeroToOCLOpaqueType;
2959 return;
2960 }
2961 Self.Diag(OpRange.getBegin(),
2962 diag::err_opencl_cast_non_zero_to_event_t)
2963 << toString(CastInt, 10) << SrcExpr.get()->getSourceRange();
2964 SrcExpr = ExprError();
2965 return;
2966 }
2967 }
2968
2969 // Reject any other conversions to non-scalar types.
2970 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cond_expect_scalar)
2971 << DestType << SrcExpr.get()->getSourceRange();
2972 SrcExpr = ExprError();
2973 return;
2974 }
2975
2976 // The type we're casting to is known to be a scalar, a vector, or a matrix.
2977
2978 // Require the operand to be a scalar, a vector, or a matrix.
2979 if (!SrcType->isScalarType() && !SrcType->isVectorType() &&
2980 !SrcType->isMatrixType()) {
2981 Self.Diag(SrcExpr.get()->getExprLoc(),
2982 diag::err_typecheck_expect_scalar_operand)
2983 << SrcType << SrcExpr.get()->getSourceRange();
2984 SrcExpr = ExprError();
2985 return;
2986 }
2987
2988 if (DestType->isExtVectorType()) {
2989 SrcExpr = Self.CheckExtVectorCast(OpRange, DestType, SrcExpr.get(), Kind);
2990 return;
2991 }
2992
2993 if (DestType->getAs<MatrixType>() || SrcType->getAs<MatrixType>()) {
2994 if (Self.CheckMatrixCast(OpRange, DestType, SrcType, Kind))
2995 SrcExpr = ExprError();
2996 return;
2997 }
2998
2999 if (const VectorType *DestVecTy = DestType->getAs<VectorType>()) {
3000 if (Self.CheckAltivecInitFromScalar(OpRange, DestType, SrcType)) {
3001 SrcExpr = ExprError();
3002 return;
3003 }
3004 if (Self.ShouldSplatAltivecScalarInCast(DestVecTy) &&
3005 (SrcType->isIntegerType() || SrcType->isFloatingType())) {
3006 Kind = CK_VectorSplat;
3007 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get());
3008 } else if (Self.CheckVectorCast(OpRange, DestType, SrcType, Kind)) {
3009 SrcExpr = ExprError();
3010 }
3011 return;
3012 }
3013
3014 if (SrcType->isVectorType()) {
3015 if (Self.CheckVectorCast(OpRange, SrcType, DestType, Kind))
3016 SrcExpr = ExprError();
3017 return;
3018 }
3019
3020 // The source and target types are both scalars, i.e.
3021 // - arithmetic types (fundamental, enum, and complex)
3022 // - all kinds of pointers
3023 // Note that member pointers were filtered out with C++, above.
3024
3025 if (isa<ObjCSelectorExpr>(SrcExpr.get())) {
3026 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_selector_expr);
3027 SrcExpr = ExprError();
3028 return;
3029 }
3030
3031 // Can't cast to or from bfloat
3032 if (DestType->isBFloat16Type() && !SrcType->isBFloat16Type()) {
3033 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_to_bfloat16)
3034 << SrcExpr.get()->getSourceRange();
3035 SrcExpr = ExprError();
3036 return;
3037 }
3038 if (SrcType->isBFloat16Type() && !DestType->isBFloat16Type()) {
3039 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_from_bfloat16)
3040 << SrcExpr.get()->getSourceRange();
3041 SrcExpr = ExprError();
3042 return;
3043 }
3044
3045 // If either type is a pointer, the other type has to be either an
3046 // integer or a pointer.
3047 if (!DestType->isArithmeticType()) {
3048 if (!SrcType->isIntegralType(Self.Context) && SrcType->isArithmeticType()) {
3049 Self.Diag(SrcExpr.get()->getExprLoc(),
3050 diag::err_cast_pointer_from_non_pointer_int)
3051 << SrcType << SrcExpr.get()->getSourceRange();
3052 SrcExpr = ExprError();
3053 return;
3054 }
3055 checkIntToPointerCast(/* CStyle */ true, OpRange, SrcExpr.get(), DestType,
3056 Self);
3057 } else if (!SrcType->isArithmeticType()) {
3058 if (!DestType->isIntegralType(Self.Context) &&
3059 DestType->isArithmeticType()) {
3060 Self.Diag(SrcExpr.get()->getBeginLoc(),
3061 diag::err_cast_pointer_to_non_pointer_int)
3062 << DestType << SrcExpr.get()->getSourceRange();
3063 SrcExpr = ExprError();
3064 return;
3065 }
3066
3067 if ((Self.Context.getTypeSize(SrcType) >
3068 Self.Context.getTypeSize(DestType)) &&
3069 !DestType->isBooleanType()) {
3070 // C 6.3.2.3p6: Any pointer type may be converted to an integer type.
3071 // Except as previously specified, the result is implementation-defined.
3072 // If the result cannot be represented in the integer type, the behavior
3073 // is undefined. The result need not be in the range of values of any
3074 // integer type.
3075 unsigned Diag;
3076 if (SrcType->isVoidPointerType())
3077 Diag = DestType->isEnumeralType() ? diag::warn_void_pointer_to_enum_cast
3078 : diag::warn_void_pointer_to_int_cast;
3079 else if (DestType->isEnumeralType())
3080 Diag = diag::warn_pointer_to_enum_cast;
3081 else
3082 Diag = diag::warn_pointer_to_int_cast;
3083 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
3084 }
3085 }
3086
3087 if (Self.getLangOpts().OpenCL && !Self.getOpenCLOptions().isAvailableOption(
3088 "cl_khr_fp16", Self.getLangOpts())) {
3089 if (DestType->isHalfType()) {
3090 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::err_opencl_cast_to_half)
3091 << DestType << SrcExpr.get()->getSourceRange();
3092 SrcExpr = ExprError();
3093 return;
3094 }
3095 }
3096
3097 // ARC imposes extra restrictions on casts.
3098 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) {
3099 checkObjCConversion(Sema::CCK_CStyleCast);
3100 if (SrcExpr.isInvalid())
3101 return;
3102
3103 const PointerType *CastPtr = DestType->getAs<PointerType>();
3104 if (Self.getLangOpts().ObjCAutoRefCount && CastPtr) {
3105 if (const PointerType *ExprPtr = SrcType->getAs<PointerType>()) {
3106 Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
3107 Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
3108 if (CastPtr->getPointeeType()->isObjCLifetimeType() &&
3109 ExprPtr->getPointeeType()->isObjCLifetimeType() &&
3110 !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
3111 Self.Diag(SrcExpr.get()->getBeginLoc(),
3112 diag::err_typecheck_incompatible_ownership)
3113 << SrcType << DestType << Sema::AA_Casting
3114 << SrcExpr.get()->getSourceRange();
3115 return;
3116 }
3117 }
3118 }
3119 else if (!Self.CheckObjCARCUnavailableWeakConversion(DestType, SrcType)) {
3120 Self.Diag(SrcExpr.get()->getBeginLoc(),
3121 diag::err_arc_convesion_of_weak_unavailable)
3122 << 1 << SrcType << DestType << SrcExpr.get()->getSourceRange();
3123 SrcExpr = ExprError();
3124 return;
3125 }
3126 }
3127
3128 if (!checkCastFunctionType(Self, SrcExpr, DestType))
3129 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type)
3130 << SrcType << DestType << OpRange;
3131
3132 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
3133 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange);
3134 DiagnoseBadFunctionCast(Self, SrcExpr, DestType);
3135 Kind = Self.PrepareScalarCast(SrcExpr, DestType);
3136 if (SrcExpr.isInvalid())
3137 return;
3138
3139 if (Kind == CK_BitCast)
3140 checkCastAlign();
3141}
3142
3143void CastOperation::CheckBuiltinBitCast() {
3144 QualType SrcType = SrcExpr.get()->getType();
3145
3146 if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
3147 diag::err_typecheck_cast_to_incomplete) ||
3148 Self.RequireCompleteType(OpRange.getBegin(), SrcType,
3149 diag::err_incomplete_type)) {
3150 SrcExpr = ExprError();
3151 return;
3152 }
3153
3154 if (SrcExpr.get()->isPRValue())
3155 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcType, SrcExpr.get(),
3156 /*IsLValueReference=*/false);
3157
3158 CharUnits DestSize = Self.Context.getTypeSizeInChars(DestType);
3159 CharUnits SourceSize = Self.Context.getTypeSizeInChars(SrcType);
3160 if (DestSize != SourceSize) {
3161 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_type_size_mismatch)
3162 << (int)SourceSize.getQuantity() << (int)DestSize.getQuantity();
3163 SrcExpr = ExprError();
3164 return;
3165 }
3166
3167 if (!DestType.isTriviallyCopyableType(Self.Context)) {
3168 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable)
3169 << 1;
3170 SrcExpr = ExprError();
3171 return;
3172 }
3173
3174 if (!SrcType.isTriviallyCopyableType(Self.Context)) {
3175 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable)
3176 << 0;
3177 SrcExpr = ExprError();
3178 return;
3179 }
3180
3181 Kind = CK_LValueToRValueBitCast;
3182}
3183
3184/// DiagnoseCastQual - Warn whenever casts discards a qualifiers, be it either
3185/// const, volatile or both.
3186static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr,
3187 QualType DestType) {
3188 if (SrcExpr.isInvalid())
3189 return;
3190
3191 QualType SrcType = SrcExpr.get()->getType();
3192 if (!((SrcType->isAnyPointerType() && DestType->isAnyPointerType()) ||
3193 DestType->isLValueReferenceType()))
3194 return;
3195
3196 QualType TheOffendingSrcType, TheOffendingDestType;
3197 Qualifiers CastAwayQualifiers;
3198 if (CastsAwayConstness(Self, SrcType, DestType, true, false,
3199 &TheOffendingSrcType, &TheOffendingDestType,
3200 &CastAwayQualifiers) !=
3201 CastAwayConstnessKind::CACK_Similar)
3202 return;
3203
3204 // FIXME: 'restrict' is not properly handled here.
3205 int qualifiers = -1;
3206 if (CastAwayQualifiers.hasConst() && CastAwayQualifiers.hasVolatile()) {
3207 qualifiers = 0;
3208 } else if (CastAwayQualifiers.hasConst()) {
3209 qualifiers = 1;
3210 } else if (CastAwayQualifiers.hasVolatile()) {
3211 qualifiers = 2;
3212 }
3213 // This is a variant of int **x; const int **y = (const int **)x;
3214 if (qualifiers == -1)
3215 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual2)
3216 << SrcType << DestType;
3217 else
3218 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual)
3219 << TheOffendingSrcType << TheOffendingDestType << qualifiers;
3220}
3221
3222ExprResult Sema::BuildCStyleCastExpr(SourceLocation LPLoc,
3223 TypeSourceInfo *CastTypeInfo,
3224 SourceLocation RPLoc,
3225 Expr *CastExpr) {
3226 CastOperation Op(*this, CastTypeInfo->getType(), CastExpr);
3227 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
3228 Op.OpRange = SourceRange(LPLoc, CastExpr->getEndLoc());
3229
3230 if (getLangOpts().CPlusPlus) {
3231 Op.CheckCXXCStyleCast(/*FunctionalCast=*/ false,
3232 isa<InitListExpr>(CastExpr));
3233 } else {
3234 Op.CheckCStyleCast();
3235 }
3236
3237 if (Op.SrcExpr.isInvalid())
3238 return ExprError();
3239
3240 // -Wcast-qual
3241 DiagnoseCastQual(Op.Self, Op.SrcExpr, Op.DestType);
3242
3243 return Op.complete(CStyleCastExpr::Create(
3244 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
3245 &Op.BasePath, CurFPFeatureOverrides(), CastTypeInfo, LPLoc, RPLoc));
3246}
3247
3248ExprResult Sema::BuildCXXFunctionalCastExpr(TypeSourceInfo *CastTypeInfo,
3249 QualType Type,
3250 SourceLocation LPLoc,
3251 Expr *CastExpr,
3252 SourceLocation RPLoc) {
3253 assert(LPLoc.isValid() && "List-initialization shouldn't get here.")(static_cast <bool> (LPLoc.isValid() && "List-initialization shouldn't get here."
) ? void (0) : __assert_fail ("LPLoc.isValid() && \"List-initialization shouldn't get here.\""
, "clang/lib/Sema/SemaCast.cpp", 3253, __extension__ __PRETTY_FUNCTION__
))
;
3254 CastOperation Op(*this, Type, CastExpr);
3255 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
3256 Op.OpRange = SourceRange(Op.DestRange.getBegin(), CastExpr->getEndLoc());
3257
3258 Op.CheckCXXCStyleCast(/*FunctionalCast=*/true, /*ListInit=*/false);
3259 if (Op.SrcExpr.isInvalid())
3260 return ExprError();
3261
3262 auto *SubExpr = Op.SrcExpr.get();
3263 if (auto *BindExpr = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
3264 SubExpr = BindExpr->getSubExpr();
3265 if (auto *ConstructExpr = dyn_cast<CXXConstructExpr>(SubExpr))
3266 ConstructExpr->setParenOrBraceRange(SourceRange(LPLoc, RPLoc));
3267
3268 return Op.complete(CXXFunctionalCastExpr::Create(
3269 Context, Op.ResultType, Op.ValueKind, CastTypeInfo, Op.Kind,
3270 Op.SrcExpr.get(), &Op.BasePath, CurFPFeatureOverrides(), LPLoc, RPLoc));
3271}

/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132class UsingShadowDecl;
133
134using CanQualType = CanQual<Type>;
135
136// Provide forward declarations for all of the *Type classes.
137#define TYPE(Class, Base) class Class##Type;
138#include "clang/AST/TypeNodes.inc"
139
140/// The collection of all-type qualifiers we support.
141/// Clang supports five independent qualifiers:
142/// * C99: const, volatile, and restrict
143/// * MS: __unaligned
144/// * Embedded C (TR18037): address spaces
145/// * Objective C: the GC attributes (none, weak, or strong)
146class Qualifiers {
147public:
148 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
149 Const = 0x1,
150 Restrict = 0x2,
151 Volatile = 0x4,
152 CVRMask = Const | Volatile | Restrict
153 };
154
155 enum GC {
156 GCNone = 0,
157 Weak,
158 Strong
159 };
160
161 enum ObjCLifetime {
162 /// There is no lifetime qualification on this type.
163 OCL_None,
164
165 /// This object can be modified without requiring retains or
166 /// releases.
167 OCL_ExplicitNone,
168
169 /// Assigning into this object requires the old value to be
170 /// released and the new value to be retained. The timing of the
171 /// release of the old value is inexact: it may be moved to
172 /// immediately after the last known point where the value is
173 /// live.
174 OCL_Strong,
175
176 /// Reading or writing from this object requires a barrier call.
177 OCL_Weak,
178
179 /// Assigning into this object requires a lifetime extension.
180 OCL_Autoreleasing
181 };
182
183 enum {
184 /// The maximum supported address space number.
185 /// 23 bits should be enough for anyone.
186 MaxAddressSpace = 0x7fffffu,
187
188 /// The width of the "fast" qualifier mask.
189 FastWidth = 3,
190
191 /// The fast qualifier mask.
192 FastMask = (1 << FastWidth) - 1
193 };
194
195 /// Returns the common set of qualifiers while removing them from
196 /// the given sets.
197 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
198 // If both are only CVR-qualified, bit operations are sufficient.
199 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
200 Qualifiers Q;
201 Q.Mask = L.Mask & R.Mask;
202 L.Mask &= ~Q.Mask;
203 R.Mask &= ~Q.Mask;
204 return Q;
205 }
206
207 Qualifiers Q;
208 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
209 Q.addCVRQualifiers(CommonCRV);
210 L.removeCVRQualifiers(CommonCRV);
211 R.removeCVRQualifiers(CommonCRV);
212
213 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
214 Q.setObjCGCAttr(L.getObjCGCAttr());
215 L.removeObjCGCAttr();
216 R.removeObjCGCAttr();
217 }
218
219 if (L.getObjCLifetime() == R.getObjCLifetime()) {
220 Q.setObjCLifetime(L.getObjCLifetime());
221 L.removeObjCLifetime();
222 R.removeObjCLifetime();
223 }
224
225 if (L.getAddressSpace() == R.getAddressSpace()) {
226 Q.setAddressSpace(L.getAddressSpace());
227 L.removeAddressSpace();
228 R.removeAddressSpace();
229 }
230 return Q;
231 }
232
233 static Qualifiers fromFastMask(unsigned Mask) {
234 Qualifiers Qs;
235 Qs.addFastQualifiers(Mask);
236 return Qs;
237 }
238
239 static Qualifiers fromCVRMask(unsigned CVR) {
240 Qualifiers Qs;
241 Qs.addCVRQualifiers(CVR);
242 return Qs;
243 }
244
245 static Qualifiers fromCVRUMask(unsigned CVRU) {
246 Qualifiers Qs;
247 Qs.addCVRUQualifiers(CVRU);
248 return Qs;
249 }
250
251 // Deserialize qualifiers from an opaque representation.
252 static Qualifiers fromOpaqueValue(unsigned opaque) {
253 Qualifiers Qs;
254 Qs.Mask = opaque;
255 return Qs;
256 }
257
258 // Serialize these qualifiers into an opaque representation.
259 unsigned getAsOpaqueValue() const {
260 return Mask;
261 }
262
263 bool hasConst() const { return Mask & Const; }
264 bool hasOnlyConst() const { return Mask == Const; }
265 void removeConst() { Mask &= ~Const; }
266 void addConst() { Mask |= Const; }
267
268 bool hasVolatile() const { return Mask & Volatile; }
269 bool hasOnlyVolatile() const { return Mask == Volatile; }
270 void removeVolatile() { Mask &= ~Volatile; }
271 void addVolatile() { Mask |= Volatile; }
272
273 bool hasRestrict() const { return Mask & Restrict; }
274 bool hasOnlyRestrict() const { return Mask == Restrict; }
275 void removeRestrict() { Mask &= ~Restrict; }
276 void addRestrict() { Mask |= Restrict; }
277
278 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
279 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
280 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
281
282 void setCVRQualifiers(unsigned mask) {
283 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 283, __extension__ __PRETTY_FUNCTION__
))
;
284 Mask = (Mask & ~CVRMask) | mask;
285 }
286 void removeCVRQualifiers(unsigned mask) {
287 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 287, __extension__ __PRETTY_FUNCTION__
))
;
288 Mask &= ~mask;
289 }
290 void removeCVRQualifiers() {
291 removeCVRQualifiers(CVRMask);
292 }
293 void addCVRQualifiers(unsigned mask) {
294 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "clang/include/clang/AST/Type.h", 294, __extension__ __PRETTY_FUNCTION__
))
;
295 Mask |= mask;
296 }
297 void addCVRUQualifiers(unsigned mask) {
298 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")(static_cast <bool> (!(mask & ~CVRMask & ~UMask
) && "bitmask contains non-CVRU bits") ? void (0) : __assert_fail
("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "clang/include/clang/AST/Type.h", 298, __extension__ __PRETTY_FUNCTION__
))
;
299 Mask |= mask;
300 }
301
302 bool hasUnaligned() const { return Mask & UMask; }
303 void setUnaligned(bool flag) {
304 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
305 }
306 void removeUnaligned() { Mask &= ~UMask; }
307 void addUnaligned() { Mask |= UMask; }
308
309 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
310 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
311 void setObjCGCAttr(GC type) {
312 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
313 }
314 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
315 void addObjCGCAttr(GC type) {
316 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 316, __extension__ __PRETTY_FUNCTION__
))
;
317 setObjCGCAttr(type);
318 }
319 Qualifiers withoutObjCGCAttr() const {
320 Qualifiers qs = *this;
321 qs.removeObjCGCAttr();
322 return qs;
323 }
324 Qualifiers withoutObjCLifetime() const {
325 Qualifiers qs = *this;
326 qs.removeObjCLifetime();
327 return qs;
328 }
329 Qualifiers withoutAddressSpace() const {
330 Qualifiers qs = *this;
331 qs.removeAddressSpace();
332 return qs;
333 }
334
335 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
336 ObjCLifetime getObjCLifetime() const {
337 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
338 }
339 void setObjCLifetime(ObjCLifetime type) {
340 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
341 }
342 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
343 void addObjCLifetime(ObjCLifetime type) {
344 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "clang/include/clang/AST/Type.h", 344, __extension__ __PRETTY_FUNCTION__
))
;
345 assert(!hasObjCLifetime())(static_cast <bool> (!hasObjCLifetime()) ? void (0) : __assert_fail
("!hasObjCLifetime()", "clang/include/clang/AST/Type.h", 345
, __extension__ __PRETTY_FUNCTION__))
;
346 Mask |= (type << LifetimeShift);
347 }
348
349 /// True if the lifetime is neither None or ExplicitNone.
350 bool hasNonTrivialObjCLifetime() const {
351 ObjCLifetime lifetime = getObjCLifetime();
352 return (lifetime > OCL_ExplicitNone);
353 }
354
355 /// True if the lifetime is either strong or weak.
356 bool hasStrongOrWeakObjCLifetime() const {
357 ObjCLifetime lifetime = getObjCLifetime();
358 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
359 }
360
361 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
362 LangAS getAddressSpace() const {
363 return static_cast<LangAS>(Mask >> AddressSpaceShift);
364 }
365 bool hasTargetSpecificAddressSpace() const {
366 return isTargetAddressSpace(getAddressSpace());
367 }
368 /// Get the address space attribute value to be printed by diagnostics.
369 unsigned getAddressSpaceAttributePrintValue() const {
370 auto Addr = getAddressSpace();
371 // This function is not supposed to be used with language specific
372 // address spaces. If that happens, the diagnostic message should consider
373 // printing the QualType instead of the address space value.
374 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())(static_cast <bool> (Addr == LangAS::Default || hasTargetSpecificAddressSpace
()) ? void (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "clang/include/clang/AST/Type.h", 374, __extension__ __PRETTY_FUNCTION__
))
;
375 if (Addr != LangAS::Default)
376 return toTargetAddressSpace(Addr);
377 // TODO: The diagnostic messages where Addr may be 0 should be fixed
378 // since it cannot differentiate the situation where 0 denotes the default
379 // address space or user specified __attribute__((address_space(0))).
380 return 0;
381 }
382 void setAddressSpace(LangAS space) {
383 assert((unsigned)space <= MaxAddressSpace)(static_cast <bool> ((unsigned)space <= MaxAddressSpace
) ? void (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "clang/include/clang/AST/Type.h", 383, __extension__ __PRETTY_FUNCTION__
))
;
384 Mask = (Mask & ~AddressSpaceMask)
385 | (((uint32_t) space) << AddressSpaceShift);
386 }
387 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
388 void addAddressSpace(LangAS space) {
389 assert(space != LangAS::Default)(static_cast <bool> (space != LangAS::Default) ? void (
0) : __assert_fail ("space != LangAS::Default", "clang/include/clang/AST/Type.h"
, 389, __extension__ __PRETTY_FUNCTION__))
;
390 setAddressSpace(space);
391 }
392
393 // Fast qualifiers are those that can be allocated directly
394 // on a QualType object.
395 bool hasFastQualifiers() const { return getFastQualifiers(); }
396 unsigned getFastQualifiers() const { return Mask & FastMask; }
397 void setFastQualifiers(unsigned mask) {
398 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 398, __extension__ __PRETTY_FUNCTION__
))
;
399 Mask = (Mask & ~FastMask) | mask;
400 }
401 void removeFastQualifiers(unsigned mask) {
402 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 402, __extension__ __PRETTY_FUNCTION__
))
;
403 Mask &= ~mask;
404 }
405 void removeFastQualifiers() {
406 removeFastQualifiers(FastMask);
407 }
408 void addFastQualifiers(unsigned mask) {
409 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "clang/include/clang/AST/Type.h", 409, __extension__ __PRETTY_FUNCTION__
))
;
410 Mask |= mask;
411 }
412
413 /// Return true if the set contains any qualifiers which require an ExtQuals
414 /// node to be allocated.
415 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
416 Qualifiers getNonFastQualifiers() const {
417 Qualifiers Quals = *this;
418 Quals.setFastQualifiers(0);
419 return Quals;
420 }
421
422 /// Return true if the set contains any qualifiers.
423 bool hasQualifiers() const { return Mask; }
424 bool empty() const { return !Mask; }
425
426 /// Add the qualifiers from the given set to this set.
427 void addQualifiers(Qualifiers Q) {
428 // If the other set doesn't have any non-boolean qualifiers, just
429 // bit-or it in.
430 if (!(Q.Mask & ~CVRMask))
431 Mask |= Q.Mask;
432 else {
433 Mask |= (Q.Mask & CVRMask);
434 if (Q.hasAddressSpace())
435 addAddressSpace(Q.getAddressSpace());
436 if (Q.hasObjCGCAttr())
437 addObjCGCAttr(Q.getObjCGCAttr());
438 if (Q.hasObjCLifetime())
439 addObjCLifetime(Q.getObjCLifetime());
440 }
441 }
442
443 /// Remove the qualifiers from the given set from this set.
444 void removeQualifiers(Qualifiers Q) {
445 // If the other set doesn't have any non-boolean qualifiers, just
446 // bit-and the inverse in.
447 if (!(Q.Mask & ~CVRMask))
448 Mask &= ~Q.Mask;
449 else {
450 Mask &= ~(Q.Mask & CVRMask);
451 if (getObjCGCAttr() == Q.getObjCGCAttr())
452 removeObjCGCAttr();
453 if (getObjCLifetime() == Q.getObjCLifetime())
454 removeObjCLifetime();
455 if (getAddressSpace() == Q.getAddressSpace())
456 removeAddressSpace();
457 }
458 }
459
460 /// Add the qualifiers from the given set to this set, given that
461 /// they don't conflict.
462 void addConsistentQualifiers(Qualifiers qs) {
463 assert(getAddressSpace() == qs.getAddressSpace() ||(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 464, __extension__ __PRETTY_FUNCTION__
))
464 !hasAddressSpace() || !qs.hasAddressSpace())(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "clang/include/clang/AST/Type.h", 464, __extension__ __PRETTY_FUNCTION__
))
;
465 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 466, __extension__ __PRETTY_FUNCTION__
))
466 !hasObjCGCAttr() || !qs.hasObjCGCAttr())(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "clang/include/clang/AST/Type.h", 466, __extension__ __PRETTY_FUNCTION__
))
;
467 assert(getObjCLifetime() == qs.getObjCLifetime() ||(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 468, __extension__ __PRETTY_FUNCTION__
))
468 !hasObjCLifetime() || !qs.hasObjCLifetime())(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "clang/include/clang/AST/Type.h", 468, __extension__ __PRETTY_FUNCTION__
))
;
469 Mask |= qs.Mask;
470 }
471
472 /// Returns true if address space A is equal to or a superset of B.
473 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
474 /// overlapping address spaces.
475 /// CL1.1 or CL1.2:
476 /// every address space is a superset of itself.
477 /// CL2.0 adds:
478 /// __generic is a superset of any address space except for __constant.
479 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
480 // Address spaces must match exactly.
481 return A == B ||
482 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
483 // for __constant can be used as __generic.
484 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
485 // We also define global_device and global_host address spaces,
486 // to distinguish global pointers allocated on host from pointers
487 // allocated on device, which are a subset of __global.
488 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
489 B == LangAS::opencl_global_host)) ||
490 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
491 B == LangAS::sycl_global_host)) ||
492 // Consider pointer size address spaces to be equivalent to default.
493 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
494 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
495 // Default is a superset of SYCL address spaces.
496 (A == LangAS::Default &&
497 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
498 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
499 B == LangAS::sycl_global_host)) ||
500 // In HIP device compilation, any cuda address space is allowed
501 // to implicitly cast into the default address space.
502 (A == LangAS::Default &&
503 (B == LangAS::cuda_constant || B == LangAS::cuda_device ||
504 B == LangAS::cuda_shared));
505 }
506
507 /// Returns true if the address space in these qualifiers is equal to or
508 /// a superset of the address space in the argument qualifiers.
509 bool isAddressSpaceSupersetOf(Qualifiers other) const {
510 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
511 }
512
513 /// Determines if these qualifiers compatibly include another set.
514 /// Generally this answers the question of whether an object with the other
515 /// qualifiers can be safely used as an object with these qualifiers.
516 bool compatiblyIncludes(Qualifiers other) const {
517 return isAddressSpaceSupersetOf(other) &&
518 // ObjC GC qualifiers can match, be added, or be removed, but can't
519 // be changed.
520 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
521 !other.hasObjCGCAttr()) &&
522 // ObjC lifetime qualifiers must match exactly.
523 getObjCLifetime() == other.getObjCLifetime() &&
524 // CVR qualifiers may subset.
525 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
526 // U qualifier may superset.
527 (!other.hasUnaligned() || hasUnaligned());
528 }
529
530 /// Determines if these qualifiers compatibly include another set of
531 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
532 ///
533 /// One set of Objective-C lifetime qualifiers compatibly includes the other
534 /// if the lifetime qualifiers match, or if both are non-__weak and the
535 /// including set also contains the 'const' qualifier, or both are non-__weak
536 /// and one is None (which can only happen in non-ARC modes).
537 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
538 if (getObjCLifetime() == other.getObjCLifetime())
539 return true;
540
541 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
542 return false;
543
544 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
545 return true;
546
547 return hasConst();
548 }
549
550 /// Determine whether this set of qualifiers is a strict superset of
551 /// another set of qualifiers, not considering qualifier compatibility.
552 bool isStrictSupersetOf(Qualifiers Other) const;
553
554 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
555 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
556
557 explicit operator bool() const { return hasQualifiers(); }
558
559 Qualifiers &operator+=(Qualifiers R) {
560 addQualifiers(R);
561 return *this;
562 }
563
564 // Union two qualifier sets. If an enumerated qualifier appears
565 // in both sets, use the one from the right.
566 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
567 L += R;
568 return L;
569 }
570
571 Qualifiers &operator-=(Qualifiers R) {
572 removeQualifiers(R);
573 return *this;
574 }
575
576 /// Compute the difference between two qualifier sets.
577 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
578 L -= R;
579 return L;
580 }
581
582 std::string getAsString() const;
583 std::string getAsString(const PrintingPolicy &Policy) const;
584
585 static std::string getAddrSpaceAsString(LangAS AS);
586
587 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
588 void print(raw_ostream &OS, const PrintingPolicy &Policy,
589 bool appendSpaceIfNonEmpty = false) const;
590
591 void Profile(llvm::FoldingSetNodeID &ID) const {
592 ID.AddInteger(Mask);
593 }
594
595private:
596 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
597 // |C R V|U|GCAttr|Lifetime|AddressSpace|
598 uint32_t Mask = 0;
599
600 static const uint32_t UMask = 0x8;
601 static const uint32_t UShift = 3;
602 static const uint32_t GCAttrMask = 0x30;
603 static const uint32_t GCAttrShift = 4;
604 static const uint32_t LifetimeMask = 0x1C0;
605 static const uint32_t LifetimeShift = 6;
606 static const uint32_t AddressSpaceMask =
607 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
608 static const uint32_t AddressSpaceShift = 9;
609};
610
611/// A std::pair-like structure for storing a qualified type split
612/// into its local qualifiers and its locally-unqualified type.
613struct SplitQualType {
614 /// The locally-unqualified type.
615 const Type *Ty = nullptr;
616
617 /// The local qualifiers.
618 Qualifiers Quals;
619
620 SplitQualType() = default;
621 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
622
623 SplitQualType getSingleStepDesugaredType() const; // end of this file
624
625 // Make std::tie work.
626 std::pair<const Type *,Qualifiers> asPair() const {
627 return std::pair<const Type *, Qualifiers>(Ty, Quals);
628 }
629
630 friend bool operator==(SplitQualType a, SplitQualType b) {
631 return a.Ty == b.Ty && a.Quals == b.Quals;
632 }
633 friend bool operator!=(SplitQualType a, SplitQualType b) {
634 return a.Ty != b.Ty || a.Quals != b.Quals;
635 }
636};
637
638/// The kind of type we are substituting Objective-C type arguments into.
639///
640/// The kind of substitution affects the replacement of type parameters when
641/// no concrete type information is provided, e.g., when dealing with an
642/// unspecialized type.
643enum class ObjCSubstitutionContext {
644 /// An ordinary type.
645 Ordinary,
646
647 /// The result type of a method or function.
648 Result,
649
650 /// The parameter type of a method or function.
651 Parameter,
652
653 /// The type of a property.
654 Property,
655
656 /// The superclass of a type.
657 Superclass,
658};
659
660/// A (possibly-)qualified type.
661///
662/// For efficiency, we don't store CV-qualified types as nodes on their
663/// own: instead each reference to a type stores the qualifiers. This
664/// greatly reduces the number of nodes we need to allocate for types (for
665/// example we only need one for 'int', 'const int', 'volatile int',
666/// 'const volatile int', etc).
667///
668/// As an added efficiency bonus, instead of making this a pair, we
669/// just store the two bits we care about in the low bits of the
670/// pointer. To handle the packing/unpacking, we make QualType be a
671/// simple wrapper class that acts like a smart pointer. A third bit
672/// indicates whether there are extended qualifiers present, in which
673/// case the pointer points to a special structure.
674class QualType {
675 friend class QualifierCollector;
676
677 // Thankfully, these are efficiently composable.
678 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
679 Qualifiers::FastWidth> Value;
680
681 const ExtQuals *getExtQualsUnsafe() const {
682 return Value.getPointer().get<const ExtQuals*>();
683 }
684
685 const Type *getTypePtrUnsafe() const {
686 return Value.getPointer().get<const Type*>();
687 }
688
689 const ExtQualsTypeCommonBase *getCommonPtr() const {
690 assert(!isNull() && "Cannot retrieve a NULL type pointer")(static_cast <bool> (!isNull() && "Cannot retrieve a NULL type pointer"
) ? void (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "clang/include/clang/AST/Type.h", 690, __extension__ __PRETTY_FUNCTION__
))
;
691 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
692 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
693 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
694 }
695
696public:
697 QualType() = default;
698 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
699 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
700
701 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
702 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
703
704 /// Retrieves a pointer to the underlying (unqualified) type.
705 ///
706 /// This function requires that the type not be NULL. If the type might be
707 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
708 const Type *getTypePtr() const;
709
710 const Type *getTypePtrOrNull() const;
711
712 /// Retrieves a pointer to the name of the base type.
713 const IdentifierInfo *getBaseTypeIdentifier() const;
714
715 /// Divides a QualType into its unqualified type and a set of local
716 /// qualifiers.
717 SplitQualType split() const;
718
719 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
720
721 static QualType getFromOpaquePtr(const void *Ptr) {
722 QualType T;
723 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
724 return T;
725 }
726
727 const Type &operator*() const {
728 return *getTypePtr();
729 }
730
731 const Type *operator->() const {
732 return getTypePtr();
733 }
734
735 bool isCanonical() const;
736 bool isCanonicalAsParam() const;
737
738 /// Return true if this QualType doesn't point to a type yet.
739 bool isNull() const {
740 return Value.getPointer().isNull();
741 }
742
743 /// Determine whether this particular QualType instance has the
744 /// "const" qualifier set, without looking through typedefs that may have
745 /// added "const" at a different level.
746 bool isLocalConstQualified() const {
747 return (getLocalFastQualifiers() & Qualifiers::Const);
748 }
749
750 /// Determine whether this type is const-qualified.
751 bool isConstQualified() const;
752
753 /// Determine whether this particular QualType instance has the
754 /// "restrict" qualifier set, without looking through typedefs that may have
755 /// added "restrict" at a different level.
756 bool isLocalRestrictQualified() const {
757 return (getLocalFastQualifiers() & Qualifiers::Restrict);
758 }
759
760 /// Determine whether this type is restrict-qualified.
761 bool isRestrictQualified() const;
762
763 /// Determine whether this particular QualType instance has the
764 /// "volatile" qualifier set, without looking through typedefs that may have
765 /// added "volatile" at a different level.
766 bool isLocalVolatileQualified() const {
767 return (getLocalFastQualifiers() & Qualifiers::Volatile);
768 }
769
770 /// Determine whether this type is volatile-qualified.
771 bool isVolatileQualified() const;
772
773 /// Determine whether this particular QualType instance has any
774 /// qualifiers, without looking through any typedefs that might add
775 /// qualifiers at a different level.
776 bool hasLocalQualifiers() const {
777 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
778 }
779
780 /// Determine whether this type has any qualifiers.
781 bool hasQualifiers() const;
782
783 /// Determine whether this particular QualType instance has any
784 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
785 /// instance.
786 bool hasLocalNonFastQualifiers() const {
787 return Value.getPointer().is<const ExtQuals*>();
788 }
789
790 /// Retrieve the set of qualifiers local to this particular QualType
791 /// instance, not including any qualifiers acquired through typedefs or
792 /// other sugar.
793 Qualifiers getLocalQualifiers() const;
794
795 /// Retrieve the set of qualifiers applied to this type.
796 Qualifiers getQualifiers() const;
797
798 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
799 /// local to this particular QualType instance, not including any qualifiers
800 /// acquired through typedefs or other sugar.
801 unsigned getLocalCVRQualifiers() const {
802 return getLocalFastQualifiers();
803 }
804
805 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
806 /// applied to this type.
807 unsigned getCVRQualifiers() const;
808
809 bool isConstant(const ASTContext& Ctx) const {
810 return QualType::isConstant(*this, Ctx);
811 }
812
813 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
814 bool isPODType(const ASTContext &Context) const;
815
816 /// Return true if this is a POD type according to the rules of the C++98
817 /// standard, regardless of the current compilation's language.
818 bool isCXX98PODType(const ASTContext &Context) const;
819
820 /// Return true if this is a POD type according to the more relaxed rules
821 /// of the C++11 standard, regardless of the current compilation's language.
822 /// (C++0x [basic.types]p9). Note that, unlike
823 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
824 bool isCXX11PODType(const ASTContext &Context) const;
825
826 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
827 bool isTrivialType(const ASTContext &Context) const;
828
829 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
830 bool isTriviallyCopyableType(const ASTContext &Context) const;
831
832 /// Return true if this is a trivially relocatable type.
833 bool isTriviallyRelocatableType(const ASTContext &Context) const;
834
835 /// Returns true if it is a class and it might be dynamic.
836 bool mayBeDynamicClass() const;
837
838 /// Returns true if it is not a class or if the class might not be dynamic.
839 bool mayBeNotDynamicClass() const;
840
841 // Don't promise in the API that anything besides 'const' can be
842 // easily added.
843
844 /// Add the `const` type qualifier to this QualType.
845 void addConst() {
846 addFastQualifiers(Qualifiers::Const);
847 }
848 QualType withConst() const {
849 return withFastQualifiers(Qualifiers::Const);
850 }
851
852 /// Add the `volatile` type qualifier to this QualType.
853 void addVolatile() {
854 addFastQualifiers(Qualifiers::Volatile);
855 }
856 QualType withVolatile() const {
857 return withFastQualifiers(Qualifiers::Volatile);
858 }
859
860 /// Add the `restrict` qualifier to this QualType.
861 void addRestrict() {
862 addFastQualifiers(Qualifiers::Restrict);
863 }
864 QualType withRestrict() const {
865 return withFastQualifiers(Qualifiers::Restrict);
866 }
867
868 QualType withCVRQualifiers(unsigned CVR) const {
869 return withFastQualifiers(CVR);
870 }
871
872 void addFastQualifiers(unsigned TQs) {
873 assert(!(TQs & ~Qualifiers::FastMask)(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 874, __extension__ __PRETTY_FUNCTION__
))
874 && "non-fast qualifier bits set in mask!")(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "clang/include/clang/AST/Type.h", 874, __extension__ __PRETTY_FUNCTION__
))
;
875 Value.setInt(Value.getInt() | TQs);
876 }
877
878 void removeLocalConst();
879 void removeLocalVolatile();
880 void removeLocalRestrict();
881 void removeLocalCVRQualifiers(unsigned Mask);
882
883 void removeLocalFastQualifiers() { Value.setInt(0); }
884 void removeLocalFastQualifiers(unsigned Mask) {
885 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")(static_cast <bool> (!(Mask & ~Qualifiers::FastMask
) && "mask has non-fast qualifiers") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "clang/include/clang/AST/Type.h", 885, __extension__ __PRETTY_FUNCTION__
))
;
886 Value.setInt(Value.getInt() & ~Mask);
887 }
888
889 // Creates a type with the given qualifiers in addition to any
890 // qualifiers already on this type.
891 QualType withFastQualifiers(unsigned TQs) const {
892 QualType T = *this;
893 T.addFastQualifiers(TQs);
894 return T;
895 }
896
897 // Creates a type with exactly the given fast qualifiers, removing
898 // any existing fast qualifiers.
899 QualType withExactLocalFastQualifiers(unsigned TQs) const {
900 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
901 }
902
903 // Removes fast qualifiers, but leaves any extended qualifiers in place.
904 QualType withoutLocalFastQualifiers() const {
905 QualType T = *this;
906 T.removeLocalFastQualifiers();
907 return T;
908 }
909
910 QualType getCanonicalType() const;
911
912 /// Return this type with all of the instance-specific qualifiers
913 /// removed, but without removing any qualifiers that may have been applied
914 /// through typedefs.
915 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
916
917 /// Retrieve the unqualified variant of the given type,
918 /// removing as little sugar as possible.
919 ///
920 /// This routine looks through various kinds of sugar to find the
921 /// least-desugared type that is unqualified. For example, given:
922 ///
923 /// \code
924 /// typedef int Integer;
925 /// typedef const Integer CInteger;
926 /// typedef CInteger DifferenceType;
927 /// \endcode
928 ///
929 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
930 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
931 ///
932 /// The resulting type might still be qualified if it's sugar for an array
933 /// type. To strip qualifiers even from within a sugared array type, use
934 /// ASTContext::getUnqualifiedArrayType.
935 inline QualType getUnqualifiedType() const;
936
937 /// Retrieve the unqualified variant of the given type, removing as little
938 /// sugar as possible.
939 ///
940 /// Like getUnqualifiedType(), but also returns the set of
941 /// qualifiers that were built up.
942 ///
943 /// The resulting type might still be qualified if it's sugar for an array
944 /// type. To strip qualifiers even from within a sugared array type, use
945 /// ASTContext::getUnqualifiedArrayType.
946 inline SplitQualType getSplitUnqualifiedType() const;
947
948 /// Determine whether this type is more qualified than the other
949 /// given type, requiring exact equality for non-CVR qualifiers.
950 bool isMoreQualifiedThan(QualType Other) const;
951
952 /// Determine whether this type is at least as qualified as the other
953 /// given type, requiring exact equality for non-CVR qualifiers.
954 bool isAtLeastAsQualifiedAs(QualType Other) const;
955
956 QualType getNonReferenceType() const;
957
958 /// Determine the type of a (typically non-lvalue) expression with the
959 /// specified result type.
960 ///
961 /// This routine should be used for expressions for which the return type is
962 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
963 /// an lvalue. It removes a top-level reference (since there are no
964 /// expressions of reference type) and deletes top-level cvr-qualifiers
965 /// from non-class types (in C++) or all types (in C).
966 QualType getNonLValueExprType(const ASTContext &Context) const;
967
968 /// Remove an outer pack expansion type (if any) from this type. Used as part
969 /// of converting the type of a declaration to the type of an expression that
970 /// references that expression. It's meaningless for an expression to have a
971 /// pack expansion type.
972 QualType getNonPackExpansionType() const;
973
974 /// Return the specified type with any "sugar" removed from
975 /// the type. This takes off typedefs, typeof's etc. If the outer level of
976 /// the type is already concrete, it returns it unmodified. This is similar
977 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
978 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
979 /// concrete.
980 ///
981 /// Qualifiers are left in place.
982 QualType getDesugaredType(const ASTContext &Context) const {
983 return getDesugaredType(*this, Context);
984 }
985
986 SplitQualType getSplitDesugaredType() const {
987 return getSplitDesugaredType(*this);
988 }
989
990 /// Return the specified type with one level of "sugar" removed from
991 /// the type.
992 ///
993 /// This routine takes off the first typedef, typeof, etc. If the outer level
994 /// of the type is already concrete, it returns it unmodified.
995 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
996 return getSingleStepDesugaredTypeImpl(*this, Context);
997 }
998
999 /// Returns the specified type after dropping any
1000 /// outer-level parentheses.
1001 QualType IgnoreParens() const {
1002 if (isa<ParenType>(*this))
1003 return QualType::IgnoreParens(*this);
1004 return *this;
1005 }
1006
1007 /// Indicate whether the specified types and qualifiers are identical.
1008 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1009 return LHS.Value == RHS.Value;
1010 }
1011 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1012 return LHS.Value != RHS.Value;
1013 }
1014 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1015 return LHS.Value < RHS.Value;
1016 }
1017
1018 static std::string getAsString(SplitQualType split,
1019 const PrintingPolicy &Policy) {
1020 return getAsString(split.Ty, split.Quals, Policy);
1021 }
1022 static std::string getAsString(const Type *ty, Qualifiers qs,
1023 const PrintingPolicy &Policy);
1024
1025 std::string getAsString() const;
1026 std::string getAsString(const PrintingPolicy &Policy) const;
1027
1028 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1029 const Twine &PlaceHolder = Twine(),
1030 unsigned Indentation = 0) const;
1031
1032 static void print(SplitQualType split, raw_ostream &OS,
1033 const PrintingPolicy &policy, const Twine &PlaceHolder,
1034 unsigned Indentation = 0) {
1035 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1036 }
1037
1038 static void print(const Type *ty, Qualifiers qs,
1039 raw_ostream &OS, const PrintingPolicy &policy,
1040 const Twine &PlaceHolder,
1041 unsigned Indentation = 0);
1042
1043 void getAsStringInternal(std::string &Str,
1044 const PrintingPolicy &Policy) const;
1045
1046 static void getAsStringInternal(SplitQualType split, std::string &out,
1047 const PrintingPolicy &policy) {
1048 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1049 }
1050
1051 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1052 std::string &out,
1053 const PrintingPolicy &policy);
1054
1055 class StreamedQualTypeHelper {
1056 const QualType &T;
1057 const PrintingPolicy &Policy;
1058 const Twine &PlaceHolder;
1059 unsigned Indentation;
1060
1061 public:
1062 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1063 const Twine &PlaceHolder, unsigned Indentation)
1064 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1065 Indentation(Indentation) {}
1066
1067 friend raw_ostream &operator<<(raw_ostream &OS,
1068 const StreamedQualTypeHelper &SQT) {
1069 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1070 return OS;
1071 }
1072 };
1073
1074 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1075 const Twine &PlaceHolder = Twine(),
1076 unsigned Indentation = 0) const {
1077 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1078 }
1079
1080 void dump(const char *s) const;
1081 void dump() const;
1082 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1083
1084 void Profile(llvm::FoldingSetNodeID &ID) const {
1085 ID.AddPointer(getAsOpaquePtr());
1086 }
1087
1088 /// Check if this type has any address space qualifier.
1089 inline bool hasAddressSpace() const;
1090
1091 /// Return the address space of this type.
1092 inline LangAS getAddressSpace() const;
1093
1094 /// Returns true if address space qualifiers overlap with T address space
1095 /// qualifiers.
1096 /// OpenCL C defines conversion rules for pointers to different address spaces
1097 /// and notion of overlapping address spaces.
1098 /// CL1.1 or CL1.2:
1099 /// address spaces overlap iff they are they same.
1100 /// OpenCL C v2.0 s6.5.5 adds:
1101 /// __generic overlaps with any address space except for __constant.
1102 bool isAddressSpaceOverlapping(QualType T) const {
1103 Qualifiers Q = getQualifiers();
1104 Qualifiers TQ = T.getQualifiers();
1105 // Address spaces overlap if at least one of them is a superset of another
1106 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1107 }
1108
1109 /// Returns gc attribute of this type.
1110 inline Qualifiers::GC getObjCGCAttr() const;
1111
1112 /// true when Type is objc's weak.
1113 bool isObjCGCWeak() const {
1114 return getObjCGCAttr() == Qualifiers::Weak;
1115 }
1116
1117 /// true when Type is objc's strong.
1118 bool isObjCGCStrong() const {
1119 return getObjCGCAttr() == Qualifiers::Strong;
1120 }
1121
1122 /// Returns lifetime attribute of this type.
1123 Qualifiers::ObjCLifetime getObjCLifetime() const {
1124 return getQualifiers().getObjCLifetime();
1125 }
1126
1127 bool hasNonTrivialObjCLifetime() const {
1128 return getQualifiers().hasNonTrivialObjCLifetime();
1129 }
1130
1131 bool hasStrongOrWeakObjCLifetime() const {
1132 return getQualifiers().hasStrongOrWeakObjCLifetime();
1133 }
1134
1135 // true when Type is objc's weak and weak is enabled but ARC isn't.
1136 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1137
1138 enum PrimitiveDefaultInitializeKind {
1139 /// The type does not fall into any of the following categories. Note that
1140 /// this case is zero-valued so that values of this enum can be used as a
1141 /// boolean condition for non-triviality.
1142 PDIK_Trivial,
1143
1144 /// The type is an Objective-C retainable pointer type that is qualified
1145 /// with the ARC __strong qualifier.
1146 PDIK_ARCStrong,
1147
1148 /// The type is an Objective-C retainable pointer type that is qualified
1149 /// with the ARC __weak qualifier.
1150 PDIK_ARCWeak,
1151
1152 /// The type is a struct containing a field whose type is not PCK_Trivial.
1153 PDIK_Struct
1154 };
1155
1156 /// Functions to query basic properties of non-trivial C struct types.
1157
1158 /// Check if this is a non-trivial type that would cause a C struct
1159 /// transitively containing this type to be non-trivial to default initialize
1160 /// and return the kind.
1161 PrimitiveDefaultInitializeKind
1162 isNonTrivialToPrimitiveDefaultInitialize() const;
1163
1164 enum PrimitiveCopyKind {
1165 /// The type does not fall into any of the following categories. Note that
1166 /// this case is zero-valued so that values of this enum can be used as a
1167 /// boolean condition for non-triviality.
1168 PCK_Trivial,
1169
1170 /// The type would be trivial except that it is volatile-qualified. Types
1171 /// that fall into one of the other non-trivial cases may additionally be
1172 /// volatile-qualified.
1173 PCK_VolatileTrivial,
1174
1175 /// The type is an Objective-C retainable pointer type that is qualified
1176 /// with the ARC __strong qualifier.
1177 PCK_ARCStrong,
1178
1179 /// The type is an Objective-C retainable pointer type that is qualified
1180 /// with the ARC __weak qualifier.
1181 PCK_ARCWeak,
1182
1183 /// The type is a struct containing a field whose type is neither
1184 /// PCK_Trivial nor PCK_VolatileTrivial.
1185 /// Note that a C++ struct type does not necessarily match this; C++ copying
1186 /// semantics are too complex to express here, in part because they depend
1187 /// on the exact constructor or assignment operator that is chosen by
1188 /// overload resolution to do the copy.
1189 PCK_Struct
1190 };
1191
1192 /// Check if this is a non-trivial type that would cause a C struct
1193 /// transitively containing this type to be non-trivial to copy and return the
1194 /// kind.
1195 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1196
1197 /// Check if this is a non-trivial type that would cause a C struct
1198 /// transitively containing this type to be non-trivial to destructively
1199 /// move and return the kind. Destructive move in this context is a C++-style
1200 /// move in which the source object is placed in a valid but unspecified state
1201 /// after it is moved, as opposed to a truly destructive move in which the
1202 /// source object is placed in an uninitialized state.
1203 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1204
1205 enum DestructionKind {
1206 DK_none,
1207 DK_cxx_destructor,
1208 DK_objc_strong_lifetime,
1209 DK_objc_weak_lifetime,
1210 DK_nontrivial_c_struct
1211 };
1212
1213 /// Returns a nonzero value if objects of this type require
1214 /// non-trivial work to clean up after. Non-zero because it's
1215 /// conceivable that qualifiers (objc_gc(weak)?) could make
1216 /// something require destruction.
1217 DestructionKind isDestructedType() const {
1218 return isDestructedTypeImpl(*this);
1219 }
1220
1221 /// Check if this is or contains a C union that is non-trivial to
1222 /// default-initialize, which is a union that has a member that is non-trivial
1223 /// to default-initialize. If this returns true,
1224 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1225 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1226
1227 /// Check if this is or contains a C union that is non-trivial to destruct,
1228 /// which is a union that has a member that is non-trivial to destruct. If
1229 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1230 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1231
1232 /// Check if this is or contains a C union that is non-trivial to copy, which
1233 /// is a union that has a member that is non-trivial to copy. If this returns
1234 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1235 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1236
1237 /// Determine whether expressions of the given type are forbidden
1238 /// from being lvalues in C.
1239 ///
1240 /// The expression types that are forbidden to be lvalues are:
1241 /// - 'void', but not qualified void
1242 /// - function types
1243 ///
1244 /// The exact rule here is C99 6.3.2.1:
1245 /// An lvalue is an expression with an object type or an incomplete
1246 /// type other than void.
1247 bool isCForbiddenLValueType() const;
1248
1249 /// Substitute type arguments for the Objective-C type parameters used in the
1250 /// subject type.
1251 ///
1252 /// \param ctx ASTContext in which the type exists.
1253 ///
1254 /// \param typeArgs The type arguments that will be substituted for the
1255 /// Objective-C type parameters in the subject type, which are generally
1256 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1257 /// parameters will be replaced with their bounds or id/Class, as appropriate
1258 /// for the context.
1259 ///
1260 /// \param context The context in which the subject type was written.
1261 ///
1262 /// \returns the resulting type.
1263 QualType substObjCTypeArgs(ASTContext &ctx,
1264 ArrayRef<QualType> typeArgs,
1265 ObjCSubstitutionContext context) const;
1266
1267 /// Substitute type arguments from an object type for the Objective-C type
1268 /// parameters used in the subject type.
1269 ///
1270 /// This operation combines the computation of type arguments for
1271 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1272 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1273 /// callers that need to perform a single substitution in isolation.
1274 ///
1275 /// \param objectType The type of the object whose member type we're
1276 /// substituting into. For example, this might be the receiver of a message
1277 /// or the base of a property access.
1278 ///
1279 /// \param dc The declaration context from which the subject type was
1280 /// retrieved, which indicates (for example) which type parameters should
1281 /// be substituted.
1282 ///
1283 /// \param context The context in which the subject type was written.
1284 ///
1285 /// \returns the subject type after replacing all of the Objective-C type
1286 /// parameters with their corresponding arguments.
1287 QualType substObjCMemberType(QualType objectType,
1288 const DeclContext *dc,
1289 ObjCSubstitutionContext context) const;
1290
1291 /// Strip Objective-C "__kindof" types from the given type.
1292 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1293
1294 /// Remove all qualifiers including _Atomic.
1295 QualType getAtomicUnqualifiedType() const;
1296
1297private:
1298 // These methods are implemented in a separate translation unit;
1299 // "static"-ize them to avoid creating temporary QualTypes in the
1300 // caller.
1301 static bool isConstant(QualType T, const ASTContext& Ctx);
1302 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1303 static SplitQualType getSplitDesugaredType(QualType T);
1304 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1305 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1306 const ASTContext &C);
1307 static QualType IgnoreParens(QualType T);
1308 static DestructionKind isDestructedTypeImpl(QualType type);
1309
1310 /// Check if \param RD is or contains a non-trivial C union.
1311 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1312 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1313 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1314};
1315
1316} // namespace clang
1317
1318namespace llvm {
1319
1320/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1321/// to a specific Type class.
1322template<> struct simplify_type< ::clang::QualType> {
1323 using SimpleType = const ::clang::Type *;
1324
1325 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1326 return Val.getTypePtr();
1327 }
1328};
1329
1330// Teach SmallPtrSet that QualType is "basically a pointer".
1331template<>
1332struct PointerLikeTypeTraits<clang::QualType> {
1333 static inline void *getAsVoidPointer(clang::QualType P) {
1334 return P.getAsOpaquePtr();
1335 }
1336
1337 static inline clang::QualType getFromVoidPointer(void *P) {
1338 return clang::QualType::getFromOpaquePtr(P);
1339 }
1340
1341 // Various qualifiers go in low bits.
1342 static constexpr int NumLowBitsAvailable = 0;
1343};
1344
1345} // namespace llvm
1346
1347namespace clang {
1348
1349/// Base class that is common to both the \c ExtQuals and \c Type
1350/// classes, which allows \c QualType to access the common fields between the
1351/// two.
1352class ExtQualsTypeCommonBase {
1353 friend class ExtQuals;
1354 friend class QualType;
1355 friend class Type;
1356
1357 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1358 /// a self-referential pointer (for \c Type).
1359 ///
1360 /// This pointer allows an efficient mapping from a QualType to its
1361 /// underlying type pointer.
1362 const Type *const BaseType;
1363
1364 /// The canonical type of this type. A QualType.
1365 QualType CanonicalType;
1366
1367 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1368 : BaseType(baseType), CanonicalType(canon) {}
1369};
1370
1371/// We can encode up to four bits in the low bits of a
1372/// type pointer, but there are many more type qualifiers that we want
1373/// to be able to apply to an arbitrary type. Therefore we have this
1374/// struct, intended to be heap-allocated and used by QualType to
1375/// store qualifiers.
1376///
1377/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1378/// in three low bits on the QualType pointer; a fourth bit records whether
1379/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1380/// Objective-C GC attributes) are much more rare.
1381class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1382 // NOTE: changing the fast qualifiers should be straightforward as
1383 // long as you don't make 'const' non-fast.
1384 // 1. Qualifiers:
1385 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1386 // Fast qualifiers must occupy the low-order bits.
1387 // b) Update Qualifiers::FastWidth and FastMask.
1388 // 2. QualType:
1389 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1390 // b) Update remove{Volatile,Restrict}, defined near the end of
1391 // this header.
1392 // 3. ASTContext:
1393 // a) Update get{Volatile,Restrict}Type.
1394
1395 /// The immutable set of qualifiers applied by this node. Always contains
1396 /// extended qualifiers.
1397 Qualifiers Quals;
1398
1399 ExtQuals *this_() { return this; }
1400
1401public:
1402 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1403 : ExtQualsTypeCommonBase(baseType,
1404 canon.isNull() ? QualType(this_(), 0) : canon),
1405 Quals(quals) {
1406 assert(Quals.hasNonFastQualifiers()(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1407, __extension__ __PRETTY_FUNCTION__
))
1407 && "ExtQuals created with no fast qualifiers")(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1407, __extension__ __PRETTY_FUNCTION__
))
;
1408 assert(!Quals.hasFastQualifiers()(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1409, __extension__ __PRETTY_FUNCTION__
))
1409 && "ExtQuals created with fast qualifiers")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "clang/include/clang/AST/Type.h", 1409, __extension__ __PRETTY_FUNCTION__
))
;
1410 }
1411
1412 Qualifiers getQualifiers() const { return Quals; }
1413
1414 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1415 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1416
1417 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1418 Qualifiers::ObjCLifetime getObjCLifetime() const {
1419 return Quals.getObjCLifetime();
1420 }
1421
1422 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1423 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1424
1425 const Type *getBaseType() const { return BaseType; }
1426
1427public:
1428 void Profile(llvm::FoldingSetNodeID &ID) const {
1429 Profile(ID, getBaseType(), Quals);
1430 }
1431
1432 static void Profile(llvm::FoldingSetNodeID &ID,
1433 const Type *BaseType,
1434 Qualifiers Quals) {
1435 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"fast qualifiers in ExtQuals hash!") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "clang/include/clang/AST/Type.h", 1435, __extension__ __PRETTY_FUNCTION__
))
;
1436 ID.AddPointer(BaseType);
1437 Quals.Profile(ID);
1438 }
1439};
1440
1441/// The kind of C++11 ref-qualifier associated with a function type.
1442/// This determines whether a member function's "this" object can be an
1443/// lvalue, rvalue, or neither.
1444enum RefQualifierKind {
1445 /// No ref-qualifier was provided.
1446 RQ_None = 0,
1447
1448 /// An lvalue ref-qualifier was provided (\c &).
1449 RQ_LValue,
1450
1451 /// An rvalue ref-qualifier was provided (\c &&).
1452 RQ_RValue
1453};
1454
1455/// Which keyword(s) were used to create an AutoType.
1456enum class AutoTypeKeyword {
1457 /// auto
1458 Auto,
1459
1460 /// decltype(auto)
1461 DecltypeAuto,
1462
1463 /// __auto_type (GNU extension)
1464 GNUAutoType
1465};
1466
1467/// The base class of the type hierarchy.
1468///
1469/// A central concept with types is that each type always has a canonical
1470/// type. A canonical type is the type with any typedef names stripped out
1471/// of it or the types it references. For example, consider:
1472///
1473/// typedef int foo;
1474/// typedef foo* bar;
1475/// 'int *' 'foo *' 'bar'
1476///
1477/// There will be a Type object created for 'int'. Since int is canonical, its
1478/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1479/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1480/// there is a PointerType that represents 'int*', which, like 'int', is
1481/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1482/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1483/// is also 'int*'.
1484///
1485/// Non-canonical types are useful for emitting diagnostics, without losing
1486/// information about typedefs being used. Canonical types are useful for type
1487/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1488/// about whether something has a particular form (e.g. is a function type),
1489/// because they implicitly, recursively, strip all typedefs out of a type.
1490///
1491/// Types, once created, are immutable.
1492///
1493class alignas(8) Type : public ExtQualsTypeCommonBase {
1494public:
1495 enum TypeClass {
1496#define TYPE(Class, Base) Class,
1497#define LAST_TYPE(Class) TypeLast = Class
1498#define ABSTRACT_TYPE(Class, Base)
1499#include "clang/AST/TypeNodes.inc"
1500 };
1501
1502private:
1503 /// Bitfields required by the Type class.
1504 class TypeBitfields {
1505 friend class Type;
1506 template <class T> friend class TypePropertyCache;
1507
1508 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1509 unsigned TC : 8;
1510
1511 /// Store information on the type dependency.
1512 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1513
1514 /// True if the cache (i.e. the bitfields here starting with
1515 /// 'Cache') is valid.
1516 mutable unsigned CacheValid : 1;
1517
1518 /// Linkage of this type.
1519 mutable unsigned CachedLinkage : 3;
1520
1521 /// Whether this type involves and local or unnamed types.
1522 mutable unsigned CachedLocalOrUnnamed : 1;
1523
1524 /// Whether this type comes from an AST file.
1525 mutable unsigned FromAST : 1;
1526
1527 bool isCacheValid() const {
1528 return CacheValid;
1529 }
1530
1531 Linkage getLinkage() const {
1532 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1532, __extension__ __PRETTY_FUNCTION__
))
;
1533 return static_cast<Linkage>(CachedLinkage);
1534 }
1535
1536 bool hasLocalOrUnnamedType() const {
1537 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "clang/include/clang/AST/Type.h", 1537, __extension__ __PRETTY_FUNCTION__
))
;
1538 return CachedLocalOrUnnamed;
1539 }
1540 };
1541 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1542
1543protected:
1544 // These classes allow subclasses to somewhat cleanly pack bitfields
1545 // into Type.
1546
1547 class ArrayTypeBitfields {
1548 friend class ArrayType;
1549
1550 unsigned : NumTypeBits;
1551
1552 /// CVR qualifiers from declarations like
1553 /// 'int X[static restrict 4]'. For function parameters only.
1554 unsigned IndexTypeQuals : 3;
1555
1556 /// Storage class qualifiers from declarations like
1557 /// 'int X[static restrict 4]'. For function parameters only.
1558 /// Actually an ArrayType::ArraySizeModifier.
1559 unsigned SizeModifier : 3;
1560 };
1561
1562 class ConstantArrayTypeBitfields {
1563 friend class ConstantArrayType;
1564
1565 unsigned : NumTypeBits + 3 + 3;
1566
1567 /// Whether we have a stored size expression.
1568 unsigned HasStoredSizeExpr : 1;
1569 };
1570
1571 class BuiltinTypeBitfields {
1572 friend class BuiltinType;
1573
1574 unsigned : NumTypeBits;
1575
1576 /// The kind (BuiltinType::Kind) of builtin type this is.
1577 unsigned Kind : 8;
1578 };
1579
1580 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1581 /// Only common bits are stored here. Additional uncommon bits are stored
1582 /// in a trailing object after FunctionProtoType.
1583 class FunctionTypeBitfields {
1584 friend class FunctionProtoType;
1585 friend class FunctionType;
1586
1587 unsigned : NumTypeBits;
1588
1589 /// Extra information which affects how the function is called, like
1590 /// regparm and the calling convention.
1591 unsigned ExtInfo : 13;
1592
1593 /// The ref-qualifier associated with a \c FunctionProtoType.
1594 ///
1595 /// This is a value of type \c RefQualifierKind.
1596 unsigned RefQualifier : 2;
1597
1598 /// Used only by FunctionProtoType, put here to pack with the
1599 /// other bitfields.
1600 /// The qualifiers are part of FunctionProtoType because...
1601 ///
1602 /// C++ 8.3.5p4: The return type, the parameter type list and the
1603 /// cv-qualifier-seq, [...], are part of the function type.
1604 unsigned FastTypeQuals : Qualifiers::FastWidth;
1605 /// Whether this function has extended Qualifiers.
1606 unsigned HasExtQuals : 1;
1607
1608 /// The number of parameters this function has, not counting '...'.
1609 /// According to [implimits] 8 bits should be enough here but this is
1610 /// somewhat easy to exceed with metaprogramming and so we would like to
1611 /// keep NumParams as wide as reasonably possible.
1612 unsigned NumParams : 16;
1613
1614 /// The type of exception specification this function has.
1615 unsigned ExceptionSpecType : 4;
1616
1617 /// Whether this function has extended parameter information.
1618 unsigned HasExtParameterInfos : 1;
1619
1620 /// Whether the function is variadic.
1621 unsigned Variadic : 1;
1622
1623 /// Whether this function has a trailing return type.
1624 unsigned HasTrailingReturn : 1;
1625 };
1626
1627 class ObjCObjectTypeBitfields {
1628 friend class ObjCObjectType;
1629
1630 unsigned : NumTypeBits;
1631
1632 /// The number of type arguments stored directly on this object type.
1633 unsigned NumTypeArgs : 7;
1634
1635 /// The number of protocols stored directly on this object type.
1636 unsigned NumProtocols : 6;
1637
1638 /// Whether this is a "kindof" type.
1639 unsigned IsKindOf : 1;
1640 };
1641
1642 class ReferenceTypeBitfields {
1643 friend class ReferenceType;
1644
1645 unsigned : NumTypeBits;
1646
1647 /// True if the type was originally spelled with an lvalue sigil.
1648 /// This is never true of rvalue references but can also be false
1649 /// on lvalue references because of C++0x [dcl.typedef]p9,
1650 /// as follows:
1651 ///
1652 /// typedef int &ref; // lvalue, spelled lvalue
1653 /// typedef int &&rvref; // rvalue
1654 /// ref &a; // lvalue, inner ref, spelled lvalue
1655 /// ref &&a; // lvalue, inner ref
1656 /// rvref &a; // lvalue, inner ref, spelled lvalue
1657 /// rvref &&a; // rvalue, inner ref
1658 unsigned SpelledAsLValue : 1;
1659
1660 /// True if the inner type is a reference type. This only happens
1661 /// in non-canonical forms.
1662 unsigned InnerRef : 1;
1663 };
1664
1665 class TypeWithKeywordBitfields {
1666 friend class TypeWithKeyword;
1667
1668 unsigned : NumTypeBits;
1669
1670 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1671 unsigned Keyword : 8;
1672 };
1673
1674 enum { NumTypeWithKeywordBits = 8 };
1675
1676 class ElaboratedTypeBitfields {
1677 friend class ElaboratedType;
1678
1679 unsigned : NumTypeBits;
1680 unsigned : NumTypeWithKeywordBits;
1681
1682 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1683 unsigned HasOwnedTagDecl : 1;
1684 };
1685
1686 class VectorTypeBitfields {
1687 friend class VectorType;
1688 friend class DependentVectorType;
1689
1690 unsigned : NumTypeBits;
1691
1692 /// The kind of vector, either a generic vector type or some
1693 /// target-specific vector type such as for AltiVec or Neon.
1694 unsigned VecKind : 3;
1695 /// The number of elements in the vector.
1696 uint32_t NumElements;
1697 };
1698
1699 class AttributedTypeBitfields {
1700 friend class AttributedType;
1701
1702 unsigned : NumTypeBits;
1703
1704 /// An AttributedType::Kind
1705 unsigned AttrKind : 32 - NumTypeBits;
1706 };
1707
1708 class AutoTypeBitfields {
1709 friend class AutoType;
1710
1711 unsigned : NumTypeBits;
1712
1713 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1714 /// or '__auto_type'? AutoTypeKeyword value.
1715 unsigned Keyword : 2;
1716
1717 /// The number of template arguments in the type-constraints, which is
1718 /// expected to be able to hold at least 1024 according to [implimits].
1719 /// However as this limit is somewhat easy to hit with template
1720 /// metaprogramming we'd prefer to keep it as large as possible.
1721 /// At the moment it has been left as a non-bitfield since this type
1722 /// safely fits in 64 bits as an unsigned, so there is no reason to
1723 /// introduce the performance impact of a bitfield.
1724 unsigned NumArgs;
1725 };
1726
1727 class SubstTemplateTypeParmPackTypeBitfields {
1728 friend class SubstTemplateTypeParmPackType;
1729
1730 unsigned : NumTypeBits;
1731
1732 /// The number of template arguments in \c Arguments, which is
1733 /// expected to be able to hold at least 1024 according to [implimits].
1734 /// However as this limit is somewhat easy to hit with template
1735 /// metaprogramming we'd prefer to keep it as large as possible.
1736 /// At the moment it has been left as a non-bitfield since this type
1737 /// safely fits in 64 bits as an unsigned, so there is no reason to
1738 /// introduce the performance impact of a bitfield.
1739 unsigned NumArgs;
1740 };
1741
1742 class TemplateSpecializationTypeBitfields {
1743 friend class TemplateSpecializationType;
1744
1745 unsigned : NumTypeBits;
1746
1747 /// Whether this template specialization type is a substituted type alias.
1748 unsigned TypeAlias : 1;
1749
1750 /// The number of template arguments named in this class template
1751 /// specialization, which is expected to be able to hold at least 1024
1752 /// according to [implimits]. However, as this limit is somewhat easy to
1753 /// hit with template metaprogramming we'd prefer to keep it as large
1754 /// as possible. At the moment it has been left as a non-bitfield since
1755 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1756 /// to introduce the performance impact of a bitfield.
1757 unsigned NumArgs;
1758 };
1759
1760 class DependentTemplateSpecializationTypeBitfields {
1761 friend class DependentTemplateSpecializationType;
1762
1763 unsigned : NumTypeBits;
1764 unsigned : NumTypeWithKeywordBits;
1765
1766 /// The number of template arguments named in this class template
1767 /// specialization, which is expected to be able to hold at least 1024
1768 /// according to [implimits]. However, as this limit is somewhat easy to
1769 /// hit with template metaprogramming we'd prefer to keep it as large
1770 /// as possible. At the moment it has been left as a non-bitfield since
1771 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1772 /// to introduce the performance impact of a bitfield.
1773 unsigned NumArgs;
1774 };
1775
1776 class PackExpansionTypeBitfields {
1777 friend class PackExpansionType;
1778
1779 unsigned : NumTypeBits;
1780
1781 /// The number of expansions that this pack expansion will
1782 /// generate when substituted (+1), which is expected to be able to
1783 /// hold at least 1024 according to [implimits]. However, as this limit
1784 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1785 /// keep it as large as possible. At the moment it has been left as a
1786 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1787 /// there is no reason to introduce the performance impact of a bitfield.
1788 ///
1789 /// This field will only have a non-zero value when some of the parameter
1790 /// packs that occur within the pattern have been substituted but others
1791 /// have not.
1792 unsigned NumExpansions;
1793 };
1794
1795 union {
1796 TypeBitfields TypeBits;
1797 ArrayTypeBitfields ArrayTypeBits;
1798 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1799 AttributedTypeBitfields AttributedTypeBits;
1800 AutoTypeBitfields AutoTypeBits;
1801 BuiltinTypeBitfields BuiltinTypeBits;
1802 FunctionTypeBitfields FunctionTypeBits;
1803 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1804 ReferenceTypeBitfields ReferenceTypeBits;
1805 TypeWithKeywordBitfields TypeWithKeywordBits;
1806 ElaboratedTypeBitfields ElaboratedTypeBits;
1807 VectorTypeBitfields VectorTypeBits;
1808 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1809 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1810 DependentTemplateSpecializationTypeBitfields
1811 DependentTemplateSpecializationTypeBits;
1812 PackExpansionTypeBitfields PackExpansionTypeBits;
1813 };
1814
1815private:
1816 template <class T> friend class TypePropertyCache;
1817
1818 /// Set whether this type comes from an AST file.
1819 void setFromAST(bool V = true) const {
1820 TypeBits.FromAST = V;
1821 }
1822
1823protected:
1824 friend class ASTContext;
1825
1826 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1827 : ExtQualsTypeCommonBase(this,
1828 canon.isNull() ? QualType(this_(), 0) : canon) {
1829 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1830 "changing bitfields changed sizeof(Type)!");
1831 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1832 "Insufficient alignment!");
1833 TypeBits.TC = tc;
1834 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1835 TypeBits.CacheValid = false;
1836 TypeBits.CachedLocalOrUnnamed = false;
1837 TypeBits.CachedLinkage = NoLinkage;
1838 TypeBits.FromAST = false;
1839 }
1840
1841 // silence VC++ warning C4355: 'this' : used in base member initializer list
1842 Type *this_() { return this; }
1843
1844 void setDependence(TypeDependence D) {
1845 TypeBits.Dependence = static_cast<unsigned>(D);
1846 }
1847
1848 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1849
1850public:
1851 friend class ASTReader;
1852 friend class ASTWriter;
1853 template <class T> friend class serialization::AbstractTypeReader;
1854 template <class T> friend class serialization::AbstractTypeWriter;
1855
1856 Type(const Type &) = delete;
1857 Type(Type &&) = delete;
1858 Type &operator=(const Type &) = delete;
1859 Type &operator=(Type &&) = delete;
1860
1861 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1862
1863 /// Whether this type comes from an AST file.
1864 bool isFromAST() const { return TypeBits.FromAST; }
1865
1866 /// Whether this type is or contains an unexpanded parameter
1867 /// pack, used to support C++0x variadic templates.
1868 ///
1869 /// A type that contains a parameter pack shall be expanded by the
1870 /// ellipsis operator at some point. For example, the typedef in the
1871 /// following example contains an unexpanded parameter pack 'T':
1872 ///
1873 /// \code
1874 /// template<typename ...T>
1875 /// struct X {
1876 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1877 /// };
1878 /// \endcode
1879 ///
1880 /// Note that this routine does not specify which
1881 bool containsUnexpandedParameterPack() const {
1882 return getDependence() & TypeDependence::UnexpandedPack;
1883 }
1884
1885 /// Determines if this type would be canonical if it had no further
1886 /// qualification.
1887 bool isCanonicalUnqualified() const {
1888 return CanonicalType == QualType(this, 0);
1889 }
1890
1891 /// Pull a single level of sugar off of this locally-unqualified type.
1892 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1893 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1894 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1895
1896 /// As an extension, we classify types as one of "sized" or "sizeless";
1897 /// every type is one or the other. Standard types are all sized;
1898 /// sizeless types are purely an extension.
1899 ///
1900 /// Sizeless types contain data with no specified size, alignment,
1901 /// or layout.
1902 bool isSizelessType() const;
1903 bool isSizelessBuiltinType() const;
1904
1905 /// Determines if this is a sizeless type supported by the
1906 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1907 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1908 bool isVLSTBuiltinType() const;
1909
1910 /// Returns the representative type for the element of an SVE builtin type.
1911 /// This is used to represent fixed-length SVE vectors created with the
1912 /// 'arm_sve_vector_bits' type attribute as VectorType.
1913 QualType getSveEltType(const ASTContext &Ctx) const;
1914
1915 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1916 /// object types, function types, and incomplete types.
1917
1918 /// Return true if this is an incomplete type.
1919 /// A type that can describe objects, but which lacks information needed to
1920 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1921 /// routine will need to determine if the size is actually required.
1922 ///
1923 /// Def If non-null, and the type refers to some kind of declaration
1924 /// that can be completed (such as a C struct, C++ class, or Objective-C
1925 /// class), will be set to the declaration.
1926 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1927
1928 /// Return true if this is an incomplete or object
1929 /// type, in other words, not a function type.
1930 bool isIncompleteOrObjectType() const {
1931 return !isFunctionType();
1932 }
1933
1934 /// Determine whether this type is an object type.
1935 bool isObjectType() const {
1936 // C++ [basic.types]p8:
1937 // An object type is a (possibly cv-qualified) type that is not a
1938 // function type, not a reference type, and not a void type.
1939 return !isReferenceType() && !isFunctionType() && !isVoidType();
1940 }
1941
1942 /// Return true if this is a literal type
1943 /// (C++11 [basic.types]p10)
1944 bool isLiteralType(const ASTContext &Ctx) const;
1945
1946 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1947 bool isStructuralType() const;
1948
1949 /// Test if this type is a standard-layout type.
1950 /// (C++0x [basic.type]p9)
1951 bool isStandardLayoutType() const;
1952
1953 /// Helper methods to distinguish type categories. All type predicates
1954 /// operate on the canonical type, ignoring typedefs and qualifiers.
1955
1956 /// Returns true if the type is a builtin type.
1957 bool isBuiltinType() const;
1958
1959 /// Test for a particular builtin type.
1960 bool isSpecificBuiltinType(unsigned K) const;
1961
1962 /// Test for a type which does not represent an actual type-system type but
1963 /// is instead used as a placeholder for various convenient purposes within
1964 /// Clang. All such types are BuiltinTypes.
1965 bool isPlaceholderType() const;
1966 const BuiltinType *getAsPlaceholderType() const;
1967
1968 /// Test for a specific placeholder type.
1969 bool isSpecificPlaceholderType(unsigned K) const;
1970
1971 /// Test for a placeholder type other than Overload; see
1972 /// BuiltinType::isNonOverloadPlaceholderType.
1973 bool isNonOverloadPlaceholderType() const;
1974
1975 /// isIntegerType() does *not* include complex integers (a GCC extension).
1976 /// isComplexIntegerType() can be used to test for complex integers.
1977 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1978 bool isEnumeralType() const;
1979
1980 /// Determine whether this type is a scoped enumeration type.
1981 bool isScopedEnumeralType() const;
1982 bool isBooleanType() const;
1983 bool isCharType() const;
1984 bool isWideCharType() const;
1985 bool isChar8Type() const;
1986 bool isChar16Type() const;
1987 bool isChar32Type() const;
1988 bool isAnyCharacterType() const;
1989 bool isIntegralType(const ASTContext &Ctx) const;
1990
1991 /// Determine whether this type is an integral or enumeration type.
1992 bool isIntegralOrEnumerationType() const;
1993
1994 /// Determine whether this type is an integral or unscoped enumeration type.
1995 bool isIntegralOrUnscopedEnumerationType() const;
1996 bool isUnscopedEnumerationType() const;
1997
1998 /// Floating point categories.
1999 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
2000 /// isComplexType() does *not* include complex integers (a GCC extension).
2001 /// isComplexIntegerType() can be used to test for complex integers.
2002 bool isComplexType() const; // C99 6.2.5p11 (complex)
2003 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
2004 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
2005 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
2006 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
2007 bool isBFloat16Type() const;
2008 bool isFloat128Type() const;
2009 bool isIbm128Type() const;
2010 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2011 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2012 bool isVoidType() const; // C99 6.2.5p19
2013 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2014 bool isAggregateType() const;
2015 bool isFundamentalType() const;
2016 bool isCompoundType() const;
2017
2018 // Type Predicates: Check to see if this type is structurally the specified
2019 // type, ignoring typedefs and qualifiers.
2020 bool isFunctionType() const;
2021 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2022 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2023 bool isPointerType() const;
2024 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2025 bool isBlockPointerType() const;
2026 bool isVoidPointerType() const;
2027 bool isReferenceType() const;
2028 bool isLValueReferenceType() const;
2029 bool isRValueReferenceType() const;
2030 bool isObjectPointerType() const;
2031 bool isFunctionPointerType() const;
2032 bool isFunctionReferenceType() const;
2033 bool isMemberPointerType() const;
2034 bool isMemberFunctionPointerType() const;
2035 bool isMemberDataPointerType() const;
2036 bool isArrayType() const;
2037 bool isConstantArrayType() const;
2038 bool isIncompleteArrayType() const;
2039 bool isVariableArrayType() const;
2040 bool isDependentSizedArrayType() const;
2041 bool isRecordType() const;
2042 bool isClassType() const;
2043 bool isStructureType() const;
2044 bool isObjCBoxableRecordType() const;
2045 bool isInterfaceType() const;
2046 bool isStructureOrClassType() const;
2047 bool isUnionType() const;
2048 bool isComplexIntegerType() const; // GCC _Complex integer type.
2049 bool isVectorType() const; // GCC vector type.
2050 bool isExtVectorType() const; // Extended vector type.
2051 bool isMatrixType() const; // Matrix type.
2052 bool isConstantMatrixType() const; // Constant matrix type.
2053 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2054 bool isObjCObjectPointerType() const; // pointer to ObjC object
2055 bool isObjCRetainableType() const; // ObjC object or block pointer
2056 bool isObjCLifetimeType() const; // (array of)* retainable type
2057 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2058 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2059 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2060 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2061 // for the common case.
2062 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2063 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2064 bool isObjCQualifiedIdType() const; // id<foo>
2065 bool isObjCQualifiedClassType() const; // Class<foo>
2066 bool isObjCObjectOrInterfaceType() const;
2067 bool isObjCIdType() const; // id
2068 bool isDecltypeType() const;
2069 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2070 /// qualifier?
2071 ///
2072 /// This approximates the answer to the following question: if this
2073 /// translation unit were compiled in ARC, would this type be qualified
2074 /// with __unsafe_unretained?
2075 bool isObjCInertUnsafeUnretainedType() const {
2076 return hasAttr(attr::ObjCInertUnsafeUnretained);
2077 }
2078
2079 /// Whether the type is Objective-C 'id' or a __kindof type of an
2080 /// object type, e.g., __kindof NSView * or __kindof id
2081 /// <NSCopying>.
2082 ///
2083 /// \param bound Will be set to the bound on non-id subtype types,
2084 /// which will be (possibly specialized) Objective-C class type, or
2085 /// null for 'id.
2086 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2087 const ObjCObjectType *&bound) const;
2088
2089 bool isObjCClassType() const; // Class
2090
2091 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2092 /// Class type, e.g., __kindof Class <NSCopying>.
2093 ///
2094 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2095 /// here because Objective-C's type system cannot express "a class
2096 /// object for a subclass of NSFoo".
2097 bool isObjCClassOrClassKindOfType() const;
2098
2099 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2100 bool isObjCSelType() const; // Class
2101 bool isObjCBuiltinType() const; // 'id' or 'Class'
2102 bool isObjCARCBridgableType() const;
2103 bool isCARCBridgableType() const;
2104 bool isTemplateTypeParmType() const; // C++ template type parameter
2105 bool isNullPtrType() const; // C++11 std::nullptr_t
2106 bool isNothrowT() const; // C++ std::nothrow_t
2107 bool isAlignValT() const; // C++17 std::align_val_t
2108 bool isStdByteType() const; // C++17 std::byte
2109 bool isAtomicType() const; // C11 _Atomic()
2110 bool isUndeducedAutoType() const; // C++11 auto or
2111 // C++14 decltype(auto)
2112 bool isTypedefNameType() const; // typedef or alias template
2113
2114#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2115 bool is##Id##Type() const;
2116#include "clang/Basic/OpenCLImageTypes.def"
2117
2118 bool isImageType() const; // Any OpenCL image type
2119
2120 bool isSamplerT() const; // OpenCL sampler_t
2121 bool isEventT() const; // OpenCL event_t
2122 bool isClkEventT() const; // OpenCL clk_event_t
2123 bool isQueueT() const; // OpenCL queue_t
2124 bool isReserveIDT() const; // OpenCL reserve_id_t
2125
2126#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2127 bool is##Id##Type() const;
2128#include "clang/Basic/OpenCLExtensionTypes.def"
2129 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2130 bool isOCLIntelSubgroupAVCType() const;
2131 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2132
2133 bool isPipeType() const; // OpenCL pipe type
2134 bool isBitIntType() const; // Bit-precise integer type
2135 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2136
2137 /// Determines if this type, which must satisfy
2138 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2139 /// than implicitly __strong.
2140 bool isObjCARCImplicitlyUnretainedType() const;
2141
2142 /// Check if the type is the CUDA device builtin surface type.
2143 bool isCUDADeviceBuiltinSurfaceType() const;
2144 /// Check if the type is the CUDA device builtin texture type.
2145 bool isCUDADeviceBuiltinTextureType() const;
2146
2147 /// Return the implicit lifetime for this type, which must not be dependent.
2148 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2149
2150 enum ScalarTypeKind {
2151 STK_CPointer,
2152 STK_BlockPointer,
2153 STK_ObjCObjectPointer,
2154 STK_MemberPointer,
2155 STK_Bool,
2156 STK_Integral,
2157 STK_Floating,
2158 STK_IntegralComplex,
2159 STK_FloatingComplex,
2160 STK_FixedPoint
2161 };
2162
2163 /// Given that this is a scalar type, classify it.
2164 ScalarTypeKind getScalarTypeKind() const;
2165
2166 TypeDependence getDependence() const {
2167 return static_cast<TypeDependence>(TypeBits.Dependence);
2168 }
2169
2170 /// Whether this type is an error type.
2171 bool containsErrors() const {
2172 return getDependence() & TypeDependence::Error;
2173 }
2174
2175 /// Whether this type is a dependent type, meaning that its definition
2176 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2177 bool isDependentType() const {
2178 return getDependence() & TypeDependence::Dependent;
2179 }
2180
2181 /// Determine whether this type is an instantiation-dependent type,
2182 /// meaning that the type involves a template parameter (even if the
2183 /// definition does not actually depend on the type substituted for that
2184 /// template parameter).
2185 bool isInstantiationDependentType() const {
2186 return getDependence() & TypeDependence::Instantiation;
2187 }
2188
2189 /// Determine whether this type is an undeduced type, meaning that
2190 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2191 /// deduced.
2192 bool isUndeducedType() const;
2193
2194 /// Whether this type is a variably-modified type (C99 6.7.5).
2195 bool isVariablyModifiedType() const {
2196 return getDependence() & TypeDependence::VariablyModified;
2197 }
2198
2199 /// Whether this type involves a variable-length array type
2200 /// with a definite size.
2201 bool hasSizedVLAType() const;
2202
2203 /// Whether this type is or contains a local or unnamed type.
2204 bool hasUnnamedOrLocalType() const;
2205
2206 bool isOverloadableType() const;
2207
2208 /// Determine wither this type is a C++ elaborated-type-specifier.
2209 bool isElaboratedTypeSpecifier() const;
2210
2211 bool canDecayToPointerType() const;
2212
2213 /// Whether this type is represented natively as a pointer. This includes
2214 /// pointers, references, block pointers, and Objective-C interface,
2215 /// qualified id, and qualified interface types, as well as nullptr_t.
2216 bool hasPointerRepresentation() const;
2217
2218 /// Whether this type can represent an objective pointer type for the
2219 /// purpose of GC'ability
2220 bool hasObjCPointerRepresentation() const;
2221
2222 /// Determine whether this type has an integer representation
2223 /// of some sort, e.g., it is an integer type or a vector.
2224 bool hasIntegerRepresentation() const;
2225
2226 /// Determine whether this type has an signed integer representation
2227 /// of some sort, e.g., it is an signed integer type or a vector.
2228 bool hasSignedIntegerRepresentation() const;
2229
2230 /// Determine whether this type has an unsigned integer representation
2231 /// of some sort, e.g., it is an unsigned integer type or a vector.
2232 bool hasUnsignedIntegerRepresentation() const;
2233
2234 /// Determine whether this type has a floating-point representation
2235 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2236 bool hasFloatingRepresentation() const;
2237
2238 // Type Checking Functions: Check to see if this type is structurally the
2239 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2240 // the best type we can.
2241 const RecordType *getAsStructureType() const;
2242 /// NOTE: getAs*ArrayType are methods on ASTContext.
2243 const RecordType *getAsUnionType() const;
2244 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2245 const ObjCObjectType *getAsObjCInterfaceType() const;
2246
2247 // The following is a convenience method that returns an ObjCObjectPointerType
2248 // for object declared using an interface.
2249 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2250 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2251 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2252 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2253
2254 /// Retrieves the CXXRecordDecl that this type refers to, either
2255 /// because the type is a RecordType or because it is the injected-class-name
2256 /// type of a class template or class template partial specialization.
2257 CXXRecordDecl *getAsCXXRecordDecl() const;
2258
2259 /// Retrieves the RecordDecl this type refers to.
2260 RecordDecl *getAsRecordDecl() const;
2261
2262 /// Retrieves the TagDecl that this type refers to, either
2263 /// because the type is a TagType or because it is the injected-class-name
2264 /// type of a class template or class template partial specialization.
2265 TagDecl *getAsTagDecl() const;
2266
2267 /// If this is a pointer or reference to a RecordType, return the
2268 /// CXXRecordDecl that the type refers to.
2269 ///
2270 /// If this is not a pointer or reference, or the type being pointed to does
2271 /// not refer to a CXXRecordDecl, returns NULL.
2272 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2273
2274 /// Get the DeducedType whose type will be deduced for a variable with
2275 /// an initializer of this type. This looks through declarators like pointer
2276 /// types, but not through decltype or typedefs.
2277 DeducedType *getContainedDeducedType() const;
2278
2279 /// Get the AutoType whose type will be deduced for a variable with
2280 /// an initializer of this type. This looks through declarators like pointer
2281 /// types, but not through decltype or typedefs.
2282 AutoType *getContainedAutoType() const {
2283 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2284 }
2285
2286 /// Determine whether this type was written with a leading 'auto'
2287 /// corresponding to a trailing return type (possibly for a nested
2288 /// function type within a pointer to function type or similar).
2289 bool hasAutoForTrailingReturnType() const;
2290
2291 /// Member-template getAs<specific type>'. Look through sugar for
2292 /// an instance of \<specific type>. This scheme will eventually
2293 /// replace the specific getAsXXXX methods above.
2294 ///
2295 /// There are some specializations of this member template listed
2296 /// immediately following this class.
2297 template <typename T> const T *getAs() const;
2298
2299 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2300 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2301 /// This is used when you need to walk over sugar nodes that represent some
2302 /// kind of type adjustment from a type that was written as a \<specific type>
2303 /// to another type that is still canonically a \<specific type>.
2304 template <typename T> const T *getAsAdjusted() const;
2305
2306 /// A variant of getAs<> for array types which silently discards
2307 /// qualifiers from the outermost type.
2308 const ArrayType *getAsArrayTypeUnsafe() const;
2309
2310 /// Member-template castAs<specific type>. Look through sugar for
2311 /// the underlying instance of \<specific type>.
2312 ///
2313 /// This method has the same relationship to getAs<T> as cast<T> has
2314 /// to dyn_cast<T>; which is to say, the underlying type *must*
2315 /// have the intended type, and this method will never return null.
2316 template <typename T> const T *castAs() const;
2317
2318 /// A variant of castAs<> for array type which silently discards
2319 /// qualifiers from the outermost type.
2320 const ArrayType *castAsArrayTypeUnsafe() const;
2321
2322 /// Determine whether this type had the specified attribute applied to it
2323 /// (looking through top-level type sugar).
2324 bool hasAttr(attr::Kind AK) const;
2325
2326 /// Get the base element type of this type, potentially discarding type
2327 /// qualifiers. This should never be used when type qualifiers
2328 /// are meaningful.
2329 const Type *getBaseElementTypeUnsafe() const;
2330
2331 /// If this is an array type, return the element type of the array,
2332 /// potentially with type qualifiers missing.
2333 /// This should never be used when type qualifiers are meaningful.
2334 const Type *getArrayElementTypeNoTypeQual() const;
2335
2336 /// If this is a pointer type, return the pointee type.
2337 /// If this is an array type, return the array element type.
2338 /// This should never be used when type qualifiers are meaningful.
2339 const Type *getPointeeOrArrayElementType() const;
2340
2341 /// If this is a pointer, ObjC object pointer, or block
2342 /// pointer, this returns the respective pointee.
2343 QualType getPointeeType() const;
2344
2345 /// Return the specified type with any "sugar" removed from the type,
2346 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2347 const Type *getUnqualifiedDesugaredType() const;
2348
2349 /// More type predicates useful for type checking/promotion
2350 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2351
2352 /// Return true if this is an integer type that is
2353 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2354 /// or an enum decl which has a signed representation.
2355 bool isSignedIntegerType() const;
2356
2357 /// Return true if this is an integer type that is
2358 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2359 /// or an enum decl which has an unsigned representation.
2360 bool isUnsignedIntegerType() const;
2361
2362 /// Determines whether this is an integer type that is signed or an
2363 /// enumeration types whose underlying type is a signed integer type.
2364 bool isSignedIntegerOrEnumerationType() const;
2365
2366 /// Determines whether this is an integer type that is unsigned or an
2367 /// enumeration types whose underlying type is a unsigned integer type.
2368 bool isUnsignedIntegerOrEnumerationType() const;
2369
2370 /// Return true if this is a fixed point type according to
2371 /// ISO/IEC JTC1 SC22 WG14 N1169.
2372 bool isFixedPointType() const;
2373
2374 /// Return true if this is a fixed point or integer type.
2375 bool isFixedPointOrIntegerType() const;
2376
2377 /// Return true if this is a saturated fixed point type according to
2378 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2379 bool isSaturatedFixedPointType() const;
2380
2381 /// Return true if this is a saturated fixed point type according to
2382 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2383 bool isUnsaturatedFixedPointType() const;
2384
2385 /// Return true if this is a fixed point type that is signed according
2386 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2387 bool isSignedFixedPointType() const;
2388
2389 /// Return true if this is a fixed point type that is unsigned according
2390 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2391 bool isUnsignedFixedPointType() const;
2392
2393 /// Return true if this is not a variable sized type,
2394 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2395 /// incomplete types.
2396 bool isConstantSizeType() const;
2397
2398 /// Returns true if this type can be represented by some
2399 /// set of type specifiers.
2400 bool isSpecifierType() const;
2401
2402 /// Determine the linkage of this type.
2403 Linkage getLinkage() const;
2404
2405 /// Determine the visibility of this type.
2406 Visibility getVisibility() const {
2407 return getLinkageAndVisibility().getVisibility();
2408 }
2409
2410 /// Return true if the visibility was explicitly set is the code.
2411 bool isVisibilityExplicit() const {
2412 return getLinkageAndVisibility().isVisibilityExplicit();
2413 }
2414
2415 /// Determine the linkage and visibility of this type.
2416 LinkageInfo getLinkageAndVisibility() const;
2417
2418 /// True if the computed linkage is valid. Used for consistency
2419 /// checking. Should always return true.
2420 bool isLinkageValid() const;
2421
2422 /// Determine the nullability of the given type.
2423 ///
2424 /// Note that nullability is only captured as sugar within the type
2425 /// system, not as part of the canonical type, so nullability will
2426 /// be lost by canonicalization and desugaring.
2427 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2428
2429 /// Determine whether the given type can have a nullability
2430 /// specifier applied to it, i.e., if it is any kind of pointer type.
2431 ///
2432 /// \param ResultIfUnknown The value to return if we don't yet know whether
2433 /// this type can have nullability because it is dependent.
2434 bool canHaveNullability(bool ResultIfUnknown = true) const;
2435
2436 /// Retrieve the set of substitutions required when accessing a member
2437 /// of the Objective-C receiver type that is declared in the given context.
2438 ///
2439 /// \c *this is the type of the object we're operating on, e.g., the
2440 /// receiver for a message send or the base of a property access, and is
2441 /// expected to be of some object or object pointer type.
2442 ///
2443 /// \param dc The declaration context for which we are building up a
2444 /// substitution mapping, which should be an Objective-C class, extension,
2445 /// category, or method within.
2446 ///
2447 /// \returns an array of type arguments that can be substituted for
2448 /// the type parameters of the given declaration context in any type described
2449 /// within that context, or an empty optional to indicate that no
2450 /// substitution is required.
2451 Optional<ArrayRef<QualType>>
2452 getObjCSubstitutions(const DeclContext *dc) const;
2453
2454 /// Determines if this is an ObjC interface type that may accept type
2455 /// parameters.
2456 bool acceptsObjCTypeParams() const;
2457
2458 const char *getTypeClassName() const;
2459
2460 QualType getCanonicalTypeInternal() const {
2461 return CanonicalType;
2462 }
2463
2464 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2465 void dump() const;
2466 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2467};
2468
2469/// This will check for a TypedefType by removing any existing sugar
2470/// until it reaches a TypedefType or a non-sugared type.
2471template <> const TypedefType *Type::getAs() const;
2472
2473/// This will check for a TemplateSpecializationType by removing any
2474/// existing sugar until it reaches a TemplateSpecializationType or a
2475/// non-sugared type.
2476template <> const TemplateSpecializationType *Type::getAs() const;
2477
2478/// This will check for an AttributedType by removing any existing sugar
2479/// until it reaches an AttributedType or a non-sugared type.
2480template <> const AttributedType *Type::getAs() const;
2481
2482// We can do canonical leaf types faster, because we don't have to
2483// worry about preserving child type decoration.
2484#define TYPE(Class, Base)
2485#define LEAF_TYPE(Class) \
2486template <> inline const Class##Type *Type::getAs() const { \
2487 return dyn_cast<Class##Type>(CanonicalType); \
2488} \
2489template <> inline const Class##Type *Type::castAs() const { \
2490 return cast<Class##Type>(CanonicalType); \
2491}
2492#include "clang/AST/TypeNodes.inc"
2493
2494/// This class is used for builtin types like 'int'. Builtin
2495/// types are always canonical and have a literal name field.
2496class BuiltinType : public Type {
2497public:
2498 enum Kind {
2499// OpenCL image types
2500#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2501#include "clang/Basic/OpenCLImageTypes.def"
2502// OpenCL extension types
2503#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2504#include "clang/Basic/OpenCLExtensionTypes.def"
2505// SVE Types
2506#define SVE_TYPE(Name, Id, SingletonId) Id,
2507#include "clang/Basic/AArch64SVEACLETypes.def"
2508// PPC MMA Types
2509#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2510#include "clang/Basic/PPCTypes.def"
2511// RVV Types
2512#define RVV_TYPE(Name, Id, SingletonId) Id,
2513#include "clang/Basic/RISCVVTypes.def"
2514// All other builtin types
2515#define BUILTIN_TYPE(Id, SingletonId) Id,
2516#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2517#include "clang/AST/BuiltinTypes.def"
2518 };
2519
2520private:
2521 friend class ASTContext; // ASTContext creates these.
2522
2523 BuiltinType(Kind K)
2524 : Type(Builtin, QualType(),
2525 K == Dependent ? TypeDependence::DependentInstantiation
2526 : TypeDependence::None) {
2527 BuiltinTypeBits.Kind = K;
2528 }
2529
2530public:
2531 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2532 StringRef getName(const PrintingPolicy &Policy) const;
2533
2534 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2535 // The StringRef is null-terminated.
2536 StringRef str = getName(Policy);
2537 assert(!str.empty() && str.data()[str.size()] == '\0')(static_cast <bool> (!str.empty() && str.data()
[str.size()] == '\0') ? void (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "clang/include/clang/AST/Type.h", 2537, __extension__ __PRETTY_FUNCTION__
))
;
2538 return str.data();
2539 }
2540
2541 bool isSugared() const { return false; }
2542 QualType desugar() const { return QualType(this, 0); }
2543
2544 bool isInteger() const {
2545 return getKind() >= Bool && getKind() <= Int128;
2546 }
2547
2548 bool isSignedInteger() const {
2549 return getKind() >= Char_S && getKind() <= Int128;
2550 }
2551
2552 bool isUnsignedInteger() const {
2553 return getKind() >= Bool && getKind() <= UInt128;
2554 }
2555
2556 bool isFloatingPoint() const {
2557 return getKind() >= Half && getKind() <= Ibm128;
2558 }
2559
2560 /// Determines whether the given kind corresponds to a placeholder type.
2561 static bool isPlaceholderTypeKind(Kind K) {
2562 return K >= Overload;
2563 }
2564
2565 /// Determines whether this type is a placeholder type, i.e. a type
2566 /// which cannot appear in arbitrary positions in a fully-formed
2567 /// expression.
2568 bool isPlaceholderType() const {
2569 return isPlaceholderTypeKind(getKind());
2570 }
2571
2572 /// Determines whether this type is a placeholder type other than
2573 /// Overload. Most placeholder types require only syntactic
2574 /// information about their context in order to be resolved (e.g.
2575 /// whether it is a call expression), which means they can (and
2576 /// should) be resolved in an earlier "phase" of analysis.
2577 /// Overload expressions sometimes pick up further information
2578 /// from their context, like whether the context expects a
2579 /// specific function-pointer type, and so frequently need
2580 /// special treatment.
2581 bool isNonOverloadPlaceholderType() const {
2582 return getKind() > Overload;
2583 }
2584
2585 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2586};
2587
2588/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2589/// types (_Complex float etc) as well as the GCC integer complex extensions.
2590class ComplexType : public Type, public llvm::FoldingSetNode {
2591 friend class ASTContext; // ASTContext creates these.
2592
2593 QualType ElementType;
2594
2595 ComplexType(QualType Element, QualType CanonicalPtr)
2596 : Type(Complex, CanonicalPtr, Element->getDependence()),
2597 ElementType(Element) {}
2598
2599public:
2600 QualType getElementType() const { return ElementType; }
2601
2602 bool isSugared() const { return false; }
2603 QualType desugar() const { return QualType(this, 0); }
2604
2605 void Profile(llvm::FoldingSetNodeID &ID) {
2606 Profile(ID, getElementType());
2607 }
2608
2609 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2610 ID.AddPointer(Element.getAsOpaquePtr());
2611 }
2612
2613 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2614};
2615
2616/// Sugar for parentheses used when specifying types.
2617class ParenType : public Type, public llvm::FoldingSetNode {
2618 friend class ASTContext; // ASTContext creates these.
2619
2620 QualType Inner;
2621
2622 ParenType(QualType InnerType, QualType CanonType)
2623 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2624
2625public:
2626 QualType getInnerType() const { return Inner; }
2627
2628 bool isSugared() const { return true; }
2629 QualType desugar() const { return getInnerType(); }
2630
2631 void Profile(llvm::FoldingSetNodeID &ID) {
2632 Profile(ID, getInnerType());
2633 }
2634
2635 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2636 Inner.Profile(ID);
2637 }
2638
2639 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2640};
2641
2642/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2643class PointerType : public Type, public llvm::FoldingSetNode {
2644 friend class ASTContext; // ASTContext creates these.
2645
2646 QualType PointeeType;
2647
2648 PointerType(QualType Pointee, QualType CanonicalPtr)
2649 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2650 PointeeType(Pointee) {}
2651
2652public:
2653 QualType getPointeeType() const { return PointeeType; }
2654
2655 bool isSugared() const { return false; }
2656 QualType desugar() const { return QualType(this, 0); }
2657
2658 void Profile(llvm::FoldingSetNodeID &ID) {
2659 Profile(ID, getPointeeType());
2660 }
2661
2662 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2663 ID.AddPointer(Pointee.getAsOpaquePtr());
2664 }
2665
2666 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2667};
2668
2669/// Represents a type which was implicitly adjusted by the semantic
2670/// engine for arbitrary reasons. For example, array and function types can
2671/// decay, and function types can have their calling conventions adjusted.
2672class AdjustedType : public Type, public llvm::FoldingSetNode {
2673 QualType OriginalTy;
2674 QualType AdjustedTy;
2675
2676protected:
2677 friend class ASTContext; // ASTContext creates these.
2678
2679 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2680 QualType CanonicalPtr)
2681 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2682 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2683
2684public:
2685 QualType getOriginalType() const { return OriginalTy; }
2686 QualType getAdjustedType() const { return AdjustedTy; }
2687
2688 bool isSugared() const { return true; }
2689 QualType desugar() const { return AdjustedTy; }
2690
2691 void Profile(llvm::FoldingSetNodeID &ID) {
2692 Profile(ID, OriginalTy, AdjustedTy);
2693 }
2694
2695 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2696 ID.AddPointer(Orig.getAsOpaquePtr());
2697 ID.AddPointer(New.getAsOpaquePtr());
2698 }
2699
2700 static bool classof(const Type *T) {
2701 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2702 }
2703};
2704
2705/// Represents a pointer type decayed from an array or function type.
2706class DecayedType : public AdjustedType {
2707 friend class ASTContext; // ASTContext creates these.
2708
2709 inline
2710 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2711
2712public:
2713 QualType getDecayedType() const { return getAdjustedType(); }
2714
2715 inline QualType getPointeeType() const;
2716
2717 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2718};
2719
2720/// Pointer to a block type.
2721/// This type is to represent types syntactically represented as
2722/// "void (^)(int)", etc. Pointee is required to always be a function type.
2723class BlockPointerType : public Type, public llvm::FoldingSetNode {
2724 friend class ASTContext; // ASTContext creates these.
2725
2726 // Block is some kind of pointer type
2727 QualType PointeeType;
2728
2729 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2730 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2731 PointeeType(Pointee) {}
2732
2733public:
2734 // Get the pointee type. Pointee is required to always be a function type.
2735 QualType getPointeeType() const { return PointeeType; }
2736
2737 bool isSugared() const { return false; }
2738 QualType desugar() const { return QualType(this, 0); }
2739
2740 void Profile(llvm::FoldingSetNodeID &ID) {
2741 Profile(ID, getPointeeType());
2742 }
2743
2744 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2745 ID.AddPointer(Pointee.getAsOpaquePtr());
2746 }
2747
2748 static bool classof(const Type *T) {
2749 return T->getTypeClass() == BlockPointer;
2750 }
2751};
2752
2753/// Base for LValueReferenceType and RValueReferenceType
2754class ReferenceType : public Type, public llvm::FoldingSetNode {
2755 QualType PointeeType;
2756
2757protected:
2758 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2759 bool SpelledAsLValue)
2760 : Type(tc, CanonicalRef, Referencee->getDependence()),
2761 PointeeType(Referencee) {
2762 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2763 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2764 }
2765
2766public:
2767 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2768 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2769
2770 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2771
2772 QualType getPointeeType() const {
2773 // FIXME: this might strip inner qualifiers; okay?
2774 const ReferenceType *T = this;
2775 while (T->isInnerRef())
2776 T = T->PointeeType->castAs<ReferenceType>();
2777 return T->PointeeType;
2778 }
2779
2780 void Profile(llvm::FoldingSetNodeID &ID) {
2781 Profile(ID, PointeeType, isSpelledAsLValue());
2782 }
2783
2784 static void Profile(llvm::FoldingSetNodeID &ID,
2785 QualType Referencee,
2786 bool SpelledAsLValue) {
2787 ID.AddPointer(Referencee.getAsOpaquePtr());
2788 ID.AddBoolean(SpelledAsLValue);
2789 }
2790
2791 static bool classof(const Type *T) {
2792 return T->getTypeClass() == LValueReference ||
2793 T->getTypeClass() == RValueReference;
2794 }
2795};
2796
2797/// An lvalue reference type, per C++11 [dcl.ref].
2798class LValueReferenceType : public ReferenceType {
2799 friend class ASTContext; // ASTContext creates these
2800
2801 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2802 bool SpelledAsLValue)
2803 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2804 SpelledAsLValue) {}
2805
2806public:
2807 bool isSugared() const { return false; }
2808 QualType desugar() const { return QualType(this, 0); }
2809
2810 static bool classof(const Type *T) {
2811 return T->getTypeClass() == LValueReference;
2812 }
2813};
2814
2815/// An rvalue reference type, per C++11 [dcl.ref].
2816class RValueReferenceType : public ReferenceType {
2817 friend class ASTContext; // ASTContext creates these
2818
2819 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2820 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2821
2822public:
2823 bool isSugared() const { return false; }
2824 QualType desugar() const { return QualType(this, 0); }
2825
2826 static bool classof(const Type *T) {
2827 return T->getTypeClass() == RValueReference;
2828 }
2829};
2830
2831/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2832///
2833/// This includes both pointers to data members and pointer to member functions.
2834class MemberPointerType : public Type, public llvm::FoldingSetNode {
2835 friend class ASTContext; // ASTContext creates these.
2836
2837 QualType PointeeType;
2838
2839 /// The class of which the pointee is a member. Must ultimately be a
2840 /// RecordType, but could be a typedef or a template parameter too.
2841 const Type *Class;
2842
2843 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2844 : Type(MemberPointer, CanonicalPtr,
2845 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2846 Pointee->getDependence()),
2847 PointeeType(Pointee), Class(Cls) {}
2848
2849public:
2850 QualType getPointeeType() const { return PointeeType; }
2851
2852 /// Returns true if the member type (i.e. the pointee type) is a
2853 /// function type rather than a data-member type.
2854 bool isMemberFunctionPointer() const {
2855 return PointeeType->isFunctionProtoType();
2856 }
2857
2858 /// Returns true if the member type (i.e. the pointee type) is a
2859 /// data type rather than a function type.
2860 bool isMemberDataPointer() const {
2861 return !PointeeType->isFunctionProtoType();
2862 }
2863
2864 const Type *getClass() const { return Class; }
2865 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2866
2867 bool isSugared() const { return false; }
2868 QualType desugar() const { return QualType(this, 0); }
2869
2870 void Profile(llvm::FoldingSetNodeID &ID) {
2871 Profile(ID, getPointeeType(), getClass());
2872 }
2873
2874 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2875 const Type *Class) {
2876 ID.AddPointer(Pointee.getAsOpaquePtr());
2877 ID.AddPointer(Class);
2878 }
2879
2880 static bool classof(const Type *T) {
2881 return T->getTypeClass() == MemberPointer;
2882 }
2883};
2884
2885/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2886class ArrayType : public Type, public llvm::FoldingSetNode {
2887public:
2888 /// Capture whether this is a normal array (e.g. int X[4])
2889 /// an array with a static size (e.g. int X[static 4]), or an array
2890 /// with a star size (e.g. int X[*]).
2891 /// 'static' is only allowed on function parameters.
2892 enum ArraySizeModifier {
2893 Normal, Static, Star
2894 };
2895
2896private:
2897 /// The element type of the array.
2898 QualType ElementType;
2899
2900protected:
2901 friend class ASTContext; // ASTContext creates these.
2902
2903 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2904 unsigned tq, const Expr *sz = nullptr);
2905
2906public:
2907 QualType getElementType() const { return ElementType; }
2908
2909 ArraySizeModifier getSizeModifier() const {
2910 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2911 }
2912
2913 Qualifiers getIndexTypeQualifiers() const {
2914 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2915 }
2916
2917 unsigned getIndexTypeCVRQualifiers() const {
2918 return ArrayTypeBits.IndexTypeQuals;
2919 }
2920
2921 static bool classof(const Type *T) {
2922 return T->getTypeClass() == ConstantArray ||
2923 T->getTypeClass() == VariableArray ||
2924 T->getTypeClass() == IncompleteArray ||
2925 T->getTypeClass() == DependentSizedArray;
2926 }
2927};
2928
2929/// Represents the canonical version of C arrays with a specified constant size.
2930/// For example, the canonical type for 'int A[4 + 4*100]' is a
2931/// ConstantArrayType where the element type is 'int' and the size is 404.
2932class ConstantArrayType final
2933 : public ArrayType,
2934 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2935 friend class ASTContext; // ASTContext creates these.
2936 friend TrailingObjects;
2937
2938 llvm::APInt Size; // Allows us to unique the type.
2939
2940 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2941 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2942 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2943 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2944 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2945 assert(!can.isNull() && "canonical constant array should not have size")(static_cast <bool> (!can.isNull() && "canonical constant array should not have size"
) ? void (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "clang/include/clang/AST/Type.h", 2945, __extension__ __PRETTY_FUNCTION__
))
;
2946 *getTrailingObjects<const Expr*>() = sz;
2947 }
2948 }
2949
2950 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2951 return ConstantArrayTypeBits.HasStoredSizeExpr;
2952 }
2953
2954public:
2955 const llvm::APInt &getSize() const { return Size; }
2956 const Expr *getSizeExpr() const {
2957 return ConstantArrayTypeBits.HasStoredSizeExpr
2958 ? *getTrailingObjects<const Expr *>()
2959 : nullptr;
2960 }
2961 bool isSugared() const { return false; }
2962 QualType desugar() const { return QualType(this, 0); }
2963
2964 /// Determine the number of bits required to address a member of
2965 // an array with the given element type and number of elements.
2966 static unsigned getNumAddressingBits(const ASTContext &Context,
2967 QualType ElementType,
2968 const llvm::APInt &NumElements);
2969
2970 /// Determine the maximum number of active bits that an array's size
2971 /// can require, which limits the maximum size of the array.
2972 static unsigned getMaxSizeBits(const ASTContext &Context);
2973
2974 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2975 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2976 getSizeModifier(), getIndexTypeCVRQualifiers());
2977 }
2978
2979 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2980 QualType ET, const llvm::APInt &ArraySize,
2981 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2982 unsigned TypeQuals);
2983
2984 static bool classof(const Type *T) {
2985 return T->getTypeClass() == ConstantArray;
2986 }
2987};
2988
2989/// Represents a C array with an unspecified size. For example 'int A[]' has
2990/// an IncompleteArrayType where the element type is 'int' and the size is
2991/// unspecified.
2992class IncompleteArrayType : public ArrayType {
2993 friend class ASTContext; // ASTContext creates these.
2994
2995 IncompleteArrayType(QualType et, QualType can,
2996 ArraySizeModifier sm, unsigned tq)
2997 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2998
2999public:
3000 friend class StmtIteratorBase;
3001
3002 bool isSugared() const { return false; }
3003 QualType desugar() const { return QualType(this, 0); }
3004
3005 static bool classof(const Type *T) {
3006 return T->getTypeClass() == IncompleteArray;
3007 }
3008
3009 void Profile(llvm::FoldingSetNodeID &ID) {
3010 Profile(ID, getElementType(), getSizeModifier(),
3011 getIndexTypeCVRQualifiers());
3012 }
3013
3014 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3015 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3016 ID.AddPointer(ET.getAsOpaquePtr());
3017 ID.AddInteger(SizeMod);
3018 ID.AddInteger(TypeQuals);
3019 }
3020};
3021
3022/// Represents a C array with a specified size that is not an
3023/// integer-constant-expression. For example, 'int s[x+foo()]'.
3024/// Since the size expression is an arbitrary expression, we store it as such.
3025///
3026/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3027/// should not be: two lexically equivalent variable array types could mean
3028/// different things, for example, these variables do not have the same type
3029/// dynamically:
3030///
3031/// void foo(int x) {
3032/// int Y[x];
3033/// ++x;
3034/// int Z[x];
3035/// }
3036class VariableArrayType : public ArrayType {
3037 friend class ASTContext; // ASTContext creates these.
3038
3039 /// An assignment-expression. VLA's are only permitted within
3040 /// a function block.
3041 Stmt *SizeExpr;
3042
3043 /// The range spanned by the left and right array brackets.
3044 SourceRange Brackets;
3045
3046 VariableArrayType(QualType et, QualType can, Expr *e,
3047 ArraySizeModifier sm, unsigned tq,
3048 SourceRange brackets)
3049 : ArrayType(VariableArray, et, can, sm, tq, e),
3050 SizeExpr((Stmt*) e), Brackets(brackets) {}
3051
3052public:
3053 friend class StmtIteratorBase;
3054
3055 Expr *getSizeExpr() const {
3056 // We use C-style casts instead of cast<> here because we do not wish
3057 // to have a dependency of Type.h on Stmt.h/Expr.h.
3058 return (Expr*) SizeExpr;
3059 }
3060
3061 SourceRange getBracketsRange() const { return Brackets; }
3062 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3063 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3064
3065 bool isSugared() const { return false; }
3066 QualType desugar() const { return QualType(this, 0); }
3067
3068 static bool classof(const Type *T) {
3069 return T->getTypeClass() == VariableArray;
3070 }
3071
3072 void Profile(llvm::FoldingSetNodeID &ID) {
3073 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "clang/include/clang/AST/Type.h", 3073)
;
3074 }
3075};
3076
3077/// Represents an array type in C++ whose size is a value-dependent expression.
3078///
3079/// For example:
3080/// \code
3081/// template<typename T, int Size>
3082/// class array {
3083/// T data[Size];
3084/// };
3085/// \endcode
3086///
3087/// For these types, we won't actually know what the array bound is
3088/// until template instantiation occurs, at which point this will
3089/// become either a ConstantArrayType or a VariableArrayType.
3090class DependentSizedArrayType : public ArrayType {
3091 friend class ASTContext; // ASTContext creates these.
3092
3093 const ASTContext &Context;
3094
3095 /// An assignment expression that will instantiate to the
3096 /// size of the array.
3097 ///
3098 /// The expression itself might be null, in which case the array
3099 /// type will have its size deduced from an initializer.
3100 Stmt *SizeExpr;
3101
3102 /// The range spanned by the left and right array brackets.
3103 SourceRange Brackets;
3104
3105 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3106 Expr *e, ArraySizeModifier sm, unsigned tq,
3107 SourceRange brackets);
3108
3109public:
3110 friend class StmtIteratorBase;
3111
3112 Expr *getSizeExpr() const {
3113 // We use C-style casts instead of cast<> here because we do not wish
3114 // to have a dependency of Type.h on Stmt.h/Expr.h.
3115 return (Expr*) SizeExpr;
3116 }
3117
3118 SourceRange getBracketsRange() const { return Brackets; }
3119 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3120 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3121
3122 bool isSugared() const { return false; }
3123 QualType desugar() const { return QualType(this, 0); }
3124
3125 static bool classof(const Type *T) {
3126 return T->getTypeClass() == DependentSizedArray;
3127 }
3128
3129 void Profile(llvm::FoldingSetNodeID &ID) {
3130 Profile(ID, Context, getElementType(),
3131 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3132 }
3133
3134 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3135 QualType ET, ArraySizeModifier SizeMod,
3136 unsigned TypeQuals, Expr *E);
3137};
3138
3139/// Represents an extended address space qualifier where the input address space
3140/// value is dependent. Non-dependent address spaces are not represented with a
3141/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3142///
3143/// For example:
3144/// \code
3145/// template<typename T, int AddrSpace>
3146/// class AddressSpace {
3147/// typedef T __attribute__((address_space(AddrSpace))) type;
3148/// }
3149/// \endcode
3150class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3151 friend class ASTContext;
3152
3153 const ASTContext &Context;
3154 Expr *AddrSpaceExpr;
3155 QualType PointeeType;
3156 SourceLocation loc;
3157
3158 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3159 QualType can, Expr *AddrSpaceExpr,
3160 SourceLocation loc);
3161
3162public:
3163 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3164 QualType getPointeeType() const { return PointeeType; }
3165 SourceLocation getAttributeLoc() const { return loc; }
3166
3167 bool isSugared() const { return false; }
3168 QualType desugar() const { return QualType(this, 0); }
3169
3170 static bool classof(const Type *T) {
3171 return T->getTypeClass() == DependentAddressSpace;
3172 }
3173
3174 void Profile(llvm::FoldingSetNodeID &ID) {
3175 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3176 }
3177
3178 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3179 QualType PointeeType, Expr *AddrSpaceExpr);
3180};
3181
3182/// Represents an extended vector type where either the type or size is
3183/// dependent.
3184///
3185/// For example:
3186/// \code
3187/// template<typename T, int Size>
3188/// class vector {
3189/// typedef T __attribute__((ext_vector_type(Size))) type;
3190/// }
3191/// \endcode
3192class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3193 friend class ASTContext;
3194
3195 const ASTContext &Context;
3196 Expr *SizeExpr;
3197
3198 /// The element type of the array.
3199 QualType ElementType;
3200
3201 SourceLocation loc;
3202
3203 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3204 QualType can, Expr *SizeExpr, SourceLocation loc);
3205
3206public:
3207 Expr *getSizeExpr() const { return SizeExpr; }
3208 QualType getElementType() const { return ElementType; }
3209 SourceLocation getAttributeLoc() const { return loc; }
3210
3211 bool isSugared() const { return false; }
3212 QualType desugar() const { return QualType(this, 0); }
3213
3214 static bool classof(const Type *T) {
3215 return T->getTypeClass() == DependentSizedExtVector;
3216 }
3217
3218 void Profile(llvm::FoldingSetNodeID &ID) {
3219 Profile(ID, Context, getElementType(), getSizeExpr());
3220 }
3221
3222 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3223 QualType ElementType, Expr *SizeExpr);
3224};
3225
3226
3227/// Represents a GCC generic vector type. This type is created using
3228/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3229/// bytes; or from an Altivec __vector or vector declaration.
3230/// Since the constructor takes the number of vector elements, the
3231/// client is responsible for converting the size into the number of elements.
3232class VectorType : public Type, public llvm::FoldingSetNode {
3233public:
3234 enum VectorKind {
3235 /// not a target-specific vector type
3236 GenericVector,
3237
3238 /// is AltiVec vector
3239 AltiVecVector,
3240
3241 /// is AltiVec 'vector Pixel'
3242 AltiVecPixel,
3243
3244 /// is AltiVec 'vector bool ...'
3245 AltiVecBool,
3246
3247 /// is ARM Neon vector
3248 NeonVector,
3249
3250 /// is ARM Neon polynomial vector
3251 NeonPolyVector,
3252
3253 /// is AArch64 SVE fixed-length data vector
3254 SveFixedLengthDataVector,
3255
3256 /// is AArch64 SVE fixed-length predicate vector
3257 SveFixedLengthPredicateVector
3258 };
3259
3260protected:
3261 friend class ASTContext; // ASTContext creates these.
3262
3263 /// The element type of the vector.
3264 QualType ElementType;
3265
3266 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3267 VectorKind vecKind);
3268
3269 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3270 QualType canonType, VectorKind vecKind);
3271
3272public:
3273 QualType getElementType() const { return ElementType; }
3274 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3275
3276 bool isSugared() const { return false; }
3277 QualType desugar() const { return QualType(this, 0); }
3278
3279 VectorKind getVectorKind() const {
3280 return VectorKind(VectorTypeBits.VecKind);
3281 }
3282
3283 void Profile(llvm::FoldingSetNodeID &ID) {
3284 Profile(ID, getElementType(), getNumElements(),
3285 getTypeClass(), getVectorKind());
3286 }
3287
3288 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3289 unsigned NumElements, TypeClass TypeClass,
3290 VectorKind VecKind) {
3291 ID.AddPointer(ElementType.getAsOpaquePtr());
3292 ID.AddInteger(NumElements);
3293 ID.AddInteger(TypeClass);
3294 ID.AddInteger(VecKind);
3295 }
3296
3297 static bool classof(const Type *T) {
3298 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3299 }
3300};
3301
3302/// Represents a vector type where either the type or size is dependent.
3303////
3304/// For example:
3305/// \code
3306/// template<typename T, int Size>
3307/// class vector {
3308/// typedef T __attribute__((vector_size(Size))) type;
3309/// }
3310/// \endcode
3311class DependentVectorType : public Type, public llvm::FoldingSetNode {
3312 friend class ASTContext;
3313
3314 const ASTContext &Context;
3315 QualType ElementType;
3316 Expr *SizeExpr;
3317 SourceLocation Loc;
3318
3319 DependentVectorType(const ASTContext &Context, QualType ElementType,
3320 QualType CanonType, Expr *SizeExpr,
3321 SourceLocation Loc, VectorType::VectorKind vecKind);
3322
3323public:
3324 Expr *getSizeExpr() const { return SizeExpr; }
3325 QualType getElementType() const { return ElementType; }
3326 SourceLocation getAttributeLoc() const { return Loc; }
3327 VectorType::VectorKind getVectorKind() const {
3328 return VectorType::VectorKind(VectorTypeBits.VecKind);
3329 }
3330
3331 bool isSugared() const { return false; }
3332 QualType desugar() const { return QualType(this, 0); }
3333
3334 static bool classof(const Type *T) {
3335 return T->getTypeClass() == DependentVector;
3336 }
3337
3338 void Profile(llvm::FoldingSetNodeID &ID) {
3339 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3340 }
3341
3342 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3343 QualType ElementType, const Expr *SizeExpr,
3344 VectorType::VectorKind VecKind);
3345};
3346
3347/// ExtVectorType - Extended vector type. This type is created using
3348/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3349/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3350/// class enables syntactic extensions, like Vector Components for accessing
3351/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3352/// Shading Language).
3353class ExtVectorType : public VectorType {
3354 friend class ASTContext; // ASTContext creates these.
3355
3356 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3357 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3358
3359public:
3360 static int getPointAccessorIdx(char c) {
3361 switch (c) {
3362 default: return -1;
3363 case 'x': case 'r': return 0;
3364 case 'y': case 'g': return 1;
3365 case 'z': case 'b': return 2;
3366 case 'w': case 'a': return 3;
3367 }
3368 }
3369
3370 static int getNumericAccessorIdx(char c) {
3371 switch (c) {
3372 default: return -1;
3373 case '0': return 0;
3374 case '1': return 1;
3375 case '2': return 2;
3376 case '3': return 3;
3377 case '4': return 4;
3378 case '5': return 5;
3379 case '6': return 6;
3380 case '7': return 7;
3381 case '8': return 8;
3382 case '9': return 9;
3383 case 'A':
3384 case 'a': return 10;
3385 case 'B':
3386 case 'b': return 11;
3387 case 'C':
3388 case 'c': return 12;
3389 case 'D':
3390 case 'd': return 13;
3391 case 'E':
3392 case 'e': return 14;
3393 case 'F':
3394 case 'f': return 15;
3395 }
3396 }
3397
3398 static int getAccessorIdx(char c, bool isNumericAccessor) {
3399 if (isNumericAccessor)
3400 return getNumericAccessorIdx(c);
3401 else
3402 return getPointAccessorIdx(c);
3403 }
3404
3405 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3406 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3407 return unsigned(idx-1) < getNumElements();
3408 return false;
3409 }
3410
3411 bool isSugared() const { return false; }
3412 QualType desugar() const { return QualType(this, 0); }
3413
3414 static bool classof(const Type *T) {
3415 return T->getTypeClass() == ExtVector;
3416 }
3417};
3418
3419/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3420/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3421/// number of rows and "columns" specifies the number of columns.
3422class MatrixType : public Type, public llvm::FoldingSetNode {
3423protected:
3424 friend class ASTContext;
3425
3426 /// The element type of the matrix.
3427 QualType ElementType;
3428
3429 MatrixType(QualType ElementTy, QualType CanonElementTy);
3430
3431 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3432 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3433
3434public:
3435 /// Returns type of the elements being stored in the matrix
3436 QualType getElementType() const { return ElementType; }
3437
3438 /// Valid elements types are the following:
3439 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3440 /// and _Bool
3441 /// * the standard floating types float or double
3442 /// * a half-precision floating point type, if one is supported on the target
3443 static bool isValidElementType(QualType T) {
3444 return T->isDependentType() ||
3445 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3446 }
3447
3448 bool isSugared() const { return false; }
3449 QualType desugar() const { return QualType(this, 0); }
3450
3451 static bool classof(const Type *T) {
3452 return T->getTypeClass() == ConstantMatrix ||
3453 T->getTypeClass() == DependentSizedMatrix;
3454 }
3455};
3456
3457/// Represents a concrete matrix type with constant number of rows and columns
3458class ConstantMatrixType final : public MatrixType {
3459protected:
3460 friend class ASTContext;
3461
3462 /// Number of rows and columns.
3463 unsigned NumRows;
3464 unsigned NumColumns;
3465
3466 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3467
3468 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3469 unsigned NColumns, QualType CanonElementType);
3470
3471 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3472 unsigned NColumns, QualType CanonElementType);
3473
3474public:
3475 /// Returns the number of rows in the matrix.
3476 unsigned getNumRows() const { return NumRows; }
3477
3478 /// Returns the number of columns in the matrix.
3479 unsigned getNumColumns() const { return NumColumns; }
3480
3481 /// Returns the number of elements required to embed the matrix into a vector.
3482 unsigned getNumElementsFlattened() const {
3483 return getNumRows() * getNumColumns();
3484 }
3485
3486 /// Returns true if \p NumElements is a valid matrix dimension.
3487 static constexpr bool isDimensionValid(size_t NumElements) {
3488 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3489 }
3490
3491 /// Returns the maximum number of elements per dimension.
3492 static constexpr unsigned getMaxElementsPerDimension() {
3493 return MaxElementsPerDimension;
3494 }
3495
3496 void Profile(llvm::FoldingSetNodeID &ID) {
3497 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3498 getTypeClass());
3499 }
3500
3501 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3502 unsigned NumRows, unsigned NumColumns,
3503 TypeClass TypeClass) {
3504 ID.AddPointer(ElementType.getAsOpaquePtr());
3505 ID.AddInteger(NumRows);
3506 ID.AddInteger(NumColumns);
3507 ID.AddInteger(TypeClass);
3508 }
3509
3510 static bool classof(const Type *T) {
3511 return T->getTypeClass() == ConstantMatrix;
3512 }
3513};
3514
3515/// Represents a matrix type where the type and the number of rows and columns
3516/// is dependent on a template.
3517class DependentSizedMatrixType final : public MatrixType {
3518 friend class ASTContext;
3519
3520 const ASTContext &Context;
3521 Expr *RowExpr;
3522 Expr *ColumnExpr;
3523
3524 SourceLocation loc;
3525
3526 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3527 QualType CanonicalType, Expr *RowExpr,
3528 Expr *ColumnExpr, SourceLocation loc);
3529
3530public:
3531 Expr *getRowExpr() const { return RowExpr; }
3532 Expr *getColumnExpr() const { return ColumnExpr; }
3533 SourceLocation getAttributeLoc() const { return loc; }
3534
3535 static bool classof(const Type *T) {
3536 return T->getTypeClass() == DependentSizedMatrix;
3537 }
3538
3539 void Profile(llvm::FoldingSetNodeID &ID) {
3540 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3541 }
3542
3543 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3544 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3545};
3546
3547/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3548/// class of FunctionNoProtoType and FunctionProtoType.
3549class FunctionType : public Type {
3550 // The type returned by the function.
3551 QualType ResultType;
3552
3553public:
3554 /// Interesting information about a specific parameter that can't simply
3555 /// be reflected in parameter's type. This is only used by FunctionProtoType
3556 /// but is in FunctionType to make this class available during the
3557 /// specification of the bases of FunctionProtoType.
3558 ///
3559 /// It makes sense to model language features this way when there's some
3560 /// sort of parameter-specific override (such as an attribute) that
3561 /// affects how the function is called. For example, the ARC ns_consumed
3562 /// attribute changes whether a parameter is passed at +0 (the default)
3563 /// or +1 (ns_consumed). This must be reflected in the function type,
3564 /// but isn't really a change to the parameter type.
3565 ///
3566 /// One serious disadvantage of modelling language features this way is
3567 /// that they generally do not work with language features that attempt
3568 /// to destructure types. For example, template argument deduction will
3569 /// not be able to match a parameter declared as
3570 /// T (*)(U)
3571 /// against an argument of type
3572 /// void (*)(__attribute__((ns_consumed)) id)
3573 /// because the substitution of T=void, U=id into the former will
3574 /// not produce the latter.
3575 class ExtParameterInfo {
3576 enum {
3577 ABIMask = 0x0F,
3578 IsConsumed = 0x10,
3579 HasPassObjSize = 0x20,
3580 IsNoEscape = 0x40,
3581 };
3582 unsigned char Data = 0;
3583
3584 public:
3585 ExtParameterInfo() = default;
3586
3587 /// Return the ABI treatment of this parameter.
3588 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3589 ExtParameterInfo withABI(ParameterABI kind) const {
3590 ExtParameterInfo copy = *this;
3591 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3592 return copy;
3593 }
3594
3595 /// Is this parameter considered "consumed" by Objective-C ARC?
3596 /// Consumed parameters must have retainable object type.
3597 bool isConsumed() const { return (Data & IsConsumed); }
3598 ExtParameterInfo withIsConsumed(bool consumed) const {
3599 ExtParameterInfo copy = *this;
3600 if (consumed)
3601 copy.Data |= IsConsumed;
3602 else
3603 copy.Data &= ~IsConsumed;
3604 return copy;
3605 }
3606
3607 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3608 ExtParameterInfo withHasPassObjectSize() const {
3609 ExtParameterInfo Copy = *this;
3610 Copy.Data |= HasPassObjSize;
3611 return Copy;
3612 }
3613
3614 bool isNoEscape() const { return Data & IsNoEscape; }
3615 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3616 ExtParameterInfo Copy = *this;
3617 if (NoEscape)
3618 Copy.Data |= IsNoEscape;
3619 else
3620 Copy.Data &= ~IsNoEscape;
3621 return Copy;
3622 }
3623
3624 unsigned char getOpaqueValue() const { return Data; }
3625 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3626 ExtParameterInfo result;
3627 result.Data = data;
3628 return result;
3629 }
3630
3631 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3632 return lhs.Data == rhs.Data;
3633 }
3634
3635 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3636 return lhs.Data != rhs.Data;
3637 }
3638 };
3639
3640 /// A class which abstracts out some details necessary for
3641 /// making a call.
3642 ///
3643 /// It is not actually used directly for storing this information in
3644 /// a FunctionType, although FunctionType does currently use the
3645 /// same bit-pattern.
3646 ///
3647 // If you add a field (say Foo), other than the obvious places (both,
3648 // constructors, compile failures), what you need to update is
3649 // * Operator==
3650 // * getFoo
3651 // * withFoo
3652 // * functionType. Add Foo, getFoo.
3653 // * ASTContext::getFooType
3654 // * ASTContext::mergeFunctionTypes
3655 // * FunctionNoProtoType::Profile
3656 // * FunctionProtoType::Profile
3657 // * TypePrinter::PrintFunctionProto
3658 // * AST read and write
3659 // * Codegen
3660 class ExtInfo {
3661 friend class FunctionType;
3662
3663 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3664 // adjust the Bits field below, and if you add bits, you'll need to adjust
3665 // Type::FunctionTypeBitfields::ExtInfo as well.
3666
3667 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3668 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3669 //
3670 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3671 enum { CallConvMask = 0x1F };
3672 enum { NoReturnMask = 0x20 };
3673 enum { ProducesResultMask = 0x40 };
3674 enum { NoCallerSavedRegsMask = 0x80 };
3675 enum {
3676 RegParmMask = 0x700,
3677 RegParmOffset = 8
3678 };
3679 enum { NoCfCheckMask = 0x800 };
3680 enum { CmseNSCallMask = 0x1000 };
3681 uint16_t Bits = CC_C;
3682
3683 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3684
3685 public:
3686 // Constructor with no defaults. Use this when you know that you
3687 // have all the elements (when reading an AST file for example).
3688 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3689 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3690 bool cmseNSCall) {
3691 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(static_cast <bool> ((!hasRegParm || regParm < 7) &&
"Invalid regparm value") ? void (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "clang/include/clang/AST/Type.h", 3691, __extension__ __PRETTY_FUNCTION__
))
;
3692 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3693 (producesResult ? ProducesResultMask : 0) |
3694 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3695 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3696 (NoCfCheck ? NoCfCheckMask : 0) |
3697 (cmseNSCall ? CmseNSCallMask : 0);
3698 }
3699
3700 // Constructor with all defaults. Use when for example creating a
3701 // function known to use defaults.
3702 ExtInfo() = default;
3703
3704 // Constructor with just the calling convention, which is an important part
3705 // of the canonical type.
3706 ExtInfo(CallingConv CC) : Bits(CC) {}
3707
3708 bool getNoReturn() const { return Bits & NoReturnMask; }
3709 bool getProducesResult() const { return Bits & ProducesResultMask; }
3710 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3711 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3712 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3713 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3714
3715 unsigned getRegParm() const {
3716 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3717 if (RegParm > 0)
3718 --RegParm;
3719 return RegParm;
3720 }
3721
3722 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3723
3724 bool operator==(ExtInfo Other) const {
3725 return Bits == Other.Bits;
3726 }
3727 bool operator!=(ExtInfo Other) const {
3728 return Bits != Other.Bits;
3729 }
3730
3731 // Note that we don't have setters. That is by design, use
3732 // the following with methods instead of mutating these objects.
3733
3734 ExtInfo withNoReturn(bool noReturn) const {
3735 if (noReturn)
3736 return ExtInfo(Bits | NoReturnMask);
3737 else
3738 return ExtInfo(Bits & ~NoReturnMask);
3739 }
3740
3741 ExtInfo withProducesResult(bool producesResult) const {
3742 if (producesResult)
3743 return ExtInfo(Bits | ProducesResultMask);
3744 else
3745 return ExtInfo(Bits & ~ProducesResultMask);
3746 }
3747
3748 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3749 if (cmseNSCall)
3750 return ExtInfo(Bits | CmseNSCallMask);
3751 else
3752 return ExtInfo(Bits & ~CmseNSCallMask);
3753 }
3754
3755 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3756 if (noCallerSavedRegs)
3757 return ExtInfo(Bits | NoCallerSavedRegsMask);
3758 else
3759 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3760 }
3761
3762 ExtInfo withNoCfCheck(bool noCfCheck) const {
3763 if (noCfCheck)
3764 return ExtInfo(Bits | NoCfCheckMask);
3765 else
3766 return ExtInfo(Bits & ~NoCfCheckMask);
3767 }
3768
3769 ExtInfo withRegParm(unsigned RegParm) const {
3770 assert(RegParm < 7 && "Invalid regparm value")(static_cast <bool> (RegParm < 7 && "Invalid regparm value"
) ? void (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "clang/include/clang/AST/Type.h", 3770, __extension__ __PRETTY_FUNCTION__
))
;
3771 return ExtInfo((Bits & ~RegParmMask) |
3772 ((RegParm + 1) << RegParmOffset));
3773 }
3774
3775 ExtInfo withCallingConv(CallingConv cc) const {
3776 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3777 }
3778
3779 void Profile(llvm::FoldingSetNodeID &ID) const {
3780 ID.AddInteger(Bits);
3781 }
3782 };
3783
3784 /// A simple holder for a QualType representing a type in an
3785 /// exception specification. Unfortunately needed by FunctionProtoType
3786 /// because TrailingObjects cannot handle repeated types.
3787 struct ExceptionType { QualType Type; };
3788
3789 /// A simple holder for various uncommon bits which do not fit in
3790 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3791 /// alignment of subsequent objects in TrailingObjects. You must update
3792 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3793 struct alignas(void *) FunctionTypeExtraBitfields {
3794 /// The number of types in the exception specification.
3795 /// A whole unsigned is not needed here and according to
3796 /// [implimits] 8 bits would be enough here.
3797 unsigned NumExceptionType;
3798 };
3799
3800protected:
3801 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3802 TypeDependence Dependence, ExtInfo Info)
3803 : Type(tc, Canonical, Dependence), ResultType(res) {
3804 FunctionTypeBits.ExtInfo = Info.Bits;
3805 }
3806
3807 Qualifiers getFastTypeQuals() const {
3808 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3809 }
3810
3811public:
3812 QualType getReturnType() const { return ResultType; }
3813
3814 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3815 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3816
3817 /// Determine whether this function type includes the GNU noreturn
3818 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3819 /// type.
3820 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3821
3822 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3823 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3824 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3825
3826 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3827 "Const, volatile and restrict are assumed to be a subset of "
3828 "the fast qualifiers.");
3829
3830 bool isConst() const { return getFastTypeQuals().hasConst(); }
3831 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3832 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3833
3834 /// Determine the type of an expression that calls a function of
3835 /// this type.
3836 QualType getCallResultType(const ASTContext &Context) const {
3837 return getReturnType().getNonLValueExprType(Context);
3838 }
3839
3840 static StringRef getNameForCallConv(CallingConv CC);
3841
3842 static bool classof(const Type *T) {
3843 return T->getTypeClass() == FunctionNoProto ||
3844 T->getTypeClass() == FunctionProto;
3845 }
3846};
3847
3848/// Represents a K&R-style 'int foo()' function, which has
3849/// no information available about its arguments.
3850class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3851 friend class ASTContext; // ASTContext creates these.
3852
3853 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3854 : FunctionType(FunctionNoProto, Result, Canonical,
3855 Result->getDependence() &
3856 ~(TypeDependence::DependentInstantiation |
3857 TypeDependence::UnexpandedPack),
3858 Info) {}
3859
3860public:
3861 // No additional state past what FunctionType provides.
3862
3863 bool isSugared() const { return false; }
3864 QualType desugar() const { return QualType(this, 0); }
3865
3866 void Profile(llvm::FoldingSetNodeID &ID) {
3867 Profile(ID, getReturnType(), getExtInfo());
3868 }
3869
3870 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3871 ExtInfo Info) {
3872 Info.Profile(ID);
3873 ID.AddPointer(ResultType.getAsOpaquePtr());
3874 }
3875
3876 static bool classof(const Type *T) {
3877 return T->getTypeClass() == FunctionNoProto;
3878 }
3879};
3880
3881/// Represents a prototype with parameter type info, e.g.
3882/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3883/// parameters, not as having a single void parameter. Such a type can have
3884/// an exception specification, but this specification is not part of the
3885/// canonical type. FunctionProtoType has several trailing objects, some of
3886/// which optional. For more information about the trailing objects see
3887/// the first comment inside FunctionProtoType.
3888class FunctionProtoType final
3889 : public FunctionType,
3890 public llvm::FoldingSetNode,
3891 private llvm::TrailingObjects<
3892 FunctionProtoType, QualType, SourceLocation,
3893 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3894 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3895 friend class ASTContext; // ASTContext creates these.
3896 friend TrailingObjects;
3897
3898 // FunctionProtoType is followed by several trailing objects, some of
3899 // which optional. They are in order:
3900 //
3901 // * An array of getNumParams() QualType holding the parameter types.
3902 // Always present. Note that for the vast majority of FunctionProtoType,
3903 // these will be the only trailing objects.
3904 //
3905 // * Optionally if the function is variadic, the SourceLocation of the
3906 // ellipsis.
3907 //
3908 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3909 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3910 // a single FunctionTypeExtraBitfields. Present if and only if
3911 // hasExtraBitfields() is true.
3912 //
3913 // * Optionally exactly one of:
3914 // * an array of getNumExceptions() ExceptionType,
3915 // * a single Expr *,
3916 // * a pair of FunctionDecl *,
3917 // * a single FunctionDecl *
3918 // used to store information about the various types of exception
3919 // specification. See getExceptionSpecSize for the details.
3920 //
3921 // * Optionally an array of getNumParams() ExtParameterInfo holding
3922 // an ExtParameterInfo for each of the parameters. Present if and
3923 // only if hasExtParameterInfos() is true.
3924 //
3925 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3926 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3927 // if hasExtQualifiers() is true.
3928 //
3929 // The optional FunctionTypeExtraBitfields has to be before the data
3930 // related to the exception specification since it contains the number
3931 // of exception types.
3932 //
3933 // We put the ExtParameterInfos last. If all were equal, it would make
3934 // more sense to put these before the exception specification, because
3935 // it's much easier to skip past them compared to the elaborate switch
3936 // required to skip the exception specification. However, all is not
3937 // equal; ExtParameterInfos are used to model very uncommon features,
3938 // and it's better not to burden the more common paths.
3939
3940public:
3941 /// Holds information about the various types of exception specification.
3942 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3943 /// used to group together the various bits of information about the
3944 /// exception specification.
3945 struct ExceptionSpecInfo {
3946 /// The kind of exception specification this is.
3947 ExceptionSpecificationType Type = EST_None;
3948
3949 /// Explicitly-specified list of exception types.
3950 ArrayRef<QualType> Exceptions;
3951
3952 /// Noexcept expression, if this is a computed noexcept specification.
3953 Expr *NoexceptExpr = nullptr;
3954
3955 /// The function whose exception specification this is, for
3956 /// EST_Unevaluated and EST_Uninstantiated.
3957 FunctionDecl *SourceDecl = nullptr;
3958
3959 /// The function template whose exception specification this is instantiated
3960 /// from, for EST_Uninstantiated.
3961 FunctionDecl *SourceTemplate = nullptr;
3962
3963 ExceptionSpecInfo() = default;
3964
3965 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3966 };
3967
3968 /// Extra information about a function prototype. ExtProtoInfo is not
3969 /// stored as such in FunctionProtoType but is used to group together
3970 /// the various bits of extra information about a function prototype.
3971 struct ExtProtoInfo {
3972 FunctionType::ExtInfo ExtInfo;
3973 bool Variadic : 1;
3974 bool HasTrailingReturn : 1;
3975 Qualifiers TypeQuals;
3976 RefQualifierKind RefQualifier = RQ_None;
3977 ExceptionSpecInfo ExceptionSpec;
3978 const ExtParameterInfo *ExtParameterInfos = nullptr;
3979 SourceLocation EllipsisLoc;
3980
3981 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3982
3983 ExtProtoInfo(CallingConv CC)
3984 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3985
3986 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3987 ExtProtoInfo Result(*this);
3988 Result.ExceptionSpec = ESI;
3989 return Result;
3990 }
3991 };
3992
3993private:
3994 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3995 return getNumParams();
3996 }
3997
3998 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3999 return isVariadic();
4000 }
4001
4002 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
4003 return hasExtraBitfields();
4004 }
4005
4006 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
4007 return getExceptionSpecSize().NumExceptionType;
4008 }
4009
4010 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4011 return getExceptionSpecSize().NumExprPtr;
4012 }
4013
4014 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4015 return getExceptionSpecSize().NumFunctionDeclPtr;
4016 }
4017
4018 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4019 return hasExtParameterInfos() ? getNumParams() : 0;
4020 }
4021
4022 /// Determine whether there are any argument types that
4023 /// contain an unexpanded parameter pack.
4024 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4025 unsigned numArgs) {
4026 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4027 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4028 return true;
4029
4030 return false;
4031 }
4032
4033 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4034 QualType canonical, const ExtProtoInfo &epi);
4035
4036 /// This struct is returned by getExceptionSpecSize and is used to
4037 /// translate an ExceptionSpecificationType to the number and kind
4038 /// of trailing objects related to the exception specification.
4039 struct ExceptionSpecSizeHolder {
4040 unsigned NumExceptionType;
4041 unsigned NumExprPtr;
4042 unsigned NumFunctionDeclPtr;
4043 };
4044
4045 /// Return the number and kind of trailing objects
4046 /// related to the exception specification.
4047 static ExceptionSpecSizeHolder
4048 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4049 switch (EST) {
4050 case EST_None:
4051 case EST_DynamicNone:
4052 case EST_MSAny:
4053 case EST_BasicNoexcept:
4054 case EST_Unparsed:
4055 case EST_NoThrow:
4056 return {0, 0, 0};
4057
4058 case EST_Dynamic:
4059 return {NumExceptions, 0, 0};
4060
4061 case EST_DependentNoexcept:
4062 case EST_NoexceptFalse:
4063 case EST_NoexceptTrue:
4064 return {0, 1, 0};
4065
4066 case EST_Uninstantiated:
4067 return {0, 0, 2};
4068
4069 case EST_Unevaluated:
4070 return {0, 0, 1};
4071 }
4072 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "clang/include/clang/AST/Type.h", 4072)
;
4073 }
4074
4075 /// Return the number and kind of trailing objects
4076 /// related to the exception specification.
4077 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4078 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4079 }
4080
4081 /// Whether the trailing FunctionTypeExtraBitfields is present.
4082 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4083 // If the exception spec type is EST_Dynamic then we have > 0 exception
4084 // types and the exact number is stored in FunctionTypeExtraBitfields.
4085 return EST == EST_Dynamic;
4086 }
4087
4088 /// Whether the trailing FunctionTypeExtraBitfields is present.
4089 bool hasExtraBitfields() const {
4090 return hasExtraBitfields(getExceptionSpecType());
4091 }
4092
4093 bool hasExtQualifiers() const {
4094 return FunctionTypeBits.HasExtQuals;
4095 }
4096
4097public:
4098 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4099
4100 QualType getParamType(unsigned i) const {
4101 assert(i < getNumParams() && "invalid parameter index")(static_cast <bool> (i < getNumParams() && "invalid parameter index"
) ? void (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "clang/include/clang/AST/Type.h", 4101, __extension__ __PRETTY_FUNCTION__
))
;
4102 return param_type_begin()[i];
4103 }
4104
4105 ArrayRef<QualType> getParamTypes() const {
4106 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4107 }
4108
4109 ExtProtoInfo getExtProtoInfo() const {
4110 ExtProtoInfo EPI;
4111 EPI.ExtInfo = getExtInfo();
4112 EPI.Variadic = isVariadic();
4113 EPI.EllipsisLoc = getEllipsisLoc();
4114 EPI.HasTrailingReturn = hasTrailingReturn();
4115 EPI.ExceptionSpec = getExceptionSpecInfo();
4116 EPI.TypeQuals = getMethodQuals();
4117 EPI.RefQualifier = getRefQualifier();
4118 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4119 return EPI;
4120 }
4121
4122 /// Get the kind of exception specification on this function.
4123 ExceptionSpecificationType getExceptionSpecType() const {
4124 return static_cast<ExceptionSpecificationType>(
4125 FunctionTypeBits.ExceptionSpecType);
4126 }
4127
4128 /// Return whether this function has any kind of exception spec.
4129 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4130
4131 /// Return whether this function has a dynamic (throw) exception spec.
4132 bool hasDynamicExceptionSpec() const {
4133 return isDynamicExceptionSpec(getExceptionSpecType());
4134 }
4135
4136 /// Return whether this function has a noexcept exception spec.
4137 bool hasNoexceptExceptionSpec() const {
4138 return isNoexceptExceptionSpec(getExceptionSpecType());
4139 }
4140
4141 /// Return whether this function has a dependent exception spec.
4142 bool hasDependentExceptionSpec() const;
4143
4144 /// Return whether this function has an instantiation-dependent exception
4145 /// spec.
4146 bool hasInstantiationDependentExceptionSpec() const;
4147
4148 /// Return all the available information about this type's exception spec.
4149 ExceptionSpecInfo getExceptionSpecInfo() const {
4150 ExceptionSpecInfo Result;
4151 Result.Type = getExceptionSpecType();
4152 if (Result.Type == EST_Dynamic) {
4153 Result.Exceptions = exceptions();
4154 } else if (isComputedNoexcept(Result.Type)) {
4155 Result.NoexceptExpr = getNoexceptExpr();
4156 } else if (Result.Type == EST_Uninstantiated) {
4157 Result.SourceDecl = getExceptionSpecDecl();
4158 Result.SourceTemplate = getExceptionSpecTemplate();
4159 } else if (Result.Type == EST_Unevaluated) {
4160 Result.SourceDecl = getExceptionSpecDecl();
4161 }
4162 return Result;
4163 }
4164
4165 /// Return the number of types in the exception specification.
4166 unsigned getNumExceptions() const {
4167 return getExceptionSpecType() == EST_Dynamic
4168 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4169 ->NumExceptionType
4170 : 0;
4171 }
4172
4173 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4174 QualType getExceptionType(unsigned i) const {
4175 assert(i < getNumExceptions() && "Invalid exception number!")(static_cast <bool> (i < getNumExceptions() &&
"Invalid exception number!") ? void (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "clang/include/clang/AST/Type.h", 4175, __extension__ __PRETTY_FUNCTION__
))
;
4176 return exception_begin()[i];
4177 }
4178
4179 /// Return the expression inside noexcept(expression), or a null pointer
4180 /// if there is none (because the exception spec is not of this form).
4181 Expr *getNoexceptExpr() const {
4182 if (!isComputedNoexcept(getExceptionSpecType()))
4183 return nullptr;
4184 return *getTrailingObjects<Expr *>();
4185 }
4186
4187 /// If this function type has an exception specification which hasn't
4188 /// been determined yet (either because it has not been evaluated or because
4189 /// it has not been instantiated), this is the function whose exception
4190 /// specification is represented by this type.
4191 FunctionDecl *getExceptionSpecDecl() const {
4192 if (getExceptionSpecType() != EST_Uninstantiated &&
4193 getExceptionSpecType() != EST_Unevaluated)
4194 return nullptr;
4195 return getTrailingObjects<FunctionDecl *>()[0];
4196 }
4197
4198 /// If this function type has an uninstantiated exception
4199 /// specification, this is the function whose exception specification
4200 /// should be instantiated to find the exception specification for
4201 /// this type.
4202 FunctionDecl *getExceptionSpecTemplate() const {
4203 if (getExceptionSpecType() != EST_Uninstantiated)
4204 return nullptr;
4205 return getTrailingObjects<FunctionDecl *>()[1];
4206 }
4207
4208 /// Determine whether this function type has a non-throwing exception
4209 /// specification.
4210 CanThrowResult canThrow() const;
4211
4212 /// Determine whether this function type has a non-throwing exception
4213 /// specification. If this depends on template arguments, returns
4214 /// \c ResultIfDependent.
4215 bool isNothrow(bool ResultIfDependent = false) const {
4216 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4217 }
4218
4219 /// Whether this function prototype is variadic.
4220 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4221
4222 SourceLocation getEllipsisLoc() const {
4223 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4224 : SourceLocation();
4225 }
4226
4227 /// Determines whether this function prototype contains a
4228 /// parameter pack at the end.
4229 ///
4230 /// A function template whose last parameter is a parameter pack can be
4231 /// called with an arbitrary number of arguments, much like a variadic
4232 /// function.
4233 bool isTemplateVariadic() const;
4234
4235 /// Whether this function prototype has a trailing return type.
4236 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4237
4238 Qualifiers getMethodQuals() const {
4239 if (hasExtQualifiers())
4240 return *getTrailingObjects<Qualifiers>();
4241 else
4242 return getFastTypeQuals();
4243 }
4244
4245 /// Retrieve the ref-qualifier associated with this function type.
4246 RefQualifierKind getRefQualifier() const {
4247 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4248 }
4249
4250 using param_type_iterator = const QualType *;
4251 using param_type_range = llvm::iterator_range<param_type_iterator>;
4252
4253 param_type_range param_types() const {
4254 return param_type_range(param_type_begin(), param_type_end());
4255 }
4256
4257 param_type_iterator param_type_begin() const {
4258 return getTrailingObjects<QualType>();
4259 }
4260
4261 param_type_iterator param_type_end() const {
4262 return param_type_begin() + getNumParams();
4263 }
4264
4265 using exception_iterator = const QualType *;
4266
4267 ArrayRef<QualType> exceptions() const {
4268 return llvm::makeArrayRef(exception_begin(), exception_end());
4269 }
4270
4271 exception_iterator exception_begin() const {
4272 return reinterpret_cast<exception_iterator>(
4273 getTrailingObjects<ExceptionType>());
4274 }
4275
4276 exception_iterator exception_end() const {
4277 return exception_begin() + getNumExceptions();
4278 }
4279
4280 /// Is there any interesting extra information for any of the parameters
4281 /// of this function type?
4282 bool hasExtParameterInfos() const {
4283 return FunctionTypeBits.HasExtParameterInfos;
4284 }
4285
4286 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4287 assert(hasExtParameterInfos())(static_cast <bool> (hasExtParameterInfos()) ? void (0)
: __assert_fail ("hasExtParameterInfos()", "clang/include/clang/AST/Type.h"
, 4287, __extension__ __PRETTY_FUNCTION__))
;
4288 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4289 getNumParams());
4290 }
4291
4292 /// Return a pointer to the beginning of the array of extra parameter
4293 /// information, if present, or else null if none of the parameters
4294 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4295 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4296 if (!hasExtParameterInfos())
4297 return nullptr;
4298 return getTrailingObjects<ExtParameterInfo>();
4299 }
4300
4301 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4302 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4302, __extension__ __PRETTY_FUNCTION__
))
;
4303 if (hasExtParameterInfos())
4304 return getTrailingObjects<ExtParameterInfo>()[I];
4305 return ExtParameterInfo();
4306 }
4307
4308 ParameterABI getParameterABI(unsigned I) const {
4309 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4309, __extension__ __PRETTY_FUNCTION__
))
;
4310 if (hasExtParameterInfos())
4311 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4312 return ParameterABI::Ordinary;
4313 }
4314
4315 bool isParamConsumed(unsigned I) const {
4316 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "clang/include/clang/AST/Type.h", 4316, __extension__ __PRETTY_FUNCTION__
))
;
4317 if (hasExtParameterInfos())
4318 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4319 return false;
4320 }
4321
4322 bool isSugared() const { return false; }
4323 QualType desugar() const { return QualType(this, 0); }
4324
4325 void printExceptionSpecification(raw_ostream &OS,
4326 const PrintingPolicy &Policy) const;
4327
4328 static bool classof(const Type *T) {
4329 return T->getTypeClass() == FunctionProto;
4330 }
4331
4332 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4333 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4334 param_type_iterator ArgTys, unsigned NumArgs,
4335 const ExtProtoInfo &EPI, const ASTContext &Context,
4336 bool Canonical);
4337};
4338
4339/// Represents the dependent type named by a dependently-scoped
4340/// typename using declaration, e.g.
4341/// using typename Base<T>::foo;
4342///
4343/// Template instantiation turns these into the underlying type.
4344class UnresolvedUsingType : public Type {
4345 friend class ASTContext; // ASTContext creates these.
4346
4347 UnresolvedUsingTypenameDecl *Decl;
4348
4349 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4350 : Type(UnresolvedUsing, QualType(),
4351 TypeDependence::DependentInstantiation),
4352 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4353
4354public:
4355 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4356
4357 bool isSugared() const { return false; }
4358 QualType desugar() const { return QualType(this, 0); }
4359
4360 static bool classof(const Type *T) {
4361 return T->getTypeClass() == UnresolvedUsing;
4362 }
4363
4364 void Profile(llvm::FoldingSetNodeID &ID) {
4365 return Profile(ID, Decl);
4366 }
4367
4368 static void Profile(llvm::FoldingSetNodeID &ID,
4369 UnresolvedUsingTypenameDecl *D) {
4370 ID.AddPointer(D);
4371 }
4372};
4373
4374class UsingType : public Type, public llvm::FoldingSetNode {
4375 UsingShadowDecl *Found;
4376 friend class ASTContext; // ASTContext creates these.
4377
4378 UsingType(const UsingShadowDecl *Found, QualType Underlying, QualType Canon);
4379
4380public:
4381 UsingShadowDecl *getFoundDecl() const { return Found; }
4382 QualType getUnderlyingType() const;
4383
4384 bool isSugared() const { return true; }
4385 QualType desugar() const { return getUnderlyingType(); }
4386
4387 void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Found); }
4388 static void Profile(llvm::FoldingSetNodeID &ID,
4389 const UsingShadowDecl *Found) {
4390 ID.AddPointer(Found);
4391 }
4392 static bool classof(const Type *T) { return T->getTypeClass() == Using; }
4393};
4394
4395class TypedefType : public Type {
4396 TypedefNameDecl *Decl;
4397
4398private:
4399 friend class ASTContext; // ASTContext creates these.
4400
4401 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4402 QualType can);
4403
4404public:
4405 TypedefNameDecl *getDecl() const { return Decl; }
4406
4407 bool isSugared() const { return true; }
4408 QualType desugar() const;
4409
4410 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4411};
4412
4413/// Sugar type that represents a type that was qualified by a qualifier written
4414/// as a macro invocation.
4415class MacroQualifiedType : public Type {
4416 friend class ASTContext; // ASTContext creates these.
4417
4418 QualType UnderlyingTy;
4419 const IdentifierInfo *MacroII;
4420
4421 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4422 const IdentifierInfo *MacroII)
4423 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4424 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4425 assert(isa<AttributedType>(UnderlyingTy) &&(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "clang/include/clang/AST/Type.h", 4426, __extension__ __PRETTY_FUNCTION__
))
4426 "Expected a macro qualified type to only wrap attributed types.")(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "clang/include/clang/AST/Type.h", 4426, __extension__ __PRETTY_FUNCTION__
))
;
4427 }
4428
4429public:
4430 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4431 QualType getUnderlyingType() const { return UnderlyingTy; }
4432
4433 /// Return this attributed type's modified type with no qualifiers attached to
4434 /// it.
4435 QualType getModifiedType() const;
4436
4437 bool isSugared() const { return true; }
4438 QualType desugar() const;
4439
4440 static bool classof(const Type *T) {
4441 return T->getTypeClass() == MacroQualified;
4442 }
4443};
4444
4445/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4446class TypeOfExprType : public Type {
4447 Expr *TOExpr;
4448
4449protected:
4450 friend class ASTContext; // ASTContext creates these.
4451
4452 TypeOfExprType(Expr *E, QualType can = QualType());
4453
4454public:
4455 Expr *getUnderlyingExpr() const { return TOExpr; }
4456
4457 /// Remove a single level of sugar.
4458 QualType desugar() const;
4459
4460 /// Returns whether this type directly provides sugar.
4461 bool isSugared() const;
4462
4463 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4464};
4465
4466/// Internal representation of canonical, dependent
4467/// `typeof(expr)` types.
4468///
4469/// This class is used internally by the ASTContext to manage
4470/// canonical, dependent types, only. Clients will only see instances
4471/// of this class via TypeOfExprType nodes.
4472class DependentTypeOfExprType
4473 : public TypeOfExprType, public llvm::FoldingSetNode {
4474 const ASTContext &Context;
4475
4476public:
4477 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4478 : TypeOfExprType(E), Context(Context) {}
4479
4480 void Profile(llvm::FoldingSetNodeID &ID) {
4481 Profile(ID, Context, getUnderlyingExpr());
4482 }
4483
4484 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4485 Expr *E);
4486};
4487
4488/// Represents `typeof(type)`, a GCC extension.
4489class TypeOfType : public Type {
4490 friend class ASTContext; // ASTContext creates these.
4491
4492 QualType TOType;
4493
4494 TypeOfType(QualType T, QualType can)
4495 : Type(TypeOf, can, T->getDependence()), TOType(T) {
4496 assert(!isa<TypedefType>(can) && "Invalid canonical type")(static_cast <bool> (!isa<TypedefType>(can) &&
"Invalid canonical type") ? void (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "clang/include/clang/AST/Type.h", 4496, __extension__ __PRETTY_FUNCTION__
))
;
4497 }
4498
4499public:
4500 QualType getUnderlyingType() const { return TOType; }
4501
4502 /// Remove a single level of sugar.
4503 QualType desugar() const { return getUnderlyingType(); }
4504
4505 /// Returns whether this type directly provides sugar.
4506 bool isSugared() const { return true; }
4507
4508 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4509};
4510
4511/// Represents the type `decltype(expr)` (C++11).
4512class DecltypeType : public Type {
4513 Expr *E;
4514 QualType UnderlyingType;
4515
4516protected:
4517 friend class ASTContext; // ASTContext creates these.
4518
4519 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4520
4521public:
4522 Expr *getUnderlyingExpr() const { return E; }
4523 QualType getUnderlyingType() const { return UnderlyingType; }
4524
4525 /// Remove a single level of sugar.
4526 QualType desugar() const;
4527
4528 /// Returns whether this type directly provides sugar.
4529 bool isSugared() const;
4530
4531 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4532};
4533
4534/// Internal representation of canonical, dependent
4535/// decltype(expr) types.
4536///
4537/// This class is used internally by the ASTContext to manage
4538/// canonical, dependent types, only. Clients will only see instances
4539/// of this class via DecltypeType nodes.
4540class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4541 const ASTContext &Context;
4542
4543public:
4544 DependentDecltypeType(const ASTContext &Context, Expr *E);
4545
4546 void Profile(llvm::FoldingSetNodeID &ID) {
4547 Profile(ID, Context, getUnderlyingExpr());
4548 }
4549
4550 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4551 Expr *E);
4552};
4553
4554/// A unary type transform, which is a type constructed from another.
4555class UnaryTransformType : public Type {
4556public:
4557 enum UTTKind {
4558 EnumUnderlyingType
4559 };
4560
4561private:
4562 /// The untransformed type.
4563 QualType BaseType;
4564
4565 /// The transformed type if not dependent, otherwise the same as BaseType.
4566 QualType UnderlyingType;
4567
4568 UTTKind UKind;
4569
4570protected:
4571 friend class ASTContext;
4572
4573 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4574 QualType CanonicalTy);
4575
4576public:
4577 bool isSugared() const { return !isDependentType(); }
4578 QualType desugar() const { return UnderlyingType; }
4579
4580 QualType getUnderlyingType() const { return UnderlyingType; }
4581 QualType getBaseType() const { return BaseType; }
4582
4583 UTTKind getUTTKind() const { return UKind; }
4584
4585 static bool classof(const Type *T) {
4586 return T->getTypeClass() == UnaryTransform;
4587 }
4588};
4589
4590/// Internal representation of canonical, dependent
4591/// __underlying_type(type) types.
4592///
4593/// This class is used internally by the ASTContext to manage
4594/// canonical, dependent types, only. Clients will only see instances
4595/// of this class via UnaryTransformType nodes.
4596class DependentUnaryTransformType : public UnaryTransformType,
4597 public llvm::FoldingSetNode {
4598public:
4599 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4600 UTTKind UKind);
4601
4602 void Profile(llvm::FoldingSetNodeID &ID) {
4603 Profile(ID, getBaseType(), getUTTKind());
4604 }
4605
4606 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4607 UTTKind UKind) {
4608 ID.AddPointer(BaseType.getAsOpaquePtr());
4609 ID.AddInteger((unsigned)UKind);
4610 }
4611};
4612
4613class TagType : public Type {
4614 friend class ASTReader;
4615 template <class T> friend class serialization::AbstractTypeReader;
4616
4617 /// Stores the TagDecl associated with this type. The decl may point to any
4618 /// TagDecl that declares the entity.
4619 TagDecl *decl;
4620
4621protected:
4622 TagType(TypeClass TC, const TagDecl *D, QualType can);
4623
4624public:
4625 TagDecl *getDecl() const;
4626
4627 /// Determines whether this type is in the process of being defined.
4628 bool isBeingDefined() const;
4629
4630 static bool classof(const Type *T) {
4631 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4632 }
4633};
4634
4635/// A helper class that allows the use of isa/cast/dyncast
4636/// to detect TagType objects of structs/unions/classes.
4637class RecordType : public TagType {
4638protected:
4639 friend class ASTContext; // ASTContext creates these.
4640
4641 explicit RecordType(const RecordDecl *D)
4642 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4643 explicit RecordType(TypeClass TC, RecordDecl *D)
4644 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4645
4646public:
4647 RecordDecl *getDecl() const {
4648 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4649 }
4650
4651 /// Recursively check all fields in the record for const-ness. If any field
4652 /// is declared const, return true. Otherwise, return false.
4653 bool hasConstFields() const;
4654
4655 bool isSugared() const { return false; }
4656 QualType desugar() const { return QualType(this, 0); }
4657
4658 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4659};
4660
4661/// A helper class that allows the use of isa/cast/dyncast
4662/// to detect TagType objects of enums.
4663class EnumType : public TagType {
4664 friend class ASTContext; // ASTContext creates these.
4665
4666 explicit EnumType(const EnumDecl *D)
4667 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4668
4669public:
4670 EnumDecl *getDecl() const {
4671 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4672 }
4673
4674 bool isSugared() const { return false; }
4675 QualType desugar() const { return QualType(this, 0); }
4676
4677 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4678};
4679
4680/// An attributed type is a type to which a type attribute has been applied.
4681///
4682/// The "modified type" is the fully-sugared type to which the attributed
4683/// type was applied; generally it is not canonically equivalent to the
4684/// attributed type. The "equivalent type" is the minimally-desugared type
4685/// which the type is canonically equivalent to.
4686///
4687/// For example, in the following attributed type:
4688/// int32_t __attribute__((vector_size(16)))
4689/// - the modified type is the TypedefType for int32_t
4690/// - the equivalent type is VectorType(16, int32_t)
4691/// - the canonical type is VectorType(16, int)
4692class AttributedType : public Type, public llvm::FoldingSetNode {
4693public:
4694 using Kind = attr::Kind;
4695
4696private:
4697 friend class ASTContext; // ASTContext creates these
4698
4699 QualType ModifiedType;
4700 QualType EquivalentType;
4701
4702 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4703 QualType equivalent)
4704 : Type(Attributed, canon, equivalent->getDependence()),
4705 ModifiedType(modified), EquivalentType(equivalent) {
4706 AttributedTypeBits.AttrKind = attrKind;
4707 }
4708
4709public:
4710 Kind getAttrKind() const {
4711 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4712 }
4713
4714 QualType getModifiedType() const { return ModifiedType; }
4715 QualType getEquivalentType() const { return EquivalentType; }
4716
4717 bool isSugared() const { return true; }
4718 QualType desugar() const { return getEquivalentType(); }
4719
4720 /// Does this attribute behave like a type qualifier?
4721 ///
4722 /// A type qualifier adjusts a type to provide specialized rules for
4723 /// a specific object, like the standard const and volatile qualifiers.
4724 /// This includes attributes controlling things like nullability,
4725 /// address spaces, and ARC ownership. The value of the object is still
4726 /// largely described by the modified type.
4727 ///
4728 /// In contrast, many type attributes "rewrite" their modified type to
4729 /// produce a fundamentally different type, not necessarily related in any
4730 /// formalizable way to the original type. For example, calling convention
4731 /// and vector attributes are not simple type qualifiers.
4732 ///
4733 /// Type qualifiers are often, but not always, reflected in the canonical
4734 /// type.
4735 bool isQualifier() const;
4736
4737 bool isMSTypeSpec() const;
4738
4739 bool isCallingConv() const;
4740
4741 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4742
4743 /// Retrieve the attribute kind corresponding to the given
4744 /// nullability kind.
4745 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4746 switch (kind) {
4747 case NullabilityKind::NonNull:
4748 return attr::TypeNonNull;
4749
4750 case NullabilityKind::Nullable:
4751 return attr::TypeNullable;
4752
4753 case NullabilityKind::NullableResult:
4754 return attr::TypeNullableResult;
4755
4756 case NullabilityKind::Unspecified:
4757 return attr::TypeNullUnspecified;
4758 }
4759 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "clang/include/clang/AST/Type.h", 4759)
;
4760 }
4761
4762 /// Strip off the top-level nullability annotation on the given
4763 /// type, if it's there.
4764 ///
4765 /// \param T The type to strip. If the type is exactly an
4766 /// AttributedType specifying nullability (without looking through
4767 /// type sugar), the nullability is returned and this type changed
4768 /// to the underlying modified type.
4769 ///
4770 /// \returns the top-level nullability, if present.
4771 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4772
4773 void Profile(llvm::FoldingSetNodeID &ID) {
4774 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4775 }
4776
4777 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4778 QualType modified, QualType equivalent) {
4779 ID.AddInteger(attrKind);
4780 ID.AddPointer(modified.getAsOpaquePtr());
4781 ID.AddPointer(equivalent.getAsOpaquePtr());
4782 }
4783
4784 static bool classof(const Type *T) {
4785 return T->getTypeClass() == Attributed;
4786 }
4787};
4788
4789class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4790 friend class ASTContext; // ASTContext creates these
4791
4792 // Helper data collector for canonical types.
4793 struct CanonicalTTPTInfo {
4794 unsigned Depth : 15;
4795 unsigned ParameterPack : 1;
4796 unsigned Index : 16;
4797 };
4798
4799 union {
4800 // Info for the canonical type.
4801 CanonicalTTPTInfo CanTTPTInfo;
4802
4803 // Info for the non-canonical type.
4804 TemplateTypeParmDecl *TTPDecl;
4805 };
4806
4807 /// Build a non-canonical type.
4808 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4809 : Type(TemplateTypeParm, Canon,
4810 TypeDependence::DependentInstantiation |
4811 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
4812 TTPDecl(TTPDecl) {}
4813
4814 /// Build the canonical type.
4815 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4816 : Type(TemplateTypeParm, QualType(this, 0),
4817 TypeDependence::DependentInstantiation |
4818 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
4819 CanTTPTInfo.Depth = D;
4820 CanTTPTInfo.Index = I;
4821 CanTTPTInfo.ParameterPack = PP;
4822 }
4823
4824 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4825 QualType Can = getCanonicalTypeInternal();
4826 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4827 }
4828
4829public:
4830 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4831 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4832 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4833
4834 TemplateTypeParmDecl *getDecl() const {
4835 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4836 }
4837
4838 IdentifierInfo *getIdentifier() const;
4839
4840 bool isSugared() const { return false; }
4841 QualType desugar() const { return QualType(this, 0); }
4842
4843 void Profile(llvm::FoldingSetNodeID &ID) {
4844 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4845 }
4846
4847 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4848 unsigned Index, bool ParameterPack,
4849 TemplateTypeParmDecl *TTPDecl) {
4850 ID.AddInteger(Depth);
4851 ID.AddInteger(Index);
4852 ID.AddBoolean(ParameterPack);
4853 ID.AddPointer(TTPDecl);
4854 }
4855
4856 static bool classof(const Type *T) {
4857 return T->getTypeClass() == TemplateTypeParm;
4858 }
4859};
4860
4861/// Represents the result of substituting a type for a template
4862/// type parameter.
4863///
4864/// Within an instantiated template, all template type parameters have
4865/// been replaced with these. They are used solely to record that a
4866/// type was originally written as a template type parameter;
4867/// therefore they are never canonical.
4868class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4869 friend class ASTContext;
4870
4871 // The original type parameter.
4872 const TemplateTypeParmType *Replaced;
4873
4874 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4875 : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()),
4876 Replaced(Param) {}
4877
4878public:
4879 /// Gets the template parameter that was substituted for.
4880 const TemplateTypeParmType *getReplacedParameter() const {
4881 return Replaced;
4882 }
4883
4884 /// Gets the type that was substituted for the template
4885 /// parameter.
4886 QualType getReplacementType() const {
4887 return getCanonicalTypeInternal();
4888 }
4889
4890 bool isSugared() const { return true; }
4891 QualType desugar() const { return getReplacementType(); }
4892
4893 void Profile(llvm::FoldingSetNodeID &ID) {
4894 Profile(ID, getReplacedParameter(), getReplacementType());
4895 }
4896
4897 static void Profile(llvm::FoldingSetNodeID &ID,
4898 const TemplateTypeParmType *Replaced,
4899 QualType Replacement) {
4900 ID.AddPointer(Replaced);
4901 ID.AddPointer(Replacement.getAsOpaquePtr());
4902 }
4903
4904 static bool classof(const Type *T) {
4905 return T->getTypeClass() == SubstTemplateTypeParm;
4906 }
4907};
4908
4909/// Represents the result of substituting a set of types for a template
4910/// type parameter pack.
4911///
4912/// When a pack expansion in the source code contains multiple parameter packs
4913/// and those parameter packs correspond to different levels of template
4914/// parameter lists, this type node is used to represent a template type
4915/// parameter pack from an outer level, which has already had its argument pack
4916/// substituted but that still lives within a pack expansion that itself
4917/// could not be instantiated. When actually performing a substitution into
4918/// that pack expansion (e.g., when all template parameters have corresponding
4919/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4920/// at the current pack substitution index.
4921class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4922 friend class ASTContext;
4923
4924 /// The original type parameter.
4925 const TemplateTypeParmType *Replaced;
4926
4927 /// A pointer to the set of template arguments that this
4928 /// parameter pack is instantiated with.
4929 const TemplateArgument *Arguments;
4930
4931 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4932 QualType Canon,
4933 const TemplateArgument &ArgPack);
4934
4935public:
4936 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4937
4938 /// Gets the template parameter that was substituted for.
4939 const TemplateTypeParmType *getReplacedParameter() const {
4940 return Replaced;
4941 }
4942
4943 unsigned getNumArgs() const {
4944 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4945 }
4946
4947 bool isSugared() const { return false; }
4948 QualType desugar() const { return QualType(this, 0); }
4949
4950 TemplateArgument getArgumentPack() const;
4951
4952 void Profile(llvm::FoldingSetNodeID &ID);
4953 static void Profile(llvm::FoldingSetNodeID &ID,
4954 const TemplateTypeParmType *Replaced,
4955 const TemplateArgument &ArgPack);
4956
4957 static bool classof(const Type *T) {
4958 return T->getTypeClass() == SubstTemplateTypeParmPack;
4959 }
4960};
4961
4962/// Common base class for placeholders for types that get replaced by
4963/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4964/// class template types, and constrained type names.
4965///
4966/// These types are usually a placeholder for a deduced type. However, before
4967/// the initializer is attached, or (usually) if the initializer is
4968/// type-dependent, there is no deduced type and the type is canonical. In
4969/// the latter case, it is also a dependent type.
4970class DeducedType : public Type {
4971 QualType DeducedAsType;
4972
4973protected:
4974 DeducedType(TypeClass TC, QualType DeducedAsType,
4975 TypeDependence ExtraDependence, QualType Canon)
4976 : Type(TC, Canon,
4977 ExtraDependence | (DeducedAsType.isNull()
4978 ? TypeDependence::None
4979 : DeducedAsType->getDependence() &
4980 ~TypeDependence::VariablyModified)),
4981 DeducedAsType(DeducedAsType) {}
4982
4983public:
4984 bool isSugared() const { return !DeducedAsType.isNull(); }
4985 QualType desugar() const {
4986 return isSugared() ? DeducedAsType : QualType(this, 0);
4987 }
4988
4989 /// Get the type deduced for this placeholder type, or null if it
4990 /// has not been deduced.
4991 QualType getDeducedType() const { return DeducedAsType; }
4992 bool isDeduced() const {
4993 return !DeducedAsType.isNull() || isDependentType();
4994 }
4995
4996 static bool classof(const Type *T) {
4997 return T->getTypeClass() == Auto ||
4998 T->getTypeClass() == DeducedTemplateSpecialization;
4999 }
5000};
5001
5002/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
5003/// by a type-constraint.
5004class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
5005 friend class ASTContext; // ASTContext creates these
5006
5007 ConceptDecl *TypeConstraintConcept;
5008
5009 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
5010 TypeDependence ExtraDependence, QualType Canon, ConceptDecl *CD,
5011 ArrayRef<TemplateArgument> TypeConstraintArgs);
5012
5013 const TemplateArgument *getArgBuffer() const {
5014 return reinterpret_cast<const TemplateArgument*>(this+1);
5015 }
5016
5017 TemplateArgument *getArgBuffer() {
5018 return reinterpret_cast<TemplateArgument*>(this+1);
5019 }
5020
5021public:
5022 /// Retrieve the template arguments.
5023 const TemplateArgument *getArgs() const {
5024 return getArgBuffer();
5025 }
5026
5027 /// Retrieve the number of template arguments.
5028 unsigned getNumArgs() const {
5029 return AutoTypeBits.NumArgs;
5030 }
5031
5032 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5033
5034 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5035 return {getArgs(), getNumArgs()};
5036 }
5037
5038 ConceptDecl *getTypeConstraintConcept() const {
5039 return TypeConstraintConcept;
5040 }
5041
5042 bool isConstrained() const {
5043 return TypeConstraintConcept != nullptr;
5044 }
5045
5046 bool isDecltypeAuto() const {
5047 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5048 }
5049
5050 AutoTypeKeyword getKeyword() const {
5051 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5052 }
5053
5054 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5055 Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(),
5056 getTypeConstraintConcept(), getTypeConstraintArguments());
5057 }
5058
5059 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5060 QualType Deduced, AutoTypeKeyword Keyword,
5061 bool IsDependent, ConceptDecl *CD,
5062 ArrayRef<TemplateArgument> Arguments);
5063
5064 static bool classof(const Type *T) {
5065 return T->getTypeClass() == Auto;
5066 }
5067};
5068
5069/// Represents a C++17 deduced template specialization type.
5070class DeducedTemplateSpecializationType : public DeducedType,
5071 public llvm::FoldingSetNode {
5072 friend class ASTContext; // ASTContext creates these
5073
5074 /// The name of the template whose arguments will be deduced.
5075 TemplateName Template;
5076
5077 DeducedTemplateSpecializationType(TemplateName Template,
5078 QualType DeducedAsType,
5079 bool IsDeducedAsDependent)
5080 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5081 toTypeDependence(Template.getDependence()) |
5082 (IsDeducedAsDependent
5083 ? TypeDependence::DependentInstantiation
5084 : TypeDependence::None),
5085 DeducedAsType.isNull() ? QualType(this, 0)
5086 : DeducedAsType.getCanonicalType()),
5087 Template(Template) {}
5088
5089public:
5090 /// Retrieve the name of the template that we are deducing.
5091 TemplateName getTemplateName() const { return Template;}
5092
5093 void Profile(llvm::FoldingSetNodeID &ID) {
5094 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5095 }
5096
5097 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5098 QualType Deduced, bool IsDependent) {
5099 Template.Profile(ID);
5100 QualType CanonicalType =
5101 Deduced.isNull() ? Deduced : Deduced.getCanonicalType();
5102 ID.AddPointer(CanonicalType.getAsOpaquePtr());
5103 ID.AddBoolean(IsDependent || Template.isDependent());
5104 }
5105
5106 static bool classof(const Type *T) {
5107 return T->getTypeClass() == DeducedTemplateSpecialization;
5108 }
5109};
5110
5111/// Represents a type template specialization; the template
5112/// must be a class template, a type alias template, or a template
5113/// template parameter. A template which cannot be resolved to one of
5114/// these, e.g. because it is written with a dependent scope
5115/// specifier, is instead represented as a
5116/// @c DependentTemplateSpecializationType.
5117///
5118/// A non-dependent template specialization type is always "sugar",
5119/// typically for a \c RecordType. For example, a class template
5120/// specialization type of \c vector<int> will refer to a tag type for
5121/// the instantiation \c std::vector<int, std::allocator<int>>
5122///
5123/// Template specializations are dependent if either the template or
5124/// any of the template arguments are dependent, in which case the
5125/// type may also be canonical.
5126///
5127/// Instances of this type are allocated with a trailing array of
5128/// TemplateArguments, followed by a QualType representing the
5129/// non-canonical aliased type when the template is a type alias
5130/// template.
5131class alignas(8) TemplateSpecializationType
5132 : public Type,
5133 public llvm::FoldingSetNode {
5134 friend class ASTContext; // ASTContext creates these
5135
5136 /// The name of the template being specialized. This is
5137 /// either a TemplateName::Template (in which case it is a
5138 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5139 /// TypeAliasTemplateDecl*), a
5140 /// TemplateName::SubstTemplateTemplateParmPack, or a
5141 /// TemplateName::SubstTemplateTemplateParm (in which case the
5142 /// replacement must, recursively, be one of these).
5143 TemplateName Template;
5144
5145 TemplateSpecializationType(TemplateName T,
5146 ArrayRef<TemplateArgument> Args,
5147 QualType Canon,
5148 QualType Aliased);
5149
5150public:
5151 /// Determine whether any of the given template arguments are dependent.
5152 ///
5153 /// The converted arguments should be supplied when known; whether an
5154 /// argument is dependent can depend on the conversions performed on it
5155 /// (for example, a 'const int' passed as a template argument might be
5156 /// dependent if the parameter is a reference but non-dependent if the
5157 /// parameter is an int).
5158 ///
5159 /// Note that the \p Args parameter is unused: this is intentional, to remind
5160 /// the caller that they need to pass in the converted arguments, not the
5161 /// specified arguments.
5162 static bool
5163 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5164 ArrayRef<TemplateArgument> Converted);
5165 static bool
5166 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5167 ArrayRef<TemplateArgument> Converted);
5168 static bool anyInstantiationDependentTemplateArguments(
5169 ArrayRef<TemplateArgumentLoc> Args);
5170
5171 /// True if this template specialization type matches a current
5172 /// instantiation in the context in which it is found.
5173 bool isCurrentInstantiation() const {
5174 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5175 }
5176
5177 /// Determine if this template specialization type is for a type alias
5178 /// template that has been substituted.
5179 ///
5180 /// Nearly every template specialization type whose template is an alias
5181 /// template will be substituted. However, this is not the case when
5182 /// the specialization contains a pack expansion but the template alias
5183 /// does not have a corresponding parameter pack, e.g.,
5184 ///
5185 /// \code
5186 /// template<typename T, typename U, typename V> struct S;
5187 /// template<typename T, typename U> using A = S<T, int, U>;
5188 /// template<typename... Ts> struct X {
5189 /// typedef A<Ts...> type; // not a type alias
5190 /// };
5191 /// \endcode
5192 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5193
5194 /// Get the aliased type, if this is a specialization of a type alias
5195 /// template.
5196 QualType getAliasedType() const {
5197 assert(isTypeAlias() && "not a type alias template specialization")(static_cast <bool> (isTypeAlias() && "not a type alias template specialization"
) ? void (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "clang/include/clang/AST/Type.h", 5197, __extension__ __PRETTY_FUNCTION__
))
;
5198 return *reinterpret_cast<const QualType*>(end());
5199 }
5200
5201 using iterator = const TemplateArgument *;
5202
5203 iterator begin() const { return getArgs(); }
5204 iterator end() const; // defined inline in TemplateBase.h
5205
5206 /// Retrieve the name of the template that we are specializing.
5207 TemplateName getTemplateName() const { return Template; }
5208
5209 /// Retrieve the template arguments.
5210 const TemplateArgument *getArgs() const {
5211 return reinterpret_cast<const TemplateArgument *>(this + 1);
5212 }
5213
5214 /// Retrieve the number of template arguments.
5215 unsigned getNumArgs() const {
5216 return TemplateSpecializationTypeBits.NumArgs;
5217 }
5218
5219 /// Retrieve a specific template argument as a type.
5220 /// \pre \c isArgType(Arg)
5221 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5222
5223 ArrayRef<TemplateArgument> template_arguments() const {
5224 return {getArgs(), getNumArgs()};
5225 }
5226
5227 bool isSugared() const {
5228 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5229 }
5230
5231 QualType desugar() const {
5232 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5233 }
5234
5235 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5236 Profile(ID, Template, template_arguments(), Ctx);
5237 if (isTypeAlias())
5238 getAliasedType().Profile(ID);
5239 }
5240
5241 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5242 ArrayRef<TemplateArgument> Args,
5243 const ASTContext &Context);
5244
5245 static bool classof(const Type *T) {
5246 return T->getTypeClass() == TemplateSpecialization;
5247 }
5248};
5249
5250/// Print a template argument list, including the '<' and '>'
5251/// enclosing the template arguments.
5252void printTemplateArgumentList(raw_ostream &OS,
5253 ArrayRef<TemplateArgument> Args,
5254 const PrintingPolicy &Policy,
5255 const TemplateParameterList *TPL = nullptr);
5256
5257void printTemplateArgumentList(raw_ostream &OS,
5258 ArrayRef<TemplateArgumentLoc> Args,
5259 const PrintingPolicy &Policy,
5260 const TemplateParameterList *TPL = nullptr);
5261
5262void printTemplateArgumentList(raw_ostream &OS,
5263 const TemplateArgumentListInfo &Args,
5264 const PrintingPolicy &Policy,
5265 const TemplateParameterList *TPL = nullptr);
5266
5267/// The injected class name of a C++ class template or class
5268/// template partial specialization. Used to record that a type was
5269/// spelled with a bare identifier rather than as a template-id; the
5270/// equivalent for non-templated classes is just RecordType.
5271///
5272/// Injected class name types are always dependent. Template
5273/// instantiation turns these into RecordTypes.
5274///
5275/// Injected class name types are always canonical. This works
5276/// because it is impossible to compare an injected class name type
5277/// with the corresponding non-injected template type, for the same
5278/// reason that it is impossible to directly compare template
5279/// parameters from different dependent contexts: injected class name
5280/// types can only occur within the scope of a particular templated
5281/// declaration, and within that scope every template specialization
5282/// will canonicalize to the injected class name (when appropriate
5283/// according to the rules of the language).
5284class InjectedClassNameType : public Type {
5285 friend class ASTContext; // ASTContext creates these.
5286 friend class ASTNodeImporter;
5287 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5288 // currently suitable for AST reading, too much
5289 // interdependencies.
5290 template <class T> friend class serialization::AbstractTypeReader;
5291
5292 CXXRecordDecl *Decl;
5293
5294 /// The template specialization which this type represents.
5295 /// For example, in
5296 /// template <class T> class A { ... };
5297 /// this is A<T>, whereas in
5298 /// template <class X, class Y> class A<B<X,Y> > { ... };
5299 /// this is A<B<X,Y> >.
5300 ///
5301 /// It is always unqualified, always a template specialization type,
5302 /// and always dependent.
5303 QualType InjectedType;
5304
5305 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5306 : Type(InjectedClassName, QualType(),
5307 TypeDependence::DependentInstantiation),
5308 Decl(D), InjectedType(TST) {
5309 assert(isa<TemplateSpecializationType>(TST))(static_cast <bool> (isa<TemplateSpecializationType>
(TST)) ? void (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "clang/include/clang/AST/Type.h", 5309, __extension__ __PRETTY_FUNCTION__
))
;
5310 assert(!TST.hasQualifiers())(static_cast <bool> (!TST.hasQualifiers()) ? void (0) :
__assert_fail ("!TST.hasQualifiers()", "clang/include/clang/AST/Type.h"
, 5310, __extension__ __PRETTY_FUNCTION__))
;
5311 assert(TST->isDependentType())(static_cast <bool> (TST->isDependentType()) ? void (
0) : __assert_fail ("TST->isDependentType()", "clang/include/clang/AST/Type.h"
, 5311, __extension__ __PRETTY_FUNCTION__))
;
5312 }
5313
5314public:
5315 QualType getInjectedSpecializationType() const { return InjectedType; }
5316
5317 const TemplateSpecializationType *getInjectedTST() const {
5318 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5319 }
5320
5321 TemplateName getTemplateName() const {
5322 return getInjectedTST()->getTemplateName();
5323 }
5324
5325 CXXRecordDecl *getDecl() const;
5326
5327 bool isSugared() const { return false; }
5328 QualType desugar() const { return QualType(this, 0); }
5329
5330 static bool classof(const Type *T) {
5331 return T->getTypeClass() == InjectedClassName;
5332 }
5333};
5334
5335/// The kind of a tag type.
5336enum TagTypeKind {
5337 /// The "struct" keyword.
5338 TTK_Struct,
5339
5340 /// The "__interface" keyword.
5341 TTK_Interface,
5342
5343 /// The "union" keyword.
5344 TTK_Union,
5345
5346 /// The "class" keyword.
5347 TTK_Class,
5348
5349 /// The "enum" keyword.
5350 TTK_Enum
5351};
5352
5353/// The elaboration keyword that precedes a qualified type name or
5354/// introduces an elaborated-type-specifier.
5355enum ElaboratedTypeKeyword {
5356 /// The "struct" keyword introduces the elaborated-type-specifier.
5357 ETK_Struct,
5358
5359 /// The "__interface" keyword introduces the elaborated-type-specifier.
5360 ETK_Interface,
5361
5362 /// The "union" keyword introduces the elaborated-type-specifier.
5363 ETK_Union,
5364
5365 /// The "class" keyword introduces the elaborated-type-specifier.
5366 ETK_Class,
5367
5368 /// The "enum" keyword introduces the elaborated-type-specifier.
5369 ETK_Enum,
5370
5371 /// The "typename" keyword precedes the qualified type name, e.g.,
5372 /// \c typename T::type.
5373 ETK_Typename,
5374
5375 /// No keyword precedes the qualified type name.
5376 ETK_None
5377};
5378
5379/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5380/// The keyword in stored in the free bits of the base class.
5381/// Also provides a few static helpers for converting and printing
5382/// elaborated type keyword and tag type kind enumerations.
5383class TypeWithKeyword : public Type {
5384protected:
5385 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5386 QualType Canonical, TypeDependence Dependence)
5387 : Type(tc, Canonical, Dependence) {
5388 TypeWithKeywordBits.Keyword = Keyword;
5389 }
5390
5391public:
5392 ElaboratedTypeKeyword getKeyword() const {
5393 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5394 }
5395
5396 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5397 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5398
5399 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5400 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5401 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5402
5403 /// Converts a TagTypeKind into an elaborated type keyword.
5404 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5405
5406 /// Converts an elaborated type keyword into a TagTypeKind.
5407 /// It is an error to provide an elaborated type keyword
5408 /// which *isn't* a tag kind here.
5409 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5410
5411 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5412
5413 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5414
5415 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5416 return getKeywordName(getKeywordForTagTypeKind(Kind));
5417 }
5418
5419 class CannotCastToThisType {};
5420 static CannotCastToThisType classof(const Type *);
5421};
5422
5423/// Represents a type that was referred to using an elaborated type
5424/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5425/// or both.
5426///
5427/// This type is used to keep track of a type name as written in the
5428/// source code, including tag keywords and any nested-name-specifiers.
5429/// The type itself is always "sugar", used to express what was written
5430/// in the source code but containing no additional semantic information.
5431class ElaboratedType final
5432 : public TypeWithKeyword,
5433 public llvm::FoldingSetNode,
5434 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5435 friend class ASTContext; // ASTContext creates these
5436 friend TrailingObjects;
5437
5438 /// The nested name specifier containing the qualifier.
5439 NestedNameSpecifier *NNS;
5440
5441 /// The type that this qualified name refers to.
5442 QualType NamedType;
5443
5444 /// The (re)declaration of this tag type owned by this occurrence is stored
5445 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5446 /// it, or obtain a null pointer if there is none.
5447
5448 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5449 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5450 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5451 // Any semantic dependence on the qualifier will have
5452 // been incorporated into NamedType. We still need to
5453 // track syntactic (instantiation / error / pack)
5454 // dependence on the qualifier.
5455 NamedType->getDependence() |
5456 (NNS ? toSyntacticDependence(
5457 toTypeDependence(NNS->getDependence()))
5458 : TypeDependence::None)),
5459 NNS(NNS), NamedType(NamedType) {
5460 ElaboratedTypeBits.HasOwnedTagDecl = false;
5461 if (OwnedTagDecl) {
5462 ElaboratedTypeBits.HasOwnedTagDecl = true;
5463 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5464 }
5465 assert(!(Keyword == ETK_None && NNS == nullptr) &&(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5467, __extension__ __PRETTY_FUNCTION__
))
5466 "ElaboratedType cannot have elaborated type keyword "(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5467, __extension__ __PRETTY_FUNCTION__
))
5467 "and name qualifier both null.")(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "clang/include/clang/AST/Type.h", 5467, __extension__ __PRETTY_FUNCTION__
))
;
5468 }
5469
5470public:
5471 /// Retrieve the qualification on this type.
5472 NestedNameSpecifier *getQualifier() const { return NNS; }
5473
5474 /// Retrieve the type named by the qualified-id.
5475 QualType getNamedType() const { return NamedType; }
5476
5477 /// Remove a single level of sugar.
5478 QualType desugar() const { return getNamedType(); }
5479
5480 /// Returns whether this type directly provides sugar.
5481 bool isSugared() const { return true; }
5482
5483 /// Return the (re)declaration of this type owned by this occurrence of this
5484 /// type, or nullptr if there is none.
5485 TagDecl *getOwnedTagDecl() const {
5486 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5487 : nullptr;
5488 }
5489
5490 void Profile(llvm::FoldingSetNodeID &ID) {
5491 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5492 }
5493
5494 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5495 NestedNameSpecifier *NNS, QualType NamedType,
5496 TagDecl *OwnedTagDecl) {
5497 ID.AddInteger(Keyword);
5498 ID.AddPointer(NNS);
5499 NamedType.Profile(ID);
5500 ID.AddPointer(OwnedTagDecl);
5501 }
5502
5503 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5504};
5505
5506/// Represents a qualified type name for which the type name is
5507/// dependent.
5508///
5509/// DependentNameType represents a class of dependent types that involve a
5510/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5511/// name of a type. The DependentNameType may start with a "typename" (for a
5512/// typename-specifier), "class", "struct", "union", or "enum" (for a
5513/// dependent elaborated-type-specifier), or nothing (in contexts where we
5514/// know that we must be referring to a type, e.g., in a base class specifier).
5515/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5516/// mode, this type is used with non-dependent names to delay name lookup until
5517/// instantiation.
5518class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5519 friend class ASTContext; // ASTContext creates these
5520
5521 /// The nested name specifier containing the qualifier.
5522 NestedNameSpecifier *NNS;
5523
5524 /// The type that this typename specifier refers to.
5525 const IdentifierInfo *Name;
5526
5527 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5528 const IdentifierInfo *Name, QualType CanonType)
5529 : TypeWithKeyword(Keyword, DependentName, CanonType,
5530 TypeDependence::DependentInstantiation |
5531 toTypeDependence(NNS->getDependence())),
5532 NNS(NNS), Name(Name) {}
5533
5534public:
5535 /// Retrieve the qualification on this type.
5536 NestedNameSpecifier *getQualifier() const { return NNS; }
5537
5538 /// Retrieve the type named by the typename specifier as an identifier.
5539 ///
5540 /// This routine will return a non-NULL identifier pointer when the
5541 /// form of the original typename was terminated by an identifier,
5542 /// e.g., "typename T::type".
5543 const IdentifierInfo *getIdentifier() const {
5544 return Name;
5545 }
5546
5547 bool isSugared() const { return false; }
5548 QualType desugar() const { return QualType(this, 0); }
5549
5550 void Profile(llvm::FoldingSetNodeID &ID) {
5551 Profile(ID, getKeyword(), NNS, Name);
5552 }
5553
5554 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5555 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5556 ID.AddInteger(Keyword);
5557 ID.AddPointer(NNS);
5558 ID.AddPointer(Name);
5559 }
5560
5561 static bool classof(const Type *T) {
5562 return T->getTypeClass() == DependentName;
5563 }
5564};
5565
5566/// Represents a template specialization type whose template cannot be
5567/// resolved, e.g.
5568/// A<T>::template B<T>
5569class alignas(8) DependentTemplateSpecializationType
5570 : public TypeWithKeyword,
5571 public llvm::FoldingSetNode {
5572 friend class ASTContext; // ASTContext creates these
5573
5574 /// The nested name specifier containing the qualifier.
5575 NestedNameSpecifier *NNS;
5576
5577 /// The identifier of the template.
5578 const IdentifierInfo *Name;
5579
5580 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5581 NestedNameSpecifier *NNS,
5582 const IdentifierInfo *Name,
5583 ArrayRef<TemplateArgument> Args,
5584 QualType Canon);
5585
5586 const TemplateArgument *getArgBuffer() const {
5587 return reinterpret_cast<const TemplateArgument*>(this+1);
5588 }
5589
5590 TemplateArgument *getArgBuffer() {
5591 return reinterpret_cast<TemplateArgument*>(this+1);
5592 }
5593
5594public:
5595 NestedNameSpecifier *getQualifier() const { return NNS; }
5596 const IdentifierInfo *getIdentifier() const { return Name; }
5597
5598 /// Retrieve the template arguments.
5599 const TemplateArgument *getArgs() const {
5600 return getArgBuffer();
5601 }
5602
5603 /// Retrieve the number of template arguments.
5604 unsigned getNumArgs() const {
5605 return DependentTemplateSpecializationTypeBits.NumArgs;
5606 }
5607
5608 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5609
5610 ArrayRef<TemplateArgument> template_arguments() const {
5611 return {getArgs(), getNumArgs()};
5612 }
5613
5614 using iterator = const TemplateArgument *;
5615
5616 iterator begin() const { return getArgs(); }
5617 iterator end() const; // inline in TemplateBase.h
5618
5619 bool isSugared() const { return false; }
5620 QualType desugar() const { return QualType(this, 0); }
5621
5622 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5623 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5624 }
5625
5626 static void Profile(llvm::FoldingSetNodeID &ID,
5627 const ASTContext &Context,
5628 ElaboratedTypeKeyword Keyword,
5629 NestedNameSpecifier *Qualifier,
5630 const IdentifierInfo *Name,
5631 ArrayRef<TemplateArgument> Args);
5632
5633 static bool classof(const Type *T) {
5634 return T->getTypeClass() == DependentTemplateSpecialization;
5635 }
5636};
5637
5638/// Represents a pack expansion of types.
5639///
5640/// Pack expansions are part of C++11 variadic templates. A pack
5641/// expansion contains a pattern, which itself contains one or more
5642/// "unexpanded" parameter packs. When instantiated, a pack expansion
5643/// produces a series of types, each instantiated from the pattern of
5644/// the expansion, where the Ith instantiation of the pattern uses the
5645/// Ith arguments bound to each of the unexpanded parameter packs. The
5646/// pack expansion is considered to "expand" these unexpanded
5647/// parameter packs.
5648///
5649/// \code
5650/// template<typename ...Types> struct tuple;
5651///
5652/// template<typename ...Types>
5653/// struct tuple_of_references {
5654/// typedef tuple<Types&...> type;
5655/// };
5656/// \endcode
5657///
5658/// Here, the pack expansion \c Types&... is represented via a
5659/// PackExpansionType whose pattern is Types&.
5660class PackExpansionType : public Type, public llvm::FoldingSetNode {
5661 friend class ASTContext; // ASTContext creates these
5662
5663 /// The pattern of the pack expansion.
5664 QualType Pattern;
5665
5666 PackExpansionType(QualType Pattern, QualType Canon,
5667 Optional<unsigned> NumExpansions)
5668 : Type(PackExpansion, Canon,
5669 (Pattern->getDependence() | TypeDependence::Dependent |
5670 TypeDependence::Instantiation) &
5671 ~TypeDependence::UnexpandedPack),
5672 Pattern(Pattern) {
5673 PackExpansionTypeBits.NumExpansions =
5674 NumExpansions ? *NumExpansions + 1 : 0;
5675 }
5676
5677public:
5678 /// Retrieve the pattern of this pack expansion, which is the
5679 /// type that will be repeatedly instantiated when instantiating the
5680 /// pack expansion itself.
5681 QualType getPattern() const { return Pattern; }
5682
5683 /// Retrieve the number of expansions that this pack expansion will
5684 /// generate, if known.
5685 Optional<unsigned> getNumExpansions() const {
5686 if (PackExpansionTypeBits.NumExpansions)
5687 return PackExpansionTypeBits.NumExpansions - 1;
5688 return None;
5689 }
5690
5691 bool isSugared() const { return false; }
5692 QualType desugar() const { return QualType(this, 0); }
5693
5694 void Profile(llvm::FoldingSetNodeID &ID) {
5695 Profile(ID, getPattern(), getNumExpansions());
5696 }
5697
5698 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5699 Optional<unsigned> NumExpansions) {
5700 ID.AddPointer(Pattern.getAsOpaquePtr());
5701 ID.AddBoolean(NumExpansions.hasValue());
5702 if (NumExpansions)
5703 ID.AddInteger(*NumExpansions);
5704 }
5705
5706 static bool classof(const Type *T) {
5707 return T->getTypeClass() == PackExpansion;
5708 }
5709};
5710
5711/// This class wraps the list of protocol qualifiers. For types that can
5712/// take ObjC protocol qualifers, they can subclass this class.
5713template <class T>
5714class ObjCProtocolQualifiers {
5715protected:
5716 ObjCProtocolQualifiers() = default;
5717
5718 ObjCProtocolDecl * const *getProtocolStorage() const {
5719 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5720 }
5721
5722 ObjCProtocolDecl **getProtocolStorage() {
5723 return static_cast<T*>(this)->getProtocolStorageImpl();
5724 }
5725
5726 void setNumProtocols(unsigned N) {
5727 static_cast<T*>(this)->setNumProtocolsImpl(N);
5728 }
5729
5730 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5731 setNumProtocols(protocols.size());
5732 assert(getNumProtocols() == protocols.size() &&(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "clang/include/clang/AST/Type.h", 5733, __extension__ __PRETTY_FUNCTION__
))
5733 "bitfield overflow in protocol count")(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "clang/include/clang/AST/Type.h", 5733, __extension__ __PRETTY_FUNCTION__
))
;
5734 if (!protocols.empty())
5735 memcpy(getProtocolStorage(), protocols.data(),
5736 protocols.size() * sizeof(ObjCProtocolDecl*));
5737 }
5738
5739public:
5740 using qual_iterator = ObjCProtocolDecl * const *;
5741 using qual_range = llvm::iterator_range<qual_iterator>;
5742
5743 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5744 qual_iterator qual_begin() const { return getProtocolStorage(); }
5745 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5746
5747 bool qual_empty() const { return getNumProtocols() == 0; }
5748
5749 /// Return the number of qualifying protocols in this type, or 0 if
5750 /// there are none.
5751 unsigned getNumProtocols() const {
5752 return static_cast<const T*>(this)->getNumProtocolsImpl();
5753 }
5754
5755 /// Fetch a protocol by index.
5756 ObjCProtocolDecl *getProtocol(unsigned I) const {
5757 assert(I < getNumProtocols() && "Out-of-range protocol access")(static_cast <bool> (I < getNumProtocols() &&
"Out-of-range protocol access") ? void (0) : __assert_fail (
"I < getNumProtocols() && \"Out-of-range protocol access\""
, "clang/include/clang/AST/Type.h", 5757, __extension__ __PRETTY_FUNCTION__
))
;
5758 return qual_begin()[I];
5759 }
5760
5761 /// Retrieve all of the protocol qualifiers.
5762 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5763 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5764 }
5765};
5766
5767/// Represents a type parameter type in Objective C. It can take
5768/// a list of protocols.
5769class ObjCTypeParamType : public Type,
5770 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5771 public llvm::FoldingSetNode {
5772 friend class ASTContext;
5773 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5774
5775 /// The number of protocols stored on this type.
5776 unsigned NumProtocols : 6;
5777
5778 ObjCTypeParamDecl *OTPDecl;
5779
5780 /// The protocols are stored after the ObjCTypeParamType node. In the
5781 /// canonical type, the list of protocols are sorted alphabetically
5782 /// and uniqued.
5783 ObjCProtocolDecl **getProtocolStorageImpl();
5784
5785 /// Return the number of qualifying protocols in this interface type,
5786 /// or 0 if there are none.
5787 unsigned getNumProtocolsImpl() const {
5788 return NumProtocols;
5789 }
5790
5791 void setNumProtocolsImpl(unsigned N) {
5792 NumProtocols = N;
5793 }
5794
5795 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5796 QualType can,
5797 ArrayRef<ObjCProtocolDecl *> protocols);
5798
5799public:
5800 bool isSugared() const { return true; }
5801 QualType desugar() const { return getCanonicalTypeInternal(); }
5802
5803 static bool classof(const Type *T) {
5804 return T->getTypeClass() == ObjCTypeParam;
5805 }
5806
5807 void Profile(llvm::FoldingSetNodeID &ID);
5808 static void Profile(llvm::FoldingSetNodeID &ID,
5809 const ObjCTypeParamDecl *OTPDecl,
5810 QualType CanonicalType,
5811 ArrayRef<ObjCProtocolDecl *> protocols);
5812
5813 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5814};
5815
5816/// Represents a class type in Objective C.
5817///
5818/// Every Objective C type is a combination of a base type, a set of
5819/// type arguments (optional, for parameterized classes) and a list of
5820/// protocols.
5821///
5822/// Given the following declarations:
5823/// \code
5824/// \@class C<T>;
5825/// \@protocol P;
5826/// \endcode
5827///
5828/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5829/// with base C and no protocols.
5830///
5831/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5832/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5833/// protocol list.
5834/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5835/// and protocol list [P].
5836///
5837/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5838/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5839/// and no protocols.
5840///
5841/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5842/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5843/// this should get its own sugar class to better represent the source.
5844class ObjCObjectType : public Type,
5845 public ObjCProtocolQualifiers<ObjCObjectType> {
5846 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5847
5848 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5849 // after the ObjCObjectPointerType node.
5850 // ObjCObjectType.NumProtocols - the number of protocols stored
5851 // after the type arguments of ObjCObjectPointerType node.
5852 //
5853 // These protocols are those written directly on the type. If
5854 // protocol qualifiers ever become additive, the iterators will need
5855 // to get kindof complicated.
5856 //
5857 // In the canonical object type, these are sorted alphabetically
5858 // and uniqued.
5859
5860 /// Either a BuiltinType or an InterfaceType or sugar for either.
5861 QualType BaseType;
5862
5863 /// Cached superclass type.
5864 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5865 CachedSuperClassType;
5866
5867 QualType *getTypeArgStorage();
5868 const QualType *getTypeArgStorage() const {
5869 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5870 }
5871
5872 ObjCProtocolDecl **getProtocolStorageImpl();
5873 /// Return the number of qualifying protocols in this interface type,
5874 /// or 0 if there are none.
5875 unsigned getNumProtocolsImpl() const {
5876 return ObjCObjectTypeBits.NumProtocols;
5877 }
5878 void setNumProtocolsImpl(unsigned N) {
5879 ObjCObjectTypeBits.NumProtocols = N;
5880 }
5881
5882protected:
5883 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5884
5885 ObjCObjectType(QualType Canonical, QualType Base,
5886 ArrayRef<QualType> typeArgs,
5887 ArrayRef<ObjCProtocolDecl *> protocols,
5888 bool isKindOf);
5889
5890 ObjCObjectType(enum Nonce_ObjCInterface)
5891 : Type(ObjCInterface, QualType(), TypeDependence::None),
5892 BaseType(QualType(this_(), 0)) {
5893 ObjCObjectTypeBits.NumProtocols = 0;
5894 ObjCObjectTypeBits.NumTypeArgs = 0;
5895 ObjCObjectTypeBits.IsKindOf = 0;
5896 }
5897
5898 void computeSuperClassTypeSlow() const;
5899
5900public:
5901 /// Gets the base type of this object type. This is always (possibly
5902 /// sugar for) one of:
5903 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5904 /// user, which is a typedef for an ObjCObjectPointerType)
5905 /// - the 'Class' builtin type (same caveat)
5906 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5907 QualType getBaseType() const { return BaseType; }
5908
5909 bool isObjCId() const {
5910 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5911 }
5912
5913 bool isObjCClass() const {
5914 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5915 }
5916
5917 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5918 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5919 bool isObjCUnqualifiedIdOrClass() const {
5920 if (!qual_empty()) return false;
5921 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5922 return T->getKind() == BuiltinType::ObjCId ||
5923 T->getKind() == BuiltinType::ObjCClass;
5924 return false;
5925 }
5926 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5927 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5928
5929 /// Gets the interface declaration for this object type, if the base type
5930 /// really is an interface.
5931 ObjCInterfaceDecl *getInterface() const;
5932
5933 /// Determine whether this object type is "specialized", meaning
5934 /// that it has type arguments.
5935 bool isSpecialized() const;
5936
5937 /// Determine whether this object type was written with type arguments.
5938 bool isSpecializedAsWritten() const {
5939 return ObjCObjectTypeBits.NumTypeArgs > 0;
5940 }
5941
5942 /// Determine whether this object type is "unspecialized", meaning
5943 /// that it has no type arguments.
5944 bool isUnspecialized() const { return !isSpecialized(); }
5945
5946 /// Determine whether this object type is "unspecialized" as
5947 /// written, meaning that it has no type arguments.
5948 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5949
5950 /// Retrieve the type arguments of this object type (semantically).
5951 ArrayRef<QualType> getTypeArgs() const;
5952
5953 /// Retrieve the type arguments of this object type as they were
5954 /// written.
5955 ArrayRef<QualType> getTypeArgsAsWritten() const {
5956 return llvm::makeArrayRef(getTypeArgStorage(),
5957 ObjCObjectTypeBits.NumTypeArgs);
5958 }
5959
5960 /// Whether this is a "__kindof" type as written.
5961 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5962
5963 /// Whether this ia a "__kindof" type (semantically).
5964 bool isKindOfType() const;
5965
5966 /// Retrieve the type of the superclass of this object type.
5967 ///
5968 /// This operation substitutes any type arguments into the
5969 /// superclass of the current class type, potentially producing a
5970 /// specialization of the superclass type. Produces a null type if
5971 /// there is no superclass.
5972 QualType getSuperClassType() const {
5973 if (!CachedSuperClassType.getInt())
5974 computeSuperClassTypeSlow();
5975
5976 assert(CachedSuperClassType.getInt() && "Superclass not set?")(static_cast <bool> (CachedSuperClassType.getInt() &&
"Superclass not set?") ? void (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "clang/include/clang/AST/Type.h", 5976, __extension__ __PRETTY_FUNCTION__
))
;
5977 return QualType(CachedSuperClassType.getPointer(), 0);
5978 }
5979
5980 /// Strip off the Objective-C "kindof" type and (with it) any
5981 /// protocol qualifiers.
5982 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5983
5984 bool isSugared() const { return false; }
5985 QualType desugar() const { return QualType(this, 0); }
5986
5987 static bool classof(const Type *T) {
5988 return T->getTypeClass() == ObjCObject ||
5989 T->getTypeClass() == ObjCInterface;
5990 }
5991};
5992
5993/// A class providing a concrete implementation
5994/// of ObjCObjectType, so as to not increase the footprint of
5995/// ObjCInterfaceType. Code outside of ASTContext and the core type
5996/// system should not reference this type.
5997class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5998 friend class ASTContext;
5999
6000 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
6001 // will need to be modified.
6002
6003 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
6004 ArrayRef<QualType> typeArgs,
6005 ArrayRef<ObjCProtocolDecl *> protocols,
6006 bool isKindOf)
6007 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
6008
6009public:
6010 void Profile(llvm::FoldingSetNodeID &ID);
6011 static void Profile(llvm::FoldingSetNodeID &ID,
6012 QualType Base,
6013 ArrayRef<QualType> typeArgs,
6014 ArrayRef<ObjCProtocolDecl *> protocols,
6015 bool isKindOf);
6016};
6017
6018inline QualType *ObjCObjectType::getTypeArgStorage() {
6019 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
6020}
6021
6022inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
6023 return reinterpret_cast<ObjCProtocolDecl**>(
6024 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
6025}
6026
6027inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
6028 return reinterpret_cast<ObjCProtocolDecl**>(
6029 static_cast<ObjCTypeParamType*>(this)+1);
6030}
6031
6032/// Interfaces are the core concept in Objective-C for object oriented design.
6033/// They basically correspond to C++ classes. There are two kinds of interface
6034/// types: normal interfaces like `NSString`, and qualified interfaces, which
6035/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
6036///
6037/// ObjCInterfaceType guarantees the following properties when considered
6038/// as a subtype of its superclass, ObjCObjectType:
6039/// - There are no protocol qualifiers. To reinforce this, code which
6040/// tries to invoke the protocol methods via an ObjCInterfaceType will
6041/// fail to compile.
6042/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
6043/// T->getBaseType() == QualType(T, 0).
6044class ObjCInterfaceType : public ObjCObjectType {
6045 friend class ASTContext; // ASTContext creates these.
6046 friend class ASTReader;
6047 template <class T> friend class serialization::AbstractTypeReader;
6048
6049 ObjCInterfaceDecl *Decl;
6050
6051 ObjCInterfaceType(const ObjCInterfaceDecl *D)
6052 : ObjCObjectType(Nonce_ObjCInterface),
6053 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
6054
6055public:
6056 /// Get the declaration of this interface.
6057 ObjCInterfaceDecl *getDecl() const;
6058
6059 bool isSugared() const { return false; }
6060 QualType desugar() const { return QualType(this, 0); }
6061
6062 static bool classof(const Type *T) {
6063 return T->getTypeClass() == ObjCInterface;
6064 }
6065
6066 // Nonsense to "hide" certain members of ObjCObjectType within this
6067 // class. People asking for protocols on an ObjCInterfaceType are
6068 // not going to get what they want: ObjCInterfaceTypes are
6069 // guaranteed to have no protocols.
6070 enum {
6071 qual_iterator,
6072 qual_begin,
6073 qual_end,
6074 getNumProtocols,
6075 getProtocol
6076 };
6077};
6078
6079inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
6080 QualType baseType = getBaseType();
6081 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
6082 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
6083 return T->getDecl();
6084
6085 baseType = ObjT->getBaseType();
6086 }
6087
6088 return nullptr;
6089}
6090
6091/// Represents a pointer to an Objective C object.
6092///
6093/// These are constructed from pointer declarators when the pointee type is
6094/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
6095/// types are typedefs for these, and the protocol-qualified types 'id<P>'
6096/// and 'Class<P>' are translated into these.
6097///
6098/// Pointers to pointers to Objective C objects are still PointerTypes;
6099/// only the first level of pointer gets it own type implementation.
6100class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
6101 friend class ASTContext; // ASTContext creates these.
6102
6103 QualType PointeeType;
6104
6105 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
6106 : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()),
6107 PointeeType(Pointee) {}
6108
6109public:
6110 /// Gets the type pointed to by this ObjC pointer.
6111 /// The result will always be an ObjCObjectType or sugar thereof.
6112 QualType getPointeeType() const { return PointeeType; }
6113
6114 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
6115 ///
6116 /// This method is equivalent to getPointeeType() except that
6117 /// it discards any typedefs (or other sugar) between this
6118 /// type and the "outermost" object type. So for:
6119 /// \code
6120 /// \@class A; \@protocol P; \@protocol Q;
6121 /// typedef A<P> AP;
6122 /// typedef A A1;
6123 /// typedef A1<P> A1P;
6124 /// typedef A1P<Q> A1PQ;
6125 /// \endcode
6126 /// For 'A*', getObjectType() will return 'A'.
6127 /// For 'A<P>*', getObjectType() will return 'A<P>'.
6128 /// For 'AP*', getObjectType() will return 'A<P>'.
6129 /// For 'A1*', getObjectType() will return 'A'.
6130 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
6131 /// For 'A1P*', getObjectType() will return 'A1<P>'.
6132 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
6133 /// adding protocols to a protocol-qualified base discards the
6134 /// old qualifiers (for now). But if it didn't, getObjectType()
6135 /// would return 'A1P<Q>' (and we'd have to make iterating over
6136 /// qualifiers more complicated).
6137 const ObjCObjectType *getObjectType() const {
6138 return PointeeType->castAs<ObjCObjectType>();
6139 }
6140
6141 /// If this pointer points to an Objective C
6142 /// \@interface type, gets the type for that interface. Any protocol
6143 /// qualifiers on the interface are ignored.
6144 ///
6145 /// \return null if the base type for this pointer is 'id' or 'Class'
6146 const ObjCInterfaceType *getInterfaceType() const;
6147
6148 /// If this pointer points to an Objective \@interface
6149 /// type, gets the declaration for that interface.
6150 ///
6151 /// \return null if the base type for this pointer is 'id' or 'Class'
6152 ObjCInterfaceDecl *getInterfaceDecl() const {
6153 return getObjectType()->getInterface();
6154 }
6155
6156 /// True if this is equivalent to the 'id' type, i.e. if
6157 /// its object type is the primitive 'id' type with no protocols.
6158 bool isObjCIdType() const {
6159 return getObjectType()->isObjCUnqualifiedId();
6160 }
6161
6162 /// True if this is equivalent to the 'Class' type,
6163 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
6164 bool isObjCClassType() const {
6165 return getObjectType()->isObjCUnqualifiedClass();
6166 }
6167
6168 /// True if this is equivalent to the 'id' or 'Class' type,
6169 bool isObjCIdOrClassType() const {
6170 return getObjectType()->isObjCUnqualifiedIdOrClass();
6171 }
6172
6173 /// True if this is equivalent to 'id<P>' for some non-empty set of
6174 /// protocols.
6175 bool isObjCQualifiedIdType() const {
6176 return getObjectType()->isObjCQualifiedId();
6177 }
6178
6179 /// True if this is equivalent to 'Class<P>' for some non-empty set of
6180 /// protocols.
6181 bool isObjCQualifiedClassType() const {
6182 return getObjectType()->isObjCQualifiedClass();
6183 }
6184
6185 /// Whether this is a "__kindof" type.
6186 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6187
6188 /// Whether this type is specialized, meaning that it has type arguments.
6189 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6190
6191 /// Whether this type is specialized, meaning that it has type arguments.
6192 bool isSpecializedAsWritten() const {
6193 return getObjectType()->isSpecializedAsWritten();
6194 }
6195
6196 /// Whether this type is unspecialized, meaning that is has no type arguments.
6197 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6198
6199 /// Determine whether this object type is "unspecialized" as
6200 /// written, meaning that it has no type arguments.
6201 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6202
6203 /// Retrieve the type arguments for this type.
6204 ArrayRef<QualType> getTypeArgs() const {
6205 return getObjectType()->getTypeArgs();
6206 }
6207
6208 /// Retrieve the type arguments for this type.
6209 ArrayRef<QualType> getTypeArgsAsWritten() const {
6210 return getObjectType()->getTypeArgsAsWritten();
6211 }
6212
6213 /// An iterator over the qualifiers on the object type. Provided
6214 /// for convenience. This will always iterate over the full set of
6215 /// protocols on a type, not just those provided directly.
6216 using qual_iterator = ObjCObjectType::qual_iterator;
6217 using qual_range = llvm::iterator_range<qual_iterator>;
6218
6219 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6220
6221 qual_iterator qual_begin() const {
6222 return getObjectType()->qual_begin();
6223 }
6224
6225 qual_iterator qual_end() const {
6226 return getObjectType()->qual_end();
6227 }
6228
6229 bool qual_empty() const { return getObjectType()->qual_empty(); }
6230
6231 /// Return the number of qualifying protocols on the object type.
6232 unsigned getNumProtocols() const {
6233 return getObjectType()->getNumProtocols();
6234 }
6235
6236 /// Retrieve a qualifying protocol by index on the object type.
6237 ObjCProtocolDecl *getProtocol(unsigned I) const {
6238 return getObjectType()->getProtocol(I);
6239 }
6240
6241 bool isSugared() const { return false; }
6242 QualType desugar() const { return QualType(this, 0); }
6243
6244 /// Retrieve the type of the superclass of this object pointer type.
6245 ///
6246 /// This operation substitutes any type arguments into the
6247 /// superclass of the current class type, potentially producing a
6248 /// pointer to a specialization of the superclass type. Produces a
6249 /// null type if there is no superclass.
6250 QualType getSuperClassType() const;
6251
6252 /// Strip off the Objective-C "kindof" type and (with it) any
6253 /// protocol qualifiers.
6254 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6255 const ASTContext &ctx) const;
6256
6257 void Profile(llvm::FoldingSetNodeID &ID) {
6258 Profile(ID, getPointeeType());
6259 }
6260
6261 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6262 ID.AddPointer(T.getAsOpaquePtr());
6263 }
6264
6265 static bool classof(const Type *T) {
6266 return T->getTypeClass() == ObjCObjectPointer;
6267 }
6268};
6269
6270class AtomicType : public Type, public llvm::FoldingSetNode {
6271 friend class ASTContext; // ASTContext creates these.
6272
6273 QualType ValueType;
6274
6275 AtomicType(QualType ValTy, QualType Canonical)
6276 : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {}
6277
6278public:
6279 /// Gets the type contained by this atomic type, i.e.
6280 /// the type returned by performing an atomic load of this atomic type.
6281 QualType getValueType() const { return ValueType; }
6282
6283 bool isSugared() const { return false; }
6284 QualType desugar() const { return QualType(this, 0); }
6285
6286 void Profile(llvm::FoldingSetNodeID &ID) {
6287 Profile(ID, getValueType());
6288 }
6289
6290 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6291 ID.AddPointer(T.getAsOpaquePtr());
6292 }
6293
6294 static bool classof(const Type *T) {
6295 return T->getTypeClass() == Atomic;
6296 }
6297};
6298
6299/// PipeType - OpenCL20.
6300class PipeType : public Type, public llvm::FoldingSetNode {
6301 friend class ASTContext; // ASTContext creates these.
6302
6303 QualType ElementType;
6304 bool isRead;
6305
6306 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6307 : Type(Pipe, CanonicalPtr, elemType->getDependence()),
6308 ElementType(elemType), isRead(isRead) {}
6309
6310public:
6311 QualType getElementType() const { return ElementType; }
6312
6313 bool isSugared() const { return false; }
6314
6315 QualType desugar() const { return QualType(this, 0); }
6316
6317 void Profile(llvm::FoldingSetNodeID &ID) {
6318 Profile(ID, getElementType(), isReadOnly());
6319 }
6320
6321 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6322 ID.AddPointer(T.getAsOpaquePtr());
6323 ID.AddBoolean(isRead);
6324 }
6325
6326 static bool classof(const Type *T) {
6327 return T->getTypeClass() == Pipe;
6328 }
6329
6330 bool isReadOnly() const { return isRead; }
6331};
6332
6333/// A fixed int type of a specified bitwidth.
6334class BitIntType final : public Type, public llvm::FoldingSetNode {
6335 friend class ASTContext;
6336 unsigned IsUnsigned : 1;
6337 unsigned NumBits : 24;
6338
6339protected:
6340 BitIntType(bool isUnsigned, unsigned NumBits);
6341
6342public:
6343 bool isUnsigned() const { return IsUnsigned; }
6344 bool isSigned() const { return !IsUnsigned; }
6345 unsigned getNumBits() const { return NumBits; }
6346
6347 bool isSugared() const { return false; }
6348 QualType desugar() const { return QualType(this, 0); }
6349
6350 void Profile(llvm::FoldingSetNodeID &ID) {
6351 Profile(ID, isUnsigned(), getNumBits());
6352 }
6353
6354 static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned,
6355 unsigned NumBits) {
6356 ID.AddBoolean(IsUnsigned);
6357 ID.AddInteger(NumBits);
6358 }
6359
6360 static bool classof(const Type *T) { return T->getTypeClass() == BitInt; }
6361};
6362
6363class DependentBitIntType final : public Type, public llvm::FoldingSetNode {
6364 friend class ASTContext;
6365 const ASTContext &Context;
6366 llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned;
6367
6368protected:
6369 DependentBitIntType(const ASTContext &Context, bool IsUnsigned,
6370 Expr *NumBits);
6371
6372public:
6373 bool isUnsigned() const;
6374 bool isSigned() const { return !isUnsigned(); }
6375 Expr *getNumBitsExpr() const;
6376
6377 bool isSugared() const { return false; }
6378 QualType desugar() const { return QualType(this, 0); }
6379
6380 void Profile(llvm::FoldingSetNodeID &ID) {
6381 Profile(ID, Context, isUnsigned(), getNumBitsExpr());
6382 }
6383 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
6384 bool IsUnsigned, Expr *NumBitsExpr);
6385
6386 static bool classof(const Type *T) {
6387 return T->getTypeClass() == DependentBitInt;
6388 }
6389};
6390
6391/// A qualifier set is used to build a set of qualifiers.
6392class QualifierCollector : public Qualifiers {
6393public:
6394 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6395
6396 /// Collect any qualifiers on the given type and return an
6397 /// unqualified type. The qualifiers are assumed to be consistent
6398 /// with those already in the type.
6399 const Type *strip(QualType type) {
6400 addFastQualifiers(type.getLocalFastQualifiers());
6401 if (!type.hasLocalNonFastQualifiers())
6402 return type.getTypePtrUnsafe();
6403
6404 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6405 addConsistentQualifiers(extQuals->getQualifiers());
6406 return extQuals->getBaseType();
6407 }
6408
6409 /// Apply the collected qualifiers to the given type.
6410 QualType apply(const ASTContext &Context, QualType QT) const;
6411
6412 /// Apply the collected qualifiers to the given type.
6413 QualType apply(const ASTContext &Context, const Type* T) const;
6414};
6415
6416/// A container of type source information.
6417///
6418/// A client can read the relevant info using TypeLoc wrappers, e.g:
6419/// @code
6420/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6421/// TL.getBeginLoc().print(OS, SrcMgr);
6422/// @endcode
6423class alignas(8) TypeSourceInfo {
6424 // Contains a memory block after the class, used for type source information,
6425 // allocated by ASTContext.
6426 friend class ASTContext;
6427
6428 QualType Ty;
6429
6430 TypeSourceInfo(QualType ty) : Ty(ty) {}
6431
6432public:
6433 /// Return the type wrapped by this type source info.
6434 QualType getType() const { return Ty; }
6435
6436 /// Return the TypeLoc wrapper for the type source info.
6437 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6438
6439 /// Override the type stored in this TypeSourceInfo. Use with caution!
6440 void overrideType(QualType T) { Ty = T; }
6441};
6442
6443// Inline function definitions.
6444
6445inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6446 SplitQualType desugar =
6447 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6448 desugar.Quals.addConsistentQualifiers(Quals);
6449 return desugar;
6450}
6451
6452inline const Type *QualType::getTypePtr() const {
6453 return getCommonPtr()->BaseType;
6454}
6455
6456inline const Type *QualType::getTypePtrOrNull() const {
6457 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6458}
6459
6460inline SplitQualType QualType::split() const {
6461 if (!hasLocalNonFastQualifiers())
6462 return SplitQualType(getTypePtrUnsafe(),
6463 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6464
6465 const ExtQuals *eq = getExtQualsUnsafe();
6466 Qualifiers qs = eq->getQualifiers();
6467 qs.addFastQualifiers(getLocalFastQualifiers());
6468 return SplitQualType(eq->getBaseType(), qs);
6469}
6470
6471inline Qualifiers QualType::getLocalQualifiers() const {
6472 Qualifiers Quals;
6473 if (hasLocalNonFastQualifiers())
6474 Quals = getExtQualsUnsafe()->getQualifiers();
6475 Quals.addFastQualifiers(getLocalFastQualifiers());
6476 return Quals;
6477}
6478
6479inline Qualifiers QualType::getQualifiers() const {
6480 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6481 quals.addFastQualifiers(getLocalFastQualifiers());
6482 return quals;
6483}
6484
6485inline unsigned QualType::getCVRQualifiers() const {
6486 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6487 cvr |= getLocalCVRQualifiers();
6488 return cvr;
6489}
6490
6491inline QualType QualType::getCanonicalType() const {
6492 QualType canon = getCommonPtr()->CanonicalType;
6493 return canon.withFastQualifiers(getLocalFastQualifiers());
6494}
6495
6496inline bool QualType::isCanonical() const {
6497 return getTypePtr()->isCanonicalUnqualified();
6498}
6499
6500inline bool QualType::isCanonicalAsParam() const {
6501 if (!isCanonical()) return false;
6502 if (hasLocalQualifiers()) return false;
6503
6504 const Type *T = getTypePtr();
6505 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6506 return false;
6507
6508 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6509}
6510
6511inline bool QualType::isConstQualified() const {
6512 return isLocalConstQualified() ||
6513 getCommonPtr()->CanonicalType.isLocalConstQualified();
6514}
6515
6516inline bool QualType::isRestrictQualified() const {
6517 return isLocalRestrictQualified() ||
6518 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6519}
6520
6521
6522inline bool QualType::isVolatileQualified() const {
6523 return isLocalVolatileQualified() ||
6524 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6525}
6526
6527inline bool QualType::hasQualifiers() const {
6528 return hasLocalQualifiers() ||
6529 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6530}
6531
6532inline QualType QualType::getUnqualifiedType() const {
6533 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6534 return QualType(getTypePtr(), 0);
6535
6536 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6537}
6538
6539inline SplitQualType QualType::getSplitUnqualifiedType() const {
6540 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6541 return split();
6542
6543 return getSplitUnqualifiedTypeImpl(*this);
6544}
6545
6546inline void QualType::removeLocalConst() {
6547 removeLocalFastQualifiers(Qualifiers::Const);
6548}
6549
6550inline void QualType::removeLocalRestrict() {
6551 removeLocalFastQualifiers(Qualifiers::Restrict);
6552}
6553
6554inline void QualType::removeLocalVolatile() {
6555 removeLocalFastQualifiers(Qualifiers::Volatile);
6556}
6557
6558inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6559 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")(static_cast <bool> (!(Mask & ~Qualifiers::CVRMask)
&& "mask has non-CVR bits") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "clang/include/clang/AST/Type.h", 6559, __extension__ __PRETTY_FUNCTION__
))
;
6560 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6561 "Fast bits differ from CVR bits!");
6562
6563 // Fast path: we don't need to touch the slow qualifiers.
6564 removeLocalFastQualifiers(Mask);
6565}
6566
6567/// Check if this type has any address space qualifier.
6568inline bool QualType::hasAddressSpace() const {
6569 return getQualifiers().hasAddressSpace();
6570}
6571
6572/// Return the address space of this type.
6573inline LangAS QualType::getAddressSpace() const {
6574 return getQualifiers().getAddressSpace();
6575}
6576
6577/// Return the gc attribute of this type.
6578inline Qualifiers::GC QualType::getObjCGCAttr() const {
6579 return getQualifiers().getObjCGCAttr();
6580}
6581
6582inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6583 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6584 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6585 return false;
6586}
6587
6588inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6589 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6590 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6591 return false;
6592}
6593
6594inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6595 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6596 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6597 return false;
6598}
6599
6600inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6601 if (const auto *PT = t.getAs<PointerType>()) {
6602 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6603 return FT->getExtInfo();
6604 } else if (const auto *FT = t.getAs<FunctionType>())
6605 return FT->getExtInfo();
6606
6607 return FunctionType::ExtInfo();
6608}
6609
6610inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6611 return getFunctionExtInfo(*t);
6612}
6613
6614/// Determine whether this type is more
6615/// qualified than the Other type. For example, "const volatile int"
6616/// is more qualified than "const int", "volatile int", and
6617/// "int". However, it is not more qualified than "const volatile
6618/// int".
6619inline bool QualType::isMoreQualifiedThan(QualType other) const {
6620 Qualifiers MyQuals = getQualifiers();
6621 Qualifiers OtherQuals = other.getQualifiers();
6622 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6623}
6624
6625/// Determine whether this type is at last
6626/// as qualified as the Other type. For example, "const volatile
6627/// int" is at least as qualified as "const int", "volatile int",
6628/// "int", and "const volatile int".
6629inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6630 Qualifiers OtherQuals = other.getQualifiers();
6631
6632 // Ignore __unaligned qualifier if this type is a void.
6633 if (getUnqualifiedType()->isVoidType())
6634 OtherQuals.removeUnaligned();
6635
6636 return getQualifiers().compatiblyIncludes(OtherQuals);
6637}
6638
6639/// If Type is a reference type (e.g., const
6640/// int&), returns the type that the reference refers to ("const
6641/// int"). Otherwise, returns the type itself. This routine is used
6642/// throughout Sema to implement C++ 5p6:
6643///
6644/// If an expression initially has the type "reference to T" (8.3.2,
6645/// 8.5.3), the type is adjusted to "T" prior to any further
6646/// analysis, the expression designates the object or function
6647/// denoted by the reference, and the expression is an lvalue.
6648inline QualType QualType::getNonReferenceType() const {
6649 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6650 return RefType->getPointeeType();
6651 else
6652 return *this;
6653}
6654
6655inline bool QualType::isCForbiddenLValueType() const {
6656 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6657 getTypePtr()->isFunctionType());
6658}
6659
6660/// Tests whether the type is categorized as a fundamental type.
6661///
6662/// \returns True for types specified in C++0x [basic.fundamental].
6663inline bool Type::isFundamentalType() const {
6664 return isVoidType() ||
6665 isNullPtrType() ||
6666 // FIXME: It's really annoying that we don't have an
6667 // 'isArithmeticType()' which agrees with the standard definition.
6668 (isArithmeticType() && !isEnumeralType());
6669}
6670
6671/// Tests whether the type is categorized as a compound type.
6672///
6673/// \returns True for types specified in C++0x [basic.compound].
6674inline bool Type::isCompoundType() const {
6675 // C++0x [basic.compound]p1:
6676 // Compound types can be constructed in the following ways:
6677 // -- arrays of objects of a given type [...];
6678 return isArrayType() ||
6679 // -- functions, which have parameters of given types [...];
6680 isFunctionType() ||
6681 // -- pointers to void or objects or functions [...];
6682 isPointerType() ||
6683 // -- references to objects or functions of a given type. [...]
6684 isReferenceType() ||
6685 // -- classes containing a sequence of objects of various types, [...];
6686 isRecordType() ||
6687 // -- unions, which are classes capable of containing objects of different
6688 // types at different times;
6689 isUnionType() ||
6690 // -- enumerations, which comprise a set of named constant values. [...];
6691 isEnumeralType() ||
6692 // -- pointers to non-static class members, [...].
6693 isMemberPointerType();
6694}
6695
6696inline bool Type::isFunctionType() const {
6697 return isa<FunctionType>(CanonicalType);
6698}
6699
6700inline bool Type::isPointerType() const {
6701 return isa<PointerType>(CanonicalType);
6702}
6703
6704inline bool Type::isAnyPointerType() const {
6705 return isPointerType() || isObjCObjectPointerType();
6706}
6707
6708inline bool Type::isBlockPointerType() const {
6709 return isa<BlockPointerType>(CanonicalType);
6710}
6711
6712inline bool Type::isReferenceType() const {
6713 return isa<ReferenceType>(CanonicalType);
6714}
6715
6716inline bool Type::isLValueReferenceType() const {
6717 return isa<LValueReferenceType>(CanonicalType);
6718}
6719
6720inline bool Type::isRValueReferenceType() const {
6721 return isa<RValueReferenceType>(CanonicalType);
6722}
6723
6724inline bool Type::isObjectPointerType() const {
6725 // Note: an "object pointer type" is not the same thing as a pointer to an
6726 // object type; rather, it is a pointer to an object type or a pointer to cv
6727 // void.
6728 if (const auto *T = getAs<PointerType>())
6729 return !T->getPointeeType()->isFunctionType();
6730 else
6731 return false;
6732}
6733
6734inline bool Type::isFunctionPointerType() const {
6735 if (const auto *T = getAs<PointerType>())
6736 return T->getPointeeType()->isFunctionType();
6737 else
6738 return false;
6739}
6740
6741inline bool Type::isFunctionReferenceType() const {
6742 if (const auto *T = getAs<ReferenceType>())
6743 return T->getPointeeType()->isFunctionType();
6744 else
6745 return false;
6746}
6747
6748inline bool Type::isMemberPointerType() const {
6749 return isa<MemberPointerType>(CanonicalType);
6750}
6751
6752inline bool Type::isMemberFunctionPointerType() const {
6753 if (const auto *T = getAs<MemberPointerType>())
6754 return T->isMemberFunctionPointer();
6755 else
6756 return false;
6757}
6758
6759inline bool Type::isMemberDataPointerType() const {
6760 if (const auto *T = getAs<MemberPointerType>())
6761 return T->isMemberDataPointer();
6762 else
6763 return false;
6764}
6765
6766inline bool Type::isArrayType() const {
6767 return isa<ArrayType>(CanonicalType);
6768}
6769
6770inline bool Type::isConstantArrayType() const {
6771 return isa<ConstantArrayType>(CanonicalType);
6772}
6773
6774inline bool Type::isIncompleteArrayType() const {
6775 return isa<IncompleteArrayType>(CanonicalType);
6776}
6777
6778inline bool Type::isVariableArrayType() const {
6779 return isa<VariableArrayType>(CanonicalType);
6780}
6781
6782inline bool Type::isDependentSizedArrayType() const {
6783 return isa<DependentSizedArrayType>(CanonicalType);
6784}
6785
6786inline bool Type::isBuiltinType() const {
6787 return isa<BuiltinType>(CanonicalType);
6788}
6789
6790inline bool Type::isRecordType() const {
6791 return isa<RecordType>(CanonicalType);
6792}
6793
6794inline bool Type::isEnumeralType() const {
6795 return isa<EnumType>(CanonicalType);
12
Assuming field 'CanonicalType' is a 'EnumType'
13
Returning the value 1, which participates in a condition later
6796}
6797
6798inline bool Type::isAnyComplexType() const {
6799 return isa<ComplexType>(CanonicalType);
6800}
6801
6802inline bool Type::isVectorType() const {
6803 return isa<VectorType>(CanonicalType);
6804}
6805
6806inline bool Type::isExtVectorType() const {
6807 return isa<ExtVectorType>(CanonicalType);
6808}
6809
6810inline bool Type::isMatrixType() const {
6811 return isa<MatrixType>(CanonicalType);
6812}
6813
6814inline bool Type::isConstantMatrixType() const {
6815 return isa<ConstantMatrixType>(CanonicalType);
6816}
6817
6818inline bool Type::isDependentAddressSpaceType() const {
6819 return isa<DependentAddressSpaceType>(CanonicalType);
6820}
6821
6822inline bool Type::isObjCObjectPointerType() const {
6823 return isa<ObjCObjectPointerType>(CanonicalType);
6824}
6825
6826inline bool Type::isObjCObjectType() const {
6827 return isa<ObjCObjectType>(CanonicalType);
6828}
6829
6830inline bool Type::isObjCObjectOrInterfaceType() const {
6831 return isa<ObjCInterfaceType>(CanonicalType) ||
6832 isa<ObjCObjectType>(CanonicalType);
6833}
6834
6835inline bool Type::isAtomicType() const {
6836 return isa<AtomicType>(CanonicalType);
6837}
6838
6839inline bool Type::isUndeducedAutoType() const {
6840 return isa<AutoType>(CanonicalType);
6841}
6842
6843inline bool Type::isObjCQualifiedIdType() const {
6844 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6845 return OPT->isObjCQualifiedIdType();
6846 return false;
6847}
6848
6849inline bool Type::isObjCQualifiedClassType() const {
6850 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6851 return OPT->isObjCQualifiedClassType();
6852 return false;
6853}
6854
6855inline bool Type::isObjCIdType() const {
6856 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6857 return OPT->isObjCIdType();
6858 return false;
6859}
6860
6861inline bool Type::isObjCClassType() const {
6862 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6863 return OPT->isObjCClassType();
6864 return false;
6865}
6866
6867inline bool Type::isObjCSelType() const {
6868 if (const auto *OPT = getAs<PointerType>())
6869 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6870 return false;
6871}
6872
6873inline bool Type::isObjCBuiltinType() const {
6874 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6875}
6876
6877inline bool Type::isDecltypeType() const {
6878 return isa<DecltypeType>(this);
6879}
6880
6881#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6882 inline bool Type::is##Id##Type() const { \
6883 return isSpecificBuiltinType(BuiltinType::Id); \
6884 }
6885#include "clang/Basic/OpenCLImageTypes.def"
6886
6887inline bool Type::isSamplerT() const {
6888 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6889}
6890
6891inline bool Type::isEventT() const {
6892 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6893}
6894
6895inline bool Type::isClkEventT() const {
6896 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6897}
6898
6899inline bool Type::isQueueT() const {
6900 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6901}
6902
6903inline bool Type::isReserveIDT() const {
6904 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6905}
6906
6907inline bool Type::isImageType() const {
6908#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6909 return
6910#include "clang/Basic/OpenCLImageTypes.def"
6911 false; // end boolean or operation
6912}
6913
6914inline bool Type::isPipeType() const {
6915 return isa<PipeType>(CanonicalType);
6916}
6917
6918inline bool Type::isBitIntType() const {
6919 return isa<BitIntType>(CanonicalType);
32
Assuming field 'CanonicalType' is a 'BitIntType'
33
Returning the value 1, which participates in a condition later
6920}
6921
6922#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6923 inline bool Type::is##Id##Type() const { \
6924 return isSpecificBuiltinType(BuiltinType::Id); \
6925 }
6926#include "clang/Basic/OpenCLExtensionTypes.def"
6927
6928inline bool Type::isOCLIntelSubgroupAVCType() const {
6929#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6930 isOCLIntelSubgroupAVC##Id##Type() ||
6931 return
6932#include "clang/Basic/OpenCLExtensionTypes.def"
6933 false; // end of boolean or operation
6934}
6935
6936inline bool Type::isOCLExtOpaqueType() const {
6937#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6938 return
6939#include "clang/Basic/OpenCLExtensionTypes.def"
6940 false; // end of boolean or operation
6941}
6942
6943inline bool Type::isOpenCLSpecificType() const {
6944 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6945 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6946}
6947
6948inline bool Type::isTemplateTypeParmType() const {
6949 return isa<TemplateTypeParmType>(CanonicalType);
6950}
6951
6952inline bool Type::isSpecificBuiltinType(unsigned K) const {
6953 if (const BuiltinType *BT = getAs<BuiltinType>()) {
6954 return BT->getKind() == static_cast<BuiltinType::Kind>(K);
6955 }
6956 return false;
6957}
6958
6959inline bool Type::isPlaceholderType() const {
6960 if (const auto *BT = dyn_cast<BuiltinType>(this))
6961 return BT->isPlaceholderType();
6962 return false;
6963}
6964
6965inline const BuiltinType *Type::getAsPlaceholderType() const {
6966 if (const auto *BT = dyn_cast<BuiltinType>(this))
6967 if (BT->isPlaceholderType())
6968 return BT;
6969 return nullptr;
6970}
6971
6972inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6973 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))(static_cast <bool> (BuiltinType::isPlaceholderTypeKind
((BuiltinType::Kind) K)) ? void (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "clang/include/clang/AST/Type.h", 6973, __extension__ __PRETTY_FUNCTION__
))
;
6974 return isSpecificBuiltinType(K);
6975}
6976
6977inline bool Type::isNonOverloadPlaceholderType() const {
6978 if (const auto *BT = dyn_cast<BuiltinType>(this))
6979 return BT->isNonOverloadPlaceholderType();
6980 return false;
6981}
6982
6983inline bool Type::isVoidType() const {
6984 return isSpecificBuiltinType(BuiltinType::Void);
6985}
6986
6987inline bool Type::isHalfType() const {
6988 // FIXME: Should we allow complex __fp16? Probably not.
6989 return isSpecificBuiltinType(BuiltinType::Half);
6990}
6991
6992inline bool Type::isFloat16Type() const {
6993 return isSpecificBuiltinType(BuiltinType::Float16);
6994}
6995
6996inline bool Type::isBFloat16Type() const {
6997 return isSpecificBuiltinType(BuiltinType::BFloat16);
6998}
6999
7000inline bool Type::isFloat128Type() const {
7001 return isSpecificBuiltinType(BuiltinType::Float128);
7002}
7003
7004inline bool Type::isIbm128Type() const {
7005 return isSpecificBuiltinType(BuiltinType::Ibm128);
7006}
7007
7008inline bool Type::isNullPtrType() const {
7009 return isSpecificBuiltinType(BuiltinType::NullPtr);
7010}
7011
7012bool IsEnumDeclComplete(EnumDecl *);
7013bool IsEnumDeclScoped(EnumDecl *);
7014
7015inline bool Type::isIntegerType() const {
7016 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7017 return BT->getKind() >= BuiltinType::Bool &&
7018 BT->getKind() <= BuiltinType::Int128;
7019 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
7020 // Incomplete enum types are not treated as integer types.
7021 // FIXME: In C++, enum types are never integer types.
7022 return IsEnumDeclComplete(ET->getDecl()) &&
7023 !IsEnumDeclScoped(ET->getDecl());
7024 }
7025 return isBitIntType();
7026}
7027
7028inline bool Type::isFixedPointType() const {
7029 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7030 return BT->getKind() >= BuiltinType::ShortAccum &&
7031 BT->getKind() <= BuiltinType::SatULongFract;
7032 }
7033 return false;
7034}
7035
7036inline bool Type::isFixedPointOrIntegerType() const {
7037 return isFixedPointType() || isIntegerType();
7038}
7039
7040inline bool Type::isSaturatedFixedPointType() const {
7041 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7042 return BT->getKind() >= BuiltinType::SatShortAccum &&
7043 BT->getKind() <= BuiltinType::SatULongFract;
7044 }
7045 return false;
7046}
7047
7048inline bool Type::isUnsaturatedFixedPointType() const {
7049 return isFixedPointType() && !isSaturatedFixedPointType();
7050}
7051
7052inline bool Type::isSignedFixedPointType() const {
7053 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7054 return ((BT->getKind() >= BuiltinType::ShortAccum &&
7055 BT->getKind() <= BuiltinType::LongAccum) ||
7056 (BT->getKind() >= BuiltinType::ShortFract &&
7057 BT->getKind() <= BuiltinType::LongFract) ||
7058 (BT->getKind() >= BuiltinType::SatShortAccum &&
7059 BT->getKind() <= BuiltinType::SatLongAccum) ||
7060 (BT->getKind() >= BuiltinType::SatShortFract &&
7061 BT->getKind() <= BuiltinType::SatLongFract));
7062 }
7063 return false;
7064}
7065
7066inline bool Type::isUnsignedFixedPointType() const {
7067 return isFixedPointType() && !isSignedFixedPointType();
7068}
7069
7070inline bool Type::isScalarType() const {
7071 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7072 return BT->getKind() > BuiltinType::Void &&
7073 BT->getKind() <= BuiltinType::NullPtr;
7074 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
7075 // Enums are scalar types, but only if they are defined. Incomplete enums
7076 // are not treated as scalar types.
7077 return IsEnumDeclComplete(ET->getDecl());
7078 return isa<PointerType>(CanonicalType) ||
7079 isa<BlockPointerType>(CanonicalType) ||
7080 isa<MemberPointerType>(CanonicalType) ||
7081 isa<ComplexType>(CanonicalType) ||
7082 isa<ObjCObjectPointerType>(CanonicalType) ||
7083 isBitIntType();
7084}
7085
7086inline bool Type::isIntegralOrEnumerationType() const {
7087 if (const auto *BT
23.1
'BT' is null
23.1
'BT' is null
23.1
'BT' is null
= dyn_cast<BuiltinType>(CanonicalType))
19
Calling 'dyn_cast<clang::BuiltinType, clang::QualType>'
23
Returning from 'dyn_cast<clang::BuiltinType, clang::QualType>'
24
Taking false branch
7088 return BT->getKind() >= BuiltinType::Bool &&
7089 BT->getKind() <= BuiltinType::Int128;
7090
7091 // Check for a complete enum type; incomplete enum types are not properly an
7092 // enumeration type in the sense required here.
7093 if (const auto *ET
29.1
'ET' is null
29.1
'ET' is null
29.1
'ET' is null
= dyn_cast<EnumType>(CanonicalType))
25
Calling 'dyn_cast<clang::EnumType, clang::QualType>'
29
Returning from 'dyn_cast<clang::EnumType, clang::QualType>'
30
Taking false branch
7094 return IsEnumDeclComplete(ET->getDecl());
7095
7096 return isBitIntType();
31
Calling 'Type::isBitIntType'
34
Returning from 'Type::isBitIntType'
35
Returning the value 1, which participates in a condition later
7097}
7098
7099inline bool Type::isBooleanType() const {
7100 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7101 return BT->getKind() == BuiltinType::Bool;
7102 return false;
7103}
7104
7105inline bool Type::isUndeducedType() const {
7106 auto *DT = getContainedDeducedType();
7107 return DT && !DT->isDeduced();
7108}
7109
7110/// Determines whether this is a type for which one can define
7111/// an overloaded operator.
7112inline bool Type::isOverloadableType() const {
7113 return isDependentType() || isRecordType() || isEnumeralType();
7114}
7115
7116/// Determines whether this type is written as a typedef-name.
7117inline bool Type::isTypedefNameType() const {
7118 if (getAs<TypedefType>())
7119 return true;
7120 if (auto *TST = getAs<TemplateSpecializationType>())
7121 return TST->isTypeAlias();
7122 return false;
7123}
7124
7125/// Determines whether this type can decay to a pointer type.
7126inline bool Type::canDecayToPointerType() const {
7127 return isFunctionType() || isArrayType();
7128}
7129
7130inline bool Type::hasPointerRepresentation() const {
7131 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
7132 isObjCObjectPointerType() || isNullPtrType());
7133}
7134
7135inline bool Type::hasObjCPointerRepresentation() const {
7136 return isObjCObjectPointerType();
7137}
7138
7139inline const Type *Type::getBaseElementTypeUnsafe() const {
7140 const Type *type = this;
7141 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
7142 type = arrayType->getElementType().getTypePtr();
7143 return type;
7144}
7145
7146inline const Type *Type::getPointeeOrArrayElementType() const {
7147 const Type *type = this;
7148 if (type->isAnyPointerType())
7149 return type->getPointeeType().getTypePtr();
7150 else if (type->isArrayType())
7151 return type->getBaseElementTypeUnsafe();
7152 return type;
7153}
7154/// Insertion operator for partial diagnostics. This allows sending adress
7155/// spaces into a diagnostic with <<.
7156inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7157 LangAS AS) {
7158 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
7159 DiagnosticsEngine::ArgumentKind::ak_addrspace);
7160 return PD;
7161}
7162
7163/// Insertion operator for partial diagnostics. This allows sending Qualifiers
7164/// into a diagnostic with <<.
7165inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7166 Qualifiers Q) {
7167 PD.AddTaggedVal(Q.getAsOpaqueValue(),
7168 DiagnosticsEngine::ArgumentKind::ak_qual);
7169 return PD;
7170}
7171
7172/// Insertion operator for partial diagnostics. This allows sending QualType's
7173/// into a diagnostic with <<.
7174inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7175 QualType T) {
7176 PD.AddTaggedVal(reinterpret_cast<uint64_t>(T.getAsOpaquePtr()),
7177 DiagnosticsEngine::ak_qualtype);
7178 return PD;
7179}
7180
7181// Helper class template that is used by Type::getAs to ensure that one does
7182// not try to look through a qualified type to get to an array type.
7183template <typename T>
7184using TypeIsArrayType =
7185 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
7186 std::is_base_of<ArrayType, T>::value>;
7187
7188// Member-template getAs<specific type>'.
7189template <typename T> const T *Type::getAs() const {
7190 static_assert(!TypeIsArrayType<T>::value,
7191 "ArrayType cannot be used with getAs!");
7192
7193 // If this is directly a T type, return it.
7194 if (const auto *Ty = dyn_cast<T>(this))
7195 return Ty;
7196
7197 // If the canonical form of this type isn't the right kind, reject it.
7198 if (!isa<T>(CanonicalType))
7199 return nullptr;
7200
7201 // If this is a typedef for the type, strip the typedef off without
7202 // losing all typedef information.
7203 return cast<T>(getUnqualifiedDesugaredType());
7204}
7205
7206template <typename T> const T *Type::getAsAdjusted() const {
7207 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
7208
7209 // If this is directly a T type, return it.
7210 if (const auto *Ty = dyn_cast<T>(this))
7211 return Ty;
7212
7213 // If the canonical form of this type isn't the right kind, reject it.
7214 if (!isa<T>(CanonicalType))
7215 return nullptr;
7216
7217 // Strip off type adjustments that do not modify the underlying nature of the
7218 // type.
7219 const Type *Ty = this;
7220 while (Ty) {
7221 if (const auto *A = dyn_cast<AttributedType>(Ty))
7222 Ty = A->getModifiedType().getTypePtr();
7223 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
7224 Ty = E->desugar().getTypePtr();
7225 else if (const auto *P = dyn_cast<ParenType>(Ty))
7226 Ty = P->desugar().getTypePtr();
7227 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7228 Ty = A->desugar().getTypePtr();
7229 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7230 Ty = M->desugar().getTypePtr();
7231 else
7232 break;
7233 }
7234
7235 // Just because the canonical type is correct does not mean we can use cast<>,
7236 // since we may not have stripped off all the sugar down to the base type.
7237 return dyn_cast<T>(Ty);
7238}
7239
7240inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7241 // If this is directly an array type, return it.
7242 if (const auto *arr = dyn_cast<ArrayType>(this))
7243 return arr;
7244
7245 // If the canonical form of this type isn't the right kind, reject it.
7246 if (!isa<ArrayType>(CanonicalType))
7247 return nullptr;
7248
7249 // If this is a typedef for the type, strip the typedef off without
7250 // losing all typedef information.
7251 return cast<ArrayType>(getUnqualifiedDesugaredType());
7252}
7253
7254template <typename T> const T *Type::castAs() const {
7255 static_assert(!TypeIsArrayType<T>::value,
7256 "ArrayType cannot be used with castAs!");
7257
7258 if (const auto *ty = dyn_cast<T>(this)) return ty;
7259 assert(isa<T>(CanonicalType))(static_cast <bool> (isa<T>(CanonicalType)) ? void
(0) : __assert_fail ("isa<T>(CanonicalType)", "clang/include/clang/AST/Type.h"
, 7259, __extension__ __PRETTY_FUNCTION__))
;
7260 return cast<T>(getUnqualifiedDesugaredType());
7261}
7262
7263inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7264 assert(isa<ArrayType>(CanonicalType))(static_cast <bool> (isa<ArrayType>(CanonicalType
)) ? void (0) : __assert_fail ("isa<ArrayType>(CanonicalType)"
, "clang/include/clang/AST/Type.h", 7264, __extension__ __PRETTY_FUNCTION__
))
;
7265 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7266 return cast<ArrayType>(getUnqualifiedDesugaredType());
7267}
7268
7269DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7270 QualType CanonicalPtr)
7271 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7272#ifndef NDEBUG
7273 QualType Adjusted = getAdjustedType();
7274 (void)AttributedType::stripOuterNullability(Adjusted);
7275 assert(isa<PointerType>(Adjusted))(static_cast <bool> (isa<PointerType>(Adjusted)) ?
void (0) : __assert_fail ("isa<PointerType>(Adjusted)"
, "clang/include/clang/AST/Type.h", 7275, __extension__ __PRETTY_FUNCTION__
))
;
7276#endif
7277}
7278
7279QualType DecayedType::getPointeeType() const {
7280 QualType Decayed = getDecayedType();
7281 (void)AttributedType::stripOuterNullability(Decayed);
7282 return cast<PointerType>(Decayed)->getPointeeType();
7283}
7284
7285// Get the decimal string representation of a fixed point type, represented
7286// as a scaled integer.
7287// TODO: At some point, we should change the arguments to instead just accept an
7288// APFixedPoint instead of APSInt and scale.
7289void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7290 unsigned Scale);
7291
7292} // namespace clang
7293
7294#endif // LLVM_CLANG_AST_TYPE_H

/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
10// and dyn_cast_or_null<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <memory>
21#include <type_traits>
22
23namespace llvm {
24
25//===----------------------------------------------------------------------===//
26// isa<x> Support Templates
27//===----------------------------------------------------------------------===//
28
29// Define a template that can be specialized by smart pointers to reflect the
30// fact that they are automatically dereferenced, and are not involved with the
31// template selection process... the default implementation is a noop.
32//
33template<typename From> struct simplify_type {
34 using SimpleType = From; // The real type this represents...
35
36 // An accessor to get the real value...
37 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
38};
39
40template<typename From> struct simplify_type<const From> {
41 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
42 using SimpleType =
43 typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From& Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
49 }
50};
51
52// The core of the implementation of isa<X> is here; To and From should be
53// the names of classes. This template can be specialized to customize the
54// implementation of isa<> without rewriting it from scratch.
55template <typename To, typename From, typename Enabler = void>
56struct isa_impl {
57 static inline bool doit(const From &Val) {
58 return To::classof(&Val);
59 }
60};
61
62/// Always allow upcasts, and perform no dynamic check for them.
63template <typename To, typename From>
64struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
65 static inline bool doit(const From &) { return true; }
66};
67
68template <typename To, typename From> struct isa_impl_cl {
69 static inline bool doit(const From &Val) {
70 return isa_impl<To, From>::doit(Val);
71 }
72};
73
74template <typename To, typename From> struct isa_impl_cl<To, const From> {
75 static inline bool doit(const From &Val) {
76 return isa_impl<To, From>::doit(Val);
77 }
78};
79
80template <typename To, typename From>
81struct isa_impl_cl<To, const std::unique_ptr<From>> {
82 static inline bool doit(const std::unique_ptr<From> &Val) {
83 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 83, __extension__ __PRETTY_FUNCTION__
))
;
84 return isa_impl_cl<To, From>::doit(*Val);
85 }
86};
87
88template <typename To, typename From> struct isa_impl_cl<To, From*> {
89 static inline bool doit(const From *Val) {
90 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 90, __extension__ __PRETTY_FUNCTION__
))
;
91 return isa_impl<To, From>::doit(*Val);
92 }
93};
94
95template <typename To, typename From> struct isa_impl_cl<To, From*const> {
96 static inline bool doit(const From *Val) {
97 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 97, __extension__ __PRETTY_FUNCTION__
))
;
98 return isa_impl<To, From>::doit(*Val);
99 }
100};
101
102template <typename To, typename From> struct isa_impl_cl<To, const From*> {
103 static inline bool doit(const From *Val) {
104 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 104, __extension__ __PRETTY_FUNCTION__
))
;
105 return isa_impl<To, From>::doit(*Val);
106 }
107};
108
109template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
110 static inline bool doit(const From *Val) {
111 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "llvm/include/llvm/Support/Casting.h", 111, __extension__ __PRETTY_FUNCTION__
))
;
112 return isa_impl<To, From>::doit(*Val);
113 }
114};
115
116template<typename To, typename From, typename SimpleFrom>
117struct isa_impl_wrap {
118 // When From != SimplifiedType, we can simplify the type some more by using
119 // the simplify_type template.
120 static bool doit(const From &Val) {
121 return isa_impl_wrap<To, SimpleFrom,
122 typename simplify_type<SimpleFrom>::SimpleType>::doit(
123 simplify_type<const From>::getSimplifiedValue(Val));
124 }
125};
126
127template<typename To, typename FromTy>
128struct isa_impl_wrap<To, FromTy, FromTy> {
129 // When From == SimpleType, we are as simple as we are going to get.
130 static bool doit(const FromTy &Val) {
131 return isa_impl_cl<To,FromTy>::doit(Val);
132 }
133};
134
135// isa<X> - Return true if the parameter to the template is an instance of one
136// of the template type arguments. Used like this:
137//
138// if (isa<Type>(myVal)) { ... }
139// if (isa<Type0, Type1, Type2>(myVal)) { ... }
140//
141template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
142 return isa_impl_wrap<X, const Y,
143 typename simplify_type<const Y>::SimpleType>::doit(Val);
144}
145
146template <typename First, typename Second, typename... Rest, typename Y>
147LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
148 return isa<First>(Val) || isa<Second, Rest...>(Val);
149}
150
151// isa_and_nonnull<X> - Functionally identical to isa, except that a null value
152// is accepted.
153//
154template <typename... X, class Y>
155LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa_and_nonnull(const Y &Val) {
156 if (!Val)
157 return false;
158 return isa<X...>(Val);
159}
160
161//===----------------------------------------------------------------------===//
162// cast<x> Support Templates
163//===----------------------------------------------------------------------===//
164
165template<class To, class From> struct cast_retty;
166
167// Calculate what type the 'cast' function should return, based on a requested
168// type of To and a source type of From.
169template<class To, class From> struct cast_retty_impl {
170 using ret_type = To &; // Normal case, return Ty&
171};
172template<class To, class From> struct cast_retty_impl<To, const From> {
173 using ret_type = const To &; // Normal case, return Ty&
174};
175
176template<class To, class From> struct cast_retty_impl<To, From*> {
177 using ret_type = To *; // Pointer arg case, return Ty*
178};
179
180template<class To, class From> struct cast_retty_impl<To, const From*> {
181 using ret_type = const To *; // Constant pointer arg case, return const Ty*
182};
183
184template<class To, class From> struct cast_retty_impl<To, const From*const> {
185 using ret_type = const To *; // Constant pointer arg case, return const Ty*
186};
187
188template <class To, class From>
189struct cast_retty_impl<To, std::unique_ptr<From>> {
190private:
191 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
192 using ResultType = std::remove_pointer_t<PointerType>;
193
194public:
195 using ret_type = std::unique_ptr<ResultType>;
196};
197
198template<class To, class From, class SimpleFrom>
199struct cast_retty_wrap {
200 // When the simplified type and the from type are not the same, use the type
201 // simplifier to reduce the type, then reuse cast_retty_impl to get the
202 // resultant type.
203 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
204};
205
206template<class To, class FromTy>
207struct cast_retty_wrap<To, FromTy, FromTy> {
208 // When the simplified type is equal to the from type, use it directly.
209 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
210};
211
212template<class To, class From>
213struct cast_retty {
214 using ret_type = typename cast_retty_wrap<
215 To, From, typename simplify_type<From>::SimpleType>::ret_type;
216};
217
218// Ensure the non-simple values are converted using the simplify_type template
219// that may be specialized by smart pointers...
220//
221template<class To, class From, class SimpleFrom> struct cast_convert_val {
222 // This is not a simple type, use the template to simplify it...
223 static typename cast_retty<To, From>::ret_type doit(From &Val) {
224 return cast_convert_val<To, SimpleFrom,
225 typename simplify_type<SimpleFrom>::SimpleType>::doit(
226 simplify_type<From>::getSimplifiedValue(Val));
227 }
228};
229
230template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
231 // This _is_ a simple type, just cast it.
232 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
233 typename cast_retty<To, FromTy>::ret_type Res2
234 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
235 return Res2;
236 }
237};
238
239template <class X> struct is_simple_type {
240 static const bool value =
241 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
242};
243
244// cast<X> - Return the argument parameter cast to the specified type. This
245// casting operator asserts that the type is correct, so it does not return null
246// on failure. It does not allow a null argument (use cast_or_null for that).
247// It is typically used like this:
248//
249// cast<Instruction>(myVal)->getParent()
250//
251template <class X, class Y>
252inline std::enable_if_t<!is_simple_type<Y>::value,
253 typename cast_retty<X, const Y>::ret_type>
254cast(const Y &Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 255, __extension__ __PRETTY_FUNCTION__
))
;
256 return cast_convert_val<
257 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
262 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 262, __extension__ __PRETTY_FUNCTION__
))
;
263 return cast_convert_val<X, Y,
264 typename simplify_type<Y>::SimpleType>::doit(Val);
265}
266
267template <class X, class Y>
268inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
269 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 269, __extension__ __PRETTY_FUNCTION__
))
;
270 return cast_convert_val<X, Y*,
271 typename simplify_type<Y*>::SimpleType>::doit(Val);
272}
273
274template <class X, class Y>
275inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
276cast(std::unique_ptr<Y> &&Val) {
277 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val.get()) &&
"cast<Ty>() argument of incompatible type!") ? void (0
) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 277, __extension__ __PRETTY_FUNCTION__
))
;
278 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
279 return ret_type(
280 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
281 Val.release()));
282}
283
284// cast_or_null<X> - Functionally identical to cast, except that a null value is
285// accepted.
286//
287template <class X, class Y>
288LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
289 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
290cast_or_null(const Y &Val) {
291 if (!Val)
292 return nullptr;
293 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 293, __extension__ __PRETTY_FUNCTION__
))
;
294 return cast<X>(Val);
295}
296
297template <class X, class Y>
298LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
299 typename cast_retty<X, Y>::ret_type>
300cast_or_null(Y &Val) {
301 if (!Val)
302 return nullptr;
303 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 303, __extension__ __PRETTY_FUNCTION__
))
;
304 return cast<X>(Val);
305}
306
307template <class X, class Y>
308LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
309cast_or_null(Y *Val) {
310 if (!Val) return nullptr;
311 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "llvm/include/llvm/Support/Casting.h", 311, __extension__ __PRETTY_FUNCTION__
))
;
312 return cast<X>(Val);
313}
314
315template <class X, class Y>
316inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
317cast_or_null(std::unique_ptr<Y> &&Val) {
318 if (!Val)
319 return nullptr;
320 return cast<X>(std::move(Val));
321}
322
323// dyn_cast<X> - Return the argument parameter cast to the specified type. This
324// casting operator returns null if the argument is of the wrong type, so it can
325// be used to test for a type as well as cast if successful. This should be
326// used in the context of an if statement like this:
327//
328// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
329//
330
331template <class X, class Y>
332LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
333 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
334dyn_cast(const Y &Val) {
335 return isa<X>(Val) ? cast<X>(Val) : nullptr;
20
Assuming 'Val' is not a 'BuiltinType'
21
'?' condition is false
22
Returning null pointer, which participates in a condition later
26
Assuming 'Val' is not a 'EnumType'
27
'?' condition is false
28
Returning null pointer, which participates in a condition later
336}
337
338template <class X, class Y>
339LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
340 return isa<X>(Val) ? cast<X>(Val) : nullptr;
341}
342
343template <class X, class Y>
344LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
345 return isa<X>(Val) ? cast<X>(Val) : nullptr;
346}
347
348// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
349// value is accepted.
350//
351template <class X, class Y>
352LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
353 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
354dyn_cast_or_null(const Y &Val) {
355 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
356}
357
358template <class X, class Y>
359LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
360 typename cast_retty<X, Y>::ret_type>
361dyn_cast_or_null(Y &Val) {
362 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
363}
364
365template <class X, class Y>
366LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
367dyn_cast_or_null(Y *Val) {
368 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
369}
370
371// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
372// taking ownership of the input pointer iff isa<X>(Val) is true. If the
373// cast is successful, From refers to nullptr on exit and the casted value
374// is returned. If the cast is unsuccessful, the function returns nullptr
375// and From is unchanged.
376template <class X, class Y>
377LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
378 -> decltype(cast<X>(Val)) {
379 if (!isa<X>(Val))
380 return nullptr;
381 return cast<X>(std::move(Val));
382}
383
384template <class X, class Y>
385LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
386 return unique_dyn_cast<X, Y>(Val);
387}
388
389// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
390// a null value is accepted.
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
393 -> decltype(cast<X>(Val)) {
394 if (!Val)
395 return nullptr;
396 return unique_dyn_cast<X, Y>(Val);
397}
398
399template <class X, class Y>
400LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
401 return unique_dyn_cast_or_null<X, Y>(Val);
402}
403
404} // end namespace llvm
405
406#endif // LLVM_SUPPORT_CASTING_H