Bug Summary

File:clang/lib/Sema/SemaChecking.cpp
Warning:line 11313, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name SemaChecking.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/clang/lib/Sema -I /build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-02-12-124252-137181-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220212111237+869c066ca8a4/clang/lib/Sema/SemaChecking.cpp
1//===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements extra semantic analysis beyond what is enforced
10// by the C type system.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/AttrIterator.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclBase.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/FormatString.h"
30#include "clang/AST/NSAPI.h"
31#include "clang/AST/NonTrivialTypeVisitor.h"
32#include "clang/AST/OperationKinds.h"
33#include "clang/AST/RecordLayout.h"
34#include "clang/AST/Stmt.h"
35#include "clang/AST/TemplateBase.h"
36#include "clang/AST/Type.h"
37#include "clang/AST/TypeLoc.h"
38#include "clang/AST/UnresolvedSet.h"
39#include "clang/Basic/AddressSpaces.h"
40#include "clang/Basic/CharInfo.h"
41#include "clang/Basic/Diagnostic.h"
42#include "clang/Basic/IdentifierTable.h"
43#include "clang/Basic/LLVM.h"
44#include "clang/Basic/LangOptions.h"
45#include "clang/Basic/OpenCLOptions.h"
46#include "clang/Basic/OperatorKinds.h"
47#include "clang/Basic/PartialDiagnostic.h"
48#include "clang/Basic/SourceLocation.h"
49#include "clang/Basic/SourceManager.h"
50#include "clang/Basic/Specifiers.h"
51#include "clang/Basic/SyncScope.h"
52#include "clang/Basic/TargetBuiltins.h"
53#include "clang/Basic/TargetCXXABI.h"
54#include "clang/Basic/TargetInfo.h"
55#include "clang/Basic/TypeTraits.h"
56#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57#include "clang/Sema/Initialization.h"
58#include "clang/Sema/Lookup.h"
59#include "clang/Sema/Ownership.h"
60#include "clang/Sema/Scope.h"
61#include "clang/Sema/ScopeInfo.h"
62#include "clang/Sema/Sema.h"
63#include "clang/Sema/SemaInternal.h"
64#include "llvm/ADT/APFloat.h"
65#include "llvm/ADT/APInt.h"
66#include "llvm/ADT/APSInt.h"
67#include "llvm/ADT/ArrayRef.h"
68#include "llvm/ADT/DenseMap.h"
69#include "llvm/ADT/FoldingSet.h"
70#include "llvm/ADT/None.h"
71#include "llvm/ADT/Optional.h"
72#include "llvm/ADT/STLExtras.h"
73#include "llvm/ADT/SmallBitVector.h"
74#include "llvm/ADT/SmallPtrSet.h"
75#include "llvm/ADT/SmallString.h"
76#include "llvm/ADT/SmallVector.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/StringSet.h"
79#include "llvm/ADT/StringSwitch.h"
80#include "llvm/ADT/Triple.h"
81#include "llvm/Support/AtomicOrdering.h"
82#include "llvm/Support/Casting.h"
83#include "llvm/Support/Compiler.h"
84#include "llvm/Support/ConvertUTF.h"
85#include "llvm/Support/ErrorHandling.h"
86#include "llvm/Support/Format.h"
87#include "llvm/Support/Locale.h"
88#include "llvm/Support/MathExtras.h"
89#include "llvm/Support/SaveAndRestore.h"
90#include "llvm/Support/raw_ostream.h"
91#include <algorithm>
92#include <bitset>
93#include <cassert>
94#include <cctype>
95#include <cstddef>
96#include <cstdint>
97#include <functional>
98#include <limits>
99#include <string>
100#include <tuple>
101#include <utility>
102
103using namespace clang;
104using namespace sema;
105
106SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
107 unsigned ByteNo) const {
108 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
109 Context.getTargetInfo());
110}
111
112/// Checks that a call expression's argument count is the desired number.
113/// This is useful when doing custom type-checking. Returns true on error.
114static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
115 unsigned argCount = call->getNumArgs();
116 if (argCount == desiredArgCount) return false;
117
118 if (argCount < desiredArgCount)
119 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
120 << 0 /*function call*/ << desiredArgCount << argCount
121 << call->getSourceRange();
122
123 // Highlight all the excess arguments.
124 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
125 call->getArg(argCount - 1)->getEndLoc());
126
127 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
128 << 0 /*function call*/ << desiredArgCount << argCount
129 << call->getArg(1)->getSourceRange();
130}
131
132/// Check that the first argument to __builtin_annotation is an integer
133/// and the second argument is a non-wide string literal.
134static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
135 if (checkArgCount(S, TheCall, 2))
136 return true;
137
138 // First argument should be an integer.
139 Expr *ValArg = TheCall->getArg(0);
140 QualType Ty = ValArg->getType();
141 if (!Ty->isIntegerType()) {
142 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
143 << ValArg->getSourceRange();
144 return true;
145 }
146
147 // Second argument should be a constant string.
148 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
149 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
150 if (!Literal || !Literal->isAscii()) {
151 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
152 << StrArg->getSourceRange();
153 return true;
154 }
155
156 TheCall->setType(Ty);
157 return false;
158}
159
160static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
161 // We need at least one argument.
162 if (TheCall->getNumArgs() < 1) {
163 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
164 << 0 << 1 << TheCall->getNumArgs()
165 << TheCall->getCallee()->getSourceRange();
166 return true;
167 }
168
169 // All arguments should be wide string literals.
170 for (Expr *Arg : TheCall->arguments()) {
171 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
172 if (!Literal || !Literal->isWide()) {
173 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
174 << Arg->getSourceRange();
175 return true;
176 }
177 }
178
179 return false;
180}
181
182/// Check that the argument to __builtin_addressof is a glvalue, and set the
183/// result type to the corresponding pointer type.
184static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
185 if (checkArgCount(S, TheCall, 1))
186 return true;
187
188 ExprResult Arg(TheCall->getArg(0));
189 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
190 if (ResultType.isNull())
191 return true;
192
193 TheCall->setArg(0, Arg.get());
194 TheCall->setType(ResultType);
195 return false;
196}
197
198/// Check that the argument to __builtin_function_start is a function.
199static bool SemaBuiltinFunctionStart(Sema &S, CallExpr *TheCall) {
200 if (checkArgCount(S, TheCall, 1))
201 return true;
202
203 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
204 if (Arg.isInvalid())
205 return true;
206
207 TheCall->setArg(0, Arg.get());
208 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(
209 Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext()));
210
211 if (!FD) {
212 S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type)
213 << TheCall->getSourceRange();
214 return true;
215 }
216
217 return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
218 TheCall->getBeginLoc());
219}
220
221/// Check the number of arguments and set the result type to
222/// the argument type.
223static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
224 if (checkArgCount(S, TheCall, 1))
225 return true;
226
227 TheCall->setType(TheCall->getArg(0)->getType());
228 return false;
229}
230
231/// Check that the value argument for __builtin_is_aligned(value, alignment) and
232/// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
233/// type (but not a function pointer) and that the alignment is a power-of-two.
234static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
235 if (checkArgCount(S, TheCall, 2))
236 return true;
237
238 clang::Expr *Source = TheCall->getArg(0);
239 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
240
241 auto IsValidIntegerType = [](QualType Ty) {
242 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
243 };
244 QualType SrcTy = Source->getType();
245 // We should also be able to use it with arrays (but not functions!).
246 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
247 SrcTy = S.Context.getDecayedType(SrcTy);
248 }
249 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
250 SrcTy->isFunctionPointerType()) {
251 // FIXME: this is not quite the right error message since we don't allow
252 // floating point types, or member pointers.
253 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
254 << SrcTy;
255 return true;
256 }
257
258 clang::Expr *AlignOp = TheCall->getArg(1);
259 if (!IsValidIntegerType(AlignOp->getType())) {
260 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
261 << AlignOp->getType();
262 return true;
263 }
264 Expr::EvalResult AlignResult;
265 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
266 // We can't check validity of alignment if it is value dependent.
267 if (!AlignOp->isValueDependent() &&
268 AlignOp->EvaluateAsInt(AlignResult, S.Context,
269 Expr::SE_AllowSideEffects)) {
270 llvm::APSInt AlignValue = AlignResult.Val.getInt();
271 llvm::APSInt MaxValue(
272 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
273 if (AlignValue < 1) {
274 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
275 return true;
276 }
277 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
278 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
279 << toString(MaxValue, 10);
280 return true;
281 }
282 if (!AlignValue.isPowerOf2()) {
283 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
284 return true;
285 }
286 if (AlignValue == 1) {
287 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
288 << IsBooleanAlignBuiltin;
289 }
290 }
291
292 ExprResult SrcArg = S.PerformCopyInitialization(
293 InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
294 SourceLocation(), Source);
295 if (SrcArg.isInvalid())
296 return true;
297 TheCall->setArg(0, SrcArg.get());
298 ExprResult AlignArg =
299 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
300 S.Context, AlignOp->getType(), false),
301 SourceLocation(), AlignOp);
302 if (AlignArg.isInvalid())
303 return true;
304 TheCall->setArg(1, AlignArg.get());
305 // For align_up/align_down, the return type is the same as the (potentially
306 // decayed) argument type including qualifiers. For is_aligned(), the result
307 // is always bool.
308 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
309 return false;
310}
311
312static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
313 unsigned BuiltinID) {
314 if (checkArgCount(S, TheCall, 3))
315 return true;
316
317 // First two arguments should be integers.
318 for (unsigned I = 0; I < 2; ++I) {
319 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
320 if (Arg.isInvalid()) return true;
321 TheCall->setArg(I, Arg.get());
322
323 QualType Ty = Arg.get()->getType();
324 if (!Ty->isIntegerType()) {
325 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
326 << Ty << Arg.get()->getSourceRange();
327 return true;
328 }
329 }
330
331 // Third argument should be a pointer to a non-const integer.
332 // IRGen correctly handles volatile, restrict, and address spaces, and
333 // the other qualifiers aren't possible.
334 {
335 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
336 if (Arg.isInvalid()) return true;
337 TheCall->setArg(2, Arg.get());
338
339 QualType Ty = Arg.get()->getType();
340 const auto *PtrTy = Ty->getAs<PointerType>();
341 if (!PtrTy ||
342 !PtrTy->getPointeeType()->isIntegerType() ||
343 PtrTy->getPointeeType().isConstQualified()) {
344 S.Diag(Arg.get()->getBeginLoc(),
345 diag::err_overflow_builtin_must_be_ptr_int)
346 << Ty << Arg.get()->getSourceRange();
347 return true;
348 }
349 }
350
351 // Disallow signed bit-precise integer args larger than 128 bits to mul
352 // function until we improve backend support.
353 if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
354 for (unsigned I = 0; I < 3; ++I) {
355 const auto Arg = TheCall->getArg(I);
356 // Third argument will be a pointer.
357 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
358 if (Ty->isBitIntType() && Ty->isSignedIntegerType() &&
359 S.getASTContext().getIntWidth(Ty) > 128)
360 return S.Diag(Arg->getBeginLoc(),
361 diag::err_overflow_builtin_bit_int_max_size)
362 << 128;
363 }
364 }
365
366 return false;
367}
368
369static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
370 if (checkArgCount(S, BuiltinCall, 2))
371 return true;
372
373 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
374 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
375 Expr *Call = BuiltinCall->getArg(0);
376 Expr *Chain = BuiltinCall->getArg(1);
377
378 if (Call->getStmtClass() != Stmt::CallExprClass) {
379 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
380 << Call->getSourceRange();
381 return true;
382 }
383
384 auto CE = cast<CallExpr>(Call);
385 if (CE->getCallee()->getType()->isBlockPointerType()) {
386 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
387 << Call->getSourceRange();
388 return true;
389 }
390
391 const Decl *TargetDecl = CE->getCalleeDecl();
392 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
393 if (FD->getBuiltinID()) {
394 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
395 << Call->getSourceRange();
396 return true;
397 }
398
399 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
400 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
401 << Call->getSourceRange();
402 return true;
403 }
404
405 ExprResult ChainResult = S.UsualUnaryConversions(Chain);
406 if (ChainResult.isInvalid())
407 return true;
408 if (!ChainResult.get()->getType()->isPointerType()) {
409 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
410 << Chain->getSourceRange();
411 return true;
412 }
413
414 QualType ReturnTy = CE->getCallReturnType(S.Context);
415 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
416 QualType BuiltinTy = S.Context.getFunctionType(
417 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
418 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
419
420 Builtin =
421 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
422
423 BuiltinCall->setType(CE->getType());
424 BuiltinCall->setValueKind(CE->getValueKind());
425 BuiltinCall->setObjectKind(CE->getObjectKind());
426 BuiltinCall->setCallee(Builtin);
427 BuiltinCall->setArg(1, ChainResult.get());
428
429 return false;
430}
431
432namespace {
433
434class ScanfDiagnosticFormatHandler
435 : public analyze_format_string::FormatStringHandler {
436 // Accepts the argument index (relative to the first destination index) of the
437 // argument whose size we want.
438 using ComputeSizeFunction =
439 llvm::function_ref<Optional<llvm::APSInt>(unsigned)>;
440
441 // Accepts the argument index (relative to the first destination index), the
442 // destination size, and the source size).
443 using DiagnoseFunction =
444 llvm::function_ref<void(unsigned, unsigned, unsigned)>;
445
446 ComputeSizeFunction ComputeSizeArgument;
447 DiagnoseFunction Diagnose;
448
449public:
450 ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
451 DiagnoseFunction Diagnose)
452 : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
453
454 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
455 const char *StartSpecifier,
456 unsigned specifierLen) override {
457 if (!FS.consumesDataArgument())
458 return true;
459
460 unsigned NulByte = 0;
461 switch ((FS.getConversionSpecifier().getKind())) {
462 default:
463 return true;
464 case analyze_format_string::ConversionSpecifier::sArg:
465 case analyze_format_string::ConversionSpecifier::ScanListArg:
466 NulByte = 1;
467 break;
468 case analyze_format_string::ConversionSpecifier::cArg:
469 break;
470 }
471
472 analyze_format_string::OptionalAmount FW = FS.getFieldWidth();
473 if (FW.getHowSpecified() !=
474 analyze_format_string::OptionalAmount::HowSpecified::Constant)
475 return true;
476
477 unsigned SourceSize = FW.getConstantAmount() + NulByte;
478
479 Optional<llvm::APSInt> DestSizeAPS = ComputeSizeArgument(FS.getArgIndex());
480 if (!DestSizeAPS)
481 return true;
482
483 unsigned DestSize = DestSizeAPS->getZExtValue();
484
485 if (DestSize < SourceSize)
486 Diagnose(FS.getArgIndex(), DestSize, SourceSize);
487
488 return true;
489 }
490};
491
492class EstimateSizeFormatHandler
493 : public analyze_format_string::FormatStringHandler {
494 size_t Size;
495
496public:
497 EstimateSizeFormatHandler(StringRef Format)
498 : Size(std::min(Format.find(0), Format.size()) +
499 1 /* null byte always written by sprintf */) {}
500
501 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
502 const char *, unsigned SpecifierLen,
503 const TargetInfo &) override {
504
505 const size_t FieldWidth = computeFieldWidth(FS);
506 const size_t Precision = computePrecision(FS);
507
508 // The actual format.
509 switch (FS.getConversionSpecifier().getKind()) {
510 // Just a char.
511 case analyze_format_string::ConversionSpecifier::cArg:
512 case analyze_format_string::ConversionSpecifier::CArg:
513 Size += std::max(FieldWidth, (size_t)1);
514 break;
515 // Just an integer.
516 case analyze_format_string::ConversionSpecifier::dArg:
517 case analyze_format_string::ConversionSpecifier::DArg:
518 case analyze_format_string::ConversionSpecifier::iArg:
519 case analyze_format_string::ConversionSpecifier::oArg:
520 case analyze_format_string::ConversionSpecifier::OArg:
521 case analyze_format_string::ConversionSpecifier::uArg:
522 case analyze_format_string::ConversionSpecifier::UArg:
523 case analyze_format_string::ConversionSpecifier::xArg:
524 case analyze_format_string::ConversionSpecifier::XArg:
525 Size += std::max(FieldWidth, Precision);
526 break;
527
528 // %g style conversion switches between %f or %e style dynamically.
529 // %f always takes less space, so default to it.
530 case analyze_format_string::ConversionSpecifier::gArg:
531 case analyze_format_string::ConversionSpecifier::GArg:
532
533 // Floating point number in the form '[+]ddd.ddd'.
534 case analyze_format_string::ConversionSpecifier::fArg:
535 case analyze_format_string::ConversionSpecifier::FArg:
536 Size += std::max(FieldWidth, 1 /* integer part */ +
537 (Precision ? 1 + Precision
538 : 0) /* period + decimal */);
539 break;
540
541 // Floating point number in the form '[-]d.ddde[+-]dd'.
542 case analyze_format_string::ConversionSpecifier::eArg:
543 case analyze_format_string::ConversionSpecifier::EArg:
544 Size +=
545 std::max(FieldWidth,
546 1 /* integer part */ +
547 (Precision ? 1 + Precision : 0) /* period + decimal */ +
548 1 /* e or E letter */ + 2 /* exponent */);
549 break;
550
551 // Floating point number in the form '[-]0xh.hhhhp±dd'.
552 case analyze_format_string::ConversionSpecifier::aArg:
553 case analyze_format_string::ConversionSpecifier::AArg:
554 Size +=
555 std::max(FieldWidth,
556 2 /* 0x */ + 1 /* integer part */ +
557 (Precision ? 1 + Precision : 0) /* period + decimal */ +
558 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
559 break;
560
561 // Just a string.
562 case analyze_format_string::ConversionSpecifier::sArg:
563 case analyze_format_string::ConversionSpecifier::SArg:
564 Size += FieldWidth;
565 break;
566
567 // Just a pointer in the form '0xddd'.
568 case analyze_format_string::ConversionSpecifier::pArg:
569 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
570 break;
571
572 // A plain percent.
573 case analyze_format_string::ConversionSpecifier::PercentArg:
574 Size += 1;
575 break;
576
577 default:
578 break;
579 }
580
581 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
582
583 if (FS.hasAlternativeForm()) {
584 switch (FS.getConversionSpecifier().getKind()) {
585 default:
586 break;
587 // Force a leading '0'.
588 case analyze_format_string::ConversionSpecifier::oArg:
589 Size += 1;
590 break;
591 // Force a leading '0x'.
592 case analyze_format_string::ConversionSpecifier::xArg:
593 case analyze_format_string::ConversionSpecifier::XArg:
594 Size += 2;
595 break;
596 // Force a period '.' before decimal, even if precision is 0.
597 case analyze_format_string::ConversionSpecifier::aArg:
598 case analyze_format_string::ConversionSpecifier::AArg:
599 case analyze_format_string::ConversionSpecifier::eArg:
600 case analyze_format_string::ConversionSpecifier::EArg:
601 case analyze_format_string::ConversionSpecifier::fArg:
602 case analyze_format_string::ConversionSpecifier::FArg:
603 case analyze_format_string::ConversionSpecifier::gArg:
604 case analyze_format_string::ConversionSpecifier::GArg:
605 Size += (Precision ? 0 : 1);
606 break;
607 }
608 }
609 assert(SpecifierLen <= Size && "no underflow")(static_cast <bool> (SpecifierLen <= Size &&
"no underflow") ? void (0) : __assert_fail ("SpecifierLen <= Size && \"no underflow\""
, "clang/lib/Sema/SemaChecking.cpp", 609, __extension__ __PRETTY_FUNCTION__
))
;
610 Size -= SpecifierLen;
611 return true;
612 }
613
614 size_t getSizeLowerBound() const { return Size; }
615
616private:
617 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
618 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
619 size_t FieldWidth = 0;
620 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
621 FieldWidth = FW.getConstantAmount();
622 return FieldWidth;
623 }
624
625 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
626 const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
627 size_t Precision = 0;
628
629 // See man 3 printf for default precision value based on the specifier.
630 switch (FW.getHowSpecified()) {
631 case analyze_format_string::OptionalAmount::NotSpecified:
632 switch (FS.getConversionSpecifier().getKind()) {
633 default:
634 break;
635 case analyze_format_string::ConversionSpecifier::dArg: // %d
636 case analyze_format_string::ConversionSpecifier::DArg: // %D
637 case analyze_format_string::ConversionSpecifier::iArg: // %i
638 Precision = 1;
639 break;
640 case analyze_format_string::ConversionSpecifier::oArg: // %d
641 case analyze_format_string::ConversionSpecifier::OArg: // %D
642 case analyze_format_string::ConversionSpecifier::uArg: // %d
643 case analyze_format_string::ConversionSpecifier::UArg: // %D
644 case analyze_format_string::ConversionSpecifier::xArg: // %d
645 case analyze_format_string::ConversionSpecifier::XArg: // %D
646 Precision = 1;
647 break;
648 case analyze_format_string::ConversionSpecifier::fArg: // %f
649 case analyze_format_string::ConversionSpecifier::FArg: // %F
650 case analyze_format_string::ConversionSpecifier::eArg: // %e
651 case analyze_format_string::ConversionSpecifier::EArg: // %E
652 case analyze_format_string::ConversionSpecifier::gArg: // %g
653 case analyze_format_string::ConversionSpecifier::GArg: // %G
654 Precision = 6;
655 break;
656 case analyze_format_string::ConversionSpecifier::pArg: // %d
657 Precision = 1;
658 break;
659 }
660 break;
661 case analyze_format_string::OptionalAmount::Constant:
662 Precision = FW.getConstantAmount();
663 break;
664 default:
665 break;
666 }
667 return Precision;
668 }
669};
670
671} // namespace
672
673void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
674 CallExpr *TheCall) {
675 if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
676 isConstantEvaluated())
677 return;
678
679 bool UseDABAttr = false;
680 const FunctionDecl *UseDecl = FD;
681
682 const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>();
683 if (DABAttr) {
684 UseDecl = DABAttr->getFunction();
685 assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!")(static_cast <bool> (UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!"
) ? void (0) : __assert_fail ("UseDecl && \"Missing FunctionDecl in DiagnoseAsBuiltin attribute!\""
, "clang/lib/Sema/SemaChecking.cpp", 685, __extension__ __PRETTY_FUNCTION__
))
;
686 UseDABAttr = true;
687 }
688
689 unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true);
690
691 if (!BuiltinID)
692 return;
693
694 const TargetInfo &TI = getASTContext().getTargetInfo();
695 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
696
697 auto TranslateIndex = [&](unsigned Index) -> Optional<unsigned> {
698 // If we refer to a diagnose_as_builtin attribute, we need to change the
699 // argument index to refer to the arguments of the called function. Unless
700 // the index is out of bounds, which presumably means it's a variadic
701 // function.
702 if (!UseDABAttr)
703 return Index;
704 unsigned DABIndices = DABAttr->argIndices_size();
705 unsigned NewIndex = Index < DABIndices
706 ? DABAttr->argIndices_begin()[Index]
707 : Index - DABIndices + FD->getNumParams();
708 if (NewIndex >= TheCall->getNumArgs())
709 return llvm::None;
710 return NewIndex;
711 };
712
713 auto ComputeExplicitObjectSizeArgument =
714 [&](unsigned Index) -> Optional<llvm::APSInt> {
715 Optional<unsigned> IndexOptional = TranslateIndex(Index);
716 if (!IndexOptional)
717 return llvm::None;
718 unsigned NewIndex = IndexOptional.getValue();
719 Expr::EvalResult Result;
720 Expr *SizeArg = TheCall->getArg(NewIndex);
721 if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
722 return llvm::None;
723 llvm::APSInt Integer = Result.Val.getInt();
724 Integer.setIsUnsigned(true);
725 return Integer;
726 };
727
728 auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
729 // If the parameter has a pass_object_size attribute, then we should use its
730 // (potentially) more strict checking mode. Otherwise, conservatively assume
731 // type 0.
732 int BOSType = 0;
733 // This check can fail for variadic functions.
734 if (Index < FD->getNumParams()) {
735 if (const auto *POS =
736 FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
737 BOSType = POS->getType();
738 }
739
740 Optional<unsigned> IndexOptional = TranslateIndex(Index);
741 if (!IndexOptional)
742 return llvm::None;
743 unsigned NewIndex = IndexOptional.getValue();
744
745 const Expr *ObjArg = TheCall->getArg(NewIndex);
746 uint64_t Result;
747 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
748 return llvm::None;
749
750 // Get the object size in the target's size_t width.
751 return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
752 };
753
754 auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
755 Optional<unsigned> IndexOptional = TranslateIndex(Index);
756 if (!IndexOptional)
757 return llvm::None;
758 unsigned NewIndex = IndexOptional.getValue();
759
760 const Expr *ObjArg = TheCall->getArg(NewIndex);
761 uint64_t Result;
762 if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
763 return llvm::None;
764 // Add 1 for null byte.
765 return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
766 };
767
768 Optional<llvm::APSInt> SourceSize;
769 Optional<llvm::APSInt> DestinationSize;
770 unsigned DiagID = 0;
771 bool IsChkVariant = false;
772
773 auto GetFunctionName = [&]() {
774 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
775 // Skim off the details of whichever builtin was called to produce a better
776 // diagnostic, as it's unlikely that the user wrote the __builtin
777 // explicitly.
778 if (IsChkVariant) {
779 FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
780 FunctionName = FunctionName.drop_back(std::strlen("_chk"));
781 } else if (FunctionName.startswith("__builtin_")) {
782 FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
783 }
784 return FunctionName;
785 };
786
787 switch (BuiltinID) {
788 default:
789 return;
790 case Builtin::BI__builtin_strcpy:
791 case Builtin::BIstrcpy: {
792 DiagID = diag::warn_fortify_strlen_overflow;
793 SourceSize = ComputeStrLenArgument(1);
794 DestinationSize = ComputeSizeArgument(0);
795 break;
796 }
797
798 case Builtin::BI__builtin___strcpy_chk: {
799 DiagID = diag::warn_fortify_strlen_overflow;
800 SourceSize = ComputeStrLenArgument(1);
801 DestinationSize = ComputeExplicitObjectSizeArgument(2);
802 IsChkVariant = true;
803 break;
804 }
805
806 case Builtin::BIscanf:
807 case Builtin::BIfscanf:
808 case Builtin::BIsscanf: {
809 unsigned FormatIndex = 1;
810 unsigned DataIndex = 2;
811 if (BuiltinID == Builtin::BIscanf) {
812 FormatIndex = 0;
813 DataIndex = 1;
814 }
815
816 const auto *FormatExpr =
817 TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
818
819 const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
820 if (!Format)
821 return;
822
823 if (!Format->isAscii() && !Format->isUTF8())
824 return;
825
826 auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
827 unsigned SourceSize) {
828 DiagID = diag::warn_fortify_scanf_overflow;
829 unsigned Index = ArgIndex + DataIndex;
830 StringRef FunctionName = GetFunctionName();
831 DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
832 PDiag(DiagID) << FunctionName << (Index + 1)
833 << DestSize << SourceSize);
834 };
835
836 StringRef FormatStrRef = Format->getString();
837 auto ShiftedComputeSizeArgument = [&](unsigned Index) {
838 return ComputeSizeArgument(Index + DataIndex);
839 };
840 ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
841 const char *FormatBytes = FormatStrRef.data();
842 const ConstantArrayType *T =
843 Context.getAsConstantArrayType(Format->getType());
844 assert(T && "String literal not of constant array type!")(static_cast <bool> (T && "String literal not of constant array type!"
) ? void (0) : __assert_fail ("T && \"String literal not of constant array type!\""
, "clang/lib/Sema/SemaChecking.cpp", 844, __extension__ __PRETTY_FUNCTION__
))
;
845 size_t TypeSize = T->getSize().getZExtValue();
846
847 // In case there's a null byte somewhere.
848 size_t StrLen =
849 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
850
851 analyze_format_string::ParseScanfString(H, FormatBytes,
852 FormatBytes + StrLen, getLangOpts(),
853 Context.getTargetInfo());
854
855 // Unlike the other cases, in this one we have already issued the diagnostic
856 // here, so no need to continue (because unlike the other cases, here the
857 // diagnostic refers to the argument number).
858 return;
859 }
860
861 case Builtin::BIsprintf:
862 case Builtin::BI__builtin___sprintf_chk: {
863 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
864 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
865
866 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
867
868 if (!Format->isAscii() && !Format->isUTF8())
869 return;
870
871 StringRef FormatStrRef = Format->getString();
872 EstimateSizeFormatHandler H(FormatStrRef);
873 const char *FormatBytes = FormatStrRef.data();
874 const ConstantArrayType *T =
875 Context.getAsConstantArrayType(Format->getType());
876 assert(T && "String literal not of constant array type!")(static_cast <bool> (T && "String literal not of constant array type!"
) ? void (0) : __assert_fail ("T && \"String literal not of constant array type!\""
, "clang/lib/Sema/SemaChecking.cpp", 876, __extension__ __PRETTY_FUNCTION__
))
;
877 size_t TypeSize = T->getSize().getZExtValue();
878
879 // In case there's a null byte somewhere.
880 size_t StrLen =
881 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
882 if (!analyze_format_string::ParsePrintfString(
883 H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
884 Context.getTargetInfo(), false)) {
885 DiagID = diag::warn_fortify_source_format_overflow;
886 SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
887 .extOrTrunc(SizeTypeWidth);
888 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
889 DestinationSize = ComputeExplicitObjectSizeArgument(2);
890 IsChkVariant = true;
891 } else {
892 DestinationSize = ComputeSizeArgument(0);
893 }
894 break;
895 }
896 }
897 return;
898 }
899 case Builtin::BI__builtin___memcpy_chk:
900 case Builtin::BI__builtin___memmove_chk:
901 case Builtin::BI__builtin___memset_chk:
902// case Builtin::BI__builtin___strlcat_chk:
903// case Builtin::BI__builtin___strlcpy_chk:
904 case Builtin::BI__builtin___strncat_chk:
905 case Builtin::BI__builtin___strncpy_chk:
906 case Builtin::BI__builtin___stpncpy_chk:
907 case Builtin::BI__builtin___memccpy_chk:
908 case Builtin::BI__builtin___mempcpy_chk: {
909 DiagID = diag::warn_builtin_chk_overflow;
910 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
911 DestinationSize =
912 ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
913 IsChkVariant = true;
914 break;
915 }
916
917 case Builtin::BI__builtin___snprintf_chk:
918 case Builtin::BI__builtin___vsnprintf_chk: {
919 DiagID = diag::warn_builtin_chk_overflow;
920 SourceSize = ComputeExplicitObjectSizeArgument(1);
921 DestinationSize = ComputeExplicitObjectSizeArgument(3);
922 IsChkVariant = true;
923 break;
924 }
925
926 case Builtin::BIstrncat:
927 case Builtin::BI__builtin_strncat:
928 case Builtin::BIstrncpy:
929 case Builtin::BI__builtin_strncpy:
930 case Builtin::BIstpncpy:
931 case Builtin::BI__builtin_stpncpy: {
932 // Whether these functions overflow depends on the runtime strlen of the
933 // string, not just the buffer size, so emitting the "always overflow"
934 // diagnostic isn't quite right. We should still diagnose passing a buffer
935 // size larger than the destination buffer though; this is a runtime abort
936 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
937 DiagID = diag::warn_fortify_source_size_mismatch;
938 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
939 DestinationSize = ComputeSizeArgument(0);
940 break;
941 }
942
943 case Builtin::BImemcpy:
944 case Builtin::BI__builtin_memcpy:
945 case Builtin::BImemmove:
946 case Builtin::BI__builtin_memmove:
947 case Builtin::BImemset:
948 case Builtin::BI__builtin_memset:
949 case Builtin::BImempcpy:
950 case Builtin::BI__builtin_mempcpy: {
951 DiagID = diag::warn_fortify_source_overflow;
952 SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
953 DestinationSize = ComputeSizeArgument(0);
954 break;
955 }
956 case Builtin::BIsnprintf:
957 case Builtin::BI__builtin_snprintf:
958 case Builtin::BIvsnprintf:
959 case Builtin::BI__builtin_vsnprintf: {
960 DiagID = diag::warn_fortify_source_size_mismatch;
961 SourceSize = ComputeExplicitObjectSizeArgument(1);
962 DestinationSize = ComputeSizeArgument(0);
963 break;
964 }
965 }
966
967 if (!SourceSize || !DestinationSize ||
968 llvm::APSInt::compareValues(SourceSize.getValue(),
969 DestinationSize.getValue()) <= 0)
970 return;
971
972 StringRef FunctionName = GetFunctionName();
973
974 SmallString<16> DestinationStr;
975 SmallString<16> SourceStr;
976 DestinationSize->toString(DestinationStr, /*Radix=*/10);
977 SourceSize->toString(SourceStr, /*Radix=*/10);
978 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
979 PDiag(DiagID)
980 << FunctionName << DestinationStr << SourceStr);
981}
982
983static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
984 Scope::ScopeFlags NeededScopeFlags,
985 unsigned DiagID) {
986 // Scopes aren't available during instantiation. Fortunately, builtin
987 // functions cannot be template args so they cannot be formed through template
988 // instantiation. Therefore checking once during the parse is sufficient.
989 if (SemaRef.inTemplateInstantiation())
990 return false;
991
992 Scope *S = SemaRef.getCurScope();
993 while (S && !S->isSEHExceptScope())
994 S = S->getParent();
995 if (!S || !(S->getFlags() & NeededScopeFlags)) {
996 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
997 SemaRef.Diag(TheCall->getExprLoc(), DiagID)
998 << DRE->getDecl()->getIdentifier();
999 return true;
1000 }
1001
1002 return false;
1003}
1004
1005static inline bool isBlockPointer(Expr *Arg) {
1006 return Arg->getType()->isBlockPointerType();
1007}
1008
1009/// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
1010/// void*, which is a requirement of device side enqueue.
1011static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
1012 const BlockPointerType *BPT =
1013 cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1014 ArrayRef<QualType> Params =
1015 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
1016 unsigned ArgCounter = 0;
1017 bool IllegalParams = false;
1018 // Iterate through the block parameters until either one is found that is not
1019 // a local void*, or the block is valid.
1020 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
1021 I != E; ++I, ++ArgCounter) {
1022 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
1023 (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
1024 LangAS::opencl_local) {
1025 // Get the location of the error. If a block literal has been passed
1026 // (BlockExpr) then we can point straight to the offending argument,
1027 // else we just point to the variable reference.
1028 SourceLocation ErrorLoc;
1029 if (isa<BlockExpr>(BlockArg)) {
1030 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
1031 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
1032 } else if (isa<DeclRefExpr>(BlockArg)) {
1033 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
1034 }
1035 S.Diag(ErrorLoc,
1036 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
1037 IllegalParams = true;
1038 }
1039 }
1040
1041 return IllegalParams;
1042}
1043
1044static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
1045 // OpenCL device can support extension but not the feature as extension
1046 // requires subgroup independent forward progress, but subgroup independent
1047 // forward progress is optional in OpenCL C 3.0 __opencl_c_subgroups feature.
1048 if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts()) &&
1049 !S.getOpenCLOptions().isSupported("__opencl_c_subgroups",
1050 S.getLangOpts())) {
1051 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
1052 << 1 << Call->getDirectCallee()
1053 << "cl_khr_subgroups or __opencl_c_subgroups";
1054 return true;
1055 }
1056 return false;
1057}
1058
1059static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
1060 if (checkArgCount(S, TheCall, 2))
1061 return true;
1062
1063 if (checkOpenCLSubgroupExt(S, TheCall))
1064 return true;
1065
1066 // First argument is an ndrange_t type.
1067 Expr *NDRangeArg = TheCall->getArg(0);
1068 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1069 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1070 << TheCall->getDirectCallee() << "'ndrange_t'";
1071 return true;
1072 }
1073
1074 Expr *BlockArg = TheCall->getArg(1);
1075 if (!isBlockPointer(BlockArg)) {
1076 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1077 << TheCall->getDirectCallee() << "block";
1078 return true;
1079 }
1080 return checkOpenCLBlockArgs(S, BlockArg);
1081}
1082
1083/// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
1084/// get_kernel_work_group_size
1085/// and get_kernel_preferred_work_group_size_multiple builtin functions.
1086static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
1087 if (checkArgCount(S, TheCall, 1))
1088 return true;
1089
1090 Expr *BlockArg = TheCall->getArg(0);
1091 if (!isBlockPointer(BlockArg)) {
1092 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1093 << TheCall->getDirectCallee() << "block";
1094 return true;
1095 }
1096 return checkOpenCLBlockArgs(S, BlockArg);
1097}
1098
1099/// Diagnose integer type and any valid implicit conversion to it.
1100static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
1101 const QualType &IntType);
1102
1103static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
1104 unsigned Start, unsigned End) {
1105 bool IllegalParams = false;
1106 for (unsigned I = Start; I <= End; ++I)
1107 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
1108 S.Context.getSizeType());
1109 return IllegalParams;
1110}
1111
1112/// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
1113/// 'local void*' parameter of passed block.
1114static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
1115 Expr *BlockArg,
1116 unsigned NumNonVarArgs) {
1117 const BlockPointerType *BPT =
1118 cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1119 unsigned NumBlockParams =
1120 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
1121 unsigned TotalNumArgs = TheCall->getNumArgs();
1122
1123 // For each argument passed to the block, a corresponding uint needs to
1124 // be passed to describe the size of the local memory.
1125 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
1126 S.Diag(TheCall->getBeginLoc(),
1127 diag::err_opencl_enqueue_kernel_local_size_args);
1128 return true;
1129 }
1130
1131 // Check that the sizes of the local memory are specified by integers.
1132 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
1133 TotalNumArgs - 1);
1134}
1135
1136/// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
1137/// overload formats specified in Table 6.13.17.1.
1138/// int enqueue_kernel(queue_t queue,
1139/// kernel_enqueue_flags_t flags,
1140/// const ndrange_t ndrange,
1141/// void (^block)(void))
1142/// int enqueue_kernel(queue_t queue,
1143/// kernel_enqueue_flags_t flags,
1144/// const ndrange_t ndrange,
1145/// uint num_events_in_wait_list,
1146/// clk_event_t *event_wait_list,
1147/// clk_event_t *event_ret,
1148/// void (^block)(void))
1149/// int enqueue_kernel(queue_t queue,
1150/// kernel_enqueue_flags_t flags,
1151/// const ndrange_t ndrange,
1152/// void (^block)(local void*, ...),
1153/// uint size0, ...)
1154/// int enqueue_kernel(queue_t queue,
1155/// kernel_enqueue_flags_t flags,
1156/// const ndrange_t ndrange,
1157/// uint num_events_in_wait_list,
1158/// clk_event_t *event_wait_list,
1159/// clk_event_t *event_ret,
1160/// void (^block)(local void*, ...),
1161/// uint size0, ...)
1162static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
1163 unsigned NumArgs = TheCall->getNumArgs();
1164
1165 if (NumArgs < 4) {
1166 S.Diag(TheCall->getBeginLoc(),
1167 diag::err_typecheck_call_too_few_args_at_least)
1168 << 0 << 4 << NumArgs;
1169 return true;
1170 }
1171
1172 Expr *Arg0 = TheCall->getArg(0);
1173 Expr *Arg1 = TheCall->getArg(1);
1174 Expr *Arg2 = TheCall->getArg(2);
1175 Expr *Arg3 = TheCall->getArg(3);
1176
1177 // First argument always needs to be a queue_t type.
1178 if (!Arg0->getType()->isQueueT()) {
1179 S.Diag(TheCall->getArg(0)->getBeginLoc(),
1180 diag::err_opencl_builtin_expected_type)
1181 << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
1182 return true;
1183 }
1184
1185 // Second argument always needs to be a kernel_enqueue_flags_t enum value.
1186 if (!Arg1->getType()->isIntegerType()) {
1187 S.Diag(TheCall->getArg(1)->getBeginLoc(),
1188 diag::err_opencl_builtin_expected_type)
1189 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
1190 return true;
1191 }
1192
1193 // Third argument is always an ndrange_t type.
1194 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1195 S.Diag(TheCall->getArg(2)->getBeginLoc(),
1196 diag::err_opencl_builtin_expected_type)
1197 << TheCall->getDirectCallee() << "'ndrange_t'";
1198 return true;
1199 }
1200
1201 // With four arguments, there is only one form that the function could be
1202 // called in: no events and no variable arguments.
1203 if (NumArgs == 4) {
1204 // check that the last argument is the right block type.
1205 if (!isBlockPointer(Arg3)) {
1206 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1207 << TheCall->getDirectCallee() << "block";
1208 return true;
1209 }
1210 // we have a block type, check the prototype
1211 const BlockPointerType *BPT =
1212 cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1213 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1214 S.Diag(Arg3->getBeginLoc(),
1215 diag::err_opencl_enqueue_kernel_blocks_no_args);
1216 return true;
1217 }
1218 return false;
1219 }
1220 // we can have block + varargs.
1221 if (isBlockPointer(Arg3))
1222 return (checkOpenCLBlockArgs(S, Arg3) ||
1223 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1224 // last two cases with either exactly 7 args or 7 args and varargs.
1225 if (NumArgs >= 7) {
1226 // check common block argument.
1227 Expr *Arg6 = TheCall->getArg(6);
1228 if (!isBlockPointer(Arg6)) {
1229 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1230 << TheCall->getDirectCallee() << "block";
1231 return true;
1232 }
1233 if (checkOpenCLBlockArgs(S, Arg6))
1234 return true;
1235
1236 // Forth argument has to be any integer type.
1237 if (!Arg3->getType()->isIntegerType()) {
1238 S.Diag(TheCall->getArg(3)->getBeginLoc(),
1239 diag::err_opencl_builtin_expected_type)
1240 << TheCall->getDirectCallee() << "integer";
1241 return true;
1242 }
1243 // check remaining common arguments.
1244 Expr *Arg4 = TheCall->getArg(4);
1245 Expr *Arg5 = TheCall->getArg(5);
1246
1247 // Fifth argument is always passed as a pointer to clk_event_t.
1248 if (!Arg4->isNullPointerConstant(S.Context,
1249 Expr::NPC_ValueDependentIsNotNull) &&
1250 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1251 S.Diag(TheCall->getArg(4)->getBeginLoc(),
1252 diag::err_opencl_builtin_expected_type)
1253 << TheCall->getDirectCallee()
1254 << S.Context.getPointerType(S.Context.OCLClkEventTy);
1255 return true;
1256 }
1257
1258 // Sixth argument is always passed as a pointer to clk_event_t.
1259 if (!Arg5->isNullPointerConstant(S.Context,
1260 Expr::NPC_ValueDependentIsNotNull) &&
1261 !(Arg5->getType()->isPointerType() &&
1262 Arg5->getType()->getPointeeType()->isClkEventT())) {
1263 S.Diag(TheCall->getArg(5)->getBeginLoc(),
1264 diag::err_opencl_builtin_expected_type)
1265 << TheCall->getDirectCallee()
1266 << S.Context.getPointerType(S.Context.OCLClkEventTy);
1267 return true;
1268 }
1269
1270 if (NumArgs == 7)
1271 return false;
1272
1273 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1274 }
1275
1276 // None of the specific case has been detected, give generic error
1277 S.Diag(TheCall->getBeginLoc(),
1278 diag::err_opencl_enqueue_kernel_incorrect_args);
1279 return true;
1280}
1281
1282/// Returns OpenCL access qual.
1283static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1284 return D->getAttr<OpenCLAccessAttr>();
1285}
1286
1287/// Returns true if pipe element type is different from the pointer.
1288static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1289 const Expr *Arg0 = Call->getArg(0);
1290 // First argument type should always be pipe.
1291 if (!Arg0->getType()->isPipeType()) {
1292 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1293 << Call->getDirectCallee() << Arg0->getSourceRange();
1294 return true;
1295 }
1296 OpenCLAccessAttr *AccessQual =
1297 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1298 // Validates the access qualifier is compatible with the call.
1299 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1300 // read_only and write_only, and assumed to be read_only if no qualifier is
1301 // specified.
1302 switch (Call->getDirectCallee()->getBuiltinID()) {
1303 case Builtin::BIread_pipe:
1304 case Builtin::BIreserve_read_pipe:
1305 case Builtin::BIcommit_read_pipe:
1306 case Builtin::BIwork_group_reserve_read_pipe:
1307 case Builtin::BIsub_group_reserve_read_pipe:
1308 case Builtin::BIwork_group_commit_read_pipe:
1309 case Builtin::BIsub_group_commit_read_pipe:
1310 if (!(!AccessQual || AccessQual->isReadOnly())) {
1311 S.Diag(Arg0->getBeginLoc(),
1312 diag::err_opencl_builtin_pipe_invalid_access_modifier)
1313 << "read_only" << Arg0->getSourceRange();
1314 return true;
1315 }
1316 break;
1317 case Builtin::BIwrite_pipe:
1318 case Builtin::BIreserve_write_pipe:
1319 case Builtin::BIcommit_write_pipe:
1320 case Builtin::BIwork_group_reserve_write_pipe:
1321 case Builtin::BIsub_group_reserve_write_pipe:
1322 case Builtin::BIwork_group_commit_write_pipe:
1323 case Builtin::BIsub_group_commit_write_pipe:
1324 if (!(AccessQual && AccessQual->isWriteOnly())) {
1325 S.Diag(Arg0->getBeginLoc(),
1326 diag::err_opencl_builtin_pipe_invalid_access_modifier)
1327 << "write_only" << Arg0->getSourceRange();
1328 return true;
1329 }
1330 break;
1331 default:
1332 break;
1333 }
1334 return false;
1335}
1336
1337/// Returns true if pipe element type is different from the pointer.
1338static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1339 const Expr *Arg0 = Call->getArg(0);
1340 const Expr *ArgIdx = Call->getArg(Idx);
1341 const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1342 const QualType EltTy = PipeTy->getElementType();
1343 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1344 // The Idx argument should be a pointer and the type of the pointer and
1345 // the type of pipe element should also be the same.
1346 if (!ArgTy ||
1347 !S.Context.hasSameType(
1348 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1349 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1350 << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1351 << ArgIdx->getType() << ArgIdx->getSourceRange();
1352 return true;
1353 }
1354 return false;
1355}
1356
1357// Performs semantic analysis for the read/write_pipe call.
1358// \param S Reference to the semantic analyzer.
1359// \param Call A pointer to the builtin call.
1360// \return True if a semantic error has been found, false otherwise.
1361static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1362 // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1363 // functions have two forms.
1364 switch (Call->getNumArgs()) {
1365 case 2:
1366 if (checkOpenCLPipeArg(S, Call))
1367 return true;
1368 // The call with 2 arguments should be
1369 // read/write_pipe(pipe T, T*).
1370 // Check packet type T.
1371 if (checkOpenCLPipePacketType(S, Call, 1))
1372 return true;
1373 break;
1374
1375 case 4: {
1376 if (checkOpenCLPipeArg(S, Call))
1377 return true;
1378 // The call with 4 arguments should be
1379 // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1380 // Check reserve_id_t.
1381 if (!Call->getArg(1)->getType()->isReserveIDT()) {
1382 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1383 << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1384 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1385 return true;
1386 }
1387
1388 // Check the index.
1389 const Expr *Arg2 = Call->getArg(2);
1390 if (!Arg2->getType()->isIntegerType() &&
1391 !Arg2->getType()->isUnsignedIntegerType()) {
1392 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1393 << Call->getDirectCallee() << S.Context.UnsignedIntTy
1394 << Arg2->getType() << Arg2->getSourceRange();
1395 return true;
1396 }
1397
1398 // Check packet type T.
1399 if (checkOpenCLPipePacketType(S, Call, 3))
1400 return true;
1401 } break;
1402 default:
1403 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1404 << Call->getDirectCallee() << Call->getSourceRange();
1405 return true;
1406 }
1407
1408 return false;
1409}
1410
1411// Performs a semantic analysis on the {work_group_/sub_group_
1412// /_}reserve_{read/write}_pipe
1413// \param S Reference to the semantic analyzer.
1414// \param Call The call to the builtin function to be analyzed.
1415// \return True if a semantic error was found, false otherwise.
1416static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1417 if (checkArgCount(S, Call, 2))
1418 return true;
1419
1420 if (checkOpenCLPipeArg(S, Call))
1421 return true;
1422
1423 // Check the reserve size.
1424 if (!Call->getArg(1)->getType()->isIntegerType() &&
1425 !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1426 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1427 << Call->getDirectCallee() << S.Context.UnsignedIntTy
1428 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1429 return true;
1430 }
1431
1432 // Since return type of reserve_read/write_pipe built-in function is
1433 // reserve_id_t, which is not defined in the builtin def file , we used int
1434 // as return type and need to override the return type of these functions.
1435 Call->setType(S.Context.OCLReserveIDTy);
1436
1437 return false;
1438}
1439
1440// Performs a semantic analysis on {work_group_/sub_group_
1441// /_}commit_{read/write}_pipe
1442// \param S Reference to the semantic analyzer.
1443// \param Call The call to the builtin function to be analyzed.
1444// \return True if a semantic error was found, false otherwise.
1445static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1446 if (checkArgCount(S, Call, 2))
1447 return true;
1448
1449 if (checkOpenCLPipeArg(S, Call))
1450 return true;
1451
1452 // Check reserve_id_t.
1453 if (!Call->getArg(1)->getType()->isReserveIDT()) {
1454 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1455 << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1456 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1457 return true;
1458 }
1459
1460 return false;
1461}
1462
1463// Performs a semantic analysis on the call to built-in Pipe
1464// Query Functions.
1465// \param S Reference to the semantic analyzer.
1466// \param Call The call to the builtin function to be analyzed.
1467// \return True if a semantic error was found, false otherwise.
1468static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1469 if (checkArgCount(S, Call, 1))
1470 return true;
1471
1472 if (!Call->getArg(0)->getType()->isPipeType()) {
1473 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1474 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1475 return true;
1476 }
1477
1478 return false;
1479}
1480
1481// OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1482// Performs semantic analysis for the to_global/local/private call.
1483// \param S Reference to the semantic analyzer.
1484// \param BuiltinID ID of the builtin function.
1485// \param Call A pointer to the builtin call.
1486// \return True if a semantic error has been found, false otherwise.
1487static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1488 CallExpr *Call) {
1489 if (checkArgCount(S, Call, 1))
1490 return true;
1491
1492 auto RT = Call->getArg(0)->getType();
1493 if (!RT->isPointerType() || RT->getPointeeType()
1494 .getAddressSpace() == LangAS::opencl_constant) {
1495 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1496 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1497 return true;
1498 }
1499
1500 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1501 S.Diag(Call->getArg(0)->getBeginLoc(),
1502 diag::warn_opencl_generic_address_space_arg)
1503 << Call->getDirectCallee()->getNameInfo().getAsString()
1504 << Call->getArg(0)->getSourceRange();
1505 }
1506
1507 RT = RT->getPointeeType();
1508 auto Qual = RT.getQualifiers();
1509 switch (BuiltinID) {
1510 case Builtin::BIto_global:
1511 Qual.setAddressSpace(LangAS::opencl_global);
1512 break;
1513 case Builtin::BIto_local:
1514 Qual.setAddressSpace(LangAS::opencl_local);
1515 break;
1516 case Builtin::BIto_private:
1517 Qual.setAddressSpace(LangAS::opencl_private);
1518 break;
1519 default:
1520 llvm_unreachable("Invalid builtin function")::llvm::llvm_unreachable_internal("Invalid builtin function",
"clang/lib/Sema/SemaChecking.cpp", 1520)
;
1521 }
1522 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1523 RT.getUnqualifiedType(), Qual)));
1524
1525 return false;
1526}
1527
1528static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1529 if (checkArgCount(S, TheCall, 1))
1530 return ExprError();
1531
1532 // Compute __builtin_launder's parameter type from the argument.
1533 // The parameter type is:
1534 // * The type of the argument if it's not an array or function type,
1535 // Otherwise,
1536 // * The decayed argument type.
1537 QualType ParamTy = [&]() {
1538 QualType ArgTy = TheCall->getArg(0)->getType();
1539 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1540 return S.Context.getPointerType(Ty->getElementType());
1541 if (ArgTy->isFunctionType()) {
1542 return S.Context.getPointerType(ArgTy);
1543 }
1544 return ArgTy;
1545 }();
1546
1547 TheCall->setType(ParamTy);
1548
1549 auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1550 if (!ParamTy->isPointerType())
1551 return 0;
1552 if (ParamTy->isFunctionPointerType())
1553 return 1;
1554 if (ParamTy->isVoidPointerType())
1555 return 2;
1556 return llvm::Optional<unsigned>{};
1557 }();
1558 if (DiagSelect.hasValue()) {
1559 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1560 << DiagSelect.getValue() << TheCall->getSourceRange();
1561 return ExprError();
1562 }
1563
1564 // We either have an incomplete class type, or we have a class template
1565 // whose instantiation has not been forced. Example:
1566 //
1567 // template <class T> struct Foo { T value; };
1568 // Foo<int> *p = nullptr;
1569 // auto *d = __builtin_launder(p);
1570 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1571 diag::err_incomplete_type))
1572 return ExprError();
1573
1574 assert(ParamTy->getPointeeType()->isObjectType() &&(static_cast <bool> (ParamTy->getPointeeType()->isObjectType
() && "Unhandled non-object pointer case") ? void (0)
: __assert_fail ("ParamTy->getPointeeType()->isObjectType() && \"Unhandled non-object pointer case\""
, "clang/lib/Sema/SemaChecking.cpp", 1575, __extension__ __PRETTY_FUNCTION__
))
1575 "Unhandled non-object pointer case")(static_cast <bool> (ParamTy->getPointeeType()->isObjectType
() && "Unhandled non-object pointer case") ? void (0)
: __assert_fail ("ParamTy->getPointeeType()->isObjectType() && \"Unhandled non-object pointer case\""
, "clang/lib/Sema/SemaChecking.cpp", 1575, __extension__ __PRETTY_FUNCTION__
))
;
1576
1577 InitializedEntity Entity =
1578 InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1579 ExprResult Arg =
1580 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1581 if (Arg.isInvalid())
1582 return ExprError();
1583 TheCall->setArg(0, Arg.get());
1584
1585 return TheCall;
1586}
1587
1588// Emit an error and return true if the current object format type is in the
1589// list of unsupported types.
1590static bool CheckBuiltinTargetNotInUnsupported(
1591 Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1592 ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) {
1593 llvm::Triple::ObjectFormatType CurObjFormat =
1594 S.getASTContext().getTargetInfo().getTriple().getObjectFormat();
1595 if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) {
1596 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1597 << TheCall->getSourceRange();
1598 return true;
1599 }
1600 return false;
1601}
1602
1603// Emit an error and return true if the current architecture is not in the list
1604// of supported architectures.
1605static bool
1606CheckBuiltinTargetInSupported(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1607 ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1608 llvm::Triple::ArchType CurArch =
1609 S.getASTContext().getTargetInfo().getTriple().getArch();
1610 if (llvm::is_contained(SupportedArchs, CurArch))
1611 return false;
1612 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1613 << TheCall->getSourceRange();
1614 return true;
1615}
1616
1617static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1618 SourceLocation CallSiteLoc);
1619
1620bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1621 CallExpr *TheCall) {
1622 switch (TI.getTriple().getArch()) {
1623 default:
1624 // Some builtins don't require additional checking, so just consider these
1625 // acceptable.
1626 return false;
1627 case llvm::Triple::arm:
1628 case llvm::Triple::armeb:
1629 case llvm::Triple::thumb:
1630 case llvm::Triple::thumbeb:
1631 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1632 case llvm::Triple::aarch64:
1633 case llvm::Triple::aarch64_32:
1634 case llvm::Triple::aarch64_be:
1635 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1636 case llvm::Triple::bpfeb:
1637 case llvm::Triple::bpfel:
1638 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1639 case llvm::Triple::hexagon:
1640 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1641 case llvm::Triple::mips:
1642 case llvm::Triple::mipsel:
1643 case llvm::Triple::mips64:
1644 case llvm::Triple::mips64el:
1645 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1646 case llvm::Triple::systemz:
1647 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1648 case llvm::Triple::x86:
1649 case llvm::Triple::x86_64:
1650 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1651 case llvm::Triple::ppc:
1652 case llvm::Triple::ppcle:
1653 case llvm::Triple::ppc64:
1654 case llvm::Triple::ppc64le:
1655 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1656 case llvm::Triple::amdgcn:
1657 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1658 case llvm::Triple::riscv32:
1659 case llvm::Triple::riscv64:
1660 return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall);
1661 }
1662}
1663
1664ExprResult
1665Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1666 CallExpr *TheCall) {
1667 ExprResult TheCallResult(TheCall);
1668
1669 // Find out if any arguments are required to be integer constant expressions.
1670 unsigned ICEArguments = 0;
1671 ASTContext::GetBuiltinTypeError Error;
1672 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1673 if (Error != ASTContext::GE_None)
1674 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
1675
1676 // If any arguments are required to be ICE's, check and diagnose.
1677 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1678 // Skip arguments not required to be ICE's.
1679 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1680
1681 llvm::APSInt Result;
1682 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1683 return true;
1684 ICEArguments &= ~(1 << ArgNo);
1685 }
1686
1687 switch (BuiltinID) {
1688 case Builtin::BI__builtin___CFStringMakeConstantString:
1689 // CFStringMakeConstantString is currently not implemented for GOFF (i.e.,
1690 // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported
1691 if (CheckBuiltinTargetNotInUnsupported(
1692 *this, BuiltinID, TheCall,
1693 {llvm::Triple::GOFF, llvm::Triple::XCOFF}))
1694 return ExprError();
1695 assert(TheCall->getNumArgs() == 1 &&(static_cast <bool> (TheCall->getNumArgs() == 1 &&
"Wrong # arguments to builtin CFStringMakeConstantString") ?
void (0) : __assert_fail ("TheCall->getNumArgs() == 1 && \"Wrong # arguments to builtin CFStringMakeConstantString\""
, "clang/lib/Sema/SemaChecking.cpp", 1696, __extension__ __PRETTY_FUNCTION__
))
1696 "Wrong # arguments to builtin CFStringMakeConstantString")(static_cast <bool> (TheCall->getNumArgs() == 1 &&
"Wrong # arguments to builtin CFStringMakeConstantString") ?
void (0) : __assert_fail ("TheCall->getNumArgs() == 1 && \"Wrong # arguments to builtin CFStringMakeConstantString\""
, "clang/lib/Sema/SemaChecking.cpp", 1696, __extension__ __PRETTY_FUNCTION__
))
;
1697 if (CheckObjCString(TheCall->getArg(0)))
1698 return ExprError();
1699 break;
1700 case Builtin::BI__builtin_ms_va_start:
1701 case Builtin::BI__builtin_stdarg_start:
1702 case Builtin::BI__builtin_va_start:
1703 if (SemaBuiltinVAStart(BuiltinID, TheCall))
1704 return ExprError();
1705 break;
1706 case Builtin::BI__va_start: {
1707 switch (Context.getTargetInfo().getTriple().getArch()) {
1708 case llvm::Triple::aarch64:
1709 case llvm::Triple::arm:
1710 case llvm::Triple::thumb:
1711 if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1712 return ExprError();
1713 break;
1714 default:
1715 if (SemaBuiltinVAStart(BuiltinID, TheCall))
1716 return ExprError();
1717 break;
1718 }
1719 break;
1720 }
1721
1722 // The acquire, release, and no fence variants are ARM and AArch64 only.
1723 case Builtin::BI_interlockedbittestandset_acq:
1724 case Builtin::BI_interlockedbittestandset_rel:
1725 case Builtin::BI_interlockedbittestandset_nf:
1726 case Builtin::BI_interlockedbittestandreset_acq:
1727 case Builtin::BI_interlockedbittestandreset_rel:
1728 case Builtin::BI_interlockedbittestandreset_nf:
1729 if (CheckBuiltinTargetInSupported(
1730 *this, BuiltinID, TheCall,
1731 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1732 return ExprError();
1733 break;
1734
1735 // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1736 case Builtin::BI_bittest64:
1737 case Builtin::BI_bittestandcomplement64:
1738 case Builtin::BI_bittestandreset64:
1739 case Builtin::BI_bittestandset64:
1740 case Builtin::BI_interlockedbittestandreset64:
1741 case Builtin::BI_interlockedbittestandset64:
1742 if (CheckBuiltinTargetInSupported(*this, BuiltinID, TheCall,
1743 {llvm::Triple::x86_64, llvm::Triple::arm,
1744 llvm::Triple::thumb,
1745 llvm::Triple::aarch64}))
1746 return ExprError();
1747 break;
1748
1749 case Builtin::BI__builtin_isgreater:
1750 case Builtin::BI__builtin_isgreaterequal:
1751 case Builtin::BI__builtin_isless:
1752 case Builtin::BI__builtin_islessequal:
1753 case Builtin::BI__builtin_islessgreater:
1754 case Builtin::BI__builtin_isunordered:
1755 if (SemaBuiltinUnorderedCompare(TheCall))
1756 return ExprError();
1757 break;
1758 case Builtin::BI__builtin_fpclassify:
1759 if (SemaBuiltinFPClassification(TheCall, 6))
1760 return ExprError();
1761 break;
1762 case Builtin::BI__builtin_isfinite:
1763 case Builtin::BI__builtin_isinf:
1764 case Builtin::BI__builtin_isinf_sign:
1765 case Builtin::BI__builtin_isnan:
1766 case Builtin::BI__builtin_isnormal:
1767 case Builtin::BI__builtin_signbit:
1768 case Builtin::BI__builtin_signbitf:
1769 case Builtin::BI__builtin_signbitl:
1770 if (SemaBuiltinFPClassification(TheCall, 1))
1771 return ExprError();
1772 break;
1773 case Builtin::BI__builtin_shufflevector:
1774 return SemaBuiltinShuffleVector(TheCall);
1775 // TheCall will be freed by the smart pointer here, but that's fine, since
1776 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1777 case Builtin::BI__builtin_prefetch:
1778 if (SemaBuiltinPrefetch(TheCall))
1779 return ExprError();
1780 break;
1781 case Builtin::BI__builtin_alloca_with_align:
1782 case Builtin::BI__builtin_alloca_with_align_uninitialized:
1783 if (SemaBuiltinAllocaWithAlign(TheCall))
1784 return ExprError();
1785 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1786 case Builtin::BI__builtin_alloca:
1787 case Builtin::BI__builtin_alloca_uninitialized:
1788 Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1789 << TheCall->getDirectCallee();
1790 break;
1791 case Builtin::BI__arithmetic_fence:
1792 if (SemaBuiltinArithmeticFence(TheCall))
1793 return ExprError();
1794 break;
1795 case Builtin::BI__assume:
1796 case Builtin::BI__builtin_assume:
1797 if (SemaBuiltinAssume(TheCall))
1798 return ExprError();
1799 break;
1800 case Builtin::BI__builtin_assume_aligned:
1801 if (SemaBuiltinAssumeAligned(TheCall))
1802 return ExprError();
1803 break;
1804 case Builtin::BI__builtin_dynamic_object_size:
1805 case Builtin::BI__builtin_object_size:
1806 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1807 return ExprError();
1808 break;
1809 case Builtin::BI__builtin_longjmp:
1810 if (SemaBuiltinLongjmp(TheCall))
1811 return ExprError();
1812 break;
1813 case Builtin::BI__builtin_setjmp:
1814 if (SemaBuiltinSetjmp(TheCall))
1815 return ExprError();
1816 break;
1817 case Builtin::BI__builtin_classify_type:
1818 if (checkArgCount(*this, TheCall, 1)) return true;
1819 TheCall->setType(Context.IntTy);
1820 break;
1821 case Builtin::BI__builtin_complex:
1822 if (SemaBuiltinComplex(TheCall))
1823 return ExprError();
1824 break;
1825 case Builtin::BI__builtin_constant_p: {
1826 if (checkArgCount(*this, TheCall, 1)) return true;
1827 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1828 if (Arg.isInvalid()) return true;
1829 TheCall->setArg(0, Arg.get());
1830 TheCall->setType(Context.IntTy);
1831 break;
1832 }
1833 case Builtin::BI__builtin_launder:
1834 return SemaBuiltinLaunder(*this, TheCall);
1835 case Builtin::BI__sync_fetch_and_add:
1836 case Builtin::BI__sync_fetch_and_add_1:
1837 case Builtin::BI__sync_fetch_and_add_2:
1838 case Builtin::BI__sync_fetch_and_add_4:
1839 case Builtin::BI__sync_fetch_and_add_8:
1840 case Builtin::BI__sync_fetch_and_add_16:
1841 case Builtin::BI__sync_fetch_and_sub:
1842 case Builtin::BI__sync_fetch_and_sub_1:
1843 case Builtin::BI__sync_fetch_and_sub_2:
1844 case Builtin::BI__sync_fetch_and_sub_4:
1845 case Builtin::BI__sync_fetch_and_sub_8:
1846 case Builtin::BI__sync_fetch_and_sub_16:
1847 case Builtin::BI__sync_fetch_and_or:
1848 case Builtin::BI__sync_fetch_and_or_1:
1849 case Builtin::BI__sync_fetch_and_or_2:
1850 case Builtin::BI__sync_fetch_and_or_4:
1851 case Builtin::BI__sync_fetch_and_or_8:
1852 case Builtin::BI__sync_fetch_and_or_16:
1853 case Builtin::BI__sync_fetch_and_and:
1854 case Builtin::BI__sync_fetch_and_and_1:
1855 case Builtin::BI__sync_fetch_and_and_2:
1856 case Builtin::BI__sync_fetch_and_and_4:
1857 case Builtin::BI__sync_fetch_and_and_8:
1858 case Builtin::BI__sync_fetch_and_and_16:
1859 case Builtin::BI__sync_fetch_and_xor:
1860 case Builtin::BI__sync_fetch_and_xor_1:
1861 case Builtin::BI__sync_fetch_and_xor_2:
1862 case Builtin::BI__sync_fetch_and_xor_4:
1863 case Builtin::BI__sync_fetch_and_xor_8:
1864 case Builtin::BI__sync_fetch_and_xor_16:
1865 case Builtin::BI__sync_fetch_and_nand:
1866 case Builtin::BI__sync_fetch_and_nand_1:
1867 case Builtin::BI__sync_fetch_and_nand_2:
1868 case Builtin::BI__sync_fetch_and_nand_4:
1869 case Builtin::BI__sync_fetch_and_nand_8:
1870 case Builtin::BI__sync_fetch_and_nand_16:
1871 case Builtin::BI__sync_add_and_fetch:
1872 case Builtin::BI__sync_add_and_fetch_1:
1873 case Builtin::BI__sync_add_and_fetch_2:
1874 case Builtin::BI__sync_add_and_fetch_4:
1875 case Builtin::BI__sync_add_and_fetch_8:
1876 case Builtin::BI__sync_add_and_fetch_16:
1877 case Builtin::BI__sync_sub_and_fetch:
1878 case Builtin::BI__sync_sub_and_fetch_1:
1879 case Builtin::BI__sync_sub_and_fetch_2:
1880 case Builtin::BI__sync_sub_and_fetch_4:
1881 case Builtin::BI__sync_sub_and_fetch_8:
1882 case Builtin::BI__sync_sub_and_fetch_16:
1883 case Builtin::BI__sync_and_and_fetch:
1884 case Builtin::BI__sync_and_and_fetch_1:
1885 case Builtin::BI__sync_and_and_fetch_2:
1886 case Builtin::BI__sync_and_and_fetch_4:
1887 case Builtin::BI__sync_and_and_fetch_8:
1888 case Builtin::BI__sync_and_and_fetch_16:
1889 case Builtin::BI__sync_or_and_fetch:
1890 case Builtin::BI__sync_or_and_fetch_1:
1891 case Builtin::BI__sync_or_and_fetch_2:
1892 case Builtin::BI__sync_or_and_fetch_4:
1893 case Builtin::BI__sync_or_and_fetch_8:
1894 case Builtin::BI__sync_or_and_fetch_16:
1895 case Builtin::BI__sync_xor_and_fetch:
1896 case Builtin::BI__sync_xor_and_fetch_1:
1897 case Builtin::BI__sync_xor_and_fetch_2:
1898 case Builtin::BI__sync_xor_and_fetch_4:
1899 case Builtin::BI__sync_xor_and_fetch_8:
1900 case Builtin::BI__sync_xor_and_fetch_16:
1901 case Builtin::BI__sync_nand_and_fetch:
1902 case Builtin::BI__sync_nand_and_fetch_1:
1903 case Builtin::BI__sync_nand_and_fetch_2:
1904 case Builtin::BI__sync_nand_and_fetch_4:
1905 case Builtin::BI__sync_nand_and_fetch_8:
1906 case Builtin::BI__sync_nand_and_fetch_16:
1907 case Builtin::BI__sync_val_compare_and_swap:
1908 case Builtin::BI__sync_val_compare_and_swap_1:
1909 case Builtin::BI__sync_val_compare_and_swap_2:
1910 case Builtin::BI__sync_val_compare_and_swap_4:
1911 case Builtin::BI__sync_val_compare_and_swap_8:
1912 case Builtin::BI__sync_val_compare_and_swap_16:
1913 case Builtin::BI__sync_bool_compare_and_swap:
1914 case Builtin::BI__sync_bool_compare_and_swap_1:
1915 case Builtin::BI__sync_bool_compare_and_swap_2:
1916 case Builtin::BI__sync_bool_compare_and_swap_4:
1917 case Builtin::BI__sync_bool_compare_and_swap_8:
1918 case Builtin::BI__sync_bool_compare_and_swap_16:
1919 case Builtin::BI__sync_lock_test_and_set:
1920 case Builtin::BI__sync_lock_test_and_set_1:
1921 case Builtin::BI__sync_lock_test_and_set_2:
1922 case Builtin::BI__sync_lock_test_and_set_4:
1923 case Builtin::BI__sync_lock_test_and_set_8:
1924 case Builtin::BI__sync_lock_test_and_set_16:
1925 case Builtin::BI__sync_lock_release:
1926 case Builtin::BI__sync_lock_release_1:
1927 case Builtin::BI__sync_lock_release_2:
1928 case Builtin::BI__sync_lock_release_4:
1929 case Builtin::BI__sync_lock_release_8:
1930 case Builtin::BI__sync_lock_release_16:
1931 case Builtin::BI__sync_swap:
1932 case Builtin::BI__sync_swap_1:
1933 case Builtin::BI__sync_swap_2:
1934 case Builtin::BI__sync_swap_4:
1935 case Builtin::BI__sync_swap_8:
1936 case Builtin::BI__sync_swap_16:
1937 return SemaBuiltinAtomicOverloaded(TheCallResult);
1938 case Builtin::BI__sync_synchronize:
1939 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1940 << TheCall->getCallee()->getSourceRange();
1941 break;
1942 case Builtin::BI__builtin_nontemporal_load:
1943 case Builtin::BI__builtin_nontemporal_store:
1944 return SemaBuiltinNontemporalOverloaded(TheCallResult);
1945 case Builtin::BI__builtin_memcpy_inline: {
1946 clang::Expr *SizeOp = TheCall->getArg(2);
1947 // We warn about copying to or from `nullptr` pointers when `size` is
1948 // greater than 0. When `size` is value dependent we cannot evaluate its
1949 // value so we bail out.
1950 if (SizeOp->isValueDependent())
1951 break;
1952 if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
1953 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1954 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1955 }
1956 break;
1957 }
1958#define BUILTIN(ID, TYPE, ATTRS)
1959#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1960 case Builtin::BI##ID: \
1961 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1962#include "clang/Basic/Builtins.def"
1963 case Builtin::BI__annotation:
1964 if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1965 return ExprError();
1966 break;
1967 case Builtin::BI__builtin_annotation:
1968 if (SemaBuiltinAnnotation(*this, TheCall))
1969 return ExprError();
1970 break;
1971 case Builtin::BI__builtin_addressof:
1972 if (SemaBuiltinAddressof(*this, TheCall))
1973 return ExprError();
1974 break;
1975 case Builtin::BI__builtin_function_start:
1976 if (SemaBuiltinFunctionStart(*this, TheCall))
1977 return ExprError();
1978 break;
1979 case Builtin::BI__builtin_is_aligned:
1980 case Builtin::BI__builtin_align_up:
1981 case Builtin::BI__builtin_align_down:
1982 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1983 return ExprError();
1984 break;
1985 case Builtin::BI__builtin_add_overflow:
1986 case Builtin::BI__builtin_sub_overflow:
1987 case Builtin::BI__builtin_mul_overflow:
1988 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1989 return ExprError();
1990 break;
1991 case Builtin::BI__builtin_operator_new:
1992 case Builtin::BI__builtin_operator_delete: {
1993 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1994 ExprResult Res =
1995 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1996 if (Res.isInvalid())
1997 CorrectDelayedTyposInExpr(TheCallResult.get());
1998 return Res;
1999 }
2000 case Builtin::BI__builtin_dump_struct: {
2001 // We first want to ensure we are called with 2 arguments
2002 if (checkArgCount(*this, TheCall, 2))
2003 return ExprError();
2004 // Ensure that the first argument is of type 'struct XX *'
2005 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
2006 const QualType PtrArgType = PtrArg->getType();
2007 if (!PtrArgType->isPointerType() ||
2008 !PtrArgType->getPointeeType()->isRecordType()) {
2009 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
2010 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
2011 << "structure pointer";
2012 return ExprError();
2013 }
2014
2015 // Ensure that the second argument is of type 'FunctionType'
2016 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
2017 const QualType FnPtrArgType = FnPtrArg->getType();
2018 if (!FnPtrArgType->isPointerType()) {
2019 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
2020 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
2021 << FnPtrArgType << "'int (*)(const char *, ...)'";
2022 return ExprError();
2023 }
2024
2025 const auto *FuncType =
2026 FnPtrArgType->getPointeeType()->getAs<FunctionType>();
2027
2028 if (!FuncType) {
2029 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
2030 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
2031 << FnPtrArgType << "'int (*)(const char *, ...)'";
2032 return ExprError();
2033 }
2034
2035 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
2036 if (!FT->getNumParams()) {
2037 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
2038 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
2039 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
2040 return ExprError();
2041 }
2042 QualType PT = FT->getParamType(0);
2043 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
2044 !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
2045 !PT->getPointeeType().isConstQualified()) {
2046 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
2047 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
2048 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
2049 return ExprError();
2050 }
2051 }
2052
2053 TheCall->setType(Context.IntTy);
2054 break;
2055 }
2056 case Builtin::BI__builtin_expect_with_probability: {
2057 // We first want to ensure we are called with 3 arguments
2058 if (checkArgCount(*this, TheCall, 3))
2059 return ExprError();
2060 // then check probability is constant float in range [0.0, 1.0]
2061 const Expr *ProbArg = TheCall->getArg(2);
2062 SmallVector<PartialDiagnosticAt, 8> Notes;
2063 Expr::EvalResult Eval;
2064 Eval.Diag = &Notes;
2065 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
2066 !Eval.Val.isFloat()) {
2067 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
2068 << ProbArg->getSourceRange();
2069 for (const PartialDiagnosticAt &PDiag : Notes)
2070 Diag(PDiag.first, PDiag.second);
2071 return ExprError();
2072 }
2073 llvm::APFloat Probability = Eval.Val.getFloat();
2074 bool LoseInfo = false;
2075 Probability.convert(llvm::APFloat::IEEEdouble(),
2076 llvm::RoundingMode::Dynamic, &LoseInfo);
2077 if (!(Probability >= llvm::APFloat(0.0) &&
2078 Probability <= llvm::APFloat(1.0))) {
2079 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
2080 << ProbArg->getSourceRange();
2081 return ExprError();
2082 }
2083 break;
2084 }
2085 case Builtin::BI__builtin_preserve_access_index:
2086 if (SemaBuiltinPreserveAI(*this, TheCall))
2087 return ExprError();
2088 break;
2089 case Builtin::BI__builtin_call_with_static_chain:
2090 if (SemaBuiltinCallWithStaticChain(*this, TheCall))
2091 return ExprError();
2092 break;
2093 case Builtin::BI__exception_code:
2094 case Builtin::BI_exception_code:
2095 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
2096 diag::err_seh___except_block))
2097 return ExprError();
2098 break;
2099 case Builtin::BI__exception_info:
2100 case Builtin::BI_exception_info:
2101 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
2102 diag::err_seh___except_filter))
2103 return ExprError();
2104 break;
2105 case Builtin::BI__GetExceptionInfo:
2106 if (checkArgCount(*this, TheCall, 1))
2107 return ExprError();
2108
2109 if (CheckCXXThrowOperand(
2110 TheCall->getBeginLoc(),
2111 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
2112 TheCall))
2113 return ExprError();
2114
2115 TheCall->setType(Context.VoidPtrTy);
2116 break;
2117 // OpenCL v2.0, s6.13.16 - Pipe functions
2118 case Builtin::BIread_pipe:
2119 case Builtin::BIwrite_pipe:
2120 // Since those two functions are declared with var args, we need a semantic
2121 // check for the argument.
2122 if (SemaBuiltinRWPipe(*this, TheCall))
2123 return ExprError();
2124 break;
2125 case Builtin::BIreserve_read_pipe:
2126 case Builtin::BIreserve_write_pipe:
2127 case Builtin::BIwork_group_reserve_read_pipe:
2128 case Builtin::BIwork_group_reserve_write_pipe:
2129 if (SemaBuiltinReserveRWPipe(*this, TheCall))
2130 return ExprError();
2131 break;
2132 case Builtin::BIsub_group_reserve_read_pipe:
2133 case Builtin::BIsub_group_reserve_write_pipe:
2134 if (checkOpenCLSubgroupExt(*this, TheCall) ||
2135 SemaBuiltinReserveRWPipe(*this, TheCall))
2136 return ExprError();
2137 break;
2138 case Builtin::BIcommit_read_pipe:
2139 case Builtin::BIcommit_write_pipe:
2140 case Builtin::BIwork_group_commit_read_pipe:
2141 case Builtin::BIwork_group_commit_write_pipe:
2142 if (SemaBuiltinCommitRWPipe(*this, TheCall))
2143 return ExprError();
2144 break;
2145 case Builtin::BIsub_group_commit_read_pipe:
2146 case Builtin::BIsub_group_commit_write_pipe:
2147 if (checkOpenCLSubgroupExt(*this, TheCall) ||
2148 SemaBuiltinCommitRWPipe(*this, TheCall))
2149 return ExprError();
2150 break;
2151 case Builtin::BIget_pipe_num_packets:
2152 case Builtin::BIget_pipe_max_packets:
2153 if (SemaBuiltinPipePackets(*this, TheCall))
2154 return ExprError();
2155 break;
2156 case Builtin::BIto_global:
2157 case Builtin::BIto_local:
2158 case Builtin::BIto_private:
2159 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
2160 return ExprError();
2161 break;
2162 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
2163 case Builtin::BIenqueue_kernel:
2164 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
2165 return ExprError();
2166 break;
2167 case Builtin::BIget_kernel_work_group_size:
2168 case Builtin::BIget_kernel_preferred_work_group_size_multiple:
2169 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
2170 return ExprError();
2171 break;
2172 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
2173 case Builtin::BIget_kernel_sub_group_count_for_ndrange:
2174 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
2175 return ExprError();
2176 break;
2177 case Builtin::BI__builtin_os_log_format:
2178 Cleanup.setExprNeedsCleanups(true);
2179 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2180 case Builtin::BI__builtin_os_log_format_buffer_size:
2181 if (SemaBuiltinOSLogFormat(TheCall))
2182 return ExprError();
2183 break;
2184 case Builtin::BI__builtin_frame_address:
2185 case Builtin::BI__builtin_return_address: {
2186 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
2187 return ExprError();
2188
2189 // -Wframe-address warning if non-zero passed to builtin
2190 // return/frame address.
2191 Expr::EvalResult Result;
2192 if (!TheCall->getArg(0)->isValueDependent() &&
2193 TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
2194 Result.Val.getInt() != 0)
2195 Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
2196 << ((BuiltinID == Builtin::BI__builtin_return_address)
2197 ? "__builtin_return_address"
2198 : "__builtin_frame_address")
2199 << TheCall->getSourceRange();
2200 break;
2201 }
2202
2203 // __builtin_elementwise_abs restricts the element type to signed integers or
2204 // floating point types only.
2205 case Builtin::BI__builtin_elementwise_abs: {
2206 if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2207 return ExprError();
2208
2209 QualType ArgTy = TheCall->getArg(0)->getType();
2210 QualType EltTy = ArgTy;
2211
2212 if (auto *VecTy = EltTy->getAs<VectorType>())
2213 EltTy = VecTy->getElementType();
2214 if (EltTy->isUnsignedIntegerType()) {
2215 Diag(TheCall->getArg(0)->getBeginLoc(),
2216 diag::err_builtin_invalid_arg_type)
2217 << 1 << /* signed integer or float ty*/ 3 << ArgTy;
2218 return ExprError();
2219 }
2220 break;
2221 }
2222
2223 // These builtins restrict the element type to floating point
2224 // types only.
2225 case Builtin::BI__builtin_elementwise_ceil:
2226 case Builtin::BI__builtin_elementwise_floor:
2227 case Builtin::BI__builtin_elementwise_roundeven:
2228 case Builtin::BI__builtin_elementwise_trunc: {
2229 if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2230 return ExprError();
2231
2232 QualType ArgTy = TheCall->getArg(0)->getType();
2233 QualType EltTy = ArgTy;
2234
2235 if (auto *VecTy = EltTy->getAs<VectorType>())
2236 EltTy = VecTy->getElementType();
2237 if (!EltTy->isFloatingType()) {
2238 Diag(TheCall->getArg(0)->getBeginLoc(),
2239 diag::err_builtin_invalid_arg_type)
2240 << 1 << /* float ty*/ 5 << ArgTy;
2241
2242 return ExprError();
2243 }
2244 break;
2245 }
2246
2247 // These builtins restrict the element type to integer
2248 // types only.
2249 case Builtin::BI__builtin_elementwise_add_sat:
2250 case Builtin::BI__builtin_elementwise_sub_sat: {
2251 if (SemaBuiltinElementwiseMath(TheCall))
2252 return ExprError();
2253
2254 const Expr *Arg = TheCall->getArg(0);
2255 QualType ArgTy = Arg->getType();
2256 QualType EltTy = ArgTy;
2257
2258 if (auto *VecTy = EltTy->getAs<VectorType>())
2259 EltTy = VecTy->getElementType();
2260
2261 if (!EltTy->isIntegerType()) {
2262 Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2263 << 1 << /* integer ty */ 6 << ArgTy;
2264 return ExprError();
2265 }
2266 break;
2267 }
2268
2269 case Builtin::BI__builtin_elementwise_min:
2270 case Builtin::BI__builtin_elementwise_max:
2271 if (SemaBuiltinElementwiseMath(TheCall))
2272 return ExprError();
2273 break;
2274 case Builtin::BI__builtin_reduce_max:
2275 case Builtin::BI__builtin_reduce_min: {
2276 if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2277 return ExprError();
2278
2279 const Expr *Arg = TheCall->getArg(0);
2280 const auto *TyA = Arg->getType()->getAs<VectorType>();
2281 if (!TyA) {
2282 Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2283 << 1 << /* vector ty*/ 4 << Arg->getType();
2284 return ExprError();
2285 }
2286
2287 TheCall->setType(TyA->getElementType());
2288 break;
2289 }
2290
2291 // These builtins support vectors of integers only.
2292 case Builtin::BI__builtin_reduce_xor:
2293 case Builtin::BI__builtin_reduce_or:
2294 case Builtin::BI__builtin_reduce_and: {
2295 if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2296 return ExprError();
2297
2298 const Expr *Arg = TheCall->getArg(0);
2299 const auto *TyA = Arg->getType()->getAs<VectorType>();
2300 if (!TyA || !TyA->getElementType()->isIntegerType()) {
2301 Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2302 << 1 << /* vector of integers */ 6 << Arg->getType();
2303 return ExprError();
2304 }
2305 TheCall->setType(TyA->getElementType());
2306 break;
2307 }
2308
2309 case Builtin::BI__builtin_matrix_transpose:
2310 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
2311
2312 case Builtin::BI__builtin_matrix_column_major_load:
2313 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
2314
2315 case Builtin::BI__builtin_matrix_column_major_store:
2316 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
2317
2318 case Builtin::BI__builtin_get_device_side_mangled_name: {
2319 auto Check = [](CallExpr *TheCall) {
2320 if (TheCall->getNumArgs() != 1)
2321 return false;
2322 auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
2323 if (!DRE)
2324 return false;
2325 auto *D = DRE->getDecl();
2326 if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
2327 return false;
2328 return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
2329 D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2330 };
2331 if (!Check(TheCall)) {
2332 Diag(TheCall->getBeginLoc(),
2333 diag::err_hip_invalid_args_builtin_mangled_name);
2334 return ExprError();
2335 }
2336 }
2337 }
2338
2339 // Since the target specific builtins for each arch overlap, only check those
2340 // of the arch we are compiling for.
2341 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2342 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2343 assert(Context.getAuxTargetInfo() &&(static_cast <bool> (Context.getAuxTargetInfo() &&
"Aux Target Builtin, but not an aux target?") ? void (0) : __assert_fail
("Context.getAuxTargetInfo() && \"Aux Target Builtin, but not an aux target?\""
, "clang/lib/Sema/SemaChecking.cpp", 2344, __extension__ __PRETTY_FUNCTION__
))
2344 "Aux Target Builtin, but not an aux target?")(static_cast <bool> (Context.getAuxTargetInfo() &&
"Aux Target Builtin, but not an aux target?") ? void (0) : __assert_fail
("Context.getAuxTargetInfo() && \"Aux Target Builtin, but not an aux target?\""
, "clang/lib/Sema/SemaChecking.cpp", 2344, __extension__ __PRETTY_FUNCTION__
))
;
2345
2346 if (CheckTSBuiltinFunctionCall(
2347 *Context.getAuxTargetInfo(),
2348 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2349 return ExprError();
2350 } else {
2351 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2352 TheCall))
2353 return ExprError();
2354 }
2355 }
2356
2357 return TheCallResult;
2358}
2359
2360// Get the valid immediate range for the specified NEON type code.
2361static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
2362 NeonTypeFlags Type(t);
2363 int IsQuad = ForceQuad ? true : Type.isQuad();
2364 switch (Type.getEltType()) {
2365 case NeonTypeFlags::Int8:
2366 case NeonTypeFlags::Poly8:
2367 return shift ? 7 : (8 << IsQuad) - 1;
2368 case NeonTypeFlags::Int16:
2369 case NeonTypeFlags::Poly16:
2370 return shift ? 15 : (4 << IsQuad) - 1;
2371 case NeonTypeFlags::Int32:
2372 return shift ? 31 : (2 << IsQuad) - 1;
2373 case NeonTypeFlags::Int64:
2374 case NeonTypeFlags::Poly64:
2375 return shift ? 63 : (1 << IsQuad) - 1;
2376 case NeonTypeFlags::Poly128:
2377 return shift ? 127 : (1 << IsQuad) - 1;
2378 case NeonTypeFlags::Float16:
2379 assert(!shift && "cannot shift float types!")(static_cast <bool> (!shift && "cannot shift float types!"
) ? void (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "clang/lib/Sema/SemaChecking.cpp", 2379, __extension__ __PRETTY_FUNCTION__
))
;
2380 return (4 << IsQuad) - 1;
2381 case NeonTypeFlags::Float32:
2382 assert(!shift && "cannot shift float types!")(static_cast <bool> (!shift && "cannot shift float types!"
) ? void (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "clang/lib/Sema/SemaChecking.cpp", 2382, __extension__ __PRETTY_FUNCTION__
))
;
2383 return (2 << IsQuad) - 1;
2384 case NeonTypeFlags::Float64:
2385 assert(!shift && "cannot shift float types!")(static_cast <bool> (!shift && "cannot shift float types!"
) ? void (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "clang/lib/Sema/SemaChecking.cpp", 2385, __extension__ __PRETTY_FUNCTION__
))
;
2386 return (1 << IsQuad) - 1;
2387 case NeonTypeFlags::BFloat16:
2388 assert(!shift && "cannot shift float types!")(static_cast <bool> (!shift && "cannot shift float types!"
) ? void (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "clang/lib/Sema/SemaChecking.cpp", 2388, __extension__ __PRETTY_FUNCTION__
))
;
2389 return (4 << IsQuad) - 1;
2390 }
2391 llvm_unreachable("Invalid NeonTypeFlag!")::llvm::llvm_unreachable_internal("Invalid NeonTypeFlag!", "clang/lib/Sema/SemaChecking.cpp"
, 2391)
;
2392}
2393
2394/// getNeonEltType - Return the QualType corresponding to the elements of
2395/// the vector type specified by the NeonTypeFlags. This is used to check
2396/// the pointer arguments for Neon load/store intrinsics.
2397static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2398 bool IsPolyUnsigned, bool IsInt64Long) {
2399 switch (Flags.getEltType()) {
2400 case NeonTypeFlags::Int8:
2401 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2402 case NeonTypeFlags::Int16:
2403 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2404 case NeonTypeFlags::Int32:
2405 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2406 case NeonTypeFlags::Int64:
2407 if (IsInt64Long)
2408 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2409 else
2410 return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2411 : Context.LongLongTy;
2412 case NeonTypeFlags::Poly8:
2413 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2414 case NeonTypeFlags::Poly16:
2415 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2416 case NeonTypeFlags::Poly64:
2417 if (IsInt64Long)
2418 return Context.UnsignedLongTy;
2419 else
2420 return Context.UnsignedLongLongTy;
2421 case NeonTypeFlags::Poly128:
2422 break;
2423 case NeonTypeFlags::Float16:
2424 return Context.HalfTy;
2425 case NeonTypeFlags::Float32:
2426 return Context.FloatTy;
2427 case NeonTypeFlags::Float64:
2428 return Context.DoubleTy;
2429 case NeonTypeFlags::BFloat16:
2430 return Context.BFloat16Ty;
2431 }
2432 llvm_unreachable("Invalid NeonTypeFlag!")::llvm::llvm_unreachable_internal("Invalid NeonTypeFlag!", "clang/lib/Sema/SemaChecking.cpp"
, 2432)
;
2433}
2434
2435bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2436 // Range check SVE intrinsics that take immediate values.
2437 SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2438
2439 switch (BuiltinID) {
2440 default:
2441 return false;
2442#define GET_SVE_IMMEDIATE_CHECK
2443#include "clang/Basic/arm_sve_sema_rangechecks.inc"
2444#undef GET_SVE_IMMEDIATE_CHECK
2445 }
2446
2447 // Perform all the immediate checks for this builtin call.
2448 bool HasError = false;
2449 for (auto &I : ImmChecks) {
2450 int ArgNum, CheckTy, ElementSizeInBits;
2451 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2452
2453 typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2454
2455 // Function that checks whether the operand (ArgNum) is an immediate
2456 // that is one of the predefined values.
2457 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2458 int ErrDiag) -> bool {
2459 // We can't check the value of a dependent argument.
2460 Expr *Arg = TheCall->getArg(ArgNum);
2461 if (Arg->isTypeDependent() || Arg->isValueDependent())
2462 return false;
2463
2464 // Check constant-ness first.
2465 llvm::APSInt Imm;
2466 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2467 return true;
2468
2469 if (!CheckImm(Imm.getSExtValue()))
2470 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2471 return false;
2472 };
2473
2474 switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2475 case SVETypeFlags::ImmCheck0_31:
2476 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2477 HasError = true;
2478 break;
2479 case SVETypeFlags::ImmCheck0_13:
2480 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2481 HasError = true;
2482 break;
2483 case SVETypeFlags::ImmCheck1_16:
2484 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2485 HasError = true;
2486 break;
2487 case SVETypeFlags::ImmCheck0_7:
2488 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2489 HasError = true;
2490 break;
2491 case SVETypeFlags::ImmCheckExtract:
2492 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2493 (2048 / ElementSizeInBits) - 1))
2494 HasError = true;
2495 break;
2496 case SVETypeFlags::ImmCheckShiftRight:
2497 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2498 HasError = true;
2499 break;
2500 case SVETypeFlags::ImmCheckShiftRightNarrow:
2501 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2502 ElementSizeInBits / 2))
2503 HasError = true;
2504 break;
2505 case SVETypeFlags::ImmCheckShiftLeft:
2506 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2507 ElementSizeInBits - 1))
2508 HasError = true;
2509 break;
2510 case SVETypeFlags::ImmCheckLaneIndex:
2511 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2512 (128 / (1 * ElementSizeInBits)) - 1))
2513 HasError = true;
2514 break;
2515 case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2516 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2517 (128 / (2 * ElementSizeInBits)) - 1))
2518 HasError = true;
2519 break;
2520 case SVETypeFlags::ImmCheckLaneIndexDot:
2521 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2522 (128 / (4 * ElementSizeInBits)) - 1))
2523 HasError = true;
2524 break;
2525 case SVETypeFlags::ImmCheckComplexRot90_270:
2526 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2527 diag::err_rotation_argument_to_cadd))
2528 HasError = true;
2529 break;
2530 case SVETypeFlags::ImmCheckComplexRotAll90:
2531 if (CheckImmediateInSet(
2532 [](int64_t V) {
2533 return V == 0 || V == 90 || V == 180 || V == 270;
2534 },
2535 diag::err_rotation_argument_to_cmla))
2536 HasError = true;
2537 break;
2538 case SVETypeFlags::ImmCheck0_1:
2539 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2540 HasError = true;
2541 break;
2542 case SVETypeFlags::ImmCheck0_2:
2543 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2544 HasError = true;
2545 break;
2546 case SVETypeFlags::ImmCheck0_3:
2547 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2548 HasError = true;
2549 break;
2550 }
2551 }
2552
2553 return HasError;
2554}
2555
2556bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2557 unsigned BuiltinID, CallExpr *TheCall) {
2558 llvm::APSInt Result;
2559 uint64_t mask = 0;
2560 unsigned TV = 0;
2561 int PtrArgNum = -1;
2562 bool HasConstPtr = false;
2563 switch (BuiltinID) {
2564#define GET_NEON_OVERLOAD_CHECK
2565#include "clang/Basic/arm_neon.inc"
2566#include "clang/Basic/arm_fp16.inc"
2567#undef GET_NEON_OVERLOAD_CHECK
2568 }
2569
2570 // For NEON intrinsics which are overloaded on vector element type, validate
2571 // the immediate which specifies which variant to emit.
2572 unsigned ImmArg = TheCall->getNumArgs()-1;
2573 if (mask) {
2574 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2575 return true;
2576
2577 TV = Result.getLimitedValue(64);
2578 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2579 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2580 << TheCall->getArg(ImmArg)->getSourceRange();
2581 }
2582
2583 if (PtrArgNum >= 0) {
2584 // Check that pointer arguments have the specified type.
2585 Expr *Arg = TheCall->getArg(PtrArgNum);
2586 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2587 Arg = ICE->getSubExpr();
2588 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2589 QualType RHSTy = RHS.get()->getType();
2590
2591 llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2592 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2593 Arch == llvm::Triple::aarch64_32 ||
2594 Arch == llvm::Triple::aarch64_be;
2595 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2596 QualType EltTy =
2597 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2598 if (HasConstPtr)
2599 EltTy = EltTy.withConst();
2600 QualType LHSTy = Context.getPointerType(EltTy);
2601 AssignConvertType ConvTy;
2602 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2603 if (RHS.isInvalid())
2604 return true;
2605 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2606 RHS.get(), AA_Assigning))
2607 return true;
2608 }
2609
2610 // For NEON intrinsics which take an immediate value as part of the
2611 // instruction, range check them here.
2612 unsigned i = 0, l = 0, u = 0;
2613 switch (BuiltinID) {
2614 default:
2615 return false;
2616 #define GET_NEON_IMMEDIATE_CHECK
2617 #include "clang/Basic/arm_neon.inc"
2618 #include "clang/Basic/arm_fp16.inc"
2619 #undef GET_NEON_IMMEDIATE_CHECK
2620 }
2621
2622 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2623}
2624
2625bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2626 switch (BuiltinID) {
2627 default:
2628 return false;
2629 #include "clang/Basic/arm_mve_builtin_sema.inc"
2630 }
2631}
2632
2633bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2634 CallExpr *TheCall) {
2635 bool Err = false;
2636 switch (BuiltinID) {
2637 default:
2638 return false;
2639#include "clang/Basic/arm_cde_builtin_sema.inc"
2640 }
2641
2642 if (Err)
2643 return true;
2644
2645 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2646}
2647
2648bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2649 const Expr *CoprocArg, bool WantCDE) {
2650 if (isConstantEvaluated())
2651 return false;
2652
2653 // We can't check the value of a dependent argument.
2654 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2655 return false;
2656
2657 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2658 int64_t CoprocNo = CoprocNoAP.getExtValue();
2659 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative")(static_cast <bool> (CoprocNo >= 0 && "Coprocessor immediate must be non-negative"
) ? void (0) : __assert_fail ("CoprocNo >= 0 && \"Coprocessor immediate must be non-negative\""
, "clang/lib/Sema/SemaChecking.cpp", 2659, __extension__ __PRETTY_FUNCTION__
))
;
2660
2661 uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2662 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2663
2664 if (IsCDECoproc != WantCDE)
2665 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2666 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2667
2668 return false;
2669}
2670
2671bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2672 unsigned MaxWidth) {
2673 assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 2681, __extension__ __PRETTY_FUNCTION__
))
2674 BuiltinID == ARM::BI__builtin_arm_ldaex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 2681, __extension__ __PRETTY_FUNCTION__
))
2675 BuiltinID == ARM::BI__builtin_arm_strex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 2681, __extension__ __PRETTY_FUNCTION__
))
2676 BuiltinID == ARM::BI__builtin_arm_stlex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 2681, __extension__ __PRETTY_FUNCTION__
))
2677 BuiltinID == AArch64::BI__builtin_arm_ldrex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 2681, __extension__ __PRETTY_FUNCTION__
))
2678 BuiltinID == AArch64::BI__builtin_arm_ldaex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 2681, __extension__ __PRETTY_FUNCTION__
))
2679 BuiltinID == AArch64::BI__builtin_arm_strex ||(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 2681, __extension__ __PRETTY_FUNCTION__
))
2680 BuiltinID == AArch64::BI__builtin_arm_stlex) &&(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 2681, __extension__ __PRETTY_FUNCTION__
))
2681 "unexpected ARM builtin")(static_cast <bool> ((BuiltinID == ARM::BI__builtin_arm_ldrex
|| BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM
::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex
|| BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID ==
AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex
|| BuiltinID == AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? void (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 2681, __extension__ __PRETTY_FUNCTION__
))
;
2682 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2683 BuiltinID == ARM::BI__builtin_arm_ldaex ||
2684 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2685 BuiltinID == AArch64::BI__builtin_arm_ldaex;
2686
2687 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2688
2689 // Ensure that we have the proper number of arguments.
2690 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2691 return true;
2692
2693 // Inspect the pointer argument of the atomic builtin. This should always be
2694 // a pointer type, whose element is an integral scalar or pointer type.
2695 // Because it is a pointer type, we don't have to worry about any implicit
2696 // casts here.
2697 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2698 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2699 if (PointerArgRes.isInvalid())
2700 return true;
2701 PointerArg = PointerArgRes.get();
2702
2703 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2704 if (!pointerType) {
2705 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2706 << PointerArg->getType() << PointerArg->getSourceRange();
2707 return true;
2708 }
2709
2710 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2711 // task is to insert the appropriate casts into the AST. First work out just
2712 // what the appropriate type is.
2713 QualType ValType = pointerType->getPointeeType();
2714 QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2715 if (IsLdrex)
2716 AddrType.addConst();
2717
2718 // Issue a warning if the cast is dodgy.
2719 CastKind CastNeeded = CK_NoOp;
2720 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2721 CastNeeded = CK_BitCast;
2722 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2723 << PointerArg->getType() << Context.getPointerType(AddrType)
2724 << AA_Passing << PointerArg->getSourceRange();
2725 }
2726
2727 // Finally, do the cast and replace the argument with the corrected version.
2728 AddrType = Context.getPointerType(AddrType);
2729 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2730 if (PointerArgRes.isInvalid())
2731 return true;
2732 PointerArg = PointerArgRes.get();
2733
2734 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2735
2736 // In general, we allow ints, floats and pointers to be loaded and stored.
2737 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2738 !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2739 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2740 << PointerArg->getType() << PointerArg->getSourceRange();
2741 return true;
2742 }
2743
2744 // But ARM doesn't have instructions to deal with 128-bit versions.
2745 if (Context.getTypeSize(ValType) > MaxWidth) {
2746 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate")(static_cast <bool> (MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"
) ? void (0) : __assert_fail ("MaxWidth == 64 && \"Diagnostic unexpectedly inaccurate\""
, "clang/lib/Sema/SemaChecking.cpp", 2746, __extension__ __PRETTY_FUNCTION__
))
;
2747 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2748 << PointerArg->getType() << PointerArg->getSourceRange();
2749 return true;
2750 }
2751
2752 switch (ValType.getObjCLifetime()) {
2753 case Qualifiers::OCL_None:
2754 case Qualifiers::OCL_ExplicitNone:
2755 // okay
2756 break;
2757
2758 case Qualifiers::OCL_Weak:
2759 case Qualifiers::OCL_Strong:
2760 case Qualifiers::OCL_Autoreleasing:
2761 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2762 << ValType << PointerArg->getSourceRange();
2763 return true;
2764 }
2765
2766 if (IsLdrex) {
2767 TheCall->setType(ValType);
2768 return false;
2769 }
2770
2771 // Initialize the argument to be stored.
2772 ExprResult ValArg = TheCall->getArg(0);
2773 InitializedEntity Entity = InitializedEntity::InitializeParameter(
2774 Context, ValType, /*consume*/ false);
2775 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2776 if (ValArg.isInvalid())
2777 return true;
2778 TheCall->setArg(0, ValArg.get());
2779
2780 // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2781 // but the custom checker bypasses all default analysis.
2782 TheCall->setType(Context.IntTy);
2783 return false;
2784}
2785
2786bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2787 CallExpr *TheCall) {
2788 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2789 BuiltinID == ARM::BI__builtin_arm_ldaex ||
2790 BuiltinID == ARM::BI__builtin_arm_strex ||
2791 BuiltinID == ARM::BI__builtin_arm_stlex) {
2792 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2793 }
2794
2795 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2796 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2797 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2798 }
2799
2800 if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2801 BuiltinID == ARM::BI__builtin_arm_wsr64)
2802 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2803
2804 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2805 BuiltinID == ARM::BI__builtin_arm_rsrp ||
2806 BuiltinID == ARM::BI__builtin_arm_wsr ||
2807 BuiltinID == ARM::BI__builtin_arm_wsrp)
2808 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2809
2810 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2811 return true;
2812 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2813 return true;
2814 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2815 return true;
2816
2817 // For intrinsics which take an immediate value as part of the instruction,
2818 // range check them here.
2819 // FIXME: VFP Intrinsics should error if VFP not present.
2820 switch (BuiltinID) {
2821 default: return false;
2822 case ARM::BI__builtin_arm_ssat:
2823 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2824 case ARM::BI__builtin_arm_usat:
2825 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2826 case ARM::BI__builtin_arm_ssat16:
2827 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2828 case ARM::BI__builtin_arm_usat16:
2829 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2830 case ARM::BI__builtin_arm_vcvtr_f:
2831 case ARM::BI__builtin_arm_vcvtr_d:
2832 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2833 case ARM::BI__builtin_arm_dmb:
2834 case ARM::BI__builtin_arm_dsb:
2835 case ARM::BI__builtin_arm_isb:
2836 case ARM::BI__builtin_arm_dbg:
2837 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2838 case ARM::BI__builtin_arm_cdp:
2839 case ARM::BI__builtin_arm_cdp2:
2840 case ARM::BI__builtin_arm_mcr:
2841 case ARM::BI__builtin_arm_mcr2:
2842 case ARM::BI__builtin_arm_mrc:
2843 case ARM::BI__builtin_arm_mrc2:
2844 case ARM::BI__builtin_arm_mcrr:
2845 case ARM::BI__builtin_arm_mcrr2:
2846 case ARM::BI__builtin_arm_mrrc:
2847 case ARM::BI__builtin_arm_mrrc2:
2848 case ARM::BI__builtin_arm_ldc:
2849 case ARM::BI__builtin_arm_ldcl:
2850 case ARM::BI__builtin_arm_ldc2:
2851 case ARM::BI__builtin_arm_ldc2l:
2852 case ARM::BI__builtin_arm_stc:
2853 case ARM::BI__builtin_arm_stcl:
2854 case ARM::BI__builtin_arm_stc2:
2855 case ARM::BI__builtin_arm_stc2l:
2856 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2857 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2858 /*WantCDE*/ false);
2859 }
2860}
2861
2862bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2863 unsigned BuiltinID,
2864 CallExpr *TheCall) {
2865 if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2866 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2867 BuiltinID == AArch64::BI__builtin_arm_strex ||
2868 BuiltinID == AArch64::BI__builtin_arm_stlex) {
2869 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2870 }
2871
2872 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2873 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2874 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2875 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2876 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2877 }
2878
2879 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2880 BuiltinID == AArch64::BI__builtin_arm_wsr64)
2881 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2882
2883 // Memory Tagging Extensions (MTE) Intrinsics
2884 if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2885 BuiltinID == AArch64::BI__builtin_arm_addg ||
2886 BuiltinID == AArch64::BI__builtin_arm_gmi ||
2887 BuiltinID == AArch64::BI__builtin_arm_ldg ||
2888 BuiltinID == AArch64::BI__builtin_arm_stg ||
2889 BuiltinID == AArch64::BI__builtin_arm_subp) {
2890 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2891 }
2892
2893 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2894 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2895 BuiltinID == AArch64::BI__builtin_arm_wsr ||
2896 BuiltinID == AArch64::BI__builtin_arm_wsrp)
2897 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2898
2899 // Only check the valid encoding range. Any constant in this range would be
2900 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2901 // an exception for incorrect registers. This matches MSVC behavior.
2902 if (BuiltinID == AArch64::BI_ReadStatusReg ||
2903 BuiltinID == AArch64::BI_WriteStatusReg)
2904 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2905
2906 if (BuiltinID == AArch64::BI__getReg)
2907 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2908
2909 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2910 return true;
2911
2912 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2913 return true;
2914
2915 // For intrinsics which take an immediate value as part of the instruction,
2916 // range check them here.
2917 unsigned i = 0, l = 0, u = 0;
2918 switch (BuiltinID) {
2919 default: return false;
2920 case AArch64::BI__builtin_arm_dmb:
2921 case AArch64::BI__builtin_arm_dsb:
2922 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2923 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2924 }
2925
2926 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2927}
2928
2929static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2930 if (Arg->getType()->getAsPlaceholderType())
2931 return false;
2932
2933 // The first argument needs to be a record field access.
2934 // If it is an array element access, we delay decision
2935 // to BPF backend to check whether the access is a
2936 // field access or not.
2937 return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2938 isa<MemberExpr>(Arg->IgnoreParens()) ||
2939 isa<ArraySubscriptExpr>(Arg->IgnoreParens()));
2940}
2941
2942static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2943 QualType VectorTy, QualType EltTy) {
2944 QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2945 if (!Context.hasSameType(VectorEltTy, EltTy)) {
2946 S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2947 << Call->getSourceRange() << VectorEltTy << EltTy;
2948 return false;
2949 }
2950 return true;
2951}
2952
2953static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2954 QualType ArgType = Arg->getType();
2955 if (ArgType->getAsPlaceholderType())
2956 return false;
2957
2958 // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2959 // format:
2960 // 1. __builtin_preserve_type_info(*(<type> *)0, flag);
2961 // 2. <type> var;
2962 // __builtin_preserve_type_info(var, flag);
2963 if (!isa<DeclRefExpr>(Arg->IgnoreParens()) &&
2964 !isa<UnaryOperator>(Arg->IgnoreParens()))
2965 return false;
2966
2967 // Typedef type.
2968 if (ArgType->getAs<TypedefType>())
2969 return true;
2970
2971 // Record type or Enum type.
2972 const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2973 if (const auto *RT = Ty->getAs<RecordType>()) {
2974 if (!RT->getDecl()->getDeclName().isEmpty())
2975 return true;
2976 } else if (const auto *ET = Ty->getAs<EnumType>()) {
2977 if (!ET->getDecl()->getDeclName().isEmpty())
2978 return true;
2979 }
2980
2981 return false;
2982}
2983
2984static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2985 QualType ArgType = Arg->getType();
2986 if (ArgType->getAsPlaceholderType())
2987 return false;
2988
2989 // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2990 // format:
2991 // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2992 // flag);
2993 const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2994 if (!UO)
2995 return false;
2996
2997 const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2998 if (!CE)
2999 return false;
3000 if (CE->getCastKind() != CK_IntegralToPointer &&
3001 CE->getCastKind() != CK_NullToPointer)
3002 return false;
3003
3004 // The integer must be from an EnumConstantDecl.
3005 const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
3006 if (!DR)
3007 return false;
3008
3009 const EnumConstantDecl *Enumerator =
3010 dyn_cast<EnumConstantDecl>(DR->getDecl());
3011 if (!Enumerator)
3012 return false;
3013
3014 // The type must be EnumType.
3015 const Type *Ty = ArgType->getUnqualifiedDesugaredType();
3016 const auto *ET = Ty->getAs<EnumType>();
3017 if (!ET)
3018 return false;
3019
3020 // The enum value must be supported.
3021 return llvm::is_contained(ET->getDecl()->enumerators(), Enumerator);
3022}
3023
3024bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
3025 CallExpr *TheCall) {
3026 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 3030, __extension__ __PRETTY_FUNCTION__
))
3027 BuiltinID == BPF::BI__builtin_btf_type_id ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 3030, __extension__ __PRETTY_FUNCTION__
))
3028 BuiltinID == BPF::BI__builtin_preserve_type_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 3030, __extension__ __PRETTY_FUNCTION__
))
3029 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 3030, __extension__ __PRETTY_FUNCTION__
))
3030 "unexpected BPF builtin")(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/Sema/SemaChecking.cpp", 3030, __extension__ __PRETTY_FUNCTION__
))
;
3031
3032 if (checkArgCount(*this, TheCall, 2))
3033 return true;
3034
3035 // The second argument needs to be a constant int
3036 Expr *Arg = TheCall->getArg(1);
3037 Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
3038 diag::kind kind;
3039 if (!Value) {
3040 if (BuiltinID == BPF::BI__builtin_preserve_field_info)
3041 kind = diag::err_preserve_field_info_not_const;
3042 else if (BuiltinID == BPF::BI__builtin_btf_type_id)
3043 kind = diag::err_btf_type_id_not_const;
3044 else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
3045 kind = diag::err_preserve_type_info_not_const;
3046 else
3047 kind = diag::err_preserve_enum_value_not_const;
3048 Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
3049 return true;
3050 }
3051
3052 // The first argument
3053 Arg = TheCall->getArg(0);
3054 bool InvalidArg = false;
3055 bool ReturnUnsignedInt = true;
3056 if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
3057 if (!isValidBPFPreserveFieldInfoArg(Arg)) {
3058 InvalidArg = true;
3059 kind = diag::err_preserve_field_info_not_field;
3060 }
3061 } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
3062 if (!isValidBPFPreserveTypeInfoArg(Arg)) {
3063 InvalidArg = true;
3064 kind = diag::err_preserve_type_info_invalid;
3065 }
3066 } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
3067 if (!isValidBPFPreserveEnumValueArg(Arg)) {
3068 InvalidArg = true;
3069 kind = diag::err_preserve_enum_value_invalid;
3070 }
3071 ReturnUnsignedInt = false;
3072 } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
3073 ReturnUnsignedInt = false;
3074 }
3075
3076 if (InvalidArg) {
3077 Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
3078 return true;
3079 }
3080
3081 if (ReturnUnsignedInt)
3082 TheCall->setType(Context.UnsignedIntTy);
3083 else
3084 TheCall->setType(Context.UnsignedLongTy);
3085 return false;
3086}
3087
3088bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3089 struct ArgInfo {
3090 uint8_t OpNum;
3091 bool IsSigned;
3092 uint8_t BitWidth;
3093 uint8_t Align;
3094 };
3095 struct BuiltinInfo {
3096 unsigned BuiltinID;
3097 ArgInfo Infos[2];
3098 };
3099
3100 static BuiltinInfo Infos[] = {
3101 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} },
3102 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} },
3103 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} },
3104 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} },
3105 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} },
3106 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} },
3107 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} },
3108 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} },
3109 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} },
3110 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} },
3111 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} },
3112
3113 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} },
3114 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} },
3115 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} },
3116 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} },
3117 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} },
3118 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} },
3119 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} },
3120 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} },
3121 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} },
3122 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} },
3123 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} },
3124
3125 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} },
3126 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} },
3127 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} },
3128 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} },
3129 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} },
3130 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} },
3131 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} },
3132 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} },
3133 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} },
3134 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} },
3135 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} },
3136 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} },
3137 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} },
3138 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} },
3139 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} },
3140 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} },
3141 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} },
3142 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} },
3143 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} },
3144 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} },
3145 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} },
3146 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} },
3147 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} },
3148 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} },
3149 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} },
3150 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} },
3151 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} },
3152 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} },
3153 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} },
3154 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} },
3155 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} },
3156 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} },
3157 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} },
3158 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} },
3159 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} },
3160 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} },
3161 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} },
3162 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} },
3163 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} },
3164 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} },
3165 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} },
3166 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} },
3167 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} },
3168 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} },
3169 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} },
3170 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} },
3171 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} },
3172 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} },
3173 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} },
3174 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} },
3175 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} },
3176 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
3177 {{ 1, false, 6, 0 }} },
3178 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} },
3179 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} },
3180 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} },
3181 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} },
3182 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} },
3183 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} },
3184 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
3185 {{ 1, false, 5, 0 }} },
3186 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} },
3187 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} },
3188 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} },
3189 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} },
3190 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} },
3191 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 },
3192 { 2, false, 5, 0 }} },
3193 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 },
3194 { 2, false, 6, 0 }} },
3195 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 },
3196 { 3, false, 5, 0 }} },
3197 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 },
3198 { 3, false, 6, 0 }} },
3199 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} },
3200 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} },
3201 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} },
3202 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} },
3203 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} },
3204 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} },
3205 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} },
3206 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} },
3207 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} },
3208 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} },
3209 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} },
3210 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} },
3211 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} },
3212 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} },
3213 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} },
3214 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
3215 {{ 2, false, 4, 0 },
3216 { 3, false, 5, 0 }} },
3217 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
3218 {{ 2, false, 4, 0 },
3219 { 3, false, 5, 0 }} },
3220 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
3221 {{ 2, false, 4, 0 },
3222 { 3, false, 5, 0 }} },
3223 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
3224 {{ 2, false, 4, 0 },
3225 { 3, false, 5, 0 }} },
3226 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} },
3227 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} },
3228 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} },
3229 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} },
3230 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} },
3231 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} },
3232 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} },
3233 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} },
3234 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} },
3235 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} },
3236 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 },
3237 { 2, false, 5, 0 }} },
3238 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 },
3239 { 2, false, 6, 0 }} },
3240 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} },
3241 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} },
3242 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} },
3243 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} },
3244 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} },
3245 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} },
3246 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} },
3247 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} },
3248 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
3249 {{ 1, false, 4, 0 }} },
3250 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} },
3251 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
3252 {{ 1, false, 4, 0 }} },
3253 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} },
3254 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} },
3255 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} },
3256 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} },
3257 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} },
3258 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} },
3259 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} },
3260 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} },
3261 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} },
3262 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} },
3263 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} },
3264 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} },
3265 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} },
3266 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} },
3267 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} },
3268 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} },
3269 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} },
3270 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} },
3271 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} },
3272 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
3273 {{ 3, false, 1, 0 }} },
3274 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} },
3275 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} },
3276 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} },
3277 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
3278 {{ 3, false, 1, 0 }} },
3279 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} },
3280 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} },
3281 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} },
3282 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
3283 {{ 3, false, 1, 0 }} },
3284 };
3285
3286 // Use a dynamically initialized static to sort the table exactly once on
3287 // first run.
3288 static const bool SortOnce =
3289 (llvm::sort(Infos,
3290 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
3291 return LHS.BuiltinID < RHS.BuiltinID;
3292 }),
3293 true);
3294 (void)SortOnce;
3295
3296 const BuiltinInfo *F = llvm::partition_point(
3297 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
3298 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
3299 return false;
3300
3301 bool Error = false;
3302
3303 for (const ArgInfo &A : F->Infos) {
3304 // Ignore empty ArgInfo elements.
3305 if (A.BitWidth == 0)
3306 continue;
3307
3308 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
3309 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
3310 if (!A.Align) {
3311 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3312 } else {
3313 unsigned M = 1 << A.Align;
3314 Min *= M;
3315 Max *= M;
3316 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3317 Error |= SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
3318 }
3319 }
3320 return Error;
3321}
3322
3323bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
3324 CallExpr *TheCall) {
3325 return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
3326}
3327
3328bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
3329 unsigned BuiltinID, CallExpr *TheCall) {
3330 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
3331 CheckMipsBuiltinArgument(BuiltinID, TheCall);
3332}
3333
3334bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
3335 CallExpr *TheCall) {
3336
3337 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
3338 BuiltinID <= Mips::BI__builtin_mips_lwx) {
3339 if (!TI.hasFeature("dsp"))
3340 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
3341 }
3342
3343 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
3344 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
3345 if (!TI.hasFeature("dspr2"))
3346 return Diag(TheCall->getBeginLoc(),
3347 diag::err_mips_builtin_requires_dspr2);
3348 }
3349
3350 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
3351 BuiltinID <= Mips::BI__builtin_msa_xori_b) {
3352 if (!TI.hasFeature("msa"))
3353 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
3354 }
3355
3356 return false;
3357}
3358
3359// CheckMipsBuiltinArgument - Checks the constant value passed to the
3360// intrinsic is correct. The switch statement is ordered by DSP, MSA. The
3361// ordering for DSP is unspecified. MSA is ordered by the data format used
3362// by the underlying instruction i.e., df/m, df/n and then by size.
3363//
3364// FIXME: The size tests here should instead be tablegen'd along with the
3365// definitions from include/clang/Basic/BuiltinsMips.def.
3366// FIXME: GCC is strict on signedness for some of these intrinsics, we should
3367// be too.
3368bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3369 unsigned i = 0, l = 0, u = 0, m = 0;
3370 switch (BuiltinID) {
3371 default: return false;
3372 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3373 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3374 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3375 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3376 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3377 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3378 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3379 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3380 // df/m field.
3381 // These intrinsics take an unsigned 3 bit immediate.
3382 case Mips::BI__builtin_msa_bclri_b:
3383 case Mips::BI__builtin_msa_bnegi_b:
3384 case Mips::BI__builtin_msa_bseti_b:
3385 case Mips::BI__builtin_msa_sat_s_b:
3386 case Mips::BI__builtin_msa_sat_u_b:
3387 case Mips::BI__builtin_msa_slli_b:
3388 case Mips::BI__builtin_msa_srai_b:
3389 case Mips::BI__builtin_msa_srari_b:
3390 case Mips::BI__builtin_msa_srli_b:
3391 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3392 case Mips::BI__builtin_msa_binsli_b:
3393 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3394 // These intrinsics take an unsigned 4 bit immediate.
3395 case Mips::BI__builtin_msa_bclri_h:
3396 case Mips::BI__builtin_msa_bnegi_h:
3397 case Mips::BI__builtin_msa_bseti_h:
3398 case Mips::BI__builtin_msa_sat_s_h:
3399 case Mips::BI__builtin_msa_sat_u_h:
3400 case Mips::BI__builtin_msa_slli_h:
3401 case Mips::BI__builtin_msa_srai_h:
3402 case Mips::BI__builtin_msa_srari_h:
3403 case Mips::BI__builtin_msa_srli_h:
3404 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3405 case Mips::BI__builtin_msa_binsli_h:
3406 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3407 // These intrinsics take an unsigned 5 bit immediate.
3408 // The first block of intrinsics actually have an unsigned 5 bit field,
3409 // not a df/n field.
3410 case Mips::BI__builtin_msa_cfcmsa:
3411 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3412 case Mips::BI__builtin_msa_clei_u_b:
3413 case Mips::BI__builtin_msa_clei_u_h:
3414 case Mips::BI__builtin_msa_clei_u_w:
3415 case Mips::BI__builtin_msa_clei_u_d:
3416 case Mips::BI__builtin_msa_clti_u_b:
3417 case Mips::BI__builtin_msa_clti_u_h:
3418 case Mips::BI__builtin_msa_clti_u_w:
3419 case Mips::BI__builtin_msa_clti_u_d:
3420 case Mips::BI__builtin_msa_maxi_u_b:
3421 case Mips::BI__builtin_msa_maxi_u_h:
3422 case Mips::BI__builtin_msa_maxi_u_w:
3423 case Mips::BI__builtin_msa_maxi_u_d:
3424 case Mips::BI__builtin_msa_mini_u_b:
3425 case Mips::BI__builtin_msa_mini_u_h:
3426 case Mips::BI__builtin_msa_mini_u_w:
3427 case Mips::BI__builtin_msa_mini_u_d:
3428 case Mips::BI__builtin_msa_addvi_b:
3429 case Mips::BI__builtin_msa_addvi_h:
3430 case Mips::BI__builtin_msa_addvi_w:
3431 case Mips::BI__builtin_msa_addvi_d:
3432 case Mips::BI__builtin_msa_bclri_w:
3433 case Mips::BI__builtin_msa_bnegi_w:
3434 case Mips::BI__builtin_msa_bseti_w:
3435 case Mips::BI__builtin_msa_sat_s_w:
3436 case Mips::BI__builtin_msa_sat_u_w:
3437 case Mips::BI__builtin_msa_slli_w:
3438 case Mips::BI__builtin_msa_srai_w:
3439 case Mips::BI__builtin_msa_srari_w:
3440 case Mips::BI__builtin_msa_srli_w:
3441 case Mips::BI__builtin_msa_srlri_w:
3442 case Mips::BI__builtin_msa_subvi_b:
3443 case Mips::BI__builtin_msa_subvi_h:
3444 case Mips::BI__builtin_msa_subvi_w:
3445 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3446 case Mips::BI__builtin_msa_binsli_w:
3447 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3448 // These intrinsics take an unsigned 6 bit immediate.
3449 case Mips::BI__builtin_msa_bclri_d:
3450 case Mips::BI__builtin_msa_bnegi_d:
3451 case Mips::BI__builtin_msa_bseti_d:
3452 case Mips::BI__builtin_msa_sat_s_d:
3453 case Mips::BI__builtin_msa_sat_u_d:
3454 case Mips::BI__builtin_msa_slli_d:
3455 case Mips::BI__builtin_msa_srai_d:
3456 case Mips::BI__builtin_msa_srari_d:
3457 case Mips::BI__builtin_msa_srli_d:
3458 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3459 case Mips::BI__builtin_msa_binsli_d:
3460 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3461 // These intrinsics take a signed 5 bit immediate.
3462 case Mips::BI__builtin_msa_ceqi_b:
3463 case Mips::BI__builtin_msa_ceqi_h:
3464 case Mips::BI__builtin_msa_ceqi_w:
3465 case Mips::BI__builtin_msa_ceqi_d:
3466 case Mips::BI__builtin_msa_clti_s_b:
3467 case Mips::BI__builtin_msa_clti_s_h:
3468 case Mips::BI__builtin_msa_clti_s_w:
3469 case Mips::BI__builtin_msa_clti_s_d:
3470 case Mips::BI__builtin_msa_clei_s_b:
3471 case Mips::BI__builtin_msa_clei_s_h:
3472 case Mips::BI__builtin_msa_clei_s_w:
3473 case Mips::BI__builtin_msa_clei_s_d:
3474 case Mips::BI__builtin_msa_maxi_s_b:
3475 case Mips::BI__builtin_msa_maxi_s_h:
3476 case Mips::BI__builtin_msa_maxi_s_w:
3477 case Mips::BI__builtin_msa_maxi_s_d:
3478 case Mips::BI__builtin_msa_mini_s_b:
3479 case Mips::BI__builtin_msa_mini_s_h:
3480 case Mips::BI__builtin_msa_mini_s_w:
3481 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3482 // These intrinsics take an unsigned 8 bit immediate.
3483 case Mips::BI__builtin_msa_andi_b:
3484 case Mips::BI__builtin_msa_nori_b:
3485 case Mips::BI__builtin_msa_ori_b:
3486 case Mips::BI__builtin_msa_shf_b:
3487 case Mips::BI__builtin_msa_shf_h:
3488 case Mips::BI__builtin_msa_shf_w:
3489 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3490 case Mips::BI__builtin_msa_bseli_b:
3491 case Mips::BI__builtin_msa_bmnzi_b:
3492 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3493 // df/n format
3494 // These intrinsics take an unsigned 4 bit immediate.
3495 case Mips::BI__builtin_msa_copy_s_b:
3496 case Mips::BI__builtin_msa_copy_u_b:
3497 case Mips::BI__builtin_msa_insve_b:
3498 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3499 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3500 // These intrinsics take an unsigned 3 bit immediate.
3501 case Mips::BI__builtin_msa_copy_s_h:
3502 case Mips::BI__builtin_msa_copy_u_h:
3503 case Mips::BI__builtin_msa_insve_h:
3504 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3505 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3506 // These intrinsics take an unsigned 2 bit immediate.
3507 case Mips::BI__builtin_msa_copy_s_w:
3508 case Mips::BI__builtin_msa_copy_u_w:
3509 case Mips::BI__builtin_msa_insve_w:
3510 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3511 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3512 // These intrinsics take an unsigned 1 bit immediate.
3513 case Mips::BI__builtin_msa_copy_s_d:
3514 case Mips::BI__builtin_msa_copy_u_d:
3515 case Mips::BI__builtin_msa_insve_d:
3516 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3517 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3518 // Memory offsets and immediate loads.
3519 // These intrinsics take a signed 10 bit immediate.
3520 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3521 case Mips::BI__builtin_msa_ldi_h:
3522 case Mips::BI__builtin_msa_ldi_w:
3523 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3524 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3525 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3526 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3527 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3528 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3529 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3530 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3531 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3532 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3533 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3534 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3535 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3536 }
3537
3538 if (!m)
3539 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3540
3541 return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3542 SemaBuiltinConstantArgMultiple(TheCall, i, m);
3543}
3544
3545/// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3546/// advancing the pointer over the consumed characters. The decoded type is
3547/// returned. If the decoded type represents a constant integer with a
3548/// constraint on its value then Mask is set to that value. The type descriptors
3549/// used in Str are specific to PPC MMA builtins and are documented in the file
3550/// defining the PPC builtins.
3551static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3552 unsigned &Mask) {
3553 bool RequireICE = false;
3554 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3555 switch (*Str++) {
3556 case 'V':
3557 return Context.getVectorType(Context.UnsignedCharTy, 16,
3558 VectorType::VectorKind::AltiVecVector);
3559 case 'i': {
3560 char *End;
3561 unsigned size = strtoul(Str, &End, 10);
3562 assert(End != Str && "Missing constant parameter constraint")(static_cast <bool> (End != Str && "Missing constant parameter constraint"
) ? void (0) : __assert_fail ("End != Str && \"Missing constant parameter constraint\""
, "clang/lib/Sema/SemaChecking.cpp", 3562, __extension__ __PRETTY_FUNCTION__
))
;
3563 Str = End;
3564 Mask = size;
3565 return Context.IntTy;
3566 }
3567 case 'W': {
3568 char *End;
3569 unsigned size = strtoul(Str, &End, 10);
3570 assert(End != Str && "Missing PowerPC MMA type size")(static_cast <bool> (End != Str && "Missing PowerPC MMA type size"
) ? void (0) : __assert_fail ("End != Str && \"Missing PowerPC MMA type size\""
, "clang/lib/Sema/SemaChecking.cpp", 3570, __extension__ __PRETTY_FUNCTION__
))
;
3571 Str = End;
3572 QualType Type;
3573 switch (size) {
3574 #define PPC_VECTOR_TYPE(typeName, Id, size) \
3575 case size: Type = Context.Id##Ty; break;
3576 #include "clang/Basic/PPCTypes.def"
3577 default: llvm_unreachable("Invalid PowerPC MMA vector type")::llvm::llvm_unreachable_internal("Invalid PowerPC MMA vector type"
, "clang/lib/Sema/SemaChecking.cpp", 3577)
;
3578 }
3579 bool CheckVectorArgs = false;
3580 while (!CheckVectorArgs) {
3581 switch (*Str++) {
3582 case '*':
3583 Type = Context.getPointerType(Type);
3584 break;
3585 case 'C':
3586 Type = Type.withConst();
3587 break;
3588 default:
3589 CheckVectorArgs = true;
3590 --Str;
3591 break;
3592 }
3593 }
3594 return Type;
3595 }
3596 default:
3597 return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3598 }
3599}
3600
3601static bool isPPC_64Builtin(unsigned BuiltinID) {
3602 // These builtins only work on PPC 64bit targets.
3603 switch (BuiltinID) {
3604 case PPC::BI__builtin_divde:
3605 case PPC::BI__builtin_divdeu:
3606 case PPC::BI__builtin_bpermd:
3607 case PPC::BI__builtin_ppc_ldarx:
3608 case PPC::BI__builtin_ppc_stdcx:
3609 case PPC::BI__builtin_ppc_tdw:
3610 case PPC::BI__builtin_ppc_trapd:
3611 case PPC::BI__builtin_ppc_cmpeqb:
3612 case PPC::BI__builtin_ppc_setb:
3613 case PPC::BI__builtin_ppc_mulhd:
3614 case PPC::BI__builtin_ppc_mulhdu:
3615 case PPC::BI__builtin_ppc_maddhd:
3616 case PPC::BI__builtin_ppc_maddhdu:
3617 case PPC::BI__builtin_ppc_maddld:
3618 case PPC::BI__builtin_ppc_load8r:
3619 case PPC::BI__builtin_ppc_store8r:
3620 case PPC::BI__builtin_ppc_insert_exp:
3621 case PPC::BI__builtin_ppc_extract_sig:
3622 case PPC::BI__builtin_ppc_addex:
3623 case PPC::BI__builtin_darn:
3624 case PPC::BI__builtin_darn_raw:
3625 case PPC::BI__builtin_ppc_compare_and_swaplp:
3626 case PPC::BI__builtin_ppc_fetch_and_addlp:
3627 case PPC::BI__builtin_ppc_fetch_and_andlp:
3628 case PPC::BI__builtin_ppc_fetch_and_orlp:
3629 case PPC::BI__builtin_ppc_fetch_and_swaplp:
3630 return true;
3631 }
3632 return false;
3633}
3634
3635static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall,
3636 StringRef FeatureToCheck, unsigned DiagID,
3637 StringRef DiagArg = "") {
3638 if (S.Context.getTargetInfo().hasFeature(FeatureToCheck))
3639 return false;
3640
3641 if (DiagArg.empty())
3642 S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange();
3643 else
3644 S.Diag(TheCall->getBeginLoc(), DiagID)
3645 << DiagArg << TheCall->getSourceRange();
3646
3647 return true;
3648}
3649
3650/// Returns true if the argument consists of one contiguous run of 1s with any
3651/// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
3652/// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
3653/// since all 1s are not contiguous.
3654bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
3655 llvm::APSInt Result;
3656 // We can't check the value of a dependent argument.
3657 Expr *Arg = TheCall->getArg(ArgNum);
3658 if (Arg->isTypeDependent() || Arg->isValueDependent())
3659 return false;
3660
3661 // Check constant-ness first.
3662 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3663 return true;
3664
3665 // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
3666 if (Result.isShiftedMask() || (~Result).isShiftedMask())
3667 return false;
3668
3669 return Diag(TheCall->getBeginLoc(),
3670 diag::err_argument_not_contiguous_bit_field)
3671 << ArgNum << Arg->getSourceRange();
3672}
3673
3674bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3675 CallExpr *TheCall) {
3676 unsigned i = 0, l = 0, u = 0;
3677 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3678 llvm::APSInt Result;
3679
3680 if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit)
3681 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3682 << TheCall->getSourceRange();
3683
3684 switch (BuiltinID) {
3685 default: return false;
3686 case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3687 case PPC::BI__builtin_altivec_crypto_vshasigmad:
3688 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3689 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3690 case PPC::BI__builtin_altivec_dss:
3691 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3692 case PPC::BI__builtin_tbegin:
3693 case PPC::BI__builtin_tend:
3694 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 1) ||
3695 SemaFeatureCheck(*this, TheCall, "htm",
3696 diag::err_ppc_builtin_requires_htm);
3697 case PPC::BI__builtin_tsr:
3698 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
3699 SemaFeatureCheck(*this, TheCall, "htm",
3700 diag::err_ppc_builtin_requires_htm);
3701 case PPC::BI__builtin_tabortwc:
3702 case PPC::BI__builtin_tabortdc:
3703 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3704 SemaFeatureCheck(*this, TheCall, "htm",
3705 diag::err_ppc_builtin_requires_htm);
3706 case PPC::BI__builtin_tabortwci:
3707 case PPC::BI__builtin_tabortdci:
3708 return SemaFeatureCheck(*this, TheCall, "htm",
3709 diag::err_ppc_builtin_requires_htm) ||
3710 (SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3711 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31));
3712 case PPC::BI__builtin_tabort:
3713 case PPC::BI__builtin_tcheck:
3714 case PPC::BI__builtin_treclaim:
3715 case PPC::BI__builtin_trechkpt:
3716 case PPC::BI__builtin_tendall:
3717 case PPC::BI__builtin_tresume:
3718 case PPC::BI__builtin_tsuspend:
3719 case PPC::BI__builtin_get_texasr:
3720 case PPC::BI__builtin_get_texasru:
3721 case PPC::BI__builtin_get_tfhar:
3722 case PPC::BI__builtin_get_tfiar:
3723 case PPC::BI__builtin_set_texasr:
3724 case PPC::BI__builtin_set_texasru:
3725 case PPC::BI__builtin_set_tfhar:
3726 case PPC::BI__builtin_set_tfiar:
3727 case PPC::BI__builtin_ttest:
3728 return SemaFeatureCheck(*this, TheCall, "htm",
3729 diag::err_ppc_builtin_requires_htm);
3730 // According to GCC 'Basic PowerPC Built-in Functions Available on ISA 2.05',
3731 // __builtin_(un)pack_longdouble are available only if long double uses IBM
3732 // extended double representation.
3733 case PPC::BI__builtin_unpack_longdouble:
3734 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 1))
3735 return true;
3736 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3737 case PPC::BI__builtin_pack_longdouble:
3738 if (&TI.getLongDoubleFormat() != &llvm::APFloat::PPCDoubleDouble())
3739 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_requires_abi)
3740 << "ibmlongdouble";
3741 return false;
3742 case PPC::BI__builtin_altivec_dst:
3743 case PPC::BI__builtin_altivec_dstt:
3744 case PPC::BI__builtin_altivec_dstst:
3745 case PPC::BI__builtin_altivec_dststt:
3746 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3747 case PPC::BI__builtin_vsx_xxpermdi:
3748 case PPC::BI__builtin_vsx_xxsldwi:
3749 return SemaBuiltinVSX(TheCall);
3750 case PPC::BI__builtin_divwe:
3751 case PPC::BI__builtin_divweu:
3752 case PPC::BI__builtin_divde:
3753 case PPC::BI__builtin_divdeu:
3754 return SemaFeatureCheck(*this, TheCall, "extdiv",
3755 diag::err_ppc_builtin_only_on_arch, "7");
3756 case PPC::BI__builtin_bpermd:
3757 return SemaFeatureCheck(*this, TheCall, "bpermd",
3758 diag::err_ppc_builtin_only_on_arch, "7");
3759 case PPC::BI__builtin_unpack_vector_int128:
3760 return SemaFeatureCheck(*this, TheCall, "vsx",
3761 diag::err_ppc_builtin_only_on_arch, "7") ||
3762 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3763 case PPC::BI__builtin_pack_vector_int128:
3764 return SemaFeatureCheck(*this, TheCall, "vsx",
3765 diag::err_ppc_builtin_only_on_arch, "7");
3766 case PPC::BI__builtin_altivec_vgnb:
3767 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3768 case PPC::BI__builtin_altivec_vec_replace_elt:
3769 case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3770 QualType VecTy = TheCall->getArg(0)->getType();
3771 QualType EltTy = TheCall->getArg(1)->getType();
3772 unsigned Width = Context.getIntWidth(EltTy);
3773 return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3774 !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3775 }
3776 case PPC::BI__builtin_vsx_xxeval:
3777 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3778 case PPC::BI__builtin_altivec_vsldbi:
3779 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3780 case PPC::BI__builtin_altivec_vsrdbi:
3781 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3782 case PPC::BI__builtin_vsx_xxpermx:
3783 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3784 case PPC::BI__builtin_ppc_tw:
3785 case PPC::BI__builtin_ppc_tdw:
3786 return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31);
3787 case PPC::BI__builtin_ppc_cmpeqb:
3788 case PPC::BI__builtin_ppc_setb:
3789 case PPC::BI__builtin_ppc_maddhd:
3790 case PPC::BI__builtin_ppc_maddhdu:
3791 case PPC::BI__builtin_ppc_maddld:
3792 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3793 diag::err_ppc_builtin_only_on_arch, "9");
3794 case PPC::BI__builtin_ppc_cmprb:
3795 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3796 diag::err_ppc_builtin_only_on_arch, "9") ||
3797 SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
3798 // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must
3799 // be a constant that represents a contiguous bit field.
3800 case PPC::BI__builtin_ppc_rlwnm:
3801 return SemaValueIsRunOfOnes(TheCall, 2);
3802 case PPC::BI__builtin_ppc_rlwimi:
3803 case PPC::BI__builtin_ppc_rldimi:
3804 return SemaBuiltinConstantArg(TheCall, 2, Result) ||
3805 SemaValueIsRunOfOnes(TheCall, 3);
3806 case PPC::BI__builtin_ppc_extract_exp:
3807 case PPC::BI__builtin_ppc_extract_sig:
3808 case PPC::BI__builtin_ppc_insert_exp:
3809 return SemaFeatureCheck(*this, TheCall, "power9-vector",
3810 diag::err_ppc_builtin_only_on_arch, "9");
3811 case PPC::BI__builtin_ppc_addex: {
3812 if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3813 diag::err_ppc_builtin_only_on_arch, "9") ||
3814 SemaBuiltinConstantArgRange(TheCall, 2, 0, 3))
3815 return true;
3816 // Output warning for reserved values 1 to 3.
3817 int ArgValue =
3818 TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue();
3819 if (ArgValue != 0)
3820 Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour)
3821 << ArgValue;
3822 return false;
3823 }
3824 case PPC::BI__builtin_ppc_mtfsb0:
3825 case PPC::BI__builtin_ppc_mtfsb1:
3826 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
3827 case PPC::BI__builtin_ppc_mtfsf:
3828 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255);
3829 case PPC::BI__builtin_ppc_mtfsfi:
3830 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
3831 SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
3832 case PPC::BI__builtin_ppc_alignx:
3833 return SemaBuiltinConstantArgPower2(TheCall, 0);
3834 case PPC::BI__builtin_ppc_rdlam:
3835 return SemaValueIsRunOfOnes(TheCall, 2);
3836 case PPC::BI__builtin_ppc_icbt:
3837 case PPC::BI__builtin_ppc_sthcx:
3838 case PPC::BI__builtin_ppc_stbcx:
3839 case PPC::BI__builtin_ppc_lharx:
3840 case PPC::BI__builtin_ppc_lbarx:
3841 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3842 diag::err_ppc_builtin_only_on_arch, "8");
3843 case PPC::BI__builtin_vsx_ldrmb:
3844 case PPC::BI__builtin_vsx_strmb:
3845 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
3846 diag::err_ppc_builtin_only_on_arch, "8") ||
3847 SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
3848 case PPC::BI__builtin_altivec_vcntmbb:
3849 case PPC::BI__builtin_altivec_vcntmbh:
3850 case PPC::BI__builtin_altivec_vcntmbw:
3851 case PPC::BI__builtin_altivec_vcntmbd:
3852 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3853 case PPC::BI__builtin_darn:
3854 case PPC::BI__builtin_darn_raw:
3855 case PPC::BI__builtin_darn_32:
3856 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3857 diag::err_ppc_builtin_only_on_arch, "9");
3858 case PPC::BI__builtin_vsx_xxgenpcvbm:
3859 case PPC::BI__builtin_vsx_xxgenpcvhm:
3860 case PPC::BI__builtin_vsx_xxgenpcvwm:
3861 case PPC::BI__builtin_vsx_xxgenpcvdm:
3862 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
3863 case PPC::BI__builtin_ppc_compare_exp_uo:
3864 case PPC::BI__builtin_ppc_compare_exp_lt:
3865 case PPC::BI__builtin_ppc_compare_exp_gt:
3866 case PPC::BI__builtin_ppc_compare_exp_eq:
3867 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3868 diag::err_ppc_builtin_only_on_arch, "9") ||
3869 SemaFeatureCheck(*this, TheCall, "vsx",
3870 diag::err_ppc_builtin_requires_vsx);
3871 case PPC::BI__builtin_ppc_test_data_class: {
3872 // Check if the first argument of the __builtin_ppc_test_data_class call is
3873 // valid. The argument must be either a 'float' or a 'double'.
3874 QualType ArgType = TheCall->getArg(0)->getType();
3875 if (ArgType != QualType(Context.FloatTy) &&
3876 ArgType != QualType(Context.DoubleTy))
3877 return Diag(TheCall->getBeginLoc(),
3878 diag::err_ppc_invalid_test_data_class_type);
3879 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
3880 diag::err_ppc_builtin_only_on_arch, "9") ||
3881 SemaFeatureCheck(*this, TheCall, "vsx",
3882 diag::err_ppc_builtin_requires_vsx) ||
3883 SemaBuiltinConstantArgRange(TheCall, 1, 0, 127);
3884 }
3885 case PPC::BI__builtin_ppc_load8r:
3886 case PPC::BI__builtin_ppc_store8r:
3887 return SemaFeatureCheck(*this, TheCall, "isa-v206-instructions",
3888 diag::err_ppc_builtin_only_on_arch, "7");
3889#define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
3890 case PPC::BI__builtin_##Name: \
3891 return SemaBuiltinPPCMMACall(TheCall, BuiltinID, Types);
3892#include "clang/Basic/BuiltinsPPC.def"
3893 }
3894 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3895}
3896
3897// Check if the given type is a non-pointer PPC MMA type. This function is used
3898// in Sema to prevent invalid uses of restricted PPC MMA types.
3899bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3900 if (Type->isPointerType() || Type->isArrayType())
3901 return false;
3902
3903 QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3904#define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3905 if (false
3906#include "clang/Basic/PPCTypes.def"
3907 ) {
3908 Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3909 return true;
3910 }
3911 return false;
3912}
3913
3914bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3915 CallExpr *TheCall) {
3916 // position of memory order and scope arguments in the builtin
3917 unsigned OrderIndex, ScopeIndex;
3918 switch (BuiltinID) {
3919 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3920 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3921 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3922 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3923 OrderIndex = 2;
3924 ScopeIndex = 3;
3925 break;
3926 case AMDGPU::BI__builtin_amdgcn_fence:
3927 OrderIndex = 0;
3928 ScopeIndex = 1;
3929 break;
3930 default:
3931 return false;
3932 }
3933
3934 ExprResult Arg = TheCall->getArg(OrderIndex);
3935 auto ArgExpr = Arg.get();
3936 Expr::EvalResult ArgResult;
3937
3938 if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3939 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3940 << ArgExpr->getType();
3941 auto Ord = ArgResult.Val.getInt().getZExtValue();
3942
3943 // Check validity of memory ordering as per C11 / C++11's memody model.
3944 // Only fence needs check. Atomic dec/inc allow all memory orders.
3945 if (!llvm::isValidAtomicOrderingCABI(Ord))
3946 return Diag(ArgExpr->getBeginLoc(),
3947 diag::warn_atomic_op_has_invalid_memory_order)
3948 << ArgExpr->getSourceRange();
3949 switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) {
3950 case llvm::AtomicOrderingCABI::relaxed:
3951 case llvm::AtomicOrderingCABI::consume:
3952 if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence)
3953 return Diag(ArgExpr->getBeginLoc(),
3954 diag::warn_atomic_op_has_invalid_memory_order)
3955 << ArgExpr->getSourceRange();
3956 break;
3957 case llvm::AtomicOrderingCABI::acquire:
3958 case llvm::AtomicOrderingCABI::release:
3959 case llvm::AtomicOrderingCABI::acq_rel:
3960 case llvm::AtomicOrderingCABI::seq_cst:
3961 break;
3962 }
3963
3964 Arg = TheCall->getArg(ScopeIndex);
3965 ArgExpr = Arg.get();
3966 Expr::EvalResult ArgResult1;
3967 // Check that sync scope is a constant literal
3968 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3969 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3970 << ArgExpr->getType();
3971
3972 return false;
3973}
3974
3975bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) {
3976 llvm::APSInt Result;
3977
3978 // We can't check the value of a dependent argument.
3979 Expr *Arg = TheCall->getArg(ArgNum);
3980 if (Arg->isTypeDependent() || Arg->isValueDependent())
3981 return false;
3982
3983 // Check constant-ness first.
3984 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3985 return true;
3986
3987 int64_t Val = Result.getSExtValue();
3988 if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7))
3989 return false;
3990
3991 return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul)
3992 << Arg->getSourceRange();
3993}
3994
3995bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI,
3996 unsigned BuiltinID,
3997 CallExpr *TheCall) {
3998 // CodeGenFunction can also detect this, but this gives a better error
3999 // message.
4000 bool FeatureMissing = false;
4001 SmallVector<StringRef> ReqFeatures;
4002 StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID);
4003 Features.split(ReqFeatures, ',');
4004
4005 // Check if each required feature is included
4006 for (StringRef F : ReqFeatures) {
4007 SmallVector<StringRef> ReqOpFeatures;
4008 F.split(ReqOpFeatures, '|');
4009 bool HasFeature = false;
4010 for (StringRef OF : ReqOpFeatures) {
4011 if (TI.hasFeature(OF)) {
4012 HasFeature = true;
4013 continue;
4014 }
4015 }
4016
4017 if (!HasFeature) {
4018 std::string FeatureStrs;
4019 for (StringRef OF : ReqOpFeatures) {
4020 // If the feature is 64bit, alter the string so it will print better in
4021 // the diagnostic.
4022 if (OF == "64bit")
4023 OF = "RV64";
4024
4025 // Convert features like "zbr" and "experimental-zbr" to "Zbr".
4026 OF.consume_front("experimental-");
4027 std::string FeatureStr = OF.str();
4028 FeatureStr[0] = std::toupper(FeatureStr[0]);
4029 // Combine strings.
4030 FeatureStrs += FeatureStrs == "" ? "" : ", ";
4031 FeatureStrs += "'";
4032 FeatureStrs += FeatureStr;
4033 FeatureStrs += "'";
4034 }
4035 // Error message
4036 FeatureMissing = true;
4037 Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension)
4038 << TheCall->getSourceRange() << StringRef(FeatureStrs);
4039 }
4040 }
4041
4042 if (FeatureMissing)
4043 return true;
4044
4045 switch (BuiltinID) {
4046 case RISCVVector::BI__builtin_rvv_vsetvli:
4047 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) ||
4048 CheckRISCVLMUL(TheCall, 2);
4049 case RISCVVector::BI__builtin_rvv_vsetvlimax:
4050 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
4051 CheckRISCVLMUL(TheCall, 1);
4052 }
4053
4054 return false;
4055}
4056
4057bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
4058 CallExpr *TheCall) {
4059 if (BuiltinID == SystemZ::BI__builtin_tabort) {
4060 Expr *Arg = TheCall->getArg(0);
4061 if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
4062 if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
4063 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
4064 << Arg->getSourceRange();
4065 }
4066
4067 // For intrinsics which take an immediate value as part of the instruction,
4068 // range check them here.
4069 unsigned i = 0, l = 0, u = 0;
4070 switch (BuiltinID) {
4071 default: return false;
4072 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
4073 case SystemZ::BI__builtin_s390_verimb:
4074 case SystemZ::BI__builtin_s390_verimh:
4075 case SystemZ::BI__builtin_s390_verimf:
4076 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
4077 case SystemZ::BI__builtin_s390_vfaeb:
4078 case SystemZ::BI__builtin_s390_vfaeh:
4079 case SystemZ::BI__builtin_s390_vfaef:
4080 case SystemZ::BI__builtin_s390_vfaebs:
4081 case SystemZ::BI__builtin_s390_vfaehs:
4082 case SystemZ::BI__builtin_s390_vfaefs:
4083 case SystemZ::BI__builtin_s390_vfaezb:
4084 case SystemZ::BI__builtin_s390_vfaezh:
4085 case SystemZ::BI__builtin_s390_vfaezf:
4086 case SystemZ::BI__builtin_s390_vfaezbs:
4087 case SystemZ::BI__builtin_s390_vfaezhs:
4088 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
4089 case SystemZ::BI__builtin_s390_vfisb:
4090 case SystemZ::BI__builtin_s390_vfidb:
4091 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
4092 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
4093 case SystemZ::BI__builtin_s390_vftcisb:
4094 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
4095 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
4096 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
4097 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
4098 case SystemZ::BI__builtin_s390_vstrcb:
4099 case SystemZ::BI__builtin_s390_vstrch:
4100 case SystemZ::BI__builtin_s390_vstrcf:
4101 case SystemZ::BI__builtin_s390_vstrczb:
4102 case SystemZ::BI__builtin_s390_vstrczh:
4103 case SystemZ::BI__builtin_s390_vstrczf:
4104 case SystemZ::BI__builtin_s390_vstrcbs:
4105 case SystemZ::BI__builtin_s390_vstrchs:
4106 case SystemZ::BI__builtin_s390_vstrcfs:
4107 case SystemZ::BI__builtin_s390_vstrczbs:
4108 case SystemZ::BI__builtin_s390_vstrczhs:
4109 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
4110 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
4111 case SystemZ::BI__builtin_s390_vfminsb:
4112 case SystemZ::BI__builtin_s390_vfmaxsb:
4113 case SystemZ::BI__builtin_s390_vfmindb:
4114 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
4115 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
4116 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
4117 case SystemZ::BI__builtin_s390_vclfnhs:
4118 case SystemZ::BI__builtin_s390_vclfnls:
4119 case SystemZ::BI__builtin_s390_vcfn:
4120 case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break;
4121 case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break;
4122 }
4123 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
4124}
4125
4126/// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
4127/// This checks that the target supports __builtin_cpu_supports and
4128/// that the string argument is constant and valid.
4129static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
4130 CallExpr *TheCall) {
4131 Expr *Arg = TheCall->getArg(0);
4132
4133 // Check if the argument is a string literal.
4134 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
4135 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
4136 << Arg->getSourceRange();
4137
4138 // Check the contents of the string.
4139 StringRef Feature =
4140 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
4141 if (!TI.validateCpuSupports(Feature))
4142 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
4143 << Arg->getSourceRange();
4144 return false;
4145}
4146
4147/// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
4148/// This checks that the target supports __builtin_cpu_is and
4149/// that the string argument is constant and valid.
4150static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
4151 Expr *Arg = TheCall->getArg(0);
4152
4153 // Check if the argument is a string literal.
4154 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
4155 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
4156 << Arg->getSourceRange();
4157
4158 // Check the contents of the string.
4159 StringRef Feature =
4160 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
4161 if (!TI.validateCpuIs(Feature))
4162 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
4163 << Arg->getSourceRange();
4164 return false;
4165}
4166
4167// Check if the rounding mode is legal.
4168bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
4169 // Indicates if this instruction has rounding control or just SAE.
4170 bool HasRC = false;
4171
4172 unsigned ArgNum = 0;
4173 switch (BuiltinID) {
4174 default:
4175 return false;
4176 case X86::BI__builtin_ia32_vcvttsd2si32:
4177 case X86::BI__builtin_ia32_vcvttsd2si64:
4178 case X86::BI__builtin_ia32_vcvttsd2usi32:
4179 case X86::BI__builtin_ia32_vcvttsd2usi64:
4180 case X86::BI__builtin_ia32_vcvttss2si32:
4181 case X86::BI__builtin_ia32_vcvttss2si64:
4182 case X86::BI__builtin_ia32_vcvttss2usi32:
4183 case X86::BI__builtin_ia32_vcvttss2usi64:
4184 case X86::BI__builtin_ia32_vcvttsh2si32:
4185 case X86::BI__builtin_ia32_vcvttsh2si64:
4186 case X86::BI__builtin_ia32_vcvttsh2usi32:
4187 case X86::BI__builtin_ia32_vcvttsh2usi64:
4188 ArgNum = 1;
4189 break;
4190 case X86::BI__builtin_ia32_maxpd512:
4191 case X86::BI__builtin_ia32_maxps512:
4192 case X86::BI__builtin_ia32_minpd512:
4193 case X86::BI__builtin_ia32_minps512:
4194 case X86::BI__builtin_ia32_maxph512:
4195 case X86::BI__builtin_ia32_minph512:
4196 ArgNum = 2;
4197 break;
4198 case X86::BI__builtin_ia32_vcvtph2pd512_mask:
4199 case X86::BI__builtin_ia32_vcvtph2psx512_mask:
4200 case X86::BI__builtin_ia32_cvtps2pd512_mask:
4201 case X86::BI__builtin_ia32_cvttpd2dq512_mask:
4202 case X86::BI__builtin_ia32_cvttpd2qq512_mask:
4203 case X86::BI__builtin_ia32_cvttpd2udq512_mask:
4204 case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
4205 case X86::BI__builtin_ia32_cvttps2dq512_mask:
4206 case X86::BI__builtin_ia32_cvttps2qq512_mask:
4207 case X86::BI__builtin_ia32_cvttps2udq512_mask:
4208 case X86::BI__builtin_ia32_cvttps2uqq512_mask:
4209 case X86::BI__builtin_ia32_vcvttph2w512_mask:
4210 case X86::BI__builtin_ia32_vcvttph2uw512_mask:
4211 case X86::BI__builtin_ia32_vcvttph2dq512_mask:
4212 case X86::BI__builtin_ia32_vcvttph2udq512_mask:
4213 case X86::BI__builtin_ia32_vcvttph2qq512_mask:
4214 case X86::BI__builtin_ia32_vcvttph2uqq512_mask:
4215 case X86::BI__builtin_ia32_exp2pd_mask:
4216 case X86::BI__builtin_ia32_exp2ps_mask:
4217 case X86::BI__builtin_ia32_getexppd512_mask:
4218 case X86::BI__builtin_ia32_getexpps512_mask:
4219 case X86::BI__builtin_ia32_getexpph512_mask:
4220 case X86::BI__builtin_ia32_rcp28pd_mask:
4221 case X86::BI__builtin_ia32_rcp28ps_mask:
4222 case X86::BI__builtin_ia32_rsqrt28pd_mask:
4223 case X86::BI__builtin_ia32_rsqrt28ps_mask:
4224 case X86::BI__builtin_ia32_vcomisd:
4225 case X86::BI__builtin_ia32_vcomiss:
4226 case X86::BI__builtin_ia32_vcomish:
4227 case X86::BI__builtin_ia32_vcvtph2ps512_mask:
4228 ArgNum = 3;
4229 break;
4230 case X86::BI__builtin_ia32_cmppd512_mask:
4231 case X86::BI__builtin_ia32_cmpps512_mask:
4232 case X86::BI__builtin_ia32_cmpsd_mask:
4233 case X86::BI__builtin_ia32_cmpss_mask:
4234 case X86::BI__builtin_ia32_cmpsh_mask:
4235 case X86::BI__builtin_ia32_vcvtsh2sd_round_mask:
4236 case X86::BI__builtin_ia32_vcvtsh2ss_round_mask:
4237 case X86::BI__builtin_ia32_cvtss2sd_round_mask:
4238 case X86::BI__builtin_ia32_getexpsd128_round_mask:
4239 case X86::BI__builtin_ia32_getexpss128_round_mask:
4240 case X86::BI__builtin_ia32_getexpsh128_round_mask:
4241 case X86::BI__builtin_ia32_getmantpd512_mask:
4242 case X86::BI__builtin_ia32_getmantps512_mask:
4243 case X86::BI__builtin_ia32_getmantph512_mask:
4244 case X86::BI__builtin_ia32_maxsd_round_mask:
4245 case X86::BI__builtin_ia32_maxss_round_mask:
4246 case X86::BI__builtin_ia32_maxsh_round_mask:
4247 case X86::BI__builtin_ia32_minsd_round_mask:
4248 case X86::BI__builtin_ia32_minss_round_mask:
4249 case X86::BI__builtin_ia32_minsh_round_mask:
4250 case X86::BI__builtin_ia32_rcp28sd_round_mask:
4251 case X86::BI__builtin_ia32_rcp28ss_round_mask:
4252 case X86::BI__builtin_ia32_reducepd512_mask:
4253 case X86::BI__builtin_ia32_reduceps512_mask:
4254 case X86::BI__builtin_ia32_reduceph512_mask:
4255 case X86::BI__builtin_ia32_rndscalepd_mask:
4256 case X86::BI__builtin_ia32_rndscaleps_mask:
4257 case X86::BI__builtin_ia32_rndscaleph_mask:
4258 case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
4259 case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
4260 ArgNum = 4;
4261 break;
4262 case X86::BI__builtin_ia32_fixupimmpd512_mask:
4263 case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4264 case X86::BI__builtin_ia32_fixupimmps512_mask:
4265 case X86::BI__builtin_ia32_fixupimmps512_maskz:
4266 case X86::BI__builtin_ia32_fixupimmsd_mask:
4267 case X86::BI__builtin_ia32_fixupimmsd_maskz:
4268 case X86::BI__builtin_ia32_fixupimmss_mask:
4269 case X86::BI__builtin_ia32_fixupimmss_maskz:
4270 case X86::BI__builtin_ia32_getmantsd_round_mask:
4271 case X86::BI__builtin_ia32_getmantss_round_mask:
4272 case X86::BI__builtin_ia32_getmantsh_round_mask:
4273 case X86::BI__builtin_ia32_rangepd512_mask:
4274 case X86::BI__builtin_ia32_rangeps512_mask:
4275 case X86::BI__builtin_ia32_rangesd128_round_mask:
4276 case X86::BI__builtin_ia32_rangess128_round_mask:
4277 case X86::BI__builtin_ia32_reducesd_mask:
4278 case X86::BI__builtin_ia32_reducess_mask:
4279 case X86::BI__builtin_ia32_reducesh_mask:
4280 case X86::BI__builtin_ia32_rndscalesd_round_mask:
4281 case X86::BI__builtin_ia32_rndscaless_round_mask:
4282 case X86::BI__builtin_ia32_rndscalesh_round_mask:
4283 ArgNum = 5;
4284 break;
4285 case X86::BI__builtin_ia32_vcvtsd2si64:
4286 case X86::BI__builtin_ia32_vcvtsd2si32:
4287 case X86::BI__builtin_ia32_vcvtsd2usi32:
4288 case X86::BI__builtin_ia32_vcvtsd2usi64:
4289 case X86::BI__builtin_ia32_vcvtss2si32:
4290 case X86::BI__builtin_ia32_vcvtss2si64:
4291 case X86::BI__builtin_ia32_vcvtss2usi32:
4292 case X86::BI__builtin_ia32_vcvtss2usi64:
4293 case X86::BI__builtin_ia32_vcvtsh2si32:
4294 case X86::BI__builtin_ia32_vcvtsh2si64:
4295 case X86::BI__builtin_ia32_vcvtsh2usi32:
4296 case X86::BI__builtin_ia32_vcvtsh2usi64:
4297 case X86::BI__builtin_ia32_sqrtpd512:
4298 case X86::BI__builtin_ia32_sqrtps512:
4299 case X86::BI__builtin_ia32_sqrtph512:
4300 ArgNum = 1;
4301 HasRC = true;
4302 break;
4303 case X86::BI__builtin_ia32_addph512:
4304 case X86::BI__builtin_ia32_divph512:
4305 case X86::BI__builtin_ia32_mulph512:
4306 case X86::BI__builtin_ia32_subph512:
4307 case X86::BI__builtin_ia32_addpd512:
4308 case X86::BI__builtin_ia32_addps512:
4309 case X86::BI__builtin_ia32_divpd512:
4310 case X86::BI__builtin_ia32_divps512:
4311 case X86::BI__builtin_ia32_mulpd512:
4312 case X86::BI__builtin_ia32_mulps512:
4313 case X86::BI__builtin_ia32_subpd512:
4314 case X86::BI__builtin_ia32_subps512:
4315 case X86::BI__builtin_ia32_cvtsi2sd64:
4316 case X86::BI__builtin_ia32_cvtsi2ss32:
4317 case X86::BI__builtin_ia32_cvtsi2ss64:
4318 case X86::BI__builtin_ia32_cvtusi2sd64:
4319 case X86::BI__builtin_ia32_cvtusi2ss32:
4320 case X86::BI__builtin_ia32_cvtusi2ss64:
4321 case X86::BI__builtin_ia32_vcvtusi2sh:
4322 case X86::BI__builtin_ia32_vcvtusi642sh:
4323 case X86::BI__builtin_ia32_vcvtsi2sh:
4324 case X86::BI__builtin_ia32_vcvtsi642sh:
4325 ArgNum = 2;
4326 HasRC = true;
4327 break;
4328 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
4329 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
4330 case X86::BI__builtin_ia32_vcvtpd2ph512_mask:
4331 case X86::BI__builtin_ia32_vcvtps2phx512_mask:
4332 case X86::BI__builtin_ia32_cvtpd2ps512_mask:
4333 case X86::BI__builtin_ia32_cvtpd2dq512_mask:
4334 case X86::BI__builtin_ia32_cvtpd2qq512_mask:
4335 case X86::BI__builtin_ia32_cvtpd2udq512_mask:
4336 case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
4337 case X86::BI__builtin_ia32_cvtps2dq512_mask:
4338 case X86::BI__builtin_ia32_cvtps2qq512_mask:
4339 case X86::BI__builtin_ia32_cvtps2udq512_mask:
4340 case X86::BI__builtin_ia32_cvtps2uqq512_mask:
4341 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
4342 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
4343 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
4344 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
4345 case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
4346 case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
4347 case X86::BI__builtin_ia32_vcvtw2ph512_mask:
4348 case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
4349 case X86::BI__builtin_ia32_vcvtph2w512_mask:
4350 case X86::BI__builtin_ia32_vcvtph2uw512_mask:
4351 case X86::BI__builtin_ia32_vcvtph2dq512_mask:
4352 case X86::BI__builtin_ia32_vcvtph2udq512_mask:
4353 case X86::BI__builtin_ia32_vcvtph2qq512_mask:
4354 case X86::BI__builtin_ia32_vcvtph2uqq512_mask:
4355 case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
4356 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
4357 ArgNum = 3;
4358 HasRC = true;
4359 break;
4360 case X86::BI__builtin_ia32_addsh_round_mask:
4361 case X86::BI__builtin_ia32_addss_round_mask:
4362 case X86::BI__builtin_ia32_addsd_round_mask:
4363 case X86::BI__builtin_ia32_divsh_round_mask:
4364 case X86::BI__builtin_ia32_divss_round_mask:
4365 case X86::BI__builtin_ia32_divsd_round_mask:
4366 case X86::BI__builtin_ia32_mulsh_round_mask:
4367 case X86::BI__builtin_ia32_mulss_round_mask:
4368 case X86::BI__builtin_ia32_mulsd_round_mask:
4369 case X86::BI__builtin_ia32_subsh_round_mask:
4370 case X86::BI__builtin_ia32_subss_round_mask:
4371 case X86::BI__builtin_ia32_subsd_round_mask:
4372 case X86::BI__builtin_ia32_scalefph512_mask:
4373 case X86::BI__builtin_ia32_scalefpd512_mask:
4374 case X86::BI__builtin_ia32_scalefps512_mask:
4375 case X86::BI__builtin_ia32_scalefsd_round_mask:
4376 case X86::BI__builtin_ia32_scalefss_round_mask:
4377 case X86::BI__builtin_ia32_scalefsh_round_mask:
4378 case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
4379 case X86::BI__builtin_ia32_vcvtss2sh_round_mask:
4380 case X86::BI__builtin_ia32_vcvtsd2sh_round_mask:
4381 case X86::BI__builtin_ia32_sqrtsd_round_mask:
4382 case X86::BI__builtin_ia32_sqrtss_round_mask:
4383 case X86::BI__builtin_ia32_sqrtsh_round_mask:
4384 case X86::BI__builtin_ia32_vfmaddsd3_mask:
4385 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
4386 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
4387 case X86::BI__builtin_ia32_vfmaddss3_mask:
4388 case X86::BI__builtin_ia32_vfmaddss3_maskz:
4389 case X86::BI__builtin_ia32_vfmaddss3_mask3:
4390 case X86::BI__builtin_ia32_vfmaddsh3_mask:
4391 case X86::BI__builtin_ia32_vfmaddsh3_maskz:
4392 case X86::BI__builtin_ia32_vfmaddsh3_mask3:
4393 case X86::BI__builtin_ia32_vfmaddpd512_mask:
4394 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
4395 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
4396 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
4397 case X86::BI__builtin_ia32_vfmaddps512_mask:
4398 case X86::BI__builtin_ia32_vfmaddps512_maskz:
4399 case X86::BI__builtin_ia32_vfmaddps512_mask3:
4400 case X86::BI__builtin_ia32_vfmsubps512_mask3:
4401 case X86::BI__builtin_ia32_vfmaddph512_mask:
4402 case X86::BI__builtin_ia32_vfmaddph512_maskz:
4403 case X86::BI__builtin_ia32_vfmaddph512_mask3:
4404 case X86::BI__builtin_ia32_vfmsubph512_mask3:
4405 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
4406 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
4407 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
4408 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
4409 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
4410 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
4411 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
4412 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
4413 case X86::BI__builtin_ia32_vfmaddsubph512_mask:
4414 case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
4415 case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
4416 case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
4417 case X86::BI__builtin_ia32_vfmaddcsh_mask:
4418 case X86::BI__builtin_ia32_vfmaddcsh_round_mask:
4419 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3:
4420 case X86::BI__builtin_ia32_vfmaddcph512_mask:
4421 case X86::BI__builtin_ia32_vfmaddcph512_maskz:
4422 case X86::BI__builtin_ia32_vfmaddcph512_mask3:
4423 case X86::BI__builtin_ia32_vfcmaddcsh_mask:
4424 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
4425 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
4426 case X86::BI__builtin_ia32_vfcmaddcph512_mask:
4427 case X86::BI__builtin_ia32_vfcmaddcph512_maskz:
4428 case X86::BI__builtin_ia32_vfcmaddcph512_mask3:
4429 case X86::BI__builtin_ia32_vfmulcsh_mask:
4430 case X86::BI__builtin_ia32_vfmulcph512_mask:
4431 case X86::BI__builtin_ia32_vfcmulcsh_mask:
4432 case X86::BI__builtin_ia32_vfcmulcph512_mask:
4433 ArgNum = 4;
4434 HasRC = true;
4435 break;
4436 }
4437
4438 llvm::APSInt Result;
4439
4440 // We can't check the value of a dependent argument.
4441 Expr *Arg = TheCall->getArg(ArgNum);
4442 if (Arg->isTypeDependent() || Arg->isValueDependent())
4443 return false;
4444
4445 // Check constant-ness first.
4446 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4447 return true;
4448
4449 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
4450 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
4451 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
4452 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
4453 if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
4454 Result == 8/*ROUND_NO_EXC*/ ||
4455 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
4456 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
4457 return false;
4458
4459 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
4460 << Arg->getSourceRange();
4461}
4462
4463// Check if the gather/scatter scale is legal.
4464bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
4465 CallExpr *TheCall) {
4466 unsigned ArgNum = 0;
4467 switch (BuiltinID) {
4468 default:
4469 return false;
4470 case X86::BI__builtin_ia32_gatherpfdpd:
4471 case X86::BI__builtin_ia32_gatherpfdps:
4472 case X86::BI__builtin_ia32_gatherpfqpd:
4473 case X86::BI__builtin_ia32_gatherpfqps:
4474 case X86::BI__builtin_ia32_scatterpfdpd:
4475 case X86::BI__builtin_ia32_scatterpfdps:
4476 case X86::BI__builtin_ia32_scatterpfqpd:
4477 case X86::BI__builtin_ia32_scatterpfqps:
4478 ArgNum = 3;
4479 break;
4480 case X86::BI__builtin_ia32_gatherd_pd:
4481 case X86::BI__builtin_ia32_gatherd_pd256:
4482 case X86::BI__builtin_ia32_gatherq_pd:
4483 case X86::BI__builtin_ia32_gatherq_pd256:
4484 case X86::BI__builtin_ia32_gatherd_ps:
4485 case X86::BI__builtin_ia32_gatherd_ps256:
4486 case X86::BI__builtin_ia32_gatherq_ps:
4487 case X86::BI__builtin_ia32_gatherq_ps256:
4488 case X86::BI__builtin_ia32_gatherd_q:
4489 case X86::BI__builtin_ia32_gatherd_q256:
4490 case X86::BI__builtin_ia32_gatherq_q:
4491 case X86::BI__builtin_ia32_gatherq_q256:
4492 case X86::BI__builtin_ia32_gatherd_d:
4493 case X86::BI__builtin_ia32_gatherd_d256:
4494 case X86::BI__builtin_ia32_gatherq_d:
4495 case X86::BI__builtin_ia32_gatherq_d256:
4496 case X86::BI__builtin_ia32_gather3div2df:
4497 case X86::BI__builtin_ia32_gather3div2di:
4498 case X86::BI__builtin_ia32_gather3div4df:
4499 case X86::BI__builtin_ia32_gather3div4di:
4500 case X86::BI__builtin_ia32_gather3div4sf:
4501 case X86::BI__builtin_ia32_gather3div4si:
4502 case X86::BI__builtin_ia32_gather3div8sf:
4503 case X86::BI__builtin_ia32_gather3div8si:
4504 case X86::BI__builtin_ia32_gather3siv2df:
4505 case X86::BI__builtin_ia32_gather3siv2di:
4506 case X86::BI__builtin_ia32_gather3siv4df:
4507 case X86::BI__builtin_ia32_gather3siv4di:
4508 case X86::BI__builtin_ia32_gather3siv4sf:
4509 case X86::BI__builtin_ia32_gather3siv4si:
4510 case X86::BI__builtin_ia32_gather3siv8sf:
4511 case X86::BI__builtin_ia32_gather3siv8si:
4512 case X86::BI__builtin_ia32_gathersiv8df:
4513 case X86::BI__builtin_ia32_gathersiv16sf:
4514 case X86::BI__builtin_ia32_gatherdiv8df:
4515 case X86::BI__builtin_ia32_gatherdiv16sf:
4516 case X86::BI__builtin_ia32_gathersiv8di:
4517 case X86::BI__builtin_ia32_gathersiv16si:
4518 case X86::BI__builtin_ia32_gatherdiv8di:
4519 case X86::BI__builtin_ia32_gatherdiv16si:
4520 case X86::BI__builtin_ia32_scatterdiv2df:
4521 case X86::BI__builtin_ia32_scatterdiv2di:
4522 case X86::BI__builtin_ia32_scatterdiv4df:
4523 case X86::BI__builtin_ia32_scatterdiv4di:
4524 case X86::BI__builtin_ia32_scatterdiv4sf:
4525 case X86::BI__builtin_ia32_scatterdiv4si:
4526 case X86::BI__builtin_ia32_scatterdiv8sf:
4527 case X86::BI__builtin_ia32_scatterdiv8si:
4528 case X86::BI__builtin_ia32_scattersiv2df:
4529 case X86::BI__builtin_ia32_scattersiv2di:
4530 case X86::BI__builtin_ia32_scattersiv4df:
4531 case X86::BI__builtin_ia32_scattersiv4di:
4532 case X86::BI__builtin_ia32_scattersiv4sf:
4533 case X86::BI__builtin_ia32_scattersiv4si:
4534 case X86::BI__builtin_ia32_scattersiv8sf:
4535 case X86::BI__builtin_ia32_scattersiv8si:
4536 case X86::BI__builtin_ia32_scattersiv8df:
4537 case X86::BI__builtin_ia32_scattersiv16sf:
4538 case X86::BI__builtin_ia32_scatterdiv8df:
4539 case X86::BI__builtin_ia32_scatterdiv16sf:
4540 case X86::BI__builtin_ia32_scattersiv8di:
4541 case X86::BI__builtin_ia32_scattersiv16si:
4542 case X86::BI__builtin_ia32_scatterdiv8di:
4543 case X86::BI__builtin_ia32_scatterdiv16si:
4544 ArgNum = 4;
4545 break;
4546 }
4547
4548 llvm::APSInt Result;
4549
4550 // We can't check the value of a dependent argument.
4551 Expr *Arg = TheCall->getArg(ArgNum);
4552 if (Arg->isTypeDependent() || Arg->isValueDependent())
4553 return false;
4554
4555 // Check constant-ness first.
4556 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4557 return true;
4558
4559 if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
4560 return false;
4561
4562 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
4563 << Arg->getSourceRange();
4564}
4565
4566enum { TileRegLow = 0, TileRegHigh = 7 };
4567
4568bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
4569 ArrayRef<int> ArgNums) {
4570 for (int ArgNum : ArgNums) {
4571 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
4572 return true;
4573 }
4574 return false;
4575}
4576
4577bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
4578 ArrayRef<int> ArgNums) {
4579 // Because the max number of tile register is TileRegHigh + 1, so here we use
4580 // each bit to represent the usage of them in bitset.
4581 std::bitset<TileRegHigh + 1> ArgValues;
4582 for (int ArgNum : ArgNums) {
4583 Expr *Arg = TheCall->getArg(ArgNum);
4584 if (Arg->isTypeDependent() || Arg->isValueDependent())
4585 continue;
4586
4587 llvm::APSInt Result;
4588 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4589 return true;
4590 int ArgExtValue = Result.getExtValue();
4591 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&(static_cast <bool> ((ArgExtValue >= TileRegLow || ArgExtValue
<= TileRegHigh) && "Incorrect tile register num."
) ? void (0) : __assert_fail ("(ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && \"Incorrect tile register num.\""
, "clang/lib/Sema/SemaChecking.cpp", 4592, __extension__ __PRETTY_FUNCTION__
))
4592 "Incorrect tile register num.")(static_cast <bool> ((ArgExtValue >= TileRegLow || ArgExtValue
<= TileRegHigh) && "Incorrect tile register num."
) ? void (0) : __assert_fail ("(ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && \"Incorrect tile register num.\""
, "clang/lib/Sema/SemaChecking.cpp", 4592, __extension__ __PRETTY_FUNCTION__
))
;
4593 if (ArgValues.test(ArgExtValue))
4594 return Diag(TheCall->getBeginLoc(),
4595 diag::err_x86_builtin_tile_arg_duplicate)
4596 << TheCall->getArg(ArgNum)->getSourceRange();
4597 ArgValues.set(ArgExtValue);
4598 }
4599 return false;
4600}
4601
4602bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
4603 ArrayRef<int> ArgNums) {
4604 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
4605 CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
4606}
4607
4608bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
4609 switch (BuiltinID) {
4610 default:
4611 return false;
4612 case X86::BI__builtin_ia32_tileloadd64:
4613 case X86::BI__builtin_ia32_tileloaddt164:
4614 case X86::BI__builtin_ia32_tilestored64:
4615 case X86::BI__builtin_ia32_tilezero:
4616 return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
4617 case X86::BI__builtin_ia32_tdpbssd:
4618 case X86::BI__builtin_ia32_tdpbsud:
4619 case X86::BI__builtin_ia32_tdpbusd:
4620 case X86::BI__builtin_ia32_tdpbuud:
4621 case X86::BI__builtin_ia32_tdpbf16ps:
4622 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
4623 }
4624}
4625static bool isX86_32Builtin(unsigned BuiltinID) {
4626 // These builtins only work on x86-32 targets.
4627 switch (BuiltinID) {
4628 case X86::BI__builtin_ia32_readeflags_u32:
4629 case X86::BI__builtin_ia32_writeeflags_u32:
4630 return true;
4631 }
4632
4633 return false;
4634}
4635
4636bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
4637 CallExpr *TheCall) {
4638 if (BuiltinID == X86::BI__builtin_cpu_supports)
4639 return SemaBuiltinCpuSupports(*this, TI, TheCall);
4640
4641 if (BuiltinID == X86::BI__builtin_cpu_is)
4642 return SemaBuiltinCpuIs(*this, TI, TheCall);
4643
4644 // Check for 32-bit only builtins on a 64-bit target.
4645 const llvm::Triple &TT = TI.getTriple();
4646 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
4647 return Diag(TheCall->getCallee()->getBeginLoc(),
4648 diag::err_32_bit_builtin_64_bit_tgt);
4649
4650 // If the intrinsic has rounding or SAE make sure its valid.
4651 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
4652 return true;
4653
4654 // If the intrinsic has a gather/scatter scale immediate make sure its valid.
4655 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
4656 return true;
4657
4658 // If the intrinsic has a tile arguments, make sure they are valid.
4659 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
4660 return true;
4661
4662 // For intrinsics which take an immediate value as part of the instruction,
4663 // range check them here.
4664 int i = 0, l = 0, u = 0;
4665 switch (BuiltinID) {
4666 default:
4667 return false;
4668 case X86::BI__builtin_ia32_vec_ext_v2si:
4669 case X86::BI__builtin_ia32_vec_ext_v2di:
4670 case X86::BI__builtin_ia32_vextractf128_pd256:
4671 case X86::BI__builtin_ia32_vextractf128_ps256:
4672 case X86::BI__builtin_ia32_vextractf128_si256:
4673 case X86::BI__builtin_ia32_extract128i256:
4674 case X86::BI__builtin_ia32_extractf64x4_mask:
4675 case X86::BI__builtin_ia32_extracti64x4_mask:
4676 case X86::BI__builtin_ia32_extractf32x8_mask:
4677 case X86::BI__builtin_ia32_extracti32x8_mask:
4678 case X86::BI__builtin_ia32_extractf64x2_256_mask:
4679 case X86::BI__builtin_ia32_extracti64x2_256_mask:
4680 case X86::BI__builtin_ia32_extractf32x4_256_mask:
4681 case X86::BI__builtin_ia32_extracti32x4_256_mask:
4682 i = 1; l = 0; u = 1;
4683 break;
4684 case X86::BI__builtin_ia32_vec_set_v2di:
4685 case X86::BI__builtin_ia32_vinsertf128_pd256:
4686 case X86::BI__builtin_ia32_vinsertf128_ps256:
4687 case X86::BI__builtin_ia32_vinsertf128_si256:
4688 case X86::BI__builtin_ia32_insert128i256:
4689 case X86::BI__builtin_ia32_insertf32x8:
4690 case X86::BI__builtin_ia32_inserti32x8:
4691 case X86::BI__builtin_ia32_insertf64x4:
4692 case X86::BI__builtin_ia32_inserti64x4:
4693 case X86::BI__builtin_ia32_insertf64x2_256:
4694 case X86::BI__builtin_ia32_inserti64x2_256:
4695 case X86::BI__builtin_ia32_insertf32x4_256:
4696 case X86::BI__builtin_ia32_inserti32x4_256:
4697 i = 2; l = 0; u = 1;
4698 break;
4699 case X86::BI__builtin_ia32_vpermilpd:
4700 case X86::BI__builtin_ia32_vec_ext_v4hi:
4701 case X86::BI__builtin_ia32_vec_ext_v4si:
4702 case X86::BI__builtin_ia32_vec_ext_v4sf:
4703 case X86::BI__builtin_ia32_vec_ext_v4di:
4704 case X86::BI__builtin_ia32_extractf32x4_mask:
4705 case X86::BI__builtin_ia32_extracti32x4_mask:
4706 case X86::BI__builtin_ia32_extractf64x2_512_mask:
4707 case X86::BI__builtin_ia32_extracti64x2_512_mask:
4708 i = 1; l = 0; u = 3;
4709 break;
4710 case X86::BI_mm_prefetch:
4711 case X86::BI__builtin_ia32_vec_ext_v8hi:
4712 case X86::BI__builtin_ia32_vec_ext_v8si:
4713 i = 1; l = 0; u = 7;
4714 break;
4715 case X86::BI__builtin_ia32_sha1rnds4:
4716 case X86::BI__builtin_ia32_blendpd:
4717 case X86::BI__builtin_ia32_shufpd:
4718 case X86::BI__builtin_ia32_vec_set_v4hi:
4719 case X86::BI__builtin_ia32_vec_set_v4si:
4720 case X86::BI__builtin_ia32_vec_set_v4di:
4721 case X86::BI__builtin_ia32_shuf_f32x4_256:
4722 case X86::BI__builtin_ia32_shuf_f64x2_256:
4723 case X86::BI__builtin_ia32_shuf_i32x4_256:
4724 case X86::BI__builtin_ia32_shuf_i64x2_256:
4725 case X86::BI__builtin_ia32_insertf64x2_512:
4726 case X86::BI__builtin_ia32_inserti64x2_512:
4727 case X86::BI__builtin_ia32_insertf32x4:
4728 case X86::BI__builtin_ia32_inserti32x4:
4729 i = 2; l = 0; u = 3;
4730 break;
4731 case X86::BI__builtin_ia32_vpermil2pd:
4732 case X86::BI__builtin_ia32_vpermil2pd256:
4733 case X86::BI__builtin_ia32_vpermil2ps:
4734 case X86::BI__builtin_ia32_vpermil2ps256:
4735 i = 3; l = 0; u = 3;
4736 break;
4737 case X86::BI__builtin_ia32_cmpb128_mask:
4738 case X86::BI__builtin_ia32_cmpw128_mask:
4739 case X86::BI__builtin_ia32_cmpd128_mask:
4740 case X86::BI__builtin_ia32_cmpq128_mask:
4741 case X86::BI__builtin_ia32_cmpb256_mask:
4742 case X86::BI__builtin_ia32_cmpw256_mask:
4743 case X86::BI__builtin_ia32_cmpd256_mask:
4744 case X86::BI__builtin_ia32_cmpq256_mask:
4745 case X86::BI__builtin_ia32_cmpb512_mask:
4746 case X86::BI__builtin_ia32_cmpw512_mask:
4747 case X86::BI__builtin_ia32_cmpd512_mask:
4748 case X86::BI__builtin_ia32_cmpq512_mask:
4749 case X86::BI__builtin_ia32_ucmpb128_mask:
4750 case X86::BI__builtin_ia32_ucmpw128_mask:
4751 case X86::BI__builtin_ia32_ucmpd128_mask:
4752 case X86::BI__builtin_ia32_ucmpq128_mask:
4753 case X86::BI__builtin_ia32_ucmpb256_mask:
4754 case X86::BI__builtin_ia32_ucmpw256_mask:
4755 case X86::BI__builtin_ia32_ucmpd256_mask:
4756 case X86::BI__builtin_ia32_ucmpq256_mask:
4757 case X86::BI__builtin_ia32_ucmpb512_mask:
4758 case X86::BI__builtin_ia32_ucmpw512_mask:
4759 case X86::BI__builtin_ia32_ucmpd512_mask:
4760 case X86::BI__builtin_ia32_ucmpq512_mask:
4761 case X86::BI__builtin_ia32_vpcomub:
4762 case X86::BI__builtin_ia32_vpcomuw:
4763 case X86::BI__builtin_ia32_vpcomud:
4764 case X86::BI__builtin_ia32_vpcomuq:
4765 case X86::BI__builtin_ia32_vpcomb:
4766 case X86::BI__builtin_ia32_vpcomw:
4767 case X86::BI__builtin_ia32_vpcomd:
4768 case X86::BI__builtin_ia32_vpcomq:
4769 case X86::BI__builtin_ia32_vec_set_v8hi:
4770 case X86::BI__builtin_ia32_vec_set_v8si:
4771 i = 2; l = 0; u = 7;
4772 break;
4773 case X86::BI__builtin_ia32_vpermilpd256:
4774 case X86::BI__builtin_ia32_roundps:
4775 case X86::BI__builtin_ia32_roundpd:
4776 case X86::BI__builtin_ia32_roundps256:
4777 case X86::BI__builtin_ia32_roundpd256:
4778 case X86::BI__builtin_ia32_getmantpd128_mask:
4779 case X86::BI__builtin_ia32_getmantpd256_mask:
4780 case X86::BI__builtin_ia32_getmantps128_mask:
4781 case X86::BI__builtin_ia32_getmantps256_mask:
4782 case X86::BI__builtin_ia32_getmantpd512_mask:
4783 case X86::BI__builtin_ia32_getmantps512_mask:
4784 case X86::BI__builtin_ia32_getmantph128_mask:
4785 case X86::BI__builtin_ia32_getmantph256_mask:
4786 case X86::BI__builtin_ia32_getmantph512_mask:
4787 case X86::BI__builtin_ia32_vec_ext_v16qi:
4788 case X86::BI__builtin_ia32_vec_ext_v16hi:
4789 i = 1; l = 0; u = 15;
4790 break;
4791 case X86::BI__builtin_ia32_pblendd128:
4792 case X86::BI__builtin_ia32_blendps:
4793 case X86::BI__builtin_ia32_blendpd256:
4794 case X86::BI__builtin_ia32_shufpd256:
4795 case X86::BI__builtin_ia32_roundss:
4796 case X86::BI__builtin_ia32_roundsd:
4797 case X86::BI__builtin_ia32_rangepd128_mask:
4798 case X86::BI__builtin_ia32_rangepd256_mask:
4799 case X86::BI__builtin_ia32_rangepd512_mask:
4800 case X86::BI__builtin_ia32_rangeps128_mask:
4801 case X86::BI__builtin_ia32_rangeps256_mask:
4802 case X86::BI__builtin_ia32_rangeps512_mask:
4803 case X86::BI__builtin_ia32_getmantsd_round_mask:
4804 case X86::BI__builtin_ia32_getmantss_round_mask:
4805 case X86::BI__builtin_ia32_getmantsh_round_mask:
4806 case X86::BI__builtin_ia32_vec_set_v16qi:
4807 case X86::BI__builtin_ia32_vec_set_v16hi:
4808 i = 2; l = 0; u = 15;
4809 break;
4810 case X86::BI__builtin_ia32_vec_ext_v32qi:
4811 i = 1; l = 0; u = 31;
4812 break;
4813 case X86::BI__builtin_ia32_cmpps:
4814 case X86::BI__builtin_ia32_cmpss:
4815 case X86::BI__builtin_ia32_cmppd:
4816 case X86::BI__builtin_ia32_cmpsd:
4817 case X86::BI__builtin_ia32_cmpps256:
4818 case X86::BI__builtin_ia32_cmppd256:
4819 case X86::BI__builtin_ia32_cmpps128_mask:
4820 case X86::BI__builtin_ia32_cmppd128_mask:
4821 case X86::BI__builtin_ia32_cmpps256_mask:
4822 case X86::BI__builtin_ia32_cmppd256_mask:
4823 case X86::BI__builtin_ia32_cmpps512_mask:
4824 case X86::BI__builtin_ia32_cmppd512_mask:
4825 case X86::BI__builtin_ia32_cmpsd_mask:
4826 case X86::BI__builtin_ia32_cmpss_mask:
4827 case X86::BI__builtin_ia32_vec_set_v32qi:
4828 i = 2; l = 0; u = 31;
4829 break;
4830 case X86::BI__builtin_ia32_permdf256:
4831 case X86::BI__builtin_ia32_permdi256:
4832 case X86::BI__builtin_ia32_permdf512:
4833 case X86::BI__builtin_ia32_permdi512:
4834 case X86::BI__builtin_ia32_vpermilps:
4835 case X86::BI__builtin_ia32_vpermilps256:
4836 case X86::BI__builtin_ia32_vpermilpd512:
4837 case X86::BI__builtin_ia32_vpermilps512:
4838 case X86::BI__builtin_ia32_pshufd:
4839 case X86::BI__builtin_ia32_pshufd256:
4840 case X86::BI__builtin_ia32_pshufd512:
4841 case X86::BI__builtin_ia32_pshufhw:
4842 case X86::BI__builtin_ia32_pshufhw256:
4843 case X86::BI__builtin_ia32_pshufhw512:
4844 case X86::BI__builtin_ia32_pshuflw:
4845 case X86::BI__builtin_ia32_pshuflw256:
4846 case X86::BI__builtin_ia32_pshuflw512:
4847 case X86::BI__builtin_ia32_vcvtps2ph:
4848 case X86::BI__builtin_ia32_vcvtps2ph_mask:
4849 case X86::BI__builtin_ia32_vcvtps2ph256:
4850 case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4851 case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4852 case X86::BI__builtin_ia32_rndscaleps_128_mask:
4853 case X86::BI__builtin_ia32_rndscalepd_128_mask:
4854 case X86::BI__builtin_ia32_rndscaleps_256_mask:
4855 case X86::BI__builtin_ia32_rndscalepd_256_mask:
4856 case X86::BI__builtin_ia32_rndscaleps_mask:
4857 case X86::BI__builtin_ia32_rndscalepd_mask:
4858 case X86::BI__builtin_ia32_rndscaleph_mask:
4859 case X86::BI__builtin_ia32_reducepd128_mask:
4860 case X86::BI__builtin_ia32_reducepd256_mask:
4861 case X86::BI__builtin_ia32_reducepd512_mask:
4862 case X86::BI__builtin_ia32_reduceps128_mask:
4863 case X86::BI__builtin_ia32_reduceps256_mask:
4864 case X86::BI__builtin_ia32_reduceps512_mask:
4865 case X86::BI__builtin_ia32_reduceph128_mask:
4866 case X86::BI__builtin_ia32_reduceph256_mask:
4867 case X86::BI__builtin_ia32_reduceph512_mask:
4868 case X86::BI__builtin_ia32_prold512:
4869 case X86::BI__builtin_ia32_prolq512:
4870 case X86::BI__builtin_ia32_prold128:
4871 case X86::BI__builtin_ia32_prold256:
4872 case X86::BI__builtin_ia32_prolq128:
4873 case X86::BI__builtin_ia32_prolq256:
4874 case X86::BI__builtin_ia32_prord512:
4875 case X86::BI__builtin_ia32_prorq512:
4876 case X86::BI__builtin_ia32_prord128:
4877 case X86::BI__builtin_ia32_prord256:
4878 case X86::BI__builtin_ia32_prorq128:
4879 case X86::BI__builtin_ia32_prorq256:
4880 case X86::BI__builtin_ia32_fpclasspd128_mask:
4881 case X86::BI__builtin_ia32_fpclasspd256_mask:
4882 case X86::BI__builtin_ia32_fpclassps128_mask:
4883 case X86::BI__builtin_ia32_fpclassps256_mask:
4884 case X86::BI__builtin_ia32_fpclassps512_mask:
4885 case X86::BI__builtin_ia32_fpclasspd512_mask:
4886 case X86::BI__builtin_ia32_fpclassph128_mask:
4887 case X86::BI__builtin_ia32_fpclassph256_mask:
4888 case X86::BI__builtin_ia32_fpclassph512_mask:
4889 case X86::BI__builtin_ia32_fpclasssd_mask:
4890 case X86::BI__builtin_ia32_fpclassss_mask:
4891 case X86::BI__builtin_ia32_fpclasssh_mask:
4892 case X86::BI__builtin_ia32_pslldqi128_byteshift:
4893 case X86::BI__builtin_ia32_pslldqi256_byteshift:
4894 case X86::BI__builtin_ia32_pslldqi512_byteshift:
4895 case X86::BI__builtin_ia32_psrldqi128_byteshift:
4896 case X86::BI__builtin_ia32_psrldqi256_byteshift:
4897 case X86::BI__builtin_ia32_psrldqi512_byteshift:
4898 case X86::BI__builtin_ia32_kshiftliqi:
4899 case X86::BI__builtin_ia32_kshiftlihi:
4900 case X86::BI__builtin_ia32_kshiftlisi:
4901 case X86::BI__builtin_ia32_kshiftlidi:
4902 case X86::BI__builtin_ia32_kshiftriqi:
4903 case X86::BI__builtin_ia32_kshiftrihi:
4904 case X86::BI__builtin_ia32_kshiftrisi:
4905 case X86::BI__builtin_ia32_kshiftridi:
4906 i = 1; l = 0; u = 255;
4907 break;
4908 case X86::BI__builtin_ia32_vperm2f128_pd256:
4909 case X86::BI__builtin_ia32_vperm2f128_ps256:
4910 case X86::BI__builtin_ia32_vperm2f128_si256:
4911 case X86::BI__builtin_ia32_permti256:
4912 case X86::BI__builtin_ia32_pblendw128:
4913 case X86::BI__builtin_ia32_pblendw256:
4914 case X86::BI__builtin_ia32_blendps256:
4915 case X86::BI__builtin_ia32_pblendd256:
4916 case X86::BI__builtin_ia32_palignr128:
4917 case X86::BI__builtin_ia32_palignr256:
4918 case X86::BI__builtin_ia32_palignr512:
4919 case X86::BI__builtin_ia32_alignq512:
4920 case X86::BI__builtin_ia32_alignd512:
4921 case X86::BI__builtin_ia32_alignd128:
4922 case X86::BI__builtin_ia32_alignd256:
4923 case X86::BI__builtin_ia32_alignq128:
4924 case X86::BI__builtin_ia32_alignq256:
4925 case X86::BI__builtin_ia32_vcomisd:
4926 case X86::BI__builtin_ia32_vcomiss:
4927 case X86::BI__builtin_ia32_shuf_f32x4:
4928 case X86::BI__builtin_ia32_shuf_f64x2:
4929 case X86::BI__builtin_ia32_shuf_i32x4:
4930 case X86::BI__builtin_ia32_shuf_i64x2:
4931 case X86::BI__builtin_ia32_shufpd512:
4932 case X86::BI__builtin_ia32_shufps:
4933 case X86::BI__builtin_ia32_shufps256:
4934 case X86::BI__builtin_ia32_shufps512:
4935 case X86::BI__builtin_ia32_dbpsadbw128:
4936 case X86::BI__builtin_ia32_dbpsadbw256:
4937 case X86::BI__builtin_ia32_dbpsadbw512:
4938 case X86::BI__builtin_ia32_vpshldd128:
4939 case X86::BI__builtin_ia32_vpshldd256:
4940 case X86::BI__builtin_ia32_vpshldd512:
4941 case X86::BI__builtin_ia32_vpshldq128:
4942 case X86::BI__builtin_ia32_vpshldq256:
4943 case X86::BI__builtin_ia32_vpshldq512:
4944 case X86::BI__builtin_ia32_vpshldw128:
4945 case X86::BI__builtin_ia32_vpshldw256:
4946 case X86::BI__builtin_ia32_vpshldw512:
4947 case X86::BI__builtin_ia32_vpshrdd128:
4948 case X86::BI__builtin_ia32_vpshrdd256:
4949 case X86::BI__builtin_ia32_vpshrdd512:
4950 case X86::BI__builtin_ia32_vpshrdq128:
4951 case X86::BI__builtin_ia32_vpshrdq256:
4952 case X86::BI__builtin_ia32_vpshrdq512:
4953 case X86::BI__builtin_ia32_vpshrdw128:
4954 case X86::BI__builtin_ia32_vpshrdw256:
4955 case X86::BI__builtin_ia32_vpshrdw512:
4956 i = 2; l = 0; u = 255;
4957 break;
4958 case X86::BI__builtin_ia32_fixupimmpd512_mask:
4959 case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4960 case X86::BI__builtin_ia32_fixupimmps512_mask:
4961 case X86::BI__builtin_ia32_fixupimmps512_maskz:
4962 case X86::BI__builtin_ia32_fixupimmsd_mask:
4963 case X86::BI__builtin_ia32_fixupimmsd_maskz:
4964 case X86::BI__builtin_ia32_fixupimmss_mask:
4965 case X86::BI__builtin_ia32_fixupimmss_maskz:
4966 case X86::BI__builtin_ia32_fixupimmpd128_mask:
4967 case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4968 case X86::BI__builtin_ia32_fixupimmpd256_mask:
4969 case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4970 case X86::BI__builtin_ia32_fixupimmps128_mask:
4971 case X86::BI__builtin_ia32_fixupimmps128_maskz:
4972 case X86::BI__builtin_ia32_fixupimmps256_mask:
4973 case X86::BI__builtin_ia32_fixupimmps256_maskz:
4974 case X86::BI__builtin_ia32_pternlogd512_mask:
4975 case X86::BI__builtin_ia32_pternlogd512_maskz:
4976 case X86::BI__builtin_ia32_pternlogq512_mask:
4977 case X86::BI__builtin_ia32_pternlogq512_maskz:
4978 case X86::BI__builtin_ia32_pternlogd128_mask:
4979 case X86::BI__builtin_ia32_pternlogd128_maskz:
4980 case X86::BI__builtin_ia32_pternlogd256_mask:
4981 case X86::BI__builtin_ia32_pternlogd256_maskz:
4982 case X86::BI__builtin_ia32_pternlogq128_mask:
4983 case X86::BI__builtin_ia32_pternlogq128_maskz:
4984 case X86::BI__builtin_ia32_pternlogq256_mask:
4985 case X86::BI__builtin_ia32_pternlogq256_maskz:
4986 i = 3; l = 0; u = 255;
4987 break;
4988 case X86::BI__builtin_ia32_gatherpfdpd:
4989 case X86::BI__builtin_ia32_gatherpfdps:
4990 case X86::BI__builtin_ia32_gatherpfqpd:
4991 case X86::BI__builtin_ia32_gatherpfqps:
4992 case X86::BI__builtin_ia32_scatterpfdpd:
4993 case X86::BI__builtin_ia32_scatterpfdps:
4994 case X86::BI__builtin_ia32_scatterpfqpd:
4995 case X86::BI__builtin_ia32_scatterpfqps:
4996 i = 4; l = 2; u = 3;
4997 break;
4998 case X86::BI__builtin_ia32_reducesd_mask:
4999 case X86::BI__builtin_ia32_reducess_mask:
5000 case X86::BI__builtin_ia32_rndscalesd_round_mask:
5001 case X86::BI__builtin_ia32_rndscaless_round_mask:
5002 case X86::BI__builtin_ia32_rndscalesh_round_mask:
5003 case X86::BI__builtin_ia32_reducesh_mask:
5004 i = 4; l = 0; u = 255;
5005 break;
5006 }
5007
5008 // Note that we don't force a hard error on the range check here, allowing
5009 // template-generated or macro-generated dead code to potentially have out-of-
5010 // range values. These need to code generate, but don't need to necessarily
5011 // make any sense. We use a warning that defaults to an error.
5012 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
5013}
5014
5015/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
5016/// parameter with the FormatAttr's correct format_idx and firstDataArg.
5017/// Returns true when the format fits the function and the FormatStringInfo has
5018/// been populated.
5019bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
5020 FormatStringInfo *FSI) {
5021 FSI->HasVAListArg = Format->getFirstArg() == 0;
5022 FSI->FormatIdx = Format->getFormatIdx() - 1;
5023 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
5024
5025 // The way the format attribute works in GCC, the implicit this argument
5026 // of member functions is counted. However, it doesn't appear in our own
5027 // lists, so decrement format_idx in that case.
5028 if (IsCXXMember) {
5029 if(FSI->FormatIdx == 0)
5030 return false;
5031 --FSI->FormatIdx;
5032 if (FSI->FirstDataArg != 0)
5033 --FSI->FirstDataArg;
5034 }
5035 return true;
5036}
5037
5038/// Checks if a the given expression evaluates to null.
5039///
5040/// Returns true if the value evaluates to null.
5041static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
5042 // If the expression has non-null type, it doesn't evaluate to null.
5043 if (auto nullability
5044 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
5045 if (*nullability == NullabilityKind::NonNull)
5046 return false;
5047 }
5048
5049 // As a special case, transparent unions initialized with zero are
5050 // considered null for the purposes of the nonnull attribute.
5051 if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
5052 if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
5053 if (const CompoundLiteralExpr *CLE =
5054 dyn_cast<CompoundLiteralExpr>(Expr))
5055 if (const InitListExpr *ILE =
5056 dyn_cast<InitListExpr>(CLE->getInitializer()))
5057 Expr = ILE->getInit(0);
5058 }
5059
5060 bool Result;
5061 return (!Expr->isValueDependent() &&
5062 Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
5063 !Result);
5064}
5065
5066static void CheckNonNullArgument(Sema &S,
5067 const Expr *ArgExpr,
5068 SourceLocation CallSiteLoc) {
5069 if (CheckNonNullExpr(S, ArgExpr))
5070 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
5071 S.PDiag(diag::warn_null_arg)
5072 << ArgExpr->getSourceRange());
5073}
5074
5075bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
5076 FormatStringInfo FSI;
5077 if ((GetFormatStringType(Format) == FST_NSString) &&
5078 getFormatStringInfo(Format, false, &FSI)) {
5079 Idx = FSI.FormatIdx;
5080 return true;
5081 }
5082 return false;
5083}
5084
5085/// Diagnose use of %s directive in an NSString which is being passed
5086/// as formatting string to formatting method.
5087static void
5088DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
5089 const NamedDecl *FDecl,
5090 Expr **Args,
5091 unsigned NumArgs) {
5092 unsigned Idx = 0;
5093 bool Format = false;
5094 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
5095 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
5096 Idx = 2;
5097 Format = true;
5098 }
5099 else
5100 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
5101 if (S.GetFormatNSStringIdx(I, Idx)) {
5102 Format = true;
5103 break;
5104 }
5105 }
5106 if (!Format || NumArgs <= Idx)
5107 return;
5108 const Expr *FormatExpr = Args[Idx];
5109 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
5110 FormatExpr = CSCE->getSubExpr();
5111 const StringLiteral *FormatString;
5112 if (const ObjCStringLiteral *OSL =
5113 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
5114 FormatString = OSL->getString();
5115 else
5116 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
5117 if (!FormatString)
5118 return;
5119 if (S.FormatStringHasSArg(FormatString)) {
5120 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
5121 << "%s" << 1 << 1;
5122 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
5123 << FDecl->getDeclName();
5124 }
5125}
5126
5127/// Determine whether the given type has a non-null nullability annotation.
5128static bool isNonNullType(ASTContext &ctx, QualType type) {
5129 if (auto nullability = type->getNullability(ctx))
5130 return *nullability == NullabilityKind::NonNull;
5131
5132 return false;
5133}
5134
5135static void CheckNonNullArguments(Sema &S,
5136 const NamedDecl *FDecl,
5137 const FunctionProtoType *Proto,
5138 ArrayRef<const Expr *> Args,
5139 SourceLocation CallSiteLoc) {
5140 assert((FDecl || Proto) && "Need a function declaration or prototype")(static_cast <bool> ((FDecl || Proto) && "Need a function declaration or prototype"
) ? void (0) : __assert_fail ("(FDecl || Proto) && \"Need a function declaration or prototype\""
, "clang/lib/Sema/SemaChecking.cpp", 5140, __extension__ __PRETTY_FUNCTION__
))
;
5141
5142 // Already checked by by constant evaluator.
5143 if (S.isConstantEvaluated())
5144 return;
5145 // Check the attributes attached to the method/function itself.
5146 llvm::SmallBitVector NonNullArgs;
5147 if (FDecl) {
5148 // Handle the nonnull attribute on the function/method declaration itself.
5149 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
5150 if (!NonNull->args_size()) {
5151 // Easy case: all pointer arguments are nonnull.
5152 for (const auto *Arg : Args)
5153 if (S.isValidPointerAttrType(Arg->getType()))
5154 CheckNonNullArgument(S, Arg, CallSiteLoc);
5155 return;
5156 }
5157
5158 for (const ParamIdx &Idx : NonNull->args()) {
5159 unsigned IdxAST = Idx.getASTIndex();
5160 if (IdxAST >= Args.size())
5161 continue;
5162 if (NonNullArgs.empty())
5163 NonNullArgs.resize(Args.size());
5164 NonNullArgs.set(IdxAST);
5165 }
5166 }
5167 }
5168
5169 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
5170 // Handle the nonnull attribute on the parameters of the
5171 // function/method.
5172 ArrayRef<ParmVarDecl*> parms;
5173 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
5174 parms = FD->parameters();
5175 else
5176 parms = cast<ObjCMethodDecl>(FDecl)->parameters();
5177
5178 unsigned ParamIndex = 0;
5179 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
5180 I != E; ++I, ++ParamIndex) {
5181 const ParmVarDecl *PVD = *I;
5182 if (PVD->hasAttr<NonNullAttr>() ||
5183 isNonNullType(S.Context, PVD->getType())) {
5184 if (NonNullArgs.empty())
5185 NonNullArgs.resize(Args.size());
5186
5187 NonNullArgs.set(ParamIndex);
5188 }
5189 }
5190 } else {
5191 // If we have a non-function, non-method declaration but no
5192 // function prototype, try to dig out the function prototype.
5193 if (!Proto) {
5194 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
5195 QualType type = VD->getType().getNonReferenceType();
5196 if (auto pointerType = type->getAs<PointerType>())
5197 type = pointerType->getPointeeType();
5198 else if (auto blockType = type->getAs<BlockPointerType>())
5199 type = blockType->getPointeeType();
5200 // FIXME: data member pointers?
5201
5202 // Dig out the function prototype, if there is one.
5203 Proto = type->getAs<FunctionProtoType>();
5204 }
5205 }
5206
5207 // Fill in non-null argument information from the nullability
5208 // information on the parameter types (if we have them).
5209 if (Proto) {
5210 unsigned Index = 0;
5211 for (auto paramType : Proto->getParamTypes()) {
5212 if (isNonNullType(S.Context, paramType)) {
5213 if (NonNullArgs.empty())
5214 NonNullArgs.resize(Args.size());
5215
5216 NonNullArgs.set(Index);
5217 }
5218
5219 ++Index;
5220 }
5221 }
5222 }
5223
5224 // Check for non-null arguments.
5225 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
5226 ArgIndex != ArgIndexEnd; ++ArgIndex) {
5227 if (NonNullArgs[ArgIndex])
5228 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
5229 }
5230}
5231
5232/// Warn if a pointer or reference argument passed to a function points to an
5233/// object that is less aligned than the parameter. This can happen when
5234/// creating a typedef with a lower alignment than the original type and then
5235/// calling functions defined in terms of the original type.
5236void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
5237 StringRef ParamName, QualType ArgTy,
5238 QualType ParamTy) {
5239
5240 // If a function accepts a pointer or reference type
5241 if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
5242 return;
5243
5244 // If the parameter is a pointer type, get the pointee type for the
5245 // argument too. If the parameter is a reference type, don't try to get
5246 // the pointee type for the argument.
5247 if (ParamTy->isPointerType())
5248 ArgTy = ArgTy->getPointeeType();
5249
5250 // Remove reference or pointer
5251 ParamTy = ParamTy->getPointeeType();
5252
5253 // Find expected alignment, and the actual alignment of the passed object.
5254 // getTypeAlignInChars requires complete types
5255 if (ArgTy.isNull() || ParamTy->isIncompleteType() ||
5256 ArgTy->isIncompleteType() || ParamTy->isUndeducedType() ||
5257 ArgTy->isUndeducedType())
5258 return;
5259
5260 CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
5261 CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
5262
5263 // If the argument is less aligned than the parameter, there is a
5264 // potential alignment issue.
5265 if (ArgAlign < ParamAlign)
5266 Diag(Loc, diag::warn_param_mismatched_alignment)
5267 << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
5268 << ParamName << (FDecl != nullptr) << FDecl;
5269}
5270
5271/// Handles the checks for format strings, non-POD arguments to vararg
5272/// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
5273/// attributes.
5274void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
5275 const Expr *ThisArg, ArrayRef<const Expr *> Args,
5276 bool IsMemberFunction, SourceLocation Loc,
5277 SourceRange Range, VariadicCallType CallType) {
5278 // FIXME: We should check as much as we can in the template definition.
5279 if (CurContext->isDependentContext())
5280 return;
5281
5282 // Printf and scanf checking.
5283 llvm::SmallBitVector CheckedVarArgs;
5284 if (FDecl) {
5285 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
5286 // Only create vector if there are format attributes.
5287 CheckedVarArgs.resize(Args.size());
5288
5289 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
5290 CheckedVarArgs);
5291 }
5292 }
5293
5294 // Refuse POD arguments that weren't caught by the format string
5295 // checks above.
5296 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
5297 if (CallType != VariadicDoesNotApply &&
5298 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
5299 unsigned NumParams = Proto ? Proto->getNumParams()
5300 : FDecl && isa<FunctionDecl>(FDecl)
5301 ? cast<FunctionDecl>(FDecl)->getNumParams()
5302 : FDecl && isa<ObjCMethodDecl>(FDecl)
5303 ? cast<ObjCMethodDecl>(FDecl)->param_size()
5304 : 0;
5305
5306 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
5307 // Args[ArgIdx] can be null in malformed code.
5308 if (const Expr *Arg = Args[ArgIdx]) {
5309 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
5310 checkVariadicArgument(Arg, CallType);
5311 }
5312 }
5313 }
5314
5315 if (FDecl || Proto) {
5316 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
5317
5318 // Type safety checking.
5319 if (FDecl) {
5320 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
5321 CheckArgumentWithTypeTag(I, Args, Loc);
5322 }
5323 }
5324
5325 // Check that passed arguments match the alignment of original arguments.
5326 // Try to get the missing prototype from the declaration.
5327 if (!Proto && FDecl) {
5328 const auto *FT = FDecl->getFunctionType();
5329 if (isa_and_nonnull<FunctionProtoType>(FT))
5330 Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
5331 }
5332 if (Proto) {
5333 // For variadic functions, we may have more args than parameters.
5334 // For some K&R functions, we may have less args than parameters.
5335 const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
5336 for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
5337 // Args[ArgIdx] can be null in malformed code.
5338 if (const Expr *Arg = Args[ArgIdx]) {
5339 if (Arg->containsErrors())
5340 continue;
5341
5342 QualType ParamTy = Proto->getParamType(ArgIdx);
5343 QualType ArgTy = Arg->getType();
5344 CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
5345 ArgTy, ParamTy);
5346 }
5347 }
5348 }
5349
5350 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
5351 auto *AA = FDecl->getAttr<AllocAlignAttr>();
5352 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
5353 if (!Arg->isValueDependent()) {
5354 Expr::EvalResult Align;
5355 if (Arg->EvaluateAsInt(Align, Context)) {
5356 const llvm::APSInt &I = Align.Val.getInt();
5357 if (!I.isPowerOf2())
5358 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
5359 << Arg->getSourceRange();
5360
5361 if (I > Sema::MaximumAlignment)
5362 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
5363 << Arg->getSourceRange() << Sema::MaximumAlignment;
5364 }
5365 }
5366 }
5367
5368 if (FD)
5369 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
5370}
5371
5372/// CheckConstructorCall - Check a constructor call for correctness and safety
5373/// properties not enforced by the C type system.
5374void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
5375 ArrayRef<const Expr *> Args,
5376 const FunctionProtoType *Proto,
5377 SourceLocation Loc) {
5378 VariadicCallType CallType =
5379 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5380
5381 auto *Ctor = cast<CXXConstructorDecl>(FDecl);
5382 CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType),
5383 Context.getPointerType(Ctor->getThisObjectType()));
5384
5385 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
5386 Loc, SourceRange(), CallType);
5387}
5388
5389/// CheckFunctionCall - Check a direct function call for various correctness
5390/// and safety properties not strictly enforced by the C type system.
5391bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
5392 const FunctionProtoType *Proto) {
5393 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
1
Assuming 'TheCall' is not a 'CXXOperatorCallExpr'
5394 isa<CXXMethodDecl>(FDecl);
5395 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
2
Assuming 'TheCall' is not a 'CXXMemberCallExpr'
5396 IsMemberOperatorCall;
5397 VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
5398 TheCall->getCallee());
5399 Expr** Args = TheCall->getArgs();
5400 unsigned NumArgs = TheCall->getNumArgs();
5401
5402 Expr *ImplicitThis = nullptr;
5403 if (IsMemberOperatorCall
2.1
'IsMemberOperatorCall' is false
) {
3
Taking false branch
5404 // If this is a call to a member operator, hide the first argument
5405 // from checkCall.
5406 // FIXME: Our choice of AST representation here is less than ideal.
5407 ImplicitThis = Args[0];
5408 ++Args;
5409 --NumArgs;
5410 } else if (IsMemberFunction
3.1
'IsMemberFunction' is false
)
4
Taking false branch
5411 ImplicitThis =
5412 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
5413
5414 if (ImplicitThis
4.1
'ImplicitThis' is null
) {
5
Taking false branch
5415 // ImplicitThis may or may not be a pointer, depending on whether . or -> is
5416 // used.
5417 QualType ThisType = ImplicitThis->getType();
5418 if (!ThisType->isPointerType()) {
5419 assert(!ThisType->isReferenceType())(static_cast <bool> (!ThisType->isReferenceType()) ?
void (0) : __assert_fail ("!ThisType->isReferenceType()",
"clang/lib/Sema/SemaChecking.cpp", 5419, __extension__ __PRETTY_FUNCTION__
))
;
5420 ThisType = Context.getPointerType(ThisType);
5421 }
5422
5423 QualType ThisTypeFromDecl =
5424 Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType());
5425
5426 CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
5427 ThisTypeFromDecl);
5428 }
5429
5430 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
5431 IsMemberFunction, TheCall->getRParenLoc(),
5432 TheCall->getCallee()->getSourceRange(), CallType);
5433
5434 IdentifierInfo *FnInfo = FDecl->getIdentifier();
5435 // None of the checks below are needed for functions that don't have
5436 // simple names (e.g., C++ conversion functions).
5437 if (!FnInfo)
6
Assuming 'FnInfo' is non-null
7
Taking false branch
5438 return false;
5439
5440 CheckTCBEnforcement(TheCall, FDecl);
5441
5442 CheckAbsoluteValueFunction(TheCall, FDecl);
5443 CheckMaxUnsignedZero(TheCall, FDecl);
5444
5445 if (getLangOpts().ObjC)
8
Assuming field 'ObjC' is 0
9
Taking false branch
5446 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
5447
5448 unsigned CMId = FDecl->getMemoryFunctionKind();
5449
5450 // Handle memory setting and copying functions.
5451 switch (CMId) {
10
Control jumps to 'case BIfree:' at line 5461
5452 case 0:
5453 return false;
5454/* case Builtin::BIstrlcpy: // fallthrough
5455 case Builtin::BIstrlcat:
5456 CheckStrlcpycatArguments(TheCall, FnInfo);
5457 break;*/
5458 case Builtin::BIstrncat:
5459 CheckStrncatArguments(TheCall, FnInfo);
5460 break;
5461 case Builtin::BIfree:
5462 CheckFreeArguments(TheCall);
11
Calling 'Sema::CheckFreeArguments'
5463 break;
5464 default:
5465 CheckMemaccessArguments(TheCall, CMId, FnInfo);
5466 }
5467
5468 return false;
5469}
5470
5471bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
5472 ArrayRef<const Expr *> Args) {
5473 VariadicCallType CallType =
5474 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
5475
5476 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
5477 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
5478 CallType);
5479
5480 return false;
5481}
5482
5483bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
5484 const FunctionProtoType *Proto) {
5485 QualType Ty;
5486 if (const auto *V = dyn_cast<VarDecl>(NDecl))
5487 Ty = V->getType().getNonReferenceType();
5488 else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
5489 Ty = F->getType().getNonReferenceType();
5490 else
5491 return false;
5492
5493 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
5494 !Ty->isFunctionProtoType())
5495 return false;
5496
5497 VariadicCallType CallType;
5498 if (!Proto || !Proto->isVariadic()) {
5499 CallType = VariadicDoesNotApply;
5500 } else if (Ty->isBlockPointerType()) {
5501 CallType = VariadicBlock;
5502 } else { // Ty->isFunctionPointerType()
5503 CallType = VariadicFunction;
5504 }
5505
5506 checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
5507 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5508 /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5509 TheCall->getCallee()->getSourceRange(), CallType);
5510
5511 return false;
5512}
5513
5514/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
5515/// such as function pointers returned from functions.
5516bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
5517 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
5518 TheCall->getCallee());
5519 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
5520 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5521 /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5522 TheCall->getCallee()->getSourceRange(), CallType);
5523
5524 return false;
5525}
5526
5527static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
5528 if (!llvm::isValidAtomicOrderingCABI(Ordering))
5529 return false;
5530
5531 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
5532 switch (Op) {
5533 case AtomicExpr::AO__c11_atomic_init:
5534 case AtomicExpr::AO__opencl_atomic_init:
5535 llvm_unreachable("There is no ordering argument for an init")::llvm::llvm_unreachable_internal("There is no ordering argument for an init"
, "clang/lib/Sema/SemaChecking.cpp", 5535)
;
5536
5537 case AtomicExpr::AO__c11_atomic_load:
5538 case AtomicExpr::AO__opencl_atomic_load:
5539 case AtomicExpr::AO__hip_atomic_load:
5540 case AtomicExpr::AO__atomic_load_n:
5541 case AtomicExpr::AO__atomic_load:
5542 return OrderingCABI != llvm::AtomicOrderingCABI::release &&
5543 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5544
5545 case AtomicExpr::AO__c11_atomic_store:
5546 case AtomicExpr::AO__opencl_atomic_store:
5547 case AtomicExpr::AO__hip_atomic_store:
5548 case AtomicExpr::AO__atomic_store:
5549 case AtomicExpr::AO__atomic_store_n:
5550 return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
5551 OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
5552 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5553
5554 default:
5555 return true;
5556 }
5557}
5558
5559ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
5560 AtomicExpr::AtomicOp Op) {
5561 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
5562 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5563 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
5564 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
5565 DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
5566 Op);
5567}
5568
5569ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5570 SourceLocation RParenLoc, MultiExprArg Args,
5571 AtomicExpr::AtomicOp Op,
5572 AtomicArgumentOrder ArgOrder) {
5573 // All the non-OpenCL operations take one of the following forms.
5574 // The OpenCL operations take the __c11 forms with one extra argument for
5575 // synchronization scope.
5576 enum {
5577 // C __c11_atomic_init(A *, C)
5578 Init,
5579
5580 // C __c11_atomic_load(A *, int)
5581 Load,
5582
5583 // void __atomic_load(A *, CP, int)
5584 LoadCopy,
5585
5586 // void __atomic_store(A *, CP, int)
5587 Copy,
5588
5589 // C __c11_atomic_add(A *, M, int)
5590 Arithmetic,
5591
5592 // C __atomic_exchange_n(A *, CP, int)
5593 Xchg,
5594
5595 // void __atomic_exchange(A *, C *, CP, int)
5596 GNUXchg,
5597
5598 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
5599 C11CmpXchg,
5600
5601 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
5602 GNUCmpXchg
5603 } Form = Init;
5604
5605 const unsigned NumForm = GNUCmpXchg + 1;
5606 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
5607 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
5608 // where:
5609 // C is an appropriate type,
5610 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
5611 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
5612 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
5613 // the int parameters are for orderings.
5614
5615 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
5616 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
5617 "need to update code for modified forms");
5618 static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
5619 AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
5620 AtomicExpr::AO__atomic_load,
5621 "need to update code for modified C11 atomics");
5622 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
5623 Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
5624 bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_load &&
5625 Op <= AtomicExpr::AO__hip_atomic_fetch_max;
5626 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
5627 Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
5628 IsOpenCL;
5629 bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
5630 Op == AtomicExpr::AO__atomic_store_n ||
5631 Op == AtomicExpr::AO__atomic_exchange_n ||
5632 Op == AtomicExpr::AO__atomic_compare_exchange_n;
5633 bool IsAddSub = false;
5634
5635 switch (Op) {
5636 case AtomicExpr::AO__c11_atomic_init:
5637 case AtomicExpr::AO__opencl_atomic_init:
5638 Form = Init;
5639 break;
5640
5641 case AtomicExpr::AO__c11_atomic_load:
5642 case AtomicExpr::AO__opencl_atomic_load:
5643 case AtomicExpr::AO__hip_atomic_load:
5644 case AtomicExpr::AO__atomic_load_n:
5645 Form = Load;
5646 break;
5647
5648 case AtomicExpr::AO__atomic_load:
5649 Form = LoadCopy;
5650 break;
5651
5652 case AtomicExpr::AO__c11_atomic_store:
5653 case AtomicExpr::AO__opencl_atomic_store:
5654 case AtomicExpr::AO__hip_atomic_store:
5655 case AtomicExpr::AO__atomic_store:
5656 case AtomicExpr::AO__atomic_store_n:
5657 Form = Copy;
5658 break;
5659 case AtomicExpr::AO__hip_atomic_fetch_add:
5660 case AtomicExpr::AO__hip_atomic_fetch_min:
5661 case AtomicExpr::AO__hip_atomic_fetch_max:
5662 case AtomicExpr::AO__c11_atomic_fetch_add:
5663 case AtomicExpr::AO__c11_atomic_fetch_sub:
5664 case AtomicExpr::AO__opencl_atomic_fetch_add:
5665 case AtomicExpr::AO__opencl_atomic_fetch_sub:
5666 case AtomicExpr::AO__atomic_fetch_add:
5667 case AtomicExpr::AO__atomic_fetch_sub:
5668 case AtomicExpr::AO__atomic_add_fetch:
5669 case AtomicExpr::AO__atomic_sub_fetch:
5670 IsAddSub = true;
5671 Form = Arithmetic;
5672 break;
5673 case AtomicExpr::AO__c11_atomic_fetch_and:
5674 case AtomicExpr::AO__c11_atomic_fetch_or:
5675 case AtomicExpr::AO__c11_atomic_fetch_xor:
5676 case AtomicExpr::AO__hip_atomic_fetch_and:
5677 case AtomicExpr::AO__hip_atomic_fetch_or:
5678 case AtomicExpr::AO__hip_atomic_fetch_xor:
5679 case AtomicExpr::AO__c11_atomic_fetch_nand:
5680 case AtomicExpr::AO__opencl_atomic_fetch_and:
5681 case AtomicExpr::AO__opencl_atomic_fetch_or:
5682 case AtomicExpr::AO__opencl_atomic_fetch_xor:
5683 case AtomicExpr::AO__atomic_fetch_and:
5684 case AtomicExpr::AO__atomic_fetch_or:
5685 case AtomicExpr::AO__atomic_fetch_xor:
5686 case AtomicExpr::AO__atomic_fetch_nand:
5687 case AtomicExpr::AO__atomic_and_fetch:
5688 case AtomicExpr::AO__atomic_or_fetch:
5689 case AtomicExpr::AO__atomic_xor_fetch:
5690 case AtomicExpr::AO__atomic_nand_fetch:
5691 Form = Arithmetic;
5692 break;
5693 case AtomicExpr::AO__c11_atomic_fetch_min:
5694 case AtomicExpr::AO__c11_atomic_fetch_max:
5695 case AtomicExpr::AO__opencl_atomic_fetch_min:
5696 case AtomicExpr::AO__opencl_atomic_fetch_max:
5697 case AtomicExpr::AO__atomic_min_fetch:
5698 case AtomicExpr::AO__atomic_max_fetch:
5699 case AtomicExpr::AO__atomic_fetch_min:
5700 case AtomicExpr::AO__atomic_fetch_max:
5701 Form = Arithmetic;
5702 break;
5703
5704 case AtomicExpr::AO__c11_atomic_exchange:
5705 case AtomicExpr::AO__hip_atomic_exchange:
5706 case AtomicExpr::AO__opencl_atomic_exchange:
5707 case AtomicExpr::AO__atomic_exchange_n:
5708 Form = Xchg;
5709 break;
5710
5711 case AtomicExpr::AO__atomic_exchange:
5712 Form = GNUXchg;
5713 break;
5714
5715 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
5716 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
5717 case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
5718 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
5719 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
5720 case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
5721 Form = C11CmpXchg;
5722 break;
5723
5724 case AtomicExpr::AO__atomic_compare_exchange:
5725 case AtomicExpr::AO__atomic_compare_exchange_n:
5726 Form = GNUCmpXchg;
5727 break;
5728 }
5729
5730 unsigned AdjustedNumArgs = NumArgs[Form];
5731 if ((IsOpenCL || IsHIP) && Op != AtomicExpr::AO__opencl_atomic_init)
5732 ++AdjustedNumArgs;
5733 // Check we have the right number of arguments.
5734 if (Args.size() < AdjustedNumArgs) {
5735 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
5736 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5737 << ExprRange;
5738 return ExprError();
5739 } else if (Args.size() > AdjustedNumArgs) {
5740 Diag(Args[AdjustedNumArgs]->getBeginLoc(),
5741 diag::err_typecheck_call_too_many_args)
5742 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
5743 << ExprRange;
5744 return ExprError();
5745 }
5746
5747 // Inspect the first argument of the atomic operation.
5748 Expr *Ptr = Args[0];
5749 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
5750 if (ConvertedPtr.isInvalid())
5751 return ExprError();
5752
5753 Ptr = ConvertedPtr.get();
5754 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
5755 if (!pointerType) {
5756 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
5757 << Ptr->getType() << Ptr->getSourceRange();
5758 return ExprError();
5759 }
5760
5761 // For a __c11 builtin, this should be a pointer to an _Atomic type.
5762 QualType AtomTy = pointerType->getPointeeType(); // 'A'
5763 QualType ValType = AtomTy; // 'C'
5764 if (IsC11) {
5765 if (!AtomTy->isAtomicType()) {
5766 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
5767 << Ptr->getType() << Ptr->getSourceRange();
5768 return ExprError();
5769 }
5770 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
5771 AtomTy.getAddressSpace() == LangAS::opencl_constant) {
5772 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
5773 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
5774 << Ptr->getSourceRange();
5775 return ExprError();
5776 }
5777 ValType = AtomTy->castAs<AtomicType>()->getValueType();
5778 } else if (Form != Load && Form != LoadCopy) {
5779 if (ValType.isConstQualified()) {
5780 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
5781 << Ptr->getType() << Ptr->getSourceRange();
5782 return ExprError();
5783 }
5784 }
5785
5786 // For an arithmetic operation, the implied arithmetic must be well-formed.
5787 if (Form == Arithmetic) {
5788 // GCC does not enforce these rules for GNU atomics, but we do to help catch
5789 // trivial type errors.
5790 auto IsAllowedValueType = [&](QualType ValType) {
5791 if (ValType->isIntegerType())
5792 return true;
5793 if (ValType->isPointerType())
5794 return true;
5795 if (!ValType->isFloatingType())
5796 return false;
5797 // LLVM Parser does not allow atomicrmw with x86_fp80 type.
5798 if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
5799 &Context.getTargetInfo().getLongDoubleFormat() ==
5800 &llvm::APFloat::x87DoubleExtended())
5801 return false;
5802 return true;
5803 };
5804 if (IsAddSub && !IsAllowedValueType(ValType)) {
5805 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp)
5806 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5807 return ExprError();
5808 }
5809 if (!IsAddSub && !ValType->isIntegerType()) {
5810 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
5811 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5812 return ExprError();
5813 }
5814 if (IsC11 && ValType->isPointerType() &&
5815 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
5816 diag::err_incomplete_type)) {
5817 return ExprError();
5818 }
5819 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
5820 // For __atomic_*_n operations, the value type must be a scalar integral or
5821 // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
5822 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
5823 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
5824 return ExprError();
5825 }
5826
5827 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
5828 !AtomTy->isScalarType()) {
5829 // For GNU atomics, require a trivially-copyable type. This is not part of
5830 // the GNU atomics specification but we enforce it for consistency with
5831 // other atomics which generally all require a trivially-copyable type. This
5832 // is because atomics just copy bits.
5833 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
5834 << Ptr->getType() << Ptr->getSourceRange();
5835 return ExprError();
5836 }
5837
5838 switch (ValType.getObjCLifetime()) {
5839 case Qualifiers::OCL_None:
5840 case Qualifiers::OCL_ExplicitNone:
5841 // okay
5842 break;
5843
5844 case Qualifiers::OCL_Weak:
5845 case Qualifiers::OCL_Strong:
5846 case Qualifiers::OCL_Autoreleasing:
5847 // FIXME: Can this happen? By this point, ValType should be known
5848 // to be trivially copyable.
5849 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
5850 << ValType << Ptr->getSourceRange();
5851 return ExprError();
5852 }
5853
5854 // All atomic operations have an overload which takes a pointer to a volatile
5855 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself
5856 // into the result or the other operands. Similarly atomic_load takes a
5857 // pointer to a const 'A'.
5858 ValType.removeLocalVolatile();
5859 ValType.removeLocalConst();
5860 QualType ResultType = ValType;
5861 if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
5862 Form == Init)
5863 ResultType = Context.VoidTy;
5864 else if (Form == C11CmpXchg || Form == GNUCmpXchg)
5865 ResultType = Context.BoolTy;
5866
5867 // The type of a parameter passed 'by value'. In the GNU atomics, such
5868 // arguments are actually passed as pointers.
5869 QualType ByValType = ValType; // 'CP'
5870 bool IsPassedByAddress = false;
5871 if (!IsC11 && !IsHIP && !IsN) {
5872 ByValType = Ptr->getType();
5873 IsPassedByAddress = true;
5874 }
5875
5876 SmallVector<Expr *, 5> APIOrderedArgs;
5877 if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
5878 APIOrderedArgs.push_back(Args[0]);
5879 switch (Form) {
5880 case Init:
5881 case Load:
5882 APIOrderedArgs.push_back(Args[1]); // Val1/Order
5883 break;
5884 case LoadCopy:
5885 case Copy:
5886 case Arithmetic:
5887 case Xchg:
5888 APIOrderedArgs.push_back(Args[2]); // Val1
5889 APIOrderedArgs.push_back(Args[1]); // Order
5890 break;
5891 case GNUXchg:
5892 APIOrderedArgs.push_back(Args[2]); // Val1
5893 APIOrderedArgs.push_back(Args[3]); // Val2
5894 APIOrderedArgs.push_back(Args[1]); // Order
5895 break;
5896 case C11CmpXchg:
5897 APIOrderedArgs.push_back(Args[2]); // Val1
5898 APIOrderedArgs.push_back(Args[4]); // Val2
5899 APIOrderedArgs.push_back(Args[1]); // Order
5900 APIOrderedArgs.push_back(Args[3]); // OrderFail
5901 break;
5902 case GNUCmpXchg:
5903 APIOrderedArgs.push_back(Args[2]); // Val1
5904 APIOrderedArgs.push_back(Args[4]); // Val2
5905 APIOrderedArgs.push_back(Args[5]); // Weak
5906 APIOrderedArgs.push_back(Args[1]); // Order
5907 APIOrderedArgs.push_back(Args[3]); // OrderFail
5908 break;
5909 }
5910 } else
5911 APIOrderedArgs.append(Args.begin(), Args.end());
5912
5913 // The first argument's non-CV pointer type is used to deduce the type of
5914 // subsequent arguments, except for:
5915 // - weak flag (always converted to bool)
5916 // - memory order (always converted to int)
5917 // - scope (always converted to int)
5918 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5919 QualType Ty;
5920 if (i < NumVals[Form] + 1) {
5921 switch (i) {
5922 case 0:
5923 // The first argument is always a pointer. It has a fixed type.
5924 // It is always dereferenced, a nullptr is undefined.
5925 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5926 // Nothing else to do: we already know all we want about this pointer.
5927 continue;
5928 case 1:
5929 // The second argument is the non-atomic operand. For arithmetic, this
5930 // is always passed by value, and for a compare_exchange it is always
5931 // passed by address. For the rest, GNU uses by-address and C11 uses
5932 // by-value.
5933 assert(Form != Load)(static_cast <bool> (Form != Load) ? void (0) : __assert_fail
("Form != Load", "clang/lib/Sema/SemaChecking.cpp", 5933, __extension__
__PRETTY_FUNCTION__))
;
5934 if (Form == Arithmetic && ValType->isPointerType())
5935 Ty = Context.getPointerDiffType();
5936 else if (Form == Init || Form == Arithmetic)
5937 Ty = ValType;
5938 else if (Form == Copy || Form == Xchg) {
5939 if (IsPassedByAddress) {
5940 // The value pointer is always dereferenced, a nullptr is undefined.
5941 CheckNonNullArgument(*this, APIOrderedArgs[i],
5942 ExprRange.getBegin());
5943 }
5944 Ty = ByValType;
5945 } else {
5946 Expr *ValArg = APIOrderedArgs[i];
5947 // The value pointer is always dereferenced, a nullptr is undefined.
5948 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5949 LangAS AS = LangAS::Default;
5950 // Keep address space of non-atomic pointer type.
5951 if (const PointerType *PtrTy =
5952 ValArg->getType()->getAs<PointerType>()) {
5953 AS = PtrTy->getPointeeType().getAddressSpace();
5954 }
5955 Ty = Context.getPointerType(
5956 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5957 }
5958 break;
5959 case 2:
5960 // The third argument to compare_exchange / GNU exchange is the desired
5961 // value, either by-value (for the C11 and *_n variant) or as a pointer.
5962 if (IsPassedByAddress)
5963 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5964 Ty = ByValType;
5965 break;
5966 case 3:
5967 // The fourth argument to GNU compare_exchange is a 'weak' flag.
5968 Ty = Context.BoolTy;
5969 break;
5970 }
5971 } else {
5972 // The order(s) and scope are always converted to int.
5973 Ty = Context.IntTy;
5974 }
5975
5976 InitializedEntity Entity =
5977 InitializedEntity::InitializeParameter(Context, Ty, false);
5978 ExprResult Arg = APIOrderedArgs[i];
5979 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5980 if (Arg.isInvalid())
5981 return true;
5982 APIOrderedArgs[i] = Arg.get();
5983 }
5984
5985 // Permute the arguments into a 'consistent' order.
5986 SmallVector<Expr*, 5> SubExprs;
5987 SubExprs.push_back(Ptr);
5988 switch (Form) {
5989 case Init:
5990 // Note, AtomicExpr::getVal1() has a special case for this atomic.
5991 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5992 break;
5993 case Load:
5994 SubExprs.push_back(APIOrderedArgs[1]); // Order
5995 break;
5996 case LoadCopy:
5997 case Copy:
5998 case Arithmetic:
5999 case Xchg:
6000 SubExprs.push_back(APIOrderedArgs[2]); // Order
6001 SubExprs.push_back(APIOrderedArgs[1]); // Val1
6002 break;
6003 case GNUXchg:
6004 // Note, AtomicExpr::getVal2() has a special case for this atomic.
6005 SubExprs.push_back(APIOrderedArgs[3]); // Order
6006 SubExprs.push_back(APIOrderedArgs[1]); // Val1
6007 SubExprs.push_back(APIOrderedArgs[2]); // Val2
6008 break;
6009 case C11CmpXchg:
6010 SubExprs.push_back(APIOrderedArgs[3]); // Order
6011 SubExprs.push_back(APIOrderedArgs[1]); // Val1
6012 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
6013 SubExprs.push_back(APIOrderedArgs[2]); // Val2
6014 break;
6015 case GNUCmpXchg:
6016 SubExprs.push_back(APIOrderedArgs[4]); // Order
6017 SubExprs.push_back(APIOrderedArgs[1]); // Val1
6018 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
6019 SubExprs.push_back(APIOrderedArgs[2]); // Val2
6020 SubExprs.push_back(APIOrderedArgs[3]); // Weak
6021 break;
6022 }
6023
6024 if (SubExprs.size() >= 2 && Form != Init) {
6025 if (Optional<llvm::APSInt> Result =
6026 SubExprs[1]->getIntegerConstantExpr(Context))
6027 if (!isValidOrderingForOp(Result->getSExtValue(), Op))
6028 Diag(SubExprs[1]->getBeginLoc(),
6029 diag::warn_atomic_op_has_invalid_memory_order)
6030 << SubExprs[1]->getSourceRange();
6031 }
6032
6033 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
6034 auto *Scope = Args[Args.size() - 1];
6035 if (Optional<llvm::APSInt> Result =
6036 Scope->getIntegerConstantExpr(Context)) {
6037 if (!ScopeModel->isValid(Result->getZExtValue()))
6038 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
6039 << Scope->getSourceRange();
6040 }
6041 SubExprs.push_back(Scope);
6042 }
6043
6044 AtomicExpr *AE = new (Context)
6045 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
6046
6047 if ((Op == AtomicExpr::AO__c11_atomic_load ||
6048 Op == AtomicExpr::AO__c11_atomic_store ||
6049 Op == AtomicExpr::AO__opencl_atomic_load ||
6050 Op == AtomicExpr::AO__hip_atomic_load ||
6051 Op == AtomicExpr::AO__opencl_atomic_store ||
6052 Op == AtomicExpr::AO__hip_atomic_store) &&
6053 Context.AtomicUsesUnsupportedLibcall(AE))
6054 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
6055 << ((Op == AtomicExpr::AO__c11_atomic_load ||
6056 Op == AtomicExpr::AO__opencl_atomic_load ||
6057 Op == AtomicExpr::AO__hip_atomic_load)
6058 ? 0
6059 : 1);
6060
6061 if (ValType->isBitIntType()) {
6062 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit);
6063 return ExprError();
6064 }
6065
6066 return AE;
6067}
6068
6069/// checkBuiltinArgument - Given a call to a builtin function, perform
6070/// normal type-checking on the given argument, updating the call in
6071/// place. This is useful when a builtin function requires custom
6072/// type-checking for some of its arguments but not necessarily all of
6073/// them.
6074///
6075/// Returns true on error.
6076static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
6077 FunctionDecl *Fn = E->getDirectCallee();
6078 assert(Fn && "builtin call without direct callee!")(static_cast <bool> (Fn && "builtin call without direct callee!"
) ? void (0) : __assert_fail ("Fn && \"builtin call without direct callee!\""
, "clang/lib/Sema/SemaChecking.cpp", 6078, __extension__ __PRETTY_FUNCTION__
))
;
6079
6080 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
6081 InitializedEntity Entity =
6082 InitializedEntity::InitializeParameter(S.Context, Param);
6083
6084 ExprResult Arg = E->getArg(0);
6085 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
6086 if (Arg.isInvalid())
6087 return true;
6088
6089 E->setArg(ArgIndex, Arg.get());
6090 return false;
6091}
6092
6093/// We have a call to a function like __sync_fetch_and_add, which is an
6094/// overloaded function based on the pointer type of its first argument.
6095/// The main BuildCallExpr routines have already promoted the types of
6096/// arguments because all of these calls are prototyped as void(...).
6097///
6098/// This function goes through and does final semantic checking for these
6099/// builtins, as well as generating any warnings.
6100ExprResult
6101Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
6102 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
6103 Expr *Callee = TheCall->getCallee();
6104 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
6105 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6106
6107 // Ensure that we have at least one argument to do type inference from.
6108 if (TheCall->getNumArgs() < 1) {
6109 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6110 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
6111 return ExprError();
6112 }
6113
6114 // Inspect the first argument of the atomic builtin. This should always be
6115 // a pointer type, whose element is an integral scalar or pointer type.
6116 // Because it is a pointer type, we don't have to worry about any implicit
6117 // casts here.
6118 // FIXME: We don't allow floating point scalars as input.
6119 Expr *FirstArg = TheCall->getArg(0);
6120 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
6121 if (FirstArgResult.isInvalid())
6122 return ExprError();
6123 FirstArg = FirstArgResult.get();
6124 TheCall->setArg(0, FirstArg);
6125
6126 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
6127 if (!pointerType) {
6128 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
6129 << FirstArg->getType() << FirstArg->getSourceRange();
6130 return ExprError();
6131 }
6132
6133 QualType ValType = pointerType->getPointeeType();
6134 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6135 !ValType->isBlockPointerType()) {
6136 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
6137 << FirstArg->getType() << FirstArg->getSourceRange();
6138 return ExprError();
6139 }
6140
6141 if (ValType.isConstQualified()) {
6142 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
6143 << FirstArg->getType() << FirstArg->getSourceRange();
6144 return ExprError();
6145 }
6146
6147 switch (ValType.getObjCLifetime()) {
6148 case Qualifiers::OCL_None:
6149 case Qualifiers::OCL_ExplicitNone:
6150 // okay
6151 break;
6152
6153 case Qualifiers::OCL_Weak:
6154 case Qualifiers::OCL_Strong:
6155 case Qualifiers::OCL_Autoreleasing:
6156 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
6157 << ValType << FirstArg->getSourceRange();
6158 return ExprError();
6159 }
6160
6161 // Strip any qualifiers off ValType.
6162 ValType = ValType.getUnqualifiedType();
6163
6164 // The majority of builtins return a value, but a few have special return
6165 // types, so allow them to override appropriately below.
6166 QualType ResultType = ValType;
6167
6168 // We need to figure out which concrete builtin this maps onto. For example,
6169 // __sync_fetch_and_add with a 2 byte object turns into
6170 // __sync_fetch_and_add_2.
6171#define BUILTIN_ROW(x) \
6172 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
6173 Builtin::BI##x##_8, Builtin::BI##x##_16 }
6174
6175 static const unsigned BuiltinIndices[][5] = {
6176 BUILTIN_ROW(__sync_fetch_and_add),
6177 BUILTIN_ROW(__sync_fetch_and_sub),
6178 BUILTIN_ROW(__sync_fetch_and_or),
6179 BUILTIN_ROW(__sync_fetch_and_and),
6180 BUILTIN_ROW(__sync_fetch_and_xor),
6181 BUILTIN_ROW(__sync_fetch_and_nand),
6182
6183 BUILTIN_ROW(__sync_add_and_fetch),
6184 BUILTIN_ROW(__sync_sub_and_fetch),
6185 BUILTIN_ROW(__sync_and_and_fetch),
6186 BUILTIN_ROW(__sync_or_and_fetch),
6187 BUILTIN_ROW(__sync_xor_and_fetch),
6188 BUILTIN_ROW(__sync_nand_and_fetch),
6189
6190 BUILTIN_ROW(__sync_val_compare_and_swap),
6191 BUILTIN_ROW(__sync_bool_compare_and_swap),
6192 BUILTIN_ROW(__sync_lock_test_and_set),
6193 BUILTIN_ROW(__sync_lock_release),
6194 BUILTIN_ROW(__sync_swap)
6195 };
6196#undef BUILTIN_ROW
6197
6198 // Determine the index of the size.
6199 unsigned SizeIndex;
6200 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
6201 case 1: SizeIndex = 0; break;
6202 case 2: SizeIndex = 1; break;
6203 case 4: SizeIndex = 2; break;
6204 case 8: SizeIndex = 3; break;
6205 case 16: SizeIndex = 4; break;
6206 default:
6207 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
6208 << FirstArg->getType() << FirstArg->getSourceRange();
6209 return ExprError();
6210 }
6211
6212 // Each of these builtins has one pointer argument, followed by some number of
6213 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
6214 // that we ignore. Find out which row of BuiltinIndices to read from as well
6215 // as the number of fixed args.
6216 unsigned BuiltinID = FDecl->getBuiltinID();
6217 unsigned BuiltinIndex, NumFixed = 1;
6218 bool WarnAboutSemanticsChange = false;
6219 switch (BuiltinID) {
6220 default: llvm_unreachable("Unknown overloaded atomic builtin!")::llvm::llvm_unreachable_internal("Unknown overloaded atomic builtin!"
, "clang/lib/Sema/SemaChecking.cpp", 6220)
;
6221 case Builtin::BI__sync_fetch_and_add:
6222 case Builtin::BI__sync_fetch_and_add_1:
6223 case Builtin::BI__sync_fetch_and_add_2:
6224 case Builtin::BI__sync_fetch_and_add_4:
6225 case Builtin::BI__sync_fetch_and_add_8:
6226 case Builtin::BI__sync_fetch_and_add_16:
6227 BuiltinIndex = 0;
6228 break;
6229
6230 case Builtin::BI__sync_fetch_and_sub:
6231 case Builtin::BI__sync_fetch_and_sub_1:
6232 case Builtin::BI__sync_fetch_and_sub_2:
6233 case Builtin::BI__sync_fetch_and_sub_4:
6234 case Builtin::BI__sync_fetch_and_sub_8:
6235 case Builtin::BI__sync_fetch_and_sub_16:
6236 BuiltinIndex = 1;
6237 break;
6238
6239 case Builtin::BI__sync_fetch_and_or:
6240 case Builtin::BI__sync_fetch_and_or_1:
6241 case Builtin::BI__sync_fetch_and_or_2:
6242 case Builtin::BI__sync_fetch_and_or_4:
6243 case Builtin::BI__sync_fetch_and_or_8:
6244 case Builtin::BI__sync_fetch_and_or_16:
6245 BuiltinIndex = 2;
6246 break;
6247
6248 case Builtin::BI__sync_fetch_and_and:
6249 case Builtin::BI__sync_fetch_and_and_1:
6250 case Builtin::BI__sync_fetch_and_and_2:
6251 case Builtin::BI__sync_fetch_and_and_4:
6252 case Builtin::BI__sync_fetch_and_and_8:
6253 case Builtin::BI__sync_fetch_and_and_16:
6254 BuiltinIndex = 3;
6255 break;
6256
6257 case Builtin::BI__sync_fetch_and_xor:
6258 case Builtin::BI__sync_fetch_and_xor_1:
6259 case Builtin::BI__sync_fetch_and_xor_2:
6260 case Builtin::BI__sync_fetch_and_xor_4:
6261 case Builtin::BI__sync_fetch_and_xor_8:
6262 case Builtin::BI__sync_fetch_and_xor_16:
6263 BuiltinIndex = 4;
6264 break;
6265
6266 case Builtin::BI__sync_fetch_and_nand:
6267 case Builtin::BI__sync_fetch_and_nand_1:
6268 case Builtin::BI__sync_fetch_and_nand_2:
6269 case Builtin::BI__sync_fetch_and_nand_4:
6270 case Builtin::BI__sync_fetch_and_nand_8:
6271 case Builtin::BI__sync_fetch_and_nand_16:
6272 BuiltinIndex = 5;
6273 WarnAboutSemanticsChange = true;
6274 break;
6275
6276 case Builtin::BI__sync_add_and_fetch:
6277 case Builtin::BI__sync_add_and_fetch_1:
6278 case Builtin::BI__sync_add_and_fetch_2:
6279 case Builtin::BI__sync_add_and_fetch_4:
6280 case Builtin::BI__sync_add_and_fetch_8:
6281 case Builtin::BI__sync_add_and_fetch_16:
6282 BuiltinIndex = 6;
6283 break;
6284
6285 case Builtin::BI__sync_sub_and_fetch:
6286 case Builtin::BI__sync_sub_and_fetch_1:
6287 case Builtin::BI__sync_sub_and_fetch_2:
6288 case Builtin::BI__sync_sub_and_fetch_4:
6289 case Builtin::BI__sync_sub_and_fetch_8:
6290 case Builtin::BI__sync_sub_and_fetch_16:
6291 BuiltinIndex = 7;
6292 break;
6293
6294 case Builtin::BI__sync_and_and_fetch:
6295 case Builtin::BI__sync_and_and_fetch_1:
6296 case Builtin::BI__sync_and_and_fetch_2:
6297 case Builtin::BI__sync_and_and_fetch_4:
6298 case Builtin::BI__sync_and_and_fetch_8:
6299 case Builtin::BI__sync_and_and_fetch_16:
6300 BuiltinIndex = 8;
6301 break;
6302
6303 case Builtin::BI__sync_or_and_fetch:
6304 case Builtin::BI__sync_or_and_fetch_1:
6305 case Builtin::BI__sync_or_and_fetch_2:
6306 case Builtin::BI__sync_or_and_fetch_4:
6307 case Builtin::BI__sync_or_and_fetch_8:
6308 case Builtin::BI__sync_or_and_fetch_16:
6309 BuiltinIndex = 9;
6310 break;
6311
6312 case Builtin::BI__sync_xor_and_fetch:
6313 case Builtin::BI__sync_xor_and_fetch_1:
6314 case Builtin::BI__sync_xor_and_fetch_2:
6315 case Builtin::BI__sync_xor_and_fetch_4:
6316 case Builtin::BI__sync_xor_and_fetch_8:
6317 case Builtin::BI__sync_xor_and_fetch_16:
6318 BuiltinIndex = 10;
6319 break;
6320
6321 case Builtin::BI__sync_nand_and_fetch:
6322 case Builtin::BI__sync_nand_and_fetch_1:
6323 case Builtin::BI__sync_nand_and_fetch_2:
6324 case Builtin::BI__sync_nand_and_fetch_4:
6325 case Builtin::BI__sync_nand_and_fetch_8:
6326 case Builtin::BI__sync_nand_and_fetch_16:
6327 BuiltinIndex = 11;
6328 WarnAboutSemanticsChange = true;
6329 break;
6330
6331 case Builtin::BI__sync_val_compare_and_swap:
6332 case Builtin::BI__sync_val_compare_and_swap_1:
6333 case Builtin::BI__sync_val_compare_and_swap_2:
6334 case Builtin::BI__sync_val_compare_and_swap_4:
6335 case Builtin::BI__sync_val_compare_and_swap_8:
6336 case Builtin::BI__sync_val_compare_and_swap_16:
6337 BuiltinIndex = 12;
6338 NumFixed = 2;
6339 break;
6340
6341 case Builtin::BI__sync_bool_compare_and_swap:
6342 case Builtin::BI__sync_bool_compare_and_swap_1:
6343 case Builtin::BI__sync_bool_compare_and_swap_2:
6344 case Builtin::BI__sync_bool_compare_and_swap_4:
6345 case Builtin::BI__sync_bool_compare_and_swap_8:
6346 case Builtin::BI__sync_bool_compare_and_swap_16:
6347 BuiltinIndex = 13;
6348 NumFixed = 2;
6349 ResultType = Context.BoolTy;
6350 break;
6351
6352 case Builtin::BI__sync_lock_test_and_set:
6353 case Builtin::BI__sync_lock_test_and_set_1:
6354 case Builtin::BI__sync_lock_test_and_set_2:
6355 case Builtin::BI__sync_lock_test_and_set_4:
6356 case Builtin::BI__sync_lock_test_and_set_8:
6357 case Builtin::BI__sync_lock_test_and_set_16:
6358 BuiltinIndex = 14;
6359 break;
6360
6361 case Builtin::BI__sync_lock_release:
6362 case Builtin::BI__sync_lock_release_1:
6363 case Builtin::BI__sync_lock_release_2:
6364 case Builtin::BI__sync_lock_release_4:
6365 case Builtin::BI__sync_lock_release_8:
6366 case Builtin::BI__sync_lock_release_16:
6367 BuiltinIndex = 15;
6368 NumFixed = 0;
6369 ResultType = Context.VoidTy;
6370 break;
6371
6372 case Builtin::BI__sync_swap:
6373 case Builtin::BI__sync_swap_1:
6374 case Builtin::BI__sync_swap_2:
6375 case Builtin::BI__sync_swap_4:
6376 case Builtin::BI__sync_swap_8:
6377 case Builtin::BI__sync_swap_16:
6378 BuiltinIndex = 16;
6379 break;
6380 }
6381
6382 // Now that we know how many fixed arguments we expect, first check that we
6383 // have at least that many.
6384 if (TheCall->getNumArgs() < 1+NumFixed) {
6385 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6386 << 0 << 1 + NumFixed << TheCall->getNumArgs()
6387 << Callee->getSourceRange();
6388 return ExprError();
6389 }
6390
6391 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
6392 << Callee->getSourceRange();
6393
6394 if (WarnAboutSemanticsChange) {
6395 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
6396 << Callee->getSourceRange();
6397 }
6398
6399 // Get the decl for the concrete builtin from this, we can tell what the
6400 // concrete integer type we should convert to is.
6401 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
6402 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
6403 FunctionDecl *NewBuiltinDecl;
6404 if (NewBuiltinID == BuiltinID)
6405 NewBuiltinDecl = FDecl;
6406 else {
6407 // Perform builtin lookup to avoid redeclaring it.
6408 DeclarationName DN(&Context.Idents.get(NewBuiltinName));
6409 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
6410 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
6411 assert(Res.getFoundDecl())(static_cast <bool> (Res.getFoundDecl()) ? void (0) : __assert_fail
("Res.getFoundDecl()", "clang/lib/Sema/SemaChecking.cpp", 6411
, __extension__ __PRETTY_FUNCTION__))
;
6412 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
6413 if (!NewBuiltinDecl)
6414 return ExprError();
6415 }
6416
6417 // The first argument --- the pointer --- has a fixed type; we
6418 // deduce the types of the rest of the arguments accordingly. Walk
6419 // the remaining arguments, converting them to the deduced value type.
6420 for (unsigned i = 0; i != NumFixed; ++i) {
6421 ExprResult Arg = TheCall->getArg(i+1);
6422
6423 // GCC does an implicit conversion to the pointer or integer ValType. This
6424 // can fail in some cases (1i -> int**), check for this error case now.
6425 // Initialize the argument.
6426 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6427 ValType, /*consume*/ false);
6428 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6429 if (Arg.isInvalid())
6430 return ExprError();
6431
6432 // Okay, we have something that *can* be converted to the right type. Check
6433 // to see if there is a potentially weird extension going on here. This can
6434 // happen when you do an atomic operation on something like an char* and
6435 // pass in 42. The 42 gets converted to char. This is even more strange
6436 // for things like 45.123 -> char, etc.
6437 // FIXME: Do this check.
6438 TheCall->setArg(i+1, Arg.get());
6439 }
6440
6441 // Create a new DeclRefExpr to refer to the new decl.
6442 DeclRefExpr *NewDRE = DeclRefExpr::Create(
6443 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
6444 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
6445 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
6446
6447 // Set the callee in the CallExpr.
6448 // FIXME: This loses syntactic information.
6449 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
6450 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
6451 CK_BuiltinFnToFnPtr);
6452 TheCall->setCallee(PromotedCall.get());
6453
6454 // Change the result type of the call to match the original value type. This
6455 // is arbitrary, but the codegen for these builtins ins design to handle it
6456 // gracefully.
6457 TheCall->setType(ResultType);
6458
6459 // Prohibit problematic uses of bit-precise integer types with atomic
6460 // builtins. The arguments would have already been converted to the first
6461 // argument's type, so only need to check the first argument.
6462 const auto *BitIntValType = ValType->getAs<BitIntType>();
6463 if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) {
6464 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
6465 return ExprError();
6466 }
6467
6468 return TheCallResult;
6469}
6470
6471/// SemaBuiltinNontemporalOverloaded - We have a call to
6472/// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
6473/// overloaded function based on the pointer type of its last argument.
6474///
6475/// This function goes through and does final semantic checking for these
6476/// builtins.
6477ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
6478 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
6479 DeclRefExpr *DRE =
6480 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6481 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6482 unsigned BuiltinID = FDecl->getBuiltinID();
6483 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||(static_cast <bool> ((BuiltinID == Builtin::BI__builtin_nontemporal_store
|| BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
"Unexpected nontemporal load/store builtin!") ? void (0) : __assert_fail
("(BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID == Builtin::BI__builtin_nontemporal_load) && \"Unexpected nontemporal load/store builtin!\""
, "clang/lib/Sema/SemaChecking.cpp", 6485, __extension__ __PRETTY_FUNCTION__
))
6484 BuiltinID == Builtin::BI__builtin_nontemporal_load) &&(static_cast <bool> ((BuiltinID == Builtin::BI__builtin_nontemporal_store
|| BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
"Unexpected nontemporal load/store builtin!") ? void (0) : __assert_fail
("(BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID == Builtin::BI__builtin_nontemporal_load) && \"Unexpected nontemporal load/store builtin!\""
, "clang/lib/Sema/SemaChecking.cpp", 6485, __extension__ __PRETTY_FUNCTION__
))
6485 "Unexpected nontemporal load/store builtin!")(static_cast <bool> ((BuiltinID == Builtin::BI__builtin_nontemporal_store
|| BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
"Unexpected nontemporal load/store builtin!") ? void (0) : __assert_fail
("(BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID == Builtin::BI__builtin_nontemporal_load) && \"Unexpected nontemporal load/store builtin!\""
, "clang/lib/Sema/SemaChecking.cpp", 6485, __extension__ __PRETTY_FUNCTION__
))
;
6486 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
6487 unsigned numArgs = isStore ? 2 : 1;
6488
6489 // Ensure that we have the proper number of arguments.
6490 if (checkArgCount(*this, TheCall, numArgs))
6491 return ExprError();
6492
6493 // Inspect the last argument of the nontemporal builtin. This should always
6494 // be a pointer type, from which we imply the type of the memory access.
6495 // Because it is a pointer type, we don't have to worry about any implicit
6496 // casts here.
6497 Expr *PointerArg = TheCall->getArg(numArgs - 1);
6498 ExprResult PointerArgResult =
6499 DefaultFunctionArrayLvalueConversion(PointerArg);
6500
6501 if (PointerArgResult.isInvalid())
6502 return ExprError();
6503 PointerArg = PointerArgResult.get();
6504 TheCall->setArg(numArgs - 1, PointerArg);
6505
6506 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
6507 if (!pointerType) {
6508 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
6509 << PointerArg->getType() << PointerArg->getSourceRange();
6510 return ExprError();
6511 }
6512
6513 QualType ValType = pointerType->getPointeeType();
6514
6515 // Strip any qualifiers off ValType.
6516 ValType = ValType.getUnqualifiedType();
6517 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6518 !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
6519 !ValType->isVectorType()) {
6520 Diag(DRE->getBeginLoc(),
6521 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
6522 << PointerArg->getType() << PointerArg->getSourceRange();
6523 return ExprError();
6524 }
6525
6526 if (!isStore) {
6527 TheCall->setType(ValType);
6528 return TheCallResult;
6529 }
6530
6531 ExprResult ValArg = TheCall->getArg(0);
6532 InitializedEntity Entity = InitializedEntity::InitializeParameter(
6533 Context, ValType, /*consume*/ false);
6534 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
6535 if (ValArg.isInvalid())
6536 return ExprError();
6537
6538 TheCall->setArg(0, ValArg.get());
6539 TheCall->setType(Context.VoidTy);
6540 return TheCallResult;
6541}
6542
6543/// CheckObjCString - Checks that the argument to the builtin
6544/// CFString constructor is correct
6545/// Note: It might also make sense to do the UTF-16 conversion here (would
6546/// simplify the backend).
6547bool Sema::CheckObjCString(Expr *Arg) {
6548 Arg = Arg->IgnoreParenCasts();
6549 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
6550
6551 if (!Literal || !Literal->isAscii()) {
6552 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
6553 << Arg->getSourceRange();
6554 return true;
6555 }
6556
6557 if (Literal->containsNonAsciiOrNull()) {
6558 StringRef String = Literal->getString();
6559 unsigned NumBytes = String.size();
6560 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
6561 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6562 llvm::UTF16 *ToPtr = &ToBuf[0];
6563
6564 llvm::ConversionResult Result =
6565 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6566 ToPtr + NumBytes, llvm::strictConversion);
6567 // Check for conversion failure.
6568 if (Result != llvm::conversionOK)
6569 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
6570 << Arg->getSourceRange();
6571 }
6572 return false;
6573}
6574
6575/// CheckObjCString - Checks that the format string argument to the os_log()
6576/// and os_trace() functions is correct, and converts it to const char *.
6577ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
6578 Arg = Arg->IgnoreParenCasts();
6579 auto *Literal = dyn_cast<StringLiteral>(Arg);
6580 if (!Literal) {
6581 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
6582 Literal = ObjcLiteral->getString();
6583 }
6584 }
6585
6586 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
6587 return ExprError(
6588 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
6589 << Arg->getSourceRange());
6590 }
6591
6592 ExprResult Result(Literal);
6593 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
6594 InitializedEntity Entity =
6595 InitializedEntity::InitializeParameter(Context, ResultTy, false);
6596 Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
6597 return Result;
6598}
6599
6600/// Check that the user is calling the appropriate va_start builtin for the
6601/// target and calling convention.
6602static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
6603 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
6604 bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
6605 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
6606 TT.getArch() == llvm::Triple::aarch64_32);
6607 bool IsWindows = TT.isOSWindows();
6608 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
6609 if (IsX64 || IsAArch64) {
6610 CallingConv CC = CC_C;
6611 if (const FunctionDecl *FD = S.getCurFunctionDecl())
6612 CC = FD->getType()->castAs<FunctionType>()->getCallConv();
6613 if (IsMSVAStart) {
6614 // Don't allow this in System V ABI functions.
6615 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
6616 return S.Diag(Fn->getBeginLoc(),
6617 diag::err_ms_va_start_used_in_sysv_function);
6618 } else {
6619 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
6620 // On x64 Windows, don't allow this in System V ABI functions.
6621 // (Yes, that means there's no corresponding way to support variadic
6622 // System V ABI functions on Windows.)
6623 if ((IsWindows && CC == CC_X86_64SysV) ||
6624 (!IsWindows && CC == CC_Win64))
6625 return S.Diag(Fn->getBeginLoc(),
6626 diag::err_va_start_used_in_wrong_abi_function)
6627 << !IsWindows;
6628 }
6629 return false;
6630 }
6631
6632 if (IsMSVAStart)
6633 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
6634 return false;
6635}
6636
6637static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
6638 ParmVarDecl **LastParam = nullptr) {
6639 // Determine whether the current function, block, or obj-c method is variadic
6640 // and get its parameter list.
6641 bool IsVariadic = false;
6642 ArrayRef<ParmVarDecl *> Params;
6643 DeclContext *Caller = S.CurContext;
6644 if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
6645 IsVariadic = Block->isVariadic();
6646 Params = Block->parameters();
6647 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
6648 IsVariadic = FD->isVariadic();
6649 Params = FD->parameters();
6650 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
6651 IsVariadic = MD->isVariadic();
6652 // FIXME: This isn't correct for methods (results in bogus warning).
6653 Params = MD->parameters();
6654 } else if (isa<CapturedDecl>(Caller)) {
6655 // We don't support va_start in a CapturedDecl.
6656 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
6657 return true;
6658 } else {
6659 // This must be some other declcontext that parses exprs.
6660 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
6661 return true;
6662 }
6663
6664 if (!IsVariadic) {
6665 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
6666 return true;
6667 }
6668
6669 if (LastParam)
6670 *LastParam = Params.empty() ? nullptr : Params.back();
6671
6672 return false;
6673}
6674
6675/// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
6676/// for validity. Emit an error and return true on failure; return false
6677/// on success.
6678bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
6679 Expr *Fn = TheCall->getCallee();
6680
6681 if (checkVAStartABI(*this, BuiltinID, Fn))
6682 return true;
6683
6684 if (checkArgCount(*this, TheCall, 2))
6685 return true;
6686
6687 // Type-check the first argument normally.
6688 if (checkBuiltinArgument(*this, TheCall, 0))
6689 return true;
6690
6691 // Check that the current function is variadic, and get its last parameter.
6692 ParmVarDecl *LastParam;
6693 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
6694 return true;
6695
6696 // Verify that the second argument to the builtin is the last argument of the
6697 // current function or method.
6698 bool SecondArgIsLastNamedArgument = false;
6699 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
6700
6701 // These are valid if SecondArgIsLastNamedArgument is false after the next
6702 // block.
6703 QualType Type;
6704 SourceLocation ParamLoc;
6705 bool IsCRegister = false;
6706
6707 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
6708 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
6709 SecondArgIsLastNamedArgument = PV == LastParam;
6710
6711 Type = PV->getType();
6712 ParamLoc = PV->getLocation();
6713 IsCRegister =
6714 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
6715 }
6716 }
6717
6718 if (!SecondArgIsLastNamedArgument)
6719 Diag(TheCall->getArg(1)->getBeginLoc(),
6720 diag::warn_second_arg_of_va_start_not_last_named_param);
6721 else if (IsCRegister || Type->isReferenceType() ||
6722 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
6723 // Promotable integers are UB, but enumerations need a bit of
6724 // extra checking to see what their promotable type actually is.
6725 if (!Type->isPromotableIntegerType())
6726 return false;
6727 if (!Type->isEnumeralType())
6728 return true;
6729 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
6730 return !(ED &&
6731 Context.typesAreCompatible(ED->getPromotionType(), Type));
6732 }()) {
6733 unsigned Reason = 0;
6734 if (Type->isReferenceType()) Reason = 1;
6735 else if (IsCRegister) Reason = 2;
6736 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
6737 Diag(ParamLoc, diag::note_parameter_type) << Type;
6738 }
6739
6740 TheCall->setType(Context.VoidTy);
6741 return false;
6742}
6743
6744bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
6745 auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
6746 const LangOptions &LO = getLangOpts();
6747
6748 if (LO.CPlusPlus)
6749 return Arg->getType()
6750 .getCanonicalType()
6751 .getTypePtr()
6752 ->getPointeeType()
6753 .withoutLocalFastQualifiers() == Context.CharTy;
6754
6755 // In C, allow aliasing through `char *`, this is required for AArch64 at
6756 // least.
6757 return true;
6758 };
6759
6760 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
6761 // const char *named_addr);
6762
6763 Expr *Func = Call->getCallee();
6764
6765 if (Call->getNumArgs() < 3)
6766 return Diag(Call->getEndLoc(),
6767 diag::err_typecheck_call_too_few_args_at_least)
6768 << 0 /*function call*/ << 3 << Call->getNumArgs();
6769
6770 // Type-check the first argument normally.
6771 if (checkBuiltinArgument(*this, Call, 0))
6772 return true;
6773
6774 // Check that the current function is variadic.
6775 if (checkVAStartIsInVariadicFunction(*this, Func))
6776 return true;
6777
6778 // __va_start on Windows does not validate the parameter qualifiers
6779
6780 const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
6781 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
6782
6783 const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
6784 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
6785
6786 const QualType &ConstCharPtrTy =
6787 Context.getPointerType(Context.CharTy.withConst());
6788 if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
6789 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6790 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
6791 << 0 /* qualifier difference */
6792 << 3 /* parameter mismatch */
6793 << 2 << Arg1->getType() << ConstCharPtrTy;
6794
6795 const QualType SizeTy = Context.getSizeType();
6796 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
6797 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6798 << Arg2->getType() << SizeTy << 1 /* different class */
6799 << 0 /* qualifier difference */
6800 << 3 /* parameter mismatch */
6801 << 3 << Arg2->getType() << SizeTy;
6802
6803 return false;
6804}
6805
6806/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
6807/// friends. This is declared to take (...), so we have to check everything.
6808bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
6809 if (checkArgCount(*this, TheCall, 2))
6810 return true;
6811
6812 ExprResult OrigArg0 = TheCall->getArg(0);
6813 ExprResult OrigArg1 = TheCall->getArg(1);
6814
6815 // Do standard promotions between the two arguments, returning their common
6816 // type.
6817 QualType Res = UsualArithmeticConversions(
6818 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
6819 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
6820 return true;
6821
6822 // Make sure any conversions are pushed back into the call; this is
6823 // type safe since unordered compare builtins are declared as "_Bool
6824 // foo(...)".
6825 TheCall->setArg(0, OrigArg0.get());
6826 TheCall->setArg(1, OrigArg1.get());
6827
6828 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
6829 return false;
6830
6831 // If the common type isn't a real floating type, then the arguments were
6832 // invalid for this operation.
6833 if (Res.isNull() || !Res->isRealFloatingType())
6834 return Diag(OrigArg0.get()->getBeginLoc(),
6835 diag::err_typecheck_call_invalid_ordered_compare)
6836 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
6837 << SourceRange(OrigArg0.get()->getBeginLoc(),
6838 OrigArg1.get()->getEndLoc());
6839
6840 return false;
6841}
6842
6843/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
6844/// __builtin_isnan and friends. This is declared to take (...), so we have
6845/// to check everything. We expect the last argument to be a floating point
6846/// value.
6847bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
6848 if (checkArgCount(*this, TheCall, NumArgs))
6849 return true;
6850
6851 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
6852 // on all preceding parameters just being int. Try all of those.
6853 for (unsigned i = 0; i < NumArgs - 1; ++i) {
6854 Expr *Arg = TheCall->getArg(i);
6855
6856 if (Arg->isTypeDependent())
6857 return false;
6858
6859 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
6860
6861 if (Res.isInvalid())
6862 return true;
6863 TheCall->setArg(i, Res.get());
6864 }
6865
6866 Expr *OrigArg = TheCall->getArg(NumArgs-1);
6867
6868 if (OrigArg->isTypeDependent())
6869 return false;
6870
6871 // Usual Unary Conversions will convert half to float, which we want for
6872 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
6873 // type how it is, but do normal L->Rvalue conversions.
6874 if (Context.getTargetInfo().useFP16ConversionIntrinsics())
6875 OrigArg = UsualUnaryConversions(OrigArg).get();
6876 else
6877 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
6878 TheCall->setArg(NumArgs - 1, OrigArg);
6879
6880 // This operation requires a non-_Complex floating-point number.
6881 if (!OrigArg->getType()->isRealFloatingType())
6882 return Diag(OrigArg->getBeginLoc(),
6883 diag::err_typecheck_call_invalid_unary_fp)
6884 << OrigArg->getType() << OrigArg->getSourceRange();
6885
6886 return false;
6887}
6888
6889/// Perform semantic analysis for a call to __builtin_complex.
6890bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
6891 if (checkArgCount(*this, TheCall, 2))
6892 return true;
6893
6894 bool Dependent = false;
6895 for (unsigned I = 0; I != 2; ++I) {
6896 Expr *Arg = TheCall->getArg(I);
6897 QualType T = Arg->getType();
6898 if (T->isDependentType()) {
6899 Dependent = true;
6900 continue;
6901 }
6902
6903 // Despite supporting _Complex int, GCC requires a real floating point type
6904 // for the operands of __builtin_complex.
6905 if (!T->isRealFloatingType()) {
6906 return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
6907 << Arg->getType() << Arg->getSourceRange();
6908 }
6909
6910 ExprResult Converted = DefaultLvalueConversion(Arg);
6911 if (Converted.isInvalid())
6912 return true;
6913 TheCall->setArg(I, Converted.get());
6914 }
6915
6916 if (Dependent) {
6917 TheCall->setType(Context.DependentTy);
6918 return false;
6919 }
6920
6921 Expr *Real = TheCall->getArg(0);
6922 Expr *Imag = TheCall->getArg(1);
6923 if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6924 return Diag(Real->getBeginLoc(),
6925 diag::err_typecheck_call_different_arg_types)
6926 << Real->getType() << Imag->getType()
6927 << Real->getSourceRange() << Imag->getSourceRange();
6928 }
6929
6930 // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6931 // don't allow this builtin to form those types either.
6932 // FIXME: Should we allow these types?
6933 if (Real->getType()->isFloat16Type())
6934 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6935 << "_Float16";
6936 if (Real->getType()->isHalfType())
6937 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6938 << "half";
6939
6940 TheCall->setType(Context.getComplexType(Real->getType()));
6941 return false;
6942}
6943
6944// Customized Sema Checking for VSX builtins that have the following signature:
6945// vector [...] builtinName(vector [...], vector [...], const int);
6946// Which takes the same type of vectors (any legal vector type) for the first
6947// two arguments and takes compile time constant for the third argument.
6948// Example builtins are :
6949// vector double vec_xxpermdi(vector double, vector double, int);
6950// vector short vec_xxsldwi(vector short, vector short, int);
6951bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6952 unsigned ExpectedNumArgs = 3;
6953 if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6954 return true;
6955
6956 // Check the third argument is a compile time constant
6957 if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6958 return Diag(TheCall->getBeginLoc(),
6959 diag::err_vsx_builtin_nonconstant_argument)
6960 << 3 /* argument index */ << TheCall->getDirectCallee()
6961 << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6962 TheCall->getArg(2)->getEndLoc());
6963
6964 QualType Arg1Ty = TheCall->getArg(0)->getType();
6965 QualType Arg2Ty = TheCall->getArg(1)->getType();
6966
6967 // Check the type of argument 1 and argument 2 are vectors.
6968 SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6969 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6970 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6971 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6972 << TheCall->getDirectCallee()
6973 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6974 TheCall->getArg(1)->getEndLoc());
6975 }
6976
6977 // Check the first two arguments are the same type.
6978 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6979 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6980 << TheCall->getDirectCallee()
6981 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6982 TheCall->getArg(1)->getEndLoc());
6983 }
6984
6985 // When default clang type checking is turned off and the customized type
6986 // checking is used, the returning type of the function must be explicitly
6987 // set. Otherwise it is _Bool by default.
6988 TheCall->setType(Arg1Ty);
6989
6990 return false;
6991}
6992
6993/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6994// This is declared to take (...), so we have to check everything.
6995ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6996 if (TheCall->getNumArgs() < 2)
6997 return ExprError(Diag(TheCall->getEndLoc(),
6998 diag::err_typecheck_call_too_few_args_at_least)
6999 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
7000 << TheCall->getSourceRange());
7001
7002 // Determine which of the following types of shufflevector we're checking:
7003 // 1) unary, vector mask: (lhs, mask)
7004 // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
7005 QualType resType = TheCall->getArg(0)->getType();
7006 unsigned numElements = 0;
7007
7008 if (!TheCall->getArg(0)->isTypeDependent() &&
7009 !TheCall->getArg(1)->isTypeDependent()) {
7010 QualType LHSType = TheCall->getArg(0)->getType();
7011 QualType RHSType = TheCall->getArg(1)->getType();
7012
7013 if (!LHSType->isVectorType() || !RHSType->isVectorType())
7014 return ExprError(
7015 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
7016 << TheCall->getDirectCallee()
7017 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
7018 TheCall->getArg(1)->getEndLoc()));
7019
7020 numElements = LHSType->castAs<VectorType>()->getNumElements();
7021 unsigned numResElements = TheCall->getNumArgs() - 2;
7022
7023 // Check to see if we have a call with 2 vector arguments, the unary shuffle
7024 // with mask. If so, verify that RHS is an integer vector type with the
7025 // same number of elts as lhs.
7026 if (TheCall->getNumArgs() == 2) {
7027 if (!RHSType->hasIntegerRepresentation() ||
7028 RHSType->castAs<VectorType>()->getNumElements() != numElements)
7029 return ExprError(Diag(TheCall->getBeginLoc(),
7030 diag::err_vec_builtin_incompatible_vector)
7031 << TheCall->getDirectCallee()
7032 << SourceRange(TheCall->getArg(1)->getBeginLoc(),
7033 TheCall->getArg(1)->getEndLoc()));
7034 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
7035 return ExprError(Diag(TheCall->getBeginLoc(),
7036 diag::err_vec_builtin_incompatible_vector)
7037 << TheCall->getDirectCallee()
7038 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
7039 TheCall->getArg(1)->getEndLoc()));
7040 } else if (numElements != numResElements) {
7041 QualType eltType = LHSType->castAs<VectorType>()->getElementType();
7042 resType = Context.getVectorType(eltType, numResElements,
7043 VectorType::GenericVector);
7044 }
7045 }
7046
7047 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
7048 if (TheCall->getArg(i)->isTypeDependent() ||
7049 TheCall->getArg(i)->isValueDependent())
7050 continue;
7051
7052 Optional<llvm::APSInt> Result;
7053 if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
7054 return ExprError(Diag(TheCall->getBeginLoc(),
7055 diag::err_shufflevector_nonconstant_argument)
7056 << TheCall->getArg(i)->getSourceRange());
7057
7058 // Allow -1 which will be translated to undef in the IR.
7059 if (Result->isSigned() && Result->isAllOnes())
7060 continue;
7061
7062 if (Result->getActiveBits() > 64 ||
7063 Result->getZExtValue() >= numElements * 2)
7064 return ExprError(Diag(TheCall->getBeginLoc(),
7065 diag::err_shufflevector_argument_too_large)
7066 << TheCall->getArg(i)->getSourceRange());
7067 }
7068
7069 SmallVector<Expr*, 32> exprs;
7070
7071 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
7072 exprs.push_back(TheCall->getArg(i));
7073 TheCall->setArg(i, nullptr);
7074 }
7075
7076 return new (Context) ShuffleVectorExpr(Context, exprs, resType,
7077 TheCall->getCallee()->getBeginLoc(),
7078 TheCall->getRParenLoc());
7079}
7080
7081/// SemaConvertVectorExpr - Handle __builtin_convertvector
7082ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
7083 SourceLocation BuiltinLoc,
7084 SourceLocation RParenLoc) {
7085 ExprValueKind VK = VK_PRValue;
7086 ExprObjectKind OK = OK_Ordinary;
7087 QualType DstTy = TInfo->getType();
7088 QualType SrcTy = E->getType();
7089
7090 if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
7091 return ExprError(Diag(BuiltinLoc,
7092 diag::err_convertvector_non_vector)
7093 << E->getSourceRange());
7094 if (!DstTy->isVectorType() && !DstTy->isDependentType())
7095 return ExprError(Diag(BuiltinLoc,
7096 diag::err_convertvector_non_vector_type));
7097
7098 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
7099 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
7100 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
7101 if (SrcElts != DstElts)
7102 return ExprError(Diag(BuiltinLoc,
7103 diag::err_convertvector_incompatible_vector)
7104 << E->getSourceRange());
7105 }
7106
7107 return new (Context)
7108 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
7109}
7110
7111/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
7112// This is declared to take (const void*, ...) and can take two
7113// optional constant int args.
7114bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
7115 unsigned NumArgs = TheCall->getNumArgs();
7116
7117 if (NumArgs > 3)
7118 return Diag(TheCall->getEndLoc(),
7119 diag::err_typecheck_call_too_many_args_at_most)
7120 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
7121
7122 // Argument 0 is checked for us and the remaining arguments must be
7123 // constant integers.
7124 for (unsigned i = 1; i != NumArgs; ++i)
7125 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
7126 return true;
7127
7128 return false;
7129}
7130
7131/// SemaBuiltinArithmeticFence - Handle __arithmetic_fence.
7132bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) {
7133 if (!Context.getTargetInfo().checkArithmeticFenceSupported())
7134 return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
7135 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7136 if (checkArgCount(*this, TheCall, 1))
7137 return true;
7138 Expr *Arg = TheCall->getArg(0);
7139 if (Arg->isInstantiationDependent())
7140 return false;
7141
7142 QualType ArgTy = Arg->getType();
7143 if (!ArgTy->hasFloatingRepresentation())
7144 return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
7145 << ArgTy;
7146 if (Arg->isLValue()) {
7147 ExprResult FirstArg = DefaultLvalueConversion(Arg);
7148 TheCall->setArg(0, FirstArg.get());
7149 }
7150 TheCall->setType(TheCall->getArg(0)->getType());
7151 return false;
7152}
7153
7154/// SemaBuiltinAssume - Handle __assume (MS Extension).
7155// __assume does not evaluate its arguments, and should warn if its argument
7156// has side effects.
7157bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
7158 Expr *Arg = TheCall->getArg(0);
7159 if (Arg->isInstantiationDependent()) return false;
7160
7161 if (Arg->HasSideEffects(Context))
7162 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
7163 << Arg->getSourceRange()
7164 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
7165
7166 return false;
7167}
7168
7169/// Handle __builtin_alloca_with_align. This is declared
7170/// as (size_t, size_t) where the second size_t must be a power of 2 greater
7171/// than 8.
7172bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
7173 // The alignment must be a constant integer.
7174 Expr *Arg = TheCall->getArg(1);
7175
7176 // We can't check the value of a dependent argument.
7177 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
7178 if (const auto *UE =
7179 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
7180 if (UE->getKind() == UETT_AlignOf ||
7181 UE->getKind() == UETT_PreferredAlignOf)
7182 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
7183 << Arg->getSourceRange();
7184
7185 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
7186
7187 if (!Result.isPowerOf2())
7188 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
7189 << Arg->getSourceRange();
7190
7191 if (Result < Context.getCharWidth())
7192 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
7193 << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
7194
7195 if (Result > std::numeric_limits<int32_t>::max())
7196 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
7197 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
7198 }
7199
7200 return false;
7201}
7202
7203/// Handle __builtin_assume_aligned. This is declared
7204/// as (const void*, size_t, ...) and can take one optional constant int arg.
7205bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
7206 unsigned NumArgs = TheCall->getNumArgs();
7207
7208 if (NumArgs > 3)
7209 return Diag(TheCall->getEndLoc(),
7210 diag::err_typecheck_call_too_many_args_at_most)
7211 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
7212
7213 // The alignment must be a constant integer.
7214 Expr *Arg = TheCall->getArg(1);
7215
7216 // We can't check the value of a dependent argument.
7217 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
7218 llvm::APSInt Result;
7219 if (SemaBuiltinConstantArg(TheCall, 1, Result))
7220 return true;
7221
7222 if (!Result.isPowerOf2())
7223 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
7224 << Arg->getSourceRange();
7225
7226 if (Result > Sema::MaximumAlignment)
7227 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
7228 << Arg->getSourceRange() << Sema::MaximumAlignment;
7229 }
7230
7231 if (NumArgs > 2) {
7232 ExprResult Arg(TheCall->getArg(2));
7233 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
7234 Context.getSizeType(), false);
7235 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
7236 if (Arg.isInvalid()) return true;
7237 TheCall->setArg(2, Arg.get());
7238 }
7239
7240 return false;
7241}
7242
7243bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
7244 unsigned BuiltinID =
7245 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
7246 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
7247
7248 unsigned NumArgs = TheCall->getNumArgs();
7249 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
7250 if (NumArgs < NumRequiredArgs) {
7251 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
7252 << 0 /* function call */ << NumRequiredArgs << NumArgs
7253 << TheCall->getSourceRange();
7254 }
7255 if (NumArgs >= NumRequiredArgs + 0x100) {
7256 return Diag(TheCall->getEndLoc(),
7257 diag::err_typecheck_call_too_many_args_at_most)
7258 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
7259 << TheCall->getSourceRange();
7260 }
7261 unsigned i = 0;
7262
7263 // For formatting call, check buffer arg.
7264 if (!IsSizeCall) {
7265 ExprResult Arg(TheCall->getArg(i));
7266 InitializedEntity Entity = InitializedEntity::InitializeParameter(
7267 Context, Context.VoidPtrTy, false);
7268 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
7269 if (Arg.isInvalid())
7270 return true;
7271 TheCall->setArg(i, Arg.get());
7272 i++;
7273 }
7274
7275 // Check string literal arg.
7276 unsigned FormatIdx = i;
7277 {
7278 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
7279 if (Arg.isInvalid())
7280 return true;
7281 TheCall->setArg(i, Arg.get());
7282 i++;
7283 }
7284
7285 // Make sure variadic args are scalar.
7286 unsigned FirstDataArg = i;
7287 while (i < NumArgs) {
7288 ExprResult Arg = DefaultVariadicArgumentPromotion(
7289 TheCall->getArg(i), VariadicFunction, nullptr);
7290 if (Arg.isInvalid())
7291 return true;
7292 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
7293 if (ArgSize.getQuantity() >= 0x100) {
7294 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
7295 << i << (int)ArgSize.getQuantity() << 0xff
7296 << TheCall->getSourceRange();
7297 }
7298 TheCall->setArg(i, Arg.get());
7299 i++;
7300 }
7301
7302 // Check formatting specifiers. NOTE: We're only doing this for the non-size
7303 // call to avoid duplicate diagnostics.
7304 if (!IsSizeCall) {
7305 llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
7306 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
7307 bool Success = CheckFormatArguments(
7308 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
7309 VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
7310 CheckedVarArgs);
7311 if (!Success)
7312 return true;
7313 }
7314
7315 if (IsSizeCall) {
7316 TheCall->setType(Context.getSizeType());
7317 } else {
7318 TheCall->setType(Context.VoidPtrTy);
7319 }
7320 return false;
7321}
7322
7323/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
7324/// TheCall is a constant expression.
7325bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
7326 llvm::APSInt &Result) {
7327 Expr *Arg = TheCall->getArg(ArgNum);
7328 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
7329 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
7330
7331 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
7332
7333 Optional<llvm::APSInt> R;
7334 if (!(R = Arg->getIntegerConstantExpr(Context)))
7335 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
7336 << FDecl->getDeclName() << Arg->getSourceRange();
7337 Result = *R;
7338 return false;
7339}
7340
7341/// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
7342/// TheCall is a constant expression in the range [Low, High].
7343bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
7344 int Low, int High, bool RangeIsError) {
7345 if (isConstantEvaluated())
7346 return false;
7347 llvm::APSInt Result;
7348
7349 // We can't check the value of a dependent argument.
7350 Expr *Arg = TheCall->getArg(ArgNum);
7351 if (Arg->isTypeDependent() || Arg->isValueDependent())
7352 return false;
7353
7354 // Check constant-ness first.
7355 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7356 return true;
7357
7358 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
7359 if (RangeIsError)
7360 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
7361 << toString(Result, 10) << Low << High << Arg->getSourceRange();
7362 else
7363 // Defer the warning until we know if the code will be emitted so that
7364 // dead code can ignore this.
7365 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
7366 PDiag(diag::warn_argument_invalid_range)
7367 << toString(Result, 10) << Low << High
7368 << Arg->getSourceRange());
7369 }
7370
7371 return false;
7372}
7373
7374/// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
7375/// TheCall is a constant expression is a multiple of Num..
7376bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
7377 unsigned Num) {
7378 llvm::APSInt Result;
7379
7380 // We can't check the value of a dependent argument.
7381 Expr *Arg = TheCall->getArg(ArgNum);
7382 if (Arg->isTypeDependent() || Arg->isValueDependent())
7383 return false;
7384
7385 // Check constant-ness first.
7386 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7387 return true;
7388
7389 if (Result.getSExtValue() % Num != 0)
7390 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
7391 << Num << Arg->getSourceRange();
7392
7393 return false;
7394}
7395
7396/// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
7397/// constant expression representing a power of 2.
7398bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
7399 llvm::APSInt Result;
7400
7401 // We can't check the value of a dependent argument.
7402 Expr *Arg = TheCall->getArg(ArgNum);
7403 if (Arg->isTypeDependent() || Arg->isValueDependent())
7404 return false;
7405
7406 // Check constant-ness first.
7407 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7408 return true;
7409
7410 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
7411 // and only if x is a power of 2.
7412 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
7413 return false;
7414
7415 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
7416 << Arg->getSourceRange();
7417}
7418
7419static bool IsShiftedByte(llvm::APSInt Value) {
7420 if (Value.isNegative())
7421 return false;
7422
7423 // Check if it's a shifted byte, by shifting it down
7424 while (true) {
7425 // If the value fits in the bottom byte, the check passes.
7426 if (Value < 0x100)
7427 return true;
7428
7429 // Otherwise, if the value has _any_ bits in the bottom byte, the check
7430 // fails.
7431 if ((Value & 0xFF) != 0)
7432 return false;
7433
7434 // If the bottom 8 bits are all 0, but something above that is nonzero,
7435 // then shifting the value right by 8 bits won't affect whether it's a
7436 // shifted byte or not. So do that, and go round again.
7437 Value >>= 8;
7438 }
7439}
7440
7441/// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
7442/// a constant expression representing an arbitrary byte value shifted left by
7443/// a multiple of 8 bits.
7444bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
7445 unsigned ArgBits) {
7446 llvm::APSInt Result;
7447
7448 // We can't check the value of a dependent argument.
7449 Expr *Arg = TheCall->getArg(ArgNum);
7450 if (Arg->isTypeDependent() || Arg->isValueDependent())
7451 return false;
7452
7453 // Check constant-ness first.
7454 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7455 return true;
7456
7457 // Truncate to the given size.
7458 Result = Result.getLoBits(ArgBits);
7459 Result.setIsUnsigned(true);
7460
7461 if (IsShiftedByte(Result))
7462 return false;
7463
7464 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
7465 << Arg->getSourceRange();
7466}
7467
7468/// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
7469/// TheCall is a constant expression representing either a shifted byte value,
7470/// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
7471/// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
7472/// Arm MVE intrinsics.
7473bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
7474 int ArgNum,
7475 unsigned ArgBits) {
7476 llvm::APSInt Result;
7477
7478 // We can't check the value of a dependent argument.
7479 Expr *Arg = TheCall->getArg(ArgNum);
7480 if (Arg->isTypeDependent() || Arg->isValueDependent())
7481 return false;
7482
7483 // Check constant-ness first.
7484 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7485 return true;
7486
7487 // Truncate to the given size.
7488 Result = Result.getLoBits(ArgBits);
7489 Result.setIsUnsigned(true);
7490
7491 // Check to see if it's in either of the required forms.
7492 if (IsShiftedByte(Result) ||
7493 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
7494 return false;
7495
7496 return Diag(TheCall->getBeginLoc(),
7497 diag::err_argument_not_shifted_byte_or_xxff)
7498 << Arg->getSourceRange();
7499}
7500
7501/// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
7502bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
7503 if (BuiltinID == AArch64::BI__builtin_arm_irg) {
7504 if (checkArgCount(*this, TheCall, 2))
7505 return true;
7506 Expr *Arg0 = TheCall->getArg(0);
7507 Expr *Arg1 = TheCall->getArg(1);
7508
7509 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7510 if (FirstArg.isInvalid())
7511 return true;
7512 QualType FirstArgType = FirstArg.get()->getType();
7513 if (!FirstArgType->isAnyPointerType())
7514 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7515 << "first" << FirstArgType << Arg0->getSourceRange();
7516 TheCall->setArg(0, FirstArg.get());
7517
7518 ExprResult SecArg = DefaultLvalueConversion(Arg1);
7519 if (SecArg.isInvalid())
7520 return true;
7521 QualType SecArgType = SecArg.get()->getType();
7522 if (!SecArgType->isIntegerType())
7523 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7524 << "second" << SecArgType << Arg1->getSourceRange();
7525
7526 // Derive the return type from the pointer argument.
7527 TheCall->setType(FirstArgType);
7528 return false;
7529 }
7530
7531 if (BuiltinID == AArch64::BI__builtin_arm_addg) {
7532 if (checkArgCount(*this, TheCall, 2))
7533 return true;
7534
7535 Expr *Arg0 = TheCall->getArg(0);
7536 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7537 if (FirstArg.isInvalid())
7538 return true;
7539 QualType FirstArgType = FirstArg.get()->getType();
7540 if (!FirstArgType->isAnyPointerType())
7541 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7542 << "first" << FirstArgType << Arg0->getSourceRange();
7543 TheCall->setArg(0, FirstArg.get());
7544
7545 // Derive the return type from the pointer argument.
7546 TheCall->setType(FirstArgType);
7547
7548 // Second arg must be an constant in range [0,15]
7549 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7550 }
7551
7552 if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
7553 if (checkArgCount(*this, TheCall, 2))
7554 return true;
7555 Expr *Arg0 = TheCall->getArg(0);
7556 Expr *Arg1 = TheCall->getArg(1);
7557
7558 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7559 if (FirstArg.isInvalid())
7560 return true;
7561 QualType FirstArgType = FirstArg.get()->getType();
7562 if (!FirstArgType->isAnyPointerType())
7563 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7564 << "first" << FirstArgType << Arg0->getSourceRange();
7565
7566 QualType SecArgType = Arg1->getType();
7567 if (!SecArgType->isIntegerType())
7568 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7569 << "second" << SecArgType << Arg1->getSourceRange();
7570 TheCall->setType(Context.IntTy);
7571 return false;
7572 }
7573
7574 if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
7575 BuiltinID == AArch64::BI__builtin_arm_stg) {
7576 if (checkArgCount(*this, TheCall, 1))
7577 return true;
7578 Expr *Arg0 = TheCall->getArg(0);
7579 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7580 if (FirstArg.isInvalid())
7581 return true;
7582
7583 QualType FirstArgType = FirstArg.get()->getType();
7584 if (!FirstArgType->isAnyPointerType())
7585 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7586 << "first" << FirstArgType << Arg0->getSourceRange();
7587 TheCall->setArg(0, FirstArg.get());
7588
7589 // Derive the return type from the pointer argument.
7590 if (BuiltinID == AArch64::BI__builtin_arm_ldg)
7591 TheCall->setType(FirstArgType);
7592 return false;
7593 }
7594
7595 if (BuiltinID == AArch64::BI__builtin_arm_subp) {
7596 Expr *ArgA = TheCall->getArg(0);
7597 Expr *ArgB = TheCall->getArg(1);
7598
7599 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
7600 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
7601
7602 if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
7603 return true;
7604
7605 QualType ArgTypeA = ArgExprA.get()->getType();
7606 QualType ArgTypeB = ArgExprB.get()->getType();
7607
7608 auto isNull = [&] (Expr *E) -> bool {
7609 return E->isNullPointerConstant(
7610 Context, Expr::NPC_ValueDependentIsNotNull); };
7611
7612 // argument should be either a pointer or null
7613 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
7614 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7615 << "first" << ArgTypeA << ArgA->getSourceRange();
7616
7617 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
7618 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
7619 << "second" << ArgTypeB << ArgB->getSourceRange();
7620
7621 // Ensure Pointee types are compatible
7622 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
7623 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
7624 QualType pointeeA = ArgTypeA->getPointeeType();
7625 QualType pointeeB = ArgTypeB->getPointeeType();
7626 if (!Context.typesAreCompatible(
7627 Context.getCanonicalType(pointeeA).getUnqualifiedType(),
7628 Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
7629 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
7630 << ArgTypeA << ArgTypeB << ArgA->getSourceRange()
7631 << ArgB->getSourceRange();
7632 }
7633 }
7634
7635 // at least one argument should be pointer type
7636 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
7637 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
7638 << ArgTypeA << ArgTypeB << ArgA->getSourceRange();
7639
7640 if (isNull(ArgA)) // adopt type of the other pointer
7641 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
7642
7643 if (isNull(ArgB))
7644 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
7645
7646 TheCall->setArg(0, ArgExprA.get());
7647 TheCall->setArg(1, ArgExprB.get());
7648 TheCall->setType(Context.LongLongTy);
7649 return false;
7650 }
7651 assert(false && "Unhandled ARM MTE intrinsic")(static_cast <bool> (false && "Unhandled ARM MTE intrinsic"
) ? void (0) : __assert_fail ("false && \"Unhandled ARM MTE intrinsic\""
, "clang/lib/Sema/SemaChecking.cpp", 7651, __extension__ __PRETTY_FUNCTION__
))
;
7652 return true;
7653}
7654
7655/// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
7656/// TheCall is an ARM/AArch64 special register string literal.
7657bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
7658 int ArgNum, unsigned ExpectedFieldNum,
7659 bool AllowName) {
7660 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7661 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7662 BuiltinID == ARM::BI__builtin_arm_rsr ||
7663 BuiltinID == ARM::BI__builtin_arm_rsrp ||
7664 BuiltinID == ARM::BI__builtin_arm_wsr ||
7665 BuiltinID == ARM::BI__builtin_arm_wsrp;
7666 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7667 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7668 BuiltinID == AArch64::BI__builtin_arm_rsr ||
7669 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7670 BuiltinID == AArch64::BI__builtin_arm_wsr ||
7671 BuiltinID == AArch64::BI__builtin_arm_wsrp;
7672 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.")(static_cast <bool> ((IsARMBuiltin || IsAArch64Builtin)
&& "Unexpected ARM builtin.") ? void (0) : __assert_fail
("(IsARMBuiltin || IsAArch64Builtin) && \"Unexpected ARM builtin.\""
, "clang/lib/Sema/SemaChecking.cpp", 7672, __extension__ __PRETTY_FUNCTION__
))
;
7673
7674 // We can't check the value of a dependent argument.
7675 Expr *Arg = TheCall->getArg(ArgNum);
7676 if (Arg->isTypeDependent() || Arg->isValueDependent())
7677 return false;
7678
7679 // Check if the argument is a string literal.
7680 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
7681 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
7682 << Arg->getSourceRange();
7683
7684 // Check the type of special register given.
7685 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
7686 SmallVector<StringRef, 6> Fields;
7687 Reg.split(Fields, ":");
7688
7689 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
7690 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7691 << Arg->getSourceRange();
7692
7693 // If the string is the name of a register then we cannot check that it is
7694 // valid here but if the string is of one the forms described in ACLE then we
7695 // can check that the supplied fields are integers and within the valid
7696 // ranges.
7697 if (Fields.size() > 1) {
7698 bool FiveFields = Fields.size() == 5;
7699
7700 bool ValidString = true;
7701 if (IsARMBuiltin) {
7702 ValidString &= Fields[0].startswith_insensitive("cp") ||
7703 Fields[0].startswith_insensitive("p");
7704 if (ValidString)
7705 Fields[0] = Fields[0].drop_front(
7706 Fields[0].startswith_insensitive("cp") ? 2 : 1);
7707
7708 ValidString &= Fields[2].startswith_insensitive("c");
7709 if (ValidString)
7710 Fields[2] = Fields[2].drop_front(1);
7711
7712 if (FiveFields) {
7713 ValidString &= Fields[3].startswith_insensitive("c");
7714 if (ValidString)
7715 Fields[3] = Fields[3].drop_front(1);
7716 }
7717 }
7718
7719 SmallVector<int, 5> Ranges;
7720 if (FiveFields)
7721 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
7722 else
7723 Ranges.append({15, 7, 15});
7724
7725 for (unsigned i=0; i<Fields.size(); ++i) {
7726 int IntField;
7727 ValidString &= !Fields[i].getAsInteger(10, IntField);
7728 ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
7729 }
7730
7731 if (!ValidString)
7732 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
7733 << Arg->getSourceRange();
7734 } else if (IsAArch64Builtin && Fields.size() == 1) {
7735 // If the register name is one of those that appear in the condition below
7736 // and the special register builtin being used is one of the write builtins,
7737 // then we require that the argument provided for writing to the register
7738 // is an integer constant expression. This is because it will be lowered to
7739 // an MSR (immediate) instruction, so we need to know the immediate at
7740 // compile time.
7741 if (TheCall->getNumArgs() != 2)
7742 return false;
7743
7744 std::string RegLower = Reg.lower();
7745 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
7746 RegLower != "pan" && RegLower != "uao")
7747 return false;
7748
7749 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7750 }
7751
7752 return false;
7753}
7754
7755/// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
7756/// Emit an error and return true on failure; return false on success.
7757/// TypeStr is a string containing the type descriptor of the value returned by
7758/// the builtin and the descriptors of the expected type of the arguments.
7759bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID,
7760 const char *TypeStr) {
7761
7762 assert((TypeStr[0] != '\0') &&(static_cast <bool> ((TypeStr[0] != '\0') && "Invalid types in PPC MMA builtin declaration"
) ? void (0) : __assert_fail ("(TypeStr[0] != '\\0') && \"Invalid types in PPC MMA builtin declaration\""
, "clang/lib/Sema/SemaChecking.cpp", 7763, __extension__ __PRETTY_FUNCTION__
))
7763 "Invalid types in PPC MMA builtin declaration")(static_cast <bool> ((TypeStr[0] != '\0') && "Invalid types in PPC MMA builtin declaration"
) ? void (0) : __assert_fail ("(TypeStr[0] != '\\0') && \"Invalid types in PPC MMA builtin declaration\""
, "clang/lib/Sema/SemaChecking.cpp", 7763, __extension__ __PRETTY_FUNCTION__
))
;
7764
7765 switch (BuiltinID) {
7766 default:
7767 // This function is called in CheckPPCBuiltinFunctionCall where the
7768 // BuiltinID is guaranteed to be an MMA or pair vector memop builtin, here
7769 // we are isolating the pair vector memop builtins that can be used with mma
7770 // off so the default case is every builtin that requires mma and paired
7771 // vector memops.
7772 if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
7773 diag::err_ppc_builtin_only_on_arch, "10") ||
7774 SemaFeatureCheck(*this, TheCall, "mma",
7775 diag::err_ppc_builtin_only_on_arch, "10"))
7776 return true;
7777 break;
7778 case PPC::BI__builtin_vsx_lxvp:
7779 case PPC::BI__builtin_vsx_stxvp:
7780 case PPC::BI__builtin_vsx_assemble_pair:
7781 case PPC::BI__builtin_vsx_disassemble_pair:
7782 if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
7783 diag::err_ppc_builtin_only_on_arch, "10"))
7784 return true;
7785 break;
7786 }
7787
7788 unsigned Mask = 0;
7789 unsigned ArgNum = 0;
7790
7791 // The first type in TypeStr is the type of the value returned by the
7792 // builtin. So we first read that type and change the type of TheCall.
7793 QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7794 TheCall->setType(type);
7795
7796 while (*TypeStr != '\0') {
7797 Mask = 0;
7798 QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7799 if (ArgNum >= TheCall->getNumArgs()) {
7800 ArgNum++;
7801 break;
7802 }
7803
7804 Expr *Arg = TheCall->getArg(ArgNum);
7805 QualType PassedType = Arg->getType();
7806 QualType StrippedRVType = PassedType.getCanonicalType();
7807
7808 // Strip Restrict/Volatile qualifiers.
7809 if (StrippedRVType.isRestrictQualified() ||
7810 StrippedRVType.isVolatileQualified())
7811 StrippedRVType = StrippedRVType.getCanonicalType().getUnqualifiedType();
7812
7813 // The only case where the argument type and expected type are allowed to
7814 // mismatch is if the argument type is a non-void pointer (or array) and
7815 // expected type is a void pointer.
7816 if (StrippedRVType != ExpectedType)
7817 if (!(ExpectedType->isVoidPointerType() &&
7818 (StrippedRVType->isPointerType() || StrippedRVType->isArrayType())))
7819 return Diag(Arg->getBeginLoc(),
7820 diag::err_typecheck_convert_incompatible)
7821 << PassedType << ExpectedType << 1 << 0 << 0;
7822
7823 // If the value of the Mask is not 0, we have a constraint in the size of
7824 // the integer argument so here we ensure the argument is a constant that
7825 // is in the valid range.
7826 if (Mask != 0 &&
7827 SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
7828 return true;
7829
7830 ArgNum++;
7831 }
7832
7833 // In case we exited early from the previous loop, there are other types to
7834 // read from TypeStr. So we need to read them all to ensure we have the right
7835 // number of arguments in TheCall and if it is not the case, to display a
7836 // better error message.
7837 while (*TypeStr != '\0') {
7838 (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
7839 ArgNum++;
7840 }
7841 if (checkArgCount(*this, TheCall, ArgNum))
7842 return true;
7843
7844 return false;
7845}
7846
7847/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
7848/// This checks that the target supports __builtin_longjmp and
7849/// that val is a constant 1.
7850bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
7851 if (!Context.getTargetInfo().hasSjLjLowering())
7852 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
7853 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7854
7855 Expr *Arg = TheCall->getArg(1);
7856 llvm::APSInt Result;
7857
7858 // TODO: This is less than ideal. Overload this to take a value.
7859 if (SemaBuiltinConstantArg(TheCall, 1, Result))
7860 return true;
7861
7862 if (Result != 1)
7863 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
7864 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
7865
7866 return false;
7867}
7868
7869/// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
7870/// This checks that the target supports __builtin_setjmp.
7871bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
7872 if (!Context.getTargetInfo().hasSjLjLowering())
7873 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
7874 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7875 return false;
7876}
7877
7878namespace {
7879
7880class UncoveredArgHandler {
7881 enum { Unknown = -1, AllCovered = -2 };
7882
7883 signed FirstUncoveredArg = Unknown;
7884 SmallVector<const Expr *, 4> DiagnosticExprs;
7885
7886public:
7887 UncoveredArgHandler() = default;
7888
7889 bool hasUncoveredArg() const {
7890 return (FirstUncoveredArg >= 0);
7891 }
7892
7893 unsigned getUncoveredArg() const {
7894 assert(hasUncoveredArg() && "no uncovered argument")(static_cast <bool> (hasUncoveredArg() && "no uncovered argument"
) ? void (0) : __assert_fail ("hasUncoveredArg() && \"no uncovered argument\""
, "clang/lib/Sema/SemaChecking.cpp", 7894, __extension__ __PRETTY_FUNCTION__
))
;
7895 return FirstUncoveredArg;
7896 }
7897
7898 void setAllCovered() {
7899 // A string has been found with all arguments covered, so clear out
7900 // the diagnostics.
7901 DiagnosticExprs.clear();
7902 FirstUncoveredArg = AllCovered;
7903 }
7904
7905 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
7906 assert(NewFirstUncoveredArg >= 0 && "Outside range")(static_cast <bool> (NewFirstUncoveredArg >= 0 &&
"Outside range") ? void (0) : __assert_fail ("NewFirstUncoveredArg >= 0 && \"Outside range\""
, "clang/lib/Sema/SemaChecking.cpp", 7906, __extension__ __PRETTY_FUNCTION__
))
;
7907
7908 // Don't update if a previous string covers all arguments.
7909 if (FirstUncoveredArg == AllCovered)
7910 return;
7911
7912 // UncoveredArgHandler tracks the highest uncovered argument index
7913 // and with it all the strings that match this index.
7914 if (NewFirstUncoveredArg == FirstUncoveredArg)
7915 DiagnosticExprs.push_back(StrExpr);
7916 else if (NewFirstUncoveredArg > FirstUncoveredArg) {
7917 DiagnosticExprs.clear();
7918 DiagnosticExprs.push_back(StrExpr);
7919 FirstUncoveredArg = NewFirstUncoveredArg;
7920 }
7921 }
7922
7923 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
7924};
7925
7926enum StringLiteralCheckType {
7927 SLCT_NotALiteral,
7928 SLCT_UncheckedLiteral,
7929 SLCT_CheckedLiteral
7930};
7931
7932} // namespace
7933
7934static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
7935 BinaryOperatorKind BinOpKind,
7936 bool AddendIsRight) {
7937 unsigned BitWidth = Offset.getBitWidth();
7938 unsigned AddendBitWidth = Addend.getBitWidth();
7939 // There might be negative interim results.
7940 if (Addend.isUnsigned()) {
7941 Addend = Addend.zext(++AddendBitWidth);
7942 Addend.setIsSigned(true);
7943 }
7944 // Adjust the bit width of the APSInts.
7945 if (AddendBitWidth > BitWidth) {
7946 Offset = Offset.sext(AddendBitWidth);
7947 BitWidth = AddendBitWidth;
7948 } else if (BitWidth > AddendBitWidth) {
7949 Addend = Addend.sext(BitWidth);
7950 }
7951
7952 bool Ov = false;
7953 llvm::APSInt ResOffset = Offset;
7954 if (BinOpKind == BO_Add)
7955 ResOffset = Offset.sadd_ov(Addend, Ov);
7956 else {
7957 assert(AddendIsRight && BinOpKind == BO_Sub &&(static_cast <bool> (AddendIsRight && BinOpKind
== BO_Sub && "operator must be add or sub with addend on the right"
) ? void (0) : __assert_fail ("AddendIsRight && BinOpKind == BO_Sub && \"operator must be add or sub with addend on the right\""
, "clang/lib/Sema/SemaChecking.cpp", 7958, __extension__ __PRETTY_FUNCTION__
))
7958 "operator must be add or sub with addend on the right")(static_cast <bool> (AddendIsRight && BinOpKind
== BO_Sub && "operator must be add or sub with addend on the right"
) ? void (0) : __assert_fail ("AddendIsRight && BinOpKind == BO_Sub && \"operator must be add or sub with addend on the right\""
, "clang/lib/Sema/SemaChecking.cpp", 7958, __extension__ __PRETTY_FUNCTION__
))
;
7959 ResOffset = Offset.ssub_ov(Addend, Ov);
7960 }
7961
7962 // We add an offset to a pointer here so we should support an offset as big as
7963 // possible.
7964 if (Ov) {
7965 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&(static_cast <bool> (BitWidth <= std::numeric_limits
<unsigned>::max() / 2 && "index (intermediate) result too big"
) ? void (0) : __assert_fail ("BitWidth <= std::numeric_limits<unsigned>::max() / 2 && \"index (intermediate) result too big\""
, "clang/lib/Sema/SemaChecking.cpp", 7966, __extension__ __PRETTY_FUNCTION__
))
7966 "index (intermediate) result too big")(static_cast <bool> (BitWidth <= std::numeric_limits
<unsigned>::max() / 2 && "index (intermediate) result too big"
) ? void (0) : __assert_fail ("BitWidth <= std::numeric_limits<unsigned>::max() / 2 && \"index (intermediate) result too big\""
, "clang/lib/Sema/SemaChecking.cpp", 7966, __extension__ __PRETTY_FUNCTION__
))
;
7967 Offset = Offset.sext(2 * BitWidth);
7968 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
7969 return;
7970 }
7971
7972 Offset = ResOffset;
7973}
7974
7975namespace {
7976
7977// This is a wrapper class around StringLiteral to support offsetted string
7978// literals as format strings. It takes the offset into account when returning
7979// the string and its length or the source locations to display notes correctly.
7980class FormatStringLiteral {
7981 const StringLiteral *FExpr;
7982 int64_t Offset;
7983
7984 public:
7985 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7986 : FExpr(fexpr), Offset(Offset) {}
7987
7988 StringRef getString() const {
7989 return FExpr->getString().drop_front(Offset);
7990 }
7991
7992 unsigned getByteLength() const {
7993 return FExpr->getByteLength() - getCharByteWidth() * Offset;
7994 }
7995
7996 unsigned getLength() const { return FExpr->getLength() - Offset; }
7997 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7998
7999 StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
8000
8001 QualType getType() const { return FExpr->getType(); }
8002
8003 bool isAscii() const { return FExpr->isAscii(); }
8004 bool isWide() const { return FExpr->isWide(); }
8005 bool isUTF8() const { return FExpr->isUTF8(); }
8006 bool isUTF16() const { return FExpr->isUTF16(); }
8007 bool isUTF32() const { return FExpr->isUTF32(); }
8008 bool isPascal() const { return FExpr->isPascal(); }
8009
8010 SourceLocation getLocationOfByte(
8011 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
8012 const TargetInfo &Target, unsigned *StartToken = nullptr,
8013 unsigned *StartTokenByteOffset = nullptr) const {
8014 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
8015 StartToken, StartTokenByteOffset);
8016 }
8017
8018 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
8019 return FExpr->getBeginLoc().getLocWithOffset(Offset);
8020 }
8021
8022 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return FExpr->getEndLoc(); }
8023};
8024
8025} // namespace
8026
8027static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
8028 const Expr *OrigFormatExpr,
8029 ArrayRef<const Expr *> Args,
8030 bool HasVAListArg, unsigned format_idx,
8031 unsigned firstDataArg,
8032 Sema::FormatStringType Type,
8033 bool inFunctionCall,
8034 Sema::VariadicCallType CallType,
8035 llvm::SmallBitVector &CheckedVarArgs,
8036 UncoveredArgHandler &UncoveredArg,
8037 bool IgnoreStringsWithoutSpecifiers);
8038
8039// Determine if an expression is a string literal or constant string.
8040// If this function returns false on the arguments to a function expecting a
8041// format string, we will usually need to emit a warning.
8042// True string literals are then checked by CheckFormatString.
8043static StringLiteralCheckType
8044checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
8045 bool HasVAListArg, unsigned format_idx,
8046 unsigned firstDataArg, Sema::FormatStringType Type,
8047 Sema::VariadicCallType CallType, bool InFunctionCall,
8048 llvm::SmallBitVector &CheckedVarArgs,
8049 UncoveredArgHandler &UncoveredArg,
8050 llvm::APSInt Offset,
8051 bool IgnoreStringsWithoutSpecifiers = false) {
8052 if (S.isConstantEvaluated())
8053 return SLCT_NotALiteral;
8054 tryAgain:
8055 assert(Offset.isSigned() && "invalid offset")(static_cast <bool> (Offset.isSigned() && "invalid offset"
) ? void (0) : __assert_fail ("Offset.isSigned() && \"invalid offset\""
, "clang/lib/Sema/SemaChecking.cpp", 8055, __extension__ __PRETTY_FUNCTION__
))
;
8056
8057 if (E->isTypeDependent() || E->isValueDependent())
8058 return SLCT_NotALiteral;
8059
8060 E = E->IgnoreParenCasts();
8061
8062 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
8063 // Technically -Wformat-nonliteral does not warn about this case.
8064 // The behavior of printf and friends in this case is implementation
8065 // dependent. Ideally if the format string cannot be null then
8066 // it should have a 'nonnull' attribute in the function prototype.
8067 return SLCT_UncheckedLiteral;
8068
8069 switch (E->getStmtClass()) {
8070 case Stmt::BinaryConditionalOperatorClass:
8071 case Stmt::ConditionalOperatorClass: {
8072 // The expression is a literal if both sub-expressions were, and it was
8073 // completely checked only if both sub-expressions were checked.
8074 const AbstractConditionalOperator *C =
8075 cast<AbstractConditionalOperator>(E);
8076
8077 // Determine whether it is necessary to check both sub-expressions, for
8078 // example, because the condition expression is a constant that can be
8079 // evaluated at compile time.
8080 bool CheckLeft = true, CheckRight = true;
8081
8082 bool Cond;
8083 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
8084 S.isConstantEvaluated())) {
8085 if (Cond)
8086 CheckRight = false;
8087 else
8088 CheckLeft = false;
8089 }
8090
8091 // We need to maintain the offsets for the right and the left hand side
8092 // separately to check if every possible indexed expression is a valid
8093 // string literal. They might have different offsets for different string
8094 // literals in the end.
8095 StringLiteralCheckType Left;
8096 if (!CheckLeft)
8097 Left = SLCT_UncheckedLiteral;
8098 else {
8099 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
8100 HasVAListArg, format_idx, firstDataArg,
8101 Type, CallType, InFunctionCall,
8102 CheckedVarArgs, UncoveredArg, Offset,
8103 IgnoreStringsWithoutSpecifiers);
8104 if (Left == SLCT_NotALiteral || !CheckRight) {
8105 return Left;
8106 }
8107 }
8108
8109 StringLiteralCheckType Right = checkFormatStringExpr(
8110 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
8111 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8112 IgnoreStringsWithoutSpecifiers);
8113
8114 return (CheckLeft && Left < Right) ? Left : Right;
8115 }
8116
8117 case Stmt::ImplicitCastExprClass:
8118 E = cast<ImplicitCastExpr>(E)->getSubExpr();
8119 goto tryAgain;
8120
8121 case Stmt::OpaqueValueExprClass:
8122 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
8123 E = src;
8124 goto tryAgain;
8125 }
8126 return SLCT_NotALiteral;
8127
8128 case Stmt::PredefinedExprClass:
8129 // While __func__, etc., are technically not string literals, they
8130 // cannot contain format specifiers and thus are not a security
8131 // liability.
8132 return SLCT_UncheckedLiteral;
8133
8134 case Stmt::DeclRefExprClass: {
8135 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
8136
8137 // As an exception, do not flag errors for variables binding to
8138 // const string literals.
8139 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
8140 bool isConstant = false;
8141 QualType T = DR->getType();
8142
8143 if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
8144 isConstant = AT->getElementType().isConstant(S.Context);
8145 } else if (const PointerType *PT = T->getAs<PointerType>()) {
8146 isConstant = T.isConstant(S.Context) &&
8147 PT->getPointeeType().isConstant(S.Context);
8148 } else if (T->isObjCObjectPointerType()) {
8149 // In ObjC, there is usually no "const ObjectPointer" type,
8150 // so don't check if the pointee type is constant.
8151 isConstant = T.isConstant(S.Context);
8152 }
8153
8154 if (isConstant) {
8155 if (const Expr *Init = VD->getAnyInitializer()) {
8156 // Look through initializers like const char c[] = { "foo" }
8157 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
8158 if (InitList->isStringLiteralInit())
8159 Init = InitList->getInit(0)->IgnoreParenImpCasts();
8160 }
8161 return checkFormatStringExpr(S, Init, Args,
8162 HasVAListArg, format_idx,
8163 firstDataArg, Type, CallType,
8164 /*InFunctionCall*/ false, CheckedVarArgs,
8165 UncoveredArg, Offset);
8166 }
8167 }
8168
8169 // For vprintf* functions (i.e., HasVAListArg==true), we add a
8170 // special check to see if the format string is a function parameter
8171 // of the function calling the printf function. If the function
8172 // has an attribute indicating it is a printf-like function, then we
8173 // should suppress warnings concerning non-literals being used in a call
8174 // to a vprintf function. For example:
8175 //
8176 // void
8177 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
8178 // va_list ap;
8179 // va_start(ap, fmt);
8180 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
8181 // ...
8182 // }
8183 if (HasVAListArg) {
8184 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
8185 if (const Decl *D = dyn_cast<Decl>(PV->getDeclContext())) {
8186 int PVIndex = PV->getFunctionScopeIndex() + 1;
8187 for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
8188 // adjust for implicit parameter
8189 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
8190 if (MD->isInstance())
8191 ++PVIndex;
8192 // We also check if the formats are compatible.
8193 // We can't pass a 'scanf' string to a 'printf' function.
8194 if (PVIndex == PVFormat->getFormatIdx() &&
8195 Type == S.GetFormatStringType(PVFormat))
8196 return SLCT_UncheckedLiteral;
8197 }
8198 }
8199 }
8200 }
8201 }
8202
8203 return SLCT_NotALiteral;
8204 }
8205
8206 case Stmt::CallExprClass:
8207 case Stmt::CXXMemberCallExprClass: {
8208 const CallExpr *CE = cast<CallExpr>(E);
8209 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
8210 bool IsFirst = true;
8211 StringLiteralCheckType CommonResult;
8212 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
8213 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
8214 StringLiteralCheckType Result = checkFormatStringExpr(
8215 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
8216 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8217 IgnoreStringsWithoutSpecifiers);
8218 if (IsFirst) {
8219 CommonResult = Result;
8220 IsFirst = false;
8221 }
8222 }
8223 if (!IsFirst)
8224 return CommonResult;
8225
8226 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
8227 unsigned BuiltinID = FD->getBuiltinID();
8228 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
8229 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
8230 const Expr *Arg = CE->getArg(0);
8231 return checkFormatStringExpr(S, Arg, Args,
8232 HasVAListArg, format_idx,
8233 firstDataArg, Type, CallType,
8234 InFunctionCall, CheckedVarArgs,
8235 UncoveredArg, Offset,
8236 IgnoreStringsWithoutSpecifiers);
8237 }
8238 }
8239 }
8240
8241 return SLCT_NotALiteral;
8242 }
8243 case Stmt::ObjCMessageExprClass: {
8244 const auto *ME = cast<ObjCMessageExpr>(E);
8245 if (const auto *MD = ME->getMethodDecl()) {
8246 if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
8247 // As a special case heuristic, if we're using the method -[NSBundle
8248 // localizedStringForKey:value:table:], ignore any key strings that lack
8249 // format specifiers. The idea is that if the key doesn't have any
8250 // format specifiers then its probably just a key to map to the
8251 // localized strings. If it does have format specifiers though, then its
8252 // likely that the text of the key is the format string in the
8253 // programmer's language, and should be checked.
8254 const ObjCInterfaceDecl *IFace;
8255 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
8256 IFace->getIdentifier()->isStr("NSBundle") &&
8257 MD->getSelector().isKeywordSelector(
8258 {"localizedStringForKey", "value", "table"})) {
8259 IgnoreStringsWithoutSpecifiers = true;
8260 }
8261
8262 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
8263 return checkFormatStringExpr(
8264 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
8265 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8266 IgnoreStringsWithoutSpecifiers);
8267 }
8268 }
8269
8270 return SLCT_NotALiteral;
8271 }
8272 case Stmt::ObjCStringLiteralClass:
8273 case Stmt::StringLiteralClass: {
8274 const StringLiteral *StrE = nullptr;
8275
8276 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
8277 StrE = ObjCFExpr->getString();
8278 else
8279 StrE = cast<StringLiteral>(E);
8280
8281 if (StrE) {
8282 if (Offset.isNegative() || Offset > StrE->getLength()) {
8283 // TODO: It would be better to have an explicit warning for out of
8284 // bounds literals.
8285 return SLCT_NotALiteral;
8286 }
8287 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
8288 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
8289 firstDataArg, Type, InFunctionCall, CallType,
8290 CheckedVarArgs, UncoveredArg,
8291 IgnoreStringsWithoutSpecifiers);
8292 return SLCT_CheckedLiteral;
8293 }
8294
8295 return SLCT_NotALiteral;
8296 }
8297 case Stmt::BinaryOperatorClass: {
8298 const BinaryOperator *BinOp = cast<BinaryOperator>(E);
8299
8300 // A string literal + an int offset is still a string literal.
8301 if (BinOp->isAdditiveOp()) {
8302 Expr::EvalResult LResult, RResult;
8303
8304 bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
8305 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8306 bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
8307 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8308
8309 if (LIsInt != RIsInt) {
8310 BinaryOperatorKind BinOpKind = BinOp->getOpcode();
8311
8312 if (LIsInt) {
8313 if (BinOpKind == BO_Add) {
8314 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
8315 E = BinOp->getRHS();
8316 goto tryAgain;
8317 }
8318 } else {
8319 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
8320 E = BinOp->getLHS();
8321 goto tryAgain;
8322 }
8323 }
8324 }
8325
8326 return SLCT_NotALiteral;
8327 }
8328 case Stmt::UnaryOperatorClass: {
8329 const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
8330 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
8331 if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
8332 Expr::EvalResult IndexResult;
8333 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
8334 Expr::SE_NoSideEffects,
8335 S.isConstantEvaluated())) {
8336 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
8337 /*RHS is int*/ true);
8338 E = ASE->getBase();
8339 goto tryAgain;
8340 }
8341 }
8342
8343 return SLCT_NotALiteral;
8344 }
8345
8346 default:
8347 return SLCT_NotALiteral;
8348 }
8349}
8350
8351Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
8352 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
8353 .Case("scanf", FST_Scanf)
8354 .Cases("printf", "printf0", FST_Printf)
8355 .Cases("NSString", "CFString", FST_NSString)
8356 .Case("strftime", FST_Strftime)
8357 .Case("strfmon", FST_Strfmon)
8358 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
8359 .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
8360 .Case("os_trace", FST_OSLog)
8361 .Case("os_log", FST_OSLog)
8362 .Default(FST_Unknown);
8363}
8364
8365/// CheckFormatArguments - Check calls to printf and scanf (and similar
8366/// functions) for correct use of format strings.
8367/// Returns true if a format string has been fully checked.
8368bool Sema::CheckFormatArguments(const FormatAttr *Format,
8369 ArrayRef<const Expr *> Args,
8370 bool IsCXXMember,
8371 VariadicCallType CallType,
8372 SourceLocation Loc, SourceRange Range,
8373 llvm::SmallBitVector &CheckedVarArgs) {
8374 FormatStringInfo FSI;
8375 if (getFormatStringInfo(Format, IsCXXMember, &FSI))
8376 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
8377 FSI.FirstDataArg, GetFormatStringType(Format),
8378 CallType, Loc, Range, CheckedVarArgs);
8379 return false;
8380}
8381
8382bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
8383 bool HasVAListArg, unsigned format_idx,
8384 unsigned firstDataArg, FormatStringType Type,
8385 VariadicCallType CallType,
8386 SourceLocation Loc, SourceRange Range,
8387 llvm::SmallBitVector &CheckedVarArgs) {
8388 // CHECK: printf/scanf-like function is called with no format string.
8389 if (format_idx >= Args.size()) {
8390 Diag(Loc, diag::warn_missing_format_string) << Range;
8391 return false;
8392 }
8393
8394 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
8395
8396 // CHECK: format string is not a string literal.
8397 //
8398 // Dynamically generated format strings are difficult to
8399 // automatically vet at compile time. Requiring that format strings
8400 // are string literals: (1) permits the checking of format strings by
8401 // the compiler and thereby (2) can practically remove the source of
8402 // many format string exploits.
8403
8404 // Format string can be either ObjC string (e.g. @"%d") or
8405 // C string (e.g. "%d")
8406 // ObjC string uses the same format specifiers as C string, so we can use
8407 // the same format string checking logic for both ObjC and C strings.
8408 UncoveredArgHandler UncoveredArg;
8409 StringLiteralCheckType CT =
8410 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
8411 format_idx, firstDataArg, Type, CallType,
8412 /*IsFunctionCall*/ true, CheckedVarArgs,
8413 UncoveredArg,
8414 /*no string offset*/ llvm::APSInt(64, false) = 0);
8415
8416 // Generate a diagnostic where an uncovered argument is detected.
8417 if (UncoveredArg.hasUncoveredArg()) {
8418 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
8419 assert(ArgIdx < Args.size() && "ArgIdx outside bounds")(static_cast <bool> (ArgIdx < Args.size() &&
"ArgIdx outside bounds") ? void (0) : __assert_fail ("ArgIdx < Args.size() && \"ArgIdx outside bounds\""
, "clang/lib/Sema/SemaChecking.cpp", 8419, __extension__ __PRETTY_FUNCTION__
))
;
8420 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
8421 }
8422
8423 if (CT != SLCT_NotALiteral)
8424 // Literal format string found, check done!
8425 return CT == SLCT_CheckedLiteral;
8426
8427 // Strftime is particular as it always uses a single 'time' argument,
8428 // so it is safe to pass a non-literal string.
8429 if (Type == FST_Strftime)
8430 return false;
8431
8432 // Do not emit diag when the string param is a macro expansion and the
8433 // format is either NSString or CFString. This is a hack to prevent
8434 // diag when using the NSLocalizedString and CFCopyLocalizedString macros
8435 // which are usually used in place of NS and CF string literals.
8436 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
8437 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
8438 return false;
8439
8440 // If there are no arguments specified, warn with -Wformat-security, otherwise
8441 // warn only with -Wformat-nonliteral.
8442 if (Args.size() == firstDataArg) {
8443 Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
8444 << OrigFormatExpr->getSourceRange();
8445 switch (Type) {
8446 default:
8447 break;
8448 case FST_Kprintf:
8449 case FST_FreeBSDKPrintf:
8450 case FST_Printf:
8451 Diag(FormatLoc, diag::note_format_security_fixit)
8452 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
8453 break;
8454 case FST_NSString:
8455 Diag(FormatLoc, diag::note_format_security_fixit)
8456 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
8457 break;
8458 }
8459 } else {
8460 Diag(FormatLoc, diag::warn_format_nonliteral)
8461 << OrigFormatExpr->getSourceRange();
8462 }
8463 return false;
8464}
8465
8466namespace {
8467
8468class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
8469protected:
8470 Sema &S;
8471 const FormatStringLiteral *FExpr;
8472 const Expr *OrigFormatExpr;
8473 const Sema::FormatStringType FSType;
8474 const unsigned FirstDataArg;
8475 const unsigned NumDataArgs;
8476 const char *Beg; // Start of format string.
8477 const bool HasVAListArg;
8478 ArrayRef<const Expr *> Args;
8479 unsigned FormatIdx;
8480 llvm::SmallBitVector CoveredArgs;
8481 bool usesPositionalArgs = false;
8482 bool atFirstArg = true;
8483 bool inFunctionCall;
8484 Sema::VariadicCallType CallType;
8485 llvm::SmallBitVector &CheckedVarArgs;
8486 UncoveredArgHandler &UncoveredArg;
8487
8488public:
8489 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
8490 const Expr *origFormatExpr,
8491 const Sema::FormatStringType type, unsigned firstDataArg,
8492 unsigned numDataArgs, const char *beg, bool hasVAListArg,
8493 ArrayRef<const Expr *> Args, unsigned formatIdx,
8494 bool inFunctionCall, Sema::VariadicCallType callType,
8495 llvm::SmallBitVector &CheckedVarArgs,
8496 UncoveredArgHandler &UncoveredArg)
8497 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
8498 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
8499 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
8500 inFunctionCall(inFunctionCall), CallType(callType),
8501 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
8502 CoveredArgs.resize(numDataArgs);
8503 CoveredArgs.reset();
8504 }
8505
8506 void DoneProcessing();
8507
8508 void HandleIncompleteSpecifier(const char *startSpecifier,
8509 unsigned specifierLen) override;
8510
8511 void HandleInvalidLengthModifier(
8512 const analyze_format_string::FormatSpecifier &FS,
8513 const analyze_format_string::ConversionSpecifier &CS,
8514 const char *startSpecifier, unsigned specifierLen,
8515 unsigned DiagID);
8516
8517 void HandleNonStandardLengthModifier(
8518 const analyze_format_string::FormatSpecifier &FS,
8519 const char *startSpecifier, unsigned specifierLen);
8520
8521 void HandleNonStandardConversionSpecifier(
8522 const analyze_format_string::ConversionSpecifier &CS,
8523 const char *startSpecifier, unsigned specifierLen);
8524
8525 void HandlePosition(const char *startPos, unsigned posLen) override;
8526
8527 void HandleInvalidPosition(const char *startSpecifier,
8528 unsigned specifierLen,
8529 analyze_format_string::PositionContext p) override;
8530
8531 void HandleZeroPosition(const char *startPos, unsigned posLen) override;
8532
8533 void HandleNullChar(const char *nullCharacter) override;
8534
8535 template <typename Range>
8536 static void
8537 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
8538 const PartialDiagnostic &PDiag, SourceLocation StringLoc,
8539 bool IsStringLocation, Range StringRange,
8540 ArrayRef<FixItHint> Fixit = None);
8541
8542protected:
8543 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
8544 const char *startSpec,
8545 unsigned specifierLen,
8546 const char *csStart, unsigned csLen);
8547
8548 void HandlePositionalNonpositionalArgs(SourceLocation Loc,
8549 const char *startSpec,
8550 unsigned specifierLen);
8551
8552 SourceRange getFormatStringRange();
8553 CharSourceRange getSpecifierRange(const char *startSpecifier,
8554 unsigned specifierLen);
8555 SourceLocation getLocationOfByte(const char *x);
8556
8557 const Expr *getDataArg(unsigned i) const;
8558
8559 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
8560 const analyze_format_string::ConversionSpecifier &CS,
8561 const char *startSpecifier, unsigned specifierLen,
8562 unsigned argIndex);
8563
8564 template <typename Range>
8565 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
8566 bool IsStringLocation, Range StringRange,
8567 ArrayRef<FixItHint> Fixit = None);
8568};
8569
8570} // namespace
8571
8572SourceRange CheckFormatHandler::getFormatStringRange() {
8573 return OrigFormatExpr->getSourceRange();
8574}
8575
8576CharSourceRange CheckFormatHandler::
8577getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
8578 SourceLocation Start = getLocationOfByte(startSpecifier);
8579 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
8580
8581 // Advance the end SourceLocation by one due to half-open ranges.
8582 End = End.getLocWithOffset(1);
8583
8584 return CharSourceRange::getCharRange(Start, End);
8585}
8586
8587SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
8588 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
8589 S.getLangOpts(), S.Context.getTargetInfo());
8590}
8591
8592void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
8593 unsigned specifierLen){
8594 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
8595 getLocationOfByte(startSpecifier),
8596 /*IsStringLocation*/true,
8597 getSpecifierRange(startSpecifier, specifierLen));
8598}
8599
8600void CheckFormatHandler::HandleInvalidLengthModifier(
8601 const analyze_format_string::FormatSpecifier &FS,
8602 const analyze_format_string::ConversionSpecifier &CS,
8603 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
8604 using namespace analyze_format_string;
8605
8606 const LengthModifier &LM = FS.getLengthModifier();
8607 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8608
8609 // See if we know how to fix this length modifier.
8610 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8611 if (FixedLM) {
8612 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8613 getLocationOfByte(LM.getStart()),
8614 /*IsStringLocation*/true,
8615 getSpecifierRange(startSpecifier, specifierLen));
8616
8617 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8618 << FixedLM->toString()
8619 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8620
8621 } else {
8622 FixItHint Hint;
8623 if (DiagID == diag::warn_format_nonsensical_length)
8624 Hint = FixItHint::CreateRemoval(LMRange);
8625
8626 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
8627 getLocationOfByte(LM.getStart()),
8628 /*IsStringLocation*/true,
8629 getSpecifierRange(startSpecifier, specifierLen),
8630 Hint);
8631 }
8632}
8633
8634void CheckFormatHandler::HandleNonStandardLengthModifier(
8635 const analyze_format_string::FormatSpecifier &FS,
8636 const char *startSpecifier, unsigned specifierLen) {
8637 using namespace analyze_format_string;
8638
8639 const LengthModifier &LM = FS.getLengthModifier();
8640 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
8641
8642 // See if we know how to fix this length modifier.
8643 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
8644 if (FixedLM) {
8645 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8646 << LM.toString() << 0,
8647 getLocationOfByte(LM.getStart()),
8648 /*IsStringLocation*/true,
8649 getSpecifierRange(startSpecifier, specifierLen));
8650
8651 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
8652 << FixedLM->toString()
8653 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
8654
8655 } else {
8656 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8657 << LM.toString() << 0,
8658 getLocationOfByte(LM.getStart()),
8659 /*IsStringLocation*/true,
8660 getSpecifierRange(startSpecifier, specifierLen));
8661 }
8662}
8663
8664void CheckFormatHandler::HandleNonStandardConversionSpecifier(
8665 const analyze_format_string::ConversionSpecifier &CS,
8666 const char *startSpecifier, unsigned specifierLen) {
8667 using namespace analyze_format_string;
8668
8669 // See if we know how to fix this conversion specifier.
8670 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
8671 if (FixedCS) {
8672 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8673 << CS.toString() << /*conversion specifier*/1,
8674 getLocationOfByte(CS.getStart()),
8675 /*IsStringLocation*/true,
8676 getSpecifierRange(startSpecifier, specifierLen));
8677
8678 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
8679 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
8680 << FixedCS->toString()
8681 << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
8682 } else {
8683 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
8684 << CS.toString() << /*conversion specifier*/1,
8685 getLocationOfByte(CS.getStart()),
8686 /*IsStringLocation*/true,
8687 getSpecifierRange(startSpecifier, specifierLen));
8688 }
8689}
8690
8691void CheckFormatHandler::HandlePosition(const char *startPos,
8692 unsigned posLen) {
8693 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
8694 getLocationOfByte(startPos),
8695 /*IsStringLocation*/true,
8696 getSpecifierRange(startPos, posLen));
8697}
8698
8699void
8700CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
8701 analyze_format_string::PositionContext p) {
8702 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
8703 << (unsigned) p,
8704 getLocationOfByte(startPos), /*IsStringLocation*/true,
8705 getSpecifierRange(startPos, posLen));
8706}
8707
8708void CheckFormatHandler::HandleZeroPosition(const char *startPos,
8709 unsigned posLen) {
8710 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
8711 getLocationOfByte(startPos),
8712 /*IsStringLocation*/true,
8713 getSpecifierRange(startPos, posLen));
8714}
8715
8716void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
8717 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
8718 // The presence of a null character is likely an error.
8719 EmitFormatDiagnostic(
8720 S.PDiag(diag::warn_printf_format_string_contains_null_char),
8721 getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
8722 getFormatStringRange());
8723 }
8724}
8725
8726// Note that this may return NULL if there was an error parsing or building
8727// one of the argument expressions.
8728const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
8729 return Args[FirstDataArg + i];
8730}
8731
8732void CheckFormatHandler::DoneProcessing() {
8733 // Does the number of data arguments exceed the number of
8734 // format conversions in the format string?
8735 if (!HasVAListArg) {
8736 // Find any arguments that weren't covered.
8737 CoveredArgs.flip();
8738 signed notCoveredArg = CoveredArgs.find_first();
8739 if (notCoveredArg >= 0) {
8740 assert((unsigned)notCoveredArg < NumDataArgs)(static_cast <bool> ((unsigned)notCoveredArg < NumDataArgs
) ? void (0) : __assert_fail ("(unsigned)notCoveredArg < NumDataArgs"
, "clang/lib/Sema/SemaChecking.cpp", 8740, __extension__ __PRETTY_FUNCTION__
))
;
8741 UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
8742 } else {
8743 UncoveredArg.setAllCovered();
8744 }
8745 }
8746}
8747
8748void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
8749 const Expr *ArgExpr) {
8750 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&(static_cast <bool> (hasUncoveredArg() && DiagnosticExprs
.size() > 0 && "Invalid state") ? void (0) : __assert_fail
("hasUncoveredArg() && DiagnosticExprs.size() > 0 && \"Invalid state\""
, "clang/lib/Sema/SemaChecking.cpp", 8751, __extension__ __PRETTY_FUNCTION__
))
8751 "Invalid state")(static_cast <bool> (hasUncoveredArg() && DiagnosticExprs
.size() > 0 && "Invalid state") ? void (0) : __assert_fail
("hasUncoveredArg() && DiagnosticExprs.size() > 0 && \"Invalid state\""
, "clang/lib/Sema/SemaChecking.cpp", 8751, __extension__ __PRETTY_FUNCTION__
))
;
8752
8753 if (!ArgExpr)
8754 return;
8755
8756 SourceLocation Loc = ArgExpr->getBeginLoc();
8757
8758 if (S.getSourceManager().isInSystemMacro(Loc))
8759 return;
8760
8761 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
8762 for (auto E : DiagnosticExprs)
8763 PDiag << E->getSourceRange();
8764
8765 CheckFormatHandler::EmitFormatDiagnostic(
8766 S, IsFunctionCall, DiagnosticExprs[0],
8767 PDiag, Loc, /*IsStringLocation*/false,
8768 DiagnosticExprs[0]->getSourceRange());
8769}
8770
8771bool
8772CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
8773 SourceLocation Loc,
8774 const char *startSpec,
8775 unsigned specifierLen,
8776 const char *csStart,
8777 unsigned csLen) {
8778 bool keepGoing = true;
8779 if (argIndex < NumDataArgs) {
8780 // Consider the argument coverered, even though the specifier doesn't
8781 // make sense.
8782 CoveredArgs.set(argIndex);
8783 }
8784 else {
8785 // If argIndex exceeds the number of data arguments we
8786 // don't issue a warning because that is just a cascade of warnings (and
8787 // they may have intended '%%' anyway). We don't want to continue processing
8788 // the format string after this point, however, as we will like just get
8789 // gibberish when trying to match arguments.
8790 keepGoing = false;
8791 }
8792
8793 StringRef Specifier(csStart, csLen);
8794
8795 // If the specifier in non-printable, it could be the first byte of a UTF-8
8796 // sequence. In that case, print the UTF-8 code point. If not, print the byte
8797 // hex value.
8798 std::string CodePointStr;
8799 if (!llvm::sys::locale::isPrint(*csStart)) {
8800 llvm::UTF32 CodePoint;
8801 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
8802 const llvm::UTF8 *E =
8803 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
8804 llvm::ConversionResult Result =
8805 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
8806
8807 if (Result != llvm::conversionOK) {
8808 unsigned char FirstChar = *csStart;
8809 CodePoint = (llvm::UTF32)FirstChar;
8810 }
8811
8812 llvm::raw_string_ostream OS(CodePointStr);
8813 if (CodePoint < 256)
8814 OS << "\\x" << llvm::format("%02x", CodePoint);
8815 else if (CodePoint <= 0xFFFF)
8816 OS << "\\u" << llvm::format("%04x", CodePoint);
8817 else
8818 OS << "\\U" << llvm::format("%08x", CodePoint);
8819 OS.flush();
8820 Specifier = CodePointStr;
8821 }
8822
8823 EmitFormatDiagnostic(
8824 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
8825 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
8826
8827 return keepGoing;
8828}
8829
8830void
8831CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
8832 const char *startSpec,
8833 unsigned specifierLen) {
8834 EmitFormatDiagnostic(
8835 S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
8836 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
8837}
8838
8839bool
8840CheckFormatHandler::CheckNumArgs(
8841 const analyze_format_string::FormatSpecifier &FS,
8842 const analyze_format_string::ConversionSpecifier &CS,
8843 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
8844
8845 if (argIndex >= NumDataArgs) {
8846 PartialDiagnostic PDiag = FS.usesPositionalArg()
8847 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
8848 << (argIndex+1) << NumDataArgs)
8849 : S.PDiag(diag::warn_printf_insufficient_data_args);
8850 EmitFormatDiagnostic(
8851 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
8852 getSpecifierRange(startSpecifier, specifierLen));
8853
8854 // Since more arguments than conversion tokens are given, by extension
8855 // all arguments are covered, so mark this as so.
8856 UncoveredArg.setAllCovered();
8857 return false;
8858 }
8859 return true;
8860}
8861
8862template<typename Range>
8863void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
8864 SourceLocation Loc,
8865 bool IsStringLocation,
8866 Range StringRange,
8867 ArrayRef<FixItHint> FixIt) {
8868 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
8869 Loc, IsStringLocation, StringRange, FixIt);
8870}
8871
8872/// If the format string is not within the function call, emit a note
8873/// so that the function call and string are in diagnostic messages.
8874///
8875/// \param InFunctionCall if true, the format string is within the function
8876/// call and only one diagnostic message will be produced. Otherwise, an
8877/// extra note will be emitted pointing to location of the format string.
8878///
8879/// \param ArgumentExpr the expression that is passed as the format string
8880/// argument in the function call. Used for getting locations when two
8881/// diagnostics are emitted.
8882///
8883/// \param PDiag the callee should already have provided any strings for the
8884/// diagnostic message. This function only adds locations and fixits
8885/// to diagnostics.
8886///
8887/// \param Loc primary location for diagnostic. If two diagnostics are
8888/// required, one will be at Loc and a new SourceLocation will be created for
8889/// the other one.
8890///
8891/// \param IsStringLocation if true, Loc points to the format string should be
8892/// used for the note. Otherwise, Loc points to the argument list and will
8893/// be used with PDiag.
8894///
8895/// \param StringRange some or all of the string to highlight. This is
8896/// templated so it can accept either a CharSourceRange or a SourceRange.
8897///
8898/// \param FixIt optional fix it hint for the format string.
8899template <typename Range>
8900void CheckFormatHandler::EmitFormatDiagnostic(
8901 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
8902 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
8903 Range StringRange, ArrayRef<FixItHint> FixIt) {
8904 if (InFunctionCall) {
8905 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
8906 D << StringRange;
8907 D << FixIt;
8908 } else {
8909 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
8910 << ArgumentExpr->getSourceRange();
8911
8912 const Sema::SemaDiagnosticBuilder &Note =
8913 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
8914 diag::note_format_string_defined);
8915
8916 Note << StringRange;
8917 Note << FixIt;
8918 }
8919}
8920
8921//===--- CHECK: Printf format string checking ------------------------------===//
8922
8923namespace {
8924
8925class CheckPrintfHandler : public CheckFormatHandler {
8926public:
8927 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
8928 const Expr *origFormatExpr,
8929 const Sema::FormatStringType type, unsigned firstDataArg,
8930 unsigned numDataArgs, bool isObjC, const char *beg,
8931 bool hasVAListArg, ArrayRef<const Expr *> Args,
8932 unsigned formatIdx, bool inFunctionCall,
8933 Sema::VariadicCallType CallType,
8934 llvm::SmallBitVector &CheckedVarArgs,
8935 UncoveredArgHandler &UncoveredArg)
8936 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8937 numDataArgs, beg, hasVAListArg, Args, formatIdx,
8938 inFunctionCall, CallType, CheckedVarArgs,
8939 UncoveredArg) {}
8940
8941 bool isObjCContext() const { return FSType == Sema::FST_NSString; }
8942
8943 /// Returns true if '%@' specifiers are allowed in the format string.
8944 bool allowsObjCArg() const {
8945 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
8946 FSType == Sema::FST_OSTrace;
8947 }
8948
8949 bool HandleInvalidPrintfConversionSpecifier(
8950 const analyze_printf::PrintfSpecifier &FS,
8951 const char *startSpecifier,
8952 unsigned specifierLen) override;
8953
8954 void handleInvalidMaskType(StringRef MaskType) override;
8955
8956 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
8957 const char *startSpecifier, unsigned specifierLen,
8958 const TargetInfo &Target) override;
8959 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8960 const char *StartSpecifier,
8961 unsigned SpecifierLen,
8962 const Expr *E);
8963
8964 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
8965 const char *startSpecifier, unsigned specifierLen);
8966 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
8967 const analyze_printf::OptionalAmount &Amt,
8968 unsigned type,
8969 const char *startSpecifier, unsigned specifierLen);
8970 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8971 const analyze_printf::OptionalFlag &flag,
8972 const char *startSpecifier, unsigned specifierLen);
8973 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
8974 const analyze_printf::OptionalFlag &ignoredFlag,
8975 const analyze_printf::OptionalFlag &flag,
8976 const char *startSpecifier, unsigned specifierLen);
8977 bool checkForCStrMembers(const analyze_printf::ArgType &AT,
8978 const Expr *E);
8979
8980 void HandleEmptyObjCModifierFlag(const char *startFlag,
8981 unsigned flagLen) override;
8982
8983 void HandleInvalidObjCModifierFlag(const char *startFlag,
8984 unsigned flagLen) override;
8985
8986 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8987 const char *flagsEnd,
8988 const char *conversionPosition)
8989 override;
8990};
8991
8992} // namespace
8993
8994bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8995 const analyze_printf::PrintfSpecifier &FS,
8996 const char *startSpecifier,
8997 unsigned specifierLen) {
8998 const analyze_printf::PrintfConversionSpecifier &CS =
8999 FS.getConversionSpecifier();
9000
9001 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
9002 getLocationOfByte(CS.getStart()),
9003 startSpecifier, specifierLen,
9004 CS.getStart(), CS.getLength());
9005}
9006
9007void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
9008 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
9009}
9010
9011bool CheckPrintfHandler::HandleAmount(
9012 const analyze_format_string::OptionalAmount &Amt,
9013 unsigned k, const char *startSpecifier,
9014 unsigned specifierLen) {
9015 if (Amt.hasDataArgument()) {
9016 if (!HasVAListArg) {
9017 unsigned argIndex = Amt.getArgIndex();
9018 if (argIndex >= NumDataArgs) {
9019 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
9020 << k,
9021 getLocationOfByte(Amt.getStart()),
9022 /*IsStringLocation*/true,
9023 getSpecifierRange(startSpecifier, specifierLen));
9024 // Don't do any more checking. We will just emit
9025 // spurious errors.
9026 return false;
9027 }
9028
9029 // Type check the data argument. It should be an 'int'.
9030 // Although not in conformance with C99, we also allow the argument to be
9031 // an 'unsigned int' as that is a reasonably safe case. GCC also
9032 // doesn't emit a warning for that case.
9033 CoveredArgs.set(argIndex);
9034 const Expr *Arg = getDataArg(argIndex);
9035 if (!Arg)
9036 return false;
9037
9038 QualType T = Arg->getType();
9039
9040 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
9041 assert(AT.isValid())(static_cast <bool> (AT.isValid()) ? void (0) : __assert_fail
("AT.isValid()", "clang/lib/Sema/SemaChecking.cpp", 9041, __extension__
__PRETTY_FUNCTION__))
;
9042
9043 if (!AT.matchesType(S.Context, T)) {
9044 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
9045 << k << AT.getRepresentativeTypeName(S.Context)
9046 << T << Arg->getSourceRange(),
9047 getLocationOfByte(Amt.getStart()),
9048 /*IsStringLocation*/true,
9049 getSpecifierRange(startSpecifier, specifierLen));
9050 // Don't do any more checking. We will just emit
9051 // spurious errors.
9052 return false;
9053 }
9054 }
9055 }
9056 return true;
9057}
9058
9059void CheckPrintfHandler::HandleInvalidAmount(
9060 const analyze_printf::PrintfSpecifier &FS,
9061 const analyze_printf::OptionalAmount &Amt,
9062 unsigned type,
9063 const char *startSpecifier,
9064 unsigned specifierLen) {
9065 const analyze_printf::PrintfConversionSpecifier &CS =
9066 FS.getConversionSpecifier();
9067
9068 FixItHint fixit =
9069 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
9070 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
9071 Amt.getConstantLength()))
9072 : FixItHint();
9073
9074 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
9075 << type << CS.toString(),
9076 getLocationOfByte(Amt.getStart()),
9077 /*IsStringLocation*/true,
9078 getSpecifierRange(startSpecifier, specifierLen),
9079 fixit);
9080}
9081
9082void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
9083 const analyze_printf::OptionalFlag &flag,
9084 const char *startSpecifier,
9085 unsigned specifierLen) {
9086 // Warn about pointless flag with a fixit removal.
9087 const analyze_printf::PrintfConversionSpecifier &CS =
9088 FS.getConversionSpecifier();
9089 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
9090 << flag.toString() << CS.toString(),
9091 getLocationOfByte(flag.getPosition()),
9092 /*IsStringLocation*/true,
9093 getSpecifierRange(startSpecifier, specifierLen),
9094 FixItHint::CreateRemoval(
9095 getSpecifierRange(flag.getPosition(), 1)));
9096}
9097
9098void CheckPrintfHandler::HandleIgnoredFlag(
9099 const analyze_printf::PrintfSpecifier &FS,
9100 const analyze_printf::OptionalFlag &ignoredFlag,
9101 const analyze_printf::OptionalFlag &flag,
9102 const char *startSpecifier,
9103 unsigned specifierLen) {
9104 // Warn about ignored flag with a fixit removal.
9105 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
9106 << ignoredFlag.toString() << flag.toString(),
9107 getLocationOfByte(ignoredFlag.getPosition()),
9108 /*IsStringLocation*/true,
9109 getSpecifierRange(startSpecifier, specifierLen),
9110 FixItHint::CreateRemoval(
9111 getSpecifierRange(ignoredFlag.getPosition(), 1)));
9112}
9113
9114void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
9115 unsigned flagLen) {
9116 // Warn about an empty flag.
9117 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
9118 getLocationOfByte(startFlag),
9119 /*IsStringLocation*/true,
9120 getSpecifierRange(startFlag, flagLen));
9121}
9122
9123void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
9124 unsigned flagLen) {
9125 // Warn about an invalid flag.
9126 auto Range = getSpecifierRange(startFlag, flagLen);
9127 StringRef flag(startFlag, flagLen);
9128 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
9129 getLocationOfByte(startFlag),
9130 /*IsStringLocation*/true,
9131 Range, FixItHint::CreateRemoval(Range));
9132}
9133
9134void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
9135 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
9136 // Warn about using '[...]' without a '@' conversion.
9137 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
9138 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
9139 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
9140 getLocationOfByte(conversionPosition),
9141 /*IsStringLocation*/true,
9142 Range, FixItHint::CreateRemoval(Range));
9143}
9144
9145// Determines if the specified is a C++ class or struct containing
9146// a member with the specified name and kind (e.g. a CXXMethodDecl named
9147// "c_str()").
9148template<typename MemberKind>
9149static llvm::SmallPtrSet<MemberKind*, 1>
9150CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
9151 const RecordType *RT = Ty->getAs<RecordType>();
9152 llvm::SmallPtrSet<MemberKind*, 1> Results;
9153
9154 if (!RT)
9155 return Results;
9156 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
9157 if (!RD || !RD->getDefinition())
9158 return Results;
9159
9160 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
9161 Sema::LookupMemberName);
9162 R.suppressDiagnostics();
9163
9164 // We just need to include all members of the right kind turned up by the
9165 // filter, at this point.
9166 if (S.LookupQualifiedName(R, RT->getDecl()))
9167 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
9168 NamedDecl *decl = (*I)->getUnderlyingDecl();
9169 if (MemberKind *FK = dyn_cast<MemberKind>(decl))
9170 Results.insert(FK);
9171 }
9172 return Results;
9173}
9174
9175/// Check if we could call '.c_str()' on an object.
9176///
9177/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
9178/// allow the call, or if it would be ambiguous).
9179bool Sema::hasCStrMethod(const Expr *E) {
9180 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
9181
9182 MethodSet Results =
9183 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
9184 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
9185 MI != ME; ++MI)
9186 if ((*MI)->getMinRequiredArguments() == 0)
9187 return true;
9188 return false;
9189}
9190
9191// Check if a (w)string was passed when a (w)char* was needed, and offer a
9192// better diagnostic if so. AT is assumed to be valid.
9193// Returns true when a c_str() conversion method is found.
9194bool CheckPrintfHandler::checkForCStrMembers(
9195 const analyze_printf::ArgType &AT, const Expr *E) {
9196 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
9197
9198 MethodSet Results =
9199 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
9200
9201 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
9202 MI != ME; ++MI) {
9203 const CXXMethodDecl *Method = *MI;
9204 if (Method->getMinRequiredArguments() == 0 &&
9205 AT.matchesType(S.Context, Method->getReturnType())) {
9206 // FIXME: Suggest parens if the expression needs them.
9207 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
9208 S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
9209 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
9210 return true;
9211 }
9212 }
9213
9214 return false;
9215}
9216
9217bool CheckPrintfHandler::HandlePrintfSpecifier(
9218 const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
9219 unsigned specifierLen, const TargetInfo &Target) {
9220 using namespace analyze_format_string;
9221 using namespace analyze_printf;
9222
9223 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
9224
9225 if (FS.consumesDataArgument()) {
9226 if (atFirstArg) {
9227 atFirstArg = false;
9228 usesPositionalArgs = FS.usesPositionalArg();
9229 }
9230 else if (usesPositionalArgs != FS.usesPositionalArg()) {
9231 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
9232 startSpecifier, specifierLen);
9233 return false;
9234 }
9235 }
9236
9237 // First check if the field width, precision, and conversion specifier
9238 // have matching data arguments.
9239 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
9240 startSpecifier, specifierLen)) {
9241 return false;
9242 }
9243
9244 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
9245 startSpecifier, specifierLen)) {
9246 return false;
9247 }
9248
9249 if (!CS.consumesDataArgument()) {
9250 // FIXME: Technically specifying a precision or field width here
9251 // makes no sense. Worth issuing a warning at some point.
9252 return true;
9253 }
9254
9255 // Consume the argument.
9256 unsigned argIndex = FS.getArgIndex();
9257 if (argIndex < NumDataArgs) {
9258 // The check to see if the argIndex is valid will come later.
9259 // We set the bit here because we may exit early from this
9260 // function if we encounter some other error.
9261 CoveredArgs.set(argIndex);
9262 }
9263
9264 // FreeBSD kernel extensions.
9265 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
9266 CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
9267 // We need at least two arguments.
9268 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
9269 return false;
9270
9271 // Claim the second argument.
9272 CoveredArgs.set(argIndex + 1);
9273
9274 // Type check the first argument (int for %b, pointer for %D)
9275 const Expr *Ex = getDataArg(argIndex);
9276 const analyze_printf::ArgType &AT =
9277 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
9278 ArgType(S.Context.IntTy) : ArgType::CPointerTy;
9279 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
9280 EmitFormatDiagnostic(
9281 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9282 << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
9283 << false << Ex->getSourceRange(),
9284 Ex->getBeginLoc(), /*IsStringLocation*/ false,
9285 getSpecifierRange(startSpecifier, specifierLen));
9286
9287 // Type check the second argument (char * for both %b and %D)
9288 Ex = getDataArg(argIndex + 1);
9289 const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
9290 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
9291 EmitFormatDiagnostic(
9292 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9293 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
9294 << false << Ex->getSourceRange(),
9295 Ex->getBeginLoc(), /*IsStringLocation*/ false,
9296 getSpecifierRange(startSpecifier, specifierLen));
9297
9298 return true;
9299 }
9300
9301 // Check for using an Objective-C specific conversion specifier
9302 // in a non-ObjC literal.
9303 if (!allowsObjCArg() && CS.isObjCArg()) {
9304 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9305 specifierLen);
9306 }
9307
9308 // %P can only be used with os_log.
9309 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
9310 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9311 specifierLen);
9312 }
9313
9314 // %n is not allowed with os_log.
9315 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
9316 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
9317 getLocationOfByte(CS.getStart()),
9318 /*IsStringLocation*/ false,
9319 getSpecifierRange(startSpecifier, specifierLen));
9320
9321 return true;
9322 }
9323
9324 // Only scalars are allowed for os_trace.
9325 if (FSType == Sema::FST_OSTrace &&
9326 (CS.getKind() == ConversionSpecifier::PArg ||
9327 CS.getKind() == ConversionSpecifier::sArg ||
9328 CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
9329 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9330 specifierLen);
9331 }
9332
9333 // Check for use of public/private annotation outside of os_log().
9334 if (FSType != Sema::FST_OSLog) {
9335 if (FS.isPublic().isSet()) {
9336 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9337 << "public",
9338 getLocationOfByte(FS.isPublic().getPosition()),
9339 /*IsStringLocation*/ false,
9340 getSpecifierRange(startSpecifier, specifierLen));
9341 }
9342 if (FS.isPrivate().isSet()) {
9343 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9344 << "private",
9345 getLocationOfByte(FS.isPrivate().getPosition()),
9346 /*IsStringLocation*/ false,
9347 getSpecifierRange(startSpecifier, specifierLen));
9348 }
9349 }
9350
9351 const llvm::Triple &Triple = Target.getTriple();
9352 if (CS.getKind() == ConversionSpecifier::nArg &&
9353 (Triple.isAndroid() || Triple.isOSFuchsia())) {
9354 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported),
9355 getLocationOfByte(CS.getStart()),
9356 /*IsStringLocation*/ false,
9357 getSpecifierRange(startSpecifier, specifierLen));
9358 }
9359
9360 // Check for invalid use of field width
9361 if (!FS.hasValidFieldWidth()) {
9362 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
9363 startSpecifier, specifierLen);
9364 }
9365
9366 // Check for invalid use of precision
9367 if (!FS.hasValidPrecision()) {
9368 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
9369 startSpecifier, specifierLen);
9370 }
9371
9372 // Precision is mandatory for %P specifier.
9373 if (CS.getKind() == ConversionSpecifier::PArg &&
9374 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
9375 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
9376 getLocationOfByte(startSpecifier),
9377 /*IsStringLocation*/ false,
9378 getSpecifierRange(startSpecifier, specifierLen));
9379 }
9380
9381 // Check each flag does not conflict with any other component.
9382 if (!FS.hasValidThousandsGroupingPrefix())
9383 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
9384 if (!FS.hasValidLeadingZeros())
9385 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
9386 if (!FS.hasValidPlusPrefix())
9387 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
9388 if (!FS.hasValidSpacePrefix())
9389 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
9390 if (!FS.hasValidAlternativeForm())
9391 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
9392 if (!FS.hasValidLeftJustified())
9393 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
9394
9395 // Check that flags are not ignored by another flag
9396 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
9397 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
9398 startSpecifier, specifierLen);
9399 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
9400 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
9401 startSpecifier, specifierLen);
9402
9403 // Check the length modifier is valid with the given conversion specifier.
9404 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9405 S.getLangOpts()))
9406 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9407 diag::warn_format_nonsensical_length);
9408 else if (!FS.hasStandardLengthModifier())
9409 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9410 else if (!FS.hasStandardLengthConversionCombination())
9411 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9412 diag::warn_format_non_standard_conversion_spec);
9413
9414 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9415 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9416
9417 // The remaining checks depend on the data arguments.
9418 if (HasVAListArg)
9419 return true;
9420
9421 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9422 return false;
9423
9424 const Expr *Arg = getDataArg(argIndex);
9425 if (!Arg)
9426 return true;
9427
9428 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
9429}
9430
9431static bool requiresParensToAddCast(const Expr *E) {
9432 // FIXME: We should have a general way to reason about operator
9433 // precedence and whether parens are actually needed here.
9434 // Take care of a few common cases where they aren't.
9435 const Expr *Inside = E->IgnoreImpCasts();
9436 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
9437 Inside = POE->getSyntacticForm()->IgnoreImpCasts();
9438
9439 switch (Inside->getStmtClass()) {
9440 case Stmt::ArraySubscriptExprClass:
9441 case Stmt::CallExprClass:
9442 case Stmt::CharacterLiteralClass:
9443 case Stmt::CXXBoolLiteralExprClass:
9444 case Stmt::DeclRefExprClass:
9445 case Stmt::FloatingLiteralClass:
9446 case Stmt::IntegerLiteralClass:
9447 case Stmt::MemberExprClass:
9448 case Stmt::ObjCArrayLiteralClass:
9449 case Stmt::ObjCBoolLiteralExprClass:
9450 case Stmt::ObjCBoxedExprClass:
9451 case Stmt::ObjCDictionaryLiteralClass:
9452 case Stmt::ObjCEncodeExprClass:
9453 case Stmt::ObjCIvarRefExprClass:
9454 case Stmt::ObjCMessageExprClass:
9455 case Stmt::ObjCPropertyRefExprClass:
9456 case Stmt::ObjCStringLiteralClass:
9457 case Stmt::ObjCSubscriptRefExprClass:
9458 case Stmt::ParenExprClass:
9459 case Stmt::StringLiteralClass:
9460 case Stmt::UnaryOperatorClass:
9461 return false;
9462 default:
9463 return true;
9464 }
9465}
9466
9467static std::pair<QualType, StringRef>
9468shouldNotPrintDirectly(const ASTContext &Context,
9469 QualType IntendedTy,
9470 const Expr *E) {
9471 // Use a 'while' to peel off layers of typedefs.
9472 QualType TyTy = IntendedTy;
9473 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
9474 StringRef Name = UserTy->getDecl()->getName();
9475 QualType CastTy = llvm::StringSwitch<QualType>(Name)
9476 .Case("CFIndex", Context.getNSIntegerType())
9477 .Case("NSInteger", Context.getNSIntegerType())
9478 .Case("NSUInteger", Context.getNSUIntegerType())
9479 .Case("SInt32", Context.IntTy)
9480 .Case("UInt32", Context.UnsignedIntTy)
9481 .Default(QualType());
9482
9483 if (!CastTy.isNull())
9484 return std::make_pair(CastTy, Name);
9485
9486 TyTy = UserTy->desugar();
9487 }
9488
9489 // Strip parens if necessary.
9490 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
9491 return shouldNotPrintDirectly(Context,
9492 PE->getSubExpr()->getType(),
9493 PE->getSubExpr());
9494
9495 // If this is a conditional expression, then its result type is constructed
9496 // via usual arithmetic conversions and thus there might be no necessary
9497 // typedef sugar there. Recurse to operands to check for NSInteger &
9498 // Co. usage condition.
9499 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
9500 QualType TrueTy, FalseTy;
9501 StringRef TrueName, FalseName;
9502
9503 std::tie(TrueTy, TrueName) =
9504 shouldNotPrintDirectly(Context,
9505 CO->getTrueExpr()->getType(),
9506 CO->getTrueExpr());
9507 std::tie(FalseTy, FalseName) =
9508 shouldNotPrintDirectly(Context,
9509 CO->getFalseExpr()->getType(),
9510 CO->getFalseExpr());
9511
9512 if (TrueTy == FalseTy)
9513 return std::make_pair(TrueTy, TrueName);
9514 else if (TrueTy.isNull())
9515 return std::make_pair(FalseTy, FalseName);
9516 else if (FalseTy.isNull())
9517 return std::make_pair(TrueTy, TrueName);
9518 }
9519
9520 return std::make_pair(QualType(), StringRef());
9521}
9522
9523/// Return true if \p ICE is an implicit argument promotion of an arithmetic
9524/// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
9525/// type do not count.
9526static bool
9527isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
9528 QualType From = ICE->getSubExpr()->getType();
9529 QualType To = ICE->getType();
9530 // It's an integer promotion if the destination type is the promoted
9531 // source type.
9532 if (ICE->getCastKind() == CK_IntegralCast &&
9533 From->isPromotableIntegerType() &&
9534 S.Context.getPromotedIntegerType(From) == To)
9535 return true;
9536 // Look through vector types, since we do default argument promotion for
9537 // those in OpenCL.
9538 if (const auto *VecTy = From->getAs<ExtVectorType>())
9539 From = VecTy->getElementType();
9540 if (const auto *VecTy = To->getAs<ExtVectorType>())
9541 To = VecTy->getElementType();
9542 // It's a floating promotion if the source type is a lower rank.
9543 return ICE->getCastKind() == CK_FloatingCast &&
9544 S.Context.getFloatingTypeOrder(From, To) < 0;
9545}
9546
9547bool
9548CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
9549 const char *StartSpecifier,
9550 unsigned SpecifierLen,
9551 const Expr *E) {
9552 using namespace analyze_format_string;
9553 using namespace analyze_printf;
9554
9555 // Now type check the data expression that matches the
9556 // format specifier.
9557 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
9558 if (!AT.isValid())
9559 return true;
9560
9561 QualType ExprTy = E->getType();
9562 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
9563 ExprTy = TET->getUnderlyingExpr()->getType();
9564 }
9565
9566 // Diagnose attempts to print a boolean value as a character. Unlike other
9567 // -Wformat diagnostics, this is fine from a type perspective, but it still
9568 // doesn't make sense.
9569 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
9570 E->isKnownToHaveBooleanValue()) {
9571 const CharSourceRange &CSR =
9572 getSpecifierRange(StartSpecifier, SpecifierLen);
9573 SmallString<4> FSString;
9574 llvm::raw_svector_ostream os(FSString);
9575 FS.toString(os);
9576 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
9577 << FSString,
9578 E->getExprLoc(), false, CSR);
9579 return true;
9580 }
9581
9582 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
9583 if (Match == analyze_printf::ArgType::Match)
9584 return true;
9585
9586 // Look through argument promotions for our error message's reported type.
9587 // This includes the integral and floating promotions, but excludes array
9588 // and function pointer decay (seeing that an argument intended to be a
9589 // string has type 'char [6]' is probably more confusing than 'char *') and
9590 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
9591 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9592 if (isArithmeticArgumentPromotion(S, ICE)) {
9593 E = ICE->getSubExpr();
9594 ExprTy = E->getType();
9595
9596 // Check if we didn't match because of an implicit cast from a 'char'
9597 // or 'short' to an 'int'. This is done because printf is a varargs
9598 // function.
9599 if (ICE->getType() == S.Context.IntTy ||
9600 ICE->getType() == S.Context.UnsignedIntTy) {
9601 // All further checking is done on the subexpression
9602 const analyze_printf::ArgType::MatchKind ImplicitMatch =
9603 AT.matchesType(S.Context, ExprTy);
9604 if (ImplicitMatch == analyze_printf::ArgType::Match)
9605 return true;
9606 if (ImplicitMatch == ArgType::NoMatchPedantic ||
9607 ImplicitMatch == ArgType::NoMatchTypeConfusion)
9608 Match = ImplicitMatch;
9609 }
9610 }
9611 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
9612 // Special case for 'a', which has type 'int' in C.
9613 // Note, however, that we do /not/ want to treat multibyte constants like
9614 // 'MooV' as characters! This form is deprecated but still exists. In
9615 // addition, don't treat expressions as of type 'char' if one byte length
9616 // modifier is provided.
9617 if (ExprTy == S.Context.IntTy &&
9618 FS.getLengthModifier().getKind() != LengthModifier::AsChar)
9619 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
9620 ExprTy = S.Context.CharTy;
9621 }
9622
9623 // Look through enums to their underlying type.
9624 bool IsEnum = false;
9625 if (auto EnumTy = ExprTy->getAs<EnumType>()) {
9626 ExprTy = EnumTy->getDecl()->getIntegerType();
9627 IsEnum = true;
9628 }
9629
9630 // %C in an Objective-C context prints a unichar, not a wchar_t.
9631 // If the argument is an integer of some kind, believe the %C and suggest
9632 // a cast instead of changing the conversion specifier.
9633 QualType IntendedTy = ExprTy;
9634 if (isObjCContext() &&
9635 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
9636 if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
9637 !ExprTy->isCharType()) {
9638 // 'unichar' is defined as a typedef of unsigned short, but we should
9639 // prefer using the typedef if it is visible.
9640 IntendedTy = S.Context.UnsignedShortTy;
9641
9642 // While we are here, check if the value is an IntegerLiteral that happens
9643 // to be within the valid range.
9644 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
9645 const llvm::APInt &V = IL->getValue();
9646 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
9647 return true;
9648 }
9649
9650 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
9651 Sema::LookupOrdinaryName);
9652 if (S.LookupName(Result, S.getCurScope())) {
9653 NamedDecl *ND = Result.getFoundDecl();
9654 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
9655 if (TD->getUnderlyingType() == IntendedTy)
9656 IntendedTy = S.Context.getTypedefType(TD);
9657 }
9658 }
9659 }
9660
9661 // Special-case some of Darwin's platform-independence types by suggesting
9662 // casts to primitive types that are known to be large enough.
9663 bool ShouldNotPrintDirectly = false; StringRef CastTyName;
9664 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
9665 QualType CastTy;
9666 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
9667 if (!CastTy.isNull()) {
9668 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
9669 // (long in ASTContext). Only complain to pedants.
9670 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
9671 (AT.isSizeT() || AT.isPtrdiffT()) &&
9672 AT.matchesType(S.Context, CastTy))
9673 Match = ArgType::NoMatchPedantic;
9674 IntendedTy = CastTy;
9675 ShouldNotPrintDirectly = true;
9676 }
9677 }
9678
9679 // We may be able to offer a FixItHint if it is a supported type.
9680 PrintfSpecifier fixedFS = FS;
9681 bool Success =
9682 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
9683
9684 if (Success) {
9685 // Get the fix string from the fixed format specifier
9686 SmallString<16> buf;
9687 llvm::raw_svector_ostream os(buf);
9688 fixedFS.toString(os);
9689
9690 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
9691
9692 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
9693 unsigned Diag;
9694 switch (Match) {
9695 case ArgType::Match: llvm_unreachable("expected non-matching")::llvm::llvm_unreachable_internal("expected non-matching", "clang/lib/Sema/SemaChecking.cpp"
, 9695)
;
9696 case ArgType::NoMatchPedantic:
9697 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9698 break;
9699 case ArgType::NoMatchTypeConfusion:
9700 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9701 break;
9702 case ArgType::NoMatch:
9703 Diag = diag::warn_format_conversion_argument_type_mismatch;
9704 break;
9705 }
9706
9707 // In this case, the specifier is wrong and should be changed to match
9708 // the argument.
9709 EmitFormatDiagnostic(S.PDiag(Diag)
9710 << AT.getRepresentativeTypeName(S.Context)
9711 << IntendedTy << IsEnum << E->getSourceRange(),
9712 E->getBeginLoc(),
9713 /*IsStringLocation*/ false, SpecRange,
9714 FixItHint::CreateReplacement(SpecRange, os.str()));
9715 } else {
9716 // The canonical type for formatting this value is different from the
9717 // actual type of the expression. (This occurs, for example, with Darwin's
9718 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
9719 // should be printed as 'long' for 64-bit compatibility.)
9720 // Rather than emitting a normal format/argument mismatch, we want to
9721 // add a cast to the recommended type (and correct the format string
9722 // if necessary).
9723 SmallString<16> CastBuf;
9724 llvm::raw_svector_ostream CastFix(CastBuf);
9725 CastFix << "(";
9726 IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
9727 CastFix << ")";
9728
9729 SmallVector<FixItHint,4> Hints;
9730 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
9731 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
9732
9733 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
9734 // If there's already a cast present, just replace it.
9735 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
9736 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
9737
9738 } else if (!requiresParensToAddCast(E)) {
9739 // If the expression has high enough precedence,
9740 // just write the C-style cast.
9741 Hints.push_back(
9742 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9743 } else {
9744 // Otherwise, add parens around the expression as well as the cast.
9745 CastFix << "(";
9746 Hints.push_back(
9747 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
9748
9749 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
9750 Hints.push_back(FixItHint::CreateInsertion(After, ")"));
9751 }
9752
9753 if (ShouldNotPrintDirectly) {
9754 // The expression has a type that should not be printed directly.
9755 // We extract the name from the typedef because we don't want to show
9756 // the underlying type in the diagnostic.
9757 StringRef Name;
9758 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
9759 Name = TypedefTy->getDecl()->getName();
9760 else
9761 Name = CastTyName;
9762 unsigned Diag = Match == ArgType::NoMatchPedantic
9763 ? diag::warn_format_argument_needs_cast_pedantic
9764 : diag::warn_format_argument_needs_cast;
9765 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
9766 << E->getSourceRange(),
9767 E->getBeginLoc(), /*IsStringLocation=*/false,
9768 SpecRange, Hints);
9769 } else {
9770 // In this case, the expression could be printed using a different
9771 // specifier, but we've decided that the specifier is probably correct
9772 // and we should cast instead. Just use the normal warning message.
9773 EmitFormatDiagnostic(
9774 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9775 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
9776 << E->getSourceRange(),
9777 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
9778 }
9779 }
9780 } else {
9781 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
9782 SpecifierLen);
9783 // Since the warning for passing non-POD types to variadic functions
9784 // was deferred until now, we emit a warning for non-POD
9785 // arguments here.
9786 switch (S.isValidVarArgType(ExprTy)) {
9787 case Sema::VAK_Valid:
9788 case Sema::VAK_ValidInCXX11: {
9789 unsigned Diag;
9790 switch (Match) {
9791 case ArgType::Match: llvm_unreachable("expected non-matching")::llvm::llvm_unreachable_internal("expected non-matching", "clang/lib/Sema/SemaChecking.cpp"
, 9791)
;
9792 case ArgType::NoMatchPedantic:
9793 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
9794 break;
9795 case ArgType::NoMatchTypeConfusion:
9796 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
9797 break;
9798 case ArgType::NoMatch:
9799 Diag = diag::warn_format_conversion_argument_type_mismatch;
9800 break;
9801 }
9802
9803 EmitFormatDiagnostic(
9804 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
9805 << IsEnum << CSR << E->getSourceRange(),
9806 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9807 break;
9808 }
9809 case Sema::VAK_Undefined:
9810 case Sema::VAK_MSVCUndefined:
9811 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
9812 << S.getLangOpts().CPlusPlus11 << ExprTy
9813 << CallType
9814 << AT.getRepresentativeTypeName(S.Context) << CSR
9815 << E->getSourceRange(),
9816 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9817 checkForCStrMembers(AT, E);
9818 break;
9819
9820 case Sema::VAK_Invalid:
9821 if (ExprTy->isObjCObjectType())
9822 EmitFormatDiagnostic(
9823 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
9824 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
9825 << AT.getRepresentativeTypeName(S.Context) << CSR
9826 << E->getSourceRange(),
9827 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
9828 else
9829 // FIXME: If this is an initializer list, suggest removing the braces
9830 // or inserting a cast to the target type.
9831 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
9832 << isa<InitListExpr>(E) << ExprTy << CallType
9833 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
9834 break;
9835 }
9836
9837 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&(static_cast <bool> (FirstDataArg + FS.getArgIndex() <
CheckedVarArgs.size() && "format string specifier index out of range"
) ? void (0) : __assert_fail ("FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && \"format string specifier index out of range\""
, "clang/lib/Sema/SemaChecking.cpp", 9838, __extension__ __PRETTY_FUNCTION__
))
9838 "format string specifier index out of range")(static_cast <bool> (FirstDataArg + FS.getArgIndex() <
CheckedVarArgs.size() && "format string specifier index out of range"
) ? void (0) : __assert_fail ("FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && \"format string specifier index out of range\""
, "clang/lib/Sema/SemaChecking.cpp", 9838, __extension__ __PRETTY_FUNCTION__
))
;
9839 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
9840 }
9841
9842 return true;
9843}
9844
9845//===--- CHECK: Scanf format string checking ------------------------------===//
9846
9847namespace {
9848
9849class CheckScanfHandler : public CheckFormatHandler {
9850public:
9851 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
9852 const Expr *origFormatExpr, Sema::FormatStringType type,
9853 unsigned firstDataArg, unsigned numDataArgs,
9854 const char *beg, bool hasVAListArg,
9855 ArrayRef<const Expr *> Args, unsigned formatIdx,
9856 bool inFunctionCall, Sema::VariadicCallType CallType,
9857 llvm::SmallBitVector &CheckedVarArgs,
9858 UncoveredArgHandler &UncoveredArg)
9859 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
9860 numDataArgs, beg, hasVAListArg, Args, formatIdx,
9861 inFunctionCall, CallType, CheckedVarArgs,
9862 UncoveredArg) {}
9863
9864 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
9865 const char *startSpecifier,
9866 unsigned specifierLen) override;
9867
9868 bool HandleInvalidScanfConversionSpecifier(
9869 const analyze_scanf::ScanfSpecifier &FS,
9870 const char *startSpecifier,
9871 unsigned specifierLen) override;
9872
9873 void HandleIncompleteScanList(const char *start, const char *end) override;
9874};
9875
9876} // namespace
9877
9878void CheckScanfHandler::HandleIncompleteScanList(const char *start,
9879 const char *end) {
9880 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
9881 getLocationOfByte(end), /*IsStringLocation*/true,
9882 getSpecifierRange(start, end - start));
9883}
9884
9885bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
9886 const analyze_scanf::ScanfSpecifier &FS,
9887 const char *startSpecifier,
9888 unsigned specifierLen) {
9889 const analyze_scanf::ScanfConversionSpecifier &CS =
9890 FS.getConversionSpecifier();
9891
9892 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
9893 getLocationOfByte(CS.getStart()),
9894 startSpecifier, specifierLen,
9895 CS.getStart(), CS.getLength());
9896}
9897
9898bool CheckScanfHandler::HandleScanfSpecifier(
9899 const analyze_scanf::ScanfSpecifier &FS,
9900 const char *startSpecifier,
9901 unsigned specifierLen) {
9902 using namespace analyze_scanf;
9903 using namespace analyze_format_string;
9904
9905 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
9906
9907 // Handle case where '%' and '*' don't consume an argument. These shouldn't
9908 // be used to decide if we are using positional arguments consistently.
9909 if (FS.consumesDataArgument()) {
9910 if (atFirstArg) {
9911 atFirstArg = false;
9912 usesPositionalArgs = FS.usesPositionalArg();
9913 }
9914 else if (usesPositionalArgs != FS.usesPositionalArg()) {
9915 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
9916 startSpecifier, specifierLen);
9917 return false;
9918 }
9919 }
9920
9921 // Check if the field with is non-zero.
9922 const OptionalAmount &Amt = FS.getFieldWidth();
9923 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
9924 if (Amt.getConstantAmount() == 0) {
9925 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
9926 Amt.getConstantLength());
9927 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
9928 getLocationOfByte(Amt.getStart()),
9929 /*IsStringLocation*/true, R,
9930 FixItHint::CreateRemoval(R));
9931 }
9932 }
9933
9934 if (!FS.consumesDataArgument()) {
9935 // FIXME: Technically specifying a precision or field width here
9936 // makes no sense. Worth issuing a warning at some point.
9937 return true;
9938 }
9939
9940 // Consume the argument.
9941 unsigned argIndex = FS.getArgIndex();
9942 if (argIndex < NumDataArgs) {
9943 // The check to see if the argIndex is valid will come later.
9944 // We set the bit here because we may exit early from this
9945 // function if we encounter some other error.
9946 CoveredArgs.set(argIndex);
9947 }
9948
9949 // Check the length modifier is valid with the given conversion specifier.
9950 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9951 S.getLangOpts()))
9952 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9953 diag::warn_format_nonsensical_length);
9954 else if (!FS.hasStandardLengthModifier())
9955 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9956 else if (!FS.hasStandardLengthConversionCombination())
9957 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9958 diag::warn_format_non_standard_conversion_spec);
9959
9960 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9961 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9962
9963 // The remaining checks depend on the data arguments.
9964 if (HasVAListArg)
9965 return true;
9966
9967 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9968 return false;
9969
9970 // Check that the argument type matches the format specifier.
9971 const Expr *Ex = getDataArg(argIndex);
9972 if (!Ex)
9973 return true;
9974
9975 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
9976
9977 if (!AT.isValid()) {
9978 return true;
9979 }
9980
9981 analyze_format_string::ArgType::MatchKind Match =
9982 AT.matchesType(S.Context, Ex->getType());
9983 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
9984 if (Match == analyze_format_string::ArgType::Match)
9985 return true;
9986
9987 ScanfSpecifier fixedFS = FS;
9988 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9989 S.getLangOpts(), S.Context);
9990
9991 unsigned Diag =
9992 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9993 : diag::warn_format_conversion_argument_type_mismatch;
9994
9995 if (Success) {
9996 // Get the fix string from the fixed format specifier.
9997 SmallString<128> buf;
9998 llvm::raw_svector_ostream os(buf);
9999 fixedFS.toString(os);
10000
10001 EmitFormatDiagnostic(
10002 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
10003 << Ex->getType() << false << Ex->getSourceRange(),
10004 Ex->getBeginLoc(),
10005 /*IsStringLocation*/ false,
10006 getSpecifierRange(startSpecifier, specifierLen),
10007 FixItHint::CreateReplacement(
10008 getSpecifierRange(startSpecifier, specifierLen), os.str()));
10009 } else {
10010 EmitFormatDiagnostic(S.PDiag(Diag)
10011 << AT.getRepresentativeTypeName(S.Context)
10012 << Ex->getType() << false << Ex->getSourceRange(),
10013 Ex->getBeginLoc(),
10014 /*IsStringLocation*/ false,
10015 getSpecifierRange(startSpecifier, specifierLen));
10016 }
10017
10018 return true;
10019}
10020
10021static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
10022 const Expr *OrigFormatExpr,
10023 ArrayRef<const Expr *> Args,
10024 bool HasVAListArg, unsigned format_idx,
10025 unsigned firstDataArg,
10026 Sema::FormatStringType Type,
10027 bool inFunctionCall,
10028 Sema::VariadicCallType CallType,
10029 llvm::SmallBitVector &CheckedVarArgs,
10030 UncoveredArgHandler &UncoveredArg,
10031 bool IgnoreStringsWithoutSpecifiers) {
10032 // CHECK: is the format string a wide literal?
10033 if (!FExpr->isAscii() && !FExpr->isUTF8()) {
10034 CheckFormatHandler::EmitFormatDiagnostic(
10035 S, inFunctionCall, Args[format_idx],
10036 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
10037 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
10038 return;
10039 }
10040
10041 // Str - The format string. NOTE: this is NOT null-terminated!
10042 StringRef StrRef = FExpr->getString();
10043 const char *Str = StrRef.data();
10044 // Account for cases where the string literal is truncated in a declaration.
10045 const ConstantArrayType *T =
10046 S.Context.getAsConstantArrayType(FExpr->getType());
10047 assert(T && "String literal not of constant array type!")(static_cast <bool> (T && "String literal not of constant array type!"
) ? void (0) : __assert_fail ("T && \"String literal not of constant array type!\""
, "clang/lib/Sema/SemaChecking.cpp", 10047, __extension__ __PRETTY_FUNCTION__
))
;
10048 size_t TypeSize = T->getSize().getZExtValue();
10049 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
10050 const unsigned numDataArgs = Args.size() - firstDataArg;
10051
10052 if (IgnoreStringsWithoutSpecifiers &&
10053 !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
10054 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
10055 return;
10056
10057 // Emit a warning if the string literal is truncated and does not contain an
10058 // embedded null character.
10059 if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
10060 CheckFormatHandler::EmitFormatDiagnostic(
10061 S, inFunctionCall, Args[format_idx],
10062 S.PDiag(diag::warn_printf_format_string_not_null_terminated),
10063 FExpr->getBeginLoc(),
10064 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
10065 return;
10066 }
10067
10068 // CHECK: empty format string?
10069 if (StrLen == 0 && numDataArgs > 0) {
10070 CheckFormatHandler::EmitFormatDiagnostic(
10071 S, inFunctionCall, Args[format_idx],
10072 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
10073 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
10074 return;
10075 }
10076
10077 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
10078 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
10079 Type == Sema::FST_OSTrace) {
10080 CheckPrintfHandler H(
10081 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
10082 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
10083 HasVAListArg, Args, format_idx, inFunctionCall, CallType,
10084 CheckedVarArgs, UncoveredArg);
10085
10086 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
10087 S.getLangOpts(),
10088 S.Context.getTargetInfo(),
10089 Type == Sema::FST_FreeBSDKPrintf))
10090 H.DoneProcessing();
10091 } else if (Type == Sema::FST_Scanf) {
10092 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
10093 numDataArgs, Str, HasVAListArg, Args, format_idx,
10094 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
10095
10096 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
10097 S.getLangOpts(),
10098 S.Context.getTargetInfo()))
10099 H.DoneProcessing();
10100 } // TODO: handle other formats
10101}
10102
10103bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
10104 // Str - The format string. NOTE: this is NOT null-terminated!
10105 StringRef StrRef = FExpr->getString();
10106 const char *Str = StrRef.data();
10107 // Account for cases where the string literal is truncated in a declaration.
10108 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
10109 assert(T && "String literal not of constant array type!")(static_cast <bool> (T && "String literal not of constant array type!"
) ? void (0) : __assert_fail ("T && \"String literal not of constant array type!\""
, "clang/lib/Sema/SemaChecking.cpp", 10109, __extension__ __PRETTY_FUNCTION__
))
;
10110 size_t TypeSize = T->getSize().getZExtValue();
10111 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
10112 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
10113 getLangOpts(),
10114 Context.getTargetInfo());
10115}
10116
10117//===--- CHECK: Warn on use of wrong absolute value function. -------------===//
10118
10119// Returns the related absolute value function that is larger, of 0 if one
10120// does not exist.
10121static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
10122 switch (AbsFunction) {
10123 default:
10124 return 0;
10125
10126 case Builtin::BI__builtin_abs:
10127 return Builtin::BI__builtin_labs;
10128 case Builtin::BI__builtin_labs:
10129 return Builtin::BI__builtin_llabs;
10130 case Builtin::BI__builtin_llabs:
10131 return 0;
10132
10133 case Builtin::BI__builtin_fabsf:
10134 return Builtin::BI__builtin_fabs;
10135 case Builtin::BI__builtin_fabs:
10136 return Builtin::BI__builtin_fabsl;
10137 case Builtin::BI__builtin_fabsl:
10138 return 0;
10139
10140 case Builtin::BI__builtin_cabsf:
10141 return Builtin::BI__builtin_cabs;
10142 case Builtin::BI__builtin_cabs:
10143 return Builtin::BI__builtin_cabsl;
10144 case Builtin::BI__builtin_cabsl:
10145 return 0;
10146
10147 case Builtin::BIabs:
10148 return Builtin::BIlabs;
10149 case Builtin::BIlabs:
10150 return Builtin::BIllabs;
10151 case Builtin::BIllabs:
10152 return 0;
10153
10154 case Builtin::BIfabsf:
10155 return Builtin::BIfabs;
10156 case Builtin::BIfabs:
10157 return Builtin::BIfabsl;
10158 case Builtin::BIfabsl:
10159 return 0;
10160
10161 case Builtin::BIcabsf:
10162 return Builtin::BIcabs;
10163 case Builtin::BIcabs:
10164 return Builtin::BIcabsl;
10165 case Builtin::BIcabsl:
10166 return 0;
10167 }
10168}
10169
10170// Returns the argument type of the absolute value function.
10171static QualType getAbsoluteValueArgumentType(ASTContext &Context,
10172 unsigned AbsType) {
10173 if (AbsType == 0)
10174 return QualType();
10175
10176 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
10177 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
10178 if (Error != ASTContext::GE_None)
10179 return QualType();
10180
10181 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
10182 if (!FT)
10183 return QualType();
10184
10185 if (FT->getNumParams() != 1)
10186 return QualType();
10187
10188 return FT->getParamType(0);
10189}
10190
10191// Returns the best absolute value function, or zero, based on type and
10192// current absolute value function.
10193static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
10194 unsigned AbsFunctionKind) {
10195 unsigned BestKind = 0;
10196 uint64_t ArgSize = Context.getTypeSize(ArgType);
10197 for (unsigned Kind = AbsFunctionKind; Kind != 0;
10198 Kind = getLargerAbsoluteValueFunction(Kind)) {
10199 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
10200 if (Context.getTypeSize(ParamType) >= ArgSize) {
10201 if (BestKind == 0)
10202 BestKind = Kind;
10203 else if (Context.hasSameType(ParamType, ArgType)) {
10204 BestKind = Kind;
10205 break;
10206 }
10207 }
10208 }
10209 return BestKind;
10210}
10211
10212enum AbsoluteValueKind {
10213 AVK_Integer,
10214 AVK_Floating,
10215 AVK_Complex
10216};
10217
10218static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
10219 if (T->isIntegralOrEnumerationType())
10220 return AVK_Integer;
10221 if (T->isRealFloatingType())
10222 return AVK_Floating;
10223 if (T->isAnyComplexType())
10224 return AVK_Complex;
10225
10226 llvm_unreachable("Type not integer, floating, or complex")::llvm::llvm_unreachable_internal("Type not integer, floating, or complex"
, "clang/lib/Sema/SemaChecking.cpp", 10226)
;
10227}
10228
10229// Changes the absolute value function to a different type. Preserves whether
10230// the function is a builtin.
10231static unsigned changeAbsFunction(unsigned AbsKind,
10232 AbsoluteValueKind ValueKind) {
10233 switch (ValueKind) {
10234 case AVK_Integer:
10235 switch (AbsKind) {
10236 default:
10237 return 0;
10238 case Builtin::BI__builtin_fabsf:
10239 case Builtin::BI__builtin_fabs:
10240 case Builtin::BI__builtin_fabsl:
10241 case Builtin::BI__builtin_cabsf:
10242 case Builtin::BI__builtin_cabs:
10243 case Builtin::BI__builtin_cabsl:
10244 return Builtin::BI__builtin_abs;
10245 case Builtin::BIfabsf:
10246 case Builtin::BIfabs:
10247 case Builtin::BIfabsl:
10248 case Builtin::BIcabsf:
10249 case Builtin::BIcabs:
10250 case Builtin::BIcabsl:
10251 return Builtin::BIabs;
10252 }
10253 case AVK_Floating:
10254 switch (AbsKind) {
10255 default:
10256 return 0;
10257 case Builtin::BI__builtin_abs:
10258 case Builtin::BI__builtin_labs:
10259 case Builtin::BI__builtin_llabs:
10260 case Builtin::BI__builtin_cabsf:
10261 case Builtin::BI__builtin_cabs:
10262 case Builtin::BI__builtin_cabsl:
10263 return Builtin::BI__builtin_fabsf;
10264 case Builtin::BIabs:
10265 case Builtin::BIlabs:
10266 case Builtin::BIllabs:
10267 case Builtin::BIcabsf:
10268 case Builtin::BIcabs:
10269 case Builtin::BIcabsl:
10270 return Builtin::BIfabsf;
10271 }
10272 case AVK_Complex:
10273 switch (AbsKind) {
10274 default:
10275 return 0;
10276 case Builtin::BI__builtin_abs:
10277 case Builtin::BI__builtin_labs:
10278 case Builtin::BI__builtin_llabs:
10279 case Builtin::BI__builtin_fabsf:
10280 case Builtin::BI__builtin_fabs:
10281 case Builtin::BI__builtin_fabsl:
10282 return Builtin::BI__builtin_cabsf;
10283 case Builtin::BIabs:
10284 case Builtin::BIlabs:
10285 case Builtin::BIllabs:
10286 case Builtin::BIfabsf:
10287 case Builtin::BIfabs:
10288 case Builtin::BIfabsl:
10289 return Builtin::BIcabsf;
10290 }
10291 }
10292 llvm_unreachable("Unable to convert function")::llvm::llvm_unreachable_internal("Unable to convert function"
, "clang/lib/Sema/SemaChecking.cpp", 10292)
;
10293}
10294
10295static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
10296 const IdentifierInfo *FnInfo = FDecl->getIdentifier();
10297 if (!FnInfo)
10298 return 0;
10299
10300 switch (FDecl->getBuiltinID()) {
10301 default:
10302 return 0;
10303 case Builtin::BI__builtin_abs:
10304 case Builtin::BI__builtin_fabs:
10305 case Builtin::BI__builtin_fabsf:
10306 case Builtin::BI__builtin_fabsl:
10307 case Builtin::BI__builtin_labs:
10308 case Builtin::BI__builtin_llabs:
10309 case Builtin::BI__builtin_cabs:
10310 case Builtin::BI__builtin_cabsf:
10311 case Builtin::BI__builtin_cabsl:
10312 case Builtin::BIabs:
10313 case Builtin::BIlabs:
10314 case Builtin::BIllabs:
10315 case Builtin::BIfabs:
10316 case Builtin::BIfabsf:
10317 case Builtin::BIfabsl:
10318 case Builtin::BIcabs:
10319 case Builtin::BIcabsf:
10320 case Builtin::BIcabsl:
10321 return FDecl->getBuiltinID();
10322 }
10323 llvm_unreachable("Unknown Builtin type")::llvm::llvm_unreachable_internal("Unknown Builtin type", "clang/lib/Sema/SemaChecking.cpp"
, 10323)
;
10324}
10325
10326// If the replacement is valid, emit a note with replacement function.
10327// Additionally, suggest including the proper header if not already included.
10328static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
10329 unsigned AbsKind, QualType ArgType) {
10330 bool EmitHeaderHint = true;
10331 const char *HeaderName = nullptr;
10332 const char *FunctionName = nullptr;
10333 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
10334 FunctionName = "std::abs";
10335 if (ArgType->isIntegralOrEnumerationType()) {
10336 HeaderName = "cstdlib";
10337 } else if (ArgType->isRealFloatingType()) {
10338 HeaderName = "cmath";
10339 } else {
10340 llvm_unreachable("Invalid Type")::llvm::llvm_unreachable_internal("Invalid Type", "clang/lib/Sema/SemaChecking.cpp"
, 10340)
;
10341 }
10342
10343 // Lookup all std::abs
10344 if (NamespaceDecl *Std = S.getStdNamespace()) {
10345 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
10346 R.suppressDiagnostics();
10347 S.LookupQualifiedName(R, Std);
10348
10349 for (const auto *I : R) {
10350 const FunctionDecl *FDecl = nullptr;
10351 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
10352 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
10353 } else {
10354 FDecl = dyn_cast<FunctionDecl>(I);
10355 }
10356 if (!FDecl)
10357 continue;
10358
10359 // Found std::abs(), check that they are the right ones.
10360 if (FDecl->getNumParams() != 1)
10361 continue;
10362
10363 // Check that the parameter type can handle the argument.
10364 QualType ParamType = FDecl->getParamDecl(0)->getType();
10365 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
10366 S.Context.getTypeSize(ArgType) <=
10367 S.Context.getTypeSize(ParamType)) {
10368 // Found a function, don't need the header hint.
10369 EmitHeaderHint = false;
10370 break;
10371 }
10372 }
10373 }
10374 } else {
10375 FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
10376 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
10377
10378 if (HeaderName) {
10379 DeclarationName DN(&S.Context.Idents.get(FunctionName));
10380 LookupResult R(S, DN, Loc, Sema::LookupAnyName);
10381 R.suppressDiagnostics();
10382 S.LookupName(R, S.getCurScope());
10383
10384 if (R.isSingleResult()) {
10385 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
10386 if (FD && FD->getBuiltinID() == AbsKind) {
10387 EmitHeaderHint = false;
10388 } else {
10389 return;
10390 }
10391 } else if (!R.empty()) {
10392 return;
10393 }
10394 }
10395 }
10396
10397 S.Diag(Loc, diag::note_replace_abs_function)
10398 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
10399
10400 if (!HeaderName)
10401 return;
10402
10403 if (!EmitHeaderHint)
10404 return;
10405
10406 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
10407 << FunctionName;
10408}
10409
10410template <std::size_t StrLen>
10411static bool IsStdFunction(const FunctionDecl *FDecl,
10412 const char (&Str)[StrLen]) {
10413 if (!FDecl)
10414 return false;
10415 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
10416 return false;
10417 if (!FDecl->isInStdNamespace())
10418 return false;
10419
10420 return true;
10421}
10422
10423// Warn when using the wrong abs() function.
10424void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
10425 const FunctionDecl *FDecl) {
10426 if (Call->getNumArgs() != 1)
10427 return;
10428
10429 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
10430 bool IsStdAbs = IsStdFunction(FDecl, "abs");
10431 if (AbsKind == 0 && !IsStdAbs)
10432 return;
10433
10434 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10435 QualType ParamType = Call->getArg(0)->getType();
10436
10437 // Unsigned types cannot be negative. Suggest removing the absolute value
10438 // function call.
10439 if (ArgType->isUnsignedIntegerType()) {
10440 const char *FunctionName =
10441 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
10442 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
10443 Diag(Call->getExprLoc(), diag::note_remove_abs)
10444 << FunctionName
10445 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
10446 return;
10447 }
10448
10449 // Taking the absolute value of a pointer is very suspicious, they probably
10450 // wanted to index into an array, dereference a pointer, call a function, etc.
10451 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
10452 unsigned DiagType = 0;
10453 if (ArgType->isFunctionType())
10454 DiagType = 1;
10455 else if (ArgType->isArrayType())
10456 DiagType = 2;
10457
10458 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
10459 return;
10460 }
10461
10462 // std::abs has overloads which prevent most of the absolute value problems
10463 // from occurring.
10464 if (IsStdAbs)
10465 return;
10466
10467 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
10468 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
10469
10470 // The argument and parameter are the same kind. Check if they are the right
10471 // size.
10472 if (ArgValueKind == ParamValueKind) {
10473 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
10474 return;
10475
10476 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
10477 Diag(Call->getExprLoc(), diag::warn_abs_too_small)
10478 << FDecl << ArgType << ParamType;
10479
10480 if (NewAbsKind == 0)
10481 return;
10482
10483 emitReplacement(*this, Call->getExprLoc(),
10484 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10485 return;
10486 }
10487
10488 // ArgValueKind != ParamValueKind
10489 // The wrong type of absolute value function was used. Attempt to find the
10490 // proper one.
10491 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
10492 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
10493 if (NewAbsKind == 0)
10494 return;
10495
10496 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
10497 << FDecl << ParamValueKind << ArgValueKind;
10498
10499 emitReplacement(*this, Call->getExprLoc(),
10500 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10501}
10502
10503//===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
10504void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
10505 const FunctionDecl *FDecl) {
10506 if (!Call || !FDecl) return;
10507
10508 // Ignore template specializations and macros.
10509 if (inTemplateInstantiation()) return;
10510 if (Call->getExprLoc().isMacroID()) return;
10511
10512 // Only care about the one template argument, two function parameter std::max
10513 if (Call->getNumArgs() != 2) return;
10514 if (!IsStdFunction(FDecl, "max")) return;
10515 const auto * ArgList = FDecl->getTemplateSpecializationArgs();
10516 if (!ArgList) return;
10517 if (ArgList->size() != 1) return;
10518
10519 // Check that template type argument is unsigned integer.
10520 const auto& TA = ArgList->get(0);
10521 if (TA.getKind() != TemplateArgument::Type) return;
10522 QualType ArgType = TA.getAsType();
10523 if (!ArgType->isUnsignedIntegerType()) return;
10524
10525 // See if either argument is a literal zero.
10526 auto IsLiteralZeroArg = [](const Expr* E) -> bool {
10527 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
10528 if (!MTE) return false;
10529 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
10530 if (!Num) return false;
10531 if (Num->getValue() != 0) return false;
10532 return true;
10533 };
10534
10535 const Expr *FirstArg = Call->getArg(0);
10536 const Expr *SecondArg = Call->getArg(1);
10537 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
10538 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
10539
10540 // Only warn when exactly one argument is zero.
10541 if (IsFirstArgZero == IsSecondArgZero) return;
10542
10543 SourceRange FirstRange = FirstArg->getSourceRange();
10544 SourceRange SecondRange = SecondArg->getSourceRange();
10545
10546 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
10547
10548 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
10549 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
10550
10551 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
10552 SourceRange RemovalRange;
10553 if (IsFirstArgZero) {
10554 RemovalRange = SourceRange(FirstRange.getBegin(),
10555 SecondRange.getBegin().getLocWithOffset(-1));
10556 } else {
10557 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
10558 SecondRange.getEnd());
10559 }
10560
10561 Diag(Call->getExprLoc(), diag::note_remove_max_call)
10562 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
10563 << FixItHint::CreateRemoval(RemovalRange);
10564}
10565
10566//===--- CHECK: Standard memory functions ---------------------------------===//
10567
10568/// Takes the expression passed to the size_t parameter of functions
10569/// such as memcmp, strncat, etc and warns if it's a comparison.
10570///
10571/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
10572static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
10573 IdentifierInfo *FnName,
10574 SourceLocation FnLoc,
10575 SourceLocation RParenLoc) {
10576 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
10577 if (!Size)
10578 return false;
10579
10580 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
10581 if (!Size->isComparisonOp() && !Size->isLogicalOp())
10582 return false;
10583
10584 SourceRange SizeRange = Size->getSourceRange();
10585 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
10586 << SizeRange << FnName;
10587 S.Diag(FnLoc, diag::note_memsize_comparison_paren)
10588 << FnName
10589 << FixItHint::CreateInsertion(
10590 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
10591 << FixItHint::CreateRemoval(RParenLoc);
10592 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
10593 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
10594 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
10595 ")");
10596
10597 return true;
10598}
10599
10600/// Determine whether the given type is or contains a dynamic class type
10601/// (e.g., whether it has a vtable).
10602static const CXXRecordDecl *getContainedDynamicClass(QualType T,
10603 bool &IsContained) {
10604 // Look through array types while ignoring qualifiers.
10605 const Type *Ty = T->getBaseElementTypeUnsafe();
10606 IsContained = false;
10607
10608 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
10609 RD = RD ? RD->getDefinition() : nullptr;
10610 if (!RD || RD->isInvalidDecl())
10611 return nullptr;
10612
10613 if (RD->isDynamicClass())
10614 return RD;
10615
10616 // Check all the fields. If any bases were dynamic, the class is dynamic.
10617 // It's impossible for a class to transitively contain itself by value, so
10618 // infinite recursion is impossible.
10619 for (auto *FD : RD->fields()) {
10620 bool SubContained;
10621 if (const CXXRecordDecl *ContainedRD =
10622 getContainedDynamicClass(FD->getType(), SubContained)) {
10623 IsContained = true;
10624 return ContainedRD;
10625 }
10626 }
10627
10628 return nullptr;
10629}
10630
10631static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
10632 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
10633 if (Unary->getKind() == UETT_SizeOf)
10634 return Unary;
10635 return nullptr;
10636}
10637
10638/// If E is a sizeof expression, returns its argument expression,
10639/// otherwise returns NULL.
10640static const Expr *getSizeOfExprArg(const Expr *E) {
10641 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10642 if (!SizeOf->isArgumentType())
10643 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
10644 return nullptr;
10645}
10646
10647/// If E is a sizeof expression, returns its argument type.
10648static QualType getSizeOfArgType(const Expr *E) {
10649 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
10650 return SizeOf->getTypeOfArgument();
10651 return QualType();
10652}
10653
10654namespace {
10655
10656struct SearchNonTrivialToInitializeField
10657 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
10658 using Super =
10659 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
10660
10661 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
10662
10663 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
10664 SourceLocation SL) {
10665 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10666 asDerived().visitArray(PDIK, AT, SL);
10667 return;
10668 }
10669
10670 Super::visitWithKind(PDIK, FT, SL);
10671 }
10672
10673 void visitARCStrong(QualType FT, SourceLocation SL) {
10674 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10675 }
10676 void visitARCWeak(QualType FT, SourceLocation SL) {
10677 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
10678 }
10679 void visitStruct(QualType FT, SourceLocation SL) {
10680 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10681 visit(FD->getType(), FD->getLocation());
10682 }
10683 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
10684 const ArrayType *AT, SourceLocation SL) {
10685 visit(getContext().getBaseElementType(AT), SL);
10686 }
10687 void visitTrivial(QualType FT, SourceLocation SL) {}
10688
10689 static void diag(QualType RT, const Expr *E, Sema &S) {
10690 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
10691 }
10692
10693 ASTContext &getContext() { return S.getASTContext(); }
10694
10695 const Expr *E;
10696 Sema &S;
10697};
10698
10699struct SearchNonTrivialToCopyField
10700 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
10701 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
10702
10703 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
10704
10705 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
10706 SourceLocation SL) {
10707 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
10708 asDerived().visitArray(PCK, AT, SL);
10709 return;
10710 }
10711
10712 Super::visitWithKind(PCK, FT, SL);
10713 }
10714
10715 void visitARCStrong(QualType FT, SourceLocation SL) {
10716 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10717 }
10718 void visitARCWeak(QualType FT, SourceLocation SL) {
10719 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
10720 }
10721 void visitStruct(QualType FT, SourceLocation SL) {
10722 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
10723 visit(FD->getType(), FD->getLocation());
10724 }
10725 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
10726 SourceLocation SL) {
10727 visit(getContext().getBaseElementType(AT), SL);
10728 }
10729 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
10730 SourceLocation SL) {}
10731 void visitTrivial(QualType FT, SourceLocation SL) {}
10732 void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
10733
10734 static void diag(QualType RT, const Expr *E, Sema &S) {
10735 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
10736 }
10737
10738 ASTContext &getContext() { return S.getASTContext(); }
10739
10740 const Expr *E;
10741 Sema &S;
10742};
10743
10744}
10745
10746/// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
10747static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
10748 SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
10749
10750 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
10751 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
10752 return false;
10753
10754 return doesExprLikelyComputeSize(BO->getLHS()) ||
10755 doesExprLikelyComputeSize(BO->getRHS());
10756 }
10757
10758 return getAsSizeOfExpr(SizeofExpr) != nullptr;
10759}
10760
10761/// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
10762///
10763/// \code
10764/// #define MACRO 0
10765/// foo(MACRO);
10766/// foo(0);
10767/// \endcode
10768///
10769/// This should return true for the first call to foo, but not for the second
10770/// (regardless of whether foo is a macro or function).
10771static bool isArgumentExpandedFromMacro(SourceManager &SM,
10772 SourceLocation CallLoc,
10773 SourceLocation ArgLoc) {
10774 if (!CallLoc.isMacroID())
10775 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
10776
10777 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
10778 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
10779}
10780
10781/// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
10782/// last two arguments transposed.
10783static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
10784 if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
10785 return;
10786
10787 const Expr *SizeArg =
10788 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
10789
10790 auto isLiteralZero = [](const Expr *E) {
10791 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
10792 };
10793
10794 // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
10795 SourceLocation CallLoc = Call->getRParenLoc();
10796 SourceManager &SM = S.getSourceManager();
10797 if (isLiteralZero(SizeArg) &&
10798 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
10799
10800 SourceLocation DiagLoc = SizeArg->getExprLoc();
10801
10802 // Some platforms #define bzero to __builtin_memset. See if this is the
10803 // case, and if so, emit a better diagnostic.
10804 if (BId == Builtin::BIbzero ||
10805 (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
10806 CallLoc, SM, S.getLangOpts()) == "bzero")) {
10807 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
10808 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
10809 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
10810 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
10811 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
10812 }
10813 return;
10814 }
10815
10816 // If the second argument to a memset is a sizeof expression and the third
10817 // isn't, this is also likely an error. This should catch
10818 // 'memset(buf, sizeof(buf), 0xff)'.
10819 if (BId == Builtin::BImemset &&
10820 doesExprLikelyComputeSize(Call->getArg(1)) &&
10821 !doesExprLikelyComputeSize(Call->getArg(2))) {
10822 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
10823 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
10824 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
10825 return;
10826 }
10827}
10828
10829/// Check for dangerous or invalid arguments to memset().
10830///
10831/// This issues warnings on known problematic, dangerous or unspecified
10832/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
10833/// function calls.
10834///
10835/// \param Call The call expression to diagnose.
10836void Sema::CheckMemaccessArguments(const CallExpr *Call,
10837 unsigned BId,
10838 IdentifierInfo *FnName) {
10839 assert(BId != 0)(static_cast <bool> (BId != 0) ? void (0) : __assert_fail
("BId != 0", "clang/lib/Sema/SemaChecking.cpp", 10839, __extension__
__PRETTY_FUNCTION__))
;
10840
10841 // It is possible to have a non-standard definition of memset. Validate
10842 // we have enough arguments, and if not, abort further checking.
10843 unsigned ExpectedNumArgs =
10844 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
10845 if (Call->getNumArgs() < ExpectedNumArgs)
10846 return;
10847
10848 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
10849 BId == Builtin::BIstrndup ? 1 : 2);
10850 unsigned LenArg =
10851 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
10852 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
10853
10854 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
10855 Call->getBeginLoc(), Call->getRParenLoc()))
10856 return;
10857
10858 // Catch cases like 'memset(buf, sizeof(buf), 0)'.
10859 CheckMemaccessSize(*this, BId, Call);
10860
10861 // We have special checking when the length is a sizeof expression.
10862 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
10863 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
10864 llvm::FoldingSetNodeID SizeOfArgID;
10865
10866 // Although widely used, 'bzero' is not a standard function. Be more strict
10867 // with the argument types before allowing diagnostics and only allow the
10868 // form bzero(ptr, sizeof(...)).
10869 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10870 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
10871 return;
10872
10873 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
10874 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
10875 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
10876
10877 QualType DestTy = Dest->getType();
10878 QualType PointeeTy;
10879 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
10880 PointeeTy = DestPtrTy->getPointeeType();
10881
10882 // Never warn about void type pointers. This can be used to suppress
10883 // false positives.
10884 if (PointeeTy->isVoidType())
10885 continue;
10886
10887 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
10888 // actually comparing the expressions for equality. Because computing the
10889 // expression IDs can be expensive, we only do this if the diagnostic is
10890 // enabled.
10891 if (SizeOfArg &&
10892 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
10893 SizeOfArg->getExprLoc())) {
10894 // We only compute IDs for expressions if the warning is enabled, and
10895 // cache the sizeof arg's ID.
10896 if (SizeOfArgID == llvm::FoldingSetNodeID())
10897 SizeOfArg->Profile(SizeOfArgID, Context, true);
10898 llvm::FoldingSetNodeID DestID;
10899 Dest->Profile(DestID, Context, true);
10900 if (DestID == SizeOfArgID) {
10901 // TODO: For strncpy() and friends, this could suggest sizeof(dst)
10902 // over sizeof(src) as well.
10903 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
10904 StringRef ReadableName = FnName->getName();
10905
10906 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
10907 if (UnaryOp->getOpcode() == UO_AddrOf)
10908 ActionIdx = 1; // If its an address-of operator, just remove it.
10909 if (!PointeeTy->isIncompleteType() &&
10910 (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
10911 ActionIdx = 2; // If the pointee's size is sizeof(char),
10912 // suggest an explicit length.
10913
10914 // If the function is defined as a builtin macro, do not show macro
10915 // expansion.
10916 SourceLocation SL = SizeOfArg->getExprLoc();
10917 SourceRange DSR = Dest->getSourceRange();
10918 SourceRange SSR = SizeOfArg->getSourceRange();
10919 SourceManager &SM = getSourceManager();
10920
10921 if (SM.isMacroArgExpansion(SL)) {
10922 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
10923 SL = SM.getSpellingLoc(SL);
10924 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
10925 SM.getSpellingLoc(DSR.getEnd()));
10926 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
10927 SM.getSpellingLoc(SSR.getEnd()));
10928 }
10929
10930 DiagRuntimeBehavior(SL, SizeOfArg,
10931 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
10932 << ReadableName
10933 << PointeeTy
10934 << DestTy
10935 << DSR
10936 << SSR);
10937 DiagRuntimeBehavior(SL, SizeOfArg,
10938 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
10939 << ActionIdx
10940 << SSR);
10941
10942 break;
10943 }
10944 }
10945
10946 // Also check for cases where the sizeof argument is the exact same
10947 // type as the memory argument, and where it points to a user-defined
10948 // record type.
10949 if (SizeOfArgTy != QualType()) {
10950 if (PointeeTy->isRecordType() &&
10951 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
10952 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
10953 PDiag(diag::warn_sizeof_pointer_type_memaccess)
10954 << FnName << SizeOfArgTy << ArgIdx
10955 << PointeeTy << Dest->getSourceRange()
10956 << LenExpr->getSourceRange());
10957 break;
10958 }
10959 }
10960 } else if (DestTy->isArrayType()) {
10961 PointeeTy = DestTy;
10962 }
10963
10964 if (PointeeTy == QualType())
10965 continue;
10966
10967 // Always complain about dynamic classes.
10968 bool IsContained;
10969 if (const CXXRecordDecl *ContainedRD =
10970 getContainedDynamicClass(PointeeTy, IsContained)) {
10971
10972 unsigned OperationType = 0;
10973 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
10974 // "overwritten" if we're warning about the destination for any call
10975 // but memcmp; otherwise a verb appropriate to the call.
10976 if (ArgIdx != 0 || IsCmp) {
10977 if (BId == Builtin::BImemcpy)
10978 OperationType = 1;
10979 else if(BId == Builtin::BImemmove)
10980 OperationType = 2;
10981 else if (IsCmp)
10982 OperationType = 3;
10983 }
10984
10985 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10986 PDiag(diag::warn_dyn_class_memaccess)
10987 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10988 << IsContained << ContainedRD << OperationType
10989 << Call->getCallee()->getSourceRange());
10990 } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10991 BId != Builtin::BImemset)
10992 DiagRuntimeBehavior(
10993 Dest->getExprLoc(), Dest,
10994 PDiag(diag::warn_arc_object_memaccess)
10995 << ArgIdx << FnName << PointeeTy
10996 << Call->getCallee()->getSourceRange());
10997 else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10998 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10999 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
11000 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
11001 PDiag(diag::warn_cstruct_memaccess)
11002 << ArgIdx << FnName << PointeeTy << 0);
11003 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
11004 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
11005 RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
11006 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
11007 PDiag(diag::warn_cstruct_memaccess)
11008 << ArgIdx << FnName << PointeeTy << 1);
11009 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
11010 } else {
11011 continue;
11012 }
11013 } else
11014 continue;
11015
11016 DiagRuntimeBehavior(
11017 Dest->getExprLoc(), Dest,
11018 PDiag(diag::note_bad_memaccess_silence)
11019 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
11020 break;
11021 }
11022}
11023
11024// A little helper routine: ignore addition and subtraction of integer literals.
11025// This intentionally does not ignore all integer constant expressions because
11026// we don't want to remove sizeof().
11027static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
11028 Ex = Ex->IgnoreParenCasts();
11029
11030 while (true) {
11031 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
11032 if (!BO || !BO->isAdditiveOp())
11033 break;
11034
11035 const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
11036 const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
11037
11038 if (isa<IntegerLiteral>(RHS))
11039 Ex = LHS;
11040 else if (isa<IntegerLiteral>(LHS))
11041 Ex = RHS;
11042 else
11043 break;
11044 }
11045
11046 return Ex;
11047}
11048
11049static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
11050 ASTContext &Context) {
11051 // Only handle constant-sized or VLAs, but not flexible members.
11052 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
11053 // Only issue the FIXIT for arrays of size > 1.
11054 if (CAT->getSize().getSExtValue() <= 1)
11055 return false;
11056 } else if (!Ty->isVariableArrayType()) {
11057 return false;
11058 }
11059 return true;
11060}
11061
11062// Warn if the user has made the 'size' argument to strlcpy or strlcat
11063// be the size of the source, instead of the destination.
11064void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
11065 IdentifierInfo *FnName) {
11066
11067 // Don't crash if the user has the wrong number of arguments
11068 unsigned NumArgs = Call->getNumArgs();
11069 if ((NumArgs != 3) && (NumArgs != 4))
11070 return;
11071
11072 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
11073 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
11074 const Expr *CompareWithSrc = nullptr;
11075
11076 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
11077 Call->getBeginLoc(), Call->getRParenLoc()))
11078 return;
11079
11080 // Look for 'strlcpy(dst, x, sizeof(x))'
11081 if (const Expr *Ex = getSizeOfExprArg(SizeArg))
11082 CompareWithSrc = Ex;
11083 else {
11084 // Look for 'strlcpy(dst, x, strlen(x))'
11085 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
11086 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
11087 SizeCall->getNumArgs() == 1)
11088 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
11089 }
11090 }
11091
11092 if (!CompareWithSrc)
11093 return;
11094
11095 // Determine if the argument to sizeof/strlen is equal to the source
11096 // argument. In principle there's all kinds of things you could do
11097 // here, for instance creating an == expression and evaluating it with
11098 // EvaluateAsBooleanCondition, but this uses a more direct technique:
11099 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
11100 if (!SrcArgDRE)
11101 return;
11102
11103 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
11104 if (!CompareWithSrcDRE ||
11105 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
11106 return;
11107
11108 const Expr *OriginalSizeArg = Call->getArg(2);
11109 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
11110 << OriginalSizeArg->getSourceRange() << FnName;
11111
11112 // Output a FIXIT hint if the destination is an array (rather than a
11113 // pointer to an array). This could be enhanced to handle some
11114 // pointers if we know the actual size, like if DstArg is 'array+2'
11115 // we could say 'sizeof(array)-2'.
11116 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
11117 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
11118 return;
11119
11120 SmallString<128> sizeString;
11121 llvm::raw_svector_ostream OS(sizeString);
11122 OS << "sizeof(";
11123 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11124 OS << ")";
11125
11126 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
11127 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
11128 OS.str());
11129}
11130
11131/// Check if two expressions refer to the same declaration.
11132static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
11133 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
11134 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
11135 return D1->getDecl() == D2->getDecl();
11136 return false;
11137}
11138
11139static const Expr *getStrlenExprArg(const Expr *E) {
11140 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
11141 const FunctionDecl *FD = CE->getDirectCallee();
11142 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
11143 return nullptr;
11144 return CE->getArg(0)->IgnoreParenCasts();
11145 }
11146 return nullptr;
11147}
11148
11149// Warn on anti-patterns as the 'size' argument to strncat.
11150// The correct size argument should look like following:
11151// strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
11152void Sema::CheckStrncatArguments(const CallExpr *CE,
11153 IdentifierInfo *FnName) {
11154 // Don't crash if the user has the wrong number of arguments.
11155 if (CE->getNumArgs() < 3)
11156 return;
11157 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
11158 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
11159 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
11160
11161 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
11162 CE->getRParenLoc()))
11163 return;
11164
11165 // Identify common expressions, which are wrongly used as the size argument
11166 // to strncat and may lead to buffer overflows.
11167 unsigned PatternType = 0;
11168 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
11169 // - sizeof(dst)
11170 if (referToTheSameDecl(SizeOfArg, DstArg))
11171 PatternType = 1;
11172 // - sizeof(src)
11173 else if (referToTheSameDecl(SizeOfArg, SrcArg))
11174 PatternType = 2;
11175 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
11176 if (BE->getOpcode() == BO_Sub) {
11177 const Expr *L = BE->getLHS()->IgnoreParenCasts();
11178 const Expr *R = BE->getRHS()->IgnoreParenCasts();
11179 // - sizeof(dst) - strlen(dst)
11180 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
11181 referToTheSameDecl(DstArg, getStrlenExprArg(R)))
11182 PatternType = 1;
11183 // - sizeof(src) - (anything)
11184 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
11185 PatternType = 2;
11186 }
11187 }
11188
11189 if (PatternType == 0)
11190 return;
11191
11192 // Generate the diagnostic.
11193 SourceLocation SL = LenArg->getBeginLoc();
11194 SourceRange SR = LenArg->getSourceRange();
11195 SourceManager &SM = getSourceManager();
11196
11197 // If the function is defined as a builtin macro, do not show macro expansion.
11198 if (SM.isMacroArgExpansion(SL)) {
11199 SL = SM.getSpellingLoc(SL);
11200 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
11201 SM.getSpellingLoc(SR.getEnd()));
11202 }
11203
11204 // Check if the destination is an array (rather than a pointer to an array).
11205 QualType DstTy = DstArg->getType();
11206 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
11207 Context);
11208 if (!isKnownSizeArray) {
11209 if (PatternType == 1)
11210 Diag(SL, diag::warn_strncat_wrong_size) << SR;
11211 else
11212 Diag(SL, diag::warn_strncat_src_size) << SR;
11213 return;
11214 }
11215
11216 if (PatternType == 1)
11217 Diag(SL, diag::warn_strncat_large_size) << SR;
11218 else
11219 Diag(SL, diag::warn_strncat_src_size) << SR;
11220
11221 SmallString<128> sizeString;
11222 llvm::raw_svector_ostream OS(sizeString);
11223 OS << "sizeof(";
11224 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11225 OS << ") - ";
11226 OS << "strlen(";
11227 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11228 OS << ") - 1";
11229
11230 Diag(SL, diag::note_strncat_wrong_size)
11231 << FixItHint::CreateReplacement(SR, OS.str());
11232}
11233
11234namespace {
11235void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
11236 const UnaryOperator *UnaryExpr, const Decl *D) {
11237 if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
11238 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
11239 << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
11240 return;
11241 }
11242}
11243
11244void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
11245 const UnaryOperator *UnaryExpr) {
11246 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
11247 const Decl *D = Lvalue->getDecl();
11248 if (isa<DeclaratorDecl>(D))
11249 if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
11250 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
11251 }
11252
11253 if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
11254 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
11255 Lvalue->getMemberDecl());
11256}
11257
11258void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
11259 const UnaryOperator *UnaryExpr) {
11260 const auto *Lambda = dyn_cast<LambdaExpr>(
11261 UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
11262 if (!Lambda)
11263 return;
11264
11265 S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
11266 << CalleeName << 2 /*object: lambda expression*/;
11267}
11268
11269void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
11270 const DeclRefExpr *Lvalue) {
11271 const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
11272 if (Var == nullptr)
11273 return;
11274
11275 S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
11276 << CalleeName << 0 /*object: */ << Var;
11277}
11278
11279void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
11280 const CastExpr *Cast) {
11281 SmallString<128> SizeString;
11282 llvm::raw_svector_ostream OS(SizeString);
11283
11284 clang::CastKind Kind = Cast->getCastKind();
11285 if (Kind == clang::CK_BitCast &&
11286 !Cast->getSubExpr()->getType()->isFunctionPointerType())
11287 return;
11288 if (Kind == clang::CK_IntegralToPointer &&
11289 !isa<IntegerLiteral>(
11290 Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
11291 return;
11292
11293 switch (Cast->getCastKind()) {
11294 case clang::CK_BitCast:
11295 case clang::CK_IntegralToPointer:
11296 case clang::CK_FunctionToPointerDecay:
11297 OS << '\'';
11298 Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
11299 OS << '\'';
11300 break;
11301 default:
11302 return;
11303 }
11304
11305 S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
11306 << CalleeName << 0 /*object: */ << OS.str();
11307}
11308} // namespace
11309
11310/// Alerts the user that they are attempting to free a non-malloc'd object.
11311void Sema::CheckFreeArguments(const CallExpr *E) {
11312 const std::string CalleeName =
11313 dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
12
Assuming the object is not a 'FunctionDecl'
13
Called C++ object pointer is null
11314
11315 { // Prefer something that doesn't involve a cast to make things simpler.
11316 const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
11317 if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
11318 switch (UnaryExpr->getOpcode()) {
11319 case UnaryOperator::Opcode::UO_AddrOf:
11320 return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
11321 case UnaryOperator::Opcode::UO_Plus:
11322 return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
11323 default:
11324 break;
11325 }
11326
11327 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
11328 if (Lvalue->getType()->isArrayType())
11329 return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
11330
11331 if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
11332 Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
11333 << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
11334 return;
11335 }
11336
11337 if (isa<BlockExpr>(Arg)) {
11338 Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
11339 << CalleeName << 1 /*object: block*/;
11340 return;
11341 }
11342 }
11343 // Maybe the cast was important, check after the other cases.
11344 if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
11345 return CheckFreeArgumentsCast(*this, CalleeName, Cast);
11346}
11347
11348void
11349Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
11350 SourceLocation ReturnLoc,
11351 bool isObjCMethod,
11352 const AttrVec *Attrs,
11353 const FunctionDecl *FD) {
11354 // Check if the return value is null but should not be.
11355 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
11356 (!isObjCMethod && isNonNullType(Context, lhsType))) &&
11357 CheckNonNullExpr(*this, RetValExp))
11358 Diag(ReturnLoc, diag::warn_null_ret)
11359 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
11360
11361 // C++11 [basic.stc.dynamic.allocation]p4:
11362 // If an allocation function declared with a non-throwing
11363 // exception-specification fails to allocate storage, it shall return
11364 // a null pointer. Any other allocation function that fails to allocate
11365 // storage shall indicate failure only by throwing an exception [...]
11366 if (FD) {
11367 OverloadedOperatorKind Op = FD->getOverloadedOperator();
11368 if (Op == OO_New || Op == OO_Array_New) {
11369 const FunctionProtoType *Proto
11370 = FD->getType()->castAs<FunctionProtoType>();
11371 if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
11372 CheckNonNullExpr(*this, RetValExp))
11373 Diag(ReturnLoc, diag::warn_operator_new_returns_null)
11374 << FD << getLangOpts().CPlusPlus11;
11375 }
11376 }
11377
11378 // PPC MMA non-pointer types are not allowed as return type. Checking the type
11379 // here prevent the user from using a PPC MMA type as trailing return type.
11380 if (Context.getTargetInfo().getTriple().isPPC64())
11381 CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
11382}
11383
11384//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
11385
11386/// Check for comparisons of floating point operands using != and ==.
11387/// Issue a warning if these are no self-comparisons, as they are not likely
11388/// to do what the programmer intended.
11389void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
11390 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
11391 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
11392
11393 // Special case: check for x == x (which is OK).
11394 // Do not emit warnings for such cases.
11395 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
11396 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
11397 if (DRL->getDecl() == DRR->getDecl())
11398 return;
11399
11400 // Special case: check for comparisons against literals that can be exactly
11401 // represented by APFloat. In such cases, do not emit a warning. This
11402 // is a heuristic: often comparison against such literals are used to
11403 // detect if a value in a variable has not changed. This clearly can
11404 // lead to false negatives.
11405 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
11406 if (FLL->isExact())
11407 return;
11408 } else
11409 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
11410 if (FLR->isExact())
11411 return;
11412
11413 // Check for comparisons with builtin types.
11414 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
11415 if (CL->getBuiltinCallee())
11416 return;
11417
11418 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
11419 if (CR->getBuiltinCallee())
11420 return;
11421
11422 // Emit the diagnostic.
11423 Diag(Loc, diag::warn_floatingpoint_eq)
11424 << LHS->getSourceRange() << RHS->getSourceRange();
11425}
11426
11427//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
11428//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
11429
11430namespace {
11431
11432/// Structure recording the 'active' range of an integer-valued
11433/// expression.
11434struct IntRange {
11435 /// The number of bits active in the int. Note that this includes exactly one
11436 /// sign bit if !NonNegative.
11437 unsigned Width;
11438
11439 /// True if the int is known not to have negative values. If so, all leading
11440 /// bits before Width are known zero, otherwise they are known to be the
11441 /// same as the MSB within Width.
11442 bool NonNegative;
11443
11444 IntRange(unsigned Width, bool NonNegative)
11445 : Width(Width), NonNegative(NonNegative) {}
11446
11447 /// Number of bits excluding the sign bit.
11448 unsigned valueBits() const {
11449 return NonNegative ? Width : Width - 1;
11450 }
11451
11452 /// Returns the range of the bool type.
11453 static IntRange forBoolType() {
11454 return IntRange(1, true);
11455 }
11456
11457 /// Returns the range of an opaque value of the given integral type.
11458 static IntRange forValueOfType(ASTContext &C, QualType T) {
11459 return forValueOfCanonicalType(C,
11460 T->getCanonicalTypeInternal().getTypePtr());
11461 }
11462
11463 /// Returns the range of an opaque value of a canonical integral type.
11464 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
11465 assert(T->isCanonicalUnqualified())(static_cast <bool> (T->isCanonicalUnqualified()) ? void
(0) : __assert_fail ("T->isCanonicalUnqualified()", "clang/lib/Sema/SemaChecking.cpp"
, 11465, __extension__ __PRETTY_FUNCTION__))
;
11466
11467 if (const VectorType *VT = dyn_cast<VectorType>(T))
11468 T = VT->getElementType().getTypePtr();
11469 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11470 T = CT->getElementType().getTypePtr();
11471 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11472 T = AT->getValueType().getTypePtr();
11473
11474 if (!C.getLangOpts().CPlusPlus) {
11475 // For enum types in C code, use the underlying datatype.
11476 if (const EnumType *ET = dyn_cast<EnumType>(T))
11477 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
11478 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
11479 // For enum types in C++, use the known bit width of the enumerators.
11480 EnumDecl *Enum = ET->getDecl();
11481 // In C++11, enums can have a fixed underlying type. Use this type to
11482 // compute the range.
11483 if (Enum->isFixed()) {
11484 return IntRange(C.getIntWidth(QualType(T, 0)),
11485 !ET->isSignedIntegerOrEnumerationType());
11486 }
11487
11488 unsigned NumPositive = Enum->getNumPositiveBits();
11489 unsigned NumNegative = Enum->getNumNegativeBits();
11490
11491 if (NumNegative == 0)
11492 return IntRange(NumPositive, true/*NonNegative*/);
11493 else
11494 return IntRange(std::max(NumPositive + 1, NumNegative),
11495 false/*NonNegative*/);
11496 }
11497
11498 if (const auto *EIT = dyn_cast<BitIntType>(T))
11499 return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11500
11501 const BuiltinType *BT = cast<BuiltinType>(T);
11502 assert(BT->isInteger())(static_cast <bool> (BT->isInteger()) ? void (0) : __assert_fail
("BT->isInteger()", "clang/lib/Sema/SemaChecking.cpp", 11502
, __extension__ __PRETTY_FUNCTION__))
;
11503
11504 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11505 }
11506
11507 /// Returns the "target" range of a canonical integral type, i.e.
11508 /// the range of values expressible in the type.
11509 ///
11510 /// This matches forValueOfCanonicalType except that enums have the
11511 /// full range of their type, not the range of their enumerators.
11512 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
11513 assert(T->isCanonicalUnqualified())(static_cast <bool> (T->isCanonicalUnqualified()) ? void
(0) : __assert_fail ("T->isCanonicalUnqualified()", "clang/lib/Sema/SemaChecking.cpp"
, 11513, __extension__ __PRETTY_FUNCTION__))
;
11514
11515 if (const VectorType *VT = dyn_cast<VectorType>(T))
11516 T = VT->getElementType().getTypePtr();
11517 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11518 T = CT->getElementType().getTypePtr();
11519 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
11520 T = AT->getValueType().getTypePtr();
11521 if (const EnumType *ET = dyn_cast<EnumType>(T))
11522 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
11523
11524 if (const auto *EIT = dyn_cast<BitIntType>(T))
11525 return IntRange(EIT->getNumBits(), EIT->isUnsigned());
11526
11527 const BuiltinType *BT = cast<BuiltinType>(T);
11528 assert(BT->isInteger())(static_cast <bool> (BT->isInteger()) ? void (0) : __assert_fail
("BT->isInteger()", "clang/lib/Sema/SemaChecking.cpp", 11528
, __extension__ __PRETTY_FUNCTION__))
;
11529
11530 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
11531 }
11532
11533 /// Returns the supremum of two ranges: i.e. their conservative merge.
11534 static IntRange join(IntRange L, IntRange R) {
11535 bool Unsigned = L.NonNegative && R.NonNegative;
11536 return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
11537 L.NonNegative && R.NonNegative);
11538 }
11539
11540 /// Return the range of a bitwise-AND of the two ranges.
11541 static IntRange bit_and(IntRange L, IntRange R) {
11542 unsigned Bits = std::max(L.Width, R.Width);
11543 bool NonNegative = false;
11544 if (L.NonNegative) {
11545 Bits = std::min(Bits, L.Width);
11546 NonNegative = true;
11547 }
11548 if (R.NonNegative) {
11549 Bits = std::min(Bits, R.Width);
11550 NonNegative = true;
11551 }
11552 return IntRange(Bits, NonNegative);
11553 }
11554
11555 /// Return the range of a sum of the two ranges.
11556 static IntRange sum(IntRange L, IntRange R) {
11557 bool Unsigned = L.NonNegative && R.NonNegative;
11558 return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
11559 Unsigned);
11560 }
11561
11562 /// Return the range of a difference of the two ranges.
11563 static IntRange difference(IntRange L, IntRange R) {
11564 // We need a 1-bit-wider range if:
11565 // 1) LHS can be negative: least value can be reduced.
11566 // 2) RHS can be negative: greatest value can be increased.
11567 bool CanWiden = !L.NonNegative || !R.NonNegative;
11568 bool Unsigned = L.NonNegative && R.Width == 0;
11569 return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
11570 !Unsigned,
11571 Unsigned);
11572 }
11573
11574 /// Return the range of a product of the two ranges.
11575 static IntRange product(IntRange L, IntRange R) {
11576 // If both LHS and RHS can be negative, we can form
11577 // -2^L * -2^R = 2^(L + R)
11578 // which requires L + R + 1 value bits to represent.
11579 bool CanWiden = !L.NonNegative && !R.NonNegative;
11580 bool Unsigned = L.NonNegative && R.NonNegative;
11581 return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
11582 Unsigned);
11583 }
11584
11585 /// Return the range of a remainder operation between the two ranges.
11586 static IntRange rem(IntRange L, IntRange R) {
11587 // The result of a remainder can't be larger than the result of
11588 // either side. The sign of the result is the sign of the LHS.
11589 bool Unsigned = L.NonNegative;
11590 return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
11591 Unsigned);
11592 }
11593};
11594
11595} // namespace
11596
11597static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
11598 unsigned MaxWidth) {
11599 if (value.isSigned() && value.isNegative())
11600 return IntRange(value.getMinSignedBits(), false);
11601
11602 if (value.getBitWidth() > MaxWidth)
11603 value = value.trunc(MaxWidth);
11604
11605 // isNonNegative() just checks the sign bit without considering
11606 // signedness.
11607 return IntRange(value.getActiveBits(), true);
11608}
11609
11610static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
11611 unsigned MaxWidth) {
11612 if (result.isInt())
11613 return GetValueRange(C, result.getInt(), MaxWidth);
11614
11615 if (result.isVector()) {
11616 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
11617 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
11618 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
11619 R = IntRange::join(R, El);
11620 }
11621 return R;
11622 }
11623
11624 if (result.isComplexInt()) {
11625 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
11626 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
11627 return IntRange::join(R, I);
11628 }
11629
11630 // This can happen with lossless casts to intptr_t of "based" lvalues.
11631 // Assume it might use arbitrary bits.
11632 // FIXME: The only reason we need to pass the type in here is to get
11633 // the sign right on this one case. It would be nice if APValue
11634 // preserved this.
11635 assert(result.isLValue() || result.isAddrLabelDiff())(static_cast <bool> (result.isLValue() || result.isAddrLabelDiff
()) ? void (0) : __assert_fail ("result.isLValue() || result.isAddrLabelDiff()"
, "clang/lib/Sema/SemaChecking.cpp", 11635, __extension__ __PRETTY_FUNCTION__
))
;
11636 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
11637}
11638
11639static QualType GetExprType(const Expr *E) {
11640 QualType Ty = E->getType();
11641 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
11642 Ty = AtomicRHS->getValueType();
11643 return Ty;
11644}
11645
11646/// Pseudo-evaluate the given integer expression, estimating the
11647/// range of values it might take.
11648///
11649/// \param MaxWidth The width to which the value will be truncated.
11650/// \param Approximate If \c true, return a likely range for the result: in
11651/// particular, assume that arithmetic on narrower types doesn't leave
11652/// those types. If \c false, return a range including all possible
11653/// result values.
11654static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
11655 bool InConstantContext, bool Approximate) {
11656 E = E->IgnoreParens();
11657
11658 // Try a full evaluation first.
11659 Expr::EvalResult result;
11660 if (E->EvaluateAsRValue(result, C, InConstantContext))
11661 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
11662
11663 // I think we only want to look through implicit casts here; if the
11664 // user has an explicit widening cast, we should treat the value as
11665 // being of the new, wider type.
11666 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
11667 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
11668 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
11669 Approximate);
11670
11671 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
11672
11673 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
11674 CE->getCastKind() == CK_BooleanToSignedIntegral;
11675
11676 // Assume that non-integer casts can span the full range of the type.
11677 if (!isIntegerCast)
11678 return OutputTypeRange;
11679
11680 IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
11681 std::min(MaxWidth, OutputTypeRange.Width),
11682 InConstantContext, Approximate);
11683
11684 // Bail out if the subexpr's range is as wide as the cast type.
11685 if (SubRange.Width >= OutputTypeRange.Width)
11686 return OutputTypeRange;
11687
11688 // Otherwise, we take the smaller width, and we're non-negative if
11689 // either the output type or the subexpr is.
11690 return IntRange(SubRange.Width,
11691 SubRange.NonNegative || OutputTypeRange.NonNegative);
11692 }
11693
11694 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11695 // If we can fold the condition, just take that operand.
11696 bool CondResult;
11697 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
11698 return GetExprRange(C,
11699 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
11700 MaxWidth, InConstantContext, Approximate);
11701
11702 // Otherwise, conservatively merge.
11703 // GetExprRange requires an integer expression, but a throw expression
11704 // results in a void type.
11705 Expr *E = CO->getTrueExpr();
11706 IntRange L = E->getType()->isVoidType()
11707 ? IntRange{0, true}
11708 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11709 E = CO->getFalseExpr();
11710 IntRange R = E->getType()->isVoidType()
11711 ? IntRange{0, true}
11712 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
11713 return IntRange::join(L, R);
11714 }
11715
11716 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11717 IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
11718
11719 switch (BO->getOpcode()) {
11720 case BO_Cmp:
11721 llvm_unreachable("builtin <=> should have class type")::llvm::llvm_unreachable_internal("builtin <=> should have class type"
, "clang/lib/Sema/SemaChecking.cpp", 11721)
;
11722
11723 // Boolean-valued operations are single-bit and positive.
11724 case BO_LAnd:
11725 case BO_LOr:
11726 case BO_LT:
11727 case BO_GT:
11728 case BO_LE:
11729 case BO_GE:
11730 case BO_EQ:
11731 case BO_NE:
11732 return IntRange::forBoolType();
11733
11734 // The type of the assignments is the type of the LHS, so the RHS
11735 // is not necessarily the same type.
11736 case BO_MulAssign:
11737 case BO_DivAssign:
11738 case BO_RemAssign:
11739 case BO_AddAssign:
11740 case BO_SubAssign:
11741 case BO_XorAssign:
11742 case BO_OrAssign:
11743 // TODO: bitfields?
11744 return IntRange::forValueOfType(C, GetExprType(E));
11745
11746 // Simple assignments just pass through the RHS, which will have
11747 // been coerced to the LHS type.
11748 case BO_Assign:
11749 // TODO: bitfields?
11750 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11751 Approximate);
11752
11753 // Operations with opaque sources are black-listed.
11754 case BO_PtrMemD:
11755 case BO_PtrMemI:
11756 return IntRange::forValueOfType(C, GetExprType(E));
11757
11758 // Bitwise-and uses the *infinum* of the two source ranges.
11759 case BO_And:
11760 case BO_AndAssign:
11761 Combine = IntRange::bit_and;
11762 break;
11763
11764 // Left shift gets black-listed based on a judgement call.
11765 case BO_Shl:
11766 // ...except that we want to treat '1 << (blah)' as logically
11767 // positive. It's an important idiom.
11768 if (IntegerLiteral *I
11769 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
11770 if (I->getValue() == 1) {
11771 IntRange R = IntRange::forValueOfType(C, GetExprType(E));
11772 return IntRange(R.Width, /*NonNegative*/ true);
11773 }
11774 }
11775 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11776
11777 case BO_ShlAssign:
11778 return IntRange::forValueOfType(C, GetExprType(E));
11779
11780 // Right shift by a constant can narrow its left argument.
11781 case BO_Shr:
11782 case BO_ShrAssign: {
11783 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
11784 Approximate);
11785
11786 // If the shift amount is a positive constant, drop the width by
11787 // that much.
11788 if (Optional<llvm::APSInt> shift =
11789 BO->getRHS()->getIntegerConstantExpr(C)) {
11790 if (shift->isNonNegative()) {
11791 unsigned zext = shift->getZExtValue();
11792 if (zext >= L.Width)
11793 L.Width = (L.NonNegative ? 0 : 1);
11794 else
11795 L.Width -= zext;
11796 }
11797 }
11798
11799 return L;
11800 }
11801
11802 // Comma acts as its right operand.
11803 case BO_Comma:
11804 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
11805 Approximate);
11806
11807 case BO_Add:
11808 if (!Approximate)
11809 Combine = IntRange::sum;
11810 break;
11811
11812 case BO_Sub:
11813 if (BO->getLHS()->getType()->isPointerType())
11814 return IntRange::forValueOfType(C, GetExprType(E));
11815 if (!Approximate)
11816 Combine = IntRange::difference;
11817 break;
11818
11819 case BO_Mul:
11820 if (!Approximate)
11821 Combine = IntRange::product;
11822 break;
11823
11824 // The width of a division result is mostly determined by the size
11825 // of the LHS.
11826 case BO_Div: {
11827 // Don't 'pre-truncate' the operands.
11828 unsigned opWidth = C.getIntWidth(GetExprType(E));
11829 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
11830 Approximate);
11831
11832 // If the divisor is constant, use that.
11833 if (Optional<llvm::APSInt> divisor =
11834 BO->getRHS()->getIntegerConstantExpr(C)) {
11835 unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
11836 if (log2 >= L.Width)
11837 L.Width = (L.NonNegative ? 0 : 1);
11838 else
11839 L.Width = std::min(L.Width - log2, MaxWidth);
11840 return L;
11841 }
11842
11843 // Otherwise, just use the LHS's width.
11844 // FIXME: This is wrong if the LHS could be its minimal value and the RHS
11845 // could be -1.
11846 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
11847 Approximate);
11848 return IntRange(L.Width, L.NonNegative && R.NonNegative);
11849 }
11850
11851 case BO_Rem:
11852 Combine = IntRange::rem;
11853 break;
11854
11855 // The default behavior is okay for these.
11856 case BO_Xor:
11857 case BO_Or:
11858 break;
11859 }
11860
11861 // Combine the two ranges, but limit the result to the type in which we
11862 // performed the computation.
11863 QualType T = GetExprType(E);
11864 unsigned opWidth = C.getIntWidth(T);
11865 IntRange L =
11866 GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
11867 IntRange R =
11868 GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
11869 IntRange C = Combine(L, R);
11870 C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
11871 C.Width = std::min(C.Width, MaxWidth);
11872 return C;
11873 }
11874
11875 if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
11876 switch (UO->getOpcode()) {
11877 // Boolean-valued operations are white-listed.
11878 case UO_LNot:
11879 return IntRange::forBoolType();
11880
11881 // Operations with opaque sources are black-listed.
11882 case UO_Deref:
11883 case UO_AddrOf: // should be impossible
11884 return IntRange::forValueOfType(C, GetExprType(E));
11885
11886 default:
11887 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
11888 Approximate);
11889 }
11890 }
11891
11892 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
11893 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
11894 Approximate);
11895
11896 if (const auto *BitField = E->getSourceBitField())
11897 return IntRange(BitField->getBitWidthValue(C),
11898 BitField->getType()->isUnsignedIntegerOrEnumerationType());
11899
11900 return IntRange::forValueOfType(C, GetExprType(E));
11901}
11902
11903static IntRange GetExprRange(ASTContext &C, const Expr *E,
11904 bool InConstantContext, bool Approximate) {
11905 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
11906 Approximate);
11907}
11908
11909/// Checks whether the given value, which currently has the given
11910/// source semantics, has the same value when coerced through the
11911/// target semantics.
11912static bool IsSameFloatAfterCast(const llvm::APFloat &value,
11913 const llvm::fltSemantics &Src,
11914 const llvm::fltSemantics &Tgt) {
11915 llvm::APFloat truncated = value;
11916
11917 bool ignored;
11918 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
11919 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
11920
11921 return truncated.bitwiseIsEqual(value);
11922}
11923
11924/// Checks whether the given value, which currently has the given
11925/// source semantics, has the same value when coerced through the
11926/// target semantics.
11927///
11928/// The value might be a vector of floats (or a complex number).
11929static bool IsSameFloatAfterCast(const APValue &value,
11930 const llvm::fltSemantics &Src,
11931 const llvm::fltSemantics &Tgt) {
11932 if (value.isFloat())
11933 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
11934
11935 if (value.isVector()) {
11936 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
11937 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
11938 return false;
11939 return true;
11940 }
11941
11942 assert(value.isComplexFloat())(static_cast <bool> (value.isComplexFloat()) ? void (0)
: __assert_fail ("value.isComplexFloat()", "clang/lib/Sema/SemaChecking.cpp"
, 11942, __extension__ __PRETTY_FUNCTION__))
;
11943 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
11944 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
11945}
11946
11947static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
11948 bool IsListInit = false);
11949
11950static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
11951 // Suppress cases where we are comparing against an enum constant.
11952 if (const DeclRefExpr *DR =
11953 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
11954 if (isa<EnumConstantDecl>(DR->getDecl()))
11955 return true;
11956
11957 // Suppress cases where the value is expanded from a macro, unless that macro
11958 // is how a language represents a boolean literal. This is the case in both C
11959 // and Objective-C.
11960 SourceLocation BeginLoc = E->getBeginLoc();
11961 if (BeginLoc.isMacroID()) {
11962 StringRef MacroName = Lexer::getImmediateMacroName(
11963 BeginLoc, S.getSourceManager(), S.getLangOpts());
11964 return MacroName != "YES" && MacroName != "NO" &&
11965 MacroName != "true" && MacroName != "false";
11966 }
11967
11968 return false;
11969}
11970
11971static bool isKnownToHaveUnsignedValue(Expr *E) {
11972 return E->getType()->isIntegerType() &&
11973 (!E->getType()->isSignedIntegerType() ||
11974 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
11975}
11976
11977namespace {
11978/// The promoted range of values of a type. In general this has the
11979/// following structure:
11980///
11981/// |-----------| . . . |-----------|
11982/// ^ ^ ^ ^
11983/// Min HoleMin HoleMax Max
11984///
11985/// ... where there is only a hole if a signed type is promoted to unsigned
11986/// (in which case Min and Max are the smallest and largest representable
11987/// values).
11988struct PromotedRange {
11989 // Min, or HoleMax if there is a hole.
11990 llvm::APSInt PromotedMin;
11991 // Max, or HoleMin if there is a hole.
11992 llvm::APSInt PromotedMax;
11993
11994 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
11995 if (R.Width == 0)
11996 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
11997 else if (R.Width >= BitWidth && !Unsigned) {
11998 // Promotion made the type *narrower*. This happens when promoting
11999 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
12000 // Treat all values of 'signed int' as being in range for now.
12001 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
12002 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
12003 } else {
12004 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
12005 .extOrTrunc(BitWidth);
12006 PromotedMin.setIsUnsigned(Unsigned);
12007
12008 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
12009 .extOrTrunc(BitWidth);
12010 PromotedMax.setIsUnsigned(Unsigned);
12011 }
12012 }
12013
12014 // Determine whether this range is contiguous (has no hole).
12015 bool isContiguous() const { return PromotedMin <= PromotedMax; }
12016
12017 // Where a constant value is within the range.
12018 enum ComparisonResult {
12019 LT = 0x1,
12020 LE = 0x2,
12021 GT = 0x4,
12022 GE = 0x8,
12023 EQ = 0x10,
12024 NE = 0x20,
12025 InRangeFlag = 0x40,
12026
12027 Less = LE | LT | NE,
12028 Min = LE | InRangeFlag,
12029 InRange = InRangeFlag,
12030 Max = GE | InRangeFlag,
12031 Greater = GE | GT | NE,
12032
12033 OnlyValue = LE | GE | EQ | InRangeFlag,
12034 InHole = NE
12035 };
12036
12037 ComparisonResult compare(const llvm::APSInt &Value) const {
12038 assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&(static_cast <bool> (Value.getBitWidth() == PromotedMin
.getBitWidth() && Value.isUnsigned() == PromotedMin.isUnsigned
()) ? void (0) : __assert_fail ("Value.getBitWidth() == PromotedMin.getBitWidth() && Value.isUnsigned() == PromotedMin.isUnsigned()"
, "clang/lib/Sema/SemaChecking.cpp", 12039, __extension__ __PRETTY_FUNCTION__
))
12039 Value.isUnsigned() == PromotedMin.isUnsigned())(static_cast <bool> (Value.getBitWidth() == PromotedMin
.getBitWidth() && Value.isUnsigned() == PromotedMin.isUnsigned
()) ? void (0) : __assert_fail ("Value.getBitWidth() == PromotedMin.getBitWidth() && Value.isUnsigned() == PromotedMin.isUnsigned()"
, "clang/lib/Sema/SemaChecking.cpp", 12039, __extension__ __PRETTY_FUNCTION__
))
;
12040 if (!isContiguous()) {
12041 assert(Value.isUnsigned() && "discontiguous range for signed compare")(static_cast <bool> (Value.isUnsigned() && "discontiguous range for signed compare"
) ? void (0) : __assert_fail ("Value.isUnsigned() && \"discontiguous range for signed compare\""
, "clang/lib/Sema/SemaChecking.cpp", 12041, __extension__ __PRETTY_FUNCTION__
))
;
12042 if (Value.isMinValue()) return Min;
12043 if (Value.isMaxValue()) return Max;
12044 if (Value >= PromotedMin) return InRange;
12045 if (Value <= PromotedMax) return InRange;
12046 return InHole;
12047 }
12048
12049 switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
12050 case -1: return Less;
12051 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
12052 case 1:
12053 switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
12054 case -1: return InRange;
12055 case 0: return Max;
12056 case 1: return Greater;
12057 }
12058 }
12059
12060 llvm_unreachable("impossible compare result")::llvm::llvm_unreachable_internal("impossible compare result"
, "clang/lib/Sema/SemaChecking.cpp", 12060)
;
12061 }
12062
12063 static llvm::Optional<StringRef>
12064 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
12065 if (Op == BO_Cmp) {
12066 ComparisonResult LTFlag = LT, GTFlag = GT;
12067 if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
12068
12069 if (R & EQ) return StringRef("'std::strong_ordering::equal'");
12070 if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
12071 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
12072 return llvm::None;
12073 }
12074
12075 ComparisonResult TrueFlag, FalseFlag;
12076 if (Op == BO_EQ) {
12077 TrueFlag = EQ;
12078 FalseFlag = NE;
12079 } else if (Op == BO_NE) {
12080 TrueFlag = NE;
12081 FalseFlag = EQ;
12082 } else {
12083 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
12084 TrueFlag = LT;
12085 FalseFlag = GE;
12086 } else {
12087 TrueFlag = GT;
12088 FalseFlag = LE;
12089 }
12090 if (Op == BO_GE || Op == BO_LE)
12091 std::swap(TrueFlag, FalseFlag);
12092 }
12093 if (R & TrueFlag)
12094 return StringRef("true");
12095 if (R & FalseFlag)
12096 return StringRef("false");
12097 return llvm::None;
12098 }
12099};
12100}
12101
12102static bool HasEnumType(Expr *E) {
12103 // Strip off implicit integral promotions.
12104 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
12105 if (ICE->getCastKind() != CK_IntegralCast &&
12106 ICE->getCastKind() != CK_NoOp)
12107 break;
12108 E = ICE->getSubExpr();
12109 }
12110
12111 return E->getType()->isEnumeralType();
12112}
12113
12114static int classifyConstantValue(Expr *Constant) {
12115 // The values of this enumeration are used in the diagnostics
12116 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
12117 enum ConstantValueKind {
12118 Miscellaneous = 0,
12119 LiteralTrue,
12120 LiteralFalse
12121 };
12122 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
12123 return BL->getValue() ? ConstantValueKind::LiteralTrue
12124 : ConstantValueKind::LiteralFalse;
12125 return ConstantValueKind::Miscellaneous;
12126}
12127
12128static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
12129 Expr *Constant, Expr *Other,
12130 const llvm::APSInt &Value,
12131 bool RhsConstant) {
12132 if (S.inTemplateInstantiation())
12133 return false;
12134
12135 Expr *OriginalOther = Other;
12136
12137 Constant = Constant->IgnoreParenImpCasts();
12138 Other = Other->IgnoreParenImpCasts();
12139
12140 // Suppress warnings on tautological comparisons between values of the same
12141 // enumeration type. There are only two ways we could warn on this:
12142 // - If the constant is outside the range of representable values of
12143 // the enumeration. In such a case, we should warn about the cast
12144 // to enumeration type, not about the comparison.
12145 // - If the constant is the maximum / minimum in-range value. For an
12146 // enumeratin type, such comparisons can be meaningful and useful.
12147 if (Constant->getType()->isEnumeralType() &&
12148 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
12149 return false;
12150
12151 IntRange OtherValueRange = GetExprRange(
12152 S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
12153
12154 QualType OtherT = Other->getType();
12155 if (const auto *AT = OtherT->getAs<AtomicType>())
12156 OtherT = AT->getValueType();
12157 IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
12158
12159 // Special case for ObjC BOOL on targets where its a typedef for a signed char
12160 // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
12161 bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
12162 S.NSAPIObj->isObjCBOOLType(OtherT) &&
12163 OtherT->isSpecificBuiltinType(BuiltinType::SChar);
12164
12165 // Whether we're treating Other as being a bool because of the form of
12166 // expression despite it having another type (typically 'int' in C).
12167 bool OtherIsBooleanDespiteType =
12168 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
12169 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
12170 OtherTypeRange = OtherValueRange = IntRange::forBoolType();
12171
12172 // Check if all values in the range of possible values of this expression
12173 // lead to the same comparison outcome.
12174 PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
12175 Value.isUnsigned());
12176 auto Cmp = OtherPromotedValueRange.compare(Value);
12177 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
12178 if (!Result)
12179 return false;
12180
12181 // Also consider the range determined by the type alone. This allows us to
12182 // classify the warning under the proper diagnostic group.
12183 bool TautologicalTypeCompare = false;
12184 {
12185 PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
12186 Value.isUnsigned());
12187 auto TypeCmp = OtherPromotedTypeRange.compare(Value);
12188 if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
12189 RhsConstant)) {
12190 TautologicalTypeCompare = true;
12191 Cmp = TypeCmp;
12192 Result = TypeResult;
12193 }
12194 }
12195
12196 // Don't warn if the non-constant operand actually always evaluates to the
12197 // same value.
12198 if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
12199 return false;
12200
12201 // Suppress the diagnostic for an in-range comparison if the constant comes
12202 // from a macro or enumerator. We don't want to diagnose
12203 //
12204 // some_long_value <= INT_MAX
12205 //
12206 // when sizeof(int) == sizeof(long).
12207 bool InRange = Cmp & PromotedRange::InRangeFlag;
12208 if (InRange && IsEnumConstOrFromMacro(S, Constant))
12209 return false;
12210
12211 // A comparison of an unsigned bit-field against 0 is really a type problem,
12212 // even though at the type level the bit-field might promote to 'signed int'.
12213 if (Other->refersToBitField() && InRange && Value == 0 &&
12214 Other->getType()->isUnsignedIntegerOrEnumerationType())
12215 TautologicalTypeCompare = true;
12216
12217 // If this is a comparison to an enum constant, include that
12218 // constant in the diagnostic.
12219 const EnumConstantDecl *ED = nullptr;
12220 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
12221 ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
12222
12223 // Should be enough for uint128 (39 decimal digits)
12224 SmallString<64> PrettySourceValue;
12225 llvm::raw_svector_ostream OS(PrettySourceValue);
12226 if (ED) {
12227 OS << '\'' << *ED << "' (" << Value << ")";
12228 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
12229 Constant->IgnoreParenImpCasts())) {
12230 OS << (BL->getValue() ? "YES" : "NO");
12231 } else {
12232 OS << Value;
12233 }
12234
12235 if (!TautologicalTypeCompare) {
12236 S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
12237 << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
12238 << E->getOpcodeStr() << OS.str() << *Result
12239 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
12240 return true;
12241 }
12242
12243 if (IsObjCSignedCharBool) {
12244 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12245 S.PDiag(diag::warn_tautological_compare_objc_bool)
12246 << OS.str() << *Result);
12247 return true;
12248 }
12249
12250 // FIXME: We use a somewhat different formatting for the in-range cases and
12251 // cases involving boolean values for historical reasons. We should pick a
12252 // consistent way of presenting these diagnostics.
12253 if (!InRange || Other->isKnownToHaveBooleanValue()) {
12254
12255 S.DiagRuntimeBehavior(
12256 E->getOperatorLoc(), E,
12257 S.PDiag(!InRange ? diag::warn_out_of_range_compare
12258 : diag::warn_tautological_bool_compare)
12259 << OS.str() << classifyConstantValue(Constant) << OtherT
12260 << OtherIsBooleanDespiteType << *Result
12261 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
12262 } else {
12263 bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
12264 unsigned Diag =
12265 (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
12266 ? (HasEnumType(OriginalOther)
12267 ? diag::warn_unsigned_enum_always_true_comparison
12268 : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
12269 : diag::warn_unsigned_always_true_comparison)
12270 : diag::warn_tautological_constant_compare;
12271
12272 S.Diag(E->getOperatorLoc(), Diag)
12273 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
12274 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
12275 }
12276
12277 return true;
12278}
12279
12280/// Analyze the operands of the given comparison. Implements the
12281/// fallback case from AnalyzeComparison.
12282static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
12283 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12284 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12285}
12286
12287/// Implements -Wsign-compare.
12288///
12289/// \param E the binary operator to check for warnings
12290static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
12291 // The type the comparison is being performed in.
12292 QualType T = E->getLHS()->getType();
12293
12294 // Only analyze comparison operators where both sides have been converted to
12295 // the same type.
12296 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
12297 return AnalyzeImpConvsInComparison(S, E);
12298
12299 // Don't analyze value-dependent comparisons directly.
12300 if (E->isValueDependent())
12301 return AnalyzeImpConvsInComparison(S, E);
12302
12303 Expr *LHS = E->getLHS();
12304 Expr *RHS = E->getRHS();
12305
12306 if (T->isIntegralType(S.Context)) {
12307 Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
12308 Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
12309
12310 // We don't care about expressions whose result is a constant.
12311 if (RHSValue && LHSValue)
12312 return AnalyzeImpConvsInComparison(S, E);
12313
12314 // We only care about expressions where just one side is literal
12315 if ((bool)RHSValue ^ (bool)LHSValue) {
12316 // Is the constant on the RHS or LHS?
12317 const bool RhsConstant = (bool)RHSValue;
12318 Expr *Const = RhsConstant ? RHS : LHS;
12319 Expr *Other = RhsConstant ? LHS : RHS;
12320 const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
12321
12322 // Check whether an integer constant comparison results in a value
12323 // of 'true' or 'false'.
12324 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
12325 return AnalyzeImpConvsInComparison(S, E);
12326 }
12327 }
12328
12329 if (!T->hasUnsignedIntegerRepresentation()) {
12330 // We don't do anything special if this isn't an unsigned integral
12331 // comparison: we're only interested in integral comparisons, and
12332 // signed comparisons only happen in cases we don't care to warn about.
12333 return AnalyzeImpConvsInComparison(S, E);
12334 }
12335
12336 LHS = LHS->IgnoreParenImpCasts();
12337 RHS = RHS->IgnoreParenImpCasts();
12338
12339 if (!S.getLangOpts().CPlusPlus) {
12340 // Avoid warning about comparison of integers with different signs when
12341 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
12342 // the type of `E`.
12343 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
12344 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12345 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
12346 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12347 }
12348
12349 // Check to see if one of the (unmodified) operands is of different
12350 // signedness.
12351 Expr *signedOperand, *unsignedOperand;
12352 if (LHS->getType()->hasSignedIntegerRepresentation()) {
12353 assert(!RHS->getType()->hasSignedIntegerRepresentation() &&(static_cast <bool> (!RHS->getType()->hasSignedIntegerRepresentation
() && "unsigned comparison between two signed integer expressions?"
) ? void (0) : __assert_fail ("!RHS->getType()->hasSignedIntegerRepresentation() && \"unsigned comparison between two signed integer expressions?\""
, "clang/lib/Sema/SemaChecking.cpp", 12354, __extension__ __PRETTY_FUNCTION__
))
12354 "unsigned comparison between two signed integer expressions?")(static_cast <bool> (!RHS->getType()->hasSignedIntegerRepresentation
() && "unsigned comparison between two signed integer expressions?"
) ? void (0) : __assert_fail ("!RHS->getType()->hasSignedIntegerRepresentation() && \"unsigned comparison between two signed integer expressions?\""
, "clang/lib/Sema/SemaChecking.cpp", 12354, __extension__ __PRETTY_FUNCTION__
))
;
12355 signedOperand = LHS;
12356 unsignedOperand = RHS;
12357 } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
12358 signedOperand = RHS;
12359 unsignedOperand = LHS;
12360 } else {
12361 return AnalyzeImpConvsInComparison(S, E);
12362 }
12363
12364 // Otherwise, calculate the effective range of the signed operand.
12365 IntRange signedRange = GetExprRange(
12366 S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
12367
12368 // Go ahead and analyze implicit conversions in the operands. Note
12369 // that we skip the implicit conversions on both sides.
12370 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
12371 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
12372
12373 // If the signed range is non-negative, -Wsign-compare won't fire.
12374 if (signedRange.NonNegative)
12375 return;
12376
12377 // For (in)equality comparisons, if the unsigned operand is a
12378 // constant which cannot collide with a overflowed signed operand,
12379 // then reinterpreting the signed operand as unsigned will not
12380 // change the result of the comparison.
12381 if (E->isEqualityOp()) {
12382 unsigned comparisonWidth = S.Context.getIntWidth(T);
12383 IntRange unsignedRange =
12384 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
12385 /*Approximate*/ true);
12386
12387 // We should never be unable to prove that the unsigned operand is
12388 // non-negative.
12389 assert(unsignedRange.NonNegative && "unsigned range includes negative?")(static_cast <bool> (unsignedRange.NonNegative &&
"unsigned range includes negative?") ? void (0) : __assert_fail
("unsignedRange.NonNegative && \"unsigned range includes negative?\""
, "clang/lib/Sema/SemaChecking.cpp", 12389, __extension__ __PRETTY_FUNCTION__
))
;
12390
12391 if (unsignedRange.Width < comparisonWidth)
12392 return;
12393 }
12394
12395 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12396 S.PDiag(diag::warn_mixed_sign_comparison)
12397 << LHS->getType() << RHS->getType()
12398 << LHS->getSourceRange() << RHS->getSourceRange());
12399}
12400
12401/// Analyzes an attempt to assign the given value to a bitfield.
12402///
12403/// Returns true if there was something fishy about the attempt.
12404static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
12405 SourceLocation InitLoc) {
12406 assert(Bitfield->isBitField())(static_cast <bool> (Bitfield->isBitField()) ? void (
0) : __assert_fail ("Bitfield->isBitField()", "clang/lib/Sema/SemaChecking.cpp"
, 12406, __extension__ __PRETTY_FUNCTION__))
;
12407 if (Bitfield->isInvalidDecl())
12408 return false;
12409
12410 // White-list bool bitfields.
12411 QualType BitfieldType = Bitfield->getType();
12412 if (BitfieldType->isBooleanType())
12413 return false;
12414
12415 if (BitfieldType->isEnumeralType()) {
12416 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
12417 // If the underlying enum type was not explicitly specified as an unsigned
12418 // type and the enum contain only positive values, MSVC++ will cause an
12419 // inconsistency by storing this as a signed type.
12420 if (S.getLangOpts().CPlusPlus11 &&
12421 !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
12422 BitfieldEnumDecl->getNumPositiveBits() > 0 &&
12423 BitfieldEnumDecl->getNumNegativeBits() == 0) {
12424 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
12425 << BitfieldEnumDecl;
12426 }
12427 }
12428
12429 if (Bitfield->getType()->isBooleanType())
12430 return false;
12431
12432 // Ignore value- or type-dependent expressions.
12433 if (Bitfield->getBitWidth()->isValueDependent() ||
12434 Bitfield->getBitWidth()->isTypeDependent() ||
12435 Init->isValueDependent() ||
12436 Init->isTypeDependent())
12437 return false;
12438
12439 Expr *OriginalInit = Init->IgnoreParenImpCasts();
12440 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
12441
12442 Expr::EvalResult Result;
12443 if (!OriginalInit->EvaluateAsInt(Result, S.Context,
12444 Expr::SE_AllowSideEffects)) {
12445 // The RHS is not constant. If the RHS has an enum type, make sure the
12446 // bitfield is wide enough to hold all the values of the enum without
12447 // truncation.
12448 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
12449 EnumDecl *ED = EnumTy->getDecl();
12450 bool SignedBitfield = BitfieldType->isSignedIntegerType();
12451
12452 // Enum types are implicitly signed on Windows, so check if there are any
12453 // negative enumerators to see if the enum was intended to be signed or
12454 // not.
12455 bool SignedEnum = ED->getNumNegativeBits() > 0;
12456
12457 // Check for surprising sign changes when assigning enum values to a
12458 // bitfield of different signedness. If the bitfield is signed and we
12459 // have exactly the right number of bits to store this unsigned enum,
12460 // suggest changing the enum to an unsigned type. This typically happens
12461 // on Windows where unfixed enums always use an underlying type of 'int'.
12462 unsigned DiagID = 0;
12463 if (SignedEnum && !SignedBitfield) {
12464 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
12465 } else if (SignedBitfield && !SignedEnum &&
12466 ED->getNumPositiveBits() == FieldWidth) {
12467 DiagID = diag::warn_signed_bitfield_enum_conversion;
12468 }
12469
12470 if (DiagID) {
12471 S.Diag(InitLoc, DiagID) << Bitfield << ED;
12472 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
12473 SourceRange TypeRange =
12474 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
12475 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
12476 << SignedEnum << TypeRange;
12477 }
12478
12479 // Compute the required bitwidth. If the enum has negative values, we need
12480 // one more bit than the normal number of positive bits to represent the
12481 // sign bit.
12482 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
12483 ED->getNumNegativeBits())
12484 : ED->getNumPositiveBits();
12485
12486 // Check the bitwidth.
12487 if (BitsNeeded > FieldWidth) {
12488 Expr *WidthExpr = Bitfield->getBitWidth();
12489 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
12490 << Bitfield << ED;
12491 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
12492 << BitsNeeded << ED << WidthExpr->getSourceRange();
12493 }
12494 }
12495
12496 return false;
12497 }
12498
12499 llvm::APSInt Value = Result.Val.getInt();
12500
12501 unsigned OriginalWidth = Value.getBitWidth();
12502
12503 if (!Value.isSigned() || Value.isNegative())
12504 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
12505 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
12506 OriginalWidth = Value.getMinSignedBits();
12507
12508 if (OriginalWidth <= FieldWidth)
12509 return false;
12510
12511 // Compute the value which the bitfield will contain.
12512 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
12513 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
12514
12515 // Check whether the stored value is equal to the original value.
12516 TruncatedValue = TruncatedValue.extend(OriginalWidth);
12517 if (llvm::APSInt::isSameValue(Value, TruncatedValue))
12518 return false;
12519
12520 // Special-case bitfields of width 1: booleans are naturally 0/1, and
12521 // therefore don't strictly fit into a signed bitfield of width 1.
12522 if (FieldWidth == 1 && Value == 1)
12523 return false;
12524
12525 std::string PrettyValue = toString(Value, 10);
12526 std::string PrettyTrunc = toString(TruncatedValue, 10);
12527
12528 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
12529 << PrettyValue << PrettyTrunc << OriginalInit->getType()
12530 << Init->getSourceRange();
12531
12532 return true;
12533}
12534
12535/// Analyze the given simple or compound assignment for warning-worthy
12536/// operations.
12537static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
12538 // Just recurse on the LHS.
12539 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12540
12541 // We want to recurse on the RHS as normal unless we're assigning to
12542 // a bitfield.
12543 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
12544 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
12545 E->getOperatorLoc())) {
12546 // Recurse, ignoring any implicit conversions on the RHS.
12547 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
12548 E->getOperatorLoc());
12549 }
12550 }
12551
12552 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12553
12554 // Diagnose implicitly sequentially-consistent atomic assignment.
12555 if (E->getLHS()->getType()->isAtomicType())
12556 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12557}
12558
12559/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
12560static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
12561 SourceLocation CContext, unsigned diag,
12562 bool pruneControlFlow = false) {
12563 if (pruneControlFlow) {
12564 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12565 S.PDiag(diag)
12566 << SourceType << T << E->getSourceRange()
12567 << SourceRange(CContext));
12568 return;
12569 }
12570 S.Diag(E->getExprLoc(), diag)
12571 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
12572}
12573
12574/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
12575static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
12576 SourceLocation CContext,
12577 unsigned diag, bool pruneControlFlow = false) {
12578 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
12579}
12580
12581static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
12582 return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
12583 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
12584}
12585
12586static void adornObjCBoolConversionDiagWithTernaryFixit(
12587 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
12588 Expr *Ignored = SourceExpr->IgnoreImplicit();
12589 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
12590 Ignored = OVE->getSourceExpr();
12591 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
12592 isa<BinaryOperator>(Ignored) ||
12593 isa<CXXOperatorCallExpr>(Ignored);
12594 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
12595 if (NeedsParens)
12596 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
12597 << FixItHint::CreateInsertion(EndLoc, ")");
12598 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
12599}
12600
12601/// Diagnose an implicit cast from a floating point value to an integer value.
12602static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
12603 SourceLocation CContext) {
12604 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
12605 const bool PruneWarnings = S.inTemplateInstantiation();
12606
12607 Expr *InnerE = E->IgnoreParenImpCasts();
12608 // We also want to warn on, e.g., "int i = -1.234"
12609 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
12610 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
12611 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
12612
12613 const bool IsLiteral =
12614 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
12615
12616 llvm::APFloat Value(0.0);
12617 bool IsConstant =
12618 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
12619 if (!IsConstant) {
12620 if (isObjCSignedCharBool(S, T)) {
12621 return adornObjCBoolConversionDiagWithTernaryFixit(
12622 S, E,
12623 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
12624 << E->getType());
12625 }
12626
12627 return DiagnoseImpCast(S, E, T, CContext,
12628 diag::warn_impcast_float_integer, PruneWarnings);
12629 }
12630
12631 bool isExact = false;
12632
12633 llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
12634 T->hasUnsignedIntegerRepresentation());
12635 llvm::APFloat::opStatus Result = Value.convertToInteger(
12636 IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
12637
12638 // FIXME: Force the precision of the source value down so we don't print
12639 // digits which are usually useless (we don't really care here if we
12640 // truncate a digit by accident in edge cases). Ideally, APFloat::toString
12641 // would automatically print the shortest representation, but it's a bit
12642 // tricky to implement.
12643 SmallString<16> PrettySourceValue;
12644 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
12645 precision = (precision * 59 + 195) / 196;
12646 Value.toString(PrettySourceValue, precision);
12647
12648 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
12649 return adornObjCBoolConversionDiagWithTernaryFixit(
12650 S, E,
12651 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
12652 << PrettySourceValue);
12653 }
12654
12655 if (Result == llvm::APFloat::opOK && isExact) {
12656 if (IsLiteral) return;
12657 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
12658 PruneWarnings);
12659 }
12660
12661 // Conversion of a floating-point value to a non-bool integer where the
12662 // integral part cannot be represented by the integer type is undefined.
12663 if (!IsBool && Result == llvm::APFloat::opInvalidOp)
12664 return DiagnoseImpCast(
12665 S, E, T, CContext,
12666 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
12667 : diag::warn_impcast_float_to_integer_out_of_range,
12668 PruneWarnings);
12669
12670 unsigned DiagID = 0;
12671 if (IsLiteral) {
12672 // Warn on floating point literal to integer.
12673 DiagID = diag::warn_impcast_literal_float_to_integer;
12674 } else if (IntegerValue == 0) {
12675 if (Value.isZero()) { // Skip -0.0 to 0 conversion.
12676 return DiagnoseImpCast(S, E, T, CContext,
12677 diag::warn_impcast_float_integer, PruneWarnings);
12678 }
12679 // Warn on non-zero to zero conversion.
12680 DiagID = diag::warn_impcast_float_to_integer_zero;
12681 } else {
12682 if (IntegerValue.isUnsigned()) {
12683 if (!IntegerValue.isMaxValue()) {
12684 return DiagnoseImpCast(S, E, T, CContext,
12685 diag::warn_impcast_float_integer, PruneWarnings);
12686 }
12687 } else { // IntegerValue.isSigned()
12688 if (!IntegerValue.isMaxSignedValue() &&
12689 !IntegerValue.isMinSignedValue()) {
12690 return DiagnoseImpCast(S, E, T, CContext,
12691 diag::warn_impcast_float_integer, PruneWarnings);
12692 }
12693 }
12694 // Warn on evaluatable floating point expression to integer conversion.
12695 DiagID = diag::warn_impcast_float_to_integer;
12696 }
12697
12698 SmallString<16> PrettyTargetValue;
12699 if (IsBool)
12700 PrettyTargetValue = Value.isZero() ? "false" : "true";
12701 else
12702 IntegerValue.toString(PrettyTargetValue);
12703
12704 if (PruneWarnings) {
12705 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12706 S.PDiag(DiagID)
12707 << E->getType() << T.getUnqualifiedType()
12708 << PrettySourceValue << PrettyTargetValue
12709 << E->getSourceRange() << SourceRange(CContext));
12710 } else {
12711 S.Diag(E->getExprLoc(), DiagID)
12712 << E->getType() << T.getUnqualifiedType() << PrettySourceValue
12713 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
12714 }
12715}
12716
12717/// Analyze the given compound assignment for the possible losing of
12718/// floating-point precision.
12719static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
12720 assert(isa<CompoundAssignOperator>(E) &&(static_cast <bool> (isa<CompoundAssignOperator>(
E) && "Must be compound assignment operation") ? void
(0) : __assert_fail ("isa<CompoundAssignOperator>(E) && \"Must be compound assignment operation\""
, "clang/lib/Sema/SemaChecking.cpp", 12721, __extension__ __PRETTY_FUNCTION__
))
12721 "Must be compound assignment operation")(static_cast <bool> (isa<CompoundAssignOperator>(
E) && "Must be compound assignment operation") ? void
(0) : __assert_fail ("isa<CompoundAssignOperator>(E) && \"Must be compound assignment operation\""
, "clang/lib/Sema/SemaChecking.cpp", 12721, __extension__ __PRETTY_FUNCTION__
))
;
12722 // Recurse on the LHS and RHS in here
12723 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12724 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12725
12726 if (E->getLHS()->getType()->isAtomicType())
12727 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
12728
12729 // Now check the outermost expression
12730 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
12731 const auto *RBT = cast<CompoundAssignOperator>(E)
12732 ->getComputationResultType()
12733 ->getAs<BuiltinType>();
12734
12735 // The below checks assume source is floating point.
12736 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
12737
12738 // If source is floating point but target is an integer.
12739 if (ResultBT->isInteger())
12740 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
12741 E->getExprLoc(), diag::warn_impcast_float_integer);
12742
12743 if (!ResultBT->isFloatingPoint())
12744 return;
12745
12746 // If both source and target are floating points, warn about losing precision.
12747 int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12748 QualType(ResultBT, 0), QualType(RBT, 0));
12749 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
12750 // warn about dropping FP rank.
12751 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
12752 diag::warn_impcast_float_result_precision);
12753}
12754
12755static std::string PrettyPrintInRange(const llvm::APSInt &Value,
12756 IntRange Range) {
12757 if (!Range.Width) return "0";
12758
12759 llvm::APSInt ValueInRange = Value;
12760 ValueInRange.setIsSigned(!Range.NonNegative);
12761 ValueInRange = ValueInRange.trunc(Range.Width);
12762 return toString(ValueInRange, 10);
12763}
12764
12765static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
12766 if (!isa<ImplicitCastExpr>(Ex))
12767 return false;
12768
12769 Expr *InnerE = Ex->IgnoreParenImpCasts();
12770 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
12771 const Type *Source =
12772 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
12773 if (Target->isDependentType())
12774 return false;
12775
12776 const BuiltinType *FloatCandidateBT =
12777 dyn_cast<BuiltinType>(ToBool ? Source : Target);
12778 const Type *BoolCandidateType = ToBool ? Target : Source;
12779
12780 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
12781 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
12782}
12783
12784static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
12785 SourceLocation CC) {
12786 unsigned NumArgs = TheCall->getNumArgs();
12787 for (unsigned i = 0; i < NumArgs; ++i) {
12788 Expr *CurrA = TheCall->getArg(i);
12789 if (!IsImplicitBoolFloatConversion(S, CurrA, true))
12790 continue;
12791
12792 bool IsSwapped = ((i > 0) &&
12793 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
12794 IsSwapped |= ((i < (NumArgs - 1)) &&
12795 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
12796 if (IsSwapped) {
12797 // Warn on this floating-point to bool conversion.
12798 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
12799 CurrA->getType(), CC,
12800 diag::warn_impcast_floating_point_to_bool);
12801 }
12802 }
12803}
12804
12805static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
12806 SourceLocation CC) {
12807 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
12808 E->getExprLoc()))
12809 return;
12810
12811 // Don't warn on functions which have return type nullptr_t.
12812 if (isa<CallExpr>(E))
12813 return;
12814
12815 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
12816 const Expr::NullPointerConstantKind NullKind =
12817 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
12818 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
12819 return;
12820
12821 // Return if target type is a safe conversion.
12822 if (T->isAnyPointerType() || T->isBlockPointerType() ||
12823 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
12824 return;
12825
12826 SourceLocation Loc = E->getSourceRange().getBegin();
12827
12828 // Venture through the macro stacks to get to the source of macro arguments.
12829 // The new location is a better location than the complete location that was
12830 // passed in.
12831 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
12832 CC = S.SourceMgr.getTopMacroCallerLoc(CC);
12833
12834 // __null is usually wrapped in a macro. Go up a macro if that is the case.
12835 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
12836 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
12837 Loc, S.SourceMgr, S.getLangOpts());
12838 if (MacroName == "NULL")
12839 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
12840 }
12841
12842 // Only warn if the null and context location are in the same macro expansion.
12843 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
12844 return;
12845
12846 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
12847 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
12848 << FixItHint::CreateReplacement(Loc,
12849 S.getFixItZeroLiteralForType(T, Loc));
12850}
12851
12852static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12853 ObjCArrayLiteral *ArrayLiteral);
12854
12855static void
12856checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12857 ObjCDictionaryLiteral *DictionaryLiteral);
12858
12859/// Check a single element within a collection literal against the
12860/// target element type.
12861static void checkObjCCollectionLiteralElement(Sema &S,
12862 QualType TargetElementType,
12863 Expr *Element,
12864 unsigned ElementKind) {
12865 // Skip a bitcast to 'id' or qualified 'id'.
12866 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
12867 if (ICE->getCastKind() == CK_BitCast &&
12868 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
12869 Element = ICE->getSubExpr();
12870 }
12871
12872 QualType ElementType = Element->getType();
12873 ExprResult ElementResult(Element);
12874 if (ElementType->getAs<ObjCObjectPointerType>() &&
12875 S.CheckSingleAssignmentConstraints(TargetElementType,
12876 ElementResult,
12877 false, false)
12878 != Sema::Compatible) {
12879 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
12880 << ElementType << ElementKind << TargetElementType
12881 << Element->getSourceRange();
12882 }
12883
12884 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
12885 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
12886 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
12887 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
12888}
12889
12890/// Check an Objective-C array literal being converted to the given
12891/// target type.
12892static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
12893 ObjCArrayLiteral *ArrayLiteral) {
12894 if (!S.NSArrayDecl)
12895 return;
12896
12897 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12898 if (!TargetObjCPtr)
12899 return;
12900
12901 if (TargetObjCPtr->isUnspecialized() ||
12902 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12903 != S.NSArrayDecl->getCanonicalDecl())
12904 return;
12905
12906 auto TypeArgs = TargetObjCPtr->getTypeArgs();
12907 if (TypeArgs.size() != 1)
12908 return;
12909
12910 QualType TargetElementType = TypeArgs[0];
12911 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
12912 checkObjCCollectionLiteralElement(S, TargetElementType,
12913 ArrayLiteral->getElement(I),
12914 0);
12915 }
12916}
12917
12918/// Check an Objective-C dictionary literal being converted to the given
12919/// target type.
12920static void
12921checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
12922 ObjCDictionaryLiteral *DictionaryLiteral) {
12923 if (!S.NSDictionaryDecl)
12924 return;
12925
12926 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
12927 if (!TargetObjCPtr)
12928 return;
12929
12930 if (TargetObjCPtr->isUnspecialized() ||
12931 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
12932 != S.NSDictionaryDecl->getCanonicalDecl())
12933 return;
12934
12935 auto TypeArgs = TargetObjCPtr->getTypeArgs();
12936 if (TypeArgs.size() != 2)
12937 return;
12938
12939 QualType TargetKeyType = TypeArgs[0];
12940 QualType TargetObjectType = TypeArgs[1];
12941 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
12942 auto Element = DictionaryLiteral->getKeyValueElement(I);
12943 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
12944 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
12945 }
12946}
12947
12948// Helper function to filter out cases for constant width constant conversion.
12949// Don't warn on char array initialization or for non-decimal values.
12950static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
12951 SourceLocation CC) {
12952 // If initializing from a constant, and the constant starts with '0',
12953 // then it is a binary, octal, or hexadecimal. Allow these constants
12954 // to fill all the bits, even if there is a sign change.
12955 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
12956 const char FirstLiteralCharacter =
12957 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
12958 if (FirstLiteralCharacter == '0')
12959 return false;
12960 }
12961
12962 // If the CC location points to a '{', and the type is char, then assume
12963 // assume it is an array initialization.
12964 if (CC.isValid() && T->isCharType()) {
12965 const char FirstContextCharacter =
12966 S.getSourceManager().getCharacterData(CC)[0];
12967 if (FirstContextCharacter == '{')
12968 return false;
12969 }
12970
12971 return true;
12972}
12973
12974static const IntegerLiteral *getIntegerLiteral(Expr *E) {
12975 const auto *IL = dyn_cast<IntegerLiteral>(E);
12976 if (!IL) {
12977 if (auto *UO = dyn_cast<UnaryOperator>(E)) {
12978 if (UO->getOpcode() == UO_Minus)
12979 return dyn_cast<IntegerLiteral>(UO->getSubExpr());
12980 }
12981 }
12982
12983 return IL;
12984}
12985
12986static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
12987 E = E->IgnoreParenImpCasts();
12988 SourceLocation ExprLoc = E->getExprLoc();
12989
12990 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
12991 BinaryOperator::Opcode Opc = BO->getOpcode();
12992 Expr::EvalResult Result;
12993 // Do not diagnose unsigned shifts.
12994 if (Opc == BO_Shl) {
12995 const auto *LHS = getIntegerLiteral(BO->getLHS());
12996 const auto *RHS = getIntegerLiteral(BO->getRHS());
12997 if (LHS && LHS->getValue() == 0)
12998 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
12999 else if (!E->isValueDependent() && LHS && RHS &&
13000 RHS->getValue().isNonNegative() &&
13001 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
13002 S.Diag(ExprLoc, diag::warn_left_shift_always)
13003 << (Result.Val.getInt() != 0);
13004 else if (E->getType()->isSignedIntegerType())
13005 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
13006 }
13007 }
13008
13009 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
13010 const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
13011 const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
13012 if (!LHS || !RHS)
13013 return;
13014 if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
13015 (RHS->getValue() == 0 || RHS->getValue() == 1))
13016 // Do not diagnose common idioms.
13017 return;
13018 if (LHS->getValue() != 0 && RHS->getValue() != 0)
13019 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
13020 }
13021}
13022
13023static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
13024 SourceLocation CC,
13025 bool *ICContext = nullptr,
13026 bool IsListInit = false) {
13027 if (E->isTypeDependent() || E->isValueDependent()) return;
13028
13029 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
13030 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
13031 if (Source == Target) return;
13032 if (Target->isDependentType()) return;
13033
13034 // If the conversion context location is invalid don't complain. We also
13035 // don't want to emit a warning if the issue occurs from the expansion of
13036 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
13037 // delay this check as long as possible. Once we detect we are in that
13038 // scenario, we just return.
13039 if (CC.isInvalid())
13040 return;
13041
13042 if (Source->isAtomicType())
13043 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
13044
13045 // Diagnose implicit casts to bool.
13046 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
13047 if (isa<StringLiteral>(E))
13048 // Warn on string literal to bool. Checks for string literals in logical
13049 // and expressions, for instance, assert(0 && "error here"), are
13050 // prevented by a check in AnalyzeImplicitConversions().
13051 return DiagnoseImpCast(S, E, T, CC,
13052 diag::warn_impcast_string_literal_to_bool);
13053 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
13054 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
13055 // This covers the literal expressions that evaluate to Objective-C
13056 // objects.
13057 return DiagnoseImpCast(S, E, T, CC,
13058 diag::warn_impcast_objective_c_literal_to_bool);
13059 }
13060 if (Source->isPointerType() || Source->canDecayToPointerType()) {
13061 // Warn on pointer to bool conversion that is always true.
13062 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
13063 SourceRange(CC));
13064 }
13065 }
13066
13067 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
13068 // is a typedef for signed char (macOS), then that constant value has to be 1
13069 // or 0.
13070 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
13071 Expr::EvalResult Result;
13072 if (E->EvaluateAsInt(Result, S.getASTContext(),
13073 Expr::SE_AllowSideEffects)) {
13074 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
13075 adornObjCBoolConversionDiagWithTernaryFixit(
13076 S, E,
13077 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
13078 << toString(Result.Val.getInt(), 10));
13079 }
13080 return;
13081 }
13082 }
13083
13084 // Check implicit casts from Objective-C collection literals to specialized
13085 // collection types, e.g., NSArray<NSString *> *.
13086 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
13087 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
13088 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
13089 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
13090
13091 // Strip vector types.
13092 if (isa<VectorType>(Source)) {
13093 if (Target->isVLSTBuiltinType() &&
13094 (S.Context.areCompatibleSveTypes(QualType(Target, 0),
13095 QualType(Source, 0)) ||
13096 S.Context.areLaxCompatibleSveTypes(QualType(Target, 0),
13097 QualType(Source, 0))))
13098 return;
13099
13100 if (!isa<VectorType>(Target)) {
13101 if (S.SourceMgr.isInSystemMacro(CC))
13102 return;
13103 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
13104 }
13105
13106 // If the vector cast is cast between two vectors of the same size, it is
13107 // a bitcast, not a conversion.
13108 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
13109 return;
13110
13111 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
13112 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
13113 }
13114 if (auto VecTy = dyn_cast<VectorType>(Target))
13115 Target = VecTy->getElementType().getTypePtr();
13116
13117 // Strip complex types.
13118 if (isa<ComplexType>(Source)) {
13119 if (!isa<ComplexType>(Target)) {
13120 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
13121 return;
13122
13123 return DiagnoseImpCast(S, E, T, CC,
13124 S.getLangOpts().CPlusPlus
13125 ? diag::err_impcast_complex_scalar
13126 : diag::warn_impcast_complex_scalar);
13127 }
13128
13129 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
13130 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
13131 }
13132
13133 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
13134 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
13135
13136 // If the source is floating point...
13137 if (SourceBT && SourceBT->isFloatingPoint()) {
13138 // ...and the target is floating point...
13139 if (TargetBT && TargetBT->isFloatingPoint()) {
13140 // ...then warn if we're dropping FP rank.
13141
13142 int Order = S.getASTContext().getFloatingTypeSemanticOrder(
13143 QualType(SourceBT, 0), QualType(TargetBT, 0));
13144 if (Order > 0) {
13145 // Don't warn about float constants that are precisely
13146 // representable in the target type.
13147 Expr::EvalResult result;
13148 if (E->EvaluateAsRValue(result, S.Context)) {
13149 // Value might be a float, a float vector, or a float complex.
13150 if (IsSameFloatAfterCast(result.Val,
13151 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
13152 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
13153 return;
13154 }
13155
13156 if (S.SourceMgr.isInSystemMacro(CC))
13157 return;
13158
13159 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
13160 }
13161 // ... or possibly if we're increasing rank, too
13162 else if (Order < 0) {
13163 if (S.SourceMgr.isInSystemMacro(CC))
13164 return;
13165
13166 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
13167 }
13168 return;
13169 }
13170
13171 // If the target is integral, always warn.
13172 if (TargetBT && TargetBT->isInteger()) {
13173 if (S.SourceMgr.isInSystemMacro(CC))
13174 return;
13175
13176 DiagnoseFloatingImpCast(S, E, T, CC);
13177 }
13178
13179 // Detect the case where a call result is converted from floating-point to
13180 // to bool, and the final argument to the call is converted from bool, to
13181 // discover this typo:
13182 //
13183 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;"
13184 //
13185 // FIXME: This is an incredibly special case; is there some more general
13186 // way to detect this class of misplaced-parentheses bug?
13187 if (Target->isBooleanType() && isa<CallExpr>(E)) {
13188 // Check last argument of function call to see if it is an
13189 // implicit cast from a type matching the type the result
13190 // is being cast to.
13191 CallExpr *CEx = cast<CallExpr>(E);
13192 if (unsigned NumArgs = CEx->getNumArgs()) {
13193 Expr *LastA = CEx->getArg(NumArgs - 1);
13194 Expr *InnerE = LastA->IgnoreParenImpCasts();
13195 if (isa<ImplicitCastExpr>(LastA) &&
13196 InnerE->getType()->isBooleanType()) {
13197 // Warn on this floating-point to bool conversion
13198 DiagnoseImpCast(S, E, T, CC,
13199 diag::warn_impcast_floating_point_to_bool);
13200 }
13201 }
13202 }
13203 return;
13204 }
13205
13206 // Valid casts involving fixed point types should be accounted for here.
13207 if (Source->isFixedPointType()) {
13208 if (Target->isUnsaturatedFixedPointType()) {
13209 Expr::EvalResult Result;
13210 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
13211 S.isConstantEvaluated())) {
13212 llvm::APFixedPoint Value = Result.Val.getFixedPoint();
13213 llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
13214 llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
13215 if (Value > MaxVal || Value < MinVal) {
13216 S.DiagRuntimeBehavior(E->getExprLoc(), E,
13217 S.PDiag(diag::warn_impcast_fixed_point_range)
13218 << Value.toString() << T
13219 << E->getSourceRange()
13220 << clang::SourceRange(CC));
13221 return;
13222 }
13223 }
13224 } else if (Target->isIntegerType()) {
13225 Expr::EvalResult Result;
13226 if (!S.isConstantEvaluated() &&
13227 E->EvaluateAsFixedPoint(Result, S.Context,
13228 Expr::SE_AllowSideEffects)) {
13229 llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
13230
13231 bool Overflowed;
13232 llvm::APSInt IntResult = FXResult.convertToInt(
13233 S.Context.getIntWidth(T),
13234 Target->isSignedIntegerOrEnumerationType(), &Overflowed);
13235
13236 if (Overflowed) {
13237 S.DiagRuntimeBehavior(E->getExprLoc(), E,
13238 S.PDiag(diag::warn_impcast_fixed_point_range)
13239 << FXResult.toString() << T
13240 << E->getSourceRange()
13241 << clang::SourceRange(CC));
13242 return;
13243 }
13244 }
13245 }
13246 } else if (Target->isUnsaturatedFixedPointType()) {
13247 if (Source->isIntegerType()) {
13248 Expr::EvalResult Result;
13249 if (!S.isConstantEvaluated() &&
13250 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
13251 llvm::APSInt Value = Result.Val.getInt();
13252
13253 bool Overflowed;
13254 llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
13255 Value, S.Context.getFixedPointSemantics(T), &Overflowed);
13256
13257 if (Overflowed) {
13258 S.DiagRuntimeBehavior(E->getExprLoc(), E,
13259 S.PDiag(diag::warn_impcast_fixed_point_range)
13260 << toString(Value, /*Radix=*/10) << T
13261 << E->getSourceRange()
13262 << clang::SourceRange(CC));
13263 return;
13264 }
13265 }
13266 }
13267 }
13268
13269 // If we are casting an integer type to a floating point type without
13270 // initialization-list syntax, we might lose accuracy if the floating
13271 // point type has a narrower significand than the integer type.
13272 if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
13273 TargetBT->isFloatingType() && !IsListInit) {
13274 // Determine the number of precision bits in the source integer type.
13275 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
13276 /*Approximate*/ true);
13277 unsigned int SourcePrecision = SourceRange.Width;
13278
13279 // Determine the number of precision bits in the
13280 // target floating point type.
13281 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
13282 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13283
13284 if (SourcePrecision > 0 && TargetPrecision > 0 &&
13285 SourcePrecision > TargetPrecision) {
13286
13287 if (Optional<llvm::APSInt> SourceInt =
13288 E->getIntegerConstantExpr(S.Context)) {
13289 // If the source integer is a constant, convert it to the target
13290 // floating point type. Issue a warning if the value changes
13291 // during the whole conversion.
13292 llvm::APFloat TargetFloatValue(
13293 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13294 llvm::APFloat::opStatus ConversionStatus =
13295 TargetFloatValue.convertFromAPInt(
13296 *SourceInt, SourceBT->isSignedInteger(),
13297 llvm::APFloat::rmNearestTiesToEven);
13298
13299 if (ConversionStatus != llvm::APFloat::opOK) {
13300 SmallString<32> PrettySourceValue;
13301 SourceInt->toString(PrettySourceValue, 10);
13302 SmallString<32> PrettyTargetValue;
13303 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
13304
13305 S.DiagRuntimeBehavior(
13306 E->getExprLoc(), E,
13307 S.PDiag(diag::warn_impcast_integer_float_precision_constant)
13308 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13309 << E->getSourceRange() << clang::SourceRange(CC));
13310 }
13311 } else {
13312 // Otherwise, the implicit conversion may lose precision.
13313 DiagnoseImpCast(S, E, T, CC,
13314 diag::warn_impcast_integer_float_precision);
13315 }
13316 }
13317 }
13318
13319 DiagnoseNullConversion(S, E, T, CC);
13320
13321 S.DiscardMisalignedMemberAddress(Target, E);
13322
13323 if (Target->isBooleanType())
13324 DiagnoseIntInBoolContext(S, E);
13325
13326 if (!Source->isIntegerType() || !Target->isIntegerType())
13327 return;
13328
13329 // TODO: remove this early return once the false positives for constant->bool
13330 // in templates, macros, etc, are reduced or removed.
13331 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
13332 return;
13333
13334 if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
13335 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
13336 return adornObjCBoolConversionDiagWithTernaryFixit(
13337 S, E,
13338 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
13339 << E->getType());
13340 }
13341
13342 IntRange SourceTypeRange =
13343 IntRange::forTargetOfCanonicalType(S.Context, Source);
13344 IntRange LikelySourceRange =
13345 GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
13346 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
13347
13348 if (LikelySourceRange.Width > TargetRange.Width) {
13349 // If the source is a constant, use a default-on diagnostic.
13350 // TODO: this should happen for bitfield stores, too.
13351 Expr::EvalResult Result;
13352 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
13353 S.isConstantEvaluated())) {
13354 llvm::APSInt Value(32);
13355 Value = Result.Val.getInt();
13356
13357 if (S.SourceMgr.isInSystemMacro(CC))
13358 return;
13359
13360 std::string PrettySourceValue = toString(Value, 10);
13361 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13362
13363 S.DiagRuntimeBehavior(
13364 E->getExprLoc(), E,
13365 S.PDiag(diag::warn_impcast_integer_precision_constant)
13366 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13367 << E->getSourceRange() << SourceRange(CC));
13368 return;
13369 }
13370
13371 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
13372 if (S.SourceMgr.isInSystemMacro(CC))
13373 return;
13374
13375 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
13376 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
13377 /* pruneControlFlow */ true);
13378 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
13379 }
13380
13381 if (TargetRange.Width > SourceTypeRange.Width) {
13382 if (auto *UO = dyn_cast<UnaryOperator>(E))
13383 if (UO->getOpcode() == UO_Minus)
13384 if (Source->isUnsignedIntegerType()) {
13385 if (Target->isUnsignedIntegerType())
13386 return DiagnoseImpCast(S, E, T, CC,
13387 diag::warn_impcast_high_order_zero_bits);
13388 if (Target->isSignedIntegerType())
13389 return DiagnoseImpCast(S, E, T, CC,
13390 diag::warn_impcast_nonnegative_result);
13391 }
13392 }
13393
13394 if (TargetRange.Width == LikelySourceRange.Width &&
13395 !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13396 Source->isSignedIntegerType()) {
13397 // Warn when doing a signed to signed conversion, warn if the positive
13398 // source value is exactly the width of the target type, which will
13399 // cause a negative value to be stored.
13400
13401 Expr::EvalResult Result;
13402 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
13403 !S.SourceMgr.isInSystemMacro(CC)) {
13404 llvm::APSInt Value = Result.Val.getInt();
13405 if (isSameWidthConstantConversion(S, E, T, CC)) {
13406 std::string PrettySourceValue = toString(Value, 10);
13407 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13408
13409 S.DiagRuntimeBehavior(
13410 E->getExprLoc(), E,
13411 S.PDiag(diag::warn_impcast_integer_precision_constant)
13412 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13413 << E->getSourceRange() << SourceRange(CC));
13414 return;
13415 }
13416 }
13417
13418 // Fall through for non-constants to give a sign conversion warning.
13419 }
13420
13421 if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
13422 (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13423 LikelySourceRange.Width == TargetRange.Width)) {
13424 if (S.SourceMgr.isInSystemMacro(CC))
13425 return;
13426
13427 unsigned DiagID = diag::warn_impcast_integer_sign;
13428
13429 // Traditionally, gcc has warned about this under -Wsign-compare.
13430 // We also want to warn about it in -Wconversion.
13431 // So if -Wconversion is off, use a completely identical diagnostic
13432 // in the sign-compare group.
13433 // The conditional-checking code will
13434 if (ICContext) {
13435 DiagID = diag::warn_impcast_integer_sign_conditional;
13436 *ICContext = true;
13437 }
13438
13439 return DiagnoseImpCast(S, E, T, CC, DiagID);
13440 }
13441
13442 // Diagnose conversions between different enumeration types.
13443 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
13444 // type, to give us better diagnostics.
13445 QualType SourceType = E->getType();
13446 if (!S.getLangOpts().CPlusPlus) {
13447 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13448 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
13449 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
13450 SourceType = S.Context.getTypeDeclType(Enum);
13451 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
13452 }
13453 }
13454
13455 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
13456 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
13457 if (SourceEnum->getDecl()->hasNameForLinkage() &&
13458 TargetEnum->getDecl()->hasNameForLinkage() &&
13459 SourceEnum != TargetEnum) {
13460 if (S.SourceMgr.isInSystemMacro(CC))
13461 return;
13462
13463 return DiagnoseImpCast(S, E, SourceType, T, CC,
13464 diag::warn_impcast_different_enum_types);
13465 }
13466}
13467
13468static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13469 SourceLocation CC, QualType T);
13470
13471static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
13472 SourceLocation CC, bool &ICContext) {
13473 E = E->IgnoreParenImpCasts();
13474
13475 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
13476 return CheckConditionalOperator(S, CO, CC, T);
13477
13478 AnalyzeImplicitConversions(S, E, CC);
13479 if (E->getType() != T)
13480 return CheckImplicitConversion(S, E, T, CC, &ICContext);
13481}
13482
13483static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
13484 SourceLocation CC, QualType T) {
13485 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
13486
13487 Expr *TrueExpr = E->getTrueExpr();
13488 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
13489 TrueExpr = BCO->getCommon();
13490
13491 bool Suspicious = false;
13492 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
13493 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
13494
13495 if (T->isBooleanType())
13496 DiagnoseIntInBoolContext(S, E);
13497
13498 // If -Wconversion would have warned about either of the candidates
13499 // for a signedness conversion to the context type...
13500 if (!Suspicious) return;
13501
13502 // ...but it's currently ignored...
13503 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
13504 return;
13505
13506 // ...then check whether it would have warned about either of the
13507 // candidates for a signedness conversion to the condition type.
13508 if (E->getType() == T) return;
13509
13510 Suspicious = false;
13511 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
13512 E->getType(), CC, &Suspicious);
13513 if (!Suspicious)
13514 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
13515 E->getType(), CC, &Suspicious);
13516}
13517
13518/// Check conversion of given expression to boolean.
13519/// Input argument E is a logical expression.
13520static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
13521 if (S.getLangOpts().Bool)
13522 return;
13523 if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
13524 return;
13525 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
13526}
13527
13528namespace {
13529struct AnalyzeImplicitConversionsWorkItem {
13530 Expr *E;
13531 SourceLocation CC;
13532 bool IsListInit;
13533};
13534}
13535
13536/// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
13537/// that should be visited are added to WorkList.
13538static void AnalyzeImplicitConversions(
13539 Sema &S, AnalyzeImplicitConversionsWorkItem Item,
13540 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
13541 Expr *OrigE = Item.E;
13542 SourceLocation CC = Item.CC;
13543
13544 QualType T = OrigE->getType();
13545 Expr *E = OrigE->IgnoreParenImpCasts();
13546
13547 // Propagate whether we are in a C++ list initialization expression.
13548 // If so, we do not issue warnings for implicit int-float conversion
13549 // precision loss, because C++11 narrowing already handles it.
13550 bool IsListInit = Item.IsListInit ||
13551 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
13552
13553 if (E->isTypeDependent() || E->isValueDependent())
13554 return;
13555
13556 Expr *SourceExpr = E;
13557 // Examine, but don't traverse into the source expression of an
13558 // OpaqueValueExpr, since it may have multiple parents and we don't want to
13559 // emit duplicate diagnostics. Its fine to examine the form or attempt to
13560 // evaluate it in the context of checking the specific conversion to T though.
13561 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
13562 if (auto *Src = OVE->getSourceExpr())
13563 SourceExpr = Src;
13564
13565 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
13566 if (UO->getOpcode() == UO_Not &&
13567 UO->getSubExpr()->isKnownToHaveBooleanValue())
13568 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
13569 << OrigE->getSourceRange() << T->isBooleanType()
13570 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
13571
13572 if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
13573 if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
13574 BO->getLHS()->isKnownToHaveBooleanValue() &&
13575 BO->getRHS()->isKnownToHaveBooleanValue() &&
13576 BO->getLHS()->HasSideEffects(S.Context) &&
13577 BO->getRHS()->HasSideEffects(S.Context)) {
13578 S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
13579 << (BO->getOpcode() == BO_And ? "&" : "|") << OrigE->getSourceRange()
13580 << FixItHint::CreateReplacement(
13581 BO->getOperatorLoc(),
13582 (BO->getOpcode() == BO_And ? "&&" : "||"));
13583 S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
13584 }
13585
13586 // For conditional operators, we analyze the arguments as if they
13587 // were being fed directly into the output.
13588 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
13589 CheckConditionalOperator(S, CO, CC, T);
13590 return;
13591 }
13592
13593 // Check implicit argument conversions for function calls.
13594 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
13595 CheckImplicitArgumentConversions(S, Call, CC);
13596
13597 // Go ahead and check any implicit conversions we might have skipped.
13598 // The non-canonical typecheck is just an optimization;
13599 // CheckImplicitConversion will filter out dead implicit conversions.
13600 if (SourceExpr->getType() != T)
13601 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
13602
13603 // Now continue drilling into this expression.
13604
13605 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
13606 // The bound subexpressions in a PseudoObjectExpr are not reachable
13607 // as transitive children.
13608 // FIXME: Use a more uniform representation for this.
13609 for (auto *SE : POE->semantics())
13610 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
13611 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
13612 }
13613
13614 // Skip past explicit casts.
13615 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
13616 E = CE->getSubExpr()->IgnoreParenImpCasts();
13617 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
13618 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
13619 WorkList.push_back({E, CC, IsListInit});
13620 return;
13621 }
13622
13623 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13624 // Do a somewhat different check with comparison operators.
13625 if (BO->isComparisonOp())
13626 return AnalyzeComparison(S, BO);
13627
13628 // And with simple assignments.
13629 if (BO->getOpcode() == BO_Assign)
13630 return AnalyzeAssignment(S, BO);
13631 // And with compound assignments.
13632 if (BO->isAssignmentOp())
13633 return AnalyzeCompoundAssignment(S, BO);
13634 }
13635
13636 // These break the otherwise-useful invariant below. Fortunately,
13637 // we don't really need to recurse into them, because any internal
13638 // expressions should have been analyzed already when they were
13639 // built into statements.
13640 if (isa<StmtExpr>(E)) return;
13641
13642 // Don't descend into unevaluated contexts.
13643 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
13644
13645 // Now just recurse over the expression's children.
13646 CC = E->getExprLoc();
13647 BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
13648 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
13649 for (Stmt *SubStmt : E->children()) {
13650 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
13651 if (!ChildExpr)
13652 continue;
13653
13654 if (IsLogicalAndOperator &&
13655 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
13656 // Ignore checking string literals that are in logical and operators.
13657 // This is a common pattern for asserts.
13658 continue;
13659 WorkList.push_back({ChildExpr, CC, IsListInit});
13660 }
13661
13662 if (BO && BO->isLogicalOp()) {
13663 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
13664 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13665 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13666
13667 SubExpr = BO->getRHS()->IgnoreParenImpCasts();
13668 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
13669 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
13670 }
13671
13672 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
13673 if (U->getOpcode() == UO_LNot) {
13674 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
13675 } else if (U->getOpcode() != UO_AddrOf) {
13676 if (U->getSubExpr()->getType()->isAtomicType())
13677 S.Diag(U->getSubExpr()->getBeginLoc(),
13678 diag::warn_atomic_implicit_seq_cst);
13679 }
13680 }
13681}
13682
13683/// AnalyzeImplicitConversions - Find and report any interesting
13684/// implicit conversions in the given expression. There are a couple
13685/// of competing diagnostics here, -Wconversion and -Wsign-compare.
13686static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
13687 bool IsListInit/*= false*/) {
13688 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
13689 WorkList.push_back({OrigE, CC, IsListInit});
13690 while (!WorkList.empty())
13691 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
13692}
13693
13694/// Diagnose integer type and any valid implicit conversion to it.
13695static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
13696 // Taking into account implicit conversions,
13697 // allow any integer.
13698 if (!E->getType()->isIntegerType()) {
13699 S.Diag(E->getBeginLoc(),
13700 diag::err_opencl_enqueue_kernel_invalid_local_size_type);
13701 return true;
13702 }
13703 // Potentially emit standard warnings for implicit conversions if enabled
13704 // using -Wconversion.
13705 CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
13706 return false;
13707}
13708
13709// Helper function for Sema::DiagnoseAlwaysNonNullPointer.
13710// Returns true when emitting a warning about taking the address of a reference.
13711static bool CheckForReference(Sema &SemaRef, const Expr *E,
13712 const PartialDiagnostic &PD) {
13713 E = E->IgnoreParenImpCasts();
13714
13715 const FunctionDecl *FD = nullptr;
13716
13717 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13718 if (!DRE->getDecl()->getType()->isReferenceType())
13719 return false;
13720 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13721 if (!M->getMemberDecl()->getType()->isReferenceType())
13722 return false;
13723 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
13724 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
13725 return false;
13726 FD = Call->getDirectCallee();
13727 } else {
13728 return false;
13729 }
13730
13731 SemaRef.Diag(E->getExprLoc(), PD);
13732
13733 // If possible, point to location of function.
13734 if (FD) {
13735 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
13736 }
13737
13738 return true;
13739}
13740
13741// Returns true if the SourceLocation is expanded from any macro body.
13742// Returns false if the SourceLocation is invalid, is from not in a macro
13743// expansion, or is from expanded from a top-level macro argument.
13744static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
13745 if (Loc.isInvalid())
13746 return false;
13747
13748 while (Loc.isMacroID()) {
13749 if (SM.isMacroBodyExpansion(Loc))
13750 return true;
13751 Loc = SM.getImmediateMacroCallerLoc(Loc);
13752 }
13753
13754 return false;
13755}
13756
13757/// Diagnose pointers that are always non-null.
13758/// \param E the expression containing the pointer
13759/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
13760/// compared to a null pointer
13761/// \param IsEqual True when the comparison is equal to a null pointer
13762/// \param Range Extra SourceRange to highlight in the diagnostic
13763void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
13764 Expr::NullPointerConstantKind NullKind,
13765 bool IsEqual, SourceRange Range) {
13766 if (!E)
13767 return;
13768
13769 // Don't warn inside macros.
13770 if (E->getExprLoc().isMacroID()) {
13771 const SourceManager &SM = getSourceManager();
13772 if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
13773 IsInAnyMacroBody(SM, Range.getBegin()))
13774 return;
13775 }
13776 E = E->IgnoreImpCasts();
13777
13778 const bool IsCompare = NullKind != Expr::NPCK_NotNull;
13779
13780 if (isa<CXXThisExpr>(E)) {
13781 unsigned DiagID = IsCompare ? diag::warn_this_null_compare
13782 : diag::warn_this_bool_conversion;
13783 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
13784 return;
13785 }
13786
13787 bool IsAddressOf = false;
13788
13789 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13790 if (UO->getOpcode() != UO_AddrOf)
13791 return;
13792 IsAddressOf = true;
13793 E = UO->getSubExpr();
13794 }
13795
13796 if (IsAddressOf) {
13797 unsigned DiagID = IsCompare
13798 ? diag::warn_address_of_reference_null_compare
13799 : diag::warn_address_of_reference_bool_conversion;
13800 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
13801 << IsEqual;
13802 if (CheckForReference(*this, E, PD)) {
13803 return;
13804 }
13805 }
13806
13807 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
13808 bool IsParam = isa<NonNullAttr>(NonnullAttr);
13809 std::string Str;
13810 llvm::raw_string_ostream S(Str);
13811 E->printPretty(S, nullptr, getPrintingPolicy());
13812 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
13813 : diag::warn_cast_nonnull_to_bool;
13814 Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
13815 << E->getSourceRange() << Range << IsEqual;
13816 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
13817 };
13818
13819 // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
13820 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
13821 if (auto *Callee = Call->getDirectCallee()) {
13822 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
13823 ComplainAboutNonnullParamOrCall(A);
13824 return;
13825 }
13826 }
13827 }
13828
13829 // Expect to find a single Decl. Skip anything more complicated.
13830 ValueDecl *D = nullptr;
13831 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
13832 D = R->getDecl();
13833 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
13834 D = M->getMemberDecl();
13835 }
13836
13837 // Weak Decls can be null.
13838 if (!D || D->isWeak())
13839 return;
13840
13841 // Check for parameter decl with nonnull attribute
13842 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
13843 if (getCurFunction() &&
13844 !getCurFunction()->ModifiedNonNullParams.count(PV)) {
13845 if (const Attr *A = PV->getAttr<NonNullAttr>()) {
13846 ComplainAboutNonnullParamOrCall(A);
13847 return;
13848 }
13849
13850 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
13851 // Skip function template not specialized yet.
13852 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
13853 return;
13854 auto ParamIter = llvm::find(FD->parameters(), PV);
13855 assert(ParamIter != FD->param_end())(static_cast <bool> (ParamIter != FD->param_end()) ?
void (0) : __assert_fail ("ParamIter != FD->param_end()",
"clang/lib/Sema/SemaChecking.cpp", 13855, __extension__ __PRETTY_FUNCTION__
))
;
13856 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
13857
13858 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
13859 if (!NonNull->args_size()) {
13860 ComplainAboutNonnullParamOrCall(NonNull);
13861 return;
13862 }
13863
13864 for (const ParamIdx &ArgNo : NonNull->args()) {
13865 if (ArgNo.getASTIndex() == ParamNo) {
13866 ComplainAboutNonnullParamOrCall(NonNull);
13867 return;
13868 }
13869 }
13870 }
13871 }
13872 }
13873 }
13874
13875 QualType T = D->getType();
13876 const bool IsArray = T->isArrayType();
13877 const bool IsFunction = T->isFunctionType();
13878
13879 // Address of function is used to silence the function warning.
13880 if (IsAddressOf && IsFunction) {
13881 return;
13882 }
13883
13884 // Found nothing.
13885 if (!IsAddressOf && !IsFunction && !IsArray)
13886 return;
13887
13888 // Pretty print the expression for the diagnostic.
13889 std::string Str;
13890 llvm::raw_string_ostream S(Str);
13891 E->printPretty(S, nullptr, getPrintingPolicy());
13892
13893 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
13894 : diag::warn_impcast_pointer_to_bool;
13895 enum {
13896 AddressOf,
13897 FunctionPointer,
13898 ArrayPointer
13899 } DiagType;
13900 if (IsAddressOf)
13901 DiagType = AddressOf;
13902 else if (IsFunction)
13903 DiagType = FunctionPointer;
13904 else if (IsArray)
13905 DiagType = ArrayPointer;
13906 else
13907 llvm_unreachable("Could not determine diagnostic.")::llvm::llvm_unreachable_internal("Could not determine diagnostic."
, "clang/lib/Sema/SemaChecking.cpp", 13907)
;
13908 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
13909 << Range << IsEqual;
13910
13911 if (!IsFunction)
13912 return;
13913
13914 // Suggest '&' to silence the function warning.
13915 Diag(E->getExprLoc(), diag::note_function_warning_silence)
13916 << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
13917
13918 // Check to see if '()' fixit should be emitted.
13919 QualType ReturnType;
13920 UnresolvedSet<4> NonTemplateOverloads;
13921 tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
13922 if (ReturnType.isNull())
13923 return;
13924
13925 if (IsCompare) {
13926 // There are two cases here. If there is null constant, the only suggest
13927 // for a pointer return type. If the null is 0, then suggest if the return
13928 // type is a pointer or an integer type.
13929 if (!ReturnType->isPointerType()) {
13930 if (NullKind == Expr::NPCK_ZeroExpression ||
13931 NullKind == Expr::NPCK_ZeroLiteral) {
13932 if (!ReturnType->isIntegerType())
13933 return;
13934 } else {
13935 return;
13936 }
13937 }
13938 } else { // !IsCompare
13939 // For function to bool, only suggest if the function pointer has bool
13940 // return type.
13941 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
13942 return;
13943 }
13944 Diag(E->getExprLoc(), diag::note_function_to_function_call)
13945 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
13946}
13947
13948/// Diagnoses "dangerous" implicit conversions within the given
13949/// expression (which is a full expression). Implements -Wconversion
13950/// and -Wsign-compare.
13951///
13952/// \param CC the "context" location of the implicit conversion, i.e.
13953/// the most location of the syntactic entity requiring the implicit
13954/// conversion
13955void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
13956 // Don't diagnose in unevaluated contexts.
13957 if (isUnevaluatedContext())
13958 return;
13959
13960 // Don't diagnose for value- or type-dependent expressions.
13961 if (E->isTypeDependent() || E->isValueDependent())
13962 return;
13963
13964 // Check for array bounds violations in cases where the check isn't triggered
13965 // elsewhere for other Expr types (like BinaryOperators), e.g. when an
13966 // ArraySubscriptExpr is on the RHS of a variable initialization.
13967 CheckArrayAccess(E);
13968
13969 // This is not the right CC for (e.g.) a variable initialization.
13970 AnalyzeImplicitConversions(*this, E, CC);
13971}
13972
13973/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
13974/// Input argument E is a logical expression.
13975void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
13976 ::CheckBoolLikeConversion(*this, E, CC);
13977}
13978
13979/// Diagnose when expression is an integer constant expression and its evaluation
13980/// results in integer overflow
13981void Sema::CheckForIntOverflow (Expr *E) {
13982 // Use a work list to deal with nested struct initializers.
13983 SmallVector<Expr *, 2> Exprs(1, E);
13984
13985 do {
13986 Expr *OriginalE = Exprs.pop_back_val();
13987 Expr *E = OriginalE->IgnoreParenCasts();
13988
13989 if (isa<BinaryOperator>(E)) {
13990 E->EvaluateForOverflow(Context);
13991 continue;
13992 }
13993
13994 if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
13995 Exprs.append(InitList->inits().begin(), InitList->inits().end());
13996 else if (isa<ObjCBoxedExpr>(OriginalE))
13997 E->EvaluateForOverflow(Context);
13998 else if (auto Call = dyn_cast<CallExpr>(E))
13999 Exprs.append(Call->arg_begin(), Call->arg_end());
14000 else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
14001 Exprs.append(Message->arg_begin(), Message->arg_end());
14002 } while (!Exprs.empty());
14003}
14004
14005namespace {
14006
14007/// Visitor for expressions which looks for unsequenced operations on the
14008/// same object.
14009class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
14010 using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
14011
14012 /// A tree of sequenced regions within an expression. Two regions are
14013 /// unsequenced if one is an ancestor or a descendent of the other. When we
14014 /// finish processing an expression with sequencing, such as a comma
14015 /// expression, we fold its tree nodes into its parent, since they are
14016 /// unsequenced with respect to nodes we will visit later.
14017 class SequenceTree {
14018 struct Value {
14019 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
14020 unsigned Parent : 31;
14021 unsigned Merged : 1;
14022 };
14023 SmallVector<Value, 8> Values;
14024
14025 public:
14026 /// A region within an expression which may be sequenced with respect
14027 /// to some other region.
14028 class Seq {
14029 friend class SequenceTree;
14030
14031 unsigned Index;
14032
14033 explicit Seq(unsigned N) : Index(N) {}
14034
14035 public:
14036 Seq() : Index(0) {}
14037 };
14038
14039 SequenceTree() { Values.push_back(Value(0)); }
14040 Seq root() const { return Seq(0); }
14041
14042 /// Create a new sequence of operations, which is an unsequenced
14043 /// subset of \p Parent. This sequence of operations is sequenced with
14044 /// respect to other children of \p Parent.
14045 Seq allocate(Seq Parent) {
14046 Values.push_back(Value(Parent.Index));
14047 return Seq(Values.size() - 1);
14048 }
14049
14050 /// Merge a sequence of operations into its parent.
14051 void merge(Seq S) {
14052 Values[S.Index].Merged = true;
14053 }
14054
14055 /// Determine whether two operations are unsequenced. This operation
14056 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
14057 /// should have been merged into its parent as appropriate.
14058 bool isUnsequenced(Seq Cur, Seq Old) {
14059 unsigned C = representative(Cur.Index);
14060 unsigned Target = representative(Old.Index);
14061 while (C >= Target) {
14062 if (C == Target)
14063 return true;
14064 C = Values[C].Parent;
14065 }
14066 return false;
14067 }
14068
14069 private:
14070 /// Pick a representative for a sequence.
14071 unsigned representative(unsigned K) {
14072 if (Values[K].Merged)
14073 // Perform path compression as we go.
14074 return Values[K].Parent = representative(Values[K].Parent);
14075 return K;
14076 }
14077 };
14078
14079 /// An object for which we can track unsequenced uses.
14080 using Object = const NamedDecl *;
14081
14082 /// Different flavors of object usage which we track. We only track the
14083 /// least-sequenced usage of each kind.
14084 enum UsageKind {
14085 /// A read of an object. Multiple unsequenced reads are OK.
14086 UK_Use,
14087
14088 /// A modification of an object which is sequenced before the value
14089 /// computation of the expression, such as ++n in C++.
14090 UK_ModAsValue,
14091
14092 /// A modification of an object which is not sequenced before the value
14093 /// computation of the expression, such as n++.
14094 UK_ModAsSideEffect,
14095
14096 UK_Count = UK_ModAsSideEffect + 1
14097 };
14098
14099 /// Bundle together a sequencing region and the expression corresponding
14100 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
14101 struct Usage {
14102 const Expr *UsageExpr;
14103 SequenceTree::Seq Seq;
14104
14105 Usage() : UsageExpr(nullptr) {}
14106 };
14107
14108 struct UsageInfo {
14109 Usage Uses[UK_Count];
14110
14111 /// Have we issued a diagnostic for this object already?
14112 bool Diagnosed;
14113
14114 UsageInfo() : Diagnosed(false) {}
14115 };
14116 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
14117
14118 Sema &SemaRef;
14119
14120 /// Sequenced regions within the expression.
14121 SequenceTree Tree;
14122
14123 /// Declaration modifications and references which we have seen.
14124 UsageInfoMap UsageMap;
14125
14126 /// The region we are currently within.
14127 SequenceTree::Seq Region;
14128
14129 /// Filled in with declarations which were modified as a side-effect
14130 /// (that is, post-increment operations).
14131 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
14132
14133 /// Expressions to check later. We defer checking these to reduce
14134 /// stack usage.
14135 SmallVectorImpl<const Expr *> &WorkList;
14136
14137 /// RAII object wrapping the visitation of a sequenced subexpression of an
14138 /// expression. At the end of this process, the side-effects of the evaluation
14139 /// become sequenced with respect to the value computation of the result, so
14140 /// we downgrade any UK_ModAsSideEffect within the evaluation to
14141 /// UK_ModAsValue.
14142 struct SequencedSubexpression {
14143 SequencedSubexpression(SequenceChecker &Self)
14144 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
14145 Self.ModAsSideEffect = &ModAsSideEffect;
14146 }
14147
14148 ~SequencedSubexpression() {
14149 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
14150 // Add a new usage with usage kind UK_ModAsValue, and then restore
14151 // the previous usage with UK_ModAsSideEffect (thus clearing it if
14152 // the previous one was empty).
14153 UsageInfo &UI = Self.UsageMap[M.first];
14154 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
14155 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
14156 SideEffectUsage = M.second;
14157 }
14158 Self.ModAsSideEffect = OldModAsSideEffect;
14159 }
14160
14161 SequenceChecker &Self;
14162 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
14163 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
14164 };
14165
14166 /// RAII object wrapping the visitation of a subexpression which we might
14167 /// choose to evaluate as a constant. If any subexpression is evaluated and
14168 /// found to be non-constant, this allows us to suppress the evaluation of
14169 /// the outer expression.
14170 class EvaluationTracker {
14171 public:
14172 EvaluationTracker(SequenceChecker &Self)
14173 : Self(Self), Prev(Self.EvalTracker) {
14174 Self.EvalTracker = this;
14175 }
14176
14177 ~EvaluationTracker() {
14178 Self.EvalTracker = Prev;
14179 if (Prev)
14180 Prev->EvalOK &= EvalOK;
14181 }
14182
14183 bool evaluate(const Expr *E, bool &Result) {
14184 if (!EvalOK || E->isValueDependent())
14185 return false;
14186 EvalOK = E->EvaluateAsBooleanCondition(
14187 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
14188 return EvalOK;
14189 }
14190
14191 private:
14192 SequenceChecker &Self;
14193 EvaluationTracker *Prev;
14194 bool EvalOK = true;
14195 } *EvalTracker = nullptr;
14196
14197 /// Find the object which is produced by the specified expression,
14198 /// if any.
14199 Object getObject(const Expr *E, bool Mod) const {
14200 E = E->IgnoreParenCasts();
14201 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
14202 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
14203 return getObject(UO->getSubExpr(), Mod);
14204 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
14205 if (BO->getOpcode() == BO_Comma)
14206 return getObject(BO->getRHS(), Mod);
14207 if (Mod && BO->isAssignmentOp())
14208 return getObject(BO->getLHS(), Mod);
14209 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
14210 // FIXME: Check for more interesting cases, like "x.n = ++x.n".
14211 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
14212 return ME->getMemberDecl();
14213 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14214 // FIXME: If this is a reference, map through to its value.
14215 return DRE->getDecl();
14216 return nullptr;
14217 }
14218
14219 /// Note that an object \p O was modified or used by an expression
14220 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
14221 /// the object \p O as obtained via the \p UsageMap.
14222 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
14223 // Get the old usage for the given object and usage kind.
14224 Usage &U = UI.Uses[UK];
14225 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
14226 // If we have a modification as side effect and are in a sequenced
14227 // subexpression, save the old Usage so that we can restore it later
14228 // in SequencedSubexpression::~SequencedSubexpression.
14229 if (UK == UK_ModAsSideEffect && ModAsSideEffect)
14230 ModAsSideEffect->push_back(std::make_pair(O, U));
14231 // Then record the new usage with the current sequencing region.
14232 U.UsageExpr = UsageExpr;
14233 U.Seq = Region;
14234 }
14235 }
14236
14237 /// Check whether a modification or use of an object \p O in an expression
14238 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
14239 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
14240 /// \p IsModMod is true when we are checking for a mod-mod unsequenced
14241 /// usage and false we are checking for a mod-use unsequenced usage.
14242 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
14243 UsageKind OtherKind, bool IsModMod) {
14244 if (UI.Diagnosed)
14245 return;
14246
14247 const Usage &U = UI.Uses[OtherKind];
14248 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
14249 return;
14250
14251 const Expr *Mod = U.UsageExpr;
14252 const Expr *ModOrUse = UsageExpr;
14253 if (OtherKind == UK_Use)
14254 std::swap(Mod, ModOrUse);
14255
14256 SemaRef.DiagRuntimeBehavior(
14257 Mod->getExprLoc(), {Mod, ModOrUse},
14258 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
14259 : diag::warn_unsequenced_mod_use)
14260 << O << SourceRange(ModOrUse->getExprLoc()));
14261 UI.Diagnosed = true;
14262 }
14263
14264 // A note on note{Pre, Post}{Use, Mod}:
14265 //
14266 // (It helps to follow the algorithm with an expression such as
14267 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
14268 // operations before C++17 and both are well-defined in C++17).
14269 //
14270 // When visiting a node which uses/modify an object we first call notePreUse
14271 // or notePreMod before visiting its sub-expression(s). At this point the
14272 // children of the current node have not yet been visited and so the eventual
14273 // uses/modifications resulting from the children of the current node have not
14274 // been recorded yet.
14275 //
14276 // We then visit the children of the current node. After that notePostUse or
14277 // notePostMod is called. These will 1) detect an unsequenced modification
14278 // as side effect (as in "k++ + k") and 2) add a new usage with the
14279 // appropriate usage kind.
14280 //
14281 // We also have to be careful that some operation sequences modification as
14282 // side effect as well (for example: || or ,). To account for this we wrap
14283 // the visitation of such a sub-expression (for example: the LHS of || or ,)
14284 // with SequencedSubexpression. SequencedSubexpression is an RAII object
14285 // which record usages which are modifications as side effect, and then
14286 // downgrade them (or more accurately restore the previous usage which was a
14287 // modification as side effect) when exiting the scope of the sequenced
14288 // subexpression.
14289
14290 void notePreUse(Object O, const Expr *UseExpr) {
14291 UsageInfo &UI = UsageMap[O];
14292 // Uses conflict with other modifications.
14293 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
14294 }
14295
14296 void notePostUse(Object O, const Expr *UseExpr) {
14297 UsageInfo &UI = UsageMap[O];
14298 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
14299 /*IsModMod=*/false);
14300 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
14301 }
14302
14303 void notePreMod(Object O, const Expr *ModExpr) {
14304 UsageInfo &UI = UsageMap[O];
14305 // Modifications conflict with other modifications and with uses.
14306 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
14307 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
14308 }
14309
14310 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
14311 UsageInfo &UI = UsageMap[O];
14312 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
14313 /*IsModMod=*/true);
14314 addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
14315 }
14316
14317public:
14318 SequenceChecker(Sema &S, const Expr *E,
14319 SmallVectorImpl<const Expr *> &WorkList)
14320 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
14321 Visit(E);
14322 // Silence a -Wunused-private-field since WorkList is now unused.
14323 // TODO: Evaluate if it can be used, and if not remove it.
14324 (void)this->WorkList;
14325 }
14326
14327 void VisitStmt(const Stmt *S) {
14328 // Skip all statements which aren't expressions for now.
14329 }
14330
14331 void VisitExpr(const Expr *E) {
14332 // By default, just recurse to evaluated subexpressions.
14333 Base::VisitStmt(E);
14334 }
14335
14336 void VisitCastExpr(const CastExpr *E) {
14337 Object O = Object();
14338 if (E->getCastKind() == CK_LValueToRValue)
14339 O = getObject(E->getSubExpr(), false);
14340
14341 if (O)
14342 notePreUse(O, E);
14343 VisitExpr(E);
14344 if (O)
14345 notePostUse(O, E);
14346 }
14347
14348 void VisitSequencedExpressions(const Expr *SequencedBefore,
14349 const Expr *SequencedAfter) {
14350 SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
14351 SequenceTree::Seq AfterRegion = Tree.allocate(Region);
14352 SequenceTree::Seq OldRegion = Region;
14353
14354 {
14355 SequencedSubexpression SeqBefore(*this);
14356 Region = BeforeRegion;
14357 Visit(SequencedBefore);
14358 }
14359
14360 Region = AfterRegion;
14361 Visit(SequencedAfter);
14362
14363 Region = OldRegion;
14364
14365 Tree.merge(BeforeRegion);
14366 Tree.merge(AfterRegion);
14367 }
14368
14369 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
14370 // C++17 [expr.sub]p1:
14371 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
14372 // expression E1 is sequenced before the expression E2.
14373 if (SemaRef.getLangOpts().CPlusPlus17)
14374 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
14375 else {
14376 Visit(ASE->getLHS());
14377 Visit(ASE->getRHS());
14378 }
14379 }
14380
14381 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14382 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14383 void VisitBinPtrMem(const BinaryOperator *BO) {
14384 // C++17 [expr.mptr.oper]p4:
14385 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
14386 // the expression E1 is sequenced before the expression E2.
14387 if (SemaRef.getLangOpts().CPlusPlus17)
14388 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14389 else {
14390 Visit(BO->getLHS());
14391 Visit(BO->getRHS());
14392 }
14393 }
14394
14395 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14396 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14397 void VisitBinShlShr(const BinaryOperator *BO) {
14398 // C++17 [expr.shift]p4:
14399 // The expression E1 is sequenced before the expression E2.
14400 if (SemaRef.getLangOpts().CPlusPlus17)
14401 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14402 else {
14403 Visit(BO->getLHS());
14404 Visit(BO->getRHS());
14405 }
14406 }
14407
14408 void VisitBinComma(const BinaryOperator *BO) {
14409 // C++11 [expr.comma]p1:
14410 // Every value computation and side effect associated with the left
14411 // expression is sequenced before every value computation and side
14412 // effect associated with the right expression.
14413 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14414 }
14415
14416 void VisitBinAssign(const BinaryOperator *BO) {
14417 SequenceTree::Seq RHSRegion;
14418 SequenceTree::Seq LHSRegion;
14419 if (SemaRef.getLangOpts().CPlusPlus17) {
14420 RHSRegion = Tree.allocate(Region);
14421 LHSRegion = Tree.allocate(Region);
14422 } else {
14423 RHSRegion = Region;
14424 LHSRegion = Region;
14425 }
14426 SequenceTree::Seq OldRegion = Region;
14427
14428 // C++11 [expr.ass]p1:
14429 // [...] the assignment is sequenced after the value computation
14430 // of the right and left operands, [...]
14431 //
14432 // so check it before inspecting the operands and update the
14433 // map afterwards.
14434 Object O = getObject(BO->getLHS(), /*Mod=*/true);
14435 if (O)
14436 notePreMod(O, BO);
14437
14438 if (SemaRef.getLangOpts().CPlusPlus17) {
14439 // C++17 [expr.ass]p1:
14440 // [...] The right operand is sequenced before the left operand. [...]
14441 {
14442 SequencedSubexpression SeqBefore(*this);
14443 Region = RHSRegion;
14444 Visit(BO->getRHS());
14445 }
14446
14447 Region = LHSRegion;
14448 Visit(BO->getLHS());
14449
14450 if (O && isa<CompoundAssignOperator>(BO))
14451 notePostUse(O, BO);
14452
14453 } else {
14454 // C++11 does not specify any sequencing between the LHS and RHS.
14455 Region = LHSRegion;
14456 Visit(BO->getLHS());
14457
14458 if (O && isa<CompoundAssignOperator>(BO))
14459 notePostUse(O, BO);
14460
14461 Region = RHSRegion;
14462 Visit(BO->getRHS());
14463 }
14464
14465 // C++11 [expr.ass]p1:
14466 // the assignment is sequenced [...] before the value computation of the
14467 // assignment expression.
14468 // C11 6.5.16/3 has no such rule.
14469 Region = OldRegion;
14470 if (O)
14471 notePostMod(O, BO,
14472 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14473 : UK_ModAsSideEffect);
14474 if (SemaRef.getLangOpts().CPlusPlus17) {
14475 Tree.merge(RHSRegion);
14476 Tree.merge(LHSRegion);
14477 }
14478 }
14479
14480 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
14481 VisitBinAssign(CAO);
14482 }
14483
14484 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14485 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
14486 void VisitUnaryPreIncDec(const UnaryOperator *UO) {
14487 Object O = getObject(UO->getSubExpr(), true);
14488 if (!O)
14489 return VisitExpr(UO);
14490
14491 notePreMod(O, UO);
14492 Visit(UO->getSubExpr());
14493 // C++11 [expr.pre.incr]p1:
14494 // the expression ++x is equivalent to x+=1
14495 notePostMod(O, UO,
14496 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
14497 : UK_ModAsSideEffect);
14498 }
14499
14500 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14501 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
14502 void VisitUnaryPostIncDec(const UnaryOperator *UO) {
14503 Object O = getObject(UO->getSubExpr(), true);
14504 if (!O)
14505 return VisitExpr(UO);
14506
14507 notePreMod(O, UO);
14508 Visit(UO->getSubExpr());
14509 notePostMod(O, UO, UK_ModAsSideEffect);
14510 }
14511
14512 void VisitBinLOr(const BinaryOperator *BO) {
14513 // C++11 [expr.log.or]p2:
14514 // If the second expression is evaluated, every value computation and
14515 // side effect associated with the first expression is sequenced before
14516 // every value computation and side effect associated with the
14517 // second expression.
14518 SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14519 SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14520 SequenceTree::Seq OldRegion = Region;
14521
14522 EvaluationTracker Eval(*this);
14523 {
14524 SequencedSubexpression Sequenced(*this);
14525 Region = LHSRegion;
14526 Visit(BO->getLHS());
14527 }
14528
14529 // C++11 [expr.log.or]p1:
14530 // [...] the second operand is not evaluated if the first operand
14531 // evaluates to true.
14532 bool EvalResult = false;
14533 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14534 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
14535 if (ShouldVisitRHS) {
14536 Region = RHSRegion;
14537 Visit(BO->getRHS());
14538 }
14539
14540 Region = OldRegion;
14541 Tree.merge(LHSRegion);
14542 Tree.merge(RHSRegion);
14543 }
14544
14545 void VisitBinLAnd(const BinaryOperator *BO) {
14546 // C++11 [expr.log.and]p2:
14547 // If the second expression is evaluated, every value computation and
14548 // side effect associated with the first expression is sequenced before
14549 // every value computation and side effect associated with the
14550 // second expression.
14551 SequenceTree::Seq LHSRegion = Tree.allocate(Region);
14552 SequenceTree::Seq RHSRegion = Tree.allocate(Region);
14553 SequenceTree::Seq OldRegion = Region;
14554
14555 EvaluationTracker Eval(*this);
14556 {
14557 SequencedSubexpression Sequenced(*this);
14558 Region = LHSRegion;
14559 Visit(BO->getLHS());
14560 }
14561
14562 // C++11 [expr.log.and]p1:
14563 // [...] the second operand is not evaluated if the first operand is false.
14564 bool EvalResult = false;
14565 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
14566 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
14567 if (ShouldVisitRHS) {
14568 Region = RHSRegion;
14569 Visit(BO->getRHS());
14570 }
14571
14572 Region = OldRegion;
14573 Tree.merge(LHSRegion);
14574 Tree.merge(RHSRegion);
14575 }
14576
14577 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
14578 // C++11 [expr.cond]p1:
14579 // [...] Every value computation and side effect associated with the first
14580 // expression is sequenced before every value computation and side effect
14581 // associated with the second or third expression.
14582 SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
14583
14584 // No sequencing is specified between the true and false expression.
14585 // However since exactly one of both is going to be evaluated we can
14586 // consider them to be sequenced. This is needed to avoid warning on
14587 // something like "x ? y+= 1 : y += 2;" in the case where we will visit
14588 // both the true and false expressions because we can't evaluate x.
14589 // This will still allow us to detect an expression like (pre C++17)
14590 // "(x ? y += 1 : y += 2) = y".
14591 //
14592 // We don't wrap the visitation of the true and false expression with
14593 // SequencedSubexpression because we don't want to downgrade modifications
14594 // as side effect in the true and false expressions after the visition
14595 // is done. (for example in the expression "(x ? y++ : y++) + y" we should
14596 // not warn between the two "y++", but we should warn between the "y++"
14597 // and the "y".
14598 SequenceTree::Seq TrueRegion = Tree.allocate(Region);
14599 SequenceTree::Seq FalseRegion = Tree.allocate(Region);
14600 SequenceTree::Seq OldRegion = Region;
14601
14602 EvaluationTracker Eval(*this);
14603 {
14604 SequencedSubexpression Sequenced(*this);
14605 Region = ConditionRegion;
14606 Visit(CO->getCond());
14607 }
14608
14609 // C++11 [expr.cond]p1:
14610 // [...] The first expression is contextually converted to bool (Clause 4).
14611 // It is evaluated and if it is true, the result of the conditional
14612 // expression is the value of the second expression, otherwise that of the
14613 // third expression. Only one of the second and third expressions is
14614 // evaluated. [...]
14615 bool EvalResult = false;
14616 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
14617 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
14618 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
14619 if (ShouldVisitTrueExpr) {
14620 Region = TrueRegion;
14621 Visit(CO->getTrueExpr());
14622 }
14623 if (ShouldVisitFalseExpr) {
14624 Region = FalseRegion;
14625 Visit(CO->getFalseExpr());
14626 }
14627
14628 Region = OldRegion;
14629 Tree.merge(ConditionRegion);
14630 Tree.merge(TrueRegion);
14631 Tree.merge(FalseRegion);
14632 }
14633
14634 void VisitCallExpr(const CallExpr *CE) {
14635 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
14636
14637 if (CE->isUnevaluatedBuiltinCall(Context))
14638 return;
14639
14640 // C++11 [intro.execution]p15:
14641 // When calling a function [...], every value computation and side effect
14642 // associated with any argument expression, or with the postfix expression
14643 // designating the called function, is sequenced before execution of every
14644 // expression or statement in the body of the function [and thus before
14645 // the value computation of its result].
14646 SequencedSubexpression Sequenced(*this);
14647 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
14648 // C++17 [expr.call]p5
14649 // The postfix-expression is sequenced before each expression in the
14650 // expression-list and any default argument. [...]
14651 SequenceTree::Seq CalleeRegion;
14652 SequenceTree::Seq OtherRegion;
14653 if (SemaRef.getLangOpts().CPlusPlus17) {
14654 CalleeRegion = Tree.allocate(Region);
14655 OtherRegion = Tree.allocate(Region);
14656 } else {
14657 CalleeRegion = Region;
14658 OtherRegion = Region;
14659 }
14660 SequenceTree::Seq OldRegion = Region;
14661
14662 // Visit the callee expression first.
14663 Region = CalleeRegion;
14664 if (SemaRef.getLangOpts().CPlusPlus17) {
14665 SequencedSubexpression Sequenced(*this);
14666 Visit(CE->getCallee());
14667 } else {
14668 Visit(CE->getCallee());
14669 }
14670
14671 // Then visit the argument expressions.
14672 Region = OtherRegion;
14673 for (const Expr *Argument : CE->arguments())
14674 Visit(Argument);
14675
14676 Region = OldRegion;
14677 if (SemaRef.getLangOpts().CPlusPlus17) {
14678 Tree.merge(CalleeRegion);
14679 Tree.merge(OtherRegion);
14680 }
14681 });
14682 }
14683
14684 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
14685 // C++17 [over.match.oper]p2:
14686 // [...] the operator notation is first transformed to the equivalent
14687 // function-call notation as summarized in Table 12 (where @ denotes one
14688 // of the operators covered in the specified subclause). However, the
14689 // operands are sequenced in the order prescribed for the built-in
14690 // operator (Clause 8).
14691 //
14692 // From the above only overloaded binary operators and overloaded call
14693 // operators have sequencing rules in C++17 that we need to handle
14694 // separately.
14695 if (!SemaRef.getLangOpts().CPlusPlus17 ||
14696 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
14697 return VisitCallExpr(CXXOCE);
14698
14699 enum {
14700 NoSequencing,
14701 LHSBeforeRHS,
14702 RHSBeforeLHS,
14703 LHSBeforeRest
14704 } SequencingKind;
14705 switch (CXXOCE->getOperator()) {
14706 case OO_Equal:
14707 case OO_PlusEqual:
14708 case OO_MinusEqual:
14709 case OO_StarEqual:
14710 case OO_SlashEqual:
14711 case OO_PercentEqual:
14712 case OO_CaretEqual:
14713 case OO_AmpEqual:
14714 case OO_PipeEqual:
14715 case OO_LessLessEqual:
14716 case OO_GreaterGreaterEqual:
14717 SequencingKind = RHSBeforeLHS;
14718 break;
14719
14720 case OO_LessLess:
14721 case OO_GreaterGreater:
14722 case OO_AmpAmp:
14723 case OO_PipePipe:
14724 case OO_Comma:
14725 case OO_ArrowStar:
14726 case OO_Subscript:
14727 SequencingKind = LHSBeforeRHS;
14728 break;
14729
14730 case OO_Call:
14731 SequencingKind = LHSBeforeRest;
14732 break;
14733
14734 default:
14735 SequencingKind = NoSequencing;
14736 break;
14737 }
14738
14739 if (SequencingKind == NoSequencing)
14740 return VisitCallExpr(CXXOCE);
14741
14742 // This is a call, so all subexpressions are sequenced before the result.
14743 SequencedSubexpression Sequenced(*this);
14744
14745 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
14746 assert(SemaRef.getLangOpts().CPlusPlus17 &&(static_cast <bool> (SemaRef.getLangOpts().CPlusPlus17 &&
"Should only get there with C++17 and above!") ? void (0) : __assert_fail
("SemaRef.getLangOpts().CPlusPlus17 && \"Should only get there with C++17 and above!\""
, "clang/lib/Sema/SemaChecking.cpp", 14747, __extension__ __PRETTY_FUNCTION__
))
14747 "Should only get there with C++17 and above!")(static_cast <bool> (SemaRef.getLangOpts().CPlusPlus17 &&
"Should only get there with C++17 and above!") ? void (0) : __assert_fail
("SemaRef.getLangOpts().CPlusPlus17 && \"Should only get there with C++17 and above!\""
, "clang/lib/Sema/SemaChecking.cpp", 14747, __extension__ __PRETTY_FUNCTION__
))
;
14748 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&(static_cast <bool> ((CXXOCE->getNumArgs() == 2 || CXXOCE
->getOperator() == OO_Call) && "Should only get there with an overloaded binary operator"
" or an overloaded call operator!") ? void (0) : __assert_fail
("(CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && \"Should only get there with an overloaded binary operator\" \" or an overloaded call operator!\""
, "clang/lib/Sema/SemaChecking.cpp", 14750, __extension__ __PRETTY_FUNCTION__
))
14749 "Should only get there with an overloaded binary operator"(static_cast <bool> ((CXXOCE->getNumArgs() == 2 || CXXOCE
->getOperator() == OO_Call) && "Should only get there with an overloaded binary operator"
" or an overloaded call operator!") ? void (0) : __assert_fail
("(CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && \"Should only get there with an overloaded binary operator\" \" or an overloaded call operator!\""
, "clang/lib/Sema/SemaChecking.cpp", 14750, __extension__ __PRETTY_FUNCTION__
))
14750 " or an overloaded call operator!")(static_cast <bool> ((CXXOCE->getNumArgs() == 2 || CXXOCE
->getOperator() == OO_Call) && "Should only get there with an overloaded binary operator"
" or an overloaded call operator!") ? void (0) : __assert_fail
("(CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && \"Should only get there with an overloaded binary operator\" \" or an overloaded call operator!\""
, "clang/lib/Sema/SemaChecking.cpp", 14750, __extension__ __PRETTY_FUNCTION__
))
;
14751
14752 if (SequencingKind == LHSBeforeRest) {
14753 assert(CXXOCE->getOperator() == OO_Call &&(static_cast <bool> (CXXOCE->getOperator() == OO_Call
&& "We should only have an overloaded call operator here!"
) ? void (0) : __assert_fail ("CXXOCE->getOperator() == OO_Call && \"We should only have an overloaded call operator here!\""
, "clang/lib/Sema/SemaChecking.cpp", 14754, __extension__ __PRETTY_FUNCTION__
))
14754 "We should only have an overloaded call operator here!")(static_cast <bool> (CXXOCE->getOperator() == OO_Call
&& "We should only have an overloaded call operator here!"
) ? void (0) : __assert_fail ("CXXOCE->getOperator() == OO_Call && \"We should only have an overloaded call operator here!\""
, "clang/lib/Sema/SemaChecking.cpp", 14754, __extension__ __PRETTY_FUNCTION__
))
;
14755
14756 // This is very similar to VisitCallExpr, except that we only have the
14757 // C++17 case. The postfix-expression is the first argument of the
14758 // CXXOperatorCallExpr. The expressions in the expression-list, if any,
14759 // are in the following arguments.
14760 //
14761 // Note that we intentionally do not visit the callee expression since
14762 // it is just a decayed reference to a function.
14763 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
14764 SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
14765 SequenceTree::Seq OldRegion = Region;
14766
14767 assert(CXXOCE->getNumArgs() >= 1 &&(static_cast <bool> (CXXOCE->getNumArgs() >= 1 &&
"An overloaded call operator must have at least one argument"
" for the postfix-expression!") ? void (0) : __assert_fail (
"CXXOCE->getNumArgs() >= 1 && \"An overloaded call operator must have at least one argument\" \" for the postfix-expression!\""
, "clang/lib/Sema/SemaChecking.cpp", 14769, __extension__ __PRETTY_FUNCTION__
))
14768 "An overloaded call operator must have at least one argument"(static_cast <bool> (CXXOCE->getNumArgs() >= 1 &&
"An overloaded call operator must have at least one argument"
" for the postfix-expression!") ? void (0) : __assert_fail (
"CXXOCE->getNumArgs() >= 1 && \"An overloaded call operator must have at least one argument\" \" for the postfix-expression!\""
, "clang/lib/Sema/SemaChecking.cpp", 14769, __extension__ __PRETTY_FUNCTION__
))
14769 " for the postfix-expression!")(static_cast <bool> (CXXOCE->getNumArgs() >= 1 &&
"An overloaded call operator must have at least one argument"
" for the postfix-expression!") ? void (0) : __assert_fail (
"CXXOCE->getNumArgs() >= 1 && \"An overloaded call operator must have at least one argument\" \" for the postfix-expression!\""
, "clang/lib/Sema/SemaChecking.cpp", 14769, __extension__ __PRETTY_FUNCTION__
))
;
14770 const Expr *PostfixExpr = CXXOCE->getArgs()[0];
14771 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
14772 CXXOCE->getNumArgs() - 1);
14773
14774 // Visit the postfix-expression first.
14775 {
14776 Region = PostfixExprRegion;
14777 SequencedSubexpression Sequenced(*this);
14778 Visit(PostfixExpr);
14779 }
14780
14781 // Then visit the argument expressions.
14782 Region = ArgsRegion;
14783 for (const Expr *Arg : Args)
14784 Visit(Arg);
14785
14786 Region = OldRegion;
14787 Tree.merge(PostfixExprRegion);
14788 Tree.merge(ArgsRegion);
14789 } else {
14790 assert(CXXOCE->getNumArgs() == 2 &&(static_cast <bool> (CXXOCE->getNumArgs() == 2 &&
"Should only have two arguments here!") ? void (0) : __assert_fail
("CXXOCE->getNumArgs() == 2 && \"Should only have two arguments here!\""
, "clang/lib/Sema/SemaChecking.cpp", 14791, __extension__ __PRETTY_FUNCTION__
))
14791 "Should only have two arguments here!")(static_cast <bool> (CXXOCE->getNumArgs() == 2 &&
"Should only have two arguments here!") ? void (0) : __assert_fail
("CXXOCE->getNumArgs() == 2 && \"Should only have two arguments here!\""
, "clang/lib/Sema/SemaChecking.cpp", 14791, __extension__ __PRETTY_FUNCTION__
))
;
14792 assert((SequencingKind == LHSBeforeRHS ||(static_cast <bool> ((SequencingKind == LHSBeforeRHS ||
SequencingKind == RHSBeforeLHS) && "Unexpected sequencing kind!"
) ? void (0) : __assert_fail ("(SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS) && \"Unexpected sequencing kind!\""
, "clang/lib/Sema/SemaChecking.cpp", 14794, __extension__ __PRETTY_FUNCTION__
))
14793 SequencingKind == RHSBeforeLHS) &&(static_cast <bool> ((SequencingKind == LHSBeforeRHS ||
SequencingKind == RHSBeforeLHS) && "Unexpected sequencing kind!"
) ? void (0) : __assert_fail ("(SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS) && \"Unexpected sequencing kind!\""
, "clang/lib/Sema/SemaChecking.cpp", 14794, __extension__ __PRETTY_FUNCTION__
))
14794 "Unexpected sequencing kind!")(static_cast <bool> ((SequencingKind == LHSBeforeRHS ||
SequencingKind == RHSBeforeLHS) && "Unexpected sequencing kind!"
) ? void (0) : __assert_fail ("(SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS) && \"Unexpected sequencing kind!\""
, "clang/lib/Sema/SemaChecking.cpp", 14794, __extension__ __PRETTY_FUNCTION__
))
;
14795
14796 // We do not visit the callee expression since it is just a decayed
14797 // reference to a function.
14798 const Expr *E1 = CXXOCE->getArg(0);
14799 const Expr *E2 = CXXOCE->getArg(1);
14800 if (SequencingKind == RHSBeforeLHS)
14801 std::swap(E1, E2);
14802
14803 return VisitSequencedExpressions(E1, E2);
14804 }
14805 });
14806 }
14807
14808 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
14809 // This is a call, so all subexpressions are sequenced before the result.
14810 SequencedSubexpression Sequenced(*this);
14811
14812 if (!CCE->isListInitialization())
14813 return VisitExpr(CCE);
14814
14815 // In C++11, list initializations are sequenced.
14816 SmallVector<SequenceTree::Seq, 32> Elts;
14817 SequenceTree::Seq Parent = Region;
14818 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
14819 E = CCE->arg_end();
14820 I != E; ++I) {
14821 Region = Tree.allocate(Parent);
14822 Elts.push_back(Region);
14823 Visit(*I);
14824 }
14825
14826 // Forget that the initializers are sequenced.
14827 Region = Parent;
14828 for (unsigned I = 0; I < Elts.size(); ++I)
14829 Tree.merge(Elts[I]);
14830 }
14831
14832 void VisitInitListExpr(const InitListExpr *ILE) {
14833 if (!SemaRef.getLangOpts().CPlusPlus11)
14834 return VisitExpr(ILE);
14835
14836 // In C++11, list initializations are sequenced.
14837 SmallVector<SequenceTree::Seq, 32> Elts;
14838 SequenceTree::Seq Parent = Region;
14839 for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
14840 const Expr *E = ILE->getInit(I);
14841 if (!E)
14842 continue;
14843 Region = Tree.allocate(Parent);
14844 Elts.push_back(Region);
14845 Visit(E);
14846 }
14847
14848 // Forget that the initializers are sequenced.
14849 Region = Parent;
14850 for (unsigned I = 0; I < Elts.size(); ++I)
14851 Tree.merge(Elts[I]);
14852 }
14853};
14854
14855} // namespace
14856
14857void Sema::CheckUnsequencedOperations(const Expr *E) {
14858 SmallVector<const Expr *, 8> WorkList;
14859 WorkList.push_back(E);
14860 while (!WorkList.empty()) {
14861 const Expr *Item = WorkList.pop_back_val();
14862 SequenceChecker(*this, Item, WorkList);
14863 }
14864}
14865
14866void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
14867 bool IsConstexpr) {
14868 llvm::SaveAndRestore<bool> ConstantContext(
14869 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
14870 CheckImplicitConversions(E, CheckLoc);
14871 if (!E->isInstantiationDependent())
14872 CheckUnsequencedOperations(E);
14873 if (!IsConstexpr && !E->isValueDependent())
14874 CheckForIntOverflow(E);
14875 DiagnoseMisalignedMembers();
14876}
14877
14878void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
14879 FieldDecl *BitField,
14880 Expr *Init) {
14881 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
14882}
14883
14884static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
14885 SourceLocation Loc) {
14886 if (!PType->isVariablyModifiedType())
14887 return;
14888 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
14889 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
14890 return;
14891 }
14892 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
14893 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
14894 return;
14895 }
14896 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
14897 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
14898 return;
14899 }
14900
14901 const ArrayType *AT = S.Context.getAsArrayType(PType);
14902 if (!AT)
14903 return;
14904
14905 if (AT->getSizeModifier() != ArrayType::Star) {
14906 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
14907 return;
14908 }
14909
14910 S.Diag(Loc, diag::err_array_star_in_function_definition);
14911}
14912
14913/// CheckParmsForFunctionDef - Check that the parameters of the given
14914/// function are appropriate for the definition of a function. This
14915/// takes care of any checks that cannot be performed on the
14916/// declaration itself, e.g., that the types of each of the function
14917/// parameters are complete.
14918bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
14919 bool CheckParameterNames) {
14920 bool HasInvalidParm = false;
14921 for (ParmVarDecl *Param : Parameters) {
14922 // C99 6.7.5.3p4: the parameters in a parameter type list in a
14923 // function declarator that is part of a function definition of
14924 // that function shall not have incomplete type.
14925 //
14926 // This is also C++ [dcl.fct]p6.
14927 if (!Param->isInvalidDecl() &&
14928 RequireCompleteType(Param->getLocation(), Param->getType(),
14929 diag::err_typecheck_decl_incomplete_type)) {
14930 Param->setInvalidDecl();
14931 HasInvalidParm = true;
14932 }
14933
14934 // C99 6.9.1p5: If the declarator includes a parameter type list, the
14935 // declaration of each parameter shall include an identifier.
14936 if (CheckParameterNames && Param->getIdentifier() == nullptr &&
14937 !Param->isImplicit() && !getLangOpts().CPlusPlus) {
14938 // Diagnose this as an extension in C17 and earlier.
14939 if (!getLangOpts().C2x)
14940 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
14941 }
14942
14943 // C99 6.7.5.3p12:
14944 // If the function declarator is not part of a definition of that
14945 // function, parameters may have incomplete type and may use the [*]
14946 // notation in their sequences of declarator specifiers to specify
14947 // variable length array types.
14948 QualType PType = Param->getOriginalType();
14949 // FIXME: This diagnostic should point the '[*]' if source-location
14950 // information is added for it.
14951 diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
14952
14953 // If the parameter is a c++ class type and it has to be destructed in the
14954 // callee function, declare the destructor so that it can be called by the
14955 // callee function. Do not perform any direct access check on the dtor here.
14956 if (!Param->isInvalidDecl()) {
14957 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
14958 if (!ClassDecl->isInvalidDecl() &&
14959 !ClassDecl->hasIrrelevantDestructor() &&
14960 !ClassDecl->isDependentContext() &&
14961 ClassDecl->isParamDestroyedInCallee()) {
14962 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
14963 MarkFunctionReferenced(Param->getLocation(), Destructor);
14964 DiagnoseUseOfDecl(Destructor, Param->getLocation());
14965 }
14966 }
14967 }
14968
14969 // Parameters with the pass_object_size attribute only need to be marked
14970 // constant at function definitions. Because we lack information about
14971 // whether we're on a declaration or definition when we're instantiating the
14972 // attribute, we need to check for constness here.
14973 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
14974 if (!Param->getType().isConstQualified())
14975 Diag(Param->getLocation(), diag::err_attribute_pointers_only)
14976 << Attr->getSpelling() << 1;
14977
14978 // Check for parameter names shadowing fields from the class.
14979 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
14980 // The owning context for the parameter should be the function, but we
14981 // want to see if this function's declaration context is a record.
14982 DeclContext *DC = Param->getDeclContext();
14983 if (DC && DC->isFunctionOrMethod()) {
14984 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
14985 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
14986 RD, /*DeclIsField*/ false);
14987 }
14988 }
14989 }
14990
14991 return HasInvalidParm;
14992}
14993
14994Optional<std::pair<CharUnits, CharUnits>>
14995static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
14996
14997/// Compute the alignment and offset of the base class object given the
14998/// derived-to-base cast expression and the alignment and offset of the derived
14999/// class object.
15000static std::pair<CharUnits, CharUnits>
15001getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
15002 CharUnits BaseAlignment, CharUnits Offset,
15003 ASTContext &Ctx) {
15004 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
15005 ++PathI) {
15006 const CXXBaseSpecifier *Base = *PathI;
15007 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
15008 if (Base->isVirtual()) {
15009 // The complete object may have a lower alignment than the non-virtual
15010 // alignment of the base, in which case the base may be misaligned. Choose
15011 // the smaller of the non-virtual alignment and BaseAlignment, which is a
15012 // conservative lower bound of the complete object alignment.
15013 CharUnits NonVirtualAlignment =
15014 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
15015 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
15016 Offset = CharUnits::Zero();
15017 } else {
15018 const ASTRecordLayout &RL =
15019 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
15020 Offset += RL.getBaseClassOffset(BaseDecl);
15021 }
15022 DerivedType = Base->getType();
15023 }
15024
15025 return std::make_pair(BaseAlignment, Offset);
15026}
15027
15028/// Compute the alignment and offset of a binary additive operator.
15029static Optional<std::pair<CharUnits, CharUnits>>
15030getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
15031 bool IsSub, ASTContext &Ctx) {
15032 QualType PointeeType = PtrE->getType()->getPointeeType();
15033
15034 if (!PointeeType->isConstantSizeType())
15035 return llvm::None;
15036
15037 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
15038
15039 if (!P)
15040 return llvm::None;
15041
15042 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
15043 if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
15044 CharUnits Offset = EltSize * IdxRes->getExtValue();
15045 if (IsSub)
15046 Offset = -Offset;
15047 return std::make_pair(P->first, P->second + Offset);
15048 }
15049
15050 // If the integer expression isn't a constant expression, compute the lower
15051 // bound of the alignment using the alignment and offset of the pointer
15052 // expression and the element size.
15053 return std::make_pair(
15054 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
15055 CharUnits::Zero());
15056}
15057
15058/// This helper function takes an lvalue expression and returns the alignment of
15059/// a VarDecl and a constant offset from the VarDecl.
15060Optional<std::pair<CharUnits, CharUnits>>
15061static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
15062 E = E->IgnoreParens();
15063 switch (E->getStmtClass()) {
15064 default:
15065 break;
15066 case Stmt::CStyleCastExprClass:
15067 case Stmt::CXXStaticCastExprClass:
15068 case Stmt::ImplicitCastExprClass: {
15069 auto *CE = cast<CastExpr>(E);
15070 const Expr *From = CE->getSubExpr();
15071 switch (CE->getCastKind()) {
15072 default:
15073 break;
15074 case CK_NoOp:
15075 return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15076 case CK_UncheckedDerivedToBase:
15077 case CK_DerivedToBase: {
15078 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15079 if (!P)
15080 break;
15081 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
15082 P->second, Ctx);
15083 }
15084 }
15085 break;
15086 }
15087 case Stmt::ArraySubscriptExprClass: {
15088 auto *ASE = cast<ArraySubscriptExpr>(E);
15089 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
15090 false, Ctx);
15091 }
15092 case Stmt::DeclRefExprClass: {
15093 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
15094 // FIXME: If VD is captured by copy or is an escaping __block variable,
15095 // use the alignment of VD's type.
15096 if (!VD->getType()->isReferenceType())
15097 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
15098 if (VD->hasInit())
15099 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
15100 }
15101 break;
15102 }
15103 case Stmt::MemberExprClass: {
15104 auto *ME = cast<MemberExpr>(E);
15105 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
15106 if (!FD || FD->getType()->isReferenceType() ||
15107 FD->getParent()->isInvalidDecl())
15108 break;
15109 Optional<std::pair<CharUnits, CharUnits>> P;
15110 if (ME->isArrow())
15111 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
15112 else
15113 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
15114 if (!P)
15115 break;
15116 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
15117 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
15118 return std::make_pair(P->first,
15119 P->second + CharUnits::fromQuantity(Offset));
15120 }
15121 case Stmt::UnaryOperatorClass: {
15122 auto *UO = cast<UnaryOperator>(E);
15123 switch (UO->getOpcode()) {
15124 default:
15125 break;
15126 case UO_Deref:
15127 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
15128 }
15129 break;
15130 }
15131 case Stmt::BinaryOperatorClass: {
15132 auto *BO = cast<BinaryOperator>(E);
15133 auto Opcode = BO->getOpcode();
15134 switch (Opcode) {
15135 default:
15136 break;
15137 case BO_Comma:
15138 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
15139 }
15140 break;
15141 }
15142 }
15143 return llvm::None;
15144}
15145
15146/// This helper function takes a pointer expression and returns the alignment of
15147/// a VarDecl and a constant offset from the VarDecl.
15148Optional<std::pair<CharUnits, CharUnits>>
15149static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
15150 E = E->IgnoreParens();
15151 switch (E->getStmtClass()) {
15152 default:
15153 break;
15154 case Stmt::CStyleCastExprClass:
15155 case Stmt::CXXStaticCastExprClass:
15156 case Stmt::ImplicitCastExprClass: {
15157 auto *CE = cast<CastExpr>(E);
15158 const Expr *From = CE->getSubExpr();
15159 switch (CE->getCastKind()) {
15160 default:
15161 break;
15162 case CK_NoOp:
15163 return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
15164 case CK_ArrayToPointerDecay:
15165 return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15166 case CK_UncheckedDerivedToBase:
15167 case CK_DerivedToBase: {
15168 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
15169 if (!P)
15170 break;
15171 return getDerivedToBaseAlignmentAndOffset(
15172 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
15173 }
15174 }
15175 break;
15176 }
15177 case Stmt::CXXThisExprClass: {
15178 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
15179 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
15180 return std::make_pair(Alignment, CharUnits::Zero());
15181 }
15182 case Stmt::UnaryOperatorClass: {
15183 auto *UO = cast<UnaryOperator>(E);
15184 if (UO->getOpcode() == UO_AddrOf)
15185 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
15186 break;
15187 }
15188 case Stmt::BinaryOperatorClass: {
15189 auto *BO = cast<BinaryOperator>(E);
15190 auto Opcode = BO->getOpcode();
15191 switch (Opcode) {
15192 default:
15193 break;
15194 case BO_Add:
15195 case BO_Sub: {
15196 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
15197 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
15198 std::swap(LHS, RHS);
15199 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
15200 Ctx);
15201 }
15202 case BO_Comma:
15203 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
15204 }
15205 break;
15206 }
15207 }
15208 return llvm::None;
15209}
15210
15211static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
15212 // See if we can compute the alignment of a VarDecl and an offset from it.
15213 Optional<std::pair<CharUnits, CharUnits>> P =
15214 getBaseAlignmentAndOffsetFromPtr(E, S.Context);
15215
15216 if (P)
15217 return P->first.alignmentAtOffset(P->second);
15218
15219 // If that failed, return the type's alignment.
15220 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
15221}
15222
15223/// CheckCastAlign - Implements -Wcast-align, which warns when a
15224/// pointer cast increases the alignment requirements.
15225void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
15226 // This is actually a lot of work to potentially be doing on every
15227 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
15228 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
15229 return;
15230
15231 // Ignore dependent types.
15232 if (T->isDependentType() || Op->getType()->isDependentType())
15233 return;
15234
15235 // Require that the destination be a pointer type.
15236 const PointerType *DestPtr = T->getAs<PointerType>();
15237 if (!DestPtr) return;
15238
15239 // If the destination has alignment 1, we're done.
15240 QualType DestPointee = DestPtr->getPointeeType();
15241 if (DestPointee->isIncompleteType()) return;
15242 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
15243 if (DestAlign.isOne()) return;
15244
15245 // Require that the source be a pointer type.
15246 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
15247 if (!SrcPtr) return;
15248 QualType SrcPointee = SrcPtr->getPointeeType();
15249
15250 // Explicitly allow casts from cv void*. We already implicitly
15251 // allowed casts to cv void*, since they have alignment 1.
15252 // Also allow casts involving incomplete types, which implicitly
15253 // includes 'void'.
15254 if (SrcPointee->isIncompleteType()) return;
15255
15256 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
15257
15258 if (SrcAlign >= DestAlign) return;
15259
15260 Diag(TRange.getBegin(), diag::warn_cast_align)
15261 << Op->getType() << T
15262 << static_cast<unsigned>(SrcAlign.getQuantity())
15263 << static_cast<unsigned>(DestAlign.getQuantity())
15264 << TRange << Op->getSourceRange();
15265}
15266
15267/// Check whether this array fits the idiom of a size-one tail padded
15268/// array member of a struct.
15269///
15270/// We avoid emitting out-of-bounds access warnings for such arrays as they are
15271/// commonly used to emulate flexible arrays in C89 code.
15272static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
15273 const NamedDecl *ND) {
15274 if (Size != 1 || !ND) return false;
15275
15276 const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
15277 if (!FD) return false;
15278
15279 // Don't consider sizes resulting from macro expansions or template argument
15280 // substitution to form C89 tail-padded arrays.
15281
15282 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
15283 while (TInfo) {
15284 TypeLoc TL = TInfo->getTypeLoc();
15285 // Look through typedefs.
15286 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
15287 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
15288 TInfo = TDL->getTypeSourceInfo();
15289 continue;
15290 }
15291 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
15292 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
15293 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
15294 return false;
15295 }
15296 break;
15297 }
15298
15299 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
15300 if (!RD) return false;
15301 if (RD->isUnion()) return false;
15302 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15303 if (!CRD->isStandardLayout()) return false;
15304 }
15305
15306 // See if this is the last field decl in the record.
15307 const Decl *D = FD;
15308 while ((D = D->getNextDeclInContext()))
15309 if (isa<FieldDecl>(D))
15310 return false;
15311 return true;
15312}
15313
15314void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
15315 const ArraySubscriptExpr *ASE,
15316 bool AllowOnePastEnd, bool IndexNegated) {
15317 // Already diagnosed by the constant evaluator.
15318 if (isConstantEvaluated())
15319 return;
15320
15321 IndexExpr = IndexExpr->IgnoreParenImpCasts();
15322 if (IndexExpr->isValueDependent())
15323 return;
15324
15325 const Type *EffectiveType =
15326 BaseExpr->getType()->getPointeeOrArrayElementType();
15327 BaseExpr = BaseExpr->IgnoreParenCasts();
15328 const ConstantArrayType *ArrayTy =
15329 Context.getAsConstantArrayType(BaseExpr->getType());
15330
15331 const Type *BaseType =
15332 ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
15333 bool IsUnboundedArray = (BaseType == nullptr);
15334 if (EffectiveType->isDependentType() ||
15335 (!IsUnboundedArray && BaseType->isDependentType()))
15336 return;
15337
15338 Expr::EvalResult Result;
15339 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
15340 return;
15341
15342 llvm::APSInt index = Result.Val.getInt();
15343 if (IndexNegated) {
15344 index.setIsUnsigned(false);
15345 index = -index;
15346 }
15347
15348 const NamedDecl *ND = nullptr;
15349 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15350 ND = DRE->getDecl();
15351 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
15352 ND = ME->getMemberDecl();
15353
15354 if (IsUnboundedArray) {
15355 if (index.isUnsigned() || !index.isNegative()) {
15356 const auto &ASTC = getASTContext();
15357 unsigned AddrBits =
15358 ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace(
15359 EffectiveType->getCanonicalTypeInternal()));
15360 if (index.getBitWidth() < AddrBits)
15361 index = index.zext(AddrBits);
15362 Optional<CharUnits> ElemCharUnits =
15363 ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
15364 // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
15365 // pointer) bounds-checking isn't meaningful.
15366 if (!ElemCharUnits)
15367 return;
15368 llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
15369 // If index has more active bits than address space, we already know
15370 // we have a bounds violation to warn about. Otherwise, compute
15371 // address of (index + 1)th element, and warn about bounds violation
15372 // only if that address exceeds address space.
15373 if (index.getActiveBits() <= AddrBits) {
15374 bool Overflow;
15375 llvm::APInt Product(index);
15376 Product += 1;
15377 Product = Product.umul_ov(ElemBytes, Overflow);
15378 if (!Overflow && Product.getActiveBits() <= AddrBits)
15379 return;
15380 }
15381
15382 // Need to compute max possible elements in address space, since that
15383 // is included in diag message.
15384 llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
15385 MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
15386 MaxElems += 1;
15387 ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
15388 MaxElems = MaxElems.udiv(ElemBytes);
15389
15390 unsigned DiagID =
15391 ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
15392 : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
15393
15394 // Diag message shows element size in bits and in "bytes" (platform-
15395 // dependent CharUnits)
15396 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15397 PDiag(DiagID)
15398 << toString(index, 10, true) << AddrBits
15399 << (unsigned)ASTC.toBits(*ElemCharUnits)
15400 << toString(ElemBytes, 10, false)
15401 << toString(MaxElems, 10, false)
15402 << (unsigned)MaxElems.getLimitedValue(~0U)
15403 << IndexExpr->getSourceRange());
15404
15405 if (!ND) {
15406 // Try harder to find a NamedDecl to point at in the note.
15407 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15408 BaseExpr = ASE->getBase()->IgnoreParenCasts();
15409 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15410 ND = DRE->getDecl();
15411 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15412 ND = ME->getMemberDecl();
15413 }
15414
15415 if (ND)
15416 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15417 PDiag(diag::note_array_declared_here) << ND);
15418 }
15419 return;
15420 }
15421
15422 if (index.isUnsigned() || !index.isNegative()) {
15423 // It is possible that the type of the base expression after
15424 // IgnoreParenCasts is incomplete, even though the type of the base
15425 // expression before IgnoreParenCasts is complete (see PR39746 for an
15426 // example). In this case we have no information about whether the array
15427 // access exceeds the array bounds. However we can still diagnose an array
15428 // access which precedes the array bounds.
15429 if (BaseType->isIncompleteType())
15430 return;
15431
15432 llvm::APInt size = ArrayTy->getSize();
15433 if (!size.isStrictlyPositive())
15434 return;
15435
15436 if (BaseType != EffectiveType) {
15437 // Make sure we're comparing apples to apples when comparing index to size
15438 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
15439 uint64_t array_typesize = Context.getTypeSize(BaseType);
15440 // Handle ptrarith_typesize being zero, such as when casting to void*
15441 if (!ptrarith_typesize) ptrarith_typesize = 1;
15442 if (ptrarith_typesize != array_typesize) {
15443 // There's a cast to a different size type involved
15444 uint64_t ratio = array_typesize / ptrarith_typesize;
15445 // TODO: Be smarter about handling cases where array_typesize is not a
15446 // multiple of ptrarith_typesize
15447 if (ptrarith_typesize * ratio == array_typesize)
15448 size *= llvm::APInt(size.getBitWidth(), ratio);
15449 }
15450 }
15451
15452 if (size.getBitWidth() > index.getBitWidth())
15453 index = index.zext(size.getBitWidth());
15454 else if (size.getBitWidth() < index.getBitWidth())
15455 size = size.zext(index.getBitWidth());
15456
15457 // For array subscripting the index must be less than size, but for pointer
15458 // arithmetic also allow the index (offset) to be equal to size since
15459 // computing the next address after the end of the array is legal and
15460 // commonly done e.g. in C++ iterators and range-based for loops.
15461 if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
15462 return;
15463
15464 // Also don't warn for arrays of size 1 which are members of some
15465 // structure. These are often used to approximate flexible arrays in C89
15466 // code.
15467 if (IsTailPaddedMemberArray(*this, size, ND))
15468 return;
15469
15470 // Suppress the warning if the subscript expression (as identified by the
15471 // ']' location) and the index expression are both from macro expansions
15472 // within a system header.
15473 if (ASE) {
15474 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
15475 ASE->getRBracketLoc());
15476 if (SourceMgr.isInSystemHeader(RBracketLoc)) {
15477 SourceLocation IndexLoc =
15478 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
15479 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
15480 return;
15481 }
15482 }
15483
15484 unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
15485 : diag::warn_ptr_arith_exceeds_bounds;
15486
15487 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15488 PDiag(DiagID) << toString(index, 10, true)
15489 << toString(size, 10, true)
15490 << (unsigned)size.getLimitedValue(~0U)
15491 << IndexExpr->getSourceRange());
15492 } else {
15493 unsigned DiagID = diag::warn_array_index_precedes_bounds;
15494 if (!ASE) {
15495 DiagID = diag::warn_ptr_arith_precedes_bounds;
15496 if (index.isNegative()) index = -index;
15497 }
15498
15499 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15500 PDiag(DiagID) << toString(index, 10, true)
15501 << IndexExpr->getSourceRange());
15502 }
15503
15504 if (!ND) {
15505 // Try harder to find a NamedDecl to point at in the note.
15506 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15507 BaseExpr = ASE->getBase()->IgnoreParenCasts();
15508 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15509 ND = DRE->getDecl();
15510 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15511 ND = ME->getMemberDecl();
15512 }
15513
15514 if (ND)
15515 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15516 PDiag(diag::note_array_declared_here) << ND);
15517}
15518
15519void Sema::CheckArrayAccess(const Expr *expr) {
15520 int AllowOnePastEnd = 0;
15521 while (expr) {
15522 expr = expr->IgnoreParenImpCasts();
15523 switch (expr->getStmtClass()) {
15524 case Stmt::ArraySubscriptExprClass: {
15525 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
15526 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
15527 AllowOnePastEnd > 0);
15528 expr = ASE->getBase();
15529 break;
15530 }
15531 case Stmt::MemberExprClass: {
15532 expr = cast<MemberExpr>(expr)->getBase();
15533 break;
15534 }
15535 case Stmt::OMPArraySectionExprClass: {
15536 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
15537 if (ASE->getLowerBound())
15538 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
15539 /*ASE=*/nullptr, AllowOnePastEnd > 0);
15540 return;
15541 }
15542 case Stmt::UnaryOperatorClass: {
15543 // Only unwrap the * and & unary operators
15544 const UnaryOperator *UO = cast<UnaryOperator>(expr);
15545 expr = UO->getSubExpr();
15546 switch (UO->getOpcode()) {
15547 case UO_AddrOf:
15548 AllowOnePastEnd++;
15549 break;
15550 case UO_Deref:
15551 AllowOnePastEnd--;
15552 break;
15553 default:
15554 return;
15555 }
15556 break;
15557 }
15558 case Stmt::ConditionalOperatorClass: {
15559 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
15560 if (const Expr *lhs = cond->getLHS())
15561 CheckArrayAccess(lhs);
15562 if (const Expr *rhs = cond->getRHS())
15563 CheckArrayAccess(rhs);
15564 return;
15565 }
15566 case Stmt::CXXOperatorCallExprClass: {
15567 const auto *OCE = cast<CXXOperatorCallExpr>(expr);
15568 for (const auto *Arg : OCE->arguments())
15569 CheckArrayAccess(Arg);
15570 return;
15571 }
15572 default:
15573 return;
15574 }
15575 }
15576}
15577
15578//===--- CHECK: Objective-C retain cycles ----------------------------------//
15579
15580namespace {
15581
15582struct RetainCycleOwner {
15583 VarDecl *Variable = nullptr;
15584 SourceRange Range;
15585 SourceLocation Loc;
15586 bool Indirect = false;
15587
15588 RetainCycleOwner() = default;
15589
15590 void setLocsFrom(Expr *e) {
15591 Loc = e->getExprLoc();
15592 Range = e->getSourceRange();
15593 }
15594};
15595
15596} // namespace
15597
15598/// Consider whether capturing the given variable can possibly lead to
15599/// a retain cycle.
15600static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
15601 // In ARC, it's captured strongly iff the variable has __strong
15602 // lifetime. In MRR, it's captured strongly if the variable is
15603 // __block and has an appropriate type.
15604 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15605 return false;
15606
15607 owner.Variable = var;
15608 if (ref)
15609 owner.setLocsFrom(ref);
15610 return true;
15611}
15612
15613static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
15614 while (true) {
15615 e = e->IgnoreParens();
15616 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
15617 switch (cast->getCastKind()) {
15618 case CK_BitCast:
15619 case CK_LValueBitCast:
15620 case CK_LValueToRValue:
15621 case CK_ARCReclaimReturnedObject:
15622 e = cast->getSubExpr();
15623 continue;
15624
15625 default:
15626 return false;
15627 }
15628 }
15629
15630 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
15631 ObjCIvarDecl *ivar = ref->getDecl();
15632 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
15633 return false;
15634
15635 // Try to find a retain cycle in the base.
15636 if (!findRetainCycleOwner(S, ref->getBase(), owner))
15637 return false;
15638
15639 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
15640 owner.Indirect = true;
15641 return true;
15642 }
15643
15644 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
15645 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
15646 if (!var) return false;
15647 return considerVariable(var, ref, owner);
15648 }
15649
15650 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
15651 if (member->isArrow()) return false;
15652
15653 // Don't count this as an indirect ownership.
15654 e = member->getBase();
15655 continue;
15656 }
15657
15658 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
15659 // Only pay attention to pseudo-objects on property references.
15660 ObjCPropertyRefExpr *pre
15661 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
15662 ->IgnoreParens());
15663 if (!pre) return false;
15664 if (pre->isImplicitProperty()) return false;
15665 ObjCPropertyDecl *property = pre->getExplicitProperty();
15666 if (!property->isRetaining() &&
15667 !(property->getPropertyIvarDecl() &&
15668 property->getPropertyIvarDecl()->getType()
15669 .getObjCLifetime() == Qualifiers::OCL_Strong))
15670 return false;
15671
15672 owner.Indirect = true;
15673 if (pre->isSuperReceiver()) {
15674 owner.Variable = S.getCurMethodDecl()->getSelfDecl();
15675 if (!owner.Variable)
15676 return false;
15677 owner.Loc = pre->getLocation();
15678 owner.Range = pre->getSourceRange();
15679 return true;
15680 }
15681 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
15682 ->getSourceExpr());
15683 continue;
15684 }
15685
15686 // Array ivars?
15687
15688 return false;
15689 }
15690}
15691
15692namespace {
15693
15694 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
15695 ASTContext &Context;
15696 VarDecl *Variable;
15697 Expr *Capturer = nullptr;
15698 bool VarWillBeReased = false;
15699
15700 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
15701 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
15702 Context(Context), Variable(variable) {}
15703
15704 void VisitDeclRefExpr(DeclRefExpr *ref) {
15705 if (ref->getDecl() == Variable && !Capturer)
15706 Capturer = ref;
15707 }
15708
15709 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
15710 if (Capturer) return;
15711 Visit(ref->getBase());
15712 if (Capturer && ref->isFreeIvar())
15713 Capturer = ref;
15714 }
15715
15716 void VisitBlockExpr(BlockExpr *block) {
15717 // Look inside nested blocks
15718 if (block->getBlockDecl()->capturesVariable(Variable))
15719 Visit(block->getBlockDecl()->getBody());
15720 }
15721
15722 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
15723 if (Capturer) return;
15724 if (OVE->getSourceExpr())
15725 Visit(OVE->getSourceExpr());
15726 }
15727
15728 void VisitBinaryOperator(BinaryOperator *BinOp) {
15729 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
15730 return;
15731 Expr *LHS = BinOp->getLHS();
15732 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
15733 if (DRE->getDecl() != Variable)
15734 return;
15735 if (Expr *RHS = BinOp->getRHS()) {
15736 RHS = RHS->IgnoreParenCasts();
15737 Optional<llvm::APSInt> Value;
15738 VarWillBeReased =
15739 (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
15740 *Value == 0);
15741 }
15742 }
15743 }
15744 };
15745
15746} // namespace
15747
15748/// Check whether the given argument is a block which captures a
15749/// variable.
15750static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
15751 assert(owner.Variable && owner.Loc.isValid())(static_cast <bool> (owner.Variable && owner.Loc
.isValid()) ? void (0) : __assert_fail ("owner.Variable && owner.Loc.isValid()"
, "clang/lib/Sema/SemaChecking.cpp", 15751, __extension__ __PRETTY_FUNCTION__
))
;
15752
15753 e = e->IgnoreParenCasts();
15754
15755 // Look through [^{...} copy] and Block_copy(^{...}).
15756 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
15757 Selector Cmd = ME->getSelector();
15758 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
15759 e = ME->getInstanceReceiver();
15760 if (!e)
15761 return nullptr;
15762 e = e->IgnoreParenCasts();
15763 }
15764 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
15765 if (CE->getNumArgs() == 1) {
15766 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
15767 if (Fn) {
15768 const IdentifierInfo *FnI = Fn->getIdentifier();
15769 if (FnI && FnI->isStr("_Block_copy")) {
15770 e = CE->getArg(0)->IgnoreParenCasts();
15771 }
15772 }
15773 }
15774 }
15775
15776 BlockExpr *block = dyn_cast<BlockExpr>(e);
15777 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
15778 return nullptr;
15779
15780 FindCaptureVisitor visitor(S.Context, owner.Variable);
15781 visitor.Visit(block->getBlockDecl()->getBody());
15782 return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
15783}
15784
15785static void diagnoseRetainCycle(Sema &S, Expr *capturer,
15786 RetainCycleOwner &owner) {
15787 assert(capturer)(static_cast <bool> (capturer) ? void (0) : __assert_fail
("capturer", "clang/lib/Sema/SemaChecking.cpp", 15787, __extension__
__PRETTY_FUNCTION__))
;
15788 assert(owner.Variable && owner.Loc.isValid())(static_cast <bool> (owner.Variable && owner.Loc
.isValid()) ? void (0) : __assert_fail ("owner.Variable && owner.Loc.isValid()"
, "clang/lib/Sema/SemaChecking.cpp", 15788, __extension__ __PRETTY_FUNCTION__
))
;
15789
15790 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
15791 << owner.Variable << capturer->getSourceRange();
15792 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
15793 << owner.Indirect << owner.Range;
15794}
15795
15796/// Check for a keyword selector that starts with the word 'add' or
15797/// 'set'.
15798static bool isSetterLikeSelector(Selector sel) {
15799 if (sel.isUnarySelector()) return false;
15800
15801 StringRef str = sel.getNameForSlot(0);
15802 while (!str.empty() && str.front() == '_') str = str.substr(1);
15803 if (str.startswith("set"))
15804 str = str.substr(3);
15805 else if (str.startswith("add")) {
15806 // Specially allow 'addOperationWithBlock:'.
15807 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
15808 return false;
15809 str = str.substr(3);
15810 }
15811 else
15812 return false;
15813
15814 if (str.empty()) return true;
15815 return !isLowercase(str.front());
15816}
15817
15818static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
15819 ObjCMessageExpr *Message) {
15820 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
15821 Message->getReceiverInterface(),
15822 NSAPI::ClassId_NSMutableArray);
15823 if (!IsMutableArray) {
15824 return None;
15825 }
15826
15827 Selector Sel = Message->getSelector();
15828
15829 Optional<NSAPI::NSArrayMethodKind> MKOpt =
15830 S.NSAPIObj->getNSArrayMethodKind(Sel);
15831 if (!MKOpt) {
15832 return None;
15833 }
15834
15835 NSAPI::NSArrayMethodKind MK = *MKOpt;
15836
15837 switch (MK) {
15838 case NSAPI::NSMutableArr_addObject:
15839 case NSAPI::NSMutableArr_insertObjectAtIndex:
15840 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
15841 return 0;
15842 case NSAPI::NSMutableArr_replaceObjectAtIndex:
15843 return 1;
15844
15845 default:
15846 return None;
15847 }
15848
15849 return None;
15850}
15851
15852static
15853Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
15854 ObjCMessageExpr *Message) {
15855 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
15856 Message->getReceiverInterface(),
15857 NSAPI::ClassId_NSMutableDictionary);
15858 if (!IsMutableDictionary) {
15859 return None;
15860 }
15861
15862 Selector Sel = Message->getSelector();
15863
15864 Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
15865 S.NSAPIObj->getNSDictionaryMethodKind(Sel);
15866 if (!MKOpt) {
15867 return None;
15868 }
15869
15870 NSAPI::NSDictionaryMethodKind MK = *MKOpt;
15871
15872 switch (MK) {
15873 case NSAPI::NSMutableDict_setObjectForKey:
15874 case NSAPI::NSMutableDict_setValueForKey:
15875 case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
15876 return 0;
15877
15878 default:
15879 return None;
15880 }
15881
15882 return None;
15883}
15884
15885static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
15886 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
15887 Message->getReceiverInterface(),
15888 NSAPI::ClassId_NSMutableSet);
15889
15890 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
15891 Message->getReceiverInterface(),
15892 NSAPI::ClassId_NSMutableOrderedSet);
15893 if (!IsMutableSet && !IsMutableOrderedSet) {
15894 return None;
15895 }
15896
15897 Selector Sel = Message->getSelector();
15898
15899 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
15900 if (!MKOpt) {
15901 return None;
15902 }
15903
15904 NSAPI::NSSetMethodKind MK = *MKOpt;
15905
15906 switch (MK) {
15907 case NSAPI::NSMutableSet_addObject:
15908 case NSAPI::NSOrderedSet_setObjectAtIndex:
15909 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
15910 case NSAPI::NSOrderedSet_insertObjectAtIndex:
15911 return 0;
15912 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
15913 return 1;
15914 }
15915
15916 return None;
15917}
15918
15919void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
15920 if (!Message->isInstanceMessage()) {
15921 return;
15922 }
15923
15924 Optional<int> ArgOpt;
15925
15926 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
15927 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
15928 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
15929 return;
15930 }
15931
15932 int ArgIndex = *ArgOpt;
15933
15934 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
15935 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
15936 Arg = OE->getSourceExpr()->IgnoreImpCasts();
15937 }
15938
15939 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
15940 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15941 if (ArgRE->isObjCSelfExpr()) {
15942 Diag(Message->getSourceRange().getBegin(),
15943 diag::warn_objc_circular_container)
15944 << ArgRE->getDecl() << StringRef("'super'");
15945 }
15946 }
15947 } else {
15948 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
15949
15950 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
15951 Receiver = OE->getSourceExpr()->IgnoreImpCasts();
15952 }
15953
15954 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
15955 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
15956 if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
15957 ValueDecl *Decl = ReceiverRE->getDecl();
15958 Diag(Message->getSourceRange().getBegin(),
15959 diag::warn_objc_circular_container)
15960 << Decl << Decl;
15961 if (!ArgRE->isObjCSelfExpr()) {
15962 Diag(Decl->getLocation(),
15963 diag::note_objc_circular_container_declared_here)
15964 << Decl;
15965 }
15966 }
15967 }
15968 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
15969 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
15970 if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
15971 ObjCIvarDecl *Decl = IvarRE->getDecl();
15972 Diag(Message->getSourceRange().getBegin(),
15973 diag::warn_objc_circular_container)
15974 << Decl << Decl;
15975 Diag(Decl->getLocation(),
15976 diag::note_objc_circular_container_declared_here)
15977 << Decl;
15978 }
15979 }
15980 }
15981 }
15982}
15983
15984/// Check a message send to see if it's likely to cause a retain cycle.
15985void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
15986 // Only check instance methods whose selector looks like a setter.
15987 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
15988 return;
15989
15990 // Try to find a variable that the receiver is strongly owned by.
15991 RetainCycleOwner owner;
15992 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
15993 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
15994 return;
15995 } else {
15996 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance)(static_cast <bool> (msg->getReceiverKind() == ObjCMessageExpr
::SuperInstance) ? void (0) : __assert_fail ("msg->getReceiverKind() == ObjCMessageExpr::SuperInstance"
, "clang/lib/Sema/SemaChecking.cpp", 15996, __extension__ __PRETTY_FUNCTION__
))
;
15997 owner.Variable = getCurMethodDecl()->getSelfDecl();
15998 owner.Loc = msg->getSuperLoc();
15999 owner.Range = msg->getSuperLoc();
16000 }
16001
16002 // Check whether the receiver is captured by any of the arguments.
16003 const ObjCMethodDecl *MD = msg->getMethodDecl();
16004 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
16005 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
16006 // noescape blocks should not be retained by the method.
16007 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
16008 continue;
16009 return diagnoseRetainCycle(*this, capturer, owner);
16010 }
16011 }
16012}
16013
16014/// Check a property assign to see if it's likely to cause a retain cycle.
16015void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
16016 RetainCycleOwner owner;
16017 if (!findRetainCycleOwner(*this, receiver, owner))
16018 return;
16019
16020 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
16021 diagnoseRetainCycle(*this, capturer, owner);
16022}
16023
16024void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
16025 RetainCycleOwner Owner;
16026 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
16027 return;
16028
16029 // Because we don't have an expression for the variable, we have to set the
16030 // location explicitly here.
16031 Owner.Loc = Var->getLocation();
16032 Owner.Range = Var->getSourceRange();
16033
16034 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
16035 diagnoseRetainCycle(*this, Capturer, Owner);
16036}
16037
16038static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
16039 Expr *RHS, bool isProperty) {
16040 // Check if RHS is an Objective-C object literal, which also can get
16041 // immediately zapped in a weak reference. Note that we explicitly
16042 // allow ObjCStringLiterals, since those are designed to never really die.
16043 RHS = RHS->IgnoreParenImpCasts();
16044
16045 // This enum needs to match with the 'select' in
16046 // warn_objc_arc_literal_assign (off-by-1).
16047 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
16048 if (Kind == Sema::LK_String || Kind == Sema::LK_None)
16049 return false;
16050
16051 S.Diag(Loc, diag::warn_arc_literal_assign)
16052 << (unsigned) Kind
16053 << (isProperty ? 0 : 1)
16054 << RHS->getSourceRange();
16055
16056 return true;
16057}
16058
16059static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
16060 Qualifiers::ObjCLifetime LT,
16061 Expr *RHS, bool isProperty) {
16062 // Strip off any implicit cast added to get to the one ARC-specific.
16063 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
16064 if (cast->getCastKind() == CK_ARCConsumeObject) {
16065 S.Diag(Loc, diag::warn_arc_retained_assign)
16066 << (LT == Qualifiers::OCL_ExplicitNone)
16067 << (isProperty ? 0 : 1)
16068 << RHS->getSourceRange();
16069 return true;
16070 }
16071 RHS = cast->getSubExpr();
16072 }
16073
16074 if (LT == Qualifiers::OCL_Weak &&
16075 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
16076 return true;
16077
16078 return false;
16079}
16080
16081bool Sema::checkUnsafeAssigns(SourceLocation Loc,
16082 QualType LHS, Expr *RHS) {
16083 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
16084
16085 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
16086 return false;
16087
16088 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
16089 return true;
16090
16091 return false;
16092}
16093
16094void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
16095 Expr *LHS, Expr *RHS) {
16096 QualType LHSType;
16097 // PropertyRef on LHS type need be directly obtained from
16098 // its declaration as it has a PseudoType.
16099 ObjCPropertyRefExpr *PRE
16100 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
16101 if (PRE && !PRE->isImplicitProperty()) {
16102 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
16103 if (PD)
16104 LHSType = PD->getType();
16105 }
16106
16107 if (LHSType.isNull())
16108 LHSType = LHS->getType();
16109
16110 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
16111
16112 if (LT == Qualifiers::OCL_Weak) {
16113 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
16114 getCurFunction()->markSafeWeakUse(LHS);
16115 }
16116
16117 if (checkUnsafeAssigns(Loc, LHSType, RHS))
16118 return;
16119
16120 // FIXME. Check for other life times.
16121 if (LT != Qualifiers::OCL_None)
16122 return;
16123
16124 if (PRE) {
16125 if (PRE->isImplicitProperty())
16126 return;
16127 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
16128 if (!PD)
16129 return;
16130
16131 unsigned Attributes = PD->getPropertyAttributes();
16132 if (Attributes & ObjCPropertyAttribute::kind_assign) {
16133 // when 'assign' attribute was not explicitly specified
16134 // by user, ignore it and rely on property type itself
16135 // for lifetime info.
16136 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
16137 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
16138 LHSType->isObjCRetainableType())
16139 return;
16140
16141 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
16142 if (cast->getCastKind() == CK_ARCConsumeObject) {
16143 Diag(Loc, diag::warn_arc_retained_property_assign)
16144 << RHS->getSourceRange();
16145 return;
16146 }
16147 RHS = cast->getSubExpr();
16148 }
16149 } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
16150 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
16151 return;
16152 }
16153 }
16154}
16155
16156//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
16157
16158static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
16159 SourceLocation StmtLoc,
16160 const NullStmt *Body) {
16161 // Do not warn if the body is a macro that expands to nothing, e.g:
16162 //
16163 // #define CALL(x)
16164 // if (condition)
16165 // CALL(0);
16166 if (Body->hasLeadingEmptyMacro())
16167 return false;
16168
16169 // Get line numbers of statement and body.
16170 bool StmtLineInvalid;
16171 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
16172 &StmtLineInvalid);
16173 if (StmtLineInvalid)
16174 return false;
16175
16176 bool BodyLineInvalid;
16177 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
16178 &BodyLineInvalid);
16179 if (BodyLineInvalid)
16180 return false;
16181
16182 // Warn if null statement and body are on the same line.
16183 if (StmtLine != BodyLine)
16184 return false;
16185
16186 return true;
16187}
16188
16189void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
16190 const Stmt *Body,
16191 unsigned DiagID) {
16192 // Since this is a syntactic check, don't emit diagnostic for template
16193 // instantiations, this just adds noise.
16194 if (CurrentInstantiationScope)
16195 return;
16196
16197 // The body should be a null statement.
16198 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
16199 if (!NBody)
16200 return;
16201
16202 // Do the usual checks.
16203 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
16204 return;
16205
16206 Diag(NBody->getSemiLoc(), DiagID);
16207 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
16208}
16209
16210void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
16211 const Stmt *PossibleBody) {
16212 assert(!CurrentInstantiationScope)(static_cast <bool> (!CurrentInstantiationScope) ? void
(0) : __assert_fail ("!CurrentInstantiationScope", "clang/lib/Sema/SemaChecking.cpp"
, 16212, __extension__ __PRETTY_FUNCTION__))
; // Ensured by caller
16213
16214 SourceLocation StmtLoc;
16215 const Stmt *Body;
16216 unsigned DiagID;
16217 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
16218 StmtLoc = FS->getRParenLoc();
16219 Body = FS->getBody();
16220 DiagID = diag::warn_empty_for_body;
16221 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
16222 StmtLoc = WS->getCond()->getSourceRange().getEnd();
16223 Body = WS->getBody();
16224 DiagID = diag::warn_empty_while_body;
16225 } else
16226 return; // Neither `for' nor `while'.
16227
16228 // The body should be a null statement.
16229 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
16230 if (!NBody)
16231 return;
16232
16233 // Skip expensive checks if diagnostic is disabled.
16234 if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
16235 return;
16236
16237 // Do the usual checks.
16238 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
16239 return;
16240
16241 // `for(...);' and `while(...);' are popular idioms, so in order to keep
16242 // noise level low, emit diagnostics only if for/while is followed by a
16243 // CompoundStmt, e.g.:
16244 // for (int i = 0; i < n; i++);
16245 // {
16246 // a(i);
16247 // }
16248 // or if for/while is followed by a statement with more indentation
16249 // than for/while itself:
16250 // for (int i = 0; i < n; i++);
16251 // a(i);
16252 bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
16253 if (!ProbableTypo) {
16254 bool BodyColInvalid;
16255 unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
16256 PossibleBody->getBeginLoc(), &BodyColInvalid);
16257 if (BodyColInvalid)
16258 return;
16259
16260 bool StmtColInvalid;
16261 unsigned StmtCol =
16262 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
16263 if (StmtColInvalid)
16264 return;
16265
16266 if (BodyCol > StmtCol)
16267 ProbableTypo = true;
16268 }
16269
16270 if (ProbableTypo) {
16271 Diag(NBody->getSemiLoc(), DiagID);
16272 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
16273 }
16274}
16275
16276//===--- CHECK: Warn on self move with std::move. -------------------------===//
16277
16278/// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
16279void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
16280 SourceLocation OpLoc) {
16281 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
16282 return;
16283
16284 if (inTemplateInstantiation())
16285 return;
16286
16287 // Strip parens and casts away.
16288 LHSExpr = LHSExpr->IgnoreParenImpCasts();
16289 RHSExpr = RHSExpr->IgnoreParenImpCasts();
16290
16291 // Check for a call expression
16292 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
16293 if (!CE || CE->getNumArgs() != 1)
16294 return;
16295
16296 // Check for a call to std::move
16297 if (!CE->isCallToStdMove())
16298 return;
16299
16300 // Get argument from std::move
16301 RHSExpr = CE->getArg(0);
16302
16303 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
16304 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
16305
16306 // Two DeclRefExpr's, check that the decls are the same.
16307 if (LHSDeclRef && RHSDeclRef) {
16308 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16309 return;
16310 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16311 RHSDeclRef->getDecl()->getCanonicalDecl())
16312 return;
16313
16314 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16315 << LHSExpr->getSourceRange()
16316 << RHSExpr->getSourceRange();
16317 return;
16318 }
16319
16320 // Member variables require a different approach to check for self moves.
16321 // MemberExpr's are the same if every nested MemberExpr refers to the same
16322 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
16323 // the base Expr's are CXXThisExpr's.
16324 const Expr *LHSBase = LHSExpr;
16325 const Expr *RHSBase = RHSExpr;
16326 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
16327 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
16328 if (!LHSME || !RHSME)
16329 return;
16330
16331 while (LHSME && RHSME) {
16332 if (LHSME->getMemberDecl()->getCanonicalDecl() !=
16333 RHSME->getMemberDecl()->getCanonicalDecl())
16334 return;
16335
16336 LHSBase = LHSME->getBase();
16337 RHSBase = RHSME->getBase();
16338 LHSME = dyn_cast<MemberExpr>(LHSBase);
16339 RHSME = dyn_cast<MemberExpr>(RHSBase);
16340 }
16341
16342 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
16343 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
16344 if (LHSDeclRef && RHSDeclRef) {
16345 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16346 return;
16347 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16348 RHSDeclRef->getDecl()->getCanonicalDecl())
16349 return;
16350
16351 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16352 << LHSExpr->getSourceRange()
16353 << RHSExpr->getSourceRange();
16354 return;
16355 }
16356
16357 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
16358 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
16359 << LHSExpr->getSourceRange()
16360 << RHSExpr->getSourceRange();
16361}
16362
16363//===--- Layout compatibility ----------------------------------------------//
16364
16365static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
16366
16367/// Check if two enumeration types are layout-compatible.
16368static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
16369 // C++11 [dcl.enum] p8:
16370 // Two enumeration types are layout-compatible if they have the same
16371 // underlying type.
16372 return ED1->isComplete() && ED2->isComplete() &&
16373 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
16374}
16375
16376/// Check if two fields are layout-compatible.
16377static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
16378 FieldDecl *Field2) {
16379 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
16380 return false;
16381
16382 if (Field1->isBitField() != Field2->isBitField())
16383 return false;
16384
16385 if (Field1->isBitField()) {
16386 // Make sure that the bit-fields are the same length.
16387 unsigned Bits1 = Field1->getBitWidthValue(C);
16388 unsigned Bits2 = Field2->getBitWidthValue(C);
16389
16390 if (Bits1 != Bits2)
16391 return false;
16392 }
16393
16394 return true;
16395}
16396
16397/// Check if two standard-layout structs are layout-compatible.
16398/// (C++11 [class.mem] p17)
16399static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
16400 RecordDecl *RD2) {
16401 // If both records are C++ classes, check that base classes match.
16402 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
16403 // If one of records is a CXXRecordDecl we are in C++ mode,
16404 // thus the other one is a CXXRecordDecl, too.
16405 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
16406 // Check number of base classes.
16407 if (D1CXX->getNumBases() != D2CXX->getNumBases())
16408 return false;
16409
16410 // Check the base classes.
16411 for (CXXRecordDecl::base_class_const_iterator
16412 Base1 = D1CXX->bases_begin(),
16413 BaseEnd1 = D1CXX->bases_end(),
16414 Base2 = D2CXX->bases_begin();
16415 Base1 != BaseEnd1;
16416 ++Base1, ++Base2) {
16417 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
16418 return false;
16419 }
16420 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
16421 // If only RD2 is a C++ class, it should have zero base classes.
16422 if (D2CXX->getNumBases() > 0)
16423 return false;
16424 }
16425
16426 // Check the fields.
16427 RecordDecl::field_iterator Field2 = RD2->field_begin(),
16428 Field2End = RD2->field_end(),
16429 Field1 = RD1->field_begin(),
16430 Field1End = RD1->field_end();
16431 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
16432 if (!isLayoutCompatible(C, *Field1, *Field2))
16433 return false;
16434 }
16435 if (Field1 != Field1End || Field2 != Field2End)
16436 return false;
16437
16438 return true;
16439}
16440
16441/// Check if two standard-layout unions are layout-compatible.
16442/// (C++11 [class.mem] p18)
16443static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
16444 RecordDecl *RD2) {
16445 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
16446 for (auto *Field2 : RD2->fields())
16447 UnmatchedFields.insert(Field2);
16448
16449 for (auto *Field1 : RD1->fields()) {
16450 llvm::SmallPtrSet<FieldDecl *, 8>::iterator
16451 I = UnmatchedFields.begin(),
16452 E = UnmatchedFields.end();
16453
16454 for ( ; I != E; ++I) {
16455 if (isLayoutCompatible(C, Field1, *I)) {
16456 bool Result = UnmatchedFields.erase(*I);
16457 (void) Result;
16458 assert(Result)(static_cast <bool> (Result) ? void (0) : __assert_fail
("Result", "clang/lib/Sema/SemaChecking.cpp", 16458, __extension__
__PRETTY_FUNCTION__))
;
16459 break;
16460 }
16461 }
16462 if (I == E)
16463 return false;
16464 }
16465
16466 return UnmatchedFields.empty();
16467}
16468
16469static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
16470 RecordDecl *RD2) {
16471 if (RD1->isUnion() != RD2->isUnion())
16472 return false;
16473
16474 if (RD1->isUnion())
16475 return isLayoutCompatibleUnion(C, RD1, RD2);
16476 else
16477 return isLayoutCompatibleStruct(C, RD1, RD2);
16478}
16479
16480/// Check if two types are layout-compatible in C++11 sense.
16481static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
16482 if (T1.isNull() || T2.isNull())
16483 return false;
16484
16485 // C++11 [basic.types] p11:
16486 // If two types T1 and T2 are the same type, then T1 and T2 are
16487 // layout-compatible types.
16488 if (C.hasSameType(T1, T2))
16489 return true;
16490
16491 T1 = T1.getCanonicalType().getUnqualifiedType();
16492 T2 = T2.getCanonicalType().getUnqualifiedType();
16493
16494 const Type::TypeClass TC1 = T1->getTypeClass();
16495 const Type::TypeClass TC2 = T2->getTypeClass();
16496
16497 if (TC1 != TC2)
16498 return false;
16499
16500 if (TC1 == Type::Enum) {
16501 return isLayoutCompatible(C,
16502 cast<EnumType>(T1)->getDecl(),
16503 cast<EnumType>(T2)->getDecl());
16504 } else if (TC1 == Type::Record) {
16505 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
16506 return false;
16507
16508 return isLayoutCompatible(C,
16509 cast<RecordType>(T1)->getDecl(),
16510 cast<RecordType>(T2)->getDecl());
16511 }
16512
16513 return false;
16514}
16515
16516//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
16517
16518/// Given a type tag expression find the type tag itself.
16519///
16520/// \param TypeExpr Type tag expression, as it appears in user's code.
16521///
16522/// \param VD Declaration of an identifier that appears in a type tag.
16523///
16524/// \param MagicValue Type tag magic value.
16525///
16526/// \param isConstantEvaluated whether the evalaution should be performed in
16527
16528/// constant context.
16529static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
16530 const ValueDecl **VD, uint64_t *MagicValue,
16531 bool isConstantEvaluated) {
16532 while(true) {
16533 if (!TypeExpr)
16534 return false;
16535
16536 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
16537
16538 switch (TypeExpr->getStmtClass()) {
16539 case Stmt::UnaryOperatorClass: {
16540 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
16541 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
16542 TypeExpr = UO->getSubExpr();
16543 continue;
16544 }
16545 return false;
16546 }
16547
16548 case Stmt::DeclRefExprClass: {
16549 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
16550 *VD = DRE->getDecl();
16551 return true;
16552 }
16553
16554 case Stmt::IntegerLiteralClass: {
16555 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
16556 llvm::APInt MagicValueAPInt = IL->getValue();
16557 if (MagicValueAPInt.getActiveBits() <= 64) {
16558 *MagicValue = MagicValueAPInt.getZExtValue();
16559 return true;
16560 } else
16561 return false;
16562 }
16563
16564 case Stmt::BinaryConditionalOperatorClass:
16565 case Stmt::ConditionalOperatorClass: {
16566 const AbstractConditionalOperator *ACO =
16567 cast<AbstractConditionalOperator>(TypeExpr);
16568 bool Result;
16569 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
16570 isConstantEvaluated)) {
16571 if (Result)
16572 TypeExpr = ACO->getTrueExpr();
16573 else
16574 TypeExpr = ACO->getFalseExpr();
16575 continue;
16576 }
16577 return false;
16578 }
16579
16580 case Stmt::BinaryOperatorClass: {
16581 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
16582 if (BO->getOpcode() == BO_Comma) {
16583 TypeExpr = BO->getRHS();
16584 continue;
16585 }
16586 return false;
16587 }
16588
16589 default:
16590 return false;
16591 }
16592 }
16593}
16594
16595/// Retrieve the C type corresponding to type tag TypeExpr.
16596///
16597/// \param TypeExpr Expression that specifies a type tag.
16598///
16599/// \param MagicValues Registered magic values.
16600///
16601/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
16602/// kind.
16603///
16604/// \param TypeInfo Information about the corresponding C type.
16605///
16606/// \param isConstantEvaluated whether the evalaution should be performed in
16607/// constant context.
16608///
16609/// \returns true if the corresponding C type was found.
16610static bool GetMatchingCType(
16611 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
16612 const ASTContext &Ctx,
16613 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
16614 *MagicValues,
16615 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
16616 bool isConstantEvaluated) {
16617 FoundWrongKind = false;
16618
16619 // Variable declaration that has type_tag_for_datatype attribute.
16620 const ValueDecl *VD = nullptr;
16621
16622 uint64_t MagicValue;
16623
16624 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
16625 return false;
16626
16627 if (VD) {
16628 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
16629 if (I->getArgumentKind() != ArgumentKind) {
16630 FoundWrongKind = true;
16631 return false;
16632 }
16633 TypeInfo.Type = I->getMatchingCType();
16634 TypeInfo.LayoutCompatible = I->getLayoutCompatible();
16635 TypeInfo.MustBeNull = I->getMustBeNull();
16636 return true;
16637 }
16638 return false;
16639 }
16640
16641 if (!MagicValues)
16642 return false;
16643
16644 llvm::DenseMap<Sema::TypeTagMagicValue,
16645 Sema::TypeTagData>::const_iterator I =
16646 MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
16647 if (I == MagicValues->end())
16648 return false;
16649
16650 TypeInfo = I->second;
16651 return true;
16652}
16653
16654void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
16655 uint64_t MagicValue, QualType Type,
16656 bool LayoutCompatible,
16657 bool MustBeNull) {
16658 if (!TypeTagForDatatypeMagicValues)
16659 TypeTagForDatatypeMagicValues.reset(
16660 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
16661
16662 TypeTagMagicValue Magic(ArgumentKind, MagicValue);
16663 (*TypeTagForDatatypeMagicValues)[Magic] =
16664 TypeTagData(Type, LayoutCompatible, MustBeNull);
16665}
16666
16667static bool IsSameCharType(QualType T1, QualType T2) {
16668 const BuiltinType *BT1 = T1->getAs<BuiltinType>();
16669 if (!BT1)
16670 return false;
16671
16672 const BuiltinType *BT2 = T2->getAs<BuiltinType>();
16673 if (!BT2)
16674 return false;
16675
16676 BuiltinType::Kind T1Kind = BT1->getKind();
16677 BuiltinType::Kind T2Kind = BT2->getKind();
16678
16679 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
16680 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
16681 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
16682 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
16683}
16684
16685void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
16686 const ArrayRef<const Expr *> ExprArgs,
16687 SourceLocation CallSiteLoc) {
16688 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
16689 bool IsPointerAttr = Attr->getIsPointer();
16690
16691 // Retrieve the argument representing the 'type_tag'.
16692 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
16693 if (TypeTagIdxAST >= ExprArgs.size()) {
16694 Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16695 << 0 << Attr->getTypeTagIdx().getSourceIndex();
16696 return;
16697 }
16698 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
16699 bool FoundWrongKind;
16700 TypeTagData TypeInfo;
16701 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
16702 TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
16703 TypeInfo, isConstantEvaluated())) {
16704 if (FoundWrongKind)
16705 Diag(TypeTagExpr->getExprLoc(),
16706 diag::warn_type_tag_for_datatype_wrong_kind)
16707 << TypeTagExpr->getSourceRange();
16708 return;
16709 }
16710
16711 // Retrieve the argument representing the 'arg_idx'.
16712 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
16713 if (ArgumentIdxAST >= ExprArgs.size()) {
16714 Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
16715 << 1 << Attr->getArgumentIdx().getSourceIndex();
16716 return;
16717 }
16718 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
16719 if (IsPointerAttr) {
16720 // Skip implicit cast of pointer to `void *' (as a function argument).
16721 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
16722 if (ICE->getType()->isVoidPointerType() &&
16723 ICE->getCastKind() == CK_BitCast)
16724 ArgumentExpr = ICE->getSubExpr();
16725 }
16726 QualType ArgumentType = ArgumentExpr->getType();
16727
16728 // Passing a `void*' pointer shouldn't trigger a warning.
16729 if (IsPointerAttr && ArgumentType->isVoidPointerType())
16730 return;
16731
16732 if (TypeInfo.MustBeNull) {
16733 // Type tag with matching void type requires a null pointer.
16734 if (!ArgumentExpr->isNullPointerConstant(Context,
16735 Expr::NPC_ValueDependentIsNotNull)) {
16736 Diag(ArgumentExpr->getExprLoc(),
16737 diag::warn_type_safety_null_pointer_required)
16738 << ArgumentKind->getName()
16739 << ArgumentExpr->getSourceRange()
16740 << TypeTagExpr->getSourceRange();
16741 }
16742 return;
16743 }
16744
16745 QualType RequiredType = TypeInfo.Type;
16746 if (IsPointerAttr)
16747 RequiredType = Context.getPointerType(RequiredType);
16748
16749 bool mismatch = false;
16750 if (!TypeInfo.LayoutCompatible) {
16751 mismatch = !Context.hasSameType(ArgumentType, RequiredType);
16752
16753 // C++11 [basic.fundamental] p1:
16754 // Plain char, signed char, and unsigned char are three distinct types.
16755 //
16756 // But we treat plain `char' as equivalent to `signed char' or `unsigned
16757 // char' depending on the current char signedness mode.
16758 if (mismatch)
16759 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
16760 RequiredType->getPointeeType())) ||
16761 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
16762 mismatch = false;
16763 } else
16764 if (IsPointerAttr)
16765 mismatch = !isLayoutCompatible(Context,
16766 ArgumentType->getPointeeType(),
16767 RequiredType->getPointeeType());
16768 else
16769 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
16770
16771 if (mismatch)
16772 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
16773 << ArgumentType << ArgumentKind
16774 << TypeInfo.LayoutCompatible << RequiredType
16775 << ArgumentExpr->getSourceRange()
16776 << TypeTagExpr->getSourceRange();
16777}
16778
16779void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
16780 CharUnits Alignment) {
16781 MisalignedMembers.emplace_back(E, RD, MD, Alignment);
16782}
16783
16784void Sema::DiagnoseMisalignedMembers() {
16785 for (MisalignedMember &m : MisalignedMembers) {
16786 const NamedDecl *ND = m.RD;
16787 if (ND->getName().empty()) {
16788 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
16789 ND = TD;
16790 }
16791 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
16792 << m.MD << ND << m.E->getSourceRange();
16793 }
16794 MisalignedMembers.clear();
16795}
16796
16797void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
16798 E = E->IgnoreParens();
16799 if (!T->isPointerType() && !T->isIntegerType())
16800 return;
16801 if (isa<UnaryOperator>(E) &&
16802 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
16803 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
16804 if (isa<MemberExpr>(Op)) {
16805 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
16806 if (MA != MisalignedMembers.end() &&
16807 (T->isIntegerType() ||
16808 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
16809 Context.getTypeAlignInChars(
16810 T->getPointeeType()) <= MA->Alignment))))
16811 MisalignedMembers.erase(MA);
16812 }
16813 }
16814}
16815
16816void Sema::RefersToMemberWithReducedAlignment(
16817 Expr *E,
16818 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
16819 Action) {
16820 const auto *ME = dyn_cast<MemberExpr>(E);
16821 if (!ME)
16822 return;
16823
16824 // No need to check expressions with an __unaligned-qualified type.
16825 if (E->getType().getQualifiers().hasUnaligned())
16826 return;
16827
16828 // For a chain of MemberExpr like "a.b.c.d" this list
16829 // will keep FieldDecl's like [d, c, b].
16830 SmallVector<FieldDecl *, 4> ReverseMemberChain;
16831 const MemberExpr *TopME = nullptr;
16832 bool AnyIsPacked = false;
16833 do {
16834 QualType BaseType = ME->getBase()->getType();
16835 if (BaseType->isDependentType())
16836 return;
16837 if (ME->isArrow())
16838 BaseType = BaseType->getPointeeType();
16839 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
16840 if (RD->isInvalidDecl())
16841 return;
16842
16843 ValueDecl *MD = ME->getMemberDecl();
16844 auto *FD = dyn_cast<FieldDecl>(MD);
16845 // We do not care about non-data members.
16846 if (!FD || FD->isInvalidDecl())
16847 return;
16848
16849 AnyIsPacked =
16850 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
16851 ReverseMemberChain.push_back(FD);
16852
16853 TopME = ME;
16854 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
16855 } while (ME);
16856 assert(TopME && "We did not compute a topmost MemberExpr!")(static_cast <bool> (TopME && "We did not compute a topmost MemberExpr!"
) ? void (0) : __assert_fail ("TopME && \"We did not compute a topmost MemberExpr!\""
, "clang/lib/Sema/SemaChecking.cpp", 16856, __extension__ __PRETTY_FUNCTION__
))
;
16857
16858 // Not the scope of this diagnostic.
16859 if (!AnyIsPacked)
16860 return;
16861
16862 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
16863 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
16864 // TODO: The innermost base of the member expression may be too complicated.
16865 // For now, just disregard these cases. This is left for future
16866 // improvement.
16867 if (!DRE && !isa<CXXThisExpr>(TopBase))
16868 return;
16869
16870 // Alignment expected by the whole expression.
16871 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
16872
16873 // No need to do anything else with this case.
16874 if (ExpectedAlignment.isOne())
16875 return;
16876
16877 // Synthesize offset of the whole access.
16878 CharUnits Offset;
16879 for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain))
16880 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD));
16881
16882 // Compute the CompleteObjectAlignment as the alignment of the whole chain.
16883 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
16884 ReverseMemberChain.back()->getParent()->getTypeForDecl());
16885
16886 // The base expression of the innermost MemberExpr may give
16887 // stronger guarantees than the class containing the member.
16888 if (DRE && !TopME->isArrow()) {
16889 const ValueDecl *VD = DRE->getDecl();
16890 if (!VD->getType()->isReferenceType())
16891 CompleteObjectAlignment =
16892 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
16893 }
16894
16895 // Check if the synthesized offset fulfills the alignment.
16896 if (Offset % ExpectedAlignment != 0 ||
16897 // It may fulfill the offset it but the effective alignment may still be
16898 // lower than the expected expression alignment.
16899 CompleteObjectAlignment < ExpectedAlignment) {
16900 // If this happens, we want to determine a sensible culprit of this.
16901 // Intuitively, watching the chain of member expressions from right to
16902 // left, we start with the required alignment (as required by the field
16903 // type) but some packed attribute in that chain has reduced the alignment.
16904 // It may happen that another packed structure increases it again. But if
16905 // we are here such increase has not been enough. So pointing the first
16906 // FieldDecl that either is packed or else its RecordDecl is,
16907 // seems reasonable.
16908 FieldDecl *FD = nullptr;
16909 CharUnits Alignment;
16910 for (FieldDecl *FDI : ReverseMemberChain) {
16911 if (FDI->hasAttr<PackedAttr>() ||
16912 FDI->getParent()->hasAttr<PackedAttr>()) {
16913 FD = FDI;
16914 Alignment = std::min(
16915 Context.getTypeAlignInChars(FD->getType()),
16916 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
16917 break;
16918 }
16919 }
16920 assert(FD && "We did not find a packed FieldDecl!")(static_cast <bool> (FD && "We did not find a packed FieldDecl!"
) ? void (0) : __assert_fail ("FD && \"We did not find a packed FieldDecl!\""
, "clang/lib/Sema/SemaChecking.cpp", 16920, __extension__ __PRETTY_FUNCTION__
))
;
16921 Action(E, FD->getParent(), FD, Alignment);
16922 }
16923}
16924
16925void Sema::CheckAddressOfPackedMember(Expr *rhs) {
16926 using namespace std::placeholders;
16927
16928 RefersToMemberWithReducedAlignment(
16929 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
16930 _2, _3, _4));
16931}
16932
16933// Check if \p Ty is a valid type for the elementwise math builtins. If it is
16934// not a valid type, emit an error message and return true. Otherwise return
16935// false.
16936static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc,
16937 QualType Ty) {
16938 if (!Ty->getAs<VectorType>() && !ConstantMatrixType::isValidElementType(Ty)) {
16939 S.Diag(Loc, diag::err_builtin_invalid_arg_type)
16940 << 1 << /* vector, integer or float ty*/ 0 << Ty;
16941 return true;
16942 }
16943 return false;
16944}
16945
16946bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) {
16947 if (checkArgCount(*this, TheCall, 1))
16948 return true;
16949
16950 ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
16951 if (A.isInvalid())
16952 return true;
16953
16954 TheCall->setArg(0, A.get());
16955 QualType TyA = A.get()->getType();
16956
16957 if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
16958 return true;
16959
16960 TheCall->setType(TyA);
16961 return false;
16962}
16963
16964bool Sema::SemaBuiltinElementwiseMath(CallExpr *TheCall) {
16965 if (checkArgCount(*this, TheCall, 2))
16966 return true;
16967
16968 ExprResult A = TheCall->getArg(0);
16969 ExprResult B = TheCall->getArg(1);
16970 // Do standard promotions between the two arguments, returning their common
16971 // type.
16972 QualType Res =
16973 UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison);
16974 if (A.isInvalid() || B.isInvalid())
16975 return true;
16976
16977 QualType TyA = A.get()->getType();
16978 QualType TyB = B.get()->getType();
16979
16980 if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType())
16981 return Diag(A.get()->getBeginLoc(),
16982 diag::err_typecheck_call_different_arg_types)
16983 << TyA << TyB;
16984
16985 if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
16986 return true;
16987
16988 TheCall->setArg(0, A.get());
16989 TheCall->setArg(1, B.get());
16990 TheCall->setType(Res);
16991 return false;
16992}
16993
16994bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) {
16995 if (checkArgCount(*this, TheCall, 1))
16996 return true;
16997
16998 ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
16999 if (A.isInvalid())
17000 return true;
17001
17002 TheCall->setArg(0, A.get());
17003 return false;
17004}
17005
17006ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
17007 ExprResult CallResult) {
17008 if (checkArgCount(*this, TheCall, 1))
17009 return ExprError();
17010
17011 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
17012 if (MatrixArg.isInvalid())
17013 return MatrixArg;
17014 Expr *Matrix = MatrixArg.get();
17015
17016 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
17017 if (!MType) {
17018 Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17019 << 1 << /* matrix ty*/ 1 << Matrix->getType();
17020 return ExprError();
17021 }
17022
17023 // Create returned matrix type by swapping rows and columns of the argument
17024 // matrix type.
17025 QualType ResultType = Context.getConstantMatrixType(
17026 MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
17027
17028 // Change the return type to the type of the returned matrix.
17029 TheCall->setType(ResultType);
17030
17031 // Update call argument to use the possibly converted matrix argument.
17032 TheCall->setArg(0, Matrix);
17033 return CallResult;
17034}
17035
17036// Get and verify the matrix dimensions.
17037static llvm::Optional<unsigned>
17038getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
17039 SourceLocation ErrorPos;
17040 Optional<llvm::APSInt> Value =
17041 Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
17042 if (!Value) {
17043 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
17044 << Name;
17045 return {};
17046 }
17047 uint64_t Dim = Value->getZExtValue();
17048 if (!ConstantMatrixType::isDimensionValid(Dim)) {
17049 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
17050 << Name << ConstantMatrixType::getMaxElementsPerDimension();
17051 return {};
17052 }
17053 return Dim;
17054}
17055
17056ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
17057 ExprResult CallResult) {
17058 if (!getLangOpts().MatrixTypes) {
17059 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
17060 return ExprError();
17061 }
17062
17063 if (checkArgCount(*this, TheCall, 4))
17064 return ExprError();
17065
17066 unsigned PtrArgIdx = 0;
17067 Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
17068 Expr *RowsExpr = TheCall->getArg(1);
17069 Expr *ColumnsExpr = TheCall->getArg(2);
17070 Expr *StrideExpr = TheCall->getArg(3);
17071
17072 bool ArgError = false;
17073
17074 // Check pointer argument.
17075 {
17076 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
17077 if (PtrConv.isInvalid())
17078 return PtrConv;
17079 PtrExpr = PtrConv.get();
17080 TheCall->setArg(0, PtrExpr);
17081 if (PtrExpr->isTypeDependent()) {
17082 TheCall->setType(Context.DependentTy);
17083 return TheCall;
17084 }
17085 }
17086
17087 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
17088 QualType ElementTy;
17089 if (!PtrTy) {
17090 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17091 << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
17092 ArgError = true;
17093 } else {
17094 ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
17095
17096 if (!ConstantMatrixType::isValidElementType(ElementTy)) {
17097 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17098 << PtrArgIdx + 1 << /* pointer to element ty*/ 2
17099 << PtrExpr->getType();
17100 ArgError = true;
17101 }
17102 }
17103
17104 // Apply default Lvalue conversions and convert the expression to size_t.
17105 auto ApplyArgumentConversions = [this](Expr *E) {
17106 ExprResult Conv = DefaultLvalueConversion(E);
17107 if (Conv.isInvalid())
17108 return Conv;
17109
17110 return tryConvertExprToType(Conv.get(), Context.getSizeType());
17111 };
17112
17113 // Apply conversion to row and column expressions.
17114 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
17115 if (!RowsConv.isInvalid()) {
17116 RowsExpr = RowsConv.get();
17117 TheCall->setArg(1, RowsExpr);
17118 } else
17119 RowsExpr = nullptr;
17120
17121 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
17122 if (!ColumnsConv.isInvalid()) {
17123 ColumnsExpr = ColumnsConv.get();
17124 TheCall->setArg(2, ColumnsExpr);
17125 } else
17126 ColumnsExpr = nullptr;
17127
17128 // If any any part of the result matrix type is still pending, just use
17129 // Context.DependentTy, until all parts are resolved.
17130 if ((RowsExpr && RowsExpr->isTypeDependent()) ||
17131 (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
17132 TheCall->setType(Context.DependentTy);
17133 return CallResult;
17134 }
17135
17136 // Check row and column dimensions.
17137 llvm::Optional<unsigned> MaybeRows;
17138 if (RowsExpr)
17139 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
17140
17141 llvm::Optional<unsigned> MaybeColumns;
17142 if (ColumnsExpr)
17143 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
17144
17145 // Check stride argument.
17146 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
17147 if (StrideConv.isInvalid())
17148 return ExprError();
17149 StrideExpr = StrideConv.get();
17150 TheCall->setArg(3, StrideExpr);
17151
17152 if (MaybeRows) {
17153 if (Optional<llvm::APSInt> Value =
17154 StrideExpr->getIntegerConstantExpr(Context)) {
17155 uint64_t Stride = Value->getZExtValue();
17156 if (Stride < *MaybeRows) {
17157 Diag(StrideExpr->getBeginLoc(),
17158 diag::err_builtin_matrix_stride_too_small);
17159 ArgError = true;
17160 }
17161 }
17162 }
17163
17164 if (ArgError || !MaybeRows || !MaybeColumns)
17165 return ExprError();
17166
17167 TheCall->setType(
17168 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
17169 return CallResult;
17170}
17171
17172ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
17173 ExprResult CallResult) {
17174 if (checkArgCount(*this, TheCall, 3))
17175 return ExprError();
17176
17177 unsigned PtrArgIdx = 1;
17178 Expr *MatrixExpr = TheCall->getArg(0);
17179 Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
17180 Expr *StrideExpr = TheCall->getArg(2);
17181
17182 bool ArgError = false;
17183
17184 {
17185 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
17186 if (MatrixConv.isInvalid())
17187 return MatrixConv;
17188 MatrixExpr = MatrixConv.get();
17189 TheCall->setArg(0, MatrixExpr);
17190 }
17191 if (MatrixExpr->isTypeDependent()) {
17192 TheCall->setType(Context.DependentTy);
17193 return TheCall;
17194 }
17195
17196 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
17197 if (!MatrixTy) {
17198 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17199 << 1 << /*matrix ty */ 1 << MatrixExpr->getType();
17200 ArgError = true;
17201 }
17202
17203 {
17204 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
17205 if (PtrConv.isInvalid())
17206 return PtrConv;
17207 PtrExpr = PtrConv.get();
17208 TheCall->setArg(1, PtrExpr);
17209 if (PtrExpr->isTypeDependent()) {
17210 TheCall->setType(Context.DependentTy);
17211 return TheCall;
17212 }
17213 }
17214
17215 // Check pointer argument.
17216 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
17217 if (!PtrTy) {
17218 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17219 << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
17220 ArgError = true;
17221 } else {
17222 QualType ElementTy = PtrTy->getPointeeType();
17223 if (ElementTy.isConstQualified()) {
17224 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
17225 ArgError = true;
17226 }
17227 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
17228 if (MatrixTy &&
17229 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
17230 Diag(PtrExpr->getBeginLoc(),
17231 diag::err_builtin_matrix_pointer_arg_mismatch)
17232 << ElementTy << MatrixTy->getElementType();
17233 ArgError = true;
17234 }
17235 }
17236
17237 // Apply default Lvalue conversions and convert the stride expression to
17238 // size_t.
17239 {
17240 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
17241 if (StrideConv.isInvalid())
17242 return StrideConv;
17243
17244 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
17245 if (StrideConv.isInvalid())
17246 return StrideConv;
17247 StrideExpr = StrideConv.get();
17248 TheCall->setArg(2, StrideExpr);
17249 }
17250
17251 // Check stride argument.
17252 if (MatrixTy) {
17253 if (Optional<llvm::APSInt> Value =
17254 StrideExpr->getIntegerConstantExpr(Context)) {
17255 uint64_t Stride = Value->getZExtValue();
17256 if (Stride < MatrixTy->getNumRows()) {
17257 Diag(StrideExpr->getBeginLoc(),
17258 diag::err_builtin_matrix_stride_too_small);
17259 ArgError = true;
17260 }
17261 }
17262 }
17263
17264 if (ArgError)
17265 return ExprError();
17266
17267 return CallResult;
17268}
17269
17270/// \brief Enforce the bounds of a TCB
17271/// CheckTCBEnforcement - Enforces that every function in a named TCB only
17272/// directly calls other functions in the same TCB as marked by the enforce_tcb
17273/// and enforce_tcb_leaf attributes.
17274void Sema::CheckTCBEnforcement(const CallExpr *TheCall,
17275 const FunctionDecl *Callee) {
17276 const FunctionDecl *Caller = getCurFunctionDecl();
17277
17278 // Calls to builtins are not enforced.
17279 if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() ||
17280 Callee->getBuiltinID() != 0)
17281 return;
17282
17283 // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
17284 // all TCBs the callee is a part of.
17285 llvm::StringSet<> CalleeTCBs;
17286 for_each(Callee->specific_attrs<EnforceTCBAttr>(),
17287 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
17288 for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(),
17289 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
17290
17291 // Go through the TCBs the caller is a part of and emit warnings if Caller
17292 // is in a TCB that the Callee is not.
17293 for_each(
17294 Caller->specific_attrs<EnforceTCBAttr>(),
17295 [&](const auto *A) {
17296 StringRef CallerTCB = A->getTCBName();
17297 if (CalleeTCBs.count(CallerTCB) == 0) {
17298 this->Diag(TheCall->getExprLoc(),
17299 diag::warn_tcb_enforcement_violation) << Callee
17300 << CallerTCB;
17301 }
17302 });
17303}