Bug Summary

File:clang/lib/Sema/SemaChecking.cpp
Warning:line 10920, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaChecking.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-08-28-193554-24367-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp
1//===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements extra semantic analysis beyond what is enforced
10// by the C type system.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/AttrIterator.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclBase.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/FormatString.h"
30#include "clang/AST/NSAPI.h"
31#include "clang/AST/NonTrivialTypeVisitor.h"
32#include "clang/AST/OperationKinds.h"
33#include "clang/AST/RecordLayout.h"
34#include "clang/AST/Stmt.h"
35#include "clang/AST/TemplateBase.h"
36#include "clang/AST/Type.h"
37#include "clang/AST/TypeLoc.h"
38#include "clang/AST/UnresolvedSet.h"
39#include "clang/Basic/AddressSpaces.h"
40#include "clang/Basic/CharInfo.h"
41#include "clang/Basic/Diagnostic.h"
42#include "clang/Basic/IdentifierTable.h"
43#include "clang/Basic/LLVM.h"
44#include "clang/Basic/LangOptions.h"
45#include "clang/Basic/OpenCLOptions.h"
46#include "clang/Basic/OperatorKinds.h"
47#include "clang/Basic/PartialDiagnostic.h"
48#include "clang/Basic/SourceLocation.h"
49#include "clang/Basic/SourceManager.h"
50#include "clang/Basic/Specifiers.h"
51#include "clang/Basic/SyncScope.h"
52#include "clang/Basic/TargetBuiltins.h"
53#include "clang/Basic/TargetCXXABI.h"
54#include "clang/Basic/TargetInfo.h"
55#include "clang/Basic/TypeTraits.h"
56#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57#include "clang/Sema/Initialization.h"
58#include "clang/Sema/Lookup.h"
59#include "clang/Sema/Ownership.h"
60#include "clang/Sema/Scope.h"
61#include "clang/Sema/ScopeInfo.h"
62#include "clang/Sema/Sema.h"
63#include "clang/Sema/SemaInternal.h"
64#include "llvm/ADT/APFloat.h"
65#include "llvm/ADT/APInt.h"
66#include "llvm/ADT/APSInt.h"
67#include "llvm/ADT/ArrayRef.h"
68#include "llvm/ADT/DenseMap.h"
69#include "llvm/ADT/FoldingSet.h"
70#include "llvm/ADT/None.h"
71#include "llvm/ADT/Optional.h"
72#include "llvm/ADT/STLExtras.h"
73#include "llvm/ADT/SmallBitVector.h"
74#include "llvm/ADT/SmallPtrSet.h"
75#include "llvm/ADT/SmallString.h"
76#include "llvm/ADT/SmallVector.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/StringSet.h"
79#include "llvm/ADT/StringSwitch.h"
80#include "llvm/ADT/Triple.h"
81#include "llvm/Support/AtomicOrdering.h"
82#include "llvm/Support/Casting.h"
83#include "llvm/Support/Compiler.h"
84#include "llvm/Support/ConvertUTF.h"
85#include "llvm/Support/ErrorHandling.h"
86#include "llvm/Support/Format.h"
87#include "llvm/Support/Locale.h"
88#include "llvm/Support/MathExtras.h"
89#include "llvm/Support/SaveAndRestore.h"
90#include "llvm/Support/raw_ostream.h"
91#include <algorithm>
92#include <bitset>
93#include <cassert>
94#include <cctype>
95#include <cstddef>
96#include <cstdint>
97#include <functional>
98#include <limits>
99#include <string>
100#include <tuple>
101#include <utility>
102
103using namespace clang;
104using namespace sema;
105
106SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
107 unsigned ByteNo) const {
108 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
109 Context.getTargetInfo());
110}
111
112/// Checks that a call expression's argument count is the desired number.
113/// This is useful when doing custom type-checking. Returns true on error.
114static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
115 unsigned argCount = call->getNumArgs();
116 if (argCount == desiredArgCount) return false;
117
118 if (argCount < desiredArgCount)
119 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
120 << 0 /*function call*/ << desiredArgCount << argCount
121 << call->getSourceRange();
122
123 // Highlight all the excess arguments.
124 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
125 call->getArg(argCount - 1)->getEndLoc());
126
127 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
128 << 0 /*function call*/ << desiredArgCount << argCount
129 << call->getArg(1)->getSourceRange();
130}
131
132/// Check that the first argument to __builtin_annotation is an integer
133/// and the second argument is a non-wide string literal.
134static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
135 if (checkArgCount(S, TheCall, 2))
136 return true;
137
138 // First argument should be an integer.
139 Expr *ValArg = TheCall->getArg(0);
140 QualType Ty = ValArg->getType();
141 if (!Ty->isIntegerType()) {
142 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
143 << ValArg->getSourceRange();
144 return true;
145 }
146
147 // Second argument should be a constant string.
148 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
149 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
150 if (!Literal || !Literal->isAscii()) {
151 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
152 << StrArg->getSourceRange();
153 return true;
154 }
155
156 TheCall->setType(Ty);
157 return false;
158}
159
160static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
161 // We need at least one argument.
162 if (TheCall->getNumArgs() < 1) {
163 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
164 << 0 << 1 << TheCall->getNumArgs()
165 << TheCall->getCallee()->getSourceRange();
166 return true;
167 }
168
169 // All arguments should be wide string literals.
170 for (Expr *Arg : TheCall->arguments()) {
171 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
172 if (!Literal || !Literal->isWide()) {
173 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
174 << Arg->getSourceRange();
175 return true;
176 }
177 }
178
179 return false;
180}
181
182/// Check that the argument to __builtin_addressof is a glvalue, and set the
183/// result type to the corresponding pointer type.
184static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
185 if (checkArgCount(S, TheCall, 1))
186 return true;
187
188 ExprResult Arg(TheCall->getArg(0));
189 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
190 if (ResultType.isNull())
191 return true;
192
193 TheCall->setArg(0, Arg.get());
194 TheCall->setType(ResultType);
195 return false;
196}
197
198/// Check the number of arguments and set the result type to
199/// the argument type.
200static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
201 if (checkArgCount(S, TheCall, 1))
202 return true;
203
204 TheCall->setType(TheCall->getArg(0)->getType());
205 return false;
206}
207
208/// Check that the value argument for __builtin_is_aligned(value, alignment) and
209/// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
210/// type (but not a function pointer) and that the alignment is a power-of-two.
211static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
212 if (checkArgCount(S, TheCall, 2))
213 return true;
214
215 clang::Expr *Source = TheCall->getArg(0);
216 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
217
218 auto IsValidIntegerType = [](QualType Ty) {
219 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
220 };
221 QualType SrcTy = Source->getType();
222 // We should also be able to use it with arrays (but not functions!).
223 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
224 SrcTy = S.Context.getDecayedType(SrcTy);
225 }
226 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
227 SrcTy->isFunctionPointerType()) {
228 // FIXME: this is not quite the right error message since we don't allow
229 // floating point types, or member pointers.
230 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
231 << SrcTy;
232 return true;
233 }
234
235 clang::Expr *AlignOp = TheCall->getArg(1);
236 if (!IsValidIntegerType(AlignOp->getType())) {
237 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
238 << AlignOp->getType();
239 return true;
240 }
241 Expr::EvalResult AlignResult;
242 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
243 // We can't check validity of alignment if it is value dependent.
244 if (!AlignOp->isValueDependent() &&
245 AlignOp->EvaluateAsInt(AlignResult, S.Context,
246 Expr::SE_AllowSideEffects)) {
247 llvm::APSInt AlignValue = AlignResult.Val.getInt();
248 llvm::APSInt MaxValue(
249 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
250 if (AlignValue < 1) {
251 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
252 return true;
253 }
254 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
255 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
256 << toString(MaxValue, 10);
257 return true;
258 }
259 if (!AlignValue.isPowerOf2()) {
260 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
261 return true;
262 }
263 if (AlignValue == 1) {
264 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
265 << IsBooleanAlignBuiltin;
266 }
267 }
268
269 ExprResult SrcArg = S.PerformCopyInitialization(
270 InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
271 SourceLocation(), Source);
272 if (SrcArg.isInvalid())
273 return true;
274 TheCall->setArg(0, SrcArg.get());
275 ExprResult AlignArg =
276 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
277 S.Context, AlignOp->getType(), false),
278 SourceLocation(), AlignOp);
279 if (AlignArg.isInvalid())
280 return true;
281 TheCall->setArg(1, AlignArg.get());
282 // For align_up/align_down, the return type is the same as the (potentially
283 // decayed) argument type including qualifiers. For is_aligned(), the result
284 // is always bool.
285 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
286 return false;
287}
288
289static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
290 unsigned BuiltinID) {
291 if (checkArgCount(S, TheCall, 3))
292 return true;
293
294 // First two arguments should be integers.
295 for (unsigned I = 0; I < 2; ++I) {
296 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
297 if (Arg.isInvalid()) return true;
298 TheCall->setArg(I, Arg.get());
299
300 QualType Ty = Arg.get()->getType();
301 if (!Ty->isIntegerType()) {
302 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
303 << Ty << Arg.get()->getSourceRange();
304 return true;
305 }
306 }
307
308 // Third argument should be a pointer to a non-const integer.
309 // IRGen correctly handles volatile, restrict, and address spaces, and
310 // the other qualifiers aren't possible.
311 {
312 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
313 if (Arg.isInvalid()) return true;
314 TheCall->setArg(2, Arg.get());
315
316 QualType Ty = Arg.get()->getType();
317 const auto *PtrTy = Ty->getAs<PointerType>();
318 if (!PtrTy ||
319 !PtrTy->getPointeeType()->isIntegerType() ||
320 PtrTy->getPointeeType().isConstQualified()) {
321 S.Diag(Arg.get()->getBeginLoc(),
322 diag::err_overflow_builtin_must_be_ptr_int)
323 << Ty << Arg.get()->getSourceRange();
324 return true;
325 }
326 }
327
328 // Disallow signed ExtIntType args larger than 128 bits to mul function until
329 // we improve backend support.
330 if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
331 for (unsigned I = 0; I < 3; ++I) {
332 const auto Arg = TheCall->getArg(I);
333 // Third argument will be a pointer.
334 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
335 if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
336 S.getASTContext().getIntWidth(Ty) > 128)
337 return S.Diag(Arg->getBeginLoc(),
338 diag::err_overflow_builtin_ext_int_max_size)
339 << 128;
340 }
341 }
342
343 return false;
344}
345
346static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
347 if (checkArgCount(S, BuiltinCall, 2))
348 return true;
349
350 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
351 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
352 Expr *Call = BuiltinCall->getArg(0);
353 Expr *Chain = BuiltinCall->getArg(1);
354
355 if (Call->getStmtClass() != Stmt::CallExprClass) {
356 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
357 << Call->getSourceRange();
358 return true;
359 }
360
361 auto CE = cast<CallExpr>(Call);
362 if (CE->getCallee()->getType()->isBlockPointerType()) {
363 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
364 << Call->getSourceRange();
365 return true;
366 }
367
368 const Decl *TargetDecl = CE->getCalleeDecl();
369 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
370 if (FD->getBuiltinID()) {
371 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
372 << Call->getSourceRange();
373 return true;
374 }
375
376 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
377 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
378 << Call->getSourceRange();
379 return true;
380 }
381
382 ExprResult ChainResult = S.UsualUnaryConversions(Chain);
383 if (ChainResult.isInvalid())
384 return true;
385 if (!ChainResult.get()->getType()->isPointerType()) {
386 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
387 << Chain->getSourceRange();
388 return true;
389 }
390
391 QualType ReturnTy = CE->getCallReturnType(S.Context);
392 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
393 QualType BuiltinTy = S.Context.getFunctionType(
394 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
395 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
396
397 Builtin =
398 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
399
400 BuiltinCall->setType(CE->getType());
401 BuiltinCall->setValueKind(CE->getValueKind());
402 BuiltinCall->setObjectKind(CE->getObjectKind());
403 BuiltinCall->setCallee(Builtin);
404 BuiltinCall->setArg(1, ChainResult.get());
405
406 return false;
407}
408
409namespace {
410
411class EstimateSizeFormatHandler
412 : public analyze_format_string::FormatStringHandler {
413 size_t Size;
414
415public:
416 EstimateSizeFormatHandler(StringRef Format)
417 : Size(std::min(Format.find(0), Format.size()) +
418 1 /* null byte always written by sprintf */) {}
419
420 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
421 const char *, unsigned SpecifierLen) override {
422
423 const size_t FieldWidth = computeFieldWidth(FS);
424 const size_t Precision = computePrecision(FS);
425
426 // The actual format.
427 switch (FS.getConversionSpecifier().getKind()) {
428 // Just a char.
429 case analyze_format_string::ConversionSpecifier::cArg:
430 case analyze_format_string::ConversionSpecifier::CArg:
431 Size += std::max(FieldWidth, (size_t)1);
432 break;
433 // Just an integer.
434 case analyze_format_string::ConversionSpecifier::dArg:
435 case analyze_format_string::ConversionSpecifier::DArg:
436 case analyze_format_string::ConversionSpecifier::iArg:
437 case analyze_format_string::ConversionSpecifier::oArg:
438 case analyze_format_string::ConversionSpecifier::OArg:
439 case analyze_format_string::ConversionSpecifier::uArg:
440 case analyze_format_string::ConversionSpecifier::UArg:
441 case analyze_format_string::ConversionSpecifier::xArg:
442 case analyze_format_string::ConversionSpecifier::XArg:
443 Size += std::max(FieldWidth, Precision);
444 break;
445
446 // %g style conversion switches between %f or %e style dynamically.
447 // %f always takes less space, so default to it.
448 case analyze_format_string::ConversionSpecifier::gArg:
449 case analyze_format_string::ConversionSpecifier::GArg:
450
451 // Floating point number in the form '[+]ddd.ddd'.
452 case analyze_format_string::ConversionSpecifier::fArg:
453 case analyze_format_string::ConversionSpecifier::FArg:
454 Size += std::max(FieldWidth, 1 /* integer part */ +
455 (Precision ? 1 + Precision
456 : 0) /* period + decimal */);
457 break;
458
459 // Floating point number in the form '[-]d.ddde[+-]dd'.
460 case analyze_format_string::ConversionSpecifier::eArg:
461 case analyze_format_string::ConversionSpecifier::EArg:
462 Size +=
463 std::max(FieldWidth,
464 1 /* integer part */ +
465 (Precision ? 1 + Precision : 0) /* period + decimal */ +
466 1 /* e or E letter */ + 2 /* exponent */);
467 break;
468
469 // Floating point number in the form '[-]0xh.hhhhp±dd'.
470 case analyze_format_string::ConversionSpecifier::aArg:
471 case analyze_format_string::ConversionSpecifier::AArg:
472 Size +=
473 std::max(FieldWidth,
474 2 /* 0x */ + 1 /* integer part */ +
475 (Precision ? 1 + Precision : 0) /* period + decimal */ +
476 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
477 break;
478
479 // Just a string.
480 case analyze_format_string::ConversionSpecifier::sArg:
481 case analyze_format_string::ConversionSpecifier::SArg:
482 Size += FieldWidth;
483 break;
484
485 // Just a pointer in the form '0xddd'.
486 case analyze_format_string::ConversionSpecifier::pArg:
487 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
488 break;
489
490 // A plain percent.
491 case analyze_format_string::ConversionSpecifier::PercentArg:
492 Size += 1;
493 break;
494
495 default:
496 break;
497 }
498
499 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
500
501 if (FS.hasAlternativeForm()) {
502 switch (FS.getConversionSpecifier().getKind()) {
503 default:
504 break;
505 // Force a leading '0'.
506 case analyze_format_string::ConversionSpecifier::oArg:
507 Size += 1;
508 break;
509 // Force a leading '0x'.
510 case analyze_format_string::ConversionSpecifier::xArg:
511 case analyze_format_string::ConversionSpecifier::XArg:
512 Size += 2;
513 break;
514 // Force a period '.' before decimal, even if precision is 0.
515 case analyze_format_string::ConversionSpecifier::aArg:
516 case analyze_format_string::ConversionSpecifier::AArg:
517 case analyze_format_string::ConversionSpecifier::eArg:
518 case analyze_format_string::ConversionSpecifier::EArg:
519 case analyze_format_string::ConversionSpecifier::fArg:
520 case analyze_format_string::ConversionSpecifier::FArg:
521 case analyze_format_string::ConversionSpecifier::gArg:
522 case analyze_format_string::ConversionSpecifier::GArg:
523 Size += (Precision ? 0 : 1);
524 break;
525 }
526 }
527 assert(SpecifierLen <= Size && "no underflow")(static_cast <bool> (SpecifierLen <= Size &&
"no underflow") ? void (0) : __assert_fail ("SpecifierLen <= Size && \"no underflow\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 527, __extension__ __PRETTY_FUNCTION__))
;
528 Size -= SpecifierLen;
529 return true;
530 }
531
532 size_t getSizeLowerBound() const { return Size; }
533
534private:
535 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
536 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
537 size_t FieldWidth = 0;
538 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
539 FieldWidth = FW.getConstantAmount();
540 return FieldWidth;
541 }
542
543 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
544 const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
545 size_t Precision = 0;
546
547 // See man 3 printf for default precision value based on the specifier.
548 switch (FW.getHowSpecified()) {
549 case analyze_format_string::OptionalAmount::NotSpecified:
550 switch (FS.getConversionSpecifier().getKind()) {
551 default:
552 break;
553 case analyze_format_string::ConversionSpecifier::dArg: // %d
554 case analyze_format_string::ConversionSpecifier::DArg: // %D
555 case analyze_format_string::ConversionSpecifier::iArg: // %i
556 Precision = 1;
557 break;
558 case analyze_format_string::ConversionSpecifier::oArg: // %d
559 case analyze_format_string::ConversionSpecifier::OArg: // %D
560 case analyze_format_string::ConversionSpecifier::uArg: // %d
561 case analyze_format_string::ConversionSpecifier::UArg: // %D
562 case analyze_format_string::ConversionSpecifier::xArg: // %d
563 case analyze_format_string::ConversionSpecifier::XArg: // %D
564 Precision = 1;
565 break;
566 case analyze_format_string::ConversionSpecifier::fArg: // %f
567 case analyze_format_string::ConversionSpecifier::FArg: // %F
568 case analyze_format_string::ConversionSpecifier::eArg: // %e
569 case analyze_format_string::ConversionSpecifier::EArg: // %E
570 case analyze_format_string::ConversionSpecifier::gArg: // %g
571 case analyze_format_string::ConversionSpecifier::GArg: // %G
572 Precision = 6;
573 break;
574 case analyze_format_string::ConversionSpecifier::pArg: // %d
575 Precision = 1;
576 break;
577 }
578 break;
579 case analyze_format_string::OptionalAmount::Constant:
580 Precision = FW.getConstantAmount();
581 break;
582 default:
583 break;
584 }
585 return Precision;
586 }
587};
588
589} // namespace
590
591void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
592 CallExpr *TheCall) {
593 if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
594 isConstantEvaluated())
595 return;
596
597 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
598 if (!BuiltinID)
599 return;
600
601 const TargetInfo &TI = getASTContext().getTargetInfo();
602 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
603
604 auto ComputeExplicitObjectSizeArgument =
605 [&](unsigned Index) -> Optional<llvm::APSInt> {
606 Expr::EvalResult Result;
607 Expr *SizeArg = TheCall->getArg(Index);
608 if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
609 return llvm::None;
610 return Result.Val.getInt();
611 };
612
613 auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
614 // If the parameter has a pass_object_size attribute, then we should use its
615 // (potentially) more strict checking mode. Otherwise, conservatively assume
616 // type 0.
617 int BOSType = 0;
618 if (const auto *POS =
619 FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
620 BOSType = POS->getType();
621
622 const Expr *ObjArg = TheCall->getArg(Index);
623 uint64_t Result;
624 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
625 return llvm::None;
626
627 // Get the object size in the target's size_t width.
628 return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
629 };
630
631 auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
632 Expr *ObjArg = TheCall->getArg(Index);
633 uint64_t Result;
634 if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
635 return llvm::None;
636 // Add 1 for null byte.
637 return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
638 };
639
640 Optional<llvm::APSInt> SourceSize;
641 Optional<llvm::APSInt> DestinationSize;
642 unsigned DiagID = 0;
643 bool IsChkVariant = false;
644
645 switch (BuiltinID) {
646 default:
647 return;
648 case Builtin::BI__builtin_strcpy:
649 case Builtin::BIstrcpy: {
650 DiagID = diag::warn_fortify_strlen_overflow;
651 SourceSize = ComputeStrLenArgument(1);
652 DestinationSize = ComputeSizeArgument(0);
653 break;
654 }
655
656 case Builtin::BI__builtin___strcpy_chk: {
657 DiagID = diag::warn_fortify_strlen_overflow;
658 SourceSize = ComputeStrLenArgument(1);
659 DestinationSize = ComputeExplicitObjectSizeArgument(2);
660 IsChkVariant = true;
661 break;
662 }
663
664 case Builtin::BIsprintf:
665 case Builtin::BI__builtin___sprintf_chk: {
666 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
667 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
668
669 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
670
671 if (!Format->isAscii() && !Format->isUTF8())
672 return;
673
674 StringRef FormatStrRef = Format->getString();
675 EstimateSizeFormatHandler H(FormatStrRef);
676 const char *FormatBytes = FormatStrRef.data();
677 const ConstantArrayType *T =
678 Context.getAsConstantArrayType(Format->getType());
679 assert(T && "String literal not of constant array type!")(static_cast <bool> (T && "String literal not of constant array type!"
) ? void (0) : __assert_fail ("T && \"String literal not of constant array type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 679, __extension__ __PRETTY_FUNCTION__))
;
680 size_t TypeSize = T->getSize().getZExtValue();
681
682 // In case there's a null byte somewhere.
683 size_t StrLen =
684 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
685 if (!analyze_format_string::ParsePrintfString(
686 H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
687 Context.getTargetInfo(), false)) {
688 DiagID = diag::warn_fortify_source_format_overflow;
689 SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
690 .extOrTrunc(SizeTypeWidth);
691 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
692 DestinationSize = ComputeExplicitObjectSizeArgument(2);
693 IsChkVariant = true;
694 } else {
695 DestinationSize = ComputeSizeArgument(0);
696 }
697 break;
698 }
699 }
700 return;
701 }
702 case Builtin::BI__builtin___memcpy_chk:
703 case Builtin::BI__builtin___memmove_chk:
704 case Builtin::BI__builtin___memset_chk:
705// case Builtin::BI__builtin___strlcat_chk:
706// case Builtin::BI__builtin___strlcpy_chk:
707 case Builtin::BI__builtin___strncat_chk:
708 case Builtin::BI__builtin___strncpy_chk:
709 case Builtin::BI__builtin___stpncpy_chk:
710 case Builtin::BI__builtin___memccpy_chk:
711 case Builtin::BI__builtin___mempcpy_chk: {
712 DiagID = diag::warn_builtin_chk_overflow;
713 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
714 DestinationSize =
715 ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
716 IsChkVariant = true;
717 break;
718 }
719
720 case Builtin::BI__builtin___snprintf_chk:
721 case Builtin::BI__builtin___vsnprintf_chk: {
722 DiagID = diag::warn_builtin_chk_overflow;
723 SourceSize = ComputeExplicitObjectSizeArgument(1);
724 DestinationSize = ComputeExplicitObjectSizeArgument(3);
725 IsChkVariant = true;
726 break;
727 }
728
729 case Builtin::BIstrncat:
730 case Builtin::BI__builtin_strncat:
731 case Builtin::BIstrncpy:
732 case Builtin::BI__builtin_strncpy:
733 case Builtin::BIstpncpy:
734 case Builtin::BI__builtin_stpncpy: {
735 // Whether these functions overflow depends on the runtime strlen of the
736 // string, not just the buffer size, so emitting the "always overflow"
737 // diagnostic isn't quite right. We should still diagnose passing a buffer
738 // size larger than the destination buffer though; this is a runtime abort
739 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
740 DiagID = diag::warn_fortify_source_size_mismatch;
741 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
742 DestinationSize = ComputeSizeArgument(0);
743 break;
744 }
745
746 case Builtin::BImemcpy:
747 case Builtin::BI__builtin_memcpy:
748 case Builtin::BImemmove:
749 case Builtin::BI__builtin_memmove:
750 case Builtin::BImemset:
751 case Builtin::BI__builtin_memset:
752 case Builtin::BImempcpy:
753 case Builtin::BI__builtin_mempcpy: {
754 DiagID = diag::warn_fortify_source_overflow;
755 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
756 DestinationSize = ComputeSizeArgument(0);
757 break;
758 }
759 case Builtin::BIsnprintf:
760 case Builtin::BI__builtin_snprintf:
761 case Builtin::BIvsnprintf:
762 case Builtin::BI__builtin_vsnprintf: {
763 DiagID = diag::warn_fortify_source_size_mismatch;
764 SourceSize = ComputeExplicitObjectSizeArgument(1);
765 DestinationSize = ComputeSizeArgument(0);
766 break;
767 }
768 }
769
770 if (!SourceSize || !DestinationSize ||
771 SourceSize.getValue().ule(DestinationSize.getValue()))
772 return;
773
774 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
775 // Skim off the details of whichever builtin was called to produce a better
776 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
777 if (IsChkVariant) {
778 FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
779 FunctionName = FunctionName.drop_back(std::strlen("_chk"));
780 } else if (FunctionName.startswith("__builtin_")) {
781 FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
782 }
783
784 SmallString<16> DestinationStr;
785 SmallString<16> SourceStr;
786 DestinationSize->toString(DestinationStr, /*Radix=*/10);
787 SourceSize->toString(SourceStr, /*Radix=*/10);
788 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
789 PDiag(DiagID)
790 << FunctionName << DestinationStr << SourceStr);
791}
792
793static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
794 Scope::ScopeFlags NeededScopeFlags,
795 unsigned DiagID) {
796 // Scopes aren't available during instantiation. Fortunately, builtin
797 // functions cannot be template args so they cannot be formed through template
798 // instantiation. Therefore checking once during the parse is sufficient.
799 if (SemaRef.inTemplateInstantiation())
800 return false;
801
802 Scope *S = SemaRef.getCurScope();
803 while (S && !S->isSEHExceptScope())
804 S = S->getParent();
805 if (!S || !(S->getFlags() & NeededScopeFlags)) {
806 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
807 SemaRef.Diag(TheCall->getExprLoc(), DiagID)
808 << DRE->getDecl()->getIdentifier();
809 return true;
810 }
811
812 return false;
813}
814
815static inline bool isBlockPointer(Expr *Arg) {
816 return Arg->getType()->isBlockPointerType();
817}
818
819/// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
820/// void*, which is a requirement of device side enqueue.
821static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
822 const BlockPointerType *BPT =
823 cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
824 ArrayRef<QualType> Params =
825 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
826 unsigned ArgCounter = 0;
827 bool IllegalParams = false;
828 // Iterate through the block parameters until either one is found that is not
829 // a local void*, or the block is valid.
830 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
831 I != E; ++I, ++ArgCounter) {
832 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
833 (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
834 LangAS::opencl_local) {
835 // Get the location of the error. If a block literal has been passed
836 // (BlockExpr) then we can point straight to the offending argument,
837 // else we just point to the variable reference.
838 SourceLocation ErrorLoc;
839 if (isa<BlockExpr>(BlockArg)) {
840 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
841 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
842 } else if (isa<DeclRefExpr>(BlockArg)) {
843 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
844 }
845 S.Diag(ErrorLoc,
846 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
847 IllegalParams = true;
848 }
849 }
850
851 return IllegalParams;
852}
853
854static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
855 if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts())) {
856 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
857 << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
858 return true;
859 }
860 return false;
861}
862
863static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
864 if (checkArgCount(S, TheCall, 2))
865 return true;
866
867 if (checkOpenCLSubgroupExt(S, TheCall))
868 return true;
869
870 // First argument is an ndrange_t type.
871 Expr *NDRangeArg = TheCall->getArg(0);
872 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
873 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
874 << TheCall->getDirectCallee() << "'ndrange_t'";
875 return true;
876 }
877
878 Expr *BlockArg = TheCall->getArg(1);
879 if (!isBlockPointer(BlockArg)) {
880 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
881 << TheCall->getDirectCallee() << "block";
882 return true;
883 }
884 return checkOpenCLBlockArgs(S, BlockArg);
885}
886
887/// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
888/// get_kernel_work_group_size
889/// and get_kernel_preferred_work_group_size_multiple builtin functions.
890static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
891 if (checkArgCount(S, TheCall, 1))
892 return true;
893
894 Expr *BlockArg = TheCall->getArg(0);
895 if (!isBlockPointer(BlockArg)) {
896 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
897 << TheCall->getDirectCallee() << "block";
898 return true;
899 }
900 return checkOpenCLBlockArgs(S, BlockArg);
901}
902
903/// Diagnose integer type and any valid implicit conversion to it.
904static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
905 const QualType &IntType);
906
907static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
908 unsigned Start, unsigned End) {
909 bool IllegalParams = false;
910 for (unsigned I = Start; I <= End; ++I)
911 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
912 S.Context.getSizeType());
913 return IllegalParams;
914}
915
916/// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
917/// 'local void*' parameter of passed block.
918static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
919 Expr *BlockArg,
920 unsigned NumNonVarArgs) {
921 const BlockPointerType *BPT =
922 cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
923 unsigned NumBlockParams =
924 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
925 unsigned TotalNumArgs = TheCall->getNumArgs();
926
927 // For each argument passed to the block, a corresponding uint needs to
928 // be passed to describe the size of the local memory.
929 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
930 S.Diag(TheCall->getBeginLoc(),
931 diag::err_opencl_enqueue_kernel_local_size_args);
932 return true;
933 }
934
935 // Check that the sizes of the local memory are specified by integers.
936 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
937 TotalNumArgs - 1);
938}
939
940/// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
941/// overload formats specified in Table 6.13.17.1.
942/// int enqueue_kernel(queue_t queue,
943/// kernel_enqueue_flags_t flags,
944/// const ndrange_t ndrange,
945/// void (^block)(void))
946/// int enqueue_kernel(queue_t queue,
947/// kernel_enqueue_flags_t flags,
948/// const ndrange_t ndrange,
949/// uint num_events_in_wait_list,
950/// clk_event_t *event_wait_list,
951/// clk_event_t *event_ret,
952/// void (^block)(void))
953/// int enqueue_kernel(queue_t queue,
954/// kernel_enqueue_flags_t flags,
955/// const ndrange_t ndrange,
956/// void (^block)(local void*, ...),
957/// uint size0, ...)
958/// int enqueue_kernel(queue_t queue,
959/// kernel_enqueue_flags_t flags,
960/// const ndrange_t ndrange,
961/// uint num_events_in_wait_list,
962/// clk_event_t *event_wait_list,
963/// clk_event_t *event_ret,
964/// void (^block)(local void*, ...),
965/// uint size0, ...)
966static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
967 unsigned NumArgs = TheCall->getNumArgs();
968
969 if (NumArgs < 4) {
970 S.Diag(TheCall->getBeginLoc(),
971 diag::err_typecheck_call_too_few_args_at_least)
972 << 0 << 4 << NumArgs;
973 return true;
974 }
975
976 Expr *Arg0 = TheCall->getArg(0);
977 Expr *Arg1 = TheCall->getArg(1);
978 Expr *Arg2 = TheCall->getArg(2);
979 Expr *Arg3 = TheCall->getArg(3);
980
981 // First argument always needs to be a queue_t type.
982 if (!Arg0->getType()->isQueueT()) {
983 S.Diag(TheCall->getArg(0)->getBeginLoc(),
984 diag::err_opencl_builtin_expected_type)
985 << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
986 return true;
987 }
988
989 // Second argument always needs to be a kernel_enqueue_flags_t enum value.
990 if (!Arg1->getType()->isIntegerType()) {
991 S.Diag(TheCall->getArg(1)->getBeginLoc(),
992 diag::err_opencl_builtin_expected_type)
993 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
994 return true;
995 }
996
997 // Third argument is always an ndrange_t type.
998 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
999 S.Diag(TheCall->getArg(2)->getBeginLoc(),
1000 diag::err_opencl_builtin_expected_type)
1001 << TheCall->getDirectCallee() << "'ndrange_t'";
1002 return true;
1003 }
1004
1005 // With four arguments, there is only one form that the function could be
1006 // called in: no events and no variable arguments.
1007 if (NumArgs == 4) {
1008 // check that the last argument is the right block type.
1009 if (!isBlockPointer(Arg3)) {
1010 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1011 << TheCall->getDirectCallee() << "block";
1012 return true;
1013 }
1014 // we have a block type, check the prototype
1015 const BlockPointerType *BPT =
1016 cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1017 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1018 S.Diag(Arg3->getBeginLoc(),
1019 diag::err_opencl_enqueue_kernel_blocks_no_args);
1020 return true;
1021 }
1022 return false;
1023 }
1024 // we can have block + varargs.
1025 if (isBlockPointer(Arg3))
1026 return (checkOpenCLBlockArgs(S, Arg3) ||
1027 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1028 // last two cases with either exactly 7 args or 7 args and varargs.
1029 if (NumArgs >= 7) {
1030 // check common block argument.
1031 Expr *Arg6 = TheCall->getArg(6);
1032 if (!isBlockPointer(Arg6)) {
1033 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1034 << TheCall->getDirectCallee() << "block";
1035 return true;
1036 }
1037 if (checkOpenCLBlockArgs(S, Arg6))
1038 return true;
1039
1040 // Forth argument has to be any integer type.
1041 if (!Arg3->getType()->isIntegerType()) {
1042 S.Diag(TheCall->getArg(3)->getBeginLoc(),
1043 diag::err_opencl_builtin_expected_type)
1044 << TheCall->getDirectCallee() << "integer";
1045 return true;
1046 }
1047 // check remaining common arguments.
1048 Expr *Arg4 = TheCall->getArg(4);
1049 Expr *Arg5 = TheCall->getArg(5);
1050
1051 // Fifth argument is always passed as a pointer to clk_event_t.
1052 if (!Arg4->isNullPointerConstant(S.Context,
1053 Expr::NPC_ValueDependentIsNotNull) &&
1054 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1055 S.Diag(TheCall->getArg(4)->getBeginLoc(),
1056 diag::err_opencl_builtin_expected_type)
1057 << TheCall->getDirectCallee()
1058 << S.Context.getPointerType(S.Context.OCLClkEventTy);
1059 return true;
1060 }
1061
1062 // Sixth argument is always passed as a pointer to clk_event_t.
1063 if (!Arg5->isNullPointerConstant(S.Context,
1064 Expr::NPC_ValueDependentIsNotNull) &&
1065 !(Arg5->getType()->isPointerType() &&
1066 Arg5->getType()->getPointeeType()->isClkEventT())) {
1067 S.Diag(TheCall->getArg(5)->getBeginLoc(),
1068 diag::err_opencl_builtin_expected_type)
1069 << TheCall->getDirectCallee()
1070 << S.Context.getPointerType(S.Context.OCLClkEventTy);
1071 return true;
1072 }
1073
1074 if (NumArgs == 7)
1075 return false;
1076
1077 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1078 }
1079
1080 // None of the specific case has been detected, give generic error
1081 S.Diag(TheCall->getBeginLoc(),
1082 diag::err_opencl_enqueue_kernel_incorrect_args);
1083 return true;
1084}
1085
1086/// Returns OpenCL access qual.
1087static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1088 return D->getAttr<OpenCLAccessAttr>();
1089}
1090
1091/// Returns true if pipe element type is different from the pointer.
1092static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1093 const Expr *Arg0 = Call->getArg(0);
1094 // First argument type should always be pipe.
1095 if (!Arg0->getType()->isPipeType()) {
1096 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1097 << Call->getDirectCallee() << Arg0->getSourceRange();
1098 return true;
1099 }
1100 OpenCLAccessAttr *AccessQual =
1101 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1102 // Validates the access qualifier is compatible with the call.
1103 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1104 // read_only and write_only, and assumed to be read_only if no qualifier is
1105 // specified.
1106 switch (Call->getDirectCallee()->getBuiltinID()) {
1107 case Builtin::BIread_pipe:
1108 case Builtin::BIreserve_read_pipe:
1109 case Builtin::BIcommit_read_pipe:
1110 case Builtin::BIwork_group_reserve_read_pipe:
1111 case Builtin::BIsub_group_reserve_read_pipe:
1112 case Builtin::BIwork_group_commit_read_pipe:
1113 case Builtin::BIsub_group_commit_read_pipe:
1114 if (!(!AccessQual || AccessQual->isReadOnly())) {
1115 S.Diag(Arg0->getBeginLoc(),
1116 diag::err_opencl_builtin_pipe_invalid_access_modifier)
1117 << "read_only" << Arg0->getSourceRange();
1118 return true;
1119 }
1120 break;
1121 case Builtin::BIwrite_pipe:
1122 case Builtin::BIreserve_write_pipe:
1123 case Builtin::BIcommit_write_pipe:
1124 case Builtin::BIwork_group_reserve_write_pipe:
1125 case Builtin::BIsub_group_reserve_write_pipe:
1126 case Builtin::BIwork_group_commit_write_pipe:
1127 case Builtin::BIsub_group_commit_write_pipe:
1128 if (!(AccessQual && AccessQual->isWriteOnly())) {
1129 S.Diag(Arg0->getBeginLoc(),
1130 diag::err_opencl_builtin_pipe_invalid_access_modifier)
1131 << "write_only" << Arg0->getSourceRange();
1132 return true;
1133 }
1134 break;
1135 default:
1136 break;
1137 }
1138 return false;
1139}
1140
1141/// Returns true if pipe element type is different from the pointer.
1142static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1143 const Expr *Arg0 = Call->getArg(0);
1144 const Expr *ArgIdx = Call->getArg(Idx);
1145 const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1146 const QualType EltTy = PipeTy->getElementType();
1147 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1148 // The Idx argument should be a pointer and the type of the pointer and
1149 // the type of pipe element should also be the same.
1150 if (!ArgTy ||
1151 !S.Context.hasSameType(
1152 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1153 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1154 << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1155 << ArgIdx->getType() << ArgIdx->getSourceRange();
1156 return true;
1157 }
1158 return false;
1159}
1160
1161// Performs semantic analysis for the read/write_pipe call.
1162// \param S Reference to the semantic analyzer.
1163// \param Call A pointer to the builtin call.
1164// \return True if a semantic error has been found, false otherwise.
1165static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1166 // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1167 // functions have two forms.
1168 switch (Call->getNumArgs()) {
1169 case 2:
1170 if (checkOpenCLPipeArg(S, Call))
1171 return true;
1172 // The call with 2 arguments should be
1173 // read/write_pipe(pipe T, T*).
1174 // Check packet type T.
1175 if (checkOpenCLPipePacketType(S, Call, 1))
1176 return true;
1177 break;
1178
1179 case 4: {
1180 if (checkOpenCLPipeArg(S, Call))
1181 return true;
1182 // The call with 4 arguments should be
1183 // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1184 // Check reserve_id_t.
1185 if (!Call->getArg(1)->getType()->isReserveIDT()) {
1186 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1187 << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1188 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1189 return true;
1190 }
1191
1192 // Check the index.
1193 const Expr *Arg2 = Call->getArg(2);
1194 if (!Arg2->getType()->isIntegerType() &&
1195 !Arg2->getType()->isUnsignedIntegerType()) {
1196 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1197 << Call->getDirectCallee() << S.Context.UnsignedIntTy
1198 << Arg2->getType() << Arg2->getSourceRange();
1199 return true;
1200 }
1201
1202 // Check packet type T.
1203 if (checkOpenCLPipePacketType(S, Call, 3))
1204 return true;
1205 } break;
1206 default:
1207 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1208 << Call->getDirectCallee() << Call->getSourceRange();
1209 return true;
1210 }
1211
1212 return false;
1213}
1214
1215// Performs a semantic analysis on the {work_group_/sub_group_
1216// /_}reserve_{read/write}_pipe
1217// \param S Reference to the semantic analyzer.
1218// \param Call The call to the builtin function to be analyzed.
1219// \return True if a semantic error was found, false otherwise.
1220static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1221 if (checkArgCount(S, Call, 2))
1222 return true;
1223
1224 if (checkOpenCLPipeArg(S, Call))
1225 return true;
1226
1227 // Check the reserve size.
1228 if (!Call->getArg(1)->getType()->isIntegerType() &&
1229 !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1230 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1231 << Call->getDirectCallee() << S.Context.UnsignedIntTy
1232 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1233 return true;
1234 }
1235
1236 // Since return type of reserve_read/write_pipe built-in function is
1237 // reserve_id_t, which is not defined in the builtin def file , we used int
1238 // as return type and need to override the return type of these functions.
1239 Call->setType(S.Context.OCLReserveIDTy);
1240
1241 return false;
1242}
1243
1244// Performs a semantic analysis on {work_group_/sub_group_
1245// /_}commit_{read/write}_pipe
1246// \param S Reference to the semantic analyzer.
1247// \param Call The call to the builtin function to be analyzed.
1248// \return True if a semantic error was found, false otherwise.
1249static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1250 if (checkArgCount(S, Call, 2))
1251 return true;
1252
1253 if (checkOpenCLPipeArg(S, Call))
1254 return true;
1255
1256 // Check reserve_id_t.
1257 if (!Call->getArg(1)->getType()->isReserveIDT()) {
1258 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1259 << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1260 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1261 return true;
1262 }
1263
1264 return false;
1265}
1266
1267// Performs a semantic analysis on the call to built-in Pipe
1268// Query Functions.
1269// \param S Reference to the semantic analyzer.
1270// \param Call The call to the builtin function to be analyzed.
1271// \return True if a semantic error was found, false otherwise.
1272static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1273 if (checkArgCount(S, Call, 1))
1274 return true;
1275
1276 if (!Call->getArg(0)->getType()->isPipeType()) {
1277 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1278 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1279 return true;
1280 }
1281
1282 return false;
1283}
1284
1285// OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1286// Performs semantic analysis for the to_global/local/private call.
1287// \param S Reference to the semantic analyzer.
1288// \param BuiltinID ID of the builtin function.
1289// \param Call A pointer to the builtin call.
1290// \return True if a semantic error has been found, false otherwise.
1291static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1292 CallExpr *Call) {
1293 if (checkArgCount(S, Call, 1))
1294 return true;
1295
1296 auto RT = Call->getArg(0)->getType();
1297 if (!RT->isPointerType() || RT->getPointeeType()
1298 .getAddressSpace() == LangAS::opencl_constant) {
1299 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1300 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1301 return true;
1302 }
1303
1304 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1305 S.Diag(Call->getArg(0)->getBeginLoc(),
1306 diag::warn_opencl_generic_address_space_arg)
1307 << Call->getDirectCallee()->getNameInfo().getAsString()
1308 << Call->getArg(0)->getSourceRange();
1309 }
1310
1311 RT = RT->getPointeeType();
1312 auto Qual = RT.getQualifiers();
1313 switch (BuiltinID) {
1314 case Builtin::BIto_global:
1315 Qual.setAddressSpace(LangAS::opencl_global);
1316 break;
1317 case Builtin::BIto_local:
1318 Qual.setAddressSpace(LangAS::opencl_local);
1319 break;
1320 case Builtin::BIto_private:
1321 Qual.setAddressSpace(LangAS::opencl_private);
1322 break;
1323 default:
1324 llvm_unreachable("Invalid builtin function")::llvm::llvm_unreachable_internal("Invalid builtin function",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 1324)
;
1325 }
1326 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1327 RT.getUnqualifiedType(), Qual)));
1328
1329 return false;
1330}
1331
1332static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1333 if (checkArgCount(S, TheCall, 1))
1334 return ExprError();
1335
1336 // Compute __builtin_launder's parameter type from the argument.
1337 // The parameter type is:
1338 // * The type of the argument if it's not an array or function type,
1339 // Otherwise,
1340 // * The decayed argument type.
1341 QualType ParamTy = [&]() {
1342 QualType ArgTy = TheCall->getArg(0)->getType();
1343 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1344 return S.Context.getPointerType(Ty->getElementType());
1345 if (ArgTy->isFunctionType()) {
1346 return S.Context.getPointerType(ArgTy);
1347 }
1348 return ArgTy;
1349 }();
1350
1351 TheCall->setType(ParamTy);
1352
1353 auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1354 if (!ParamTy->isPointerType())
1355 return 0;
1356 if (ParamTy->isFunctionPointerType())
1357 return 1;
1358 if (ParamTy->isVoidPointerType())
1359 return 2;
1360 return llvm::Optional<unsigned>{};
1361 }();
1362 if (DiagSelect.hasValue()) {
1363 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1364 << DiagSelect.getValue() << TheCall->getSourceRange();
1365 return ExprError();
1366 }
1367
1368 // We either have an incomplete class type, or we have a class template
1369 // whose instantiation has not been forced. Example:
1370 //
1371 // template <class T> struct Foo { T value; };
1372 // Foo<int> *p = nullptr;
1373 // auto *d = __builtin_launder(p);
1374 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1375 diag::err_incomplete_type))
1376 return ExprError();
1377
1378 assert(ParamTy->getPointeeType()->isObjectType() &&(static_cast <bool> (ParamTy->getPointeeType()->isObjectType
() && "Unhandled non-object pointer case") ? void (0)
: __assert_fail ("ParamTy->getPointeeType()->isObjectType() && \"Unhandled non-object pointer case\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 1379, __extension__ __PRETTY_FUNCTION__))
1379 "Unhandled non-object pointer case")(static_cast <bool> (ParamTy->getPointeeType()->isObjectType
() && "Unhandled non-object pointer case") ? void (0)
: __assert_fail ("ParamTy->getPointeeType()->isObjectType() && \"Unhandled non-object pointer case\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 1379, __extension__ __PRETTY_FUNCTION__))
;
1380
1381 InitializedEntity Entity =
1382 InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1383 ExprResult Arg =
1384 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1385 if (Arg.isInvalid())
1386 return ExprError();
1387 TheCall->setArg(0, Arg.get());
1388
1389 return TheCall;
1390}
1391
1392// Emit an error and return true if the current architecture is not in the list
1393// of supported architectures.
1394static bool
1395CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1396 ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1397 llvm::Triple::ArchType CurArch =
1398 S.getASTContext().getTargetInfo().getTriple().getArch();
1399 if (llvm::is_contained(SupportedArchs, CurArch))
1400 return false;
1401 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1402 << TheCall->getSourceRange();
1403 return true;
1404}
1405
1406static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1407 SourceLocation CallSiteLoc);
1408
1409bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1410 CallExpr *TheCall) {
1411 switch (TI.getTriple().getArch()) {
1412 default:
1413 // Some builtins don't require additional checking, so just consider these
1414 // acceptable.
1415 return false;
1416 case llvm::Triple::arm:
1417 case llvm::Triple::armeb:
1418 case llvm::Triple::thumb:
1419 case llvm::Triple::thumbeb:
1420 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1421 case llvm::Triple::aarch64:
1422 case llvm::Triple::aarch64_32:
1423 case llvm::Triple::aarch64_be:
1424 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1425 case llvm::Triple::bpfeb:
1426 case llvm::Triple::bpfel:
1427 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1428 case llvm::Triple::hexagon:
1429 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1430 case llvm::Triple::mips:
1431 case llvm::Triple::mipsel:
1432 case llvm::Triple::mips64:
1433 case llvm::Triple::mips64el:
1434 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1435 case llvm::Triple::systemz:
1436 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1437 case llvm::Triple::x86:
1438 case llvm::Triple::x86_64:
1439 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1440 case llvm::Triple::ppc:
1441 case llvm::Triple::ppcle:
1442 case llvm::Triple::ppc64:
1443 case llvm::Triple::ppc64le:
1444 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1445 case llvm::Triple::amdgcn:
1446 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1447 case llvm::Triple::riscv32:
1448 case llvm::Triple::riscv64:
1449 return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall);
1450 }
1451}
1452
1453ExprResult
1454Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1455 CallExpr *TheCall) {
1456 ExprResult TheCallResult(TheCall);
1457
1458 // Find out if any arguments are required to be integer constant expressions.
1459 unsigned ICEArguments = 0;
1460 ASTContext::GetBuiltinTypeError Error;
1461 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1462 if (Error != ASTContext::GE_None)
1463 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
1464
1465 // If any arguments are required to be ICE's, check and diagnose.
1466 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1467 // Skip arguments not required to be ICE's.
1468 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1469
1470 llvm::APSInt Result;
1471 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1472 return true;
1473 ICEArguments &= ~(1 << ArgNo);
1474 }
1475
1476 switch (BuiltinID) {
1477 case Builtin::BI__builtin___CFStringMakeConstantString:
1478 assert(TheCall->getNumArgs() == 1 &&(static_cast <bool> (TheCall->getNumArgs() == 1 &&
"Wrong # arguments to builtin CFStringMakeConstantString") ?
void (0) : __assert_fail ("TheCall->getNumArgs() == 1 && \"Wrong # arguments to builtin CFStringMakeConstantString\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 1479, __extension__ __PRETTY_FUNCTION__))
1479 "Wrong # arguments to builtin CFStringMakeConstantString")(static_cast <bool> (TheCall->getNumArgs() == 1 &&
"Wrong # arguments to builtin CFStringMakeConstantString") ?
void (0) : __assert_fail ("TheCall->getNumArgs() == 1 && \"Wrong # arguments to builtin CFStringMakeConstantString\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 1479, __extension__ __PRETTY_FUNCTION__))
;
1480 if (CheckObjCString(TheCall->getArg(0)))
1481 return ExprError();
1482 break;
1483 case Builtin::BI__builtin_ms_va_start:
1484 case Builtin::BI__builtin_stdarg_start:
1485 case Builtin::BI__builtin_va_start:
1486 if (SemaBuiltinVAStart(BuiltinID, TheCall))
1487 return ExprError();
1488 break;
1489 case Builtin::BI__va_start: {
1490 switch (Context.getTargetInfo().getTriple().getArch()) {
1491 case llvm::Triple::aarch64:
1492 case llvm::Triple::arm:
1493 case llvm::Triple::thumb:
1494 if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1495 return ExprError();
1496 break;
1497 default:
1498 if (SemaBuiltinVAStart(BuiltinID, TheCall))
1499 return ExprError();
1500 break;
1501 }
1502 break;
1503 }
1504
1505 // The acquire, release, and no fence variants are ARM and AArch64 only.
1506 case Builtin::BI_interlockedbittestandset_acq:
1507 case Builtin::BI_interlockedbittestandset_rel:
1508 case Builtin::BI_interlockedbittestandset_nf:
1509 case Builtin::BI_interlockedbittestandreset_acq:
1510 case Builtin::BI_interlockedbittestandreset_rel:
1511 case Builtin::BI_interlockedbittestandreset_nf:
1512 if (CheckBuiltinTargetSupport(
1513 *this, BuiltinID, TheCall,
1514 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1515 return ExprError();
1516 break;
1517
1518 // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1519 case Builtin::BI_bittest64:
1520 case Builtin::BI_bittestandcomplement64:
1521 case Builtin::BI_bittestandreset64:
1522 case Builtin::BI_bittestandset64:
1523 case Builtin::BI_interlockedbittestandreset64:
1524 case Builtin::BI_interlockedbittestandset64:
1525 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1526 {llvm::Triple::x86_64, llvm::Triple::arm,
1527 llvm::Triple::thumb, llvm::Triple::aarch64}))
1528 return ExprError();
1529 break;
1530
1531 case Builtin::BI__builtin_isgreater:
1532 case Builtin::BI__builtin_isgreaterequal:
1533 case Builtin::BI__builtin_isless:
1534 case Builtin::BI__builtin_islessequal:
1535 case Builtin::BI__builtin_islessgreater:
1536 case Builtin::BI__builtin_isunordered:
1537 if (SemaBuiltinUnorderedCompare(TheCall))
1538 return ExprError();
1539 break;
1540 case Builtin::BI__builtin_fpclassify:
1541 if (SemaBuiltinFPClassification(TheCall, 6))
1542 return ExprError();
1543 break;
1544 case Builtin::BI__builtin_isfinite:
1545 case Builtin::BI__builtin_isinf:
1546 case Builtin::BI__builtin_isinf_sign:
1547 case Builtin::BI__builtin_isnan:
1548 case Builtin::BI__builtin_isnormal:
1549 case Builtin::BI__builtin_signbit:
1550 case Builtin::BI__builtin_signbitf:
1551 case Builtin::BI__builtin_signbitl:
1552 if (SemaBuiltinFPClassification(TheCall, 1))
1553 return ExprError();
1554 break;
1555 case Builtin::BI__builtin_shufflevector:
1556 return SemaBuiltinShuffleVector(TheCall);
1557 // TheCall will be freed by the smart pointer here, but that's fine, since
1558 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1559 case Builtin::BI__builtin_prefetch:
1560 if (SemaBuiltinPrefetch(TheCall))
1561 return ExprError();
1562 break;
1563 case Builtin::BI__builtin_alloca_with_align:
1564 if (SemaBuiltinAllocaWithAlign(TheCall))
1565 return ExprError();
1566 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1567 case Builtin::BI__builtin_alloca:
1568 Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1569 << TheCall->getDirectCallee();
1570 break;
1571 case Builtin::BI__arithmetic_fence:
1572 if (SemaBuiltinArithmeticFence(TheCall))
1573 return ExprError();
1574 break;
1575 case Builtin::BI__assume:
1576 case Builtin::BI__builtin_assume:
1577 if (SemaBuiltinAssume(TheCall))
1578 return ExprError();
1579 break;
1580 case Builtin::BI__builtin_assume_aligned:
1581 if (SemaBuiltinAssumeAligned(TheCall))
1582 return ExprError();
1583 break;
1584 case Builtin::BI__builtin_dynamic_object_size:
1585 case Builtin::BI__builtin_object_size:
1586 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1587 return ExprError();
1588 break;
1589 case Builtin::BI__builtin_longjmp:
1590 if (SemaBuiltinLongjmp(TheCall))
1591 return ExprError();
1592 break;
1593 case Builtin::BI__builtin_setjmp:
1594 if (SemaBuiltinSetjmp(TheCall))
1595 return ExprError();
1596 break;
1597 case Builtin::BI__builtin_classify_type:
1598 if (checkArgCount(*this, TheCall, 1)) return true;
1599 TheCall->setType(Context.IntTy);
1600 break;
1601 case Builtin::BI__builtin_complex:
1602 if (SemaBuiltinComplex(TheCall))
1603 return ExprError();
1604 break;
1605 case Builtin::BI__builtin_constant_p: {
1606 if (checkArgCount(*this, TheCall, 1)) return true;
1607 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1608 if (Arg.isInvalid()) return true;
1609 TheCall->setArg(0, Arg.get());
1610 TheCall->setType(Context.IntTy);
1611 break;
1612 }
1613 case Builtin::BI__builtin_launder:
1614 return SemaBuiltinLaunder(*this, TheCall);
1615 case Builtin::BI__sync_fetch_and_add:
1616 case Builtin::BI__sync_fetch_and_add_1:
1617 case Builtin::BI__sync_fetch_and_add_2:
1618 case Builtin::BI__sync_fetch_and_add_4:
1619 case Builtin::BI__sync_fetch_and_add_8:
1620 case Builtin::BI__sync_fetch_and_add_16:
1621 case Builtin::BI__sync_fetch_and_sub:
1622 case Builtin::BI__sync_fetch_and_sub_1:
1623 case Builtin::BI__sync_fetch_and_sub_2:
1624 case Builtin::BI__sync_fetch_and_sub_4:
1625 case Builtin::BI__sync_fetch_and_sub_8:
1626 case Builtin::BI__sync_fetch_and_sub_16:
1627 case Builtin::BI__sync_fetch_and_or:
1628 case Builtin::BI__sync_fetch_and_or_1:
1629 case Builtin::BI__sync_fetch_and_or_2:
1630 case Builtin::BI__sync_fetch_and_or_4:
1631 case Builtin::BI__sync_fetch_and_or_8:
1632 case Builtin::BI__sync_fetch_and_or_16:
1633 case Builtin::BI__sync_fetch_and_and:
1634 case Builtin::BI__sync_fetch_and_and_1:
1635 case Builtin::BI__sync_fetch_and_and_2:
1636 case Builtin::BI__sync_fetch_and_and_4:
1637 case Builtin::BI__sync_fetch_and_and_8:
1638 case Builtin::BI__sync_fetch_and_and_16:
1639 case Builtin::BI__sync_fetch_and_xor:
1640 case Builtin::BI__sync_fetch_and_xor_1:
1641 case Builtin::BI__sync_fetch_and_xor_2:
1642 case Builtin::BI__sync_fetch_and_xor_4:
1643 case Builtin::BI__sync_fetch_and_xor_8:
1644 case Builtin::BI__sync_fetch_and_xor_16:
1645 case Builtin::BI__sync_fetch_and_nand:
1646 case Builtin::BI__sync_fetch_and_nand_1:
1647 case Builtin::BI__sync_fetch_and_nand_2:
1648 case Builtin::BI__sync_fetch_and_nand_4:
1649 case Builtin::BI__sync_fetch_and_nand_8:
1650 case Builtin::BI__sync_fetch_and_nand_16:
1651 case Builtin::BI__sync_add_and_fetch:
1652 case Builtin::BI__sync_add_and_fetch_1:
1653 case Builtin::BI__sync_add_and_fetch_2:
1654 case Builtin::BI__sync_add_and_fetch_4:
1655 case Builtin::BI__sync_add_and_fetch_8:
1656 case Builtin::BI__sync_add_and_fetch_16:
1657 case Builtin::BI__sync_sub_and_fetch:
1658 case Builtin::BI__sync_sub_and_fetch_1:
1659 case Builtin::BI__sync_sub_and_fetch_2:
1660 case Builtin::BI__sync_sub_and_fetch_4:
1661 case Builtin::BI__sync_sub_and_fetch_8:
1662 case Builtin::BI__sync_sub_and_fetch_16:
1663 case Builtin::BI__sync_and_and_fetch:
1664 case Builtin::BI__sync_and_and_fetch_1:
1665 case Builtin::BI__sync_and_and_fetch_2:
1666 case Builtin::BI__sync_and_and_fetch_4:
1667 case Builtin::BI__sync_and_and_fetch_8:
1668 case Builtin::BI__sync_and_and_fetch_16:
1669 case Builtin::BI__sync_or_and_fetch:
1670 case Builtin::BI__sync_or_and_fetch_1:
1671 case Builtin::BI__sync_or_and_fetch_2:
1672 case Builtin::BI__sync_or_and_fetch_4:
1673 case Builtin::BI__sync_or_and_fetch_8:
1674 case Builtin::BI__sync_or_and_fetch_16:
1675 case Builtin::BI__sync_xor_and_fetch:
1676 case Builtin::BI__sync_xor_and_fetch_1:
1677 case Builtin::BI__sync_xor_and_fetch_2:
1678 case Builtin::BI__sync_xor_and_fetch_4:
1679 case Builtin::BI__sync_xor_and_fetch_8:
1680 case Builtin::BI__sync_xor_and_fetch_16:
1681 case Builtin::BI__sync_nand_and_fetch:
1682 case Builtin::BI__sync_nand_and_fetch_1:
1683 case Builtin::BI__sync_nand_and_fetch_2:
1684 case Builtin::BI__sync_nand_and_fetch_4:
1685 case Builtin::BI__sync_nand_and_fetch_8:
1686 case Builtin::BI__sync_nand_and_fetch_16:
1687 case Builtin::BI__sync_val_compare_and_swap:
1688 case Builtin::BI__sync_val_compare_and_swap_1:
1689 case Builtin::BI__sync_val_compare_and_swap_2:
1690 case Builtin::BI__sync_val_compare_and_swap_4:
1691 case Builtin::BI__sync_val_compare_and_swap_8:
1692 case Builtin::BI__sync_val_compare_and_swap_16:
1693 case Builtin::BI__sync_bool_compare_and_swap:
1694 case Builtin::BI__sync_bool_compare_and_swap_1:
1695 case Builtin::BI__sync_bool_compare_and_swap_2:
1696 case Builtin::BI__sync_bool_compare_and_swap_4:
1697 case Builtin::BI__sync_bool_compare_and_swap_8:
1698 case Builtin::BI__sync_bool_compare_and_swap_16:
1699 case Builtin::BI__sync_lock_test_and_set:
1700 case Builtin::BI__sync_lock_test_and_set_1:
1701 case Builtin::BI__sync_lock_test_and_set_2:
1702 case Builtin::BI__sync_lock_test_and_set_4:
1703 case Builtin::BI__sync_lock_test_and_set_8:
1704 case Builtin::BI__sync_lock_test_and_set_16:
1705 case Builtin::BI__sync_lock_release:
1706 case Builtin::BI__sync_lock_release_1:
1707 case Builtin::BI__sync_lock_release_2:
1708 case Builtin::BI__sync_lock_release_4:
1709 case Builtin::BI__sync_lock_release_8:
1710 case Builtin::BI__sync_lock_release_16:
1711 case Builtin::BI__sync_swap:
1712 case Builtin::BI__sync_swap_1:
1713 case Builtin::BI__sync_swap_2:
1714 case Builtin::BI__sync_swap_4:
1715 case Builtin::BI__sync_swap_8:
1716 case Builtin::BI__sync_swap_16:
1717 return SemaBuiltinAtomicOverloaded(TheCallResult);
1718 case Builtin::BI__sync_synchronize:
1719 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1720 << TheCall->getCallee()->getSourceRange();
1721 break;
1722 case Builtin::BI__builtin_nontemporal_load:
1723 case Builtin::BI__builtin_nontemporal_store:
1724 return SemaBuiltinNontemporalOverloaded(TheCallResult);
1725 case Builtin::BI__builtin_memcpy_inline: {
1726 clang::Expr *SizeOp = TheCall->getArg(2);
1727 // We warn about copying to or from `nullptr` pointers when `size` is
1728 // greater than 0. When `size` is value dependent we cannot evaluate its
1729 // value so we bail out.
1730 if (SizeOp->isValueDependent())
1731 break;
1732 if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) {
1733 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1734 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1735 }
1736 break;
1737 }
1738#define BUILTIN(ID, TYPE, ATTRS)
1739#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1740 case Builtin::BI##ID: \
1741 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1742#include "clang/Basic/Builtins.def"
1743 case Builtin::BI__annotation:
1744 if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1745 return ExprError();
1746 break;
1747 case Builtin::BI__builtin_annotation:
1748 if (SemaBuiltinAnnotation(*this, TheCall))
1749 return ExprError();
1750 break;
1751 case Builtin::BI__builtin_addressof:
1752 if (SemaBuiltinAddressof(*this, TheCall))
1753 return ExprError();
1754 break;
1755 case Builtin::BI__builtin_is_aligned:
1756 case Builtin::BI__builtin_align_up:
1757 case Builtin::BI__builtin_align_down:
1758 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1759 return ExprError();
1760 break;
1761 case Builtin::BI__builtin_add_overflow:
1762 case Builtin::BI__builtin_sub_overflow:
1763 case Builtin::BI__builtin_mul_overflow:
1764 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1765 return ExprError();
1766 break;
1767 case Builtin::BI__builtin_operator_new:
1768 case Builtin::BI__builtin_operator_delete: {
1769 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1770 ExprResult Res =
1771 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1772 if (Res.isInvalid())
1773 CorrectDelayedTyposInExpr(TheCallResult.get());
1774 return Res;
1775 }
1776 case Builtin::BI__builtin_dump_struct: {
1777 // We first want to ensure we are called with 2 arguments
1778 if (checkArgCount(*this, TheCall, 2))
1779 return ExprError();
1780 // Ensure that the first argument is of type 'struct XX *'
1781 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1782 const QualType PtrArgType = PtrArg->getType();
1783 if (!PtrArgType->isPointerType() ||
1784 !PtrArgType->getPointeeType()->isRecordType()) {
1785 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1786 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1787 << "structure pointer";
1788 return ExprError();
1789 }
1790
1791 // Ensure that the second argument is of type 'FunctionType'
1792 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1793 const QualType FnPtrArgType = FnPtrArg->getType();
1794 if (!FnPtrArgType->isPointerType()) {
1795 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1796 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1797 << FnPtrArgType << "'int (*)(const char *, ...)'";
1798 return ExprError();
1799 }
1800
1801 const auto *FuncType =
1802 FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1803
1804 if (!FuncType) {
1805 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1806 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1807 << FnPtrArgType << "'int (*)(const char *, ...)'";
1808 return ExprError();
1809 }
1810
1811 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1812 if (!FT->getNumParams()) {
1813 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1814 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1815 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1816 return ExprError();
1817 }
1818 QualType PT = FT->getParamType(0);
1819 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1820 !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1821 !PT->getPointeeType().isConstQualified()) {
1822 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1823 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1824 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1825 return ExprError();
1826 }
1827 }
1828
1829 TheCall->setType(Context.IntTy);
1830 break;
1831 }
1832 case Builtin::BI__builtin_expect_with_probability: {
1833 // We first want to ensure we are called with 3 arguments
1834 if (checkArgCount(*this, TheCall, 3))
1835 return ExprError();
1836 // then check probability is constant float in range [0.0, 1.0]
1837 const Expr *ProbArg = TheCall->getArg(2);
1838 SmallVector<PartialDiagnosticAt, 8> Notes;
1839 Expr::EvalResult Eval;
1840 Eval.Diag = &Notes;
1841 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
1842 !Eval.Val.isFloat()) {
1843 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
1844 << ProbArg->getSourceRange();
1845 for (const PartialDiagnosticAt &PDiag : Notes)
1846 Diag(PDiag.first, PDiag.second);
1847 return ExprError();
1848 }
1849 llvm::APFloat Probability = Eval.Val.getFloat();
1850 bool LoseInfo = false;
1851 Probability.convert(llvm::APFloat::IEEEdouble(),
1852 llvm::RoundingMode::Dynamic, &LoseInfo);
1853 if (!(Probability >= llvm::APFloat(0.0) &&
1854 Probability <= llvm::APFloat(1.0))) {
1855 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
1856 << ProbArg->getSourceRange();
1857 return ExprError();
1858 }
1859 break;
1860 }
1861 case Builtin::BI__builtin_preserve_access_index:
1862 if (SemaBuiltinPreserveAI(*this, TheCall))
1863 return ExprError();
1864 break;
1865 case Builtin::BI__builtin_call_with_static_chain:
1866 if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1867 return ExprError();
1868 break;
1869 case Builtin::BI__exception_code:
1870 case Builtin::BI_exception_code:
1871 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1872 diag::err_seh___except_block))
1873 return ExprError();
1874 break;
1875 case Builtin::BI__exception_info:
1876 case Builtin::BI_exception_info:
1877 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1878 diag::err_seh___except_filter))
1879 return ExprError();
1880 break;
1881 case Builtin::BI__GetExceptionInfo:
1882 if (checkArgCount(*this, TheCall, 1))
1883 return ExprError();
1884
1885 if (CheckCXXThrowOperand(
1886 TheCall->getBeginLoc(),
1887 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1888 TheCall))
1889 return ExprError();
1890
1891 TheCall->setType(Context.VoidPtrTy);
1892 break;
1893 // OpenCL v2.0, s6.13.16 - Pipe functions
1894 case Builtin::BIread_pipe:
1895 case Builtin::BIwrite_pipe:
1896 // Since those two functions are declared with var args, we need a semantic
1897 // check for the argument.
1898 if (SemaBuiltinRWPipe(*this, TheCall))
1899 return ExprError();
1900 break;
1901 case Builtin::BIreserve_read_pipe:
1902 case Builtin::BIreserve_write_pipe:
1903 case Builtin::BIwork_group_reserve_read_pipe:
1904 case Builtin::BIwork_group_reserve_write_pipe:
1905 if (SemaBuiltinReserveRWPipe(*this, TheCall))
1906 return ExprError();
1907 break;
1908 case Builtin::BIsub_group_reserve_read_pipe:
1909 case Builtin::BIsub_group_reserve_write_pipe:
1910 if (checkOpenCLSubgroupExt(*this, TheCall) ||
1911 SemaBuiltinReserveRWPipe(*this, TheCall))
1912 return ExprError();
1913 break;
1914 case Builtin::BIcommit_read_pipe:
1915 case Builtin::BIcommit_write_pipe:
1916 case Builtin::BIwork_group_commit_read_pipe:
1917 case Builtin::BIwork_group_commit_write_pipe:
1918 if (SemaBuiltinCommitRWPipe(*this, TheCall))
1919 return ExprError();
1920 break;
1921 case Builtin::BIsub_group_commit_read_pipe:
1922 case Builtin::BIsub_group_commit_write_pipe:
1923 if (checkOpenCLSubgroupExt(*this, TheCall) ||
1924 SemaBuiltinCommitRWPipe(*this, TheCall))
1925 return ExprError();
1926 break;
1927 case Builtin::BIget_pipe_num_packets:
1928 case Builtin::BIget_pipe_max_packets:
1929 if (SemaBuiltinPipePackets(*this, TheCall))
1930 return ExprError();
1931 break;
1932 case Builtin::BIto_global:
1933 case Builtin::BIto_local:
1934 case Builtin::BIto_private:
1935 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1936 return ExprError();
1937 break;
1938 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1939 case Builtin::BIenqueue_kernel:
1940 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1941 return ExprError();
1942 break;
1943 case Builtin::BIget_kernel_work_group_size:
1944 case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1945 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1946 return ExprError();
1947 break;
1948 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1949 case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1950 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1951 return ExprError();
1952 break;
1953 case Builtin::BI__builtin_os_log_format:
1954 Cleanup.setExprNeedsCleanups(true);
1955 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1956 case Builtin::BI__builtin_os_log_format_buffer_size:
1957 if (SemaBuiltinOSLogFormat(TheCall))
1958 return ExprError();
1959 break;
1960 case Builtin::BI__builtin_frame_address:
1961 case Builtin::BI__builtin_return_address: {
1962 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
1963 return ExprError();
1964
1965 // -Wframe-address warning if non-zero passed to builtin
1966 // return/frame address.
1967 Expr::EvalResult Result;
1968 if (!TheCall->getArg(0)->isValueDependent() &&
1969 TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
1970 Result.Val.getInt() != 0)
1971 Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
1972 << ((BuiltinID == Builtin::BI__builtin_return_address)
1973 ? "__builtin_return_address"
1974 : "__builtin_frame_address")
1975 << TheCall->getSourceRange();
1976 break;
1977 }
1978
1979 case Builtin::BI__builtin_matrix_transpose:
1980 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
1981
1982 case Builtin::BI__builtin_matrix_column_major_load:
1983 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
1984
1985 case Builtin::BI__builtin_matrix_column_major_store:
1986 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
1987
1988 case Builtin::BI__builtin_get_device_side_mangled_name: {
1989 auto Check = [](CallExpr *TheCall) {
1990 if (TheCall->getNumArgs() != 1)
1991 return false;
1992 auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
1993 if (!DRE)
1994 return false;
1995 auto *D = DRE->getDecl();
1996 if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
1997 return false;
1998 return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
1999 D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2000 };
2001 if (!Check(TheCall)) {
2002 Diag(TheCall->getBeginLoc(),
2003 diag::err_hip_invalid_args_builtin_mangled_name);
2004 return ExprError();
2005 }
2006 }
2007 }
2008
2009 // Since the target specific builtins for each arch overlap, only check those
2010 // of the arch we are compiling for.
2011 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2012 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2013 assert(Context.getAuxTargetInfo() &&(static_cast <bool> (Context.getAuxTargetInfo() &&
"Aux Target Builtin, but not an aux target?") ? void (0) : __assert_fail
("Context.getAuxTargetInfo() && \"Aux Target Builtin, but not an aux target?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2014, __extension__ __PRETTY_FUNCTION__))
2014 "Aux Target Builtin, but not an aux target?")(static_cast <bool> (Context.getAuxTargetInfo() &&
"Aux Target Builtin, but not an aux target?") ? void (0) : __assert_fail
("Context.getAuxTargetInfo() && \"Aux Target Builtin, but not an aux target?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2014, __extension__ __PRETTY_FUNCTION__))
;
2015
2016 if (CheckTSBuiltinFunctionCall(
2017 *Context.getAuxTargetInfo(),
2018 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2019 return ExprError();
2020 } else {
2021 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2022 TheCall))
2023 return ExprError();
2024 }
2025 }
2026
2027 return TheCallResult;
2028}
2029
2030// Get the valid immediate range for the specified NEON type code.
2031static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
2032 NeonTypeFlags Type(t);
2033 int IsQuad = ForceQuad ? true : Type.isQuad();
2034 switch (Type.getEltType()) {
2035 case NeonTypeFlags::Int8:
2036 case NeonTypeFlags::Poly8:
2037 return shift ? 7 : (8 << IsQuad) - 1;
2038 case NeonTypeFlags::Int16:
2039 case NeonTypeFlags::Poly16:
2040 return shift ? 15 : (4 << IsQuad) - 1;
2041 case NeonTypeFlags::Int32:
2042 return shift ? 31 : (2 << IsQuad) - 1;
2043 case NeonTypeFlags::Int64:
2044 case NeonTypeFlags::Poly64:
2045 return shift ? 63 : (1 << IsQuad) - 1;
2046 case NeonTypeFlags::Poly128:
2047 return shift ? 127 : (1 << IsQuad) - 1;
2048 case NeonTypeFlags::Float16:
2049 assert(!shift && "cannot shift float types!")(static_cast <bool> (!shift && "cannot shift float types!"
) ? void (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2049, __extension__ __PRETTY_FUNCTION__))
;
2050 return (4 << IsQuad) - 1;
2051 case NeonTypeFlags::Float32:
2052 assert(!shift && "cannot shift float types!")(static_cast <bool> (!shift && "cannot shift float types!"
) ? void (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2052, __extension__ __PRETTY_FUNCTION__))
;
2053 return (2 << IsQuad) - 1;
2054 case NeonTypeFlags::Float64:
2055 assert(!shift && "cannot shift float types!")(static_cast <bool> (!shift && "cannot shift float types!"
) ? void (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2055, __extension__ __PRETTY_FUNCTION__))
;
2056 return (1 << IsQuad) - 1;
2057 case NeonTypeFlags::BFloat16:
2058 assert(!shift && "cannot shift float types!")(static_cast <bool> (!shift && "cannot shift float types!"
) ? void (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2058, __extension__ __PRETTY_FUNCTION__))
;
2059 return (4 << IsQuad) - 1;
2060 }
2061 llvm_unreachable("Invalid NeonTypeFlag!")::llvm::llvm_unreachable_internal("Invalid NeonTypeFlag!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2061)
;
2062}
2063
2064/// getNeonEltType - Return the QualType corresponding to the elements of
2065/// the vector type specified by the NeonTypeFlags. This is used to check
2066/// the pointer arguments for Neon load/store intrinsics.
2067static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2068 bool IsPolyUnsigned, bool IsInt64Long) {
2069 switch (Flags.getEltType()) {
2070 case NeonTypeFlags::Int8:
2071 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2072 case NeonTypeFlags::Int16:
2073 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2074 case NeonTypeFlags::Int32:
2075 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2076 case NeonTypeFlags::Int64:
2077 if (IsInt64Long)
2078 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2079 else
2080 return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2081 : Context.LongLongTy;
2082 case NeonTypeFlags::Poly8:
2083 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2084 case NeonTypeFlags::Poly16:
2085 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2086 case NeonTypeFlags::Poly64:
2087 if (IsInt64Long)
2088 return Context.UnsignedLongTy;
2089 else
2090 return Context.UnsignedLongLongTy;
2091 case NeonTypeFlags::Poly128:
2092 break;
2093 case NeonTypeFlags::Float16:
2094 return Context.HalfTy;
2095 case NeonTypeFlags::Float32:
2096 return Context.FloatTy;
2097 case NeonTypeFlags::Float64:
2098 return Context.DoubleTy;
2099 case NeonTypeFlags::BFloat16:
2100 return Context.BFloat16Ty;
2101 }
2102 llvm_unreachable("Invalid NeonTypeFlag!")::llvm::llvm_unreachable_internal("Invalid NeonTypeFlag!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2102)
;
2103}
2104
2105bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2106 // Range check SVE intrinsics that take immediate values.
2107 SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2108
2109 switch (BuiltinID) {
2110 default:
2111 return false;
2112#define GET_SVE_IMMEDIATE_CHECK
2113#include "clang/Basic/arm_sve_sema_rangechecks.inc"
2114#undef GET_SVE_IMMEDIATE_CHECK
2115 }
2116
2117 // Perform all the immediate checks for this builtin call.
2118 bool HasError = false;
2119 for (auto &I : ImmChecks) {
2120 int ArgNum, CheckTy, ElementSizeInBits;
2121 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2122
2123 typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2124
2125 // Function that checks whether the operand (ArgNum) is an immediate
2126 // that is one of the predefined values.
2127 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2128 int ErrDiag) -> bool {
2129 // We can't check the value of a dependent argument.
2130 Expr *Arg = TheCall->getArg(ArgNum);
2131 if (Arg->isTypeDependent() || Arg->isValueDependent())
2132 return false;
2133
2134 // Check constant-ness first.
2135 llvm::APSInt Imm;
2136 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2137 return true;
2138
2139 if (!CheckImm(Imm.getSExtValue()))
2140 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2141 return false;
2142 };
2143
2144 switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2145 case SVETypeFlags::ImmCheck0_31:
2146 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2147 HasError = true;
2148 break;
2149 case SVETypeFlags::ImmCheck0_13:
2150 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2151 HasError = true;
2152 break;
2153 case SVETypeFlags::ImmCheck1_16:
2154 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2155 HasError = true;
2156 break;
2157 case SVETypeFlags::ImmCheck0_7:
2158 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2159 HasError = true;
2160 break;
2161 case SVETypeFlags::ImmCheckExtract:
2162 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2163 (2048 / ElementSizeInBits) - 1))
2164 HasError = true;
2165 break;
2166 case SVETypeFlags::ImmCheckShiftRight:
2167 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2168 HasError = true;
2169 break;
2170 case SVETypeFlags::ImmCheckShiftRightNarrow:
2171 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2172 ElementSizeInBits / 2))
2173 HasError = true;
2174 break;
2175 case SVETypeFlags::ImmCheckShiftLeft:
2176 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2177 ElementSizeInBits - 1))
2178 HasError = true;
2179 break;
2180 case SVETypeFlags::ImmCheckLaneIndex:
2181 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2182 (128 / (1 * ElementSizeInBits)) - 1))
2183 HasError = true;
2184 break;
2185 case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2186 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2187 (128 / (2 * ElementSizeInBits)) - 1))
2188 HasError = true;
2189 break;
2190 case SVETypeFlags::ImmCheckLaneIndexDot:
2191 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2192 (128 / (4 * ElementSizeInBits)) - 1))
2193 HasError = true;
2194 break;
2195 case SVETypeFlags::ImmCheckComplexRot90_270:
2196 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2197 diag::err_rotation_argument_to_cadd))
2198 HasError = true;
2199 break;
2200 case SVETypeFlags::ImmCheckComplexRotAll90:
2201 if (CheckImmediateInSet(
2202 [](int64_t V) {
2203 return V == 0 || V == 90 || V == 180 || V == 270;
2204 },
2205 diag::err_rotation_argument_to_cmla))
2206 HasError = true;
2207 break;
2208 case SVETypeFlags::ImmCheck0_1:
2209 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2210 HasError = true;
2211 break;
2212 case SVETypeFlags::ImmCheck0_2:
2213 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2214 HasError = true;
2215 break;
2216 case SVETypeFlags::ImmCheck0_3:
2217 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2218 HasError = true;
2219 break;
2220 }
2221 }
2222
2223 return HasError;
2224}
2225
2226bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2227 unsigned BuiltinID, CallExpr *TheCall) {
2228 llvm::APSInt Result;
2229 uint64_t mask = 0;
2230 unsigned TV = 0;
2231 int PtrArgNum = -1;
2232 bool HasConstPtr = false;
2233 switch (BuiltinID) {
2234#define GET_NEON_OVERLOAD_CHECK
2235#include "clang/Basic/arm_neon.inc"
2236#include "clang/Basic/arm_fp16.inc"
2237#undef GET_NEON_OVERLOAD_CHECK
2238 }
2239
2240 // For NEON intrinsics which are overloaded on vector element type, validate
2241 // the immediate which specifies which variant to emit.
2242 unsigned ImmArg = TheCall->getNumArgs()-1;
2243 if (mask) {
2244 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2245 return true;
2246
2247 TV = Result.getLimitedValue(64);
2248 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2249 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2250 << TheCall->getArg(ImmArg)->getSourceRange();
2251 }
2252
2253 if (PtrArgNum >= 0) {
2254 // Check that pointer arguments have the specified type.
2255 Expr *Arg = TheCall->getArg(PtrArgNum);
2256 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2257 Arg = ICE->getSubExpr();
2258 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2259 QualType RHSTy = RHS.get()->getType();
2260
2261 llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2262 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2263 Arch == llvm::Triple::aarch64_32 ||
2264 Arch == llvm::Triple::aarch64_be;
2265 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2266 QualType EltTy =
2267 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2268 if (HasConstPtr)
2269 EltTy = EltTy.withConst();
2270 QualType LHSTy = Context.getPointerType(EltTy);
2271 AssignConvertType ConvTy;
2272 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2273 if (RHS.isInvalid())
2274 return true;
2275 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2276 RHS.get(), AA_Assigning))
2277 return true;
2278 }
2279
2280 // For NEON intrinsics which take an immediate value as part of the
2281 // instruction, range check them here.
2282 unsigned i = 0, l = 0, u = 0;
2283 switch (BuiltinID) {
2284 default:
2285 return false;
2286 #define GET_NEON_IMMEDIATE_CHECK
2287 #include "clang/Basic/arm_neon.inc"
2288 #include "clang/Basic/arm_fp16.inc"
2289 #undef GET_NEON_IMMEDIATE_CHECK
2290 }
2291
2292 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2293}
2294
2295bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2296 switch (BuiltinID) {
2297 default:
2298 return false;
2299 #include "clang/Basic/arm_mve_builtin_sema.inc"
2300 }
2301}
2302
2303bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2304 CallExpr *TheCall) {
2305 bool Err = false;
2306 switch (BuiltinID) {
2307 default:
2308 return false;
2309#include "clang/Basic/arm_cde_builtin_sema.inc"
2310 }
2311
2312 if (Err)
2313 return true;
2314
2315 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2316}
2317
2318bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2319 const Expr *CoprocArg, bool WantCDE) {
2320 if (isConstantEvaluated())
2321 return false;
2322
2323 // We can't check the value of a dependent argument.
2324 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2325 return false;
2326
2327 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2328 int64_t CoprocNo = CoprocNoAP.getExtValue();
2329 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative")(static_cast <bool> (CoprocNo >= 0 && "Coprocessor immediate must be non-negative"
) ? void (0) : __assert_fail ("CoprocNo >= 0 && \"Coprocessor immediate must be non-negative\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2329, __extension__ __PRETTY_FUNCTION__))
;
2330
2331 uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2332 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2333
2334 if (IsCDECoproc != WantCDE)
2335 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2336 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2337
2338 return false;
2339}
2340
2341bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2342 unsigned MaxWidth) {
2343 assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2351, __extension__ __PRETTY_FUNCTION__))
2344 BuiltinID == ARM::BI__builtin_arm_ldaex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2351, __extension__ __PRETTY_FUNCTION__))
2345 BuiltinID == ARM::BI__builtin_arm_strex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2351, __extension__ __PRETTY_FUNCTION__))
2346 BuiltinID == ARM::BI__builtin_arm_stlex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2351, __extension__ __PRETTY_FUNCTION__))
2347 BuiltinID == AArch64::BI__builtin_arm_ldrex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2351, __extension__ __PRETTY_FUNCTION__))
2348 BuiltinID == AArch64::BI__builtin_arm_ldaex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2351, __extension__ __PRETTY_FUNCTION__))
2349 BuiltinID == AArch64::BI__builtin_arm_strex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2351, __extension__ __PRETTY_FUNCTION__))
2350 BuiltinID == AArch64::BI__builtin_arm_stlex) &&(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2351, __extension__ __PRETTY_FUNCTION__))
2351 "unexpected ARM builtin")(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2351, __extension__ __PRETTY_FUNCTION__))
;
2352 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2353 BuiltinID == ARM::BI__builtin_arm_ldaex ||
2354 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2355 BuiltinID == AArch64::BI__builtin_arm_ldaex;
2356
2357 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2358
2359 // Ensure that we have the proper number of arguments.
2360 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2361 return true;
2362
2363 // Inspect the pointer argument of the atomic builtin. This should always be
2364 // a pointer type, whose element is an integral scalar or pointer type.
2365 // Because it is a pointer type, we don't have to worry about any implicit
2366 // casts here.
2367 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2368 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2369 if (PointerArgRes.isInvalid())
2370 return true;
2371 PointerArg = PointerArgRes.get();
2372
2373 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2374 if (!pointerType) {
2375 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2376 << PointerArg->getType() << PointerArg->getSourceRange();
2377 return true;
2378 }
2379
2380 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2381 // task is to insert the appropriate casts into the AST. First work out just
2382 // what the appropriate type is.
2383 QualType ValType = pointerType->getPointeeType();
2384 QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2385 if (IsLdrex)
2386 AddrType.addConst();
2387
2388 // Issue a warning if the cast is dodgy.
2389 CastKind CastNeeded = CK_NoOp;
2390 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2391 CastNeeded = CK_BitCast;
2392 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2393 << PointerArg->getType() << Context.getPointerType(AddrType)
2394 << AA_Passing << PointerArg->getSourceRange();
2395 }
2396
2397 // Finally, do the cast and replace the argument with the corrected version.
2398 AddrType = Context.getPointerType(AddrType);
2399 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2400 if (PointerArgRes.isInvalid())
2401 return true;
2402 PointerArg = PointerArgRes.get();
2403
2404 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2405
2406 // In general, we allow ints, floats and pointers to be loaded and stored.
2407 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2408 !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2409 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2410 << PointerArg->getType() << PointerArg->getSourceRange();
2411 return true;
2412 }
2413
2414 // But ARM doesn't have instructions to deal with 128-bit versions.
2415 if (Context.getTypeSize(ValType) > MaxWidth) {
2416 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate")(static_cast <bool> (MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"
) ? void (0) : __assert_fail ("MaxWidth == 64 && \"Diagnostic unexpectedly inaccurate\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2416, __extension__ __PRETTY_FUNCTION__))
;
2417 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2418 << PointerArg->getType() << PointerArg->getSourceRange();
2419 return true;
2420 }
2421
2422 switch (ValType.getObjCLifetime()) {
2423 case Qualifiers::OCL_None:
2424 case Qualifiers::OCL_ExplicitNone:
2425 // okay
2426 break;
2427
2428 case Qualifiers::OCL_Weak:
2429 case Qualifiers::OCL_Strong:
2430 case Qualifiers::OCL_Autoreleasing:
2431 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2432 << ValType << PointerArg->getSourceRange();
2433 return true;
2434 }
2435
2436 if (IsLdrex) {
2437 TheCall->setType(ValType);
2438 return false;
2439 }
2440
2441 // Initialize the argument to be stored.
2442 ExprResult ValArg = TheCall->getArg(0);
2443 InitializedEntity Entity = InitializedEntity::InitializeParameter(
2444 Context, ValType, /*consume*/ false);
2445 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2446 if (ValArg.isInvalid())
2447 return true;
2448 TheCall->setArg(0, ValArg.get());
2449
2450 // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2451 // but the custom checker bypasses all default analysis.
2452 TheCall->setType(Context.IntTy);
2453 return false;
2454}
2455
2456bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2457 CallExpr *TheCall) {
2458 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2459 BuiltinID == ARM::BI__builtin_arm_ldaex ||
2460 BuiltinID == ARM::BI__builtin_arm_strex ||
2461 BuiltinID == ARM::BI__builtin_arm_stlex) {
2462 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2463 }
2464
2465 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2466 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2467 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2468 }
2469
2470 if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2471 BuiltinID == ARM::BI__builtin_arm_wsr64)
2472 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2473
2474 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2475 BuiltinID == ARM::BI__builtin_arm_rsrp ||
2476 BuiltinID == ARM::BI__builtin_arm_wsr ||
2477 BuiltinID == ARM::BI__builtin_arm_wsrp)
2478 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2479
2480 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2481 return true;
2482 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2483 return true;
2484 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2485 return true;
2486
2487 // For intrinsics which take an immediate value as part of the instruction,
2488 // range check them here.
2489 // FIXME: VFP Intrinsics should error if VFP not present.
2490 switch (BuiltinID) {
2491 default: return false;
2492 case ARM::BI__builtin_arm_ssat:
2493 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2494 case ARM::BI__builtin_arm_usat:
2495 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2496 case ARM::BI__builtin_arm_ssat16:
2497 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2498 case ARM::BI__builtin_arm_usat16:
2499 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2500 case ARM::BI__builtin_arm_vcvtr_f:
2501 case ARM::BI__builtin_arm_vcvtr_d:
2502 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2503 case ARM::BI__builtin_arm_dmb:
2504 case ARM::BI__builtin_arm_dsb:
2505 case ARM::BI__builtin_arm_isb:
2506 case ARM::BI__builtin_arm_dbg:
2507 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2508 case ARM::BI__builtin_arm_cdp:
2509 case ARM::BI__builtin_arm_cdp2:
2510 case ARM::BI__builtin_arm_mcr:
2511 case ARM::BI__builtin_arm_mcr2:
2512 case ARM::BI__builtin_arm_mrc:
2513 case ARM::BI__builtin_arm_mrc2:
2514 case ARM::BI__builtin_arm_mcrr:
2515 case ARM::BI__builtin_arm_mcrr2:
2516 case ARM::BI__builtin_arm_mrrc:
2517 case ARM::BI__builtin_arm_mrrc2:
2518 case ARM::BI__builtin_arm_ldc:
2519 case ARM::BI__builtin_arm_ldcl:
2520 case ARM::BI__builtin_arm_ldc2:
2521 case ARM::BI__builtin_arm_ldc2l:
2522 case ARM::BI__builtin_arm_stc:
2523 case ARM::BI__builtin_arm_stcl:
2524 case ARM::BI__builtin_arm_stc2:
2525 case ARM::BI__builtin_arm_stc2l:
2526 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2527 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2528 /*WantCDE*/ false);
2529 }
2530}
2531
2532bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2533 unsigned BuiltinID,
2534 CallExpr *TheCall) {
2535 if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2536 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2537 BuiltinID == AArch64::BI__builtin_arm_strex ||
2538 BuiltinID == AArch64::BI__builtin_arm_stlex) {
2539 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2540 }
2541
2542 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2543 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2544 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2545 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2546 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2547 }
2548
2549 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2550 BuiltinID == AArch64::BI__builtin_arm_wsr64)
2551 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2552
2553 // Memory Tagging Extensions (MTE) Intrinsics
2554 if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2555 BuiltinID == AArch64::BI__builtin_arm_addg ||
2556 BuiltinID == AArch64::BI__builtin_arm_gmi ||
2557 BuiltinID == AArch64::BI__builtin_arm_ldg ||
2558 BuiltinID == AArch64::BI__builtin_arm_stg ||
2559 BuiltinID == AArch64::BI__builtin_arm_subp) {
2560 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2561 }
2562
2563 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2564 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2565 BuiltinID == AArch64::BI__builtin_arm_wsr ||
2566 BuiltinID == AArch64::BI__builtin_arm_wsrp)
2567 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2568
2569 // Only check the valid encoding range. Any constant in this range would be
2570 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2571 // an exception for incorrect registers. This matches MSVC behavior.
2572 if (BuiltinID == AArch64::BI_ReadStatusReg ||
2573 BuiltinID == AArch64::BI_WriteStatusReg)
2574 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2575
2576 if (BuiltinID == AArch64::BI__getReg)
2577 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2578
2579 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2580 return true;
2581
2582 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2583 return true;
2584
2585 // For intrinsics which take an immediate value as part of the instruction,
2586 // range check them here.
2587 unsigned i = 0, l = 0, u = 0;
2588 switch (BuiltinID) {
2589 default: return false;
2590 case AArch64::BI__builtin_arm_dmb:
2591 case AArch64::BI__builtin_arm_dsb:
2592 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2593 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2594 }
2595
2596 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2597}
2598
2599static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2600 if (Arg->getType()->getAsPlaceholderType())
2601 return false;
2602
2603 // The first argument needs to be a record field access.
2604 // If it is an array element access, we delay decision
2605 // to BPF backend to check whether the access is a
2606 // field access or not.
2607 return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2608 dyn_cast<MemberExpr>(Arg->IgnoreParens()) ||
2609 dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()));
2610}
2611
2612static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2613 QualType VectorTy, QualType EltTy) {
2614 QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2615 if (!Context.hasSameType(VectorEltTy, EltTy)) {
2616 S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2617 << Call->getSourceRange() << VectorEltTy << EltTy;
2618 return false;
2619 }
2620 return true;
2621}
2622
2623static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2624 QualType ArgType = Arg->getType();
2625 if (ArgType->getAsPlaceholderType())
2626 return false;
2627
2628 // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2629 // format:
2630 // 1. __builtin_preserve_type_info(*(<type> *)0, flag);
2631 // 2. <type> var;
2632 // __builtin_preserve_type_info(var, flag);
2633 if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) &&
2634 !dyn_cast<UnaryOperator>(Arg->IgnoreParens()))
2635 return false;
2636
2637 // Typedef type.
2638 if (ArgType->getAs<TypedefType>())
2639 return true;
2640
2641 // Record type or Enum type.
2642 const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2643 if (const auto *RT = Ty->getAs<RecordType>()) {
2644 if (!RT->getDecl()->getDeclName().isEmpty())
2645 return true;
2646 } else if (const auto *ET = Ty->getAs<EnumType>()) {
2647 if (!ET->getDecl()->getDeclName().isEmpty())
2648 return true;
2649 }
2650
2651 return false;
2652}
2653
2654static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2655 QualType ArgType = Arg->getType();
2656 if (ArgType->getAsPlaceholderType())
2657 return false;
2658
2659 // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2660 // format:
2661 // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2662 // flag);
2663 const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2664 if (!UO)
2665 return false;
2666
2667 const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2668 if (!CE)
2669 return false;
2670 if (CE->getCastKind() != CK_IntegralToPointer &&
2671 CE->getCastKind() != CK_NullToPointer)
2672 return false;
2673
2674 // The integer must be from an EnumConstantDecl.
2675 const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2676 if (!DR)
2677 return false;
2678
2679 const EnumConstantDecl *Enumerator =
2680 dyn_cast<EnumConstantDecl>(DR->getDecl());
2681 if (!Enumerator)
2682 return false;
2683
2684 // The type must be EnumType.
2685 const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2686 const auto *ET = Ty->getAs<EnumType>();
2687 if (!ET)
2688 return false;
2689
2690 // The enum value must be supported.
2691 for (auto *EDI : ET->getDecl()->enumerators()) {
2692 if (EDI == Enumerator)
2693 return true;
2694 }
2695
2696 return false;
2697}
2698
2699bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2700 CallExpr *TheCall) {
2701 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2705, __extension__ __PRETTY_FUNCTION__))
2702 BuiltinID == BPF::BI__builtin_btf_type_id ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2705, __extension__ __PRETTY_FUNCTION__))
2703 BuiltinID == BPF::BI__builtin_preserve_type_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2705, __extension__ __PRETTY_FUNCTION__))
2704 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2705, __extension__ __PRETTY_FUNCTION__))
2705 "unexpected BPF builtin")(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 2705, __extension__ __PRETTY_FUNCTION__))
;
2706
2707 if (checkArgCount(*this, TheCall, 2))
2708 return true;
2709
2710 // The second argument needs to be a constant int
2711 Expr *Arg = TheCall->getArg(1);
2712 Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
2713 diag::kind kind;
2714 if (!Value) {
2715 if (BuiltinID == BPF::BI__builtin_preserve_field_info)
2716 kind = diag::err_preserve_field_info_not_const;
2717 else if (BuiltinID == BPF::BI__builtin_btf_type_id)
2718 kind = diag::err_btf_type_id_not_const;
2719 else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
2720 kind = diag::err_preserve_type_info_not_const;
2721 else
2722 kind = diag::err_preserve_enum_value_not_const;
2723 Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
2724 return true;
2725 }
2726
2727 // The first argument
2728 Arg = TheCall->getArg(0);
2729 bool InvalidArg = false;
2730 bool ReturnUnsignedInt = true;
2731 if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
2732 if (!isValidBPFPreserveFieldInfoArg(Arg)) {
2733 InvalidArg = true;
2734 kind = diag::err_preserve_field_info_not_field;
2735 }
2736 } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
2737 if (!isValidBPFPreserveTypeInfoArg(Arg)) {
2738 InvalidArg = true;
2739 kind = diag::err_preserve_type_info_invalid;
2740 }
2741 } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
2742 if (!isValidBPFPreserveEnumValueArg(Arg)) {
2743 InvalidArg = true;
2744 kind = diag::err_preserve_enum_value_invalid;
2745 }
2746 ReturnUnsignedInt = false;
2747 } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
2748 ReturnUnsignedInt = false;
2749 }
2750
2751 if (InvalidArg) {
2752 Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
2753 return true;
2754 }
2755
2756 if (ReturnUnsignedInt)
2757 TheCall->setType(Context.UnsignedIntTy);
2758 else
2759 TheCall->setType(Context.UnsignedLongTy);
2760 return false;
2761}
2762
2763bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2764 struct ArgInfo {
2765 uint8_t OpNum;
2766 bool IsSigned;
2767 uint8_t BitWidth;
2768 uint8_t Align;
2769 };
2770 struct BuiltinInfo {
2771 unsigned BuiltinID;
2772 ArgInfo Infos[2];
2773 };
2774
2775 static BuiltinInfo Infos[] = {
2776 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} },
2777 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} },
2778 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} },
2779 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} },
2780 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} },
2781 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} },
2782 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} },
2783 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} },
2784 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} },
2785 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} },
2786 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} },
2787
2788 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} },
2789 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} },
2790 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} },
2791 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} },
2792 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} },
2793 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} },
2794 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} },
2795 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} },
2796 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} },
2797 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} },
2798 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} },
2799
2800 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} },
2801 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} },
2802 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} },
2803 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} },
2804 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} },
2805 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} },
2806 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} },
2807 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} },
2808 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} },
2809 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} },
2810 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} },
2811 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} },
2812 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} },
2813 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} },
2814 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} },
2815 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} },
2816 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} },
2817 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} },
2818 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} },
2819 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} },
2820 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} },
2821 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} },
2822 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} },
2823 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} },
2824 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} },
2825 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} },
2826 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} },
2827 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} },
2828 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} },
2829 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} },
2830 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} },
2831 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} },
2832 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} },
2833 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} },
2834 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} },
2835 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} },
2836 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} },
2837 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} },
2838 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} },
2839 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} },
2840 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} },
2841 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} },
2842 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} },
2843 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} },
2844 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} },
2845 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} },
2846 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} },
2847 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} },
2848 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} },
2849 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} },
2850 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} },
2851 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2852 {{ 1, false, 6, 0 }} },
2853 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} },
2854 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} },
2855 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} },
2856 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} },
2857 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} },
2858 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} },
2859 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2860 {{ 1, false, 5, 0 }} },
2861 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} },
2862 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} },
2863 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} },
2864 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} },
2865 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} },
2866 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 },
2867 { 2, false, 5, 0 }} },
2868 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 },
2869 { 2, false, 6, 0 }} },
2870 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 },
2871 { 3, false, 5, 0 }} },
2872 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 },
2873 { 3, false, 6, 0 }} },
2874 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} },
2875 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} },
2876 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} },
2877 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} },
2878 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} },
2879 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} },
2880 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} },
2881 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} },
2882 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} },
2883 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} },
2884 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} },
2885 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} },
2886 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} },
2887 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} },
2888 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} },
2889 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
2890 {{ 2, false, 4, 0 },
2891 { 3, false, 5, 0 }} },
2892 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
2893 {{ 2, false, 4, 0 },
2894 { 3, false, 5, 0 }} },
2895 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
2896 {{ 2, false, 4, 0 },
2897 { 3, false, 5, 0 }} },
2898 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
2899 {{ 2, false, 4, 0 },
2900 { 3, false, 5, 0 }} },
2901 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} },
2902 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} },
2903 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} },
2904 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} },
2905 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} },
2906 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} },
2907 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} },
2908 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} },
2909 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} },
2910 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} },
2911 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 },
2912 { 2, false, 5, 0 }} },
2913 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 },
2914 { 2, false, 6, 0 }} },
2915 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} },
2916 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} },
2917 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} },
2918 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} },
2919 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} },
2920 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} },
2921 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} },
2922 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} },
2923 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
2924 {{ 1, false, 4, 0 }} },
2925 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} },
2926 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
2927 {{ 1, false, 4, 0 }} },
2928 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} },
2929 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} },
2930 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} },
2931 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} },
2932 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} },
2933 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} },
2934 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} },
2935 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} },
2936 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} },
2937 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} },
2938 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} },
2939 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} },
2940 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} },
2941 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} },
2942 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} },
2943 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} },
2944 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} },
2945 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} },
2946 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} },
2947 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
2948 {{ 3, false, 1, 0 }} },
2949 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} },
2950 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} },
2951 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} },
2952 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
2953 {{ 3, false, 1, 0 }} },
2954 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} },
2955 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} },
2956 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} },
2957 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
2958 {{ 3, false, 1, 0 }} },
2959 };
2960
2961 // Use a dynamically initialized static to sort the table exactly once on
2962 // first run.
2963 static const bool SortOnce =
2964 (llvm::sort(Infos,
2965 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
2966 return LHS.BuiltinID < RHS.BuiltinID;
2967 }),
2968 true);
2969 (void)SortOnce;
2970
2971 const BuiltinInfo *F = llvm::partition_point(
2972 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
2973 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
2974 return false;
2975
2976 bool Error = false;
2977
2978 for (const ArgInfo &A : F->Infos) {
2979 // Ignore empty ArgInfo elements.
2980 if (A.BitWidth == 0)
2981 continue;
2982
2983 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
2984 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
2985 if (!A.Align) {
2986 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
2987 } else {
2988 unsigned M = 1 << A.Align;
2989 Min *= M;
2990 Max *= M;
2991 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
2992 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
2993 }
2994 }
2995 return Error;
2996}
2997
2998bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
2999 CallExpr *TheCall) {
3000 return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
3001}
3002
3003bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
3004 unsigned BuiltinID, CallExpr *TheCall) {
3005 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
3006 CheckMipsBuiltinArgument(BuiltinID, TheCall);
3007}
3008
3009bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
3010 CallExpr *TheCall) {
3011
3012 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
3013 BuiltinID <= Mips::BI__builtin_mips_lwx) {
3014 if (!TI.hasFeature("dsp"))
3015 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
3016 }
3017
3018 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
3019 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
3020 if (!TI.hasFeature("dspr2"))
3021 return Diag(TheCall->getBeginLoc(),
3022 diag::err_mips_builtin_requires_dspr2);
3023 }
3024
3025 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
3026 BuiltinID <= Mips::BI__builtin_msa_xori_b) {
3027 if (!TI.hasFeature("msa"))
3028 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
3029 }
3030
3031 return false;
3032}
3033
3034// CheckMipsBuiltinArgument - Checks the constant value passed to the
3035// intrinsic is correct. The switch statement is ordered by DSP, MSA. The
3036// ordering for DSP is unspecified. MSA is ordered by the data format used
3037// by the underlying instruction i.e., df/m, df/n and then by size.
3038//
3039// FIXME: The size tests here should instead be tablegen'd along with the
3040// definitions from include/clang/Basic/BuiltinsMips.def.
3041// FIXME: GCC is strict on signedness for some of these intrinsics, we should
3042// be too.
3043bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3044 unsigned i = 0, l = 0, u = 0, m = 0;
3045 switch (BuiltinID) {
3046 default: return false;
3047 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3048 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3049 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3050 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3051 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3052 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3053 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3054 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3055 // df/m field.
3056 // These intrinsics take an unsigned 3 bit immediate.
3057 case Mips::BI__builtin_msa_bclri_b:
3058 case Mips::BI__builtin_msa_bnegi_b:
3059 case Mips::BI__builtin_msa_bseti_b:
3060 case Mips::BI__builtin_msa_sat_s_b:
3061 case Mips::BI__builtin_msa_sat_u_b:
3062 case Mips::BI__builtin_msa_slli_b:
3063 case Mips::BI__builtin_msa_srai_b:
3064 case Mips::BI__builtin_msa_srari_b:
3065 case Mips::BI__builtin_msa_srli_b:
3066 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3067 case Mips::BI__builtin_msa_binsli_b:
3068 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3069 // These intrinsics take an unsigned 4 bit immediate.
3070 case Mips::BI__builtin_msa_bclri_h:
3071 case Mips::BI__builtin_msa_bnegi_h:
3072 case Mips::BI__builtin_msa_bseti_h:
3073 case Mips::BI__builtin_msa_sat_s_h:
3074 case Mips::BI__builtin_msa_sat_u_h:
3075 case Mips::BI__builtin_msa_slli_h:
3076 case Mips::BI__builtin_msa_srai_h:
3077 case Mips::BI__builtin_msa_srari_h:
3078 case Mips::BI__builtin_msa_srli_h:
3079 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3080 case Mips::BI__builtin_msa_binsli_h:
3081 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3082 // These intrinsics take an unsigned 5 bit immediate.
3083 // The first block of intrinsics actually have an unsigned 5 bit field,
3084 // not a df/n field.
3085 case Mips::BI__builtin_msa_cfcmsa:
3086 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3087 case Mips::BI__builtin_msa_clei_u_b:
3088 case Mips::BI__builtin_msa_clei_u_h:
3089 case Mips::BI__builtin_msa_clei_u_w:
3090 case Mips::BI__builtin_msa_clei_u_d:
3091 case Mips::BI__builtin_msa_clti_u_b:
3092 case Mips::BI__builtin_msa_clti_u_h:
3093 case Mips::BI__builtin_msa_clti_u_w:
3094 case Mips::BI__builtin_msa_clti_u_d:
3095 case Mips::BI__builtin_msa_maxi_u_b:
3096 case Mips::BI__builtin_msa_maxi_u_h:
3097 case Mips::BI__builtin_msa_maxi_u_w:
3098 case Mips::BI__builtin_msa_maxi_u_d:
3099 case Mips::BI__builtin_msa_mini_u_b:
3100 case Mips::BI__builtin_msa_mini_u_h:
3101 case Mips::BI__builtin_msa_mini_u_w:
3102 case Mips::BI__builtin_msa_mini_u_d:
3103 case Mips::BI__builtin_msa_addvi_b:
3104 case Mips::BI__builtin_msa_addvi_h:
3105 case Mips::BI__builtin_msa_addvi_w:
3106 case Mips::BI__builtin_msa_addvi_d:
3107 case Mips::BI__builtin_msa_bclri_w:
3108 case Mips::BI__builtin_msa_bnegi_w:
3109 case Mips::BI__builtin_msa_bseti_w:
3110 case Mips::BI__builtin_msa_sat_s_w:
3111 case Mips::BI__builtin_msa_sat_u_w:
3112 case Mips::BI__builtin_msa_slli_w:
3113 case Mips::BI__builtin_msa_srai_w:
3114 case Mips::BI__builtin_msa_srari_w:
3115 case Mips::BI__builtin_msa_srli_w:
3116 case Mips::BI__builtin_msa_srlri_w:
3117 case Mips::BI__builtin_msa_subvi_b:
3118 case Mips::BI__builtin_msa_subvi_h:
3119 case Mips::BI__builtin_msa_subvi_w:
3120 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3121 case Mips::BI__builtin_msa_binsli_w:
3122 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3123 // These intrinsics take an unsigned 6 bit immediate.
3124 case Mips::BI__builtin_msa_bclri_d:
3125 case Mips::BI__builtin_msa_bnegi_d:
3126 case Mips::BI__builtin_msa_bseti_d:
3127 case Mips::BI__builtin_msa_sat_s_d:
3128 case Mips::BI__builtin_msa_sat_u_d:
3129 case Mips::BI__builtin_msa_slli_d:
3130 case Mips::BI__builtin_msa_srai_d:
3131 case Mips::BI__builtin_msa_srari_d:
3132 case Mips::BI__builtin_msa_srli_d:
3133 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3134 case Mips::BI__builtin_msa_binsli_d:
3135 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3136 // These intrinsics take a signed 5 bit immediate.
3137 case Mips::BI__builtin_msa_ceqi_b:
3138 case Mips::BI__builtin_msa_ceqi_h:
3139 case Mips::BI__builtin_msa_ceqi_w:
3140 case Mips::BI__builtin_msa_ceqi_d:
3141 case Mips::BI__builtin_msa_clti_s_b:
3142 case Mips::BI__builtin_msa_clti_s_h:
3143 case Mips::BI__builtin_msa_clti_s_w:
3144 case Mips::BI__builtin_msa_clti_s_d:
3145 case Mips::BI__builtin_msa_clei_s_b:
3146 case Mips::BI__builtin_msa_clei_s_h:
3147 case Mips::BI__builtin_msa_clei_s_w:
3148 case Mips::BI__builtin_msa_clei_s_d:
3149 case Mips::BI__builtin_msa_maxi_s_b:
3150 case Mips::BI__builtin_msa_maxi_s_h:
3151 case Mips::BI__builtin_msa_maxi_s_w:
3152 case Mips::BI__builtin_msa_maxi_s_d:
3153 case Mips::BI__builtin_msa_mini_s_b:
3154 case Mips::BI__builtin_msa_mini_s_h:
3155 case Mips::BI__builtin_msa_mini_s_w:
3156 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3157 // These intrinsics take an unsigned 8 bit immediate.
3158 case Mips::BI__builtin_msa_andi_b:
3159 case Mips::BI__builtin_msa_nori_b:
3160 case Mips::BI__builtin_msa_ori_b:
3161 case Mips::BI__builtin_msa_shf_b:
3162 case Mips::BI__builtin_msa_shf_h:
3163 case Mips::BI__builtin_msa_shf_w:
3164 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3165 case Mips::BI__builtin_msa_bseli_b:
3166 case Mips::BI__builtin_msa_bmnzi_b:
3167 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3168 // df/n format
3169 // These intrinsics take an unsigned 4 bit immediate.
3170 case Mips::BI__builtin_msa_copy_s_b:
3171 case Mips::BI__builtin_msa_copy_u_b:
3172 case Mips::BI__builtin_msa_insve_b:
3173 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3174 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3175 // These intrinsics take an unsigned 3 bit immediate.
3176 case Mips::BI__builtin_msa_copy_s_h:
3177 case Mips::BI__builtin_msa_copy_u_h:
3178 case Mips::BI__builtin_msa_insve_h:
3179 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3180 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3181 // These intrinsics take an unsigned 2 bit immediate.
3182 case Mips::BI__builtin_msa_copy_s_w:
3183 case Mips::BI__builtin_msa_copy_u_w:
3184 case Mips::BI__builtin_msa_insve_w:
3185 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3186 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3187 // These intrinsics take an unsigned 1 bit immediate.
3188 case Mips::BI__builtin_msa_copy_s_d:
3189 case Mips::BI__builtin_msa_copy_u_d:
3190 case Mips::BI__builtin_msa_insve_d:
3191 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3192 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3193 // Memory offsets and immediate loads.
3194 // These intrinsics take a signed 10 bit immediate.
3195 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3196 case Mips::BI__builtin_msa_ldi_h:
3197 case Mips::BI__builtin_msa_ldi_w:
3198 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3199 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3200 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3201 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3202 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3203 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3204 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3205 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3206 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3207 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3208 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3209 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3210 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3211 }
3212
3213 if (!m)
3214 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3215
3216 return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3217 SemaBuiltinConstantArgMultiple(TheCall, i, m);
3218}
3219
3220/// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3221/// advancing the pointer over the consumed characters. The decoded type is
3222/// returned. If the decoded type represents a constant integer with a
3223/// constraint on its value then Mask is set to that value. The type descriptors
3224/// used in Str are specific to PPC MMA builtins and are documented in the file
3225/// defining the PPC builtins.
3226static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3227 unsigned &Mask) {
3228 bool RequireICE = false;
3229 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3230 switch (*Str++) {
3231 case 'V':
3232 return Context.getVectorType(Context.UnsignedCharTy, 16,
3233 VectorType::VectorKind::AltiVecVector);
3234 case 'i': {
3235 char *End;
3236 unsigned size = strtoul(Str, &End, 10);
3237 assert(End != Str && "Missing constant parameter constraint")(static_cast <bool> (End != Str && "Missing constant parameter constraint"
) ? void (0) : __assert_fail ("End != Str && \"Missing constant parameter constraint\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 3237, __extension__ __PRETTY_FUNCTION__))
;
3238 Str = End;
3239 Mask = size;
3240 return Context.IntTy;
3241 }
3242 case 'W': {
3243 char *End;
3244 unsigned size = strtoul(Str, &End, 10);
3245 assert(End != Str && "Missing PowerPC MMA type size")(static_cast <bool> (End != Str && "Missing PowerPC MMA type size"
) ? void (0) : __assert_fail ("End != Str && \"Missing PowerPC MMA type size\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 3245, __extension__ __PRETTY_FUNCTION__))
;
3246 Str = End;
3247 QualType Type;
3248 switch (size) {
3249 #define PPC_VECTOR_TYPE(typeName, Id, size) \
3250 case size: Type = Context.Id##Ty; break;
3251 #include "clang/Basic/PPCTypes.def"
3252 default: llvm_unreachable("Invalid PowerPC MMA vector type")::llvm::llvm_unreachable_internal("Invalid PowerPC MMA vector type"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 3252)
;
3253 }
3254 bool CheckVectorArgs = false;
3255 while (!CheckVectorArgs) {
3256 switch (*Str++) {
3257 case '*':
3258 Type = Context.getPointerType(Type);
3259 break;
3260 case 'C':
3261 Type = Type.withConst();
3262 break;
3263 default:
3264 CheckVectorArgs = true;
3265 --Str;
3266 break;
3267 }
3268 }
3269 return Type;
3270 }
3271 default:
3272 return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3273 }
3274}
3275
3276static bool isPPC_64Builtin(unsigned BuiltinID) {
3277 // These builtins only work on PPC 64bit targets.
3278 switch (BuiltinID) {
3279 case PPC::BI__builtin_divde:
3280 case PPC::BI__builtin_divdeu:
3281 case PPC::BI__builtin_bpermd:
3282 case PPC::BI__builtin_ppc_ldarx:
3283 case PPC::BI__builtin_ppc_stdcx:
3284 case PPC::BI__builtin_ppc_tdw:
3285 case PPC::BI__builtin_ppc_trapd:
3286 case PPC::BI__builtin_ppc_cmpeqb:
3287 case PPC::BI__builtin_ppc_setb:
3288 case PPC::BI__builtin_ppc_mulhd:
3289 case PPC::BI__builtin_ppc_mulhdu:
3290 case PPC::BI__builtin_ppc_maddhd:
3291 case PPC::BI__builtin_ppc_maddhdu:
3292 case PPC::BI__builtin_ppc_maddld:
3293 case PPC::BI__builtin_ppc_load8r:
3294 case PPC::BI__builtin_ppc_store8r:
3295 case PPC::BI__builtin_ppc_insert_exp:
3296 case PPC::BI__builtin_ppc_extract_sig:
3297 case PPC::BI__builtin_ppc_addex:
3298 return true;
3299 }
3300 return false;
3301}
3302
3303static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall,
3304 StringRef FeatureToCheck, unsigned DiagID,
3305 StringRef DiagArg = "") {
3306 if (S.Context.getTargetInfo().hasFeature(FeatureToCheck))
3307 return false;
3308
3309 if (DiagArg.empty())
3310 S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange();
3311 else
3312 S.Diag(TheCall->getBeginLoc(), DiagID)
3313 << DiagArg << TheCall->getSourceRange();
3314
3315 return true;
3316}
3317
3318/// Returns true if the argument consists of one contiguous run of 1s with any
3319/// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
3320/// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
3321/// since all 1s are not contiguous.
3322bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
3323 llvm::APSInt Result;
3324 // We can't check the value of a dependent argument.
3325 Expr *Arg = TheCall->getArg(ArgNum);
3326 if (Arg->isTypeDependent() || Arg->isValueDependent())
3327 return false;
3328
3329 // Check constant-ness first.
3330 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3331 return true;
3332
3333 // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
3334 if (Result.isShiftedMask() || (~Result).isShiftedMask())
3335 return false;
3336
3337 return Diag(TheCall->getBeginLoc(),
3338 diag::err_argument_not_contiguous_bit_field)
3339 << ArgNum << Arg->getSourceRange();
3340}
3341
3342bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3343 CallExpr *TheCall) {
3344 unsigned i = 0, l = 0, u = 0;
3345 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3346 llvm::APSInt Result;
3347
3348 if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit)
3349 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3350 << TheCall->getSourceRange();
3351
3352 switch (BuiltinID) {
3353 default: return false;
3354 case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3355 case PPC::BI__builtin_altivec_crypto_vshasigmad:
3356 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3357 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3358 case PPC::BI__builtin_altivec_dss:
3359 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3360 case PPC::BI__builtin_tbegin:
3361 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3362 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3363 case PPC::BI__builtin_tabortwc:
3364 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3365 case PPC::BI__builtin_tabortwci:
3366 case PPC::BI__builtin_tabortdci:
3367 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3368 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3369 case PPC::BI__builtin_altivec_dst:
3370 case PPC::BI__builtin_altivec_dstt:
3371 case PPC::BI__builtin_altivec_dstst:
3372 case PPC::BI__builtin_altivec_dststt:
3373 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3374 case PPC::BI__builtin_vsx_xxpermdi:
3375 case PPC::BI__builtin_vsx_xxsldwi:
3376 return SemaBuiltinVSX(TheCall);
3377 case PPC::BI__builtin_divwe:
3378 case PPC::BI__builtin_divweu:
3379 case PPC::BI__builtin_divde:
3380 case PPC::BI__builtin_divdeu:
3381 return SemaFeatureCheck(*this, TheCall, "extdiv",
3382 diag::err_ppc_builtin_only_on_arch, "7");
3383 case PPC::BI__builtin_bpermd:
3384 return SemaFeatureCheck(*this, TheCall, "bpermd",
3385 diag::err_ppc_builtin_only_on_arch, "7");
3386 case PPC::BI__builtin_unpack_vector_int128:
3387 return SemaFeatureCheck(*this, TheCall, "vsx",
3388 diag::err_ppc_builtin_only_on_arch, "7") ||
3389 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3390 case PPC::BI__builtin_pack_vector_int128:
3391 return SemaFeatureCheck(*this, TheCall, "vsx",
3392 diag::err_ppc_builtin_only_on_arch, "7");
3393 case PPC::BI__builtin_altivec_vgnb:
3394 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3395 case PPC::BI__builtin_altivec_vec_replace_elt:
3396 case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3397 QualType VecTy = TheCall->getArg(0)->getType();
3398 QualType EltTy = TheCall->getArg(1)->getType();
3399 unsigned Width = Context.getIntWidth(EltTy);
3400 return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3401 !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3402 }
3403 case PPC::BI__builtin_vsx_xxeval:
3404 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3405 case PPC::BI__builtin_altivec_vsldbi:
3406 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3407 case PPC::BI__builtin_altivec_vsrdbi:
3408 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3409 case PPC::BI__builtin_vsx_xxpermx:
3410 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3411 case PPC::BI__builtin_ppc_tw:
3412 case PPC::BI__builtin_ppc_tdw:
3413 return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31);
3414 case PPC::BI__builtin_ppc_cmpeqb:
3415 case PPC::BI__builtin_ppc_setb:
3416 case PPC::BI__builtin_ppc_maddhd:
3417 case PPC::BI__builtin_ppc_maddhdu:
3418 case PPC::BI__builtin_ppc_maddld:
3419 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3420 diag::err_ppc_builtin_only_on_arch, "9");
3421 case PPC::BI__builtin_ppc_cmprb:
3422 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3423 diag::err_ppc_builtin_only_on_arch, "9") ||
3424 SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
3425 // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must
3426 // be a constant that represents a contiguous bit field.
3427 case PPC::BI__builtin_ppc_rlwnm:
3428 return SemaBuiltinConstantArg(TheCall, 1, Result) ||
3429 SemaValueIsRunOfOnes(TheCall, 2);
3430 case PPC::BI__builtin_ppc_rlwimi:
3431 case PPC::BI__builtin_ppc_rldimi:
3432 return SemaBuiltinConstantArg(TheCall, 2, Result) ||
3433 SemaValueIsRunOfOnes(TheCall, 3);
3434 case PPC::BI__builtin_ppc_extract_exp:
3435 case PPC::BI__builtin_ppc_extract_sig:
3436 case PPC::BI__builtin_ppc_insert_exp:
3437 return SemaFeatureCheck(*this, TheCall, "power9-vector",
3438 diag::err_ppc_builtin_only_on_arch, "9");
3439 case PPC::BI__builtin_ppc_addex: {
3440 if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3441 diag::err_ppc_builtin_only_on_arch, "9") ||
3442 SemaBuiltinConstantArgRange(TheCall, 2, 0, 3))
3443 return true;
3444 // Output warning for reserved values 1 to 3.
3445 int ArgValue =
3446 TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue();
3447 if (ArgValue != 0)
3448 Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour)
3449 << ArgValue;
3450 return false;
3451 }
3452 case PPC::BI__builtin_ppc_mtfsb0:
3453 case PPC::BI__builtin_ppc_mtfsb1:
3454 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
3455 case PPC::BI__builtin_ppc_mtfsf:
3456 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255);
3457 case PPC::BI__builtin_ppc_mtfsfi:
3458 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
3459 SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
3460 case PPC::BI__builtin_ppc_alignx:
3461 return SemaBuiltinConstantArgPower2(TheCall, 0);
3462 case PPC::BI__builtin_ppc_rdlam:
3463 return SemaValueIsRunOfOnes(TheCall, 2);
3464 case PPC::BI__builtin_ppc_icbt:
3465 case PPC::BI__builtin_ppc_sthcx:
3466 case PPC::BI__builtin_ppc_stbcx:
3467 case PPC::BI__builtin_ppc_lharx:
3468 case PPC::BI__builtin_ppc_lbarx:
3469 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3470 diag::err_ppc_builtin_only_on_arch, "8");
3471 case PPC::BI__builtin_vsx_ldrmb:
3472 case PPC::BI__builtin_vsx_strmb:
3473 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3474 diag::err_ppc_builtin_only_on_arch, "8") ||
3475 SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
3476#define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
3477 case PPC::BI__builtin_##Name: \
3478 return SemaBuiltinPPCMMACall(TheCall, Types);
3479#include "clang/Basic/BuiltinsPPC.def"
3480 }
3481 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3482}
3483
3484// Check if the given type is a non-pointer PPC MMA type. This function is used
3485// in Sema to prevent invalid uses of restricted PPC MMA types.
3486bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3487 if (Type->isPointerType() || Type->isArrayType())
3488 return false;
3489
3490 QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3491#define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3492 if (false
3493#include "clang/Basic/PPCTypes.def"
3494 ) {
3495 Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3496 return true;
3497 }
3498 return false;
3499}
3500
3501bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3502 CallExpr *TheCall) {
3503 // position of memory order and scope arguments in the builtin
3504 unsigned OrderIndex, ScopeIndex;
3505 switch (BuiltinID) {
3506 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3507 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3508 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3509 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3510 OrderIndex = 2;
3511 ScopeIndex = 3;
3512 break;
3513 case AMDGPU::BI__builtin_amdgcn_fence:
3514 OrderIndex = 0;
3515 ScopeIndex = 1;
3516 break;
3517 default:
3518 return false;
3519 }
3520
3521 ExprResult Arg = TheCall->getArg(OrderIndex);
3522 auto ArgExpr = Arg.get();
3523 Expr::EvalResult ArgResult;
3524
3525 if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3526 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3527 << ArgExpr->getType();
3528 auto Ord = ArgResult.Val.getInt().getZExtValue();
3529
3530 // Check valididty of memory ordering as per C11 / C++11's memody model.
3531 // Only fence needs check. Atomic dec/inc allow all memory orders.
3532 if (!llvm::isValidAtomicOrderingCABI(Ord))
3533 return Diag(ArgExpr->getBeginLoc(),
3534 diag::warn_atomic_op_has_invalid_memory_order)
3535 << ArgExpr->getSourceRange();
3536 switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) {
3537 case llvm::AtomicOrderingCABI::relaxed:
3538 case llvm::AtomicOrderingCABI::consume:
3539 if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence)
3540 return Diag(ArgExpr->getBeginLoc(),
3541 diag::warn_atomic_op_has_invalid_memory_order)
3542 << ArgExpr->getSourceRange();
3543 break;
3544 case llvm::AtomicOrderingCABI::acquire:
3545 case llvm::AtomicOrderingCABI::release:
3546 case llvm::AtomicOrderingCABI::acq_rel:
3547 case llvm::AtomicOrderingCABI::seq_cst:
3548 break;
3549 }
3550
3551 Arg = TheCall->getArg(ScopeIndex);
3552 ArgExpr = Arg.get();
3553 Expr::EvalResult ArgResult1;
3554 // Check that sync scope is a constant literal
3555 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3556 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3557 << ArgExpr->getType();
3558
3559 return false;
3560}
3561
3562bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) {
3563 llvm::APSInt Result;
3564
3565 // We can't check the value of a dependent argument.
3566 Expr *Arg = TheCall->getArg(ArgNum);
3567 if (Arg->isTypeDependent() || Arg->isValueDependent())
3568 return false;
3569
3570 // Check constant-ness first.
3571 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3572 return true;
3573
3574 int64_t Val = Result.getSExtValue();
3575 if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7))
3576 return false;
3577
3578 return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul)
3579 << Arg->getSourceRange();
3580}
3581
3582bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI,
3583 unsigned BuiltinID,
3584 CallExpr *TheCall) {
3585 // CodeGenFunction can also detect this, but this gives a better error
3586 // message.
3587 bool FeatureMissing = false;
3588 SmallVector<StringRef> ReqFeatures;
3589 StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID);
3590 Features.split(ReqFeatures, ',');
3591
3592 // Check if each required feature is included
3593 for (StringRef F : ReqFeatures) {
3594 if (TI.hasFeature(F))
3595 continue;
3596
3597 // If the feature is 64bit, alter the string so it will print better in
3598 // the diagnostic.
3599 if (F == "64bit")
3600 F = "RV64";
3601
3602 // Convert features like "zbr" and "experimental-zbr" to "Zbr".
3603 F.consume_front("experimental-");
3604 std::string FeatureStr = F.str();
3605 FeatureStr[0] = std::toupper(FeatureStr[0]);
3606
3607 // Error message
3608 FeatureMissing = true;
3609 Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension)
3610 << TheCall->getSourceRange() << StringRef(FeatureStr);
3611 }
3612
3613 if (FeatureMissing)
3614 return true;
3615
3616 switch (BuiltinID) {
3617 case RISCV::BI__builtin_rvv_vsetvli:
3618 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) ||
3619 CheckRISCVLMUL(TheCall, 2);
3620 case RISCV::BI__builtin_rvv_vsetvlimax:
3621 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
3622 CheckRISCVLMUL(TheCall, 1);
3623 case RISCV::BI__builtin_rvv_vget_v_i8m2_i8m1:
3624 case RISCV::BI__builtin_rvv_vget_v_i16m2_i16m1:
3625 case RISCV::BI__builtin_rvv_vget_v_i32m2_i32m1:
3626 case RISCV::BI__builtin_rvv_vget_v_i64m2_i64m1:
3627 case RISCV::BI__builtin_rvv_vget_v_f32m2_f32m1:
3628 case RISCV::BI__builtin_rvv_vget_v_f64m2_f64m1:
3629 case RISCV::BI__builtin_rvv_vget_v_u8m2_u8m1:
3630 case RISCV::BI__builtin_rvv_vget_v_u16m2_u16m1:
3631 case RISCV::BI__builtin_rvv_vget_v_u32m2_u32m1:
3632 case RISCV::BI__builtin_rvv_vget_v_u64m2_u64m1:
3633 case RISCV::BI__builtin_rvv_vget_v_i8m4_i8m2:
3634 case RISCV::BI__builtin_rvv_vget_v_i16m4_i16m2:
3635 case RISCV::BI__builtin_rvv_vget_v_i32m4_i32m2:
3636 case RISCV::BI__builtin_rvv_vget_v_i64m4_i64m2:
3637 case RISCV::BI__builtin_rvv_vget_v_f32m4_f32m2:
3638 case RISCV::BI__builtin_rvv_vget_v_f64m4_f64m2:
3639 case RISCV::BI__builtin_rvv_vget_v_u8m4_u8m2:
3640 case RISCV::BI__builtin_rvv_vget_v_u16m4_u16m2:
3641 case RISCV::BI__builtin_rvv_vget_v_u32m4_u32m2:
3642 case RISCV::BI__builtin_rvv_vget_v_u64m4_u64m2:
3643 case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m4:
3644 case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m4:
3645 case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m4:
3646 case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m4:
3647 case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m4:
3648 case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m4:
3649 case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m4:
3650 case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m4:
3651 case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m4:
3652 case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m4:
3653 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3654 case RISCV::BI__builtin_rvv_vget_v_i8m4_i8m1:
3655 case RISCV::BI__builtin_rvv_vget_v_i16m4_i16m1:
3656 case RISCV::BI__builtin_rvv_vget_v_i32m4_i32m1:
3657 case RISCV::BI__builtin_rvv_vget_v_i64m4_i64m1:
3658 case RISCV::BI__builtin_rvv_vget_v_f32m4_f32m1:
3659 case RISCV::BI__builtin_rvv_vget_v_f64m4_f64m1:
3660 case RISCV::BI__builtin_rvv_vget_v_u8m4_u8m1:
3661 case RISCV::BI__builtin_rvv_vget_v_u16m4_u16m1:
3662 case RISCV::BI__builtin_rvv_vget_v_u32m4_u32m1:
3663 case RISCV::BI__builtin_rvv_vget_v_u64m4_u64m1:
3664 case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m2:
3665 case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m2:
3666 case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m2:
3667 case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m2:
3668 case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m2:
3669 case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m2:
3670 case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m2:
3671 case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m2:
3672 case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m2:
3673 case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m2:
3674 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
3675 case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m1:
3676 case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m1:
3677 case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m1:
3678 case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m1:
3679 case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m1:
3680 case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m1:
3681 case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m1:
3682 case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m1:
3683 case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m1:
3684 case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m1:
3685 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7);
3686 case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m2:
3687 case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m2:
3688 case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m2:
3689 case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m2:
3690 case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m2:
3691 case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m2:
3692 case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m2:
3693 case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m2:
3694 case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m2:
3695 case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m2:
3696 case RISCV::BI__builtin_rvv_vset_v_i8m2_i8m4:
3697 case RISCV::BI__builtin_rvv_vset_v_i16m2_i16m4:
3698 case RISCV::BI__builtin_rvv_vset_v_i32m2_i32m4:
3699 case RISCV::BI__builtin_rvv_vset_v_i64m2_i64m4:
3700 case RISCV::BI__builtin_rvv_vset_v_f32m2_f32m4:
3701 case RISCV::BI__builtin_rvv_vset_v_f64m2_f64m4:
3702 case RISCV::BI__builtin_rvv_vset_v_u8m2_u8m4:
3703 case RISCV::BI__builtin_rvv_vset_v_u16m2_u16m4:
3704 case RISCV::BI__builtin_rvv_vset_v_u32m2_u32m4:
3705 case RISCV::BI__builtin_rvv_vset_v_u64m2_u64m4:
3706 case RISCV::BI__builtin_rvv_vset_v_i8m4_i8m8:
3707 case RISCV::BI__builtin_rvv_vset_v_i16m4_i16m8:
3708 case RISCV::BI__builtin_rvv_vset_v_i32m4_i32m8:
3709 case RISCV::BI__builtin_rvv_vset_v_i64m4_i64m8:
3710 case RISCV::BI__builtin_rvv_vset_v_f32m4_f32m8:
3711 case RISCV::BI__builtin_rvv_vset_v_f64m4_f64m8:
3712 case RISCV::BI__builtin_rvv_vset_v_u8m4_u8m8:
3713 case RISCV::BI__builtin_rvv_vset_v_u16m4_u16m8:
3714 case RISCV::BI__builtin_rvv_vset_v_u32m4_u32m8:
3715 case RISCV::BI__builtin_rvv_vset_v_u64m4_u64m8:
3716 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3717 case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m4:
3718 case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m4:
3719 case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m4:
3720 case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m4:
3721 case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m4:
3722 case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m4:
3723 case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m4:
3724 case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m4:
3725 case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m4:
3726 case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m4:
3727 case RISCV::BI__builtin_rvv_vset_v_i8m2_i8m8:
3728 case RISCV::BI__builtin_rvv_vset_v_i16m2_i16m8:
3729 case RISCV::BI__builtin_rvv_vset_v_i32m2_i32m8:
3730 case RISCV::BI__builtin_rvv_vset_v_i64m2_i64m8:
3731 case RISCV::BI__builtin_rvv_vset_v_f32m2_f32m8:
3732 case RISCV::BI__builtin_rvv_vset_v_f64m2_f64m8:
3733 case RISCV::BI__builtin_rvv_vset_v_u8m2_u8m8:
3734 case RISCV::BI__builtin_rvv_vset_v_u16m2_u16m8:
3735 case RISCV::BI__builtin_rvv_vset_v_u32m2_u32m8:
3736 case RISCV::BI__builtin_rvv_vset_v_u64m2_u64m8:
3737 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
3738 case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m8:
3739 case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m8:
3740 case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m8:
3741 case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m8:
3742 case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m8:
3743 case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m8:
3744 case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m8:
3745 case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m8:
3746 case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m8:
3747 case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m8:
3748 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7);
3749 }
3750
3751 return false;
3752}
3753
3754bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3755 CallExpr *TheCall) {
3756 if (BuiltinID == SystemZ::BI__builtin_tabort) {
3757 Expr *Arg = TheCall->getArg(0);
3758 if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
3759 if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
3760 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3761 << Arg->getSourceRange();
3762 }
3763
3764 // For intrinsics which take an immediate value as part of the instruction,
3765 // range check them here.
3766 unsigned i = 0, l = 0, u = 0;
3767 switch (BuiltinID) {
3768 default: return false;
3769 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3770 case SystemZ::BI__builtin_s390_verimb:
3771 case SystemZ::BI__builtin_s390_verimh:
3772 case SystemZ::BI__builtin_s390_verimf:
3773 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3774 case SystemZ::BI__builtin_s390_vfaeb:
3775 case SystemZ::BI__builtin_s390_vfaeh:
3776 case SystemZ::BI__builtin_s390_vfaef:
3777 case SystemZ::BI__builtin_s390_vfaebs:
3778 case SystemZ::BI__builtin_s390_vfaehs:
3779 case SystemZ::BI__builtin_s390_vfaefs:
3780 case SystemZ::BI__builtin_s390_vfaezb:
3781 case SystemZ::BI__builtin_s390_vfaezh:
3782 case SystemZ::BI__builtin_s390_vfaezf:
3783 case SystemZ::BI__builtin_s390_vfaezbs:
3784 case SystemZ::BI__builtin_s390_vfaezhs:
3785 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3786 case SystemZ::BI__builtin_s390_vfisb:
3787 case SystemZ::BI__builtin_s390_vfidb:
3788 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3789 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3790 case SystemZ::BI__builtin_s390_vftcisb:
3791 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3792 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3793 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3794 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3795 case SystemZ::BI__builtin_s390_vstrcb:
3796 case SystemZ::BI__builtin_s390_vstrch:
3797 case SystemZ::BI__builtin_s390_vstrcf:
3798 case SystemZ::BI__builtin_s390_vstrczb:
3799 case SystemZ::BI__builtin_s390_vstrczh:
3800 case SystemZ::BI__builtin_s390_vstrczf:
3801 case SystemZ::BI__builtin_s390_vstrcbs:
3802 case SystemZ::BI__builtin_s390_vstrchs:
3803 case SystemZ::BI__builtin_s390_vstrcfs:
3804 case SystemZ::BI__builtin_s390_vstrczbs:
3805 case SystemZ::BI__builtin_s390_vstrczhs:
3806 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3807 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3808 case SystemZ::BI__builtin_s390_vfminsb:
3809 case SystemZ::BI__builtin_s390_vfmaxsb:
3810 case SystemZ::BI__builtin_s390_vfmindb:
3811 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3812 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3813 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3814 case SystemZ::BI__builtin_s390_vclfnhs:
3815 case SystemZ::BI__builtin_s390_vclfnls:
3816 case SystemZ::BI__builtin_s390_vcfn:
3817 case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break;
3818 case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break;
3819 }
3820 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3821}
3822
3823/// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3824/// This checks that the target supports __builtin_cpu_supports and
3825/// that the string argument is constant and valid.
3826static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
3827 CallExpr *TheCall) {
3828 Expr *Arg = TheCall->getArg(0);
3829
3830 // Check if the argument is a string literal.
3831 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3832 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3833 << Arg->getSourceRange();
3834
3835 // Check the contents of the string.
3836 StringRef Feature =
3837 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3838 if (!TI.validateCpuSupports(Feature))
3839 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3840 << Arg->getSourceRange();
3841 return false;
3842}
3843
3844/// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3845/// This checks that the target supports __builtin_cpu_is and
3846/// that the string argument is constant and valid.
3847static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
3848 Expr *Arg = TheCall->getArg(0);
3849
3850 // Check if the argument is a string literal.
3851 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3852 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3853 << Arg->getSourceRange();
3854
3855 // Check the contents of the string.
3856 StringRef Feature =
3857 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3858 if (!TI.validateCpuIs(Feature))
3859 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3860 << Arg->getSourceRange();
3861 return false;
3862}
3863
3864// Check if the rounding mode is legal.
3865bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3866 // Indicates if this instruction has rounding control or just SAE.
3867 bool HasRC = false;
3868
3869 unsigned ArgNum = 0;
3870 switch (BuiltinID) {
3871 default:
3872 return false;
3873 case X86::BI__builtin_ia32_vcvttsd2si32:
3874 case X86::BI__builtin_ia32_vcvttsd2si64:
3875 case X86::BI__builtin_ia32_vcvttsd2usi32:
3876 case X86::BI__builtin_ia32_vcvttsd2usi64:
3877 case X86::BI__builtin_ia32_vcvttss2si32:
3878 case X86::BI__builtin_ia32_vcvttss2si64:
3879 case X86::BI__builtin_ia32_vcvttss2usi32:
3880 case X86::BI__builtin_ia32_vcvttss2usi64:
3881 case X86::BI__builtin_ia32_vcvttsh2si32:
3882 case X86::BI__builtin_ia32_vcvttsh2si64:
3883 case X86::BI__builtin_ia32_vcvttsh2usi32:
3884 case X86::BI__builtin_ia32_vcvttsh2usi64:
3885 ArgNum = 1;
3886 break;
3887 case X86::BI__builtin_ia32_maxpd512:
3888 case X86::BI__builtin_ia32_maxps512:
3889 case X86::BI__builtin_ia32_minpd512:
3890 case X86::BI__builtin_ia32_minps512:
3891 case X86::BI__builtin_ia32_maxph512:
3892 case X86::BI__builtin_ia32_minph512:
3893 ArgNum = 2;
3894 break;
3895 case X86::BI__builtin_ia32_vcvtph2pd512_mask:
3896 case X86::BI__builtin_ia32_vcvtph2psx512_mask:
3897 case X86::BI__builtin_ia32_cvtps2pd512_mask:
3898 case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3899 case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3900 case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3901 case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3902 case X86::BI__builtin_ia32_cvttps2dq512_mask:
3903 case X86::BI__builtin_ia32_cvttps2qq512_mask:
3904 case X86::BI__builtin_ia32_cvttps2udq512_mask:
3905 case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3906 case X86::BI__builtin_ia32_vcvttph2w512_mask:
3907 case X86::BI__builtin_ia32_vcvttph2uw512_mask:
3908 case X86::BI__builtin_ia32_vcvttph2dq512_mask:
3909 case X86::BI__builtin_ia32_vcvttph2udq512_mask:
3910 case X86::BI__builtin_ia32_vcvttph2qq512_mask:
3911 case X86::BI__builtin_ia32_vcvttph2uqq512_mask:
3912 case X86::BI__builtin_ia32_exp2pd_mask:
3913 case X86::BI__builtin_ia32_exp2ps_mask:
3914 case X86::BI__builtin_ia32_getexppd512_mask:
3915 case X86::BI__builtin_ia32_getexpps512_mask:
3916 case X86::BI__builtin_ia32_getexpph512_mask:
3917 case X86::BI__builtin_ia32_rcp28pd_mask:
3918 case X86::BI__builtin_ia32_rcp28ps_mask:
3919 case X86::BI__builtin_ia32_rsqrt28pd_mask:
3920 case X86::BI__builtin_ia32_rsqrt28ps_mask:
3921 case X86::BI__builtin_ia32_vcomisd:
3922 case X86::BI__builtin_ia32_vcomiss:
3923 case X86::BI__builtin_ia32_vcomish:
3924 case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3925 ArgNum = 3;
3926 break;
3927 case X86::BI__builtin_ia32_cmppd512_mask:
3928 case X86::BI__builtin_ia32_cmpps512_mask:
3929 case X86::BI__builtin_ia32_cmpsd_mask:
3930 case X86::BI__builtin_ia32_cmpss_mask:
3931 case X86::BI__builtin_ia32_cmpsh_mask:
3932 case X86::BI__builtin_ia32_vcvtsh2sd_round_mask:
3933 case X86::BI__builtin_ia32_vcvtsh2ss_round_mask:
3934 case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3935 case X86::BI__builtin_ia32_getexpsd128_round_mask:
3936 case X86::BI__builtin_ia32_getexpss128_round_mask:
3937 case X86::BI__builtin_ia32_getexpsh128_round_mask:
3938 case X86::BI__builtin_ia32_getmantpd512_mask:
3939 case X86::BI__builtin_ia32_getmantps512_mask:
3940 case X86::BI__builtin_ia32_getmantph512_mask:
3941 case X86::BI__builtin_ia32_maxsd_round_mask:
3942 case X86::BI__builtin_ia32_maxss_round_mask:
3943 case X86::BI__builtin_ia32_maxsh_round_mask:
3944 case X86::BI__builtin_ia32_minsd_round_mask:
3945 case X86::BI__builtin_ia32_minss_round_mask:
3946 case X86::BI__builtin_ia32_minsh_round_mask:
3947 case X86::BI__builtin_ia32_rcp28sd_round_mask:
3948 case X86::BI__builtin_ia32_rcp28ss_round_mask:
3949 case X86::BI__builtin_ia32_reducepd512_mask:
3950 case X86::BI__builtin_ia32_reduceps512_mask:
3951 case X86::BI__builtin_ia32_reduceph512_mask:
3952 case X86::BI__builtin_ia32_rndscalepd_mask:
3953 case X86::BI__builtin_ia32_rndscaleps_mask:
3954 case X86::BI__builtin_ia32_rndscaleph_mask:
3955 case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3956 case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3957 ArgNum = 4;
3958 break;
3959 case X86::BI__builtin_ia32_fixupimmpd512_mask:
3960 case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3961 case X86::BI__builtin_ia32_fixupimmps512_mask:
3962 case X86::BI__builtin_ia32_fixupimmps512_maskz:
3963 case X86::BI__builtin_ia32_fixupimmsd_mask:
3964 case X86::BI__builtin_ia32_fixupimmsd_maskz:
3965 case X86::BI__builtin_ia32_fixupimmss_mask:
3966 case X86::BI__builtin_ia32_fixupimmss_maskz:
3967 case X86::BI__builtin_ia32_getmantsd_round_mask:
3968 case X86::BI__builtin_ia32_getmantss_round_mask:
3969 case X86::BI__builtin_ia32_getmantsh_round_mask:
3970 case X86::BI__builtin_ia32_rangepd512_mask:
3971 case X86::BI__builtin_ia32_rangeps512_mask:
3972 case X86::BI__builtin_ia32_rangesd128_round_mask:
3973 case X86::BI__builtin_ia32_rangess128_round_mask:
3974 case X86::BI__builtin_ia32_reducesd_mask:
3975 case X86::BI__builtin_ia32_reducess_mask:
3976 case X86::BI__builtin_ia32_reducesh_mask:
3977 case X86::BI__builtin_ia32_rndscalesd_round_mask:
3978 case X86::BI__builtin_ia32_rndscaless_round_mask:
3979 case X86::BI__builtin_ia32_rndscalesh_round_mask:
3980 ArgNum = 5;
3981 break;
3982 case X86::BI__builtin_ia32_vcvtsd2si64:
3983 case X86::BI__builtin_ia32_vcvtsd2si32:
3984 case X86::BI__builtin_ia32_vcvtsd2usi32:
3985 case X86::BI__builtin_ia32_vcvtsd2usi64:
3986 case X86::BI__builtin_ia32_vcvtss2si32:
3987 case X86::BI__builtin_ia32_vcvtss2si64:
3988 case X86::BI__builtin_ia32_vcvtss2usi32:
3989 case X86::BI__builtin_ia32_vcvtss2usi64:
3990 case X86::BI__builtin_ia32_vcvtsh2si32:
3991 case X86::BI__builtin_ia32_vcvtsh2si64:
3992 case X86::BI__builtin_ia32_vcvtsh2usi32:
3993 case X86::BI__builtin_ia32_vcvtsh2usi64:
3994 case X86::BI__builtin_ia32_sqrtpd512:
3995 case X86::BI__builtin_ia32_sqrtps512:
3996 case X86::BI__builtin_ia32_sqrtph512:
3997 ArgNum = 1;
3998 HasRC = true;
3999 break;
4000 case X86::BI__builtin_ia32_addph512:
4001 case X86::BI__builtin_ia32_divph512:
4002 case X86::BI__builtin_ia32_mulph512:
4003 case X86::BI__builtin_ia32_subph512:
4004 case X86::BI__builtin_ia32_addpd512:
4005 case X86::BI__builtin_ia32_addps512:
4006 case X86::BI__builtin_ia32_divpd512:
4007 case X86::BI__builtin_ia32_divps512:
4008 case X86::BI__builtin_ia32_mulpd512:
4009 case X86::BI__builtin_ia32_mulps512:
4010 case X86::BI__builtin_ia32_subpd512:
4011 case X86::BI__builtin_ia32_subps512:
4012 case X86::BI__builtin_ia32_cvtsi2sd64:
4013 case X86::BI__builtin_ia32_cvtsi2ss32:
4014 case X86::BI__builtin_ia32_cvtsi2ss64:
4015 case X86::BI__builtin_ia32_cvtusi2sd64:
4016 case X86::BI__builtin_ia32_cvtusi2ss32:
4017 case X86::BI__builtin_ia32_cvtusi2ss64:
4018 case X86::BI__builtin_ia32_vcvtusi2sh:
4019 case X86::BI__builtin_ia32_vcvtusi642sh:
4020 case X86::BI__builtin_ia32_vcvtsi2sh:
4021 case X86::BI__builtin_ia32_vcvtsi642sh:
4022 ArgNum = 2;
4023 HasRC = true;
4024 break;
4025 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
4026 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
4027 case X86::BI__builtin_ia32_vcvtpd2ph512_mask:
4028 case X86::BI__builtin_ia32_vcvtps2phx512_mask:
4029 case X86::BI__builtin_ia32_cvtpd2ps512_mask:
4030 case X86::BI__builtin_ia32_cvtpd2dq512_mask:
4031 case X86::BI__builtin_ia32_cvtpd2qq512_mask:
4032 case X86::BI__builtin_ia32_cvtpd2udq512_mask:
4033 case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
4034 case X86::BI__builtin_ia32_cvtps2dq512_mask:
4035 case X86::BI__builtin_ia32_cvtps2qq512_mask:
4036 case X86::BI__builtin_ia32_cvtps2udq512_mask:
4037 case X86::BI__builtin_ia32_cvtps2uqq512_mask:
4038 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
4039 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
4040 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
4041 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
4042 case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
4043 case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
4044 case X86::BI__builtin_ia32_vcvtw2ph512_mask:
4045 case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
4046 case X86::BI__builtin_ia32_vcvtph2w512_mask:
4047 case X86::BI__builtin_ia32_vcvtph2uw512_mask:
4048 case X86::BI__builtin_ia32_vcvtph2dq512_mask:
4049 case X86::BI__builtin_ia32_vcvtph2udq512_mask:
4050 case X86::BI__builtin_ia32_vcvtph2qq512_mask:
4051 case X86::BI__builtin_ia32_vcvtph2uqq512_mask:
4052 case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
4053 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
4054 ArgNum = 3;
4055 HasRC = true;
4056 break;
4057 case X86::BI__builtin_ia32_addsh_round_mask:
4058 case X86::BI__builtin_ia32_addss_round_mask:
4059 case X86::BI__builtin_ia32_addsd_round_mask:
4060 case X86::BI__builtin_ia32_divsh_round_mask:
4061 case X86::BI__builtin_ia32_divss_round_mask:
4062 case X86::BI__builtin_ia32_divsd_round_mask:
4063 case X86::BI__builtin_ia32_mulsh_round_mask:
4064 case X86::BI__builtin_ia32_mulss_round_mask:
4065 case X86::BI__builtin_ia32_mulsd_round_mask:
4066 case X86::BI__builtin_ia32_subsh_round_mask:
4067 case X86::BI__builtin_ia32_subss_round_mask:
4068 case X86::BI__builtin_ia32_subsd_round_mask:
4069 case X86::BI__builtin_ia32_scalefph512_mask:
4070 case X86::BI__builtin_ia32_scalefpd512_mask:
4071 case X86::BI__builtin_ia32_scalefps512_mask:
4072 case X86::BI__builtin_ia32_scalefsd_round_mask:
4073 case X86::BI__builtin_ia32_scalefss_round_mask:
4074 case X86::BI__builtin_ia32_scalefsh_round_mask:
4075 case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
4076 case X86::BI__builtin_ia32_vcvtss2sh_round_mask:
4077 case X86::BI__builtin_ia32_vcvtsd2sh_round_mask:
4078 case X86::BI__builtin_ia32_sqrtsd_round_mask:
4079 case X86::BI__builtin_ia32_sqrtss_round_mask:
4080 case X86::BI__builtin_ia32_sqrtsh_round_mask:
4081 case X86::BI__builtin_ia32_vfmaddsd3_mask:
4082 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
4083 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
4084 case X86::BI__builtin_ia32_vfmaddss3_mask:
4085 case X86::BI__builtin_ia32_vfmaddss3_maskz:
4086 case X86::BI__builtin_ia32_vfmaddss3_mask3:
4087 case X86::BI__builtin_ia32_vfmaddsh3_mask:
4088 case X86::BI__builtin_ia32_vfmaddsh3_maskz:
4089 case X86::BI__builtin_ia32_vfmaddsh3_mask3:
4090 case X86::BI__builtin_ia32_vfmaddpd512_mask:
4091 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
4092 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
4093 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
4094 case X86::BI__builtin_ia32_vfmaddps512_mask:
4095 case X86::BI__builtin_ia32_vfmaddps512_maskz:
4096 case X86::BI__builtin_ia32_vfmaddps512_mask3:
4097 case X86::BI__builtin_ia32_vfmsubps512_mask3:
4098 case X86::BI__builtin_ia32_vfmaddph512_mask:
4099 case X86::BI__builtin_ia32_vfmaddph512_maskz:
4100 case X86::BI__builtin_ia32_vfmaddph512_mask3:
4101 case X86::BI__builtin_ia32_vfmsubph512_mask3:
4102 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
4103 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
4104 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
4105 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
4106 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
4107 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
4108 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
4109 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
4110 case X86::BI__builtin_ia32_vfmaddsubph512_mask:
4111 case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
4112 case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
4113 case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
4114 ArgNum = 4;
4115 HasRC = true;
4116 break;
4117 }
4118
4119 llvm::APSInt Result;
4120
4121 // We can't check the value of a dependent argument.
4122 Expr *Arg = TheCall->getArg(ArgNum);
4123 if (Arg->isTypeDependent() || Arg->isValueDependent())
4124 return false;
4125
4126 // Check constant-ness first.
4127 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4128 return true;
4129
4130 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
4131 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
4132 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
4133 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
4134 if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
4135 Result == 8/*ROUND_NO_EXC*/ ||
4136 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
4137 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
4138 return false;
4139
4140 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
4141 << Arg->getSourceRange();
4142}
4143
4144// Check if the gather/scatter scale is legal.
4145bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
4146 CallExpr *TheCall) {
4147 unsigned ArgNum = 0;
4148 switch (BuiltinID) {
4149 default:
4150 return false;
4151 case X86::BI__builtin_ia32_gatherpfdpd:
4152 case X86::BI__builtin_ia32_gatherpfdps:
4153 case X86::BI__builtin_ia32_gatherpfqpd:
4154 case X86::BI__builtin_ia32_gatherpfqps:
4155 case X86::BI__builtin_ia32_scatterpfdpd:
4156 case X86::BI__builtin_ia32_scatterpfdps:
4157 case X86::BI__builtin_ia32_scatterpfqpd:
4158 case X86::BI__builtin_ia32_scatterpfqps:
4159 ArgNum = 3;
4160 break;
4161 case X86::BI__builtin_ia32_gatherd_pd:
4162 case X86::BI__builtin_ia32_gatherd_pd256:
4163 case X86::BI__builtin_ia32_gatherq_pd:
4164 case X86::BI__builtin_ia32_gatherq_pd256:
4165 case X86::BI__builtin_ia32_gatherd_ps:
4166 case X86::BI__builtin_ia32_gatherd_ps256:
4167 case X86::BI__builtin_ia32_gatherq_ps:
4168 case X86::BI__builtin_ia32_gatherq_ps256:
4169 case X86::BI__builtin_ia32_gatherd_q:
4170 case X86::BI__builtin_ia32_gatherd_q256:
4171 case X86::BI__builtin_ia32_gatherq_q:
4172 case X86::BI__builtin_ia32_gatherq_q256:
4173 case X86::BI__builtin_ia32_gatherd_d:
4174 case X86::BI__builtin_ia32_gatherd_d256:
4175 case X86::BI__builtin_ia32_gatherq_d:
4176 case X86::BI__builtin_ia32_gatherq_d256:
4177 case X86::BI__builtin_ia32_gather3div2df:
4178 case X86::BI__builtin_ia32_gather3div2di:
4179 case X86::BI__builtin_ia32_gather3div4df:
4180 case X86::BI__builtin_ia32_gather3div4di:
4181 case X86::BI__builtin_ia32_gather3div4sf:
4182 case X86::BI__builtin_ia32_gather3div4si:
4183 case X86::BI__builtin_ia32_gather3div8sf:
4184 case X86::BI__builtin_ia32_gather3div8si:
4185 case X86::BI__builtin_ia32_gather3siv2df:
4186 case X86::BI__builtin_ia32_gather3siv2di:
4187 case X86::BI__builtin_ia32_gather3siv4df:
4188 case X86::BI__builtin_ia32_gather3siv4di:
4189 case X86::BI__builtin_ia32_gather3siv4sf:
4190 case X86::BI__builtin_ia32_gather3siv4si:
4191 case X86::BI__builtin_ia32_gather3siv8sf:
4192 case X86::BI__builtin_ia32_gather3siv8si:
4193 case X86::BI__builtin_ia32_gathersiv8df:
4194 case X86::BI__builtin_ia32_gathersiv16sf:
4195 case X86::BI__builtin_ia32_gatherdiv8df:
4196 case X86::BI__builtin_ia32_gatherdiv16sf:
4197 case X86::BI__builtin_ia32_gathersiv8di:
4198 case X86::BI__builtin_ia32_gathersiv16si:
4199 case X86::BI__builtin_ia32_gatherdiv8di:
4200 case X86::BI__builtin_ia32_gatherdiv16si:
4201 case X86::BI__builtin_ia32_scatterdiv2df:
4202 case X86::BI__builtin_ia32_scatterdiv2di:
4203 case X86::BI__builtin_ia32_scatterdiv4df:
4204 case X86::BI__builtin_ia32_scatterdiv4di:
4205 case X86::BI__builtin_ia32_scatterdiv4sf:
4206 case X86::BI__builtin_ia32_scatterdiv4si:
4207 case X86::BI__builtin_ia32_scatterdiv8sf:
4208 case X86::BI__builtin_ia32_scatterdiv8si:
4209 case X86::BI__builtin_ia32_scattersiv2df:
4210 case X86::BI__builtin_ia32_scattersiv2di:
4211 case X86::BI__builtin_ia32_scattersiv4df:
4212 case X86::BI__builtin_ia32_scattersiv4di:
4213 case X86::BI__builtin_ia32_scattersiv4sf:
4214 case X86::BI__builtin_ia32_scattersiv4si:
4215 case X86::BI__builtin_ia32_scattersiv8sf:
4216 case X86::BI__builtin_ia32_scattersiv8si:
4217 case X86::BI__builtin_ia32_scattersiv8df:
4218 case X86::BI__builtin_ia32_scattersiv16sf:
4219 case X86::BI__builtin_ia32_scatterdiv8df:
4220 case X86::BI__builtin_ia32_scatterdiv16sf:
4221 case X86::BI__builtin_ia32_scattersiv8di:
4222 case X86::BI__builtin_ia32_scattersiv16si:
4223 case X86::BI__builtin_ia32_scatterdiv8di:
4224 case X86::BI__builtin_ia32_scatterdiv16si:
4225 ArgNum = 4;
4226 break;
4227 }
4228
4229 llvm::APSInt Result;
4230
4231 // We can't check the value of a dependent argument.
4232 Expr *Arg = TheCall->getArg(ArgNum);
4233 if (Arg->isTypeDependent() || Arg->isValueDependent())
4234 return false;
4235
4236 // Check constant-ness first.
4237 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4238 return true;
4239
4240 if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
4241 return false;
4242
4243 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
4244 << Arg->getSourceRange();
4245}
4246
4247enum { TileRegLow = 0, TileRegHigh = 7 };
4248
4249bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
4250 ArrayRef<int> ArgNums) {
4251 for (int ArgNum : ArgNums) {
4252 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
4253 return true;
4254 }
4255 return false;
4256}
4257
4258bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
4259 ArrayRef<int> ArgNums) {
4260 // Because the max number of tile register is TileRegHigh + 1, so here we use
4261 // each bit to represent the usage of them in bitset.
4262 std::bitset<TileRegHigh + 1> ArgValues;
4263 for (int ArgNum : ArgNums) {
4264 Expr *Arg = TheCall->getArg(ArgNum);
4265 if (Arg->isTypeDependent() || Arg->isValueDependent())
4266 continue;
4267
4268 llvm::APSInt Result;
4269 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4270 return true;
4271 int ArgExtValue = Result.getExtValue();
4272 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&(static_cast <bool> ((ArgExtValue >= TileRegLow || ArgExtValue
<= TileRegHigh) && "Incorrect tile register num."
) ? void (0) : __assert_fail ("(ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && \"Incorrect tile register num.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 4273, __extension__ __PRETTY_FUNCTION__))
4273 "Incorrect tile register num.")(static_cast <bool> ((ArgExtValue >= TileRegLow || ArgExtValue
<= TileRegHigh) && "Incorrect tile register num."
) ? void (0) : __assert_fail ("(ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && \"Incorrect tile register num.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 4273, __extension__ __PRETTY_FUNCTION__))
;
4274 if (ArgValues.test(ArgExtValue))
4275 return Diag(TheCall->getBeginLoc(),
4276 diag::err_x86_builtin_tile_arg_duplicate)
4277 << TheCall->getArg(ArgNum)->getSourceRange();
4278 ArgValues.set(ArgExtValue);
4279 }
4280 return false;
4281}
4282
4283bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
4284 ArrayRef<int> ArgNums) {
4285 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
4286 CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
4287}
4288
4289bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
4290 switch (BuiltinID) {
4291 default:
4292 return false;
4293 case X86::BI__builtin_ia32_tileloadd64:
4294 case X86::BI__builtin_ia32_tileloaddt164:
4295 case X86::BI__builtin_ia32_tilestored64:
4296 case X86::BI__builtin_ia32_tilezero:
4297 return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
4298 case X86::BI__builtin_ia32_tdpbssd:
4299 case X86::BI__builtin_ia32_tdpbsud:
4300 case X86::BI__builtin_ia32_tdpbusd:
4301 case X86::BI__builtin_ia32_tdpbuud:
4302 case X86::BI__builtin_ia32_tdpbf16ps:
4303 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
4304 }
4305}
4306static bool isX86_32Builtin(unsigned BuiltinID) {
4307 // These builtins only work on x86-32 targets.
4308 switch (BuiltinID) {
4309 case X86::BI__builtin_ia32_readeflags_u32:
4310 case X86::BI__builtin_ia32_writeeflags_u32:
4311 return true;
4312 }
4313
4314 return false;
4315}
4316
4317bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
4318 CallExpr *TheCall) {
4319 if (BuiltinID == X86::BI__builtin_cpu_supports)
4320 return SemaBuiltinCpuSupports(*this, TI, TheCall);
4321
4322 if (BuiltinID == X86::BI__builtin_cpu_is)
4323 return SemaBuiltinCpuIs(*this, TI, TheCall);
4324
4325 // Check for 32-bit only builtins on a 64-bit target.
4326 const llvm::Triple &TT = TI.getTriple();
4327 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
4328 return Diag(TheCall->getCallee()->getBeginLoc(),
4329 diag::err_32_bit_builtin_64_bit_tgt);
4330
4331 // If the intrinsic has rounding or SAE make sure its valid.
4332 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
4333 return true;
4334
4335 // If the intrinsic has a gather/scatter scale immediate make sure its valid.
4336 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
4337 return true;
4338
4339 // If the intrinsic has a tile arguments, make sure they are valid.
4340 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
4341 return true;
4342
4343 // For intrinsics which take an immediate value as part of the instruction,
4344 // range check them here.
4345 int i = 0, l = 0, u = 0;
4346 switch (BuiltinID) {
4347 default:
4348 return false;
4349 case X86::BI__builtin_ia32_vec_ext_v2si:
4350 case X86::BI__builtin_ia32_vec_ext_v2di:
4351 case X86::BI__builtin_ia32_vextractf128_pd256:
4352 case X86::BI__builtin_ia32_vextractf128_ps256:
4353 case X86::BI__builtin_ia32_vextractf128_si256:
4354 case X86::BI__builtin_ia32_extract128i256:
4355 case X86::BI__builtin_ia32_extractf64x4_mask:
4356 case X86::BI__builtin_ia32_extracti64x4_mask:
4357 case X86::BI__builtin_ia32_extractf32x8_mask:
4358 case X86::BI__builtin_ia32_extracti32x8_mask:
4359 case X86::BI__builtin_ia32_extractf64x2_256_mask:
4360 case X86::BI__builtin_ia32_extracti64x2_256_mask:
4361 case X86::BI__builtin_ia32_extractf32x4_256_mask:
4362 case X86::BI__builtin_ia32_extracti32x4_256_mask:
4363 i = 1; l = 0; u = 1;
4364 break;
4365 case X86::BI__builtin_ia32_vec_set_v2di:
4366 case X86::BI__builtin_ia32_vinsertf128_pd256:
4367 case X86::BI__builtin_ia32_vinsertf128_ps256:
4368 case X86::BI__builtin_ia32_vinsertf128_si256:
4369 case X86::BI__builtin_ia32_insert128i256:
4370 case X86::BI__builtin_ia32_insertf32x8:
4371 case X86::BI__builtin_ia32_inserti32x8:
4372 case X86::BI__builtin_ia32_insertf64x4:
4373 case X86::BI__builtin_ia32_inserti64x4:
4374 case X86::BI__builtin_ia32_insertf64x2_256:
4375 case X86::BI__builtin_ia32_inserti64x2_256:
4376 case X86::BI__builtin_ia32_insertf32x4_256:
4377 case X86::BI__builtin_ia32_inserti32x4_256:
4378 i = 2; l = 0; u = 1;
4379 break;
4380 case X86::BI__builtin_ia32_vpermilpd:
4381 case X86::BI__builtin_ia32_vec_ext_v4hi:
4382 case X86::BI__builtin_ia32_vec_ext_v4si:
4383 case X86::BI__builtin_ia32_vec_ext_v4sf:
4384 case X86::BI__builtin_ia32_vec_ext_v4di:
4385 case X86::BI__builtin_ia32_extractf32x4_mask:
4386 case X86::BI__builtin_ia32_extracti32x4_mask:
4387 case X86::BI__builtin_ia32_extractf64x2_512_mask:
4388 case X86::BI__builtin_ia32_extracti64x2_512_mask:
4389 i = 1; l = 0; u = 3;
4390 break;
4391 case X86::BI_mm_prefetch:
4392 case X86::BI__builtin_ia32_vec_ext_v8hi:
4393 case X86::BI__builtin_ia32_vec_ext_v8si:
4394 i = 1; l = 0; u = 7;
4395 break;
4396 case X86::BI__builtin_ia32_sha1rnds4:
4397 case X86::BI__builtin_ia32_blendpd:
4398 case X86::BI__builtin_ia32_shufpd:
4399 case X86::BI__builtin_ia32_vec_set_v4hi:
4400 case X86::BI__builtin_ia32_vec_set_v4si:
4401 case X86::BI__builtin_ia32_vec_set_v4di:
4402 case X86::BI__builtin_ia32_shuf_f32x4_256:
4403 case X86::BI__builtin_ia32_shuf_f64x2_256:
4404 case X86::BI__builtin_ia32_shuf_i32x4_256:
4405 case X86::BI__builtin_ia32_shuf_i64x2_256:
4406 case X86::BI__builtin_ia32_insertf64x2_512:
4407 case X86::BI__builtin_ia32_inserti64x2_512:
4408 case X86::BI__builtin_ia32_insertf32x4:
4409 case X86::BI__builtin_ia32_inserti32x4:
4410 i = 2; l = 0; u = 3;
4411 break;
4412 case X86::BI__builtin_ia32_vpermil2pd:
4413 case X86::BI__builtin_ia32_vpermil2pd256:
4414 case X86::BI__builtin_ia32_vpermil2ps:
4415 case X86::BI__builtin_ia32_vpermil2ps256:
4416 i = 3; l = 0; u = 3;
4417 break;
4418 case X86::BI__builtin_ia32_cmpb128_mask:
4419 case X86::BI__builtin_ia32_cmpw128_mask:
4420 case X86::BI__builtin_ia32_cmpd128_mask:
4421 case X86::BI__builtin_ia32_cmpq128_mask:
4422 case X86::BI__builtin_ia32_cmpb256_mask:
4423 case X86::BI__builtin_ia32_cmpw256_mask:
4424 case X86::BI__builtin_ia32_cmpd256_mask:
4425 case X86::BI__builtin_ia32_cmpq256_mask:
4426 case X86::BI__builtin_ia32_cmpb512_mask:
4427 case X86::BI__builtin_ia32_cmpw512_mask:
4428 case X86::BI__builtin_ia32_cmpd512_mask:
4429 case X86::BI__builtin_ia32_cmpq512_mask:
4430 case X86::BI__builtin_ia32_ucmpb128_mask:
4431 case X86::BI__builtin_ia32_ucmpw128_mask:
4432 case X86::BI__builtin_ia32_ucmpd128_mask:
4433 case X86::BI__builtin_ia32_ucmpq128_mask:
4434 case X86::BI__builtin_ia32_ucmpb256_mask:
4435 case X86::BI__builtin_ia32_ucmpw256_mask:
4436 case X86::BI__builtin_ia32_ucmpd256_mask:
4437 case X86::BI__builtin_ia32_ucmpq256_mask:
4438 case X86::BI__builtin_ia32_ucmpb512_mask:
4439 case X86::BI__builtin_ia32_ucmpw512_mask:
4440 case X86::BI__builtin_ia32_ucmpd512_mask:
4441 case X86::BI__builtin_ia32_ucmpq512_mask:
4442 case X86::BI__builtin_ia32_vpcomub:
4443 case X86::BI__builtin_ia32_vpcomuw:
4444 case X86::BI__builtin_ia32_vpcomud:
4445 case X86::BI__builtin_ia32_vpcomuq:
4446 case X86::BI__builtin_ia32_vpcomb:
4447 case X86::BI__builtin_ia32_vpcomw:
4448 case X86::BI__builtin_ia32_vpcomd:
4449 case X86::BI__builtin_ia32_vpcomq:
4450 case X86::BI__builtin_ia32_vec_set_v8hi:
4451 case X86::BI__builtin_ia32_vec_set_v8si:
4452 i = 2; l = 0; u = 7;
4453 break;
4454 case X86::BI__builtin_ia32_vpermilpd256:
4455 case X86::BI__builtin_ia32_roundps:
4456 case X86::BI__builtin_ia32_roundpd:
4457 case X86::BI__builtin_ia32_roundps256:
4458 case X86::BI__builtin_ia32_roundpd256:
4459 case X86::BI__builtin_ia32_getmantpd128_mask:
4460 case X86::BI__builtin_ia32_getmantpd256_mask:
4461 case X86::BI__builtin_ia32_getmantps128_mask:
4462 case X86::BI__builtin_ia32_getmantps256_mask:
4463 case X86::BI__builtin_ia32_getmantpd512_mask:
4464 case X86::BI__builtin_ia32_getmantps512_mask:
4465 case X86::BI__builtin_ia32_getmantph128_mask:
4466 case X86::BI__builtin_ia32_getmantph256_mask:
4467 case X86::BI__builtin_ia32_getmantph512_mask:
4468 case X86::BI__builtin_ia32_vec_ext_v16qi:
4469 case X86::BI__builtin_ia32_vec_ext_v16hi:
4470 i = 1; l = 0; u = 15;
4471 break;
4472 case X86::BI__builtin_ia32_pblendd128:
4473 case X86::BI__builtin_ia32_blendps:
4474 case X86::BI__builtin_ia32_blendpd256:
4475 case X86::BI__builtin_ia32_shufpd256:
4476 case X86::BI__builtin_ia32_roundss:
4477 case X86::BI__builtin_ia32_roundsd:
4478 case X86::BI__builtin_ia32_rangepd128_mask:
4479 case X86::BI__builtin_ia32_rangepd256_mask:
4480 case X86::BI__builtin_ia32_rangepd512_mask:
4481 case X86::BI__builtin_ia32_rangeps128_mask:
4482 case X86::BI__builtin_ia32_rangeps256_mask:
4483 case X86::BI__builtin_ia32_rangeps512_mask:
4484 case X86::BI__builtin_ia32_getmantsd_round_mask:
4485 case X86::BI__builtin_ia32_getmantss_round_mask:
4486 case X86::BI__builtin_ia32_getmantsh_round_mask:
4487 case X86::BI__builtin_ia32_vec_set_v16qi:
4488 case X86::BI__builtin_ia32_vec_set_v16hi:
4489 i = 2; l = 0; u = 15;
4490 break;
4491 case X86::BI__builtin_ia32_vec_ext_v32qi:
4492 i = 1; l = 0; u = 31;
4493 break;
4494 case X86::BI__builtin_ia32_cmpps:
4495 case X86::BI__builtin_ia32_cmpss:
4496 case X86::BI__builtin_ia32_cmppd:
4497 case X86::BI__builtin_ia32_cmpsd:
4498 case X86::BI__builtin_ia32_cmpps256:
4499 case X86::BI__builtin_ia32_cmppd256:
4500 case X86::BI__builtin_ia32_cmpps128_mask:
4501 case X86::BI__builtin_ia32_cmppd128_mask:
4502 case X86::BI__builtin_ia32_cmpps256_mask:
4503 case X86::BI__builtin_ia32_cmppd256_mask:
4504 case X86::BI__builtin_ia32_cmpps512_mask:
4505 case X86::BI__builtin_ia32_cmppd512_mask:
4506 case X86::BI__builtin_ia32_cmpsd_mask:
4507 case X86::BI__builtin_ia32_cmpss_mask:
4508 case X86::BI__builtin_ia32_vec_set_v32qi:
4509 i = 2; l = 0; u = 31;
4510 break;
4511 case X86::BI__builtin_ia32_permdf256:
4512 case X86::BI__builtin_ia32_permdi256:
4513 case X86::BI__builtin_ia32_permdf512:
4514 case X86::BI__builtin_ia32_permdi512:
4515 case X86::BI__builtin_ia32_vpermilps:
4516 case X86::BI__builtin_ia32_vpermilps256:
4517 case X86::BI__builtin_ia32_vpermilpd512:
4518 case X86::BI__builtin_ia32_vpermilps512:
4519 case X86::BI__builtin_ia32_pshufd:
4520 case X86::BI__builtin_ia32_pshufd256:
4521 case X86::BI__builtin_ia32_pshufd512:
4522 case X86::BI__builtin_ia32_pshufhw:
4523 case X86::BI__builtin_ia32_pshufhw256:
4524 case X86::BI__builtin_ia32_pshufhw512:
4525 case X86::BI__builtin_ia32_pshuflw:
4526 case X86::BI__builtin_ia32_pshuflw256:
4527 case X86::BI__builtin_ia32_pshuflw512:
4528 case X86::BI__builtin_ia32_vcvtps2ph:
4529 case X86::BI__builtin_ia32_vcvtps2ph_mask:
4530 case X86::BI__builtin_ia32_vcvtps2ph256:
4531 case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4532 case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4533 case X86::BI__builtin_ia32_rndscaleps_128_mask:
4534 case X86::BI__builtin_ia32_rndscalepd_128_mask:
4535 case X86::BI__builtin_ia32_rndscaleps_256_mask:
4536 case X86::BI__builtin_ia32_rndscalepd_256_mask:
4537 case X86::BI__builtin_ia32_rndscaleps_mask:
4538 case X86::BI__builtin_ia32_rndscalepd_mask:
4539 case X86::BI__builtin_ia32_rndscaleph_mask:
4540 case X86::BI__builtin_ia32_reducepd128_mask:
4541 case X86::BI__builtin_ia32_reducepd256_mask:
4542 case X86::BI__builtin_ia32_reducepd512_mask:
4543 case X86::BI__builtin_ia32_reduceps128_mask:
4544 case X86::BI__builtin_ia32_reduceps256_mask:
4545 case X86::BI__builtin_ia32_reduceps512_mask:
4546 case X86::BI__builtin_ia32_reduceph128_mask:
4547 case X86::BI__builtin_ia32_reduceph256_mask:
4548 case X86::BI__builtin_ia32_reduceph512_mask:
4549 case X86::BI__builtin_ia32_prold512:
4550 case X86::BI__builtin_ia32_prolq512:
4551 case X86::BI__builtin_ia32_prold128:
4552 case X86::BI__builtin_ia32_prold256:
4553 case X86::BI__builtin_ia32_prolq128:
4554 case X86::BI__builtin_ia32_prolq256:
4555 case X86::BI__builtin_ia32_prord512:
4556 case X86::BI__builtin_ia32_prorq512:
4557 case X86::BI__builtin_ia32_prord128:
4558 case X86::BI__builtin_ia32_prord256:
4559 case X86::BI__builtin_ia32_prorq128:
4560 case X86::BI__builtin_ia32_prorq256:
4561 case X86::BI__builtin_ia32_fpclasspd128_mask:
4562 case X86::BI__builtin_ia32_fpclasspd256_mask:
4563 case X86::BI__builtin_ia32_fpclassps128_mask:
4564 case X86::BI__builtin_ia32_fpclassps256_mask:
4565 case X86::BI__builtin_ia32_fpclassps512_mask:
4566 case X86::BI__builtin_ia32_fpclasspd512_mask:
4567 case X86::BI__builtin_ia32_fpclassph128_mask:
4568 case X86::BI__builtin_ia32_fpclassph256_mask:
4569 case X86::BI__builtin_ia32_fpclassph512_mask:
4570 case X86::BI__builtin_ia32_fpclasssd_mask:
4571 case X86::BI__builtin_ia32_fpclassss_mask:
4572 case X86::BI__builtin_ia32_fpclasssh_mask:
4573 case X86::BI__builtin_ia32_pslldqi128_byteshift:
4574 case X86::BI__builtin_ia32_pslldqi256_byteshift:
4575 case X86::BI__builtin_ia32_pslldqi512_byteshift:
4576 case X86::BI__builtin_ia32_psrldqi128_byteshift:
4577 case X86::BI__builtin_ia32_psrldqi256_byteshift:
4578 case X86::BI__builtin_ia32_psrldqi512_byteshift:
4579 case X86::BI__builtin_ia32_kshiftliqi:
4580 case X86::BI__builtin_ia32_kshiftlihi:
4581 case X86::BI__builtin_ia32_kshiftlisi:
4582 case X86::BI__builtin_ia32_kshiftlidi:
4583 case X86::BI__builtin_ia32_kshiftriqi:
4584 case X86::BI__builtin_ia32_kshiftrihi:
4585 case X86::BI__builtin_ia32_kshiftrisi:
4586 case X86::BI__builtin_ia32_kshiftridi:
4587 i = 1; l = 0; u = 255;
4588 break;
4589 case X86::BI__builtin_ia32_vperm2f128_pd256:
4590 case X86::BI__builtin_ia32_vperm2f128_ps256:
4591 case X86::BI__builtin_ia32_vperm2f128_si256:
4592 case X86::BI__builtin_ia32_permti256:
4593 case X86::BI__builtin_ia32_pblendw128:
4594 case X86::BI__builtin_ia32_pblendw256:
4595 case X86::BI__builtin_ia32_blendps256:
4596 case X86::BI__builtin_ia32_pblendd256:
4597 case X86::BI__builtin_ia32_palignr128:
4598 case X86::BI__builtin_ia32_palignr256:
4599 case X86::BI__builtin_ia32_palignr512:
4600 case X86::BI__builtin_ia32_alignq512:
4601 case X86::BI__builtin_ia32_alignd512:
4602 case X86::BI__builtin_ia32_alignd128:
4603 case X86::BI__builtin_ia32_alignd256:
4604 case X86::BI__builtin_ia32_alignq128:
4605 case X86::BI__builtin_ia32_alignq256:
4606 case X86::BI__builtin_ia32_vcomisd:
4607 case X86::BI__builtin_ia32_vcomiss:
4608 case X86::BI__builtin_ia32_shuf_f32x4:
4609 case X86::BI__builtin_ia32_shuf_f64x2:
4610 case X86::BI__builtin_ia32_shuf_i32x4:
4611 case X86::BI__builtin_ia32_shuf_i64x2:
4612 case X86::BI__builtin_ia32_shufpd512:
4613 case X86::BI__builtin_ia32_shufps:
4614 case X86::BI__builtin_ia32_shufps256:
4615 case X86::BI__builtin_ia32_shufps512:
4616 case X86::BI__builtin_ia32_dbpsadbw128:
4617 case X86::BI__builtin_ia32_dbpsadbw256:
4618 case X86::BI__builtin_ia32_dbpsadbw512:
4619 case X86::BI__builtin_ia32_vpshldd128:
4620 case X86::BI__builtin_ia32_vpshldd256:
4621 case X86::BI__builtin_ia32_vpshldd512:
4622 case X86::BI__builtin_ia32_vpshldq128:
4623 case X86::BI__builtin_ia32_vpshldq256:
4624 case X86::BI__builtin_ia32_vpshldq512:
4625 case X86::BI__builtin_ia32_vpshldw128:
4626 case X86::BI__builtin_ia32_vpshldw256:
4627 case X86::BI__builtin_ia32_vpshldw512:
4628 case X86::BI__builtin_ia32_vpshrdd128:
4629 case X86::BI__builtin_ia32_vpshrdd256:
4630 case X86::BI__builtin_ia32_vpshrdd512:
4631 case X86::BI__builtin_ia32_vpshrdq128:
4632 case X86::BI__builtin_ia32_vpshrdq256:
4633 case X86::BI__builtin_ia32_vpshrdq512:
4634 case X86::BI__builtin_ia32_vpshrdw128:
4635 case X86::BI__builtin_ia32_vpshrdw256:
4636 case X86::BI__builtin_ia32_vpshrdw512:
4637 i = 2; l = 0; u = 255;
4638 break;
4639 case X86::BI__builtin_ia32_fixupimmpd512_mask:
4640 case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4641 case X86::BI__builtin_ia32_fixupimmps512_mask:
4642 case X86::BI__builtin_ia32_fixupimmps512_maskz:
4643 case X86::BI__builtin_ia32_fixupimmsd_mask:
4644 case X86::BI__builtin_ia32_fixupimmsd_maskz:
4645 case X86::BI__builtin_ia32_fixupimmss_mask:
4646 case X86::BI__builtin_ia32_fixupimmss_maskz:
4647 case X86::BI__builtin_ia32_fixupimmpd128_mask:
4648 case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4649 case X86::BI__builtin_ia32_fixupimmpd256_mask:
4650 case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4651 case X86::BI__builtin_ia32_fixupimmps128_mask:
4652 case X86::BI__builtin_ia32_fixupimmps128_maskz:
4653 case X86::BI__builtin_ia32_fixupimmps256_mask:
4654 case X86::BI__builtin_ia32_fixupimmps256_maskz:
4655 case X86::BI__builtin_ia32_pternlogd512_mask:
4656 case X86::BI__builtin_ia32_pternlogd512_maskz:
4657 case X86::BI__builtin_ia32_pternlogq512_mask:
4658 case X86::BI__builtin_ia32_pternlogq512_maskz:
4659 case X86::BI__builtin_ia32_pternlogd128_mask:
4660 case X86::BI__builtin_ia32_pternlogd128_maskz:
4661 case X86::BI__builtin_ia32_pternlogd256_mask:
4662 case X86::BI__builtin_ia32_pternlogd256_maskz:
4663 case X86::BI__builtin_ia32_pternlogq128_mask:
4664 case X86::BI__builtin_ia32_pternlogq128_maskz:
4665 case X86::BI__builtin_ia32_pternlogq256_mask:
4666 case X86::BI__builtin_ia32_pternlogq256_maskz:
4667 i = 3; l = 0; u = 255;
4668 break;
4669 case X86::BI__builtin_ia32_gatherpfdpd:
4670 case X86::BI__builtin_ia32_gatherpfdps:
4671 case X86::BI__builtin_ia32_gatherpfqpd:
4672 case X86::BI__builtin_ia32_gatherpfqps:
4673 case X86::BI__builtin_ia32_scatterpfdpd:
4674 case X86::BI__builtin_ia32_scatterpfdps:
4675 case X86::BI__builtin_ia32_scatterpfqpd:
4676 case X86::BI__builtin_ia32_scatterpfqps:
4677 i = 4; l = 2; u = 3;
4678 break;
4679 case X86::BI__builtin_ia32_reducesd_mask:
4680 case X86::BI__builtin_ia32_reducess_mask:
4681 case X86::BI__builtin_ia32_rndscalesd_round_mask:
4682 case X86::BI__builtin_ia32_rndscaless_round_mask:
4683 case X86::BI__builtin_ia32_rndscalesh_round_mask:
4684 case X86::BI__builtin_ia32_reducesh_mask:
4685 i = 4; l = 0; u = 255;
4686 break;
4687 }
4688
4689 // Note that we don't force a hard error on the range check here, allowing
4690 // template-generated or macro-generated dead code to potentially have out-of-
4691 // range values. These need to code generate, but don't need to necessarily
4692 // make any sense. We use a warning that defaults to an error.
4693 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4694}
4695
4696/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4697/// parameter with the FormatAttr's correct format_idx and firstDataArg.
4698/// Returns true when the format fits the function and the FormatStringInfo has
4699/// been populated.
4700bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4701 FormatStringInfo *FSI) {
4702 FSI->HasVAListArg = Format->getFirstArg() == 0;
4703 FSI->FormatIdx = Format->getFormatIdx() - 1;
4704 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4705
4706 // The way the format attribute works in GCC, the implicit this argument
4707 // of member functions is counted. However, it doesn't appear in our own
4708 // lists, so decrement format_idx in that case.
4709 if (IsCXXMember) {
4710 if(FSI->FormatIdx == 0)
4711 return false;
4712 --FSI->FormatIdx;
4713 if (FSI->FirstDataArg != 0)
4714 --FSI->FirstDataArg;
4715 }
4716 return true;
4717}
4718
4719/// Checks if a the given expression evaluates to null.
4720///
4721/// Returns true if the value evaluates to null.
4722static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4723 // If the expression has non-null type, it doesn't evaluate to null.
4724 if (auto nullability
4725 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4726 if (*nullability == NullabilityKind::NonNull)
4727 return false;
4728 }
4729
4730 // As a special case, transparent unions initialized with zero are
4731 // considered null for the purposes of the nonnull attribute.
4732 if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4733 if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4734 if (const CompoundLiteralExpr *CLE =
4735 dyn_cast<CompoundLiteralExpr>(Expr))
4736 if (const InitListExpr *ILE =
4737 dyn_cast<InitListExpr>(CLE->getInitializer()))
4738 Expr = ILE->getInit(0);
4739 }
4740
4741 bool Result;
4742 return (!Expr->isValueDependent() &&
4743 Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4744 !Result);
4745}
4746
4747static void CheckNonNullArgument(Sema &S,
4748 const Expr *ArgExpr,
4749 SourceLocation CallSiteLoc) {
4750 if (CheckNonNullExpr(S, ArgExpr))
4751 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4752 S.PDiag(diag::warn_null_arg)
4753 << ArgExpr->getSourceRange());
4754}
4755
4756bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4757 FormatStringInfo FSI;
4758 if ((GetFormatStringType(Format) == FST_NSString) &&
4759 getFormatStringInfo(Format, false, &FSI)) {
4760 Idx = FSI.FormatIdx;
4761 return true;
4762 }
4763 return false;
4764}
4765
4766/// Diagnose use of %s directive in an NSString which is being passed
4767/// as formatting string to formatting method.
4768static void
4769DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4770 const NamedDecl *FDecl,
4771 Expr **Args,
4772 unsigned NumArgs) {
4773 unsigned Idx = 0;
4774 bool Format = false;
4775 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4776 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4777 Idx = 2;
4778 Format = true;
4779 }
4780 else
4781 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4782 if (S.GetFormatNSStringIdx(I, Idx)) {
4783 Format = true;
4784 break;
4785 }
4786 }
4787 if (!Format || NumArgs <= Idx)
4788 return;
4789 const Expr *FormatExpr = Args[Idx];
4790 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4791 FormatExpr = CSCE->getSubExpr();
4792 const StringLiteral *FormatString;
4793 if (const ObjCStringLiteral *OSL =
4794 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4795 FormatString = OSL->getString();
4796 else
4797 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4798 if (!FormatString)
4799 return;
4800 if (S.FormatStringHasSArg(FormatString)) {
4801 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4802 << "%s" << 1 << 1;
4803 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4804 << FDecl->getDeclName();
4805 }
4806}
4807
4808/// Determine whether the given type has a non-null nullability annotation.
4809static bool isNonNullType(ASTContext &ctx, QualType type) {
4810 if (auto nullability = type->getNullability(ctx))
4811 return *nullability == NullabilityKind::NonNull;
4812
4813 return false;
4814}
4815
4816static void CheckNonNullArguments(Sema &S,
4817 const NamedDecl *FDecl,
4818 const FunctionProtoType *Proto,
4819 ArrayRef<const Expr *> Args,
4820 SourceLocation CallSiteLoc) {
4821 assert((FDecl || Proto) && "Need a function declaration or prototype")(static_cast <bool> ((FDecl || Proto) && "Need a function declaration or prototype"
) ? void (0) : __assert_fail ("(FDecl || Proto) && \"Need a function declaration or prototype\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 4821, __extension__ __PRETTY_FUNCTION__))
;
4822
4823 // Already checked by by constant evaluator.
4824 if (S.isConstantEvaluated())
4825 return;
4826 // Check the attributes attached to the method/function itself.
4827 llvm::SmallBitVector NonNullArgs;
4828 if (FDecl) {
4829 // Handle the nonnull attribute on the function/method declaration itself.
4830 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4831 if (!NonNull->args_size()) {
4832 // Easy case: all pointer arguments are nonnull.
4833 for (const auto *Arg : Args)
4834 if (S.isValidPointerAttrType(Arg->getType()))
4835 CheckNonNullArgument(S, Arg, CallSiteLoc);
4836 return;
4837 }
4838
4839 for (const ParamIdx &Idx : NonNull->args()) {
4840 unsigned IdxAST = Idx.getASTIndex();
4841 if (IdxAST >= Args.size())
4842 continue;
4843 if (NonNullArgs.empty())
4844 NonNullArgs.resize(Args.size());
4845 NonNullArgs.set(IdxAST);
4846 }
4847 }
4848 }
4849
4850 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4851 // Handle the nonnull attribute on the parameters of the
4852 // function/method.
4853 ArrayRef<ParmVarDecl*> parms;
4854 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4855 parms = FD->parameters();
4856 else
4857 parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4858
4859 unsigned ParamIndex = 0;
4860 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4861 I != E; ++I, ++ParamIndex) {
4862 const ParmVarDecl *PVD = *I;
4863 if (PVD->hasAttr<NonNullAttr>() ||
4864 isNonNullType(S.Context, PVD->getType())) {
4865 if (NonNullArgs.empty())
4866 NonNullArgs.resize(Args.size());
4867
4868 NonNullArgs.set(ParamIndex);
4869 }
4870 }
4871 } else {
4872 // If we have a non-function, non-method declaration but no
4873 // function prototype, try to dig out the function prototype.
4874 if (!Proto) {
4875 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4876 QualType type = VD->getType().getNonReferenceType();
4877 if (auto pointerType = type->getAs<PointerType>())
4878 type = pointerType->getPointeeType();
4879 else if (auto blockType = type->getAs<BlockPointerType>())
4880 type = blockType->getPointeeType();
4881 // FIXME: data member pointers?
4882
4883 // Dig out the function prototype, if there is one.
4884 Proto = type->getAs<FunctionProtoType>();
4885 }
4886 }
4887
4888 // Fill in non-null argument information from the nullability
4889 // information on the parameter types (if we have them).
4890 if (Proto) {
4891 unsigned Index = 0;
4892 for (auto paramType : Proto->getParamTypes()) {
4893 if (isNonNullType(S.Context, paramType)) {
4894 if (NonNullArgs.empty())
4895 NonNullArgs.resize(Args.size());
4896
4897 NonNullArgs.set(Index);
4898 }
4899
4900 ++Index;
4901 }
4902 }
4903 }
4904
4905 // Check for non-null arguments.
4906 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4907 ArgIndex != ArgIndexEnd; ++ArgIndex) {
4908 if (NonNullArgs[ArgIndex])
4909 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4910 }
4911}
4912
4913/// Warn if a pointer or reference argument passed to a function points to an
4914/// object that is less aligned than the parameter. This can happen when
4915/// creating a typedef with a lower alignment than the original type and then
4916/// calling functions defined in terms of the original type.
4917void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
4918 StringRef ParamName, QualType ArgTy,
4919 QualType ParamTy) {
4920
4921 // If a function accepts a pointer or reference type
4922 if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
4923 return;
4924
4925 // If the parameter is a pointer type, get the pointee type for the
4926 // argument too. If the parameter is a reference type, don't try to get
4927 // the pointee type for the argument.
4928 if (ParamTy->isPointerType())
4929 ArgTy = ArgTy->getPointeeType();
4930
4931 // Remove reference or pointer
4932 ParamTy = ParamTy->getPointeeType();
4933
4934 // Find expected alignment, and the actual alignment of the passed object.
4935 // getTypeAlignInChars requires complete types
4936 if (ArgTy.isNull() || ParamTy->isIncompleteType() ||
4937 ArgTy->isIncompleteType() || ParamTy->isUndeducedType() ||
4938 ArgTy->isUndeducedType())
4939 return;
4940
4941 CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
4942 CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
4943
4944 // If the argument is less aligned than the parameter, there is a
4945 // potential alignment issue.
4946 if (ArgAlign < ParamAlign)
4947 Diag(Loc, diag::warn_param_mismatched_alignment)
4948 << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
4949 << ParamName << FDecl;
4950}
4951
4952/// Handles the checks for format strings, non-POD arguments to vararg
4953/// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4954/// attributes.
4955void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4956 const Expr *ThisArg, ArrayRef<const Expr *> Args,
4957 bool IsMemberFunction, SourceLocation Loc,
4958 SourceRange Range, VariadicCallType CallType) {
4959 // FIXME: We should check as much as we can in the template definition.
4960 if (CurContext->isDependentContext())
4961 return;
4962
4963 // Printf and scanf checking.
4964 llvm::SmallBitVector CheckedVarArgs;
4965 if (FDecl) {
4966 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4967 // Only create vector if there are format attributes.
4968 CheckedVarArgs.resize(Args.size());
4969
4970 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4971 CheckedVarArgs);
4972 }
4973 }
4974
4975 // Refuse POD arguments that weren't caught by the format string
4976 // checks above.
4977 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4978 if (CallType != VariadicDoesNotApply &&
4979 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4980 unsigned NumParams = Proto ? Proto->getNumParams()
4981 : FDecl && isa<FunctionDecl>(FDecl)
4982 ? cast<FunctionDecl>(FDecl)->getNumParams()
4983 : FDecl && isa<ObjCMethodDecl>(FDecl)
4984 ? cast<ObjCMethodDecl>(FDecl)->param_size()
4985 : 0;
4986
4987 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4988 // Args[ArgIdx] can be null in malformed code.
4989 if (const Expr *Arg = Args[ArgIdx]) {
4990 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4991 checkVariadicArgument(Arg, CallType);
4992 }
4993 }
4994 }
4995
4996 if (FDecl || Proto) {
4997 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4998
4999 // Type safety checking.
5000 if (FDecl) {
5001 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
5002 CheckArgumentWithTypeTag(I, Args, Loc);
5003 }
5004 }
5005
5006 // Check that passed arguments match the alignment of original arguments.
5007 // Try to get the missing prototype from the declaration.
5008 if (!Proto && FDecl) {
5009 const auto *FT = FDecl->getFunctionType();
5010 if (isa_and_nonnull<FunctionProtoType>(FT))
5011 Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
5012 }
5013 if (Proto) {
5014 // For variadic functions, we may have more args than parameters.
5015 // For some K&R functions, we may have less args than parameters.
5016 const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
5017 for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
5018 // Args[ArgIdx] can be null in malformed code.
5019 if (const Expr *Arg = Args[ArgIdx]) {
5020 if (Arg->containsErrors())
5021 continue;
5022
5023 QualType ParamTy = Proto->getParamType(ArgIdx);
5024 QualType ArgTy = Arg->getType();
5025 CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
5026 ArgTy, ParamTy);
5027 }
5028 }
5029 }
5030
5031 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
5032 auto *AA = FDecl->getAttr<AllocAlignAttr>();
5033 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
5034 if (!Arg->isValueDependent()) {
5035 Expr::EvalResult Align;
5036 if (Arg->EvaluateAsInt(Align, Context)) {
5037 const llvm::APSInt &I = Align.Val.getInt();
5038 if (!I.isPowerOf2())
5039 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
5040 << Arg->getSourceRange();
5041
5042 if (I > Sema::MaximumAlignment)
5043 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
5044 << Arg->getSourceRange() << Sema::MaximumAlignment;
5045 }
5046 }
5047 }
5048
5049 if (FD)
5050 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
5051}
5052
5053/// CheckConstructorCall - Check a constructor call for correctness and safety
5054/// properties not enforced by the C type system.
5055void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
5056 ArrayRef<const Expr *> Args,
5057 const FunctionProtoType *Proto,
5058 SourceLocation Loc) {
5059 VariadicCallType CallType =
5060 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5061
5062 auto *Ctor = cast<CXXConstructorDecl>(FDecl);
5063 CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType),
5064 Context.getPointerType(Ctor->getThisObjectType()));
5065
5066 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
5067 Loc, SourceRange(), CallType);
5068}
5069
5070/// CheckFunctionCall - Check a direct function call for various correctness
5071/// and safety properties not strictly enforced by the C type system.
5072bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
5073 const FunctionProtoType *Proto) {
5074 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
1
Assuming 'TheCall' is not a 'CXXOperatorCallExpr'
5075 isa<CXXMethodDecl>(FDecl);
5076 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
2
Assuming 'TheCall' is not a 'CXXMemberCallExpr'
5077 IsMemberOperatorCall;
5078 VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
5079 TheCall->getCallee());
5080 Expr** Args = TheCall->getArgs();
5081 unsigned NumArgs = TheCall->getNumArgs();
5082
5083 Expr *ImplicitThis = nullptr;
5084 if (IsMemberOperatorCall
2.1
'IsMemberOperatorCall' is false
) {
3
Taking false branch
5085 // If this is a call to a member operator, hide the first argument
5086 // from checkCall.
5087 // FIXME: Our choice of AST representation here is less than ideal.
5088 ImplicitThis = Args[0];
5089 ++Args;
5090 --NumArgs;
5091 } else if (IsMemberFunction
3.1
'IsMemberFunction' is false
)
4
Taking false branch
5092 ImplicitThis =
5093 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
5094
5095 if (ImplicitThis
4.1
'ImplicitThis' is null
) {
5
Taking false branch
5096 // ImplicitThis may or may not be a pointer, depending on whether . or -> is
5097 // used.
5098 QualType ThisType = ImplicitThis->getType();
5099 if (!ThisType->isPointerType()) {
5100 assert(!ThisType->isReferenceType())(static_cast <bool> (!ThisType->isReferenceType()) ?
void (0) : __assert_fail ("!ThisType->isReferenceType()",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 5100, __extension__ __PRETTY_FUNCTION__))
;
5101 ThisType = Context.getPointerType(ThisType);
5102 }
5103
5104 QualType ThisTypeFromDecl =
5105 Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType());
5106
5107 CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
5108 ThisTypeFromDecl);
5109 }
5110
5111 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
5112 IsMemberFunction, TheCall->getRParenLoc(),
5113 TheCall->getCallee()->getSourceRange(), CallType);
5114
5115 IdentifierInfo *FnInfo = FDecl->getIdentifier();
5116 // None of the checks below are needed for functions that don't have
5117 // simple names (e.g., C++ conversion functions).
5118 if (!FnInfo)
6
Assuming 'FnInfo' is non-null
7
Taking false branch
5119 return false;
5120
5121 CheckTCBEnforcement(TheCall, FDecl);
5122
5123 CheckAbsoluteValueFunction(TheCall, FDecl);
5124 CheckMaxUnsignedZero(TheCall, FDecl);
5125
5126 if (getLangOpts().ObjC)
8
Assuming field 'ObjC' is 0
9
Taking false branch
5127 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
5128
5129 unsigned CMId = FDecl->getMemoryFunctionKind();
5130
5131 // Handle memory setting and copying functions.
5132 switch (CMId) {
10
Control jumps to 'case BIfree:' at line 5142
5133 case 0:
5134 return false;
5135/* case Builtin::BIstrlcpy: // fallthrough
5136 case Builtin::BIstrlcat:
5137 CheckStrlcpycatArguments(TheCall, FnInfo);
5138 break;*/
5139 case Builtin::BIstrncat:
5140 CheckStrncatArguments(TheCall, FnInfo);
5141 break;
5142 case Builtin::BIfree:
5143 CheckFreeArguments(TheCall);
11
Calling 'Sema::CheckFreeArguments'
5144 break;
5145 default:
5146 CheckMemaccessArguments(TheCall, CMId, FnInfo);
5147 }
5148
5149 return false;
5150}
5151
5152bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
5153 ArrayRef<const Expr *> Args) {
5154 VariadicCallType CallType =
5155 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
5156
5157 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
5158 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
5159 CallType);
5160
5161 return false;
5162}
5163
5164bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
5165 const FunctionProtoType *Proto) {
5166 QualType Ty;
5167 if (const auto *V = dyn_cast<VarDecl>(NDecl))
5168 Ty = V->getType().getNonReferenceType();
5169 else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
5170 Ty = F->getType().getNonReferenceType();
5171 else
5172 return false;
5173
5174 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
5175 !Ty->isFunctionProtoType())
5176 return false;
5177
5178 VariadicCallType CallType;
5179 if (!Proto || !Proto->isVariadic()) {
5180 CallType = VariadicDoesNotApply;
5181 } else if (Ty->isBlockPointerType()) {
5182 CallType = VariadicBlock;
5183 } else { // Ty->isFunctionPointerType()
5184 CallType = VariadicFunction;
5185 }
5186
5187 checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
5188 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5189 /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5190 TheCall->getCallee()->getSourceRange(), CallType);
5191
5192 return false;
5193}
5194
5195/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
5196/// such as function pointers returned from functions.
5197bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
5198 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
5199 TheCall->getCallee());
5200 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
5201 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5202 /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5203 TheCall->getCallee()->getSourceRange(), CallType);
5204
5205 return false;
5206}
5207
5208static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
5209 if (!llvm::isValidAtomicOrderingCABI(Ordering))
5210 return false;
5211
5212 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
5213 switch (Op) {
5214 case AtomicExpr::AO__c11_atomic_init:
5215 case AtomicExpr::AO__opencl_atomic_init:
5216 llvm_unreachable("There is no ordering argument for an init")::llvm::llvm_unreachable_internal("There is no ordering argument for an init"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 5216)
;
5217
5218 case AtomicExpr::AO__c11_atomic_load:
5219 case AtomicExpr::AO__opencl_atomic_load:
5220 case AtomicExpr::AO__atomic_load_n:
5221 case AtomicExpr::AO__atomic_load:
5222 return OrderingCABI != llvm::AtomicOrderingCABI::release &&
5223 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5224
5225 case AtomicExpr::AO__c11_atomic_store:
5226 case AtomicExpr::AO__opencl_atomic_store:
5227 case AtomicExpr::AO__atomic_store:
5228 case AtomicExpr::AO__atomic_store_n:
5229 return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
5230 OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
5231 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5232
5233 default:
5234 return true;
5235 }
5236}
5237
5238ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
5239 AtomicExpr::AtomicOp Op) {
5240 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
5241 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5242 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
5243 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
5244 DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
5245 Op);
5246}
5247
5248ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5249 SourceLocation RParenLoc, MultiExprArg Args,
5250 AtomicExpr::AtomicOp Op,
5251 AtomicArgumentOrder ArgOrder) {
5252 // All the non-OpenCL operations take one of the following forms.
5253 // The OpenCL operations take the __c11 forms with one extra argument for
5254 // synchronization scope.
5255 enum {
5256 // C __c11_atomic_init(A *, C)
5257 Init,
5258
5259 // C __c11_atomic_load(A *, int)
5260 Load,
5261
5262 // void __atomic_load(A *, CP, int)
5263 LoadCopy,
5264
5265 // void __atomic_store(A *, CP, int)
5266 Copy,
5267
5268 // C __c11_atomic_add(A *, M, int)
5269 Arithmetic,
5270
5271 // C __atomic_exchange_n(A *, CP, int)
5272 Xchg,
5273
5274 // void __atomic_exchange(A *, C *, CP, int)
5275 GNUXchg,
5276
5277 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
5278 C11CmpXchg,
5279
5280 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
5281 GNUCmpXchg
5282 } Form = Init;
5283
5284 const unsigned NumForm = GNUCmpXchg + 1;
5285 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
5286 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
5287 // where:
5288 // C is an appropriate type,
5289 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
5290 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
5291 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
5292 // the int parameters are for orderings.
5293
5294 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
5295 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
5296 "need to update code for modified forms");
5297 static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
5298 AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
5299 AtomicExpr::AO__atomic_load,
5300 "need to update code for modified C11 atomics");
5301 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
5302 Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
5303 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
5304 Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
5305 IsOpenCL;
5306 bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
5307 Op == AtomicExpr::AO__atomic_store_n ||
5308 Op == AtomicExpr::AO__atomic_exchange_n ||
5309 Op == AtomicExpr::AO__atomic_compare_exchange_n;
5310 bool IsAddSub = false;
5311
5312 switch (Op) {
5313 case AtomicExpr::AO__c11_atomic_init:
5314 case AtomicExpr::AO__opencl_atomic_init:
5315 Form = Init;
5316 break;
5317
5318 case AtomicExpr::AO__c11_atomic_load:
5319 case AtomicExpr::AO__opencl_atomic_load:
5320 case AtomicExpr::AO__atomic_load_n:
5321 Form = Load;
5322 break;
5323
5324 case AtomicExpr::AO__atomic_load:
5325 Form = LoadCopy;
5326 break;
5327
5328 case AtomicExpr::AO__c11_atomic_store:
5329 case AtomicExpr::AO__opencl_atomic_store:
5330 case AtomicExpr::AO__atomic_store:
5331 case AtomicExpr::AO__atomic_store_n:
5332 Form = Copy;
5333 break;
5334
5335 case AtomicExpr::AO__c11_atomic_fetch_add:
5336 case AtomicExpr::AO__c11_atomic_fetch_sub:
5337 case AtomicExpr::AO__opencl_atomic_fetch_add:
5338 case AtomicExpr::AO__opencl_atomic_fetch_sub:
5339 case AtomicExpr::AO__atomic_fetch_add:
5340 case AtomicExpr::AO__atomic_fetch_sub:
5341 case AtomicExpr::AO__atomic_add_fetch:
5342 case AtomicExpr::AO__atomic_sub_fetch:
5343 IsAddSub = true;
5344 Form = Arithmetic;
5345 break;
5346 case AtomicExpr::AO__c11_atomic_fetch_and:
5347 case AtomicExpr::AO__c11_atomic_fetch_or:
5348 case AtomicExpr::AO__c11_atomic_fetch_xor:
5349 case AtomicExpr::AO__opencl_atomic_fetch_and:
5350 case AtomicExpr::AO__opencl_atomic_fetch_or:
5351 case AtomicExpr::AO__opencl_atomic_fetch_xor:
5352 case AtomicExpr::AO__atomic_fetch_and:
5353 case AtomicExpr::AO__atomic_fetch_or:
5354 case AtomicExpr::AO__atomic_fetch_xor:
5355 case AtomicExpr::AO__atomic_fetch_nand:
5356 case AtomicExpr::AO__atomic_and_fetch:
5357 case AtomicExpr::AO__atomic_or_fetch:
5358 case AtomicExpr::AO__atomic_xor_fetch:
5359 case AtomicExpr::AO__atomic_nand_fetch:
5360 Form = Arithmetic;
5361 break;
5362 case AtomicExpr::AO__c11_atomic_fetch_min:
5363 case AtomicExpr::AO__c11_atomic_fetch_max:
5364 case AtomicExpr::AO__opencl_atomic_fetch_min:
5365 case AtomicExpr::AO__opencl_atomic_fetch_max:
5366 case AtomicExpr::AO__atomic_min_fetch:
5367 case AtomicExpr::AO__atomic_max_fetch:
5368 case AtomicExpr::AO__atomic_fetch_min:
5369 case AtomicExpr::AO__atomic_fetch_max:
5370 Form = Arithmetic;
5371 break;
5372
5373 case AtomicExpr::AO__c11_atomic_exchange:
5374 case AtomicExpr::AO__opencl_atomic_exchange:
5375 case AtomicExpr::AO__atomic_exchange_n:
5376 Form = Xchg;
5377 break;
5378
5379 case AtomicExpr::AO__atomic_exchange:
5380 Form = GNUXchg;
5381 break;
5382
5383 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
5384 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
5385 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
5386 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
5387 Form = C11CmpXchg;
5388 break;
5389
5390 case AtomicExpr::AO__atomic_compare_exchange:
5391 case AtomicExpr::AO__atomic_compare_exchange_n:
5392 Form = GNUCmpXchg;
5393 break;
5394 }
5395
5396 unsigned AdjustedNumArgs = NumArgs[Form];
5397 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
5398 ++AdjustedNumArgs;
5399 // Check we have the right number of arguments.
5400 if (Args.size() < AdjustedNumArgs) {
5401 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
5402 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5403 << ExprRange;
5404 return ExprError();
5405 } else if (Args.size() > AdjustedNumArgs) {
5406 Diag(Args[AdjustedNumArgs]->getBeginLoc(),
5407 diag::err_typecheck_call_too_many_args)
5408 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5409 << ExprRange;
5410 return ExprError();
5411 }
5412
5413 // Inspect the first argument of the atomic operation.
5414 Expr *Ptr = Args[0];
5415 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
5416 if (ConvertedPtr.isInvalid())
5417 return ExprError();
5418
5419 Ptr = ConvertedPtr.get();
5420 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
5421 if (!pointerType) {
5422 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
5423 << Ptr->getType() << Ptr->getSourceRange();
5424 return ExprError();
5425 }
5426
5427 // For a __c11 builtin, this should be a pointer to an _Atomic type.
5428 QualType AtomTy = pointerType->getPointeeType(); // 'A'
5429 QualType ValType = AtomTy; // 'C'
5430 if (IsC11) {
5431 if (!AtomTy->isAtomicType()) {
5432 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
5433 << Ptr->getType() << Ptr->getSourceRange();
5434 return ExprError();
5435 }
5436 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
5437 AtomTy.getAddressSpace() == LangAS::opencl_constant) {
5438 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
5439 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
5440 << Ptr->getSourceRange();
5441 return ExprError();
5442 }
5443 ValType = AtomTy->castAs<AtomicType>()->getValueType();
5444 } else if (Form != Load && Form != LoadCopy) {
5445 if (ValType.isConstQualified()) {
5446 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
5447 << Ptr->getType() << Ptr->getSourceRange();
5448 return ExprError();
5449 }
5450 }
5451
5452 // For an arithmetic operation, the implied arithmetic must be well-formed.
5453 if (Form == Arithmetic) {
5454 // gcc does not enforce these rules for GNU atomics, but we do so for
5455 // sanity.
5456 auto IsAllowedValueType = [&](QualType ValType) {
5457 if (ValType->isIntegerType())
5458 return true;
5459 if (ValType->isPointerType())
5460 return true;
5461 if (!ValType->isFloatingType())
5462 return false;
5463 // LLVM Parser does not allow atomicrmw with x86_fp80 type.
5464 if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
5465 &Context.getTargetInfo().getLongDoubleFormat() ==
5466 &llvm::APFloat::x87DoubleExtended())
5467 return false;
5468 return true;
5469 };
5470 if (IsAddSub && !IsAllowedValueType(ValType)) {
5471 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp)
5472 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5473 return ExprError();
5474 }
5475 if (!IsAddSub && !ValType->isIntegerType()) {
5476 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
5477 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5478 return ExprError();
5479 }
5480 if (IsC11 && ValType->isPointerType() &&
5481 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
5482 diag::err_incomplete_type)) {
5483 return ExprError();
5484 }
5485 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
5486 // For __atomic_*_n operations, the value type must be a scalar integral or
5487 // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
5488 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
5489 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5490 return ExprError();
5491 }
5492
5493 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
5494 !AtomTy->isScalarType()) {
5495 // For GNU atomics, require a trivially-copyable type. This is not part of
5496 // the GNU atomics specification, but we enforce it for sanity.
5497 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
5498 << Ptr->getType() << Ptr->getSourceRange();
5499 return ExprError();
5500 }
5501
5502 switch (ValType.getObjCLifetime()) {
5503 case Qualifiers::OCL_None:
5504 case Qualifiers::OCL_ExplicitNone:
5505 // okay
5506 break;
5507
5508 case Qualifiers::OCL_Weak:
5509 case Qualifiers::OCL_Strong:
5510 case Qualifiers::OCL_Autoreleasing:
5511 // FIXME: Can this happen? By this point, ValType should be known
5512 // to be trivially copyable.
5513 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
5514 << ValType << Ptr->getSourceRange();
5515 return ExprError();
5516 }
5517
5518 // All atomic operations have an overload which takes a pointer to a volatile
5519 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself
5520 // into the result or the other operands. Similarly atomic_load takes a
5521 // pointer to a const 'A'.
5522 ValType.removeLocalVolatile();
5523 ValType.removeLocalConst();
5524 QualType ResultType = ValType;
5525 if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
5526 Form == Init)
5527 ResultType = Context.VoidTy;
5528 else if (Form == C11CmpXchg || Form == GNUCmpXchg)
5529 ResultType = Context.BoolTy;
5530
5531 // The type of a parameter passed 'by value'. In the GNU atomics, such
5532 // arguments are actually passed as pointers.
5533 QualType ByValType = ValType; // 'CP'
5534 bool IsPassedByAddress = false;
5535 if (!IsC11 && !IsN) {
5536 ByValType = Ptr->getType();
5537 IsPassedByAddress = true;
5538 }
5539
5540 SmallVector<Expr *, 5> APIOrderedArgs;
5541 if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
5542 APIOrderedArgs.push_back(Args[0]);
5543 switch (Form) {
5544 case Init:
5545 case Load:
5546 APIOrderedArgs.push_back(Args[1]); // Val1/Order
5547 break;
5548 case LoadCopy:
5549 case Copy:
5550 case Arithmetic:
5551 case Xchg:
5552 APIOrderedArgs.push_back(Args[2]); // Val1
5553 APIOrderedArgs.push_back(Args[1]); // Order
5554 break;
5555 case GNUXchg:
5556 APIOrderedArgs.push_back(Args[2]); // Val1
5557 APIOrderedArgs.push_back(Args[3]); // Val2
5558 APIOrderedArgs.push_back(Args[1]); // Order
5559 break;
5560 case C11CmpXchg:
5561 APIOrderedArgs.push_back(Args[2]); // Val1
5562 APIOrderedArgs.push_back(Args[4]); // Val2
5563 APIOrderedArgs.push_back(Args[1]); // Order
5564 APIOrderedArgs.push_back(Args[3]); // OrderFail
5565 break;
5566 case GNUCmpXchg:
5567 APIOrderedArgs.push_back(Args[2]); // Val1
5568 APIOrderedArgs.push_back(Args[4]); // Val2
5569 APIOrderedArgs.push_back(Args[5]); // Weak
5570 APIOrderedArgs.push_back(Args[1]); // Order
5571 APIOrderedArgs.push_back(Args[3]); // OrderFail
5572 break;
5573 }
5574 } else
5575 APIOrderedArgs.append(Args.begin(), Args.end());
5576
5577 // The first argument's non-CV pointer type is used to deduce the type of
5578 // subsequent arguments, except for:
5579 // - weak flag (always converted to bool)
5580 // - memory order (always converted to int)
5581 // - scope (always converted to int)
5582 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5583 QualType Ty;
5584 if (i < NumVals[Form] + 1) {
5585 switch (i) {
5586 case 0:
5587 // The first argument is always a pointer. It has a fixed type.
5588 // It is always dereferenced, a nullptr is undefined.
5589 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5590 // Nothing else to do: we already know all we want about this pointer.
5591 continue;
5592 case 1:
5593 // The second argument is the non-atomic operand. For arithmetic, this
5594 // is always passed by value, and for a compare_exchange it is always
5595 // passed by address. For the rest, GNU uses by-address and C11 uses
5596 // by-value.
5597 assert(Form != Load)(static_cast <bool> (Form != Load) ? void (0) : __assert_fail
("Form != Load", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 5597, __extension__ __PRETTY_FUNCTION__))
;
5598 if (Form == Arithmetic && ValType->isPointerType())
5599 Ty = Context.getPointerDiffType();
5600 else if (Form == Init || Form == Arithmetic)
5601 Ty = ValType;
5602 else if (Form == Copy || Form == Xchg) {
5603 if (IsPassedByAddress) {
5604 // The value pointer is always dereferenced, a nullptr is undefined.
5605 CheckNonNullArgument(*this, APIOrderedArgs[i],
5606 ExprRange.getBegin());
5607 }
5608 Ty = ByValType;
5609 } else {
5610 Expr *ValArg = APIOrderedArgs[i];
5611 // The value pointer is always dereferenced, a nullptr is undefined.
5612 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5613 LangAS AS = LangAS::Default;
5614 // Keep address space of non-atomic pointer type.
5615 if (const PointerType *PtrTy =
5616 ValArg->getType()->getAs<PointerType>()) {
5617 AS = PtrTy->getPointeeType().getAddressSpace();
5618 }
5619 Ty = Context.getPointerType(
5620 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5621 }
5622 break;
5623 case 2:
5624 // The third argument to compare_exchange / GNU exchange is the desired
5625 // value, either by-value (for the C11 and *_n variant) or as a pointer.
5626 if (IsPassedByAddress)
5627 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5628 Ty = ByValType;
5629 break;
5630 case 3:
5631 // The fourth argument to GNU compare_exchange is a 'weak' flag.
5632 Ty = Context.BoolTy;
5633 break;
5634 }
5635 } else {
5636 // The order(s) and scope are always converted to int.
5637 Ty = Context.IntTy;
5638 }
5639
5640 InitializedEntity Entity =
5641 InitializedEntity::InitializeParameter(Context, Ty, false);
5642 ExprResult Arg = APIOrderedArgs[i];
5643 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5644 if (Arg.isInvalid())
5645 return true;
5646 APIOrderedArgs[i] = Arg.get();
5647 }
5648
5649 // Permute the arguments into a 'consistent' order.
5650 SmallVector<Expr*, 5> SubExprs;
5651 SubExprs.push_back(Ptr);
5652 switch (Form) {
5653 case Init:
5654 // Note, AtomicExpr::getVal1() has a special case for this atomic.
5655 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5656 break;
5657 case Load:
5658 SubExprs.push_back(APIOrderedArgs[1]); // Order
5659 break;
5660 case LoadCopy:
5661 case Copy:
5662 case Arithmetic:
5663 case Xchg:
5664 SubExprs.push_back(APIOrderedArgs[2]); // Order
5665 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5666 break;
5667 case GNUXchg:
5668 // Note, AtomicExpr::getVal2() has a special case for this atomic.
5669 SubExprs.push_back(APIOrderedArgs[3]); // Order
5670 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5671 SubExprs.push_back(APIOrderedArgs[2]); // Val2
5672 break;
5673 case C11CmpXchg:
5674 SubExprs.push_back(APIOrderedArgs[3]); // Order
5675 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5676 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5677 SubExprs.push_back(APIOrderedArgs[2]); // Val2
5678 break;
5679 case GNUCmpXchg:
5680 SubExprs.push_back(APIOrderedArgs[4]); // Order
5681 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5682 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5683 SubExprs.push_back(APIOrderedArgs[2]); // Val2
5684 SubExprs.push_back(APIOrderedArgs[3]); // Weak
5685 break;
5686 }
5687
5688 if (SubExprs.size() >= 2 && Form != Init) {
5689 if (Optional<llvm::APSInt> Result =
5690 SubExprs[1]->getIntegerConstantExpr(Context))
5691 if (!isValidOrderingForOp(Result->getSExtValue(), Op))
5692 Diag(SubExprs[1]->getBeginLoc(),
5693 diag::warn_atomic_op_has_invalid_memory_order)
5694 << SubExprs[1]->getSourceRange();
5695 }
5696
5697 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5698 auto *Scope = Args[Args.size() - 1];
5699 if (Optional<llvm::APSInt> Result =
5700 Scope->getIntegerConstantExpr(Context)) {
5701 if (!ScopeModel->isValid(Result->getZExtValue()))
5702 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5703 << Scope->getSourceRange();
5704 }
5705 SubExprs.push_back(Scope);
5706 }
5707
5708 AtomicExpr *AE = new (Context)
5709 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5710
5711 if ((Op == AtomicExpr::AO__c11_atomic_load ||
5712 Op == AtomicExpr::AO__c11_atomic_store ||
5713 Op == AtomicExpr::AO__opencl_atomic_load ||
5714 Op == AtomicExpr::AO__opencl_atomic_store ) &&
5715 Context.AtomicUsesUnsupportedLibcall(AE))
5716 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5717 << ((Op == AtomicExpr::AO__c11_atomic_load ||
5718 Op == AtomicExpr::AO__opencl_atomic_load)
5719 ? 0
5720 : 1);
5721
5722 if (ValType->isExtIntType()) {
5723 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
5724 return ExprError();
5725 }
5726
5727 return AE;
5728}
5729
5730/// checkBuiltinArgument - Given a call to a builtin function, perform
5731/// normal type-checking on the given argument, updating the call in
5732/// place. This is useful when a builtin function requires custom
5733/// type-checking for some of its arguments but not necessarily all of
5734/// them.
5735///
5736/// Returns true on error.
5737static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5738 FunctionDecl *Fn = E->getDirectCallee();
5739 assert(Fn && "builtin call without direct callee!")(static_cast <bool> (Fn && "builtin call without direct callee!"
) ? void (0) : __assert_fail ("Fn && \"builtin call without direct callee!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 5739, __extension__ __PRETTY_FUNCTION__))
;
5740
5741 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5742 InitializedEntity Entity =
5743 InitializedEntity::InitializeParameter(S.Context, Param);
5744
5745 ExprResult Arg = E->getArg(0);
5746 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5747 if (Arg.isInvalid())
5748 return true;
5749
5750 E->setArg(ArgIndex, Arg.get());
5751 return false;
5752}
5753
5754/// We have a call to a function like __sync_fetch_and_add, which is an
5755/// overloaded function based on the pointer type of its first argument.
5756/// The main BuildCallExpr routines have already promoted the types of
5757/// arguments because all of these calls are prototyped as void(...).
5758///
5759/// This function goes through and does final semantic checking for these
5760/// builtins, as well as generating any warnings.
5761ExprResult
5762Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5763 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5764 Expr *Callee = TheCall->getCallee();
5765 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5766 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5767
5768 // Ensure that we have at least one argument to do type inference from.
5769 if (TheCall->getNumArgs() < 1) {
5770 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5771 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5772 return ExprError();
5773 }
5774
5775 // Inspect the first argument of the atomic builtin. This should always be
5776 // a pointer type, whose element is an integral scalar or pointer type.
5777 // Because it is a pointer type, we don't have to worry about any implicit
5778 // casts here.
5779 // FIXME: We don't allow floating point scalars as input.
5780 Expr *FirstArg = TheCall->getArg(0);
5781 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5782 if (FirstArgResult.isInvalid())
5783 return ExprError();
5784 FirstArg = FirstArgResult.get();
5785 TheCall->setArg(0, FirstArg);
5786
5787 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5788 if (!pointerType) {
5789 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5790 << FirstArg->getType() << FirstArg->getSourceRange();
5791 return ExprError();
5792 }
5793
5794 QualType ValType = pointerType->getPointeeType();
5795 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5796 !ValType->isBlockPointerType()) {
5797 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5798 << FirstArg->getType() << FirstArg->getSourceRange();
5799 return ExprError();
5800 }
5801
5802 if (ValType.isConstQualified()) {
5803 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5804 << FirstArg->getType() << FirstArg->getSourceRange();
5805 return ExprError();
5806 }
5807
5808 switch (ValType.getObjCLifetime()) {
5809 case Qualifiers::OCL_None:
5810 case Qualifiers::OCL_ExplicitNone:
5811 // okay
5812 break;
5813
5814 case Qualifiers::OCL_Weak:
5815 case Qualifiers::OCL_Strong:
5816 case Qualifiers::OCL_Autoreleasing:
5817 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5818 << ValType << FirstArg->getSourceRange();
5819 return ExprError();
5820 }
5821
5822 // Strip any qualifiers off ValType.
5823 ValType = ValType.getUnqualifiedType();
5824
5825 // The majority of builtins return a value, but a few have special return
5826 // types, so allow them to override appropriately below.
5827 QualType ResultType = ValType;
5828
5829 // We need to figure out which concrete builtin this maps onto. For example,
5830 // __sync_fetch_and_add with a 2 byte object turns into
5831 // __sync_fetch_and_add_2.
5832#define BUILTIN_ROW(x) \
5833 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5834 Builtin::BI##x##_8, Builtin::BI##x##_16 }
5835
5836 static const unsigned BuiltinIndices[][5] = {
5837 BUILTIN_ROW(__sync_fetch_and_add),
5838 BUILTIN_ROW(__sync_fetch_and_sub),
5839 BUILTIN_ROW(__sync_fetch_and_or),
5840 BUILTIN_ROW(__sync_fetch_and_and),
5841 BUILTIN_ROW(__sync_fetch_and_xor),
5842 BUILTIN_ROW(__sync_fetch_and_nand),
5843
5844 BUILTIN_ROW(__sync_add_and_fetch),
5845 BUILTIN_ROW(__sync_sub_and_fetch),
5846 BUILTIN_ROW(__sync_and_and_fetch),
5847 BUILTIN_ROW(__sync_or_and_fetch),
5848 BUILTIN_ROW(__sync_xor_and_fetch),
5849 BUILTIN_ROW(__sync_nand_and_fetch),
5850
5851 BUILTIN_ROW(__sync_val_compare_and_swap),
5852 BUILTIN_ROW(__sync_bool_compare_and_swap),
5853 BUILTIN_ROW(__sync_lock_test_and_set),
5854 BUILTIN_ROW(__sync_lock_release),
5855 BUILTIN_ROW(__sync_swap)
5856 };
5857#undef BUILTIN_ROW
5858
5859 // Determine the index of the size.
5860 unsigned SizeIndex;
5861 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5862 case 1: SizeIndex = 0; break;
5863 case 2: SizeIndex = 1; break;
5864 case 4: SizeIndex = 2; break;
5865 case 8: SizeIndex = 3; break;
5866 case 16: SizeIndex = 4; break;
5867 default:
5868 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5869 << FirstArg->getType() << FirstArg->getSourceRange();
5870 return ExprError();
5871 }
5872
5873 // Each of these builtins has one pointer argument, followed by some number of
5874 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5875 // that we ignore. Find out which row of BuiltinIndices to read from as well
5876 // as the number of fixed args.
5877 unsigned BuiltinID = FDecl->getBuiltinID();
5878 unsigned BuiltinIndex, NumFixed = 1;
5879 bool WarnAboutSemanticsChange = false;
5880 switch (BuiltinID) {
5881 default: llvm_unreachable("Unknown overloaded atomic builtin!")::llvm::llvm_unreachable_internal("Unknown overloaded atomic builtin!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 5881)
;
5882 case Builtin::BI__sync_fetch_and_add:
5883 case Builtin::BI__sync_fetch_and_add_1:
5884 case Builtin::BI__sync_fetch_and_add_2:
5885 case Builtin::BI__sync_fetch_and_add_4:
5886 case Builtin::BI__sync_fetch_and_add_8:
5887 case Builtin::BI__sync_fetch_and_add_16:
5888 BuiltinIndex = 0;
5889 break;
5890
5891 case Builtin::BI__sync_fetch_and_sub:
5892 case Builtin::BI__sync_fetch_and_sub_1:
5893 case Builtin::BI__sync_fetch_and_sub_2:
5894 case Builtin::BI__sync_fetch_and_sub_4:
5895 case Builtin::BI__sync_fetch_and_sub_8:
5896 case Builtin::BI__sync_fetch_and_sub_16:
5897 BuiltinIndex = 1;
5898 break;
5899
5900 case Builtin::BI__sync_fetch_and_or:
5901 case Builtin::BI__sync_fetch_and_or_1:
5902 case Builtin::BI__sync_fetch_and_or_2:
5903 case Builtin::BI__sync_fetch_and_or_4:
5904 case Builtin::BI__sync_fetch_and_or_8:
5905 case Builtin::BI__sync_fetch_and_or_16:
5906 BuiltinIndex = 2;
5907 break;
5908
5909 case Builtin::BI__sync_fetch_and_and:
5910 case Builtin::BI__sync_fetch_and_and_1:
5911 case Builtin::BI__sync_fetch_and_and_2:
5912 case Builtin::BI__sync_fetch_and_and_4:
5913 case Builtin::BI__sync_fetch_and_and_8:
5914 case Builtin::BI__sync_fetch_and_and_16:
5915 BuiltinIndex = 3;
5916 break;
5917
5918 case Builtin::BI__sync_fetch_and_xor:
5919 case Builtin::BI__sync_fetch_and_xor_1:
5920 case Builtin::BI__sync_fetch_and_xor_2:
5921 case Builtin::BI__sync_fetch_and_xor_4:
5922 case Builtin::BI__sync_fetch_and_xor_8:
5923 case Builtin::BI__sync_fetch_and_xor_16:
5924 BuiltinIndex = 4;
5925 break;
5926
5927 case Builtin::BI__sync_fetch_and_nand:
5928 case Builtin::BI__sync_fetch_and_nand_1:
5929 case Builtin::BI__sync_fetch_and_nand_2:
5930 case Builtin::BI__sync_fetch_and_nand_4:
5931 case Builtin::BI__sync_fetch_and_nand_8:
5932 case Builtin::BI__sync_fetch_and_nand_16:
5933 BuiltinIndex = 5;
5934 WarnAboutSemanticsChange = true;
5935 break;
5936
5937 case Builtin::BI__sync_add_and_fetch:
5938 case Builtin::BI__sync_add_and_fetch_1:
5939 case Builtin::BI__sync_add_and_fetch_2:
5940 case Builtin::BI__sync_add_and_fetch_4:
5941 case Builtin::BI__sync_add_and_fetch_8:
5942 case Builtin::BI__sync_add_and_fetch_16:
5943 BuiltinIndex = 6;
5944 break;
5945
5946 case Builtin::BI__sync_sub_and_fetch:
5947 case Builtin::BI__sync_sub_and_fetch_1:
5948 case Builtin::BI__sync_sub_and_fetch_2:
5949 case Builtin::BI__sync_sub_and_fetch_4:
5950 case Builtin::BI__sync_sub_and_fetch_8:
5951 case Builtin::BI__sync_sub_and_fetch_16:
5952 BuiltinIndex = 7;
5953 break;
5954
5955 case Builtin::BI__sync_and_and_fetch:
5956 case Builtin::BI__sync_and_and_fetch_1:
5957 case Builtin::BI__sync_and_and_fetch_2:
5958 case Builtin::BI__sync_and_and_fetch_4:
5959 case Builtin::BI__sync_and_and_fetch_8:
5960 case Builtin::BI__sync_and_and_fetch_16:
5961 BuiltinIndex = 8;
5962 break;
5963
5964 case Builtin::BI__sync_or_and_fetch:
5965 case Builtin::BI__sync_or_and_fetch_1:
5966 case Builtin::BI__sync_or_and_fetch_2:
5967 case Builtin::BI__sync_or_and_fetch_4:
5968 case Builtin::BI__sync_or_and_fetch_8:
5969 case Builtin::BI__sync_or_and_fetch_16:
5970 BuiltinIndex = 9;
5971 break;
5972
5973 case Builtin::BI__sync_xor_and_fetch:
5974 case Builtin::BI__sync_xor_and_fetch_1:
5975 case Builtin::BI__sync_xor_and_fetch_2:
5976 case Builtin::BI__sync_xor_and_fetch_4:
5977 case Builtin::BI__sync_xor_and_fetch_8:
5978 case Builtin::BI__sync_xor_and_fetch_16:
5979 BuiltinIndex = 10;
5980 break;
5981
5982 case Builtin::BI__sync_nand_and_fetch:
5983 case Builtin::BI__sync_nand_and_fetch_1:
5984 case Builtin::BI__sync_nand_and_fetch_2:
5985 case Builtin::BI__sync_nand_and_fetch_4:
5986 case Builtin::BI__sync_nand_and_fetch_8:
5987 case Builtin::BI__sync_nand_and_fetch_16:
5988 BuiltinIndex = 11;
5989 WarnAboutSemanticsChange = true;
5990 break;
5991
5992 case Builtin::BI__sync_val_compare_and_swap:
5993 case Builtin::BI__sync_val_compare_and_swap_1:
5994 case Builtin::BI__sync_val_compare_and_swap_2:
5995 case Builtin::BI__sync_val_compare_and_swap_4:
5996 case Builtin::BI__sync_val_compare_and_swap_8:
5997 case Builtin::BI__sync_val_compare_and_swap_16:
5998 BuiltinIndex = 12;
5999 NumFixed = 2;
6000 break;
6001
6002 case Builtin::BI__sync_bool_compare_and_swap:
6003 case Builtin::BI__sync_bool_compare_and_swap_1:
6004 case Builtin::BI__sync_bool_compare_and_swap_2:
6005 case Builtin::BI__sync_bool_compare_and_swap_4:
6006 case Builtin::BI__sync_bool_compare_and_swap_8:
6007 case Builtin::BI__sync_bool_compare_and_swap_16:
6008 BuiltinIndex = 13;
6009 NumFixed = 2;
6010 ResultType = Context.BoolTy;
6011 break;
6012
6013 case Builtin::BI__sync_lock_test_and_set:
6014 case Builtin::BI__sync_lock_test_and_set_1:
6015 case Builtin::BI__sync_lock_test_and_set_2:
6016 case Builtin::BI__sync_lock_test_and_set_4:
6017 case Builtin::BI__sync_lock_test_and_set_8:
6018 case Builtin::BI__sync_lock_test_and_set_16:
6019 BuiltinIndex = 14;
6020 break;
6021
6022 case Builtin::BI__sync_lock_release:
6023 case Builtin::BI__sync_lock_release_1:
6024 case Builtin::BI__sync_lock_release_2:
6025 case Builtin::BI__sync_lock_release_4:
6026 case Builtin::BI__sync_lock_release_8:
6027 case Builtin::BI__sync_lock_release_16:
6028 BuiltinIndex = 15;
6029 NumFixed = 0;
6030 ResultType = Context.VoidTy;
6031 break;
6032
6033 case Builtin::BI__sync_swap:
6034 case Builtin::BI__sync_swap_1:
6035 case Builtin::BI__sync_swap_2:
6036 case Builtin::BI__sync_swap_4:
6037 case Builtin::BI__sync_swap_8:
6038 case Builtin::BI__sync_swap_16:
6039 BuiltinIndex = 16;
6040 break;
6041 }
6042
6043 // Now that we know how many fixed arguments we expect, first check that we
6044 // have at least that many.
6045 if (TheCall->getNumArgs() < 1+NumFixed) {
6046 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6047 << 0 << 1 + NumFixed << TheCall->getNumArgs()
6048 << Callee->getSourceRange();
6049 return ExprError();
6050 }
6051
6052 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
6053 << Callee->getSourceRange();
6054
6055 if (WarnAboutSemanticsChange) {
6056 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
6057 << Callee->getSourceRange();
6058 }
6059
6060 // Get the decl for the concrete builtin from this, we can tell what the
6061 // concrete integer type we should convert to is.
6062 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
6063 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
6064 FunctionDecl *NewBuiltinDecl;
6065 if (NewBuiltinID == BuiltinID)
6066 NewBuiltinDecl = FDecl;
6067 else {
6068 // Perform builtin lookup to avoid redeclaring it.
6069 DeclarationName DN(&Context.Idents.get(NewBuiltinName));
6070 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
6071 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
6072 assert(Res.getFoundDecl())(static_cast <bool> (Res.getFoundDecl()) ? void (0) : __assert_fail
("Res.getFoundDecl()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 6072, __extension__ __PRETTY_FUNCTION__))
;
6073 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
6074 if (!NewBuiltinDecl)
6075 return ExprError();
6076 }
6077
6078 // The first argument --- the pointer --- has a fixed type; we
6079 // deduce the types of the rest of the arguments accordingly. Walk
6080 // the remaining arguments, converting them to the deduced value type.
6081 for (unsigned i = 0; i != NumFixed; ++i) {
6082 ExprResult Arg = TheCall->getArg(i+1);
6083
6084 // GCC does an implicit conversion to the pointer or integer ValType. This
6085 // can fail in some cases (1i -> int**), check for this error case now.
6086 // Initialize the argument.
6087 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6088 ValType, /*consume*/ false);
6089 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6090 if (Arg.isInvalid())
6091 return ExprError();
6092
6093 // Okay, we have something that *can* be converted to the right type. Check
6094 // to see if there is a potentially weird extension going on here. This can
6095 // happen when you do an atomic operation on something like an char* and
6096 // pass in 42. The 42 gets converted to char. This is even more strange
6097 // for things like 45.123 -> char, etc.
6098 // FIXME: Do this check.
6099 TheCall->setArg(i+1, Arg.get());
6100 }
6101
6102 // Create a new DeclRefExpr to refer to the new decl.
6103 DeclRefExpr *NewDRE = DeclRefExpr::Create(
6104 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
6105 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
6106 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
6107
6108 // Set the callee in the CallExpr.
6109 // FIXME: This loses syntactic information.
6110 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
6111 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
6112 CK_BuiltinFnToFnPtr);
6113 TheCall->setCallee(PromotedCall.get());
6114
6115 // Change the result type of the call to match the original value type. This
6116 // is arbitrary, but the codegen for these builtins ins design to handle it
6117 // gracefully.
6118 TheCall->setType(ResultType);
6119
6120 // Prohibit use of _ExtInt with atomic builtins.
6121 // The arguments would have already been converted to the first argument's
6122 // type, so only need to check the first argument.
6123 const auto *ExtIntValType = ValType->getAs<ExtIntType>();
6124 if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
6125 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
6126 return ExprError();
6127 }
6128
6129 return TheCallResult;
6130}
6131
6132/// SemaBuiltinNontemporalOverloaded - We have a call to
6133/// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
6134/// overloaded function based on the pointer type of its last argument.
6135///
6136/// This function goes through and does final semantic checking for these
6137/// builtins.
6138ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
6139 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
6140 DeclRefExpr *DRE =
6141 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6142 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6143 unsigned BuiltinID = FDecl->getBuiltinID();
6144 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||(static_cast <bool> ((BuiltinID == Builtin::BI__builtin_nontemporal_store
|| BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
"Unexpected nontemporal load/store builtin!") ? void (0) : __assert_fail
("(BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID == Builtin::BI__builtin_nontemporal_load) && \"Unexpected nontemporal load/store builtin!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 6146, __extension__ __PRETTY_FUNCTION__))
6145 BuiltinID == Builtin::BI__builtin_nontemporal_load) &&(static_cast <bool> ((BuiltinID == Builtin::BI__builtin_nontemporal_store
|| BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
"Unexpected nontemporal load/store builtin!") ? void (0) : __assert_fail
("(BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID == Builtin::BI__builtin_nontemporal_load) && \"Unexpected nontemporal load/store builtin!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 6146, __extension__ __PRETTY_FUNCTION__))
6146 "Unexpected nontemporal load/store builtin!")(static_cast <bool> ((BuiltinID == Builtin::BI__builtin_nontemporal_store
|| BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
"Unexpected nontemporal load/store builtin!") ? void (0) : __assert_fail
("(BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID == Builtin::BI__builtin_nontemporal_load) && \"Unexpected nontemporal load/store builtin!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 6146, __extension__ __PRETTY_FUNCTION__))
;
6147 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
6148 unsigned numArgs = isStore ? 2 : 1;
6149
6150 // Ensure that we have the proper number of arguments.
6151 if (checkArgCount(*this, TheCall, numArgs))
6152 return ExprError();
6153
6154 // Inspect the last argument of the nontemporal builtin. This should always
6155 // be a pointer type, from which we imply the type of the memory access.
6156 // Because it is a pointer type, we don't have to worry about any implicit
6157 // casts here.
6158 Expr *PointerArg = TheCall->getArg(numArgs - 1);
6159 ExprResult PointerArgResult =
6160 DefaultFunctionArrayLvalueConversion(PointerArg);
6161
6162 if (PointerArgResult.isInvalid())
6163 return ExprError();
6164 PointerArg = PointerArgResult.get();
6165 TheCall->setArg(numArgs - 1, PointerArg);
6166
6167 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
6168 if (!pointerType) {
6169 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
6170 << PointerArg->getType() << PointerArg->getSourceRange();
6171 return ExprError();
6172 }
6173
6174 QualType ValType = pointerType->getPointeeType();
6175
6176 // Strip any qualifiers off ValType.
6177 ValType = ValType.getUnqualifiedType();
6178 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6179 !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
6180 !ValType->isVectorType()) {
6181 Diag(DRE->getBeginLoc(),
6182 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
6183 << PointerArg->getType() << PointerArg->getSourceRange();
6184 return ExprError();
6185 }
6186
6187 if (!isStore) {
6188 TheCall->setType(ValType);
6189 return TheCallResult;
6190 }
6191
6192 ExprResult ValArg = TheCall->getArg(0);
6193 InitializedEntity Entity = InitializedEntity::InitializeParameter(
6194 Context, ValType, /*consume*/ false);
6195 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
6196 if (ValArg.isInvalid())
6197 return ExprError();
6198
6199 TheCall->setArg(0, ValArg.get());
6200 TheCall->setType(Context.VoidTy);
6201 return TheCallResult;
6202}
6203
6204/// CheckObjCString - Checks that the argument to the builtin
6205/// CFString constructor is correct
6206/// Note: It might also make sense to do the UTF-16 conversion here (would
6207/// simplify the backend).
6208bool Sema::CheckObjCString(Expr *Arg) {
6209 Arg = Arg->IgnoreParenCasts();
6210 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
6211
6212 if (!Literal || !Literal->isAscii()) {
6213 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
6214 << Arg->getSourceRange();
6215 return true;
6216 }
6217
6218 if (Literal->containsNonAsciiOrNull()) {
6219 StringRef String = Literal->getString();
6220 unsigned NumBytes = String.size();
6221 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
6222 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6223 llvm::UTF16 *ToPtr = &ToBuf[0];
6224
6225 llvm::ConversionResult Result =
6226 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6227 ToPtr + NumBytes, llvm::strictConversion);
6228 // Check for conversion failure.
6229 if (Result != llvm::conversionOK)
6230 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
6231 << Arg->getSourceRange();
6232 }
6233 return false;
6234}
6235
6236/// CheckObjCString - Checks that the format string argument to the os_log()
6237/// and os_trace() functions is correct, and converts it to const char *.
6238ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
6239 Arg = Arg->IgnoreParenCasts();
6240 auto *Literal = dyn_cast<StringLiteral>(Arg);
6241 if (!Literal) {
6242 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
6243 Literal = ObjcLiteral->getString();
6244 }
6245 }
6246
6247 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
6248 return ExprError(
6249 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
6250 << Arg->getSourceRange());
6251 }
6252
6253 ExprResult Result(Literal);
6254 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
6255 InitializedEntity Entity =
6256 InitializedEntity::InitializeParameter(Context, ResultTy, false);
6257 Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
6258 return Result;
6259}
6260
6261/// Check that the user is calling the appropriate va_start builtin for the
6262/// target and calling convention.
6263static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
6264 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
6265 bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
6266 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
6267 TT.getArch() == llvm::Triple::aarch64_32);
6268 bool IsWindows = TT.isOSWindows();
6269 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
6270 if (IsX64 || IsAArch64) {
6271 CallingConv CC = CC_C;
6272 if (const FunctionDecl *FD = S.getCurFunctionDecl())
6273 CC = FD->getType()->castAs<FunctionType>()->getCallConv();
6274 if (IsMSVAStart) {
6275 // Don't allow this in System V ABI functions.
6276 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
6277 return S.Diag(Fn->getBeginLoc(),
6278 diag::err_ms_va_start_used_in_sysv_function);
6279 } else {
6280 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
6281 // On x64 Windows, don't allow this in System V ABI functions.
6282 // (Yes, that means there's no corresponding way to support variadic
6283 // System V ABI functions on Windows.)
6284 if ((IsWindows && CC == CC_X86_64SysV) ||
6285 (!IsWindows && CC == CC_Win64))
6286 return S.Diag(Fn->getBeginLoc(),
6287 diag::err_va_start_used_in_wrong_abi_function)
6288 << !IsWindows;
6289 }
6290 return false;
6291 }
6292
6293 if (IsMSVAStart)
6294 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
6295 return false;
6296}
6297
6298static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
6299 ParmVarDecl **LastParam = nullptr) {
6300 // Determine whether the current function, block, or obj-c method is variadic
6301 // and get its parameter list.
6302 bool IsVariadic = false;
6303 ArrayRef<ParmVarDecl *> Params;
6304 DeclContext *Caller = S.CurContext;
6305 if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
6306 IsVariadic = Block->isVariadic();
6307 Params = Block->parameters();
6308 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
6309 IsVariadic = FD->isVariadic();
6310 Params = FD->parameters();
6311 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
6312 IsVariadic = MD->isVariadic();
6313 // FIXME: This isn't correct for methods (results in bogus warning).
6314 Params = MD->parameters();
6315 } else if (isa<CapturedDecl>(Caller)) {
6316 // We don't support va_start in a CapturedDecl.
6317 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
6318 return true;
6319 } else {
6320 // This must be some other declcontext that parses exprs.
6321 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
6322 return true;
6323 }
6324
6325 if (!IsVariadic) {
6326 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
6327 return true;
6328 }
6329
6330 if (LastParam)
6331 *LastParam = Params.empty() ? nullptr : Params.back();
6332
6333 return false;
6334}
6335
6336/// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
6337/// for validity. Emit an error and return true on failure; return false
6338/// on success.
6339bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
6340 Expr *Fn = TheCall->getCallee();
6341
6342 if (checkVAStartABI(*this, BuiltinID, Fn))
6343 return true;
6344
6345 if (checkArgCount(*this, TheCall, 2))
6346 return true;
6347
6348 // Type-check the first argument normally.
6349 if (checkBuiltinArgument(*this, TheCall, 0))
6350 return true;
6351
6352 // Check that the current function is variadic, and get its last parameter.
6353 ParmVarDecl *LastParam;
6354 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
6355 return true;
6356
6357 // Verify that the second argument to the builtin is the last argument of the
6358 // current function or method.
6359 bool SecondArgIsLastNamedArgument = false;
6360 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
6361
6362 // These are valid if SecondArgIsLastNamedArgument is false after the next
6363 // block.
6364 QualType Type;
6365 SourceLocation ParamLoc;
6366 bool IsCRegister = false;
6367
6368 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
6369 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
6370 SecondArgIsLastNamedArgument = PV == LastParam;
6371
6372 Type = PV->getType();
6373 ParamLoc = PV->getLocation();
6374 IsCRegister =
6375 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
6376 }
6377 }
6378
6379 if (!SecondArgIsLastNamedArgument)
6380 Diag(TheCall->getArg(1)->getBeginLoc(),
6381 diag::warn_second_arg_of_va_start_not_last_named_param);
6382 else if (IsCRegister || Type->isReferenceType() ||
6383 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
6384 // Promotable integers are UB, but enumerations need a bit of
6385 // extra checking to see what their promotable type actually is.
6386 if (!Type->isPromotableIntegerType())
6387 return false;
6388 if (!Type->isEnumeralType())
6389 return true;
6390 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
6391 return !(ED &&
6392 Context.typesAreCompatible(ED->getPromotionType(), Type));
6393 }()) {
6394 unsigned Reason = 0;
6395 if (Type->isReferenceType()) Reason = 1;
6396 else if (IsCRegister) Reason = 2;
6397 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
6398 Diag(ParamLoc, diag::note_parameter_type) << Type;
6399 }
6400
6401 TheCall->setType(Context.VoidTy);
6402 return false;
6403}
6404
6405bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
6406 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
6407 // const char *named_addr);
6408
6409 Expr *Func = Call->getCallee();
6410
6411 if (Call->getNumArgs() < 3)
6412 return Diag(Call->getEndLoc(),
6413 diag::err_typecheck_call_too_few_args_at_least)
6414 << 0 /*function call*/ << 3 << Call->getNumArgs();
6415
6416 // Type-check the first argument normally.
6417 if (checkBuiltinArgument(*this, Call, 0))
6418 return true;
6419
6420 // Check that the current function is variadic.
6421 if (checkVAStartIsInVariadicFunction(*this, Func))
6422 return true;
6423
6424 // __va_start on Windows does not validate the parameter qualifiers
6425
6426 const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
6427 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
6428
6429 const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
6430 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
6431
6432 const QualType &ConstCharPtrTy =
6433 Context.getPointerType(Context.CharTy.withConst());
6434 if (!Arg1Ty->isPointerType() ||
6435 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
6436 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6437 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
6438 << 0 /* qualifier difference */
6439 << 3 /* parameter mismatch */
6440 << 2 << Arg1->getType() << ConstCharPtrTy;
6441
6442 const QualType SizeTy = Context.getSizeType();
6443 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
6444 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6445 << Arg2->getType() << SizeTy << 1 /* different class */
6446 << 0 /* qualifier difference */
6447 << 3 /* parameter mismatch */
6448 << 3 << Arg2->getType() << SizeTy;
6449
6450 return false;
6451}
6452
6453/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
6454/// friends. This is declared to take (...), so we have to check everything.
6455bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
6456 if (checkArgCount(*this, TheCall, 2))
6457 return true;
6458
6459 ExprResult OrigArg0 = TheCall->getArg(0);
6460 ExprResult OrigArg1 = TheCall->getArg(1);
6461
6462 // Do standard promotions between the two arguments, returning their common
6463 // type.
6464 QualType Res = UsualArithmeticConversions(
6465 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
6466 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
6467 return true;
6468
6469 // Make sure any conversions are pushed back into the call; this is
6470 // type safe since unordered compare builtins are declared as "_Bool
6471 // foo(...)".
6472 TheCall->setArg(0, OrigArg0.get());
6473 TheCall->setArg(1, OrigArg1.get());
6474
6475 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
6476 return false;
6477
6478 // If the common type isn't a real floating type, then the arguments were
6479 // invalid for this operation.
6480 if (Res.isNull() || !Res->isRealFloatingType())
6481 return Diag(OrigArg0.get()->getBeginLoc(),
6482 diag::err_typecheck_call_invalid_ordered_compare)
6483 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
6484 << SourceRange(OrigArg0.get()->getBeginLoc(),
6485 OrigArg1.get()->getEndLoc());
6486
6487 return false;
6488}
6489
6490/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
6491/// __builtin_isnan and friends. This is declared to take (...), so we have
6492/// to check everything. We expect the last argument to be a floating point
6493/// value.
6494bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
6495 if (checkArgCount(*this, TheCall, NumArgs))
6496 return true;
6497
6498 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
6499 // on all preceding parameters just being int. Try all of those.
6500 for (unsigned i = 0; i < NumArgs - 1; ++i) {
6501 Expr *Arg = TheCall->getArg(i);
6502
6503 if (Arg->isTypeDependent())
6504 return false;
6505
6506 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
6507
6508 if (Res.isInvalid())
6509 return true;
6510 TheCall->setArg(i, Res.get());
6511 }
6512
6513 Expr *OrigArg = TheCall->getArg(NumArgs-1);
6514
6515 if (OrigArg->isTypeDependent())
6516 return false;
6517
6518 // Usual Unary Conversions will convert half to float, which we want for
6519 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
6520 // type how it is, but do normal L->Rvalue conversions.
6521 if (Context.getTargetInfo().useFP16ConversionIntrinsics())
6522 OrigArg = UsualUnaryConversions(OrigArg).get();
6523 else
6524 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
6525 TheCall->setArg(NumArgs - 1, OrigArg);
6526
6527 // This operation requires a non-_Complex floating-point number.
6528 if (!OrigArg->getType()->isRealFloatingType())
6529 return Diag(OrigArg->getBeginLoc(),
6530 diag::err_typecheck_call_invalid_unary_fp)
6531 << OrigArg->getType() << OrigArg->getSourceRange();
6532
6533 return false;
6534}
6535
6536/// Perform semantic analysis for a call to __builtin_complex.
6537bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
6538 if (checkArgCount(*this, TheCall, 2))
6539 return true;
6540
6541 bool Dependent = false;
6542 for (unsigned I = 0; I != 2; ++I) {
6543 Expr *Arg = TheCall->getArg(I);
6544 QualType T = Arg->getType();
6545 if (T->isDependentType()) {
6546 Dependent = true;
6547 continue;
6548 }
6549
6550 // Despite supporting _Complex int, GCC requires a real floating point type
6551 // for the operands of __builtin_complex.
6552 if (!T->isRealFloatingType()) {
6553 return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
6554 << Arg->getType() << Arg->getSourceRange();
6555 }
6556
6557 ExprResult Converted = DefaultLvalueConversion(Arg);
6558 if (Converted.isInvalid())
6559 return true;
6560 TheCall->setArg(I, Converted.get());
6561 }
6562
6563 if (Dependent) {
6564 TheCall->setType(Context.DependentTy);
6565 return false;
6566 }
6567
6568 Expr *Real = TheCall->getArg(0);
6569 Expr *Imag = TheCall->getArg(1);
6570 if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6571 return Diag(Real->getBeginLoc(),
6572 diag::err_typecheck_call_different_arg_types)
6573 << Real->getType() << Imag->getType()
6574 << Real->getSourceRange() << Imag->getSourceRange();
6575 }
6576
6577 // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6578 // don't allow this builtin to form those types either.
6579 // FIXME: Should we allow these types?
6580 if (Real->getType()->isFloat16Type())
6581 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6582 << "_Float16";
6583 if (Real->getType()->isHalfType())
6584 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6585 << "half";
6586
6587 TheCall->setType(Context.getComplexType(Real->getType()));
6588 return false;
6589}
6590
6591// Customized Sema Checking for VSX builtins that have the following signature:
6592// vector [...] builtinName(vector [...], vector [...], const int);
6593// Which takes the same type of vectors (any legal vector type) for the first
6594// two arguments and takes compile time constant for the third argument.
6595// Example builtins are :
6596// vector double vec_xxpermdi(vector double, vector double, int);
6597// vector short vec_xxsldwi(vector short, vector short, int);
6598bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6599 unsigned ExpectedNumArgs = 3;
6600 if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6601 return true;
6602
6603 // Check the third argument is a compile time constant
6604 if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6605 return Diag(TheCall->getBeginLoc(),
6606 diag::err_vsx_builtin_nonconstant_argument)
6607 << 3 /* argument index */ << TheCall->getDirectCallee()
6608 << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6609 TheCall->getArg(2)->getEndLoc());
6610
6611 QualType Arg1Ty = TheCall->getArg(0)->getType();
6612 QualType Arg2Ty = TheCall->getArg(1)->getType();
6613
6614 // Check the type of argument 1 and argument 2 are vectors.
6615 SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6616 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6617 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6618 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6619 << TheCall->getDirectCallee()
6620 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6621 TheCall->getArg(1)->getEndLoc());
6622 }
6623
6624 // Check the first two arguments are the same type.
6625 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6626 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6627 << TheCall->getDirectCallee()
6628 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6629 TheCall->getArg(1)->getEndLoc());
6630 }
6631
6632 // When default clang type checking is turned off and the customized type
6633 // checking is used, the returning type of the function must be explicitly
6634 // set. Otherwise it is _Bool by default.
6635 TheCall->setType(Arg1Ty);
6636
6637 return false;
6638}
6639
6640/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6641// This is declared to take (...), so we have to check everything.
6642ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6643 if (TheCall->getNumArgs() < 2)
6644 return ExprError(Diag(TheCall->getEndLoc(),
6645 diag::err_typecheck_call_too_few_args_at_least)
6646 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6647 << TheCall->getSourceRange());
6648
6649 // Determine which of the following types of shufflevector we're checking:
6650 // 1) unary, vector mask: (lhs, mask)
6651 // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
6652 QualType resType = TheCall->getArg(0)->getType();
6653 unsigned numElements = 0;
6654
6655 if (!TheCall->getArg(0)->isTypeDependent() &&
6656 !TheCall->getArg(1)->isTypeDependent()) {
6657 QualType LHSType = TheCall->getArg(0)->getType();
6658 QualType RHSType = TheCall->getArg(1)->getType();
6659
6660 if (!LHSType->isVectorType() || !RHSType->isVectorType())
6661 return ExprError(
6662 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6663 << TheCall->getDirectCallee()
6664 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6665 TheCall->getArg(1)->getEndLoc()));
6666
6667 numElements = LHSType->castAs<VectorType>()->getNumElements();
6668 unsigned numResElements = TheCall->getNumArgs() - 2;
6669
6670 // Check to see if we have a call with 2 vector arguments, the unary shuffle
6671 // with mask. If so, verify that RHS is an integer vector type with the
6672 // same number of elts as lhs.
6673 if (TheCall->getNumArgs() == 2) {
6674 if (!RHSType->hasIntegerRepresentation() ||
6675 RHSType->castAs<VectorType>()->getNumElements() != numElements)
6676 return ExprError(Diag(TheCall->getBeginLoc(),
6677 diag::err_vec_builtin_incompatible_vector)
6678 << TheCall->getDirectCallee()
6679 << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6680 TheCall->getArg(1)->getEndLoc()));
6681 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6682 return ExprError(Diag(TheCall->getBeginLoc(),
6683 diag::err_vec_builtin_incompatible_vector)
6684 << TheCall->getDirectCallee()
6685 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6686 TheCall->getArg(1)->getEndLoc()));
6687 } else if (numElements != numResElements) {
6688 QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6689 resType = Context.getVectorType(eltType, numResElements,
6690 VectorType::GenericVector);
6691 }
6692 }
6693
6694 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6695 if (TheCall->getArg(i)->isTypeDependent() ||
6696 TheCall->getArg(i)->isValueDependent())
6697 continue;
6698
6699 Optional<llvm::APSInt> Result;
6700 if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
6701 return ExprError(Diag(TheCall->getBeginLoc(),
6702 diag::err_shufflevector_nonconstant_argument)
6703 << TheCall->getArg(i)->getSourceRange());
6704
6705 // Allow -1 which will be translated to undef in the IR.
6706 if (Result->isSigned() && Result->isAllOnesValue())
6707 continue;
6708
6709 if (Result->getActiveBits() > 64 ||
6710 Result->getZExtValue() >= numElements * 2)
6711 return ExprError(Diag(TheCall->getBeginLoc(),
6712 diag::err_shufflevector_argument_too_large)
6713 << TheCall->getArg(i)->getSourceRange());
6714 }
6715
6716 SmallVector<Expr*, 32> exprs;
6717
6718 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6719 exprs.push_back(TheCall->getArg(i));
6720 TheCall->setArg(i, nullptr);
6721 }
6722
6723 return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6724 TheCall->getCallee()->getBeginLoc(),
6725 TheCall->getRParenLoc());
6726}
6727
6728/// SemaConvertVectorExpr - Handle __builtin_convertvector
6729ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6730 SourceLocation BuiltinLoc,
6731 SourceLocation RParenLoc) {
6732 ExprValueKind VK = VK_PRValue;
6733 ExprObjectKind OK = OK_Ordinary;
6734 QualType DstTy = TInfo->getType();
6735 QualType SrcTy = E->getType();
6736
6737 if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6738 return ExprError(Diag(BuiltinLoc,
6739 diag::err_convertvector_non_vector)
6740 << E->getSourceRange());
6741 if (!DstTy->isVectorType() && !DstTy->isDependentType())
6742 return ExprError(Diag(BuiltinLoc,
6743 diag::err_convertvector_non_vector_type));
6744
6745 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6746 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6747 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6748 if (SrcElts != DstElts)
6749 return ExprError(Diag(BuiltinLoc,
6750 diag::err_convertvector_incompatible_vector)
6751 << E->getSourceRange());
6752 }
6753
6754 return new (Context)
6755 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6756}
6757
6758/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6759// This is declared to take (const void*, ...) and can take two
6760// optional constant int args.
6761bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6762 unsigned NumArgs = TheCall->getNumArgs();
6763
6764 if (NumArgs > 3)
6765 return Diag(TheCall->getEndLoc(),
6766 diag::err_typecheck_call_too_many_args_at_most)
6767 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6768
6769 // Argument 0 is checked for us and the remaining arguments must be
6770 // constant integers.
6771 for (unsigned i = 1; i != NumArgs; ++i)
6772 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6773 return true;
6774
6775 return false;
6776}
6777
6778/// SemaBuiltinArithmeticFence - Handle __arithmetic_fence.
6779bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) {
6780 if (!Context.getTargetInfo().checkArithmeticFenceSupported())
6781 return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
6782 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6783 if (checkArgCount(*this, TheCall, 1))
6784 return true;
6785 Expr *Arg = TheCall->getArg(0);
6786 if (Arg->isInstantiationDependent())
6787 return false;
6788
6789 QualType ArgTy = Arg->getType();
6790 if (!ArgTy->hasFloatingRepresentation())
6791 return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
6792 << ArgTy;
6793 if (Arg->isLValue()) {
6794 ExprResult FirstArg = DefaultLvalueConversion(Arg);
6795 TheCall->setArg(0, FirstArg.get());
6796 }
6797 TheCall->setType(TheCall->getArg(0)->getType());
6798 return false;
6799}
6800
6801/// SemaBuiltinAssume - Handle __assume (MS Extension).
6802// __assume does not evaluate its arguments, and should warn if its argument
6803// has side effects.
6804bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6805 Expr *Arg = TheCall->getArg(0);
6806 if (Arg->isInstantiationDependent()) return false;
6807
6808 if (Arg->HasSideEffects(Context))
6809 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6810 << Arg->getSourceRange()
6811 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6812
6813 return false;
6814}
6815
6816/// Handle __builtin_alloca_with_align. This is declared
6817/// as (size_t, size_t) where the second size_t must be a power of 2 greater
6818/// than 8.
6819bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6820 // The alignment must be a constant integer.
6821 Expr *Arg = TheCall->getArg(1);
6822
6823 // We can't check the value of a dependent argument.
6824 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6825 if (const auto *UE =
6826 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6827 if (UE->getKind() == UETT_AlignOf ||
6828 UE->getKind() == UETT_PreferredAlignOf)
6829 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6830 << Arg->getSourceRange();
6831
6832 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6833
6834 if (!Result.isPowerOf2())
6835 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6836 << Arg->getSourceRange();
6837
6838 if (Result < Context.getCharWidth())
6839 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6840 << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6841
6842 if (Result > std::numeric_limits<int32_t>::max())
6843 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6844 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6845 }
6846
6847 return false;
6848}
6849
6850/// Handle __builtin_assume_aligned. This is declared
6851/// as (const void*, size_t, ...) and can take one optional constant int arg.
6852bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6853 unsigned NumArgs = TheCall->getNumArgs();
6854
6855 if (NumArgs > 3)
6856 return Diag(TheCall->getEndLoc(),
6857 diag::err_typecheck_call_too_many_args_at_most)
6858 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6859
6860 // The alignment must be a constant integer.
6861 Expr *Arg = TheCall->getArg(1);
6862
6863 // We can't check the value of a dependent argument.
6864 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6865 llvm::APSInt Result;
6866 if (SemaBuiltinConstantArg(TheCall, 1, Result))
6867 return true;
6868
6869 if (!Result.isPowerOf2())
6870 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6871 << Arg->getSourceRange();
6872
6873 if (Result > Sema::MaximumAlignment)
6874 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6875 << Arg->getSourceRange() << Sema::MaximumAlignment;
6876 }
6877
6878 if (NumArgs > 2) {
6879 ExprResult Arg(TheCall->getArg(2));
6880 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6881 Context.getSizeType(), false);
6882 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6883 if (Arg.isInvalid()) return true;
6884 TheCall->setArg(2, Arg.get());
6885 }
6886
6887 return false;
6888}
6889
6890bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6891 unsigned BuiltinID =
6892 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6893 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6894
6895 unsigned NumArgs = TheCall->getNumArgs();
6896 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6897 if (NumArgs < NumRequiredArgs) {
6898 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6899 << 0 /* function call */ << NumRequiredArgs << NumArgs
6900 << TheCall->getSourceRange();
6901 }
6902 if (NumArgs >= NumRequiredArgs + 0x100) {
6903 return Diag(TheCall->getEndLoc(),
6904 diag::err_typecheck_call_too_many_args_at_most)
6905 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
6906 << TheCall->getSourceRange();
6907 }
6908 unsigned i = 0;
6909
6910 // For formatting call, check buffer arg.
6911 if (!IsSizeCall) {
6912 ExprResult Arg(TheCall->getArg(i));
6913 InitializedEntity Entity = InitializedEntity::InitializeParameter(
6914 Context, Context.VoidPtrTy, false);
6915 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6916 if (Arg.isInvalid())
6917 return true;
6918 TheCall->setArg(i, Arg.get());
6919 i++;
6920 }
6921
6922 // Check string literal arg.
6923 unsigned FormatIdx = i;
6924 {
6925 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
6926 if (Arg.isInvalid())
6927 return true;
6928 TheCall->setArg(i, Arg.get());
6929 i++;
6930 }
6931
6932 // Make sure variadic args are scalar.
6933 unsigned FirstDataArg = i;
6934 while (i < NumArgs) {
6935 ExprResult Arg = DefaultVariadicArgumentPromotion(
6936 TheCall->getArg(i), VariadicFunction, nullptr);
6937 if (Arg.isInvalid())
6938 return true;
6939 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6940 if (ArgSize.getQuantity() >= 0x100) {
6941 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6942 << i << (int)ArgSize.getQuantity() << 0xff
6943 << TheCall->getSourceRange();
6944 }
6945 TheCall->setArg(i, Arg.get());
6946 i++;
6947 }
6948
6949 // Check formatting specifiers. NOTE: We're only doing this for the non-size
6950 // call to avoid duplicate diagnostics.
6951 if (!IsSizeCall) {
6952 llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6953 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6954 bool Success = CheckFormatArguments(
6955 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6956 VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6957 CheckedVarArgs);
6958 if (!Success)
6959 return true;
6960 }
6961
6962 if (IsSizeCall) {
6963 TheCall->setType(Context.getSizeType());
6964 } else {
6965 TheCall->setType(Context.VoidPtrTy);
6966 }
6967 return false;
6968}
6969
6970/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6971/// TheCall is a constant expression.
6972bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6973 llvm::APSInt &Result) {
6974 Expr *Arg = TheCall->getArg(ArgNum);
6975 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6976 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6977
6978 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6979
6980 Optional<llvm::APSInt> R;
6981 if (!(R = Arg->getIntegerConstantExpr(Context)))
6982 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6983 << FDecl->getDeclName() << Arg->getSourceRange();
6984 Result = *R;
6985 return false;
6986}
6987
6988/// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6989/// TheCall is a constant expression in the range [Low, High].
6990bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6991 int Low, int High, bool RangeIsError) {
6992 if (isConstantEvaluated())
6993 return false;
6994 llvm::APSInt Result;
6995
6996 // We can't check the value of a dependent argument.
6997 Expr *Arg = TheCall->getArg(ArgNum);
6998 if (Arg->isTypeDependent() || Arg->isValueDependent())
6999 return false;
7000
7001 // Check constant-ness first.
7002 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7003 return true;
7004
7005 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
7006 if (RangeIsError)
7007 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
7008 << toString(Result, 10) << Low << High << Arg->getSourceRange();
7009 else
7010 // Defer the warning until we know if the code will be emitted so that
7011 // dead code can ignore this.
7012 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
7013 PDiag(diag::warn_argument_invalid_range)
7014 << toString(Result, 10) << Low << High
7015 << Arg->getSourceRange());
7016 }
7017
7018 return false;
7019}
7020
7021/// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
7022/// TheCall is a constant expression is a multiple of Num..
7023bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
7024 unsigned Num) {
7025 llvm::APSInt Result;
7026
7027 // We can't check the value of a dependent argument.
7028 Expr *Arg = TheCall->getArg(ArgNum);
7029 if (Arg->isTypeDependent() || Arg->isValueDependent())
7030 return false;
7031
7032 // Check constant-ness first.
7033 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7034 return true;
7035
7036 if (Result.getSExtValue() % Num != 0)
7037 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
7038 << Num << Arg->getSourceRange();
7039
7040 return false;
7041}
7042
7043/// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
7044/// constant expression representing a power of 2.
7045bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
7046 llvm::APSInt Result;
7047
7048 // We can't check the value of a dependent argument.
7049 Expr *Arg = TheCall->getArg(ArgNum);
7050 if (Arg->isTypeDependent() || Arg->isValueDependent())
7051 return false;
7052
7053 // Check constant-ness first.
7054 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7055 return true;
7056
7057 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
7058 // and only if x is a power of 2.
7059 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
7060 return false;
7061
7062 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
7063 << Arg->getSourceRange();
7064}
7065
7066static bool IsShiftedByte(llvm::APSInt Value) {
7067 if (Value.isNegative())
7068 return false;
7069
7070 // Check if it's a shifted byte, by shifting it down
7071 while (true) {
7072 // If the value fits in the bottom byte, the check passes.
7073 if (Value < 0x100)
7074 return true;
7075
7076 // Otherwise, if the value has _any_ bits in the bottom byte, the check
7077 // fails.
7078 if ((Value & 0xFF) != 0)
7079 return false;
7080
7081 // If the bottom 8 bits are all 0, but something above that is nonzero,
7082 // then shifting the value right by 8 bits won't affect whether it's a
7083 // shifted byte or not. So do that, and go round again.
7084 Value >>= 8;
7085 }
7086}
7087
7088/// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
7089/// a constant expression representing an arbitrary byte value shifted left by
7090/// a multiple of 8 bits.
7091bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
7092 unsigned ArgBits) {
7093 llvm::APSInt Result;
7094
7095 // We can't check the value of a dependent argument.
7096 Expr *Arg = TheCall->getArg(ArgNum);
7097 if (Arg->isTypeDependent() || Arg->isValueDependent())
7098 return false;
7099
7100 // Check constant-ness first.
7101 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7102 return true;
7103
7104 // Truncate to the given size.
7105 Result = Result.getLoBits(ArgBits);
7106 Result.setIsUnsigned(true);
7107
7108 if (IsShiftedByte(Result))
7109 return false;
7110
7111 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
7112 << Arg->getSourceRange();
7113}
7114
7115/// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
7116/// TheCall is a constant expression representing either a shifted byte value,
7117/// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
7118/// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
7119/// Arm MVE intrinsics.
7120bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
7121 int ArgNum,
7122 unsigned ArgBits) {
7123 llvm::APSInt Result;
7124
7125 // We can't check the value of a dependent argument.
7126 Expr *Arg = TheCall->getArg(ArgNum);
7127 if (Arg->isTypeDependent() || Arg->isValueDependent())
7128 return false;
7129
7130 // Check constant-ness first.
7131 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7132 return true;
7133
7134 // Truncate to the given size.
7135 Result = Result.getLoBits(ArgBits);
7136 Result.setIsUnsigned(true);
7137
7138 // Check to see if it's in either of the required forms.
7139 if (IsShiftedByte(Result) ||
7140 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
7141 return false;
7142
7143 return Diag(TheCall->getBeginLoc(),
7144 diag::err_argument_not_shifted_byte_or_xxff)
7145 << Arg->getSourceRange();
7146}
7147
7148/// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
7149bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
7150 if (BuiltinID == AArch64::BI__builtin_arm_irg) {
7151 if (checkArgCount(*this, TheCall, 2))
7152 return true;
7153 Expr *Arg0 = TheCall->getArg(0);
7154 Expr *Arg1 = TheCall->getArg(1);
7155
7156 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7157 if (FirstArg.isInvalid())
7158 return true;
7159 QualType FirstArgType = FirstArg.get()->getType();
7160 if (!FirstArgType->isAnyPointerType())
7161 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7162 << "first" << FirstArgType << Arg0->getSourceRange();
7163 TheCall->setArg(0, FirstArg.get());
7164
7165 ExprResult SecArg = DefaultLvalueConversion(Arg1);
7166 if (SecArg.isInvalid())
7167 return true;
7168 QualType SecArgType = SecArg.get()->getType();
7169 if (!SecArgType->isIntegerType())
7170 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7171 << "second" << SecArgType << Arg1->getSourceRange();
7172
7173 // Derive the return type from the pointer argument.
7174 TheCall->setType(FirstArgType);
7175 return false;
7176 }
7177
7178 if (BuiltinID == AArch64::BI__builtin_arm_addg) {
7179 if (checkArgCount(*this, TheCall, 2))
7180 return true;
7181
7182 Expr *Arg0 = TheCall->getArg(0);
7183 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7184 if (FirstArg.isInvalid())
7185 return true;
7186 QualType FirstArgType = FirstArg.get()->getType();
7187 if (!FirstArgType->isAnyPointerType())
7188 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7189 << "first" << FirstArgType << Arg0->getSourceRange();
7190 TheCall->setArg(0, FirstArg.get());
7191
7192 // Derive the return type from the pointer argument.
7193 TheCall->setType(FirstArgType);
7194
7195 // Second arg must be an constant in range [0,15]
7196 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7197 }
7198
7199 if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
7200 if (checkArgCount(*this, TheCall, 2))
7201 return true;
7202 Expr *Arg0 = TheCall->getArg(0);
7203 Expr *Arg1 = TheCall->getArg(1);
7204
7205 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7206 if (FirstArg.isInvalid())
7207 return true;
7208 QualType FirstArgType = FirstArg.get()->getType();
7209 if (!FirstArgType->isAnyPointerType())
7210 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7211 << "first" << FirstArgType << Arg0->getSourceRange();
7212
7213 QualType SecArgType = Arg1->getType();
7214 if (!SecArgType->isIntegerType())
7215 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7216 << "second" << SecArgType << Arg1->getSourceRange();
7217 TheCall->setType(Context.IntTy);
7218 return false;
7219 }
7220
7221 if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
7222 BuiltinID == AArch64::BI__builtin_arm_stg) {
7223 if (checkArgCount(*this, TheCall, 1))
7224 return true;
7225 Expr *Arg0 = TheCall->getArg(0);
7226 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7227 if (FirstArg.isInvalid())
7228 return true;
7229
7230 QualType FirstArgType = FirstArg.get()->getType();
7231 if (!FirstArgType->isAnyPointerType())
7232 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7233 << "first" << FirstArgType << Arg0->getSourceRange();
7234 TheCall->setArg(0, FirstArg.get());
7235
7236 // Derive the return type from the pointer argument.
7237 if (BuiltinID == AArch64::BI__builtin_arm_ldg)
7238 TheCall->setType(FirstArgType);
7239 return false;
7240 }
7241
7242 if (BuiltinID == AArch64::BI__builtin_arm_subp) {
7243 Expr *ArgA = TheCall->getArg(0);
7244 Expr *ArgB = TheCall->getArg(1);
7245
7246 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
7247 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
7248
7249 if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
7250 return true;
7251
7252 QualType ArgTypeA = ArgExprA.get()->getType();
7253 QualType ArgTypeB = ArgExprB.get()->getType();
7254
7255 auto isNull = [&] (Expr *E) -> bool {
7256 return E->isNullPointerConstant(
7257 Context, Expr::NPC_ValueDependentIsNotNull); };
7258
7259 // argument should be either a pointer or null
7260 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
7261 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7262 << "first" << ArgTypeA << ArgA->getSourceRange();
7263
7264 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
7265 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7266 << "second" << ArgTypeB << ArgB->getSourceRange();
7267
7268 // Ensure Pointee types are compatible
7269 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
7270 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
7271 QualType pointeeA = ArgTypeA->getPointeeType();
7272 QualType pointeeB = ArgTypeB->getPointeeType();
7273 if (!Context.typesAreCompatible(
7274 Context.getCanonicalType(pointeeA).getUnqualifiedType(),
7275 Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
7276 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
7277 << ArgTypeA << ArgTypeB << ArgA->getSourceRange()
7278 << ArgB->getSourceRange();
7279 }
7280 }
7281
7282 // at least one argument should be pointer type
7283 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
7284 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
7285 << ArgTypeA << ArgTypeB << ArgA->getSourceRange();
7286
7287 if (isNull(ArgA)) // adopt type of the other pointer
7288 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
7289
7290 if (isNull(ArgB))
7291 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
7292
7293 TheCall->setArg(0, ArgExprA.get());
7294 TheCall->setArg(1, ArgExprB.get());
7295 TheCall->setType(Context.LongLongTy);
7296 return false;
7297 }
7298 assert(false && "Unhandled ARM MTE intrinsic")(static_cast <bool> (false && "Unhandled ARM MTE intrinsic"
) ? void (0) : __assert_fail ("false && \"Unhandled ARM MTE intrinsic\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 7298, __extension__ __PRETTY_FUNCTION__))
;
7299 return true;
7300}
7301
7302/// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
7303/// TheCall is an ARM/AArch64 special register string literal.
7304bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
7305 int ArgNum, unsigned ExpectedFieldNum,
7306 bool AllowName) {
7307 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7308 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7309 BuiltinID == ARM::BI__builtin_arm_rsr ||
7310 BuiltinID == ARM::BI__builtin_arm_rsrp ||
7311 BuiltinID == ARM::BI__builtin_arm_wsr ||
7312 BuiltinID == ARM::BI__builtin_arm_wsrp;
7313 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7314 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7315 BuiltinID == AArch64::BI__builtin_arm_rsr ||
7316 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7317 BuiltinID == AArch64::BI__builtin_arm_wsr ||
7318 BuiltinID == AArch64::BI__builtin_arm_wsrp;
7319 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.")(static_cast <bool> ((IsARMBuiltin || IsAArch64Builtin)
&& "Unexpected ARM builtin.") ? void (0) : __assert_fail
("(IsARMBuiltin || IsAArch64Builtin) && \"Unexpected ARM builtin.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 7319, __extension__ __PRETTY_FUNCTION__))
;
7320
7321 // We can't check the value of a dependent argument.
7322 Expr *Arg = TheCall->getArg(ArgNum);
7323 if (Arg->isTypeDependent() || Arg->isValueDependent())
7324 return false;
7325
7326 // Check if the argument is a string literal.
7327 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
7328 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
7329 << Arg->getSourceRange();
7330
7331 // Check the type of special register given.
7332 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
7333 SmallVector<StringRef, 6> Fields;
7334 Reg.split(Fields, ":");
7335
7336 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
7337 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7338 << Arg->getSourceRange();
7339
7340 // If the string is the name of a register then we cannot check that it is
7341 // valid here but if the string is of one the forms described in ACLE then we
7342 // can check that the supplied fields are integers and within the valid
7343 // ranges.
7344 if (Fields.size() > 1) {
7345 bool FiveFields = Fields.size() == 5;
7346
7347 bool ValidString = true;
7348 if (IsARMBuiltin) {
7349 ValidString &= Fields[0].startswith_insensitive("cp") ||
7350 Fields[0].startswith_insensitive("p");
7351 if (ValidString)
7352 Fields[0] = Fields[0].drop_front(
7353 Fields[0].startswith_insensitive("cp") ? 2 : 1);
7354
7355 ValidString &= Fields[2].startswith_insensitive("c");
7356 if (ValidString)
7357 Fields[2] = Fields[2].drop_front(1);
7358
7359 if (FiveFields) {
7360 ValidString &= Fields[3].startswith_insensitive("c");
7361 if (ValidString)
7362 Fields[3] = Fields[3].drop_front(1);
7363 }
7364 }
7365
7366 SmallVector<int, 5> Ranges;
7367 if (FiveFields)
7368 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
7369 else
7370 Ranges.append({15, 7, 15});
7371
7372 for (unsigned i=0; i<Fields.size(); ++i) {
7373 int IntField;
7374 ValidString &= !Fields[i].getAsInteger(10, IntField);
7375 ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
7376 }
7377
7378 if (!ValidString)
7379 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7380 << Arg->getSourceRange();
7381 } else if (IsAArch64Builtin && Fields.size() == 1) {
7382 // If the register name is one of those that appear in the condition below
7383 // and the special register builtin being used is one of the write builtins,
7384 // then we require that the argument provided for writing to the register
7385 // is an integer constant expression. This is because it will be lowered to
7386 // an MSR (immediate) instruction, so we need to know the immediate at
7387 // compile time.
7388 if (TheCall->getNumArgs() != 2)
7389 return false;
7390
7391 std::string RegLower = Reg.lower();
7392 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
7393 RegLower != "pan" && RegLower != "uao")
7394 return false;
7395
7396 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7397 }
7398
7399 return false;
7400}
7401
7402/// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
7403/// Emit an error and return true on failure; return false on success.
7404/// TypeStr is a string containing the type descriptor of the value returned by
7405/// the builtin and the descriptors of the expected type of the arguments.
7406bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) {
7407
7408 assert((TypeStr[0] != '\0') &&(static_cast <bool> ((TypeStr[0] != '\0') && "Invalid types in PPC MMA builtin declaration"
) ? void (0) : __assert_fail ("(TypeStr[0] != '\\0') && \"Invalid types in PPC MMA builtin declaration\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 7409, __extension__ __PRETTY_FUNCTION__))
7409 "Invalid types in PPC MMA builtin declaration")(static_cast <bool> ((TypeStr[0] != '\0') && "Invalid types in PPC MMA builtin declaration"
) ? void (0) : __assert_fail ("(TypeStr[0] != '\\0') && \"Invalid types in PPC MMA builtin declaration\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 7409, __extension__ __PRETTY_FUNCTION__))
;
7410
7411 unsigned Mask = 0;
7412 unsigned ArgNum = 0;
7413
7414 // The first type in TypeStr is the type of the value returned by the
7415 // builtin. So we first read that type and change the type of TheCall.
7416 QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7417 TheCall->setType(type);
7418
7419 while (*TypeStr != '\0') {
7420 Mask = 0;
7421 QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7422 if (ArgNum >= TheCall->getNumArgs()) {
7423 ArgNum++;
7424 break;
7425 }
7426
7427 Expr *Arg = TheCall->getArg(ArgNum);
7428 QualType ArgType = Arg->getType();
7429
7430 if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) ||
7431 (!ExpectedType->isVoidPointerType() &&
7432 ArgType.getCanonicalType() != ExpectedType))
7433 return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
7434 << ArgType << ExpectedType << 1 << 0 << 0;
7435
7436 // If the value of the Mask is not 0, we have a constraint in the size of
7437 // the integer argument so here we ensure the argument is a constant that
7438 // is in the valid range.
7439 if (Mask != 0 &&
7440 SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
7441 return true;
7442
7443 ArgNum++;
7444 }
7445
7446 // In case we exited early from the previous loop, there are other types to
7447 // read from TypeStr. So we need to read them all to ensure we have the right
7448 // number of arguments in TheCall and if it is not the case, to display a
7449 // better error message.
7450 while (*TypeStr != '\0') {
7451 (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7452 ArgNum++;
7453 }
7454 if (checkArgCount(*this, TheCall, ArgNum))
7455 return true;
7456
7457 return false;
7458}
7459
7460/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
7461/// This checks that the target supports __builtin_longjmp and
7462/// that val is a constant 1.
7463bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
7464 if (!Context.getTargetInfo().hasSjLjLowering())
7465 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
7466 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7467
7468 Expr *Arg = TheCall->getArg(1);
7469 llvm::APSInt Result;
7470
7471 // TODO: This is less than ideal. Overload this to take a value.
7472 if (SemaBuiltinConstantArg(TheCall, 1, Result))
7473 return true;
7474
7475 if (Result != 1)
7476 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
7477 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
7478
7479 return false;
7480}
7481
7482/// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
7483/// This checks that the target supports __builtin_setjmp.
7484bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
7485 if (!Context.getTargetInfo().hasSjLjLowering())
7486 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
7487 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7488 return false;
7489}
7490
7491namespace {
7492
7493class UncoveredArgHandler {
7494 enum { Unknown = -1, AllCovered = -2 };
7495
7496 signed FirstUncoveredArg = Unknown;
7497 SmallVector<const Expr *, 4> DiagnosticExprs;
7498
7499public:
7500 UncoveredArgHandler() = default;
7501
7502 bool hasUncoveredArg() const {
7503 return (FirstUncoveredArg >= 0);
7504 }
7505
7506 unsigned getUncoveredArg() const {
7507 assert(hasUncoveredArg() && "no uncovered argument")(static_cast <bool> (hasUncoveredArg() && "no uncovered argument"
) ? void (0) : __assert_fail ("hasUncoveredArg() && \"no uncovered argument\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 7507, __extension__ __PRETTY_FUNCTION__))
;
7508 return FirstUncoveredArg;
7509 }
7510
7511 void setAllCovered() {
7512 // A string has been found with all arguments covered, so clear out
7513 // the diagnostics.
7514 DiagnosticExprs.clear();
7515 FirstUncoveredArg = AllCovered;
7516 }
7517
7518 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
7519 assert(NewFirstUncoveredArg >= 0 && "Outside range")(static_cast <bool> (NewFirstUncoveredArg >= 0 &&
"Outside range") ? void (0) : __assert_fail ("NewFirstUncoveredArg >= 0 && \"Outside range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 7519, __extension__ __PRETTY_FUNCTION__))
;
7520
7521 // Don't update if a previous string covers all arguments.
7522 if (FirstUncoveredArg == AllCovered)
7523 return;
7524
7525 // UncoveredArgHandler tracks the highest uncovered argument index
7526 // and with it all the strings that match this index.
7527 if (NewFirstUncoveredArg == FirstUncoveredArg)
7528 DiagnosticExprs.push_back(StrExpr);
7529 else if (NewFirstUncoveredArg > FirstUncoveredArg) {
7530 DiagnosticExprs.clear();
7531 DiagnosticExprs.push_back(StrExpr);
7532 FirstUncoveredArg = NewFirstUncoveredArg;
7533 }
7534 }
7535
7536 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
7537};
7538
7539enum StringLiteralCheckType {
7540 SLCT_NotALiteral,
7541 SLCT_UncheckedLiteral,
7542 SLCT_CheckedLiteral
7543};
7544
7545} // namespace
7546
7547static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
7548 BinaryOperatorKind BinOpKind,
7549 bool AddendIsRight) {
7550 unsigned BitWidth = Offset.getBitWidth();
7551 unsigned AddendBitWidth = Addend.getBitWidth();
7552 // There might be negative interim results.
7553 if (Addend.isUnsigned()) {
7554 Addend = Addend.zext(++AddendBitWidth);
7555 Addend.setIsSigned(true);
7556 }
7557 // Adjust the bit width of the APSInts.
7558 if (AddendBitWidth > BitWidth) {
7559 Offset = Offset.sext(AddendBitWidth);
7560 BitWidth = AddendBitWidth;
7561 } else if (BitWidth > AddendBitWidth) {
7562 Addend = Addend.sext(BitWidth);
7563 }
7564
7565 bool Ov = false;
7566 llvm::APSInt ResOffset = Offset;
7567 if (BinOpKind == BO_Add)
7568 ResOffset = Offset.sadd_ov(Addend, Ov);
7569 else {
7570 assert(AddendIsRight && BinOpKind == BO_Sub &&(static_cast <bool> (AddendIsRight && BinOpKind
== BO_Sub && "operator must be add or sub with addend on the right"
) ? void (0) : __assert_fail ("AddendIsRight && BinOpKind == BO_Sub && \"operator must be add or sub with addend on the right\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 7571, __extension__ __PRETTY_FUNCTION__))
7571 "operator must be add or sub with addend on the right")(static_cast <bool> (AddendIsRight && BinOpKind
== BO_Sub && "operator must be add or sub with addend on the right"
) ? void (0) : __assert_fail ("AddendIsRight && BinOpKind == BO_Sub && \"operator must be add or sub with addend on the right\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 7571, __extension__ __PRETTY_FUNCTION__))
;
7572 ResOffset = Offset.ssub_ov(Addend, Ov);
7573 }
7574
7575 // We add an offset to a pointer here so we should support an offset as big as
7576 // possible.
7577 if (Ov) {
7578 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&(static_cast <bool> (BitWidth <= std::numeric_limits
<unsigned>::max() / 2 && "index (intermediate) result too big"
) ? void (0) : __assert_fail ("BitWidth <= std::numeric_limits<unsigned>::max() / 2 && \"index (intermediate) result too big\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 7579, __extension__ __PRETTY_FUNCTION__))
7579 "index (intermediate) result too big")(static_cast <bool> (BitWidth <= std::numeric_limits
<unsigned>::max() / 2 && "index (intermediate) result too big"
) ? void (0) : __assert_fail ("BitWidth <= std::numeric_limits<unsigned>::max() / 2 && \"index (intermediate) result too big\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 7579, __extension__ __PRETTY_FUNCTION__))
;
7580 Offset = Offset.sext(2 * BitWidth);
7581 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
7582 return;
7583 }
7584
7585 Offset = ResOffset;
7586}
7587
7588namespace {
7589
7590// This is a wrapper class around StringLiteral to support offsetted string
7591// literals as format strings. It takes the offset into account when returning
7592// the string and its length or the source locations to display notes correctly.
7593class FormatStringLiteral {
7594 const StringLiteral *FExpr;
7595 int64_t Offset;
7596
7597 public:
7598 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7599 : FExpr(fexpr), Offset(Offset) {}
7600
7601 StringRef getString() const {
7602 return FExpr->getString().drop_front(Offset);
7603 }
7604
7605 unsigned getByteLength() const {
7606 return FExpr->getByteLength() - getCharByteWidth() * Offset;
7607 }
7608
7609 unsigned getLength() const { return FExpr->getLength() - Offset; }
7610 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7611
7612 StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
7613
7614 QualType getType() const { return FExpr->getType(); }
7615
7616 bool isAscii() const { return FExpr->isAscii(); }
7617 bool isWide() const { return FExpr->isWide(); }
7618 bool isUTF8() const { return FExpr->isUTF8(); }
7619 bool isUTF16() const { return FExpr->isUTF16(); }
7620 bool isUTF32() const { return FExpr->isUTF32(); }
7621 bool isPascal() const { return FExpr->isPascal(); }
7622
7623 SourceLocation getLocationOfByte(
7624 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
7625 const TargetInfo &Target, unsigned *StartToken = nullptr,
7626 unsigned *StartTokenByteOffset = nullptr) const {
7627 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
7628 StartToken, StartTokenByteOffset);
7629 }
7630
7631 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
7632 return FExpr->getBeginLoc().getLocWithOffset(Offset);
7633 }
7634
7635 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return FExpr->getEndLoc(); }
7636};
7637
7638} // namespace
7639
7640static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
7641 const Expr *OrigFormatExpr,
7642 ArrayRef<const Expr *> Args,
7643 bool HasVAListArg, unsigned format_idx,
7644 unsigned firstDataArg,
7645 Sema::FormatStringType Type,
7646 bool inFunctionCall,
7647 Sema::VariadicCallType CallType,
7648 llvm::SmallBitVector &CheckedVarArgs,
7649 UncoveredArgHandler &UncoveredArg,
7650 bool IgnoreStringsWithoutSpecifiers);
7651
7652// Determine if an expression is a string literal or constant string.
7653// If this function returns false on the arguments to a function expecting a
7654// format string, we will usually need to emit a warning.
7655// True string literals are then checked by CheckFormatString.
7656static StringLiteralCheckType
7657checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
7658 bool HasVAListArg, unsigned format_idx,
7659 unsigned firstDataArg, Sema::FormatStringType Type,
7660 Sema::VariadicCallType CallType, bool InFunctionCall,
7661 llvm::SmallBitVector &CheckedVarArgs,
7662 UncoveredArgHandler &UncoveredArg,
7663 llvm::APSInt Offset,
7664 bool IgnoreStringsWithoutSpecifiers = false) {
7665 if (S.isConstantEvaluated())
7666 return SLCT_NotALiteral;
7667 tryAgain:
7668 assert(Offset.isSigned() && "invalid offset")(static_cast <bool> (Offset.isSigned() && "invalid offset"
) ? void (0) : __assert_fail ("Offset.isSigned() && \"invalid offset\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 7668, __extension__ __PRETTY_FUNCTION__))
;
7669
7670 if (E->isTypeDependent() || E->isValueDependent())
7671 return SLCT_NotALiteral;
7672
7673 E = E->IgnoreParenCasts();
7674
7675 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
7676 // Technically -Wformat-nonliteral does not warn about this case.
7677 // The behavior of printf and friends in this case is implementation
7678 // dependent. Ideally if the format string cannot be null then
7679 // it should have a 'nonnull' attribute in the function prototype.
7680 return SLCT_UncheckedLiteral;
7681
7682 switch (E->getStmtClass()) {
7683 case Stmt::BinaryConditionalOperatorClass:
7684 case Stmt::ConditionalOperatorClass: {
7685 // The expression is a literal if both sub-expressions were, and it was
7686 // completely checked only if both sub-expressions were checked.
7687 const AbstractConditionalOperator *C =
7688 cast<AbstractConditionalOperator>(E);
7689
7690 // Determine whether it is necessary to check both sub-expressions, for
7691 // example, because the condition expression is a constant that can be
7692 // evaluated at compile time.
7693 bool CheckLeft = true, CheckRight = true;
7694
7695 bool Cond;
7696 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
7697 S.isConstantEvaluated())) {
7698 if (Cond)
7699 CheckRight = false;
7700 else
7701 CheckLeft = false;
7702 }
7703
7704 // We need to maintain the offsets for the right and the left hand side
7705 // separately to check if every possible indexed expression is a valid
7706 // string literal. They might have different offsets for different string
7707 // literals in the end.
7708 StringLiteralCheckType Left;
7709 if (!CheckLeft)
7710 Left = SLCT_UncheckedLiteral;
7711 else {
7712 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
7713 HasVAListArg, format_idx, firstDataArg,
7714 Type, CallType, InFunctionCall,
7715 CheckedVarArgs, UncoveredArg, Offset,
7716 IgnoreStringsWithoutSpecifiers);
7717 if (Left == SLCT_NotALiteral || !CheckRight) {
7718 return Left;
7719 }
7720 }
7721
7722 StringLiteralCheckType Right = checkFormatStringExpr(
7723 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
7724 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7725 IgnoreStringsWithoutSpecifiers);
7726
7727 return (CheckLeft && Left < Right) ? Left : Right;
7728 }
7729
7730 case Stmt::ImplicitCastExprClass:
7731 E = cast<ImplicitCastExpr>(E)->getSubExpr();
7732 goto tryAgain;
7733
7734 case Stmt::OpaqueValueExprClass:
7735 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
7736 E = src;
7737 goto tryAgain;
7738 }
7739 return SLCT_NotALiteral;
7740
7741 case Stmt::PredefinedExprClass:
7742 // While __func__, etc., are technically not string literals, they
7743 // cannot contain format specifiers and thus are not a security
7744 // liability.
7745 return SLCT_UncheckedLiteral;
7746
7747 case Stmt::DeclRefExprClass: {
7748 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7749
7750 // As an exception, do not flag errors for variables binding to
7751 // const string literals.
7752 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7753 bool isConstant = false;
7754 QualType T = DR->getType();
7755
7756 if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7757 isConstant = AT->getElementType().isConstant(S.Context);
7758 } else if (const PointerType *PT = T->getAs<PointerType>()) {
7759 isConstant = T.isConstant(S.Context) &&
7760 PT->getPointeeType().isConstant(S.Context);
7761 } else if (T->isObjCObjectPointerType()) {
7762 // In ObjC, there is usually no "const ObjectPointer" type,
7763 // so don't check if the pointee type is constant.
7764 isConstant = T.isConstant(S.Context);
7765 }
7766
7767 if (isConstant) {
7768 if (const Expr *Init = VD->getAnyInitializer()) {
7769 // Look through initializers like const char c[] = { "foo" }
7770 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7771 if (InitList->isStringLiteralInit())
7772 Init = InitList->getInit(0)->IgnoreParenImpCasts();
7773 }
7774 return checkFormatStringExpr(S, Init, Args,
7775 HasVAListArg, format_idx,
7776 firstDataArg, Type, CallType,
7777 /*InFunctionCall*/ false, CheckedVarArgs,
7778 UncoveredArg, Offset);
7779 }
7780 }
7781
7782 // For vprintf* functions (i.e., HasVAListArg==true), we add a
7783 // special check to see if the format string is a function parameter
7784 // of the function calling the printf function. If the function
7785 // has an attribute indicating it is a printf-like function, then we
7786 // should suppress warnings concerning non-literals being used in a call
7787 // to a vprintf function. For example:
7788 //
7789 // void
7790 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7791 // va_list ap;
7792 // va_start(ap, fmt);
7793 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
7794 // ...
7795 // }
7796 if (HasVAListArg) {
7797 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7798 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
7799 int PVIndex = PV->getFunctionScopeIndex() + 1;
7800 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
7801 // adjust for implicit parameter
7802 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7803 if (MD->isInstance())
7804 ++PVIndex;
7805 // We also check if the formats are compatible.
7806 // We can't pass a 'scanf' string to a 'printf' function.
7807 if (PVIndex == PVFormat->getFormatIdx() &&
7808 Type == S.GetFormatStringType(PVFormat))
7809 return SLCT_UncheckedLiteral;
7810 }
7811 }
7812 }
7813 }
7814 }
7815
7816 return SLCT_NotALiteral;
7817 }
7818
7819 case Stmt::CallExprClass:
7820 case Stmt::CXXMemberCallExprClass: {
7821 const CallExpr *CE = cast<CallExpr>(E);
7822 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7823 bool IsFirst = true;
7824 StringLiteralCheckType CommonResult;
7825 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7826 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7827 StringLiteralCheckType Result = checkFormatStringExpr(
7828 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7829 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7830 IgnoreStringsWithoutSpecifiers);
7831 if (IsFirst) {
7832 CommonResult = Result;
7833 IsFirst = false;
7834 }
7835 }
7836 if (!IsFirst)
7837 return CommonResult;
7838
7839 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7840 unsigned BuiltinID = FD->getBuiltinID();
7841 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7842 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7843 const Expr *Arg = CE->getArg(0);
7844 return checkFormatStringExpr(S, Arg, Args,
7845 HasVAListArg, format_idx,
7846 firstDataArg, Type, CallType,
7847 InFunctionCall, CheckedVarArgs,
7848 UncoveredArg, Offset,
7849 IgnoreStringsWithoutSpecifiers);
7850 }
7851 }
7852 }
7853
7854 return SLCT_NotALiteral;
7855 }
7856 case Stmt::ObjCMessageExprClass: {
7857 const auto *ME = cast<ObjCMessageExpr>(E);
7858 if (const auto *MD = ME->getMethodDecl()) {
7859 if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7860 // As a special case heuristic, if we're using the method -[NSBundle
7861 // localizedStringForKey:value:table:], ignore any key strings that lack
7862 // format specifiers. The idea is that if the key doesn't have any
7863 // format specifiers then its probably just a key to map to the
7864 // localized strings. If it does have format specifiers though, then its
7865 // likely that the text of the key is the format string in the
7866 // programmer's language, and should be checked.
7867 const ObjCInterfaceDecl *IFace;
7868 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7869 IFace->getIdentifier()->isStr("NSBundle") &&
7870 MD->getSelector().isKeywordSelector(
7871 {"localizedStringForKey", "value", "table"})) {
7872 IgnoreStringsWithoutSpecifiers = true;
7873 }
7874
7875 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
7876 return checkFormatStringExpr(
7877 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7878 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7879 IgnoreStringsWithoutSpecifiers);
7880 }
7881 }
7882
7883 return SLCT_NotALiteral;
7884 }
7885 case Stmt::ObjCStringLiteralClass:
7886 case Stmt::StringLiteralClass: {
7887 const StringLiteral *StrE = nullptr;
7888
7889 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
7890 StrE = ObjCFExpr->getString();
7891 else
7892 StrE = cast<StringLiteral>(E);
7893
7894 if (StrE) {
7895 if (Offset.isNegative() || Offset > StrE->getLength()) {
7896 // TODO: It would be better to have an explicit warning for out of
7897 // bounds literals.
7898 return SLCT_NotALiteral;
7899 }
7900 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
7901 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
7902 firstDataArg, Type, InFunctionCall, CallType,
7903 CheckedVarArgs, UncoveredArg,
7904 IgnoreStringsWithoutSpecifiers);
7905 return SLCT_CheckedLiteral;
7906 }
7907
7908 return SLCT_NotALiteral;
7909 }
7910 case Stmt::BinaryOperatorClass: {
7911 const BinaryOperator *BinOp = cast<BinaryOperator>(E);
7912
7913 // A string literal + an int offset is still a string literal.
7914 if (BinOp->isAdditiveOp()) {
7915 Expr::EvalResult LResult, RResult;
7916
7917 bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
7918 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7919 bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
7920 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7921
7922 if (LIsInt != RIsInt) {
7923 BinaryOperatorKind BinOpKind = BinOp->getOpcode();
7924
7925 if (LIsInt) {
7926 if (BinOpKind == BO_Add) {
7927 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
7928 E = BinOp->getRHS();
7929 goto tryAgain;
7930 }
7931 } else {
7932 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
7933 E = BinOp->getLHS();
7934 goto tryAgain;
7935 }
7936 }
7937 }
7938
7939 return SLCT_NotALiteral;
7940 }
7941 case Stmt::UnaryOperatorClass: {
7942 const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
7943 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
7944 if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
7945 Expr::EvalResult IndexResult;
7946 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
7947 Expr::SE_NoSideEffects,
7948 S.isConstantEvaluated())) {
7949 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
7950 /*RHS is int*/ true);
7951 E = ASE->getBase();
7952 goto tryAgain;
7953 }
7954 }
7955
7956 return SLCT_NotALiteral;
7957 }
7958
7959 default:
7960 return SLCT_NotALiteral;
7961 }
7962}
7963
7964Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
7965 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
7966 .Case("scanf", FST_Scanf)
7967 .Cases("printf", "printf0", FST_Printf)
7968 .Cases("NSString", "CFString", FST_NSString)
7969 .Case("strftime", FST_Strftime)
7970 .Case("strfmon", FST_Strfmon)
7971 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
7972 .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
7973 .Case("os_trace", FST_OSLog)
7974 .Case("os_log", FST_OSLog)
7975 .Default(FST_Unknown);
7976}
7977
7978/// CheckFormatArguments - Check calls to printf and scanf (and similar
7979/// functions) for correct use of format strings.
7980/// Returns true if a format string has been fully checked.
7981bool Sema::CheckFormatArguments(const FormatAttr *Format,
7982 ArrayRef<const Expr *> Args,
7983 bool IsCXXMember,
7984 VariadicCallType CallType,
7985 SourceLocation Loc, SourceRange Range,
7986 llvm::SmallBitVector &CheckedVarArgs) {
7987 FormatStringInfo FSI;
7988 if (getFormatStringInfo(Format, IsCXXMember, &FSI))
7989 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
7990 FSI.FirstDataArg, GetFormatStringType(Format),
7991 CallType, Loc, Range, CheckedVarArgs);
7992 return false;
7993}
7994
7995bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
7996 bool HasVAListArg, unsigned format_idx,
7997 unsigned firstDataArg, FormatStringType Type,
7998 VariadicCallType CallType,
7999 SourceLocation Loc, SourceRange Range,
8000 llvm::SmallBitVector &CheckedVarArgs) {
8001 // CHECK: printf/scanf-like function is called with no format string.
8002 if (format_idx >= Args.size()) {
8003 Diag(Loc, diag::warn_missing_format_string) << Range;
8004 return false;
8005 }
8006
8007 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
8008
8009 // CHECK: format string is not a string literal.
8010 //
8011 // Dynamically generated format strings are difficult to
8012 // automatically vet at compile time. Requiring that format strings
8013 // are string literals: (1) permits the checking of format strings by
8014 // the compiler and thereby (2) can practically remove the source of
8015 // many format string exploits.
8016
8017 // Format string can be either ObjC string (e.g. @"%d") or
8018 // C string (e.g. "%d")
8019 // ObjC string uses the same format specifiers as C string, so we can use
8020 // the same format string checking logic for both ObjC and C strings.
8021 UncoveredArgHandler UncoveredArg;
8022 StringLiteralCheckType CT =
8023 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
8024 format_idx, firstDataArg, Type, CallType,
8025 /*IsFunctionCall*/ true, CheckedVarArgs,
8026 UncoveredArg,
8027 /*no string offset*/ llvm::APSInt(64, false) = 0);
8028
8029 // Generate a diagnostic where an uncovered argument is detected.
8030 if (UncoveredArg.hasUncoveredArg()) {
8031 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
8032 assert(ArgIdx < Args.size() && "ArgIdx outside bounds")(static_cast <bool> (ArgIdx < Args.size() &&
"ArgIdx outside bounds") ? void (0) : __assert_fail ("ArgIdx < Args.size() && \"ArgIdx outside bounds\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 8032, __extension__ __PRETTY_FUNCTION__))
;
8033 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
8034 }
8035
8036 if (CT != SLCT_NotALiteral)
8037 // Literal format string found, check done!
8038 return CT == SLCT_CheckedLiteral;
8039
8040 // Strftime is particular as it always uses a single 'time' argument,
8041 // so it is safe to pass a non-literal string.
8042 if (Type == FST_Strftime)
8043 return false;
8044
8045 // Do not emit diag when the string param is a macro expansion and the
8046 // format is either NSString or CFString. This is a hack to prevent
8047 // diag when using the NSLocalizedString and CFCopyLocalizedString macros
8048 // which are usually used in place of NS and CF string literals.
8049 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
8050 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
8051 return false;
8052
8053 // If there are no arguments specified, warn with -Wformat-security, otherwise
8054 // warn only with -Wformat-nonliteral.
8055 if (Args.size() == firstDataArg) {
8056 Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
8057 << OrigFormatExpr->getSourceRange();
8058 switch (Type) {
8059 default:
8060 break;
8061 case FST_Kprintf:
8062 case FST_FreeBSDKPrintf:
8063 case FST_Printf:
8064 Diag(FormatLoc, diag::note_format_security_fixit)
8065 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
8066 break;
8067 case FST_NSString:
8068 Diag(FormatLoc, diag::note_format_security_fixit)
8069 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
8070 break;
8071 }
8072 } else {
8073 Diag(FormatLoc, diag::warn_format_nonliteral)
8074 << OrigFormatExpr->getSourceRange();
8075 }
8076 return false;
8077}
8078
8079namespace {
8080
8081class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
8082protected:
8083 Sema &S;
8084 const FormatStringLiteral *FExpr;
8085 const Expr *OrigFormatExpr;
8086 const Sema::FormatStringType FSType;
8087 const unsigned FirstDataArg;
8088 const unsigned NumDataArgs;
8089 const char *Beg; // Start of format string.
8090 const bool HasVAListArg;
8091 ArrayRef<const Expr *> Args;
8092 unsigned FormatIdx;
8093 llvm::SmallBitVector CoveredArgs;
8094 bool usesPositionalArgs = false;
8095 bool atFirstArg = true;
8096 bool inFunctionCall;
8097 Sema::VariadicCallType CallType;
8098 llvm::SmallBitVector &CheckedVarArgs;
8099 UncoveredArgHandler &UncoveredArg;
8100
8101public:
8102 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
8103 const Expr *origFormatExpr,
8104 const Sema::FormatStringType type, unsigned firstDataArg,
8105 unsigned numDataArgs, const char *beg, bool hasVAListArg,
8106 ArrayRef<const Expr *> Args, unsigned formatIdx,
8107 bool inFunctionCall, Sema::VariadicCallType callType,
8108 llvm::SmallBitVector &CheckedVarArgs,
8109 UncoveredArgHandler &UncoveredArg)
8110 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
8111 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
8112 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
8113 inFunctionCall(inFunctionCall), CallType(callType),
8114 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
8115 CoveredArgs.resize(numDataArgs);
8116 CoveredArgs.reset();
8117 }
8118
8119 void DoneProcessing();
8120
8121 void HandleIncompleteSpecifier(const char *startSpecifier,
8122 unsigned specifierLen) override;
8123
8124 void HandleInvalidLengthModifier(
8125 const analyze_format_string::FormatSpecifier &FS,
8126 const analyze_format_string::ConversionSpecifier &CS,
8127 const char *startSpecifier, unsigned specifierLen,
8128 unsigned DiagID);
8129
8130 void HandleNonStandardLengthModifier(
8131 const analyze_format_string::FormatSpecifier &FS,
8132 const char *startSpecifier, unsigned specifierLen);
8133
8134 void HandleNonStandardConversionSpecifier(
8135 const analyze_format_string::ConversionSpecifier &CS,
8136 const char *startSpecifier, unsigned specifierLen);
8137
8138 void HandlePosition(const char *startPos, unsigned posLen) override;
8139
8140 void HandleInvalidPosition(const char *startSpecifier,
8141 unsigned specifierLen,
8142 analyze_format_string::PositionContext p) override;
8143
8144 void HandleZeroPosition(const char *startPos, unsigned posLen) override;
8145
8146 void HandleNullChar(const char *nullCharacter) override;
8147
8148 template <typename Range>
8149 static void
8150 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
8151 const PartialDiagnostic &PDiag, SourceLocation StringLoc,
8152 bool IsStringLocation, Range StringRange,
8153 ArrayRef<FixItHint> Fixit = None);
8154
8155protected:
8156 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
8157 const char *startSpec,
8158 unsigned specifierLen,
8159 const char *csStart, unsigned csLen);
8160
8161 void HandlePositionalNonpositionalArgs(SourceLocation Loc,
8162 const char *startSpec,
8163 unsigned specifierLen);
8164
8165 SourceRange getFormatStringRange();
8166 CharSourceRange getSpecifierRange(const char *startSpecifier,
8167 unsigned specifierLen);
8168 SourceLocation getLocationOfByte(const char *x);
8169
8170 const Expr *getDataArg(unsigned i) const;
8171
8172 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
8173 const analyze_format_string::ConversionSpecifier &CS,
8174 const char *startSpecifier, unsigned specifierLen,
8175 unsigned argIndex);
8176
8177 template <typename Range>
8178 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
8179 bool IsStringLocation, Range StringRange,
8180 ArrayRef<FixItHint> Fixit = None);
8181};
8182
8183} // namespace
8184
8185SourceRange CheckFormatHandler::getFormatStringRange() {
8186 return OrigFormatExpr->getSourceRange();
8187}
8188
8189CharSourceRange CheckFormatHandler::
8190getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
8191 SourceLocation Start = getLocationOfByte(startSpecifier);
8192 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
8193
8194 // Advance the end SourceLocation by one due to half-open ranges.
8195 End = End.getLocWithOffset(1);
8196
8197 return CharSourceRange::getCharRange(Start, End);
8198}
8199
8200SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
8201 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
8202 S.getLangOpts(), S.Context.getTargetInfo());
8203}
8204
8205void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
8206 unsigned specifierLen){
8207 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
8208 getLocationOfByte(startSpecifier),
8209 /*IsStringLocation*/true,
8210 getSpecifierRange(startSpecifier, specifierLen));
8211}
8212
8213void CheckFormatHandler::HandleInvalidLengthModifier(
8214 const analyze_format_string::FormatSpecifier &FS,
8215 const analyze_format_string::ConversionSpecifier &CS,
8216 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
8217 using namespace analyze_format_string;
8218
8219 const LengthModifier &LM = FS.getLengthModifier();
8220 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8221
8222 // See if we know how to fix this length modifier.
8223 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8224 if (FixedLM) {
8225 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8226 getLocationOfByte(LM.getStart()),
8227 /*IsStringLocation*/true,
8228 getSpecifierRange(startSpecifier, specifierLen));
8229
8230 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8231 << FixedLM->toString()
8232 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8233
8234 } else {
8235 FixItHint Hint;
8236 if (DiagID == diag::warn_format_nonsensical_length)
8237 Hint = FixItHint::CreateRemoval(LMRange);
8238
8239 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8240 getLocationOfByte(LM.getStart()),
8241 /*IsStringLocation*/true,
8242 getSpecifierRange(startSpecifier, specifierLen),
8243 Hint);
8244 }
8245}
8246
8247void CheckFormatHandler::HandleNonStandardLengthModifier(
8248 const analyze_format_string::FormatSpecifier &FS,
8249 const char *startSpecifier, unsigned specifierLen) {
8250 using namespace analyze_format_string;
8251
8252 const LengthModifier &LM = FS.getLengthModifier();
8253 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8254
8255 // See if we know how to fix this length modifier.
8256 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8257 if (FixedLM) {
8258 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8259 << LM.toString() << 0,
8260 getLocationOfByte(LM.getStart()),
8261 /*IsStringLocation*/true,
8262 getSpecifierRange(startSpecifier, specifierLen));
8263
8264 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8265 << FixedLM->toString()
8266 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8267
8268 } else {
8269 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8270 << LM.toString() << 0,
8271 getLocationOfByte(LM.getStart()),
8272 /*IsStringLocation*/true,
8273 getSpecifierRange(startSpecifier, specifierLen));
8274 }
8275}
8276
8277void CheckFormatHandler::HandleNonStandardConversionSpecifier(
8278 const analyze_format_string::ConversionSpecifier &CS,
8279 const char *startSpecifier, unsigned specifierLen) {
8280 using namespace analyze_format_string;
8281
8282 // See if we know how to fix this conversion specifier.
8283 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
8284 if (FixedCS) {
8285 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8286 << CS.toString() << /*conversion specifier*/1,
8287 getLocationOfByte(CS.getStart()),
8288 /*IsStringLocation*/true,
8289 getSpecifierRange(startSpecifier, specifierLen));
8290
8291 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
8292 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
8293 << FixedCS->toString()
8294 << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
8295 } else {
8296 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8297 << CS.toString() << /*conversion specifier*/1,
8298 getLocationOfByte(CS.getStart()),
8299 /*IsStringLocation*/true,
8300 getSpecifierRange(startSpecifier, specifierLen));
8301 }
8302}
8303
8304void CheckFormatHandler::HandlePosition(const char *startPos,
8305 unsigned posLen) {
8306 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
8307 getLocationOfByte(startPos),
8308 /*IsStringLocation*/true,
8309 getSpecifierRange(startPos, posLen));
8310}
8311
8312void
8313CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
8314 analyze_format_string::PositionContext p) {
8315 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
8316 << (unsigned) p,
8317 getLocationOfByte(startPos), /*IsStringLocation*/true,
8318 getSpecifierRange(startPos, posLen));
8319}
8320
8321void CheckFormatHandler::HandleZeroPosition(const char *startPos,
8322 unsigned posLen) {
8323 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
8324 getLocationOfByte(startPos),
8325 /*IsStringLocation*/true,
8326 getSpecifierRange(startPos, posLen));
8327}
8328
8329void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
8330 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
8331 // The presence of a null character is likely an error.
8332 EmitFormatDiagnostic(
8333 S.PDiag(diag::warn_printf_format_string_contains_null_char),
8334 getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
8335 getFormatStringRange());
8336 }
8337}
8338
8339// Note that this may return NULL if there was an error parsing or building
8340// one of the argument expressions.
8341const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
8342 return Args[FirstDataArg + i];
8343}
8344
8345void CheckFormatHandler::DoneProcessing() {
8346 // Does the number of data arguments exceed the number of
8347 // format conversions in the format string?
8348 if (!HasVAListArg) {
8349 // Find any arguments that weren't covered.
8350 CoveredArgs.flip();
8351 signed notCoveredArg = CoveredArgs.find_first();
8352 if (notCoveredArg >= 0) {
8353 assert((unsigned)notCoveredArg < NumDataArgs)(static_cast <bool> ((unsigned)notCoveredArg < NumDataArgs
) ? void (0) : __assert_fail ("(unsigned)notCoveredArg < NumDataArgs"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 8353, __extension__ __PRETTY_FUNCTION__))
;
8354 UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
8355 } else {
8356 UncoveredArg.setAllCovered();
8357 }
8358 }
8359}
8360
8361void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
8362 const Expr *ArgExpr) {
8363 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&(static_cast <bool> (hasUncoveredArg() && DiagnosticExprs
.size() > 0 && "Invalid state") ? void (0) : __assert_fail
("hasUncoveredArg() && DiagnosticExprs.size() > 0 && \"Invalid state\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 8364, __extension__ __PRETTY_FUNCTION__))
8364 "Invalid state")(static_cast <bool> (hasUncoveredArg() && DiagnosticExprs
.size() > 0 && "Invalid state") ? void (0) : __assert_fail
("hasUncoveredArg() && DiagnosticExprs.size() > 0 && \"Invalid state\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 8364, __extension__ __PRETTY_FUNCTION__))
;
8365
8366 if (!ArgExpr)
8367 return;
8368
8369 SourceLocation Loc = ArgExpr->getBeginLoc();
8370
8371 if (S.getSourceManager().isInSystemMacro(Loc))
8372 return;
8373
8374 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
8375 for (auto E : DiagnosticExprs)
8376 PDiag << E->getSourceRange();
8377
8378 CheckFormatHandler::EmitFormatDiagnostic(
8379 S, IsFunctionCall, DiagnosticExprs[0],
8380 PDiag, Loc, /*IsStringLocation*/false,
8381 DiagnosticExprs[0]->getSourceRange());
8382}
8383
8384bool
8385CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
8386 SourceLocation Loc,
8387 const char *startSpec,
8388 unsigned specifierLen,
8389 const char *csStart,
8390 unsigned csLen) {
8391 bool keepGoing = true;
8392 if (argIndex < NumDataArgs) {
8393 // Consider the argument coverered, even though the specifier doesn't
8394 // make sense.
8395 CoveredArgs.set(argIndex);
8396 }
8397 else {
8398 // If argIndex exceeds the number of data arguments we
8399 // don't issue a warning because that is just a cascade of warnings (and
8400 // they may have intended '%%' anyway). We don't want to continue processing
8401 // the format string after this point, however, as we will like just get
8402 // gibberish when trying to match arguments.
8403 keepGoing = false;
8404 }
8405
8406 StringRef Specifier(csStart, csLen);
8407
8408 // If the specifier in non-printable, it could be the first byte of a UTF-8
8409 // sequence. In that case, print the UTF-8 code point. If not, print the byte
8410 // hex value.
8411 std::string CodePointStr;
8412 if (!llvm::sys::locale::isPrint(*csStart)) {
8413 llvm::UTF32 CodePoint;
8414 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
8415 const llvm::UTF8 *E =
8416 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
8417 llvm::ConversionResult Result =
8418 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
8419
8420 if (Result != llvm::conversionOK) {
8421 unsigned char FirstChar = *csStart;
8422 CodePoint = (llvm::UTF32)FirstChar;
8423 }
8424
8425 llvm::raw_string_ostream OS(CodePointStr);
8426 if (CodePoint < 256)
8427 OS << "\\x" << llvm::format("%02x", CodePoint);
8428 else if (CodePoint <= 0xFFFF)
8429 OS << "\\u" << llvm::format("%04x", CodePoint);
8430 else
8431 OS << "\\U" << llvm::format("%08x", CodePoint);
8432 OS.flush();
8433 Specifier = CodePointStr;
8434 }
8435
8436 EmitFormatDiagnostic(
8437 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
8438 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
8439
8440 return keepGoing;
8441}
8442
8443void
8444CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
8445 const char *startSpec,
8446 unsigned specifierLen) {
8447 EmitFormatDiagnostic(
8448 S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
8449 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
8450}
8451
8452bool
8453CheckFormatHandler::CheckNumArgs(
8454 const analyze_format_string::FormatSpecifier &FS,
8455 const analyze_format_string::ConversionSpecifier &CS,
8456 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
8457
8458 if (argIndex >= NumDataArgs) {
8459 PartialDiagnostic PDiag = FS.usesPositionalArg()
8460 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
8461 << (argIndex+1) << NumDataArgs)
8462 : S.PDiag(diag::warn_printf_insufficient_data_args);
8463 EmitFormatDiagnostic(
8464 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
8465 getSpecifierRange(startSpecifier, specifierLen));
8466
8467 // Since more arguments than conversion tokens are given, by extension
8468 // all arguments are covered, so mark this as so.
8469 UncoveredArg.setAllCovered();
8470 return false;
8471 }
8472 return true;
8473}
8474
8475template<typename Range>
8476void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
8477 SourceLocation Loc,
8478 bool IsStringLocation,
8479 Range StringRange,
8480 ArrayRef<FixItHint> FixIt) {
8481 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
8482 Loc, IsStringLocation, StringRange, FixIt);
8483}
8484
8485/// If the format string is not within the function call, emit a note
8486/// so that the function call and string are in diagnostic messages.
8487///
8488/// \param InFunctionCall if true, the format string is within the function
8489/// call and only one diagnostic message will be produced. Otherwise, an
8490/// extra note will be emitted pointing to location of the format string.
8491///
8492/// \param ArgumentExpr the expression that is passed as the format string
8493/// argument in the function call. Used for getting locations when two
8494/// diagnostics are emitted.
8495///
8496/// \param PDiag the callee should already have provided any strings for the
8497/// diagnostic message. This function only adds locations and fixits
8498/// to diagnostics.
8499///
8500/// \param Loc primary location for diagnostic. If two diagnostics are
8501/// required, one will be at Loc and a new SourceLocation will be created for
8502/// the other one.
8503///
8504/// \param IsStringLocation if true, Loc points to the format string should be
8505/// used for the note. Otherwise, Loc points to the argument list and will
8506/// be used with PDiag.
8507///
8508/// \param StringRange some or all of the string to highlight. This is
8509/// templated so it can accept either a CharSourceRange or a SourceRange.
8510///
8511/// \param FixIt optional fix it hint for the format string.
8512template <typename Range>
8513void CheckFormatHandler::EmitFormatDiagnostic(
8514 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
8515 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
8516 Range StringRange, ArrayRef<FixItHint> FixIt) {
8517 if (InFunctionCall) {
8518 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
8519 D << StringRange;
8520 D << FixIt;
8521 } else {
8522 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
8523 << ArgumentExpr->getSourceRange();
8524
8525 const Sema::SemaDiagnosticBuilder &Note =
8526 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
8527 diag::note_format_string_defined);
8528
8529 Note << StringRange;
8530 Note << FixIt;
8531 }
8532}
8533
8534//===--- CHECK: Printf format string checking ------------------------------===//
8535
8536namespace {
8537
8538class CheckPrintfHandler : public CheckFormatHandler {
8539public:
8540 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
8541 const Expr *origFormatExpr,
8542 const Sema::FormatStringType type, unsigned firstDataArg,
8543 unsigned numDataArgs, bool isObjC, const char *beg,
8544 bool hasVAListArg, ArrayRef<const Expr *> Args,
8545 unsigned formatIdx, bool inFunctionCall,
8546 Sema::VariadicCallType CallType,
8547 llvm::SmallBitVector &CheckedVarArgs,
8548 UncoveredArgHandler &UncoveredArg)
8549 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8550 numDataArgs, beg, hasVAListArg, Args, formatIdx,
8551 inFunctionCall, CallType, CheckedVarArgs,
8552 UncoveredArg) {}
8553
8554 bool isObjCContext() const { return FSType == Sema::FST_NSString; }
8555
8556 /// Returns true if '%@' specifiers are allowed in the format string.
8557 bool allowsObjCArg() const {
8558 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
8559 FSType == Sema::FST_OSTrace;
8560 }
8561
8562 bool HandleInvalidPrintfConversionSpecifier(
8563 const analyze_printf::PrintfSpecifier &FS,
8564 const char *startSpecifier,
8565 unsigned specifierLen) override;
8566
8567 void handleInvalidMaskType(StringRef MaskType) override;
8568
8569 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
8570 const char *startSpecifier,
8571 unsigned specifierLen) override;
8572 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8573 const char *StartSpecifier,
8574 unsigned SpecifierLen,
8575 const Expr *E);
8576
8577 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
8578 const char *startSpecifier, unsigned specifierLen);
8579 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
8580 const analyze_printf::OptionalAmount &Amt,
8581 unsigned type,
8582 const char *startSpecifier, unsigned specifierLen);
8583 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8584 const analyze_printf::OptionalFlag &flag,
8585 const char *startSpecifier, unsigned specifierLen);
8586 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
8587 const analyze_printf::OptionalFlag &ignoredFlag,
8588 const analyze_printf::OptionalFlag &flag,
8589 const char *startSpecifier, unsigned specifierLen);
8590 bool checkForCStrMembers(const analyze_printf::ArgType &AT,
8591 const Expr *E);
8592
8593 void HandleEmptyObjCModifierFlag(const char *startFlag,
8594 unsigned flagLen) override;
8595
8596 void HandleInvalidObjCModifierFlag(const char *startFlag,
8597 unsigned flagLen) override;
8598
8599 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8600 const char *flagsEnd,
8601 const char *conversionPosition)
8602 override;
8603};
8604
8605} // namespace
8606
8607bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8608 const analyze_printf::PrintfSpecifier &FS,
8609 const char *startSpecifier,
8610 unsigned specifierLen) {
8611 const analyze_printf::PrintfConversionSpecifier &CS =
8612 FS.getConversionSpecifier();
8613
8614 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8615 getLocationOfByte(CS.getStart()),
8616 startSpecifier, specifierLen,
8617 CS.getStart(), CS.getLength());
8618}
8619
8620void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
8621 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
8622}
8623
8624bool CheckPrintfHandler::HandleAmount(
8625 const analyze_format_string::OptionalAmount &Amt,
8626 unsigned k, const char *startSpecifier,
8627 unsigned specifierLen) {
8628 if (Amt.hasDataArgument()) {
8629 if (!HasVAListArg) {
8630 unsigned argIndex = Amt.getArgIndex();
8631 if (argIndex >= NumDataArgs) {
8632 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
8633 << k,
8634 getLocationOfByte(Amt.getStart()),
8635 /*IsStringLocation*/true,
8636 getSpecifierRange(startSpecifier, specifierLen));
8637 // Don't do any more checking. We will just emit
8638 // spurious errors.
8639 return false;
8640 }
8641
8642 // Type check the data argument. It should be an 'int'.
8643 // Although not in conformance with C99, we also allow the argument to be
8644 // an 'unsigned int' as that is a reasonably safe case. GCC also
8645 // doesn't emit a warning for that case.
8646 CoveredArgs.set(argIndex);
8647 const Expr *Arg = getDataArg(argIndex);
8648 if (!Arg)
8649 return false;
8650
8651 QualType T = Arg->getType();
8652
8653 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
8654 assert(AT.isValid())(static_cast <bool> (AT.isValid()) ? void (0) : __assert_fail
("AT.isValid()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 8654, __extension__ __PRETTY_FUNCTION__))
;
8655
8656 if (!AT.matchesType(S.Context, T)) {
8657 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
8658 << k << AT.getRepresentativeTypeName(S.Context)
8659 << T << Arg->getSourceRange(),
8660 getLocationOfByte(Amt.getStart()),
8661 /*IsStringLocation*/true,
8662 getSpecifierRange(startSpecifier, specifierLen));
8663 // Don't do any more checking. We will just emit
8664 // spurious errors.
8665 return false;
8666 }
8667 }
8668 }
8669 return true;
8670}
8671
8672void CheckPrintfHandler::HandleInvalidAmount(
8673 const analyze_printf::PrintfSpecifier &FS,
8674 const analyze_printf::OptionalAmount &Amt,
8675 unsigned type,
8676 const char *startSpecifier,
8677 unsigned specifierLen) {
8678 const analyze_printf::PrintfConversionSpecifier &CS =
8679 FS.getConversionSpecifier();
8680
8681 FixItHint fixit =
8682 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
8683 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
8684 Amt.getConstantLength()))
8685 : FixItHint();
8686
8687 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
8688 << type << CS.toString(),
8689 getLocationOfByte(Amt.getStart()),
8690 /*IsStringLocation*/true,
8691 getSpecifierRange(startSpecifier, specifierLen),
8692 fixit);
8693}
8694
8695void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8696 const analyze_printf::OptionalFlag &flag,
8697 const char *startSpecifier,
8698 unsigned specifierLen) {
8699 // Warn about pointless flag with a fixit removal.
8700 const analyze_printf::PrintfConversionSpecifier &CS =
8701 FS.getConversionSpecifier();
8702 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
8703 << flag.toString() << CS.toString(),
8704 getLocationOfByte(flag.getPosition()),
8705 /*IsStringLocation*/true,
8706 getSpecifierRange(startSpecifier, specifierLen),
8707 FixItHint::CreateRemoval(
8708 getSpecifierRange(flag.getPosition(), 1)));
8709}
8710
8711void CheckPrintfHandler::HandleIgnoredFlag(
8712 const analyze_printf::PrintfSpecifier &FS,
8713 const analyze_printf::OptionalFlag &ignoredFlag,
8714 const analyze_printf::OptionalFlag &flag,
8715 const char *startSpecifier,
8716 unsigned specifierLen) {
8717 // Warn about ignored flag with a fixit removal.
8718 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
8719 << ignoredFlag.toString() << flag.toString(),
8720 getLocationOfByte(ignoredFlag.getPosition()),
8721 /*IsStringLocation*/true,
8722 getSpecifierRange(startSpecifier, specifierLen),
8723 FixItHint::CreateRemoval(
8724 getSpecifierRange(ignoredFlag.getPosition(), 1)));
8725}
8726
8727void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
8728 unsigned flagLen) {
8729 // Warn about an empty flag.
8730 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
8731 getLocationOfByte(startFlag),
8732 /*IsStringLocation*/true,
8733 getSpecifierRange(startFlag, flagLen));
8734}
8735
8736void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
8737 unsigned flagLen) {
8738 // Warn about an invalid flag.
8739 auto Range = getSpecifierRange(startFlag, flagLen);
8740 StringRef flag(startFlag, flagLen);
8741 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
8742 getLocationOfByte(startFlag),
8743 /*IsStringLocation*/true,
8744 Range, FixItHint::CreateRemoval(Range));
8745}
8746
8747void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8748 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8749 // Warn about using '[...]' without a '@' conversion.
8750 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8751 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8752 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8753 getLocationOfByte(conversionPosition),
8754 /*IsStringLocation*/true,
8755 Range, FixItHint::CreateRemoval(Range));
8756}
8757
8758// Determines if the specified is a C++ class or struct containing
8759// a member with the specified name and kind (e.g. a CXXMethodDecl named
8760// "c_str()").
8761template<typename MemberKind>
8762static llvm::SmallPtrSet<MemberKind*, 1>
8763CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8764 const RecordType *RT = Ty->getAs<RecordType>();
8765 llvm::SmallPtrSet<MemberKind*, 1> Results;
8766
8767 if (!RT)
8768 return Results;
8769 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8770 if (!RD || !RD->getDefinition())
8771 return Results;
8772
8773 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8774 Sema::LookupMemberName);
8775 R.suppressDiagnostics();
8776
8777 // We just need to include all members of the right kind turned up by the
8778 // filter, at this point.
8779 if (S.LookupQualifiedName(R, RT->getDecl()))
8780 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8781 NamedDecl *decl = (*I)->getUnderlyingDecl();
8782 if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8783 Results.insert(FK);
8784 }
8785 return Results;
8786}
8787
8788/// Check if we could call '.c_str()' on an object.
8789///
8790/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8791/// allow the call, or if it would be ambiguous).
8792bool Sema::hasCStrMethod(const Expr *E) {
8793 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8794
8795 MethodSet Results =
8796 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8797 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8798 MI != ME; ++MI)
8799 if ((*MI)->getMinRequiredArguments() == 0)
8800 return true;
8801 return false;
8802}
8803
8804// Check if a (w)string was passed when a (w)char* was needed, and offer a
8805// better diagnostic if so. AT is assumed to be valid.
8806// Returns true when a c_str() conversion method is found.
8807bool CheckPrintfHandler::checkForCStrMembers(
8808 const analyze_printf::ArgType &AT, const Expr *E) {
8809 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8810
8811 MethodSet Results =
8812 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8813
8814 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8815 MI != ME; ++MI) {
8816 const CXXMethodDecl *Method = *MI;
8817 if (Method->getMinRequiredArguments() == 0 &&
8818 AT.matchesType(S.Context, Method->getReturnType())) {
8819 // FIXME: Suggest parens if the expression needs them.
8820 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8821 S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8822 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8823 return true;
8824 }
8825 }
8826
8827 return false;
8828}
8829
8830bool
8831CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8832 &FS,
8833 const char *startSpecifier,
8834 unsigned specifierLen) {
8835 using namespace analyze_format_string;
8836 using namespace analyze_printf;
8837
8838 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8839
8840 if (FS.consumesDataArgument()) {
8841 if (atFirstArg) {
8842 atFirstArg = false;
8843 usesPositionalArgs = FS.usesPositionalArg();
8844 }
8845 else if (usesPositionalArgs != FS.usesPositionalArg()) {
8846 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8847 startSpecifier, specifierLen);
8848 return false;
8849 }
8850 }
8851
8852 // First check if the field width, precision, and conversion specifier
8853 // have matching data arguments.
8854 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8855 startSpecifier, specifierLen)) {
8856 return false;
8857 }
8858
8859 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8860 startSpecifier, specifierLen)) {
8861 return false;
8862 }
8863
8864 if (!CS.consumesDataArgument()) {
8865 // FIXME: Technically specifying a precision or field width here
8866 // makes no sense. Worth issuing a warning at some point.
8867 return true;
8868 }
8869
8870 // Consume the argument.
8871 unsigned argIndex = FS.getArgIndex();
8872 if (argIndex < NumDataArgs) {
8873 // The check to see if the argIndex is valid will come later.
8874 // We set the bit here because we may exit early from this
8875 // function if we encounter some other error.
8876 CoveredArgs.set(argIndex);
8877 }
8878
8879 // FreeBSD kernel extensions.
8880 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
8881 CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
8882 // We need at least two arguments.
8883 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
8884 return false;
8885
8886 // Claim the second argument.
8887 CoveredArgs.set(argIndex + 1);
8888
8889 // Type check the first argument (int for %b, pointer for %D)
8890 const Expr *Ex = getDataArg(argIndex);
8891 const analyze_printf::ArgType &AT =
8892 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
8893 ArgType(S.Context.IntTy) : ArgType::CPointerTy;
8894 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
8895 EmitFormatDiagnostic(
8896 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8897 << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
8898 << false << Ex->getSourceRange(),
8899 Ex->getBeginLoc(), /*IsStringLocation*/ false,
8900 getSpecifierRange(startSpecifier, specifierLen));
8901
8902 // Type check the second argument (char * for both %b and %D)
8903 Ex = getDataArg(argIndex + 1);
8904 const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
8905 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
8906 EmitFormatDiagnostic(
8907 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8908 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
8909 << false << Ex->getSourceRange(),
8910 Ex->getBeginLoc(), /*IsStringLocation*/ false,
8911 getSpecifierRange(startSpecifier, specifierLen));
8912
8913 return true;
8914 }
8915
8916 // Check for using an Objective-C specific conversion specifier
8917 // in a non-ObjC literal.
8918 if (!allowsObjCArg() && CS.isObjCArg()) {
8919 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8920 specifierLen);
8921 }
8922
8923 // %P can only be used with os_log.
8924 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
8925 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8926 specifierLen);
8927 }
8928
8929 // %n is not allowed with os_log.
8930 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
8931 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
8932 getLocationOfByte(CS.getStart()),
8933 /*IsStringLocation*/ false,
8934 getSpecifierRange(startSpecifier, specifierLen));
8935
8936 return true;
8937 }
8938
8939 // Only scalars are allowed for os_trace.
8940 if (FSType == Sema::FST_OSTrace &&
8941 (CS.getKind() == ConversionSpecifier::PArg ||
8942 CS.getKind() == ConversionSpecifier::sArg ||
8943 CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
8944 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8945 specifierLen);
8946 }
8947
8948 // Check for use of public/private annotation outside of os_log().
8949 if (FSType != Sema::FST_OSLog) {
8950 if (FS.isPublic().isSet()) {
8951 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8952 << "public",
8953 getLocationOfByte(FS.isPublic().getPosition()),
8954 /*IsStringLocation*/ false,
8955 getSpecifierRange(startSpecifier, specifierLen));
8956 }
8957 if (FS.isPrivate().isSet()) {
8958 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8959 << "private",
8960 getLocationOfByte(FS.isPrivate().getPosition()),
8961 /*IsStringLocation*/ false,
8962 getSpecifierRange(startSpecifier, specifierLen));
8963 }
8964 }
8965
8966 // Check for invalid use of field width
8967 if (!FS.hasValidFieldWidth()) {
8968 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
8969 startSpecifier, specifierLen);
8970 }
8971
8972 // Check for invalid use of precision
8973 if (!FS.hasValidPrecision()) {
8974 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
8975 startSpecifier, specifierLen);
8976 }
8977
8978 // Precision is mandatory for %P specifier.
8979 if (CS.getKind() == ConversionSpecifier::PArg &&
8980 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
8981 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
8982 getLocationOfByte(startSpecifier),
8983 /*IsStringLocation*/ false,
8984 getSpecifierRange(startSpecifier, specifierLen));
8985 }
8986
8987 // Check each flag does not conflict with any other component.
8988 if (!FS.hasValidThousandsGroupingPrefix())
8989 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
8990 if (!FS.hasValidLeadingZeros())
8991 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
8992 if (!FS.hasValidPlusPrefix())
8993 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
8994 if (!FS.hasValidSpacePrefix())
8995 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
8996 if (!FS.hasValidAlternativeForm())
8997 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
8998 if (!FS.hasValidLeftJustified())
8999 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
9000
9001 // Check that flags are not ignored by another flag
9002 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
9003 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
9004 startSpecifier, specifierLen);
9005 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
9006 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
9007 startSpecifier, specifierLen);
9008
9009 // Check the length modifier is valid with the given conversion specifier.
9010 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9011 S.getLangOpts()))
9012 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9013 diag::warn_format_nonsensical_length);
9014 else if (!FS.hasStandardLengthModifier())
9015 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9016 else if (!FS.hasStandardLengthConversionCombination())
9017 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9018 diag::warn_format_non_standard_conversion_spec);
9019
9020 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9021 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9022
9023 // The remaining checks depend on the data arguments.
9024 if (HasVAListArg)
9025 return true;
9026
9027 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9028 return false;
9029
9030 const Expr *Arg = getDataArg(argIndex);
9031 if (!Arg)
9032 return true;
9033
9034 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
9035}
9036
9037static bool requiresParensToAddCast(const Expr *E) {
9038 // FIXME: We should have a general way to reason about operator
9039 // precedence and whether parens are actually needed here.
9040 // Take care of a few common cases where they aren't.
9041 const Expr *Inside = E->IgnoreImpCasts();
9042 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
9043 Inside = POE->getSyntacticForm()->IgnoreImpCasts();
9044
9045 switch (Inside->getStmtClass()) {
9046 case Stmt::ArraySubscriptExprClass:
9047 case Stmt::CallExprClass:
9048 case Stmt::CharacterLiteralClass:
9049 case Stmt::CXXBoolLiteralExprClass:
9050 case Stmt::DeclRefExprClass:
9051 case Stmt::FloatingLiteralClass:
9052 case Stmt::IntegerLiteralClass:
9053 case Stmt::MemberExprClass:
9054 case Stmt::ObjCArrayLiteralClass:
9055 case Stmt::ObjCBoolLiteralExprClass:
9056 case Stmt::ObjCBoxedExprClass:
9057 case Stmt::ObjCDictionaryLiteralClass:
9058 case Stmt::ObjCEncodeExprClass:
9059 case Stmt::ObjCIvarRefExprClass:
9060 case Stmt::ObjCMessageExprClass:
9061 case Stmt::ObjCPropertyRefExprClass:
9062 case Stmt::ObjCStringLiteralClass:
9063 case Stmt::ObjCSubscriptRefExprClass:
9064 case Stmt::ParenExprClass:
9065 case Stmt::StringLiteralClass:
9066 case Stmt::UnaryOperatorClass:
9067 return false;
9068 default:
9069 return true;
9070 }
9071}
9072
9073static std::pair<QualType, StringRef>
9074shouldNotPrintDirectly(const ASTContext &Context,
9075 QualType IntendedTy,
9076 const Expr *E) {
9077 // Use a 'while' to peel off layers of typedefs.
9078 QualType TyTy = IntendedTy;
9079 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
9080 StringRef Name = UserTy->getDecl()->getName();
9081 QualType CastTy = llvm::StringSwitch<QualType>(Name)
9082 .Case("CFIndex", Context.getNSIntegerType())
9083 .Case("NSInteger", Context.getNSIntegerType())
9084 .Case("NSUInteger", Context.getNSUIntegerType())
9085 .Case("SInt32", Context.IntTy)
9086 .Case("UInt32", Context.UnsignedIntTy)
9087 .Default(QualType());
9088
9089 if (!CastTy.isNull())
9090 return std::make_pair(CastTy, Name);
9091
9092 TyTy = UserTy->desugar();
9093 }
9094
9095 // Strip parens if necessary.
9096 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
9097 return shouldNotPrintDirectly(Context,
9098 PE->getSubExpr()->getType(),
9099 PE->getSubExpr());
9100
9101 // If this is a conditional expression, then its result type is constructed
9102 // via usual arithmetic conversions and thus there might be no necessary
9103 // typedef sugar there. Recurse to operands to check for NSInteger &
9104 // Co. usage condition.
9105 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
9106 QualType TrueTy, FalseTy;
9107 StringRef TrueName, FalseName;
9108
9109 std::tie(TrueTy, TrueName) =
9110 shouldNotPrintDirectly(Context,
9111 CO->getTrueExpr()->getType(),
9112 CO->getTrueExpr());
9113 std::tie(FalseTy, FalseName) =
9114 shouldNotPrintDirectly(Context,
9115 CO->getFalseExpr()->getType(),
9116 CO->getFalseExpr());
9117
9118 if (TrueTy == FalseTy)
9119 return std::make_pair(TrueTy, TrueName);
9120 else if (TrueTy.isNull())
9121 return std::make_pair(FalseTy, FalseName);
9122 else if (FalseTy.isNull())
9123 return std::make_pair(TrueTy, TrueName);
9124 }
9125
9126 return std::make_pair(QualType(), StringRef());
9127}
9128
9129/// Return true if \p ICE is an implicit argument promotion of an arithmetic
9130/// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
9131/// type do not count.
9132static bool
9133isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
9134 QualType From = ICE->getSubExpr()->getType();
9135 QualType To = ICE->getType();
9136 // It's an integer promotion if the destination type is the promoted
9137 // source type.
9138 if (ICE->getCastKind() == CK_IntegralCast &&
9139 From->isPromotableIntegerType() &&
9140 S.Context.getPromotedIntegerType(From) == To)
9141 return true;
9142 // Look through vector types, since we do default argument promotion for
9143 // those in OpenCL.
9144 if (const auto *VecTy = From->getAs<ExtVectorType>())
9145 From = VecTy->getElementType();
9146 if (const auto *VecTy = To->getAs<ExtVectorType>())
9147 To = VecTy->getElementType();
9148 // It's a floating promotion if the source type is a lower rank.
9149 return ICE->getCastKind() == CK_FloatingCast &&
9150 S.Context.getFloatingTypeOrder(From, To) < 0;
9151}
9152
9153bool
9154CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
9155 const char *StartSpecifier,
9156 unsigned SpecifierLen,
9157 const Expr *E) {
9158 using namespace analyze_format_string;
9159 using namespace analyze_printf;
9160
9161 // Now type check the data expression that matches the
9162 // format specifier.
9163 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
9164 if (!AT.isValid())
9165 return true;
9166
9167 QualType ExprTy = E->getType();
9168 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
9169 ExprTy = TET->getUnderlyingExpr()->getType();
9170 }
9171
9172 // Diagnose attempts to print a boolean value as a character. Unlike other
9173 // -Wformat diagnostics, this is fine from a type perspective, but it still
9174 // doesn't make sense.
9175 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
9176 E->isKnownToHaveBooleanValue()) {
9177 const CharSourceRange &CSR =
9178 getSpecifierRange(StartSpecifier, SpecifierLen);
9179 SmallString<4> FSString;
9180 llvm::raw_svector_ostream os(FSString);
9181 FS.toString(os);
9182 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
9183 << FSString,
9184 E->getExprLoc(), false, CSR);
9185 return true;
9186 }
9187
9188 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
9189 if (Match == analyze_printf::ArgType::Match)
9190 return true;
9191
9192 // Look through argument promotions for our error message's reported type.
9193 // This includes the integral and floating promotions, but excludes array
9194 // and function pointer decay (seeing that an argument intended to be a
9195 // string has type 'char [6]' is probably more confusing than 'char *') and
9196 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
9197 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9198 if (isArithmeticArgumentPromotion(S, ICE)) {
9199 E = ICE->getSubExpr();
9200 ExprTy = E->getType();
9201
9202 // Check if we didn't match because of an implicit cast from a 'char'
9203 // or 'short' to an 'int'. This is done because printf is a varargs
9204 // function.
9205 if (ICE->getType() == S.Context.IntTy ||
9206 ICE->getType() == S.Context.UnsignedIntTy) {
9207 // All further checking is done on the subexpression
9208 const analyze_printf::ArgType::MatchKind ImplicitMatch =
9209 AT.matchesType(S.Context, ExprTy);
9210 if (ImplicitMatch == analyze_printf::ArgType::Match)
9211 return true;
9212 if (ImplicitMatch == ArgType::NoMatchPedantic ||
9213 ImplicitMatch == ArgType::NoMatchTypeConfusion)
9214 Match = ImplicitMatch;
9215 }
9216 }
9217 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
9218 // Special case for 'a', which has type 'int' in C.
9219 // Note, however, that we do /not/ want to treat multibyte constants like
9220 // 'MooV' as characters! This form is deprecated but still exists. In
9221 // addition, don't treat expressions as of type 'char' if one byte length
9222 // modifier is provided.
9223 if (ExprTy == S.Context.IntTy &&
9224 FS.getLengthModifier().getKind() != LengthModifier::AsChar)
9225 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
9226 ExprTy = S.Context.CharTy;
9227 }
9228
9229 // Look through enums to their underlying type.
9230 bool IsEnum = false;
9231 if (auto EnumTy = ExprTy->getAs<EnumType>()) {
9232 ExprTy = EnumTy->getDecl()->getIntegerType();
9233 IsEnum = true;
9234 }
9235
9236 // %C in an Objective-C context prints a unichar, not a wchar_t.
9237 // If the argument is an integer of some kind, believe the %C and suggest
9238 // a cast instead of changing the conversion specifier.
9239 QualType IntendedTy = ExprTy;
9240 if (isObjCContext() &&
9241 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
9242 if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
9243 !ExprTy->isCharType()) {
9244 // 'unichar' is defined as a typedef of unsigned short, but we should
9245 // prefer using the typedef if it is visible.
9246 IntendedTy = S.Context.UnsignedShortTy;
9247
9248 // While we are here, check if the value is an IntegerLiteral that happens
9249 // to be within the valid range.
9250 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
9251 const llvm::APInt &V = IL->getValue();
9252 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
9253 return true;
9254 }
9255
9256 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
9257 Sema::LookupOrdinaryName);
9258 if (S.LookupName(Result, S.getCurScope())) {
9259 NamedDecl *ND = Result.getFoundDecl();
9260 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
9261 if (TD->getUnderlyingType() == IntendedTy)
9262 IntendedTy = S.Context.getTypedefType(TD);
9263 }
9264 }
9265 }
9266
9267 // Special-case some of Darwin's platform-independence types by suggesting
9268 // casts to primitive types that are known to be large enough.
9269 bool ShouldNotPrintDirectly = false; StringRef CastTyName;
9270 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
9271 QualType CastTy;
9272 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
9273 if (!CastTy.isNull()) {
9274 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
9275 // (long in ASTContext). Only complain to pedants.
9276 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
9277 (AT.isSizeT() || AT.isPtrdiffT()) &&
9278 AT.matchesType(S.Context, CastTy))
9279 Match = ArgType::NoMatchPedantic;
9280 IntendedTy = CastTy;
9281 ShouldNotPrintDirectly = true;
9282 }
9283 }
9284
9285 // We may be able to offer a FixItHint if it is a supported type.
9286 PrintfSpecifier fixedFS = FS;
9287 bool Success =
9288 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
9289
9290 if (Success) {
9291 // Get the fix string from the fixed format specifier
9292 SmallString<16> buf;
9293 llvm::raw_svector_ostream os(buf);
9294 fixedFS.toString(os);
9295
9296 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
9297
9298 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
9299 unsigned Diag;
9300 switch (Match) {
9301 case ArgType::Match: llvm_unreachable("expected non-matching")::llvm::llvm_unreachable_internal("expected non-matching", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 9301)
;
9302 case ArgType::NoMatchPedantic:
9303 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9304 break;
9305 case ArgType::NoMatchTypeConfusion:
9306 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9307 break;
9308 case ArgType::NoMatch:
9309 Diag = diag::warn_format_conversion_argument_type_mismatch;
9310 break;
9311 }
9312
9313 // In this case, the specifier is wrong and should be changed to match
9314 // the argument.
9315 EmitFormatDiagnostic(S.PDiag(Diag)
9316 << AT.getRepresentativeTypeName(S.Context)
9317 << IntendedTy << IsEnum << E->getSourceRange(),
9318 E->getBeginLoc(),
9319 /*IsStringLocation*/ false, SpecRange,
9320 FixItHint::CreateReplacement(SpecRange, os.str()));
9321 } else {
9322 // The canonical type for formatting this value is different from the
9323 // actual type of the expression. (This occurs, for example, with Darwin's
9324 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
9325 // should be printed as 'long' for 64-bit compatibility.)
9326 // Rather than emitting a normal format/argument mismatch, we want to
9327 // add a cast to the recommended type (and correct the format string
9328 // if necessary).
9329 SmallString<16> CastBuf;
9330 llvm::raw_svector_ostream CastFix(CastBuf);
9331 CastFix << "(";
9332 IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
9333 CastFix << ")";
9334
9335 SmallVector<FixItHint,4> Hints;
9336 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
9337 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
9338
9339 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
9340 // If there's already a cast present, just replace it.
9341 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
9342 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
9343
9344 } else if (!requiresParensToAddCast(E)) {
9345 // If the expression has high enough precedence,
9346 // just write the C-style cast.
9347 Hints.push_back(
9348 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9349 } else {
9350 // Otherwise, add parens around the expression as well as the cast.
9351 CastFix << "(";
9352 Hints.push_back(
9353 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9354
9355 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
9356 Hints.push_back(FixItHint::CreateInsertion(After, ")"));
9357 }
9358
9359 if (ShouldNotPrintDirectly) {
9360 // The expression has a type that should not be printed directly.
9361 // We extract the name from the typedef because we don't want to show
9362 // the underlying type in the diagnostic.
9363 StringRef Name;
9364 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
9365 Name = TypedefTy->getDecl()->getName();
9366 else
9367 Name = CastTyName;
9368 unsigned Diag = Match == ArgType::NoMatchPedantic
9369 ? diag::warn_format_argument_needs_cast_pedantic
9370 : diag::warn_format_argument_needs_cast;
9371 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
9372 << E->getSourceRange(),
9373 E->getBeginLoc(), /*IsStringLocation=*/false,
9374 SpecRange, Hints);
9375 } else {
9376 // In this case, the expression could be printed using a different
9377 // specifier, but we've decided that the specifier is probably correct
9378 // and we should cast instead. Just use the normal warning message.
9379 EmitFormatDiagnostic(
9380 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9381 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
9382 << E->getSourceRange(),
9383 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
9384 }
9385 }
9386 } else {
9387 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
9388 SpecifierLen);
9389 // Since the warning for passing non-POD types to variadic functions
9390 // was deferred until now, we emit a warning for non-POD
9391 // arguments here.
9392 switch (S.isValidVarArgType(ExprTy)) {
9393 case Sema::VAK_Valid:
9394 case Sema::VAK_ValidInCXX11: {
9395 unsigned Diag;
9396 switch (Match) {
9397 case ArgType::Match: llvm_unreachable("expected non-matching")::llvm::llvm_unreachable_internal("expected non-matching", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 9397)
;
9398 case ArgType::NoMatchPedantic:
9399 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9400 break;
9401 case ArgType::NoMatchTypeConfusion:
9402 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9403 break;
9404 case ArgType::NoMatch:
9405 Diag = diag::warn_format_conversion_argument_type_mismatch;
9406 break;
9407 }
9408
9409 EmitFormatDiagnostic(
9410 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
9411 << IsEnum << CSR << E->getSourceRange(),
9412 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9413 break;
9414 }
9415 case Sema::VAK_Undefined:
9416 case Sema::VAK_MSVCUndefined:
9417 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
9418 << S.getLangOpts().CPlusPlus11 << ExprTy
9419 << CallType
9420 << AT.getRepresentativeTypeName(S.Context) << CSR
9421 << E->getSourceRange(),
9422 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9423 checkForCStrMembers(AT, E);
9424 break;
9425
9426 case Sema::VAK_Invalid:
9427 if (ExprTy->isObjCObjectType())
9428 EmitFormatDiagnostic(
9429 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
9430 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
9431 << AT.getRepresentativeTypeName(S.Context) << CSR
9432 << E->getSourceRange(),
9433 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9434 else
9435 // FIXME: If this is an initializer list, suggest removing the braces
9436 // or inserting a cast to the target type.
9437 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
9438 << isa<InitListExpr>(E) << ExprTy << CallType
9439 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
9440 break;
9441 }
9442
9443 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&(static_cast <bool> (FirstDataArg + FS.getArgIndex() <
CheckedVarArgs.size() && "format string specifier index out of range"
) ? void (0) : __assert_fail ("FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && \"format string specifier index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 9444, __extension__ __PRETTY_FUNCTION__))
9444 "format string specifier index out of range")(static_cast <bool> (FirstDataArg + FS.getArgIndex() <
CheckedVarArgs.size() && "format string specifier index out of range"
) ? void (0) : __assert_fail ("FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && \"format string specifier index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 9444, __extension__ __PRETTY_FUNCTION__))
;
9445 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
9446 }
9447
9448 return true;
9449}
9450
9451//===--- CHECK: Scanf format string checking ------------------------------===//
9452
9453namespace {
9454
9455class CheckScanfHandler : public CheckFormatHandler {
9456public:
9457 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
9458 const Expr *origFormatExpr, Sema::FormatStringType type,
9459 unsigned firstDataArg, unsigned numDataArgs,
9460 const char *beg, bool hasVAListArg,
9461 ArrayRef<const Expr *> Args, unsigned formatIdx,
9462 bool inFunctionCall, Sema::VariadicCallType CallType,
9463 llvm::SmallBitVector &CheckedVarArgs,
9464 UncoveredArgHandler &UncoveredArg)
9465 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
9466 numDataArgs, beg, hasVAListArg, Args, formatIdx,
9467 inFunctionCall, CallType, CheckedVarArgs,
9468 UncoveredArg) {}
9469
9470 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
9471 const char *startSpecifier,
9472 unsigned specifierLen) override;
9473
9474 bool HandleInvalidScanfConversionSpecifier(
9475 const analyze_scanf::ScanfSpecifier &FS,
9476 const char *startSpecifier,
9477 unsigned specifierLen) override;
9478
9479 void HandleIncompleteScanList(const char *start, const char *end) override;
9480};
9481
9482} // namespace
9483
9484void CheckScanfHandler::HandleIncompleteScanList(const char *start,
9485 const char *end) {
9486 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
9487 getLocationOfByte(end), /*IsStringLocation*/true,
9488 getSpecifierRange(start, end - start));
9489}
9490
9491bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
9492 const analyze_scanf::ScanfSpecifier &FS,
9493 const char *startSpecifier,
9494 unsigned specifierLen) {
9495 const analyze_scanf::ScanfConversionSpecifier &CS =
9496 FS.getConversionSpecifier();
9497
9498 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
9499 getLocationOfByte(CS.getStart()),
9500 startSpecifier, specifierLen,
9501 CS.getStart(), CS.getLength());
9502}
9503
9504bool CheckScanfHandler::HandleScanfSpecifier(
9505 const analyze_scanf::ScanfSpecifier &FS,
9506 const char *startSpecifier,
9507 unsigned specifierLen) {
9508 using namespace analyze_scanf;
9509 using namespace analyze_format_string;
9510
9511 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
9512
9513 // Handle case where '%' and '*' don't consume an argument. These shouldn't
9514 // be used to decide if we are using positional arguments consistently.
9515 if (FS.consumesDataArgument()) {
9516 if (atFirstArg) {
9517 atFirstArg = false;
9518 usesPositionalArgs = FS.usesPositionalArg();
9519 }
9520 else if (usesPositionalArgs != FS.usesPositionalArg()) {
9521 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
9522 startSpecifier, specifierLen);
9523 return false;
9524 }
9525 }
9526
9527 // Check if the field with is non-zero.
9528 const OptionalAmount &Amt = FS.getFieldWidth();
9529 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
9530 if (Amt.getConstantAmount() == 0) {
9531 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
9532 Amt.getConstantLength());
9533 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
9534 getLocationOfByte(Amt.getStart()),
9535 /*IsStringLocation*/true, R,
9536 FixItHint::CreateRemoval(R));
9537 }
9538 }
9539
9540 if (!FS.consumesDataArgument()) {
9541 // FIXME: Technically specifying a precision or field width here
9542 // makes no sense. Worth issuing a warning at some point.
9543 return true;
9544 }
9545
9546 // Consume the argument.
9547 unsigned argIndex = FS.getArgIndex();
9548 if (argIndex < NumDataArgs) {
9549 // The check to see if the argIndex is valid will come later.
9550 // We set the bit here because we may exit early from this
9551 // function if we encounter some other error.
9552 CoveredArgs.set(argIndex);
9553 }
9554
9555 // Check the length modifier is valid with the given conversion specifier.
9556 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9557 S.getLangOpts()))
9558 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9559 diag::warn_format_nonsensical_length);
9560 else if (!FS.hasStandardLengthModifier())
9561 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9562 else if (!FS.hasStandardLengthConversionCombination())
9563 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9564 diag::warn_format_non_standard_conversion_spec);
9565
9566 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9567 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9568
9569 // The remaining checks depend on the data arguments.
9570 if (HasVAListArg)
9571 return true;
9572
9573 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9574 return false;
9575
9576 // Check that the argument type matches the format specifier.
9577 const Expr *Ex = getDataArg(argIndex);
9578 if (!Ex)
9579 return true;
9580
9581 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
9582
9583 if (!AT.isValid()) {
9584 return true;
9585 }
9586
9587 analyze_format_string::ArgType::MatchKind Match =
9588 AT.matchesType(S.Context, Ex->getType());
9589 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
9590 if (Match == analyze_format_string::ArgType::Match)
9591 return true;
9592
9593 ScanfSpecifier fixedFS = FS;
9594 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9595 S.getLangOpts(), S.Context);
9596
9597 unsigned Diag =
9598 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9599 : diag::warn_format_conversion_argument_type_mismatch;
9600
9601 if (Success) {
9602 // Get the fix string from the fixed format specifier.
9603 SmallString<128> buf;
9604 llvm::raw_svector_ostream os(buf);
9605 fixedFS.toString(os);
9606
9607 EmitFormatDiagnostic(
9608 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
9609 << Ex->getType() << false << Ex->getSourceRange(),
9610 Ex->getBeginLoc(),
9611 /*IsStringLocation*/ false,
9612 getSpecifierRange(startSpecifier, specifierLen),
9613 FixItHint::CreateReplacement(
9614 getSpecifierRange(startSpecifier, specifierLen), os.str()));
9615 } else {
9616 EmitFormatDiagnostic(S.PDiag(Diag)
9617 << AT.getRepresentativeTypeName(S.Context)
9618 << Ex->getType() << false << Ex->getSourceRange(),
9619 Ex->getBeginLoc(),
9620 /*IsStringLocation*/ false,
9621 getSpecifierRange(startSpecifier, specifierLen));
9622 }
9623
9624 return true;
9625}
9626
9627static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
9628 const Expr *OrigFormatExpr,
9629 ArrayRef<const Expr *> Args,
9630 bool HasVAListArg, unsigned format_idx,
9631 unsigned firstDataArg,
9632 Sema::FormatStringType Type,
9633 bool inFunctionCall,
9634 Sema::VariadicCallType CallType,
9635 llvm::SmallBitVector &CheckedVarArgs,
9636 UncoveredArgHandler &UncoveredArg,
9637 bool IgnoreStringsWithoutSpecifiers) {
9638 // CHECK: is the format string a wide literal?
9639 if (!FExpr->isAscii() && !FExpr->isUTF8()) {
9640 CheckFormatHandler::EmitFormatDiagnostic(
9641 S, inFunctionCall, Args[format_idx],
9642 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
9643 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9644 return;
9645 }
9646
9647 // Str - The format string. NOTE: this is NOT null-terminated!
9648 StringRef StrRef = FExpr->getString();
9649 const char *Str = StrRef.data();
9650 // Account for cases where the string literal is truncated in a declaration.
9651 const ConstantArrayType *T =
9652 S.Context.getAsConstantArrayType(FExpr->getType());
9653 assert(T && "String literal not of constant array type!")(static_cast <bool> (T && "String literal not of constant array type!"
) ? void (0) : __assert_fail ("T && \"String literal not of constant array type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 9653, __extension__ __PRETTY_FUNCTION__))
;
9654 size_t TypeSize = T->getSize().getZExtValue();
9655 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9656 const unsigned numDataArgs = Args.size() - firstDataArg;
9657
9658 if (IgnoreStringsWithoutSpecifiers &&
9659 !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
9660 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
9661 return;
9662
9663 // Emit a warning if the string literal is truncated and does not contain an
9664 // embedded null character.
9665 if (TypeSize <= StrRef.size() &&
9666 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
9667 CheckFormatHandler::EmitFormatDiagnostic(
9668 S, inFunctionCall, Args[format_idx],
9669 S.PDiag(diag::warn_printf_format_string_not_null_terminated),
9670 FExpr->getBeginLoc(),
9671 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
9672 return;
9673 }
9674
9675 // CHECK: empty format string?
9676 if (StrLen == 0 && numDataArgs > 0) {
9677 CheckFormatHandler::EmitFormatDiagnostic(
9678 S, inFunctionCall, Args[format_idx],
9679 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
9680 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9681 return;
9682 }
9683
9684 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
9685 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
9686 Type == Sema::FST_OSTrace) {
9687 CheckPrintfHandler H(
9688 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
9689 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
9690 HasVAListArg, Args, format_idx, inFunctionCall, CallType,
9691 CheckedVarArgs, UncoveredArg);
9692
9693 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
9694 S.getLangOpts(),
9695 S.Context.getTargetInfo(),
9696 Type == Sema::FST_FreeBSDKPrintf))
9697 H.DoneProcessing();
9698 } else if (Type == Sema::FST_Scanf) {
9699 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
9700 numDataArgs, Str, HasVAListArg, Args, format_idx,
9701 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
9702
9703 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
9704 S.getLangOpts(),
9705 S.Context.getTargetInfo()))
9706 H.DoneProcessing();
9707 } // TODO: handle other formats
9708}
9709
9710bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
9711 // Str - The format string. NOTE: this is NOT null-terminated!
9712 StringRef StrRef = FExpr->getString();
9713 const char *Str = StrRef.data();
9714 // Account for cases where the string literal is truncated in a declaration.
9715 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
9716 assert(T && "String literal not of constant array type!")(static_cast <bool> (T && "String literal not of constant array type!"
) ? void (0) : __assert_fail ("T && \"String literal not of constant array type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 9716, __extension__ __PRETTY_FUNCTION__))
;
9717 size_t TypeSize = T->getSize().getZExtValue();
9718 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9719 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
9720 getLangOpts(),
9721 Context.getTargetInfo());
9722}
9723
9724//===--- CHECK: Warn on use of wrong absolute value function. -------------===//
9725
9726// Returns the related absolute value function that is larger, of 0 if one
9727// does not exist.
9728static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
9729 switch (AbsFunction) {
9730 default:
9731 return 0;
9732
9733 case Builtin::BI__builtin_abs:
9734 return Builtin::BI__builtin_labs;
9735 case Builtin::BI__builtin_labs:
9736 return Builtin::BI__builtin_llabs;
9737 case Builtin::BI__builtin_llabs:
9738 return 0;
9739
9740 case Builtin::BI__builtin_fabsf:
9741 return Builtin::BI__builtin_fabs;
9742 case Builtin::BI__builtin_fabs:
9743 return Builtin::BI__builtin_fabsl;
9744 case Builtin::BI__builtin_fabsl:
9745 return 0;
9746
9747 case Builtin::BI__builtin_cabsf:
9748 return Builtin::BI__builtin_cabs;
9749 case Builtin::BI__builtin_cabs:
9750 return Builtin::BI__builtin_cabsl;
9751 case Builtin::BI__builtin_cabsl:
9752 return 0;
9753
9754 case Builtin::BIabs:
9755 return Builtin::BIlabs;
9756 case Builtin::BIlabs:
9757 return Builtin::BIllabs;
9758 case Builtin::BIllabs:
9759 return 0;
9760
9761 case Builtin::BIfabsf:
9762 return Builtin::BIfabs;
9763 case Builtin::BIfabs:
9764 return Builtin::BIfabsl;
9765 case Builtin::BIfabsl:
9766 return 0;
9767
9768 case Builtin::BIcabsf:
9769 return Builtin::BIcabs;
9770 case Builtin::BIcabs:
9771 return Builtin::BIcabsl;
9772 case Builtin::BIcabsl:
9773 return 0;
9774 }
9775}
9776
9777// Returns the argument type of the absolute value function.
9778static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9779 unsigned AbsType) {
9780 if (AbsType == 0)
9781 return QualType();
9782
9783 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9784 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9785 if (Error != ASTContext::GE_None)
9786 return QualType();
9787
9788 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9789 if (!FT)
9790 return QualType();
9791
9792 if (FT->getNumParams() != 1)
9793 return QualType();
9794
9795 return FT->getParamType(0);
9796}
9797
9798// Returns the best absolute value function, or zero, based on type and
9799// current absolute value function.
9800static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9801 unsigned AbsFunctionKind) {
9802 unsigned BestKind = 0;
9803 uint64_t ArgSize = Context.getTypeSize(ArgType);
9804 for (unsigned Kind = AbsFunctionKind; Kind != 0;
9805 Kind = getLargerAbsoluteValueFunction(Kind)) {
9806 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9807 if (Context.getTypeSize(ParamType) >= ArgSize) {
9808 if (BestKind == 0)
9809 BestKind = Kind;
9810 else if (Context.hasSameType(ParamType, ArgType)) {
9811 BestKind = Kind;
9812 break;
9813 }
9814 }
9815 }
9816 return BestKind;
9817}
9818
9819enum AbsoluteValueKind {
9820 AVK_Integer,
9821 AVK_Floating,
9822 AVK_Complex
9823};
9824
9825static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9826 if (T->isIntegralOrEnumerationType())
9827 return AVK_Integer;
9828 if (T->isRealFloatingType())
9829 return AVK_Floating;
9830 if (T->isAnyComplexType())
9831 return AVK_Complex;
9832
9833 llvm_unreachable("Type not integer, floating, or complex")::llvm::llvm_unreachable_internal("Type not integer, floating, or complex"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 9833)
;
9834}
9835
9836// Changes the absolute value function to a different type. Preserves whether
9837// the function is a builtin.
9838static unsigned changeAbsFunction(unsigned AbsKind,
9839 AbsoluteValueKind ValueKind) {
9840 switch (ValueKind) {
9841 case AVK_Integer:
9842 switch (AbsKind) {
9843 default:
9844 return 0;
9845 case Builtin::BI__builtin_fabsf:
9846 case Builtin::BI__builtin_fabs:
9847 case Builtin::BI__builtin_fabsl:
9848 case Builtin::BI__builtin_cabsf:
9849 case Builtin::BI__builtin_cabs:
9850 case Builtin::BI__builtin_cabsl:
9851 return Builtin::BI__builtin_abs;
9852 case Builtin::BIfabsf:
9853 case Builtin::BIfabs:
9854 case Builtin::BIfabsl:
9855 case Builtin::BIcabsf:
9856 case Builtin::BIcabs:
9857 case Builtin::BIcabsl:
9858 return Builtin::BIabs;
9859 }
9860 case AVK_Floating:
9861 switch (AbsKind) {
9862 default:
9863 return 0;
9864 case Builtin::BI__builtin_abs:
9865 case Builtin::BI__builtin_labs:
9866 case Builtin::BI__builtin_llabs:
9867 case Builtin::BI__builtin_cabsf:
9868 case Builtin::BI__builtin_cabs:
9869 case Builtin::BI__builtin_cabsl:
9870 return Builtin::BI__builtin_fabsf;
9871 case Builtin::BIabs:
9872 case Builtin::BIlabs:
9873 case Builtin::BIllabs:
9874 case Builtin::BIcabsf:
9875 case Builtin::BIcabs:
9876 case Builtin::BIcabsl:
9877 return Builtin::BIfabsf;
9878 }
9879 case AVK_Complex:
9880 switch (AbsKind) {
9881 default:
9882 return 0;
9883 case Builtin::BI__builtin_abs:
9884 case Builtin::BI__builtin_labs:
9885 case Builtin::BI__builtin_llabs:
9886 case Builtin::BI__builtin_fabsf:
9887 case Builtin::BI__builtin_fabs:
9888 case Builtin::BI__builtin_fabsl:
9889 return Builtin::BI__builtin_cabsf;
9890 case Builtin::BIabs:
9891 case Builtin::BIlabs:
9892 case Builtin::BIllabs:
9893 case Builtin::BIfabsf:
9894 case Builtin::BIfabs:
9895 case Builtin::BIfabsl:
9896 return Builtin::BIcabsf;
9897 }
9898 }
9899 llvm_unreachable("Unable to convert function")::llvm::llvm_unreachable_internal("Unable to convert function"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 9899)
;
9900}
9901
9902static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
9903 const IdentifierInfo *FnInfo = FDecl->getIdentifier();
9904 if (!FnInfo)
9905 return 0;
9906
9907 switch (FDecl->getBuiltinID()) {
9908 default:
9909 return 0;
9910 case Builtin::BI__builtin_abs:
9911 case Builtin::BI__builtin_fabs:
9912 case Builtin::BI__builtin_fabsf:
9913 case Builtin::BI__builtin_fabsl:
9914 case Builtin::BI__builtin_labs:
9915 case Builtin::BI__builtin_llabs:
9916 case Builtin::BI__builtin_cabs:
9917 case Builtin::BI__builtin_cabsf:
9918 case Builtin::BI__builtin_cabsl:
9919 case Builtin::BIabs:
9920 case Builtin::BIlabs:
9921 case Builtin::BIllabs:
9922 case Builtin::BIfabs:
9923 case Builtin::BIfabsf:
9924 case Builtin::BIfabsl:
9925 case Builtin::BIcabs:
9926 case Builtin::BIcabsf:
9927 case Builtin::BIcabsl:
9928 return FDecl->getBuiltinID();
9929 }
9930 llvm_unreachable("Unknown Builtin type")::llvm::llvm_unreachable_internal("Unknown Builtin type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 9930)
;
9931}
9932
9933// If the replacement is valid, emit a note with replacement function.
9934// Additionally, suggest including the proper header if not already included.
9935static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
9936 unsigned AbsKind, QualType ArgType) {
9937 bool EmitHeaderHint = true;
9938 const char *HeaderName = nullptr;
9939 const char *FunctionName = nullptr;
9940 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
9941 FunctionName = "std::abs";
9942 if (ArgType->isIntegralOrEnumerationType()) {
9943 HeaderName = "cstdlib";
9944 } else if (ArgType->isRealFloatingType()) {
9945 HeaderName = "cmath";
9946 } else {
9947 llvm_unreachable("Invalid Type")::llvm::llvm_unreachable_internal("Invalid Type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 9947)
;
9948 }
9949
9950 // Lookup all std::abs
9951 if (NamespaceDecl *Std = S.getStdNamespace()) {
9952 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
9953 R.suppressDiagnostics();
9954 S.LookupQualifiedName(R, Std);
9955
9956 for (const auto *I : R) {
9957 const FunctionDecl *FDecl = nullptr;
9958 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
9959 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
9960 } else {
9961 FDecl = dyn_cast<FunctionDecl>(I);
9962 }
9963 if (!FDecl)
9964 continue;
9965
9966 // Found std::abs(), check that they are the right ones.
9967 if (FDecl->getNumParams() != 1)
9968 continue;
9969
9970 // Check that the parameter type can handle the argument.
9971 QualType ParamType = FDecl->getParamDecl(0)->getType();
9972 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
9973 S.Context.getTypeSize(ArgType) <=
9974 S.Context.getTypeSize(ParamType)) {
9975 // Found a function, don't need the header hint.
9976 EmitHeaderHint = false;
9977 break;
9978 }
9979 }
9980 }
9981 } else {
9982 FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
9983 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
9984
9985 if (HeaderName) {
9986 DeclarationName DN(&S.Context.Idents.get(FunctionName));
9987 LookupResult R(S, DN, Loc, Sema::LookupAnyName);
9988 R.suppressDiagnostics();
9989 S.LookupName(R, S.getCurScope());
9990
9991 if (R.isSingleResult()) {
9992 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
9993 if (FD && FD->getBuiltinID() == AbsKind) {
9994 EmitHeaderHint = false;
9995 } else {
9996 return;
9997 }
9998 } else if (!R.empty()) {
9999 return;
10000 }
10001 }
10002 }
10003
10004 S.Diag(Loc, diag::note_replace_abs_function)
10005 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
10006
10007 if (!HeaderName)
10008 return;
10009
10010 if (!EmitHeaderHint)
10011 return;
10012
10013 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
10014 << FunctionName;
10015}
10016
10017template <std::size_t StrLen>
10018static bool IsStdFunction(const FunctionDecl *FDecl,
10019 const char (&Str)[StrLen]) {
10020 if (!FDecl)
10021 return false;
10022 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
10023 return false;
10024 if (!FDecl->isInStdNamespace())
10025 return false;
10026
10027 return true;
10028}
10029
10030// Warn when using the wrong abs() function.
10031void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
10032 const FunctionDecl *FDecl) {
10033 if (Call->getNumArgs() != 1)
10034 return;
10035
10036 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
10037 bool IsStdAbs = IsStdFunction(FDecl, "abs");
10038 if (AbsKind == 0 && !IsStdAbs)
10039 return;
10040
10041 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10042 QualType ParamType = Call->getArg(0)->getType();
10043
10044 // Unsigned types cannot be negative. Suggest removing the absolute value
10045 // function call.
10046 if (ArgType->isUnsignedIntegerType()) {
10047 const char *FunctionName =
10048 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
10049 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
10050 Diag(Call->getExprLoc(), diag::note_remove_abs)
10051 << FunctionName
10052 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
10053 return;
10054 }
10055
10056 // Taking the absolute value of a pointer is very suspicious, they probably
10057 // wanted to index into an array, dereference a pointer, call a function, etc.
10058 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
10059 unsigned DiagType = 0;
10060 if (ArgType->isFunctionType())
10061 DiagType = 1;
10062 else if (ArgType->isArrayType())
10063 DiagType = 2;
10064
10065 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
10066 return;
10067 }
10068
10069 // std::abs has overloads which prevent most of the absolute value problems
10070 // from occurring.
10071 if (IsStdAbs)
10072 return;
10073
10074 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
10075 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
10076
10077 // The argument and parameter are the same kind. Check if they are the right
10078 // size.
10079 if (ArgValueKind == ParamValueKind) {
10080 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
10081 return;
10082
10083 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
10084 Diag(Call->getExprLoc(), diag::warn_abs_too_small)
10085 << FDecl << ArgType << ParamType;
10086
10087 if (NewAbsKind == 0)
10088 return;
10089
10090 emitReplacement(*this, Call->getExprLoc(),
10091 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10092 return;
10093 }
10094
10095 // ArgValueKind != ParamValueKind
10096 // The wrong type of absolute value function was used. Attempt to find the
10097 // proper one.
10098 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
10099 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
10100 if (NewAbsKind == 0)
10101 return;
10102
10103 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
10104 << FDecl << ParamValueKind << ArgValueKind;
10105
10106 emitReplacement(*this, Call->getExprLoc(),
10107 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10108}
10109
10110//===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
10111void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
10112 const FunctionDecl *FDecl) {
10113 if (!Call || !FDecl) return;
10114
10115 // Ignore template specializations and macros.
10116 if (inTemplateInstantiation()) return;
10117 if (Call->getExprLoc().isMacroID()) return;
10118
10119 // Only care about the one template argument, two function parameter std::max
10120 if (Call->getNumArgs() != 2) return;
10121 if (!IsStdFunction(FDecl, "max")) return;
10122 const auto * ArgList = FDecl->getTemplateSpecializationArgs();
10123 if (!ArgList) return;
10124 if (ArgList->size() != 1) return;
10125
10126 // Check that template type argument is unsigned integer.
10127 const auto& TA = ArgList->get(0);
10128 if (TA.getKind() != TemplateArgument::Type) return;
10129 QualType ArgType = TA.getAsType();
10130 if (!ArgType->isUnsignedIntegerType()) return;
10131
10132 // See if either argument is a literal zero.
10133 auto IsLiteralZeroArg = [](const Expr* E) -> bool {
10134 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
10135 if (!MTE) return false;
10136 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
10137 if (!Num) return false;
10138 if (Num->getValue() != 0) return false;
10139 return true;
10140 };
10141
10142 const Expr *FirstArg = Call->getArg(0);
10143 const Expr *SecondArg = Call->getArg(1);
10144 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
10145 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
10146
10147 // Only warn when exactly one argument is zero.
10148 if (IsFirstArgZero == IsSecondArgZero) return;
10149
10150 SourceRange FirstRange = FirstArg->getSourceRange();
10151 SourceRange SecondRange = SecondArg->getSourceRange();
10152
10153 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
10154
10155 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
10156 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
10157
10158 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
10159 SourceRange RemovalRange;
10160 if (IsFirstArgZero) {
10161 RemovalRange = SourceRange(FirstRange.getBegin(),
10162 SecondRange.getBegin().getLocWithOffset(-1));
10163 } else {
10164 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
10165 SecondRange.getEnd());
10166 }
10167
10168 Diag(Call->getExprLoc(), diag::note_remove_max_call)
10169 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
10170 << FixItHint::CreateRemoval(RemovalRange);
10171}
10172
10173//===--- CHECK: Standard memory functions ---------------------------------===//
10174
10175/// Takes the expression passed to the size_t parameter of functions
10176/// such as memcmp, strncat, etc and warns if it's a comparison.
10177///
10178/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
10179static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
10180 IdentifierInfo *FnName,
10181 SourceLocation FnLoc,
10182 SourceLocation RParenLoc) {
10183 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
10184 if (!Size)
10185 return false;
10186
10187 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
10188 if (!Size->isComparisonOp() && !Size->isLogicalOp())
10189 return false;
10190
10191 SourceRange SizeRange = Size->getSourceRange();
10192 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
10193 << SizeRange << FnName;
10194 S.Diag(FnLoc, diag::note_memsize_comparison_paren)
10195 << FnName
10196 << FixItHint::CreateInsertion(
10197 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
10198 << FixItHint::CreateRemoval(RParenLoc);
10199 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
10200 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
10201 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
10202 ")");
10203
10204 return true;
10205}
10206
10207/// Determine whether the given type is or contains a dynamic class type
10208/// (e.g., whether it has a vtable).
10209static const CXXRecordDecl *getContainedDynamicClass(QualType T,
10210 bool &IsContained) {
10211 // Look through array types while ignoring qualifiers.
10212 const Type *Ty = T->getBaseElementTypeUnsafe();
10213 IsContained = false;
10214
10215 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
10216 RD = RD ? RD->getDefinition() : nullptr;
10217 if (!RD || RD->isInvalidDecl())
10218 return nullptr;
10219
10220 if (RD->isDynamicClass())
10221 return RD;
10222
10223 // Check all the fields. If any bases were dynamic, the class is dynamic.
10224 // It's impossible for a class to transitively contain itself by value, so
10225 // infinite recursion is impossible.
10226 for (auto *FD : RD->fields()) {
10227 bool SubContained;
10228 if (const CXXRecordDecl *ContainedRD =
10229 getContainedDynamicClass(FD->getType(), SubContained)) {
10230 IsContained = true;
10231 return ContainedRD;
10232 }
10233 }
10234
10235 return nullptr;
10236}
10237
10238static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
10239 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
10240 if (Unary->getKind() == UETT_SizeOf)
10241 return Unary;
10242 return nullptr;
10243}
10244
10245/// If E is a sizeof expression, returns its argument expression,
10246/// otherwise returns NULL.
10247static const Expr *getSizeOfExprArg(const Expr *E) {
10248 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10249 if (!SizeOf->isArgumentType())
10250 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
10251 return nullptr;
10252}
10253
10254/// If E is a sizeof expression, returns its argument type.
10255static QualType getSizeOfArgType(const Expr *E) {
10256 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10257 return SizeOf->getTypeOfArgument();
10258 return QualType();
10259}
10260
10261namespace {
10262
10263struct SearchNonTrivialToInitializeField
10264 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
10265 using Super =
10266 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
10267
10268 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
10269
10270 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
10271 SourceLocation SL) {
10272 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10273 asDerived().visitArray(PDIK, AT, SL);
10274 return;
10275 }
10276
10277 Super::visitWithKind(PDIK, FT, SL);
10278 }
10279
10280 void visitARCStrong(QualType FT, SourceLocation SL) {
10281 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10282 }
10283 void visitARCWeak(QualType FT, SourceLocation SL) {
10284 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10285 }
10286 void visitStruct(QualType FT, SourceLocation SL) {
10287 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10288 visit(FD->getType(), FD->getLocation());
10289 }
10290 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
10291 const ArrayType *AT, SourceLocation SL) {
10292 visit(getContext().getBaseElementType(AT), SL);
10293 }
10294 void visitTrivial(QualType FT, SourceLocation SL) {}
10295
10296 static void diag(QualType RT, const Expr *E, Sema &S) {
10297 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
10298 }
10299
10300 ASTContext &getContext() { return S.getASTContext(); }
10301
10302 const Expr *E;
10303 Sema &S;
10304};
10305
10306struct SearchNonTrivialToCopyField
10307 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
10308 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
10309
10310 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
10311
10312 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
10313 SourceLocation SL) {
10314 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10315 asDerived().visitArray(PCK, AT, SL);
10316 return;
10317 }
10318
10319 Super::visitWithKind(PCK, FT, SL);
10320 }
10321
10322 void visitARCStrong(QualType FT, SourceLocation SL) {
10323 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10324 }
10325 void visitARCWeak(QualType FT, SourceLocation SL) {
10326 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10327 }
10328 void visitStruct(QualType FT, SourceLocation SL) {
10329 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10330 visit(FD->getType(), FD->getLocation());
10331 }
10332 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
10333 SourceLocation SL) {
10334 visit(getContext().getBaseElementType(AT), SL);
10335 }
10336 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
10337 SourceLocation SL) {}
10338 void visitTrivial(QualType FT, SourceLocation SL) {}
10339 void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
10340
10341 static void diag(QualType RT, const Expr *E, Sema &S) {
10342 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
10343 }
10344
10345 ASTContext &getContext() { return S.getASTContext(); }
10346
10347 const Expr *E;
10348 Sema &S;
10349};
10350
10351}
10352
10353/// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
10354static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
10355 SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
10356
10357 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
10358 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
10359 return false;
10360
10361 return doesExprLikelyComputeSize(BO->getLHS()) ||
10362 doesExprLikelyComputeSize(BO->getRHS());
10363 }
10364
10365 return getAsSizeOfExpr(SizeofExpr) != nullptr;
10366}
10367
10368/// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
10369///
10370/// \code
10371/// #define MACRO 0
10372/// foo(MACRO);
10373/// foo(0);
10374/// \endcode
10375///
10376/// This should return true for the first call to foo, but not for the second
10377/// (regardless of whether foo is a macro or function).
10378static bool isArgumentExpandedFromMacro(SourceManager &SM,
10379 SourceLocation CallLoc,
10380 SourceLocation ArgLoc) {
10381 if (!CallLoc.isMacroID())
10382 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
10383
10384 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
10385 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
10386}
10387
10388/// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
10389/// last two arguments transposed.
10390static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
10391 if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
10392 return;
10393
10394 const Expr *SizeArg =
10395 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
10396
10397 auto isLiteralZero = [](const Expr *E) {
10398 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
10399 };
10400
10401 // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
10402 SourceLocation CallLoc = Call->getRParenLoc();
10403 SourceManager &SM = S.getSourceManager();
10404 if (isLiteralZero(SizeArg) &&
10405 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
10406
10407 SourceLocation DiagLoc = SizeArg->getExprLoc();
10408
10409 // Some platforms #define bzero to __builtin_memset. See if this is the
10410 // case, and if so, emit a better diagnostic.
10411 if (BId == Builtin::BIbzero ||
10412 (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
10413 CallLoc, SM, S.getLangOpts()) == "bzero")) {
10414 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
10415 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
10416 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
10417 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
10418 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
10419 }
10420 return;
10421 }
10422
10423 // If the second argument to a memset is a sizeof expression and the third
10424 // isn't, this is also likely an error. This should catch
10425 // 'memset(buf, sizeof(buf), 0xff)'.
10426 if (BId == Builtin::BImemset &&
10427 doesExprLikelyComputeSize(Call->getArg(1)) &&
10428 !doesExprLikelyComputeSize(Call->getArg(2))) {
10429 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
10430 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
10431 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
10432 return;
10433 }
10434}
10435
10436/// Check for dangerous or invalid arguments to memset().
10437///
10438/// This issues warnings on known problematic, dangerous or unspecified
10439/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
10440/// function calls.
10441///
10442/// \param Call The call expression to diagnose.
10443void Sema::CheckMemaccessArguments(const CallExpr *Call,
10444 unsigned BId,
10445 IdentifierInfo *FnName) {
10446 assert(BId != 0)(static_cast <bool> (BId != 0) ? void (0) : __assert_fail
("BId != 0", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 10446, __extension__ __PRETTY_FUNCTION__))
;
10447
10448 // It is possible to have a non-standard definition of memset. Validate
10449 // we have enough arguments, and if not, abort further checking.
10450 unsigned ExpectedNumArgs =
10451 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
10452 if (Call->getNumArgs() < ExpectedNumArgs)
10453 return;
10454
10455 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
10456 BId == Builtin::BIstrndup ? 1 : 2);
10457 unsigned LenArg =
10458 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
10459 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
10460
10461 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
10462 Call->getBeginLoc(), Call->getRParenLoc()))
10463 return;
10464
10465 // Catch cases like 'memset(buf, sizeof(buf), 0)'.
10466 CheckMemaccessSize(*this, BId, Call);
10467
10468 // We have special checking when the length is a sizeof expression.
10469 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
10470 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
10471 llvm::FoldingSetNodeID SizeOfArgID;
10472
10473 // Although widely used, 'bzero' is not a standard function. Be more strict
10474 // with the argument types before allowing diagnostics and only allow the
10475 // form bzero(ptr, sizeof(...)).
10476 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10477 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
10478 return;
10479
10480 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
10481 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
10482 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
10483
10484 QualType DestTy = Dest->getType();
10485 QualType PointeeTy;
10486 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
10487 PointeeTy = DestPtrTy->getPointeeType();
10488
10489 // Never warn about void type pointers. This can be used to suppress
10490 // false positives.
10491 if (PointeeTy->isVoidType())
10492 continue;
10493
10494 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
10495 // actually comparing the expressions for equality. Because computing the
10496 // expression IDs can be expensive, we only do this if the diagnostic is
10497 // enabled.
10498 if (SizeOfArg &&
10499 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
10500 SizeOfArg->getExprLoc())) {
10501 // We only compute IDs for expressions if the warning is enabled, and
10502 // cache the sizeof arg's ID.
10503 if (SizeOfArgID == llvm::FoldingSetNodeID())
10504 SizeOfArg->Profile(SizeOfArgID, Context, true);
10505 llvm::FoldingSetNodeID DestID;
10506 Dest->Profile(DestID, Context, true);
10507 if (DestID == SizeOfArgID) {
10508 // TODO: For strncpy() and friends, this could suggest sizeof(dst)
10509 // over sizeof(src) as well.
10510 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
10511 StringRef ReadableName = FnName->getName();
10512
10513 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
10514 if (UnaryOp->getOpcode() == UO_AddrOf)
10515 ActionIdx = 1; // If its an address-of operator, just remove it.
10516 if (!PointeeTy->isIncompleteType() &&
10517 (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
10518 ActionIdx = 2; // If the pointee's size is sizeof(char),
10519 // suggest an explicit length.
10520
10521 // If the function is defined as a builtin macro, do not show macro
10522 // expansion.
10523 SourceLocation SL = SizeOfArg->getExprLoc();
10524 SourceRange DSR = Dest->getSourceRange();
10525 SourceRange SSR = SizeOfArg->getSourceRange();
10526 SourceManager &SM = getSourceManager();
10527
10528 if (SM.isMacroArgExpansion(SL)) {
10529 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
10530 SL = SM.getSpellingLoc(SL);
10531 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
10532 SM.getSpellingLoc(DSR.getEnd()));
10533 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
10534 SM.getSpellingLoc(SSR.getEnd()));
10535 }
10536
10537 DiagRuntimeBehavior(SL, SizeOfArg,
10538 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
10539 << ReadableName
10540 << PointeeTy
10541 << DestTy
10542 << DSR
10543 << SSR);
10544 DiagRuntimeBehavior(SL, SizeOfArg,
10545 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
10546 << ActionIdx
10547 << SSR);
10548
10549 break;
10550 }
10551 }
10552
10553 // Also check for cases where the sizeof argument is the exact same
10554 // type as the memory argument, and where it points to a user-defined
10555 // record type.
10556 if (SizeOfArgTy != QualType()) {
10557 if (PointeeTy->isRecordType() &&
10558 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
10559 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
10560 PDiag(diag::warn_sizeof_pointer_type_memaccess)
10561 << FnName << SizeOfArgTy << ArgIdx
10562 << PointeeTy << Dest->getSourceRange()
10563 << LenExpr->getSourceRange());
10564 break;
10565 }
10566 }
10567 } else if (DestTy->isArrayType()) {
10568 PointeeTy = DestTy;
10569 }
10570
10571 if (PointeeTy == QualType())
10572 continue;
10573
10574 // Always complain about dynamic classes.
10575 bool IsContained;
10576 if (const CXXRecordDecl *ContainedRD =
10577 getContainedDynamicClass(PointeeTy, IsContained)) {
10578
10579 unsigned OperationType = 0;
10580 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
10581 // "overwritten" if we're warning about the destination for any call
10582 // but memcmp; otherwise a verb appropriate to the call.
10583 if (ArgIdx != 0 || IsCmp) {
10584 if (BId == Builtin::BImemcpy)
10585 OperationType = 1;
10586 else if(BId == Builtin::BImemmove)
10587 OperationType = 2;
10588 else if (IsCmp)
10589 OperationType = 3;
10590 }
10591
10592 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10593 PDiag(diag::warn_dyn_class_memaccess)
10594 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10595 << IsContained << ContainedRD << OperationType
10596 << Call->getCallee()->getSourceRange());
10597 } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10598 BId != Builtin::BImemset)
10599 DiagRuntimeBehavior(
10600 Dest->getExprLoc(), Dest,
10601 PDiag(diag::warn_arc_object_memaccess)
10602 << ArgIdx << FnName << PointeeTy
10603 << Call->getCallee()->getSourceRange());
10604 else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10605 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10606 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
10607 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10608 PDiag(diag::warn_cstruct_memaccess)
10609 << ArgIdx << FnName << PointeeTy << 0);
10610 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
10611 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
10612 RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
10613 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10614 PDiag(diag::warn_cstruct_memaccess)
10615 << ArgIdx << FnName << PointeeTy << 1);
10616 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
10617 } else {
10618 continue;
10619 }
10620 } else
10621 continue;
10622
10623 DiagRuntimeBehavior(
10624 Dest->getExprLoc(), Dest,
10625 PDiag(diag::note_bad_memaccess_silence)
10626 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
10627 break;
10628 }
10629}
10630
10631// A little helper routine: ignore addition and subtraction of integer literals.
10632// This intentionally does not ignore all integer constant expressions because
10633// we don't want to remove sizeof().
10634static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
10635 Ex = Ex->IgnoreParenCasts();
10636
10637 while (true) {
10638 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
10639 if (!BO || !BO->isAdditiveOp())
10640 break;
10641
10642 const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
10643 const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
10644
10645 if (isa<IntegerLiteral>(RHS))
10646 Ex = LHS;
10647 else if (isa<IntegerLiteral>(LHS))
10648 Ex = RHS;
10649 else
10650 break;
10651 }
10652
10653 return Ex;
10654}
10655
10656static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
10657 ASTContext &Context) {
10658 // Only handle constant-sized or VLAs, but not flexible members.
10659 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
10660 // Only issue the FIXIT for arrays of size > 1.
10661 if (CAT->getSize().getSExtValue() <= 1)
10662 return false;
10663 } else if (!Ty->isVariableArrayType()) {
10664 return false;
10665 }
10666 return true;
10667}
10668
10669// Warn if the user has made the 'size' argument to strlcpy or strlcat
10670// be the size of the source, instead of the destination.
10671void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
10672 IdentifierInfo *FnName) {
10673
10674 // Don't crash if the user has the wrong number of arguments
10675 unsigned NumArgs = Call->getNumArgs();
10676 if ((NumArgs != 3) && (NumArgs != 4))
10677 return;
10678
10679 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
10680 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
10681 const Expr *CompareWithSrc = nullptr;
10682
10683 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
10684 Call->getBeginLoc(), Call->getRParenLoc()))
10685 return;
10686
10687 // Look for 'strlcpy(dst, x, sizeof(x))'
10688 if (const Expr *Ex = getSizeOfExprArg(SizeArg))
10689 CompareWithSrc = Ex;
10690 else {
10691 // Look for 'strlcpy(dst, x, strlen(x))'
10692 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
10693 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
10694 SizeCall->getNumArgs() == 1)
10695 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
10696 }
10697 }
10698
10699 if (!CompareWithSrc)
10700 return;
10701
10702 // Determine if the argument to sizeof/strlen is equal to the source
10703 // argument. In principle there's all kinds of things you could do
10704 // here, for instance creating an == expression and evaluating it with
10705 // EvaluateAsBooleanCondition, but this uses a more direct technique:
10706 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
10707 if (!SrcArgDRE)
10708 return;
10709
10710 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
10711 if (!CompareWithSrcDRE ||
10712 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
10713 return;
10714
10715 const Expr *OriginalSizeArg = Call->getArg(2);
10716 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
10717 << OriginalSizeArg->getSourceRange() << FnName;
10718
10719 // Output a FIXIT hint if the destination is an array (rather than a
10720 // pointer to an array). This could be enhanced to handle some
10721 // pointers if we know the actual size, like if DstArg is 'array+2'
10722 // we could say 'sizeof(array)-2'.
10723 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
10724 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
10725 return;
10726
10727 SmallString<128> sizeString;
10728 llvm::raw_svector_ostream OS(sizeString);
10729 OS << "sizeof(";
10730 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10731 OS << ")";
10732
10733 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
10734 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
10735 OS.str());
10736}
10737
10738/// Check if two expressions refer to the same declaration.
10739static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
10740 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
10741 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
10742 return D1->getDecl() == D2->getDecl();
10743 return false;
10744}
10745
10746static const Expr *getStrlenExprArg(const Expr *E) {
10747 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10748 const FunctionDecl *FD = CE->getDirectCallee();
10749 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10750 return nullptr;
10751 return CE->getArg(0)->IgnoreParenCasts();
10752 }
10753 return nullptr;
10754}
10755
10756// Warn on anti-patterns as the 'size' argument to strncat.
10757// The correct size argument should look like following:
10758// strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
10759void Sema::CheckStrncatArguments(const CallExpr *CE,
10760 IdentifierInfo *FnName) {
10761 // Don't crash if the user has the wrong number of arguments.
10762 if (CE->getNumArgs() < 3)
10763 return;
10764 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10765 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10766 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10767
10768 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10769 CE->getRParenLoc()))
10770 return;
10771
10772 // Identify common expressions, which are wrongly used as the size argument
10773 // to strncat and may lead to buffer overflows.
10774 unsigned PatternType = 0;
10775 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10776 // - sizeof(dst)
10777 if (referToTheSameDecl(SizeOfArg, DstArg))
10778 PatternType = 1;
10779 // - sizeof(src)
10780 else if (referToTheSameDecl(SizeOfArg, SrcArg))
10781 PatternType = 2;
10782 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10783 if (BE->getOpcode() == BO_Sub) {
10784 const Expr *L = BE->getLHS()->IgnoreParenCasts();
10785 const Expr *R = BE->getRHS()->IgnoreParenCasts();
10786 // - sizeof(dst) - strlen(dst)
10787 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10788 referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10789 PatternType = 1;
10790 // - sizeof(src) - (anything)
10791 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10792 PatternType = 2;
10793 }
10794 }
10795
10796 if (PatternType == 0)
10797 return;
10798
10799 // Generate the diagnostic.
10800 SourceLocation SL = LenArg->getBeginLoc();
10801 SourceRange SR = LenArg->getSourceRange();
10802 SourceManager &SM = getSourceManager();
10803
10804 // If the function is defined as a builtin macro, do not show macro expansion.
10805 if (SM.isMacroArgExpansion(SL)) {
10806 SL = SM.getSpellingLoc(SL);
10807 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10808 SM.getSpellingLoc(SR.getEnd()));
10809 }
10810
10811 // Check if the destination is an array (rather than a pointer to an array).
10812 QualType DstTy = DstArg->getType();
10813 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10814 Context);
10815 if (!isKnownSizeArray) {
10816 if (PatternType == 1)
10817 Diag(SL, diag::warn_strncat_wrong_size) << SR;
10818 else
10819 Diag(SL, diag::warn_strncat_src_size) << SR;
10820 return;
10821 }
10822
10823 if (PatternType == 1)
10824 Diag(SL, diag::warn_strncat_large_size) << SR;
10825 else
10826 Diag(SL, diag::warn_strncat_src_size) << SR;
10827
10828 SmallString<128> sizeString;
10829 llvm::raw_svector_ostream OS(sizeString);
10830 OS << "sizeof(";
10831 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10832 OS << ") - ";
10833 OS << "strlen(";
10834 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10835 OS << ") - 1";
10836
10837 Diag(SL, diag::note_strncat_wrong_size)
10838 << FixItHint::CreateReplacement(SR, OS.str());
10839}
10840
10841namespace {
10842void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10843 const UnaryOperator *UnaryExpr, const Decl *D) {
10844 if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
10845 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10846 << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
10847 return;
10848 }
10849}
10850
10851void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
10852 const UnaryOperator *UnaryExpr) {
10853 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
10854 const Decl *D = Lvalue->getDecl();
10855 if (isa<DeclaratorDecl>(D))
10856 if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
10857 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
10858 }
10859
10860 if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
10861 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
10862 Lvalue->getMemberDecl());
10863}
10864
10865void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
10866 const UnaryOperator *UnaryExpr) {
10867 const auto *Lambda = dyn_cast<LambdaExpr>(
10868 UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
10869 if (!Lambda)
10870 return;
10871
10872 S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
10873 << CalleeName << 2 /*object: lambda expression*/;
10874}
10875
10876void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
10877 const DeclRefExpr *Lvalue) {
10878 const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
10879 if (Var == nullptr)
10880 return;
10881
10882 S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
10883 << CalleeName << 0 /*object: */ << Var;
10884}
10885
10886void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
10887 const CastExpr *Cast) {
10888 SmallString<128> SizeString;
10889 llvm::raw_svector_ostream OS(SizeString);
10890
10891 clang::CastKind Kind = Cast->getCastKind();
10892 if (Kind == clang::CK_BitCast &&
10893 !Cast->getSubExpr()->getType()->isFunctionPointerType())
10894 return;
10895 if (Kind == clang::CK_IntegralToPointer &&
10896 !isa<IntegerLiteral>(
10897 Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
10898 return;
10899
10900 switch (Cast->getCastKind()) {
10901 case clang::CK_BitCast:
10902 case clang::CK_IntegralToPointer:
10903 case clang::CK_FunctionToPointerDecay:
10904 OS << '\'';
10905 Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
10906 OS << '\'';
10907 break;
10908 default:
10909 return;
10910 }
10911
10912 S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
10913 << CalleeName << 0 /*object: */ << OS.str();
10914}
10915} // namespace
10916
10917/// Alerts the user that they are attempting to free a non-malloc'd object.
10918void Sema::CheckFreeArguments(const CallExpr *E) {
10919 const std::string CalleeName =
10920 dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
12
Assuming the object is not a 'FunctionDecl'
13
Called C++ object pointer is null
10921
10922 { // Prefer something that doesn't involve a cast to make things simpler.
10923 const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
10924 if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
10925 switch (UnaryExpr->getOpcode()) {
10926 case UnaryOperator::Opcode::UO_AddrOf:
10927 return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
10928 case UnaryOperator::Opcode::UO_Plus:
10929 return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
10930 default:
10931 break;
10932 }
10933
10934 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
10935 if (Lvalue->getType()->isArrayType())
10936 return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
10937
10938 if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
10939 Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
10940 << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
10941 return;
10942 }
10943
10944 if (isa<BlockExpr>(Arg)) {
10945 Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
10946 << CalleeName << 1 /*object: block*/;
10947 return;
10948 }
10949 }
10950 // Maybe the cast was important, check after the other cases.
10951 if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
10952 return CheckFreeArgumentsCast(*this, CalleeName, Cast);
10953}
10954
10955void
10956Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
10957 SourceLocation ReturnLoc,
10958 bool isObjCMethod,
10959 const AttrVec *Attrs,
10960 const FunctionDecl *FD) {
10961 // Check if the return value is null but should not be.
10962 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
10963 (!isObjCMethod && isNonNullType(Context, lhsType))) &&
10964 CheckNonNullExpr(*this, RetValExp))
10965 Diag(ReturnLoc, diag::warn_null_ret)
10966 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
10967
10968 // C++11 [basic.stc.dynamic.allocation]p4:
10969 // If an allocation function declared with a non-throwing
10970 // exception-specification fails to allocate storage, it shall return
10971 // a null pointer. Any other allocation function that fails to allocate
10972 // storage shall indicate failure only by throwing an exception [...]
10973 if (FD) {
10974 OverloadedOperatorKind Op = FD->getOverloadedOperator();
10975 if (Op == OO_New || Op == OO_Array_New) {
10976 const FunctionProtoType *Proto
10977 = FD->getType()->castAs<FunctionProtoType>();
10978 if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
10979 CheckNonNullExpr(*this, RetValExp))
10980 Diag(ReturnLoc, diag::warn_operator_new_returns_null)
10981 << FD << getLangOpts().CPlusPlus11;
10982 }
10983 }
10984
10985 // PPC MMA non-pointer types are not allowed as return type. Checking the type
10986 // here prevent the user from using a PPC MMA type as trailing return type.
10987 if (Context.getTargetInfo().getTriple().isPPC64())
10988 CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
10989}
10990
10991//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
10992
10993/// Check for comparisons of floating point operands using != and ==.
10994/// Issue a warning if these are no self-comparisons, as they are not likely
10995/// to do what the programmer intended.
10996void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
10997 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
10998 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
10999
11000 // Special case: check for x == x (which is OK).
11001 // Do not emit warnings for such cases.
11002 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
11003 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
11004 if (DRL->getDecl() == DRR->getDecl())
11005 return;
11006
11007 // Special case: check for comparisons against literals that can be exactly
11008 // represented by APFloat. In such cases, do not emit a warning. This
11009 // is a heuristic: often comparison against such literals are used to
11010 // detect if a value in a variable has not changed. This clearly can
11011 // lead to false negatives.
11012 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
11013 if (FLL->isExact())
11014 return;
11015 } else
11016 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
11017 if (FLR->isExact())
11018 return;
11019
11020 // Check for comparisons with builtin types.
11021 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
11022 if (CL->getBuiltinCallee())
11023 return;
11024
11025 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
11026 if (CR->getBuiltinCallee())
11027 return;
11028
11029 // Emit the diagnostic.
11030 Diag(Loc, diag::warn_floatingpoint_eq)
11031 << LHS->getSourceRange() << RHS->getSourceRange();
11032}
11033
11034//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
11035//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
11036
11037namespace {
11038
11039/// Structure recording the 'active' range of an integer-valued
11040/// expression.
11041struct IntRange {
11042 /// The number of bits active in the int. Note that this includes exactly one
11043 /// sign bit if !NonNegative.
11044 unsigned Width;
11045
11046 /// True if the int is known not to have negative values. If so, all leading
11047 /// bits before Width are known zero, otherwise they are known to be the
11048 /// same as the MSB within Width.
11049 bool NonNegative;
11050
11051 IntRange(unsigned Width, bool NonNegative)
11052 : Width(Width), NonNegative(NonNegative) {}
11053
11054 /// Number of bits excluding the sign bit.
11055 unsigned valueBits() const {
11056 return NonNegative ? Width : Width - 1;
11057 }
11058
11059 /// Returns the range of the bool type.
11060 static IntRange forBoolType() {
11061 return IntRange(1, true);
11062 }
11063
11064 /// Returns the range of an opaque value of the given integral type.
11065 static IntRange forValueOfType(ASTContext &C, QualType T) {
11066 return forValueOfCanonicalType(C,
11067 T->getCanonicalTypeInternal().getTypePtr());
11068 }
11069
11070 /// Returns the range of an opaque value of a canonical integral type.
11071 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
11072 assert(T->isCanonicalUnqualified())(static_cast <bool> (T->isCanonicalUnqualified()) ? void
(0) : __assert_fail ("T->isCanonicalUnqualified()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11072, __extension__ __PRETTY_FUNCTION__))
;
11073
11074 if (const VectorType *VT = dyn_cast<VectorType>(T))
11075 T = VT->getElementType().getTypePtr();
11076 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11077 T = CT->getElementType().getTypePtr();
11078 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11079 T = AT->getValueType().getTypePtr();
11080
11081 if (!C.getLangOpts().CPlusPlus) {
11082 // For enum types in C code, use the underlying datatype.
11083 if (const EnumType *ET = dyn_cast<EnumType>(T))
11084 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
11085 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
11086 // For enum types in C++, use the known bit width of the enumerators.
11087 EnumDecl *Enum = ET->getDecl();
11088 // In C++11, enums can have a fixed underlying type. Use this type to
11089 // compute the range.
11090 if (Enum->isFixed()) {
11091 return IntRange(C.getIntWidth(QualType(T, 0)),
11092 !ET->isSignedIntegerOrEnumerationType());
11093 }
11094
11095 unsigned NumPositive = Enum->getNumPositiveBits();
11096 unsigned NumNegative = Enum->getNumNegativeBits();
11097
11098 if (NumNegative == 0)
11099 return IntRange(NumPositive, true/*NonNegative*/);
11100 else
11101 return IntRange(std::max(NumPositive + 1, NumNegative),
11102 false/*NonNegative*/);
11103 }
11104
11105 if (const auto *EIT = dyn_cast<ExtIntType>(T))
11106 return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11107
11108 const BuiltinType *BT = cast<BuiltinType>(T);
11109 assert(BT->isInteger())(static_cast <bool> (BT->isInteger()) ? void (0) : __assert_fail
("BT->isInteger()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11109, __extension__ __PRETTY_FUNCTION__))
;
11110
11111 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11112 }
11113
11114 /// Returns the "target" range of a canonical integral type, i.e.
11115 /// the range of values expressible in the type.
11116 ///
11117 /// This matches forValueOfCanonicalType except that enums have the
11118 /// full range of their type, not the range of their enumerators.
11119 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
11120 assert(T->isCanonicalUnqualified())(static_cast <bool> (T->isCanonicalUnqualified()) ? void
(0) : __assert_fail ("T->isCanonicalUnqualified()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11120, __extension__ __PRETTY_FUNCTION__))
;
11121
11122 if (const VectorType *VT = dyn_cast<VectorType>(T))
11123 T = VT->getElementType().getTypePtr();
11124 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11125 T = CT->getElementType().getTypePtr();
11126 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11127 T = AT->getValueType().getTypePtr();
11128 if (const EnumType *ET = dyn_cast<EnumType>(T))
11129 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
11130
11131 if (const auto *EIT = dyn_cast<ExtIntType>(T))
11132 return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11133
11134 const BuiltinType *BT = cast<BuiltinType>(T);
11135 assert(BT->isInteger())(static_cast <bool> (BT->isInteger()) ? void (0) : __assert_fail
("BT->isInteger()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11135, __extension__ __PRETTY_FUNCTION__))
;
11136
11137 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11138 }
11139
11140 /// Returns the supremum of two ranges: i.e. their conservative merge.
11141 static IntRange join(IntRange L, IntRange R) {
11142 bool Unsigned = L.NonNegative && R.NonNegative;
11143 return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
11144 L.NonNegative && R.NonNegative);
11145 }
11146
11147 /// Return the range of a bitwise-AND of the two ranges.
11148 static IntRange bit_and(IntRange L, IntRange R) {
11149 unsigned Bits = std::max(L.Width, R.Width);
11150 bool NonNegative = false;
11151 if (L.NonNegative) {
11152 Bits = std::min(Bits, L.Width);
11153 NonNegative = true;
11154 }
11155 if (R.NonNegative) {
11156 Bits = std::min(Bits, R.Width);
11157 NonNegative = true;
11158 }
11159 return IntRange(Bits, NonNegative);
11160 }
11161
11162 /// Return the range of a sum of the two ranges.
11163 static IntRange sum(IntRange L, IntRange R) {
11164 bool Unsigned = L.NonNegative && R.NonNegative;
11165 return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
11166 Unsigned);
11167 }
11168
11169 /// Return the range of a difference of the two ranges.
11170 static IntRange difference(IntRange L, IntRange R) {
11171 // We need a 1-bit-wider range if:
11172 // 1) LHS can be negative: least value can be reduced.
11173 // 2) RHS can be negative: greatest value can be increased.
11174 bool CanWiden = !L.NonNegative || !R.NonNegative;
11175 bool Unsigned = L.NonNegative && R.Width == 0;
11176 return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
11177 !Unsigned,
11178 Unsigned);
11179 }
11180
11181 /// Return the range of a product of the two ranges.
11182 static IntRange product(IntRange L, IntRange R) {
11183 // If both LHS and RHS can be negative, we can form
11184 // -2^L * -2^R = 2^(L + R)
11185 // which requires L + R + 1 value bits to represent.
11186 bool CanWiden = !L.NonNegative && !R.NonNegative;
11187 bool Unsigned = L.NonNegative && R.NonNegative;
11188 return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
11189 Unsigned);
11190 }
11191
11192 /// Return the range of a remainder operation between the two ranges.
11193 static IntRange rem(IntRange L, IntRange R) {
11194 // The result of a remainder can't be larger than the result of
11195 // either side. The sign of the result is the sign of the LHS.
11196 bool Unsigned = L.NonNegative;
11197 return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
11198 Unsigned);
11199 }
11200};
11201
11202} // namespace
11203
11204static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
11205 unsigned MaxWidth) {
11206 if (value.isSigned() && value.isNegative())
11207 return IntRange(value.getMinSignedBits(), false);
11208
11209 if (value.getBitWidth() > MaxWidth)
11210 value = value.trunc(MaxWidth);
11211
11212 // isNonNegative() just checks the sign bit without considering
11213 // signedness.
11214 return IntRange(value.getActiveBits(), true);
11215}
11216
11217static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
11218 unsigned MaxWidth) {
11219 if (result.isInt())
11220 return GetValueRange(C, result.getInt(), MaxWidth);
11221
11222 if (result.isVector()) {
11223 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
11224 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
11225 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
11226 R = IntRange::join(R, El);
11227 }
11228 return R;
11229 }
11230
11231 if (result.isComplexInt()) {
11232 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
11233 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
11234 return IntRange::join(R, I);
11235 }
11236
11237 // This can happen with lossless casts to intptr_t of "based" lvalues.
11238 // Assume it might use arbitrary bits.
11239 // FIXME: The only reason we need to pass the type in here is to get
11240 // the sign right on this one case. It would be nice if APValue
11241 // preserved this.
11242 assert(result.isLValue() || result.isAddrLabelDiff())(static_cast <bool> (result.isLValue() || result.isAddrLabelDiff
()) ? void (0) : __assert_fail ("result.isLValue() || result.isAddrLabelDiff()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11242, __extension__ __PRETTY_FUNCTION__))
;
11243 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
11244}
11245
11246static QualType GetExprType(const Expr *E) {
11247 QualType Ty = E->getType();
11248 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
11249 Ty = AtomicRHS->getValueType();
11250 return Ty;
11251}
11252
11253/// Pseudo-evaluate the given integer expression, estimating the
11254/// range of values it might take.
11255///
11256/// \param MaxWidth The width to which the value will be truncated.
11257/// \param Approximate If \c true, return a likely range for the result: in
11258/// particular, assume that aritmetic on narrower types doesn't leave
11259/// those types. If \c false, return a range including all possible
11260/// result values.
11261static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
11262 bool InConstantContext, bool Approximate) {
11263 E = E->IgnoreParens();
11264
11265 // Try a full evaluation first.
11266 Expr::EvalResult result;
11267 if (E->EvaluateAsRValue(result, C, InConstantContext))
11268 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
11269
11270 // I think we only want to look through implicit casts here; if the
11271 // user has an explicit widening cast, we should treat the value as
11272 // being of the new, wider type.
11273 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
11274 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
11275 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
11276 Approximate);
11277
11278 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
11279
11280 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
11281 CE->getCastKind() == CK_BooleanToSignedIntegral;
11282
11283 // Assume that non-integer casts can span the full range of the type.
11284 if (!isIntegerCast)
11285 return OutputTypeRange;
11286
11287 IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
11288 std::min(MaxWidth, OutputTypeRange.Width),
11289 InConstantContext, Approximate);
11290
11291 // Bail out if the subexpr's range is as wide as the cast type.
11292 if (SubRange.Width >= OutputTypeRange.Width)
11293 return OutputTypeRange;
11294
11295 // Otherwise, we take the smaller width, and we're non-negative if
11296 // either the output type or the subexpr is.
11297 return IntRange(SubRange.Width,
11298 SubRange.NonNegative || OutputTypeRange.NonNegative);
11299 }
11300
11301 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11302 // If we can fold the condition, just take that operand.
11303 bool CondResult;
11304 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
11305 return GetExprRange(C,
11306 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
11307 MaxWidth, InConstantContext, Approximate);
11308
11309 // Otherwise, conservatively merge.
11310 // GetExprRange requires an integer expression, but a throw expression
11311 // results in a void type.
11312 Expr *E = CO->getTrueExpr();
11313 IntRange L = E->getType()->isVoidType()
11314 ? IntRange{0, true}
11315 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11316 E = CO->getFalseExpr();
11317 IntRange R = E->getType()->isVoidType()
11318 ? IntRange{0, true}
11319 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11320 return IntRange::join(L, R);
11321 }
11322
11323 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11324 IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
11325
11326 switch (BO->getOpcode()) {
11327 case BO_Cmp:
11328 llvm_unreachable("builtin <=> should have class type")::llvm::llvm_unreachable_internal("builtin <=> should have class type"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11328)
;
11329
11330 // Boolean-valued operations are single-bit and positive.
11331 case BO_LAnd:
11332 case BO_LOr:
11333 case BO_LT:
11334 case BO_GT:
11335 case BO_LE:
11336 case BO_GE:
11337 case BO_EQ:
11338 case BO_NE:
11339 return IntRange::forBoolType();
11340
11341 // The type of the assignments is the type of the LHS, so the RHS
11342 // is not necessarily the same type.
11343 case BO_MulAssign:
11344 case BO_DivAssign:
11345 case BO_RemAssign:
11346 case BO_AddAssign:
11347 case BO_SubAssign:
11348 case BO_XorAssign:
11349 case BO_OrAssign:
11350 // TODO: bitfields?
11351 return IntRange::forValueOfType(C, GetExprType(E));
11352
11353 // Simple assignments just pass through the RHS, which will have
11354 // been coerced to the LHS type.
11355 case BO_Assign:
11356 // TODO: bitfields?
11357 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11358 Approximate);
11359
11360 // Operations with opaque sources are black-listed.
11361 case BO_PtrMemD:
11362 case BO_PtrMemI:
11363 return IntRange::forValueOfType(C, GetExprType(E));
11364
11365 // Bitwise-and uses the *infinum* of the two source ranges.
11366 case BO_And:
11367 case BO_AndAssign:
11368 Combine = IntRange::bit_and;
11369 break;
11370
11371 // Left shift gets black-listed based on a judgement call.
11372 case BO_Shl:
11373 // ...except that we want to treat '1 << (blah)' as logically
11374 // positive. It's an important idiom.
11375 if (IntegerLiteral *I
11376 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
11377 if (I->getValue() == 1) {
11378 IntRange R = IntRange::forValueOfType(C, GetExprType(E));
11379 return IntRange(R.Width, /*NonNegative*/ true);
11380 }
11381 }
11382 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11383
11384 case BO_ShlAssign:
11385 return IntRange::forValueOfType(C, GetExprType(E));
11386
11387 // Right shift by a constant can narrow its left argument.
11388 case BO_Shr:
11389 case BO_ShrAssign: {
11390 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
11391 Approximate);
11392
11393 // If the shift amount is a positive constant, drop the width by
11394 // that much.
11395 if (Optional<llvm::APSInt> shift =
11396 BO->getRHS()->getIntegerConstantExpr(C)) {
11397 if (shift->isNonNegative()) {
11398 unsigned zext = shift->getZExtValue();
11399 if (zext >= L.Width)
11400 L.Width = (L.NonNegative ? 0 : 1);
11401 else
11402 L.Width -= zext;
11403 }
11404 }
11405
11406 return L;
11407 }
11408
11409 // Comma acts as its right operand.
11410 case BO_Comma:
11411 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11412 Approximate);
11413
11414 case BO_Add:
11415 if (!Approximate)
11416 Combine = IntRange::sum;
11417 break;
11418
11419 case BO_Sub:
11420 if (BO->getLHS()->getType()->isPointerType())
11421 return IntRange::forValueOfType(C, GetExprType(E));
11422 if (!Approximate)
11423 Combine = IntRange::difference;
11424 break;
11425
11426 case BO_Mul:
11427 if (!Approximate)
11428 Combine = IntRange::product;
11429 break;
11430
11431 // The width of a division result is mostly determined by the size
11432 // of the LHS.
11433 case BO_Div: {
11434 // Don't 'pre-truncate' the operands.
11435 unsigned opWidth = C.getIntWidth(GetExprType(E));
11436 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
11437 Approximate);
11438
11439 // If the divisor is constant, use that.
11440 if (Optional<llvm::APSInt> divisor =
11441 BO->getRHS()->getIntegerConstantExpr(C)) {
11442 unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
11443 if (log2 >= L.Width)
11444 L.Width = (L.NonNegative ? 0 : 1);
11445 else
11446 L.Width = std::min(L.Width - log2, MaxWidth);
11447 return L;
11448 }
11449
11450 // Otherwise, just use the LHS's width.
11451 // FIXME: This is wrong if the LHS could be its minimal value and the RHS
11452 // could be -1.
11453 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
11454 Approximate);
11455 return IntRange(L.Width, L.NonNegative && R.NonNegative);
11456 }
11457
11458 case BO_Rem:
11459 Combine = IntRange::rem;
11460 break;
11461
11462 // The default behavior is okay for these.
11463 case BO_Xor:
11464 case BO_Or:
11465 break;
11466 }
11467
11468 // Combine the two ranges, but limit the result to the type in which we
11469 // performed the computation.
11470 QualType T = GetExprType(E);
11471 unsigned opWidth = C.getIntWidth(T);
11472 IntRange L =
11473 GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
11474 IntRange R =
11475 GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
11476 IntRange C = Combine(L, R);
11477 C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
11478 C.Width = std::min(C.Width, MaxWidth);
11479 return C;
11480 }
11481
11482 if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
11483 switch (UO->getOpcode()) {
11484 // Boolean-valued operations are white-listed.
11485 case UO_LNot:
11486 return IntRange::forBoolType();
11487
11488 // Operations with opaque sources are black-listed.
11489 case UO_Deref:
11490 case UO_AddrOf: // should be impossible
11491 return IntRange::forValueOfType(C, GetExprType(E));
11492
11493 default:
11494 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
11495 Approximate);
11496 }
11497 }
11498
11499 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
11500 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
11501 Approximate);
11502
11503 if (const auto *BitField = E->getSourceBitField())
11504 return IntRange(BitField->getBitWidthValue(C),
11505 BitField->getType()->isUnsignedIntegerOrEnumerationType());
11506
11507 return IntRange::forValueOfType(C, GetExprType(E));
11508}
11509
11510static IntRange GetExprRange(ASTContext &C, const Expr *E,
11511 bool InConstantContext, bool Approximate) {
11512 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
11513 Approximate);
11514}
11515
11516/// Checks whether the given value, which currently has the given
11517/// source semantics, has the same value when coerced through the
11518/// target semantics.
11519static bool IsSameFloatAfterCast(const llvm::APFloat &value,
11520 const llvm::fltSemantics &Src,
11521 const llvm::fltSemantics &Tgt) {
11522 llvm::APFloat truncated = value;
11523
11524 bool ignored;
11525 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
11526 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
11527
11528 return truncated.bitwiseIsEqual(value);
11529}
11530
11531/// Checks whether the given value, which currently has the given
11532/// source semantics, has the same value when coerced through the
11533/// target semantics.
11534///
11535/// The value might be a vector of floats (or a complex number).
11536static bool IsSameFloatAfterCast(const APValue &value,
11537 const llvm::fltSemantics &Src,
11538 const llvm::fltSemantics &Tgt) {
11539 if (value.isFloat())
11540 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
11541
11542 if (value.isVector()) {
11543 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
11544 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
11545 return false;
11546 return true;
11547 }
11548
11549 assert(value.isComplexFloat())(static_cast <bool> (value.isComplexFloat()) ? void (0)
: __assert_fail ("value.isComplexFloat()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11549, __extension__ __PRETTY_FUNCTION__))
;
11550 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
11551 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
11552}
11553
11554static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
11555 bool IsListInit = false);
11556
11557static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
11558 // Suppress cases where we are comparing against an enum constant.
11559 if (const DeclRefExpr *DR =
11560 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
11561 if (isa<EnumConstantDecl>(DR->getDecl()))
11562 return true;
11563
11564 // Suppress cases where the value is expanded from a macro, unless that macro
11565 // is how a language represents a boolean literal. This is the case in both C
11566 // and Objective-C.
11567 SourceLocation BeginLoc = E->getBeginLoc();
11568 if (BeginLoc.isMacroID()) {
11569 StringRef MacroName = Lexer::getImmediateMacroName(
11570 BeginLoc, S.getSourceManager(), S.getLangOpts());
11571 return MacroName != "YES" && MacroName != "NO" &&
11572 MacroName != "true" && MacroName != "false";
11573 }
11574
11575 return false;
11576}
11577
11578static bool isKnownToHaveUnsignedValue(Expr *E) {
11579 return E->getType()->isIntegerType() &&
11580 (!E->getType()->isSignedIntegerType() ||
11581 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
11582}
11583
11584namespace {
11585/// The promoted range of values of a type. In general this has the
11586/// following structure:
11587///
11588/// |-----------| . . . |-----------|
11589/// ^ ^ ^ ^
11590/// Min HoleMin HoleMax Max
11591///
11592/// ... where there is only a hole if a signed type is promoted to unsigned
11593/// (in which case Min and Max are the smallest and largest representable
11594/// values).
11595struct PromotedRange {
11596 // Min, or HoleMax if there is a hole.
11597 llvm::APSInt PromotedMin;
11598 // Max, or HoleMin if there is a hole.
11599 llvm::APSInt PromotedMax;
11600
11601 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
11602 if (R.Width == 0)
11603 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
11604 else if (R.Width >= BitWidth && !Unsigned) {
11605 // Promotion made the type *narrower*. This happens when promoting
11606 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
11607 // Treat all values of 'signed int' as being in range for now.
11608 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
11609 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
11610 } else {
11611 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
11612 .extOrTrunc(BitWidth);
11613 PromotedMin.setIsUnsigned(Unsigned);
11614
11615 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
11616 .extOrTrunc(BitWidth);
11617 PromotedMax.setIsUnsigned(Unsigned);
11618 }
11619 }
11620
11621 // Determine whether this range is contiguous (has no hole).
11622 bool isContiguous() const { return PromotedMin <= PromotedMax; }
11623
11624 // Where a constant value is within the range.
11625 enum ComparisonResult {
11626 LT = 0x1,
11627 LE = 0x2,
11628 GT = 0x4,
11629 GE = 0x8,
11630 EQ = 0x10,
11631 NE = 0x20,
11632 InRangeFlag = 0x40,
11633
11634 Less = LE | LT | NE,
11635 Min = LE | InRangeFlag,
11636 InRange = InRangeFlag,
11637 Max = GE | InRangeFlag,
11638 Greater = GE | GT | NE,
11639
11640 OnlyValue = LE | GE | EQ | InRangeFlag,
11641 InHole = NE
11642 };
11643
11644 ComparisonResult compare(const llvm::APSInt &Value) const {
11645 assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&(static_cast <bool> (Value.getBitWidth() == PromotedMin
.getBitWidth() && Value.isUnsigned() == PromotedMin.isUnsigned
()) ? void (0) : __assert_fail ("Value.getBitWidth() == PromotedMin.getBitWidth() && Value.isUnsigned() == PromotedMin.isUnsigned()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11646, __extension__ __PRETTY_FUNCTION__))
11646 Value.isUnsigned() == PromotedMin.isUnsigned())(static_cast <bool> (Value.getBitWidth() == PromotedMin
.getBitWidth() && Value.isUnsigned() == PromotedMin.isUnsigned
()) ? void (0) : __assert_fail ("Value.getBitWidth() == PromotedMin.getBitWidth() && Value.isUnsigned() == PromotedMin.isUnsigned()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11646, __extension__ __PRETTY_FUNCTION__))
;
11647 if (!isContiguous()) {
11648 assert(Value.isUnsigned() && "discontiguous range for signed compare")(static_cast <bool> (Value.isUnsigned() && "discontiguous range for signed compare"
) ? void (0) : __assert_fail ("Value.isUnsigned() && \"discontiguous range for signed compare\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11648, __extension__ __PRETTY_FUNCTION__))
;
11649 if (Value.isMinValue()) return Min;
11650 if (Value.isMaxValue()) return Max;
11651 if (Value >= PromotedMin) return InRange;
11652 if (Value <= PromotedMax) return InRange;
11653 return InHole;
11654 }
11655
11656 switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
11657 case -1: return Less;
11658 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
11659 case 1:
11660 switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
11661 case -1: return InRange;
11662 case 0: return Max;
11663 case 1: return Greater;
11664 }
11665 }
11666
11667 llvm_unreachable("impossible compare result")::llvm::llvm_unreachable_internal("impossible compare result"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11667)
;
11668 }
11669
11670 static llvm::Optional<StringRef>
11671 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
11672 if (Op == BO_Cmp) {
11673 ComparisonResult LTFlag = LT, GTFlag = GT;
11674 if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
11675
11676 if (R & EQ) return StringRef("'std::strong_ordering::equal'");
11677 if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
11678 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
11679 return llvm::None;
11680 }
11681
11682 ComparisonResult TrueFlag, FalseFlag;
11683 if (Op == BO_EQ) {
11684 TrueFlag = EQ;
11685 FalseFlag = NE;
11686 } else if (Op == BO_NE) {
11687 TrueFlag = NE;
11688 FalseFlag = EQ;
11689 } else {
11690 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
11691 TrueFlag = LT;
11692 FalseFlag = GE;
11693 } else {
11694 TrueFlag = GT;
11695 FalseFlag = LE;
11696 }
11697 if (Op == BO_GE || Op == BO_LE)
11698 std::swap(TrueFlag, FalseFlag);
11699 }
11700 if (R & TrueFlag)
11701 return StringRef("true");
11702 if (R & FalseFlag)
11703 return StringRef("false");
11704 return llvm::None;
11705 }
11706};
11707}
11708
11709static bool HasEnumType(Expr *E) {
11710 // Strip off implicit integral promotions.
11711 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11712 if (ICE->getCastKind() != CK_IntegralCast &&
11713 ICE->getCastKind() != CK_NoOp)
11714 break;
11715 E = ICE->getSubExpr();
11716 }
11717
11718 return E->getType()->isEnumeralType();
11719}
11720
11721static int classifyConstantValue(Expr *Constant) {
11722 // The values of this enumeration are used in the diagnostics
11723 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
11724 enum ConstantValueKind {
11725 Miscellaneous = 0,
11726 LiteralTrue,
11727 LiteralFalse
11728 };
11729 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
11730 return BL->getValue() ? ConstantValueKind::LiteralTrue
11731 : ConstantValueKind::LiteralFalse;
11732 return ConstantValueKind::Miscellaneous;
11733}
11734
11735static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
11736 Expr *Constant, Expr *Other,
11737 const llvm::APSInt &Value,
11738 bool RhsConstant) {
11739 if (S.inTemplateInstantiation())
11740 return false;
11741
11742 Expr *OriginalOther = Other;
11743
11744 Constant = Constant->IgnoreParenImpCasts();
11745 Other = Other->IgnoreParenImpCasts();
11746
11747 // Suppress warnings on tautological comparisons between values of the same
11748 // enumeration type. There are only two ways we could warn on this:
11749 // - If the constant is outside the range of representable values of
11750 // the enumeration. In such a case, we should warn about the cast
11751 // to enumeration type, not about the comparison.
11752 // - If the constant is the maximum / minimum in-range value. For an
11753 // enumeratin type, such comparisons can be meaningful and useful.
11754 if (Constant->getType()->isEnumeralType() &&
11755 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
11756 return false;
11757
11758 IntRange OtherValueRange = GetExprRange(
11759 S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
11760
11761 QualType OtherT = Other->getType();
11762 if (const auto *AT = OtherT->getAs<AtomicType>())
11763 OtherT = AT->getValueType();
11764 IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
11765
11766 // Special case for ObjC BOOL on targets where its a typedef for a signed char
11767 // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
11768 bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
11769 S.NSAPIObj->isObjCBOOLType(OtherT) &&
11770 OtherT->isSpecificBuiltinType(BuiltinType::SChar);
11771
11772 // Whether we're treating Other as being a bool because of the form of
11773 // expression despite it having another type (typically 'int' in C).
11774 bool OtherIsBooleanDespiteType =
11775 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
11776 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
11777 OtherTypeRange = OtherValueRange = IntRange::forBoolType();
11778
11779 // Check if all values in the range of possible values of this expression
11780 // lead to the same comparison outcome.
11781 PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
11782 Value.isUnsigned());
11783 auto Cmp = OtherPromotedValueRange.compare(Value);
11784 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
11785 if (!Result)
11786 return false;
11787
11788 // Also consider the range determined by the type alone. This allows us to
11789 // classify the warning under the proper diagnostic group.
11790 bool TautologicalTypeCompare = false;
11791 {
11792 PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
11793 Value.isUnsigned());
11794 auto TypeCmp = OtherPromotedTypeRange.compare(Value);
11795 if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
11796 RhsConstant)) {
11797 TautologicalTypeCompare = true;
11798 Cmp = TypeCmp;
11799 Result = TypeResult;
11800 }
11801 }
11802
11803 // Don't warn if the non-constant operand actually always evaluates to the
11804 // same value.
11805 if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
11806 return false;
11807
11808 // Suppress the diagnostic for an in-range comparison if the constant comes
11809 // from a macro or enumerator. We don't want to diagnose
11810 //
11811 // some_long_value <= INT_MAX
11812 //
11813 // when sizeof(int) == sizeof(long).
11814 bool InRange = Cmp & PromotedRange::InRangeFlag;
11815 if (InRange && IsEnumConstOrFromMacro(S, Constant))
11816 return false;
11817
11818 // A comparison of an unsigned bit-field against 0 is really a type problem,
11819 // even though at the type level the bit-field might promote to 'signed int'.
11820 if (Other->refersToBitField() && InRange && Value == 0 &&
11821 Other->getType()->isUnsignedIntegerOrEnumerationType())
11822 TautologicalTypeCompare = true;
11823
11824 // If this is a comparison to an enum constant, include that
11825 // constant in the diagnostic.
11826 const EnumConstantDecl *ED = nullptr;
11827 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
11828 ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
11829
11830 // Should be enough for uint128 (39 decimal digits)
11831 SmallString<64> PrettySourceValue;
11832 llvm::raw_svector_ostream OS(PrettySourceValue);
11833 if (ED) {
11834 OS << '\'' << *ED << "' (" << Value << ")";
11835 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
11836 Constant->IgnoreParenImpCasts())) {
11837 OS << (BL->getValue() ? "YES" : "NO");
11838 } else {
11839 OS << Value;
11840 }
11841
11842 if (!TautologicalTypeCompare) {
11843 S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
11844 << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
11845 << E->getOpcodeStr() << OS.str() << *Result
11846 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11847 return true;
11848 }
11849
11850 if (IsObjCSignedCharBool) {
11851 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11852 S.PDiag(diag::warn_tautological_compare_objc_bool)
11853 << OS.str() << *Result);
11854 return true;
11855 }
11856
11857 // FIXME: We use a somewhat different formatting for the in-range cases and
11858 // cases involving boolean values for historical reasons. We should pick a
11859 // consistent way of presenting these diagnostics.
11860 if (!InRange || Other->isKnownToHaveBooleanValue()) {
11861
11862 S.DiagRuntimeBehavior(
11863 E->getOperatorLoc(), E,
11864 S.PDiag(!InRange ? diag::warn_out_of_range_compare
11865 : diag::warn_tautological_bool_compare)
11866 << OS.str() << classifyConstantValue(Constant) << OtherT
11867 << OtherIsBooleanDespiteType << *Result
11868 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
11869 } else {
11870 bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
11871 unsigned Diag =
11872 (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
11873 ? (HasEnumType(OriginalOther)
11874 ? diag::warn_unsigned_enum_always_true_comparison
11875 : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
11876 : diag::warn_unsigned_always_true_comparison)
11877 : diag::warn_tautological_constant_compare;
11878
11879 S.Diag(E->getOperatorLoc(), Diag)
11880 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
11881 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11882 }
11883
11884 return true;
11885}
11886
11887/// Analyze the operands of the given comparison. Implements the
11888/// fallback case from AnalyzeComparison.
11889static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
11890 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11891 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11892}
11893
11894/// Implements -Wsign-compare.
11895///
11896/// \param E the binary operator to check for warnings
11897static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
11898 // The type the comparison is being performed in.
11899 QualType T = E->getLHS()->getType();
11900
11901 // Only analyze comparison operators where both sides have been converted to
11902 // the same type.
11903 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
11904 return AnalyzeImpConvsInComparison(S, E);
11905
11906 // Don't analyze value-dependent comparisons directly.
11907 if (E->isValueDependent())
11908 return AnalyzeImpConvsInComparison(S, E);
11909
11910 Expr *LHS = E->getLHS();
11911 Expr *RHS = E->getRHS();
11912
11913 if (T->isIntegralType(S.Context)) {
11914 Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
11915 Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
11916
11917 // We don't care about expressions whose result is a constant.
11918 if (RHSValue && LHSValue)
11919 return AnalyzeImpConvsInComparison(S, E);
11920
11921 // We only care about expressions where just one side is literal
11922 if ((bool)RHSValue ^ (bool)LHSValue) {
11923 // Is the constant on the RHS or LHS?
11924 const bool RhsConstant = (bool)RHSValue;
11925 Expr *Const = RhsConstant ? RHS : LHS;
11926 Expr *Other = RhsConstant ? LHS : RHS;
11927 const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
11928
11929 // Check whether an integer constant comparison results in a value
11930 // of 'true' or 'false'.
11931 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
11932 return AnalyzeImpConvsInComparison(S, E);
11933 }
11934 }
11935
11936 if (!T->hasUnsignedIntegerRepresentation()) {
11937 // We don't do anything special if this isn't an unsigned integral
11938 // comparison: we're only interested in integral comparisons, and
11939 // signed comparisons only happen in cases we don't care to warn about.
11940 return AnalyzeImpConvsInComparison(S, E);
11941 }
11942
11943 LHS = LHS->IgnoreParenImpCasts();
11944 RHS = RHS->IgnoreParenImpCasts();
11945
11946 if (!S.getLangOpts().CPlusPlus) {
11947 // Avoid warning about comparison of integers with different signs when
11948 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
11949 // the type of `E`.
11950 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
11951 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11952 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
11953 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11954 }
11955
11956 // Check to see if one of the (unmodified) operands is of different
11957 // signedness.
11958 Expr *signedOperand, *unsignedOperand;
11959 if (LHS->getType()->hasSignedIntegerRepresentation()) {
11960 assert(!RHS->getType()->hasSignedIntegerRepresentation() &&(static_cast <bool> (!RHS->getType()->hasSignedIntegerRepresentation
() && "unsigned comparison between two signed integer expressions?"
) ? void (0) : __assert_fail ("!RHS->getType()->hasSignedIntegerRepresentation() && \"unsigned comparison between two signed integer expressions?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11961, __extension__ __PRETTY_FUNCTION__))
11961 "unsigned comparison between two signed integer expressions?")(static_cast <bool> (!RHS->getType()->hasSignedIntegerRepresentation
() && "unsigned comparison between two signed integer expressions?"
) ? void (0) : __assert_fail ("!RHS->getType()->hasSignedIntegerRepresentation() && \"unsigned comparison between two signed integer expressions?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11961, __extension__ __PRETTY_FUNCTION__))
;
11962 signedOperand = LHS;
11963 unsignedOperand = RHS;
11964 } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
11965 signedOperand = RHS;
11966 unsignedOperand = LHS;
11967 } else {
11968 return AnalyzeImpConvsInComparison(S, E);
11969 }
11970
11971 // Otherwise, calculate the effective range of the signed operand.
11972 IntRange signedRange = GetExprRange(
11973 S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
11974
11975 // Go ahead and analyze implicit conversions in the operands. Note
11976 // that we skip the implicit conversions on both sides.
11977 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
11978 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
11979
11980 // If the signed range is non-negative, -Wsign-compare won't fire.
11981 if (signedRange.NonNegative)
11982 return;
11983
11984 // For (in)equality comparisons, if the unsigned operand is a
11985 // constant which cannot collide with a overflowed signed operand,
11986 // then reinterpreting the signed operand as unsigned will not
11987 // change the result of the comparison.
11988 if (E->isEqualityOp()) {
11989 unsigned comparisonWidth = S.Context.getIntWidth(T);
11990 IntRange unsignedRange =
11991 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
11992 /*Approximate*/ true);
11993
11994 // We should never be unable to prove that the unsigned operand is
11995 // non-negative.
11996 assert(unsignedRange.NonNegative && "unsigned range includes negative?")(static_cast <bool> (unsignedRange.NonNegative &&
"unsigned range includes negative?") ? void (0) : __assert_fail
("unsignedRange.NonNegative && \"unsigned range includes negative?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 11996, __extension__ __PRETTY_FUNCTION__))
;
11997
11998 if (unsignedRange.Width < comparisonWidth)
11999 return;
12000 }
12001
12002 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12003 S.PDiag(diag::warn_mixed_sign_comparison)
12004 << LHS->getType() << RHS->getType()
12005 << LHS->getSourceRange() << RHS->getSourceRange());
12006}
12007
12008/// Analyzes an attempt to assign the given value to a bitfield.
12009///
12010/// Returns true if there was something fishy about the attempt.
12011static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
12012 SourceLocation InitLoc) {
12013 assert(Bitfield->isBitField())(static_cast <bool> (Bitfield->isBitField()) ? void (
0) : __assert_fail ("Bitfield->isBitField()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 12013, __extension__ __PRETTY_FUNCTION__))
;
12014 if (Bitfield->isInvalidDecl())
12015 return false;
12016
12017 // White-list bool bitfields.
12018 QualType BitfieldType = Bitfield->getType();
12019 if (BitfieldType->isBooleanType())
12020 return false;
12021
12022 if (BitfieldType->isEnumeralType()) {
12023 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
12024 // If the underlying enum type was not explicitly specified as an unsigned
12025 // type and the enum contain only positive values, MSVC++ will cause an
12026 // inconsistency by storing this as a signed type.
12027 if (S.getLangOpts().CPlusPlus11 &&
12028 !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
12029 BitfieldEnumDecl->getNumPositiveBits() > 0 &&
12030 BitfieldEnumDecl->getNumNegativeBits() == 0) {
12031 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
12032 << BitfieldEnumDecl;
12033 }
12034 }
12035
12036 if (Bitfield->getType()->isBooleanType())
12037 return false;
12038
12039 // Ignore value- or type-dependent expressions.
12040 if (Bitfield->getBitWidth()->isValueDependent() ||
12041 Bitfield->getBitWidth()->isTypeDependent() ||
12042 Init->isValueDependent() ||
12043 Init->isTypeDependent())
12044 return false;
12045
12046 Expr *OriginalInit = Init->IgnoreParenImpCasts();
12047 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
12048
12049 Expr::EvalResult Result;
12050 if (!OriginalInit->EvaluateAsInt(Result, S.Context,
12051 Expr::SE_AllowSideEffects)) {
12052 // The RHS is not constant. If the RHS has an enum type, make sure the
12053 // bitfield is wide enough to hold all the values of the enum without
12054 // truncation.
12055 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
12056 EnumDecl *ED = EnumTy->getDecl();
12057 bool SignedBitfield = BitfieldType->isSignedIntegerType();
12058
12059 // Enum types are implicitly signed on Windows, so check if there are any
12060 // negative enumerators to see if the enum was intended to be signed or
12061 // not.
12062 bool SignedEnum = ED->getNumNegativeBits() > 0;
12063
12064 // Check for surprising sign changes when assigning enum values to a
12065 // bitfield of different signedness. If the bitfield is signed and we
12066 // have exactly the right number of bits to store this unsigned enum,
12067 // suggest changing the enum to an unsigned type. This typically happens
12068 // on Windows where unfixed enums always use an underlying type of 'int'.
12069 unsigned DiagID = 0;
12070 if (SignedEnum && !SignedBitfield) {
12071 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
12072 } else if (SignedBitfield && !SignedEnum &&
12073 ED->getNumPositiveBits() == FieldWidth) {
12074 DiagID = diag::warn_signed_bitfield_enum_conversion;
12075 }
12076
12077 if (DiagID) {
12078 S.Diag(InitLoc, DiagID) << Bitfield << ED;
12079 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
12080 SourceRange TypeRange =
12081 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
12082 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
12083 << SignedEnum << TypeRange;
12084 }
12085
12086 // Compute the required bitwidth. If the enum has negative values, we need
12087 // one more bit than the normal number of positive bits to represent the
12088 // sign bit.
12089 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
12090 ED->getNumNegativeBits())
12091 : ED->getNumPositiveBits();
12092
12093 // Check the bitwidth.
12094 if (BitsNeeded > FieldWidth) {
12095 Expr *WidthExpr = Bitfield->getBitWidth();
12096 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
12097 << Bitfield << ED;
12098 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
12099 << BitsNeeded << ED << WidthExpr->getSourceRange();
12100 }
12101 }
12102
12103 return false;
12104 }
12105
12106 llvm::APSInt Value = Result.Val.getInt();
12107
12108 unsigned OriginalWidth = Value.getBitWidth();
12109
12110 if (!Value.isSigned() || Value.isNegative())
12111 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
12112 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
12113 OriginalWidth = Value.getMinSignedBits();
12114
12115 if (OriginalWidth <= FieldWidth)
12116 return false;
12117
12118 // Compute the value which the bitfield will contain.
12119 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
12120 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
12121
12122 // Check whether the stored value is equal to the original value.
12123 TruncatedValue = TruncatedValue.extend(OriginalWidth);
12124 if (llvm::APSInt::isSameValue(Value, TruncatedValue))
12125 return false;
12126
12127 // Special-case bitfields of width 1: booleans are naturally 0/1, and
12128 // therefore don't strictly fit into a signed bitfield of width 1.
12129 if (FieldWidth == 1 && Value == 1)
12130 return false;
12131
12132 std::string PrettyValue = toString(Value, 10);
12133 std::string PrettyTrunc = toString(TruncatedValue, 10);
12134
12135 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
12136 << PrettyValue << PrettyTrunc << OriginalInit->getType()
12137 << Init->getSourceRange();
12138
12139 return true;
12140}
12141
12142/// Analyze the given simple or compound assignment for warning-worthy
12143/// operations.
12144static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
12145 // Just recurse on the LHS.
12146 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12147
12148 // We want to recurse on the RHS as normal unless we're assigning to
12149 // a bitfield.
12150 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
12151 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
12152 E->getOperatorLoc())) {
12153 // Recurse, ignoring any implicit conversions on the RHS.
12154 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
12155 E->getOperatorLoc());
12156 }
12157 }
12158
12159 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12160
12161 // Diagnose implicitly sequentially-consistent atomic assignment.
12162 if (E->getLHS()->getType()->isAtomicType())
12163 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12164}
12165
12166/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
12167static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
12168 SourceLocation CContext, unsigned diag,
12169 bool pruneControlFlow = false) {
12170 if (pruneControlFlow) {
12171 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12172 S.PDiag(diag)
12173 << SourceType << T << E->getSourceRange()
12174 << SourceRange(CContext));
12175 return;
12176 }
12177 S.Diag(E->getExprLoc(), diag)
12178 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
12179}
12180
12181/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
12182static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
12183 SourceLocation CContext,
12184 unsigned diag, bool pruneControlFlow = false) {
12185 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
12186}
12187
12188static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
12189 return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
12190 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
12191}
12192
12193static void adornObjCBoolConversionDiagWithTernaryFixit(
12194 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
12195 Expr *Ignored = SourceExpr->IgnoreImplicit();
12196 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
12197 Ignored = OVE->getSourceExpr();
12198 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
12199 isa<BinaryOperator>(Ignored) ||
12200 isa<CXXOperatorCallExpr>(Ignored);
12201 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
12202 if (NeedsParens)
12203 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
12204 << FixItHint::CreateInsertion(EndLoc, ")");
12205 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
12206}
12207
12208/// Diagnose an implicit cast from a floating point value to an integer value.
12209static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
12210 SourceLocation CContext) {
12211 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
12212 const bool PruneWarnings = S.inTemplateInstantiation();
12213
12214 Expr *InnerE = E->IgnoreParenImpCasts();
12215 // We also want to warn on, e.g., "int i = -1.234"
12216 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
12217 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
12218 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
12219
12220 const bool IsLiteral =
12221 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
12222
12223 llvm::APFloat Value(0.0);
12224 bool IsConstant =
12225 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
12226 if (!IsConstant) {
12227 if (isObjCSignedCharBool(S, T)) {
12228 return adornObjCBoolConversionDiagWithTernaryFixit(
12229 S, E,
12230 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
12231 << E->getType());
12232 }
12233
12234 return DiagnoseImpCast(S, E, T, CContext,
12235 diag::warn_impcast_float_integer, PruneWarnings);
12236 }
12237
12238 bool isExact = false;
12239
12240 llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
12241 T->hasUnsignedIntegerRepresentation());
12242 llvm::APFloat::opStatus Result = Value.convertToInteger(
12243 IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
12244
12245 // FIXME: Force the precision of the source value down so we don't print
12246 // digits which are usually useless (we don't really care here if we
12247 // truncate a digit by accident in edge cases). Ideally, APFloat::toString
12248 // would automatically print the shortest representation, but it's a bit
12249 // tricky to implement.
12250 SmallString<16> PrettySourceValue;
12251 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
12252 precision = (precision * 59 + 195) / 196;
12253 Value.toString(PrettySourceValue, precision);
12254
12255 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
12256 return adornObjCBoolConversionDiagWithTernaryFixit(
12257 S, E,
12258 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
12259 << PrettySourceValue);
12260 }
12261
12262 if (Result == llvm::APFloat::opOK && isExact) {
12263 if (IsLiteral) return;
12264 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
12265 PruneWarnings);
12266 }
12267
12268 // Conversion of a floating-point value to a non-bool integer where the
12269 // integral part cannot be represented by the integer type is undefined.
12270 if (!IsBool && Result == llvm::APFloat::opInvalidOp)
12271 return DiagnoseImpCast(
12272 S, E, T, CContext,
12273 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
12274 : diag::warn_impcast_float_to_integer_out_of_range,
12275 PruneWarnings);
12276
12277 unsigned DiagID = 0;
12278 if (IsLiteral) {
12279 // Warn on floating point literal to integer.
12280 DiagID = diag::warn_impcast_literal_float_to_integer;
12281 } else if (IntegerValue == 0) {
12282 if (Value.isZero()) { // Skip -0.0 to 0 conversion.
12283 return DiagnoseImpCast(S, E, T, CContext,
12284 diag::warn_impcast_float_integer, PruneWarnings);
12285 }
12286 // Warn on non-zero to zero conversion.
12287 DiagID = diag::warn_impcast_float_to_integer_zero;
12288 } else {
12289 if (IntegerValue.isUnsigned()) {
12290 if (!IntegerValue.isMaxValue()) {
12291 return DiagnoseImpCast(S, E, T, CContext,
12292 diag::warn_impcast_float_integer, PruneWarnings);
12293 }
12294 } else { // IntegerValue.isSigned()
12295 if (!IntegerValue.isMaxSignedValue() &&
12296 !IntegerValue.isMinSignedValue()) {
12297 return DiagnoseImpCast(S, E, T, CContext,
12298 diag::warn_impcast_float_integer, PruneWarnings);
12299 }
12300 }
12301 // Warn on evaluatable floating point expression to integer conversion.
12302 DiagID = diag::warn_impcast_float_to_integer;
12303 }
12304
12305 SmallString<16> PrettyTargetValue;
12306 if (IsBool)
12307 PrettyTargetValue = Value.isZero() ? "false" : "true";
12308 else
12309 IntegerValue.toString(PrettyTargetValue);
12310
12311 if (PruneWarnings) {
12312 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12313 S.PDiag(DiagID)
12314 << E->getType() << T.getUnqualifiedType()
12315 << PrettySourceValue << PrettyTargetValue
12316 << E->getSourceRange() << SourceRange(CContext));
12317 } else {
12318 S.Diag(E->getExprLoc(), DiagID)
12319 << E->getType() << T.getUnqualifiedType() << PrettySourceValue
12320 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
12321 }
12322}
12323
12324/// Analyze the given compound assignment for the possible losing of
12325/// floating-point precision.
12326static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
12327 assert(isa<CompoundAssignOperator>(E) &&(static_cast <bool> (isa<CompoundAssignOperator>(
E) && "Must be compound assignment operation") ? void
(0) : __assert_fail ("isa<CompoundAssignOperator>(E) && \"Must be compound assignment operation\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 12328, __extension__ __PRETTY_FUNCTION__))
12328 "Must be compound assignment operation")(static_cast <bool> (isa<CompoundAssignOperator>(
E) && "Must be compound assignment operation") ? void
(0) : __assert_fail ("isa<CompoundAssignOperator>(E) && \"Must be compound assignment operation\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 12328, __extension__ __PRETTY_FUNCTION__))
;
12329 // Recurse on the LHS and RHS in here
12330 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12331 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12332
12333 if (E->getLHS()->getType()->isAtomicType())
12334 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
12335
12336 // Now check the outermost expression
12337 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
12338 const auto *RBT = cast<CompoundAssignOperator>(E)
12339 ->getComputationResultType()
12340 ->getAs<BuiltinType>();
12341
12342 // The below checks assume source is floating point.
12343 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
12344
12345 // If source is floating point but target is an integer.
12346 if (ResultBT->isInteger())
12347 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
12348 E->getExprLoc(), diag::warn_impcast_float_integer);
12349
12350 if (!ResultBT->isFloatingPoint())
12351 return;
12352
12353 // If both source and target are floating points, warn about losing precision.
12354 int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12355 QualType(ResultBT, 0), QualType(RBT, 0));
12356 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
12357 // warn about dropping FP rank.
12358 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
12359 diag::warn_impcast_float_result_precision);
12360}
12361
12362static std::string PrettyPrintInRange(const llvm::APSInt &Value,
12363 IntRange Range) {
12364 if (!Range.Width) return "0";
12365
12366 llvm::APSInt ValueInRange = Value;
12367 ValueInRange.setIsSigned(!Range.NonNegative);
12368 ValueInRange = ValueInRange.trunc(Range.Width);
12369 return toString(ValueInRange, 10);
12370}
12371
12372static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
12373 if (!isa<ImplicitCastExpr>(Ex))
12374 return false;
12375
12376 Expr *InnerE = Ex->IgnoreParenImpCasts();
12377 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
12378 const Type *Source =
12379 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
12380 if (Target->isDependentType())
12381 return false;
12382
12383 const BuiltinType *FloatCandidateBT =
12384 dyn_cast<BuiltinType>(ToBool ? Source : Target);
12385 const Type *BoolCandidateType = ToBool ? Target : Source;
12386
12387 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
12388 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
12389}
12390
12391static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
12392 SourceLocation CC) {
12393 unsigned NumArgs = TheCall->getNumArgs();
12394 for (unsigned i = 0; i < NumArgs; ++i) {
12395 Expr *CurrA = TheCall->getArg(i);
12396 if (!IsImplicitBoolFloatConversion(S, CurrA, true))
12397 continue;
12398
12399 bool IsSwapped = ((i > 0) &&
12400 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
12401 IsSwapped |= ((i < (NumArgs - 1)) &&
12402 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
12403 if (IsSwapped) {
12404 // Warn on this floating-point to bool conversion.
12405 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
12406 CurrA->getType(), CC,
12407 diag::warn_impcast_floating_point_to_bool);
12408 }
12409 }
12410}
12411
12412static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
12413 SourceLocation CC) {
12414 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
12415 E->getExprLoc()))
12416 return;
12417
12418 // Don't warn on functions which have return type nullptr_t.
12419 if (isa<CallExpr>(E))
12420 return;
12421
12422 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
12423 const Expr::NullPointerConstantKind NullKind =
12424 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
12425 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
12426 return;
12427
12428 // Return if target type is a safe conversion.
12429 if (T->isAnyPointerType() || T->isBlockPointerType() ||
12430 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
12431 return;
12432
12433 SourceLocation Loc = E->getSourceRange().getBegin();
12434
12435 // Venture through the macro stacks to get to the source of macro arguments.
12436 // The new location is a better location than the complete location that was
12437 // passed in.
12438 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
12439 CC = S.SourceMgr.getTopMacroCallerLoc(CC);
12440
12441 // __null is usually wrapped in a macro. Go up a macro if that is the case.
12442 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
12443 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
12444 Loc, S.SourceMgr, S.getLangOpts());
12445 if (MacroName == "NULL")
12446 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
12447 }
12448
12449 // Only warn if the null and context location are in the same macro expansion.
12450 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
12451 return;
12452
12453 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
12454 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
12455 << FixItHint::CreateReplacement(Loc,
12456 S.getFixItZeroLiteralForType(T, Loc));
12457}
12458
12459static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12460 ObjCArrayLiteral *ArrayLiteral);
12461
12462static void
12463checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12464 ObjCDictionaryLiteral *DictionaryLiteral);
12465
12466/// Check a single element within a collection literal against the
12467/// target element type.
12468static void checkObjCCollectionLiteralElement(Sema &S,
12469 QualType TargetElementType,
12470 Expr *Element,
12471 unsigned ElementKind) {
12472 // Skip a bitcast to 'id' or qualified 'id'.
12473 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
12474 if (ICE->getCastKind() == CK_BitCast &&
12475 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
12476 Element = ICE->getSubExpr();
12477 }
12478
12479 QualType ElementType = Element->getType();
12480 ExprResult ElementResult(Element);
12481 if (ElementType->getAs<ObjCObjectPointerType>() &&
12482 S.CheckSingleAssignmentConstraints(TargetElementType,
12483 ElementResult,
12484 false, false)
12485 != Sema::Compatible) {
12486 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
12487 << ElementType << ElementKind << TargetElementType
12488 << Element->getSourceRange();
12489 }
12490
12491 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
12492 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
12493 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
12494 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
12495}
12496
12497/// Check an Objective-C array literal being converted to the given
12498/// target type.
12499static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12500 ObjCArrayLiteral *ArrayLiteral) {
12501 if (!S.NSArrayDecl)
12502 return;
12503
12504 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12505 if (!TargetObjCPtr)
12506 return;
12507
12508 if (TargetObjCPtr->isUnspecialized() ||
12509 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12510 != S.NSArrayDecl->getCanonicalDecl())
12511 return;
12512
12513 auto TypeArgs = TargetObjCPtr->getTypeArgs();
12514 if (TypeArgs.size() != 1)
12515 return;
12516
12517 QualType TargetElementType = TypeArgs[0];
12518 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
12519 checkObjCCollectionLiteralElement(S, TargetElementType,
12520 ArrayLiteral->getElement(I),
12521 0);
12522 }
12523}
12524
12525/// Check an Objective-C dictionary literal being converted to the given
12526/// target type.
12527static void
12528checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12529 ObjCDictionaryLiteral *DictionaryLiteral) {
12530 if (!S.NSDictionaryDecl)
12531 return;
12532
12533 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12534 if (!TargetObjCPtr)
12535 return;
12536
12537 if (TargetObjCPtr->isUnspecialized() ||
12538 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12539 != S.NSDictionaryDecl->getCanonicalDecl())
12540 return;
12541
12542 auto TypeArgs = TargetObjCPtr->getTypeArgs();
12543 if (TypeArgs.size() != 2)
12544 return;
12545
12546 QualType TargetKeyType = TypeArgs[0];
12547 QualType TargetObjectType = TypeArgs[1];
12548 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
12549 auto Element = DictionaryLiteral->getKeyValueElement(I);
12550 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
12551 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
12552 }
12553}
12554
12555// Helper function to filter out cases for constant width constant conversion.
12556// Don't warn on char array initialization or for non-decimal values.
12557static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
12558 SourceLocation CC) {
12559 // If initializing from a constant, and the constant starts with '0',
12560 // then it is a binary, octal, or hexadecimal. Allow these constants
12561 // to fill all the bits, even if there is a sign change.
12562 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
12563 const char FirstLiteralCharacter =
12564 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
12565 if (FirstLiteralCharacter == '0')
12566 return false;
12567 }
12568
12569 // If the CC location points to a '{', and the type is char, then assume
12570 // assume it is an array initialization.
12571 if (CC.isValid() && T->isCharType()) {
12572 const char FirstContextCharacter =
12573 S.getSourceManager().getCharacterData(CC)[0];
12574 if (FirstContextCharacter == '{')
12575 return false;
12576 }
12577
12578 return true;
12579}
12580
12581static const IntegerLiteral *getIntegerLiteral(Expr *E) {
12582 const auto *IL = dyn_cast<IntegerLiteral>(E);
12583 if (!IL) {
12584 if (auto *UO = dyn_cast<UnaryOperator>(E)) {
12585 if (UO->getOpcode() == UO_Minus)
12586 return dyn_cast<IntegerLiteral>(UO->getSubExpr());
12587 }
12588 }
12589
12590 return IL;
12591}
12592
12593static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
12594 E = E->IgnoreParenImpCasts();
12595 SourceLocation ExprLoc = E->getExprLoc();
12596
12597 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
12598 BinaryOperator::Opcode Opc = BO->getOpcode();
12599 Expr::EvalResult Result;
12600 // Do not diagnose unsigned shifts.
12601 if (Opc == BO_Shl) {
12602 const auto *LHS = getIntegerLiteral(BO->getLHS());
12603 const auto *RHS = getIntegerLiteral(BO->getRHS());
12604 if (LHS && LHS->getValue() == 0)
12605 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
12606 else if (!E->isValueDependent() && LHS && RHS &&
12607 RHS->getValue().isNonNegative() &&
12608 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
12609 S.Diag(ExprLoc, diag::warn_left_shift_always)
12610 << (Result.Val.getInt() != 0);
12611 else if (E->getType()->isSignedIntegerType())
12612 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
12613 }
12614 }
12615
12616 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
12617 const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
12618 const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
12619 if (!LHS || !RHS)
12620 return;
12621 if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
12622 (RHS->getValue() == 0 || RHS->getValue() == 1))
12623 // Do not diagnose common idioms.
12624 return;
12625 if (LHS->getValue() != 0 && RHS->getValue() != 0)
12626 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
12627 }
12628}
12629
12630static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
12631 SourceLocation CC,
12632 bool *ICContext = nullptr,
12633 bool IsListInit = false) {
12634 if (E->isTypeDependent() || E->isValueDependent()) return;
12635
12636 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
12637 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
12638 if (Source == Target) return;
12639 if (Target->isDependentType()) return;
12640
12641 // If the conversion context location is invalid don't complain. We also
12642 // don't want to emit a warning if the issue occurs from the expansion of
12643 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
12644 // delay this check as long as possible. Once we detect we are in that
12645 // scenario, we just return.
12646 if (CC.isInvalid())
12647 return;
12648
12649 if (Source->isAtomicType())
12650 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
12651
12652 // Diagnose implicit casts to bool.
12653 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
12654 if (isa<StringLiteral>(E))
12655 // Warn on string literal to bool. Checks for string literals in logical
12656 // and expressions, for instance, assert(0 && "error here"), are
12657 // prevented by a check in AnalyzeImplicitConversions().
12658 return DiagnoseImpCast(S, E, T, CC,
12659 diag::warn_impcast_string_literal_to_bool);
12660 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
12661 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
12662 // This covers the literal expressions that evaluate to Objective-C
12663 // objects.
12664 return DiagnoseImpCast(S, E, T, CC,
12665 diag::warn_impcast_objective_c_literal_to_bool);
12666 }
12667 if (Source->isPointerType() || Source->canDecayToPointerType()) {
12668 // Warn on pointer to bool conversion that is always true.
12669 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
12670 SourceRange(CC));
12671 }
12672 }
12673
12674 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
12675 // is a typedef for signed char (macOS), then that constant value has to be 1
12676 // or 0.
12677 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
12678 Expr::EvalResult Result;
12679 if (E->EvaluateAsInt(Result, S.getASTContext(),
12680 Expr::SE_AllowSideEffects)) {
12681 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
12682 adornObjCBoolConversionDiagWithTernaryFixit(
12683 S, E,
12684 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
12685 << toString(Result.Val.getInt(), 10));
12686 }
12687 return;
12688 }
12689 }
12690
12691 // Check implicit casts from Objective-C collection literals to specialized
12692 // collection types, e.g., NSArray<NSString *> *.
12693 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
12694 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
12695 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
12696 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
12697
12698 // Strip vector types.
12699 if (isa<VectorType>(Source)) {
12700 if (Target->isVLSTBuiltinType() &&
12701 (S.Context.areCompatibleSveTypes(QualType(Target, 0),
12702 QualType(Source, 0)) ||
12703 S.Context.areLaxCompatibleSveTypes(QualType(Target, 0),
12704 QualType(Source, 0))))
12705 return;
12706
12707 if (!isa<VectorType>(Target)) {
12708 if (S.SourceMgr.isInSystemMacro(CC))
12709 return;
12710 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
12711 }
12712
12713 // If the vector cast is cast between two vectors of the same size, it is
12714 // a bitcast, not a conversion.
12715 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
12716 return;
12717
12718 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
12719 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
12720 }
12721 if (auto VecTy = dyn_cast<VectorType>(Target))
12722 Target = VecTy->getElementType().getTypePtr();
12723
12724 // Strip complex types.
12725 if (isa<ComplexType>(Source)) {
12726 if (!isa<ComplexType>(Target)) {
12727 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
12728 return;
12729
12730 return DiagnoseImpCast(S, E, T, CC,
12731 S.getLangOpts().CPlusPlus
12732 ? diag::err_impcast_complex_scalar
12733 : diag::warn_impcast_complex_scalar);
12734 }
12735
12736 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
12737 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
12738 }
12739
12740 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
12741 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
12742
12743 // If the source is floating point...
12744 if (SourceBT && SourceBT->isFloatingPoint()) {
12745 // ...and the target is floating point...
12746 if (TargetBT && TargetBT->isFloatingPoint()) {
12747 // ...then warn if we're dropping FP rank.
12748
12749 int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12750 QualType(SourceBT, 0), QualType(TargetBT, 0));
12751 if (Order > 0) {
12752 // Don't warn about float constants that are precisely
12753 // representable in the target type.
12754 Expr::EvalResult result;
12755 if (E->EvaluateAsRValue(result, S.Context)) {
12756 // Value might be a float, a float vector, or a float complex.
12757 if (IsSameFloatAfterCast(result.Val,
12758 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
12759 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
12760 return;
12761 }
12762
12763 if (S.SourceMgr.isInSystemMacro(CC))
12764 return;
12765
12766 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
12767 }
12768 // ... or possibly if we're increasing rank, too
12769 else if (Order < 0) {
12770 if (S.SourceMgr.isInSystemMacro(CC))
12771 return;
12772
12773 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
12774 }
12775 return;
12776 }
12777
12778 // If the target is integral, always warn.
12779 if (TargetBT && TargetBT->isInteger()) {
12780 if (S.SourceMgr.isInSystemMacro(CC))
12781 return;
12782
12783 DiagnoseFloatingImpCast(S, E, T, CC);
12784 }
12785
12786 // Detect the case where a call result is converted from floating-point to
12787 // to bool, and the final argument to the call is converted from bool, to
12788 // discover this typo:
12789 //
12790 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;"
12791 //
12792 // FIXME: This is an incredibly special case; is there some more general
12793 // way to detect this class of misplaced-parentheses bug?
12794 if (Target->isBooleanType() && isa<CallExpr>(E)) {
12795 // Check last argument of function call to see if it is an
12796 // implicit cast from a type matching the type the result
12797 // is being cast to.
12798 CallExpr *CEx = cast<CallExpr>(E);
12799 if (unsigned NumArgs = CEx->getNumArgs()) {
12800 Expr *LastA = CEx->getArg(NumArgs - 1);
12801 Expr *InnerE = LastA->IgnoreParenImpCasts();
12802 if (isa<ImplicitCastExpr>(LastA) &&
12803 InnerE->getType()->isBooleanType()) {
12804 // Warn on this floating-point to bool conversion
12805 DiagnoseImpCast(S, E, T, CC,
12806 diag::warn_impcast_floating_point_to_bool);
12807 }
12808 }
12809 }
12810 return;
12811 }
12812
12813 // Valid casts involving fixed point types should be accounted for here.
12814 if (Source->isFixedPointType()) {
12815 if (Target->isUnsaturatedFixedPointType()) {
12816 Expr::EvalResult Result;
12817 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
12818 S.isConstantEvaluated())) {
12819 llvm::APFixedPoint Value = Result.Val.getFixedPoint();
12820 llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
12821 llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
12822 if (Value > MaxVal || Value < MinVal) {
12823 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12824 S.PDiag(diag::warn_impcast_fixed_point_range)
12825 << Value.toString() << T
12826 << E->getSourceRange()
12827 << clang::SourceRange(CC));
12828 return;
12829 }
12830 }
12831 } else if (Target->isIntegerType()) {
12832 Expr::EvalResult Result;
12833 if (!S.isConstantEvaluated() &&
12834 E->EvaluateAsFixedPoint(Result, S.Context,
12835 Expr::SE_AllowSideEffects)) {
12836 llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
12837
12838 bool Overflowed;
12839 llvm::APSInt IntResult = FXResult.convertToInt(
12840 S.Context.getIntWidth(T),
12841 Target->isSignedIntegerOrEnumerationType(), &Overflowed);
12842
12843 if (Overflowed) {
12844 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12845 S.PDiag(diag::warn_impcast_fixed_point_range)
12846 << FXResult.toString() << T
12847 << E->getSourceRange()
12848 << clang::SourceRange(CC));
12849 return;
12850 }
12851 }
12852 }
12853 } else if (Target->isUnsaturatedFixedPointType()) {
12854 if (Source->isIntegerType()) {
12855 Expr::EvalResult Result;
12856 if (!S.isConstantEvaluated() &&
12857 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
12858 llvm::APSInt Value = Result.Val.getInt();
12859
12860 bool Overflowed;
12861 llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
12862 Value, S.Context.getFixedPointSemantics(T), &Overflowed);
12863
12864 if (Overflowed) {
12865 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12866 S.PDiag(diag::warn_impcast_fixed_point_range)
12867 << toString(Value, /*Radix=*/10) << T
12868 << E->getSourceRange()
12869 << clang::SourceRange(CC));
12870 return;
12871 }
12872 }
12873 }
12874 }
12875
12876 // If we are casting an integer type to a floating point type without
12877 // initialization-list syntax, we might lose accuracy if the floating
12878 // point type has a narrower significand than the integer type.
12879 if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
12880 TargetBT->isFloatingType() && !IsListInit) {
12881 // Determine the number of precision bits in the source integer type.
12882 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
12883 /*Approximate*/ true);
12884 unsigned int SourcePrecision = SourceRange.Width;
12885
12886 // Determine the number of precision bits in the
12887 // target floating point type.
12888 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
12889 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12890
12891 if (SourcePrecision > 0 && TargetPrecision > 0 &&
12892 SourcePrecision > TargetPrecision) {
12893
12894 if (Optional<llvm::APSInt> SourceInt =
12895 E->getIntegerConstantExpr(S.Context)) {
12896 // If the source integer is a constant, convert it to the target
12897 // floating point type. Issue a warning if the value changes
12898 // during the whole conversion.
12899 llvm::APFloat TargetFloatValue(
12900 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12901 llvm::APFloat::opStatus ConversionStatus =
12902 TargetFloatValue.convertFromAPInt(
12903 *SourceInt, SourceBT->isSignedInteger(),
12904 llvm::APFloat::rmNearestTiesToEven);
12905
12906 if (ConversionStatus != llvm::APFloat::opOK) {
12907 SmallString<32> PrettySourceValue;
12908 SourceInt->toString(PrettySourceValue, 10);
12909 SmallString<32> PrettyTargetValue;
12910 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
12911
12912 S.DiagRuntimeBehavior(
12913 E->getExprLoc(), E,
12914 S.PDiag(diag::warn_impcast_integer_float_precision_constant)
12915 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12916 << E->getSourceRange() << clang::SourceRange(CC));
12917 }
12918 } else {
12919 // Otherwise, the implicit conversion may lose precision.
12920 DiagnoseImpCast(S, E, T, CC,
12921 diag::warn_impcast_integer_float_precision);
12922 }
12923 }
12924 }
12925
12926 DiagnoseNullConversion(S, E, T, CC);
12927
12928 S.DiscardMisalignedMemberAddress(Target, E);
12929
12930 if (Target->isBooleanType())
12931 DiagnoseIntInBoolContext(S, E);
12932
12933 if (!Source->isIntegerType() || !Target->isIntegerType())
12934 return;
12935
12936 // TODO: remove this early return once the false positives for constant->bool
12937 // in templates, macros, etc, are reduced or removed.
12938 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
12939 return;
12940
12941 if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
12942 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
12943 return adornObjCBoolConversionDiagWithTernaryFixit(
12944 S, E,
12945 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
12946 << E->getType());
12947 }
12948
12949 IntRange SourceTypeRange =
12950 IntRange::forTargetOfCanonicalType(S.Context, Source);
12951 IntRange LikelySourceRange =
12952 GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
12953 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
12954
12955 if (LikelySourceRange.Width > TargetRange.Width) {
12956 // If the source is a constant, use a default-on diagnostic.
12957 // TODO: this should happen for bitfield stores, too.
12958 Expr::EvalResult Result;
12959 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
12960 S.isConstantEvaluated())) {
12961 llvm::APSInt Value(32);
12962 Value = Result.Val.getInt();
12963
12964 if (S.SourceMgr.isInSystemMacro(CC))
12965 return;
12966
12967 std::string PrettySourceValue = toString(Value, 10);
12968 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12969
12970 S.DiagRuntimeBehavior(
12971 E->getExprLoc(), E,
12972 S.PDiag(diag::warn_impcast_integer_precision_constant)
12973 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12974 << E->getSourceRange() << SourceRange(CC));
12975 return;
12976 }
12977
12978 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
12979 if (S.SourceMgr.isInSystemMacro(CC))
12980 return;
12981
12982 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
12983 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
12984 /* pruneControlFlow */ true);
12985 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
12986 }
12987
12988 if (TargetRange.Width > SourceTypeRange.Width) {
12989 if (auto *UO = dyn_cast<UnaryOperator>(E))
12990 if (UO->getOpcode() == UO_Minus)
12991 if (Source->isUnsignedIntegerType()) {
12992 if (Target->isUnsignedIntegerType())
12993 return DiagnoseImpCast(S, E, T, CC,
12994 diag::warn_impcast_high_order_zero_bits);
12995 if (Target->isSignedIntegerType())
12996 return DiagnoseImpCast(S, E, T, CC,
12997 diag::warn_impcast_nonnegative_result);
12998 }
12999 }
13000
13001 if (TargetRange.Width == LikelySourceRange.Width &&
13002 !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13003 Source->isSignedIntegerType()) {
13004 // Warn when doing a signed to signed conversion, warn if the positive
13005 // source value is exactly the width of the target type, which will
13006 // cause a negative value to be stored.
13007
13008 Expr::EvalResult Result;
13009 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
13010 !S.SourceMgr.isInSystemMacro(CC)) {
13011 llvm::APSInt Value = Result.Val.getInt();
13012 if (isSameWidthConstantConversion(S, E, T, CC)) {
13013 std::string PrettySourceValue = toString(Value, 10);
13014 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13015
13016 S.DiagRuntimeBehavior(
13017 E->getExprLoc(), E,
13018 S.PDiag(diag::warn_impcast_integer_precision_constant)
13019 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13020 << E->getSourceRange() << SourceRange(CC));
13021 return;
13022 }
13023 }
13024
13025 // Fall through for non-constants to give a sign conversion warning.
13026 }
13027
13028 if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
13029 (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13030 LikelySourceRange.Width == TargetRange.Width)) {
13031 if (S.SourceMgr.isInSystemMacro(CC))
13032 return;
13033
13034 unsigned DiagID = diag::warn_impcast_integer_sign;
13035
13036 // Traditionally, gcc has warned about this under -Wsign-compare.
13037 // We also want to warn about it in -Wconversion.
13038 // So if -Wconversion is off, use a completely identical diagnostic
13039 // in the sign-compare group.
13040 // The conditional-checking code will
13041 if (ICContext) {
13042 DiagID = diag::warn_impcast_integer_sign_conditional;
13043 *ICContext = true;
13044 }
13045
13046 return DiagnoseImpCast(S, E, T, CC, DiagID);
13047 }
13048
13049 // Diagnose conversions between different enumeration types.
13050 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
13051 // type, to give us better diagnostics.
13052 QualType SourceType = E->getType();
13053 if (!S.getLangOpts().CPlusPlus) {
13054 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13055 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
13056 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
13057 SourceType = S.Context.getTypeDeclType(Enum);
13058 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
13059 }
13060 }
13061
13062 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
13063 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
13064 if (SourceEnum->getDecl()->hasNameForLinkage() &&
13065 TargetEnum->getDecl()->hasNameForLinkage() &&
13066 SourceEnum != TargetEnum) {
13067 if (S.SourceMgr.isInSystemMacro(CC))
13068 return;
13069
13070 return DiagnoseImpCast(S, E, SourceType, T, CC,
13071 diag::warn_impcast_different_enum_types);
13072 }
13073}
13074
13075static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13076 SourceLocation CC, QualType T);
13077
13078static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
13079 SourceLocation CC, bool &ICContext) {
13080 E = E->IgnoreParenImpCasts();
13081
13082 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
13083 return CheckConditionalOperator(S, CO, CC, T);
13084
13085 AnalyzeImplicitConversions(S, E, CC);
13086 if (E->getType() != T)
13087 return CheckImplicitConversion(S, E, T, CC, &ICContext);
13088}
13089
13090static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13091 SourceLocation CC, QualType T) {
13092 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
13093
13094 Expr *TrueExpr = E->getTrueExpr();
13095 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
13096 TrueExpr = BCO->getCommon();
13097
13098 bool Suspicious = false;
13099 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
13100 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
13101
13102 if (T->isBooleanType())
13103 DiagnoseIntInBoolContext(S, E);
13104
13105 // If -Wconversion would have warned about either of the candidates
13106 // for a signedness conversion to the context type...
13107 if (!Suspicious) return;
13108
13109 // ...but it's currently ignored...
13110 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
13111 return;
13112
13113 // ...then check whether it would have warned about either of the
13114 // candidates for a signedness conversion to the condition type.
13115 if (E->getType() == T) return;
13116
13117 Suspicious = false;
13118 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
13119 E->getType(), CC, &Suspicious);
13120 if (!Suspicious)
13121 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
13122 E->getType(), CC, &Suspicious);
13123}
13124
13125/// Check conversion of given expression to boolean.
13126/// Input argument E is a logical expression.
13127static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
13128 if (S.getLangOpts().Bool)
13129 return;
13130 if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
13131 return;
13132 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
13133}
13134
13135namespace {
13136struct AnalyzeImplicitConversionsWorkItem {
13137 Expr *E;
13138 SourceLocation CC;
13139 bool IsListInit;
13140};
13141}
13142
13143/// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
13144/// that should be visited are added to WorkList.
13145static void AnalyzeImplicitConversions(
13146 Sema &S, AnalyzeImplicitConversionsWorkItem Item,
13147 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
13148 Expr *OrigE = Item.E;
13149 SourceLocation CC = Item.CC;
13150
13151 QualType T = OrigE->getType();
13152 Expr *E = OrigE->IgnoreParenImpCasts();
13153
13154 // Propagate whether we are in a C++ list initialization expression.
13155 // If so, we do not issue warnings for implicit int-float conversion
13156 // precision loss, because C++11 narrowing already handles it.
13157 bool IsListInit = Item.IsListInit ||
13158 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
13159
13160 if (E->isTypeDependent() || E->isValueDependent())
13161 return;
13162
13163 Expr *SourceExpr = E;
13164 // Examine, but don't traverse into the source expression of an
13165 // OpaqueValueExpr, since it may have multiple parents and we don't want to
13166 // emit duplicate diagnostics. Its fine to examine the form or attempt to
13167 // evaluate it in the context of checking the specific conversion to T though.
13168 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
13169 if (auto *Src = OVE->getSourceExpr())
13170 SourceExpr = Src;
13171
13172 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
13173 if (UO->getOpcode() == UO_Not &&
13174 UO->getSubExpr()->isKnownToHaveBooleanValue())
13175 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
13176 << OrigE->getSourceRange() << T->isBooleanType()
13177 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
13178
13179 // For conditional operators, we analyze the arguments as if they
13180 // were being fed directly into the output.
13181 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
13182 CheckConditionalOperator(S, CO, CC, T);
13183 return;
13184 }
13185
13186 // Check implicit argument conversions for function calls.
13187 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
13188 CheckImplicitArgumentConversions(S, Call, CC);
13189
13190 // Go ahead and check any implicit conversions we might have skipped.
13191 // The non-canonical typecheck is just an optimization;
13192 // CheckImplicitConversion will filter out dead implicit conversions.
13193 if (SourceExpr->getType() != T)
13194 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
13195
13196 // Now continue drilling into this expression.
13197
13198 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
13199 // The bound subexpressions in a PseudoObjectExpr are not reachable
13200 // as transitive children.
13201 // FIXME: Use a more uniform representation for this.
13202 for (auto *SE : POE->semantics())
13203 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
13204 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
13205 }
13206
13207 // Skip past explicit casts.
13208 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
13209 E = CE->getSubExpr()->IgnoreParenImpCasts();
13210 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
13211 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
13212 WorkList.push_back({E, CC, IsListInit});
13213 return;
13214 }
13215
13216 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13217 // Do a somewhat different check with comparison operators.
13218 if (BO->isComparisonOp())
13219 return AnalyzeComparison(S, BO);
13220
13221 // And with simple assignments.
13222 if (BO->getOpcode() == BO_Assign)
13223 return AnalyzeAssignment(S, BO);
13224 // And with compound assignments.
13225 if (BO->isAssignmentOp())
13226 return AnalyzeCompoundAssignment(S, BO);
13227 }
13228
13229 // These break the otherwise-useful invariant below. Fortunately,
13230 // we don't really need to recurse into them, because any internal
13231 // expressions should have been analyzed already when they were
13232 // built into statements.
13233 if (isa<StmtExpr>(E)) return;
13234
13235 // Don't descend into unevaluated contexts.
13236 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
13237
13238 // Now just recurse over the expression's children.
13239 CC = E->getExprLoc();
13240 BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
13241 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
13242 for (Stmt *SubStmt : E->children()) {
13243 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
13244 if (!ChildExpr)
13245 continue;
13246
13247 if (IsLogicalAndOperator &&
13248 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
13249 // Ignore checking string literals that are in logical and operators.
13250 // This is a common pattern for asserts.
13251 continue;
13252 WorkList.push_back({ChildExpr, CC, IsListInit});
13253 }
13254
13255 if (BO && BO->isLogicalOp()) {
13256 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
13257 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13258 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13259
13260 SubExpr = BO->getRHS()->IgnoreParenImpCasts();
13261 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13262 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13263 }
13264
13265 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
13266 if (U->getOpcode() == UO_LNot) {
13267 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
13268 } else if (U->getOpcode() != UO_AddrOf) {
13269 if (U->getSubExpr()->getType()->isAtomicType())
13270 S.Diag(U->getSubExpr()->getBeginLoc(),
13271 diag::warn_atomic_implicit_seq_cst);
13272 }
13273 }
13274}
13275
13276/// AnalyzeImplicitConversions - Find and report any interesting
13277/// implicit conversions in the given expression. There are a couple
13278/// of competing diagnostics here, -Wconversion and -Wsign-compare.
13279static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
13280 bool IsListInit/*= false*/) {
13281 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
13282 WorkList.push_back({OrigE, CC, IsListInit});
13283 while (!WorkList.empty())
13284 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
13285}
13286
13287/// Diagnose integer type and any valid implicit conversion to it.
13288static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
13289 // Taking into account implicit conversions,
13290 // allow any integer.
13291 if (!E->getType()->isIntegerType()) {
13292 S.Diag(E->getBeginLoc(),
13293 diag::err_opencl_enqueue_kernel_invalid_local_size_type);
13294 return true;
13295 }
13296 // Potentially emit standard warnings for implicit conversions if enabled
13297 // using -Wconversion.
13298 CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
13299 return false;
13300}
13301
13302// Helper function for Sema::DiagnoseAlwaysNonNullPointer.
13303// Returns true when emitting a warning about taking the address of a reference.
13304static bool CheckForReference(Sema &SemaRef, const Expr *E,
13305 const PartialDiagnostic &PD) {
13306 E = E->IgnoreParenImpCasts();
13307
13308 const FunctionDecl *FD = nullptr;
13309
13310 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13311 if (!DRE->getDecl()->getType()->isReferenceType())
13312 return false;
13313 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13314 if (!M->getMemberDecl()->getType()->isReferenceType())
13315 return false;
13316 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
13317 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
13318 return false;
13319 FD = Call->getDirectCallee();
13320 } else {
13321 return false;
13322 }
13323
13324 SemaRef.Diag(E->getExprLoc(), PD);
13325
13326 // If possible, point to location of function.
13327 if (FD) {
13328 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
13329 }
13330
13331 return true;
13332}
13333
13334// Returns true if the SourceLocation is expanded from any macro body.
13335// Returns false if the SourceLocation is invalid, is from not in a macro
13336// expansion, or is from expanded from a top-level macro argument.
13337static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
13338 if (Loc.isInvalid())
13339 return false;
13340
13341 while (Loc.isMacroID()) {
13342 if (SM.isMacroBodyExpansion(Loc))
13343 return true;
13344 Loc = SM.getImmediateMacroCallerLoc(Loc);
13345 }
13346
13347 return false;
13348}
13349
13350/// Diagnose pointers that are always non-null.
13351/// \param E the expression containing the pointer
13352/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
13353/// compared to a null pointer
13354/// \param IsEqual True when the comparison is equal to a null pointer
13355/// \param Range Extra SourceRange to highlight in the diagnostic
13356void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
13357 Expr::NullPointerConstantKind NullKind,
13358 bool IsEqual, SourceRange Range) {
13359 if (!E)
13360 return;
13361
13362 // Don't warn inside macros.
13363 if (E->getExprLoc().isMacroID()) {
13364 const SourceManager &SM = getSourceManager();
13365 if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
13366 IsInAnyMacroBody(SM, Range.getBegin()))
13367 return;
13368 }
13369 E = E->IgnoreImpCasts();
13370
13371 const bool IsCompare = NullKind != Expr::NPCK_NotNull;
13372
13373 if (isa<CXXThisExpr>(E)) {
13374 unsigned DiagID = IsCompare ? diag::warn_this_null_compare
13375 : diag::warn_this_bool_conversion;
13376 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
13377 return;
13378 }
13379
13380 bool IsAddressOf = false;
13381
13382 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13383 if (UO->getOpcode() != UO_AddrOf)
13384 return;
13385 IsAddressOf = true;
13386 E = UO->getSubExpr();
13387 }
13388
13389 if (IsAddressOf) {
13390 unsigned DiagID = IsCompare
13391 ? diag::warn_address_of_reference_null_compare
13392 : diag::warn_address_of_reference_bool_conversion;
13393 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
13394 << IsEqual;
13395 if (CheckForReference(*this, E, PD)) {
13396 return;
13397 }
13398 }
13399
13400 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
13401 bool IsParam = isa<NonNullAttr>(NonnullAttr);
13402 std::string Str;
13403 llvm::raw_string_ostream S(Str);
13404 E->printPretty(S, nullptr, getPrintingPolicy());
13405 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
13406 : diag::warn_cast_nonnull_to_bool;
13407 Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
13408 << E->getSourceRange() << Range << IsEqual;
13409 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
13410 };
13411
13412 // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
13413 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
13414 if (auto *Callee = Call->getDirectCallee()) {
13415 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
13416 ComplainAboutNonnullParamOrCall(A);
13417 return;
13418 }
13419 }
13420 }
13421
13422 // Expect to find a single Decl. Skip anything more complicated.
13423 ValueDecl *D = nullptr;
13424 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
13425 D = R->getDecl();
13426 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13427 D = M->getMemberDecl();
13428 }
13429
13430 // Weak Decls can be null.
13431 if (!D || D->isWeak())
13432 return;
13433
13434 // Check for parameter decl with nonnull attribute
13435 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
13436 if (getCurFunction() &&
13437 !getCurFunction()->ModifiedNonNullParams.count(PV)) {
13438 if (const Attr *A = PV->getAttr<NonNullAttr>()) {
13439 ComplainAboutNonnullParamOrCall(A);
13440 return;
13441 }
13442
13443 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
13444 // Skip function template not specialized yet.
13445 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
13446 return;
13447 auto ParamIter = llvm::find(FD->parameters(), PV);
13448 assert(ParamIter != FD->param_end())(static_cast <bool> (ParamIter != FD->param_end()) ?
void (0) : __assert_fail ("ParamIter != FD->param_end()",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 13448, __extension__ __PRETTY_FUNCTION__))
;
13449 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
13450
13451 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
13452 if (!NonNull->args_size()) {
13453 ComplainAboutNonnullParamOrCall(NonNull);
13454 return;
13455 }
13456
13457 for (const ParamIdx &ArgNo : NonNull->args()) {
13458 if (ArgNo.getASTIndex() == ParamNo) {
13459 ComplainAboutNonnullParamOrCall(NonNull);
13460 return;
13461 }
13462 }
13463 }
13464 }
13465 }
13466 }
13467
13468 QualType T = D->getType();
13469 const bool IsArray = T->isArrayType();
13470 const bool IsFunction = T->isFunctionType();
13471
13472 // Address of function is used to silence the function warning.
13473 if (IsAddressOf && IsFunction) {
13474 return;
13475 }
13476
13477 // Found nothing.
13478 if (!IsAddressOf && !IsFunction && !IsArray)
13479 return;
13480
13481 // Pretty print the expression for the diagnostic.
13482 std::string Str;
13483 llvm::raw_string_ostream S(Str);
13484 E->printPretty(S, nullptr, getPrintingPolicy());
13485
13486 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
13487 : diag::warn_impcast_pointer_to_bool;
13488 enum {
13489 AddressOf,
13490 FunctionPointer,
13491 ArrayPointer
13492 } DiagType;
13493 if (IsAddressOf)
13494 DiagType = AddressOf;
13495 else if (IsFunction)
13496 DiagType = FunctionPointer;
13497 else if (IsArray)
13498 DiagType = ArrayPointer;
13499 else
13500 llvm_unreachable("Could not determine diagnostic.")::llvm::llvm_unreachable_internal("Could not determine diagnostic."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 13500)
;
13501 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
13502 << Range << IsEqual;
13503
13504 if (!IsFunction)
13505 return;
13506
13507 // Suggest '&' to silence the function warning.
13508 Diag(E->getExprLoc(), diag::note_function_warning_silence)
13509 << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
13510
13511 // Check to see if '()' fixit should be emitted.
13512 QualType ReturnType;
13513 UnresolvedSet<4> NonTemplateOverloads;
13514 tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
13515 if (ReturnType.isNull())
13516 return;
13517
13518 if (IsCompare) {
13519 // There are two cases here. If there is null constant, the only suggest
13520 // for a pointer return type. If the null is 0, then suggest if the return
13521 // type is a pointer or an integer type.
13522 if (!ReturnType->isPointerType()) {
13523 if (NullKind == Expr::NPCK_ZeroExpression ||
13524 NullKind == Expr::NPCK_ZeroLiteral) {
13525 if (!ReturnType->isIntegerType())
13526 return;
13527 } else {
13528 return;
13529 }
13530 }
13531 } else { // !IsCompare
13532 // For function to bool, only suggest if the function pointer has bool
13533 // return type.
13534 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
13535 return;
13536 }
13537 Diag(E->getExprLoc(), diag::note_function_to_function_call)
13538 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
13539}
13540
13541/// Diagnoses "dangerous" implicit conversions within the given
13542/// expression (which is a full expression). Implements -Wconversion
13543/// and -Wsign-compare.
13544///
13545/// \param CC the "context" location of the implicit conversion, i.e.
13546/// the most location of the syntactic entity requiring the implicit
13547/// conversion
13548void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
13549 // Don't diagnose in unevaluated contexts.
13550 if (isUnevaluatedContext())
13551 return;
13552
13553 // Don't diagnose for value- or type-dependent expressions.
13554 if (E->isTypeDependent() || E->isValueDependent())
13555 return;
13556
13557 // Check for array bounds violations in cases where the check isn't triggered
13558 // elsewhere for other Expr types (like BinaryOperators), e.g. when an
13559 // ArraySubscriptExpr is on the RHS of a variable initialization.
13560 CheckArrayAccess(E);
13561
13562 // This is not the right CC for (e.g.) a variable initialization.
13563 AnalyzeImplicitConversions(*this, E, CC);
13564}
13565
13566/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
13567/// Input argument E is a logical expression.
13568void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
13569 ::CheckBoolLikeConversion(*this, E, CC);
13570}
13571
13572/// Diagnose when expression is an integer constant expression and its evaluation
13573/// results in integer overflow
13574void Sema::CheckForIntOverflow (Expr *E) {
13575 // Use a work list to deal with nested struct initializers.
13576 SmallVector<Expr *, 2> Exprs(1, E);
13577
13578 do {
13579 Expr *OriginalE = Exprs.pop_back_val();
13580 Expr *E = OriginalE->IgnoreParenCasts();
13581
13582 if (isa<BinaryOperator>(E)) {
13583 E->EvaluateForOverflow(Context);
13584 continue;
13585 }
13586
13587 if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
13588 Exprs.append(InitList->inits().begin(), InitList->inits().end());
13589 else if (isa<ObjCBoxedExpr>(OriginalE))
13590 E->EvaluateForOverflow(Context);
13591 else if (auto Call = dyn_cast<CallExpr>(E))
13592 Exprs.append(Call->arg_begin(), Call->arg_end());
13593 else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
13594 Exprs.append(Message->arg_begin(), Message->arg_end());
13595 } while (!Exprs.empty());
13596}
13597
13598namespace {
13599
13600/// Visitor for expressions which looks for unsequenced operations on the
13601/// same object.
13602class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
13603 using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
13604
13605 /// A tree of sequenced regions within an expression. Two regions are
13606 /// unsequenced if one is an ancestor or a descendent of the other. When we
13607 /// finish processing an expression with sequencing, such as a comma
13608 /// expression, we fold its tree nodes into its parent, since they are
13609 /// unsequenced with respect to nodes we will visit later.
13610 class SequenceTree {
13611 struct Value {
13612 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
13613 unsigned Parent : 31;
13614 unsigned Merged : 1;
13615 };
13616 SmallVector<Value, 8> Values;
13617
13618 public:
13619 /// A region within an expression which may be sequenced with respect
13620 /// to some other region.
13621 class Seq {
13622 friend class SequenceTree;
13623
13624 unsigned Index;
13625
13626 explicit Seq(unsigned N) : Index(N) {}
13627
13628 public:
13629 Seq() : Index(0) {}
13630 };
13631
13632 SequenceTree() { Values.push_back(Value(0)); }
13633 Seq root() const { return Seq(0); }
13634
13635 /// Create a new sequence of operations, which is an unsequenced
13636 /// subset of \p Parent. This sequence of operations is sequenced with
13637 /// respect to other children of \p Parent.
13638 Seq allocate(Seq Parent) {
13639 Values.push_back(Value(Parent.Index));
13640 return Seq(Values.size() - 1);
13641 }
13642
13643 /// Merge a sequence of operations into its parent.
13644 void merge(Seq S) {
13645 Values[S.Index].Merged = true;
13646 }
13647
13648 /// Determine whether two operations are unsequenced. This operation
13649 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
13650 /// should have been merged into its parent as appropriate.
13651 bool isUnsequenced(Seq Cur, Seq Old) {
13652 unsigned C = representative(Cur.Index);
13653 unsigned Target = representative(Old.Index);
13654 while (C >= Target) {
13655 if (C == Target)
13656 return true;
13657 C = Values[C].Parent;
13658 }
13659 return false;
13660 }
13661
13662 private:
13663 /// Pick a representative for a sequence.
13664 unsigned representative(unsigned K) {
13665 if (Values[K].Merged)
13666 // Perform path compression as we go.
13667 return Values[K].Parent = representative(Values[K].Parent);
13668 return K;
13669 }
13670 };
13671
13672 /// An object for which we can track unsequenced uses.
13673 using Object = const NamedDecl *;
13674
13675 /// Different flavors of object usage which we track. We only track the
13676 /// least-sequenced usage of each kind.
13677 enum UsageKind {
13678 /// A read of an object. Multiple unsequenced reads are OK.
13679 UK_Use,
13680
13681 /// A modification of an object which is sequenced before the value
13682 /// computation of the expression, such as ++n in C++.
13683 UK_ModAsValue,
13684
13685 /// A modification of an object which is not sequenced before the value
13686 /// computation of the expression, such as n++.
13687 UK_ModAsSideEffect,
13688
13689 UK_Count = UK_ModAsSideEffect + 1
13690 };
13691
13692 /// Bundle together a sequencing region and the expression corresponding
13693 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
13694 struct Usage {
13695 const Expr *UsageExpr;
13696 SequenceTree::Seq Seq;
13697
13698 Usage() : UsageExpr(nullptr), Seq() {}
13699 };
13700
13701 struct UsageInfo {
13702 Usage Uses[UK_Count];
13703
13704 /// Have we issued a diagnostic for this object already?
13705 bool Diagnosed;
13706
13707 UsageInfo() : Uses(), Diagnosed(false) {}
13708 };
13709 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
13710
13711 Sema &SemaRef;
13712
13713 /// Sequenced regions within the expression.
13714 SequenceTree Tree;
13715
13716 /// Declaration modifications and references which we have seen.
13717 UsageInfoMap UsageMap;
13718
13719 /// The region we are currently within.
13720 SequenceTree::Seq Region;
13721
13722 /// Filled in with declarations which were modified as a side-effect
13723 /// (that is, post-increment operations).
13724 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
13725
13726 /// Expressions to check later. We defer checking these to reduce
13727 /// stack usage.
13728 SmallVectorImpl<const Expr *> &WorkList;
13729
13730 /// RAII object wrapping the visitation of a sequenced subexpression of an
13731 /// expression. At the end of this process, the side-effects of the evaluation
13732 /// become sequenced with respect to the value computation of the result, so
13733 /// we downgrade any UK_ModAsSideEffect within the evaluation to
13734 /// UK_ModAsValue.
13735 struct SequencedSubexpression {
13736 SequencedSubexpression(SequenceChecker &Self)
13737 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
13738 Self.ModAsSideEffect = &ModAsSideEffect;
13739 }
13740
13741 ~SequencedSubexpression() {
13742 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
13743 // Add a new usage with usage kind UK_ModAsValue, and then restore
13744 // the previous usage with UK_ModAsSideEffect (thus clearing it if
13745 // the previous one was empty).
13746 UsageInfo &UI = Self.UsageMap[M.first];
13747 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
13748 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
13749 SideEffectUsage = M.second;
13750 }
13751 Self.ModAsSideEffect = OldModAsSideEffect;
13752 }
13753
13754 SequenceChecker &Self;
13755 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
13756 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
13757 };
13758
13759 /// RAII object wrapping the visitation of a subexpression which we might
13760 /// choose to evaluate as a constant. If any subexpression is evaluated and
13761 /// found to be non-constant, this allows us to suppress the evaluation of
13762 /// the outer expression.
13763 class EvaluationTracker {
13764 public:
13765 EvaluationTracker(SequenceChecker &Self)
13766 : Self(Self), Prev(Self.EvalTracker) {
13767 Self.EvalTracker = this;
13768 }
13769
13770 ~EvaluationTracker() {
13771 Self.EvalTracker = Prev;
13772 if (Prev)
13773 Prev->EvalOK &= EvalOK;
13774 }
13775
13776 bool evaluate(const Expr *E, bool &Result) {
13777 if (!EvalOK || E->isValueDependent())
13778 return false;
13779 EvalOK = E->EvaluateAsBooleanCondition(
13780 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
13781 return EvalOK;
13782 }
13783
13784 private:
13785 SequenceChecker &Self;
13786 EvaluationTracker *Prev;
13787 bool EvalOK = true;
13788 } *EvalTracker = nullptr;
13789
13790 /// Find the object which is produced by the specified expression,
13791 /// if any.
13792 Object getObject(const Expr *E, bool Mod) const {
13793 E = E->IgnoreParenCasts();
13794 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13795 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
13796 return getObject(UO->getSubExpr(), Mod);
13797 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13798 if (BO->getOpcode() == BO_Comma)
13799 return getObject(BO->getRHS(), Mod);
13800 if (Mod && BO->isAssignmentOp())
13801 return getObject(BO->getLHS(), Mod);
13802 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13803 // FIXME: Check for more interesting cases, like "x.n = ++x.n".
13804 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
13805 return ME->getMemberDecl();
13806 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13807 // FIXME: If this is a reference, map through to its value.
13808 return DRE->getDecl();
13809 return nullptr;
13810 }
13811
13812 /// Note that an object \p O was modified or used by an expression
13813 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
13814 /// the object \p O as obtained via the \p UsageMap.
13815 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
13816 // Get the old usage for the given object and usage kind.
13817 Usage &U = UI.Uses[UK];
13818 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
13819 // If we have a modification as side effect and are in a sequenced
13820 // subexpression, save the old Usage so that we can restore it later
13821 // in SequencedSubexpression::~SequencedSubexpression.
13822 if (UK == UK_ModAsSideEffect && ModAsSideEffect)
13823 ModAsSideEffect->push_back(std::make_pair(O, U));
13824 // Then record the new usage with the current sequencing region.
13825 U.UsageExpr = UsageExpr;
13826 U.Seq = Region;
13827 }
13828 }
13829
13830 /// Check whether a modification or use of an object \p O in an expression
13831 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
13832 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
13833 /// \p IsModMod is true when we are checking for a mod-mod unsequenced
13834 /// usage and false we are checking for a mod-use unsequenced usage.
13835 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
13836 UsageKind OtherKind, bool IsModMod) {
13837 if (UI.Diagnosed)
13838 return;
13839
13840 const Usage &U = UI.Uses[OtherKind];
13841 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
13842 return;
13843
13844 const Expr *Mod = U.UsageExpr;
13845 const Expr *ModOrUse = UsageExpr;
13846 if (OtherKind == UK_Use)
13847 std::swap(Mod, ModOrUse);
13848
13849 SemaRef.DiagRuntimeBehavior(
13850 Mod->getExprLoc(), {Mod, ModOrUse},
13851 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
13852 : diag::warn_unsequenced_mod_use)
13853 << O << SourceRange(ModOrUse->getExprLoc()));
13854 UI.Diagnosed = true;
13855 }
13856
13857 // A note on note{Pre, Post}{Use, Mod}:
13858 //
13859 // (It helps to follow the algorithm with an expression such as
13860 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
13861 // operations before C++17 and both are well-defined in C++17).
13862 //
13863 // When visiting a node which uses/modify an object we first call notePreUse
13864 // or notePreMod before visiting its sub-expression(s). At this point the
13865 // children of the current node have not yet been visited and so the eventual
13866 // uses/modifications resulting from the children of the current node have not
13867 // been recorded yet.
13868 //
13869 // We then visit the children of the current node. After that notePostUse or
13870 // notePostMod is called. These will 1) detect an unsequenced modification
13871 // as side effect (as in "k++ + k") and 2) add a new usage with the
13872 // appropriate usage kind.
13873 //
13874 // We also have to be careful that some operation sequences modification as
13875 // side effect as well (for example: || or ,). To account for this we wrap
13876 // the visitation of such a sub-expression (for example: the LHS of || or ,)
13877 // with SequencedSubexpression. SequencedSubexpression is an RAII object
13878 // which record usages which are modifications as side effect, and then
13879 // downgrade them (or more accurately restore the previous usage which was a
13880 // modification as side effect) when exiting the scope of the sequenced
13881 // subexpression.
13882
13883 void notePreUse(Object O, const Expr *UseExpr) {
13884 UsageInfo &UI = UsageMap[O];
13885 // Uses conflict with other modifications.
13886 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
13887 }
13888
13889 void notePostUse(Object O, const Expr *UseExpr) {
13890 UsageInfo &UI = UsageMap[O];
13891 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
13892 /*IsModMod=*/false);
13893 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
13894 }
13895
13896 void notePreMod(Object O, const Expr *ModExpr) {
13897 UsageInfo &UI = UsageMap[O];
13898 // Modifications conflict with other modifications and with uses.
13899 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
13900 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
13901 }
13902
13903 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
13904 UsageInfo &UI = UsageMap[O];
13905 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
13906 /*IsModMod=*/true);
13907 addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
13908 }
13909
13910public:
13911 SequenceChecker(Sema &S, const Expr *E,
13912 SmallVectorImpl<const Expr *> &WorkList)
13913 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
13914 Visit(E);
13915 // Silence a -Wunused-private-field since WorkList is now unused.
13916 // TODO: Evaluate if it can be used, and if not remove it.
13917 (void)this->WorkList;
13918 }
13919
13920 void VisitStmt(const Stmt *S) {
13921 // Skip all statements which aren't expressions for now.
13922 }
13923
13924 void VisitExpr(const Expr *E) {
13925 // By default, just recurse to evaluated subexpressions.
13926 Base::VisitStmt(E);
13927 }
13928
13929 void VisitCastExpr(const CastExpr *E) {
13930 Object O = Object();
13931 if (E->getCastKind() == CK_LValueToRValue)
13932 O = getObject(E->getSubExpr(), false);
13933
13934 if (O)
13935 notePreUse(O, E);
13936 VisitExpr(E);
13937 if (O)
13938 notePostUse(O, E);
13939 }
13940
13941 void VisitSequencedExpressions(const Expr *SequencedBefore,
13942 const Expr *SequencedAfter) {
13943 SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
13944 SequenceTree::Seq AfterRegion = Tree.allocate(Region);
13945 SequenceTree::Seq OldRegion = Region;
13946
13947 {
13948 SequencedSubexpression SeqBefore(*this);
13949 Region = BeforeRegion;
13950 Visit(SequencedBefore);
13951 }
13952
13953 Region = AfterRegion;
13954 Visit(SequencedAfter);
13955
13956 Region = OldRegion;
13957
13958 Tree.merge(BeforeRegion);
13959 Tree.merge(AfterRegion);
13960 }
13961
13962 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
13963 // C++17 [expr.sub]p1:
13964 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
13965 // expression E1 is sequenced before the expression E2.
13966 if (SemaRef.getLangOpts().CPlusPlus17)
13967 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
13968 else {
13969 Visit(ASE->getLHS());
13970 Visit(ASE->getRHS());
13971 }
13972 }
13973
13974 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13975 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13976 void VisitBinPtrMem(const BinaryOperator *BO) {
13977 // C++17 [expr.mptr.oper]p4:
13978 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
13979 // the expression E1 is sequenced before the expression E2.
13980 if (SemaRef.getLangOpts().CPlusPlus17)
13981 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13982 else {
13983 Visit(BO->getLHS());
13984 Visit(BO->getRHS());
13985 }
13986 }
13987
13988 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13989 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13990 void VisitBinShlShr(const BinaryOperator *BO) {
13991 // C++17 [expr.shift]p4:
13992 // The expression E1 is sequenced before the expression E2.
13993 if (SemaRef.getLangOpts().CPlusPlus17)
13994 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13995 else {
13996 Visit(BO->getLHS());
13997 Visit(BO->getRHS());
13998 }
13999 }
14000
14001 void VisitBinComma(const BinaryOperator *BO) {
14002 // C++11 [expr.comma]p1:
14003 // Every value computation and side effect associated with the left
14004 // expression is sequenced before every value computation and side
14005 // effect associated with the right expression.
14006 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14007 }
14008
14009 void VisitBinAssign(const BinaryOperator *BO) {
14010 SequenceTree::Seq RHSRegion;
14011 SequenceTree::Seq LHSRegion;
14012 if (SemaRef.getLangOpts().CPlusPlus17) {
14013 RHSRegion = Tree.allocate(Region);
14014 LHSRegion = Tree.allocate(Region);
14015 } else {
14016 RHSRegion = Region;
14017 LHSRegion = Region;
14018 }
14019 SequenceTree::Seq OldRegion = Region;
14020
14021 // C++11 [expr.ass]p1:
14022 // [...] the assignment is sequenced after the value computation
14023 // of the right and left operands, [...]
14024 //
14025 // so check it before inspecting the operands and update the
14026 // map afterwards.
14027 Object O = getObject(BO->getLHS(), /*Mod=*/true);
14028 if (O)
14029 notePreMod(O, BO);
14030
14031 if (SemaRef.getLangOpts().CPlusPlus17) {
14032 // C++17 [expr.ass]p1:
14033 // [...] The right operand is sequenced before the left operand. [...]
14034 {
14035 SequencedSubexpression SeqBefore(*this);
14036 Region = RHSRegion;
14037 Visit(BO->getRHS());
14038 }
14039
14040 Region = LHSRegion;
14041 Visit(BO->getLHS());
14042
14043 if (O && isa<CompoundAssignOperator>(BO))
14044 notePostUse(O, BO);
14045
14046 } else {
14047 // C++11 does not specify any sequencing between the LHS and RHS.
14048 Region = LHSRegion;
14049 Visit(BO->getLHS());
14050
14051 if (O && isa<CompoundAssignOperator>(BO))
14052 notePostUse(O, BO);
14053
14054 Region = RHSRegion;
14055 Visit(BO->getRHS());
14056 }
14057
14058 // C++11 [expr.ass]p1:
14059 // the assignment is sequenced [...] before the value computation of the
14060 // assignment expression.
14061 // C11 6.5.16/3 has no such rule.
14062 Region = OldRegion;
14063 if (O)
14064 notePostMod(O, BO,
14065 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14066 : UK_ModAsSideEffect);
14067 if (SemaRef.getLangOpts().CPlusPlus17) {
14068 Tree.merge(RHSRegion);
14069 Tree.merge(LHSRegion);
14070 }
14071 }
14072
14073 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
14074 VisitBinAssign(CAO);
14075 }
14076
14077 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14078 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14079 void VisitUnaryPreIncDec(const UnaryOperator *UO) {
14080 Object O = getObject(UO->getSubExpr(), true);
14081 if (!O)
14082 return VisitExpr(UO);
14083
14084 notePreMod(O, UO);
14085 Visit(UO->getSubExpr());
14086 // C++11 [expr.pre.incr]p1:
14087 // the expression ++x is equivalent to x+=1
14088 notePostMod(O, UO,
14089 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14090 : UK_ModAsSideEffect);
14091 }
14092
14093 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14094 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14095 void VisitUnaryPostIncDec(const UnaryOperator *UO) {
14096 Object O = getObject(UO->getSubExpr(), true);
14097 if (!O)
14098 return VisitExpr(UO);
14099
14100 notePreMod(O, UO);
14101 Visit(UO->getSubExpr());
14102 notePostMod(O, UO, UK_ModAsSideEffect);
14103 }
14104
14105 void VisitBinLOr(const BinaryOperator *BO) {
14106 // C++11 [expr.log.or]p2:
14107 // If the second expression is evaluated, every value computation and
14108 // side effect associated with the first expression is sequenced before
14109 // every value computation and side effect associated with the
14110 // second expression.
14111 SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14112 SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14113 SequenceTree::Seq OldRegion = Region;
14114
14115 EvaluationTracker Eval(*this);
14116 {
14117 SequencedSubexpression Sequenced(*this);
14118 Region = LHSRegion;
14119 Visit(BO->getLHS());
14120 }
14121
14122 // C++11 [expr.log.or]p1:
14123 // [...] the second operand is not evaluated if the first operand
14124 // evaluates to true.
14125 bool EvalResult = false;
14126 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14127 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
14128 if (ShouldVisitRHS) {
14129 Region = RHSRegion;
14130 Visit(BO->getRHS());
14131 }
14132
14133 Region = OldRegion;
14134 Tree.merge(LHSRegion);
14135 Tree.merge(RHSRegion);
14136 }
14137
14138 void VisitBinLAnd(const BinaryOperator *BO) {
14139 // C++11 [expr.log.and]p2:
14140 // If the second expression is evaluated, every value computation and
14141 // side effect associated with the first expression is sequenced before
14142 // every value computation and side effect associated with the
14143 // second expression.
14144 SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14145 SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14146 SequenceTree::Seq OldRegion = Region;
14147
14148 EvaluationTracker Eval(*this);
14149 {
14150 SequencedSubexpression Sequenced(*this);
14151 Region = LHSRegion;
14152 Visit(BO->getLHS());
14153 }
14154
14155 // C++11 [expr.log.and]p1:
14156 // [...] the second operand is not evaluated if the first operand is false.
14157 bool EvalResult = false;
14158 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14159 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
14160 if (ShouldVisitRHS) {
14161 Region = RHSRegion;
14162 Visit(BO->getRHS());
14163 }
14164
14165 Region = OldRegion;
14166 Tree.merge(LHSRegion);
14167 Tree.merge(RHSRegion);
14168 }
14169
14170 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
14171 // C++11 [expr.cond]p1:
14172 // [...] Every value computation and side effect associated with the first
14173 // expression is sequenced before every value computation and side effect
14174 // associated with the second or third expression.
14175 SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
14176
14177 // No sequencing is specified between the true and false expression.
14178 // However since exactly one of both is going to be evaluated we can
14179 // consider them to be sequenced. This is needed to avoid warning on
14180 // something like "x ? y+= 1 : y += 2;" in the case where we will visit
14181 // both the true and false expressions because we can't evaluate x.
14182 // This will still allow us to detect an expression like (pre C++17)
14183 // "(x ? y += 1 : y += 2) = y".
14184 //
14185 // We don't wrap the visitation of the true and false expression with
14186 // SequencedSubexpression because we don't want to downgrade modifications
14187 // as side effect in the true and false expressions after the visition
14188 // is done. (for example in the expression "(x ? y++ : y++) + y" we should
14189 // not warn between the two "y++", but we should warn between the "y++"
14190 // and the "y".
14191 SequenceTree::Seq TrueRegion = Tree.allocate(Region);
14192 SequenceTree::Seq FalseRegion = Tree.allocate(Region);
14193 SequenceTree::Seq OldRegion = Region;
14194
14195 EvaluationTracker Eval(*this);
14196 {
14197 SequencedSubexpression Sequenced(*this);
14198 Region = ConditionRegion;
14199 Visit(CO->getCond());
14200 }
14201
14202 // C++11 [expr.cond]p1:
14203 // [...] The first expression is contextually converted to bool (Clause 4).
14204 // It is evaluated and if it is true, the result of the conditional
14205 // expression is the value of the second expression, otherwise that of the
14206 // third expression. Only one of the second and third expressions is
14207 // evaluated. [...]
14208 bool EvalResult = false;
14209 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
14210 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
14211 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
14212 if (ShouldVisitTrueExpr) {
14213 Region = TrueRegion;
14214 Visit(CO->getTrueExpr());
14215 }
14216 if (ShouldVisitFalseExpr) {
14217 Region = FalseRegion;
14218 Visit(CO->getFalseExpr());
14219 }
14220
14221 Region = OldRegion;
14222 Tree.merge(ConditionRegion);
14223 Tree.merge(TrueRegion);
14224 Tree.merge(FalseRegion);
14225 }
14226
14227 void VisitCallExpr(const CallExpr *CE) {
14228 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
14229
14230 if (CE->isUnevaluatedBuiltinCall(Context))
14231 return;
14232
14233 // C++11 [intro.execution]p15:
14234 // When calling a function [...], every value computation and side effect
14235 // associated with any argument expression, or with the postfix expression
14236 // designating the called function, is sequenced before execution of every
14237 // expression or statement in the body of the function [and thus before
14238 // the value computation of its result].
14239 SequencedSubexpression Sequenced(*this);
14240 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
14241 // C++17 [expr.call]p5
14242 // The postfix-expression is sequenced before each expression in the
14243 // expression-list and any default argument. [...]
14244 SequenceTree::Seq CalleeRegion;
14245 SequenceTree::Seq OtherRegion;
14246 if (SemaRef.getLangOpts().CPlusPlus17) {
14247 CalleeRegion = Tree.allocate(Region);
14248 OtherRegion = Tree.allocate(Region);
14249 } else {
14250 CalleeRegion = Region;
14251 OtherRegion = Region;
14252 }
14253 SequenceTree::Seq OldRegion = Region;
14254
14255 // Visit the callee expression first.
14256 Region = CalleeRegion;
14257 if (SemaRef.getLangOpts().CPlusPlus17) {
14258 SequencedSubexpression Sequenced(*this);
14259 Visit(CE->getCallee());
14260 } else {
14261 Visit(CE->getCallee());
14262 }
14263
14264 // Then visit the argument expressions.
14265 Region = OtherRegion;
14266 for (const Expr *Argument : CE->arguments())
14267 Visit(Argument);
14268
14269 Region = OldRegion;
14270 if (SemaRef.getLangOpts().CPlusPlus17) {
14271 Tree.merge(CalleeRegion);
14272 Tree.merge(OtherRegion);
14273 }
14274 });
14275 }
14276
14277 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
14278 // C++17 [over.match.oper]p2:
14279 // [...] the operator notation is first transformed to the equivalent
14280 // function-call notation as summarized in Table 12 (where @ denotes one
14281 // of the operators covered in the specified subclause). However, the
14282 // operands are sequenced in the order prescribed for the built-in
14283 // operator (Clause 8).
14284 //
14285 // From the above only overloaded binary operators and overloaded call
14286 // operators have sequencing rules in C++17 that we need to handle
14287 // separately.
14288 if (!SemaRef.getLangOpts().CPlusPlus17 ||
14289 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
14290 return VisitCallExpr(CXXOCE);
14291
14292 enum {
14293 NoSequencing,
14294 LHSBeforeRHS,
14295 RHSBeforeLHS,
14296 LHSBeforeRest
14297 } SequencingKind;
14298 switch (CXXOCE->getOperator()) {
14299 case OO_Equal:
14300 case OO_PlusEqual:
14301 case OO_MinusEqual:
14302 case OO_StarEqual:
14303 case OO_SlashEqual:
14304 case OO_PercentEqual:
14305 case OO_CaretEqual:
14306 case OO_AmpEqual:
14307 case OO_PipeEqual:
14308 case OO_LessLessEqual:
14309 case OO_GreaterGreaterEqual:
14310 SequencingKind = RHSBeforeLHS;
14311 break;
14312
14313 case OO_LessLess:
14314 case OO_GreaterGreater:
14315 case OO_AmpAmp:
14316 case OO_PipePipe:
14317 case OO_Comma:
14318 case OO_ArrowStar:
14319 case OO_Subscript:
14320 SequencingKind = LHSBeforeRHS;
14321 break;
14322
14323 case OO_Call:
14324 SequencingKind = LHSBeforeRest;
14325 break;
14326
14327 default:
14328 SequencingKind = NoSequencing;
14329 break;
14330 }
14331
14332 if (SequencingKind == NoSequencing)
14333 return VisitCallExpr(CXXOCE);
14334
14335 // This is a call, so all subexpressions are sequenced before the result.
14336 SequencedSubexpression Sequenced(*this);
14337
14338 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
14339 assert(SemaRef.getLangOpts().CPlusPlus17 &&(static_cast <bool> (SemaRef.getLangOpts().CPlusPlus17 &&
"Should only get there with C++17 and above!") ? void (0) : __assert_fail
("SemaRef.getLangOpts().CPlusPlus17 && \"Should only get there with C++17 and above!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14340, __extension__ __PRETTY_FUNCTION__))
14340 "Should only get there with C++17 and above!")(static_cast <bool> (SemaRef.getLangOpts().CPlusPlus17 &&
"Should only get there with C++17 and above!") ? void (0) : __assert_fail
("SemaRef.getLangOpts().CPlusPlus17 && \"Should only get there with C++17 and above!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14340, __extension__ __PRETTY_FUNCTION__))
;
14341 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&(static_cast <bool> ((CXXOCE->getNumArgs() == 2 || CXXOCE
->getOperator() == OO_Call) && "Should only get there with an overloaded binary operator"
" or an overloaded call operator!") ? void (0) : __assert_fail
("(CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && \"Should only get there with an overloaded binary operator\" \" or an overloaded call operator!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14343, __extension__ __PRETTY_FUNCTION__))
14342 "Should only get there with an overloaded binary operator"(static_cast <bool> ((CXXOCE->getNumArgs() == 2 || CXXOCE
->getOperator() == OO_Call) && "Should only get there with an overloaded binary operator"
" or an overloaded call operator!") ? void (0) : __assert_fail
("(CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && \"Should only get there with an overloaded binary operator\" \" or an overloaded call operator!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14343, __extension__ __PRETTY_FUNCTION__))
14343 " or an overloaded call operator!")(static_cast <bool> ((CXXOCE->getNumArgs() == 2 || CXXOCE
->getOperator() == OO_Call) && "Should only get there with an overloaded binary operator"
" or an overloaded call operator!") ? void (0) : __assert_fail
("(CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && \"Should only get there with an overloaded binary operator\" \" or an overloaded call operator!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14343, __extension__ __PRETTY_FUNCTION__))
;
14344
14345 if (SequencingKind == LHSBeforeRest) {
14346 assert(CXXOCE->getOperator() == OO_Call &&(static_cast <bool> (CXXOCE->getOperator() == OO_Call
&& "We should only have an overloaded call operator here!"
) ? void (0) : __assert_fail ("CXXOCE->getOperator() == OO_Call && \"We should only have an overloaded call operator here!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14347, __extension__ __PRETTY_FUNCTION__))
14347 "We should only have an overloaded call operator here!")(static_cast <bool> (CXXOCE->getOperator() == OO_Call
&& "We should only have an overloaded call operator here!"
) ? void (0) : __assert_fail ("CXXOCE->getOperator() == OO_Call && \"We should only have an overloaded call operator here!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14347, __extension__ __PRETTY_FUNCTION__))
;
14348
14349 // This is very similar to VisitCallExpr, except that we only have the
14350 // C++17 case. The postfix-expression is the first argument of the
14351 // CXXOperatorCallExpr. The expressions in the expression-list, if any,
14352 // are in the following arguments.
14353 //
14354 // Note that we intentionally do not visit the callee expression since
14355 // it is just a decayed reference to a function.
14356 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
14357 SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
14358 SequenceTree::Seq OldRegion = Region;
14359
14360 assert(CXXOCE->getNumArgs() >= 1 &&(static_cast <bool> (CXXOCE->getNumArgs() >= 1 &&
"An overloaded call operator must have at least one argument"
" for the postfix-expression!") ? void (0) : __assert_fail (
"CXXOCE->getNumArgs() >= 1 && \"An overloaded call operator must have at least one argument\" \" for the postfix-expression!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14362, __extension__ __PRETTY_FUNCTION__))
14361 "An overloaded call operator must have at least one argument"(static_cast <bool> (CXXOCE->getNumArgs() >= 1 &&
"An overloaded call operator must have at least one argument"
" for the postfix-expression!") ? void (0) : __assert_fail (
"CXXOCE->getNumArgs() >= 1 && \"An overloaded call operator must have at least one argument\" \" for the postfix-expression!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14362, __extension__ __PRETTY_FUNCTION__))
14362 " for the postfix-expression!")(static_cast <bool> (CXXOCE->getNumArgs() >= 1 &&
"An overloaded call operator must have at least one argument"
" for the postfix-expression!") ? void (0) : __assert_fail (
"CXXOCE->getNumArgs() >= 1 && \"An overloaded call operator must have at least one argument\" \" for the postfix-expression!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14362, __extension__ __PRETTY_FUNCTION__))
;
14363 const Expr *PostfixExpr = CXXOCE->getArgs()[0];
14364 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
14365 CXXOCE->getNumArgs() - 1);
14366
14367 // Visit the postfix-expression first.
14368 {
14369 Region = PostfixExprRegion;
14370 SequencedSubexpression Sequenced(*this);
14371 Visit(PostfixExpr);
14372 }
14373
14374 // Then visit the argument expressions.
14375 Region = ArgsRegion;
14376 for (const Expr *Arg : Args)
14377 Visit(Arg);
14378
14379 Region = OldRegion;
14380 Tree.merge(PostfixExprRegion);
14381 Tree.merge(ArgsRegion);
14382 } else {
14383 assert(CXXOCE->getNumArgs() == 2 &&(static_cast <bool> (CXXOCE->getNumArgs() == 2 &&
"Should only have two arguments here!") ? void (0) : __assert_fail
("CXXOCE->getNumArgs() == 2 && \"Should only have two arguments here!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14384, __extension__ __PRETTY_FUNCTION__))
14384 "Should only have two arguments here!")(static_cast <bool> (CXXOCE->getNumArgs() == 2 &&
"Should only have two arguments here!") ? void (0) : __assert_fail
("CXXOCE->getNumArgs() == 2 && \"Should only have two arguments here!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14384, __extension__ __PRETTY_FUNCTION__))
;
14385 assert((SequencingKind == LHSBeforeRHS ||(static_cast <bool> ((SequencingKind == LHSBeforeRHS ||
SequencingKind == RHSBeforeLHS) && "Unexpected sequencing kind!"
) ? void (0) : __assert_fail ("(SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS) && \"Unexpected sequencing kind!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14387, __extension__ __PRETTY_FUNCTION__))
14386 SequencingKind == RHSBeforeLHS) &&(static_cast <bool> ((SequencingKind == LHSBeforeRHS ||
SequencingKind == RHSBeforeLHS) && "Unexpected sequencing kind!"
) ? void (0) : __assert_fail ("(SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS) && \"Unexpected sequencing kind!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14387, __extension__ __PRETTY_FUNCTION__))
14387 "Unexpected sequencing kind!")(static_cast <bool> ((SequencingKind == LHSBeforeRHS ||
SequencingKind == RHSBeforeLHS) && "Unexpected sequencing kind!"
) ? void (0) : __assert_fail ("(SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS) && \"Unexpected sequencing kind!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 14387, __extension__ __PRETTY_FUNCTION__))
;
14388
14389 // We do not visit the callee expression since it is just a decayed
14390 // reference to a function.
14391 const Expr *E1 = CXXOCE->getArg(0);
14392 const Expr *E2 = CXXOCE->getArg(1);
14393 if (SequencingKind == RHSBeforeLHS)
14394 std::swap(E1, E2);
14395
14396 return VisitSequencedExpressions(E1, E2);
14397 }
14398 });
14399 }
14400
14401 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
14402 // This is a call, so all subexpressions are sequenced before the result.
14403 SequencedSubexpression Sequenced(*this);
14404
14405 if (!CCE->isListInitialization())
14406 return VisitExpr(CCE);
14407
14408 // In C++11, list initializations are sequenced.
14409 SmallVector<SequenceTree::Seq, 32> Elts;
14410 SequenceTree::Seq Parent = Region;
14411 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
14412 E = CCE->arg_end();
14413 I != E; ++I) {
14414 Region = Tree.allocate(Parent);
14415 Elts.push_back(Region);
14416 Visit(*I);
14417 }
14418
14419 // Forget that the initializers are sequenced.
14420 Region = Parent;
14421 for (unsigned I = 0; I < Elts.size(); ++I)
14422 Tree.merge(Elts[I]);
14423 }
14424
14425 void VisitInitListExpr(const InitListExpr *ILE) {
14426 if (!SemaRef.getLangOpts().CPlusPlus11)
14427 return VisitExpr(ILE);
14428
14429 // In C++11, list initializations are sequenced.
14430 SmallVector<SequenceTree::Seq, 32> Elts;
14431 SequenceTree::Seq Parent = Region;
14432 for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
14433 const Expr *E = ILE->getInit(I);
14434 if (!E)
14435 continue;
14436 Region = Tree.allocate(Parent);
14437 Elts.push_back(Region);
14438 Visit(E);
14439 }
14440
14441 // Forget that the initializers are sequenced.
14442 Region = Parent;
14443 for (unsigned I = 0; I < Elts.size(); ++I)
14444 Tree.merge(Elts[I]);
14445 }
14446};
14447
14448} // namespace
14449
14450void Sema::CheckUnsequencedOperations(const Expr *E) {
14451 SmallVector<const Expr *, 8> WorkList;
14452 WorkList.push_back(E);
14453 while (!WorkList.empty()) {
14454 const Expr *Item = WorkList.pop_back_val();
14455 SequenceChecker(*this, Item, WorkList);
14456 }
14457}
14458
14459void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
14460 bool IsConstexpr) {
14461 llvm::SaveAndRestore<bool> ConstantContext(
14462 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
14463 CheckImplicitConversions(E, CheckLoc);
14464 if (!E->isInstantiationDependent())
14465 CheckUnsequencedOperations(E);
14466 if (!IsConstexpr && !E->isValueDependent())
14467 CheckForIntOverflow(E);
14468 DiagnoseMisalignedMembers();
14469}
14470
14471void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
14472 FieldDecl *BitField,
14473 Expr *Init) {
14474 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
14475}
14476
14477static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
14478 SourceLocation Loc) {
14479 if (!PType->isVariablyModifiedType())
14480 return;
14481 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
14482 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
14483 return;
14484 }
14485 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
14486 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
14487 return;
14488 }
14489 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
14490 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
14491 return;
14492 }
14493
14494 const ArrayType *AT = S.Context.getAsArrayType(PType);
14495 if (!AT)
14496 return;
14497
14498 if (AT->getSizeModifier() != ArrayType::Star) {
14499 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
14500 return;
14501 }
14502
14503 S.Diag(Loc, diag::err_array_star_in_function_definition);
14504}
14505
14506/// CheckParmsForFunctionDef - Check that the parameters of the given
14507/// function are appropriate for the definition of a function. This
14508/// takes care of any checks that cannot be performed on the
14509/// declaration itself, e.g., that the types of each of the function
14510/// parameters are complete.
14511bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
14512 bool CheckParameterNames) {
14513 bool HasInvalidParm = false;
14514 for (ParmVarDecl *Param : Parameters) {
14515 // C99 6.7.5.3p4: the parameters in a parameter type list in a
14516 // function declarator that is part of a function definition of
14517 // that function shall not have incomplete type.
14518 //
14519 // This is also C++ [dcl.fct]p6.
14520 if (!Param->isInvalidDecl() &&
14521 RequireCompleteType(Param->getLocation(), Param->getType(),
14522 diag::err_typecheck_decl_incomplete_type)) {
14523 Param->setInvalidDecl();
14524 HasInvalidParm = true;
14525 }
14526
14527 // C99 6.9.1p5: If the declarator includes a parameter type list, the
14528 // declaration of each parameter shall include an identifier.
14529 if (CheckParameterNames && Param->getIdentifier() == nullptr &&
14530 !Param->isImplicit() && !getLangOpts().CPlusPlus) {
14531 // Diagnose this as an extension in C17 and earlier.
14532 if (!getLangOpts().C2x)
14533 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
14534 }
14535
14536 // C99 6.7.5.3p12:
14537 // If the function declarator is not part of a definition of that
14538 // function, parameters may have incomplete type and may use the [*]
14539 // notation in their sequences of declarator specifiers to specify
14540 // variable length array types.
14541 QualType PType = Param->getOriginalType();
14542 // FIXME: This diagnostic should point the '[*]' if source-location
14543 // information is added for it.
14544 diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
14545
14546 // If the parameter is a c++ class type and it has to be destructed in the
14547 // callee function, declare the destructor so that it can be called by the
14548 // callee function. Do not perform any direct access check on the dtor here.
14549 if (!Param->isInvalidDecl()) {
14550 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
14551 if (!ClassDecl->isInvalidDecl() &&
14552 !ClassDecl->hasIrrelevantDestructor() &&
14553 !ClassDecl->isDependentContext() &&
14554 ClassDecl->isParamDestroyedInCallee()) {
14555 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
14556 MarkFunctionReferenced(Param->getLocation(), Destructor);
14557 DiagnoseUseOfDecl(Destructor, Param->getLocation());
14558 }
14559 }
14560 }
14561
14562 // Parameters with the pass_object_size attribute only need to be marked
14563 // constant at function definitions. Because we lack information about
14564 // whether we're on a declaration or definition when we're instantiating the
14565 // attribute, we need to check for constness here.
14566 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
14567 if (!Param->getType().isConstQualified())
14568 Diag(Param->getLocation(), diag::err_attribute_pointers_only)
14569 << Attr->getSpelling() << 1;
14570
14571 // Check for parameter names shadowing fields from the class.
14572 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
14573 // The owning context for the parameter should be the function, but we
14574 // want to see if this function's declaration context is a record.
14575 DeclContext *DC = Param->getDeclContext();
14576 if (DC && DC->isFunctionOrMethod()) {
14577 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
14578 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
14579 RD, /*DeclIsField*/ false);
14580 }
14581 }
14582 }
14583
14584 return HasInvalidParm;
14585}
14586
14587Optional<std::pair<CharUnits, CharUnits>>
14588static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
14589
14590/// Compute the alignment and offset of the base class object given the
14591/// derived-to-base cast expression and the alignment and offset of the derived
14592/// class object.
14593static std::pair<CharUnits, CharUnits>
14594getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
14595 CharUnits BaseAlignment, CharUnits Offset,
14596 ASTContext &Ctx) {
14597 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
14598 ++PathI) {
14599 const CXXBaseSpecifier *Base = *PathI;
14600 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
14601 if (Base->isVirtual()) {
14602 // The complete object may have a lower alignment than the non-virtual
14603 // alignment of the base, in which case the base may be misaligned. Choose
14604 // the smaller of the non-virtual alignment and BaseAlignment, which is a
14605 // conservative lower bound of the complete object alignment.
14606 CharUnits NonVirtualAlignment =
14607 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
14608 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
14609 Offset = CharUnits::Zero();
14610 } else {
14611 const ASTRecordLayout &RL =
14612 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
14613 Offset += RL.getBaseClassOffset(BaseDecl);
14614 }
14615 DerivedType = Base->getType();
14616 }
14617
14618 return std::make_pair(BaseAlignment, Offset);
14619}
14620
14621/// Compute the alignment and offset of a binary additive operator.
14622static Optional<std::pair<CharUnits, CharUnits>>
14623getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
14624 bool IsSub, ASTContext &Ctx) {
14625 QualType PointeeType = PtrE->getType()->getPointeeType();
14626
14627 if (!PointeeType->isConstantSizeType())
14628 return llvm::None;
14629
14630 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
14631
14632 if (!P)
14633 return llvm::None;
14634
14635 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
14636 if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
14637 CharUnits Offset = EltSize * IdxRes->getExtValue();
14638 if (IsSub)
14639 Offset = -Offset;
14640 return std::make_pair(P->first, P->second + Offset);
14641 }
14642
14643 // If the integer expression isn't a constant expression, compute the lower
14644 // bound of the alignment using the alignment and offset of the pointer
14645 // expression and the element size.
14646 return std::make_pair(
14647 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
14648 CharUnits::Zero());
14649}
14650
14651/// This helper function takes an lvalue expression and returns the alignment of
14652/// a VarDecl and a constant offset from the VarDecl.
14653Optional<std::pair<CharUnits, CharUnits>>
14654static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
14655 E = E->IgnoreParens();
14656 switch (E->getStmtClass()) {
14657 default:
14658 break;
14659 case Stmt::CStyleCastExprClass:
14660 case Stmt::CXXStaticCastExprClass:
14661 case Stmt::ImplicitCastExprClass: {
14662 auto *CE = cast<CastExpr>(E);
14663 const Expr *From = CE->getSubExpr();
14664 switch (CE->getCastKind()) {
14665 default:
14666 break;
14667 case CK_NoOp:
14668 return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14669 case CK_UncheckedDerivedToBase:
14670 case CK_DerivedToBase: {
14671 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14672 if (!P)
14673 break;
14674 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
14675 P->second, Ctx);
14676 }
14677 }
14678 break;
14679 }
14680 case Stmt::ArraySubscriptExprClass: {
14681 auto *ASE = cast<ArraySubscriptExpr>(E);
14682 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
14683 false, Ctx);
14684 }
14685 case Stmt::DeclRefExprClass: {
14686 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
14687 // FIXME: If VD is captured by copy or is an escaping __block variable,
14688 // use the alignment of VD's type.
14689 if (!VD->getType()->isReferenceType())
14690 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
14691 if (VD->hasInit())
14692 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
14693 }
14694 break;
14695 }
14696 case Stmt::MemberExprClass: {
14697 auto *ME = cast<MemberExpr>(E);
14698 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
14699 if (!FD || FD->getType()->isReferenceType() ||
14700 FD->getParent()->isInvalidDecl())
14701 break;
14702 Optional<std::pair<CharUnits, CharUnits>> P;
14703 if (ME->isArrow())
14704 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
14705 else
14706 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
14707 if (!P)
14708 break;
14709 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
14710 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
14711 return std::make_pair(P->first,
14712 P->second + CharUnits::fromQuantity(Offset));
14713 }
14714 case Stmt::UnaryOperatorClass: {
14715 auto *UO = cast<UnaryOperator>(E);
14716 switch (UO->getOpcode()) {
14717 default:
14718 break;
14719 case UO_Deref:
14720 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
14721 }
14722 break;
14723 }
14724 case Stmt::BinaryOperatorClass: {
14725 auto *BO = cast<BinaryOperator>(E);
14726 auto Opcode = BO->getOpcode();
14727 switch (Opcode) {
14728 default:
14729 break;
14730 case BO_Comma:
14731 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
14732 }
14733 break;
14734 }
14735 }
14736 return llvm::None;
14737}
14738
14739/// This helper function takes a pointer expression and returns the alignment of
14740/// a VarDecl and a constant offset from the VarDecl.
14741Optional<std::pair<CharUnits, CharUnits>>
14742static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
14743 E = E->IgnoreParens();
14744 switch (E->getStmtClass()) {
14745 default:
14746 break;
14747 case Stmt::CStyleCastExprClass:
14748 case Stmt::CXXStaticCastExprClass:
14749 case Stmt::ImplicitCastExprClass: {
14750 auto *CE = cast<CastExpr>(E);
14751 const Expr *From = CE->getSubExpr();
14752 switch (CE->getCastKind()) {
14753 default:
14754 break;
14755 case CK_NoOp:
14756 return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14757 case CK_ArrayToPointerDecay:
14758 return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14759 case CK_UncheckedDerivedToBase:
14760 case CK_DerivedToBase: {
14761 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14762 if (!P)
14763 break;
14764 return getDerivedToBaseAlignmentAndOffset(
14765 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
14766 }
14767 }
14768 break;
14769 }
14770 case Stmt::CXXThisExprClass: {
14771 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
14772 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
14773 return std::make_pair(Alignment, CharUnits::Zero());
14774 }
14775 case Stmt::UnaryOperatorClass: {
14776 auto *UO = cast<UnaryOperator>(E);
14777 if (UO->getOpcode() == UO_AddrOf)
14778 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
14779 break;
14780 }
14781 case Stmt::BinaryOperatorClass: {
14782 auto *BO = cast<BinaryOperator>(E);
14783 auto Opcode = BO->getOpcode();
14784 switch (Opcode) {
14785 default:
14786 break;
14787 case BO_Add:
14788 case BO_Sub: {
14789 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
14790 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
14791 std::swap(LHS, RHS);
14792 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
14793 Ctx);
14794 }
14795 case BO_Comma:
14796 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
14797 }
14798 break;
14799 }
14800 }
14801 return llvm::None;
14802}
14803
14804static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
14805 // See if we can compute the alignment of a VarDecl and an offset from it.
14806 Optional<std::pair<CharUnits, CharUnits>> P =
14807 getBaseAlignmentAndOffsetFromPtr(E, S.Context);
14808
14809 if (P)
14810 return P->first.alignmentAtOffset(P->second);
14811
14812 // If that failed, return the type's alignment.
14813 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
14814}
14815
14816/// CheckCastAlign - Implements -Wcast-align, which warns when a
14817/// pointer cast increases the alignment requirements.
14818void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
14819 // This is actually a lot of work to potentially be doing on every
14820 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
14821 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
14822 return;
14823
14824 // Ignore dependent types.
14825 if (T->isDependentType() || Op->getType()->isDependentType())
14826 return;
14827
14828 // Require that the destination be a pointer type.
14829 const PointerType *DestPtr = T->getAs<PointerType>();
14830 if (!DestPtr) return;
14831
14832 // If the destination has alignment 1, we're done.
14833 QualType DestPointee = DestPtr->getPointeeType();
14834 if (DestPointee->isIncompleteType()) return;
14835 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
14836 if (DestAlign.isOne()) return;
14837
14838 // Require that the source be a pointer type.
14839 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
14840 if (!SrcPtr) return;
14841 QualType SrcPointee = SrcPtr->getPointeeType();
14842
14843 // Explicitly allow casts from cv void*. We already implicitly
14844 // allowed casts to cv void*, since they have alignment 1.
14845 // Also allow casts involving incomplete types, which implicitly
14846 // includes 'void'.
14847 if (SrcPointee->isIncompleteType()) return;
14848
14849 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
14850
14851 if (SrcAlign >= DestAlign) return;
14852
14853 Diag(TRange.getBegin(), diag::warn_cast_align)
14854 << Op->getType() << T
14855 << static_cast<unsigned>(SrcAlign.getQuantity())
14856 << static_cast<unsigned>(DestAlign.getQuantity())
14857 << TRange << Op->getSourceRange();
14858}
14859
14860/// Check whether this array fits the idiom of a size-one tail padded
14861/// array member of a struct.
14862///
14863/// We avoid emitting out-of-bounds access warnings for such arrays as they are
14864/// commonly used to emulate flexible arrays in C89 code.
14865static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
14866 const NamedDecl *ND) {
14867 if (Size != 1 || !ND) return false;
14868
14869 const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
14870 if (!FD) return false;
14871
14872 // Don't consider sizes resulting from macro expansions or template argument
14873 // substitution to form C89 tail-padded arrays.
14874
14875 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
14876 while (TInfo) {
14877 TypeLoc TL = TInfo->getTypeLoc();
14878 // Look through typedefs.
14879 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
14880 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
14881 TInfo = TDL->getTypeSourceInfo();
14882 continue;
14883 }
14884 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
14885 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
14886 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
14887 return false;
14888 }
14889 break;
14890 }
14891
14892 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
14893 if (!RD) return false;
14894 if (RD->isUnion()) return false;
14895 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14896 if (!CRD->isStandardLayout()) return false;
14897 }
14898
14899 // See if this is the last field decl in the record.
14900 const Decl *D = FD;
14901 while ((D = D->getNextDeclInContext()))
14902 if (isa<FieldDecl>(D))
14903 return false;
14904 return true;
14905}
14906
14907void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
14908 const ArraySubscriptExpr *ASE,
14909 bool AllowOnePastEnd, bool IndexNegated) {
14910 // Already diagnosed by the constant evaluator.
14911 if (isConstantEvaluated())
14912 return;
14913
14914 IndexExpr = IndexExpr->IgnoreParenImpCasts();
14915 if (IndexExpr->isValueDependent())
14916 return;
14917
14918 const Type *EffectiveType =
14919 BaseExpr->getType()->getPointeeOrArrayElementType();
14920 BaseExpr = BaseExpr->IgnoreParenCasts();
14921 const ConstantArrayType *ArrayTy =
14922 Context.getAsConstantArrayType(BaseExpr->getType());
14923
14924 const Type *BaseType =
14925 ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
14926 bool IsUnboundedArray = (BaseType == nullptr);
14927 if (EffectiveType->isDependentType() ||
14928 (!IsUnboundedArray && BaseType->isDependentType()))
14929 return;
14930
14931 Expr::EvalResult Result;
14932 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
14933 return;
14934
14935 llvm::APSInt index = Result.Val.getInt();
14936 if (IndexNegated) {
14937 index.setIsUnsigned(false);
14938 index = -index;
14939 }
14940
14941 const NamedDecl *ND = nullptr;
14942 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14943 ND = DRE->getDecl();
14944 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14945 ND = ME->getMemberDecl();
14946
14947 if (IsUnboundedArray) {
14948 if (index.isUnsigned() || !index.isNegative()) {
14949 const auto &ASTC = getASTContext();
14950 unsigned AddrBits =
14951 ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace(
14952 EffectiveType->getCanonicalTypeInternal()));
14953 if (index.getBitWidth() < AddrBits)
14954 index = index.zext(AddrBits);
14955 Optional<CharUnits> ElemCharUnits =
14956 ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
14957 // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
14958 // pointer) bounds-checking isn't meaningful.
14959 if (!ElemCharUnits)
14960 return;
14961 llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
14962 // If index has more active bits than address space, we already know
14963 // we have a bounds violation to warn about. Otherwise, compute
14964 // address of (index + 1)th element, and warn about bounds violation
14965 // only if that address exceeds address space.
14966 if (index.getActiveBits() <= AddrBits) {
14967 bool Overflow;
14968 llvm::APInt Product(index);
14969 Product += 1;
14970 Product = Product.umul_ov(ElemBytes, Overflow);
14971 if (!Overflow && Product.getActiveBits() <= AddrBits)
14972 return;
14973 }
14974
14975 // Need to compute max possible elements in address space, since that
14976 // is included in diag message.
14977 llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
14978 MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
14979 MaxElems += 1;
14980 ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
14981 MaxElems = MaxElems.udiv(ElemBytes);
14982
14983 unsigned DiagID =
14984 ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
14985 : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
14986
14987 // Diag message shows element size in bits and in "bytes" (platform-
14988 // dependent CharUnits)
14989 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14990 PDiag(DiagID)
14991 << toString(index, 10, true) << AddrBits
14992 << (unsigned)ASTC.toBits(*ElemCharUnits)
14993 << toString(ElemBytes, 10, false)
14994 << toString(MaxElems, 10, false)
14995 << (unsigned)MaxElems.getLimitedValue(~0U)
14996 << IndexExpr->getSourceRange());
14997
14998 if (!ND) {
14999 // Try harder to find a NamedDecl to point at in the note.
15000 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15001 BaseExpr = ASE->getBase()->IgnoreParenCasts();
15002 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15003 ND = DRE->getDecl();
15004 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15005 ND = ME->getMemberDecl();
15006 }
15007
15008 if (ND)
15009 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15010 PDiag(diag::note_array_declared_here) << ND);
15011 }
15012 return;
15013 }
15014
15015 if (index.isUnsigned() || !index.isNegative()) {
15016 // It is possible that the type of the base expression after
15017 // IgnoreParenCasts is incomplete, even though the type of the base
15018 // expression before IgnoreParenCasts is complete (see PR39746 for an
15019 // example). In this case we have no information about whether the array
15020 // access exceeds the array bounds. However we can still diagnose an array
15021 // access which precedes the array bounds.
15022 if (BaseType->isIncompleteType())
15023 return;
15024
15025 llvm::APInt size = ArrayTy->getSize();
15026 if (!size.isStrictlyPositive())
15027 return;
15028
15029 if (BaseType != EffectiveType) {
15030 // Make sure we're comparing apples to apples when comparing index to size
15031 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
15032 uint64_t array_typesize = Context.getTypeSize(BaseType);
15033 // Handle ptrarith_typesize being zero, such as when casting to void*
15034 if (!ptrarith_typesize) ptrarith_typesize = 1;
15035 if (ptrarith_typesize != array_typesize) {
15036 // There's a cast to a different size type involved
15037 uint64_t ratio = array_typesize / ptrarith_typesize;
15038 // TODO: Be smarter about handling cases where array_typesize is not a
15039 // multiple of ptrarith_typesize
15040 if (ptrarith_typesize * ratio == array_typesize)
15041 size *= llvm::APInt(size.getBitWidth(), ratio);
15042 }
15043 }
15044
15045 if (size.getBitWidth() > index.getBitWidth())
15046 index = index.zext(size.getBitWidth());
15047 else if (size.getBitWidth() < index.getBitWidth())
15048 size = size.zext(index.getBitWidth());
15049
15050 // For array subscripting the index must be less than size, but for pointer
15051 // arithmetic also allow the index (offset) to be equal to size since
15052 // computing the next address after the end of the array is legal and
15053 // commonly done e.g. in C++ iterators and range-based for loops.
15054 if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
15055 return;
15056
15057 // Also don't warn for arrays of size 1 which are members of some
15058 // structure. These are often used to approximate flexible arrays in C89
15059 // code.
15060 if (IsTailPaddedMemberArray(*this, size, ND))
15061 return;
15062
15063 // Suppress the warning if the subscript expression (as identified by the
15064 // ']' location) and the index expression are both from macro expansions
15065 // within a system header.
15066 if (ASE) {
15067 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
15068 ASE->getRBracketLoc());
15069 if (SourceMgr.isInSystemHeader(RBracketLoc)) {
15070 SourceLocation IndexLoc =
15071 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
15072 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
15073 return;
15074 }
15075 }
15076
15077 unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
15078 : diag::warn_ptr_arith_exceeds_bounds;
15079
15080 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15081 PDiag(DiagID) << toString(index, 10, true)
15082 << toString(size, 10, true)
15083 << (unsigned)size.getLimitedValue(~0U)
15084 << IndexExpr->getSourceRange());
15085 } else {
15086 unsigned DiagID = diag::warn_array_index_precedes_bounds;
15087 if (!ASE) {
15088 DiagID = diag::warn_ptr_arith_precedes_bounds;
15089 if (index.isNegative()) index = -index;
15090 }
15091
15092 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15093 PDiag(DiagID) << toString(index, 10, true)
15094 << IndexExpr->getSourceRange());
15095 }
15096
15097 if (!ND) {
15098 // Try harder to find a NamedDecl to point at in the note.
15099 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15100 BaseExpr = ASE->getBase()->IgnoreParenCasts();
15101 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15102 ND = DRE->getDecl();
15103 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15104 ND = ME->getMemberDecl();
15105 }
15106
15107 if (ND)
15108 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15109 PDiag(diag::note_array_declared_here) << ND);
15110}
15111
15112void Sema::CheckArrayAccess(const Expr *expr) {
15113 int AllowOnePastEnd = 0;
15114 while (expr) {
15115 expr = expr->IgnoreParenImpCasts();
15116 switch (expr->getStmtClass()) {
15117 case Stmt::ArraySubscriptExprClass: {
15118 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
15119 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
15120 AllowOnePastEnd > 0);
15121 expr = ASE->getBase();
15122 break;
15123 }
15124 case Stmt::MemberExprClass: {
15125 expr = cast<MemberExpr>(expr)->getBase();
15126 break;
15127 }
15128 case Stmt::OMPArraySectionExprClass: {
15129 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
15130 if (ASE->getLowerBound())
15131 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
15132 /*ASE=*/nullptr, AllowOnePastEnd > 0);
15133 return;
15134 }
15135 case Stmt::UnaryOperatorClass: {
15136 // Only unwrap the * and & unary operators
15137 const UnaryOperator *UO = cast<UnaryOperator>(expr);
15138 expr = UO->getSubExpr();
15139 switch (UO->getOpcode()) {
15140 case UO_AddrOf:
15141 AllowOnePastEnd++;
15142 break;
15143 case UO_Deref:
15144 AllowOnePastEnd--;
15145 break;
15146 default:
15147 return;
15148 }
15149 break;
15150 }
15151 case Stmt::ConditionalOperatorClass: {
15152 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
15153 if (const Expr *lhs = cond->getLHS())
15154 CheckArrayAccess(lhs);
15155 if (const Expr *rhs = cond->getRHS())
15156 CheckArrayAccess(rhs);
15157 return;
15158 }
15159 case Stmt::CXXOperatorCallExprClass: {
15160 const auto *OCE = cast<CXXOperatorCallExpr>(expr);
15161 for (const auto *Arg : OCE->arguments())
15162 CheckArrayAccess(Arg);
15163 return;
15164 }
15165 default:
15166 return;
15167 }
15168 }
15169}
15170
15171//===--- CHECK: Objective-C retain cycles ----------------------------------//
15172
15173namespace {
15174
15175struct RetainCycleOwner {
15176 VarDecl *Variable = nullptr;
15177 SourceRange Range;
15178 SourceLocation Loc;
15179 bool Indirect = false;
15180
15181 RetainCycleOwner() = default;
15182
15183 void setLocsFrom(Expr *e) {
15184 Loc = e->getExprLoc();
15185 Range = e->getSourceRange();
15186 }
15187};
15188
15189} // namespace
15190
15191/// Consider whether capturing the given variable can possibly lead to
15192/// a retain cycle.
15193static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
15194 // In ARC, it's captured strongly iff the variable has __strong
15195 // lifetime. In MRR, it's captured strongly if the variable is
15196 // __block and has an appropriate type.
15197 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15198 return false;
15199
15200 owner.Variable = var;
15201 if (ref)
15202 owner.setLocsFrom(ref);
15203 return true;
15204}
15205
15206static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
15207 while (true) {
15208 e = e->IgnoreParens();
15209 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
15210 switch (cast->getCastKind()) {
15211 case CK_BitCast:
15212 case CK_LValueBitCast:
15213 case CK_LValueToRValue:
15214 case CK_ARCReclaimReturnedObject:
15215 e = cast->getSubExpr();
15216 continue;
15217
15218 default:
15219 return false;
15220 }
15221 }
15222
15223 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
15224 ObjCIvarDecl *ivar = ref->getDecl();
15225 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15226 return false;
15227
15228 // Try to find a retain cycle in the base.
15229 if (!findRetainCycleOwner(S, ref->getBase(), owner))
15230 return false;
15231
15232 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
15233 owner.Indirect = true;
15234 return true;
15235 }
15236
15237 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
15238 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
15239 if (!var) return false;
15240 return considerVariable(var, ref, owner);
15241 }
15242
15243 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
15244 if (member->isArrow()) return false;
15245
15246 // Don't count this as an indirect ownership.
15247 e = member->getBase();
15248 continue;
15249 }
15250
15251 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
15252 // Only pay attention to pseudo-objects on property references.
15253 ObjCPropertyRefExpr *pre
15254 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
15255 ->IgnoreParens());
15256 if (!pre) return false;
15257 if (pre->isImplicitProperty()) return false;
15258 ObjCPropertyDecl *property = pre->getExplicitProperty();
15259 if (!property->isRetaining() &&
15260 !(property->getPropertyIvarDecl() &&
15261 property->getPropertyIvarDecl()->getType()
15262 .getObjCLifetime() == Qualifiers::OCL_Strong))
15263 return false;
15264
15265 owner.Indirect = true;
15266 if (pre->isSuperReceiver()) {
15267 owner.Variable = S.getCurMethodDecl()->getSelfDecl();
15268 if (!owner.Variable)
15269 return false;
15270 owner.Loc = pre->getLocation();
15271 owner.Range = pre->getSourceRange();
15272 return true;
15273 }
15274 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
15275 ->getSourceExpr());
15276 continue;
15277 }
15278
15279 // Array ivars?
15280
15281 return false;
15282 }
15283}
15284
15285namespace {
15286
15287 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
15288 ASTContext &Context;
15289 VarDecl *Variable;
15290 Expr *Capturer = nullptr;
15291 bool VarWillBeReased = false;
15292
15293 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
15294 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
15295 Context(Context), Variable(variable) {}
15296
15297 void VisitDeclRefExpr(DeclRefExpr *ref) {
15298 if (ref->getDecl() == Variable && !Capturer)
15299 Capturer = ref;
15300 }
15301
15302 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
15303 if (Capturer) return;
15304 Visit(ref->getBase());
15305 if (Capturer && ref->isFreeIvar())
15306 Capturer = ref;
15307 }
15308
15309 void VisitBlockExpr(BlockExpr *block) {
15310 // Look inside nested blocks
15311 if (block->getBlockDecl()->capturesVariable(Variable))
15312 Visit(block->getBlockDecl()->getBody());
15313 }
15314
15315 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
15316 if (Capturer) return;
15317 if (OVE->getSourceExpr())
15318 Visit(OVE->getSourceExpr());
15319 }
15320
15321 void VisitBinaryOperator(BinaryOperator *BinOp) {
15322 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
15323 return;
15324 Expr *LHS = BinOp->getLHS();
15325 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
15326 if (DRE->getDecl() != Variable)
15327 return;
15328 if (Expr *RHS = BinOp->getRHS()) {
15329 RHS = RHS->IgnoreParenCasts();
15330 Optional<llvm::APSInt> Value;
15331 VarWillBeReased =
15332 (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
15333 *Value == 0);
15334 }
15335 }
15336 }
15337 };
15338
15339} // namespace
15340
15341/// Check whether the given argument is a block which captures a
15342/// variable.
15343static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
15344 assert(owner.Variable && owner.Loc.isValid())(static_cast <bool> (owner.Variable && owner.Loc
.isValid()) ? void (0) : __assert_fail ("owner.Variable && owner.Loc.isValid()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 15344, __extension__ __PRETTY_FUNCTION__))
;
15345
15346 e = e->IgnoreParenCasts();
15347
15348 // Look through [^{...} copy] and Block_copy(^{...}).
15349 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
15350 Selector Cmd = ME->getSelector();
15351 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
15352 e = ME->getInstanceReceiver();
15353 if (!e)
15354 return nullptr;
15355 e = e->IgnoreParenCasts();
15356 }
15357 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
15358 if (CE->getNumArgs() == 1) {
15359 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
15360 if (Fn) {
15361 const IdentifierInfo *FnI = Fn->getIdentifier();
15362 if (FnI && FnI->isStr("_Block_copy")) {
15363 e = CE->getArg(0)->IgnoreParenCasts();
15364 }
15365 }
15366 }
15367 }
15368
15369 BlockExpr *block = dyn_cast<BlockExpr>(e);
15370 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
15371 return nullptr;
15372
15373 FindCaptureVisitor visitor(S.Context, owner.Variable);
15374 visitor.Visit(block->getBlockDecl()->getBody());
15375 return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
15376}
15377
15378static void diagnoseRetainCycle(Sema &S, Expr *capturer,
15379 RetainCycleOwner &owner) {
15380 assert(capturer)(static_cast <bool> (capturer) ? void (0) : __assert_fail
("capturer", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 15380, __extension__ __PRETTY_FUNCTION__))
;
15381 assert(owner.Variable && owner.Loc.isValid())(static_cast <bool> (owner.Variable && owner.Loc
.isValid()) ? void (0) : __assert_fail ("owner.Variable && owner.Loc.isValid()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 15381, __extension__ __PRETTY_FUNCTION__))
;
15382
15383 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
15384 << owner.Variable << capturer->getSourceRange();
15385 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
15386 << owner.Indirect << owner.Range;
15387}
15388
15389/// Check for a keyword selector that starts with the word 'add' or
15390/// 'set'.
15391static bool isSetterLikeSelector(Selector sel) {
15392 if (sel.isUnarySelector()) return false;
15393
15394 StringRef str = sel.getNameForSlot(0);
15395 while (!str.empty() && str.front() == '_') str = str.substr(1);
15396 if (str.startswith("set"))
15397 str = str.substr(3);
15398 else if (str.startswith("add")) {
15399 // Specially allow 'addOperationWithBlock:'.
15400 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
15401 return false;
15402 str = str.substr(3);
15403 }
15404 else
15405 return false;
15406
15407 if (str.empty()) return true;
15408 return !isLowercase(str.front());
15409}
15410
15411static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
15412 ObjCMessageExpr *Message) {
15413 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
15414 Message->getReceiverInterface(),
15415 NSAPI::ClassId_NSMutableArray);
15416 if (!IsMutableArray) {
15417 return None;
15418 }
15419
15420 Selector Sel = Message->getSelector();
15421
15422 Optional<NSAPI::NSArrayMethodKind> MKOpt =
15423 S.NSAPIObj->getNSArrayMethodKind(Sel);
15424 if (!MKOpt) {
15425 return None;
15426 }
15427
15428 NSAPI::NSArrayMethodKind MK = *MKOpt;
15429
15430 switch (MK) {
15431 case NSAPI::NSMutableArr_addObject:
15432 case NSAPI::NSMutableArr_insertObjectAtIndex:
15433 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
15434 return 0;
15435 case NSAPI::NSMutableArr_replaceObjectAtIndex:
15436 return 1;
15437
15438 default:
15439 return None;
15440 }
15441
15442 return None;
15443}
15444
15445static
15446Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
15447 ObjCMessageExpr *Message) {
15448 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
15449 Message->getReceiverInterface(),
15450 NSAPI::ClassId_NSMutableDictionary);
15451 if (!IsMutableDictionary) {
15452 return None;
15453 }
15454
15455 Selector Sel = Message->getSelector();
15456
15457 Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
15458 S.NSAPIObj->getNSDictionaryMethodKind(Sel);
15459 if (!MKOpt) {
15460 return None;
15461 }
15462
15463 NSAPI::NSDictionaryMethodKind MK = *MKOpt;
15464
15465 switch (MK) {
15466 case NSAPI::NSMutableDict_setObjectForKey:
15467 case NSAPI::NSMutableDict_setValueForKey:
15468 case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
15469 return 0;
15470
15471 default:
15472 return None;
15473 }
15474
15475 return None;
15476}
15477
15478static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
15479 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
15480 Message->getReceiverInterface(),
15481 NSAPI::ClassId_NSMutableSet);
15482
15483 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
15484 Message->getReceiverInterface(),
15485 NSAPI::ClassId_NSMutableOrderedSet);
15486 if (!IsMutableSet && !IsMutableOrderedSet) {
15487 return None;
15488 }
15489
15490 Selector Sel = Message->getSelector();
15491
15492 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
15493 if (!MKOpt) {
15494 return None;
15495 }
15496
15497 NSAPI::NSSetMethodKind MK = *MKOpt;
15498
15499 switch (MK) {
15500 case NSAPI::NSMutableSet_addObject:
15501 case NSAPI::NSOrderedSet_setObjectAtIndex:
15502 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
15503 case NSAPI::NSOrderedSet_insertObjectAtIndex:
15504 return 0;
15505 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
15506 return 1;
15507 }
15508
15509 return None;
15510}
15511
15512void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
15513 if (!Message->isInstanceMessage()) {
15514 return;
15515 }
15516
15517 Optional<int> ArgOpt;
15518
15519 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
15520 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
15521 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
15522 return;
15523 }
15524
15525 int ArgIndex = *ArgOpt;
15526
15527 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
15528 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
15529 Arg = OE->getSourceExpr()->IgnoreImpCasts();
15530 }
15531
15532 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
15533 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15534 if (ArgRE->isObjCSelfExpr()) {
15535 Diag(Message->getSourceRange().getBegin(),
15536 diag::warn_objc_circular_container)
15537 << ArgRE->getDecl() << StringRef("'super'");
15538 }
15539 }
15540 } else {
15541 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
15542
15543 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
15544 Receiver = OE->getSourceExpr()->IgnoreImpCasts();
15545 }
15546
15547 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
15548 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15549 if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
15550 ValueDecl *Decl = ReceiverRE->getDecl();
15551 Diag(Message->getSourceRange().getBegin(),
15552 diag::warn_objc_circular_container)
15553 << Decl << Decl;
15554 if (!ArgRE->isObjCSelfExpr()) {
15555 Diag(Decl->getLocation(),
15556 diag::note_objc_circular_container_declared_here)
15557 << Decl;
15558 }
15559 }
15560 }
15561 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
15562 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
15563 if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
15564 ObjCIvarDecl *Decl = IvarRE->getDecl();
15565 Diag(Message->getSourceRange().getBegin(),
15566 diag::warn_objc_circular_container)
15567 << Decl << Decl;
15568 Diag(Decl->getLocation(),
15569 diag::note_objc_circular_container_declared_here)
15570 << Decl;
15571 }
15572 }
15573 }
15574 }
15575}
15576
15577/// Check a message send to see if it's likely to cause a retain cycle.
15578void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
15579 // Only check instance methods whose selector looks like a setter.
15580 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
15581 return;
15582
15583 // Try to find a variable that the receiver is strongly owned by.
15584 RetainCycleOwner owner;
15585 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
15586 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
15587 return;
15588 } else {
15589 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance)(static_cast <bool> (msg->getReceiverKind() == ObjCMessageExpr
::SuperInstance) ? void (0) : __assert_fail ("msg->getReceiverKind() == ObjCMessageExpr::SuperInstance"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 15589, __extension__ __PRETTY_FUNCTION__))
;
15590 owner.Variable = getCurMethodDecl()->getSelfDecl();
15591 owner.Loc = msg->getSuperLoc();
15592 owner.Range = msg->getSuperLoc();
15593 }
15594
15595 // Check whether the receiver is captured by any of the arguments.
15596 const ObjCMethodDecl *MD = msg->getMethodDecl();
15597 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
15598 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
15599 // noescape blocks should not be retained by the method.
15600 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
15601 continue;
15602 return diagnoseRetainCycle(*this, capturer, owner);
15603 }
15604 }
15605}
15606
15607/// Check a property assign to see if it's likely to cause a retain cycle.
15608void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
15609 RetainCycleOwner owner;
15610 if (!findRetainCycleOwner(*this, receiver, owner))
15611 return;
15612
15613 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
15614 diagnoseRetainCycle(*this, capturer, owner);
15615}
15616
15617void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
15618 RetainCycleOwner Owner;
15619 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
15620 return;
15621
15622 // Because we don't have an expression for the variable, we have to set the
15623 // location explicitly here.
15624 Owner.Loc = Var->getLocation();
15625 Owner.Range = Var->getSourceRange();
15626
15627 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
15628 diagnoseRetainCycle(*this, Capturer, Owner);
15629}
15630
15631static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
15632 Expr *RHS, bool isProperty) {
15633 // Check if RHS is an Objective-C object literal, which also can get
15634 // immediately zapped in a weak reference. Note that we explicitly
15635 // allow ObjCStringLiterals, since those are designed to never really die.
15636 RHS = RHS->IgnoreParenImpCasts();
15637
15638 // This enum needs to match with the 'select' in
15639 // warn_objc_arc_literal_assign (off-by-1).
15640 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
15641 if (Kind == Sema::LK_String || Kind == Sema::LK_None)
15642 return false;
15643
15644 S.Diag(Loc, diag::warn_arc_literal_assign)
15645 << (unsigned) Kind
15646 << (isProperty ? 0 : 1)
15647 << RHS->getSourceRange();
15648
15649 return true;
15650}
15651
15652static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
15653 Qualifiers::ObjCLifetime LT,
15654 Expr *RHS, bool isProperty) {
15655 // Strip off any implicit cast added to get to the one ARC-specific.
15656 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15657 if (cast->getCastKind() == CK_ARCConsumeObject) {
15658 S.Diag(Loc, diag::warn_arc_retained_assign)
15659 << (LT == Qualifiers::OCL_ExplicitNone)
15660 << (isProperty ? 0 : 1)
15661 << RHS->getSourceRange();
15662 return true;
15663 }
15664 RHS = cast->getSubExpr();
15665 }
15666
15667 if (LT == Qualifiers::OCL_Weak &&
15668 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
15669 return true;
15670
15671 return false;
15672}
15673
15674bool Sema::checkUnsafeAssigns(SourceLocation Loc,
15675 QualType LHS, Expr *RHS) {
15676 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
15677
15678 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
15679 return false;
15680
15681 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
15682 return true;
15683
15684 return false;
15685}
15686
15687void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
15688 Expr *LHS, Expr *RHS) {
15689 QualType LHSType;
15690 // PropertyRef on LHS type need be directly obtained from
15691 // its declaration as it has a PseudoType.
15692 ObjCPropertyRefExpr *PRE
15693 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
15694 if (PRE && !PRE->isImplicitProperty()) {
15695 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15696 if (PD)
15697 LHSType = PD->getType();
15698 }
15699
15700 if (LHSType.isNull())
15701 LHSType = LHS->getType();
15702
15703 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
15704
15705 if (LT == Qualifiers::OCL_Weak) {
15706 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
15707 getCurFunction()->markSafeWeakUse(LHS);
15708 }
15709
15710 if (checkUnsafeAssigns(Loc, LHSType, RHS))
15711 return;
15712
15713 // FIXME. Check for other life times.
15714 if (LT != Qualifiers::OCL_None)
15715 return;
15716
15717 if (PRE) {
15718 if (PRE->isImplicitProperty())
15719 return;
15720 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15721 if (!PD)
15722 return;
15723
15724 unsigned Attributes = PD->getPropertyAttributes();
15725 if (Attributes & ObjCPropertyAttribute::kind_assign) {
15726 // when 'assign' attribute was not explicitly specified
15727 // by user, ignore it and rely on property type itself
15728 // for lifetime info.
15729 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
15730 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
15731 LHSType->isObjCRetainableType())
15732 return;
15733
15734 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15735 if (cast->getCastKind() == CK_ARCConsumeObject) {
15736 Diag(Loc, diag::warn_arc_retained_property_assign)
15737 << RHS->getSourceRange();
15738 return;
15739 }
15740 RHS = cast->getSubExpr();
15741 }
15742 } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
15743 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
15744 return;
15745 }
15746 }
15747}
15748
15749//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
15750
15751static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
15752 SourceLocation StmtLoc,
15753 const NullStmt *Body) {
15754 // Do not warn if the body is a macro that expands to nothing, e.g:
15755 //
15756 // #define CALL(x)
15757 // if (condition)
15758 // CALL(0);
15759 if (Body->hasLeadingEmptyMacro())
15760 return false;
15761
15762 // Get line numbers of statement and body.
15763 bool StmtLineInvalid;
15764 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
15765 &StmtLineInvalid);
15766 if (StmtLineInvalid)
15767 return false;
15768
15769 bool BodyLineInvalid;
15770 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
15771 &BodyLineInvalid);
15772 if (BodyLineInvalid)
15773 return false;
15774
15775 // Warn if null statement and body are on the same line.
15776 if (StmtLine != BodyLine)
15777 return false;
15778
15779 return true;
15780}
15781
15782void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
15783 const Stmt *Body,
15784 unsigned DiagID) {
15785 // Since this is a syntactic check, don't emit diagnostic for template
15786 // instantiations, this just adds noise.
15787 if (CurrentInstantiationScope)
15788 return;
15789
15790 // The body should be a null statement.
15791 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15792 if (!NBody)
15793 return;
15794
15795 // Do the usual checks.
15796 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15797 return;
15798
15799 Diag(NBody->getSemiLoc(), DiagID);
15800 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15801}
15802
15803void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
15804 const Stmt *PossibleBody) {
15805 assert(!CurrentInstantiationScope)(static_cast <bool> (!CurrentInstantiationScope) ? void
(0) : __assert_fail ("!CurrentInstantiationScope", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 15805, __extension__ __PRETTY_FUNCTION__))
; // Ensured by caller
15806
15807 SourceLocation StmtLoc;
15808 const Stmt *Body;
15809 unsigned DiagID;
15810 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
15811 StmtLoc = FS->getRParenLoc();
15812 Body = FS->getBody();
15813 DiagID = diag::warn_empty_for_body;
15814 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
15815 StmtLoc = WS->getCond()->getSourceRange().getEnd();
15816 Body = WS->getBody();
15817 DiagID = diag::warn_empty_while_body;
15818 } else
15819 return; // Neither `for' nor `while'.
15820
15821 // The body should be a null statement.
15822 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15823 if (!NBody)
15824 return;
15825
15826 // Skip expensive checks if diagnostic is disabled.
15827 if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
15828 return;
15829
15830 // Do the usual checks.
15831 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15832 return;
15833
15834 // `for(...);' and `while(...);' are popular idioms, so in order to keep
15835 // noise level low, emit diagnostics only if for/while is followed by a
15836 // CompoundStmt, e.g.:
15837 // for (int i = 0; i < n; i++);
15838 // {
15839 // a(i);
15840 // }
15841 // or if for/while is followed by a statement with more indentation
15842 // than for/while itself:
15843 // for (int i = 0; i < n; i++);
15844 // a(i);
15845 bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
15846 if (!ProbableTypo) {
15847 bool BodyColInvalid;
15848 unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
15849 PossibleBody->getBeginLoc(), &BodyColInvalid);
15850 if (BodyColInvalid)
15851 return;
15852
15853 bool StmtColInvalid;
15854 unsigned StmtCol =
15855 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
15856 if (StmtColInvalid)
15857 return;
15858
15859 if (BodyCol > StmtCol)
15860 ProbableTypo = true;
15861 }
15862
15863 if (ProbableTypo) {
15864 Diag(NBody->getSemiLoc(), DiagID);
15865 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15866 }
15867}
15868
15869//===--- CHECK: Warn on self move with std::move. -------------------------===//
15870
15871/// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
15872void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
15873 SourceLocation OpLoc) {
15874 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
15875 return;
15876
15877 if (inTemplateInstantiation())
15878 return;
15879
15880 // Strip parens and casts away.
15881 LHSExpr = LHSExpr->IgnoreParenImpCasts();
15882 RHSExpr = RHSExpr->IgnoreParenImpCasts();
15883
15884 // Check for a call expression
15885 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
15886 if (!CE || CE->getNumArgs() != 1)
15887 return;
15888
15889 // Check for a call to std::move
15890 if (!CE->isCallToStdMove())
15891 return;
15892
15893 // Get argument from std::move
15894 RHSExpr = CE->getArg(0);
15895
15896 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15897 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15898
15899 // Two DeclRefExpr's, check that the decls are the same.
15900 if (LHSDeclRef && RHSDeclRef) {
15901 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15902 return;
15903 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15904 RHSDeclRef->getDecl()->getCanonicalDecl())
15905 return;
15906
15907 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15908 << LHSExpr->getSourceRange()
15909 << RHSExpr->getSourceRange();
15910 return;
15911 }
15912
15913 // Member variables require a different approach to check for self moves.
15914 // MemberExpr's are the same if every nested MemberExpr refers to the same
15915 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
15916 // the base Expr's are CXXThisExpr's.
15917 const Expr *LHSBase = LHSExpr;
15918 const Expr *RHSBase = RHSExpr;
15919 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
15920 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
15921 if (!LHSME || !RHSME)
15922 return;
15923
15924 while (LHSME && RHSME) {
15925 if (LHSME->getMemberDecl()->getCanonicalDecl() !=
15926 RHSME->getMemberDecl()->getCanonicalDecl())
15927 return;
15928
15929 LHSBase = LHSME->getBase();
15930 RHSBase = RHSME->getBase();
15931 LHSME = dyn_cast<MemberExpr>(LHSBase);
15932 RHSME = dyn_cast<MemberExpr>(RHSBase);
15933 }
15934
15935 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
15936 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
15937 if (LHSDeclRef && RHSDeclRef) {
15938 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15939 return;
15940 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15941 RHSDeclRef->getDecl()->getCanonicalDecl())
15942 return;
15943
15944 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15945 << LHSExpr->getSourceRange()
15946 << RHSExpr->getSourceRange();
15947 return;
15948 }
15949
15950 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
15951 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15952 << LHSExpr->getSourceRange()
15953 << RHSExpr->getSourceRange();
15954}
15955
15956//===--- Layout compatibility ----------------------------------------------//
15957
15958static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
15959
15960/// Check if two enumeration types are layout-compatible.
15961static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
15962 // C++11 [dcl.enum] p8:
15963 // Two enumeration types are layout-compatible if they have the same
15964 // underlying type.
15965 return ED1->isComplete() && ED2->isComplete() &&
15966 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
15967}
15968
15969/// Check if two fields are layout-compatible.
15970static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
15971 FieldDecl *Field2) {
15972 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
15973 return false;
15974
15975 if (Field1->isBitField() != Field2->isBitField())
15976 return false;
15977
15978 if (Field1->isBitField()) {
15979 // Make sure that the bit-fields are the same length.
15980 unsigned Bits1 = Field1->getBitWidthValue(C);
15981 unsigned Bits2 = Field2->getBitWidthValue(C);
15982
15983 if (Bits1 != Bits2)
15984 return false;
15985 }
15986
15987 return true;
15988}
15989
15990/// Check if two standard-layout structs are layout-compatible.
15991/// (C++11 [class.mem] p17)
15992static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
15993 RecordDecl *RD2) {
15994 // If both records are C++ classes, check that base classes match.
15995 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
15996 // If one of records is a CXXRecordDecl we are in C++ mode,
15997 // thus the other one is a CXXRecordDecl, too.
15998 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
15999 // Check number of base classes.
16000 if (D1CXX->getNumBases() != D2CXX->getNumBases())
16001 return false;
16002
16003 // Check the base classes.
16004 for (CXXRecordDecl::base_class_const_iterator
16005 Base1 = D1CXX->bases_begin(),
16006 BaseEnd1 = D1CXX->bases_end(),
16007 Base2 = D2CXX->bases_begin();
16008 Base1 != BaseEnd1;
16009 ++Base1, ++Base2) {
16010 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
16011 return false;
16012 }
16013 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
16014 // If only RD2 is a C++ class, it should have zero base classes.
16015 if (D2CXX->getNumBases() > 0)
16016 return false;
16017 }
16018
16019 // Check the fields.
16020 RecordDecl::field_iterator Field2 = RD2->field_begin(),
16021 Field2End = RD2->field_end(),
16022 Field1 = RD1->field_begin(),
16023 Field1End = RD1->field_end();
16024 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
16025 if (!isLayoutCompatible(C, *Field1, *Field2))
16026 return false;
16027 }
16028 if (Field1 != Field1End || Field2 != Field2End)
16029 return false;
16030
16031 return true;
16032}
16033
16034/// Check if two standard-layout unions are layout-compatible.
16035/// (C++11 [class.mem] p18)
16036static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
16037 RecordDecl *RD2) {
16038 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
16039 for (auto *Field2 : RD2->fields())
16040 UnmatchedFields.insert(Field2);
16041
16042 for (auto *Field1 : RD1->fields()) {
16043 llvm::SmallPtrSet<FieldDecl *, 8>::iterator
16044 I = UnmatchedFields.begin(),
16045 E = UnmatchedFields.end();
16046
16047 for ( ; I != E; ++I) {
16048 if (isLayoutCompatible(C, Field1, *I)) {
16049 bool Result = UnmatchedFields.erase(*I);
16050 (void) Result;
16051 assert(Result)(static_cast <bool> (Result) ? void (0) : __assert_fail
("Result", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 16051, __extension__ __PRETTY_FUNCTION__))
;
16052 break;
16053 }
16054 }
16055 if (I == E)
16056 return false;
16057 }
16058
16059 return UnmatchedFields.empty();
16060}
16061
16062static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
16063 RecordDecl *RD2) {
16064 if (RD1->isUnion() != RD2->isUnion())
16065 return false;
16066
16067 if (RD1->isUnion())
16068 return isLayoutCompatibleUnion(C, RD1, RD2);
16069 else
16070 return isLayoutCompatibleStruct(C, RD1, RD2);
16071}
16072
16073/// Check if two types are layout-compatible in C++11 sense.
16074static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
16075 if (T1.isNull() || T2.isNull())
16076 return false;
16077
16078 // C++11 [basic.types] p11:
16079 // If two types T1 and T2 are the same type, then T1 and T2 are
16080 // layout-compatible types.
16081 if (C.hasSameType(T1, T2))
16082 return true;
16083
16084 T1 = T1.getCanonicalType().getUnqualifiedType();
16085 T2 = T2.getCanonicalType().getUnqualifiedType();
16086
16087 const Type::TypeClass TC1 = T1->getTypeClass();
16088 const Type::TypeClass TC2 = T2->getTypeClass();
16089
16090 if (TC1 != TC2)
16091 return false;
16092
16093 if (TC1 == Type::Enum) {
16094 return isLayoutCompatible(C,
16095 cast<EnumType>(T1)->getDecl(),
16096 cast<EnumType>(T2)->getDecl());
16097 } else if (TC1 == Type::Record) {
16098 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
16099 return false;
16100
16101 return isLayoutCompatible(C,
16102 cast<RecordType>(T1)->getDecl(),
16103 cast<RecordType>(T2)->getDecl());
16104 }
16105
16106 return false;
16107}
16108
16109//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
16110
16111/// Given a type tag expression find the type tag itself.
16112///
16113/// \param TypeExpr Type tag expression, as it appears in user's code.
16114///
16115/// \param VD Declaration of an identifier that appears in a type tag.
16116///
16117/// \param MagicValue Type tag magic value.
16118///
16119/// \param isConstantEvaluated whether the evalaution should be performed in
16120
16121/// constant context.
16122static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
16123 const ValueDecl **VD, uint64_t *MagicValue,
16124 bool isConstantEvaluated) {
16125 while(true) {
16126 if (!TypeExpr)
16127 return false;
16128
16129 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
16130
16131 switch (TypeExpr->getStmtClass()) {
16132 case Stmt::UnaryOperatorClass: {
16133 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
16134 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
16135 TypeExpr = UO->getSubExpr();
16136 continue;
16137 }
16138 return false;
16139 }
16140
16141 case Stmt::DeclRefExprClass: {
16142 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
16143 *VD = DRE->getDecl();
16144 return true;
16145 }
16146
16147 case Stmt::IntegerLiteralClass: {
16148 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
16149 llvm::APInt MagicValueAPInt = IL->getValue();
16150 if (MagicValueAPInt.getActiveBits() <= 64) {
16151 *MagicValue = MagicValueAPInt.getZExtValue();
16152 return true;
16153 } else
16154 return false;
16155 }
16156
16157 case Stmt::BinaryConditionalOperatorClass:
16158 case Stmt::ConditionalOperatorClass: {
16159 const AbstractConditionalOperator *ACO =
16160 cast<AbstractConditionalOperator>(TypeExpr);
16161 bool Result;
16162 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
16163 isConstantEvaluated)) {
16164 if (Result)
16165 TypeExpr = ACO->getTrueExpr();
16166 else
16167 TypeExpr = ACO->getFalseExpr();
16168 continue;
16169 }
16170 return false;
16171 }
16172
16173 case Stmt::BinaryOperatorClass: {
16174 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
16175 if (BO->getOpcode() == BO_Comma) {
16176 TypeExpr = BO->getRHS();
16177 continue;
16178 }
16179 return false;
16180 }
16181
16182 default:
16183 return false;
16184 }
16185 }
16186}
16187
16188/// Retrieve the C type corresponding to type tag TypeExpr.
16189///
16190/// \param TypeExpr Expression that specifies a type tag.
16191///
16192/// \param MagicValues Registered magic values.
16193///
16194/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
16195/// kind.
16196///
16197/// \param TypeInfo Information about the corresponding C type.
16198///
16199/// \param isConstantEvaluated whether the evalaution should be performed in
16200/// constant context.
16201///
16202/// \returns true if the corresponding C type was found.
16203static bool GetMatchingCType(
16204 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
16205 const ASTContext &Ctx,
16206 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
16207 *MagicValues,
16208 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
16209 bool isConstantEvaluated) {
16210 FoundWrongKind = false;
16211
16212 // Variable declaration that has type_tag_for_datatype attribute.
16213 const ValueDecl *VD = nullptr;
16214
16215 uint64_t MagicValue;
16216
16217 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
16218 return false;
16219
16220 if (VD) {
16221 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
16222 if (I->getArgumentKind() != ArgumentKind) {
16223 FoundWrongKind = true;
16224 return false;
16225 }
16226 TypeInfo.Type = I->getMatchingCType();
16227 TypeInfo.LayoutCompatible = I->getLayoutCompatible();
16228 TypeInfo.MustBeNull = I->getMustBeNull();
16229 return true;
16230 }
16231 return false;
16232 }
16233
16234 if (!MagicValues)
16235 return false;
16236
16237 llvm::DenseMap<Sema::TypeTagMagicValue,
16238 Sema::TypeTagData>::const_iterator I =
16239 MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
16240 if (I == MagicValues->end())
16241 return false;
16242
16243 TypeInfo = I->second;
16244 return true;
16245}
16246
16247void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
16248 uint64_t MagicValue, QualType Type,
16249 bool LayoutCompatible,
16250 bool MustBeNull) {
16251 if (!TypeTagForDatatypeMagicValues)
16252 TypeTagForDatatypeMagicValues.reset(
16253 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
16254
16255 TypeTagMagicValue Magic(ArgumentKind, MagicValue);
16256 (*TypeTagForDatatypeMagicValues)[Magic] =
16257 TypeTagData(Type, LayoutCompatible, MustBeNull);
16258}
16259
16260static bool IsSameCharType(QualType T1, QualType T2) {
16261 const BuiltinType *BT1 = T1->getAs<BuiltinType>();
16262 if (!BT1)
16263 return false;
16264
16265 const BuiltinType *BT2 = T2->getAs<BuiltinType>();
16266 if (!BT2)
16267 return false;
16268
16269 BuiltinType::Kind T1Kind = BT1->getKind();
16270 BuiltinType::Kind T2Kind = BT2->getKind();
16271
16272 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
16273 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
16274 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
16275 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
16276}
16277
16278void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
16279 const ArrayRef<const Expr *> ExprArgs,
16280 SourceLocation CallSiteLoc) {
16281 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
16282 bool IsPointerAttr = Attr->getIsPointer();
16283
16284 // Retrieve the argument representing the 'type_tag'.
16285 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
16286 if (TypeTagIdxAST >= ExprArgs.size()) {
16287 Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16288 << 0 << Attr->getTypeTagIdx().getSourceIndex();
16289 return;
16290 }
16291 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
16292 bool FoundWrongKind;
16293 TypeTagData TypeInfo;
16294 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
16295 TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
16296 TypeInfo, isConstantEvaluated())) {
16297 if (FoundWrongKind)
16298 Diag(TypeTagExpr->getExprLoc(),
16299 diag::warn_type_tag_for_datatype_wrong_kind)
16300 << TypeTagExpr->getSourceRange();
16301 return;
16302 }
16303
16304 // Retrieve the argument representing the 'arg_idx'.
16305 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
16306 if (ArgumentIdxAST >= ExprArgs.size()) {
16307 Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16308 << 1 << Attr->getArgumentIdx().getSourceIndex();
16309 return;
16310 }
16311 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
16312 if (IsPointerAttr) {
16313 // Skip implicit cast of pointer to `void *' (as a function argument).
16314 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
16315 if (ICE->getType()->isVoidPointerType() &&
16316 ICE->getCastKind() == CK_BitCast)
16317 ArgumentExpr = ICE->getSubExpr();
16318 }
16319 QualType ArgumentType = ArgumentExpr->getType();
16320
16321 // Passing a `void*' pointer shouldn't trigger a warning.
16322 if (IsPointerAttr && ArgumentType->isVoidPointerType())
16323 return;
16324
16325 if (TypeInfo.MustBeNull) {
16326 // Type tag with matching void type requires a null pointer.
16327 if (!ArgumentExpr->isNullPointerConstant(Context,
16328 Expr::NPC_ValueDependentIsNotNull)) {
16329 Diag(ArgumentExpr->getExprLoc(),
16330 diag::warn_type_safety_null_pointer_required)
16331 << ArgumentKind->getName()
16332 << ArgumentExpr->getSourceRange()
16333 << TypeTagExpr->getSourceRange();
16334 }
16335 return;
16336 }
16337
16338 QualType RequiredType = TypeInfo.Type;
16339 if (IsPointerAttr)
16340 RequiredType = Context.getPointerType(RequiredType);
16341
16342 bool mismatch = false;
16343 if (!TypeInfo.LayoutCompatible) {
16344 mismatch = !Context.hasSameType(ArgumentType, RequiredType);
16345
16346 // C++11 [basic.fundamental] p1:
16347 // Plain char, signed char, and unsigned char are three distinct types.
16348 //
16349 // But we treat plain `char' as equivalent to `signed char' or `unsigned
16350 // char' depending on the current char signedness mode.
16351 if (mismatch)
16352 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
16353 RequiredType->getPointeeType())) ||
16354 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
16355 mismatch = false;
16356 } else
16357 if (IsPointerAttr)
16358 mismatch = !isLayoutCompatible(Context,
16359 ArgumentType->getPointeeType(),
16360 RequiredType->getPointeeType());
16361 else
16362 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
16363
16364 if (mismatch)
16365 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
16366 << ArgumentType << ArgumentKind
16367 << TypeInfo.LayoutCompatible << RequiredType
16368 << ArgumentExpr->getSourceRange()
16369 << TypeTagExpr->getSourceRange();
16370}
16371
16372void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
16373 CharUnits Alignment) {
16374 MisalignedMembers.emplace_back(E, RD, MD, Alignment);
16375}
16376
16377void Sema::DiagnoseMisalignedMembers() {
16378 for (MisalignedMember &m : MisalignedMembers) {
16379 const NamedDecl *ND = m.RD;
16380 if (ND->getName().empty()) {
16381 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
16382 ND = TD;
16383 }
16384 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
16385 << m.MD << ND << m.E->getSourceRange();
16386 }
16387 MisalignedMembers.clear();
16388}
16389
16390void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
16391 E = E->IgnoreParens();
16392 if (!T->isPointerType() && !T->isIntegerType())
16393 return;
16394 if (isa<UnaryOperator>(E) &&
16395 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
16396 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
16397 if (isa<MemberExpr>(Op)) {
16398 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
16399 if (MA != MisalignedMembers.end() &&
16400 (T->isIntegerType() ||
16401 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
16402 Context.getTypeAlignInChars(
16403 T->getPointeeType()) <= MA->Alignment))))
16404 MisalignedMembers.erase(MA);
16405 }
16406 }
16407}
16408
16409void Sema::RefersToMemberWithReducedAlignment(
16410 Expr *E,
16411 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
16412 Action) {
16413 const auto *ME = dyn_cast<MemberExpr>(E);
16414 if (!ME)
16415 return;
16416
16417 // No need to check expressions with an __unaligned-qualified type.
16418 if (E->getType().getQualifiers().hasUnaligned())
16419 return;
16420
16421 // For a chain of MemberExpr like "a.b.c.d" this list
16422 // will keep FieldDecl's like [d, c, b].
16423 SmallVector<FieldDecl *, 4> ReverseMemberChain;
16424 const MemberExpr *TopME = nullptr;
16425 bool AnyIsPacked = false;
16426 do {
16427 QualType BaseType = ME->getBase()->getType();
16428 if (BaseType->isDependentType())
16429 return;
16430 if (ME->isArrow())
16431 BaseType = BaseType->getPointeeType();
16432 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
16433 if (RD->isInvalidDecl())
16434 return;
16435
16436 ValueDecl *MD = ME->getMemberDecl();
16437 auto *FD = dyn_cast<FieldDecl>(MD);
16438 // We do not care about non-data members.
16439 if (!FD || FD->isInvalidDecl())
16440 return;
16441
16442 AnyIsPacked =
16443 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
16444 ReverseMemberChain.push_back(FD);
16445
16446 TopME = ME;
16447 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
16448 } while (ME);
16449 assert(TopME && "We did not compute a topmost MemberExpr!")(static_cast <bool> (TopME && "We did not compute a topmost MemberExpr!"
) ? void (0) : __assert_fail ("TopME && \"We did not compute a topmost MemberExpr!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 16449, __extension__ __PRETTY_FUNCTION__))
;
16450
16451 // Not the scope of this diagnostic.
16452 if (!AnyIsPacked)
16453 return;
16454
16455 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
16456 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
16457 // TODO: The innermost base of the member expression may be too complicated.
16458 // For now, just disregard these cases. This is left for future
16459 // improvement.
16460 if (!DRE && !isa<CXXThisExpr>(TopBase))
16461 return;
16462
16463 // Alignment expected by the whole expression.
16464 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
16465
16466 // No need to do anything else with this case.
16467 if (ExpectedAlignment.isOne())
16468 return;
16469
16470 // Synthesize offset of the whole access.
16471 CharUnits Offset;
16472 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
16473 I++) {
16474 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
16475 }
16476
16477 // Compute the CompleteObjectAlignment as the alignment of the whole chain.
16478 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
16479 ReverseMemberChain.back()->getParent()->getTypeForDecl());
16480
16481 // The base expression of the innermost MemberExpr may give
16482 // stronger guarantees than the class containing the member.
16483 if (DRE && !TopME->isArrow()) {
16484 const ValueDecl *VD = DRE->getDecl();
16485 if (!VD->getType()->isReferenceType())
16486 CompleteObjectAlignment =
16487 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
16488 }
16489
16490 // Check if the synthesized offset fulfills the alignment.
16491 if (Offset % ExpectedAlignment != 0 ||
16492 // It may fulfill the offset it but the effective alignment may still be
16493 // lower than the expected expression alignment.
16494 CompleteObjectAlignment < ExpectedAlignment) {
16495 // If this happens, we want to determine a sensible culprit of this.
16496 // Intuitively, watching the chain of member expressions from right to
16497 // left, we start with the required alignment (as required by the field
16498 // type) but some packed attribute in that chain has reduced the alignment.
16499 // It may happen that another packed structure increases it again. But if
16500 // we are here such increase has not been enough. So pointing the first
16501 // FieldDecl that either is packed or else its RecordDecl is,
16502 // seems reasonable.
16503 FieldDecl *FD = nullptr;
16504 CharUnits Alignment;
16505 for (FieldDecl *FDI : ReverseMemberChain) {
16506 if (FDI->hasAttr<PackedAttr>() ||
16507 FDI->getParent()->hasAttr<PackedAttr>()) {
16508 FD = FDI;
16509 Alignment = std::min(
16510 Context.getTypeAlignInChars(FD->getType()),
16511 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
16512 break;
16513 }
16514 }
16515 assert(FD && "We did not find a packed FieldDecl!")(static_cast <bool> (FD && "We did not find a packed FieldDecl!"
) ? void (0) : __assert_fail ("FD && \"We did not find a packed FieldDecl!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaChecking.cpp"
, 16515, __extension__ __PRETTY_FUNCTION__))
;
16516 Action(E, FD->getParent(), FD, Alignment);
16517 }
16518}
16519
16520void Sema::CheckAddressOfPackedMember(Expr *rhs) {
16521 using namespace std::placeholders;
16522
16523 RefersToMemberWithReducedAlignment(
16524 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
16525 _2, _3, _4));
16526}
16527
16528ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
16529 ExprResult CallResult) {
16530 if (checkArgCount(*this, TheCall, 1))
16531 return ExprError();
16532
16533 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
16534 if (MatrixArg.isInvalid())
16535 return MatrixArg;
16536 Expr *Matrix = MatrixArg.get();
16537
16538 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
16539 if (!MType) {
16540 Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg);
16541 return ExprError();
16542 }
16543
16544 // Create returned matrix type by swapping rows and columns of the argument
16545 // matrix type.
16546 QualType ResultType = Context.getConstantMatrixType(
16547 MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
16548
16549 // Change the return type to the type of the returned matrix.
16550 TheCall->setType(ResultType);
16551
16552 // Update call argument to use the possibly converted matrix argument.
16553 TheCall->setArg(0, Matrix);
16554 return CallResult;
16555}
16556
16557// Get and verify the matrix dimensions.
16558static llvm::Optional<unsigned>
16559getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
16560 SourceLocation ErrorPos;
16561 Optional<llvm::APSInt> Value =
16562 Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
16563 if (!Value) {
16564 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
16565 << Name;
16566 return {};
16567 }
16568 uint64_t Dim = Value->getZExtValue();
16569 if (!ConstantMatrixType::isDimensionValid(Dim)) {
16570 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
16571 << Name << ConstantMatrixType::getMaxElementsPerDimension();
16572 return {};
16573 }
16574 return Dim;
16575}
16576
16577ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
16578 ExprResult CallResult) {
16579 if (!getLangOpts().MatrixTypes) {
16580 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
16581 return ExprError();
16582 }
16583
16584 if (checkArgCount(*this, TheCall, 4))
16585 return ExprError();
16586
16587 unsigned PtrArgIdx = 0;
16588 Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
16589 Expr *RowsExpr = TheCall->getArg(1);
16590 Expr *ColumnsExpr = TheCall->getArg(2);
16591 Expr *StrideExpr = TheCall->getArg(3);
16592
16593 bool ArgError = false;
16594
16595 // Check pointer argument.
16596 {
16597 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16598 if (PtrConv.isInvalid())
16599 return PtrConv;
16600 PtrExpr = PtrConv.get();
16601 TheCall->setArg(0, PtrExpr);
16602 if (PtrExpr->isTypeDependent()) {
16603 TheCall->setType(Context.DependentTy);
16604 return TheCall;
16605 }
16606 }
16607
16608 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16609 QualType ElementTy;
16610 if (!PtrTy) {
16611 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16612 << PtrArgIdx + 1;
16613 ArgError = true;
16614 } else {
16615 ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
16616
16617 if (!ConstantMatrixType::isValidElementType(ElementTy)) {
16618 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16619 << PtrArgIdx + 1;
16620 ArgError = true;
16621 }
16622 }
16623
16624 // Apply default Lvalue conversions and convert the expression to size_t.
16625 auto ApplyArgumentConversions = [this](Expr *E) {
16626 ExprResult Conv = DefaultLvalueConversion(E);
16627 if (Conv.isInvalid())
16628 return Conv;
16629
16630 return tryConvertExprToType(Conv.get(), Context.getSizeType());
16631 };
16632
16633 // Apply conversion to row and column expressions.
16634 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
16635 if (!RowsConv.isInvalid()) {
16636 RowsExpr = RowsConv.get();
16637 TheCall->setArg(1, RowsExpr);
16638 } else
16639 RowsExpr = nullptr;
16640
16641 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
16642 if (!ColumnsConv.isInvalid()) {
16643 ColumnsExpr = ColumnsConv.get();
16644 TheCall->setArg(2, ColumnsExpr);
16645 } else
16646 ColumnsExpr = nullptr;
16647
16648 // If any any part of the result matrix type is still pending, just use
16649 // Context.DependentTy, until all parts are resolved.
16650 if ((RowsExpr && RowsExpr->isTypeDependent()) ||
16651 (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
16652 TheCall->setType(Context.DependentTy);
16653 return CallResult;
16654 }
16655
16656 // Check row and column dimenions.
16657 llvm::Optional<unsigned> MaybeRows;
16658 if (RowsExpr)
16659 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
16660
16661 llvm::Optional<unsigned> MaybeColumns;
16662 if (ColumnsExpr)
16663 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
16664
16665 // Check stride argument.
16666 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
16667 if (StrideConv.isInvalid())
16668 return ExprError();
16669 StrideExpr = StrideConv.get();
16670 TheCall->setArg(3, StrideExpr);
16671
16672 if (MaybeRows) {
16673 if (Optional<llvm::APSInt> Value =
16674 StrideExpr->getIntegerConstantExpr(Context)) {
16675 uint64_t Stride = Value->getZExtValue();
16676 if (Stride < *MaybeRows) {
16677 Diag(StrideExpr->getBeginLoc(),
16678 diag::err_builtin_matrix_stride_too_small);
16679 ArgError = true;
16680 }
16681 }
16682 }
16683
16684 if (ArgError || !MaybeRows || !MaybeColumns)
16685 return ExprError();
16686
16687 TheCall->setType(
16688 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
16689 return CallResult;
16690}
16691
16692ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
16693 ExprResult CallResult) {
16694 if (checkArgCount(*this, TheCall, 3))
16695 return ExprError();
16696
16697 unsigned PtrArgIdx = 1;
16698 Expr *MatrixExpr = TheCall->getArg(0);
16699 Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
16700 Expr *StrideExpr = TheCall->getArg(2);
16701
16702 bool ArgError = false;
16703
16704 {
16705 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
16706 if (MatrixConv.isInvalid())
16707 return MatrixConv;
16708 MatrixExpr = MatrixConv.get();
16709 TheCall->setArg(0, MatrixExpr);
16710 }
16711 if (MatrixExpr->isTypeDependent()) {
16712 TheCall->setType(Context.DependentTy);
16713 return TheCall;
16714 }
16715
16716 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
16717 if (!MatrixTy) {
16718 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0;
16719 ArgError = true;
16720 }
16721
16722 {
16723 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16724 if (PtrConv.isInvalid())
16725 return PtrConv;
16726 PtrExpr = PtrConv.get();
16727 TheCall->setArg(1, PtrExpr);
16728 if (PtrExpr->isTypeDependent()) {
16729 TheCall->setType(Context.DependentTy);
16730 return TheCall;
16731 }
16732 }
16733
16734 // Check pointer argument.
16735 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16736 if (!PtrTy) {
16737 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16738 << PtrArgIdx + 1;
16739 ArgError = true;
16740 } else {
16741 QualType ElementTy = PtrTy->getPointeeType();
16742 if (ElementTy.isConstQualified()) {
16743 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
16744 ArgError = true;
16745 }
16746 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
16747 if (MatrixTy &&
16748 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
16749 Diag(PtrExpr->getBeginLoc(),
16750 diag::err_builtin_matrix_pointer_arg_mismatch)
16751 << ElementTy << MatrixTy->getElementType();
16752 ArgError = true;
16753 }
16754 }
16755
16756 // Apply default Lvalue conversions and convert the stride expression to
16757 // size_t.
16758 {
16759 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
16760 if (StrideConv.isInvalid())
16761 return StrideConv;
16762
16763 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
16764 if (StrideConv.isInvalid())
16765 return StrideConv;
16766 StrideExpr = StrideConv.get();
16767 TheCall->setArg(2, StrideExpr);
16768 }
16769
16770 // Check stride argument.
16771 if (MatrixTy) {
16772 if (Optional<llvm::APSInt> Value =
16773 StrideExpr->getIntegerConstantExpr(Context)) {
16774 uint64_t Stride = Value->getZExtValue();
16775 if (Stride < MatrixTy->getNumRows()) {
16776 Diag(StrideExpr->getBeginLoc(),
16777 diag::err_builtin_matrix_stride_too_small);
16778 ArgError = true;
16779 }
16780 }
16781 }
16782
16783 if (ArgError)
16784 return ExprError();
16785
16786 return CallResult;
16787}
16788
16789/// \brief Enforce the bounds of a TCB
16790/// CheckTCBEnforcement - Enforces that every function in a named TCB only
16791/// directly calls other functions in the same TCB as marked by the enforce_tcb
16792/// and enforce_tcb_leaf attributes.
16793void Sema::CheckTCBEnforcement(const CallExpr *TheCall,
16794 const FunctionDecl *Callee) {
16795 const FunctionDecl *Caller = getCurFunctionDecl();
16796
16797 // Calls to builtins are not enforced.
16798 if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() ||
16799 Callee->getBuiltinID() != 0)
16800 return;
16801
16802 // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
16803 // all TCBs the callee is a part of.
16804 llvm::StringSet<> CalleeTCBs;
16805 for_each(Callee->specific_attrs<EnforceTCBAttr>(),
16806 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16807 for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(),
16808 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16809
16810 // Go through the TCBs the caller is a part of and emit warnings if Caller
16811 // is in a TCB that the Callee is not.
16812 for_each(
16813 Caller->specific_attrs<EnforceTCBAttr>(),
16814 [&](const auto *A) {
16815 StringRef CallerTCB = A->getTCBName();
16816 if (CalleeTCBs.count(CallerTCB) == 0) {
16817 this->Diag(TheCall->getExprLoc(),
16818 diag::warn_tcb_enforcement_violation) << Callee
16819 << CallerTCB;
16820 }
16821 });
16822}